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Preface to “Aquaphotomics—Exploring Water

Molecular Systems in Nature”

Aquaphotomics, as a new “omics” science, was proposed by Roumiana Tsenkova in 2005, and

was guided by her vision of exploring the biological world and its aqueous systems in terms of the

light–water interaction. In the past, water was seen as a passive element, an inert molecule that

hinders useful spectral signals. A radical new approach in spectroscopy—considering the water–light

interaction—opened a new door for the world of science. Water, as an active factor, a biomolecule in

its own right, and one that builds miscellaneous structures that lead to various functionalities, has

been recognized and is slowly becoming a new interdisciplinary scientific platform that connects

sciences and technology.

The mission of Aquaphotomics is to understand the role of water, and consider it as a

sophisticated molecular network that connects other elements in the system with its rhythm and

ability self-organize. All spectroscopy techniques are crucially important for Aquaphotomics,

whether they cover visible light, infrared, near-infrared, ultraviolet, Raman, or Terahertz frequencies.

The water spectra of the systems under various perturbations create a vast ocean of data. Due

to advancements in computer science, data analysis, and new measurement technologies, the

spectral studies of water are expanding across disciplines, providing a common platform for diverse

technological applications.

This Special Issue of Molecules is devoted to spreading new knowledge regarding the features

and functionalities of this most incredibly versatile molecule, and the connections and networks it

creates; from these, different functionalities arise. We are immensely pleased to say that interest in

this Special Issue has far exceeded our expectations; in this Special Issue, there are 21 scientific papers,

reviews and original research works, on a wide variety of topics, which range from basic water

structure and science, spectral preprocessing and analysis, to very complex practical applications

and their associated problems. We are also excptionally pleased that this first Special Issue collected

studies that were performed using different spectroscopy methods, including near–infrared, Raman,

infrared and even polarized spectroscopy. It also contains works that are pioneering in nature, that

represent emerging areas in the application of Aquaphotomics knowledge, and that propose future

directions for its development. This Special Issue is now also available in a book format.

As Guest Editors, we would like to sincerely thank all the authors who contributed to this Special

Issue with review and original research articles, and to external editors and reviewers for their efforts

in carefully evaluating the received manuscripts. We also would like to sincerely thank the Editorial

office of Molecules for its kind assistance in the preparation of this publication. Last, but not least, we

would like to express our sincere gratitude to the Tsukino Shizuku Foundation, who kindly supported

the article processing charges of several research papers in this publication. Without their support,

the range of articles in this first Aquaphotomics Special Issue would have been modest.

Roumiana Tsenkova and Jelena Muncan

Editors

xi





Citation: Muncan, J.; Tsenkova, R.

Aquaphotomics—Exploring Water

Molecular Systems in Nature.

Molecules 2023, 28, 2630. https://

doi.org/10.3390/molecules28062630

Received: 2 March 2023

Accepted: 5 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Editorial

Aquaphotomics—Exploring Water Molecular Systems in Nature

Jelena Muncan * and Roumiana Tsenkova *

Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University,
Kobe 657-8501, Japan
* Correspondence: jmuncan@people.kobe-u.ac.jp (J.M.); rtsen@kobe-u.ac.jp (R.T.)

Since its birth in 2005, when introduced by Prof. Roumiana Tsenkova, and especially
in the last five years, the development of aquaphotomics has shown a rising trend. The
increasing interest in using aquaphotomics in scientific research can be observed by a
rough analysis of the data provided by the Google Scholar search engine (Figure 1). This
simple query for the published papers and patents (without citations of those works) on a
year-by-year level since the establishment of aquaphotomics in 2005 shows that the slow,
steady growth of the first decade is now being replaced with a more rapid trend, with
publications doubling in numbers every two years.

Figure 1. The results of analysis using Google Scholar search tool for articles and patents (excluding
citations) mentioning word “aquaphotomics” since its establishment until 2022.

A similar query performed using Web of Science provided more information about the
categories of published scientific articles which featuring the word “aquaphotomics” [1];
there were 25 (Figure 2). The two categories to which the majority of the published works
belong to are multidisciplinary chemistry (23.81%) and analytical chemistry (20.00%),
which together comprise almost half of all the results, followed by biochemistry/molecular
biology (19.05%) and spectroscopy (18.10%). Out of the 25 found categories, 4 contain the
words “multidisciplinary”, 2 “inter-disciplinary”, and 3 “applied” or “applications”.

This “character” of aquaphotomics as an inter-disciplinary field with lots of applica-
tions across many disciplines is well-reflected in this book, which in one place collected
high-quality, original research articles and reviews that were originally published as open
access articles in a Special Issue of Molecules titled “Aquaphotomics—Exploring Water
Molecular Systems in Nature”.

Molecules 2023, 28, 2630. https://doi.org/10.3390/molecules28062630 https://www.mdpi.com/journal/molecules1
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Figure 2. The results of Web of Science search for documents containing word “aquaphotomics”
sorted according to categories defined by Web of Science. The majority of results (almost 50%) can
belong to the categories of multidisciplinary chemistry and analytical chemistry.

Out of the 21 published articles, 3 were reviews [2–4] and 18 were original research
papers [5–22], that can be roughly separated into 6 categories (Figure 3).

The majority of the articles, approximately one third, belongs to the field of appli-
cations in agriculture and food science [8,9,12–14,21,22], a field from which aquapho-
tomics originated, and probably the reason why this category is still at the forefront of
aquaphotomics development. Following this category are the preprocessing and chemo-
metrics [2,4,15,18] and fundamental studies [5,6,10,17]. The former category reflects an
important issue that aquaphotomics is trying to resolve, namely, the necessity of devel-
oping appropriate tools for dealing with the spectra of highly aqueous samples, and that
significant efforts are being invested in resolving the issues of extracting the information
from very subtle spectral signals. The papers that can be classified as belonging to the Fun-
damental studies show a recognition of aquaphotomics as a novel tool that can provide new
insights into many puzzling phenomena in nature where water plays the role. They also
show the possibility of opening new research directions and novel fields of applications.

Figure 3. The main categories of scientific articles published in the Special Issue “Aquaphotomics—
Exploring Water Molecular Systems in Nature”.
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This is exactly something that can be said about the category of material science [7,16],
a relatively new area where aquaphotomics is slowly starting to make progress. The last
two categories, cell biology [3,20] and diagnostics and therapy [11,19], do not feature
many research papers because of the difficulty of conducting research with living systems.
However, these two categories, and perhaps life science in general, still represent an
important direction of growth that holds the strongest potential for making an impact
and lasting change in our world, by transforming the current practices and offering non-
destructive, real-time monitoring and early diagnostics that hopefully one day will be
replaced with prevention.

Another interesting aspect of the original research articles is the measurement meth-
ods the researchers employed (Figure 4). Contrary to expectations that this would be
the major portion, only four of the original research papers reported results obtained
by using near-infrared (NIR) spectroscopy in the area of the first overtone of water
(1300–1600 nm) [5,6,19,22].

Figure 4. The types of measurement methods and perturbation techniques used by researchers in
original research articles of the Special Issue “Aquaphotomics—Exploring Water Molecular Systems
in Nature”. The numbers beside each category indicate the total number of papers that used a specific
measurement method, while the numbers in parentheses represent the percentage of the total number
of publications in the Special Issue.

The use of only the first overtone of water in analysis has been the dominant choice
in aquaphotomics publications for a long time. This is because aquaphotomics relies
on specific water bands as water matrix coordinates (WAMACs), which have been well-
defined through studies in this region. As a result, there is now a clear understanding of
the assignments of these water absorbance bands and their relation to water functional-
ity. Nevertheless, it is very encouraging to notice that the use of short wavelength NIR
spectroscopy is gaining popularity. In this Issue, three papers reported the use of short
wavelength NIR spectroscopy, in the approximate range of 750–1000 nm, where the 2nd and
3rd overtone of water are located [9,13,21]. Furthermore, two research groups presented
the results, in parallel, for both the first overtone of water region and higher overtones,
demonstrating increased efforts in gaining more clarity in the nature of information that
can be gained from each of the regions, and attempts at defining WAMACs similar to
the existing ones in the first overtone [23]. Additionally, three studies were performed
over the entire (~750–2500 nm) [16,18], or nearly the entire range, of the NIR spectrum
(1100–2500 nm) [15]. This testifies to increased interest in the water spectral features over
the entire range, which may result in many benefits for both scientific and practical aspects.

It is especially encouraging to witness that the light–water interaction over the whole
electromagnetic spectrum is a source of valuable information, as stated in aquaphotomics.

3



Molecules 2023, 28, 2630

One paper reported the results in the mid-infrared region [7], and two used Raman spec-
troscopy [10,17]. There were also two papers reporting on the exploration of a newly
developed measurement technique that employs GHz sensors [20], and also perturbation
by polarization filters [13], for the first time in aquaphotomics. Studies such as those
challenge the current understanding of what exactly is the nature of light–water interaction
and bring attention to the importance of the design of instruments and the choice of light,
which is a measurement and a perturbation tool in aquaphotomics.

In this book, all the papers from the Special Issue are organized to follow the trend
from fundamentally important topics from which all the readers can benefit, through the
rising complexity of the aqueous and biological systems that were investigated. That is why
the beginning of the book presents papers dealing with the topics of preprocessing, chemo-
metrics, and the related tools that should lead to improved ways of extracting the relevant
information from the spectra. In the first review of this Issue, Roger, Mallet, and Marini [2]
provided a comprehensive overview of the most useful preprocessing and chemometrics
techniques that are particularly relevant for the nature of signals aquaphotomics is dealing
with. If one should choose just one, the most important message of this review should be as
follows: “It is important to look at the “raw” spectra before deciding which preprocessing
to use!”. This is something that cannot be emphasized enough. It is a common mistake in
novices to rush and apply chemometrics or create aquagrams according to the explanations
provided in the literature [24,25] and jump to interpretations based on the aquagram only.
However, this review, through three examples of data, show how inadequate preprocessing,
and overlooking the critical step in seeing the spectra before creating aquagrams, can result
in a distorted view and misinterpretations. It is our expectation that this review and the
techniques proposed are going to be of major significance for future aquaphotomics studies,
and readers and researchers are strongly encouraged to start exploring and using the pro-
posed preprocessing techniques. The review paper by Sun, Cai, and Shao [4] summarized
novel findings regarding the extraction of structural and quantitative information from
the temperature-dependent NIR spectra using chemometrics methods. Shao and his team
are leaders in the development of temperature-dependent spectroscopy [26–32], where
they utilize the phenomena of using the water spectral changes with temperature when the
system undergoes changes in composition. In these applications, water plays the role of a
“scanner”, acquiring information through the changes in its structure caused by the changes
in concentration. The current paper, in addition to providing an overview of chemometrics
techniques that can be used in temperature-dependent NIR spectroscopy, highlighted also
some of the associated challenges, such as the need for a large number of reference samples
and difficulties in finding the most appropriate chemometrics method.

In her work, Cui tackled one of the major issues that can happen in both research
and industrial settings: the need to correct the spectral variations caused by the different
instruments, measurements, and sample conditions [15]. This problem is of particular
importance for all aquaphotomics studies because it uses the high variability of aqueous
samples due the very nature of hydrogen bonding in the water molecular network and the
water response to even subtle changes either in its own composition or in the environment,
and the accuracy and uniformity of the instruments are very important. Cui proposed a
newly developed algorithm, called mutual-individual factor analysis (MIFA), which takes
advantage of the sensitivity of water to perturbations, to divide the water spectral region
into mutual and individual parts, which derive from the spectral features among instru-
ments (mutual) and differences in the sample and measurement conditions (individual).
The effectiveness of the newly developed MIFA algorithm for the calibration transfer was
successfully demonstrated on two datasets of corn and wheat, showing a novel solution for
the standardization of spectra derived from different instruments when measurements are
affected by multiple factors.

In one of the very innovative and creative works, Ye et al. developed a new dis-
criminating analysis for the purpose of application in problems of the classification and
identification of water samples with small differences in the component content; this is a
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very hot topic, especially in the quality control of drinking water [18]. The work is rich in
novelty in many aspects: they utilized the optical path length of cuvette as a perturbation
factor, performed fusion modeling on multi-optical path measurements, and developed
a new pattern recognition method that effectively discriminated between three types of
drinking water with a very similar content. The novel approach could widely be applied to
other types of samples or in other fields.

When it comes to studies that reveal some fundamental new insights, the work by
Stoilov et al. [6] stands out, reporting for the first time that the frequency of applied sound
perturbation results in distinctive changes in water’s molecular structure, that was captured
in a water absorbance spectral pattern. The team which investigated two types of water
concluded that perturbation by sound produces a measurable impact on water’s molecular
structure which depends on the nature of the water samples used, as well as the frequency
at which at the sound is tuned to. Similarly, very novel results are reported by Muncan
et al. [5], who investigated how the water used in mixing for cement production influences
the mechanical properties of the final products. The study showed that differences in water
defined the properties of cement mortar very early, within the first 24 h. All the waters
used in the study satisfy all the conditions as defined by current standards, but contrary to
the expectations, they result in very different properties of the final products, showing the
need for the recognition of water’s molecular structure as one of the aspects that needs to
be taken into consideration and incorporated into future practices. Another study showing
the importance of the knowledge of water’s molecular structure in order to predict the
material properties is a study conducted by Maggiore, Tommasini, and Ossi [10]. The study
was focused on using Raman spectroscopy to measure the amount of liquid water in snow.
In snow, the water can exist in three phases simultaneously, solid, liquid, and vapor, but
the content of liquid water is important to estimate snowmelt runoff and wet avalanche
risk. This paper is another fascinating example of how the structure of water defines the
mechanical properties of the material which, in this case, is snow. By reproducing the water
percolation in snow in laboratory settings and monitoring the presence of liquid water
using the Raman spectral features of ice and liquid water, the researchers were able to detect
the presence of liquid water in a snow volume and to follow the evolution of the progressive
filling of snow with the liquid phase in a non-destructive and minimally invasive optical
approach. They also proposed the measures needed to upgrade the measurements from
laboratory to on-field applications.

The study by Miwa et al. [17] used a similar technique: low-frequency Raman spec-
troscopy (which is a type of Terahertz spectroscopy) to study the phenomena of semi-
clathrate hydrates, which are very popular materials with a wide range of applications
due to their ability to store heat. The temperature at which they can store heat can be
changed depending on the selection of certain guest-ions, and it is influenced by their size,
hydrophilicity, crystal structure, and other properties. Employing low-frequency Raman
spectroscopy, the team were able to observe interactions between the ions in semi-clathrate
hydrates and found that the temperature at which they stored heat was related to the
interactions between the ions, as shown by the position of peaks in the low-frequency
Raman spectra.

Interesting and very novel papers are emerging from the area of material science,
where for a long time, mid-infrared spectroscopy and Raman spectroscopy were dominant.
Moll et al. [16], in contrast, focused on the near-infrared spectroscopic exploration of water
in polymers with varying hydrophobicity. One of the most interesting findings of this study
is that the changes in the NIR spectrum of water can be observed even in the interaction
with highly hydrophobic polymers, leading the authors to conclude that hydrophilicity is
not an exhaustive enough parameter to fully account for the interaction of a polymer with
water. This also confirms one of the aquaphotomics postulates regarding the sensitivity
of water towards its chemical environment and that it is so clearly manifested in the NIR
spectra.
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Meada et al. [7] employed mid-infrared spectroscopy to study polymers, but their
study was performed from an unusual angle: they investigated vicinal water in soft contact
lenses. The water in the vicinity of material surfaces has a significant impact on a variety of
phenomena stemming from the interfaces, such as chemical reactions, adsorption, friction,
adhesion, and biocompatibility. In the paper, the authors devised and proposed a new
method to study the behavior of water near polymer materials using conventional ATR
infrared spectroscopy. The method involves the application of pressure to a hydrated
contact lens, which results in a deformation and change in the ratio of bulk and vicinal
water. The spectral signature of vicinal water was then extracted using multivariate curve
resolution–alternating least squares (MCR-ALS) analysis. The results showed that the shape
of the OH-stretching band in the infrared region, which reflects the hydrogen bonding
state of vicinal water, is different depending on the chemical structure of the polymers
constituting the contact lenses. This method is also proposed to probe the hydration states
of other materials whose function requires water, such as porous materials, hollow fibers,
and other soft materials.

In the agricultural sector, aquaphotomics development in the area of food adulteration
seem to be increasingly popular. Three papers in the Special Issue tackled challenges in
food adulteration, specifically honey [8,21] and coffee [14]. While honey adulteration was a
subject of investigations in several previous publications [33–35], the current ones contain
two novelties. First, a study by Bodor et al. [14] for the first time reports the aquaphotomics
results in the detection of honey adulteration by heat processing. Their results prove that
even at a low temperature treatment (40 ◦C), measurable changes occur in the spectra of the
honey, as demonstrated in aquagrams of three types of honey (sunflower, bastard indigo,
and acacia), and that these spectral changes are mainly related to the transformation of the
highly bonded water to less-bonded water or free water. Raypah et al. [21] investigated
the potential of aquaphotomics for honey adulteration, but for the first time in a stingless
bee honey, which is made of the nectar of trees, not flowers, and typically has a higher
moisture content. Another novelty is the employment, for the first time, of short NIR
spectroscopy and the detection of three types of adulterants: water, apple cider, and
fructose syrup. This team presented a simple aquagram-based method for the detection
of adulteration in the region 800–1100 nm, a very convenient region, where the majority
of the most common photodetectors available on the market offer the best sensitivity.
Another important contribution of this paper is in the assignments and interpretation of the
absorbance bands found to be important for honey adulteration, and their importance from
the standpoint of honey functionality. The coffee adulteration work by Balkis et al. [14] is
another achievement in food adulteration detection, a particular research topic for which
the group of Prof. Kovacs from Hungary is becoming increasingly recognized for. The
coffee adulteration work was able to accurately determine the ratio of coffees Robusta (less
expensive and easier to cultivate; therefore, commonly used as adulterant in higher-price
coffee blends [36,37]) to Arabica in both ground and liquid forms. A classification accuracy
of 100% was achieved for pure Arabica and Robusta, and the prediction of the Robusta
to Arabica ratio occurred with an error of 2.4%. The aquaphotomics approach provided
typical spectral fingerprints for each coffee blend and was able to accurately discriminate
and estimate the Robusta content of marketed blends.

Marinoni et al.’s study [22], which focused on utilizing the potential of aquaphotomics
to assess the freshness of ready-to-eat rocket salad, may mark the initiation of a promising
new realm of applications. The work employed several techniques, including a portable
E-nose, the electrolyte leakage test, NIR spectroscopy, and aquaphotomics to evaluate and
monitor changes during storage of salad in three types of modified atmosphere at 4 ◦C.
Although preliminary, the results suggest the potential of NIR spectroscopy to provide
the modeling of the shelf-life of stored products, the identification of the most suitable
atmosphere for maintaining freshness, and increasing insights into the role of water in the
preservation/deterioration of fresh vegetables. In this study, in particular, the author found
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importance of water solvation shells for the description of time-related changes during
storage.

Kaur et al. [12] performed an aquaphotomics study aimed at understanding the
changes in the water structure of kiwifruit juice with changes in temperature. This study
was performed in a style typical for Kaur, where she was focused on one very practical
application point of aquaphotomics, the identification of problems and overcoming them
by developing new tools and solutions, and, additionally, the study provided new infor-
mation regarding the water spectral features and assignments, adding to the increasing
aquaphotome database. This particular work identified that the influence of an increas-
ing temperature on the peak absorbance of kiwifruit juice spectra manifests as a lateral
(wavelength) shift in the first overtone and a vertical shift in the second overtone region of
water. Further, experimenting with different preprocessing techniques (orthogonalization
and extended multiplicative scatter correction), a temperature-independent partial least
square regression model for predicting the soluble solids concentration (SSC) of kiwifruit
juice were built for both overtones of water, significantly reducing the prediction bias.
Additionally, most importantly, the approach employed in this work, may be applied to
other problems such as the prediction of various properties of other fruit juices, intact fruit,
or other types of samples, whenever robustness against temperature changes is desirable.

One highly novel work came from Rajkumar et al. [13], who used NIR spectroscopy
and aquaphotomics to assess the spectral changes between linearly polarized and unpo-
larized light in commercially grown yellow-fleshed kiwifruit. Measurements were taken
on both unpeeled and peeled kiwifruit using a handheld NIR instrument. The results
showed that linearly polarized light activated more free water states, while unpolarized
light activated more bound water states. These differences were attributed to the surface
layers of the fruit. The soluble solid content (SSC) in the fruit was not a factor in these
results as the aquagrams generated for SSC were similar for all configurations. However,
within the aquaphotomics framework, it is a significant finding that bound water absorbed
more unpolarized light than polarized light, which calls into question the nature of the
light–water interaction and how the light properties or the way light is administrated to the
sample actually influences the results of the measurements and modeling of the properties
of interest. The authors provided a plausible possible explanation that differences are due
to polarization sensitive structures, particularly in the near surface layers, but further work
is needed and encouraged in this direction.

Only one of the papers in this Special Issue was devoted to plant physiology, using
aquaphotomics to explore the cold stress response in five different cultivars of soybean
that were engineered to encompass varying levels of tolerance to cold stress [9]. The study
showed that all soybean cultivars have a different water molecular structure in the leaves
when the plants are exposed to even mild stress conditions, which is very easy to detect very
early. Specific water molecular structures in the leaves of soybean cultivars were found to
be highly sensitive to the temperature, showing their crucial role in the cold stress response.
Further, the study revealed differences among genetically modified cultivars, suggesting
that the genetic modification is actually aimed at the end at achieving a specific water
molecular structure in the leaves which is more stable in the conditions of temperature
change.

Two more papers of this Special Issue report interesting new theories and findings
in cell biology. First, the review paper by Disalvo et al. [3] focused on the role of water in
biomembranes, the structures commonly thought as surrounding and protecting the cells.
In this review, the authors strongly and persuasively present evidence that water should
be considered a structural and thermodynamic component of membranes and suggests
incorporating this into current theories about the role of membranes in cells. The idea
is that membranes should be seen as open and responsive systems that are affected by
metabolic events and changes in water. The authors also suggest that the relationship
between water and the membranes should be considered in terms of free energy and other
thermodynamic properties, which play a role in the behavior of these crowded systems.
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Shiraga et al. [20], in their original research paper, further experimentally confirmed some
of these aspects. They employed a newly developed measurement system based on a
near-field CMOS dielectric sensor operating at 65 GHz, that enabled measurements of the
bulk water content in cells with a high precision and single cell resolution. The system was
used to evaluate the changes in the bulk water content during the process of cell death in
keratinocytes. The results showed that there was a significant increase in the bulk water
content approximately 1 h before the membrane disruption, suggesting that the calcium
flux may play a role in triggering the increase in water content.

Santos-Rivera et al. [11] conducted a pioneering work, using aquaphotomics for the
rapid detection of bovine respiratory syncytial virus (BRSV) infection in cattle, based on
the spectra of exhaled breath condensate. This is the first report on utilizing this type
of sample to perform diagnosis that holds immense promise, especially for screening
purposes in human population. It is worth noting that BRSV is a very contagious viral
disease spread by aerosols and via contact between animals. The results showed that
changes in the composition of the exhaled breath condensate during infection could be
accurately differentiated from the pre-infection stage with an accuracy of over 93%. These
findings suggest that NIR aquaphotomics could be used to develop a non-invasive, in-field
diagnostic tool for detecting not only BRSV infection in cattle, but similar infections in the
human population.

In a very interesting case study, Scholkmann and Tsenkova [19] used aquaphotomics
NIR spectroscopy as a tool to monitor the effects of a blood cleaning treatment called
double-filtration plasmapheresis (DFPP). The analysis of the spectra acquired from a hand
of one subject subjected to DFFP treatment showed that the water properties in the tissue
changed after the treatment, characterized by an increase in small water clusters, free water
molecules, and a decrease in hydroxylated water and superoxides. The changes in tissue
water suggest that the positive effects of DFPP may be linked to improvements in the water
quality in blood and tissues, related to the respective water molecular structures. This
study is the first to document these changes after DFPP treatment in human tissue, and
it is worth noting the existence of similarities between this study and some preliminary
findings reported about the hemodialysis and the blood filtration treatment, namely, a
marked increase in free water molecules after the filtration [38].

The works performed by the researchers who authored the articles in the Special
Issue are all at the cutting-edge of aquaphotomics. Many of the works are the first of
their kind, pioneering in nature and showcasing the new phenomena explored through
the prism of water–light interaction. However, when one finishes the reading, it becomes
apparent that some questions are still left without certain answers, and, furthermore, that
new questions have emerged. It is now down to us to encourage others to be stimulated by
these new questions, take this challenge, and have courage to create new paths into as of
yet unexplored lands.
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25. Tsenkova, R.; Munćan, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem.
2018, 6, 363. [CrossRef] [PubMed]

26. Cui, X.; Zhang, J.; Cai, W.; Shao, X. Chemometric algorithms for analyzing high dimensional temperature dependent near infrared
spectra. Chemom. Intell. Lab. Syst. 2017, 170, 109–117. [CrossRef]

27. Han, L.; Cui, X.; Cai, W.; Shao, X. Three–level simultaneous component analysis for analyzing the near–infrared spectra of
aqueous solutions under multiple perturbations. Talanta 2020, 217, 121036. [CrossRef]

28. Tan, J.; Sun, Y.; Ma, L.; Feng, H.; Guo, Y.; Cai, W.; Shao, X. Knowledge-based genetic algorithm for resolving the near-infrared
spectrum and understanding the water structures in aqueous solution. Chemom. Intell. Lab. Syst. 2020, 206, 104150. [CrossRef]

29. Shao, X.; Cui, X.; Yu, X.; Cai, W. Mutual factor analysis for quantitative analysis by temperature dependent near infrared spectra.
Talanta 2018, 183, 142–148. [CrossRef]

30. Cui, X.; Sun, Y.; Cai, W.; Shao, X. Chemometric methods for extracting information from temperature-dependent near-infrared
spectra. Sci. China Chem. 2019, 62, 583–591. [CrossRef]

31. Shan, R.; Zhao, Y.; Fan, M.; Liu, X.; Cai, W.; Shao, X. Multilevel analysis of temperature dependent near-infrared spectra. Talanta
2015, 131, 170–174. [CrossRef]

32. Cui, X.; Liu, X.; Yu, X.; Cai, W.; Shao, X. Water can be a probe for sensing glucose in aqueous solutions by temperature dependent
near infrared spectra. Anal. Chim. Acta 2017, 957, 47–54. [CrossRef] [PubMed]

33. Bázár, G.; Romvári, R.; Szabó, A.; Somogyi, T.; Éles, V.; Tsenkova, R. NIR detection of honey adulteration reveals differences in
water spectral pattern. Food Chem. 2016, 194, 873–880. [CrossRef]

34. Yang, X.; Guang, P.; Xu, G.; Zhu, S.; Chen, Z.; Huang, F. Manuka honey adulteration detection based on near-infrared spectroscopy
combined with aquaphotomics. LWT 2020, 132, 109837. [CrossRef]

9



Molecules 2023, 28, 2630

35. Omar, A.F.; Mardziah Yahaya, O.K.; Tan, K.C.; Mail, M.H.; Seeni, A. The influence of additional water content towards the
spectroscopy and physicochemical properties of genus Apis and stingless bee honey. Opt. Sens. Detect. IV 2016, 9899, 98990Y.
[CrossRef]

36. Wang, X.; Lim, L.T.; Fu, Y. Review of Analytical Methods to Detect Adulteration in Coffee. J. AOAC Int. 2020, 103, 295–305.
[CrossRef] [PubMed]

37. Combes, M.C.; Joët, T.; Lashermes, P. Development of a rapid and efficient DNA-based method to detect and quantify adulterations
in coffee (Arabica versus Robusta). Food Control 2018, 88, 198–206. [CrossRef]

38. Muncan, J.; Tsenkova, R. Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology.
Molecules 2019, 24, 2742. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

10



Citation: Roger, J.-M.; Mallet, A.;

Marini, F. Preprocessing NIR Spectra

for Aquaphotomics. Molecules 2022,

27, 6795. https://doi.org/10.3390/

molecules27206795

Academic Editor: Jaan Laane

Received: 31 July 2022

Accepted: 8 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Preprocessing NIR Spectra for Aquaphotomics

Jean-Michel Roger 1,2,*, Alexandre Mallet 3 and Federico Marini 4

1 ITAP, INRAE Montpellier Institut Agro, University Montpellier, 34196 Montpellier, France
2 ChemHouse Research Group, 34196 Montpellier, France
3 BioEnTech, 74 Av. Paul Sabatier, 11100 Narbonne, France
4 Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
* Correspondence: jean-michel.roger@inrae.fr

Abstract: Even though NIR spectroscopy is based on the Beer–Lambert law, which clearly relates
the concentration of the absorbing elements with the absorbance, the measured spectra are subject
to spurious signals, such as additive and multiplicative effects. The use of NIR spectra, therefore,
requires a preprocessing step. This article reviews the main preprocessing methods in the light of
aquaphotomics. Simple methods for visualizing the spectra are proposed in order to guide the user
in the choice of the best preprocessing. The most common chemometrics preprocessing are presented
and illustrated by three real datasets. Some preprocessing aims to produce a spectrum as close as
possible to the absorbance that would have been measured under ideal conditions and is very useful
for the establishment of an aquagram. Others, dedicated to the improvement of the resolution of the
spectra, are very useful for the identification of the peaks. Finally, special attention is given to the
problem of reducing multiplicative effects and to the potential pitfalls of some very popular methods
in chemometrics. Alternatives proposed in recent papers are presented.

Keywords: near infrared spectroscopy; preprocessing; aquaphotomics; chemometrics

1. Introduction

Infrared spectroscopy is based on the phenomenon of absorption of photons by molec-
ular bonds. The phenomenon of absorption obeys the Beer–Lambert law, which relates
linearly the absorbance to the concentration (see Section 2). Each vibration of the molecular
bonds, such as elongations or deformations, is responsible for a fundamental absorption [1].
These absorption bands are observed in the mid-infrared range (MIR, from 2.5 μm to 25 μm,
corresponding to 4000–400 cm−1). However, near infrared spectroscopy (NIR, from 0.8 μm
to 2.5 μm, i.e., 800 nm to 2500 nm, corresponding to 12,500–4000 cm−1), which contains
the harmonics and combinations of the MIR bands, is by far the most used technique. One
reason for this success is that the interaction between matter and NIR radiation is both
weak and real [2]. Because it is weak, the photons can pass through a large amount of
matter, typically several millimeters or even centimeters. Because it is effective, it results in
an informative spectrum. However, the absorption peaks are weak and intricated. More-
over, measurements can be distorted by equipment drift, temperature/humidity changes,
or sample presentation. The NIR spectra must, therefore, be processed by multivariate
dedicated techniques, which constitute the toolbox of chemometrics. Among them, pre-
treatments are used to get closer to the Beer–Lambert theory and, thus, be able to apply
linear calibration models.

Aquaphotomics is a new discipline [3,4], which appeared in the early 2000s. It studies
water as a multiple-element medium, thus gaining the advantage of being described in a
multi-dimensional space, such as that offered by NIR spectroscopy. NIR is typically used
to estimate concentrations of chemical compounds, or to determine the membership of a
sample in a group. In contrast to this use, aquaphotomics aims to use NIR spectroscopy
to better understand the state of water and its interactions with other compounds and

Molecules 2022, 27, 6795. https://doi.org/10.3390/molecules27206795 https://www.mdpi.com/journal/molecules11



Molecules 2022, 27, 6795

complex systems. For this purpose, the concept of aquaphotome is defined [3]. It is based
on a set of absorbance values at different wavelengths, defining a water absorbance spectral
pattern (WASP), usually presented by an aquagram [4]. The aquagram is a kind of radar
graph representing the absorbance intensities at a set of wavelengths. As a consequence,
aquaphotomics requires efficient tools to retrieve, on the one hand, the wavelength position
of peaks and, on the other hand, relative absorbance intensities at several wavelengths.
Preprocessing must, therefore, preserve the extraction of these two pieces of information,
or even improve it.

This article proposes a critical review of the preprocessing methods classically used in
chemometrics for NIR spectra, putting them in perspective of their use in the context of
aquaphotomics studies.

2. Why to Preprocess NIR Spectra?

When electromagnetic radiation passes through a material medium, it undergoes
several phenomena, including absorption. When the radiation is in the NIR range, this
absorption is caused mainly by the bonds of nonsymmetrical molecules, including carbon,
oxygen, hydrogen and nitrogen. This is why NIR spectroscopy is used in analytical
chemistry of biological compounds. When a sample is measured under ideal conditions,
i.e., in transmission, at low concentration of the analyte(s) of interest and without light
scattering, Beer–Lambert law applies (see Figure 1 and Equation (1)).

A0(λ) = −log
(

I(λ)
I0(λ)

)
= ε(λ)LC (1)

where A0(λ) is the absorbance of the analyte at wavelength λ, I(λ) and I0(λ) represent the
intensity of the transmitted and incident light at the same wavelength, ε(λ) is the molar
absorptivity (molar extinction coefficient) of the chromophore, whose concentration is C,
and L is the optical pathlength.

Figure 1. Ideal measurement of the absorption.

However, under current measurement conditions, a number of phenomena are added
to the molecular absorption and Beer–Lambert’s law no longer applies. Thus, the interaction
of radiation with particles and changes in optical index have the effect of modifying the
path of photons. This results in a light scattering. This scattering has two consequences,
illustrated by Figure 2. The first is a lengthening of the optical path, which introduces a
multiplicative term. The second is a loss of photons, which will be falsely counted as an
absorption and, thus, introduces an additive term. Some specific optical assemblies, using
integrating spheres, allow getting rid of these phenomena. However, these systems require
measurements in contact with the product (which may not always be possible), so that
acquiring the signal simply in reflection mode is the option often preferred.
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Figure 2. Real measurement of the absorption.

It is usually admitted that the multiplicative term does not depend on the wavelength
and that the additive term does. This dependency can be modeled as a polynomial of λ of
low degree (up to 2 or 3), and this additive term is, thus, called the baseline [5]. In turn,
extra random and stochastic noise is added to the absorbance measurement, which finally
results in Equation (2).

A(λ) = ε(λ)kLC + Ab(λ) + An(λ) = kA0(λ) + Ab(λ) + An(λ) (2)

where k, Ab(λ) and An(λ) are a multiplicative factor, a baseline and a random noise, respectively.
When the measured spectra are used to estimate the concentration of a compound, by

means of a calibration, or to explain variations related to this concentration, by means of an
unsupervised analysis, the additive and multiplicative effects can be detrimental. Thus,
in chemometrics, preprocessing aims to correct the experimentally measured absorbance,
as expressed in Equation (2), so as to make the relation between the spectra and the
concentration C more adherent to the postulated linear model [6,7]. Thus, preprocessing
methods are dedicated to reduce or linearize the multiplicative and additive effects. In
aquaphotomics, preprocessing aims to reveal a signal as close as possible to the real
absorbance, as expressed in Equation (1). For this purpose, pretreatments that reveal
hidden peaks and those that restore absorbance intensities are relevant.

3. Data

To illustrate the different preprocessing methods, three sets of data will be used along
this paper:

• The first one contains 187 NIR spectra of virgin olive oils from Southern France
measured in transmission [8]. The spectra were recorded at 612 wavelengths regularly
spaced every 2 nm over the range 1000–2222 nm. The spectra were converted in
absorbance.

• The second one contains 150 Vis-NIR spectra of grapes measured in transmission [9].
The spectra were recorded at 256 wavelengths regularly spaced every 3.30 nm over
the range 303–1146 nm. No transformation was conducted on the spectra which are,
thus, raw intensity spectra.

• The third one contains 126 NIR spectra of flour measured in reflectance mode [10].
The spectra were recorded at 209 wavelengths regularly spaced every 6.28 nm over
the range 1118–2425 nm. A log transformation was conducted on the spectra which
are, thus, expressed as pseudo absorbances (log(1/R)).

The oil spectra (Figure 3a) are affected by a small additive effect. The grape spectra
(Figure 3b) are affected by a huge multiplicative effect, due to the size of the measured
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berries. The flour spectra (Figure 3c) are affected by noise of two kinds: positive and
negative spikes, between 2000 and 2200 nm, and uniform noise after 2200 nm. They also
are affected by additive and/or multiplicative effects due to the scattering of the light into
the flour.

 

Figure 3. Spectra of olive oil (a), grapes (b) and flour (c).

4. Looking at the Data

It is important to look at the spectra before deciding which preprocessing to use.
Several tools are available for this purpose.

4.1. Spectra Plot

One of the simplest visualization tools is to plot all the spectra, as a function of the
average spectrum, using a scatter plot. Figure 4 shows the result of this visualization tool
for the three datasets. Figure 4a clearly shows that the oil spectra are much more similar to
one another than those of grapes (Figure 4b) or flour (Figure 4c). They differ by a small
translation, corresponding to an additive effect not depending on the absorbance level.
Figure 4b shows a very large variability between the spectra of grapes. All spectra are
contained within a cone with the vertex at (0,0). This is characteristic of a pure multiplicative
effect, due here to differences in the size of the measured berries. Figure 4c shows that the
flour spectra are affected by isolated erroneous measurements, which dilate the vertical
scale (spikes). Apart from these outliers, the flour spectra are organized in a cone but also
appear to be affected by an additive effect. It is difficult to say whether these spectra contain
a multiplicative effect or an additive effect increasing with wavelength.

 
Figure 4. Scatter plot of the spectra as a function of the mean spectrum for (a): oil data, (b): grape
data, (c): flour data.
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4.2. PCA

Another visualization tool is principal component analysis (PCA). It allows, by ex-
amining the scores, observation of the variability between the spectra. Examining the
loadings also allows us to understand the source of the observed variability and to infer
hypotheses about the presence of multiplicative or additive effects, and, thus, to guide
the preprocessing step. Figure 5 shows the scores along the first two components of a
PCA performed on the three sets of spectra. Figure 6 shows the corresponding loadings
resulting from these PCA, together with the mean spectra of the three datasets. The scores
of the grapes spectra (Figure 5b) show, from another point of view, the cone structure
already observed in Figure 4b. In addition, the loadings on the PC1 axis (Figure 6b) are
very similar to the mean spectrum (Figure 6e). Both observations are characteristic of a
multiplicative effect. The reason for this is illustrated in Figure 7. It represents the spectra
in the multi-dimensional wavelength space. When the spectra are impacted by a dominant
multiplicative effect, they are organized in a very fine conical structure, passing through
the origin of the space. When the data are centered, the canonical co-ordinate system is
moved to the center of mass, at the end of the mean spectrum (x). Then, the axis of greatest
inertia (PC1) is calculated and, due to the shape of the spectra set, this axis is aligned with
the mean spectrum. The score plot and the loadings of the flour spectra (Figure 6c,f) reveal
that the presence of the spikes dominates. As a consequence, this dataset must be cleaned
from these spikes before any other processing. The score plot and the loadings of the oil
spectra (Figure 6a,d) do not reveal any particular structure.

Figure 5. Scatter plot of the two first scores of a PCA calculated on (a): oil spectra, (b): grape spectra,
(c): flour spectra.

Figure 6. Loadings of a PCA calculated on (a): oil spectra, (b): grape spectra, (c): flour spectra, and
mean spectra of (d): oil, (e): grape and (f): flour.
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Figure 7. Illustration of the phenomenon of alignment between the mean spectrum and the first axis
of the PCA in the case of the presence of multiplicative effects.

5. Most Usual Preprocessing

5.1. Noise Removal

Noise corresponds to random variations in amplitude from one point to another in
the spectrum. It is represented by the term An(λ) of Equation (2). From a signal processing
point of view, noise is considered as a high-frequency component. All NIR pre-processing
dedicated to noise suppression is, therefore, based on low-pass filters, also called smoothing.
In this section, the most commonly used smoothing methods are presented.

5.1.1. Moving Averaging

A simple smoothing method is to replace the value of each point i in the spectrum by
the average of the point values over a window of width w, centered on point i. The window
is moved along the spectrum, hence the name moving average window or boxcar filter.
This calculation cannot be applied to the first and last points of the spectrum. To overcome
this problem, one can either extend the spectrum to the left and right before smoothing or
keep the nonsmoothed points at both ends.

Figure 8a shows the right-hand side of eight flour spectra for wavelengths above
2245 nm. We can notice the presence of noise, certainly due to the low sensitivity of the
sensor often observed at the ends of the spectral range. Despite this noise, we can observe
that the spectra show an increasing slope, from 2260 to 2320 nm, followed by a plateau until
2368 nm. This plateau is marked by a slight dip around 2315 nm and a decreasing slope
from 2340 to 2368 nm. Figure 8b,c show the same spectra, once smoothed by a moving
average of width 5 and 11, respectively. With a window of 5, the noise is not completely
removed. The general shape of the spectra has been preserved, but the dip at 2315 nm has
disappeared. The decreasing slope after 2340 nm has been preserved. With a window of
11, the noise is completely corrected, but the shape of the spectra has been dramatically
altered. The increasing slope now ends at 2320 nm instead of 2300 nm; the dip at 2315 nm,
as well as the decreasing slope after 2340 nm, have disappeared. We see on this example
a limitation of the moving average smoothing method. When noise removal requires a
window that is too wide, some low-frequency features may disappear, such as the dip at
2315 nm in our example. This limitation can be extremely problematic for aquaphotomics,
which is based on the observation and measurement of such features.

16



Molecules 2022, 27, 6795

Figure 8. Examples of flour spectra in the wavelength range 2245–2368 nm. (a): Raw spectra,
(b): spectra smoothed by a moving window average, width 5, (c): spectra smoothed by a moving
window average, width 11, (d): spectra smoothed by a moving polynomial fitting, degree 1, width 11,
(d): spectra smoothed by a moving polynomial fitting, degree 1, width 11, (e): spectra smoothed by a
moving polynomial fitting, degree 2, width 11, (f): spectra smoothed by a moving polynomial fitting,
degree 5, width 11.

5.1.2. Moving Polynomial Fitting

To overcome this problem, it is possible to use a mobile polynomial smoothing. Mobile
polynomial smoothing consists of identifying a polynomial of degree d in a window of
width w centered on point i. The value of the point i is replaced by the value taken by
the polynomial. The window is then moved by one point and the calculation is repeated.
The same computational problem as for the moving average method arises at the ends
of the spectra, and the same trick can be used to solve it. This method preserves the
medium-frequency features modeled by the polynomial.

Figure 8d shows the result of smoothing using a window of width 11 and a polynomial
of degree 1. We see the same problem as in Figure 8c. Figure 8e shows the result of
smoothing with the same window width but using a polynomial of degree 2. We find
a correct shape, with the main slope stopping at 2300 nm and the presence of the small
decreasing slope after 2340 nm. On the other hand, the dip at 2315 nm is still absent. It is
partially recovered by using a polynomial of degree 5, as shown in Figure 8f.

Moving window smoothing, irrespectively of whether it uses the average or the
polynomial, is in fact a special case of the general filtering method of Savitsky and Golay,
which will be detailed further.

5.1.3. Frequency Filtering

By assimilating the wavelength scale to a time scale, another category of methods
consists of decomposing the spectra on a frequency basis. These methods are based on
transformations, such as Fourier or wavelet transforms. The signal is projected into a basis
of signals of different frequencies. The higher-frequency components are eliminated, and
the smoothed spectrum is obtained by the inverse transform. While the most common
method to perform such a filtering is the Fourier transform, the wavelet transform is
sometimes preferred for its ability to model complex shapes. These methods will not be
further discussed here. The interested reader could find more details in [11].
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5.1.4. Median Filter

A special case of noise is in the form of peaks affecting a single wavelength, as in
the example of flour spectra (Figure 3c). These peaks can originate from dead pixels in
hyperspectral cameras. The elimination of such noise cannot be conducted using classical
methods, such as moving averages. Instead, a median filter is used, which simply consists
of replacing the value of the point i of the spectrum by the median of its neighbors. Figure 9a
shows one spectrum of the flour database. We notice an intense spike around 2050 nm.
Figure 9b shows the result of a moving average filtering on a window of five points. We
can see that the filtering did not work because the noise is not zero mean. Figure 9c shows
the result with a moving median filtering. The result is much better.

Figure 9. Illustration of the median filter on the first spectrum of the flour dataset. (a): Raw spectrum,
(b): spectrum filtered by moving average, (c): spectrum filtered by moving median.

5.2. Baseline Removal

Baselines are low-frequency features added to the spectrum. They can be of different
shapes. In NIR spectroscopy, baselines are due to light scattering, which causes a loss of
photons arriving at the detector. They correspond to the term Ab(λ) in Equation (2). They
are almost always considered as polynomial functions of the wavelength. Thus, most of
the preprocessing techniques dedicated to baseline removal use this model.

5.2.1. Detrending

Since baselines are assumed to be low-order polynomial functions, a simple method
of removing them is to fit the spectrum to a polynomial of a chosen degree and replace
the spectrum with the residuals of the fit. This method, usually called “detrending”, is
mathematically defined as follows [7]:

Let v be a column vector containing the wavelength values or even [1, 2, · · · , p]T , if
the wavelengths are equally spaced. Let Vk be the (p, k + 1) matrix defined as follows:

Vk =
[
v0v1v2 · · · vk

]
=

⎡⎢⎢⎢⎣
1 λ1 λ2

1
1 λ2 λ2

2
...

...
...

1 λp λ2
p

. . . λk
1

. . . λk
2

...
. . . λk

p

⎤⎥⎥⎥⎦
If X contains the spectra to be detrended, the baselines contained in the rows of X are

calculated by Vk:

Lk = X Vk

(
VT

k Vk

)−1
VT

k

and then removed from X:

Xdet = X − Lk = X − X Vk

(
VT

k Vk

)−1
VT

k (3)
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Figure 10 shows the result of applying detrending with polynomial order 0, 1 and
2 on the oil, grapes and flour spectra. Compared with the raw oil spectra (Figure 3a),
the detrended oil spectra have been cleaned from their inter-sample baseline variability.
Already, by fitting a 0-order baseline (Figure 10a), we see that the spectra match perfectly,
except after 1900 nm. This region, attributed to combinations of fundamental vibrations of
C-H bonds, was identified by the authors of [7] as one of the most discriminating in the
dataset. It can be seen that, with higher polynomial orders (Figure 10d,g), the parts without
absorptions, before 1200 nm and between 1300 and 1400 nm, are no longer horizontal. In
conclusion, for the oil spectra, a detrend of order 0 allows a very satisfactory shape to be
obtained for the spectra. The application of detrending to the grape spectra (Figure 10b,e,h)
does not give a good result. Indeed, the left and right parts of the spectra, which were
naturally close to 0, are now completely shifted. In fact, regardless of the order of the
polynomial used, detrending has added baselines to the spectra that originally contained
none. This example illustrates how the application of preprocessing dedicated to additive
effects is counterproductive when applied to spectra containing only multiplicative effects.
Figure 10c,f,i show the application of detrending to the flour spectra. With a polynomial
of degree 0 (Figure 10c), the baselines are corrected only in the center of the wavelength
range. With a degree 1 (Figure 10f), the correction is better. The peaks at 1210 nm (fat),
1490 nm (starch), 1940 (water) and 2100 nm (proteins) are clearly exalted. It can be noticed
that the use of a degree 2 (Figure 10i) does not bring anything better, which indicates that
the baselines of the flour spectra are straight lines.

Figure 10. Illustration of the detrending preprocessing. (a,d,g): Oil spectra, (b,e,h): grape spectra,
(c,f,i): flour spectra after median filtering (w = 3). (a–c): Order 0, (d–f): order 1 and (g–i): order 2.

In chemometrics, detrending is often used because it removes sources of high variance,
allowing the model to focus on useful information. In aquaphotomics, it allows the peaks
to be highlighted, as can be seen on the example of the flour spectra, and it can also correct
distortions that are detrimental to the construction of aquagrams.
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5.2.2. Derivatives

If the baselines are polynomials added to the spectra, a derivative of sufficient order
will eliminate them. Thus, a baseline of degree 1 will be eliminated with a derivative of
order 2. If A(λ) = ε(λ)LC + Ab(λ) and if Ab(λ) is a polynomial of degree d, then:

∂d+1(A(λ))

∂λd+1 =
∂d+1(ε(λ))

∂λd+1 LC

To avoid increasing the noise of the spectra, the derivation operation must be per-
formed with a particular algorithm. One of the most used algorithms in NIR spectroscopy
is that of Savitzky and Golay [12]. To calculate the derivative at a point i, a polynomial
of degree d is fitted to the points of a window centered on i and of width w; then, the
polynomial is derived analytically and the value of the derivative at point i is adopted.
Figure 11 shows the application of this algorithm to the three spectra sets, with a window
of width 11, a polynomial of degree 3 and a derivative of order 2. One can see that all the
base lines have disappeared and that a lot of peaks now appear.

Figure 11. Illustration of the calculation of 2nd order derivatives by the Savitzky and Golay Algorithm.
(a): Oil, (b): grapes, (c): flour. All the derivatives have been calculated using an 11 point window and
a degree 2 polynomial.

The advantage of the derivatives is that the proportionality with the concentration
is recovered. Moreover, this way of removing baselines acts locally, unlike detrending.
Thus, if the baseline equation changes with wavelength, the derivation remains effective.
The major disadvantage is that the spectrum shape is completely changed, because what
appears in the derived spectrum is not the extinction spectrum ε(λ) but its derivative.

However, this feature can be very advantageous for peak identification, and thus
for aquaphotomics. For example, in [13], the second derivative of the water spectrum,
calculated by the algorithm of Savitzky and Golay, allowed the identification of five species
of water, differentiated by the H-bonding of their molecules. This method of pretreatment
also allowed the authors to explore the behavior of these species when the temperature of
the water changes. In [14], thanks to the peak deconvolution offered by second derivatives,
the authors have put forward the existence of two peaks at 1412 nm and at 1462 nm
corresponding to two OH-bond vibrational states. These spectacular results were obtained
on very pure water. From our experience, second derivative can also reveal hidden peaks
on more complex media where OH bond peaks are numerous and intricated, such as wet
cellulosic products.
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5.2.3. Asymmetric Least Squares

Asymmetric least squares (ALS) allows complex baselines to be eliminated, while
preserving the shape of the spectra [15]. It is a technique often used in Raman spectrometry
to eliminate the fluorescence background. This method is actually a Whittaker filter, a
standard signal processing tool. This method is based on the estimation of a spectrum z,
approximating as well as possible the spectrum x, while having a smooth aspect. This is
conducted by minimizing the expression:

∑
i

αi(xi − zi)
2 + β ∑

i
(zi − 2zi + zi+1)

2

where αi is a weight assigned to each wavelength and β is a penalty term. Minimizing the
first term of this sum tends to fit z to x and minimizing the second one tends to smooth
z. In order to obtain positive smoothed spectra, the ALS idea is to calculate the weights
as follows: αi = q if xi > zi and αi = 1 − q otherwise. The two parameters β and q are
user-defined and regulate the degree of smoothness of the estimated baseline and to what
extent it is allowed to pass through the peaks.

Figure 12 shows the results of applying ALS on the three sets of spectra. On the oil
spectra (Figure 12a), the result is spectacular. The baselines have completely disappeared.
All spectra are now based on a zero baseline and are positive, resembling pure absorbance
spectra. The peaks appear clearly and so do the inter-sample variations. For the grape
spectra (Figure 12b), the result is less convincing, certainly because this set of spectra is
mainly affected by multiplicative effects. Nevertheless, the result is much better than the
one obtained with detrending (Figure 10). The result on the flour spectra (Figure 12c) is
very interesting. The baselines have disappeared, and the peaks and variations appear as
clearly as with detrending (Figure 10). The advantage, compared to detrend, is that the
spectra are positive.

Figure 12. Illustration of asymmetric least squares filtering. (a): Oil, (b): grapes, (c): flour.

The ALS pretreatment appears to be very relevant for aquaphotomics. Indeed, it
produces positive spectra, with baselines at zero and clear peaks, which, in some cases,
seem quite close to the ideal spectra.

5.3. Multiplicative Effect Removal

As expressed in Equation (2), a multiplicative effect is related to the factor k, which is
assumed to multiply the measured values equally for all the wavelengths. This effect is
very detrimental in chemometrics because it cannot be compensated by the linear models,

21



Molecules 2022, 27, 6795

contrarily to the additive effect. For this reason, preprocessing of multiplicative effects is
often performed before calibration modeling of NIR spectra [16].

5.3.1. Normalization

The basic idea of normalizing a spectrum, as explained in detail in [17], is to divide
each of its variables by a quantity calculated from the spectrum and, if possible, affected
only by the multiplicative effect. Formally, if f (.) is this quantity, and using the expression in
Equation (2) (omitting the additive terms), the normalization preprocessing can be written:

A∗(λ) = kA0(λ)

f (kA0(λ))
=

k A0(λ)

k f (A0(λ))
=

1
f (A0(λ))

A0(λ) (4)

We can notice in Equation (4) that the factor k has disappeared and that it has been
replaced by a factor depending only on A0(λ). A side effect of this transformation can
be to radically change the shape and physical meaning of the spectrum. Caution should,
therefore, be paid when choosing the function f . A simple and intuitive choice for f
consists of choosing a particular value of the spectrum, which is affected by k. Thus, the
maximum of the spectrum is sometimes chosen. However, there are two problems with
this choice: the first is that this point may be located on an absorption peak and, in this case,
the normalization will remove some useful information. The second is that the wavelength
of this point may change from one spectrum to another, which makes the normalization
unstable. It is, therefore, preferable to choose, if it exists, a point in the spectrum with a
large enough value but independent of the compound of interest. However, the value of a
single point in the spectrum has some measurement noise. Dividing the spectrum by this
value has the effect of increasing the overall noise of the spectrum. In order to avoid this
phenomenon, it is preferable to use a function f calculated on the entire spectrum, such
as the area, the mean, the sum, the norm or the standard deviation. When the spectrum
contains only positive values, all these functions are almost equivalent. However, if the
spectrum contains negative values, as, for example, if the spectrum has been differentiated
before, the area, the sum or the mean can be close to zero and, thus, pose stability problems.
For this reason, the most used function is the norm or the standard deviation.

Figure 13a–c show the results of normalization by the norm for the three sets of spectra.
The effect on the oil spectra (Figure 13a) is almost nonexistent, because these spectra contain
no multiplicative effects. The application on the grape spectra is spectacular. The visible
part of the spectrum, from 400 to 700 nm, shows several groups of different colors (with
peaks at 550 nm or 600 nm), which corresponds well to the ground truth (i.e., different grape
varieties). The VNIR part, from 700 to 1150 nm, is much less impacted by the multiplicative
effect, although there is still some left. The peak at 960 nm, due to water, now appears more
clearly. The flour spectra (Figure 13c) have also benefited from this normalization. The
spectra are now much more clustered.

The explanations given, especially by Equation (4), assume that the spectra are free
of additive effects. Figure 13d–f show the results of the normalization on the three sets of
spectra after application of the ALS filter. It can be seen in Figure 13d that normalization
did not alter the oil spectra, which were already near perfect after ALS filtering. On the
other hand, the grape spectra, which were highly altered by ALS filtering (Figure 12b), do
not give a good result after normalization. Finally, the application of normalization on the
ALS-filtered flour spectra (Figure 13f) shows interesting results. The intensity variations
that remained on the ALS-filtered spectra (Figure 12c) were significantly reduced. However,
it can be seen that variations remain in areas where no chemical absorption takes place,
such as between 1300 and 1400 nm. This can be explained by the fact that the spectrum
norm, which is used in the normalization procedure, contains chemical information and is,
therefore, not the best candidate for the function f . To avoid this problem, several methods
have been proposed [17–19]. They all consist of estimating a function f related as much as
possible to the multiplicative effect, and as little as possible to the chemistry of the sample.
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Figure 13. Illustration of normalization. (a,d): Oil, (b,e): grapes, (c,f): flour. (a–c): Raw spectra are
divided by their norm. (d–f): Raw spectra are first corrected by ALS and then divided by their norm.

5.3.2. Probabilistic Quotient Normalization (PQN)

PQN proposes to estimate f (x) on only a part of the wavelengths in order to avoid
the problem mentioned above. It calculates the quotients of the values of all the variables
of the spectrum x over those of the corresponding wavelengths in a reference signal xref,
thus producing as many divisors as wavelengths. Then, f (x) is calculated as the most
probable of these values, i.e., the mode of the divisor distribution. In practice, since it is
often impossible to find the mode of a real distribution, the median is taken as an estimate
of the most probable value. This method assumes that the variables affected only by the
multiplicative effect are more numerous than those also affected by the compound of
interest. This condition is rarely met in NIR spectroscopy applied to complex products but
it could be met in some aquaphotomics applications.

Figure 14a–c show the results of PQN for the three sets of spectra. Globally, as expected,
the results are very similar to those of classical normalization (Figure 13).

Figure 14. Illustration of probabilistic quotient normalization. (a): Oil, (b): grapes, (c): flour.
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5.4. Combined Methods

Methods have been developed to correct for additive and multiplicative effects si-
multaneously. This is the case of standard normal variate [20], which applies a detrend of
order 0 and then a normalization by the standard deviation of the spectrum. This is a very
popular method in the NIR community. SNV will be discussed in depth later, in Section 7.

Multiplicative scatter correction (MSC) [21] proposes explicitly correcting each spec-
trum x of a set of spectra X with respect to a reference spectrum xre f . The idea is to remove
from each spectrum the additive and multiplicative effects that distinguish it from xre f
and, thus, to align all the spectra on a common global direction. In practice, as xre f is often
unknown, it is usually replaced by the average of X. Concretely, using the point of view of
Figure 4, the following model is written:

x = axref + b + r (5)

Then, for each spectrum, a and b are derived by means of a linear regression, and x is
corrected by:

xmsc =
x − b

a
= xref +

1
a

r (6)

In other words, each spectrum is modified so that it is as close as possible to the
reference spectrum. Using the formalism of Equation (2), the idea is that all preprocessed
spectra share the same k and Ab(λ) as the reference spectrum.

MSC is theoretically closely related to SNV [22]. It, therefore, suffers from the same
problems as SNV (see Section 7). However, extended multiplicative scatter correction
(EMSC) [5] differs from it by proposing more complex models. EMSC extends the MSC
model by modeling the spectrum as a mixture of the reference spectrum and other spectral
contributions, such as chemical interferents, temperature effects [23], optical scattering
laws, etc. In this sense, EMSC is really a spectroscopic modeling method, as shown by the
first sentence of [5]: “Knowledge-driven versus data driven modelling”. EMSC is, therefore,
a tool of choice for aquaphotomics [24].

6. A Focus on Log Transform

While, in most cases, the additive and multiplicative effects are randomly distributed
amongst the spectra, it was recently shown that these effects could be, in fact, directly
related to the moisture content of the measured scattering media [25]. By using the EMSC
framework to get rid of the additive effects, it could be shown that the path-length modifica-
tions (responsible of a multiplicative effect) can be directly related to moisture content by a
simple power law. Coming back to Equation (2), this results in the following new equation:

A(λ) = ε(λ)kLC + εw(λ)kwLwCp
w + Ab(λ) + An(λ) (7)

where all the variables subscripted by w relate to water, and p is the power coefficient.
In the specific case when moisture content is predicted, applying a log transformation

of both the signal (after getting rid of the additive terms) and the predicted variable yields
better models, as the log transform linearizes the relationship.

For a broader use, in aquaphotomics, when running multivariate curve resolution
experiments, for example, the water effects on scattering could be included as a component,
where a hard-modeling constraint could be applied on the shape of the component’s
score/concentration (i.e., force the shape to be a power law type). Such information added
as a constraint could help obtain a better resolution of the mixing problem.

7. A Focus on SNV

SNV is a very popular method in the NIR community; the paper describing this
method has been cited more than 3400 times in about 30 years. The reason for such
success is that the method is simple and effective in removing most of the variability due to
scattering, which is unavoidable in case of backscatter measurements. It is widely used
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as a preprocessing for linear model calibrations, such as PLS regression. However, when
the goal is to recover fundamental spectral components, such as pure spectra, as with ε(λ)
in Equation (1), or to recover an accurate level of absorbance, this preprocessing can be
detrimental, as shown in the following example.

Figure 15a represents a set of simulated spectra, where four peaks are present, with
only the two left hand ones, related to the compounds of interest, varying. In Figure 15b, the
same spectra have been assigned a baseline and a multiplicative effect, both independent
of wavelength. Figure 15c shows the result of applying SNV on these spectra. The result is
far from the pure spectra. For example, the variations at the two right peaks, which should
be weak, are comparable to the ones of the peaks of interest. The problem is that SNV
estimates the additive and multiplicative effects by the mean and standard deviation of
the whole spectrum, respectively. However, these quantities, in our example (spectra in
Figure 15b), are very largely influenced by the variations of the compound of interest. Thus,
after applying the correction, the variations due to the compound of interest are distributed
over the whole spectrum.

Figure 15. Illustration of the detrimental effect of SNV. (a) Simulated pure spectra, (b): simulated
spectra after addition of baselines and multiplicative factors, (c): result of SNV performed on the
spectra in (b).

A solution consists of performing the estimation of the baseline and the multiplicative
effect, preferentially using the wavelengths that are mainly related to the additive and
multiplicative effects. This can be conducted using a diagonal matrix W of weights, between
0 and 1, which is then used in SNV and detrending:

• Compute the standard deviation of xW in place of x;
• Replace Equation (3) of detrending by: xdet = x( I − W L (L′ W L)−1

L′ ).
As an example, Figure 16c shows the result of a weighted SNV, using the weights

plotted in Figure 16b. The result is perfect, because the additive and multiplicative effects
have been estimated using the part of the spectra affected only by these effects.

The variable sorting for normalization (VSN) method [17] automatically calculates
these weights W from the experimental data matrix X. It uses an RANSAC-type algo-
rithm [26] to classify the points of each spectrum into two classes: the inliers are the
wavelengths that all share the same additive and multiplicative effect pattern; the outliers
are the wavelengths related to nonsystematic variations, thus related to the compounds
of interest. The final weight is determined as the probability that each wavelength be-
longs to the inlier class. VSN also determines the best-suited degree of the polynomial for
the baseline.
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Figure 16. Illustration of the weighted SNV. (a): Spectra to be processed, (b): weights, (c): spectra
after preprocessing by weighted SNV.

Figure 17 illustrates the application of VSN to the three sets of oil, grape and flour
spectra. Figure 17a–c show the corrected spectra; Figure 17d–f show the weights found by
the algorithm. For the oil spectra, VSN retained baselines of degree 1 and calculated the
weights plotted in Figure 17d. These weights are overall low, indicating that all wavelengths
are mostly related to chemistry. The two least informative areas, and, therefore, the most
efficient for calculating additive and multiplicative effects, are the two dips around 1300
and 1500 nm. The resulting spectra reported in Figure 17a are very similar to those yielded
by a detrending of order 1 (Figure 10d). For the grape spectra, VSN has identified that only
multiplicative effects exist. The weights (Figure 17e) are very contrasting. They are very
close to 1 at both ends of the spectral range, i.e., before 500 nm and after 1100 nm, and
close to 0 in the 550–1000 nm region, which corresponds well to the region of pigments
and metabolic compounds. The resulting spectra (Figure 17b) are quite similar to those
obtained with PQN (Figure 14b). This illustrates that, when the spectra are only impacted
by multiplicative effects, VSN and PQN are, in fact, two very close solutions to achieve a
robust normalization. For the flour spectra, VSN found a model with baselines of degree 1,
which corresponds to the result found after applying detrending (Figure 10). The weights
(Figure 17f) show that the areas around 1400 nm and above 2000 nm should not be used
for the calculation of multiplicative and additive effects. This result is consistent with the
absorption areas of O-H bonds (water, cellulose) and proteins. The preprocessed spectra
(Figure 17c) globally resemble those obtained with detrending (Figure 10). However,
in detail, it can be seen that the area from 1900 nm to 2500 nm was less shrunk by the
preprocessing than the rest of the spectrum, suggesting that variations due to chemistry are
visible in this area.

It is clear that weighted versions of EMSC or SNV (thanks to PQN or VSN) appear
most suitable for aquaphotomics studies. Indeed, while aquaphotomics focuses on the
first O-H overtone region (1300–1600 nm), the preprocessing of physical effects should
be conducted based on regions where absorbance bonds related to chemical phenomena
are absent (in water spectra, this usually corresponds to the following spectral ranges:
1000–1300 nm, 1600–1800 nm, and 2000–2400 nm).
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Figure 17. Illustration of the application of VSN. (a): VSN corrected oil spectra, (b): VSN corrected
grape spectra, (c): VSN corrected flour spectra, (d): VSN weights for the oil spectra, (e): VSN weights
for the grape spectra, (f): VSN weights for the flour spectra.

8. Conclusions

This paper has reviewed the main preprocessing of NIR spectra, with a view to their
use in aquaphotomics. Simple visualization methods have been proposed in order to
identify the nature of undesirable effects, even before the application of a preprocessing.
The most commonly used preprocessing in chemometrics has been presented and illustrated
by three sets of spectra, each showing the advantages and disadvantages of each method.
Some preprocessing aims to produce a spectrum as close as possible to the absorbance that
would have been measured under ideal conditions and can, therefore, be very useful for the
establishment of an aquagram. Others, dedicated to the improvement of the resolution of
the peaks, prove to be very useful for the identification of hidden peaks. A special focus on
the correction of multiplicative effects has shown the interest of logarithmic transformation
and weighted normalization methods. This highlights the fact that much preprocessing
that has been designed in chemometrics to improve the performance of calibration models
should be used with care in aquaphotomics.
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Abstract: Temperature-dependent near-infrared (NIR) spectroscopy has been developed and taken
as a powerful technique for analyzing the structure of water and the interactions in aqueous systems.
Due to the overlapping of the peaks in NIR spectra, it is difficult to obtain the spectral features
showing the structures and interactions. Chemometrics, therefore, is adopted to improve the spectral
resolution and extract spectral information from the temperature-dependent NIR spectra for structural
and quantitative analysis. In this review, works on chemometric studies for analyzing temperature-
dependent NIR spectra were summarized. The temperature-induced spectral features of water
structures can be extracted from the spectra with the help of chemometrics. Using the spectral
variation of water with the temperature, the structural changes of small molecules, proteins, thermo-
responsive polymers, and their interactions with water in aqueous solutions can be demonstrated.
Furthermore, quantitative models between the spectra and the temperature or concentration can
be established using the spectral variations of water and applied to determine the compositions in
aqueous mixtures.

Keywords: temperature-dependent near-infrared spectroscopy; chemometrics; water structure;
structural analysis; quantitative analysis

1. Introduction

Near-infrared (NIR) spectroscopy has been recognized as a powerful technique to
study the structure of water [1]. Due to the strong absorption, the spectral information of
the water structures with different hydrogen bonds can be measured, and the structures can
be distinguished by analyzing the spectrum [1,2]. Aquaphotomics proposed by Tsenkova
provides a framework for understanding the structural change of water caused by various
perturbations such as temperature and solutes in aqueous and biological systems [3,4].
The spectral change of water can be used not only as a mirror to reflect the properties of
the solutes in aqueous systems, but also as a probe to diagnose diseases or abnormalities
non-invasively [5–7]. The spectral pattern describing the structures of water is used to
measure the quality of water under different filtration treatments [8], to monitor the lactic
acid bacteria fermentation in yogurt production [9], and to understand the physiological
strategies of the resurrection plant during desiccation and rehydration procedure [10].

Temperature-dependent NIR spectroscopy is developed based on the temperature
effect on the spectrum [11–13]. In 2010, the temperature dependency of NIR spectra on
the temperature was studied, and a quantitative spectra–temperature relationship (QSTR)
model between the NIR spectra of water and the temperature was established using partial
least squares (PLS) regression [11,12]. Then, methods for analyzing the high-dimensional
data matrices, including N-way principal component analysis (NPCA), parallel factor
analysis (PARAFAC), and alternating trilinear decomposition (ATLD) were employed to
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analyze high-dimensional temperature-dependent NIR spectra [14]. The spectral varia-
tions induced by both the temperature and the concentration were obtained. The former
can be used for structural analysis, and the latter can be used for building a calibration
model for quantitative analysis. To simplify the calculation, low-dimensional algorithms
were also proposed for analyzing high-dimensional temperature-dependent NIR spectral
data. Mutual factor analysis (MFA) was proposed, and multilevel simultaneous compo-
nent analysis (MSCA) was applied for the quantitative analysis of glucose solutions and
serum samples [15–17]. A quantitative model was established for predicting the glucose
content in aqueous and serum samples. Furthermore, the spectral variation of water in-
duced by the temperature reflects the structural changes and interactions of water and
solutes in aqueous solutions. Chemometric methods to improve the spectral resolution
and extract temperature-induced spectral variations were studied for structural analysis,
including continuous wavelet transform (CWT), independent component analysis (ICA),
and Gaussian fitting.

In 2019, a review was published, in which chemometric methods and the applica-
tions in the resolution, quantitative, and structural analysis of temperature-dependent NIR
spectra were summarized [13]. In this review, further works on extracting structural and
quantitative information from temperature-dependent NIR spectra by chemometric meth-
ods were summarized. In temperature-dependent NIR spectroscopy, the perturbation of the
temperature is taken as a source of spectral information reflecting the variation of systems.
When the composition or concentration in the system changes, the temperature dependency
of the spectra changes accordingly. Therefore, the temperature-induced spectral features
can be used to reflect the properties of the systems. To capture the temperature-induced
spectral information of water, chemometric algorithms were proposed for improving the
resolution of NIR spectra. The spectral features of water reflecting the structural changes
and interactions were obtained. Through the temperature-induced spectral variation, the
interactions of water with small molecules, proteins, and polymers were investigated, and
the role of water in the chemical and biological processes was revealed. Furthermore,
quantitative determination can also be achieved using the spectral variation of water with
the temperature or concentration and successfully applied to the quantification of the
compositions in aqueous mixtures.

2. Structural Information of Water

The structure of water has been an interesting subject in chemistry and biology for
decades due to the complex and flexible patterns of hydrogen bonding [18–21]. The effect
of the temperature on the NIR spectrum of liquid water was studied as early as in 1925 [22],
and over the past few decades, a number of works reported the temperature dependency
of the NIR spectra of water [23–28]. Most of the researches focused on the absorption band
around 6900 cm−1 measured at different temperatures, where an isosbestic point can be
observed, implying the variation of the overlapped spectral components with the change
of the temperature. With the help of chemometric methods, the spectral features of water
structures with different hydrogen bonds were obtained, and the relative abundances of
different water structures that change with the temperature were found [27,28]. Thus,
the temperature-dependent NIR spectroscopy combined with chemometrics provides an
efficient way to explore the structure of water in aqueous systems.

To investigate the effect of the temperature on the NIR spectra of water, a method
for selecting the temperature-dependent variables from the temperature-dependent NIR
spectra was developed. Figure 1A shows the temperature-dependent NIR spectra of water
measured from 30 to 60 ◦C in the spectral range of 6000–10,000 cm−1. It can be seen that with
the increase of the temperature, a shift of the peak around 6900 cm−1 to a higher wavenum-
ber was observed, which is caused by the change of the overlapped spectral components
corresponding to different water structures. To obtain the temperature-dependent informa-
tion from the spectra, a method combined CWT and Monte-Carlo uninformative variable
elimination (MC-UVE) was proposed for the selection of the temperature-dependent vari-

30



Molecules 2022, 27, 452

ables (wavenumbers) from the NIR spectra measured at different temperatures [29]. CWT
was used to decompose the spectra into the spectral components with different frequen-
cies, and then MC-UVE was employed to evaluate the importance of the variables in the
quantitative model of the spectra and temperature. Figure 1B shows the stability of the
transformed water spectra obtained by MC-UVE, which is named as “fountain graph”. In
the fountain for the peak around 6900 cm−1, seven variables with a significant temperature
dependency can be found. This indicates the complexity of water structures and suggests
that there are different water species of which the spectral features change differently with
the temperature. Furthermore, the temperature-dependent NIR spectra of the aqueous
solutions containing NaCl, glucose, and human serum albumin (HSA) were investigated.
Figure 1C shows the transformed spectra of water and solutions by CWT and the locations
of the selected variables. It can be seen that the selected variables are located at similar
but not identical wavenumbers for different solutions, indicating that the variables can be
used for the discrimination of different solutions. Furthermore, using the selected variables,
quantification can also be achieved. The results indicate that temperature-dependent NIR
spectra can be severed as a mirror to reflect the complexity of water structures and identify
the aqueous solutions of different compositions.

 
Figure 1. Temperature-independent near-infrared (NIR) spectra of water in the range of 6000–10,000 cm−1

measured from 30 to 60 ◦C (A), the fountain graph (B), and the selected variables for the samples of
water, NaCl (5.8 g L−1), glucose (20 g L−1), and HSA (5.0 g L−1) solutions (C).

To understand water structures in liquid water and aqueous solutions, Gaussian
fitting was adopted to analyze the temperature-dependent NIR spectra of water. Six
spectral components were used to fitting the spectra, corresponding to different water
species with no (S0), one (S1), two (S2), three (S3), and four (S4) hydrogen bonds, as
well as the rotation vibration (Sr) of the water molecule [30]. To describe the complex
water structures more exactly, a model was proposed by denoting the proton acceptor
(oxygen) with A and the proton donor (hydrogen) with D. The water molecule with m
hydrogen bonds on oxygen atom and n hydrogen bonds on hydrogen atom is represented
by AmDn, where m and n equal to 0, 1, or 2. Therefore, nine water structures can be
defined, i.e., A0D0, A0D1, A1D0, A0D2, A1D1, A2D0, A1D2, A2D1, and A2D2. Ten spectral
components corresponding to the nine water structures and Sr were obtained from the
temperature-dependent spectra of water and glucose solutions by Gaussian fitting with
a knowledge-based genetic algorithm [31]. Figure 2 is one of the results obtained by the
fitting. It can be seen that the fitted spectrum coincides well with the measured one. The
integral intensity of the 10 peaks was investigated using the NIR spectra measured at
different temperatures. With the increase of the temperature, the content of A0D0 increases,
while that of A2D2 decreases, indicating the weakening of the hydrogen bonds and the
dissociation of the water structures with more hydrogen bonds into that with less hydrogen
bonds. Furthermore, through the variation of the spectral components of these water
structures with the glucose concentration, the enhancement of the ordered (tetrahedral)
hydrogen-bonded water structures induced by the interaction of water and glucose were
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found, providing a proof for the explanation of the protective effect of glucose on the
bio-molecules in aqueous solutions.

 
Figure 2. Result of Gaussian fitting for the NIR spectra of water measured at 30 ◦C.

CWT has been proven to be a powerful tool for the resolution enhancement in the
spectral analysis [32–35]. To analyze the spectral features of water in mixtures of water
and ethanol, the fourth-order derivative of the temperature-dependent NIR spectra of the
mixtures was calculated by CWT [36]. The overlapped peaks were separated, and the
spectral features of OH and CH with various intermolecular interactions were identified
in the fourth derivative spectra. By fitting the derivative spectra of the mixtures by those
of pure water and ethanol, the obtained coefficients for ethanol show a linear relation
with the content, but those for water exhibit a non-linear relation, which provides clear
evidence for the interactions of ethanol and water in the mixtures. Furthermore, from the
residual spectra after the fitting, the structures of water species, aggregations of ethanol,
hetero clusters of ethanol–water, and their variation with the content were analyzed. The
residual spectra calculated by high-order derivatives provide a very good way to uncover
the spectral information about the interactions. These results indicate that the spectral
information of water structures with different hydrogen bonds can be extracted from the
temperature-dependent NIR spectra, and the temperature-induced spectral features can be
a probe to reveal the structural changes and interactions in aqueous solutions.

3. Interaction of Water and Solutes

Water plays an important role in chemical and biological processes. The interaction
of water and solutes is of great significance for understanding the properties of aqueous
solutions or bio-systems [37]. Due to the sensitivity of NIR spectra to water structures,
the spectral changes of water under different perturbations can be a probe to reveal the
interactions in aqueous solutions. The interaction of water and bio-organisms including
carbohydrate molecules and oligopeptide was investigated using the NIR spectra of aque-
ous solutions measured at different concentrations and temperatures [30,31,38–41]. The
spectral components related to different water structures were obtained from the NIR
spectra. Through the variation of these structures with the temperature and the solute
concentration, an increase of the tetrahedrally hydrogen-bonded water structure induced
by bio-molecules was observed, showing that the thermal stability of water structures may
be enhanced in bio-systems.

The interaction of water and ethanol was studied using the temperature-dependent
NIR spectroscopy with high-order chemometric algorithms, including NPCA, PARAFAC,
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and ATLD [14]. The spectral features of water and ethanol in the mixtures were obtained
by the three methods. Through the variation of the spectra with the concentration, it was
revealed that ethanol promotes the formation of water clusters. To obtain more spectral
information of the interactions of water and ethanol, a new method was proposed based
on the rotation of the loadings in principal component analysis (PCA) [42]. The calculated
spectra were found to be more reliable to reflect the structures in the mixture, from which
the spectral features of different water species (S0–S4), ethanol clusters, and the interaction
of OH and CH groups were observed. Through the difference between the calculated and
experimental spectra, it was found that, when ethanol is added into water, the contents of
large water clusters with two, three, and four hydrogen bonds increase, and the interaction
of water and ethanol varies nonlinearly with the concentration.

The structure of water at low temperatures is related to many special phenomena.
For example, the freezing point of water reduces when an antifreeze is added, and water
in polar fish does not freeze below the freezing point. The structure of water at low
temperatures and the mechanism of the cryoprotectant dimethyl sulfoxide (DMSO) in
reducing the freezing point of water were investigated using the NIR spectra measured
at low temperatures [43]. CWT was adopted to enhance the resolution of the NIR spectra.
The spectral features reflecting the interaction of DMSO and water were found from the
resolution-enhanced spectra, and two hydrogen-bonded DMSO–water structures (DW2
and D2W) were identified in the mixtures with different DMSO/water ratios. Through the
variation of the spectral features, it was found that DW2 structure inhibits the formation
of tetrahedral water structures at low temperatures, which may be the reason for DMSO
reducing the freezing point of the mixture. To further understand the effect of protein on
the antifreezing performance of the DMSO–water system, the effect of formamide (FA) on
the hydrogen bonding of DMSO and water was studied [44]. From the resolution-enhanced
spectra by CWT, the spectral feature of the interaction of DMSO and water (S=O . . . H–O)
was observed. When FA exists in the mixture, the intensity of the peak decreases with
the increase of FA content, indicating that FA may replace the water molecules to form
the hydrogen bond of S=O and H–N. Furthermore, the spectra of the three-component
mixtures were analyzed by ATLD. Two varying spectral features due to water and DMSO
were obtained, but the spectral feature variation with the content of FA was not found. This
result implies that, although FA may reduce slightly the antifreezing effect, DMSO is still
the key component to prevent water from icing.

4. Structural Change of Water in the Aggregation of Proteins and Polymers

Compared with that of small molecules and water, the interaction of macromolecule
and water is more complex, and the interactions are easier to be affected by temperature.
For understanding the phase transition mechanism and the role of water in the aggregation
of proteins and polymers, the variation of water structures in the aggregation process was
studied by using temperature-dependent NIR spectroscopy and chemometrics. The struc-
tural change of water in the thermal denaturation of proteins was investigated by analyzing
the temperature-dependent NIR spectra of HSA and ovalbumin (OVA) solutions [45–47].
From the resolution-enhanced spectra by CWT, the spectral features of the protein (α-helix
and β-sheet) and different water species (S0–S4) were observed. Through the variation of
the peak intensities related to water species with temperatures, the structural change of the
proteins was revealed, indicating that water can be a probe for investigating the structural
variation of the proteins in aqueous solutions.

Tau is a class of intrinsically disordered proteins, of which the mistaken aggregation
leads to neurodegenerative diseases, typically Alzheimer’s disease (AD). Investigating the
interaction between tau protein and water during the aggregation is helpful to understand
the pathogenesis of the disease. The variation of hydration water during the aggregation
of the core fragment of tau, R2/wt, induced by heparin, was investigated using NIR spec-
troscopy combined with PCA and two-dimensional (2D) correlation spectroscopy [48].
The spectral information due to the structural change of R2/wt was observed from the
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resolution-enhanced NIR spectra, showing a two-stage variation during the aggregation.
Furthermore, the spectral features of water species with one and two hydrogen bonds
around NH and CH groups were found in the loadings of PCA, and the variation of the
water species during the aggregation was analyzed by 2D correlation spectroscopy. Water
species with one hydrogen bond change before the water molecules with free OH and with
two hydrogen bonds. The result demonstrates that the hydrogen-bonded water with the
NH groups disassociates at first, leading to the formation of the β-sheet structure, and then
the hydration water around CH groups releases. This result shows the mechanism for the
aggregation of tau protein, i.e., the dehydration of NH groups changes the hydrogen bond-
ing network of the hydration water, and then, the water molecules near the hydrophobic
side chains release from the R2/wt, resulting in the formation of the ordered amyloid fibers.

Biological processes such as protein folding mostly occur in cells. Water in a cell
has different structures from that in bulk water because of the crowding and confined
environment, of which the effect on the structure of biomolecules is considered to be the
main reason for explaining the stability and activity of biomolecules [37]. To understand
the function of water on the thermal stability of the proteins in a confined environment, the
water structures in reverse micelles (RMs) were studied by temperature-dependent NIR
spectroscopy [49]. The NIR spectra of aqueous solutions and RMs containing bovine serum
albumin (BSA), HSA, and OVA were measured at different temperatures. After enhancing
the resolution of the spectra, the spectral features of α-helix in proteins and water species
with non-hydrogen bond (NHB), weak hydrogen bonds (WHB), and strong hydrogen
bonds (SHB) were observed. The intensity change of the α-helix with the temperature
shows a clear denaturation of the protein in aqueous solutions, but not in RMs, indicating
the effect of the confined environment on the stability of the proteins. To further understand
the water structures in RMs, PCA was performed on the transformed spectra. From the
result, the spectral feature of a specific water structure in RMs was found, i.e., the bridging
water connecting NH in the protein and S=O in the inner surface of RMs, which only exists
in RMs with the protein. This water structure may be the reason for enhancing the thermal
stability of the protein in RMs.

Temperature-sensitive polymers exhibit phase separation in aqueous solutions above
the lower critical solution temperature (LCST). The interaction of water and the polymer is
supposed to be the key factor in driving the aggregation. The temperature-dependent NIR
spectra of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) in aqueous solutions
were measured for investigating their interactions during the aggregation [50]. The spectral
changes of the polymer and water during the aggregation with the temperature were
analyzed by NPCA. In a low-concentration solution, a two-stage conformational change
was observed in the phase transition, i.e., the hydrated chains tend to form an intermediate
state of the loose hydrophobic structure and then aggregate into a micelle at the LCST.
In the aggregation process, the S2 water species increases gradually and then a sudden
decrease occurs after the LCST, indicating that S2 plays an important role in the formation
of the intermediate. S2 water species acts as a bridge to connect the polymer chains in the
loose hydrophobic structure, and the dissociation of the S2 at high temperatures leads to
the formation of the micelle. Furthermore, the effect of urea on the interaction of water
and the polymer poly(N-isopropyl acrylamide) (PNIPAM) was studied by NPCA for
understanding the denaturation in aqueous environments [51]. The results indicate that the
water species with three hydrogen bonds (S3) plays an important role in the stabilization
of PNIPAM, which may connect the NH and CO groups in the polymer. The S3 water
species stabilizes the coil state of the polymer, and the release of the species leads to the
phase transition. When urea is added, urea may reduce the S3 content by the hydrogen
bonding with the hydrophilic groups in the polymer, thus leading to a phase transition at a
lower temperature.
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5. Quantitative Analysis of Aqueous Solutions

NIR spectroscopy and chemomtric methods have been extensively used for quanti-
tative determination in various fields [52,53], in which multivariate analysis is generally
employed. In the analysis of aqueous solutions, the NIR spectrum contains the spectral
information of structures and interactions. Both the information is related to the quantity
of the composition. Therefore, quantitative determination can be achieved, with the aid
of chemometrics, by analyzing the temperature-induced spectral changes in temperature-
dependent NIR spectroscopy. A QSTR model between NIR spectra and the temperature
was established based on PLS regression and applied to the quantitative determination
of the compositions in aqueous solutions of methanol, ethanol, n-hexane, and their mix-
tures [11,12]. The results show that both the temperature and the quantity of the composi-
tion in mixture solutions can be predicted using the models.

The temperature-dependent NIR spectra measured at different conditions are gen-
erally composed of high-dimensional data. For example, the spectral data of a group of
samples with different concentrations measured at different temperatures are a three-way
matrix with the dimension of wavenumber, concentration, and temperature. Thus, high-
order chemometric algorithms have been employed to deal with high-dimensional data.
NPCA, PARAFAC, and ATLD were adopted to explore the spectral information from the
temperature-dependent NIR spectra of a binary water–ethanol and a ternary water–ethanol–
isopropanol mixture solutions [14]. The temperature- and concentration-induced spectral
variations were obtained by these algorithms, and the quantitative model was successfully
built. For the four-way data array of the ternary mixtures, the algorithms were also proven
to be a powerful tool for extracting the quantitative information from the spectral data.
The result indicates that high-order chemometric algorithm may be a powerful tool for
resolving the temperature-dependent NIR spectra to obtain the quantitative information of
aqueous solutions.

In order to simplify the calculation, two-dimensional algorithms were also proposed
for analyzing high-dimensional data. MFA was developed for the analysis of temperature-
dependent NIR spectra [15,16]. The method unfolds a high-dimensional data array into
a combined data matrix and then extracts the common spectral feature contained in the
spectra of different temperatures or different concentrations by PCA. The relative quantity
of the extracted spectral feature can be used to build the calibration model for quantitative
analysis. The method of MFA was employed for the quantitative determination of both
low- and high-concentration glucose solutions. The result shows that MFA can achieve the
accurate quantification of the glucose content even in low-concentration solutions. Besides,
the feasibility of the method was also validated using human serum samples. A calibration
model with a good correlation coefficient was obtained for the measurement of the glucose
content. More importantly, the calculations were based on the spectral information of
water, demonstrating that MFA provides a potential way for detecting the components in
complex bio-systems.

High-dimensional data can also be analyzed by MSCA through unfolding a data
array into a two-dimensional matrix. A two-level MSCA model was employed to capture
the temperature- and concentration-induced spectral variations in the spectra of water–
ethanol–isopropanol mixtures [54]. The MSCA contains a between-temperature (QSTR)
model describing the effect of the temperature and a within-temperature (QSCR) model
describing the concentration variation. In the within-temperature model, the temperature-
induced spectral changes are minimized, and the concentration-induced changes can be
reflected. Therefore, quantitative analysis can be achieved by the coefficients in the model.
The two-level MSCA was also used to detect glucose in aqueous glucose solutions and
human serum samples [17]. Using the spectral changes of water, the relationship between
the temperature or concentration and NIR spectra can be effectively described by the QSTR
model from the first level and the QSCR model from the second level model.

Furthermore, the NIR spectra changing with more factors were analyzed by MSCA.
The NIR spectra of proline aqueous solutions in different pH and concentrations were
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measured at different temperatures [55]. A three-level MSCA (3-MSCA) model was estab-
lished to investigate the pH-, concentration-, and temperature-induced spectral variations.
Figure 3 shows the loadings and scores of the three-level models by the method. The
first loading of the first-level model describes mainly the spectral information of the CH2
groups in proline. The corresponding score goes down first and then up at the isoelectric
point, which is due to the structural changes of the proline. The second loading from the
first-level model is mainly composed of the spectral information of water, and the corre-
sponding score has the same inflection, which is related to the structural change of water
with pH. The first-level model gives a good description of the effect of pH on the spectra,
and the spectral changes can be used to analyze the structural change of proline and water.
Figure 3(B1,B2) show the first loading and score of the second-level model. The former
shows the spectral information of water, and the latter shows the variation of the spectral
component with the concentration. The perfect quantitative relationship was obtained,
which is a good proof that the interaction between water and proline can be used to describe
the change of the composition quantitatively. After the pH- and concentration-induced
spectral changes are minimized, the temperature-induced change of water is reflected in the
loading and score of the third-level model, as shown in Figure 3(C1,C2), respectively. The
relationship is a good QSTR model to quantitatively describe the change of the spectra with
the temperature and to predict the temperature of the solution. Therefore, by extracting the
information about the structural change of water with three factors in proline solutions,
the quantitative models for the determination of pH, concentration, and temperature were
obtained. The results further demonstrated that water can be a good probe for sensing
quantitative information.

 
Figure 3. The loadings (A1–C1) and scores (A2–C2) of the three-level models obtained by three-level
multilevel simultaneous component analysis (3-MSCA).
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6. Conclusions

Temperature-dependent NIR spectroscopy provides a powerful tool for aquaphotomic
studies in both the structural analysis and quantitative determination of aqueous systems.
Chemometric methods can be a powerful excavator to mine the temperature-induced
information from the overlapping NIR spectra. The spectral features of water structures
with different hydrogen bonds can be captured. Through the spectral variation of the
water, the structural changes and interactions of water and small molecules, proteins and
thermo-responsive polymers can be obtained. Furthermore, quantitative determination can
also be achieved using the spectral variation of water with the temperature, concentration,
and pH. With the advance of chemometrics, temperature-dependent NIR spectroscopy may
be a promising technique for quantitative determination and understanding the properties
or functions of analytes in aqueous solutions and biological systems.
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Abstract: Inspired by aquaphotomics, the optical path length of measurement was regarded as a
perturbation factor. Near-infrared (NIR) spectroscopy with multi-measurement modals was applied
to the discriminant analysis of three categories of drinking water. Moving window-k nearest neighbor
(MW-kNN) and Norris derivative filter were used for modeling and optimization. Drawing on the
idea of game theory, the strategy for two-category priority compensation and three-model voting with
multi-modal fusion was proposed. Moving window correlation coefficient (MWCC), inter-category
and intra-category MWCC spectra, and k-shortest distances plotting with MW-kNN were proposed
to evaluate weak differences between two spectral populations. For three measurement modals
(1 mm, 4 mm, and 10 mm), the optimal MW-kNN models, and two-category priority compensation
models were determined. The joint models for three compensation models’ voting were established.
Comprehensive discrimination effects of joint models were better than their sub-models; multi-modal
fusion was better than single-modal fusion. The best joint model was the dual-modal fusion of
compensation models of one- and two-category priority (1 mm), one- and three-category priority
(10 mm), and two- and three-category priority (1 mm), validation’s total recognition accuracy rate
reached 95.5%. It fused long-wave models (1 mm, containing 1450 nm) and short-wave models
(10 mm, containing 974 nm). The results showed that compensation models’ voting and multi-modal
fusion can effectively improve the performance of NIR spectral pattern recognition.

Keywords: near-infrared spectroscopic pattern recognition; multi-optical-path; two-category prior-
ity’s compensation models; three-model voting fusion; moving-window-k-nearest neighbor; Norris
derivative filter

1. Introduction

The water system samples, (e.g., drinking water, dairy product, and blood) are im-
portant analysis objects in the fields of food, environment, and biomedicine. Water can
be used not only as a direct analysis object, (e.g., the safety detection and classification
identification of drinking water) but can also be used as the most common background
solvent of liquid samples, which is a very important analyte. Qualified drinking water
has undergone strict safety testing before it can enter the market for social use. Due to the
huge market demand for drinking water, some brands of high-end bottled drinking water
are expensive and increasingly popular, and they can be easily counterfeited. Using water
that has not undergone safety testing to counterfeit high-end drinking water will not only
damage the rights and interests of producers and consumers but may also cause large-scale
safety problems of drinking water. The authenticity identification of drinking water brands
on the market is an important problem that needs to be solved urgently. The current water

Molecules 2022, 27, 4485. https://doi.org/10.3390/molecules27144485 https://www.mdpi.com/journal/molecules41



Molecules 2022, 27, 4485

quality testing methods mainly include quantitative analysis of water quality safety indexes
(multiple trace components), which are complex and expensive. Due to the very similar
component structures, the above quantitative methods are still difficult to achieve accurate
identification of different drinking water brands, and there have been no related results
reported so far. Therefore, a fast and easy detection method that can be used in the field is
urgently needed.

Near-infrared (NIR) spectra mainly reflect the vibrational absorption of the overtones
and combined frequencies of the hydrogen-containing groups X-H. This measurement
method usually does not require reagents to measure samples directly, which has the
advantage of being quick and easy. Water system samples have significant NIR absorption,
and NIR spectroscopy has been applied to a variety of water-based analysis samples in
agriculture and food [1–5], environment [6,7], and biomedicine [8–12].

The qualitative discriminant analysis of NIR spectroscopy is one of the hot research
directions in recent years. For the classification and identification of samples with small dif-
ferences in component content, the discriminant analysis is more effective and simpler than
quantitative analysis. This discriminant analysis involves pattern recognition technology
of multiple spectral populations, which needs to make full use of the spectral similarities
of the same population, and spectral differences of different populations. It has been ap-
plied to sample identification in many fields in recent years, such as melon genotype [13],
edible oil type [14], transgenic sugarcane leaf [15,16], milk powder adulteration identifica-
tion [17], wine identification [18], rice seed authenticity identification [19] and thalassemia
screening [16,20]. However, the application of NIR spectral discriminant analysis to the
identification of water samples has not been reported yet. Efficient discriminant analysis
methods for spectral populations with small differences are also rare.

Water sample identification involves multi-category discriminant analysis of spectral
populations, which is more challenging than the two-category discriminant analysis prob-
lems. Partial least squares discriminant analysis (PLS-DA) is a well-performed method of
two-category discriminant analysis. When using PLS-DA for multi-category discriminant
analysis, it is necessary to perform multiple two-category analysis and their comprehensive
evaluation. This process is complicated and difficult to popularize. Principal component
analysis–linear discriminant analysis (PCA–LDA) is another effective two-category dis-
criminant analysis method. When using PCA–LDA to process n-category discriminant
analysis, it is necessary to determine the optimal classification surface of n-1 dimensions in
n-dimensional space, which is mathematically complicated and difficult. Therefore, PLS-DA
and PCA–LDA methods are not suitable to deal with the multi-classification problem.

The k-nearest neighbor (kNN) [21–25] is one of the most commonly used multi-
classification algorithms. When it was applied to a supervised multi-category problem,
the idea was as follows: based on the spectra of calibration samples containing multiple
categories, the Euclidean (or Mahalanobis) distances between the unknown sample and all
calibration samples were calculated; the k nearest calibration samples were determined;
finally, the unknown sample was categorized as the category with the largest number
among the k nearest samples.

The kNN uses two cyclic parameters of sample number and k value, and determines
the optimal k based on discriminant effect, which has better robustness and applicability
than the ordinary Euclidean distance classification method. It is not limited by the number
of categories and is especially suitable for multi-category spectral discriminant analysis.
The kNN has been applied to multi-category discriminant analysis based on various
spectral techniques, such as, NIR [21], mid-infrared [22], Raman [23,24], and laser-induced
breakdown spectroscopies [25].

On the other hand, the wavelength model optimization can enhance the characteristic
attributes of the spectral category, reduce the interference of redundant data and model
complexity, and provide valuable reference for the design of a dedicated spectrometer.
Since further wavelength optimization requires higher-dimensional algorithm integration,
there are few works on kNN-based wavelength model optimization.
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The moving-window waveband screening combined with PLS regression [2,3,9,10]
is a well-executed method in the quantitative analysis of NIR spectroscopy. However, its
combination with qualitative discriminant analysis algorithms, (e.g., kNN) is still rare.
In the current study, “tap water” and two kinds of drinking water brands (C’estbon and
Nongfu Spring), a total of three categories of water samples, were used as identification
samples. NIR spectroscopy combined with kNN were used to establish the discriminant
analysis models for three categories of drinking water. An ensemble algorithm based on
kNN and moving-window waveband screening was established, denoted as MW-kNN,
and applied to the wavelength optimization of the three-category discrimination model for
drinking water. Among them, the initial wavelength and the number of wavelengths were
used as the cyclic parameters of MW-kNN to realize the modeling and optimization of all
sub-wavebands.

Considering the small spectral differences of different categories of water, new in-
depth research on population differences in water spectra is required. The recently emerg-
ing aquaphotomics method [26–28] uses specific disturbance factors, (e.g., temperature,
pH) and makes changes to the dynamic measurement of water-system samples to obtain
a “curved surface” spectrum of water absorption peak disturbances, that is, the spec-
tral disturbance set of a sample, and further use omics method to achieve quantitative
and qualitative analysis of weak features. The curved surface spectrum has rich infor-
mation features with higher dimensions than the line spectrum, which can enhance the
information capacity or population difference of the samples, thereby improving the ac-
curacy of quantitative and qualitative analysis of weak analytes. The water spectrum
has one strong absorption peak near 1940 nm in the NIR combination frequency region
(1900–2500 nm), twelve slightly weaker absorption peaks in NIR double overtones fre-
quency region (1300–1600 nm), and two weaker absorption peaks in the NIR high-overtone
frequency region (900–1300 nm) [26–28].

As we know, using a transmission measurement accessory with a longer optical path
(>1 mm) can increase the significance of the water absorption peaks in the short-wave
NIR region, while using a transmission measurement accessory with a shorter optical path
(<1 mm) can avoid saturated absorption of water in long-wave NIR region. Therefore, using
long and short optical path transmission accessories to extract the spectral information in
the short- and long-wave NIR regions, respectively, and perform model fusion, is expected
to comprehensively improve the differences of water spectral populations and improve the
accuracy of spectral identification. Inspired by aquaphotomics, the optical path length of
the transmission measurement accessory was used as a perturbation factor, and a novel
method for multi-modal spectra fusion modeling based on multi-optical-path measurement
was proposed. The multi-modal NIR spectra based on the short, medium, and long optical
paths (1 mm, 4 mm, and 10 mm) were used to establish the discriminant analysis models
for three categories of drinking water.

A comprehensive judgment method based on the three models’ voting was also
proposed for the model fusion. Each sample was judged three times, and the sample
category of comprehensive judgment was obtained according to the principle of “two wins
in three games”, and thereby a joint model of three-model voting was established. On the
other hand, drawing on the idea of game theory, for the 3-category discriminant analysis
problem, a strategy of two-category priority compensation was proposed and used for
three-model voting fusion. Its goal was that the comprehensive discrimination effect of
the fusion model was better than its three sub-judgments. Moreover, in the process of
two-category priority compensation and three-model voting fusion, all joint models based
on the same and different measurement modals were used. The joint voting of the multi-
modal compensation models can highlight the spectral differences from two dimensions,
which is expected to improve the discrimination accuracy of the spectral population with
small differences.

The strategy of three compensation models’ voting and multi-modal fusion was ap-
plied for performance improvement of NIR spectral pattern recognition of three categories
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of drinking water. Furthermore, the spectra of the moving-window correlation coefficient,
intra-class correlation coefficient, and inter-class correlation coefficient were also proposed
to evaluate weak differences between two spectral populations.

2. Results and Discussion

2.1. Spectra of Three Groups of Water Samples Based on Three Measurement Modals

Using the transmission accessories of 1, 4, and 10 mm cuvettes, the Vis–NIR spectra of
three categories of water samples (one-, two-, three-category) in the desaturated wavebands
are shown in Figure 1. In the case of the long optical path measurement, the spectra of
the water samples exhibited saturated absorption, so the spectra of 4 and 10 mm cuvettes
showed only the unsaturated region. In order to facilitate viewing in the same figure, the
absorbance values of samples of two-, and three-category were increased by 1.5 and 3,
respectively. Seeing Figure 1, the spectra in desaturated wavebands of three groups of
water samples based on three measurement modals, no significant difference was observed.

 

Figure 1. Spectra in desaturated wavebands of three groups of water samples based on three
measurement modals: (a) 1 mm, (b) 4 mm, (c) 10 mm.

Note that, in the spectra of the 1 mm measurement modal, one strong absorption
peak near 1948 nm in the NIR combination frequency region, and one slightly weaker
absorption peak near 1450 nm in the NIR double-overtone frequency region were observed;
in the spectra of the 10 mm measurement modal, two weaker absorption peaks (974 nm,
1196 nm) in NIR high-overtones frequency region were observed, while in the spectra of the
4 mm measurement modal, the absorption peak near 1450 nm began to appear saturable
absorption, the two weaker absorption peaks (974 nm, 1196 nm) were less obvious.

2.2. Intra-Category and Inter-Category Correlation Coefficient Spectra

In order to evaluate the weak difference between two spectral populations, the moving-
window correlation coefficient (MWCC) spectrum between any two spectra was first
proposed. In the symmetrical wavelength window (number of wavelengths: m = p + 1 + p),
the correlation coefficient between the two spectra was calculated as the local correlation
coefficient of the center wavelength. Through the moving window, the local correlation
coefficients of each central wavelength were calculated, and thereby the MWCC spectrum
corresponded to m was obtained, as follows:

Ri,m=
∑
(m−1)/2
k=−(m−1)/2(xi+k − xi,m)

(
yi+k − yi,m

)
√

∑
(m−1)/2
k=−(m−1)/2(xi+k − xi,m)

2 ∑
(m−1)/2
k=−(m−1)/2 (yi+k − yi,m)

2
(1)

where i was the serial No. of central wavelength.
Next, for the two spectral populations, their respective average spectrum was cal-

culated separately. Within each spectral population, the MWCC spectrum between each
spectrum and the average spectrum was calculated, and then the average spectrum of all
MWCC spectra was further calculated, called the intra-category MWCC spectrum. For two
spectral populations, the MWCC spectrum between each spectrum in a spectral popula-
tion and the average spectrum of another spectral population was calculated, and then
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the average spectrum of all MWCC spectra was further calculated, called inter-category
MWCC spectrum.

Here, the MWCC spectrum, intra- and inter-category MWCC spectra of spectral popu-
lations of any two categories of samples were calculated to evaluate the weak differences
between the two categories of water spectra. Since the numerical difference was small, the
different spectrum of the intra- and inter-category MWCC spectra were further calculated
to observe their differences.

For the spectral datasets of 1, 4, and 10 mm, the intra-category and inter-category
MWCC spectra were calculated for the 1–3 category, 2–3 category and 1–2 category spectral
groups, respectively. Additionally, the different spectra between two intra-category MWCC
spectra and one inter-category MWCC spectrum were further calculated, see Figure 2.
As can be seen from Figure 2a, for the dataset of the 1 mm measurement modal, the
differences between the two categories of water spectra were mainly at 1072 nm, 1106 nm,
1198 nm, 1258 nm, 1448 nm, 1682 nm, 1806 nm, 1944 nm, 1948 nm, 2212 nm. Among them,
1448 nm was in the wavelength range of 1448–1454 nm (OH-(H2O)4,5, one of the twelve
characteristic water wavelengths) [28], and 1944 nm, 1948 nm located near the strong
absorption peak of water at 1948 nm (see Figure 1). As can be seen from Figure 2b, for the
dataset of the 4 mm measurement modal, the differences between the two categories of
water spectra were mainly at 798 nm, 858 nm, 980 nm, 1078 nm, 1104 nm, 1198 nm, 1258 nm,
1440 nm, 1454 nm. Among them, 1440 nm and 1454 nm were in the wavelength ranges
of 1432–1444 nm and 1448–1454 nm, respectively (S1 and OH-(H2O)4,5, two of the twelve
characteristic water wavelengths) [28], and they were also located near the absorption
peak of water at 1450 nm (see Figure 1). As can be seen from Figure 2c, for the dataset
of the 10 mm measurement modal, the differences between the two categories of water
spectra were mainly at 794 nm, 980 nm, 1078 nm, 1196 nm, and 1260 nm. Among them,
980 nm and 1196 nm were located near the weaker absorption peaks of water at 974 nm
and 1196 nm, respectively (see Figure 1). In the six difference spectra, positive values were
almost all observed, indicating that the intra-category correlations were significantly better
than inter-category correlations, thus indicating the existence of weak differences between
the two categories of spectral populations.

 
Figure 2. Difference spectra between intra-category and inter-category MWCC spectra: (a) 1 mm,
1–3 category, (b) 4 mm, 2–3 category, (c) 10 mm, 1–2 category.

2.3. MW-kNN Models

First, for the three modal spectral datasets, using direct kNN method, the three-
category discriminant analysis models based on desaturated wavebands were estab-
lished, respectively. See Table 1 for their optimal k values and modeling discriminant
effects. The results showed that the case of 10 mm achieved a better discrimination effect
(RARTotal = 82.9%).
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Table 1. Modeling discrimination effects of kNN models of three measurement modals based on
desaturated wavebands.

Modal Waveband (nm) N k RARTotal

1 mm 780–2498 860 4 64.4%
4 mm 780–1880 551 1 44.9%

10 mm 780–1388 305 3 82.9%

Then, the MW-kNN models were built for each modal dataset. For the two-dimensional
parameter combination (I, N) of the initial wavelength (I) and the number of wavelengths
(N), the 3D effect diagrams of the modeling discriminant effect (RARTotal) of kNN models
of three measurement modals are shown in Figure 3. Among them, the indicated points of
the arrow were the optimal parameter combinations (I, N). Additionally, the corresponding
optimal wavebands of the three measurement modals (1 mm, 4 mm, 10 mm) were 966–1894,
938–1402, and 964–1378 nm, respectively.

 

Figure 3. The 3D effect diagrams of the modeling discrimination effect of MW-kNN models of three
measurement modals for the initial wavelength (I) and the number of wavelengths (N): (a) 1 mm,
(b) 4 mm, (c) 10 mm.

The modeling discrimination effects of the optimal MW-kNN models of three measure-
ment modals are summarized in Table 2. The results show that the modeling effect of the
optimal MW-kNN models of the three modals were significantly better than the previous
direct kNN models (Table 1), and the number of wavelengths used were also significantly
reduced, so the models were simpler.

Table 2. Modeling discrimination effects of the optimal MW-kNN models of three measure-
ment modals.

Modal I N k RARTotal

1 mm 966 465 3 80.7%
4 mm 938 233 3 70.9%

10 mm 964 208 3 85.3%

As described above, the optimal MW-kNN models reached the better modeling dis-
crimination effects for three categories of water samples. As described in Figure 1, the spec-
tral shapes of the three categories of water samples were very similar and no significant
differences were observed. Therefore, it is necessary to reanalyze the differences of the
three spectral populations based on the principle of the kNN method.

Note that the optimal k value for all three optimal MW-kNN models was 3 (Table 2).
According to the principle of kNN, each prediction sample was determined as the category
with the most occurrence among the categories of the three calibration samples that had the
minimum distance from it. In view of this, based on the Euclidean distance of the spectra,
a visualization method described the differences of spectral populations was proposed: for
a specific spectral range, the distances of the spectrum of each prediction sample from the
spectra of all calibration samples were calculated, and the first three shortest distances were
selected and plotted corresponding to the serial number of the sample. Among them, if
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the selected distance was the distance between samples of the same category, its value was
displayed in a green hollow circle, and if the selected distance was the distance between
different samples, its value was displayed in a red hollow circle. Among the first three
shortest distances of each prediction sample, if the number of green hollow circles was
greater than or equal to 2, it indicated that the sample was correctly identified; otherwise,
the sample was incorrectly identified.

The effect of the above visualization of spectral population differences was directly
related to the selection of spectral waveband. Using the MW-kNN method for waveband
selection can highlight the differences in spectral populations. Here, based on the opti-
mal MW-kNN wavebands for three measurement modals, the visualization of spectral
population differences for three categories of water samples was presented. To avoid
crowding of data points, the first 60 prediction samples of each spectral population were
used for display; the three points on the same horizontal coordinate represented the first
three shortest distances of the same sample, which were connected by vertical lines for
easy observation; in addition, a pentagram (red or green) was added at the bottom of the
same horizontal coordinate to show whether the judgment was correct or not: green meant
correct judgment, red meant wrong judgment. In the case of 1 mm, based on the optimal
waveband (966–1894 nm), the first three shortest distances between the first 60 one-category
prediction samples and all calibration samples are shown in Figure 4a. In the case of 4
mm, based on the optimal waveband (938–1402 nm), the first three shortest distances
between the first 60 two-category prediction samples and all calibration samples are shown
in Figure 4b. In the case of 10 mm, based on the optimal waveband (964–1378 nm), the
first three shortest distances between the first 60 three-category prediction samples and
all calibration samples are shown in Figure 4c. As can be seen from the figures, for those
prediction samples, the first three shortest distances were mostly green, a small part was
red, and the green pentagrams were much more than the red pentagrams, indicating that
most samples were correctly identified. In particular, in the case of 10 mm, in almost
all the three-category prediction samples, the corresponding first three shortest distances
were green (green pentagrams), indicating that the three-category samples (10 mm) were
precisely recognized (RAR3 = 99.3%).

  

 

Figure 4. First three shortest distances between each prediction sample and all the calibration samples
based on the optimal MW-kNN waveband in the three measurement modals: (a) 1-category, 1 mm,
966–1894 nm; (b) 2-category, 4 mm, 938–1402 nm; (c) 3-category, 10 mm, 964–1378 nm.
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In fact, based on the principle of kNN and the wavelength model optimization, a plot-
ting approach of the first k-shortest distances was proposed here. It can describe the
differences of spectral populations, and it is also expected to be applied to other analytic ob-
jects.

2.4. Two Categories Priority’s Compensation Models

Using the method of priority compensation model described later in Section 3.5, the
two-category priority compensation models Φ1,2, Φ1,3, Φ2,3 of three modals were deter-
mined, respectively. The selected corresponding wavebands were 1704–1868, 858–1896,
and 844–1890 nm for 1 mm, 798–1412, 986–1402, and 1080–1332 nm for 4 mm, and 970–1378,
960–1140, and 924–1384 nm for 10 mm. The modeling discrimination effects of the two-
category priority compensation models of three measurement modals are summarized in
Table 3.

Table 3. Modeling discrimination effects of the 2-category priority’s compensation models of three
measurement modals.

Modal Submodel I N k RAR1,2 RAR1,3 RAR2,3 RARTotal

1 mm
Φ1,2 1704 83 2 81.0% 68.0%
Φ1,3 858 520 3 84.7% 78.9%
Φ2,3 844 524 1 80.7% 76.9%

4 mm
Φ1,2 798 308 4 85.3% 69.6%
Φ1,3 986 209 3 66.0% 70.0%
Φ2,3 1080 127 1 72.3% 70.0%

10 mm
Φ1,2 970 205 4 78.3% 85.1%
Φ1,3 960 88 4 95.3% 82.2%
Φ2,3 924 231 3 90.3% 85.1%

2.5. Optimal Norris Parameters

Using the Norris derivative filter algorithm, based on each modal, the parameter
optimization of spectral preprocessing for the optimal MW-kNN model and the two-
category priority compensation models was performed.

Take the optimal MW-kNN model (waveband) of 1 mm modal as an example, for the
two-dimensional parameter combination (S, G) of the number of smoothing points (S) and
the number of differential gaps (G), the 3D-effect diagram (RARTotal) of all kNN models
processed by NDF (D = 1) is shown in Figure 5. Additionally, the indicated point of the
arrow was the optimal parameter combination (S, G).

 

Figure 5. The 3D effect diagram of the modeling discrimination effect of kNN models processed by
NDF for the number of smoothing points (S) and the number of differential gaps (G).
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The modeling discrimination effects of the optimal MW-kNN models processed by
optimal NDF parameters are summarized in Table 4. Comparing Tables 2 and 4, after using
NDF preprocessing, the effect of each model had been significantly improved.

Table 4. Modeling discrimination effects of the optimal MW-kNN models processed by optimal NDF
parameters.

Modal I N k D S G RARTotal

1 mm 966 465 3 1 14 1 88.2%
4 mm 938 233 3 2 2 1 73.8%
10 mm 964 208 3 2 1 1 85.6%

The modeling discrimination effect of the two-category priority compensation models
of three measurement modals processed by optimal NDF parameters are summarized in
Table 5. Comparing Tables 3 and 5, after using NDF preprocessing, the performance of
almost every model also had been significantly improved.

Table 5. Modeling discrimination effect of the 2-category priority’s compensation models of three
measurement modals processed by optimal NDF parameters.

Modal Submodel D S G k RAR1,2 RAR1,3 RAR2,3 RARTotal

1 mm
Φ1,2 2 26 5 2 98.3% 88.2%
Φ1,3 1 18 2 3 88.3% 85.6%
Φ2,3 1 12 1 1 90.0% 88.9%

4 mm
Φ1,2 0 4 – 4 86.0% 69.8%
Φ1,3 2 6 2 3 71.3% 73.3%
Φ2,3 1 36 6 1 77.3% 73.6%

10 mm
Φ1,2 2 1 1 3 78.7% 85.6%
Φ1,3 2 20 5 2 95.7% 77.8%
Φ2,3 0 3 – 3 90.0% 85.1%

2.6. Joint Models Based on Three-Model Voting Fusion
2.6.1. Fusion Based on Single-Modal Models

After processing by the optimal NDF parameters, using the method described later
in Section 3.5, based on the three two-category priority compensation models of each
single-modal, the joint model based on three-model voting was established. The model-
ing discrimination effect of the three joint models are summarized in Table 6. Compar-
ing Tables 4 and 6, for each measurement modal, the comprehensive effect of the joint
model was better than that of the corresponding optimal MW-kNN model. Among them,
the joint model of the 1 mm’s modal was the best.

Table 6. Modeling discrimination effect of the joint models for three compensation models’ voting
based on single-modal.

Modal Submodel RAR1 RAR2 RAR3 RARTotal RARSD

1 mm Φ1,2 Φ1,3 Φ2,3 96.0% 94.0% 90.0% 93.3% 3.1%
4 mm Φ1,2 Φ1,3 Φ2,3 76.0% 94.7% 68.7% 79.8% 13.4%

10 mm Φ1,2 Φ1,3 Φ2,3 85.3% 75.3% 100.0% 86.9% 12.4%

2.6.2. Fusion Based on Multi-Modal Models

The experimental design of three-model voting fusion based on multi-modal spectra
was considered using the method described later in Section 3.5.

Firstly, various cases of the joint voting of three models based on two modals were
considered: the three sub-models of priority compensation were first sorted as the basic
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order of Φ1,2, Φ1,3, Φ2,3, and then all possible structures and arrangements of two modals
were filled in, such as 1 mm-Φ1,2,10 mm-Φ1,3, 1 mm-Φ2,3. They were divided into three
groups (structures): 1 mm and 4 mm, 1 mm and 10 mm, 4 mm and 10 mm; each group
(take 1 mm and 10 mm as an example) was further divided into two sub-groups, (e.g., two
1 mm and one 10 mm or two 10 mm and one 1 mm); according to the order of collocation,
each sub-group had three cases in total, (e.g., the first sub-group included three cases
of 1 mm-Φ1,2, 1 mm-Φ1,3, 10 mm-Φ2,3; 1 mm-Φ1,2, 10 mm-Φ1,3, 1 mm-Φ2,3, and 10 mm-
Φ1,2, 1 mm-Φ1,3, 1 mm-Φ2,3). In summary, there were eighteen dual-modal fusion cases.
Modeling had been completed for each case, and the optimal case is summarized in Table 7.

Table 7. Modeling discrimination effects of the optimal joint models for three-model voting fusion
based on multi-modal.

Modal Modal (mm)-Submodel RAR1 RAR2 RAR3 RARTotal RARSD

Dual modal 1-Φ1,2 10-Φ1,3 1-Φ2,3 98.7% 95.3% 94.0% 96.0% 2.4%
Triple-modal

(global) 1-Φglobal 4-Φglobal 10-Φglobal 89.3% 92.0% 98.7% 93.3% 4.8%

Triple-modal
(compensatory) 1-Φ1,2 10-Φ1,3 4-Φ2,3 97.3% 96.7% 92.7% 95.6% 2.5%

Secondly, various cases of the joint voting of three models based on three modals
were considered: the three sub-models of priority compensation were still sorted as the
basic order of Φ1,2, Φ1,3, Φ2,3, and then all possible structures and arrangements of three
modals were filled in; that is, the three sub-models used for joint voting belong to three
different modals (1mm, 4mm, 10mm), and belong to three different priority compensation
types (Φ1,2, Φ1,3, Φ2,3), respectively, such as 1 mm-Φ1,2, 10 mm-Φ1,3, 4 mm-Φ2,3; the three
modals were arranged sequentially, and there were six cases as follows: (1) 1 mm-Φ1,2,
4 mm-Φ1,3, 10 mm-Φ2,3; (2) 1 mm-Φ1,2, 10 mm-Φ1,3, 4 mm-Φ2,3; (3) 4 mm-Φ1,2, 1 mm-Φ1,3,
10 mm-Φ2,3; (4) 4 mm-Φ1,2, 10 mm-Φ1,3, 1 mm-Φ2,3; (5) 10 mm-Φ1,2, 1 mm-Φ1,3, 4 mm-Φ2,3;
(6) 10 mm-Φ1,2, 4 mm-Φ1,3, 1 mm-Φ2,3. In addition, the global optimal MW-kNN models
of the three modals were also used as sub-models for joint voting, that was, the fusion of
1 mm-Φglobal, 4 mm-Φglobal and 10 mm-Φglobal. In summary, there were seven different
triple-modal fusion cases. Modeling had been completed for each case. The modeling
discrimination effect of the optimal model of six joint models based on compensation
models’ fusion is summarized in Table 7. The modeling discrimination effect of the joint
model based on the global optimal MW-kNN models’ fusion is also summarized in Table 7.

Seeing Table 7, the three selected fusion models all reached high discrimination accu-
racy and good category balance, the optimal RARTotal and RARSD are 96.0% and 2.4%.

2.6.3. Comparison before and after Model Fusion

Table 8 showed the comparison of the modeling discrimination effects for the optimal
joint models of the three-model voting fusion and their sub-models. It showed that the effect
of each joint model was better than its sub-models. Among them, the highest increasement
of discrimination accuracy rate was 22.0%.

2.7. Independent Validation

The validation samples that were not involved in modeling were used to validate the
four optimal joint models of three-model voting fusion. Table 9 showed the validation
discrimination effect of the four optimal joint models based on the fusion of single-modal
or multi-modal models. The four joint models had reached high validation discrimination
accuracy and good balance, the best of which was the dual-modal fusion of 1 mm-Φ1,2,
10 mm-Φ1,3, 1 mm-Φ2,3, the RARTotal was 95.5%, and the corresponding waveband com-
bination (nm) was 1704–1868 (1 mm), 960–1140 (10 mm) and 844–1890 (1 mm). Among
them, two models in the NIR overtones frequency region of the 1 mm modal (containing
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the absorption peak at 1450 nm) and one model in the NIR high-overtone frequency region
of the 10 mm modal (containing the absorption peak at 974 nm) were jointly used.

Table 8. Comparison of the modeling discrimination effects for the optimal joint models of the
three-model voting fusion and their sub-models.

Modal
Modal (mm)-Submodel Joint Model

RARTotal

Increase Rate of RARTotal

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Single modal 1-Φ1,2 1-Φ1,3 1-Φ2,3 93.3% 5.1% 7.7% 4.4%
Dual modal 1-Φ1,2 10-Φ1,3 1-Φ2,3 96.0% 18.2% 7.8% 7.1%
Triple-modal

(global) 1-Φglobal 4-Φglobal 10-Φglobal 93.3% 5.1% 19.5% 7.7%

Triple-modal
(compensatory) 1-Φ1,2 10-Φ1,3 4-Φ2,3 95.6% 7.4% 22.0% 17.8%

Table 9. Validation discrimination effect of the four optimal joint models based on the fusion of
single-modal or multi-modal models.

Modal RAR1 RAR2 RAR3 RARTotal RARSD

Single modal 95.5% 94.2% 84.0% 91.2% 6.3%
Dual modal 97.4% 98.1% 91.0% 95.5% 3.9%

Triple-modal (global) 88.5% 91.7% 98.1% 92.7% 4.9%
Triple-modal

(compensatory) 95.5% 99.4% 90.4% 95.1% 4.5%

In fact, if the optical-path length of the transmission measurement accessory is re-
garded as a perturbation factor, the three-model voting fusion modeling approach based on
multi-measurement modals is similar to the idea of aquaphotomics. The comprehensive use
of the multi-modal spectral features of samples can improve the accuracy of discrimination.

Figure 6 showed the schematic diagrams of the recognition effect of the optimal joint
model (dual-modal) based on a three-model voting fusion for the validation samples.
Among them, the true value of the category value of the i-th sample was set to i, i = 1, 2,
3; its predicted value was set to δi, δi ∈ {1,2,3}; when δi = i, the recognition was correct,
otherwise was wrong. The second category of drinking water samples reached the highest
validation discrimination accuracy rate (RAR2 = 98.1%).

 

Figure 6. Schematic diagrams of the recognition effect of the optimal joint model based on three-model
voting fusion for three categories of validation samples: (a) 1-category, (b) 2-category, (c) 3-category.

3. Materials and Methods

3.1. Experimental Materials, Instruments, and Measurement Methods

Two kinds of drinking water brands (C’estbon and Nongfu Spring) and “tap water” for
users after municipal treatment, a total of three categories of water samples were collected
as identification samples (not in order, denoted as 1-category, 2-category, 3-category).
Among them, 162 tap water samples were collected successively from multiple tap water
supply points on the university campus where the experiment was located; C’estbon and
Nongfu Spring were purchased from regular commercial channels, 162 bottles of each
category, one sample was taken from each bottle; in total, 486 samples were obtained. Two
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drinking water brand samples were purchased through formal channels, so the authenticity
of their brands can be guaranteed, and their sample categories can serve as a reference for
spectral pattern recognition.

The XDS Rapid ContentTM Liquid Grating Spectrometer (FOSS, Denmark) and a
transmission accessory with multiple cuvettes were used for spectral measurement. Spec-
tral scope ranged from 780–2498 nm with a 2 nm wavelength interval. Wavebands of
780–1100 nm and 1100–2498 nm were used for Si and PbS detection, respectively. Using the
cuvettes of three optical paths of short, medium, and long (1 mm, 4 mm, 10 mm), each sam-
ple was measured three times. The obtained NIR spectra of multiple measurement modals
were used for modeling and validation. The experimental temperature and humidity were
25 ± 1 ◦C and 45 ± 1%, respectively.

3.2. Calibration-Prediction-Validation Framework and Evaluation Indicators

A sample-independent experimental design in calibration–prediction–validation was
adopted. The spectral data of the calibration and prediction sets were used for modeling
and parameter optimization; the spectral data of the validation set that does not participate
in the modeling was used to validate the established models. For each measurement
modal, each category of water samples (162) was randomly divided into the calibration
(60), prediction (50), and validation (52) sets. In total, for the numbers of the samples and
spectra, the division was calibration (180 samples, 540 spectra), prediction (150 samples,
450 spectra), and validation sets (156 samples, 468 spectra).

The evaluation indicators were set as the recognition accuracy rate (RARi, i = 1, 2, 3) of
each category sample and their standard deviation (RARSD), as well as the total recognition
accuracy rate (RARTotal) of all samples, as follows:

RARi =
M̃i
Mi

, i = 1, 2, 3 (2)

RARTotal =

3
∑

i=1
M̃i

3
∑

i=1
Mi

(3)

where Mi(i = 1, 2, 3) was the number of samples of i-th category of the prediction (or
validation) set, and M̃i was the number of accurately identified samples in i-th category
samples of the prediction (or validation) set. In the modeling process, the global optimal
model was preferred according to the indicator RARTotal. In order to consider balance,
RARSD was used as the second optimization indicator.

3.3. Norris Derivative Filter Algorithm

In spectral preprocessing, appropriate smoothing and derivatives can effectively
eliminate noises and improve spectral information quality. The famous Norris deriva-
tive filter (NDF) is an effective spectral pretreatment method, which is an algorithm
group with various parameters [29,30]. NDF includes two steps: the moving average
smoothing and differential derivation and uses three parameters: the derivative order (D),
the number of smoothing points (S, odd), and the number of differential gaps (G) [12,31,32].
Here, the loop parameters were set to D = 0, 1, 2; S = 1, 3 . . . , 49; G = 1, 2 . . . , 30. Any com-
bination of parameters (D, S, G) corresponding to the Norris derivative mode, a total
of 25 + 2 × 25 × 30 = 1525 modes were obtained. Based on variation of multiple parame-
ters, the Norris derivative spectra were more diverse and applicable than the raw spectra.
Norris parameters combination (D, S, G) should not be specified artificially but should be
reasonably optimized according to the analysis object and modeling discrimination effect.
Next, an algorithm platform for Norris parameter optimization based on kNN modeling
was constructed by using MATLAB version 7.6 software.
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For all Norris derivative modes, using the kNN algorithm, the calibration–prediction
models were established corresponding to the Norris derivative spectra, which were called
the Norris-kNN models. The recognition accuracy rate (RARi, i = 1, 2, 3) of each category
of prediction samples and the total recognition accuracy rate (RARTotal) of all prediction
samples were calculated. Additionally, based on the total prediction effect (RARTotal), the
optimal Norris parameters combination (D*, S*, G*) was preferred, as follows:

RAR Total (D∗, S∗, G∗) = Max
D ∈ {0, 1, 2}
S ∈ {1, 3, · · · , 49}
G ∈ {1, 2, · · · , 30}

RAR Total (D, S, G). (4)

3.4. MW-kNN Algorithm

Moving-window waveband screening and kNN were combined. The total indicator
RARTotal was adopted as the optimization goal and taken into account the balance indicator
RARSD, and a wavelength optimization platform (MW-kNN) of qualitative discriminant
analysis was established by using MATLAB version 7.6 software. The parameters of MW-
kNN were set as: (a) the initial wavelength I, (b) the number of wavelengths N. By looping
these two parameters, all sub-wavebands were traversed to establish all kNN models, and
the optimal model was determined based on the total prediction effect (RARTotal).

Corresponding to the spectral unsaturated absorption regions of the three measure-
ment models, the parameters of moving-window waveband screening were set as the
follows: for the dataset of 1 mm, I∈{780, 782, · · · , 2498}, N∈{2, 3, · · · , 859, 860}; for
the dataset of 4 mm, I∈{780, 782, · · · , 1880}, N∈{2, 3, · · · , 550, 551}; for the dataset of
10 mm, I∈{780, 782, · · · , 1388}, N∈{2, 3, · · · , 304, 305}. The parameter k of kNN was set
as k∈{1, 2, · · · , 5}. For the three datasets of 1 mm, 4 mm and 10 mm, based on the total
prediction effect (RARTotal), the optimal parameters combinations (I*, N*, k*) were preferred,
respectively, as follows:

RAR Total (I∗, N∗, k∗) = Max
I ∈ {780, 782, · · · , 2498}
N ∈ {2, 3, · · · , 859, 860}
k ∈ {1, 2, · · · , 5}

RAR Total (I, N, k), (5)

RAR Total (I∗, N∗, k∗) = Max
I ∈ {780, 782, · · · , 1882}
N ∈ {2, 3, · · · , 550, 551}
k ∈ {1, 2, · · · , 5}

RAR Total (I, N, k), (6)

RAR Total (I∗, N∗, k∗) = Max
I ∈ {780, 782, · · · , 1388}
N ∈ {2, 3, · · · , 304, 305}
k ∈ {1, 2, · · · , 5}

RAR Total (I, N, k). (7)

3.5. Strategy for 2-Category Priority’s Compensation and Three-Model Voting Fusion

Drawing on the idea of game theory, the strategy for 2-category priority’s compensa-
tion and three-model voting fusion was proposed.

The two-category priority compensation models were proposed first. For any two
categories of samples of i, j (i, j = 1, 2, 3, i < j), the total recognition accuracy rate (RARi, j),
as follows:

RARi,j =
M̃i + M̃j

Mi + Mj
, (8)

where Mi, Mj were the number of samples of i-th category and j-th category of the prediction
(or validation) set, respectively, and M̃i, M̃j were the number of accurately identified
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samples in i-th category and j-th category samples of the prediction (or validation) set,
respectively. For the three categories of samples of 1, 2, and 3, there were three compensation
models for the two categories of priority: Φ1,2, Φ1,3, Φ2,3. Among them, according to the
optimal total recognition accuracy rate (RARi, j) of i, j-category samples, the corresponding
compensation model (Φi, j) was selected, i, j = 1, 2, 3, i < j. For the three datasets of 1 mm, 4
mm and 10 mm, based on the RARi, j, the optimal parameter combinations (I*, N*, k*) were
preferred, respectively, as follows:

RARi,j(I∗, N∗, k∗) = Max
I ∈ {780, 782, · · · , 2498}
N ∈ {2, 3, · · · , 859, 860}
k ∈ {1, 2, · · · , 5}

RARi,j(I, N, k), (9)

RARi,j(I∗, N∗, k∗) = Max
I ∈ {780, 782, · · · , 1882}
N ∈ {2, 3, · · · , 550, 551}
k ∈ {1, 2, · · · , 5}

RARi,j(I, N, k), (10)

RARi,j(I∗, N∗, k∗) = Max
I ∈ {780, 782, · · · , 1388}
N ∈ {2, 3, · · · , 304, 305}
k ∈ {1, 2, · · · , 5}

RARi,j(I, N, k). (11)

The above algorithm was also written in MATLAB version 7.6 software.
Next, the three-model voting fusion was described. Taking Φ1,2, Φ1,3, Φ2,3 as sub-

models for three-model voting: each sample was judged three times, then, the sample
category of comprehensive judgment was determined according to the principle of “Two
wins in three games”, so as to establish a joint model (ΦFusion) of three-model voting.

Assuming that each compensation model (Φ1,2, Φ1,3, Φ2,3) has a high probability of
identifying certain two categories of samples, then according to the principle of “two wins
in three games” of three models voting, their joint model will likely have a high probability
of identifying all three categories sample. Therefore, the total recognition accuracy rate
(RARTotal) will likely reach a higher probability recognition effect, which is expected to be
better than its three sub-models. See also Table 10.

Table 10. Schematic diagram of voting effect for the three-model fusion’s joint model and its sub-models.

Model 1-Category 2-Category 3-Category All Samples

Φ1,2 High High High
Φ1,3 High High High
Φ2,3 High High High

ΦFusion High High High Higher

In fact, the strategy proposed here can be generalized to the n-category discriminant
analysis case: the n − 1 categories priority’s compensation models were first determined;
the joint model based on n-model voting fusion was further established.

4. Conclusions

Inspired by aquaphotomics, a novel method of multi-modal spectra fusion modeling
based on multi-optical path measurement was proposed. The optical path length of the
transmission measurement accessory was regarded as a perturbation factor. The three-
model voting fusion modeling approach based on multi-measurement modals (1 mm,
4 mm, and 10 mm) was used to establish the NIR spectral discriminant analysis models of
three categories of drinking water.

The MW-kNN combined with Norris derivative filter was used to optimize the three-
category discriminant analysis models for each spectral modal. Drawing on the idea of
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game theory, the selection method of the two-category priority compensation models
was proposed, and the fusion modeling method of three compensation models’ voting
was further proposed, aiming to make the joint models achieve a better comprehensive
discriminant effect.

Based on the model set of MW-kNN with NDF, the global optimal models and the
two-category priority compensation models for each modal were determined, and the joint
models based on the fusion of single-modal or multi-modal models were also determined.
The comprehensive discrimination effects of all joint models were better than their three
sub-models; the effect of multi-modal fusion was better than that of single-modal fusion.
The joint voting of the multi-modal compensation models can highlight the spectral differ-
ences from two dimensions, thereby improving the discrimination accuracy of the spectral
population with small differences. The global optimal joint model was the dual-modal
fusion of 1 mm-Φ1,2, 10 mm-Φ1,3, and 1 mm-Φ2,3, and the validation’s RARTotal reached
95.5%. Thus, it showed the feasibility of NIR spectroscopy for the multi-classification
identification of drinking water.

Furthermore, the MWCC spectrum, inter-category, and intra-category MWCC spectra
were also proposed to evaluate small differences between two spectral populations of drink-
ing water samples. Based on the principle of kNN and the wavelength model optimization,
the plotting approach of the first k-shortest distances was also proposed to describe the
differences in spectral populations. Their results showed the spectral differences between
the three categories of water sample populations.

In summary, a novel NIR spectral pattern recognition strategy was proposed, which
included two aspects: three compensation models’ voting and multi-modal fusion, which
can significantly improve the discriminant analysis effect of spectral populations with small
differences. The idea of this methodology is also expected to be widely applied to spectral
discriminant analysis in other fields.
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Abstract: The standardization of near-infrared (NIR) spectra is essential in practical applications,
because various instruments are generally employed. However, standardization is challenging due to
numerous perturbations, such as the instruments, testing environments, and sample compositions. In
order to explain the spectral changes caused by the various perturbations, a two-step standardization
technique was presented in this work called mutual–individual factor analysis (MIFA). Taking advan-
tage of the sensitivity of a water probe to perturbations, the spectral information from a water spectral
region was gradually divided into mutual and individual parts. With aquaphotomics expertise, it can
be found that the mutual part described the overall spectral features among instruments, whereas
the individual part depicted the difference of component structural changes in the sample caused
by operation and the measurement conditions. Furthermore, the spectral difference was adjusted
by the coefficients in both parts. The effectiveness of the method was assessed by using two NIR
datasets of corn and wheat, respectively. The results showed that the standardized spectra can be
successfully predicted by using the partial least squares (PLS) models developed with the spectra
from the reference instrument. Consequently, the MIFA offers a viable solution to standardize the
spectra obtained from several instruments when measurements are affected by multiple factors.

Keywords: water probe; mutual–individual factor analysis; calibration transfer; aquaphotomics; near
infrared spectroscopy

1. Introduction

Water, as one of the most common substances on earth, has numerous functions,
including dissolution, stabilization, catalyzation, transportation, etc. [1–3]. However, water
is an enduring mystery, due to the intricate and dynamic structures of its intermolecular
hydrogen bond network [4]. The molecular interaction is generally affected by perturba-
tions in water’s surroundings, such as temperature and additives, resulting in hydrogen
bond rearrangement and the alteration of chemical as well as physical performance in the
system [5]. Thus, water structure has remained a significant research subject for decades.

Aquaphotomics has been proposed as a new scientific discipline based on innovative
knowledge of the water molecular network, which describes the features of water structure
from the water spectrum, indirectly reflecting all perturbations, including experimental
conditions and sample compositions [6]. The water spectral pattern hence becomes a
revelator of the system condition. Several attempts have been made to analyze the ex-
perimental conditions by using water spectra. Shao et al. reported that a quantitative
spectra–temperature relationship (QSTR) model can be established, and the temperature of
a solution can be predicted from the near-infrared (NIR) spectrum with the water region
using the model [7,8]. Romanenko et al. developed a new approach, which used three fitted
Gaussian features from the water Raman spectra to investigate pressure and solution den-
sity [9]. Subsequently, aquaphotomics has gradually broadened as water was applied to be
a sensor and an amplifier in the structural and quantitative analysis of aqueous systems [10].
A number of researchers have reported that water was a sensitive probe for analyzing the
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structural changes and the interactions in aqueous solutions of alcohols [11,12], as well
as proteins [13–15], and practical samples [16–18]. On the other hand, the water probe
possesses its own advantages when carrying out the component detection [19–21].

Currently, aquaphotomics for experimental conditions and sample compositions in
aqueous systems have been investigated simultaneously with chemometric methods [22–24].
The NIR spectra of water in terms of hydrogen bonding were extracted to characterize the
perturbations created by the change of temperature and concentration in solutions with
the application of multivariate curve resolution–alternating least squares (MCR–ALS) [25],
alternating trilinear decomposition (ATLD) [26], and multilevel simultaneous component
analysis (MSCA) [27], etc. Furthermore, practical samples were studied [28,29]. The
common spectral features that contained the water spectra influenced by temperature
were extracted from the spectra of serum samples, and both the temperature and glucose
can be successfully measured by using mutual factor analysis (MFA) [29]. Therefore,
aquaphotomics provides a common platform for practical applications.

In industrial applications with NIR spectroscopy, standardization or calibration trans-
fer is usually required to correct the spectral variations both caused by the measurement
and sample conditions [30]. There are three major pathways for standardizing the NIR spec-
tra measured on different instruments, including the correction of the prediction values [31],
alteration of the model coefficients [32,33], and modification of the spectra [34–37]. The last
strategy is the most commonly applied. Piecewise direct standardization (PDS) is a very ef-
ficient method by which to establish a linear relationship between the spectra measured on
different instruments in several small window regions [34]. By using techniques like spec-
tral space transformation (SST) [35], alternating trilinear decomposition (ATLD) [36], and
multilevel simultaneous component analysis (MSCA) [37], research was also conducted by
determining the relationship between the principal components retrieved from the spectra
as an alternative to correcting spectra. However, the majority of standardization methods
concentrate on resolving the discrepancy resulting from a straightforward link between the
spectra obtained on various instruments and describing the calibration transfer through
a mathematical formula. Aquaphotomics may provide a different approach by which to
examine spectral differences that are influenced by a variety of circumstances, enhancing
interpretability and lowering bias, especially for the spectra of samples containing water,
such as agricultural products.

In this work, particular attention is paid to the application of aquaphotomics for
calibration transfer to discover more information with physical and chemical meanings. A
new algorithm, called mutual–individual factor analysis (MIFA), using water as a probe,
was proposed to analyze the water spectra both influenced by different instruments and
substances, and the standardization performance of the water probe was validated by two
NIR spectral datasets.

2. Theory and Algorithm

2.1. Continuous Wavelet Transform

As an efficient tool for data processing, continuous wavelet transform (CWT) has been
generally applied to improve the spectral quality, i.e., resolution enhancement, baseline
correction, and smoothing [29,38,39]. In this work, CWT with a Symmlet filter with a
vanishing moment 6 (Sym6 filter)) was employed, which is approximately equal to the
sixth derivative. With CWT, the resolution improvement and spectrum smoothing can
be achieved simultaneously [39]. Due to the property of the sixth derivative, the positive
absorption in the raw spectra becomes a negative one. In this study, for the convenience of
description, the value of the derivative is reversed.

2.2. Mutual–Individual Factor Analysis

In order to develop the transfer model, the spectra of standard samples collected
on different instruments are generally employed for standardization. Following CWT
processing, the spectra from three instruments, denoted as X1, X2, and X3 were employed

60



Molecules 2022, 27, 6069

in this investigation. In accordance with MFA [29], the combined spectral matrix, Xcomb,
was first processed to separate the standardized signal (SS), which represents the spectral
information of samples measured on a reference instrument. The relationship can be
presented as

Xcomb = [X1, X2, X3] = T
[
PT

1 , PT
2 , PT

3

]
+ E (1)

SS = TPT
re f = Xre f

(
PT

re f

)+
PT

re f , (2)

where superscripts T and + denote the mathematical operation of transposition and pseu-
doinverse of the matrix, respectively, and E contains the residuals between the actual
spectra and the fitted model. The scores and loadings in a principal component analysis
(PCA) model are symbolized as T and Pi

T (i = 1, 2, and 3), respectively. As a result of using
the same T, Pi

T represents the variations in the measured conditions or instruments. Then,
it is possible to determine how much of the spectral pattern of Xi is present in Xj (i �= j) by
using the relationship. The relative quantity (zi) of SS contained in each Xi can be obtained,
and score, ti, in each group of spectra collected on different instruments can be calculated
by using the reference loading, Pref. The relationship can be presented as

zi = trace
(
XiSS+

)
(3)

ti = Xi

(
PT

re f

)+
. (4)

It should be noted that, theoretically, any group of spectra measured on an instru-
ment can be used as the reference; however, generally the spectra collected on the master
instrument is applied.

The mutual part between the spectra measured on various instruments can be dis-
covered after MFA processing. However, apart from the spectral alterations driven by
the instruments, there are also spectral variations caused by the altered sample structural
features as a result of changing measurement conditions. Despite being minor, the spectral
variations affect the standardization, especially for the samples containing water, due to
the sensitive response of OH in NIR spectra [6]. As a result, the individual factor was
introduced to evaluate the variance using PCA model as the following equation,

Xle f =

⎡⎣X1 − z1SS+

X2 − z2SS+

X3 − z3SS+

⎤⎦ =

⎡⎣Tle f ,1
Tle f ,2
Tle f ,3

⎤⎦PT
le f + Ele f , (5)

where Elef denotes the remaining data that did not fit into the model, and Tlef,i and Plef
T

reflect the scores and loadings in the PCA model, respectively, after the mutual parts have
been removed. As a result, the score of the model merely accounts for the variance affected
by the measurement of the sample. Because the essence of the algorithm is to extract the
factor mutually and individually contained in the spectral data of different samples, the
algorithm is named as mutual–individual factor analysis and abbreviated as MIFA.

By adjusting the coefficients, i.e., zi and Tlef,i, the spectra measured on one instrument
can be transferred to another. The details of the standardization can be summarized in two
steps, as follows.

(1) Establish MIFA models: The MIFA approach is applied to establish the two models,
containing ti, Pi

T, Tlef,i, and Plef
T, from the standard spectra measured on three instruments,

X1, X2, and X3. This stage involves determining how many principal components each of
the two models has.

(2) Transfer the spectrum: As an illustration, the following computations can be used
to transfer the spectrum of instrument 2 (X2s) to instrument 1,

ts = X2s

(
PT

1

)+
(6)
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Tle f ,s = (X2s − tsP
T
1 )
(

PT
le f

)+
(7)

tTs = ts(t2)
+t1 (8)

Tle f ,Ts = Tle f ,s

(
Tle f ,1

)+
Tle f ,2 (9)

XT2s = tTsP
T
1 + Tle f ,TsP

T
le f . (10)

The scores of X2s can be calculated by using Equations (6) and (7) through MIFA mod-
els, and then transferred from instrument 2 to instrument 1 by using Equations (8) and (9).
Finally, Equation (10) can be applied to obtain the transferred spectra by using the load-
ings (P1

T and Plef
T) and the transferred scores. The spectra from the instrument 3 can be

transferred in the same way.

3. Data Description

Two NIR spectral datasets were employed in this investigation. Dataset 1 was down-
loaded from http://software.eigenvector.com/Data/Corn/index.html (accessed on 25
June 2019), and contains the moisture, oil, protein, and starch contents of 80 corn samples
along with the NIR spectra obtained by using three NIR spectrometers (m5, mp5, and mp6).
Each spectrum was acquired with 700 data points throughout the wavelength range of
1100–2498 nm with a digitization interval of 2 nm.

Dataset 2 was downloaded from https://www.cnirs.org/content.aspx?page_id=22&
club_id=409746&module_id=239453 (accessed on 17 July 2022), and includes 744 NIR
spectra analyzed on three instruments (A1, A2, and A3), as well as the protein content
of the 248 wheat samples. Each spectrum comprised 741 data points with a digitization
interval of 0.5 nm, and was recorded in the wavelength range of 730–1100 nm.

Prior to the calculation, each dataset was divided into a calibration set, a transfer set,
and a prediction set using the Kennard-Stone (KS) technique [40]. The calibration set (the
spectra of the master) is employed to develop the multivariate calibration model of the
master, the transfer set (containing the spectra of all the instruments) is applied to building
the transfer model, and the prediction set (the spectra of the salve) is used for validating the
effect of the transfer model. For dataset 1, the calibration, transfer, and prediction sets were
composed of 30, 30, and 20. For dataset 2, the possible outlier (ID 20140190) was removed,
and the remaining 247 samples were divided into a calibration set of 117 samples, a transfer
set of 30 samples, and a prediction set of 100 samples.

4. Results and Discussion

4.1. Spectral Analysis and Resolution Enhancement

The spectra of corn samples using three instruments are displayed in Figure 1.
Figure 1(a1) shows that there are several broad bands with a ranked background, and
the average spectrum intensity from m5 is higher than those from mp5 and mp6. The
outcome demonstrates that the background shift appears to be the major source of the
overall spectral variance induced by different instruments. To remove the background,
CWT with Sym6 was used, which is approximately equal to the sixth derivative [39]. The
CWT-processed spectra are shown in Figure 1(b1), illustrating an almost zero baseline.
Furthermore, compared with the spectra from the three instruments, the similarity proves
that the background shifting among the instruments is the primary cause of the difference.
In addition, taking advantage of the high-order derivative, narrower peaks were obtained
than the corresponding spectra in Figure 1(a1). It has been reported that compared with
the results by the first or second derivatives used in our previous works [11,17,26,28], the
CWT-processed spectra from higher-order derivatives illustrate higher resolution, and
reveal more information to understand the interactions in aqueous samples [29,41].
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Figure 1. Average NIR spectra of corn samples from instrument m5, mp5, and mp6, respectively (a1),
standard deviation of the averaged spectra (a2), average spectra from each instrument after CWT
transformation (b1), and standard deviation of the CWT processed spectra (b2). The selected ranges
were indicated with shadows.

For a further comparison, Figure 1(a2,b2) provides the standard deviation of the sam-
ple spectra and the CWT-processed spectra, respectively, where the higher the intensity, the
larger the difference. The relatively higher intensity in both subfigures can be seen around
1410 and 1904 nm, which are primarily composed of the overtone and a combination of
stretching and bending vibrational modes of OH in water, as well as features of OH, NH,
and CH in biological components [6,18]. The others around 1682 and 2200–2300 nm are re-
lated to the CH groups in biomolecules and α-helix in protein, respectively, consistent with
the assignments of NIR bands from quantum chemical simulations [42,43]. Additionally,
the background shift may be the reason of the high intensity around 1142 and 2434 nm in
Figure 1(a2), as there are no strong values in these spectral regions of Figure 1(b2). These
findings suggest that as detecting conditions change, different instruments alter not just
the background but also the spectral intensity of various species in samples, which is
consistent with the results of MSCA [37]. Thus, it is necessary to adjust the spectra at both
the instrument and sample levels.

Furthermore, the major differences in the shadow reveal that NIR spectra are sensitive
to OH, which can easily undergo structural changes due to hydrogen bonding when
environmental changes are detected [6,24]. Compared with biomacromolecules, such as
oil, protein, and starch in seeds, OH groups in water are relatively more active due to the
smaller size and stronger polarity of water, and may cause more spectral changes from
different instruments [6,44]. For this reason, by using water as the probe, the spectral ranges
(1294–1556 and 1788–2078 nm) associated with water in the shadow in Figure 1(b1) were
chosen to build the MIFA model.

4.2. Mutual–Individual Factor Analysis

To investigate the instrument and sample effects on the NIR spectra, MIFA was em-
ployed on dataset 1 using water as a probe. First, the numbers of principal components (PC)
were required to construct the mutual and individual factor analysis models, respectively.
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The commonly used criteria of “explained variance” was utilized in this study to determine
the numbers [37]. The number of the PCs that explain 99.9% of the variance was applied.
For dataset 1, the parameters for the mutual and individual factor analysis models were 1
and 6, respectively.

Equations (1)–(3) were then applied to calculate the standardized signal (SS) and
the relative quantity (zi) using the spectra from m5 as the reference. The SS is shown in
Figure 2a to estimate instrument-induced variance. As a result, it should be unaffected
by instrument changes. The intensity of the signal should be only related to the concen-
tration of the samples. Figure 2b shows the intensity variations at 1882 nm with the mass
percentage of moisture to validate the assumption. A linear function can be generated from
quantitative analysis of complicated biological samples with a recovery of less than 20%,
which is considered a good result when using single-point spectral values for regression.
The results suggest that SS is related to water in corn, indicating the effectiveness of mutual
parts, which are consistent with the MFA conclusion [29].

 
Figure 2. Standardized signal (SS) (a), the relationship between the intensity at 1882 nm and the mass
percentage of moisture (b), and the relationship between the relative quantity (zi) and instruments (c).
The linear regression appears as the red dash.

Figure 2c depicts zi in relation to the three instruments. The very small difference
in values reflects the minor overall variations between the spectra of three instruments,
even if the background was reduced by the CWT. This demonstrates that apart from
the background variation, the mutual part contains the sample change with different
instruments, indicating the sensitivity of water probe. zi is a mirror of the spectral variation
caused by instruments; hence the relationship between zi can be utilized to regulate the
overall spectral difference caused by the measurement circumstances.

After removing the mutual part from the spectra, PCA was used to evaluate the
individual spectral features from the remaining spectra. Figure 3 shows the loadings for
each PC, and the spectrum characteristics are related to the hydrated CH, NH, and OH
in biomolecules as well as the hydrated OH in water [6,15,16,18,42,43]. The disparities
between the PCs may be due to differences in the samples and the measurement of the
spectra. In comparison to the other five PCs, the first PC provides additional details
concerning the characteristics of the hydrogen-bonded OH at 1444 and 1934 nm, according
to aquaphotomics [10]. When samples of corn are measured by using different instruments,
the outcomes show that the hydrogen-bonding variance of the chemicals in the corn is
what causes the majority of individual differences.

In order to further explore the feasibility of the model transfer, Figure 4 displays the
scores of the individual part for the first six PCs. The scores in the models are more essential
in this study because the transfer is accomplished by modifying the scores. This implies
that measurement-related changes in molecule structures may impact the measured spectra,
as not all of the discrepancy can be accounted for by the mutual part or only one model [37].
For adjusting the complicated effects, a multi-step strategy can be a wise solution.

64



Molecules 2022, 27, 6069

 
Figure 3. The first through the sixth loadings in the PCA model, after the mutual parts have
been removed.

 
Figure 4. Comparison of the scores in the first through the sixth (a–f) PCs in the individual part for
the spectra from the instruments m5, mp5, and mp6. The blue square, red circle, and green triangle
represent the score for instrument m5, mp5, and mp6, respectively.

In contrast to the scores in PC2–PC6, it is obvious that PC1 shows the largest disparity.
In PC1, the scores from mp5 and mp6 show similar changes when compared with that
from m5, indicating that structural alterations of hydrogen-bonded water in corn have a
regular pattern under different measurement conditions. The findings prove that water
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probe may be utilized for model transfer and that water spectral features can be used as a
comprehensive descriptor to portray the system.

4.3. Standardization of the Spectra

By adjusting the coefficient values in the scores, it is possible to achieve spectral
standardization, or the transfer of the spectra from mp5 and mp6 to m5 (mp5–m5 and
mp6–m5). Because there is just one value for the mutual part in dataset 1, it is obvious that
the transfer may be finished by simply changing the zi of mp5 and mp6 to m5, respectively.
In general, the transfer for the mutual part can be accomplished by Equation (8). Similarly,
Equation (9) can be used to determine the transfer of individual part.

Figure 5 displays the spectra measured from m5, mp5, and mp6 for a sample randomly
chosen from the prediction set of dataset 1. The transferred spectra by the mutual and
mutual–individual parts are also shown in the figure to demonstrate the effects of the
standardization by the proposed strategy. Clearly, the spectra from the three instruments
differ among one another in the embedded graphs. The spectra of mp5 and mp6 approach
closer to the spectrum of m5 once the mutual part has been corrected, although there is
still a little divergence. The spectra from m5, mp5–m5, and mp6–m5 are virtually identical
after the individual parts have been corrected. The findings unequivocally demonstrate
that both mutual and individual parts have an impact on the transfer of the spectra.

 
Figure 5. The transfer results for an arbitrarily selected spectrum from mp5 (a) and mp6 (b) to
m5, respectively.

To further assess the transfer effect of the proposed approach, PCA was carried out on
the spectra both before and after spectral standardization. Figure 6 displays the transfer
outcomes of the spectra from various equipment in the first three PC spaces. The scores
from m5 and the other two instruments differ substantially, demonstrating the variation
in spectra between them. The disparity between the mp5 and mp6 is not as significant,
consistent with the findings in Figure 1. The results show that the score can properly
represent the spectral features.

When the scores of the reference and the transferred spectra are compared, it is clear
that the ellipsoids with a confidence value of 95% are overlapped, demonstrating that
the disparity has been corrected by MIFA. The outcomes unequivocally illustrate that the
proposed method is capable of transferring the measured spectra from other instruments
to the reference.
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Figure 6. Results of the scores in PC1–PC2–PC3 space for the spectra from m5, mp5, and mp5–m5 (a)
and spectra from m5, mp6, and mp6–m5 (b), respectively. The ellipsoids are determined with the
confidence of 95%.

4.4. Validation of the Standardized Spectra

For the final evaluation of the proposed method, a partial least squares (PLS) model
was built with the calibration spectra measured on the reference instrument, and then
applied to the prediction set from other instruments. Cross-validation is used to establish
the optimal number of latent variables (nLV) in the PLS model. For the calibration set of
dataset 1, four LVs were employed. Figure 7 depicts the relationship between predicted
and original moisture, oil, protein, and starch values based on the spectra from m5 in blue
points. The results of the spectra from mp5 and mp6 are displayed in red and green points,
and the predicted values of the transferred spectra from mp5 and mp6 are also plotted in
orange and yellow for comparison. It is obvious that similar results can be found between
the blue and orange or blue and yellow points in the subfigures, respectively. Moreover,
the blue and red or blue and green points clearly differ from each other. The results
demonstrate that the PLS model from the reference instrument can accurately predict the
transferred spectra.

When comparing the correlation coefficient (R2) of the calibration models, it should
be noted that the relationships between the original and predicted values for moisture,
protein, and starch are slightly better than that for oil. The moisture quantification result
is the best because the water spectral range was chosen. In addition, protein and starch,
which interact more strongly with water [2,10], have superior quantification models than
oil. Despite the fact that R2 is slightly lower than others for oil, the quantitative model can
be applied for practical samples with the recovery less than 20%.

To further investigate the effectiveness of the proposed approach, Tables 1 and 2
exhibit the predictions made by MIFA for datasets 1 and 2, respectively, compared with the
results from PDS and SST. By using one of the instruments as a reference, the values of root
mean squared error of prediction (RMSEP) for the oil and protein contents in the validation
set are shown in the tables, respectively. Clearly, the direct prediction of spectra from other
instruments through the reference model is substantially worse than that of the reference
spectra. The RMSEP can be minimized if the transferred spectra are predicted. The results
provide a strong validation for the efficiency of the calibration transfer, even though the
values are still slightly larger than those of the reference instrument. Additionally, although
there is a minor variance, similar results are also obtained for the PDS, SST, and MIFA.
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Consequently, the MIFA can be used to successfully transfer the spectra measured by
different instruments with the water spectral region. Furthermore, the MIFA approach
(using water as a probe) narrows the wavelength range needed by concentrating on the
water spectral region, which reflects the major structural changes in the system, providing
the opportunity of standardization between miniature instruments.

 
Figure 7. Relationship between the original and the prediction values of moisture (a), oil (b), protein
(c), and starch (d) obtained from the spectra from m5, mp5, and mp6, as well as the transferred
spectra of mp5–m5 and mp6–m5, respectively.
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Table 1. Comparison of the results obtained by PDS, SST and MIFA for dataset 1.

Calibration Spectra Validation Spectra RMSEP

m5

m5 0.1419
mp5 0.1667
mp6 0.2608

mp5–m5 (MIFA) 0.1435
mp5–m5 (PDS) 0.1592
mp5–m5 (SST) 0.1573

mp6–m5 (MIFA) 0.1424
mp6–m5 (PDS) 0.1519
mp6–m5 (SST) 0.1493

mp5

mp5 0.1527
m5 0.1786

mp6 0.1669
m5–mp5 (MIFA) 0.1601
m5–mp5 (PDS) 0.1642
m5–mp5 (SST) 0.1639

mp6–mp5 (MIFA) 0.1546
mp6–mp5 (PDS) 0.1593
mp6–mp5 (SST) 0.1572

mp6

mp6 0.1523
m5 0.1981

mp5 0.1909
m5–mp6 (MIFA) 0.1609
m5–mp6 (PDS) 0.1564
m5–mp6 (SST) 0.1551

mp5–mp6 (MIFA) 0.1546
mp5–mp6 (PDS) 0.1634
mp5–mp6 (SST) 0.1586

Table 2. Comparison of the results obtained by PDS, SST and MIFA for dataset 2.

Calibration Spectra 1,2 Validation Spectra RMSEP

A1

A1 0.6091
A2 0.8028
A3 0.9866

A2–A1 (MIFA) 0.6824
A2–A1 (PDS) 0.6987
A2–A1 (SST) 0.6752

A3–A1 (MIFA) 0.7154
A3–A1 (PDS) 0.7089
A3–A1 (SST) 0.7066

A2

A2 0.7475
A1 0.8538
A3 0.9274

A1–A2 (MIFA) 0.8049
A1–A2 (PDS) 0.8122
A1–A2 (SST) 0.799

A3–A2 (MIFA) 0.8106
A3–A2 (PDS) 0.8324
A3–A2 (SST) 0.8075
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Table 2. Cont.

Calibration Spectra 1,2 Validation Spectra RMSEP

A3

A3 0.7044
A1 0.8316
A2 1.1068

A1–A3 (MIFA) 0.7993
A1–A3 (PDS) 0.8237
A1–A3 (SST) 0.8033

A2–A3 (MIFA) 0.8196
A2–A3 (PDS) 0.8169
A2–A3 (SST) 0.8127

1 The number of PC for the mutual and individual factor analysis models were 1 and 6 in MIFA, respectively.
2 PLS model was built with 3 LVs, according to cross-validation.

5. Conclusions

For the purpose of standardizing NIR spectra, a new chemometric technique called
mutual–individual factor analysis (MIFA) was developed based on the water spectral
region, which used water as a probe. In order to describe the overall differences between
the various instruments, the method extracted the spectral feature of the mutual part
present in the spectra from different instruments. The difference between the molecular
interactions in the samples caused by various measurement conditions was then depicted
in each individual part. Furthermore, the spectra measured on one instrument can be
effectively transferred to that of another by modifying the coefficients of the mutual and
individual parts, respectively. When compared with PDS and SST, MIFA produced a similar
result, but provided additional information with physical and chemical meanings by using
aquaphotomics. Therefore, in practical applications of NIR spectroscopic analysis, the
water probe may offer an effective solution when the spectra are impacted by several
complex perturbations, and promote the development of small instruments with limited
wavelength ranges.
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Abstract: In snow, water coexists in solid, liquid and vapor states. The relative abundance of the
three phases drives snow grain metamorphism and affects the physical properties of the snowpack.
Knowledge of the content of the liquid phase in snow is critical to estimate the snowmelt runoff and
to forecast the release of wet avalanches. Liquid water does not spread homogeneously through a
snowpack because different snow layers have different permeabilities; therefore, it is important to
track sudden changes in the amount of liquid water within a specific layer. We reproduced water
percolation in the laboratory, and used Raman spectroscopy to detect the presence of the liquid phase
in controlled snow samples. We performed experiments on both fine- and coarse-grained snow. The
obtained snow spectra are well fitted by a linear combination of the spectra typical of liquid water
and ice. We progressively charged snow with liquid water from dry snow up to soaked snow. As a
result, we exploited continuous, qualitative monitoring of the evolution of the liquid water content as
reflected by the fitting coefficient c.

Keywords: snow; water; Raman spectroscopy; OH-stretching band; liquid water content

1. Introduction

Snow is a granular, porous material made of a mixture of ice crystals with a variety of
forms, a fraction of liquid water and water vapor in thermodynamic equilibrium [1]. The
initial shape of the crystallites formed in a cloud include plates, needles, hollow columns,
dendrites, depending on the combinations of temperature and water vapor supersaturation
values they experience along their free fall down to the ground, where they progressively
accumulate [2]. After its deposition, natural snow undergoes extensive metamorphism [3]
that consists of grain sintering under mechanical compression and thermal gradients
through the snowpack thickness due to mass and thermal energy fluxes, driven by the
weather conditions it experiences. Sun irradiation, temperature gradients, humidity and
wind are the leading factors that concur with the evolution of the layers that progressively
accumulate upon successive snowfalls and build up the snowpack. The size and shape
of the constituting snow grains concurrently evolve. In the laboratory, strict control of
ambient temperature and supersaturation allows us to produce natural-like snow crystals
with a degree of perfection higher than that of spontaneously grown crystals [4].

A relevant property of a snowpack is the liquid water content θw. This results mostly
when melted snow or rainwater infiltrates into the snow, changing its wetness [5]; alterna-
tively, the presence of thermal gradients through the snowpack may drive changes of θw in
snow layers at specific depths [6]. As such, θw in snow is a marker of snowmelt and snow
mechanical stability [7]. Accelerated melting under strong Sun irradiation, as well as heavy
rain on snow, lead to increased θw values and can result in a flood, possibly associated with
severe runoff [8] or wet avalanche release. This can be full depth when water reaches the
ground behind the snow cover, or, since the shear strength of snow reduces exponentially
with increasing the volumetric water content [9], when a wet, buried snow layer becomes
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the preferential sliding surface of the avalanche. The fate of the snowpack is further affected
by the lowered surface albedo of snow progressively impregnated with water [10] since
considerable liquid phase amounts favor the formation of ice clusters [11] that act similar
to big grains, being more efficient than small crystallites in absorbing light. Indeed, albedo
is higher in snow with smaller grains and vice versa [12].

Measuring θw is admittedly difficult and demanding [13,14]. To take into account the
space–time evolution of meltwater outflow that is correlated with the snowpack stability,
continuous recording of θw is required. Indeed, associated with θw changes are sudden,
non-linear alterations of snowpack properties and of the outflow of meltwater. Several in-
situ, more or less invasive techniques to measure θw were reviewed in the past and include
centrifugal, dielectric, calorimetric or dilution approaches [15,16]. The main drawbacks of
such techniques are the large amount of snow and the long time necessary to perform a
measurement. Thus, no successive tests can be made at a given site since the snowpack is
irreversibly altered at every measurement. More gentle, non-destructive methods are based
on the changes of spectral reflectance in the NIR region (920–1650 nm) of snow bearing
different water contents [17,18] and ground-penetrating radar, by which an electromagnetic
signal is generated and the reflected wavefield is measured, from which it is possible to
map the values of θw in the sampled region. Recent satellite and ground-based remote
sensing are based on the analysis of microwave radiation reflected at the Earth’s surface
in comparison to a signal directly received at an antenna above the ground [19,20]. These
methods leave the sampled area intact, but since the satellite repetition time is of the
order of days, snow parameters can be checked only intermittently. Mountain areas are
challenging for passive microwave systems, mostly due to the coarse spatial resolution, in
the range of a few tens of km2, and to the complicated terrain topography that produces
shadowing and foreshortening effects. Thus, presently, satellite-based sensing of snow
properties is mostly devoted to flat areas [21].

Here we describe an innovative approach based on Raman spectroscopy for the
insitu assessment of the liquid phase content in snow. We conceived this idea from the
observations that first, snow consists of frozen water; second, we are concerned with
discriminating among snow with different contents of liquid-phase water; and third, in
the region of the OH-stretching band, the Raman spectrum (RS) of ice qualitatively differs
from that of liquid water. Notably, very recently, we found a single old report (in Russian)
where Raman spectroscopy was proposed as a conceptual tool to determine the θw of
snow [22]. Other optical spectroscopy techniques, such as reflectance spectroscopy, were
used to investigate snow metamorphism [23] and to measure snow albedo to derive from
it the snow grain size, also taking into account the presence of different concentrations of
dust contaminants [24].

In our study, we used two reference types of snow with markedly different average
grain sizes (0.2 mm; 1.6 mm). By this choice, we expect that the infiltration strategy of equal,
controlled amounts of water, homogeneously deposited on the sample surface, differs in
the two snow kinds. We recorded RS from the snow samples at a fixed height below the
water-wet surface, at fixed delays with respect to the wetting time. We observed that the RS
of snow with different fractional contents of the liquid phase, driven by the degree of water
infiltration, can be described well by a weighted linear combination of the spectra of ice
and liquid water. For both kinds of tested snow, we plotted vs. time the weighting factor (c)
as well as the independently measured liquid phase fraction. We found a smooth behavior
of c with two evident thresholds. Each threshold occurs at the same value of liquid phase
fraction for both kinds of snow. By our method, we collected RS from specific points in
the snow volume. Even though punctual information could be of less interest when the
global liquid water content in a snow volume is required, local Raman measurements such
as those presented here provide useful insight regarding the progressive accumulation of
liquid water at specific locations in the snowpack, e.g., within snow layers that lay on top
of a melt-freeze crust. The water content in such layers is critical for a wet avalanche release
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because the accumulated liquid water reduces the cohesive force among snow grains, thus
dramatically decreasing the mechanical stability of the snowpack.

2. Results

In Table 1, we report the measured amounts of water accumulated inside the empty
container by spraying water from progressively increasing distances from the top open
surface. In our experiments, we sprayed water from a point placed between 3 and 5 cm
above the container opening (see Section 4 for details). In such a condition, the average
collected water per spray is 0.15 g.

Table 1. Water mass collected in the container after spraying from progressively increased heights
above the top open surface.

Height (cm)
Collected Water after 100

Sprays (g)
Average Collected Water per

Spray (g)

0 18.3 0.183
5 11.6 0.116
10 3.9 0.039
15 3.3 0.033
20 2.6 0.026

We performed four different experiments in which we added controlled amounts of
liquid water to different snow batches, as summarized in Table 2, where the conditions
adopted to charge with water the two different kinds of snow, namely natural-like snow
(NLS) and natural snow (NS) (see Section 4 for details) are grouped. We remark that the
density of NLS (280 kg m−3) differs from that of NS (380 kg m−3). Lower density snow is
characterized by a more open microstructure with more pores that result in increased water
vapor presence. Around 0 ◦C enhanced melting is likely to occur. Yet, in our experiments,
we discard the role of water vapor due to the dominant weight of the amount of liquid
water we deliberately inject in the sample from its top surface.

Table 2. Experimental parameters adopted to add liquid water to the snow samples.

Snow Kind;
Injection Method

Initial Snow
Mass (g)

Total Mass of
Injected Water (g)

Number of
Injection Steps

Water Mass per
Unit Step (g)

NLS; spray 11.6 4.8 31 0.15
NLS; pipette 3 4.7 100 0.047

NS; pipette 1st 3 4.8 100 0.048
NS; pipette 2nd 3.1 4.2 100 0.042

We collected the reference spectra of bulk ice and liquid water at 0 ◦C in a mixture of
ice/water from a volume of distilled water, focusing the laser spot at the same fixed distance
for both measurements. We normalized the intensity of both spectra according to the
intensity of the most relevant ice peak. The obtained spectra are reported in Figure 1a and
clearly show how the different hydrogen-bonding networks that characterize ice and liquid
water produce markedly different Raman bandshapes in the OH-stretching region [25].
Such a different spectral profile can be used to qualitatively assess, by a least-square fitting
procedure, the relative amount of liquid water in snow, as described below.
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(a) (b) 

  
(c) (d) 

Figure 1. (a) RS of ice (blue curve) and liquid water (red curve) at 0 ◦C normalized to the maximum
intensity of the ice spectrum. Panels (b–d) are the fits (pink curves) to three representative experimen-
tal spectra (green curves), as obtained by Equation (1) with the indicated values of the c coefficient. In
each panel, we report the different relative intensities of the spectra of ice and water.

After the acquisition of the RS of snow, we first operated spike removal and baseline
correction over the range 2800–3800 cm−1 (OH-stretching band), and the spectra were
normalized. To fit all RS collected from snow samples, we use a linear combination of the
ice and water spectra according to:

Ifit(ω) = (1 − c) × Iice(ω) + c × Iwater(ω), (1)

where Iice(ω) and Iwater(ω) are the intensities of the reference spectra of ice (normalized
to its maximum) and water (normalized to the maximum of ice spectrum), respectively.
c is the fitting coefficient that runs between 0 (pure ice) and 1 (pure liquid water). For a
given snow sample, we obtain the value by minimizing the squared sum of the residuals
(S2) computed using the measured normalized spectrum of wet snow (Imeas(ω)) and the
fitted spectrum given by Equation (1) in the spectral range of the OH-stretching region
(2800 cm−1 = ωa < ω < ωb = 3800 cm−1), according to:

S2 =
∫ ωb

ωa

[
Imeas(ω)− I f it(ω)

]2
dω (2)

In Figure 1 b–d, we show the experimental spectra of wet snow samples containing
different amounts of water, fitted with the spectrum associated with the value of the c
coefficient (Equations (1) and (2)) that allows the experimental data to match in the best
way (i.e., in the least-squares sense).
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For this set of experiments (see Section 4 for details), we used the spray bottle, and
we collected six RS after each spray in order to establish a stationary distribution of liquid
water throughout the snow volume along the time required to take RS. When we used the
pipette, we collected a single RS for every addition of water. Since in this experiment the
snow volume is smaller, we assumed that water requires less time to obtain a stationary
volume distribution with respect to water addition using the spray bottle.

We investigated the percolation of water through the snow by a specific experiment. In
Figure 2, we report four representative frames of a video collected during the progressive
addition of a diluted (0.03% in volume; see Section 4) water-colored solution to a sample
of NS. Moving from plate (a) to plate (d) of the figure, we notice that the fraction of the
green-colored area and the intensity of the coloration progressively increase. This coincides
with a correspondingly large number of times the fixed liquid water volume (0.04 mL)
was uniformly dropped onto the snow surface using the pipette, from 4 (20 s; plate a) to 7
(35 s; plate b) and 14 (70 s; plate c) to 62 (310 s; plate d). We observed that initially (plate a)
liquid water was mostly deposited at the top surface of the snow, and it appears as a barely
visible green shaded area. The increased intensity of green coloration of plate b coincides
with liquid water penetrating down to the bottom of the container through a percolation
path. From this point on, water diffusion through snow mostly occurs along the already
established path involving progressively larger snow volumes (plate c). After the heaviest
water injection, the whole bottom of the container is saturated with liquid water (plate d).
The above trend is the same observed in the dye infiltration experiment through snow [26].

  

(a) (b) 

  
(c) (d) 

Figure 2. Snow pictures taken from the bottom of the container after uniformly dropping (a) 4, (b) 7,
(c) 14, (d) 62 pipettes of green-colored water onto the snow top surface. The contrast of the pictures is
enhanced to highlight the green-colored areas.
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In Figure 3, we show the trend of the c coefficient (Equation (1)) vs. time, as represented
by the black curves. The red curves provide the liquid water (LW) mass fraction in the
samples. Figure 3a refer to NLS that underwent successive water sprayings. After an initial
region where c values are nearly constant, a sudden vertical discontinuity (disc. 1) at an
LW mass fraction value of 0.13 is followed by a region of roughly constant c values.

  

(a) (b) 

  
(c) (d) 

Figure 3. Trend of the c coefficient (black curves and ordinate scale) and liquid water mass fraction
(red curves and ordinate scale) for selected combinations of snow kind and degree of liquid water
injection. (a) NLS, spray; (b) NLS, pipette; (c) NS, pipette 1st; (d) NS, pipette 2nd. See text for details.

In Figure 3b, we show the result of an experiment similar to the one discussed in
Figure 3a, apart from the more consistent water injection in the snow that was possible
when we used a pipette. Indeed, in this case, the mass of the snow sample is about 25% of
the sample mass used for spraying measurements (see Table 2). The initial trend of the c
coefficient is similar to that in Figure 3a: the average c value in the initial region is around
0.15. The vertical discontinuity (disc. 1) occurs at the value of LW mass fraction 0.17, and
again a nearly flat region of c values follows up to a second vertical discontinuity (disc. 2)
at the LW mass fraction 0.55. Discontinuity 2 is less marked than discontinuity 1, and it is
followed by a region of nearly constant c values.

The same kind of measurement just discussed, when performed on a NS sample
(Figure 3c), qualitatively mirrors the trend of the c coefficient already discussed for Figure 3b.
The discontinuities occur at LW mass fraction values of 0.13 and 0.6, respectively. Remark-
ably, in Figure 3c, the steep increase of the c value across the discontinuity region is rather
high, around 0.7. We believe that such a large value is due to the combination of the
coarse snow grain of this sample (see Figure 4a) and of the focusing conditions. Indeed,
since the laser spot diameter is less than the average grain size, it is likely that a small
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number of snow grains is illuminated, thus magnifying the liquid water contribution in the
recorded RS.

  

(a) (b) 

Figure 4. Stereo-microscopy pictures of (a) natural and (b) natural-like snow grains.

In Figure 3d, we show the results we obtained when the same measurement as for
Figure 3c was performed under defocused laser irradiation. The consequence is a noisier
c trend. We identify again the two discontinuities placed at LW mass fractions of 0.13
(disc. 1) and 0.55 (disc. 2), respectively. In between the discontinuities, we observe a
roughly constant c trend centered around 0.3. Notably, disc 1 is less marked than in all
other experiments. Our choice for locating the position of such a discontinuity was driven
by the observation that there is a jump in c values coincident with an LW mass fraction
equal to the value evident in Figure 3c. Two discontinuities occur at high LW mass fraction,
as indicated by the arrows in Figure 3d: it is, however, irrelevant which one is considered
since the LW mass fraction value for both discontinuities is nearly the same (0.48; 0.51).

In Table 3, we display the LW mass fraction values for our samples at discontinuities
1 and 2.

Table 3. LW mass fraction at the c discontinuities.

Snow Kind; Injection
Methos

LW Mass Fraction at
Discontinuity 1

LW Mass Fraction at
Discontinuity 2

NLS; spray 0.13
NLS; pipette 0.17 0.55

NS; pipette 1st 0.13 0.55
NS; pipette 2nd 0.13 0.6

3. Discussion

Some remarks on the results of the evolution of the LW mass fraction in our samples
are pertinent. We observe that the initial c value differs from 0 in all measurements. This
means that even when no liquid water is introduced in the sample, the RS cannot be fitted
with the only contribution of bulk ice. We attribute this fact to the role of surfaces in the RS
of snow [27] that are covered by a quasi-liquid water layer, the thickness of which becomes
relevant over the temperature range −1–0 ◦C. Such a layer provides liquid water to the RS
of snow. Since NLS is made of grains of smaller average size, the contribution of liquid
water is larger than in NS. This corresponds to a higher c coefficient (about 0.15) for NLS
than for NS (on average, 0.1).

Discontinuity 1 observed in Figure 3a–d can be related to the pictures in Figure 2
and to the kinetics of liquid water infiltration through the snow. In the initial stage, the
LW content in the volume where the RS is collected is nearly constant. The discontinuity
coincides with the time when the liquid waterfront reaches the collection volume of the
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RS. Then the water level remains nearly constant until water expands through the entire
snow volume. We associate the different values taken by the c coefficient along this stage in
NLS (about 0.5; see Figure 3b) and in NS (about 0.3; see Figure 3d) to the different average
grain sizes of the two kinds of snow that behave in a sponge-like manner. In fact, NLS with
smaller grains is a more efficient sponge (larger c) able to retain a larger amount of liquid
water than NS. The above c values are in agreement with the volumetric water content
measured with other techniques [28].

Discontinuity 2 is associated with the formation of a layer completely filled with liquid
water at the bottom of the sample, as we observed. In this condition, since the laser is
focused at a fixed height with respect to the sample bottom, the fractional contribution of
liquid water to RS, with respect to that of ice, becomes dominant.

The experiments discussed above appear suitable to detect the presence of liquid
water in a snow volume and to follow the evolution of the progressive filling of snow with
the liquid phase. This is facilitated by the spectral shape analysis of the RS of the wet
snow sample, based on the weighted contributions of the spectral features of ice and water.
Indeed, the recorded RS result solely from the vibrational contributions of water and ice.
The contributions from other species, such as chemical contaminants and dust, provide
additional peaks that can be easily spotted and rejected in the analysis of the RS. Thus,
Raman spectroscopy opens the way to the investigation of the spatial-temporal changes in
the water content of snow using a non-destructive and minimally invasive optical approach.
For on-field applications, a vertical trench across the snowpack thickness is required to
take RS at different depths corresponding to progressively accumulated snow layers. For a
quantitative estimate of θw, we still have to determine the calibration curve of our method
against θw, as measured by an assessed, independent technique. We plan to exploit this
activity in future research.

4. Materials and Methods

We performed our experiments inside a home-built climatic chamber. We recorded
the temperature by placing a type K thermocouple at the bottom (immersed in stagnant
air) of a commercial freezer. We connected the thermocouple to an Arduino board (model
Uno) feedback looped to a relay that acts as a switch and turns on the freezer when the
temperature recorded by the thermometer is higher than −1 ◦C. With this system, we kept
the temperature inside the climatic chamber between −2 ◦C and −0.5 ◦C. The top opening
of the freezer was closed with a 2 cm thick Styrofoam plate; we cut a circular opening at the
center of the plate, through which we could inject water on the top surface of the sample.
Given the low thermal conductivity of air, we assume that over the temperature range
explored during our experiments, neither melting of snow nor freezing of water occurred
in association with heat exchanges between the snow samples and the surrounding air.

To reduce, as much as possible, the melting of snow grains during the addition of
liquid water, we used distilled water at 0 ◦C to avoid handling of undercooled water with
the associated metastability. We partially frost a volume of water to constantly keep liquid
water at 0 ◦C during the experiments.

We filled a cylindrical Polypropylene container with an external diameter of 39 mm, a
height of 6 cm and 2 mm thick lateral surfaces with snow, without compacting it. We re-
moved the bottom of the container, and we closed it with an optically transparent Polyethy-
lene (PE) film (thickness 10 μm) impermeable to liquid water. The film was stretched to
obtain folding-free transparent sealing to ensure optimal quality of the recorded RS.

We added liquid water to the snow using a spray bottle and a pipette. Our purpose is
to simulate the random fall of raindrops on the snowpack surface.

In the first set of experiments, we used a spray bottle that produced a puff of water
droplets of average size between 200 μm and 600 μm. The water mass ejected in each
spray was about 0.22 g. The amount of liquid water collected in the container was smaller
than the injected water mass because a fraction of the droplets evaporate or fall outside
the container. In the second set of experiments, we added liquid water to snow using an
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adjustable volume pipette (Model: Gilson P1000). The pipette was kept 2 cm above the top
open surface of the snow. Under these conditions, the whole ejected water fell onto the
snow surface. In all pipette experiments, we set a fixed volume of 0.04 mL per injection.

We used two reference types of snow: natural snow (NS) and natural-like snow (NLS).
NS was collected from a field at Gressoney Sant Jean (Aosta Valley, Italy). It was gently
collected using a plastic scoop and filled in plastic containers avoiding any compaction. We
stored NS inside the closed containers at a temperature of −15 ◦C for seven months. After
this period, the average size (taken out of 20 randomly chosen grains) of NS was 1.6 mm,
as shown in Figure 4a, and the density of NS was 380 kg m−3.

We produced NLS using the method described in [29]. NLS was stored under the
same temperature conditions as NS for 2 months after synthesis. Due to metamorphism,
the average snow grain size increased up to 0.2 mm (taken out of 20 different snow grains),
as shown in Figure 4b. The density of NLS was 280 kg m−3.

The pictures of the snow samples were acquired with an Olympus SZX16 stereomicro-
scope(Tokyo, Japan) connected to an LC30 Olympus digital color camera.

To visually look at the process of water spreading through the two kinds of snow, we
colored a sample of liquid water with a diluted solution (0.03% in volume) of a green dye.
The color of the solution is transparent greenish. We maintained the solution at 0 ◦C. We
placed 3 g of natural snow inside the cylindrical container, and using the pipette, we carried
out successive additions of 0.04 mL each of the colored solution every 5 s. Simultaneously,
we acquired a video by using a smartphone to monitor the evolution of the snow-solution
mixture at the bottom of the container.

RS were collected with portable Raman equipment BW&TEK (Plainsboro, NJ, USA)
Exemplar Plus model (wavelength range 532–680 nm; slit width 10 μm, diffraction grating
1800 lines mm−1, resolution 2 cm−1). All spectra were acquired at the fixed laser wavelength
532 nm and laser power of 50 mW, with an acquisition time of 15 s. We used a BAC102
Raman probe (BW&TEK, Plainsboro, NJ, USA) that operates in backscattering. The focal
plane is located at a distance of 5.4 mm from the probe. The diameter of the laser spot at
the focal plane is 85 μm.

The Raman probe was placed upward toward the center of the circular bottom side of
the container closed with the PE film (Figure 5). We adjusted the probe-container distance
in such a way that the focal plane was located within the snow volume far enough from
the PE film to facilitate negligible PE contributions to the RS. We estimate that the diameter
of the laser spot at the internal surface of PE film was between 0.2 and 0.4 mm.

Figure 5. Schematic of the Raman probe disposition with respect to the snow sample. The green
triangular area represents the laser focus position within the snow volume.

5. Conclusions

In conclusion, we proved that Raman spectroscopy is a powerful technique to assess
the presence of liquid phase in snow. We performed a demonstrative study analyzing in
the laboratory qualitatively different kinds of snow, representative of the two extremes of
freshly deposited, fine-grained snow characteristic of early winter snowfalls (NLS) and of
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coarse-grained snow typical of aged layers in a snowpack (NS). We observed two definite
discontinuities in the trend of the c coefficient vs. time. These are associated with different
degrees of snow impregnation with water. The percolation kinetics are different in the
two kinds of snow. Raman spectroscopy is appreciable because the instrumentation is
light, easy to carry on the field and affordable. The measurements are fast and scarcely
invasive. By data analysis procedures, the collected spectra can be processed to easily
remove spectral contributions from impurities accidentally present in the snowpack.
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Abstract: Sound affects the medium it propagates through and studies on biological systems have
shown various properties arising from this phenomenon. As a compressible media and a “collective
mirror”, water is influenced by all internal and external influences, changing its molecular structure
accordingly. The water molecular structure and its changes can be observed as a whole by measuring
its electromagnetic (EMG) spectrum. Using near-infrared spectroscopy and aquaphotomics, this pilot
study aimed to better describe and understand the sound-water interaction. Results on purified
and mineral waters reported similar effects from the applied 432 Hz and 440 Hz frequency sound,
where significant reduction in spectral variations and increased stability in water were shown after
the sound perturbation. In general, the sound rearranged the initial water molecular conformations,
changing the samples’ properties by increasing strongly bound, ice-like water and decreasing small
water clusters and solvation shells. Even though there was only 8 Hz difference in applied sound
frequencies, the change of absorbance at water absorbance bands was specific for each frequency and
also water-type-dependent. This also means that sound could be effectively used as a perturbation
tool together with spectroscopy to identify the type of bio, or aqueous, samples being tested, as well
as to identify and even change water functionality.

Keywords: aquaphotomics; near-infrared spectroscopy; water; light; sound; frequency; perturbation;
aquagram; molecular dynamics

1. Introduction

Sounds are mechanical waves of pressure that propagate through a transmission
medium. Being a wave of pressure, the sound acts as a mechanical stimulus and has an
influence on the medium through which it propagates. In physics, sound waves and their
properties are widely investigated and generally well-understood, however in life sciences
the investigation of sound has not yet received full attention.

There are many records documenting how sound affects biomolecules in water solu-
tions, single-cells and even whole organisms, plants especially [1–7]. One study showed
that audible sound in the form of music (38–689 Hz) was able to affect growth, metabolism
and antibiotic susceptibility of prokaryotic as well as eukaryotic microbes [8,9]. A study
about the influence of sound on chrysanthemum plants, discovered that sound wave ac-
celerated the synthesis of RNA and soluble protein, indicating that some stress-induced
genes might be switched on under sound stimulation. Further, another study showed that
survival rate in the conditions of water deprivation is significantly higher in sound-treated
Arabidopsis adult plants compared to plants kept in silence [2]. This study revealed sig-
nificant upregulation of 87 genes, the majority of which are responsible for abiotic stress
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response, pathogen responses and oxidation reduction processes; interestingly, two genes
were involved in the responses to mechanical stimulus.

The effects of sound on biological structures was also investigated in vitro, showing,
for example, that crystallization of proteins is sensitive to audible sound and is frequency-
dependent [6,10]. Sound, however, has not only been seen to induce changes by pure
mechanical means, it has also been shown to have an impact on the signal paths of plants
and the nervous system of animals. In a study evaluating the effects of different musical
frequencies (432 and 440 Hz) on food intake and body weight in rats, it was discovered that
different frequencies affect the neuronal expressions of two peptides involved in regulation
of food intake in the rat hypothalamus, which stimulated weight increase (higher weight
increase was found for 440 Hz) [11]. Listening to low frequency music (432 Hz) was shown
to significantly decrease heart rate in high-blood pressure individuals [12].

Recent studies demonstrated clear evidence on sound-induced liquid vibrations that
can lead to the formation of chemically (pH or redox) different spatiotemporal domains in
solutions. This approach was later used to specifically align nanofibers in solution utilizing
fluid flows generated by audible sound vibrations [13,14].

Regardless of the description of sound effects on different organizational levels, from
biomolecules to organisms, the specific process of underlying molecular mechanisms,
especially in the case of biological systems, is still poorly understood. Up to very recently,
scientists were focusing on pinpointing single biomolecules related to sound influence,
without considering the contribution of all components, especially without considering
water, which is actually a major component of all biological systems. Since biological
systems are water systems, the sound-water interaction is of interest and aquaphotomics
science and technology [15,16] offer a non-invasive way to investigate this phenomenon.
This discipline uses the water molecular network as a mirror [15] or a sensor [16] to
characterize the observed system by monitoring the electromagnetic (EMG) spectral pattern
of water under various perturbations. With the help of the aquaphotomics method, this pilot
study aims to better understand how sound alters the molecular structure and dynamics of
water using music tuned at two frequencies—432 Hz and 440 Hz.

The frequency 440 Hz was chosen, as it is the audio frequency which serves as a
tuning standard for the musical note A4 above middle C, standardized by the International
Organization for Standardization (ISO 16) in 1955 [17]. The 432 Hz was chosen because
of the increasing number of claims that this frequency is superior to the standard tuning
440 Hz, affecting the body, emotional response, timbre, sound quality, character and tone;
while it is actually unclear if it is humanly possible to discern a difference between the
two [18,19]. According to existing scientific studies, music tuned at 432 Hz, compared to
440 Hz, can significantly decrease the heart rate and slightly decrease mean respiratory rate
values [19]; it results in better cardiovascular benefits including slowing heart rate and it
promotes relaxation [12]. It significantly decreases dental anxiety levels [20,21], significantly
improves the sleep scores of patients with spinal cord injuries [22] and leads to increased
levels of perceived arousal [23]. On the other hand, there are reports suggesting that
listening to 440 Hz music can promote a feeling of anxiety, nervousness or aggression [19].
The research study about the effects of sound of different frequencies found that human
DNA is sensitive to music, and that in fact by subjecting stem cells to various frequencies,
it is possible to modify their natural organic function [24]. The actual mechanism behind
all these phenomena is still unknown. The possibility of influencing the human body on
a biomolecular level and stimulating, modifying or repairing the functionality of vital
biomolecular structures just by using sound, holds tremendous potential. As a first step
towards this goal, it is necessary to understand the role that frequency plays in sound effects
and provide the information on which the choice of frequency for sound can be performed.
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2. Results

2.1. Reference Measurements

Near-infrared spectroscopy (NIRS) in the range of 900–1700 nm, in parallel with
monitoring of several physico–chemical parameters, was used to characterize pure water
(hereinafter PW) and a chosen mineral water (hereinafter MW), both measured before and
after sound perturbation at the frequencies of 432 Hz and 440 Hz. The mean values and
standard deviations of measured electrical conductivity, pH, salinity and temperature of
the samples through 10 min of sound are presented in Table 1. pH values were observed to
be slightly more resilient to change in samples after the perturbation was applied, where
the waters had an average of 0.81% and 0.38% more stable pH, respectively, after being
perturbed by the sound with 432 Hz and 440 Hz frequencies. The difference in variance
between samples that were perturbed and the control ones was not found to be statically
significant (data not shown), however, statistical significance is not the same as practical
importance [25]. Increased changes in values were seen for electrical conductivity of more
than 18% on average after sound. These parameters are hard to measure precisely for waters,
especially for PW. As soon as the vial is opened there is an exchange with the atmosphere of
the environment; some evaporation may occur, gases from the atmosphere, such as CO2 and
O2, may influence the resulting measurements of pH and electroconductivity. The changes
in pH are, for example, very small, and due to the inherent probe instability [26] may not
reflect accurate values. This all points out the difficulties of reference methods usually used
to describe the effects of perturbations that may be very delicate, but nevertheless genuine
and consistent, which requires devising other means and more controlled measurements
which can completely eliminate possible influences of the environment. There is also a
possibility that these physico-chemical parameters may simply be inadequate to capture all
of the information relevant for the thorough description of water as a complex system and
its dynamics in response to some perturbations [27].

Table 1. Measured water parameters, each presented with its mean and standard deviation (SD),
with increase in value stability for the perturbed waters, compared to the control ones in general also
having higher standard deviations. A similar trend in changes was seen through all the samples.

pH

Electrical
Conductivity
Mean ± SD

(μS/cm)

Salinity
Mean ± SD

(ppb)

Temperature
Mean ± SD

(◦C)

PW-control Before 7.82 ± 0.38 10.25 ± 5.47 0 24.9 ± 0.3
PW-control After 6.95 ± 0.15 37.79 ± 27.7 0 24.6 ± 0.2

MW-control Before 7.09 ± 0.11 302 ± 2 0.15 25 ± 0.1
MW-control After 6.95 ± 0.14 320.5 ± 4.6 0.15 24.6 ± 0.1
PW-432 Hz Before 7.15 ± 0.18 23.7 ± 2.15 0 24.5 ± 0.1
PW-432 Hz After 6.39 ± 0.1 24.4 ± 2.2 0 24 ± 0.1

PW-440 Hz Before 7.49 ± 0.1 19.1 ± 1.19 0 24.3 ± 0.3
PW-440 Hz After 6.81 ± 0.34 64.1 ± 2.17 0 23.7 ± 0.3

MW-432 Hz Before 7.02 ± 0.33 307 ± 2.64 0.15 24.9 ± 0.3
MW-432 Hz After 6.97 ± 0.27 317 ± 2.37 0.15 24.3 ± 0.2

MW-440 Hz Before 7.04 ± 0.18 314 ± 0.6 0.15 24.8 ± 0.1
MW-440 Hz After 6.81 ± 0.27 319 ± 0.8 0.15 24.3 ± 0.1

However, despite this, the current results pointed to some degree of stability of
water properties in the presence of sound. One possible way of interpretation this is that
sound as a mechanical wave-inducing constant perturbation on the samples, reduces the
susceptibility to influences from other factors. This phenomenon is further investigated in
the following analyses.

The mean temperature values showed the tendency to decrease after the sound ap-
plication, irrespective of the water type or the frequency of the applied sound, while the
salinity did not change at all, evidencing that sound does not change the chemical compo-
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nents in the water. The change in temperature might be a result of absorbed heat generated
by the sound perturbation. Previous works have shown that at least part of the audible
sound energy is transformed into heat that can be absorbed by water, and spent on the
reorganization of water molecular structure, causing the change in its temperature [6,10].

2.2. Aquaphotomic Spectral Analysis
2.2.1. Initial Exploration of Spectra: Raw Spectra of Water, Preprocessed Spectra and
Difference Spectra

The raw water absorbance spectra generated during the experiments are presented in
Figure 1a. The spectra show absorbance higher than OD = 1 a.u. and are rather flat except
for the large, broad peak at lower wavelengths.

However, on closer inspection, several spectral features could be observed: large
absorbance band centered around 957–963 nm corresponds to the 2nd overtone of water
OH stretching vibrations, smaller band corresponding to the overtone of the combination
band of free water molecules can be detected around 1143–1155 nm, and a broad peak
corresponding to the 1st water overtone of water stretching vibrations can be seen located
in the region 1300–1600 nm. The spectral profiles of PW show a generally higher spectral
profile compared to the MW. This baseline shift is generated partially from the unfixed
environmental conditions (temperature, humidity, water layer on the surface of the sam-
ple’s vials, etc.), that may influence scattering of light and lead to differences in the real
pathlength of light, but the higher spectral profile of PW can also be due to the higher actual
water content since MW contain lots of minerals. When applying SNV preprocessing on
the raw data, the baseline effects were removed (Figure 1b). Calculating difference spectra
(Figure 1c–f) yielded more information on the effects of sound. This method requires the
subtraction of a sample spectrum, usually of the control group (in this case the waters
before sound perturbation), from the spectra of the other samples (waters after sound
perturbation). The calculated difference spectra presented in Figure 1c,d, respectively,
display 432 Hz and 440 Hz datasets with averaged waters’ spectra after subtraction of
averaged spectrum of the control.

In the subtracted spectra, three groups of common peaks were observed that corre-
spond to well-known water absorbance bands: water confined in a local field of ions or
so-called trapped water (1391–1397 nm) [28], water solvation shells and proton hydrates
(1347–1385 nm) [15,29–31] and strongly bound water (1515–1590 nm) [15,32].

After averaging the whole spectra of PW and MW (Figure 1e), and subtracting their
controls, a common increase in light absorption was observed at 1335–1403 nm and
1515–1600 nm, regions related to free, trapped and strongly-bounded water, respectively,
while the absorbance in the in-between region (~1416–1490 nm) showed a decrease after
the sound perturbation. The absorbance in the spectral region of absorbance of small water
clusters with one hydrogen bond (1440–1444 nm), two hydrogen bonds (1462–1468 nm),
three hydrogen bonds (1476–1482 nm) and four hydrogen bonds (1488–1494 nm) [15]
showed differences between the two examined waters, but the common feature for both
was decreased light absorption in general. The absorbance at absorbance bands corre-
sponding to water solvation shells (1360–1366 nm and 1380–1388 nm) [15], hydronium ions
(1434–1438 nm) [15], protonated and hydroxylated water clusters (1564 nm, 1583 nm and
1589 nm) [29–31], as well as water superoxide ions [31], increased after the sound perturba-
tions. Although PW and MW are both waters and exhibited similar spectral curvatures,
a contrast emerged describing unique characteristics for each sample type. As a mineral
water, having minerals, after sound stimulus, MW was seen with much higher absorption
at the bands related to water ions (water solvation shells (1380–1388 nm) [15] and trapped
water (1391–1397 nm) [32]).

When calculating average spectra according to the applied sound frequency (Figure 1f),
water samples after 432 Hz sound stimulus were characterized by a higher increase in ionic
water species, while displaying less free water molecules and small water clusters compared
to the molecular structure of water after 440 Hz sound stimulus. This finding suggests that
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a particular tuning even with only 8 Hz difference could generate different effects, which by
themselves are dependent on the type of media/water being perturbed (sample-dependent)
and are related to respective changes of water functionalities [15,16,33,34].

 
Figure 1. Near-infrared spectra of tested pure and mineral waters and difference spectra analy-
ses (DSA) on defined datasets, preprocessed with SNV: (a) Raw spectra, separated into the water
overtones; (b) raw spectra at the 1st water overtone (1300–1600 nm) transformed with SNV and
smoothed with Savitzky–Golay filter using 2nd order polynomial (9 points), showing decreased
baseline offset; (c) difference spectra analysis of 432 Hz data, with specific spectral patterns for each
water; (d) difference spectra analysis of 440 Hz data with different spectral patterns than those at
432 Hz; (e) difference spectra analysis of averaged water types, displaying similarities in the spectral
curves and differences in regions related to small water clusters and water ions; (f) difference spectra
analysis of averaged frequencies, showing how the gap of 8 Hz can affect water differently.

2.2.2. Exploratory Analysis-Principal Component Analysis (PCA)

In order to better understand the effects of sound and confirm the initial findings,
further analysis was performed—PCA (principal component analysis) with mean-centering
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and SNV preprocessing applied on spectral data. The experimental dataset was split into
four datasets, according to the water type and sound frequency (PW–432 Hz, PW–440 Hz,
MW–432 Hz, MW–440 Hz) and then PCA was applied to explore if there are any patterns
or groupings in the spectra that can be related to the applied sound perturbation (Figure 2).
The score plot of PC1 vs. PC2 from each PCA analysis are presented in Figure 2a and show
repeatable patterns where generally scores of waters after sound perturbation showed
diminished dispersion (inter-class variation) in the PC1–PC2 defined space. This implied
that the sound-perturbed waters were more stable, becoming less prone to environmental
influences, such as temperature, humidity, light, etc., which is consistent with the previous
findings based on water parameters. The separation of the scores before and after sound
perturbation was also a common property for all datasets and could be observed in the
score space of PC1 vs. PC2. The loadings of PC1 and PC2 are given in Figure 2b and show
that the absorbance bands that explain this separation of scores according to the sound
perturbation are the same wavelengths already observed in the analysis of the subtracted
spectra. The shape of PCA loadings was similar to the spectral profiles of subtracted spectra
shown in Figure 1c,d, and again, but here in PC1 loadings, MW showed smaller differences
compared to the PW for both 432 Hz and 440 Hz frequencies. On the other hand, PW being
more receptive of changes, displayed opposing peaks in the 1366–1490 nm region, with
direction shift different for the two frequencies.

Looking at the score plots of PCA analysis of PW (Figure 2a) it can be observed that in
both cases, after the sound perturbation, the scores of PW are located in the positive part of
PC1. The loading of PC1 for the dataset of sound perturbation by 432 Hz, shows the most
prominent spectral feature as a negative peak at 1416 nm, which means that absorbance at
this band increases under the sound influence.

For the 440 Hz dataset, the most prominent feature is the peak at 1397 nm, which can
be interpreted as an increase in absorbance at this band under the influence of sound. The
absorbance band at 1416 nm can be assigned to the free water, but it is more likely that
this band can be attributed to so-called hydration water molecules [15], while 1397 nm is
assigned to quasi-free water molecules, the single water molecules trapped in the local field
of ions [28]. Similarly, for the score plots of PCA analysis of MW, the scores in the case of
the 432 Hz dataset are mostly in the negative part of PC1, while in the case of 440 Hz they
are in the positive part. In this case, in order to be able to compare the shape and sign of
all loadings (Figure 2b), due to the arbitrary assignment of loadings in PCA, the loading
vector of PC1 in the case of the MW dataset for 432 Hz frequency had to be multiplied
by −1; therefore, the interpretation of the meaning of the scores of the MW dataset for
432 Hz is actually reversed. Having this in mind, it can be observed from the loadings
plot (Figure 2b) that most distinctive features are a large negative peak at 1422 nm for
the 432 Hz dataset PC1 loading, and a positive peak at 1391 nm in the case of the 440 Hz
dataset PC1 loading. In the first case, this result means that sound of 432 Hz leads to an
increase of absorbance at 1391 nm (trapped water band), while sound of 440 Hz leads to
an increase in absorbance at 1422 nm (hydration band). From this, it can be concluded
that the sound of 432 Hz frequency shows common effect for both waters, the increased
absorbance of trapped water molecules, while 440 Hz sound increases the absorbance of
hydration water. In both cases, this increase comes at the expense of reorganization of
hydrogen-bonded water (absorbance bands at wavelengths longer than 1440 nm).

There is also, one more interesting observation. Looking into the percentage of ex-
plained variation, it can be seen that PC1 for all datasets explains more than 90% of variation
in the spectral data, except in the case of the MW-440 Hz dataset, where PC1 explains only
56.8%, which means that there are additional spectral pattern variations specific for 440 Hz
with high variations.

Next, PCA was repeated but this time on two datasets, separated into water type
(either only PW or MW) in order to find out what the influence of sound is on waters in
general (Figure 3).
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In the cases of both waters, the PCA score plots revealed the pattern of separation
of scores in groups of “before sound” and “after sound” along the PC2 axis (Figure 3a),
whereas the scores corresponding to the “after sound” group were located only on one side
of PC2. For the PW dataset, the variance explained by PC2 was 6.8%, while in the case
of the MW dataset, a higher percentage of variance (25.2%) was described by the same
factor (Figure 3b). Looking at the loadings of PC2 for both PW and MW PCA analysis,
familiar absorbance bands similar to the ones from Figure 2b can be seen. This further
showed the importance of the already observed bands, as the ones where sound influences
the absorbance of water, more precisely, influences particular water molecular structures,
especially trapped water (1391–1403 nm) and hydration water (1416–1422 nm). In this
analysis, looking at the loadings of PC2, the effects of sound can also be better observed at
the region of hydrogen bonded water (1440–1496 nm) where it seems that the small water
clusters with 1–4 hydrogen bonds are affected, also, by the sound influence, as well as the
strongly bound water (absorbance bands at wavelengths longer than 1508 nm, in particular
1539 nm and 1558 nm).

Figure 2. PCA scores and loadings separating samples before and after sound: (a) Scores of 1st
and 2nd principal components for the 4 datasets; (b) loadings of 1st principal components for the
4 datasets, separating before from after samples (it should be noted that the sign of PC loadings is
assigned arbitrarily, and due to this, the loading of PC1 for MW at 432 Hz was multiplied by −1).
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Figure 3. Score plots of PCA analysis of raw spectra preprocessed with SNV for separate PW and MW
datasets: (a) Score plots for PW data (left) and MW (right); (b) PCA loadings describing influence of
sound at PC2 for both waters (positive peaks are related to samples after sound perturbation).

2.2.3. Discriminating Analysis—Soft Independent Modeling of Class Analogies (SIMCA)

Further, classification analysis, SIMCA, was performed on the already SNV-preprocessed
data with 5% significance (95% confidence interval). Three different groups of classes were
assigned, such as water type (Class1: PW/Class2: MW), frequency (Class1: 432 Hz/Class2:
440 Hz) and sound perturbation (Class1: before sound perturbation/Class2: after sound per-
turbation) were performed and their distinction from one another was investigated separately.

First, differentiation between PW and MW was performed on four datasets (waters
before 432 Hz, after 432 Hz, before 440 Hz and after 440 Hz) with 100% classification
accuracy. It was observed that after the sound the Mahalanobis distances (interclass
distances) between the waters decreased by 52% for 432 Hz and 46% for 440 Hz. This
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pointed out the waters displaying similar properties when stimulated by sound, a tendency
seen in previous analysis.

Second, the SIMCA analysis performed with the aim of discriminating the samples
before and after sound perturbation showed that the classes are different with an interclass
distance of 0.76. When the datasets were separated according to the water type, the
discrimination accuracy was 98.75% (Figure 4a), but the interclass distances were larger
compared to the previous analysis when the waters were put into the same dataset. The
values of interclass distances were 1.21 for PW and 1.55 for MW. When the datasets were
split into four according to the water type and sound application, and SIMCA analysis was
performed once again, the largest value of interclass distance was observed and it was 3.72
between MW before sound and PW after sound. As can be seen from the Cooman’s plot
in Figure 4a, the spreading of the scores of samples before sound was more pronounced
compared to the scores corresponding to samples after sound perturbation. In order to
quantify and compare this “spreading”, the individual PCA models created by SIMCA for
each dataset were examined, and the differences between the scores of the same samples
were explained in each case by PC2. The percentage of explained variance by PC2 was
1.45% and 1.28%, respectively for PW and MW before sound, decreasing to 0.72% and 0.55%
for the respective waters after sound. This was again consistent with previous analyses and
pointed towards the influence of sound that can be described as “equalizing”, i.e., reducing
the influences of other factors present in the experiment, thus that the measured spectra of
the waters showed lower variation among measured replicates.

Figure 4. SIMCA classification of waters before and after sound perturbation: (a) Cooman’s plot with
class distances between PW before sound, PW after sound, MW before sound and MW after sound;
(b) discriminating powers comparison with applied feature scaling (normalized values from 0 to 1)
between PW at 432 Hz, PW at 440 Hz, MW at 432 Hz and MW at 440 Hz, displaying prominent bands
for distinguishing the sound states.

In the last step, SIMCA was performed on the same four datasets used in PCA analysis
(PW at 432 Hz, PW at 440 Hz, MW at 432 Hz and MW at 440 Hz) to explore the differences
before and after sound. The generated discriminating powers show the variables with the
highest contribution to the separation of the classes (before sound/after sound). Due to
these discriminating powers having different magnitudes unique for the analyzed group of
spectra, they were adjusted using feature scaling (unity-based normalization that brings all
values into the range of 0–1) for easier comparison, where their recalculated normalized
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values are presented in Figure 4b. Similar to difference spectra and PCA loadings, the
water absorbance bands (WABs) important for discrimination between “before sound”
and “after sound” groups, were shown to be dependent on the sample type and located
in the same wavelength regions. When the discriminating powers’ prominent peaks
(marked with arrows in Figure 4b) were summarized for comparison (Table 2), there was
a repeating pattern of variables that were important for discrimination between before
and after sound perturbation, and included the following absorbance bands: asymmetric
stretching vibrations (1335–1347 nm) [15], H2O symmetric stretching proton hydrates
H+·(H2O)4 (1372 nm) [29,30], trapped and free water molecules (1391–1409 nm), water
molecules with four hydrogen bonds (1490–1496 nm) [15] and protonated water pentamer
(1552–1564 nm) [35]. These water bands were consistent through the four datasets, pointing
to a similar effect generated from the perturbation by sound. Small water clusters with
three and less hydrogen bonds were also repeatedly seen to be prominent (1440–1477 nm),
together with several other wavelength coordinates related to water solvation shells and
hydroxylated water clusters (1360–1366 nm) [36,37], hydration band (1422 nm), proton
hydrates at 1329–1335 nm [29,35] and at 1583–1589 nm [29].

Table 2. Water absorbance bands (WABs) prominent for distinguishing samples perturbed by sound
from the ones used as a control (before sound perturbation). From yellow to red, repeatability of the
same band activation increases in the 4 displayed datasets, where most consistent and notable water
matrix coordinates (WAMACS) were shown in darker color.

PW-432 Hz 1304 1347 1354 1372 1385 1398 1409 1422 1440 1447 1465 1496 1515 1528 1546 1564 1583
PW-440 Hz 1304 1316 1335 1347 1372 1398 1416 1434 1447 1465 1477 1496 1508 1552 1564 1583
MW-432 Hz 1310 1335 1354 1366 1372 1385 1398 1403 1422 1440 1459 1477 1496 1515 1552 1564
MW-440 Hz 1304 1316 1329 1347 1360 1372 1391 1409 1422 1453 1477 1490 1502 1515 1533 1552 1564 1577 1589

2.2.4. Aquagrams

As an important visualization tool of aquaphotomics, aquagrams [15,34,38]—radial
graphs presenting the WASP (water spectral pattern) of samples at chosen WABs (water
absorbance bands)—were prepared in several ways to emphasize different aspects of the
investigation (Figures 5 and 6).

Figure 5. Aquagrams on waters, using prominent WABs from previous analyses, illustrating consis-
tent WASPs at: (a) 432 Hz PW and MW at 1300–1600 nm with consistent WASP illustrated as increase
in absorbance bands related to aqueous protons and strongly-bounded water; (b) 440 Hz PW and
MW at 1300–1600 nm with a differently-consistent WASP characterized by higher concentration of
water solvation shells, trapped and free water molecules.
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Figure 6. Aquagrams showing average WASPs of water perturbed by sound with 432 Hz and
440 Hz frequencies.

In the first step, spectral absorbance values were standardized using the mean and
standard deviation for each wavelength, followed by averaging of PW and MW separately
for samples corresponding to before and after sound perturbation. This process was
performed for datasets obtained using different sound frequencies, 432 Hz and 440 Hz,
in order to present in the aquagram, what the difference in effects of sound is depending
on the applied frequency. This result is presented in Figure 5 and distinction between the
frequencies was observed at regions related to “ice-like” (strongly-bonded) and “vapor-like”
(less bonded) water, respectively [33].

Even though the absorbance in the region of small water clusters (1434–1492 nm)
decreased after sound perturbation, some specific bands corresponding to the absorbance
of water dimer (1440 nm), trimer (1465 nm), tetramer (1472 nm) and pentamer (1490 nm),
were still prominent in the case of 440 Hz, but only for the PW. In this case, absorbance
was also high at the hydration water band (1422–1428 nm). One more difference between
frequencies was observed at the band of proton hydrates (1342 nm), where in the case
of 432 Hz, the absorbance was very high, in contrast to the 440 Hz spectral pattern. For
432 Hz samples (Figure 5a), both PW and MW waters shared similar spectral patterns in
the 1546–1563 nm region, where the absorbance of hydrogen bonded water and protonated
water clusters was increased, while intermediate water species, such as water trimer
(1464 nm) and water tetramer (1474 nm) [15], showed tendency of decreased absorbance.
Water solvation shells (1364 nm, 1387 nm) and trapped water molecules (1398 nm) did not
show changes in MW at that frequency, possibly due to the presence of minerals resulting in
the stability of these water species. For PW, proton hydrates (1344 nm) and strongly bound
water (1518–1563 nm) were seen to drastically increase, suggesting stronger rearrangements
in response to sound. These characteristics, however, were unique for the 432 Hz frequency.
At 440 Hz, PW displayed contrasting properties, with a decrease in strongly bound water,
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while increasing all small water clusters and “vapor-like” water structures (1344–1410 nm).
MW, with slightly different pattern, was seen to preserve strongly bound water, while
increasing the absorbance of proton hydrates and solvation shells (1364–1387 nm) which
may indicate an increase in solvation ability. There was also an increase in the absorbance
of water molecules confined between ions (1398 nm).

In the next step, the aquagrams were calculated with both waters’ spectra taken
together to try to obtain more general water spectral patterns, irrespective of the water
type, and to see what the difference between water spectral patterns is depending on the
frequency of the applied sound, and what exactly sound does to water molecular structure
independent of sound frequency (Figure 6). The specific WASPs for 432 Hz and 440 Hz were
generated when the averaged spectra of controls were subtracted from their corresponding
datasets and averaging according to the frequency was performed.

Even though there were differences at specific water absorbance bands depending
on the sound frequency, in general it can be concluded that the effect of sound on water
resulted in increased absorbance of strongly bound, ice-like water. In another words, if
the differences between the waters are not considered, on average, sounds at 432 Hz and
440 Hz frequency promoted crystallization of water. However, the aquagrams in Figure 6
can be somewhat misleading as they are calculated using averaged spectra of both waters
together and may look contradictory to the previously presented aquagrams, especially the
ones given in Figure 5b, which display WASPs of waters perturbed by 440 Hz sound. This
apparent contradiction is exactly the result of averaging, where the much stronger influence
of sound of 432 Hz masked the less influential effects of 440 Hz. This just emphasizes the
importance of the finding that the effects of the sound on water molecular network are
sample- and frequency-dependent.

3. Discussion

In this study, aquaphotomics methodology was applied to investigate the influence
of sound effects on water samples monitored using near infrared spectroscopy. Using the
water matrix coordinates (WAMACS) [15,38], as is usual in aquaphotomics, the changes in
the molecular network of water samples as a result of sound perturbation were described.
The most important, prominent WABs in characterizing the sound effects are summarized
in Table 3, where those that appeared consistently during different spectral analyses are
marked with darker color and could be considered as WAMACs—absorbance bands of
water at which the effect of the sound can be measured.

Table 3. WABs seen activated through analyses in the region 1300–1600 nm. From lighter to darker
(yellow to red) color, repeatability of the same band increases in the displayed 4 datasets. Consistent
common bands were found at 1335–1347 nm, 1391–1403 nm, 1409–1416 nm, 1422–1427 nm, 1447 nm,
1484–1496 nm and 1552–1558 nm for sound perturbation, while specific bands were distinguished
according to the frequencies and water types.

PW at 432 Hz
DSA 1316 1347 1372 1391 1403 1422 1496 1515 1539 1564 1583
PCA 1323 1347 1366 1385 1422 1453 1471 1490 1508 1539 1558 1564 1583

SIMCA 1304 1347 1354 1372 1385 1398 1409 1422 1440 1447 1465 1496 1515 1528 1546 1564 1583
PLS-DA 1310 1323 1335 1354 1360 1378 1398 1416 1428 1434 1447 1459 1477 1490 1502 1515 1521 1533 1552 1564 1577 1595

PW at 440 Hz
DSA 1329 1354 1398 1409 1428 1447 1465 1477 1490 1521 1539 1558 1577
PCA 1335 1354 1360 1398 1409 1428 1447 1465 1477 1490 1521 1558 1577

SIMCA 1304 1316 1335 1347 1372 1398 1416 1434 1447 1465 1477 1496 1508 1552 1564 1583
PLS-DA 1304 1323 1335 1354 1372 1385 1398 1416 1422 1447 1453 1471 1490 1508 1521 1539 1546 1558 1570 1595

MW at 432 Hz
DSA 1323 1347 1378 1391 1434 1447 1459 1496 1515 1558 1577
PCA 1316 1335 1347 1372 1385 1409 1434 1447 1459 1484 1508 1539 1558 1577

SIMCA 1310 1335 1354 1366 1372 1385 1398 1403 1422 1440 1459 1477 1496 1515 1552 1564
PLS-DA 1310 1323 1335 1347 1366 1378 1398 1416 1434 1447 1465 1477 1490 1508 1533 1546 1558 1564 1577 1583

MW at 440 Hz
DSA 1329 1360 1391 1403 1428 1447 1465 1490 1502 1515 1527 1539 1558 1577
PCA 1347 1360 1391 1403 1428 1447 1465 1484 1502 1521 1527 1539 1558 1577

SIMCA 1304 1316 1329 1347 1360 1372 1391 1409 1422 1453 1477 1490 1502 1515 1533 1552 1564 1577 1589
PLS-DA 1304 1323 1341 1347 1360 1378 1398 1416 1428 1440 1447 1471 1484 1502 1528 1539 1552 1564 1570 1583

Repeatedly-present water species in all the conducted analyses for “after sound” sam-
ples were indicative of sound perturbation, most consistent of which at the 1300–1600 nm
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region was the water pentamer (1484–1496 nm), or water molecules bound by four hy-
drogen bonds [15]. This water molecular species is well-known as temperature-sensitive,
where the absorbance at this band increases with the decrease in temperature [39]. The
importance of this band for description of the influence of sound agrees with what was
observed in measurements of temperature of the samples after the sound perturbation,
where the common change for all samples was a decrease in temperature. This is further
evidence of the stimulating effect of sound on hydrogen bond making.

Our results showed that despite the small difference of only 8 Hz, perturbation by
sound using frequencies of 432 Hz and 440 Hz produced large and consistent differences
in water samples as multiple analyses confirmed and established that they are water-
dependent. In other words, it was determined that sound affected pure and mineral water
in a different way. This has two implications. First, it provides basis for the future use of
sound in perturbation spectroscopy to differentiate between the samples, and second, it
implies that other water-based systems may be affected in different ways by the sound
of the same frequency. When it comes to the effect of sound on water, in general, it was
observed that, on average it led to the reduction in the samples’ variability during the
measurements and the samples became more stable against environmental influences. This
was observed not only in the spectral analysis, but also in the measurements of physico-
chemical parameters. This stability can be explained, as it was succinctly presented in
aquagrams, by the effect of sound on the molecular network of water which promotes
crystallization. In simpler words, the water which is strongly hydrogen bonded is not
easily changed, and therefore it is more stable against influences from the environment.
The temperature measurements also support this explanation, as the temperature of all
the samples was shown to decrease after sound perturbation. However, if the effects of
sounds of different frequencies are considered separately, which was shown to be the most
correct, the effect of sound with 432 Hz frequency promotes crystallization, and the effects
are much stronger compared to the effects of 440 Hz sound, which are actually opposite
and could be said to enhance evaporation and solubilization.

Our findings, even though based on investigation of sound effects on the simplest
aqueous systems and only two frequencies, may prove to have wider implications, espe-
cially considering the major role water plays as a matrix for biological systems. Recent
scientific reports showed that audible sound promotes crystallization of proteins, which is
frequency-dependent, and shows some variation based on protein type; this was found to
be connected with the change of temperature and evaporation of protein solution [6,10].
Although the mentioned studies were performed using different frequencies and even
variable-frequency sound perturbation, there is a common link with our study—sound
affects water-based systems and changes their molecular structure in a frequency- and
sample-type-dependent manner.

In conclusion, this study successfully applied NIR spectroscopy for rapid and non-
invasive characterization of sound effects on water, and aquaphotomics inquiry allowed for
the interpretation of the molecular dynamics after the applied perturbation, giving a better
understanding of the sound-water interaction. Future research efforts will be directed
towards exploration of the effects of additional frequencies on specific water systems,
including biological.

4. Materials and Methods

4.1. Experimental Setup

As water samples, purified water (PW) (Organo, Purelite-α, Tokyo, Japan) and
Yunosato Gold mineral water (MW) (Yunosato Onsen, Hashimoto, Japan) were used.
The content of the mineral water is described in the following table (Table 4):

Both waters were kept in similar containers (plastic bottles and glass vials, depending
on the experiment) and conditions (at room temperature). Music tuned separately at
432 Hz and 440 Hz was played by the Japanese pianist and composer Acoon Hibino on a
YAMAHA MOTIF XF8 synthesizer, sounded by a pair of BOSE L1 Compact stereo speakers.
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The PW and MW samples were placed a meter away from the sound source inside glass
vials, specifically made for measurements with a MicroNIR spectrophotometer by VIAVI
Solutions (Scottsdale, AZ, USA). Each water type was prepared with 2 replicates in a total
of 4 vials per frequency, each measured 5 consecutive times. Sample replicates at every
frequency were measured in random order, first spectra were taken at 432 Hz, then at
440 Hz, for a total of 80 spectra.

Table 4. Mineral content for Yunosato Gold mineral water (MW) as described on the bottle’s label.

Nutritional Information Per 1000 mL

Calories from proteins, fats, carbohydrates 0 mg
Na 40 mg
Ca 23 mg
Mg 8.7 mg
K 2.2 mg

Several sample parameters were measured before and after sound by LAQUA Horiba
F-74BW meter, such as pH, electrical conductivity, electrical resistivity, salinity and sample
temperature (Figure 7).

Figure 7. LAQUA Horiba F-74BW meter with pH electrode (left) and electrical conductiv-
ity/resistivity/salinity electrode (right).

4.2. Near-Infrared Spectroscopy

Near-infrared spectroscopy was selected as it is a rapid, non-destructive and non-
invasive measurement technique, that requires very little or no sample preparation at
all, and it can also be used for real-time monitoring. In the near-infrared spectral region
(780–2500 nm) there are four main water absorbance maxima located at around 970 nm,
1190 nm, 1450 nm and 1940 nm, due to the 2nd overtone of the OH stretching band, the
combination of the first overtone of the OH stretching and OH bending band, 1st overtone
of the OH stretching bands and combination of the OH stretching band and OH bending
band, respectively [40]. Following the aquaphotomics findings and systematization of the
knowledge about water, these main bands are even further resolved and currently there
are more than 500 known absorbance bands in this region [41], which is why this technique
is specifically chosen to investigate the molecular structure of water under influence of
sound perturbation.

The spectrophotometer used for this study was a MicroNIR 1700-ES (Viavi Solu-
tions, Scottsdale, AZ, USA), capable of acquiring spectra in the wavelength range of
908.1–1676.2 nm, with a wavelength step of approximately 6 nm. The device was set on
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reflectance mode and used with its vial-holder attachment and a 3D-printed light-shutter
cap (Figure 8a). During the experiments, samples were measured before and after the
played sounds, where each vial had its spectra taken 5 times consecutively and represented
as 1 sample.

Figure 8. Near-infrared spectroscopy setup: (a) MicroNIR 1700-ES mounted on a 3D-printed stand
and with a 3D-printed light shutter cap; (b) setup without light shutter, showing the sample’s position
and measurement; (c) MicroNIR 1700-ES device; (d) empty glass vial as a sample container, with
2 replicates per water at specific frequency, in a total of 40 spectra acquired (2 waters at 2 frequencies
with 2 replicates, each measured 5 consecutive times).

The entire experimental flow is given schematically in Figure 9. Steps 1–3 were
first performed for the sound perturbation using 432 Hz music, then the entire experiment
was repeated, using the 440 Hz frequency.

4.3. Aquaphotomics Spectral Analysis

In this study, the main focus of the analysis was placed on the 1st water overtone
(1300–1600 nm), where several analytical methods were applied to the acquired spectral
data, such as calculation of difference spectra and MVA (multi-variate analysis), including
PCA (principal component analysis) [42] and SIMCA (soft independent modeling by
class analogy) [43]. This particular wavelength region was chosen since it is by far the
best studied in aquaphotomics; there is almost no overlap with the absorbance of other
functional groups and it provides the most information about the molecular structure of
water [15].

Difference spectra were calculated by subtracting the values of a control’s selected
wavelength λcontrol (subtrahend) from the same wavelength of the sample in focus λ (minu-
end), where the difference is represented as λDSA:

λDSA = λ − λcontrol (1)

With this calculation applied to all spectra, fundamental and environmental effects are
reduced, being left only with other perturbations that have occurred and are not present
equally in all samples (such as sound).
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Figure 9. Schematic representation of the experimental flow. The experiment was first performed in
steps 1–3 with the frequency of music set to 432 Hz, and then the entire procedure was repeated with
the only difference being setting of the frequency to 440 Hz.

As preprocessing, SNV (standard normal variate) [44] was performed in this and all
other analyses to reduce spectral baseline offset. In addition to SNV, the spectral data were
smoothed using the Savitzky–Golay 2nd order polynomial filter (9 points) [45].
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As an exploratory analysis, PCA (principal component analysis) was used, a statistical
procedure that forms the basis of all used MVA (multi-variate analysis). It allows summa-
rizing of information content in large data tables by means of a smaller set of “summary
indices” that can be more easily visualized and analyzed; in the form of scores and loading
plots in this study. Scores are projections of original spectra in the pattern spaces defined
by principal components, while loadings show the weight coefficients of original variables.
Mean-centering was applied only in PCA calculations as an additive transformation, after
which each sample became relative to the global mean and analyses were of the variance
around the global mean. Another statistical method used in this study is SIMCA (soft
independent modeling by class analogy), applied for supervised classification of data,
with confidence interval at 95%. Classification of spectra is based on a comparison of
Mahalanobis distance, which is the distance between the spectrum and the centroid of
each class. As an additional transformation, specifically used in recalculating presented
SIMCA discriminating powers, feature scaling (unity-based normalization) was applied,
a technique that brings all values within the range from 0 to 1, where the smallest value
becomes 0, the biggest becomes 1, and all other values are spread in between, calculated by
the following formula:

X′ = X − Xmin
Xmax − Xmin

(2)

where X is the selected value, X′ is the resulting normalized value, Xmin is the smallest
(minimum) and Xmax is the biggest (maximum) values within each discriminating power
table. All MVA analyses were performed using commercially available multivariate analysis
software, Pirouette (version 4.5, Infometrix, Bothell, WA, USA).

After conducting the listed MVA above, prominent WABs were chosen for distin-
guishing the effects from sound and aquagrams were generated for illustrating the spectral
patterns of the averaged datasets in a simple manner:

A′
λ =

Aλ − μλ

σλ
(3)

where λ is the selected wavelength, A′
λ is the resulting wavelength value in the aquagram,

Aλ is the absorbance after applying SNV preprocessing, μλ is the mean for all values at the
specific wavelength and σλ is the standard deviation of the same wavelength.

Assignments for the main WAMACS of the 1st water overtone are provided in Table 5
and used for characterization and interpretation of the changes in water molecular structure
of the tested samples.

Table 5. Water matrix coordinates (WAMACS) in the 1st water overtone and their assignments. All
assignments are based on Tsenkova 2009 [15], unless otherwise indicated.

WAMACS Assignment
Significance/Phenomena in Biological and
Aqueous Systems for Which the WAMACS

Was Found Important

C1: 1336–1348 nm ν3, H2O asymmetric stretching vibration,
proton hydration [28]

Self-organization [29], water activity [46],
germination [47].

C2: 1360–1366 nm Water solvation shell, OH-(H2O)1,2,4,
Ion hydration, proton hydration [46]

Water vapor/moisture absorbance bands [41,46],
self-organization [29], water activity [46],

viability [48], germination [47], firmness [49],
hardness [50], solubility [29]

C3: 1370–1376 nm
ν1 + ν3, symmetric and asymmetric

stretching vibration
Ion hydration, proton hydration [46]

C4: 1380–1388 nm
Water solvation shell, OH-(H2O)1,4 and/or

superoxide- tetrahydrate, O2-(H2O)4
Ion hydration, proton hydration [46]
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Table 5. Cont.

WAMACS Assignment
Significance/Phenomena in Biological and
Aqueous Systems for Which the WAMACS

Was Found Important

C5: 1398–1418 nm

Water confined in the local field of ions
(1396–1403 nm) [32]

1st overtone of the free OH group trapped in
the hydrophobic interior [51]

Water activity [46], drying and dehydration [52],
expulsion of cellular water, damage [53,54]

Free water molecules and free OH-(S0) Moisture content [55,56], water activity [46],
seed vitality [57]

C6: 1421–1430 nm Water hydration, H-OH bend and O . . . O
Protein hydration, protein fibrillation [58,59],

water activity [46,60], damage and defects
[61–63], amorphous phase [64–69], density [65]

C7: 1432–1444 nm Water molecules with 1 hydrogen bond (S1)
Phase transition, sugar-water interaction [70,71],

hardness [50], seed vitality [55], protection
against dehydration [72]

C8: 1448–1454 nm ν2 + ν3, Water solvation shell, OH-(H2O)4,5
Bulk water [46]

Water activity [46,60], viral infection in plants
[73], damage [53]

C9: 1458–1468 nm Water molecules with 2 hydrogen bonds (S2) Water-protein interaction [58,74,75],
firmness [49],

C10: 1472–1482 nm Water molecules with 3 hydrogen bonds (S3) Semi-crystalline phase [64–69], firmness [49]

C11: 1482–1495 nm Water molecules with 4 hydrogen bonds (S4) Damage/preservation (1496 nm) [53,72],
firmness [49]

C12: 1506–1516 nm ν1, ν2, symmetrical stretching,
strongly bound water

Structural water, preservation/damage
[53,61,76,77], seed viability [48,78]
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Abstract: The interaction of water with polymers is an intensively studied topic. Vibrational spec-
troscopy techniques, mid-infrared (MIR) and Raman, were often used to investigate the properties of
water–polymer systems. On the other hand, relatively little attention has been given to the potential of
using near-infrared (NIR) spectroscopy (12,500–4000 cm−1; 800–2500 nm) for exploring this problem.
NIR spectroscopy delivers exclusive opportunities for the investigation of molecular structure and
interactions. This technique derives information from overtones and combination bands, which
provide unique insights into molecular interactions. It is also very well suited for the investigation of
aqueous systems, as both the bands of water and the polymer can be reliably acquired in a range of
concentrations in a more straightforward manner than it is possible with MIR spectroscopy. In this
study, we applied NIR spectroscopy to investigate interactions of water with polymers of varying
hydrophobicity: polytetrafluoroethylene (PTFE), polypropylene (PP), polystyrene (PS), polyvinylchlo-
ride (PVC), polyoxymethylene (POM), polyamide 6 (PA), lignin (Lig), chitin (Chi) and cellulose (Cell).
Polymer–water mixtures in the concentration range of water between 1–10%(w/w) were investigated.
Spectra analysis and interpretation were performed with the use of difference spectroscopy, Principal
Component Analysis (PCA), Median Linkage Clustering (MLC), Partial Least Squares Regression
(PLSR), Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) and Two-Dimensional
Correlation Spectroscopy (2D-COS). Additionally, from the obtained data, aquagrams were con-
structed and interpreted with aid of the conclusions drawn from the conventional approaches. We
deepened insights into the problem of water bands obscuring compound-specific signals in the NIR
spectrum, which is often a limiting factor in analytical applications. The study unveiled clearly
visible trends in NIR spectra associated with the chemical nature of the polymer and its increasing
hydrophilicity. We demonstrated that changes in the NIR spectrum of water are manifested even in
the case of interaction with highly hydrophobic polymers (e.g., PTFE). Furthermore, the unveiled
spectral patterns of water in the presence of different polymers were found to be dissimilar between
the two major water bands in NIR spectrum (νs + νas and νas + δ).

Keywords: near-infrared spectroscopy; NIR; polymer; water; polymer-water interaction; hydrophilic;
hydrophobic; chemometrics; data analysis

1. Introduction

The interaction of water with different polymers has been an intensively studied
research field [1–3], especially in recent years, with biocompatible polymers being one of
the main focuses [4,5]. It has been demonstrated that the biocompatibility of a polymer is
affected by its interaction with water [4]; furthermore, water–polymer interactions play a
key role in biological processes [1,6]. The effect of moisture on commercially used polymers
is also of high interest in material science and industrial applications. For example, an
excess of water may cause swelling and, subsequently, changes of mechanical and chemical
properties of polymers [1]. For these reasons, considerable attention has been diverted
into investigations of the interaction of polymers with water, with a focus both on its
phenomenological manifestations in various conditions as well as on its physicochemical
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background. With respect to the former, one of the promising concepts proposes to dis-
tinguish different species of water molecules in terms of their interaction strength with
a polymer into strongly-bound, loosely-bound and free water species [1,4,6,7]. On the
other hand, the so called “hydrophobic interactions” are often considered to be an impor-
tant property of a material, appearing due to the interactions between water molecules
being stronger than between water and the molecules of the hydrophobic material [8].
Hydrophobic interactions are highly dependent on various factors, e.g., temperature, size
and shape of the interacting particles [8,9], among others. Insights into the underlying
physicochemical properties of the interactions occurring between a polymer and water,
including molecular structure effects, have been examined using various approaches. In
these studies, diverse spectroscopic (e.g., vibrational, dielectric, nuclear magnetic reso-
nance, etc. [7,10–14]) techniques, mass spectrometry [1], X-ray diffraction [15], differential
scanning calorimetry [1,6,12] or gel-permeation chromatography [10] have been found to
be helpful. Often, the experimental studies were combined with methods of computational
chemistry to provide deepened physical insights [16,17].

Vibrational spectroscopic techniques, MIR and Raman, were often used to derive
both phenomenological and molecular insights into the effects of the interactions between
water and polymers [12,14,18–20]. In contrast, NIR spectroscopy has not yet attracted
similar attention in the studies of this problem. This spectroscopic technique offers unique
suitability for this purpose [21,22], as the intensity change in water absorption is known
to mirror the change in the chemical environment of water molecules [11,23]. Spectral
bands in NIR spectroscopy manifest unique sensitivity towards the chemical environment
and hydrogen bonding [21,24,25]. The positions and intensities of NIR bands, primarily
arising from combinations and overtones of C-H, O-H and N-H stretching vibrations, are
intrinsically related to the properties of hydrogen bonding existing in the investigated
system [12,13]. Because of the profound influence of specific interactions on mechanical
and electrical anharmonicity of the partner molecules [26], NIR spectra provide information
on the properties of hydrogen-bonded complexes that is unavailable in MIR or Raman
spectra [27]. Consequently, NIR spectroscopy provides exclusive opportunities for the
investigation of molecular structure and interactions [21,25]. These effects manifested in
NIR spectra can be utilized to investigate the interaction of the hydrogen-bonding centers,
present in the polymer, with water and provide insight into the interaction behavior of
these species [11,21,25]. Therefore, NIR spectroscopy has been demonstrated to provide
valuable information for the characterization of polymers and their composites [22,28].

Physical principles underlying NIR spectroscopy make it also very well suited for
the analysis of aqueous systems in a practical sense. NIR bands of water feature relatively
weaker intensities, in contrast to very strong bands of water in the MIR region [21,29].
This makes it much easier to examine both the bands of water and the polymer in the
NIR spectra, particularly over a wider range of water concentrations in the sample [21].
Although less of a critical hindrance than it appears in MIR spectroscopy, the water bands
in NIR spectra can still obscure (i.e., mask) the signal of other constituents present in the
sample [21,23]. In certain applications this remains to be an unwanted effect, for which
developing effective mitigation methods would be helpful. Even though the removal of
water bands from vibrational spectra has been studied for years, there is still very little
knowledge of universal reach gathered in this area. This specific problem was almost
exclusively investigated using the MIR technique [29,30]. A considerable focus has been
directed at the suppression of the ro-vibrational structure of water vapor, as atmospheric
water is the source of a common interference in MIR spectroscopy. The need for effective
removal of water bands was identified relatively early in the field of the applications of
NIR spectroscopy, with most of the proposed approaches to alleviate this problem being
chemometric methods [23,31,32] and wavenumber selection methods [33]. Some attempts
were made by using the refinement [23,31] of the Orthogonal Signal Correction method [34].
For example, the Regional Orthogonal Signal Correction was one of the approaches pro-
posed, in combination with Moving Window Partial Least Squares Regression, to remove
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interfering water signals from NIR spectra [23]. Other well-known spectral transformation
techniques were also evaluated for this purpose. For the investigation of the phosphorus
and nitrogen concentration in fresh leaves [32], a non-linear Least Squares Spectral Match-
ing technique was introduced [35], where the spectrum of a fresh leave was approximated
by a nonlinear combination of the leaf-water spectrum and a dry sample spectrum. Nev-
ertheless, no practically applicable method of universal reach could be established, due
to major limitations in the transferability to other data sets, accuracy, overfitting [32] and
noteworthy complexity for the user, because individual calculations and sample-tailored
solutions were necessary for each specific case. Owing to single, purpose-driven NIR spec-
troscopic studies of these effects, the knowledge gathered so far remains fragmentary; little
attention has been given to systematic studies of series of compounds of relatively similar
character but with gradually varying key properties affecting their interaction with water.

In this study, we investigated polymer–water interactions and the manifestation of
this phenomenon in NIR spectra by applying a systematic approach and employing a
synergistic set of methods and techniques. We attempted to provide a more universal reach
and deeper insights into the problem of water bands obscuring the signal of the analyzed
compound in NIR spectra. For this purpose, polymers of varying hydrophilicity were
investigated by diffuse reflectance NIR measurements: polytetrafluoroethylene (PTFE),
polypropylene (PP), polystyrene (PS), polyvinylchloride (PVC), polyoxymethylene (POM),
polyamide 6 (PA), lignin (Lig), chitin (Chi) and cellulose (Cell). Pure polymers as well
as polymer–water mixtures in the concentration range of 1–10% (w/w) of water were
analyzed. Spectra analysis and interpretation were performed with the use of difference
spectroscopy, Principal Component Analysis (PCA), Median Linkage Clustering (MLC),
Partial Least Squares Regression (PLSR), Multivariate Curve Resolution Alternating Least
Squares (MCR-ALS) and Two-Dimensional Correlation Spectroscopy (2D-COS). Addition-
ally, from the obtained data, aquagrams were constructed and interpreted with aid of the
conclusions drawn from the conventional approaches. By simultaneous use of synergistic
tools, generalized trends in the spectral manifestation of the interaction of water with poly-
mers, including the dependencies on chemical nature and hydrophobicity, were obtained.
In addition to physicochemical insights, these conclusions provide better understanding of
the effects of water–solid matrix interactions, which often play a meaningful role in various
applications of NIR spectroscopy.

2. Materials and Methods

2.1. Samples and Data Aquisition
2.1.1. Polymer Samples

The polymer samples were acquired as standards for synthetic, non-water-soluble,
polymers from the suppliers present at the commercial market (Saudi Basic Industries
Corporation SABIC, INOVYN, INEOS Styrolution, Euro OTC Pharmas GmbH, Sigma
Aldrich). Cellulose (synthetic), lignin (kraft), chitin (from shrimp shells), PTFE and PVC
were derived as practical grade powder, with an approximate particle size of 100 μm. PP, PS,
PA and POM samples were acquired as pellets from different manufacturers. The polymer
pellets were separately milled with the centrifugal mill ZM 200 (Retsch, Verder Scientific,
Haan, Germany) while being cooled with liquid nitrogen to prevent temperature-induced
changes. The centrifugal mill was equipped with a sieve with the pore size selected to
obtain the particle diameter of approximately 250 μm. Deionized water was prepared
by a Milli-Q® Reference (Merck KGaA, Darmstadt, Germany), with a conductance of
18.2 MΩcm. To ensure reproducibility, the polymer powders were completely dried in
the drying chamber, at 50 ◦C and with a pressure of 200 mbar. An hour before mea-
suring, the polymers were equilibrated to room temperature and stored in a desiccator
until measurement.
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2.1.2. NIRFlex N-500 FT-NIR Spectrometer

Measurements were performed with the NIRFlex N-500 FT-NIR spectrometer (BÜCHI
Labortechnik AG, Flawil, Switzerland) with the attachment for solid sample measurements
and a spinner add-on, which enables spatial averaging of the sample spot during the spectra
measurement. The NIRFlex N-500 is equipped with a HeNe laser as a high-precision
wavelength reference, a polarization interferometer with TeO2 wedges and a tungsten
halogen lamp for sample irradiation. Measurements were performed in diffuse reflection
mode; 64 scans were accumulated per single spectrum, with an optical resolution of
8 cm−1, in the wavenumber region of 10,000–4000 cm−1. Cylindrical cuvettes for reflection
measurements of solid samples, made of optical glass, with a volume of approximately
12 mL, were purchased from Hellma (Müllheim, Germany).

2.1.3. Data Acquisition

All polymers were directly weighted and prepared in the measuring cells. The amount
of each individual polymer was constant throughout all measurements. Respectively,
1%, 3%, 5%, 7% or 10% deionized water (w/w) was added. Afterwards, the polymer–
water mixtures were stirred for approximately 165 s with disposal spatulas, to ensure
homogenous distribution of water in the polymer matrices. A metal stamp with a Teflon-
foil ring was used to seal the measuring cells, to prevent water evaporation and ensure
constant measurement conditions, by pressing the polymer–water mixtures to the ground
of the cuvettes. The preparation of the samples and their placement in the measurement
cell was repeated six times for each polymer–water mixture and each concentration level, in
order to monitor the reproducibility of the procedure; the spectra measurements were done
in triplicate. This procedure was performed for all polymers, with the exception of PTFE.
Since PTFE is highly hydrophobic, it repels water completely and is not mixable with water
at all. Therefore, we measured nine spectra of PTFE, with approximately 10% of water
(water was the bottom layer). These spectra were then averaged, in order to overcome the
variances in spectral intensity due to variation of the thickness of the water layer. At this
stage, PLSR analysis was used to identify outliers in the measured spectral dataset; for the
identified sample outliers, the measurements were repeated.

2.2. Chemometric Methods–Spectra Processing and Analysis

The collected raw spectra were transferred into the Unscrambler® X Version 10.5
(CAMO Software, Oslo, Norway). Before spectral analysis, firstly the spectra were recalcu-
lated from reflectance R into absorbance A, by applying a negative common logarithm (log
1/R). A linear offset correction was then used as a pretreatment method; it enables direct
comparison of all measurements and polymers. For most of the analysis methods, the
spectral dataset was averaged to one spectrum per concentration, except for PCA and PLSR
analysis, where no sample averaging was used. All plots were generated with OriginPro®

2020. Noteworthily, the spectra below 4500 cm−1 should be considered less reliable, as
the complete absorption phenomenon occurred for several samples. However, this region
was not used for the purpose of this study, nor are any discussions in this work based on
this fragment of spectra. Nonetheless, throughout this manuscript, full spectral data are
presented (i.e., in the region of 10,000–4000 cm−1), as they may be found useful by the
readers for qualitative (i.e., rough) assessment.

2.2.1. Principal Component Analysis (PCA) and Median Linkage Clustering (MLC)

PCA and MLC were performed with the Unscrambler® X Version 10.5. The polymer–
water mixture spectra, pretreated by linear offset correction, were used for this purpose.
Full-cross-validation by means of the leave-one-out (LOO) approach was performed, and
for determining the latent variables in the PCA approach, a nonlinear iterative partial
least squares algorithm (NIPALS) was utilized. As the MLC method, a hierarchical clus-
tering with a squared Euclidean distance measurement and the number of eight clusters
(corresponding to the eight polymers used in this study), was used.
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2.2.2. Partial Least Squares Regression (PLSR)

PLSR was carried out with the Unscrambler® X Version 10.5. The linear offset was
applied to correct and normalize the spectra prior the generation of the PLSR models.
A full-cross-validation by means of the LOO approach was conducted, and an NIPALS
algorithm was used for determining the latent variables in the PLSR procedure.

2.2.3. Difference Spectroscopy

Difference spectroscopy was conducted manually; all calculations were carried out
with Microsoft® 365 Excel®. For this purpose, the averaged, linear offset corrected spectra
were used. The polymer difference spectra were generated by firstly scaling the water
spectrum individually for each polymer–water mixture spectrum. The peak maximum of
the combination water band, located at 5180 cm−1, was utilized as the scaling reference
point. At 5180 cm−1, the intensity of the water band was scaled to the intensity of the
water peak in each polymer–water mixture spectra, by dividing the intensity of the sample
spectra by the intensity of the pure water spectrum. The scaling factor generated this way
was used to multiply the water spectrum at each wavelength, which subsequently was
subtracted from the respective polymer–water mixture spectrum. The water difference
spectra were generated in an analogous procedure, by subtraction of the pure polymer
spectrum from the mixture spectra, with individual scaling wavelengths for each polymer.
The following reference points in the spectra of polymers were selected for this purpose:
PTFE at 5944 cm−1 PP at 5796 cm−1, PS at 5952 cm−1, PVC at 5828 cm−1, POM at 5968 cm−1,
PA at 5828 cm−1, lignin at 5964 cm−1, chitin at 5800 cm−1 and cellulose at 5604 cm−1.

2.2.4. Multivariate Curve Resolution Alternating Least Squares (MCR-ALS)

A multivariate curve resolution (MCR) analysis was performed with the Unscrambler®

X Version 10.5. The polymer–water spectra pretreated by linear offset correction were
used, and the averaged pure water and polymer spectra were provided as a Y-reference.
Two components were selected in this procedure to match the chemical rank of binary
mixtures. Constraints were set to non-negativity for concentrations and spectra. The MCR
procedure was performed using an alternating least squares algorithm (i.e., MCR-ALS).
In order to compare the resulting spectra with the experimental gathered spectra, a SNV
transformation had to be performed on both spectra sets.

2.2.5. Two-Dimensional Correlation Spectroscopy (2D-COS)

A 2D-COS analysis was accomplished using the extension 2D Correlation Spectroscopy
Analysis, available in OriginPro® 2020. This software enables calculation of synchronous
and asynchronous 2D-COS spectra. The averaged spectra of the pure polymer and the
polymer–water mixture spectra were selected as dynamic spectra, with the concentrations
as perturbations. The average dynamic spectrum was used as the reference. Subsequently,
the synchronous and asynchronous 2D-COS plots were calculated for all polymers. Note,
for better comparison, in this work, the synchronous plots are presented in an identical
scale of intensity (z-axis) for all polymers. The intensity axis was chosen in a way so that all
relevant information is easily accessible and the correlation strength is directly comparable.
The intensities of the asynchronous plots on the other hand are scaled individually, because
the intensity ranges are much less comparable between different systems, and uniform
scaling would compromise the accessibility to the individual information on each sample.

2.2.6. Aquagrams

Aquagrams generally display water patterns exclusively for the overtone water band,
which is not comprehensive enough to describe the dissimilarities of the investigated
polymer–water systems. Therefore, aquagrams in this study were expanded to include also
the second major water band, the combination band. Wavelengths of interest were selected
by a comparison of all normalized polymer spectra. For the normalization, the averaged
polymer–water mixture spectra were used. Firstly, an SNV transformation was performed
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in the Unscrambler® X Version 10.5 as pretreatment, and afterwards, the normalized ab-
sorbance An

˘ for each spectrum and, respectively, each polymer was calculated regarding
Equation (1) in Microsoft® 365 Excel®. Where A˘ is the SNV transformed absorption spec-
trum, μ˘ is the mean spectrum of the regarding polymer and σ˘ is the standard deviation for
the regarding polymer spectra after SNV transformation [36]. The selected wavenumbers
were consequently plotted in an extended aquagram, representing both water bands.

An
˘ =

A˘ − μ˘
σ˘

(1)

3. Results

3.1. General Features of the NIR Spectra of Polymer–Water Systems

The averaged NIR spectra of the polymer–water mixtures, additionally corrected
by applying a linear offset of the baseline, are displayed in Figure 1. Note, the two
major NIR bands of water have a complex internal structure, resulting from overlapping
contributions from different species, and their exact nature is a matter of intensive and long-
lasting discussions [37,38]. These bands originate primarily from combination vibrations,
respectively, νs + νas in the case of the peak observed at ca. 6900 cm−1 and νas + δ for the
band at ca. 5200 cm−1. However, in the case of the former one, a meaningful component
of the OH stretching overtone (2νOH) is present as well. Despite that contribution to the
intensity being lesser, it is commonly accepted in literature to refer to the ca. 6900 cm−1

band of water as the “overtone band”. The band observed at ca. 5200 cm−1 is described
as the “combination band”, which precisely reflects its nature. For clarity, that commonly
accepted, albeit not entirely precise, naming convention for those spectral features will be
adopted in this work.

In Figure 1, spectra of the samples containing a varying water content are clearly
differentiable for all polymers, with some variances manifested in the spectra of dissimilar
polymers, which can be easily noticed. Interestingly, it can be noted that the variation in
water content also influences the intensity of the polymer bands. This effect tends to grow
with rising hydrophilicity for all investigated materials. Furthermore, it is not suppressed
upon performing a linear offset correction or Standard Normal Variate (SNV) treatments,
indicating that polymer–water interactions may be responsible for these intensity variations.
In general, the biopolymers notably differ from the synthetic polymers, as they show more
constant changes in the NIR spectra of the samples with varying water content. Moreover,
clear red- and blueshifts of the water bands for different polymers and water concentrations
are observed. In the case of hydrophobic polymers, the appearance of the spectra is
distinctly influenced by the amount of added water. One the one hand, a low water
content in the polymer matrix leads to strongly shifted and deformed water bands. On the
other hand, when more water is added to the sample, the appearance of the water bands
gets less deviated from that of bulk water. For example, PP shows a pronounced shift of
the combination band of water for the sample spectrum containing 1% of water. On the
contrary, the spectrum of the sample containing 10% water reveals a water band at the
position very similar to that of bulk water.

However, hydrophobic polymers are anticipated to only weakly interact with water.
Indicating, that only a small amount of water interacts with the polymer, and the addition of
more water results in the presence of free bulk water. This is also supported by the finding
that water band shifts get more uniform with increasing hydrophilicity of the samples.
The water bands in the presence of biopolymers show almost completely constant shifts
through all concentration levels. Interestingly, both major water bands show a dissimilar
behavior in the presence of different polymers. For instance, blue- and redshifts for the
same sample are manifested in the NIR spectra, e.g., for PA, a blueshift is observable for
the overtone band of water, whereas a slight redshift is present for the combination band.
Moreover, wavenumber shifts are much more pronounced for the combination band than
for the overtone water band.
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Figure 1. Averaged NIR absorbance spectra of the polymer–water mixtures after linear offset cor-
rection, in the range of 1–10% (w/w) water and the pure water spectra (dark blue) for comparison.
The polymers are ordered according to increasing hydrophilicity, with the least hydrophilic polymer,
polypropylene (upper left corner), to the most hydrophilic polymer, cellulose (lower right corner).
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3.2. Band Assignment

As presented in Figure 1, most of the polymers show strong and specific polymer
bands in the wavenumber region of 9000–8000 cm−1, between 7500–7000 cm−1, in the
region of 6500–5500 cm−1 and near 4500 cm−1. Additionally, more hydrophilic polymers
show peaks in the vicinity of both major water bands. Especially for the combination band
of water, the polymer spectra reveal a signal growing in intensity with rising hydrophilicity,
which most likely indicates the presence of trace water bound to hydrophilic polymers,
even for dried samples. Biopolymers are highly hydrophilic and therefore always contain
bound water [11]. The overtone band of water displays a peak maximum at approximately
6900 cm−1 in this case, even though both water bands arise due to combinations of vi-
brational modes. In Table 1, we provided the assignments for the major polymer and
water vibrations.

Table 1. Wavenumber assignments of relevant polymer and water groups [39].

Wavenumber/cm−1 Assignment Polymer/Water

10,000–9000 3 ν (OH); hydrogen-bonded

8600–8200 [21,39]
8250 [21]

3 ν (CH3 [21,39], CH2 [39])
2 ν + 2 δ (CH3, CH2) all

7200–7000 2 ν (free OH)
2 ν + δ (CH3, CH2)

Lig, Chi, Cell
all

7200–6800 [25] νs + νas (OH) water

7000–6200 2 ν (OH); hydrogen-bonded
ν (OH) + ν (CH) all

6900 [40] 2 ν CH + δ CH all

6700–6500 2 ν (NH); free
PA, Chi

6600–6300 2 ν (NH); hydrogen-bonded

6500 2 ν (OH); carbohydrates, polyphenols, . . . ; hydrogen-bonded Lig, Chi, Cell

6200 ν (CH3, CH2)
all

6000–5600 2 ν (CH3, CH2)
νs + 2 δ (CH3, CH2)

5300–5000 [25]
5200 [11,39,40] νas + δ (OH) water

5280 [11] Hydrogen-bonded water water

5190 [11,39] νas + δ (OH) water molecule trapped in Polymer Cell + water

5150 [28] νas + δ (OH); water molecule trapped in Polymer PA + water

4900–4600 ν + δ (NH) PA, Chi

4500 ν (CH3, CH2) all

4400–4200 ν + δ (CH3, CH2) all

ν—stretching; δ—bending vibration; νs/as—symmetric/asymmetric; 2—first overtone; 3—second overtone.

3.3. Principal Component Analysis (PCA) and Median Linkage Clustering (MLC)

A PCA and a hierarchical MLC method were utilized for a general inspection of the
spectral set and analysis of the distribution of the samples to verify the consistency of the
experimental conditions. Furthermore, these methods also enabled us to gain an overview
of the trend related to the polymer hydrophilicity in the samples containing different
concentrations of water. For this purpose, a PCA and a hierarchical MLC were respectively
performed for the pure polymers, as well as for each individual concentration level of water
in polymer –water samples. Exemplary PCA scores and an MLC dendrogram for the pure
polymers are illustrated in Figure 2. The figures presenting the PCA score plots and MLC
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dendrograms for the entire concentration range of water (1–10%) added to the polymer
(w/w) are displayed in the Supplementary Material (Figures S1 and S2, respectively).

 

Figure 2. PCA scores (left) and MLC dendrogram (right) for the pure polymers after linear offset
correction. The PCA scores and MLC dendrograms for the entire concentration range of water
(1–10%) added to the polymer (w/w) are displayed in the Supplementary Materials (Figures S1 and S2,
respectively).

The PCA scores in Figure 2 reveal perfectly separated groups for each individual
polymer, without greater variance in between the repetition measurements of a single
polymer. Cellulose and chitin are aligned relatively close to each other, but still, both
polymers are easily differentiable. This reflects the high similarity of cellulose and chitin,
which only differ in one functional group. Additionally, lignin is located near to chitin and
cellulose, which may be interpreted as the relatively greater similarity of the biopolymers in
comparison to all other polymers. The comparison of the PCA scores for the pure polymers
and the water–polymer systems with 1–10% water (w/w) revealed no significant changes
in the distribution of the samples, as presented in Figure S1.

The MLC analysis revealed the presence of two major groups in between the investi-
gated polymers (Figures 2 and S2). Interestingly, the first major cluster consisted of three
biopolymers and PVC, with chitin and cellulose forming a subcluster and lignin and PVC
another subcluster. The second major cluster includes the remaining synthetic polymers.
This grouping corresponds well to the PCA scores plotted in Figure 2.

3.4. Partial Least Squares Regression (PLSR)

A PLSR was performed for all samples in order to validate that the observed spectral
variations were indeed well-correlated with the concentration of water in the sample. On
the example of PP and cellulose, the resulting scores, regression coefficients for factor 1
and prediction performances of the cross-validation are displayed in Figure 3. The PLSR
metrics obtained for all polymers investigated in this study and the regression coefficients
for factor 1–3 are provided in the Supplementary Material (Figures S3–S5).

A clear separation of the different water contents and the pure polymers can be
observed in the scores plots in Figure 3. Minor tendencies for sample clustering are
apparent and should be accounted to the variations in the sample preparation process
or unavoidable external conditions, e.g., the temperature and humidity. However, these
effects are nearly negligible and not expected to interfere with the main investigation of this
study. For all polymers, a high quality of the model fit was obtained in the PLSR procedure;
an R2 of at least 0.93 or higher was obtained in each case. This clearly indicates that the
water concentration levels manifested in the NIR spectra were indeed near the nominal
values intended for the prepared sample. No other effects of random or polymer-specific
character, resulting, for example, from a potential vaporization or different distribution of
liquid water in granulated polymer matrix, occurred in the sample set that could introduce
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spectral changes other than those directly correlated with water concentration. For all
polymers within the first two factors, at least 98% of the variation in the NIR spectra was
explained by 98% of the variation in the water concentration. Interestingly, the regression
coefficients also showed resemblance to the water spectrum itself, conforming that water is
the main inductor for changes in the spectra and for grouping of the samples in the scores
plot (Figure 3).

 

Figure 3. PLSR scores (top), regression coefficients (middle) and predicted vs. reference (bottom) for
polypropylene (left) and cellulose (right) polymer–water mixtures, after linear offset correction. The
scores, regression coefficients and predicted vs. reference of all polymers in comparison are displayed
in the Supplementary Materials (Figures S3–S5).

3.5. Difference Spectroscopy
3.5.1. Water difference Spectra

A difference spectroscopy approach was applied to elucidate the NIR line shape of
the water component present in the samples. In the procedure, the spectra of the pure
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polymers were subtracted from the spectra of polymer–water mixtures after the treatments
to normalize spectral sets were applied as described in Section 2.2.3. In Figure 4, the
line shapes resolved for the water component in the presence of PP and cellulose are
displayed, while the results of this procedure for the remaining six polymer–water systems
are provided in the Supplementary Materials (Figure S6).

 

Figure 4. Water difference spectra of the polymer–water mixtures after linear offset correction
and subtraction of the polymer spectra, in the range of 1–10% (w/w), with, respectively, the pure
water (dark blue) and polymer (red) spectra for comparison, of PP (left) and cellulose (right). The
water difference spectra of all investigated polymers are displayed in the Supplementary Materials
(Figure S6).

The water difference spectra revealed significantly different shapes of the water bands
for each individual polymer. However, the extent of band change neither followed hy-
drophilicity, nor was it related to the chemical nature of the polymer, indicating that another
effect was in play causing the observed specificity. Interestingly, the water spectrum of
the 1% PP–water mixture in Figure 4 is nearly featureless, with only a very shallow and
broad peak at the combination water band; this is also noticeable in the raw spectrum
in Figure 1. Furthermore, Figure S6 reveals that the water bands arose only with rising
hydrophilicity of the polymer matrix. This effect was clearly present in the spectra and
related to the polymer hydrophilicity. Interestingly, these spectra evidence the presence of
strongly bonded water molecules observed in hydrophobic matrices such as PP (specifically,
steadily increasing intensity and broadened shape of both water bands). However, the
spectra of the systems involving hydrophilic polymers such as cellulose reveal that, rather,
weakly interacting water species are present in such matrices at low concentrations (specif-
ically, narrow, blue-shifted overtone band of water at ca. 7100 cm−1). This observation
suggests that the formation of strongly-interacting bulk-like water domains is promoted
in hydrophobic matrices such as PP. At the same time, in the cellulose matrix, apparently
the formation of bulk-like water is not promoted at low concentrations. This might occur
because the hydrophilic matrix attracts more water molecules than hydrophobic surfaces
of polymers such as PP. Consequently, a hydrophilic matrix creates a more competitive
environment for binding water molecules, and bulk-like water domains are less easily
formed at very low concentration of water in the matrix.

A separate note should be made about the inconsistency of the intensity change
observed between the water overtone and combination band in the cellulose matrix being
not uniform. The intensity of the overtone band with water concentration increases less
rapidly than it is observed for the combination band. This seems to be plausible, as the
electrical anharmonicity of hydrogen-bonded species has a profound effect in the intensities
of overtone bands [26,27].

Moreover, PP, PS, PVC and POM reveal a highly specific behavior, with the water
bands being profoundly asymmetric. For these systems, the presence of differently in-
teracting water species is manifested in the NIR spectra. On the one hand, the water
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molecules weakly interacting with moderately hydrophilic polymer can be identified by
the appearance of a water band for the combination band and overtone band. Furthermore,
the existence of a broadened absorption feature extending towards lower wavenumbers
(i.e., a broad band shoulder) reveals the presence of self-interacting water, i.e., bulk-like wa-
ter domains. In the case of PP and PS, the revealed water bands are significantly widened,
together with the additional extension towards lower wavenumbers; this indicates the pres-
ence of two different bulk-like water domains. This suggests that these polymer matrices
effectively create two different chemical environments for water molecules. It is also possi-
ble that physical properties and morphology of the particles of these polymers are in play
here; for instance, the less-developed areas of the hydrophobic surface of these polymers
might lead to a faster evaporation of water from the polymer surface. Surprisingly, the
lignin–water system also reveals a pronounced water band component observed at the
low wavenumber shoulder of the combination water band. This suggests that lignin only
weakly interacts with water, which promotes the organization of self-associated domains
of water resembling bulk water. Noteworthily, the PA–water system interrupts this trend,
which might be stemming from the chemical nature of this polymer. On the other hand, the
water spectra for chitin and cellulose are relatively uniform. These effects can be observed
for both water bands, and therefore, polymer–water interactions are strongly manifested in
the NIR spectra. Note, in the case of the lignin–water system, the overtone water band is
distorted by the subtraction procedure, and therefore, the water component of this sample
should be considered less reliable.

Furthermore, distinct wavenumber shifts of both water bands occur in the presence
of different polymers. The shift is especially noticeable for the overtone water band; the
respective band shifts for each polymer are listed in Table 2. The biopolymers show, in this
wavenumber region, profoundly broadened and strongly shifted water bands.

Table 2. By difference spectroscopy, we revealed wavenumber shifts of the overtone and combination
water band in the concentration range of 1–10% of water (w/w) for the investigated polymers. Note,
wavenumber shifts for lignin are given in brackets, because the experimental data may be considered
less reliable.

Polymer
Shifts for Overtone
Water Band/cm−1

Shifts for Combination
Water Band/cm−1

Polypropylene 6796–6836 5180/not shifted

Polystyrene 6812–6852 5248–5176

Polyvinylchloride 6808–6842 5256–5180

Polyoxymethylene 6822–6826 5228–5204

Polyamide 6 6828–6840 5140–5164

(Lignin) (7084–7064) (5224–5208)

Chitin 7048–7024 5176–5164

Cellulose 7100–7120 5180–5172

3.5.2. Polymer Difference Spectra

With the aim to elucidate the variations in NIR spectra of the polymers, which can
potentially occur as the effect of the interaction with water, the difference spectroscopy
approach was applied as well to resolve the line shape associated with the polymer com-
ponent. In this case, the spectrum of pure water was subtracted from the spectra of the
water–polymer samples in the subtraction procedure. PTFE was the most hydrophobic
polymer included in our study; the interaction between water and PTFE should be dis-
tinctively low. Furthermore, it has no meaningful absorption in the NIR region. Therefore,
PTFE offers favorable properties for the validation of the use of difference spectroscopy in
this study (Figure 5). The figure additionally displays the difference spectra of the cellulose–
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water system, as it constitutes the most hydrophilic polymer examined in this study.

 

Figure 5. Polymer difference spectra of the 10% polymer–water mixtures after linear offset correction
and subtraction of the water spectrum, with, respectively, the pure water (dark blue) and polymer
(red) spectra for comparison of PTFE (left) and cellulose (right).

The resolved polymer component spectrum of the averaged 10% PTFE–water system
in Figure 5 shows two broad negative features in the wavelength region of both water bands.
A similar result was obtained for cellulose but with even more pronounced adverse features.
The most probable reason of this is the presence of several OH groups in cellulose and likely
also the relatively higher content of strongly bound inherent water molecules persisting
in dried cellulose. Therefore, cellulose is highly interacting with water molecules. In NIR
spectra, hydrogen-bonded species feature lower band intensities [26,27]; consequently,
the spectrum of water bound strongly to cellulose differs from that of bulk water. This
effect in combination with the dissimilar behavior of both major water bands, described
in Section 3.1, confines the applicability of the polymer difference spectroscopy notably.
Because of these limitations, the MCR-ALS study (Section 3.6) was conducted to provide
independent, and potentially less affected by imperfections of the method itself, insights
into the components of the NIR spectra associated with each of the interacting species. On
the other hand, the results of difference spectroscopy clearly evidence the manifestation
of polymer–water interactions in the spectra, even for highly hydrophobic polymers, i.e.,
PTFE. Therefore, for effectively revealing NIR peaks of the polymer masked by water
bands, the polymer–water interactions should be considered. Especially biopolymers or
other plant materials strongly interact with water. These highly hydrophilic and potentially
hygroscopic materials always contain water by nature.

3.6. Multivariate Curve Resolution Alternating Least Squares (MCR-ALS)

An MCR-ALS analysis provides decomposition of the polymer–water mixture spectra
into the resolved spectral curves associated with each of the components, i.e., in this case,
water and the polymer spectra. The resolved curves are presented in Figure 6 for PP
and cellulose, while the results for all eight investigated polymers are provided in the
Supplementary Materials (Figure S7).

In general, the MCR-ALS polymer spectra are very similar to the experimental spectra
measured for the pure polymers, indicating physical representativeness of the resolved
curves. Consequently, the resolved spectral curve of the water component accurately
reflects the true absorption profile of water existing in polymer matrix. In the case of PP,
the resolved polymer component is almost undistinguishable from the spectrum measured
for the pure polymer. In the case of the remaining polymers, the MCR-ALS curves show
some minor deviations, almost exclusively located in the wavenumber regions of both
water bands. However, these deviations form a trend. Especially in the vicinity of the
combination water band, the resolved curves reveal a water band growing in intensity
with rising hydrophilicity of the polymer. Noteworthy, for highly hydrophilic chitin and
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cellulose, the MCR-ALS spectra are surprisingly similar to the experimental spectra of
pure polymers. The highest changes are obtainable for the hydrophilic polymers POM,
PA and lignin. In contrast, the resolved water component curves for both water bands
highly diverge from the experimental NIR spectrum of bulk water. Moreover, significant
changes in band-shape and additionally band shifts are observed. While the absolute band
intensities of the resolved MCR-ALS line shapes are not representative because of SNV
treatment, the analysis of the intensities of the two major water bands remains legitimate in
relative sense. Interestingly, the resolved water bands indicate diminished intensity of the
combination band and enhanced intensity of the overtone band of water in comparison
with those of bulk water for synthetic polymers. However, for the biopolymer matrices, an
opposite trend in relative intensities of water bands can be noticed.

 

Figure 6. MCR-ALS polymer (orange) and water spectra (light blue) of polypropylene (left) and
cellulose (right), additionally the NIR absorbance spectra of the pure polymer (red) and pure water
(dark blue) are shown. The reference spectra as well as the resolved curves were normalized using an
SNV transformation. The MCR-ALS polymer and water spectra of the remaining six polymers are
displayed in the Supplementary Materials (Figure S7).

Furthermore, in the resolved water curves, the overtone band diverges (in shape and
position of peak maximum) more substantially from the experimental water spectrum than
it occurs for the combination band of water. In the case of lignin and cellulose, the resolved
component spectra may be considered less reliable, because a splitting of the overtone
MCR-ALS water band into two peaks was observed. Analogous to the water difference
spectra discussed in Section 3.5.1, for PP, PS, PVC and POM, a low wavenumber shoulder
of the water band component was revealed for the water overtone and combination band,
indicating strong interactions between the water and polymer matrix. Therefore, the
presence of both strongly and weakly interacting water can be evidenced from the MCR-
ALS water curves.

3.7. Two-Dimensional Correlation Spectroscopy (2D-COS)

The NIR spectra of polymer–water systems were also analyzed with help of the 2D-
COS approach, as it is known to be superior in the deconvolution ability of spectra [41], as
well as in elucidating the effects of intermolecular interactions. The exemplary 2D-COS
spectra of PP and cellulose are displayed in Figure 7, while the synchronous and asyn-
chronous 2D-COS spectra of all investigated polymers are provided in the Supplementary
Materials (Figure S8).

It is immediately noticeable that both systems show a distinctly different correlation
pattern. The synchronous 2D-COS plots reveal the presence of only positive cross peaks,
which is expected, considering that the investigated sample set features increasing water
concentration. In the synchronous 2D-COS of PP in Figure 7 intense diagonal peaks for both
water bands are observed, indicating a high magnitude of spectral changes associated with
water addition at these wavelengths. Moreover, peak shapes also reflect the broadening
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of the water bands with increasing water content. The observed cross-peaks on the other
hand show the high extent of correlation between both water bands, as a similar increase
of intensities of both bands occurs with the addition of water.

 

Figure 7. Synchronous (left) and asynchronous (right) 2D-COS spectra of the polymer–water mix-
tures after linear offset correction, in the ranges from 0–10% water (w/w), of PP (left) and cellulose
(right). Note, the intensity scale of the synchronous 2D-COS spectra is the same for all polymers. The
remaining 2D-COS spectra are displayed in the Supplementary Materials (Figure S8).

Figure S8 reveals visible interactions of the synthetic polymers with water below
4500 cm−1. Furthermore, in the case of the hydrophilic polymers POM and PA, additional
interactions of polymer with water are visible in the wavenumber region of 6500–5500 cm−1.
Interestingly, the biopolymers reveal a completely dissimilar correlation pattern, in contrast
to the other investigated polymers. Much less profound correlations are observed for these
systems, despite their high hydrophilicity. This might result from a relatively higher content
of strongly bound water present in the biopolymer matrix even in nominally similar state of
dryness as the other examined polymers. As already mentioned in Section 3.5.2, hydrogen-
bonded species lead to lower band intensities in the NIR spectra [26,27]. Therefore, the
spectral pattern of the water component changes less radically with increasing water
content than it appears for less hydrophilic polymers. In other words, the interaction
opportunities that the hydrophilic biopolymer matrix creates for water molecules seemingly
shows similarities with the one that molecules of water find in a bulk state. All remaining
polymers used in this study, on the other hand, show strong interactions of the polymer
vibrations with the water bands. The asynchronous spectra in Figure S8 reveal that the
sequence of intensity changes between both water bands is dissimilar for polymers of
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diverging hydrophilicity. In the case of the non-hydrophilic PP, both water bands show
the same behavior. Conversely, for polymers of low hydrophilicity, PS and PVC, the
overtone water band reacts more rapidly to the increase in water content. In contrast, for
hydrophilic polymers, the overtone band of water reacts less rapidly than the combination
water band. The latter effect appears to be less profound for POM and is more decisive for
the biopolymers.

3.8. Aquagrams

An aquagram is a unique way for rescaling the spectral intensity at selected key
wavenumbers and presenting the data with magnified differences that are less perceptible
in absolute scale. For better representation of the polymers, we displayed the normalized
spectra of each polymer in both water regions. Wavenumbers of interest were selected
by comparison of the transformed polymer spectra; the detailed information about this
procedure is given in Methods Section 2.2.6. In Figure 8, the aquagrams obtained for PP and
cellulose are displayed as the examples, and the remaining aquagrams of all investigated
polymers are provided in the Supplementary Materials (Figure S9).

 

Figure 8. Aquagrams of both water regions for the polymer-water mixtures after SNV and standard-
ization, in the ranges from 0–10% water (w/w), of PP (left) and cellulose (right). Aquagrams of all
investigated polymers are displayed in the Supplementary Materials (Figure S9).

While useful for assessing intensity trends of large sets of data at glance, aquagrams are
less suited to present an exhaustive cross-section of complex spectral variations. However,
when analyzed together with the results provided by the methods discussed in previous
sections, a deeper interpretation of the information encoded in aquagrams becomes possible.
In general, aquagrams remain in agreement with the information derived from the other
methods used in this study, while also revealing unique insights. In the case of hydrophobic
to slightly hydrophilic polymers, the water component is highly dominant in the aquagrams,
as it can be observed in Figure 8 for PP. At most of the meaningful wavenumbers selected
for the aquagrams, a profound increase of the intensity of water bands with rising water
content is reflected. Whereas there appear to be spectral regions where the polymer itself has
higher contributions to the aquagram than water. Moreover, shifts of the water-dominated
areas, i.e., water band shifts, can be easily monitored in the aquagrams. Interestingly,
in the case of hydrophilic polymers, the aquagrams become highly complex, reflecting
a convoluted spectral pattern associated with the changing water concentration in these
systems. The characteristic water bands are not as similar to bulk water in the aquagrams,
as they are manifested in the systems constituting more hydrophobic polymers. Hence,
aquagrams can immediately identify the systems where a high degree of interaction with
water occurs.
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4. Discussion

4.1. Polymer Hydrophilicity as the Background for the NIR Spectral Trend in
Polymer–Water Systems

The concept of hydrophilicity and hydrophobicity is very useful for the comparison of
functional groups [42], as well as for capturing the relationship between polymer structure,
properties or polymer solubility [9]. It is also frequently used as a physical property for
block copolymers [43] and other nanostructures. However, this concept shows its limits
when too dissimilar polymers are compared [42]. Despite the concept of hydrophobicity fre-
quently being mentioned in literature, it is still challenging to quantify hydrophobicity in a
definitive manner. Polymers are large macromolecules, while the concept of hydrophobicity
applies best for single functional groups or small, rigid molecules [9,42].

The hydrophobicity of a polymer directly influences the interaction with solvents and,
thus, the solubility or self-assembly behavior in the solution phase [9,43]. Natural and
synthetic polymers feature various hydrophilicity levels and therefore interact differently
with water. These interactions distinctly influence the physical properties of water and the
polymers [1]. Nonetheless, the polymers used in this study may be approximately ordered
with respect to their hydrophilicity as shown in Figure 9 [9,44,45]. This opens the question
of whether NIR spectra that are sensitive to intermolecular interactions in a specific way
(as discussed in Section 1) can bring new insights into the state of water in a well-defined
chemical environment that features a gradually changing hydrophobicity.

Figure 9. Approximate order of hydrophilicity of the polymers used in this study. From the most
hydrophobic (left) to the most hydrophilic (right) polymers: Polytetrafluoroethylene, polypropylene,
polystyrene, polyvinylchloride, polyoxymethylene, polyamide 6, lignin, chitin and cellulose.

4.2. General Discussion and Comparison of the Information Derived from Synergistic Methods

Each method used in this study contributes to clarifying the interaction of water with
polymers of varying hydrophilicity. The MCR-ALS analysis separates (i.e., deconvolutes)
the investigated NIR spectra of polymer–water systems into the spectral components,
i.e., water and polymer spectra. The application of this method unveils resolved water
curves clearly affected by the interactions of water and polymers. Furthermore, the resolved
spectra of water in Figure 6 are surprisingly similar to the regression coefficients in Figure 3.
Moreover, distinct band shifts and a dissimilar behavior of both water bands was revealed.
The MCR-ALS analysis provides the averaged resolved component spectra of water and
polymer from the investigated water–polymer mixtures in the concentration range of 1–10%
water in the sample (w/w). Therefore, this method delivers a centralization of induced
changes by the interaction of varying water contents with polymer samples, manifesting in
the water bands in the presence of different polymers.
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On the other hand, the water difference spectra show more detailed changes correlated
to varying water content and dissimilarities among different polymers. Interestingly, this
method evidenced the presence of strongly bonded water molecules observed in hydropho-
bic matrices. Contrarily, the spectra of hydrophilic polymers revealed that rather weakly
interacting water species are present in such matrices at low concentrations. Therefore,
water difference spectra suggest that the formation of strongly-interacting bulk-like water
domains is promoted in hydrophobic matrices. A hydrophilic matrix attracts more water
molecules than hydrophobic surfaces. Consequently, hydrophilic polymers create a more
competitive environment for binding water molecules, and bulk-like water domains are
less easily formed at very low concentration of water in the matrix.

Both methods revealed polymers of low to moderate hydrophilicity, i.e., PP, PS, PVC
and POM, to create a special chemical environment for water molecules in NIR. The
resolved water spectra reveal trends of spectral changes of the combination and overtone
band of water roughly corresponding to the hydrophilicity of the polymer matrix, albeit
with specific features associated with the chemical nature of the polymer. Furthermore, a
broadened absorption feature towards lower wavenumbers for both water bands appear in
hydrophobic polymer matrices. The former effect identifies a weak interaction of water
and the polymer, while the latter reveals the presence of strongly interacting water, i.e.,
self-interacting water.

Comparing the resolved water difference spectra (Figure S6) with MCR-ALS, deconvo-
lution (Figure S7) reveals that there are three diverse behaviors present among polymers of
varying hydrophobicity with water. Firstly, in polymer matrices of very weak hydrophilic-
ity, i.e., PP and PS, water molecules tend to form bulk-like water domains rather than being
attracted to the polymer surface. Therefore, in this case, water bands resemble those of
pure liquid water. However, for PS, probably additional sterically driven captivation of
water molecules is present. The second case is formed for polymers of low or medium hy-
drophilicity, i.e., PVC and POM, which weakly interact with water. Therefore, also for these
samples, additional bulk-like water domains are formed. Thirdly, for hydrophilic polymers
which strongly interact with water, i.e., PA, chitin and cellulose, no clear manifestation of
bulk water domains can be seen in the spectra. Interestingly, lignin forms an exception in
this trend. It should be noted that the actual hydrophilicity of lignin is difficult to estimate
owing to its complex structure (Figure 9). Therefore, the molecular environment created
for water molecules by lignin may promote a relatively stronger formation of bulk-water
domains at low water concentration levels, effectively resembling the features of nominally
more hydrophobic polymers. Further investigations are needed to provide insights into
this phenomenon; however, these findings reveal a high sensitivity of water towards its
chemical environment and attribute it to the interaction of water with the polymer matrices.

Furthermore, the application of the 2D-COS approach revealed that the sequence of
intensity changes between both major water bands is dissimilar for polymers of diverging
hydrophilicity. In the presence of very weak hydrophilic polymers, i.e., PP, both water
bands manifest the same behavior. For polymer matrices of weak hydrophilicity, PS and
PVC, the intensity of the overtone water band reacts more rapidly to the increase in water
content than it occurs for the combination water band. Contrarily, for hydrophilic polymers,
the overtone band of water reacts less rapidly. Moreover, this behavior is less profound for
POM and PA, but it is more decisive for highly hydrophilic polymers, i.e., lignin, chitin
and cellulose. This effect is also noticeable for biopolymer matrices in water difference
spectra. The intensity of the overtone band increases less rapidly with an increasing water
concentration in the matrix than is observed for the intensity of the combination band.

By rescaling the intensities of the NIR spectra, aquagrams provide the ability to high-
light spectral changes of largely different magnitude, which would be difficult to trace in
absolute scale of spectral intensity. Therefore, not only intensity variations of great magni-
tudes are displayed, but also, small changes in the NIR spectra can be easily monitored, by
using aquagrams. While aquagrams are very useful to extract intensity trends occurring in
large datasets while displaying those at glance, they are less suited for the comprehensive
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presentation of spectral variations and their interpretation, e.g., band shifts and changes in
band shape cannot be easily followed in this form of presentation. However, when used in
combination with other methods of spectral analysis, aquagrams can help in identifying the
spectral regions of interest for elucidating the spectral pattern associated with the change
in water concentration in the matrix. In this study, the application of aquagrams jointly
with the other approaches to analyze the behavior of water in polymer matrices of varying
hydrophobicity and chemical nature showed the usefulness of aquagrams for rapid qualita-
tive assessment of the matrix property. Polymer–water systems of weak interaction strength
therefore show the profound increase of the intensity of water bands and rather smooth
patterns displayed in aquagrams. Contrarily, for hydrophilic polymers, aquagrams be-
come highly convoluted and reflect the complex interaction of the polymer–water systems.
Furthermore, water band shifts are immediately noticeable in the aquagrams. Therefore,
the aquagrams can, at a glance, reveal the varying complexity of the matrix as it creates
different environments for water molecules. This information seems helpful for screening
large spectral sets with the purpose of identifying the systems of particular interest for
molecular studies of the interactions of water with various chemical environments.

5. Conclusions

In this study, we unveiled trends associated with the chemical nature of the polymer
and its increasing hydrophilicity, which are specifically manifested in NIR spectra. The
results obtained with several independent methods provide confirmatory conclusions,
with each method also providing unique findings. The MCR-ALS method and water
difference spectroscopy revealed that polymers of varying hydrophilicity manifest three
major dissimilar behaviors. Firstly, polymers of very low hydrophilicity feature non-
attracting behavior towards water, and therefore, bulk-like water domains are formed
more easily in the sample. Secondly, the polymers of low or medium hydrophilicity
weakly interact with water, and additionally, bulk-like water domains are formed. Thirdly,
hydrophilic polymers strongly interact with water; therefore, no clear evidence of bulk
water domains is present in the NIR spectra of polymer–water systems. Of particular
interest is the dissimilar spectral manifestation of both major water bands, located at ca.
6900 cm−1 and 5200 cm−1 (νs + νas and νas + δ) in the presence of diverse polymers. Some
polymers show simultaneous blue- and redshifts for both major water bands. Furthermore,
wavenumber shifts are much more pronounced for the overtone water band (6900 cm−1)
than they are for the combination band (5200 cm−1).

The 2D-COS analysis revealed that the sequence of intensity changes of the water
bands is dissimilar for polymers of varying hydrophilicity. While for polymers of weak
hydrophilicity, the overtone water band reacts more rapidly to the increase in water con-
tent than the combination band; this trend is opposite for hydrophilic polymers. The
experimental findings by difference spectroscopy proved that even highly hydrophobic
polymers (e.g., PTFE) interact with water, and these interactions manifest themselves in the
water component of the NIR spectra. Hydrophilicity, therefore, is not exhaustive enough
to describe the interaction of a polymer with water. Taking into account the chemical
specificity of the matrix in describing spectral effects of the water–substance interactions is
necessary for successful removing of the water contributions in NIR spectra. The analysis
of the polymer–water mixtures also confirmed that the sensitivity of water towards its
chemical environment is a major factor clearly manifested in NIR spectra. Moreover, with
increasing hydrophilicity of the matrix, in NIR spectra the amplitude and complexity of
spectral variations resulting from water–matrix interactions are enhanced. The 2D-COS in-
vestigations confirmed that strong hydrogen-bonding leads to a diminished band intensity
of the interacting species in NIR spectra [26,27].

Finally, aquagrams are a unique way for rescaling the data and showing wavelength-
specific phenomena. Water band shifts are immediately noticeable in the aquagrams. When
compared with the other methods used in this study, the usefulness of aquagrams for
rapid assessment of the interaction strength of water with the sample matrix was shown.
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Furthermore, when compared with the outcomes of the MCR-ALS procedure, aquagrams
seem capable of highlighting effects, which could not be easily derived in difference spectra.
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Abstract: In this paper, we propose a new spectroscopic method to explore the behavior of molecules
near polymeric molecular networks of water-containing soft materials such as hydrogels. We demon-
strate the analysis of hydrogen bonding states of water in the vicinity of hydrogels (soft contact lenses).
In this method, we apply force to hydrated contact lenses to deform them and to modulate the ratio
between the signals from bulk and vicinal regions. We then collect spectra at different forces. Finally,
we extracted the spectra of the vicinal region using the multivariate curve resolution-alternating least
square (MCR-ALS) method. We report the hydration states depending on the chemical structures of
hydrogels constituting the contact lenses.

Keywords: infrared absorption spectroscopy; molecular vibration; soft contact lenses; water; multi-
variate curve resolution; hydrogel; soft material

1. Introduction

Water in the vicinity of material surfaces has been studied in many systems since it has
significant impacts on various interfacial phenomena such as chemical reaction, adsorption,
friction, and adhesion [1,2]. In the field of biomaterials, water at biomaterial surfaces plays
a critical role in determining the response to protein molecules, cells, and tissues [3–5]. Soft
contact lenses are biodevices consisting of polymer hydrogels that contain water molecules
inside and also on their surfaces [6–8]. Thus, the structure of water in the vicinities of soft
contact lenses (SCLs) has been widely studied by a lot of methods, such as sum-frequency
generation spectroscopy (SFG) and infrared spectroscopy (IR) [9,10]. However, the OH
stretching signal of the vicinal water, which is present at the interface between materials and
water, is not accurately and selectively analyzed by conventional methods. For example,
sum-frequency generation (SFG) spectroscopy enables us to measure the molecules only
in the region where the inversion symmetry is broken. However, it cannot measure the
whole interfacial region with several layers of interfacial molecules. As for attenuated
total reflection (ATR) infrared (IR) absorption spectroscopy, it measures both interface and
bulk regions due to the long evanescent field’s decay length (several hundred nm) [11,12].
Therefore, a method is required to analyze structures of vicinal water, whose property is
different from bulk [13,14].

Here, we apply the algorithm of multivariate curve resolution-alternating least squares
(MCR-ALS) to resolve overlapping OH stretching signals of water molecules into two com-
ponents, namely bulk and vicinal water. MCR-ALS is a model-free or soft-modeling method
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that extracts pure component contributions from multicomponent components [15]. All
that is needed to perform an analysis with MCR-ALS is matrix data of raw measurement
results that contain a mixture of the components. MCR-ALS can provide information on the
concentration and spectral profile of each component. Thus far, MCR-ALS has been success-
fully used to analyze data obtained from a variety of analytical techniques, including mass
spectrometry [16–18], spectroscopic techniques [10,19,20], and cyclic voltammetry [21–23].

In this study, a straightforward method for measuring the vibrational spectra of
the vicinal water of water-containing soft materials, such as SCLs, has been developed
by combining attenuated total reflection-infrared spectroscopy (ATR-IR) with controlled
pressure and the MCR-ALS method. Multiple ATR-IR spectra with varying signal ratios
of bulk and vicinal water were obtained through dehydrating the SCLs by changing the
pressure applied to the SCLs. Using the MCR-ALS method to the ATR-IR spectra of water
in the vicinity of SCLs, the OH stretching signals were resolved into two components (i.e.,
bulk and vicinal water). We attempted the comparison of the spectra of the vicinal water of
four different SCLs. This comparison shows that the difference in spectra depends on the
composition of the materials that compose the SCLs. Moreover, it was found that there is a
material dependence of the spectra of vicinal water. In this paper, we also discussed the
relationship between the degree of fouling and the spectral shapes of the vicinal water in
poly(hydroxyethyl methacrylate) (PHEMA)-based SCLs and silicone-based SCLs.

2. Materials and Methods

2.1. Soft Contact Lenses (SCLs)

The SCLs analyzed in this work are summarized in Table 1. The SCLs (PHEMA-based)
of nonionic and anionic hydrogel used for were omafilcon A (Group II) and ocufilcon D
(Group IV), commercially available as Proclear® 1 day (CooperVision Inc., San Ramon,
CA, USA) and Menicon® 1 DAY (Menicon Co., Ltd., Nagoya, Japan), respectively. In
addition, the SCLs (silicone-based) of nonionic hydrogel (Group V) used were delefilcon
A and somofilcon A, commercially available as DAILIES TOTAL 1® (Alcon Inc., Geneva,
Switzerland) and clariti® 1 day (CooperVision Inc., San Ramon, CA, USA), respectively.

Table 1. SCLs used in the experiments.

Trade
Name

USAN
Name

FDA Category
(Group)

Constituent
Monomers

Proclear® 1 day omafilcon A II HEMA, MPC
Menicon® 1 DAY ocufilcon D IV HEMA, MAA

DAILIES TOTAL 1® delefilcon A V silane, NNDMAA
clariti® 1 day somofilcon A V silane, NVP

USAN = U.S. Adopted Names; FDA = Food and Drug Administration; Group II = high water (≥50%), nonionic;
Group IV = high water (≥50%), ionic; Group V = silicone-based; HEMA = hydroxyethyl methacrylate, MPC =
2-Methacryloyloxyethyl phosphorylcholine, MAA = methacrylic acid, NNDMAA = N,N-dimethylacrylamide;
NVP = N-vinylpyrrolidone.

2.2. Attenuated Total Reflection—Infrared Spectroscopy (ATR-IR)

The IR absorption spectra of hydrated SCLs were measured by Fourier-transform
infrared (FTIR) absorption spectrometer (FT/IR-4600, JASCO Inc., Tokyo, Japan) equipped
with a diamond prism for an ATR configuration. The measurements were performed at
room temperature, and the measurement chamber was constantly purged by pure nitrogen
gas. The intensity of the evanescent field generated in the vicinity of the prism surface
decreases exponentially away from the surface. The decay length of the evanescent wave, d
is expressed as Equation (1):

d =
λ

2πn1

√
sin2θ −

(
n2
n1

)2
(1)

130



Molecules 2022, 27, 2130

where n1, n2, λ, and θ are the refractive indices of the diamond prism and sample, the
wavelength of the infrared light, and the incident angle, respectively. All spectra were
collected in the regions from 4000 to 500 cm−1 with a resolution of 4 cm−1, and 300 spectra
were averaged to acquire a final spectrum. In this work, we focus on the region between
3800 and 2800 cm−1 (region of OH stretching mode), where the theoretical penetration
depth ranges between 416.3 and 570.0 nm.

The background spectrum on the prism without the solution was taken first, and then
10 μL of the filling solution was put onto the prism to obtain the spectrum of the bulk water.
After that, a piece of the SCLs cut into 5 × 5 mm2 surrounded by a plastic wall was placed
in the solution on the prism, then the pressure-controlled ATR-IR measurements were
performed by pressing down the SCLs with a plate from the top, shown in Figure 1. In this
configuration (Figure 1), we can minimize the drying of the SCLs during the measurements.
In that case, the ATR-IR spectra include three different signal components, i.e., (i) bulk,
(ii) water near the polymer networks of the SCLs (vicinal water), and (iii) interfacial water
between the prism and SCLs. The contribution of (i) decreases, whereas the contribution of
(ii) increases when the pressure to hold down the SCLs is increased due to dehydration of
SCLs (Figure 2). The ATR-IR spectra, which consist of bulk and the vicinal water between
the SCLs and the prism, were collected t at different pressures [Pressure 1 to Pressure 4
(ranging between 26 and 157 kPa), with the latter having the highest pressure exerted]. We
optimized the applying pressure to avoid irreversible damage to the SCLs through this
process. We checked that there is no damage to the SCLs from the recovery of the shape of
the SCLs by optical microscopy and the reproducibility of the ATR-IR spectra.

Figure 1. Schematic illustration of the pressure-controlled ATR-IR method.

Figure 2. The dehydration process of SCLs by applying pressure.

2.3. Multivariate Curve Resolution—Alternating Least Squares (MCR-ALS)

The MCR-ALS process was performed in two steps with MATLAB 2021b using the
MCR-ALS package developed by Jaumot et al. [24,25]. The data of all ATR-IR spectra in the
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region between 3800 and 2800 cm−1 (OH stretching band) were imported into MATLAB.
The initial estimation was calculated by a principal component analysis to separate the
spectrum into two pure components at the first step of the MCR-ALS method with the
non-negativity restrictions. At the second step of the MCR-ALS process, the difference
spectra were calculated to remove the components of (iii). The data from the calculation
of the difference spectra can be arranged in a data matrix D (r × c), the r rows of which
are the number of the difference spectra and the c columns of which are the number
of absorbance wavelengths. The MCR-ALS decomposition of matrix D is carried out
according to Equation (2):

D = CST + E (2)

where C (r × n), ST (n × r), and E (r × c) are the matrix that describes how the n chemical
species’ contribution in the spectroscopically active process varies in the different r rows
of the data matrix, the matrix that describes how the spectra of n species changes in the
c columns of the data matrix (pure spectra profiles) estimated by the initial estimation in
the first step of the MCR-ALS method, and the residuals matrix with the data variance
that cannot be explained by the product CST, respectively. This relationship is shown in
Figure 3. The bulk and vicinal water spectra were estimated from the initial estimation
analysis in this study. Then, we apply the MCR-ALS method to extract spectra of two
components from the difference spectra of mixtures of bulk water and vicinal water.

Figure 3. A principle of multivariate curve resolution (MCR).

3. Results and Discussion

Figure 4a displays typical ATR-IR spectra of contact lenses in the whole measurement
range with applying pressure 4 (157 kPa). Depending on the monomers constituting the
SCLs, the spectral shapes in the fingerprint region (1500–500 cm−1) are different. Figure 4b
shows the spectra measured under different pressure (clariti® 1 day). With increasing the
pressure (Pressure 1 to Pressure 4), the signal in the fingerprint region increases, whereas
the intensity in the O-H stretching region decreases. This indicates that the application
of pressure induces the dehydration of SCLs in the measuring region. Figure 4c shows
the spectra in the OH stretching region under different pressure (clariti® 1 day). Together
with the decrease in the intensity, the spectral shape also changed, indicating that the ratio
between the vicinal and bulk water changes depending on the applying pressure. As the
applied pressure increased, the dehydration of SCLs progressed.

We applied the MCR-ALS method to the spectra in the OH stretching region to separate
the spectral components of bulk and vicinal water. Figure 5a displays the results of ATR-IR
spectra, and Figure 5b displays the concentration of bulk and vicinal water obtained by
the MCR-ALS method. We successfully resolved the overlapping ATR-IR spectra of bulk
and vicinal water. The peaks in the region between 2900 and 3000 cm−1 are assigned to CH
stretching modes. Since these modes are not included in the spectrum of bulk water, these
modes are extracted together with the components of the vicinal water in the MCR-ALS
process.
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Figure 4. (a) ATR-IR spectra of the SCLs in the whole measuring range with applying pressure
4; (b) ATR-IR spectra in the whole measurement region under different pressures. (clariti® 1 day)
(c) ATR-IR spectra in the region of the OH stretching band under different pressures (clariti® 1 day).

The MCR-ALS process also provides the ratio of the components (in this case bulk and
vicinal water). Figure 5b showed that the ratio of the vicinal water increases, whereas that
of bulk water decreased with the increase of the pressure, which is reasonable considering
the process of dehydration under the application of pressure.

Figure 6 shows the spectra of bulk water and vicinal water of each sample in the OH
stretching region. The spectra in the OH stretching region reflect the state of hydrogen
bonding states of the vicinal water determined by water–water and water–SCLs interactions.
The spectra of the vicinal water of PHEMA- and silicone-based SCLs were different from
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that of bulk water. This indicates that the hydrogen bonding state of the vicinal water is
different from that of bulk water due to the water-SCLs interaction.

Figure 5. The results of (a) ATR-IR spectra and (b) concentration ratio by MCR-ALS analysis (clariti®

1 day).

Figure 6. ATR-IR spectra of vicinal water of SCLs in the OH stretching region obtained by the MCR-
ALS method. Proclear 1 day and Menicon 1 DAY are PHEMA-based SCLs, and DAILIES TOTAL 1
and clariti 1 day are silicone-based SCLs.

We performed the peak fitting to deconvolute the spectra into pure components to
extract more information from these spectra. Figure 7 shows the results of the peak fitting
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of the spectra of the vicinal water for PHEMA and silicone-based SCLs. For the fitting, we
checked the second derivative of each spectrum to find the position of the peaks in the O-H
stretching region. For all spectra, we found four major components at around 3200, 3400,
3500, and 3600 cm−1, and we performed the fitting of the spectra with the four peaks by
optimizing the positions of the peaks.

Figure 7. The results of the peak fitting of the spectra of the vicinal water for PHEMA (Proclear
1 day) and silicone-based (clarity® 1 day) SCLs. The peaks for the CH stretching modes in the region
between 3000 and 2900 cm−1 were removed by assuming peaks for the modes in the fittings.

According to the previous works on the analyses of water in the vicinity of polymeric
materials by IR absorption spectroscopy [12], water can be classified into three categories:
water that is tightly hydrogen-bonded to polymers, water which is weakly bound to
polymers, and water which has no hydrogen bond with polymers and has a bulk water-like
structure. These three types in the classification are often denoted as non-freezing (strongly
bound) (peak at around 3600 cm−1), freezing bound (weakly bound) (3400 cm−1), and
freezing (free) (3200 cm−1) water, respectively.

The most prominent difference is found for the intensity of freezing bound water
at around 3400 cm−1. Freezing bound water has flexible mobility and fewer water clus-
ters than bulk water, playing an essential role in anti-fouling properties by acting as a
water barrier when proteins and cells adsorb onto polymers [26–28]. Freezing bound
water has been observed in blood compatible polymers such as poly(2-methoxyethyl
acrylate) (PMEA), poly(ethyleneeglycol) (PEG), and poly(2-methacryloyloxyethyl phospho-
rylcholine) (PMPC) [12]. In general, it is well-known that the amounts of protein adsorbed
on SCLs are less for silicon-based SCLs than PHEMA-based ones [8]. Our results show that
the peak tops of the vicinal water spectra of silicone-based SCLs with higher protein resis-
tance are at around 3400 cm−1, indicating agreement with the above-mentioned previous
findings on blood-compatible polymeric materials.

We are currently measuring the amount of protein adsorption on SCLs quantitatively
and correlating the spectra of the vicinal water with the degree of the SCLs’ protein
resistance. Furthermore, we will also attempt to connect the water structure with the degree
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of amenity during the usage of SCLs since the vicinal water contributes to friction between
an eye surface and SCLs.

4. Conclusions

In this work, we proposed a method to analyze the behavior of water in the vicinity of
water-absorbing soft materials such as hydrogels by using conventional ATR-IR absorption
spectroscopy by applying various pressures to modulate the ratio between interface and
bulk components. Then, we extract these spectral components using the MCR-ALS method
from the set of measured spectra. Our results showed that the spectral shapes of the
OH-stretching band, which reflects the hydrogen bonding state of the vicinal water, are
different depending on the chemical structure of polymers constituting contact lenses. We
found that our method can effectively explore the hydration states of materials functioning
in water, such as porous materials, hollow fibers, and other soft materials.

The modulation to the ratio of vicinal and bulk components is not limited to the
pressure used in this work. When we employ the ATR-IR configuration, the concentration
of samples or the surface-prism distance can be possible modulation to change the ratio
between bulk and interface components. We are currently evaluating various interfaces
using these modulations, which will be published elsewhere.

Author Contributions: Conceptualization, T.H. and N.I.; methodology, S.M., S.S. and T.H.; software,
S.M., S.C., S.S, G.V.L. and T.H.; writing—original draft preparation, S.M., G.V.L. and T.H.; writing—
review and editing, N.I. and T.H.; project administration, T.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the JSPS KAKENHI grant (Grant Number JP21H05511,
JP20H05210, and JP19H02565). This work was performed under the “Five-star Alliance” Research
Program in “NJRC Mater. & Dev.”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Our research activities are summarized in http://lab.spm.jp/.

Acknowledgments: We thank Kazue Taki for the administration of this project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Björneholm, O.; Hansen, M.H.; Hodgson, A.; Liu, L.M.; Limmer, D.T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci,
G.; et al. Water at interfaces. Chem. Rev. 2016, 116, 7698–7726. [CrossRef] [PubMed]

2. Hayashi, T. Water at interfaces: Its Behavior and Roles in Interfacial Phenomena. Chem. Lett. 2021, 50, 1173–1180. [CrossRef]
3. Vogler, E.A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 1998, 74, 69–117. [CrossRef]
4. Patel, A.; Mequanint, K. Hydrogel biomaterials. In Biomedical Engineering—Frontiers and Challenges; Reza, F.R., Ed.; In Tech:

London, UK, 2011; pp. 275–296.
5. Ratner, B.D.; Latour, R.A. Role of water in biomaterials. In Biomaterials Science; Academic Press: Cambridge, MA, USA, 2020; pp.

77–82.
6. Garrett, Q.; Laycock, B.; Garrett, R.W. Hydrogel lens monomer constituents modulate protein sorption. Investig. Ophthalmol. Vis.

Sci. 2000, 41, 1687–1695.
7. Garrett, Q.; Garrett, R.W.; Milthorpe, B.K. Lysozyme sorption in hydrogel contact lenses. Investig. Ophthalmol. Vis. Sci. 1999, 40,

897–903.
8. Luensmann, D.; Jones, L. Protein deposition on contact lenses: The past, the present, and the future. Contact Lens Anterior Eye

2012, 35, 53–64. [CrossRef]
9. Kim, S.H.; Opdahl, A.; Marmo, C.; Somorjai, G.A. AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in

saline solution: Adhesion, Friction, and the Presence of Non-Crosslinked Polymer Chains at the Surface. Biomaterials 2002, 23,
1657–1666. [CrossRef]

10. Ahmed, M.; Singh, A.K.; Mondal, J.A. Hydrogen-bonding and vibrational coupling of water in a hydrophobic hydration shell as
observed by Raman-MCR and isotopic dilution spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 2767–2775. [CrossRef]

11. Nagasawa, D.; Azuma, T.; Noguchi, H.; Uosaki, K.; Takai, M. Role of interfacial water in protein adsorption onto polymer brushes
as studied by sfg spectroscopy and QCM. J. Phys. Chem. C 2015, 119, 17193–17201. [CrossRef]

136



Molecules 2022, 27, 2130

12. Morita, S.; Tanaka, M.; Ozaki, Y. Time-resolved in situ ATR-IR observations of the process of sorption of water into a poly
(2-methoxyethyl acrylate) film. Langmuir 2007, 23, 3750–3761. [CrossRef]

13. Bai, M.Y.; Ku, F.Y.; Shyu, J.F.; Hayashi, T.; Wu, C.C. Evaluation of polyacrylonitrile nonwoven mats and silver-gold bimetallic
nanoparticle-decorated nonwoven mats for potential promotion of wound healing In Vitro and In Vivo and bone growth In Vitro.
Polymers 2021, 13, 516. [CrossRef] [PubMed]

14. Leng, C.; Sun, S.; Zhang, K.; Jiang, S.; Chen, Z. Molecular level studies on interfacial hydration of zwitterionic and other
antifouling polymers in situ. Acta Biomater. 2016, 40, 6–15. [CrossRef] [PubMed]

15. Ardila, J.A.; Funari, C.S.; Andrade, A.M.; Cavalheiro, A.J.; Carneiro, R.L. Cluster analysis of commercial samples of Bauhinia spp.
using HPLC-UV/PDA and MCR-ALS/PCA without peak alignment procedure. Phytochem. Anal. 2015, 26, 367–373. [CrossRef]
[PubMed]

16. Pere-Trepat, E.; Lacorte, S.; Tauler, R. Solving liquid chromatography mass spectrometry coelution problems in the analysis of
environmental samples by multivariate curve resolution. J. Chromatogr. A 2005, 1096, 111–122. [CrossRef]

17. Dantas, C.; Tauler, R.; Miguel, M.; Ferreira, C. Exploring In Vivo violacein biosynthesis by application of multivariate curve
resolution on fused UV-VIS absorption, fluorescence, and liquid chromatography-mass spectrometry data. Anal. Bioanal. Chem.
2013, 405, 1293–1302. [CrossRef]

18. Sinanian, M.M.; Cook, D.W.; Rutan, S.C.; Wijesinghe, D.S. Multivariate curve resolution-alternating least squares analysis of
high-resolution liquid chromatography-mass spectrometry data. Anal. Chem. 2016, 88, 11092–11099. [CrossRef]

19. Spegazzini, N.; Ruisanchez, I.; Larrechi, M.S. MCR-ALS for sequential estimation of FTIR-ATR spectra to resolve a curing process
using global phase angle convergence criterion. Anal. Chim. Acta 2009, 642, 155–162. [CrossRef]

20. Bortolato, S.A.; Olivieri, A.C. Chemometric processing of second-order liquid chromatographic data with UV-Vis and fluorescence
detection. A comparison of multivariate curve resolution and parallel factor analysis 2. Anal. Chim. Acta 2014, 842, 11–19.
[CrossRef]

21. Johnson, J.A.; Gray, J.H.; Rodeberg, N.T.; Wightman, R.M. Multivariate curve resolution for signal isolation from fast-scan cyclic
voltammetric data. Anal. Chem. 2017, 89, 10547–10555. [CrossRef]

22. Diaz-Cruz, M.S.; Mendieta, J.; Tauler, R.; Esteban, M. Multivariate curve resolution of cyclic voltammetric data: Application to the
Study of the Cadmium-Binding Properties of Glutathione. Anal. Chem. 1999, 71, 4629–4636. [CrossRef]

23. Torres, M.; Diaz-Cruz, J.M.; Arino, C.; Grabaric, B.S.; Tauler, R.; Esteban, M. Multivariate curve resolution analysis of voltammetric
data obtained at different time windows: Study of the System Cd2+–Nitrilotriacetic Acid. Anal. Chim. Acta 1998, 371, 23–37.
[CrossRef]

24. Tauler, R. Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst. 1995, 30, 133–146. [CrossRef]
25. Jaumot, J.; Gargallo, R.; de Juan, A.; Tauler, R. A graphical user-friendly interface for MCR-ALS: A New Tool for Multivariate

Curve Resolution in MATLAB. Chemom. Intell. Lab. Syst. 2005, 76, 101–110. [CrossRef]
26. Tanaka, M.; Hayashi, T.; Morita, S. The roles of water molecules at the biointerface of medical polymers. Polym. J. 2013, 45,

701–710. [CrossRef]
27. Tanaka, M.; Morita, S.; Hayashi, T. Role of interfacial water in determining the interactions of proteins and cells with hydrated

materials. Colloids Surf. B Biointerfaces 2021, 198, 111449. [CrossRef]
28. Hayashi, T.; Tanaka, M.; Yamamoto, S.; Shimomura, M.; Hara, M. Direct observation of interaction between proteins and

blood-compatible polymer surfaces. Biointerphases 2007, 2, 119–125. [CrossRef] [PubMed]

137





Citation: Miwa, Y.; Nagahama, T.;

Sato, H.; Tani, A.; Takeya, K.

Intermolecular Interaction of

Tetrabutylammonium and

Tetrabutylphosphonium Salt

Hydrates by Low-Frequency Raman

Observation. Molecules 2022, 27, 4743.

https://doi.org/10.3390/

molecules27154743

Academic Editor: Stefano Materazzi

Received: 5 July 2022

Accepted: 20 July 2022

Published: 25 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Intermolecular Interaction of Tetrabutylammonium and
Tetrabutylphosphonium Salt Hydrates by Low-Frequency
Raman Observation

Yasuhiro Miwa 1, Tomoki Nagahama 1, Harumi Sato 1, Atsushi Tani 1,* and Kei Takeya 2

1 Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada,
Kobe 657-8501, Japan; 186d415d@stu.kobe-u.ac.jp (Y.M.); tomo.n.0820.shu@gmail.com (T.N.);
hsato@tiger.kobe-u.ac.jp (H.S.)

2 Institute for Molecular Science (IMS), 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan; takeya@ims.ac.jp
* Correspondence: tani@carp.kobe-u.ac.jp

Abstract: Semi-clathrate hydrates are attractive heat storage materials because the equilibrium tem-
peratures, located above 0 ◦C in most cases, can be changed by selecting guest cations and anions. The
equilibrium temperatures are influenced by the size and hydrophilicity of guest ions, hydration num-
ber, crystal structure, and so on. This indicates that intermolecular and/or interionic interaction in the
semi-clathrate hydrates may be related to the variation of the equilibrium temperatures. Therefore,
intermolecular and/or interionic interaction in semi-clathrate hydrates with quaternary onium salts
was directly observed using low-frequency Raman spectroscopy, a type of terahertz spectroscopy. The
results show that Raman peak positions were mostly correlated with the equilibrium temperatures:
in the semi-clathrate hydrates with higher equilibrium temperatures, Raman peaks around 65 cm−1

appeared at a higher wavenumber and the other Raman peaks at around 200 cm−1 appeared at a
lower wavenumber. Low-frequency Raman observation is a valuable tool with which to study the
equilibrium temperatures in semi-clathrate hydrates.

Keywords: semi-clathrate hydrate; intermolecular interaction; interionic interaction; low-frequency
Raman; equilibrium temperature

1. Introduction

Semi-clathrate hydrate compounds formed from host water molecules and guest
molecules have a similar structure to clathrate hydrate typified by methane hydrate. They
have a hydrogen-bonded cage structure that surrounds a guest cation, and one of the water
molecules is replaced with a guest anion. Due to having empty cages and mild formation
conditions under atmospheric pressure (the equilibrium temperature is above 0 ◦C), semi-
clathrate hydrates have potential for use in gas separation and storage as well as for latent
heat storage materials [1–3]. In terms of practical use, semi-clathrate hydrates with greater
gas storage capacity and phase change at an adaptive temperature are required [4,5], and it
is desired to freely select the combination of ions as guest substances [6].

A large number of the guest substances, i.e., combinations of various cations and
anions, have been reported [7–11]. Among them, tetrabutylammonium (TBA) salts and
tetrabutylphosphonium (TBP) salts, which are quaternary onium salts, are well known as
ionic guest substances. In tetrabutylammonium bromide (TBAB) semi-clathrate hydrate,
bromide anions displace part of the host water molecules and form cage structures with
them. Meanwhile, the butyl groups of TBA cations occupy four partially broken cages.
A cage is composed of water molecules in several different patterns, and the total cage struc-
ture is defined by the combination of these cages. For this reason, even for the same guest
substance, the crystal structure of semi-clathrate hydrate may differ depending on the cage
structure of the surrounding water molecules. For example, TBAB hydrates have two main
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crystal structures depending on hydration number (TBAB·26H2O and TBAB·38H2O) with
different equilibrium temperatures (12.0 and 9.5 ◦C) and dissociation enthalpies (150.7 and
219.4 kJ/mol), respectively [12,13]. In addition, the hydrates encapsulating guest substances
with different combinations of TBA/TBP cations and halide anions (bromide/chloride)
have inherent enthalpies and equilibrium temperatures; tetrabutylammonium chloride
(TBAC) hydrate has a dissociation enthalpy of 156 kJ/mol and an equilibrium temperature
of 15.1 ◦C [14], and tetrabutylphosphonium chloride (TBPC) hydrate has a dissociation
enthalpy of 164.7 kJ/mol and an equilibrium temperature of 10.3 ◦C [15]. Tetrabutylphos-
phonium bromide (TBPB) hydrates also have two crystal structures depending on the
hydration number (TBPB·32H2O and TBPB·38H2O) [16,17]. Their dissociation enthalpies
are 184.0 kJ/mol for TBPB·32H2O and 211.8 kJ/mol for TBPB·38H2O, and their equilibrium
temperatures are 9.1 and 9.2 ◦C, respectively [18].

Thus, the equilibrium temperature and the dissociation enthalpy are greatly different
in each guest substance. The cause of the difference in the equilibrium temperature between
anion species such as bromide and chloride ions is currently estimated to be the size of the
ionic radius of the anion [19], that is, the size of the partial molar volume of the anion [20].
Though other inferences about the shape of the anion, the fit of the cation into the cage,
and the hydrophilicity have also been considered as reasons for the differences in the
equilibrium temperatures [6,8,10,21], no view to understand the difference in equilibrium
temperatures from the intermolecular interactions between ions or between guest and host
molecules has yet been formulated.

Intermolecular interactions are strongly associated with phase change materials be-
cause the change in the binding force directly affects the equilibrium temperatures of
materials. The energy of this intermolecular interaction corresponds to the terahertz region
(THz) between infrared waves and microwaves. In other words, spectroscopy in the THz
region can reveal intermolecular interactions such as lateral and translational vibration
binding energies instead of intramolecular bending and stretching vibrations which reflect
the conformation of guest molecules. For example, several studies were conducted on the
higher order structure of proteins, hydration of polymers, and discrimination of crystal
polymorph of pharmaceutical products [22–24]. In general, the terahertz region often refers
to the 0.1–10 THz range. Low-frequency Raman spectroscopy, known as a type of terahertz
spectroscopy, used in this study, covered the region of 3.3–330 cm−1 (corresponding to
0.1–10 THz) below the fingerprint region. Practically, intermolecular interactions during
phase change were investigated. For example, terahertz spectroscopic observation of
carbamazepine revealed that intermolecular interaction changed during solid and glass
transitions [25]. In the observation of the change in the low-frequency Raman spectra upon
the melting of ion liquids, the structural change of the substances was discussed in terms of
intermolecular binding strength [26]. These studies suggest that the direct observation of
intermolecular binding forces in semi-clathrate hydrates could provide a correlation with
equilibrium temperatures.

The simple structure of clathrate hydrates of Xe hydrate and tetrahydrofuran (THF)
hydrate was investigated using low-frequency Raman spectroscopy [27–29]. They showed
two Raman peaks at around 210 cm−1 and below 100 cm−1. The peak around 210 cm−1

was attributed to the host water framework. The other peak below 100 cm−1 was related
to the localized anharmonic motions of guest atoms and host lattice phonons, which was
discussed in Xe hydrate. In addition, molecular dynamics simulation for methane hydrate
estimated the degree of rotation and vibration as translational rattling motions of molecules
in the low-frequency region [30]. According to these studies, intermolecular interactions,
especially between guest/guest or guest/host molecules in semi-clathrate hydrates, mainly
appeared near or below 100 cm−1. Nevertheless, semi-clathrate hydrates below 100 cm−1

were not investigated, although the Raman spectra of genuine clathrate hydrates were
observed below 100 cm−1 as described above. In addition, Raman measurements of semi-
clathrate hydrates in the THz region of 100–300 cm−1 were performed only for TBAB
hydrate [31]. Therefore, we investigated the low-frequency Raman spectra, particularly of
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less than 300 cm−1 with several quaternary onium salts and their semi-clathrate hydrates
to reveal the intermolecular interaction between guest/guest and guest/host molecules
that may have a considerable influence on the equilibrium temperatures.

2. Results and Discussion

2.1. Semi-Clathrate Hydrates, Clathrate Hydrates, and Ice

Figure 1 shows the Raman spectra at 263 K in the 15–300 cm−1 region of TBAB hydrate
(hydration number was 26), THF hydrate and ice with H2O or D2O. This spectral region
contains common or unique features among semi-clathrate hydrate, clathrate hydrate,
and ice, all of which are composed of water molecule networks. In the region from
100–300 cm−1, the TBAB hydrate (H2O) had an apparent peak at 261 cm−1 and a broad one
around 191 cm−1. The peak at 261 cm−1 is related to TBA cations and the peak around
191 cm−1 is attributed to the intermolecular hydrogen stretching O-O vibration mode,
which is in good agreement with the previous Raman investigations [31,32]. TBAB hydrate
(D2O) revealed a peak at 261 cm−1 which was the same position of the TBAB hydrate
(H2O) and a peak around 189 cm−1 which was slightly shifted to a lower wavenumber
from 191 cm−1 in TBAB hydrate (H2O). On the other hand, THF hydrate and ice showed a
peak around 200 cm−1, reflecting the O-O vibration mode [28]. The peaks in THF hydrate
were observed at 208 cm−1 for the H2O hydrate and 203 cm−1 for the D2O hydrate and
the peaks in ice were observed at 214 cm−1 for H2O ice and 208 cm−1 for D2O ice. The
peaks in all the deuterated samples around 200 cm−1 shifted to a lower wavenumber. The
peak around 191 cm−1 in TBAB hydrate was much broader than that in THF hydrate and
ice. These results indicate that the peak position and broadness of O-O vibration modes
apparently depend on the materials with hydrogen-bonded networks and their hydrogen
isotope in water molecules.

Figure 1. Raman spectra for THF hydrate, TBAB hydrate, and ice with H2O or D2O. The dotted
vertical lines around 65 cm−1 from (a–d) were used to make it easier to see a peak shift.

In the region below 100 cm−1, TBAB hydrate (H2O) had a broad peak around 67 cm−1

and THF hydrate (H2O) had a sharp peak at 59 cm−1, although no clear peak was observed
in ice. The sharp peak of THF hydrate was attributed to the host water framework in
structure-II clathrate hydrate [28]. The Raman and inelastic neutron scattering (INS) spectra
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of Xe hydrate (Structure-I) also have a similar peak at 60 cm−1, which is considered to be
based on the water framework [27]. Furthermore, the Raman spectrum of liquid water
shows weak peaks at 53 and 73 cm−1 [33]. Isotope effects on the peak position were also
observed in THF hydrate (59.0 cm−1 for the H2O hydrate and 57.4 cm−1 for the D2O
hydrate), while they were not clearly observed in TBAB hydrate. Though the broader peak
in TBAB hydrate might mask the isotope effect, the peak in TBAB hydrate may be attributed
to not only the water framework but also to other factors. Subbotin et al. reported that
the phonon density of states in this region was different between semi-clathrate hydrate
and genuine clathrate hydrate [34]. Furthermore, the shift of the peak position around
67 cm−1 was not observed between 173 K and 273 K, although the peak near 191 cm−1,
intermolecular hydrogen stretching O-O vibration mode, shifted to a higher wavenumber
with decreasing temperature. These results reinforce that factors other than the water
molecule framework itself affected the characteristics of the peak around 67 cm−1 in TBAB
hydrate.

The Raman spectra of tetrabutylammonium and tetrabutylphosphonium salts and
their hydrates (H2O) are summarized in Figure 2. For the spectra of the hydrates, single
peak spectra around 65 cm−1 were simulated by fitting and are indicated in Figure 2.

Figure 2. Raman spectra for tetrabutylammonium and tetrabutylphosphonium salts and their
hydrates. (a) TBPC hydrate; (b) TBPB·38H2O; (c) TBPB·32H2O; (d) TBAC hydrate; (e) TBAB·38H2O;
(f) TBAB·26H2O; (g) TBPB; (h) TBAC and (i) TBAB. The solid thick lines around 65 cm−1 are single
peak spectra simulated by fitting.
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2.2. Tetrabutylammonium and Tetrabutylphosphonium Salts

First, we focused on the spectra of the three salts. In the region of 150–300 cm−1,
TBAB had only one peak at 263 cm−1, whereas TBPB and TBAC had two peaks at around
220 cm−1 and at 247 cm−1 in TBPB and at 255 and 280 cm−1 in TBAC. In the 50–150 cm−1

region, undistinguished peaks were observed in all the salt samples. TBAB had a main
peak at 71 cm−1 and another peak around 92 cm−1 with about half of the intensity of the
main peak. These two peaks had a similar line width. TBAC had broad peaks around
59 and 83 cm−1 together with a smaller peak at around 110 cm−1, and TBPB had broad
peak(s) around 68 cm−1.

The two main peaks in TBAC were a little far apart from each other in comparison with
those in TBAB and TBPB, which was possibly caused by the mobility of anion [35]. Besides,
the peak intensity around 83 cm−1 in TBAC was comparatively large rather than that
around 92 cm−1 in TBAB, which was also considered to be due to the difference of anions.
Similar trends were also observed in the THz infrared absorption spectra in the liquid
state of TBAB and TBAC [36]. Quantum calculations for TBAB in this wavenumber region
revealed four main infrared active peaks at 46, 57, 80, and 93 cm−1 and corresponding
Raman active peaks at similar positions [37]. In comparison with the simulated Raman
peaks, the peak positions observed in this study were slightly shifted to lower wavenumber
in all cases. It is noteworthy that the clearly visible peak around 70 cm−1 was attributed to
the translation of the anion along with a degree of flexing and rotation of the alkyl chains,
related to the cation–anion interaction [37].

2.3. Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates: Around 240–265 cm−1

In the range of 240–265 cm−1, TBAB and TBAC hydrates had a sharp peak at 261 cm−1,
whereas TBPB and TBPC hydrates had a broad peak around 245 cm−1. The peak in TBA
hydrates was attributed to a stretching lattice vibration mode in the cation [38], indicating
that the peak in TBP hydrates is caused by the same motion. The sharp peak of the TBA ion
may be due to the fact that the TBA ion has only a trans conformation, while the TBP ion
has both trans and gauche conformations, as reported by Kobori et al. who investigated the
conformations in the comparison of tetrabutylphosphonium hydroxide (TBPOH) hydrate and
tetrabutylammonium fluoride (TBAF) hydrate [20]. In addition, Muromachi et al. [17] reported
that TBP ions distorted the cage structure by pushing the cage more strongly than TBA ions
because of the larger bond length between carbon and phosphonium than that between carbon
and nitrogen. This is another reason for the broader peak observed in TBP hydrate.

2.4. Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates: Around 200 cm−1

All peaks were weak and broad in comparison with those in the THF hydrate and
ice as shown in Figure 1. Peak tops appeared at 193 cm−1 for TBAB·26H2O, 195 cm−1 for
TBAC hydrate, 203 cm−1 for TBAB·38H2O, 205 cm−1 for TBPC hydrate, 208 cm−1 for both
TBPB·32H2O and TBPB·38H2O. The peak positions of the TBA salt hydrates were at a lower
wavenumber than those of the TBP ones. Besides, the TBAB hydrate with higher hydration
number (TBAB·38H2O) had a peak at a higher wavenumber than TBAB·26H2O, although
TBPB hydrates with different hydration numbers had peaks at the same position. As
described before, these peaks around 200 cm−1 were attributed to intermolecular hydrogen
stretching O-O vibration mode. In comparison with the peaks in liquid water and solid ice,
all peaks in the semi-clathrate hydrates were observed between the peaks of liquid water
(175 cm−1) and solid ice (213 cm−1) [33,39].

The differences in the peak positions were first considered in terms of the bonding
distance of the water framework. The neighbor distance between oxygen atoms in wa-
ter molecules was obtained for the three following hydrates using the reported crystal
structures [14,17,40]. The average O-O length is 2.76 Å for TBAB·38H2O and TBPB·38H2O,
whereas it is 2.80 Å for TBAC·30H2O, which is slightly longer than that in the bromide
hydrates. The variation of the neighbor O-O length in TBAC hydrate was also larger than
that in the two bromide hydrates. According to reference [41], the distribution of the O-O
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length in solid ice is concentrated between 2.7 and 2.8 Å with a maximum at 2.76 Å, whereas
the distribution in liquid water is much broader (2.5–3.2 Å) with a longer average distance
(2.81 Å). Though the average O-O lengths in these bromide hydrates were closer to that
in the solid ice, the observed peaks in the hydrates appeared around 200 cm−1, which is a
lower wavenumber than for ice. Similarly, though the average O-O length in TBAC·30H2O
was closer to that in the liquid water, the observed peak was around 195 cm−1, with a
higher wavenumber than the liquid water peak. These results mean that this perspective
is insufficient to explain the differences of the peak position around 200 cm−1 among the
hydrates.

Then, we focused on the tetrahedrality of water molecules in the hydrates. The peak
position in this region was reflected by the degree of deformation of the tetrahedral unit
and the shift to a lower wavenumber indicated a deformation of the tetrahedral unit [42].
All the peaks in the hydrates were located at a lower wavenumber than that in solid ice,
indicating that the tetrahedrality of water molecules deformed in the hydrates rather than
in ice. In comparison with the TBA and TBP salt hydrates, peaks at lower wavenumbers
in the TBA hydrates than in the TBP hydrates suggested that tetrahedrality was more
deformed in the TBA hydrates. In particular, TBAB·26H2O and TBAC hydrates, whose
peaks were located below 200 cm−1, could be highly deformed. The deformation of the
tetrahedral units is considered to be related to the presence of soft hydrogen bonds, i.e.,
water-like hydrogen bonds [31]. This could be the reason why TBAB·26H2O and TBAC
hydrates had relatively higher equilibrium temperature.

The small difference in the peak positions near 200 cm−1 in the hydrates could be also
affected by the charge distribution of onium ions because the motion of water molecules
in the hydrates was influenced by the charge distribution. Based on molecular orbital
simulation [21], the charge density on phosphonium was concentrated in the TBP ion rather
than that of nitrogen in the TBA ion. In other words, the positive charge in the TBA ion was
distributed compared to the TBP ion. This implies that the water molecules surrounding the
center cation interact with phosphonium and move less easily in TBP hydrates. This may
also cause the peaks near 200 cm−1, at a relatively high wavenumber in the TBP hydrates.

All these results indicate that the vibrational peaks between water molecules in the
hydrates could be used to discuss the water molecule network including influences by
guest cations, although the intensity of the peaks themselves was smaller than that of ice or
clathrate hydrate. In contrast, the effect of guest anions was less pronounced.

2.5. Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates: Below 100 cm−1

The fitting results of the peak position around 65 cm−1 and their full width at half
maximum (FWHM) in six semi-clathrate hydrates are summed up in Figure 3. The
peaks of the TBA series are located at about 65–69 cm−1 and those of the TBP series at
61–64 cm−1. The FWHM of the TBP series was relatively narrower than that of the TBA
series. TBAC and TBPC hydrates had a wider FWHM than TBAB and TBPB hydrates,
respectively. TBAB·26H2O had a wider FWHM than TBAB·38H2O, which is related to the
lower hydration number. Similar results were observed in TBPB·32H2O and TBPB·38H2O.
As discussed in Section 2.1, the peak around 65 cm−1 in TBAB·26H2O was attributed to not
only the water molecule framework but also other factors such as guest anions and cations.
This is supported by the variation of the peak position and FWHM in six semi-clathrate
hydrates as shown in Figure 3.
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Figure 3. Relationship between peak position and FWHM in six semi-clathrate hydrates. Markers are
explained in the legend.

Figure 3 shows that the differences in the peak positions largely depend on the cations.
In the comparison of TBAB·38H2O and TBPB·38H2O, which have the same crystal structure
and hydration number, the interionic distance of TBAB was 5.703 Å [40] and closer than
that of TBPB, 5.837 Å [17]. This is one of the reasons why TBA salt hydrates have peaks
at relatively higher wavenumbers. Although another reason may be a lower mass in the
ammonium ion than in the phosphonium one, the difference is small and would not affect
the peak position effectively. In addition, one of the more intriguing factors is the charge
dispersion of the onium ions. As mentioned above, the charge distribution of TBA ions
was relatively delocalized compared to that of TBP ions. This indicates that the cation–
anion interaction was expected to be stronger in the TBA salt hydrates because a study on
quaternary phosphonium/ammonium ionic liquids (ILs) showed that the cation–anion
interaction was stronger in the dispersive ammonium ILs than in the phosphonium ILs [43].
This also causes the peaks in TBA salt hydrates at a comparatively higher wavenumber.

The influence of the anions may also have been observed in this region due to the
mass of the anions; among the same cations, the hydrates with Cl ions showed peaks at
a higher wavenumber than those with Br ions. The smaller ionic radius of the Cl ion is
also responsible for the shorter interionic distance, which may affect the peak position at a
higher wavenumber. Since the anions were incorporated into the water molecule network,
the interionic interaction affected the stability of the cages. This implies that the peaks
related to interionic interaction at a higher wavenumber are related to a higher equilibrium
temperature. It is consistent with the fact that the hydrates with Cl ions have relatively
high equilibrium temperatures among the same cations as shown in Section 1.

A peak shift to a low wavenumber was observed around 65 cm−1 in the hydrates
in comparison with the salt samples. This peak shift was due to hydration, which is in
agreement with several studies using the terahertz region [44,45]. The cations were isolated
by the hydrogen bonding of water molecules, which increased the interionic distance and
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lowered the binding energy. In the case of TBAB, the interionic distance actually increased
from 4.905 Å [46] for TBAB to 5.703 Å [40] for TBAB 38H2O. Another reason may be that
hydration restricts the motion of the ions. Therefore, the spectra observed in the hydrates
were generally similar without the significant differences observed between the ILs of
TBAB and TBAC. The ratio of the average frequency of the peak positions in TBAB and
TBAC ILs is 0.70 [36].

As for the differences in FWHM, crystal structures and hydration numbers affect
the FWHM; tetragonal bromide hydrate, TBAB·26H2O, expressed a wider peak than the
orthorhombic hydrate, TBAB·38H2O, and the hydrate with a lower hydration number,
TBPB·32H2O, had a wider peak than that with a higher hydration number, TBPB·38H2O.
This is probably due to the fact that the higher hydration number in the orthorhombic
hydrates reduced the number of ionic guests per unit cell [8], i.e., the influence of cation–
anion interactions. It was noted that the FWHM was even smaller for THF hydrate (clathrate
hydrate), which had no ionic interaction as shown in Figure 1. For further investigation, a
simulation study was necessary to clarify the main causes behind the differences in FWHM.

2.6. Raman Peaks and Equilibrium Temperatures in Semi-Clathrate Hydrates

Low-frequency Raman observation of the six semi-clathrate hydrates revealed the
peak shift was related with interionic distance, hydration number, and guest ion species. We
found the trend that for a higher hydration number, with bromide ion as an anion, and/or
TBP ion as a cation, (a) Raman peaks of around 65 cm−1 shifted to a lower wavenumber,
(b) Raman peaks around 200 cm−1 shifted to a higher wavenumber, and (c) Raman peaks
around 65 cm−1 became narrower. The positions of these peaks were generally inversely
correlated. This may be because the peak around 200 cm−1 mainly reflected the interaction
between water molecules and the peak around 65 cm−1 mainly reflected the interaction
between the ions.

Interestingly, in most cases of the semi-clathrate hydrates with a higher equilibrium
temperature among all the samples, (a) Raman peaks of around 65 cm−1 appeared at a
higher wavenumber and a (b) Raman peak around 200 cm−1 appeared at a lower wavenum-
ber. This means that low-frequency Raman observations are valuable as a tool to study
the equilibrium temperature in semi-clathrate hydrates. For further investigation from
the physicochemical aspect, molecular simulation should be performed to understand the
attribution of the peaks at the low-frequency region.

3. Materials and Methods

3.1. Preparation of Semi-Clathrate Hydrates

The chemicals used in this study are listed in Table 1. According to the previous reports,
the aqueous solutions were prepared with a composition in the range of mass percent
concentration w = 0.32–0.40 (w = 0.40 for TBAB·26H2O [12], w = 0.32 for TBAB·38H2O [13],
w = 0.34 for TBAC hydrate [14], w = 0.37 for TBPB·32H2O [47], w = 0.30 for TBPB·38H2O [17],
w = 0.36 for TBPC hydrate [15]) using ultrapure water. Once the initial crystal nuclei were
formed by cooling the aqueous solutions at −20 ◦C, semi-clathrate hydrates were formed
by maintaining the samples at 3 ◦C for at least 3 days. THF hydrate was also prepared as
a reference of a genuine clathrate hydrate by the same procedure using an THF aqueous
solution adjusted to w = 0.19. In addition, to observe the isotope effect, TBAB hydrate
(hydration number was 26) and THF hydrates with D2O were prepared according to the
same procedure using the aqueous solutions with the same molar ratio as those of H2O.
The salt samples shown in Table 1 were also prepared by keeping them dry with nitrogen
gas to avoid further hydration just before Raman measurements.
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Table 1. Information on chemical compound.

Chemical Name Source Mass Fraction Purity

Tetrabutylammonium Bromide Wako Pure Chemical Industries Ltd. 98+%
Tetrabutylammonium Chloride Tokyo Chemical Industry Co., Ltd. 98%

Tetrabutylphosphonium Bromide Wako Pure Chemical Industries Ltd. 95+%
Tetrabutylphosphonium Chloride Iolitec Ionic Liquids Technologies GmbH 95+%

Ultrapure water homemade by ADVANTEC RFU464TA resistivity is 18.2 MΩ cm
Deuterium oxide Cambridge Isotope Laboratories, Inc. D, 99.9%

Two observation methods of Raman and equilibrium temperature were used to con-
firm the hydrate samples had the desired hydration number, especially for the different
hydration numbers of TBAB hydrates (26H2O and 38H2O) and TBPB ones (32H2O and
38H2O). For TBAB hydrates, based on the previous studies on the ordinary Raman spectra
of the hydrates [31], we confirmed the hydration number of 26 or 38. We observed slightly
different spectra both in the C-H stretching modes of the butyl groups (2700–3050 cm−1)
and in CH2 bending modes of the alkyl groups (around 1320 and 1455 cm−1), which were
comparable to those in the previous study [31]. For TBPB hydrates, we confirmed the
hydration numbers using the equilibrium temperature observed by increasing the tempera-
ture of the thermostatic bath carefully, because no clear differences in the Raman spectra
emerged. The other hydrates were also recognized as the desired semi-clathrate hydrates
by the same method.

3.2. Low-Frequency Raman Measurements

For the Raman scattering study, the particle samples were placed into aluminum pans
on the temperature control stage (THMS600, Linkam, Salfords, UK) with liquid nitrogen.
The semi-clathrate hydrates were measured at a temperature in the range of 173–273 K.
The THF hydrates and water ices were measured only at 263 K. The salt samples were
measured at room temperature.

Low-frequency Raman measurements were performed using LabRAM HR Evolution
(HORIBA, Kyoto, Japan). The wavenumber calibration was performed on a Si plate with
a Raman line at 520.7 cm−1. The spectral resolution was 0.5 cm−1 and wavelength of the
laser was 532 nm. The laser beam had a power of about 100 mW. Scans were performed
10 times and the exposure time was 15 s. The background noise was separately acquired
and subtracted from the original spectrum to obtain the Raman spectrum from the samples.

3.3. Spectrum Processing

For discussion, the observed spectrum was divided into two wavenumber ranges of
below 100 cm−1 and 100–300 cm−1. The common features of the peaks below 100 cm−1 in
the semi-clathrate hydrates were a large broad peak at around 65 cm−1 and a tiny broad
one below 50 cm−1. The weak peak below 50 cm−1 appeared on the tilt background and
showed no apparent peak top, meaning that it was difficult to identify the peak accurately.
Therefore, we focused on the peak around 65 cm−1 in further discussions. To evaluate
the peak position and FWHM, we assumed the constant base line from 47–50 cm−1 to
80–90 cm−1 to decrease the influence from the broad peak below 50 cm−1 and performed
fitting with a single gaussian peak after subtraction with the base line. We attempted to
evaluate peak position and FWHM with several different base lines, indicating that the
peak position was the same whereas the FWHM was slightly changed. In all cases, we
confirmed that the correlation of the FWHM with the samples did not change. Since these
parameters depend on the fitting model, we considered the relative differences of the peak
position and FWHM in the discussion. We postulated a gaussian peak for the peak around
65 cm−1 because a gaussian function was used for fitting the main peak in the spectral
analysis of the low-wavenumber region in the case of alkylimidazolium-based ILs and
alkylammonium-based ILs [36,48].
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4. Conclusions

Low-frequency Raman observation was performed with tetrabutylammonium and
tetrabutylphosphonium salt hydrates as well as tetrabutylammonium and tetrabutylphos-
phonium salts. The spectra revealed that Raman peaks appeared in three wavenumber
regions. In the range of 240–265 cm−1, Raman peaks due to a stretching lattice vibration
mode in the cation were narrow and apparent in TBA salt hydrates and broad in TBP salt
hydrates. In the range around 200 cm−1, Raman peaks, attributed to the O-O stretching
vibration between water molecules, appeared below 200 cm−1, i.e., at a lower wavenumber
in the TBAB·26H2O and TBAC hydrate. In the range around 65 cm−1, Raman peaks,
affected by not only the water framework but the contribution of guest substances as well,
were observed at a higher wavenumber in the TBAB·26H2O and TBAC hydrate. The trends
in the peak shift were opposite in these two peaks. Furthermore, these two hydrates with
higher equilibrium temperatures suggested that the equilibrium temperature in the semi-
clathrate hydrates was related with the peak positions of the peak around 65 cm−1 and
200 cm−1. In designing a semi-clathrate hydrate, the direct observation of low-frequency
Raman peaks could be used as an indicator of the equilibrium temperature of the hydrate.
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Abstract: The mixing water used for cement concrete has a significant effect on the physical properties
of the material after hardening; however, other than the upper limit for the mixed impurities, not
enough consideration has been given to the functions and characteristics of water at the molecular
level. In this study, we investigated the effect of four different types of water (two spring-, mineral
waters, tap water and distilled water) on the drying shrinkage of the hardened cement by comparing
the material properties of the concrete specimens and analyzing the molecular structure of the
water and cement mortar using aquaphotomics. The near infrared (NIR) spectra of waters used for
mixing were acquired in the transmittance mode using a high-precision, high-accuracy benchtop
spectrometer in the range of 400–2500 nm, with the 0.5 nm step. The NIR spectra of cement paste
and mortar were measured in 6.2 nm increments in the wavelength range of 950 nm to 1650 nm
using a portable spectrometer. The measurements of cement paste and mortar were performed on
Day 0 (immediately after mixing, cement paste), 1 day, 3 days, 7 days, and 28 days after mixing
(cement mortar). The spectral data were analyzed according to the aquaphotomics’ multivariate
analysis protocol, which involved exploration of raw and preprocessed spectra, exploratory analysis,
discriminating analysis and aquagrams. The results of the aquaphotomics’ analysis were interpreted
together with the results of thermal and drying shrinkage measurements. Together, the findings
clearly demonstrated that the thermal and drying shrinkage properties of the hardened cement
material differed depending on the water used. Better mechanical properties were found to be a result
of using mineral waters for cement mixing despite minute differences in the chemical content. In
addition, the aquaphotomic characterization of the molecular structure of waters and cement mortar
during the initial hydration reaction demonstrated the possibility to predict the characteristics of
hardened cement at a very early stage. This provided the rationale to propose a novel evaluation
method based on aquaphotomics for non-invasive evaluation and monitoring of cement mortar.

Keywords: cement concrete; mortar; water; water molecular structure; drying shrinkage; aquaphotomics;
near infrared spectroscopy

1. Introduction

Cement concrete is composed of cement, water, fine aggregate (sand), coarse aggregate
(gravel), and admixture. The hydration reaction of cement starts immediately when it
comes into the contact with water, and cement hydrates are formed as the cement gradually
hardens. Generally, the material properties of cement concrete and the quality of cement
depend on the weight ratio of water to cement (water–cement ratio, w/c ratio) [1–5]. This
number w/c is in inverse correlation with the concrete strength: the smaller the w/c ratio, the
greater the strength, durability and watertightness [3]. The w/c ratio is linked to the spacing
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between the cement particles in the cement paste—if the spacing is smaller, the process
of filling in the gaps between cement particles by cement hydrates is faster and the links
created by the hydrates are stronger, hence the stronger the concrete [3]. Another important
aspect related to the water-to-binder (or water-to-cement) ratio is the microstructure, and
especially the nanoscale characteristics [6]. For example, the dense microstructure provides
the excellent mechanical properties and long-term service performance to ultra-high per-
formance concrete (UHPC), an advanced cement-based [7,8]. The UHPC mixtures usually
have a low water-to-binder ratio, and a higher content of cement and silica fume parti-
cles [8], which, as research studies showed, mainly play the filling role, and the hydration
degree of cement is only around 30–35% [9]. On the other hand, a high water-to-binder
ration leads to high risks for cracking due to autogenous shrinkage, which is closely related
to mechanical properties and durability [6]. The incorporation of various organic or inor-
ganic modifiers in cement is another method of effectively influencing the water-to-binder
ratio due to the modified binder properties, which can lead to improved volume stability
and water resistance [10]. Therefore, it is important to control the water–cement ratio in
order to provide resistance to neutralization (carbonation-reaction with the carbon dioxide
from the atmosphere) and infiltration of salt (chloride damage) into cement concrete—the
two main causes of chemo-mechanical changes and deterioration of the durability of the
concrete structure [5].

The shrinkage of cement concrete is a phenomenon that can occur in any concrete
structure, and cracks and dimensional changes due to shrinkage can greatly affect the
state of stress in the structure and various performance parameters, including durability.
The cement shrinkage is one of the classical research subjects in concrete engineering;
the elucidation of the mechanism of shrinkage, theoretical and various other models and
prediction methods have been proposed [11–20]. The shrinkage behavior is associated
rather with the microscale thermodynamic properties such as hydration, pore-structure
formation, and the water status in micropores [20], than with the macroscale properties
such as the w/c ratio [21]. This is because the shrinkage behavior cannot always be evaluated
only by the w/c ratio. In order to explain the microscale aspects of the drying shrinkage
principle, several theories concerning the water status in micropores have been proposed
to explain the mechanism that causes drying shrinkage: capillary tension theory (caused
by the water meniscus), disjoining pressure theory (caused by water films in narrow pores),
surface tension theory (surface energy change caused by water desorption), and interlayer
water transfer theory [20–28].

Since the size of the micropores in cement matrix varies greatly, the water status
can be quite different, and the theories explaining the shrinkage behavior are usually
combined to provide an explanation for the behavior at various levels of relative humidity
(RH) [20]. Capillary tension and disjoining pressure are considered to be the predominant
mechanisms in the mid to high humidity range, and surface tension and interlayer water
transfer in the low humidity range [20]. However, there is currently no unified theory that
can explain the shrinkage behavior of hardened cement over the entire humidity range.
Since water, fine aggregate, and coarse aggregate in cement concrete are generally collected
and procured locally at the place where cement concrete is manufactured, the physical
properties of the materials, composition, and curing conditions (environmental conditions)
can vary greatly. This makes it additionally difficult, considering the great many number of
variables, to efficiently investigate the microscopic mechanisms causing the shrinkage, and
to understand the shrinkage behavior of hardened cement. Therefore, there is a great need
for the establishment of a universal and comprehensive analysis method that can take into
consideration all these aspects.

Given the background explained above, and especially the role of water in the shrink-
age process, it is evidently necessary to examine various chemical and physical properties
of water because they will directly influence the physical properties of cement concrete
after hardening. In regards to the conditions that water should satisfy in order to be used
for the production of cement concrete, the standards such as JIS A 5308—Ready-Mixed
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Concrete Appendix C [29] and ASTM Designation C94-96—Standard Specification for
Ready-Mixed Concrete [30], only specify that the water used should be clean potable water.
However, even the sludge and well water are sometimes used, and there are no specific
requirements other than the upper limit of harmful substances such as impurities and
chloride ions [30,31].

In recent years, various types of “functional water” have been developed, that is,
waters whose functionality is supposedly enhanced to serve a specific purpose for health
and well-being [32,33], or other purposes in medicine and agriculture [34–39]. In the
science of cement materials, studies have demonstrated that the use of “functional water”,
for example magnetically treated water or hydrogen nano-bubble water, can effectively
improve the compressive strength, workability, and watertightness of cement concrete,
even reducing the needed amount of cement in the mix [40–48]. However, since the
mechanism of action of “functional water” on the physical properties of the hardened
cement has not been investigated at the molecular level, the effectiveness of “functional
water” cannot be quantitatively evaluated for full-scale practical use and warrants further
investigations [48,49].

The methods used to date to investigate the cement hydration include isothermal
calorimetry, thermal analyses, monitoring of chemical shrinkage, in situ quantitative X-
ray diffraction, nuclear magnetic resonance spectroscopy (NMR), quasi-elastic neutron
scattering (QENS), and small angle neutron scattering (SANS). They have proven useful
for comparing the hydration of different cements, and especially in combination, they can
provide insights into the hydration process that cannot be obtained by any one method
alone. However, all of them monitor the overall progress of hydration, without providing
more insight into the nature of the occurring chemical reactions or resolving the details
of particular underlaying mechanisms [50]. In particular, they cannot be exploited on a
massive scale in practical applications.

In this study, aquaphotomic near infrared (NIR) spectroscopy [51] is proposed as a
suitable method for the characterization of both mixing water and cement mortar. This
method is based on the utilization of the light–water interaction, which provides the infor-
mation about the state of the water molecular network within the material, and indirectly
about the material itself by analysis of the NIR spectra [52]. The aquaphotomics’ science
and technology have been gaining worldwide attention in recent years due to the nonin-
vasiveness, ease of use, wide field of applications, and novel discoveries [52–54]. Further,
considerable efforts have been invested in the developments of spectral preprocessing [55]
and chemometrics techniques [56–61] for analysis of NIR spectra that contributed to the
better understanding of the water molecular structure. Aquaphotomics has been providing
a basic understanding of the water molecular network-related functionalities and new
technical solutions for water and food quality monitoring, biometrics, biological diag-
nosis, biological monitoring, and water quality monitoring in waterworks facilities, but
construction materials such as hardened cement have not been explored enough [52].

Therefore, in this study, the effects of four different types of water on the physical
properties of the hardened cement were investigated. For the purpose of this work, the focus
will be placed only on the drying shrinkage characteristics of the hardened cement, while
other properties such as the compressive and bending strength, elastic modulus and others
will be the object of further investigations. The results of this research will demonstrate that
using the same cement components, but different waters for mixing, despite their negligible
differences in mineral components, leads to different drying shrinkage properties of the
produced cement. Further, using aquaphotomics for the characterization of waters, it will
be demonstrated that the different water molecular structure is the reason for this because
it dictates the different formation of cement matrix in the paste and mortar. The entire
process can be monitored immediately upon the mixing of cement, which is used to predict
the cement hardness at a very early stage and also monitored throughout the course of the
cement hardening.
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2. Results and Discussion

2.1. Mineral Content of Waters Used for Preparation of Cement

The results of the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis
are presented in Table 1 for all the water samples used as mixing waters in preparation of
the cement. Distilled water (Wdist) was water from which minerals were removed, although
trace amounts of Ca and Mg were still detected. The other three types of water had a higher
mineral content compared to Wdist. Mineral waters from the shallow source (Wshallow)
and mineral water obtained by mixing two mineral waters from shallow and deep source
(Wmix) had higher contents of Na, Si, and Ca compared to the Osaka city tap (Wtap) water.

Table 1. Mineral content of the waters used for preparation of cement mortar. Wmix water has the
highest mineral content, followed by Wshallow and Wtap.

Contained Elements (ppm) Wdist Wtap Wshallow Wmix

Li 0.000 0.000 0.000 0.000

B 0.000 0.014 0.057 0.540
Na 0.000 13.220 17.340 39.300
Mg 0.002 2.074 4.364 12.105
Al 0.000 0.014 0.000 0.006
Si 0.000 2.870 24.400 20.570
K 0.000 2.234 1.679 3.094
Ca 0.107 11.315 11.555 28.750
Ti 0.000 0.000 0.000 0.000

Mn 0.000 0.000 0.001 0.108

Fe 0.000 0.013 0.001 0.006

Cu 0.000 0.000 0.006 0.000

Zn 0.000 0.003 0.012 0.002

Sr 0.000 0.526 0.133 0.273

Ag 0.000 0.000 0.000 0.000

Ba 0.000 0.012 0.019 0.046

Minerals that have a relatively high content are highlighted in the Table 1 and the
comparison of their amount in waters used for cement preparation is shown in Figure 1.
The Si content is particularly high in mineral waters compared to Wtap and Wdist. In
addition, the content of Na, Mg, and Ca in Wmix is more than twice the amount in Wtap and
Wshallow. Even though there are large differences in the content of the five minerals (Na,
Mg, Si, K, and Ca) (Figure 1), this is not considered relevant in the usual practice, and all
four waters satisfy the tolerable limits of constituents according to the standards for most
countries [62].

To conclude, according to the contemporary standards for mixing water, each of the
four waters can readily be used for preparation of cement concrete. The existence of
differences in constituents would not be considered relevant or of any consequence for the
properties of concrete.

2.2. Aquaphotomic Characterization of Mixing Water

The characterization of mixing waters was performed using aquaphotomics’ NIR
spectroscopy. The NIR spectra of mixing waters, acquired in the range 400–2500 nm, at a
controlled temperature of 25 ◦C were trimmed to a region of 1300–1600 nm that corresponds
to the first overtone of water stretching vibrations, which typically has a maximum around
1450 nm (Figure 2). The NIR spectra of waters are broad and the differences between
the individual spectra are very small. In order to extract and emphasize the differences
between the mixing waters’ spectra, the use of multivariate data analysis is required.
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Figure 1. Major differences in mineral content of waters used for cement preparation.

Figure 2. Raw absorbance spectra of mixing waters used for preparation of cement.

Therefore, the spectra were analyzed according to the protocol of the aquaphotomic
spectral analysis [63]. Difference spectra, Principal Component Analysis (PCA) [64], Soft
Modeling of Class Analogies (SIMCA) [65], and Partial Least Squares Regression (PLSR)
Analysis (using temperature and consecutive irradiation as dependent variables) were
performed (results not presented) in order to find the representative water absorbance
bands—water matrix coordinates (WAMACS) [51]. The WAMACS are then used to depict
the characteristic water spectral patterns (WASPs) of mixing waters on aquagrams [63,66]
related to the respective functionalities. The selection of WAMACS was performed as
described in the recent literature [63,67], by choosing the most consistently repeating and
most influential absorbance bands in the entire performed analysis.

The calculated aquagrams of four mixing waters are presented in Figure 3, with 15 ra-
dial axes defined by the chosen WAMACS, displaying normalized absorbance values after
the correction of spectra by standard normal variate (SNV) transformation [68] to cancel
the potential baseline effects. The aquagrams of mixing waters demonstrate succinctly their
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water spectral patterns, compared to the ultra-pure water (labeled as EC, zero line on the
graph, Figure 3).

Figure 3. Aquagrams of various mixing waters used for preparation of cement.

Each radial axis on the aquagram, i.e., wavelength corresponds to the absorption of
particular water molecular species. The resulting aquagrams present the water absorbance
spectral patterns of each examined water and effectively convey the differences in their
molecular structure. The wavelengths presented can be attributed to the absorbance bands
of the following water species: 1347 nm represents OH group asymmetric stretching
vibration ν3 and is the common band for all proton hydrates, 1360 nm is water solvation
shell OH-(H2O)n where n = 1, 2, or 4; 1375 nm is attributed to combination of symmetric
and asymmetric stretching vibration ν1 + ν3; 1380 nm is water solvation shell OH-(H2O)n
where n = 1, 4 or superoxide tetrahydrate O2-(H2O)4; 1397 nm is water confined in the
local field of ions; 1410 nm corresponds to free water molecules (S0); 1428 nm is hydration
water–hydroxide and OH-(H2O)4 water shell; 1436 nm and 1444 nm are absorbance bands
of protonated water dimer (Zundel Cation) and water dimers (S1); bands 1448 nm and
1453 nm can be assigned to solvation shells OH-(H2O)n, where n = 4, 5; 1460 nm to water
molecules with two hydrogen bonds (S2), 1472 and 1480 nm to water molecules with
three hydrogen bonds (S3), 1492 nm to water molecules with all four hydrogen bonds (S4);
1510 nm to the combination of symmetric stretching and bending vibrations ν1 + ν2; and
strongly bound water [51,69–73].

In simple words, the bands located at the right side of the aquagram (1347–1444 nm)
can be said to encompass the absorbance bands of free water, quasi-free water, weakly
hydrogen-bonded water, and water involved in the hydration of solutes (solvation shells),
while the left side of the aquagram (1444 nm to 1510 nm) represents absorbance bands of
hydrogen-bonded water. Compared to the pure water, the spectral patterns of all mixing
waters demonstrate higher absorbance at the right side of the aquagram, showing much
higher ability for solvation. The water molecular structure of these waters resembles the
ones that could be observed at increased temperatures. The largest differences in spectral
patterns between the four types of waters can be found in the region of 1428 to 1460 nm, in
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particular at 1448 nm—bands that can be attributed to the absorption of water molecules in
solvation shells, which feature four or five water molecules.

These results demonstrate that, regarding the composition, despite what seems to be
negligible amounts of ions, the mixing waters do not have the same molecular structure,
and they are quite different compared to the ultra-pure water, and furthermore, even the
Wdist shows a distinctive spectral pattern. It could be said that, compared to the spectral
pattern of pure water at 25 ◦C, all the examined waters demonstrate the molecular structure
that would correspond to the molecular structure of pure water at higher temperatures [74].
This especially can be of significance with respect to the solvation ability.

2.3. Aquaphotomic Characterization of Cement Mortar
2.3.1. Raw and Transformed near Infrared Spectra of Cement Mortar

Raw NIR spectra acquired for the mortar on the day it is prepared (cement paste,
Day 0) and during the process of setting and hardening (cement mortar, after 1, 3, and
7 days) are presented in Figure 4a.

Figure 4. Near infrared spectra of cement paste and mortar samples created using different waters:
(a) Raw absorbance spectra; (b) Preprocessed spectra using linear detrend correction and standard
normal variate transformation.

The absorbance spectra demonstrate large baseline effects due to the influence of
scatter and are mainly overlapped, making it difficult to observe differences depending
on the water used in the mixing of the concrete. However, the broad band centered
around 1450 nm, corresponding to the first overtone of water stretching vibrations, can still
be observed.

To emphasize the chemical information in the spectra, the transformation using the
linear detrend correction and SNV transformation [68] was performed and the spectra
after correction are presented in Figure 4b. The pre-processing eliminated the baseline
differences efficiently and at three places in the spectra interesting features appeared—at
1360 nm, 1410 nm, and 1460 nm. At these specific places, some differences in the spectra
of mortar could be observed even with the naked eye. All three bands are, as mentioned
before, well-known water absorbance bands that can be attributed to solvation shells, free
water molecules, and water molecules with two hydrogen bonds.

This suggests the importance of these water molecular structures for the description
of the process of change in cement mortar over time, and as a function of the molecular
structure of water used for mixing. To explore these differences further, the multivariate
analysis tools were employed.
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2.3.2. Principal Component Analysis (PCA) of Cement Mortar

The exploratory analysis in the form of PCA [75] was applied on the spectral data
separated in four datasets according to the type of water used for mixing. The separation
was performed with the aim to take the full advantage of pre-processing using detrend
and SNV and correct the baseline effects appropriately, since the origin of scatter is phys-
ical in nature, and therefore may vary between the different mortars. The smoothing
using Savitzky-Golay 2nd order polynomial filter [76] and 21-point window size was also
performed to eliminate the noise from the spectra.

The majority of variance (more than 95%) in each dataset was captured by the first
two principle components PC1 and PC2. The PC1-PC2 scores plots of PCA analyses are
presented in Figure 5, for mortar created using Wdist (Figure 5a), Wtap (Figure 5b), Wshallow
(Figure 5c) and Wmix (Figure 5d), where the scores are colored depending on the day of the
spectral acquisition. In all four cases, the first two principal components explained more
than 95% of variations in the datasets (Table 2) and the patterns of scores corresponding to
the different days (the day of cement paste preparation—Day 0 and cement mortar after 1,
3, and 7 days) could be well-distinguished in the PC1-PC2 spaces.

Figure 5. Transformation and the projection of the original spectral data into the space defined by two
orthogonal principal components (PC1 and PC2) that retained more than 95% of original variance.
PC1-PC2 scores plots of PCA analysis show changes in cement mortar prepared with different mixing
water: (a) Wdist, (b) Wtap, (c) Wshallow, and (d) Wmix. According to the results of the analysis, the PC1
axis can be related to the changes in water of cement as the time progresses from Day 0 to 7, while
the PC2 axis describes changes in water during first 24 h.

158



Molecules 2022, 27, 7885

Table 2. The percentage of explained variance by two first principal components from the results of
PCA analyses performed on four separate datasets of cement mortar depending on the mixing water.

Mixing Water PC1 (%) PC2 (%) PC1 and PC2 (%)

Wdist 87.7 10.16 97.86

Wtap 91.06 7.57 98.63

Wshallow 88.53 7.22 95.75

Wmix 91.36 6.78 98.14

While so far in the analysis the minute quantities in ions and their differences between
mixing waters might have seem negligible, and even the water spectral patterns similar,
from the PC1-PC2 score plots it now becomes evident that the use of different waters for
the mixing of cement results in quite different characteristics during the cement setting.
First, it can be noticed that the spreading of the scores differs, and it is largest on Day 0 in
cement paste, immediately after the mixing, suggesting large differences across the cement
paste. However, after the mortar is set and left to harden, the differences diminish over
time, suggesting that the water in cement paste is still in a variety of states, compared to
the subsequent days. The scores corresponding to the Day 0 are for all water types located
in the negative part of PC1 and mostly positive part of PC2, with the exception of Wshallow,
whose scores are located neutrally along the zero line of PC2. This clearly indicates that
cement paste created with Wshallow is very different compared to others, while the smaller
spreading of the scores may indicate more uniform characteristics of cement paste.

The pattern of changes along time, as the cement is aging, can be observed mostly
along the PC1. This means that the PC1 describes the transformation of water in the cement
during this process. Especially in regards to the time trend, the differences increase. The
scores corresponding to the spectra acquired after 1 day are, in the case of all waters, located
in the negative parts of both PC1 and PC2, except again in the case of Wshallow. It seems
that in the case of Wshallow, the cement mortar is not changed much during first 24 h, as can
be observed from Figure 5c—the scores of Day 0 almost coincide with the scores after 1 day.

The scores corresponding to the age of 3 and 7 days in all four cases are located in
the positive part of PC1, but there are particular differences among the waters. The most
well-defined groups of scores for 3- and 7-days age can be observed for Wtap (Figure 5b),
suggesting that changes still take place in this cement. On the contrary, in the scores of Wdist
(Figure 5a), the groups of scores corresponding to the 3rd and 7th day coincide, indicating
very small changes after 3 days. The scores corresponding to these days of cement age
in the cases of Wshallow and Wmix water partially overlap; however, the time trend is the
opposite compared to the Wtap, where the scores corresponding to the 7 days are located
more closely to the Day 0 scores. From these observations, it can be concluded that the
waters used for mixing cement mortar influence the uniformity of the mixture (cement
paste, Day 0) and the behavior during the aging of the cement mortar during the first 7 days.
The time trend of the changes is mostly described by first two principal components, but
the changes during the first 24 h are mainly described by the PC2. The loadings of PC1 and
PC2 are presented in Figure 6 for all four datasets.

From the loadings’ plots, the first thing to observe is the very similar shape of PC1
loadings for all four examined cases, and the occurrence of almost the same bands: the
negative peaks at 1391 nm and 1397 nm, and positive peaks at 1472 and 1478 nm. The first
two may be attributed to the, so-called, trapped water while the latter ones to the water
molecules with three hydrogen bonds. Looking at the position of scores at the scores’ plots
(Figure 5) and relating it to the sign of the observed peaks, it can be concluded that from the
Day 0 during the first 24 h there is an increase in trapped water, but from that day onwards,
the water in cement after 3 and 7 days is characterized by increased amount of water that is
hydrogen–bonded. This may also account for the loss in the spreading of the scores on the
3rd and the 7th day, because the hydrogen bonded water is not easily changed.
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Figure 6. PC1 and PC2 loadings plots of PCA analysis describe changes in the water molecular
structure during hardening of cement mortar prepared with different mixing water: (a) Wtap, (b) Wmix,
(c) Wdist, and (d) Wshallow.

The differences in bands 1391 nm and 1397 nm may be in the nature of ions or
the confinement which entrap single water molecules, while the differences in 1472 and
1478 nm may be due to the isomerism of water molecular species with three hydrogen
bonds. In the study of wood stiffness and strength properties, by Fujimoto, Yamamoto and
Tsuchikawa 2007, the band located at 1476 nm was related to the semi-crystalline regions in
cellulose [77]. The bands in our work (1472 nm, 1478 nm) may also indicate that the state of
water in the cement matrix is semi-crystalline as the cement ages to the 3rd and 7th day.
The confined water observed at 1391 nm or 1397 nm can also be understood as an interlayer
between the sheets of calcium hydroxide Ca(OH)2, similar to the findings of Kondo et al.
2021 for the hydration and dehydration of Mg(OH)2 [78]. In any case, this entire process can
be described as a transformation of weakly hydrogen bonded water to hydrogen bonded
water, and as such, to use analogy with temperature it could be compared to the cooling
of water within the cement matrix, which is consistent with the release of heat during the
reaction of cement hydration [50].

On the other hand, the loadings of PC2, which is more related to the changes during the
first 24 h, and therefore to the initial reaction of cement hydration, demonstrate somewhat
different shapes depending on the water used in mixing. The common features are positive
peaks at 1360 and 1366 nm, both of which correspond to water solvation shells, and a
positive peak at 1472 nm, and again the water molecules bonded with three hydrogen
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bonds. Here, similarly, the difference in the position of the bands of solvation shells might
be due to the differences in ions present in the waters, and their solvation. Or more
likely, it is due to the different coordination number; Kondo et al. 2021 have reported
band 1362 nm to correspond to OH-coordinated with 1 or 2 Mg2+ on the corner and
edge of the Mg(OH)2 surface, while 1368 to OH-coordinated with 3 Mg2+. Having this
in mind, the bands observed in PC2 loadings could be related to the Ca2+ ions. It is
interesting to notice that there is a report of the absorbance band at 1366 nm, as related to
the absorbance of a compound highly correlated with hardness [79]. This report was about
the hardness of wheat, modeled based on the water extracts of whole wheat flours. Using
selected treatments, it was established that the active compound was not a protein, lipid,
hemicellulose, nor sugar. Based on the findings of this report, it may be concluded the band
1366 nm is very likely a water absorbance band related in general to hardness. Since the
entire process of cement curing is about the loss of moisture and consequent hardening of
cement, the observed absorbance band can be related to the hardness of cement mortar.

The negative peak common for loadings of PC2 for Wdist, Wtap and Wmix appears at
1428 nm, while in the case of Wshallow at 1441 nm. The first one is assigned to hydroxide
and hydration water, while the second one to the water dimer [51]. The importance of band
1428 nm, found to be related to amorphous regions in cellulose matrix of the wood and
its stiffness and strength [77], may indicate not only the different state of water, but also
the macro-scale properties of cement mortars made using Wtap, Wmix and Wdist. Particular
differences occur at the region of hydrogen bonded water, where positive peaks and/or
shoulders could be observed at 1503 nm in the case of Wtap and Wmix, at 1492 and 1510 nm
for Wdist and 1515 nm for Wshallow. Looking again, together at the position of scores and
sign of the peaks on loading plots, the process of cement hydration during the first 24 h
can be described as a transformation of hydrogen-bonded water (>1492 nm) and water
participating in ion solvation (1360 nm) to, in most cases, hydration water (1428 nm). The
Wshallow should be excluded from this explanation, as the PC2 in this case is not related
to the changes in the aging of cement; it only describes some variations within the groups
of scores for each of the days. It is interesting to note, however, that water dimers were
the water species connected to preservation of biological structures during the complete
desiccation of resurrection plants, and were related to the glassy state of water due to the
sugar–water interaction [80]. This finding may indicate the existence of that type of glassy
structure of water in the mortar made by Wshallow.

2.3.3. Soft Modeling of Class Analogies (SIMCA) of Cement Mortar

SIMCA analysis was performed on datasets of cement paste and mortar spectral
data and separated according to the type of water used. Each dataset, after separation,
was first smoothed using the Savitzky–Golay 2nd order polynomial filter (21 points) and
baseline corrected using linear fit and SNV transformation, considering that each spectral
dataset can have specific baseline variations. Following the pre-processing, each dataset
was subjected to SIMCA analysis in order to discriminate between different days when the
spectra were acquired, specifically on the day when the cement paste was first prepared
(Day 0), and after leaving the mortar to cure (After 1 day, 3 days, and 7 days).

The results of the analysis, first presented in Table 3, demonstrate that irrespectively of
the water used for cement preparation, the discrimination accuracy between the spectra of
cement mortar acquired on different days was higher than 90%, and the interclass distances
were larger than three, demonstrating very good, reliable separation [81,82] and indicating
large changes in cement over time. However, the trends in the values of interclass distances
were quite different depending on the water used in mixing, especially for the 3rd and 7th
day, which implies differences in the hardening of mortar over time.

To investigate which variables, i.e., wavelengths in the spectra carried most informa-
tion with regards to their discrimination with respect to different days, the discriminating
powers of SIMCA analysis were plotted in Figure 7 and compared.
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Table 3. SIMCA analysis results: discrimination accuracy and values of interclass distance compared
to Day 0.

Water
Interclass Distance Compared to the Day 0 Discrimination

Accuracy (%)After 1 Day After 3 Days After 7 Days

Wtap 10.392 6.342 5.191 91.03

Wdist 9.511 4.977 6.312 93.53

Wshallow 9.807 4.539 4.030 94.12

Wmix 8.945 6.471 7.204 98.18

Figure 7. Discriminating powers of SIMCA analysis for discrimination of days when the spectra were
acquired from paste and mortar prepared using 4 different waters.

The discriminating powers of SIMCA demonstrated one particular band with the
highest discriminating power in all four cases of analyses, located at 1472 nm, correspond-
ing to water molecules with three hydrogen bonds. The influential bands from all four
models are similar, especially in the area of weakly hydrogen bonded water, however,
with a different degree of influence in different models. The differences in discriminating
powers are mostly in the area of hydrogen-bonded water and strongly bound water, which
indicates differences in the water bound to cement components, i.e., the cement matrix
differences as well.

It is also interesting to mention the difference in the magnitude of discriminating
powers—in the case of Wshallow and Wmix, the magnitude of discriminating powers does
not cross 200, while in comparison, discriminating power values for Wdist and Wtap are
about 500 and higher. The influence of the bands is rather uniform for all indicated bands
in the case of Wshallow and Wmix, which indicates balanced changes over time in mortar
created using these waters.

Next, SIMCA analysis was performed with another objective. The dataset was split
according to the day of acquisition of the spectra to Day0, and after 1, 3, and 7 days and data
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were analyzed by SIMCA to discriminate between mortars prepared using different mixing
waters. Despite rather small values of interclass distances between the classes, the dis-
crimination of different mortars according to the age was successful, with a discrimination
accuracy higher than 82.64% (Table 4).

Table 4. SIMCA analysis results: discrimination accuracy and values of interclass distance between
mortars prepared by different waters on the day of preparation and after 1, 3, and 7 days.

Day Interclass Distance Range Min to Max Discrimination Accuracy (%)

Day 0 0.319–0.606 82.64

After 1 day 0.244–2.056 88.33

After 3 days 0.256–1.589 94.36

After 7 days 0.244–1.013 91.68

In this case also, the discriminating powers of SIMCA analyses (Figure 8) were in-
spected for the most influential variables. The inspection of discriminating powers demon-
strated which absorbance bands were most important for the discrimination between
mortars on each of the examined days.

Figure 8. Discriminating powers of SIMCA analysis for discrimination of different mortars, on
separate days during the process of setting cement concrete.

On the Day 0, there are many influential bands, demonstrating lots of differences in
the water structure immediately upon mixing: particularly important are the bands at
1490 nm and 1509 nm, which can be attributed to water molecules with four hydrogen
bonds and strongly bound water. Moreover, three important bands appear in the area of
strongly bound water at 1552, 1571, and 1589 nm. In general, bands above 1500 nm can be
assigned to the 1st overtone of the ice-like clusters of water, highly organized molecular
structures expected around hydrated macromolecules [83–85]. Fujimoto et al. 2007 reported
the similar, very closely located bands, 1548 nm and 1592 nm, to be related to crystalline
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regions in the cellulose matrix of the wood [77]. In the area of weakly hydrogen-bonded
water, bands 1323 nm, which can be assigned to water monomers or bulk water [86,87],
and band 1379 nm, which corresponds to solvation shells of water, appear significant. On
subsequent days, the most differences between the mortars prepared with different water
types could be explained by the differences at 1397 nm—trapped water depending on the
ion concentration and 1410 nm—free water species that increase in water with the increase
in temperature. These two bands become dominant for discrimination, especially after
7 days.

2.3.4. Aquagrams of Cement Mortar

Based on the entirety of the previous analysis, the absorbance bands that appeared
consistently and had importance in the interpretation of results were summarized and 18 of
them had been selected for representation on aquagram, to describe succinctly the water
spectral patterns of cement paste and mortar over the time of investigation and depending
on the water used for mixing. These absorbance bands and their tentative assignments
with some remarks are provided in Table 5.

Table 5. Tentative assignments of the absorbance bands found to be important during analysis of
cement spectral data. The wavelengths given in the parentheses in the assignments’ column are the
band positions from the cited literature and recalculated from wavenumbers or calculated overtones
from fundamental frequencies reported in the original source.

Absorbance
Band [nm]

Assignment/Remark

1342 (1342.6 nm, 1st overt. of 3724 cm−1) proton hydrates [H+·(H2O)3]—H2O asymmetric stretch, 1st overt. [83]
WAMACS C1: 1336–1348 nm: 1st overtone ν3 asymmetric stretch [51]

1354
(1353.18 nm, 1st over. of 3695 cm−1) two to four nonbonded OH stretches in 2 to 11 member cluster of
hydrated proton [83]
(1353.55 nm, 1st overt. of 3694 cm−1) free OH stretch (OH-·(H2O)2) [88]

1366

(1366.12 nm, 1st overt. of 3660 cm−1)—proton hydrates [H+·(H2O)2]—H2O asymmetric stretch [83]
(1366.12 nm 1st overt. of 3660 cm−1) OH-stretch in (OH-·(H2O)2) [88]
(1366.1 nm) Dangling -OH (non-hydrogen-bonded), 1st overt. [89]
(1362 nm (7339 cm−1)) OH-coordinated with 1 or 2 Mg2+ on the corner and edge of the Mg(OH)2 surface [78]
(1368 nm (7306 cm−1)) OH-coordinated with 3 Mg2+ [78]
(1366 nm)—absorbance band of a compound highly correlated with hardness [79]
WAMACS C2: 1360–1366 nm—water solvation shell OH-(H2O)1,2,4 [51]

1379

WAMACS C3: 1370–1376 nm—combination symmetric asymmetric stretch ν1+ ν3 [51]or WAMACS C4:
1380–1388 nm—water solvation shell OH-(H2O)1,4 [51]
(1374 nm)—-OH group of Ca(OH)2 [90]
(1373–1375 nm)—-OH of portlandite phase; this band is useful for diagnosis of the initiation of hydration
process [90]
(1379.31 nm, 1st overt. of 3625 cm−1)—proton oscillation, H2O symmetric stretch in H+·(H2O)6 [83]

1385

(1383.13 nm 1st overt. of 3615 cm−1)—H2O symmetric stretch in H+·(H2O)5 [83]
(1383.13 nm, 1st overt. of 3615 cm−1) Interwater/Double donor stretch (OH- (H2O)4) [88]
(1385.12 nm, 1st overt. of 3609.8 cm−1) H2O symmetric stretch in proton hydrate H+(H2O)4 [91]
(1385.50 nm, 1st over. of 3608.8 cm−1) H2O symmetric stretch in proton hydrate H+(H2O)4 [92]
WAMACS C4: 1380–1388 nm—water solvation shell OH-(H2O)1,4 [51]

1391 (1391.21 nm 1st overt. of 3594 cm−1) H2O symmetric stretch in proton hydrate H+(H2O)4 [91,92]
or trapped water 1396–1403 nm [69]

1397

(1396.6 nm, 1st overt. of 3580 cm−1) proton hydrates [H+·(H2O)3]—H3O+ free-OH stretch, 1st overt. [83]
(1397 nm (7158 cm−1))—1st overtone of the free OH group trapped in the hydrophobic interior [93]
WAMACS C5: water confined in the local field of ions 1396–1403 nm [52,69]
(1397.23 nm (7157 cm−1))—interlayer OH- (stacked between sheets of Mg(OH)2) [78]
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Table 5. Cont.

Absorbance
Band [nm]

Assignment/Remark

1410
1st overt. band of the OH stretching mode of free OH monomer [94]
(1410.6 nm)—water species with no hydrogen bonds S0 [95]
WAMACS C5: 1398–1418 nm—free water molecules S0

1428
(1428.6 nm) isolated H3O+ -OH stretch vibration, 1st overt. [96]
1st overtone of the fundamental OH stretching vibration in water; the water molecules are condensed in one or
more layers on sorption sites in the amorphous region; related to stiffness and strength [77]

1441 WAMACS C7: 1432–1444 nm—water molecules with 1 hydrogen bond S1

1447

(1447 nm (6910 cm−1))—1st overt. of O−H stretching of the water OH hydrated to other water molecules
(bulk state) [97]
(1447.18 nm (6910 cm−1))—OH group involved in the OH· · ·OH hydrogen bonding [98]
(1447.18 nm, 1st overt. of 3445 cm−1)—stretching modes of surface H2O molecules or to an envelope of
hydrogen-bonded surface OH groups [99]
(1450.11 nm, 1st overt. of 3448 cm−1)—OH stretching vibrations of the water lattice in the hydrated calcium
silicates and aluminosilicates (C–S–H and C–A–S–H) [90]
WAMACS C8: 1448–1454 nm—solvation shell OH-(H2O)4,5

1460 WAMACS C9: 1458–1468 nm—water molecules with 2 hydrogen bonds S2

1472 (1470 nm)—chemically bound water in the hydrated calcium silicate phases [90]
WAMACS C10: 1472–1482 nm—water molecules with 3 hydrogen bonds S3

1490 WAMACS C11: 1482–1495 nm—water molecules with 4 hydrogen bonds S4

1503

(1503.3 nm 1st overt. of 3326 cm−1)—OH stretching vibrations of hydrogen bonded water molecules
participating in the crystal structure [100]
(1503.3 nm 1st overt. of 3326 cm−1)—OH stretching vibration in Ice III [101]
(1503.3 nm 1st overt. of 3326 cm−1)—strong intermolecular hydrogen bond [102]
(1503.3 nm 1st overt. of 3326 cm−1)—water stretching vibrations in minerals, in connection with hydrogen
defects (incorporation of hydrogen (protonation)) [103–108]

1515 WAMACS C12: 1506–1516 nm—combination of symmetric stretching and bending vibration ν1 + ν2, strongly
bound water [51]

1534

(1534.21 nm, 1st overt. of 3259 cm−1)—hydrogen bonded hydroxyl groups (–O–Hδ+· · ·Oδ−–) [109]
(1534.21 nm, 1st overt. of 3259 cm−1)—the H–O stretching vibrations of the absorbent water [110]
(1534.21 nm (6518 cm−1))—1st over. of hydrogen bonded O–H stretching [111]
(1534.21 nm, 1st overt. of 3259 cm−1)—one of the 3 water stretching bands observed in carbonate mineral
huanghoite by Raman spectroscopy (the other two being 1435 nm (3484 cm−1) and 1393 nm (3589 cm−1)) [103]
(1534.21 nm, 1st overt. of 3259 cm−1)—sesquihydrate crystallite [112] (hydrate whose solid contains 3
molecules of water of crystallization per two molecules)
(1534 nm)—one of 3 wavelengths used in multiple linear regression for predicting bread loaf volume (1506,
1534 and 1618 nm); measurement of some parameter related to volume independent of protein [113]

1559

(1557 nm) ionic bound water molecules 1st overt. [114]
(1560 nm (3205 cm−1))—strongly hydrogen bonded water, water coordinated to cations [115]
(1560 nm)—hydrogen bonded water [116]
(1560 nm (6410 cm−1)) crystalline water ice feature [117]

The calculated aquagrams presented in Figures 9 and 10, using these 18 bands as
radial axes, give a comparative overview of water spectral patterns (WASPs) of cement
paste and mortar. First, aquagrams shown in Figure 9 present how WASPs for each cement
mortar evolves over time for each mixing water separately, while aquagrams in Figure 10
show how WASPs of mortars created using different waters compare at a particular cement
age (days).
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Figure 9. Aquagrams of cement paste and mortar according to the water used for cement mixing:
(a) Wtap, (b) Wdist, (c) Wshallow, and (d) Wmix water. The aquagrams demonstrate the differences in
water spectral patterns (WASPs) of cement mortar at different points in time: at Day 0—immediately
after mixing of cement paste, and when the mortar was removed from the frame and aged 1 day,
3 days, and 7 days. The aquagrams are colored according to the corresponding measurement day.
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Figure 10. Aquagrams of cement paste and mortar grouped according to the time points when the
measurements were performed: (a) Day 0—immediately after mixing of cement paste, (b) one day
after the mortar was removed from the frame and left to cure, (c) three days after the mortar was
removed from the frame and left to cure, and (d) seven days after the mortar was removed from
the frame and left to age. The aquagrams demonstrate the differences in water spectral patterns
(WASPs) of cement mortar depending on the water used for mixing, and the aquagram profiles are
colored accordingly.
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From the aquagrams presented in Figure 9, the common trend can be observed for
changes from cement paste and mortar with time regardless of water used for mixing.
In general, the spectral pattern of water in cement paste is located in the right part of
aquagrams, ending at 1472 nm, and with time it moves to the left part, demonstrating that
the process of change in the cement during curing is characterized by the transformation
of proton hydrates, solvation shells, free and quasi-free water, hydration water, and some
small water clusters bonded with 1 to 3 hydrogen bonds. The differences in the cement
paste can be better observed from Figure 10a, where it can be observed that Wmix water and
Wdist provide more proton hydrates in cement paste (1342–1354 nm); Wmix water seems
to provide more free and weakly bound water species (1379–1428 nm), while Wshallow, in
particular, results in more hydrogen-bonded water clusters.

The change in WASPs from cement paste (Day 0) and cement mortar aged 1 day, seem
to be particularly different between the waters. During this 24 h, the transformation of
the water molecular network is radical, where the major water species reduced during
this process are proton hydrates and solvation shells (1342–1379 nm). However, in the
case of Wshallow and Wmix water (Figure 9c,d), these species are lost at the expense of the
increased amount of water bonded to the elements of cement matrix (1503–1559 nm), while
in the case of Wtap and Wdist, there is a increase in free water, hydration water, solvation
shells/surface water, and small water clusters (1410–1460 nm).

The aquagrams comparing the state of mortar after 1 day given at Figure 10b especially
demonstrate this difference in the area of strongly bound water. The water species that are
initially lost (1342–1379 nm) are the species with the highest energy and highest mobility,
such as water vapor, or the so-called moisture [72].

On the other hand, among the bands of strongly bound water, a 1534 nm absorbance
band of water was demonstrated to carry the information about the specific volume [113].
The drying shrinkage as a phenomenon is closely related to the moisture loss and to the
changes in volume; thus, our findings may indicate the possibility to directly measure those
properties and at the same time relate them to the specific water spectral patterns.

Another interesting feature that can be observed from Figure 9, is that the spectral pat-
tern of mortar in the case of Wshallow does not change at all in the region of 1385–1447 nm.
This lack of change in the cement during first 24 h agrees with what was earlier observed
during the PCA analysis. Since the bands 1391 nm, 1397 nm, 1428 nm, and 1447 nm are all
related to water species that are in some kind of interaction with the material—either con-
fined, or participating in hydration, solvation, or adsorption, this may indicate that mortar
made with Wshallow does not really change some elements of the created cement matrix
during this time. Wtap and Wdist mortars, particularly, demonstrate higher absorbance after
1 day at these absorbance bands, corresponding to the absorbance of water species that
have less mobility and energy compared to the moisture, but still with lots of ability to
participate in chemical reactions.

The WASPs at later days (after 3 and 7) demonstrate quite similar profiles for all
mortars, with increasing absorbance at the bands of hydrogen-bonded water and water
bonded to elements of cement (1470–1559 nm). This type of water can be considered to be
an integral part of the cement and cannot be changed or lost to drying, unless the cement
matrix itself is damaged. This agrees with the observations about the non-evaporable water
content differences—it was reported that they become less pronounced in three types of
Portland cement (different chemical composition of cement) at later ages, and further that
the relationship between the non-evaporable water and degree of hydration appears to
be dependent upon the chemical composition [118]. Therefore, even though the cement
components did not change at all, it may be that the chemical content and hence water
molecular structure of the mixing waters contributed to this.

When it comes to the loss of this strongly bound water, as already said, it might happen
only due to the damage of the matrix that is binding it, and this may be the case with the
mortar made with Wtap, where, in contrast to all other mortars, the WASPs for the 3rd and
7th day are reversed, with lower absorbance corresponding to the 7th day. This may be
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the case of cracks in the cement internal structure, where the elements of cement matrix
are being broken and the water which was bound, is being released. This can explain the
increase in free water that can be observed in Figure 10d, where the highest absorbance in
the region 1397–1460 nm can be observed for exactly Wtap mortar.

In summary, from the aquagrams, it was observed that WASPs in the first 24 h could
be divided in two groups, where Wshallow and Wmix water mortars were similar, and Wtap
and Wdist mortars were similar. This may result in similar properties of the mortars on
the macroscale. Wshallow mortar was particularly specific in the terms that it demonstrates
stability during first 24 h, while Wtap mortar was specific in the terms that it demonstrated
opposite change between the 3rd and 7th day of curing. These results, which demonstrate
differences at such a detailed scale in the water molecular matrix of the paste and mortar,
practically from the very start when paste is mixed, with further research may result in the
prediction of mortar properties at the earliest possible stage.

2.4. Characterization of the Internal Temperature Change and Thermal Strain in Cement Paste

In ordinary Portland-hydrated cement paste there are four major compounds: trical-
cium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A) and tetracalcium
aluminoferrite (C4AF); both C3S and C2S react with water (H) to form calcium silicate
hydrate (C-S-H) and the portlandite, also called calcium hydroxyde (CH) [119,120].

The process of cement hydration is an exothermic reaction and the temperature rise
in mass concrete pours [121]. The measured values of internal temperature in cement
pastes made by Wtap, Wdist, Wshallow, and Wmix water are presented in Figure 11a and
demonstrated that this temperature increase is similar for all pastes up to 24 h after casting.
The well-known stages of hydration in Portland cement can be observed: (I) initial reaction,
(II) period of slow reaction, (III) acceleration period, and (IV) deceleration period. Generally,
the hydration reaction starts when cement comes into the contact with water, and the
internal temperature of the cement paste rises for a certain period as the cement hardens.
However, for the first few hours immediately after casting, the cement paste goes through
the setting process where the fluidity is gradually lost, which is different from the above-
mentioned hardening process. As shown in Figure 11a, the internal temperature of the
cement paste rises and then drops immediately after casting, and then after about 2 h it
starts rising again.

There are distinctive differences in the values of internal temperature of paste in the
phases I and II, depending on the water used for preparation. In phase I, the paste made
with Wdist shows the fastest increase and the highest temperature during the initial reaction
of cement with water. In phase II, the temperature values are quite different between
all the pastes, but in particular between the cement made with Wdist and Wmix water,
demonstrating differences in this stage of cement hydration with respect to the water used.
Important point to take into consideration is that the internal temperature at the start of
measurement is already different for each cement paste. Therefore, to be able to grasp real
change in the internal temperature compared to the initial temperature of the paste, the
temperature difference during phases III and IV is plotted in Figure 11b.

The results shown in Figure 11b indicate that the amount of released heat is at its
maximum 12.25 h after casting for Wmix water, 12.8 h for Wdist and Wshallow, and 13.25 h
for Wtap. This suggests that the progression of hydration reaction happens at a different
speed depending on the water used, and it is especially different in the case of Wtap.
The maximum heat generation was the largest for the Wdist, followed by Wshallow, Wtap,
and Wmix.

The hardened cement paste has different thermal expansion properties, which leads to
different volumetric changes that generate internal stress causing the cracking of concrete
at the micro- or macro-scale [90,122,123]. The thermal expansion coefficients (TEC) are
affected by the water contents in a hardened cement paste, especially the free water content,
which is why TEC have large values in the early hydration ages [124]. The TEC of a
compacted material is smaller than that of a porous material [125].
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Figure 11. (a) Internal temperature of the cement paste specimens during first 24 h; (b) the trend of
the change in the internal temperature of cement paste during phases III and IV.

The measured values of thermal expansion during 24 h after casting are plotted in
Figure 12. The thermal strain was larger in the cases of Wdist and Wtap, which were quite
similar, but different compared to the thermal strain recorded in mortar made by Wshallow
and Wmix water (Figure 12). The grouping strongly resembles grouping two-by-two that
can be observed in the WASPs of mortars after 1 day (Figure 10b). Given the above
background, it can be expected that hardened paste created by Wshallow and Wmix water
have a less porous, more compact structure.

Figure 12. The time trend of thermal strain of cement paste.
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2.5. Characteristics of Drying Shrinkage Strain

Drying shrinkage is defined as the volumetric change of concrete induced by the
loss and redistribution of moisture, which can lead to the formation of cracks within the
concrete and influence important properties such as durability, deformation, and stress
distribution [126–128]. It is therefore desirable to reduce drying shrinkage; the techniques
proposed so far are to apply low shrinkage cement or cement with low hydration heat [129].
It is also reported that drying shrinkage is more pronounced in specimens with rapid
moisture loss [130]; therefore, slowing down this process could help in the reduction of
drying shrinkage. As this study already pointed out, this may be achieved by the adequate
choice of water for the preparation of cement.

The results of the drying shrinkage strain measurements performed over the period
of 91 days after casting demonstrate considerably reduced drying shrinkage strain in
specimens prepared with Wshallow and Wmix water (Figure 13a). The worst performance
can be observed in cement prepared with the Wtap, followed by Wdist. The drying shrinkage
strain properties already demonstrated the same result even only 7 days after casting
(Figure 13b). The drying shrinkage strain was about the same for Wshallow and Wmix water,
and Wdist and Wtap followed in increasing order. Similar to the results of thermal stress,
grouping two-by-two can also be observed here in Figure 13, which closely matches the
pattern observed in WASPs of cement paste given in Figure 10b.

Figure 13. Drying shrinkage strain: (a) in time period up to Day 91; (b) in time period up to Day 7.
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To understand the reason why the drying shrinkage strains of Wshallow and Wmix
water were smaller, the results of the water component analysis and spectral patterns of
cement paste and mortar were taken into consideration.

First, the water composition analysis demonstrated that the Si content was consider-
ably higher in Wshallow and Wmix, compared to the Wdist and Wtap, as shown in Table 1 and
Figure 1. Wshallow and Wmix water also contained a large amount of sodium. Generally,
when Ca(OH)2 produced by the hydration reaction of cement comes into contact with sili-
cate compounds such as Na2O·SiO2 at the initial stage, CaO·SiO2 crystals are formed. This
is understood to improve the watertightness of the hardened cement, and the application
of silicate compounds is used for improving the properties of cement concrete [131–133].
In this study, it can be concluded that Si and Na in the Wshallow and Wmix water affected
the crystal structure of cement mortar, and the suppression performance against drying
shrinkage might have improved as a result. The water spectral patterns of cement paste
24 h after setting, indeed demonstrate an increase in strongly bound, crystalline water
(Figure 10b, region 1490–1559 nm). The spectral patterns of mortar 7 days after casting
also demonstrate the same for Wshallow and Wmix mortars compared to the Wdist and Wtap
mortar (Figure 10d).

Further, since Wshallow demonstrated the best drying shrinkage characteristics, it is of
interest to notice that the spectral pattern of cement paste after 24 h (Figure 10b) was partic-
ularly different, demonstrating no changes in absorbance in the region of 1385–1447 nm,
while the Wmix paste demonstrated no changes in absorbance in the narrower region of
1441–1447 nm. In contrast, the cement paste created with Wtap and Wdist demonstrated
an increased amount of water species absorbing in these regions. The water species that
are initially lost (1342–1379 nm), the so-called moisture [72], in the case of Wshallow and
Wmix water (Figure 9c,d), led to the increased amount of water bonded to the elements of
cement matrix (1503–1559 nm), while in the case of Wtap and Wdist, to increase in free water,
hydration water, solvation shells/surface water, and small water clusters (1410–1460 nm).
Considering the resulting drying shrinkage properties, this indicates that this particular
water molecular structure might be especially important to monitor during the early age
of cement. In this respect, this study has made considerable progress in pinpointing the
exact absorbance bands corresponding to specific water structures within cement paste
and mortar that can serve as WAMACs, i.e., the coordinates at which the absorbance of
water in concrete can be measured and provide the information about the state of water
within cement matrix and how it is related to the current state and future properties of
produced concrete.

To conclude, it is clear that even a small difference in the water composition used for
the cement mortar affects the molecular structures of the water inside the cement mortar
and lead to different mechanical properties. The difficulties of relating single components
to a specific function were overcome by using water spectral pattern as an integrative
multidimensional marker, displayed on aquagram and mirroring even a small perturbation
to the water molecular matrix in each mixture. These research findings may be interpreted
within the existing framework of current understanding, but for the first time the state
of the water in cement was described using a water spectral pattern, where numbers
were used instead of the vague and broad terms such as capillary water, adsorbed water,
interlayer water, and others. This provides a strong basis for the development of a universal
method for the characterization of cement paste, mortar, and concrete from an aspect of
hydration and allows quantitative comparisons and the optimal choice of cement materials
and water for mixing with possibilities for early prediction of cement quality by using
non-invasive monitoring.

3. Materials and Methods

3.1. Water Samples

Four types of water were used for the preparation of the cement: tap water from
the Osaka city municipal supply, distilled water, and two spring mineral waters (Table 6).
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Mineral spring waters were first filtered using activated charcoal to remove the impurities,
and then using an antibacterial filter.

Table 6. Summary of the water samples used in this study.

Water Collection Site Characteristics

Wdist — High purity Wdist purified by ion exchange method and
followed by distillation

Wtap Osaka City, Osaka Prefecture, Japan Tap water collected mainly from the surface water of Lake
Biwa and purified at a water treatment facility

Wshallow
Water from the shallow underground source located at the
dept of 40 m

Natural hot spring Yunosato, Hashimoto City, Wakayama
Prefecture, Japan
(https://www.spa-yunosato.com/yunosato_eng/
accessed on 1 November 2022)

Wmix

Water that is a blend of two types of spring waters (90%
water from the shallow source located at 50 m depth and
10% water from the deep source at 1187 m depth)

Natural hot spring Yunosato, Hashimoto City, Wakayama
Prefecture, Japan
(https://www.spa-yunosato.com/yunosato_eng/
accessed on 1 November 2022);

The mineral content of all four water types was determined by inductively coupled plasma mass spectroscopy
(ICP-MS). The component analysis was conducted by the Metal team at Kyoto Municipal Institute of In-
dustrial Technology and Culture (http://tc-kyoto.or.jp/about/organization/kinzoku/detail.html accessed on
14 November 2020).

3.2. Cement and Fine Aggregate (Sand)

For the preparation of cement, Ordinary Portland cement (OPR) was used. The main
components are CaO, SiO2, Al2O3, and Fe2O3, but since the content ratio differs depending
on the manufacturing plant, the quality of Portland cement is standardized by JIS (Japanese
Industrial Standards) R5210 “Portland cement”. As an example, Table 7 shows the standard
for the chemical composition contained in cement. The density of the cement used was
3.15 g/cm3. Australian standard sand conforming to ISO 679 was used as the fine aggregate.
Table 8 shows the chemical composition of standard sand, and Table 9 shows an example
of its physical properties, respectively.

Table 7. An example of the quality of Portland cement (chemical composition).

Chemical Name Maximum Content Allowed (%)

MgO 5.0

SO3 3.5

Ignition Loss 5.0

Total alkali content 0.75

Table 8. An example of the chemical composition of standard sand.

Chemical Name Content (%)

SiO2 98.4

Al2O3 0.4

Fe2O3 0.4

CaO 0.2

MgO 0.00

Na2O 0.01

K2O 0.01
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Table 9. An example of the physical properties of standard sand.

Property Value

Specific gravity in oven-dried condition 2.64

Sater absorption rate 0.42%

Unit volume mass 1.76 kg/L

Solid content 66.7%

3.3. Preparation of Hardened Cement Specimens

The specimens were prepared at the Osaka Metropolitan University (formerly Osaka
City University) Graduate School of Engineering, Department of Urban Design and Engi-
neering. The specimens produced were cement paste and cement mortar. The mixing ratio
of cement paste and cement mortar was determined according to JIS R 5201, the “Physical
testing methods for cement” [134].

Cement paste is a mixture composed of water and cement with a mass ratio of water to
cement of 1:2. Cement mortar is a mixture composed of water, cement, and fine aggregate,
and the mass ratio of water, cement, and sand is 1:2:6. In order to minimize the influence
of temperature when mixing the materials, water, cement, and fine aggregate were left in
a curing room at the constant temperature one day before the mixing of materials. The
mixing of cement paste and cement mortar was carried out in accordance with JIS R 5201,
the “Physical testing methods for cement” [134], as follows:

1. Add water and cement to the container for mixing.
2. Mix at a low speed for 30 s.
3. Add fine aggregate.
4. Mix at a high speed for 30 s.
5. Scrape the mortar adhering to the walls and bottom of the mixing container (Stop for

90 s).
6. Mix at high speed for 60 s and then take out.

For cement paste, the procedure ends with step 2. The cement paste was left in a
plastic beaker for subsequent measurements (Figure 14). After casting in steel formwork,
the surface of the cement mortar specimens was covered with a wrap, and the specimens
were left in a curing room at a constant temperature of 20 ◦C ± 2 ◦C and humidity of
60 ± 5%. The formwork was removed the next day, and the specimens were placed in the
curing room at the constant temperature and in the air atmosphere.

Figure 14. Spectral measurement immediately after mixing (cement paste).
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3.4. NIR Spectroscopy
3.4.1. NIR Spectroscopy Measurement of Water Samples

The water used in this study was analyzed at the Aquaphotomics Research Depart-
ment, Graduate School of Agricultural Science, Kobe University. The NIR spectra of the
water samples were measured with the FOSS XDS spectrometer equipped with a Rapid
Liquid Analyzed (RLA) module (FOSS NIRSystems, Inc., Höganäs, Sweden) using a quartz
cuvette (optical path length 1 mm). The spectra were acquired in the transmittance mode,
with the resolution of 0.5 nm in the spectral range 400–2500 nm. Each recorded spectrum
was an average of 32 co-added spectra. The water samples were prepared in triplicates,
and each sample was measured with 5 consecutive scans. The experiment was performed
at 25 ◦C, keeping the temperature of the sample holder at this temperature throughout the
measurements using circulating water bath. The order of measurements was randomized,
but after every 5 samples, the sample of ultra-pure water (MilliQ, Millipore, Molsheim,
France) was scanned. The temperature of the samples was monitored and logged during
the experiment.

3.4.2. NIR Spectroscopy Measurement of Cement Paste and Mortar

Measurement of cement specimens was carried out at the Graduate School of Engi-
neering, Department of Urban Design and Engineering, Osaka Metropolitan University.
Using a portable, handheld NIR spectrometer (MicroNIR OnSite-W, VIAVI Solutions Inc.
Milpitas, CA, USA), the spectrum was measured in 6.2 nm increments in the wavelength
range of 950 nm to 1650 nm. The measurement was taken on Day 0 (immediately after
mixing, cement paste), 1 day, 3 days, 7 days, and 28 days after mixing (cement mortar).

The NIR spectrometer was fixed as shown in Figure 14 to measure the specimen
immediately after mixing. The measurements were performed with a gap of approximately
10 mm between the cement paste surface and the NIR spectrometer. The mortar specimens
were measured as presented schematically in Figure 15 at particularly chosen measurement
points. The spectral measurements were acquired at 5 points on the right and left surface of
the specimen, with 3 consecutive measurements each. These measurements were performed
1 day, 3 days, 7 days, and 28 days after mixing.

Figure 15. Measurements of cement mortar specimens.

3.5. Aquaphotomic Spectral Data Analysis
3.5.1. Water Characterization

The characterization of mixing waters was performed using aquaphotomics NIR
spectroscopy. The NIR spectra of mixing waters, acquired in the range 400–2500 nm, at
controlled temperature of 25 ◦C were trimmed to region of 1300–1600 nm that corresponds
to first overtone of water stretching vibrations which typically has a maximum around
1450 nm.

The spectra were analyzed according to the protocol of aquaphotomic spectral analy-
sis [63]. Difference spectra, Principal Component Analysis (PCA) [64], Soft Modeling of
Class Analogies (SIMCA) [65] and Partial Least Squares Regression (PLSR) Analysis (using
temperature and consecutive irradiation as dependent variables) were performed (results
not presented) in order to find the representative water absorbance bands—water matrix
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coordinates (WAMACS) [51] that can be used to depict the characteristic water spectral
patterns (WASPs) of mixing waters on aquagrams [63,66]. The selection of WAMACS
was performed as described in the recent literature [63,67], by choosing the consistently
repeating and most influential absorbance bands in the entire performed analysis. This
resulted in selection of 15 wavelengths to serve as WAMACS and create aquagrams.

The aquagram shows the average normalized absorbance of the spectra of various
samples at selected 15 wavelengths associated with the various molecular structures of
water which define radial axes of the graph. Microsoft Office Excel 2013 (Microsoft Co.,
Redmond, WA, USA) was used for aquagram calculations.

3.5.2. Cement Paste and Mortar Characterization

The spectral data were converted to pseudo-absorbance (logT−1 where T is the trans-
mittance). In order to investigate the first overtone of the OH stretching vibration, the
wavelength range of the measured spectrum was limited to 1300 to 1600 nm.

The exploratory analysis in the form of Principal Component Analysis (PCA) [75]
was applied on the spectral data separated in four datasets according to the type of water
used for mixing, and corrected for baseline effects using detrend and standard normal
variate transformation [135] after the smoothing to eliminate the noise from the spectra
(Savitzky-Golay 2nd order polynomial filter [76] and 21-point window size).

Soft Modeling of Class Analogies (SIMCA) [65] is a supervised pattern recognition
technique, used in the study to discriminate between the mortars created by different
mixing waters and the age of the mortars.

Aquagrams of the cement paste and mortar were prepared following the same proce-
dure as described in the Section 3.5.1, with the difference that spectral data were prepro-
cessed using smoothing, linear detrend and standard normal variate transformation, and
18 wavelengths were selected to be presented on aquagrams.

3.6. Physical Test Method for Cement Mortar

All the tests were conducted at the Graduate School of Engineering, Department of
Urban Design and Engineering, Osaka Metropolitan University.

3.6.1. Temperature Change and Thermal Strain

The specimens were prepared using cement paste for this test. A strain gauge with
a temperature measurement function was used to reduce the influence of surrounding
environmental conditions such as temperature. In order to place the strain gauge near the
center of the specimen, a jig with the strain gauge attached was installed in the formwork in
advance, and then cement paste was placed in the formwork. A schematic representation
of the jig with the attached strain gauge is presented in Figure 16a. This jig was fixed to the
bottom of a cylindrical formwork with a diameter of 50 mm and a height of 100 mm using
an adhesive (Figure 16b). The final formwork for experimental measurements before the
cement paste was poured in is shown in photographs in Figure 16c.

The cement paste was then placed in formwork and left in the air in a constant
temperature curing room with a temperature of 20 ± 2 ◦C and a humidity of 60 ± 5%.

The measurement of the thermal change of the cement paste was started immedi-
ately using the digital micron strain gauge, contact type (Mitutoyo ABSOLUTE, Mitutoyo
Corporation, Kawasaki, Japan). The measurements were performed every 15 min until
approximately 24 h after the cement paste was placed.

3.6.2. Dry Shrinkage Test

The drying shrinkage strain test was performed in accordance with JIS A 1129-2
“Methods of measurement for length change of mortar and concrete—Part 2: Method with
contact-type strain gauge.” The measuring instrument used was the digital micron strain
gauge (contact-type gauge), shown in Figure 17.
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Figure 16. Measurements of the thermal changes of the cement paste; the method of fixing the
strain gauge: (a) schematic representation of attached strain gauge, (b) arrangement of the jig in the
formwork, and (c) experimental setup.

Figure 17. Measurement of length change of mortar using digital micron strain gauge (contact-type gauge).

The specimens were produced using a regular right prism formwork with dimensions
of 40 mm × 40 mm × 160 mm. After taking them out of the formwork, a gauge plug was
attached to the side of each specimen. Figure 17 shows the position of the gauge plug
attachment. The specimens were then left to stand in the air in a constant temperature
curing room with a temperature of 20 ± 2 ◦C and a humidity of 60 ± 5%.

This test was performed with the aim to calculate the rate of the shrinkage of the
specimen using the measured length between the gauge plugs. The measurements of the
length between the gauge plugs were performed on the day 1 (when taking the specimens
out of the formwork) and 3 days, 5 days, 7 days, 14 days, 21 days, 28 days, 42 days,
56 days, and 91 days after casting. The rate of the length change was calculated using the
following equation:

ε =
Xi − X0

L0
× 106 (1)
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where ε is the drying shrinkage strain or change in length (×10−6), L0 is the base length
(length between gauge plugs), Xi is the measured value of the specimen i day(s) after
casting, and X0 is the measured value of the specimen immediately after casting.

4. Conclusions

This research study conducted an aquaphotomic near infrared spectral analysis to
investigate the effects of the different types of water on the shrinkage characteristics of the
hardened cement. The aquaphotomic characterization of mixing waters and monitoring
of cement mortar was performed immediately after mixing, and after 1, 3 and 7 days of
curing in air. The change in internal temperature and thermal strain in cement paste were
measured during first 24 h after mixing, and the dry shrinkage strain was measured up to
the period of 91 days.

The research results demonstrated that the measured mechanical properties of the
hardened cement material differed depending on the water used. Specifically, based on the
results of the analyses, the following conclusions were drawn:

1. The results of the standard analysis of mineral constituents in four mixing waters
demonstrated small differences considered negligible and irrelevant for the cement
production according to the standards for the most countries. However, aquapho-
tomics’ characterization demonstrated that mixing waters have a higher solvation
ability compared to the pure water and the largest differences between the four
types of waters were found at the 1448 nm water absorbance band, assigned to the
absorption of water molecules in solvation shells with four or five water molecules.

2. The PCA analysis of cement paste and mortar created by different mixing waters
demonstrated that the major variation in the spectra can be described by only two
principal components, related to the changes of cement mortar during curing (in
terms of days) and to the changes during early hydration reaction in the first 24 h.
The most important water absorbance bands for the description of changes during
curing were identified at 1391, 1397, 1472, and 1478 nm. The first two can be attributed
to the absorbance of the confined water molecules in the interlayer between the
crystal lattice, while the latter two to water molecular species with three hydrogen
bonds indicated the semi-crystalline state of cement. For the description of the initial
hydration reaction, the most important absorbance bands were found at 1360 and
1366 nm assigned to water solvation shells around ions, located at the edge and
the corners of crystal lattices, and at 1472 nm, the water molecules bonded with
three hydrogen bonds. There are indications that first two bands could be related
to the hardness, which agrees well with the understanding of cement curing as the
process of hardening of cement. The process of cement curing was described as a
transformation of weakly hydrogen-bonded water to hydrogen-bonded water, which
agrees with the release of heat during the reaction of cement hydration. Despite
the common absorbance bands present in developed PCA models, each cement
mortar demonstrated a specific time evolution depending on the water used for
its preparation.

3. The results of the SIMCA discriminating analysis confirmed that it is possible to
discriminate the age of cement mortar with an accuracy higher than 90%, and to
discriminate between mortars made with different mixing waters with accuracy
higher than 82%. The discriminating powers of SIMCA demonstrated the importance
of the absorbance band of 1472 nm (water molecules with three hydrogen bonds) for
discrimination. The differences were found mostly in the area of hydrogen-bonded
water and strongly bound water, which indicates differences in the water bound to
cement components, i.e., the cement matrix differences as well.

4. The entirety of aquaphotomics analysis discovered 18 water absorbance bands: 1342,
1354, 1366, 1379, 1385, 1391, 1397, 1410, 1428, 1441, 1447, 1460, 1472, 1490, 1503, 1515,
1534, and 1559 nm as absorbance bands that could be used to measure the state of
water directly and the state of cement mortar during curing indirectly, over time. These

178



Molecules 2022, 27, 7885

absorbance bands can be considered as WAMACS, i.e., Water Matrix Coordinates
and their combination was used to depict Water Spectral Patterns—WASPs of cement
mortar in aquagrams. The aquagrams revealed that Wshallow and Wmix water mortars
were similar, and Wtap and Wdist mortars were similar, indicating similar properties
of the mortars on the macroscale. The aquagrams demonstrated differences at such a
detailed scale in the water molecular matrix of the paste and mortar, practically from
the very start when paste is mixed, providing a possibility for the prediction of mortar
properties at the earliest possible stage.

5. The measured values of thermal strain revealed that Wshallow and Wmix water mortars
were similar, and Wtap and Wdist mortars were similar, strongly resembling grouping
two-by-two, which is observed in the WASPs of mortars. Judging by the WASPs, it was
concluded that hardened paste created by Wshallow and Wmix water has a less porous
and more compact structure. The results of the drying shrinkage strain measurements
performed over the period of 91 days after casting demonstrate considerably reduced
drying shrinkage strain in specimens prepared with Wshallow and Wmix water. The
drying shrinkage strain was about the same for the Wshallow and Wmix cement mortar,
and Wdist and Wtap followed in increasing order. Similar to the results of thermal
stress, grouping two-by-two was also observed in drying shrinkage properties closely
matching the pattern observed in WASPs of cement paste.

In summary, using aquaphotomics, it was demonstrated that four waters used for
cement mixing had significantly different molecular structure, which influenced the cement
hydration and curing, causing differences in water molecular dynamics after casting that
resulted in different mechanical properties, specifically, in thermal and drying shrinkage of
produced cement mortar. The mineral waters could be considered as a better choice to be
used in the mixing of cement because they provide better shrinkage behavior.

Understanding the mechanisms of cement hydration intersects both scientific and prac-
tical interests. This study is, in this sense, a pioneering one, since for the first time, a novel,
completely non-invasive, non-destructive, and rapid method based on aquaphotomics is
presented and evaluated for this purpose. From scientific aspects, this research presented
a novel way to describe the chemical and microstructural phenomena that characterize
cement hydration by directly following the changes in the molecular structure of water
within the cement, in a very detailed manner, with defined water molecular species and
their functionality explained. From practical aspects, this study demonstrated the need
to update the current standards regarding the water that can be used for mixing concrete,
by demonstrating the impact the molecular structure of water has on shrinkage behavior.
Further, this also provides a basis for development of a precise quantitative method that
allows for rapid assessment and comparisons of the cement concrete at the very place
where the production is performed.

Finally, this study is not without limitations: the focus was only on investigating four
types of water and how they are related to shrinkage properties. The shrinkage is not
the only concerned property to evaluate the overall performance of cement concrete, and
further aquaphotomics studies will be directed at also evaluating strength and permeability.
Another limitation is that the link between the water spectral patterns and the resulting
mechanical properties was made primarily qualitatively, by comparison. This can be over-
come by better experimental design, with spectral acquisition and reference measurements
performed simultaneously, which will allow the development of quantitative prediction
models and discovery of direct correlation patterns between particular water species and
the measured mechanical properties.
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Abstract: Using the framework of aquaphotomics, we have sought to understand the changes within
the water structure of kiwifruit juice occurring with changes in temperature. The study focuses
on the first (1300–1600 nm) and second (870–1100 nm) overtone regions of the OH stretch of water
and examines temperature differences between 20, 25, and 30 ◦C. Spectral data were collected
using a Fourier transform–near-infrared spectrometer with 1 mm and 10 mm transmission cells for
measurements in the first and second overtone region, respectively. Water wavelengths affected
by temperature variation were identified. Aquagrams (water spectral patterns) highlight slightly
different responses in the first and second overtone regions. The influence of increasing temperature
on the peak absorbance of the juice was largely a lateral wavelength shift in the first overtone region
and a vertical amplitude shift in the second overtone region of water. With the same data set, we
investigated the use of external parameter orthogonalisation (EPO) and extended multiple scatter
correction (EMSC) pre-processing to assist in building temperature-independent partial least square
regression models for predicting soluble solids concentration (SSC) of kiwifruit juice. The interference
component selected for correction was the first principal component loading measured using pure
water samples taken at the same three temperatures (20, 25, and 30 ◦C). The results show that the
EMSC method reduced SSC prediction bias from 0.77 to 0.1 ◦Brix in the first overtone region of
water. Using the EPO method significantly reduced the prediction bias from 0.51 to 0.04 ◦Brix, when
applying a model made at one temperature (30 ◦C) to measurements made at another temperature
(20 ◦C) in the second overtone region of water.

Keywords: soluble solids content; Brix; kiwifruit juice; aquaphotomics; near infrared spectroscopy;
extended multiplicative scatter correction (EMSC); external parameter orthogonalisation (EPO)

1. Introduction

Water is the major constituent of fruits, typically more than 80% [1,2], and absorbs
near-infrared (NIR) radiation [3,4]. The NIR spectrum of fruit shows a strong absorption
peak around 970 nm, which corresponds to the second overtone of the OH stretch in
water [5,6]. NIR spectroscopy (NIRS) models for predicting dry matter (DM) and soluble
solids content (SSC) of fruit (apples) have been developed using the narrow spectral range
from 800 to 1100 nm around this absorption peak [5].

NIRS models are called robust when their prediction accuracy is relatively insensitive
to unknown changes in external factors [7]. A factor that can strongly affect NIR model
performance is temperature [8]. Shifts in the water absorbance bands with temperature can
reduce model performance [9–12]. Acharya et al. [12] have studied the effect of temperature
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on prediction models of fruit quality, observing that a calibration equation developed
at one fixed temperature could not reliably predict on samples measured at a different
temperature. Roger et al. [10] found a model offset bias of 8 ◦Brix for a temperature
variation of 20 ◦C (range 5–25 ◦C) for SSC prediction in apples. Several techniques have
been previously investigated to compensate fruit model predictions for fluctuations in
sample temperature. Kawano et al. [9] developed calibration equations for peaches using
samples at different temperatures. Peirs et al. [13] similarly developed robust calibration
models for a wide range of apple cultivars, incorporating samples at all temperature ranges
expected in future measurements. Roger et al. [10] removed the temperature-induced
bias in SSC predictions on apples by applying the external parameter orthogonalisation
(EPO) algorithm, as a pre-processing step, to remove the part of the spectral data matrix
most affected by temperature. Several new techniques have been reported recently in the
literature, indicating the problem is far from solved for all circumstances [14].

The framework of aquaphotomics appears suitable for examining the temperature
sensitivity of fruit spectra. Aquaphotomics is an NIR spectral analysis methodology
that focuses on changes in the pattern of water absorbance bands due to perturbations
by extraneous factors. The field has aided the understanding of the role of water in
biological systems [15–18]. The effect of perturbations on water binding structures has been
observed due to variation in solute concentration, temperature, and other environmental
factors [16,18,19]. The aquaphotomics methodology defines 12 water absorption bands in
the first overtone region of water, called the water matrix coordinates (WAMACS), which
describe the water states in an aqueous system. The methodology has been applied to the
study of apple juice when the sample temperature is increased from 20 to 30 ◦C, revealing
an increase in free water molecule states that raises the spectral absorbance at 1414 nm [20].

In this paper, we use the aquaphotomics approach to study the changes in the water
structure of kiwifruit juice caused by variation of temperature in the vicinity of the 1450
nm (first overtone of OH stretch of water) and 970 nm (second overtone of OH stretch
of water) absorbances. The second overtone region has had very little research attention
from an aquaphotomics perspective, which is surprising given the importance of that
region for intact fruit quality prediction by NIR, including on kiwifruit [21,22]. Physically
filtered fruit juices, removing most particulate matter, minimize light scattering variation
between samples and thus provide an ideal medium for fundamental aquaphotomics
studies involving controlled temperature perturbations of the sample water chemistry. The
results from such studies, if clarifying the fundamental mechanisms involved, may help
in understanding and/or overcoming the temperature sensitivities associated with NIRS
whole fruit measurements.

We also evaluate the pre-processing modeling methods, extended multiplicative scatter
correction (EMSC), and EPO, using pure water spectra as interferent, to minimize the tem-
perature sensitivity of NIRS models for the SSC of kiwifruit juice. Previous aquaphotomics
analysis showed the effective use of EMSC for minimizing the temperature sensitivity of
apple juice models for SSC prediction, where the spectral measurements were over the
1300–1600 nm first overtone region, and the required interferent spectra were derived
from pure water measurements [20]. The EPO technique is somewhat similar in requir-
ing the specification of an interferent spectrum. It has been previously explored for the
development of temperature-insensitive NIR models of intact apple SSC across the second
overtone region using common fruit samples, measured at different temperatures to derive
the required interferent spectra [10].

2. Materials and Methods

2.1. Sample Preparation

A total of 100 fully ripe Zespri® SunGold Kiwifruit (Actinidia chinensis var. chinensis
‘Zesy002’) were purchased from New Zealand retail stores. Juice was expressed from
about 2 cm thick endcaps, removed from the stem and calyx ends of each fruit, and was
collected in Eppendorf tubes. The samples were centrifuged at 13,400 rpm for 3 min
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(MiniSpin, Eppendorf, Hamburg, Germany) and then filtered through a 0.2 μm syringe
filter to produce a clear juice (Figure 1). The samples were stored in a refrigerator at 4 ◦C.
Fourier transform–near-infrared (FT-NIR) spectra and reference SSC measurements were
performed the next day after the samples were equilibrated to room temperature (20 ◦C).
Milli-Q water with a resistivity of 18.2 MΩ cm was produced using a water purification
system (Millipore, Thermofisher Scientific, Knox, Australia).

 

Figure 1. Experimental procedure for kiwifruit soluble solids content (SSC) measurement.

2.2. Reference SSC (◦Brix) Measurement

The SSC value of the kiwifruit juice samples was measured at room temperature using
a digital refractometer (PAL-1, Atago Co., Ltd., Tokyo, Japan), calibrated with Milli-Q
water. The Brix value was recorded after placing approximately 0.5 mL of juice into the
measurement chamber of the refractometer; this was enough to fully cover the optical
interface.

2.3. FT-NIR Spectral Measurements

Transmittance spectra of the juice samples were measured at 20, 25, and 30 ◦C (±1 ◦C)
with an FT-NIR spectrometer (Tango, Bruker Corporation, Bremen, Germany) equipped
with a temperature-controlled holder. Two measurements were acquired for each juice sam-
ple, using quartz cuvettes of 1 mm and 10 mm optical path length for the 1300–1600 nm and
870–1100 nm wavelength ranges, respectively [23]. For each measurement, one spectrum
was the average of 32 successive scans and was recorded with a resolution of 16 cm−1. The
total number of juice spectra was 600 (100 samples × 1 consecutive scan × 3 temperatures
× 2 cuvettes). The samples were divided into two sets, one for the 1300–1600 nm and one
for the 870–1100 nm wavelength ranges. After the removal of five outliers, anomalous read-
ings speculated to be laboratory blunders, the final data set consisted of 95 juice samples
(285 spectra for three temperatures) in each wavelength set. The spectral region above
1800 nm was discarded because of the high absorption in aqueous samples. To monitor
interfering signals, a reference spectrum of Milli-Q water was taken at the beginning, mid-
dle, and end of the experiment, which resulted in a total of 18 water spectra (3 samples × 1
consecutive scan × 3 temperatures × 2 cuvettes).

2.4. Aquaphotomics Analysis

Aquaphotomics water matrix coordinates (WAMACS) were created using the peak
wavelengths identified in a principal component analysis (PCA) of the full data set of
fruit juice spectra over the three temperatures in the first and second overtone regions of
the OH stretch of water. An anharmonic oscillator model was used to establish 12 water
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bands in the second overtone region that corresponded to the previously established
wavelengths in the first overtone region of water [24]. Aquagrams displaying the resulting
water spectral pattern (WASP) in each overtone region were studied to observe the effect of
temperature variation.

2.5. Multivariate Analysis

Predictive models were developed using MATLAB version R2018b (MathWorks Inc.,
Natick, MA, USA) and the PLS toolbox version 8.6.2 (Eigenvector Research Inc., Wenatchee,
WA, USA). The analysis involved the development of predictive models using spectra
pre-processed by:

2.5.1. SNV + 2D

This is the standard normal variate transformation of the raw spectra followed by
second derivative processing (Savitzky–Golay second-order derivative with smoothing
parameters: width 15, order 2).

2.5.2. EMSC

This is the extended multiplicative scatter correction of the raw spectra. The concept
of EMSC pre-treatment was introduced by Martens et al. [25,26]. EMSC was designed to
remove chemical variabilities by using a model framework that segregates the spectral
response of the analyte of interest from that of a known interference.

Equation (1) describes the theory of EMSC:

X = b0 + b1X + b2 I + e (1)

where X is the raw observed spectra, X is the mean spectrum (the mean of all calibration
spectra), I is an interferent spectrum (to be determined), b0, b1, and b2 are fitting constants,
and e is the residual [18]. Rearranging Equation (1) leads to:

X − b0

b1
− b2 I

b1
= X +

e
b1

(2)

The left-hand side of Equation (2) defines the corrected spectra,

X̂ =
X − b0

b1
− b2 I

b1
(3)

where the constant terms can be estimated by multiple linear regression (MLR).

2.5.3. EPO

This is the external parameter orthogonalisation of the raw spectral matrix X. The
concept of EPO was introduced by Roger et al. [10]. It is a pre-processing method that
aims at removing the part of the X matrix space most influenced by the external parameter
variations. The method identifies the parasitic subspace for removal by computing a PCA
on a small set of spectra measured on the same objects, while the external parameter is
varying.

The theory of the EPO algorithm is outlined below [27].
The spectra matrix X (size n × m) can be written as:

X = XP + XQ + R (4)

where P is the projection matrix (size m × m) of the useful part of the spectra: X* = XP; Q

is the projection matrix (size m × m) of the not useful part (e.g., influenced by temperature)
of the spectra: X# = XQ; R is the residual matrix (size n × m); n is the number of samples,
and m is the number of wavelengths.
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The aim of EPO is to obtain the useful spectra X* = X (I − Q), while matrix Q can be
written as Q = GGT where GT is the transpose of G. The transformed spectra for both the
calibration and validation sets are then calculated as X* = XP where P = I − GGT, and I is
the identity matrix. To estimate G, the uninformative part of the spectra that is orthogonal
to the useful part of the spectra, the principal component of the difference spectra D is
calculated. D is the difference matrix generated by subtracting the average spectra for the
samples at the lowest temperature (in our case) from the samples at all temperatures.

2.5.4. All Temperature Method

This involved combining samples from all three temperatures and applying a stan-
dard pre-treatment on all spectra, both calibration and validation, of SNV transformation
followed by 2nd derivative processing.

2.6. Statistical Analysis

The main data set in the long-wavelength region (1300–1600 nm) and the short wave-
length region (870–1100 nm) was split into three subsets for 20, 25, and 30 ◦C temperature,
respectively. The samples were first rank ordered by SSC value and then systematically
split into ten different groups, using a Venetian blind selection approach, delivering SSC
equivalence between the groups. This arrangement enabled a 10-way leave-each-group-out
approach to calibration-validation set modeling and analysis. Each of the ten calibration–
validation sets were created by holding out a single group in turn, as an independent
validation data set, and leaving the remaining nine groups to be combined as the calibra-
tion data set. Consequently, the total number of samples in each calibration set was 71, and
in each validation set was 24. A separate 10-way Venetian blind cross-validation process
was also undertaken with the calibration modeling on each calibration data set.

3. Results and Discussion

The SSC of kiwifruit juice ranged from 11.9 to 19.2 ◦Brix, with a mean of 16.54 ◦Brix
and a standard deviation of 1.26 ◦Brix. Figure 2 shows the distribution of SSC for all fruit
juice samples in the experiment. There was a very small number of relatively low SSC
samples, below 14 ◦Brix, which may be population outliers.

Figure 2. Number of fruit vs SSC for the kiwifruit juice samples.

3.1. The Raw Spectra

The absorbance plot in Figure 3 illustrates that as the temperature increased in kiwifruit
juice, the absorbance curve in the first overtone region shifted to shorter wavelengths
with a broadening of the peak and a decrease in intensity (Figure 3a). However, in the
second overtone region, there was a slight upward shift in intensity towards the shorter
wavelengths with increasing temperature (Figure 3b). The isosbestic points were 1444 nm
(before the water peak wavelength) and 994 nm (after the water peak wavelength), each
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approximately 4 nm away from reported pure water isosbestic points at 1440 nm and 990
nm, respectively [28].

 
(a) 

 

(b) 

Figure 3. Average raw absorbance spectra of kiwifruit juice at three temperatures 20, 25, and 30 ◦C in
(a) the first overtone and (b) the second overtone region of the OH stretch of water. Labels indicate
wavelengths of the isosbestic points.

3.2. Aquaphotomics Analysis

The wavelengths of the peak and trough in the PC1 spectrum (from PCA on all
juice samples and temperatures) were at 1414 nm and 1494 nm (the first overtone), and
963 nm and 1027 nm (the second overtone), as shown in Figure 4a,b. These wavelength
pairs correspond to C5 (S0: free water) and C11 (S4: species with four hydrogen bonds)
activation for the first overtone, and C6 (water hydration) and C12 (strongly bonded water)
activation for the second overtone region. The remaining WAMACS assignments, not
directly identified from the PCA, were selected as the midpoints of each known water band
in Table 1. As expected, the zero-crossing points for the two PC1 plots were identical to the
isosbestic points observed in Figure 3.
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Figure 4. PC1 loading of kiwifruit juice in (a) the first overtone and (b) the second overtone region of
the OH stretch of water. Labels indicate peak wavelengths (black) and zero-crossing points (red).

Table 1. Temperature-perturbed water wavelengths of kiwifruit juice in the first [16,29] and the
second overtone regions of OH stretch of water [30].

WAMACS Assignment

Wavelengths in Overtone Region
Activated

Wavelengths, nm

First
(1300–1600 nm)

Second
(800–1100 nm)

First
Overtone

Second
Overtone

C1 ν3—asymmetric stretching
vibration 1336–1348 900–908

C2 OH stretch—water
solvation shell) 1360–1366 916–920

C3
ν1 + ν3—H2O symmetric

stretching and asymmetric
stretching vibration

1370–1376 923–927

C4 OH stretch (water solvation
shell) 1380–1388 930–935

C5 S0 (free water) 1398–1418 942–955 1414

C6 Water hydration, H5O2 1421–1430 957–963 963

C7 S1—water molecules with 1
hydrogen bond 1432–1444 965–973

C8
ν2 + ν3—H2O bending and

asymmetric stretching
vibration

1448–1454 975–979

C9 S2—water molecules with 2
hydrogen bonds 1458–1468 982–989

C10 S3—water molecules with 3
hydrogen bonds 1472–1482 992–998

C11 S4—water molecules with 4
hydrogen bonds 1482–1495 998–1007 1494

C12 Strongly bonded water or
ν1, ν2

1506–1516 1014–1021 1027

3.3. Aquagrams

The aquagrams of average spectra of the juice at three temperatures are illustrated in
Figure 5a,b for the two overtone regions. There are strong similarities in the two overtone
regions, free water species increasing with temperature as the water structure becomes less
organized as a result of increased molecular motion and less stable H-bonds. However,
there is a difference with the asymmetric stretching and bending (ν2 + ν3) only observed to
increase with temperature for the second overtone region. We might have expected that the
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same water coordinates to be similarly highlighted in the first and second overtone region.
However, this is not quite the case here.

 
 

(a) (b) 

Figure 5. Aquagrams at three temperatures in (a) the first overtone (1300–1600 nm) (b) the second
overtone (870–1100 nm) region of the OH stretch of water in kiwifruit juice.

3.4. EMSC Correction
Pure Water Analysis

When applying PCA to the water spectra, the shape of the PC1 loading in the first
overtone region (Figure 6) is very similar to that reported by Segtnan et al. [8] and Maeda
et al. [31], indicating a change in water structure due to a change in temperature. The
shape of the PC1 loading of water in the second overtone region (Figure 6) is similar to the
PC1 loading in the first overtone region. Hence, the respective PC1 loadings, for the first
overtone and second overtone regions were used as the interferent spectra in the EMSC
correction method (Equation (3)).

(a) (b) 

Figure 6. PC1 loading of water in (a) the first overtone and (b) the second overtone region of the OH
stretch of water. Labels indicate peak and trough wavelengths.

3.5. EPO Correction
PCA of the Difference Matrix D for EPO Correction

There was a variation in the temperature around the peak wavelength region of the
juice spectra (Figure 3). When applying PCA to the difference matrix, D, of water and juice
spectra (Figure 7), the shape of the PC1 loadings (Figure 8a,b) were nearly identical, and
the peak and trough positions were identical to those determined in the PCA of the raw
juice and water spectra (Figures 4 and 6). Therefore, the PC1 loadings of the difference
matrix, D, of water were used in the EPO correction (Figure 6) as the interferent spectra to
correct juice spectra against temperature variation.

194



Molecules 2022, 27, 504

Figure 7. Average raw absorbance difference spectra of water and kiwifruit juice after subtracting
average raw absorbance spectrum of water and juice at 20 ◦C, respectively.

(a) (b) 

Figure 8. PC1 loading of water and juice difference matrix in the (a) 1300–1600 nm region with a
1 mm cuvette; and (b) 870–1100 nm region with a 10 mm cuvette. Labels indicate the peak and trough
wavelengths.

3.6. Prediction of SSC

Application of both the EMSC and EPO pre-processing techniques generally reduced
the SSC prediction bias by a large margin in both the first (Figure 9) and second (Figure 10)
overtone regions, especially compared with SNV + 2D pre-processing. Beyond that, and
particularly comparing EMSC and EPO, it is difficult to see any consistent trends or patterns
in the results. For instance, in the first overtone region, the EMSC method seems advanta-
geous (lower bias) compared with the EPO method when applying a model calibrated at
30 ◦C to a validation set at 20 or 25 ◦C (Figure 9c). However, that does not apply in reverse,
a model calibrated at 20 ◦C is perhaps slightly better under the EPO method when applied
to validation sets at 25 and 30 ◦C. In the second overtone region, the EPO method seems
to have the advantage, although oddly it fails badly, even compared with the SNV + 2D
method, when using a model calibrated at 25 ◦C on a validation set at 30 ◦C (Figure 10b).
The variation in results of any particular method is relatively large, represented by standard
deviation error bars in the graphs, and suggests a large amount of modeling noise between
the various combinations of calibration and validation data sets.

195



Molecules 2022, 27, 504

Figure 9. Validation temperature vs. bias at for SSC prediction of kiwifruit juice in the first overtone
(1300–1600 nm) region of the OH stretch of water at calibration temperature (a) 20 ◦C, (b) 25 ◦C, and
(c) 30 ◦C. Error bars show standard deviation.
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Figure 10. Validation temperature vs. bias for SSC prediction of kiwifruit juice in the second overtone
(870–1100 nm) region of the OH stretch of water at calibration temperature (a) 20 ◦C, (b) 25 ◦C, and
(c) 30 ◦C. Error bars show standard deviation.

The performance of each method is shown in detail in Tables 2 and 3. The result for
the All-Temperature method is listed for comparison. The all-temperature method resulted
in the lowest overall biases of 0.03 in the first overtone region and less than 0.06 in the
second overtone region of water. However, the EPO method consistently produced the
lowest SEP and RMSECV for the first and second overtone regions of water. The RMSECV
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errors in the first and second overtone regions were fairly consistent, approximately 0.09
and 0.12 respectively when using the EPO method for calibration models at 20, 25, and
30 ◦C. However, the bias results were not consistent. For example, the calibration model at
30 ◦C predicting at 20 ◦C, produced a bias of 0.23 in the first overtone region whereas a bias
of 0.04 was generated in the second overtone region. The best choice of wavelength region
may depend on other matters, such as sample thickness—analysis of thicker samples, as in
thicker than the 1 mm pathlength, may demand the use of the second overtone region of
water to achieve sufficient light transmission.

Table 2. Performance comparison for soluble solids content (SSC) prediction of kiwifruit juice in the
first overtone (1300–1600 nm) region of the OH stretch of water at different temperatures.

With 1 mm Cuvette in the First Overtone Region (1300–1600 nm)

Ncal = 72, Nval = 23

Calibration Validation

Tcal [◦C] Method r2
cv RMSECV Tval [◦C] r2

p RMSEP BIAS SEP

All SNV + 2D 0.99 0.12 (±0.00)
20 0.99 0.12 (±0.01) 0.03 (±0.02) 0.12 (±0.01)

25 0.99 0.12 (±0.02) 0.03 (±0.01) 0.12 (±0.02)

30 0.99 0.13 (±0.02) 0.03 (±0.01) 0.12 (±0.02)

20

SNV + 2D 0.99 0.14 (±0.01)
20 0.98 0.16 (±0.01) 0.04 (±0.01) 0.15 (±0.01)

25 0.96 0.24 (±0.05) 0.09 (±0.04) 0.22 (±0.05)

30 0.98 0.48 (±0.21) 0.43 (±0.22) 0.19 (±0.02)

EMSC 0.99 0.14 (±0.01)
20 0.99 0.13 (±0.02) 0.03 (±0.02) 0.13 (±0.01)

25 0.98 0.15 (±0.02) 0.04 (±0.03) 0.14 (±0.02)

30 0.99 0.15 (±0.04) 0.06 (±0.06) 0.13 (±0.02)

EPO 0.99 0.10 (±0.01)
20 0.99 0.09 (±0.02) 0.02 (±0.01) 0.09 (±0.02)

25 0.99 0.09 (±0.01) 0.03 (±0.02) 0.09 (±0.01)

30 0.99 0.10 (±0.02) 0.04 (±0.03) 0.09 (±0.01)

25

SNV+2D 0.99 0.13 (±0.02)
20 0.98 0.37 (±0.05) 0.32 (±0.07) 0.18 (±0.04)

25 0.98 0.15 (±0.03) 0.03 (±0.02) 0.14 (±0.03)

30 0.99 0.14 (±0.01) 0.03 (±0.02) 0.14 (±0.02)

EMSC 0.99 0.12 (±0.01)
20 0.99 0.21 (±0.07) 0.15 (±0.09) 0.13 (±0.01)

25 0.98 0.15 (±0.04) 0.03 (±0.02) 0.15 (±0.04)

30 0.99 0.14 (±0.02) 0.04 (±0.03) 0.13 (±0.02)

EPO 0.99 0.09 (±0.00)
20 0.99 0.11 (±0.03) 0.07 (±0.03) 0.09 (±0.02)

25 0.99 0.09 (±0.01) 0.03 (±0.01) 0.08 (±0.01)

30 0.99 0.09 (±0.02) 0.03 (±0.02) 0.09 (±0.01)

30

SNV+2D 0.99 0.14 (±0.00)
20 0.97 0.80 (±0.13) 0.77 (±0.13) 0.21 (±0.04)

25 0.98 0.28 (±0.04) 0.23 (±0.04) 0.15 (±0.03)

30 0.99 0.14 (±0.01) 0.02 (±0.02) 0.14 (±0.01)

EMSC 0.99 0.13 (±0.00)

20 0.99 0.18 (±0.10) 0.10 (±0.12) 0.13 (±0.03)

25 0.99 0.14 (±0.01) 0.04 (±0.04) 0.12 (±0.01)

30 0.99 0.13 (±0.01) 0.02 (±0.02) 0.12 (±0.01)

EPO 0.99 0.09 (±0.00)
20 0.99 0.26 (±0.15) 0.23 (±0.16) 0.10 (±0.03)

25 0.99 0.13 (±0.06) 0.08 (±0.07) 0.09 (±0.02)

30 0.99 0.09 (±0.01) 0.02 (±0.01) 0.09 (±0.01)
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Table 3. Performance comparison for SSC prediction of kiwifruit juice in the first overtone (870–1100
nm) region of the OH stretch of water at different temperatures.

With 10 mm Cuvette in the Second Overtone Region (870–1100 nm)

Ncal = 72, Nval = 23

Calibration Validation

Tcal [◦C] Method r2
cv RMSECV Tval [◦C] r2

p RMSEP BIAS SEP

All SNV + 2D 0.98 0.17 (±0.01)
20 0.98 0.18 (±0.04) 0.06 (±0.05) 0.16 (±0.03)

25 0.98 0.17 (±0.02) 0.05 (±0.02) 0.16 (±0.03)

30 0.98 0.18 (±0.02) 0.04 (±0.02) 0.17 (±0.02)

20

SNV + 2D 0.98 0.20 (±0.01)
20 0.97 0.21 (±0.03) 0.07 (±0.03) 0.21 (±0.04)

25 0.97 0.20 (±0.04) 0.06 (±0.03) 0.20 (±0.03)

30 0.97 0.19 (±0.03) 0.05 (±0.03) 0.20 (±0.03)

EMSC 0.99 0.14 (±0.01)

20 0.98 0.15 (±0.03) 0.04 (±0.02) 0.14 (±0.03)

25 0.98 0.18 (±0.02) 0.07 (±0.04) 0.16 (±0.02)

30 0.98 0.20 (±0.05) 0.10 (±0.07) 0.17 (±0.03)

EPO 0.99 0.12 (±0.01)

20 0.99 0.13 (±0.01) 0.02 (±0.02) 0.13 (±0.01)

25 0.98 0.14 (±0.02) 0.03 (±0.02) 0.14 (±0.02)

30 0.98 0.17 (±0.03) 0.09 (±0.05) 0.15 (±0.02)

25

SNV+2D 0.98 0.20 (±0.01)

20 0.97 0.21 (±0.03) 0.07 (±0.03) 0.21 (±0.04)

25 0.97 0.20 (±0.04) 0.06 (±0.03) 0.20 (±0.03)

30 0.97 0.19 (±0.03) 0.05 (±0.03) 0.20 (±0.03)

EMSC 0.99 0.15 (±0.01)

20 0.97 0.19 (±0.01) 0.07 (±0.03) 0.18 (±0.02)

25 0.99 0.14 (±0.03) 0.04 (±0.04) 0.12 (±0.03)

30 0.98 0.17 (±0.03) 0.06 (±0.06) 0.14 (±0.02)

EPO 0.99 0.12 (±0.01)

20 0.97 0.21 (±0.02) 0.07 (±0.04) 0.19 (±0.03)

25 0.99 0.13 (±0.02) 0.04 (±0.02) 0.12 (±0.01)

30 0.98 0.24 (±0.05) 0.18 (±0.06) 0.15 (±0.03)

30

SNV+2D 0.98 0.19 (±0.01)
20 0.97 0.55 (±0.18) 0.51 (±0.18) 0.21 (±0.04)

25 0.98 0.35 (±0.12) 0.29 (±0.13) 0.18 (±0.01)

30 0.97 0.19 (±0.03) 0.06 (±0.03) 0.18 (±0.03)

EMSC 0.98 0.17 (±0.02)

20 0.98 0.34 (±0.06) 0.29 (±0.06) 0.16 (±0.03)

25 0.98 0.25 (±0.01) 0.18 (±0.03) 0.16 (±0.03)

30 0.98 0.17 (±0.05) 0.05 (±0.03) 0.15 (±0.05)

EPO 0.99 0.13 (±0.00)

20 0.98 0.14 (±0.02) 0.04 (±0.02) 0.14 (±0.02)

25 0.99 0.14 (±0.01) 0.05 (±0.01) 0.13 (±0.01)

30 0.99 0.12 (±0.01) 0.04 (±0.02) 0.12 (±0.01)

4. Conclusions

The aquaphotomics study here has revealed that the free water components of kiwifruit
juice increase and the bound water components decrease as the temperature rises from 20
to 30 ◦C. The key aquaphotomics wavebands in the first and second overtone regions were
identified. The influence of increasing temperature on the peak absorbance of kiwifruit
juice spectra was a lateral (wavelength) shift in the first overtone region and a vertical shift
in the second overtone region of water. In the second overtone region, the C8 asymmetric
stretching and bending component (ν2 + ν3) became more prominent in the aquagram with
increasing temperature, which was not the case in the first overtone region.

Predictive modeling of the SSC of kiwifruit juice over the temperature range 20 to 30 ◦C
was more robust (lower offset bias) when using EPO and EMSC pre-processing with an in-
terference term generated from PCA of a simple and independent pure water-temperature
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spectral matrix experimentally generated over the same temperature range. The water-
temperature matrix only needs to be created once and, in being independent of the kiwifruit
juice samples, considerably simplifies the generation of temperature-independent predic-
tions. The consequence of this is that model calibration data on actual juice samples need
only be measured at one temperature, the EPO and/or EMSC pre-processing enables appli-
cation at any other temperature within the measured temperature range. This approach
may apply to other applications, such as other fruit juices or intact fruit modeling problems,
where robustness against temperature changes is desirable.
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Abstract: Near infrared (NIR) spectroscopy is an important tool for predicting the internal qualities
of fruits. Using aquaphotomics, spectral changes between linearly polarized and unpolarized light
were assessed on 200 commercially grown yellow-fleshed kiwifruit (Actinidia chinensis var. chinensis
‘Zesy002’). Measurements were performed on different configurations of unpeeled (intact) and
peeled (cut) kiwifruit using a commercial handheld NIR instrument. Absorbance after applying
standard normal variate (SNV) and second derivative Savitzky–Golay filters produced different
spectral features for all configurations. An aquagram depicting all configurations suggests that
linearly polarized light activated more free water states and unpolarized light activated more bound
water states. At depth (≥1 mm), after several scattering events, all radiation is expected to be
fully depolarized and interactions for incident polarized or unpolarized light will be similar, so any
observed differences are attributable to the surface layers of the fruit. Aquagrams generated in terms
of the fruit soluble solids content (SSC) were similar for all configurations, suggesting the SSC in fruit
is not a contributing factor here.

Keywords: aquaphotomics; water; spectra; band assignment; functionality; polarization; kiwifruit;
near infrared spectroscopy

1. Introduction

Preference for high-quality fruit has propelled the development of non-destructive
techniques for postharvest fruit grading. Although the final decision before purchasing
fruit depends upon consumers, the development of instruments used to mimic human
judgement is important [1]. One such technique uses near-infrared spectroscopy (NIRS),
which has seen success in predicting fruit internal qualities such as soluble solids content
(SSC) and dry matter content (DMC) by utilizing multivariate and statistical analyses such
as principal components analysis (PCA) and partial least squares regression (PLSR) to
create prediction models [2]. Nevertheless, there is still a requirement for improvement
of the technique in several areas such as calibration robustness for fruits harvested from
different seasons and calibration model transfer between instruments [3,4].

Usually, unpolarized light is used in NIRS. Crossed polarizers in the incident and
detection light path are sometimes applied to reduce the amount of specular reflection
received [5]. However, polarized light may offer advantages as suggested by some recent
studies on pears and apples [6,7].

Implementing polarized light in NIR spectroscopy is simple but, nonetheless, there
are few reported studies using polarized light to assess internal quality of fruits, probably
because of multiple scattering in the biological tissue, which quickly depolarizes any
initially polarized radiation [8]. The degree of polarization for circularly and linearly
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polarized light has been observed to decrease as green ‘Conference’ pears mature and has
been attributed to starch, a polarization sensitive structure, hydrolyzing into smaller sugar
molecules, resulting in a decrease in reduced scattering [6]. Advancements in polarized
light interactions with tissue such as polarization gating spectroscopy have suggested
that polarized light can be utilized to probe shallow penetration depths in biological
material and that by varying the polarization state between circular and linear polarized
light, specific sampling depths can be achieved [8–10]. Structural color in Pollia condensata
has been determined to be caused by Bragg reflection of helicoidally stacked cellulose
microfibrils, reflecting either left or right circularly polarized light [11]. This suggests that
utilizing polarized light may be able to infer physical structures in fruits.

Aquaphotomics is a recent scientific discipline conceptualized by Professor Dr Roumi-
ana Tsenkova that utilizes water as a ‘detector’ for scientifically investigating changes
associated with water structures and improving NIRS predictions [12]. For example, using
the aquaphotomics approach, temperature changes in water have been identified leading
to improved NIRS apple juice SSC predictions, by correcting for temperature using the
method of extended multiplicative scatter correction (EMSC) [13]. Water is the major con-
stituent of fruits but other compounds, with active OH functional groups, such as sugars,
starch, and cellulose, contribute to the overall pattern of water absorption peaks in the
NIR range. The second overtone region of the OH stretch, which gives rise to the strong
water peak around 970 nm, is of major interest to the use of NIRS for non-destructive
measurement of fruit properties [14,15].

The objective of this study was to investigate the effects of polarized and unpolarized
light on unpeeled (intact) and peeled (sliced) yellow-fleshed kiwifruit (Actinidia chinensis
var. chinensis ‘Zesy002′) in the second overtone region of the OH stretch of water, using
aquaphotomics. Previous studies involving the removal of apple skin resulted in an
improvement of prediction models for SSC and firmness, probably because of removal of
the highly scattering skin [16]. By removing kiwifruit skin, it is assumed that scattering
effects will reduce considerably. Sugar molecules such as sucrose are optically active and
rotate the plane of linearly polarized light, which is why the effects of SSC measured on
kiwifruits are investigated using linearly polarized and unpolarized light [17].

2. Materials and Methods

Unpeeled (intact) and peeled (cut) kiwifruit (Figure 1) were placed directly on top
of the ring adapter, enabling an interactance mode NIRS measurement to be made.The
measurement setup (Figure 2) consisted of a bespoke ring adapter that ensured only diffuse
transmitted light was collected, a linear polarizer (LPNIRE100-B, Thorlabs Inc., Newton, NJ,
USA) and a handheld NIR instrument (F-750, Felix Instruments Oregon, Camas, WA, USA).

Figure 1. Example of unpeeled (Left) and peeled (Right) kiwifruit.
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Figure 2. An illustration of the measurement of set up depicting peeled and unpeeled kiwifruit, a
ring adapter, a linear polarizer and a Felix F-750.

2.1. Sample Preparation

Two hundred yellow-fleshed kiwifruit, sourced from a local kiwifruit packhouse (Te
Puke, New Zealand), were stored at room temperature (22 ± 1 ◦C). Forty fruits were
measured each day for five days and all fruit, except Day 1 fruit, were subjected to 100 ppm
ethylene for 24 h to accelerate ripening. Using the F-750 instrument (Oregon, Camas, WA,
USA), fruit was measured under four different configurations: Unpeeled Unpolarized (UU),
Unpeeled Polarized (UP), Peeled Unpolarized (PU) and Peeled Polarized (PP). Unpeeled
and peeled refer to intact and sliced fruit, respectively, where sliced fruit had two 2 mm
slices sectioned off using a commercial meat slicer (WFS30MGB3, Wedderburn, New
Zealand) to expose internal fruit tissue. After slicing, the sections of each fruit were
re-placed onto the cut surface, with the whole fruit then being wrapped in cling wrap
(Gladwrap®, Plant Based Cling Wrap, Sydney, Australia) to reduce moisture loss.

2.2. Spectra Collection

The linear polarizer selectively transmits an electromagnetic wave that oscillates along
a defined plane and absorbs the rest. Light scattered back towards the detector consists
of two components: light having undergone few scattering events and multiply scattered
light [18]. The polarizer in this configuration measures light of the same input polarization
state and half of the depolarized light. Only co-polarized light was measured in the
polarized light configurations,

Ico−pol(λ) = I||(λ) + I⊥(λ), (1)

where I||(λ) refers to light having undergone a few scattering events and I⊥(λ) refers to
depolarized light that has undergone multiple scattering events.

All measurements were made at room temperature (22 ± 1 ◦C) with the F-750 recording
the average of five scans on one side of a kiwifruit. This process was repeated four times
at the same location, once for each configuration. Each fruit was orientated with its stem
end along the transmission axis of the linear polarizer. A separate scan was recorded for
each configuration using a reflectance standard (Spectralon SRS-99-020, Labsphere, North
Sutton, NH, USA) and a custom reference holder.
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2.3. Destructive Measurements

After measurements were complete, DMC (% FW) and SSC (◦Brix) were destructively
measured. For DMC, an approximately 3 mm thick kiwifruit cross-sectional slice was
sectioned off from the equatorial middle of each fruit. The kiwifruit slice was weighed,
then dried for 24 h at 65 ◦C to remove moisture. The weight of the dried kiwifruit slice was
then measured and the DMC was calculated as the ratio of the dry to wet weight.

For SSC, a refractometer (PAL-1, Atago Co. Ltd., Tokyo, Japan) was referenced to 0◦Brix
using Milli-Q water. Stem and blossom endcaps were sectioned off, about 5 mm in from
the ends, and approximately 0.5 mL of juice was squeezed into the digital refractometer.
The final SSC (◦Brix) value was obtained by averaging the measurements from both ends
of the kiwifruit.

2.4. Multivariate and Aquaphotomics Analysis

The fruit interactance measurements, normalized using the reference scans, were
transformed to absorbance data (i.e., base 10 logarithm). The subsequent analysis used
pre-processing techniques to identify key differences in measurements made in the different
configurations. Pre-processing methods used on the absorbance data were:

• Mean centering;
• Standard Normal Variate (SNV);
• SNV followed by second derivative processing (SNV + 2D). The second derivative

was calculated using the Savitzky–Golay method with a filter window width of 7 nm
and second order polynomial smoothing. A filter width of seven was chosen as higher
widths may ‘wash’ out any interesting features, and to improve the resolution.

Principal Components Analysis (PCA) analysis was carried out using PLS toolbox
version 8.6.2 (Eigenvector Research Inc., Manson, WA, USA) operating under MATLAB
version 2021a (MathWorks Inc., Natick, MA, USA). PCA is a useful tool that can reduce
dimensionality and simplify interpretation of all kiwifruit absorbance for each configura-
tion [19]. PCA is also useful for identifying wavelengths of interest between configurations.
Loading and score plots of the first three principal components were used to explain
variances for all configurations.

Aquaphotomics analysis utilizes 12 wavebands, called the water matrix coordinates
(WAMACS), which are sensitive to perturbations of the water structure. The WAMACS in
the range of 800–1100 nm, corresponding to the second overtone of water, were calculated
using the anharmonic oscillator model and the WAMACS wavebands known in the first
overtone region around 1450 nm [20]. Each WAMACS waveband represents a combination
of water vibrational states and different water species, namely S0, S1, S2, S3 and S4, where
the number refers to the number of hydrogen bonds. Owing to the limited optical band-
width of the F-750 instrument, exact wavelengths provide only an indication of wavebands
that are important when differentiating between configurations. Specific wavelengths were
determined using:

• SNV + 2D absorbance spectra of all configurations, noting any features.
• Average SSC difference spectra (SNV + 2D absorbance) between the Low, Medium

and High SSC groups.
• Principal components analysis (PCA) of different configurations, including loading

and score plots.

Once selected, WAMACS wavelengths used for aquagrams were generated to visualize
water perturbations using a relative standard normal variate transformation:

A′
λ =

(Aλ − μλ)

σλ
, (2)

where Aλ is the pre-processed absorbance value for a sample at wavelength λ, and μ and
σ are the mean and standard deviation of the pre-processed absorbance values across all

206



Molecules 2022, 27, 494

configurations at that specific wavelength. Aquagrams were then generated using a spider
plot function available in MATLAB [21].

3. Results and Discussion

Table 1 shows the variation in SSC for all 200 kiwifruit. Fruits were assigned to Low
(7–11.9◦Brix), Medium (12.1–14.9◦Brix) or High (15–20.5◦Brix) SSC groups to compare re-
sults across all configurations at different average SSC. Total SSC varied from 7 to 20.5◦Brix,
with a standard deviation of 2.9◦Brix.

Table 1. Variation of SSC by different SSC level grouping (Low, Medium, High).

SSC Group SSC (◦Brix) Average (◦Brix)

Low SSC (N = 61) 7–11.9 10.4
Medium SSC (N = 69) 12.1–14.9 13.5

High SSC (N = 70) 15–20.5 16.9
All SSC (N = 200) 7–20.5 13.7

3.1. Raw and SNV Spectra

Raw absorbance spectra of all kiwifruit are shown in Figure 3 in the range 800–1050 nm,
where the filled areas for each configuration represent mean ± standard deviation at each
wavelength. For the peeled fruit (skin removed), the absorbance increased, relative to
the unpeeled fruit, for both the linearly polarized and unpolarized light and there was
a substantial increase in absorbance (decreased light intensity) when using the linear
polarizer (Figure 3). This demonstrates that removal of skin increases absorbance for
linearly polarized and unpolarized light and that a substantial intensity, reduction is
observed when using a linear polarizer. The increase in absorbance after peeling was
similar to that previously observed on peeled apples [16]. The SNV transformation of
the spectra also revealed clear separation between the linearly polarized and unpolarized
configurations, with the former exhibiting slight broadening of the water peak compared
with the latter. This can be related to the lower penetration depth of polarized light
compared with unpolarized light, because of fewer interactions within the fruit tissue [22].
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Figure 3. Absorbance spectra (800–1050 nm) of kiwifruit for unpeeled polarized (blue), unpeeled
unpolarized (red), peeled polarized (cyan) and peeled unpolarized (magenta) for (a) Raw absorbance
with filled areas representing mean ± std and (b) Mean SNV absorbance for each configuration.

3.2. WAMACS Wavelength Selection

Taking a second derivative of the SNV absorbance (SNV + 2D) revealed further differ-
ences between co-polarized and unpolarized light measurements (Figure 4). One feature
included a prominent reduction in the second derivative absorbance from unpolarized to
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polarized light at 942 nm. Another was an apparent flattening of the linearly polarized
light compared with unpolarized light from 970 to 1000 nm.
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Figure 4. Standard Normal Variate (SNV) + 2D absorbance for each configuration (Blue—Unpeeled
Polarized, Red—Unpeeled Unpolarized, Cyan—Peeled Polarized and Magenta—Peeled Unpolarized
kiwifruit) in the range of 800–1050 nm.

In general, the peeled configurations exhibited higher second derivative absorbance
at 942 nm and lower absorbance from 960 to 1000 nm than unpeeled configurations.
Kiwifruit skins are complex structures, made of largely dry dead fruit cells that will be
highly scattering and result in light losses that contribute to relatively higher absorbance
measurements on the unpeeled fruit compared to on the peeled fruit [23].

PCA loading and score plots for SNV and second derivatives are shown in Figure 5,
where just over 95% of the variance was captured by the first three principal components
(PC1—82.91%, PC2—10.80% and PC3—1.61%). Each score plot is arranged in order of
Unpeeled Polarized, Unpeeled Unpolarized, Peeled Polarized, and Peeled Unpolarized
(Blue, Red, Cyan and Magenta, respectively) with every 200 sample numbers indicating a
new configuration.

For each principal component plot, maxima and minima wavelengths in the range
of 900 to 1020 nm were identified for use with the aquaphotomics analysis. There was
a clear separation between the polarized and unpolarized configurations in PC1, where
there was a slight tendency for peeled configurations to shift negatively. This appears to
be due to a negative correlation at 946 nm, a wavelength corresponding to a free water
state (S0), described as water molecules with a free OH− functional groups. Separation
between polarization states shifted positively at 965 nm, a wavelength corresponding to
water molecules bonded with one hydrogen bond. Trends with the higher PCs were not
so obvious.
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Average SSC difference spectra (SNV + 2D absorbance) were calculated for each
configuration (Figure 6) by subtracting the average spectra for all groups from the average
spectra of the Low SSC group. The changes for the polarized light configurations were
at 946 and 965 nm, an increase and decrease in SNV + 2D absorbance, respectively, as
SSC increased. The unpolarized light configurations had similar changes occurring at
949 nm and 968 nm with the unpeeled configurations having extra features at 975 nm and
978 nm, possibly caused by the presence of the skin. All minor maxima and minima in each
configuration were considered in the subsequent aquaphotomics analysis.
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Peeled Unpolarized kiwifruit. Low, medium and high designations are represented by solid, dashed
and dashed-dot lines, respectively.
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3.3. Aquaphotomics Analysis

A summary of the important WAMACS coordinates is shown in Table 2, the water
bands based on calculations using the anharmonic oscillator model for the second overtone
of water [20]. C1 to C5 are related to free water species and C6 to C12 are related to bound
water species. Using PCA results (Figure 5), activated wavelengths, from within each band,
were identified at 916 nm (C2) from PC1, PC2 and PC3; 946 nm (C5) from PC1; 965 nm (C7)
from PC1; 988 nm (C9) from PC2; 1007 nm (C11) and 1014 nm (C12) from PC1 and PC2.
Using the SNV + 2D spectra (Figure 4), activated wavelengths were identified at 926 nm
(C3), 933 nm (C4) and 962 nm (C6). From the average SSC difference spectra (Figure 6),
activated wavelengths were identified at 903 nm (C1), 975 nm (C8) and 994 nm (C10).

Table 2. Assignment of water absorbance bands for second overtone of water using the anharmonic
oscillator model [20].

WAMACS Assignment Water Bands (nm)
Activated

Wavelengths (nm)

C1 v3—asymmetric stretching
vibration 900–908 903

C2 OH stretch—(water
solvation shell) 916–920 916

C3
v1 + v3H2O symmetric

stretching and asymmetric
stretching vibration

923–927 926

C4 OH stretch (water
solvation shell) 930–935 933

C5 S0 (free water) 942–955 946

C6 Water hydration, H5O2 957–963 962

C7 S1—Water molecules with one
hydrogen bond 965–973 965

C8
v2 + v3H2O bending

andasymmetric stretching
vibration

975–979 975

C9 S2—Water molecules with 2
hydrogen bonds 982–989 988

C10 S3—Water molecules with 3
hydrogen bonds 992–998 994

C11 S4—Water molecules with 4
hydrogen bonds 998–1007 1007

C12 Strongly bonded water (v1, v2) 1014–1021 1014

3.4. Aquagrams
3.4.1. Aquagram for Polarized and Unpolarized Light

The overall aquagram of all configurations (Figure 7) suggests that polarized light
has relatively greater absorbance at free water states (C1 to C5) than unpolarized light,
which relatively favors bound water states (C6 to C10). The exception is the bound water
states at C11 and C12, where polarized light configurations exhibited relatively greater
absorbance than unpolarized light. C11 and C12 are closely related to strongly bonded
hydrogen water molecules so it is possible that these water structures could be polarization
dependent but, as such, there is no explanation on why absorbance of C12 for unpeeled
polarized is higher than peeled polarized configuration and vice versa for C11 [19]. Peeled
configurations exhibited relatively greater absorbance for bound water states than the
unpeeled configurations.
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Figure 7. Aquagram for all configurations. Blue—Unpeeled Polarized, Red—Unpeeled Unpolarized,
Cyan—Peeled Polarized and Magenta—Peeled Unpolarized kiwifruit.

Polarized light is quickly depolarized in biological material such as fruit tissues, due
to multiple scattering [8]. Light undergoes multiple scattering events to become entirely
diffuse and depolarized (isotropically scattered) in a distance of the order of 1 mm in
fruit tissue [24]. Hence, water structure interactions of polarized light are expected to
be similar to unpolarized light after a penetration depth of approximately 1 mm due
to such depolarization. Differences observed between polarized and unpolarized are,
thus, attributable to the near-surface region of fruit and the relatively shorter pathlength
of polarized light [22]. There is also potential for polarization-sensitive structures such
as cellulose and starch causing differences between unpolarized and linearly polarized
light. Starch granules in particular produce Maltese cross patterns when placed between
crossed polarizers, a common phenomenon with birefringent material [25]. The second
overtone of water contains mixed absorbance from all these structures, meaning that it
may be difficult to differentiate differences between polarized and unpolarized through
conventional means [14].

3.4.2. Aquagram for Soluble Solids Content

Similar aquagrams patterns are produced for all configurations irrespective of the SSC
grouping (Figure 8). Alignment with the free water species (C1 to C5) decreased, with
the bound water species (C6 to C11) alignment increasing, as the average SSC increased.
This is similar to previous work involving SSC grouping [20]. The aquagram suggests
that differences between polarized and unpolarized responses were not related to the SSC.
There is no explanation why, but it is worth noting that at C6, from the Low to High SSC
group, the relative absorbance decreased for unpolarized light whereas it stayed the same
for polarized configurations.
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Figure 8. Aquagram for all configurations with different kiwifruit SSC (low, medium and high) for
(a) Unpeeled Polarized, (b) Unpeeled Unpolarized, (c) Peeled Polarized and (d) Peeled Unpolarized.
Solid Line—Low SSC, Dashed Line—Medium SSC and Dashed-Dot Line—High SSC.

4. Conclusions

Two hundred yellow-fleshed kiwifruit were spectrally measured, in the NIR range
from 800 to 1050 nm, under four different combinations of unpeeled and peeled fruit, and
linearly polarized and unpolarized light. Clear differences in the absorbance patterns were
observed between the polarized and unpolarized light, but less so between the unpeeled
and peeled fruit. Differences in fruit SSC did not appear to be a significant factor associated
with these differences. Under an aquaphotomics framework, there was the suggestion that
bound water states absorbed more unpolarized light than polarized light. It is speculated
that differences are due to polarization sensitive structures, particularly in the near surface
layers, and further work is needed to investigate and explain these differences in response
due to the polarization state of light.
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Abstract: Coffee is both a vastly consumed beverage and a chemically complex matrix. For a long
time, an arduous chemical analysis was necessary to resolve coffee authentication issues. Despite
their demonstrated efficacy, such techniques tend to rely on reference methods or resort to elaborate
extraction steps. Near infrared spectroscopy (NIRS) and the aquaphotomics approach, on the other
hand, reportedly offer a rapid, reliable, and holistic compositional overview of varying analytes but
with little focus on low concentration mixtures of Robusta-to-Arabica coffee. Our study aimed for a
comparative assessment of ground coffee adulteration using NIRS and liquid coffee adulteration using
the aquaphotomics approach. The aim was to demonstrate the potential of monitoring ground and
liquid coffee quality as they are commercially the most available coffee forms. Chemometrics spectra
analysis proved capable of distinguishing between the studied samples and efficiently estimating the
added Robusta concentrations. An accuracy of 100% was obtained for the varietal discrimination of
pure Arabica and Robusta, both in ground and liquid form. Robusta-to-Arabica ratio was predicted
with R2CV values of 0.99 and 0.9 in ground and liquid form respectively. Aquagrams results
accentuated the peculiarities of the two coffee varieties and their respective blends by designating
different water conformations depending on the coffee variety and assigning a particular water
absorption spectral pattern (WASP) depending on the blending ratio. Marked spectral features
attributed to high hydrogen bonded water characterized Arabica-rich coffee, while those with the
higher Robusta content showed an abundance of free water structures. Collectively, the obtained
results ascertain the adequacy of NIRS and aquaphotomics as promising alternative tools for the
authentication of liquid coffee that can correlate the water-related fingerprint to the Robusta-to-
Arabica ratio.

Keywords: coffee; NIRS; aquagrams; chemometrics; authentication; PCA; PCA-LDA; PLSR

1. Introduction

The worldwide appeal of coffee, consumed not only as a functional beverage, but also
as a provider of unique cultural experiences, stems from its distinct organoleptic features.
These criteria are mostly defined by the respective geographic and varietal origin as well as
the brewing processes.

While genus Coffea exists under numerous varieties, Coffea arabica and Coffea canephora
are the two commonly consumed ones [1]. Arabica, the priciest of the two and marketed
as having the higher quality grade, has been a prime target for fraud, propelled by the
potential economic gains [2].
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On the consumer front, rising demands for safe products that impart the desired
nutritional and sensory values and authentically state the actual ingredients present are
driving a palpable sense of responsibility shared by the food industry operators and
academia alike. With regulations stipulating no more than 1% of foreign materials in
coffee [3], this challenge becomes even more daunting.

Upon adulteration, affecting the flavor profile of coffee is not the sole repercussion on
coffee quality. Other reported aspects comprise alterations of the antioxidant capacity and
reduction of the levels of bioactive compounds [4].

Although a common practice, mixing the two coffee varieties, unless otherwise stated,
can be considered as a milder type of coffee forgery. Innumerable studies investigated the
efficiency of detecting such occurrences. Wermelinger et al. [5], for instance, attempted the
quantification of the Robusta fraction in a coffee blend via Raman spectroscopy. Mixtures
with Robusta contents of 5, 10, 25, 33, 50, and 75% w/w were classified. Kahweol, exclusively
present in Arabica beans, enabled the discrimination of the two extracted lipid fractions of
Arabica and Robusta with a detection limit ranging from 4.9 to 7.5% w/w. The higher the
content of Robusta, naturally richer in unsaturated fatty acids, the greater the shift of the
peak once situated at 1665 cm−1 (6006 nm).

For Schievano et al. [6], nuclear magnetic resonance (NMR) was the method of choice
for authenticating coffee blends by quantifying 16-O-methylcafestol (16-OMC). The study
accurately detected Robusta, at concentrations below 0.9%, with detection and quantitation
limits of 5 and 20 mg per kg, respectively. Pure Arabica was equally 100% distinguished
from Robusta-Arabica mixtures. Other suggested discriminators consisted of fatty acids,
tocopherols, or sterols. These, however, necessitate additional extraction and separation
operations as suggested by Schievano et al. [6].

Similarly, Milani et al. [3] used NMR to authenticate coffee adulterated with barley,
corn, coffee husks, soybean, rice, and wheat added in 50% w/w proportion to pure coffee.
Soft independent modelling by class analogy (SIMCA) provided 100% correct classification
for both training and prediction sets and limits of detection of 0.31–0.86% in medium as
well as in dark roasted coffee were obtained.

The differential electronic nose was employed by Brudzewski et al. [7] in analyzing
Arabica coffee adulterated with 10, 20, 30, 40, 50, 60, 70, 80, and 90% Robusta. With an aver-
age error of 0.21%, the adopted 30-fold cross-validation model permitted the recognition of
all mixtures.

For Pizarro et al., the approach differed, where calibration models developed from
near-infrared spectra produced prediction models with root mean square error of prediction
(RMSEP) of 0.79%. The added Robusta ranged from 0 to 60% w/w [8]. The methodology
followed by Spaniolas et al. [9], consisted in differentiating the two varieties based on a
lab-on-a-chip system and a limit of detection of 5% was achievable.

Other forms of adulteration involve the addition of both corn and soybean. Such
cases were studied by Arrieta et al. and Daniel et al. [10,11], who deployed the voltametric
electronic tongue and capillary electrophoresis-tandem mass spectrometry, respectively.
Although efficient (R2 of 0.973 and 0.941 for the prediction of corn and soybean in case of e-
tongue), these techniques demand high levels of technicity and relatively lengthy processing.

Combined with multivariate curve resolution (MCR), near infrared hyperspectral
imaging was utilized to determine coffee husks, soil, wood sticks, and roasted corn kernel
powders added in quantities of 1–40% [12]. Quantitative models with absolute errors not
exceeding 4% were obtained.

Roasted barley, rice, and wheat powders are also some of the low-cost additions made
to pure Arabica for increased profit margins. Song et al. [13] applied high performance
liquid chromatography (HPLC) to quantitatively analyze coffee blends containing 1, 2, 3,
4, 5, 10, and 20% w/w of these powders. For the purpose of the study, monosaccharides,
nicotinic acid, and trigonelline served as chemical indicators of the authenticity of coffee.
Of all studied indices, glucose aided the most in the discrimination of pure and adulterated
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Arabica. The corresponding discrimination limit was 1% w/w with significant difference in
ANOVA (p < 0.05).

Coffee quality analysis has mainly focused on beans and powders and only a few
studies used aqueous coffee solutions. Amongst those who attempted to do so, Suhandy
and Yulia intentionally added 10–60% of Robusta to Arabica and collected the UV-visible
spectra of the aqueous solutions in the 200–400 nm range. They proved that the selection of
specific intervals as a basis for building the partial least squares (PLS) models enhances the
performance of the model, resulting in a ratio prediction to deviation (RPD) of 2.15 [14].

By conducting the present study, one of our objectives was to assess the applicability
of aquaphotomics, as an innovative NIR-based approach in pinpointing potential blending
of the two coffee varieties.

With demonstrated efficiency in a panoply of applications, aquaphotomics offers
a holistic approach to the study of biosystems and the analysis of food matrices [15].
Aquaphotomics-related studies have substantiated that placing an emphasis on the water
molecular system can in fact be an alternative to other more laborious techniques. In a
sense, by applying various perturbations, structural changes of water species are induced
and thus can be reflective, by comparison to control samples, of the state of the studied
matrix. Most importantly, it brings about a new perspective regarding one of the commonly
encountered limitations of conventional analysis: water.

This feature has been already used to track changes induced by cheese ripening [16],
to screen water’s quality in the presence of certain contaminants [17], to elucidate yo-
ghurt fermentation mechanisms [18], to authenticate honey [19], and many more appli-
cations [20–23]. With regards to coffee analysis, this approach could prove particularly
beneficial in case of the shortage of beans, the absence of technically qualified coffee quality
assessors as well as the insufficiency of the chemicals used for other sophisticated methods.
The practical implications of the study could be particularly promising in cases where the
authentication and detection of the adulteration is not possible in powder form namely
with the expansion of the ready-to-drink (RTD) coffee market.

The aim of our research was to authenticate coffee both in its ground and liquid states
using conventional NIRS and aquaphotomics. To do so, a comparative assessment of
the quantification accuracy of Robusta-to-Arabica ratio in mixtures containing 0.5–35% of
Robusta was conducted. Determining the impact such blending has on the respective water
spectral pattern of the studied samples was also one of the prime objectives of our study.
The obtained performances were evaluated by the inclusion of marketed blends of different
varietal composition and geographical origin throughout the analysis steps.

2. Results and discussion

2.1. Varietal Discrimination of Pure Ground Coffee

A primary step consisted in assessing whether or not the applied method could
discriminate between the pure varieties of ARA1, ARA2, ARA3, ROB1, ROB2, and ROB3 in
the form of ground coffee.

Analysis of pure ground coffee samples of differing varieties by means of principal
component analysis, as showcased in Figure 1, demonstrates a pattern of separation along
the axis of PC1, which together with PC2 accounts for 99% of the data variability. The
efficacy of NIRS in terms of separating the samples was not only based on their respective
varieties, but also on their provenance as the different samples came from different sources:
Brazil (ARA1), Columbia (ARA2), Ethiopia (ARA3), Vietnam (ROB1), Uganda (ROB2), and
India (ROB3). This trend suggests the compositional variability within each of the evaluated
varieties. Indeed, studies have shown the role of geographical origin in conferring a specific
chemical composition to coffee. This is in accordance with the findings reported by Giraudo
et al. [24], who proved that intra-varietal differences of coffee beans originating from
different countries and continents can be traced by their respective NIR spectral patterns.
According to the corresponding loadings vector (Figure 1c), the wavebands 1390, 1408,
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1438, 1452, and 1512 nm contributed the most to this separation. The PCA-LDA model
scores yielded 100% recognition and prediction of the pure Arabica and Robusta varieties.

Figure 1. (a) Principal component analysis (PCA) on pure arabica (ARA1, ARA2, ARA3) and Robusta
(ROB1, ROB2, ROB3) ground coffee samples in the wavelength range of 1300–1600 nm, N = 54,
Savitzky-Golay smoothing (window size 19) and MSC; (b) PCA-LDA classification plot of pure
Arabica (ARA1, ARA2, ARA3) and Robusta (ROB1, ROB2, ROB3) ground coffee samples, N = 54;
(c) The respective PCA loading plot.

2.2. Near Infrared Analysis of Ground Coffee Mixtures

For the remainder of our study, we focused on the mixtures prepared by mixing the
pair (ARA3, ROB3). To determine if a recognizable pattern is ascribable to the adulterated
Arabica depending on the added Robusta, principal component analysis was performed in
the 1st overtone (1300–1600 nm), 2nd overtone (800–1100 nm), as well as in the truncated
spectral range of the instrument, 800–1670 nm. The model illustrating the most distinctive
pattern was obtained in the range 800–1670 nm using the smoothed and MSC pretreated
spectra (Figure 2a). According to the loadings plot (Figure 2c), the wavelengths responsible
for the variance in the data are mostly those located at 970, 1106, 1126, 1266, 1298, 1318,
and 1464 nm. Previous studies have attributed bond vibrations at 1126 nm of the 2 × C-H
stretching and 2 × C-H deformation and (CH2)n C-H stretching second overtone to coffee
fatty acids and chlorogenic acid (CGA) [25]. Indeed, these constituents have already proven
to be good discriminators of the varietal origin of coffee [26].

Relying solely on the visual inspection of the separated samples, the truncated range
800–1670 nm served better for the pattern recognition of the mixtures with PCA. The analy-
sis of the samples by means of linear discriminant analysis, however, proved better when
performed at the first overtone 1300–1600 nm. An accurate recognition and prediction
of 95.87% and 94.45% were obtained, respectively, using the raw spectra. The misclassi-
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fications occurred mainly between sample pairs (1% and 3%; 3% and 5%) whereas those
comprising at least 10% Robusta were 100% accurately classified.

Figure 2. (a) PCA scores plot reveals separation along PC1 axis of the mixtures containing Ro-
busta concentration in the range 1%–35%, N = 72, wavelength range 800–1670 nm, Savitzky-Golay
smoothing (window size 19) and MSC; (b) PCA-LDA classification plot of the robusta adulterated
ground coffee in the concentration range 1%–35%, wavelength range 1300-1600 nm, N = 72; (c) PCA
loadings plot.

Once the mixtures were correctly classified, PLSR models were built in order to assess
the feasibility of near infrared spectroscopy in predicting the Robusta to Arabica ratio.
By leaving one group out (three consecutive scans of the same replicate) cross-validation,
the model built on the smoothed first derivative of the spectra enabled a coefficient of
determination (R2CV) of 0.99 and an error (RMSECV) of 2.4% (Figure 3a). Similar results
(R2 > 0.99 and RMSE below 1.2% w/w) were found when evaluating Arabica-Robusta
mixtures in the range of 0–60% [8].

The corresponding regression vector showcases the most significant wavelengths
in terms of accurately determining the added Robusta. These peaks are located at 1324,
1374, 1402, 1422, 1444, 1470, 1498, 1518, 1540, and 1556 nm (Figure 3b). Prior studies have
assigned wavelengths in the 1400–1600 nm range to some typical components of coffee,
such as caffeine, sugar, and chlorogenic acids [27]. The addition of Robusta, naturally
richer in chlorogenic acid and caffeine content [28], could explain the prominence of these
particular wavebands when predicting the added Robusta.
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Figure 3. (a) PLSR analysis of the ground coffee mixtures derived from the smoothed (Savitzky-Golay
smoothing (window size 19)) first derivative spectra for the prediction of added Robusta (% w/w);
(b) The respective regression vector in the range 1300–1600 nm.

The PCA-LDA classification and PLSR prediction of the Robusta-to-Arabica ratio were
also performed on the marketed blends B10% and B30%. Figure 4a illustrates the obtained
results where B10% and B30% were discriminated from the pure Arabica and Robusta
ground coffee samples with 100% accuracies of recognition and prediction. The regression
model built to predict the Robusta content and cross-validated by leaving three consecutive
scans of each replicate at a time enabled an estimation of added Robusta with R2CV and
RMSECV values of 0.97 and 3.93% w/w, respectively (Figure 4b). This slight difference
compared to the model constructed only on the mixtures could be due to the different
composition of the marketed blends B10% and B30%, obtained by combining other Arabica
and Robusta varieties, from a geographical origin other than that of ARA3 and ROB3.

2.3. Near Infrared Analysis of Pure Liquid Coffee Extracts

Performing principal component analysis on the pure Arabica (ARA3) and Robusta
(ROB3) liquid extracts in the short wavelength range of 800–1100 nm revealed a pattern of
separation into two respective clusters depending on the coffee variety (Figure 5). Com-
bined, PC1 and PC2 accounted for more than 99% of the data variance and the bands
contributing the most to this separation were positioned at 950, 982, and 1034 nm.

Next, absorbances of ARA3 and ROB3 aqueous samples as projected on the aquagram
were investigated in 12 characteristic wavelength ranges in the 2nd water overtone in
NIR region. What the aquagram accentuated is that Robusta coffee extracts, contrarily
to Arabica, were majorly characterized by water molecules that are structured into water
shells (908 nm), V1 and V2 bonded water while Arabica has high hydrogen bonded water
structures (1060 nm) and is rich in water clusters with two, three, and four hydrogen bonds
(1018, 1036, and 1044 nm) (Figure 6a). Wu et al. [29] are among those who investigated
the compositional analysis of milk in the short NIR wavelength range (800–1050 nm) and
reported the potential assignment of the 1018 and 1042 nm to the interaction of fat–water.
The fact that Arabica is naturally richer in fat content can explain the high absorbance
observed at these bands [30].

The incorporation of marketed blends B10% and B30% into the aquagram calculation
is presented in (Figure 6b). Notably, the resulting water spectral pattern followed a logical
sequence. Out of the two studied blends, the one with the highest Arabica content (B10%)
had a similar pattern to pure Arabica, with slightly lower absorbance values. When the
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percentage of Robusta increased, as is the case of B30% blend, higher absorbances in the
wavelength range of 890–954 nm were emphasized.

Figure 4. (a) PCA-LDA Classification of pure ground Arabica (ARA1, ARA2, ARA3), Robusta
(ROB1, ROB2, ROB3) and marketed blends B10%, B30% in the range 1300–1600 nm, N = 72, spectral
pretreatment: Savitzky-Golay smoothing (window size 19) and 1st derivative; (b) PLSR analysis of
the ground coffee mixtures and B10% and B30%, spectral pretreatment: Savitzky-Golay smoothing
(window size 17) and SNV; (c) The respective regression vector in the 1300–1600 nm.

Figure 5. (a) PCA analysis applied to the spectra of pure Arabica (ARA3) and Robusta (ROB3) liquid
extracts in the 800–1100 nm range, N = 54, spectral pretreatment: Savitzky-Golay smoothing (window
size 19) and MSC; (b) The respective PCA loadings plot.
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Figure 6. (a) Aquagram representation of the spectral pattern of pure Arabica and Robusta liquid
extracts at the second overtone region (800–1100 nm), R1, R2, R3 denote replicates, N = 9 each;
(b) Water spectral pattern of marketed blends B10% and B30%, pure Arabica (ARA3) and pure
Robusta (ROB3), N = 27 each.

Likewise, PCA-LDA was proven performant when assigning the samples ARA3, B10%,
B30%, and ROB3 to their specific classes, with an accurate recognition of 91.26% of the
samples while at the prediction level 83.39% were correctly categorized. The separation is
most apparent along the axis of the first discriminant factor (Figure 7). The misclassifications
occurred mostly between samples with proximate composition. Thus, B10% was primarily
misclassified in 14.78% of the cases to the group 0% (ARA3) while B30% was identified as
B10% in 11.11% of cases.

Figure 7. PCA-LDA classification of marketed blends B10% and B30%, pure Arabica (0%) and pure
Robusta (100%) at the second overtone region (800–1100 nm), N = 108, NrPCs = 18.

2.4. Near Infrared Analysis of Liquid Coffee Mixtures

When all adulteration levels were considered, LDA models destined at regrouping
the samples into their corresponding groups enabled a 100% recognition of the different
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mixtures, and the prediction rate amounted to 71.32%. The following table recaps where
misclassification occurred presumably due to the low Robusta concentrations or to the
proximity of certain levels (Table 1). The classification was even less efficient when the
model blends (B10%; B30%) were included into the construction of the predictive model
(55.58% prediction rate). The blend B10% was misidentified as belonging to the group
containing 5% Robusta in 11.14% of the studied cases and misclassified with 3.67% to the
following groups: B30%, 35%, 20%, 10%. B30%, on the other hand, was wrongly categorized
as belonging to the groups B10%, 35%, and 3% in 7.44% of the cases. While the blending
ratio of these model blends fits into the range covered by our study, their heterogenous
composition could have an effect on the classification accuracy. Indeed, the effect of the
blend composition on the accuracy of the classification model has already been proven by
Tavares et al. [31], who, basing their study on the analysis of the lipid extracts by HPLC,
proved that proportions as high as 10% of maize and 20% of coffee by-products are required
to identify the adulteration of coffee by means of PCA and LDA.

Table 1. PCA-LDA classification model on the NIRS data of pure and adulterated mixtures after
three-fold cross-validation (N = 268).

Validation Accuracy %

Robusta-to-Arabica Ratio
0% 0.5% 1% 2% 3% 5% 10% 20% 35% 100%

R
o

b
u

st
a

-t
o

-A
ra

b
ic

a
ra

ti
o

0% 66.74 8.03 0 7.44 0 11.11 11.11 0 0 0

0.5% 14.79 51.92 7.45 7.44 14.78 7.44 7.44 0 3.67 0

1% 0 3.96 70.41 0 7.44 0 0 11.11 0 0

2% 0 8.03 0 81.44 7.44 0 0 0 0 0

3% 3.67 20.02 3.67 0 55.56 7.44 3.67 0 0 0

5% 3.67 0 3.67 3.67 11.11 66.67 3.67 7.44 3.67 0

10 % 7.45 8.03 0 0 3.67 3.67 66.67 7.44 3.67 0

20% 3.67 0 14.79 0 0 3.67 7.44 70.33 3.67 0

35% 0 0 0 0 0 0 0 3.67 85.32 0

100% 0 0 0 0 0 0 0 0 0 100

Averaging the consecutive scans and the parallel spectra of each of the studied mix-
tures and those of the controls (pure Arabica and pure Robusta) was proven effective
when it comes to improving the accuracy of the predictive PLSR model. The optimal
cross-validated model was the one built in the second overtone region, 800–1100 nm, and
was characterized by R2CV and RMSECV values of 0.95 and 6.35% w/w, respectively
(Figure 8a). Again, the blends lowered the accuracy of the regression model (R2CV = 0.9).
The most prominent wavelengths corresponded to 840, 870, 954, and 990 nm (Figure 8c).
Interestingly, the band situated at 954nm was already proven relevant when differentiating
pure Arabica and Robusta based on their water spectral patterns (Figure 6). Similar results
(R2 = 0.95) were obtained by Núñez et al. [32] when examining the HPLC-UV fingerprints
of brewed Arabica coffee containing Robusta in proportions ranging from 15% to 85%.

The complexity of differentiating between the mixtures with the lowest adulteration
levels was evidenced primarily by their respective water spectral pattern where an overlap-
ping of blends containing Robusta fractions as low as 0.5%, 1%, and 2% occurred. Notably,
above these concentration levels, the higher the ratio Robusta to Arabica was, the higher
the absorbance in the wavelengths that are characteristic of pure Robusta. Inversely, the
lower the added Robusta, the higher the absorbance in the wavelengths characteristic of
pure Arabica (Figure 9a).
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Figure 8. (a) Y-fit graph of the prediction of Robusta concentration in liquid mixtures N = 30;
(b) PLSR analysis on the dataset containing marketed blends B10% and B30% and the mixtures,
N = 36; (c) Regression vector of the predictive model (b) in the 800–1100 nm range. Spectral pre-
processing: Averaging consecutive scans, Savitzky-Golay smoothing (window size 19), 1st derivative.

Figure 9. (a) Aquagrams of aqueous solutions of Robusta-Arabica blends in the concentration range
of 0.5–35% and pure Arabica (0%) in the second overtone region; (b) Aquagram of the dataset
comprising pure Arabica (0%), pure Robusta (100%), Robusta-Arabica blends (01% and 35%) and
marketed blends (B10% and B30%).
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Assessing whether or not the inclusion of marketed blends B10% and B30% can still
be translated into distinctive water spectral patterns, in the presence of lab generated
mixtures covering both low (1%) and high blending ratios (35%), was also attempted and
confirmed the adequacy of the analysis from an aquaphotomics standpoint in terms of
highlighting the respective composition of the studied samples. Once again, the intricacy of
detecting the lowest blending ratio was reflected by a slight overlapping with pure Arabica
extract (Figure 9b).

3. Materials and Methods

3.1. Samples Preparation

For the purpose of our study, Arabica beans originating from Brazil (ARA1), Columbia
(ARA2), and Ethiopia (ARA3) and Robusta beans sourced from Vietnam (ROB1), Uganda
(ROB2), and India (ROB3) were French-roasted, ground, and procured by Bourbon café
(Tahitótfalu, Hungary). Mixtures comprising 0.5, 1, 2, 3, 5, 10, 20, 35% w/w Robusta were
prepared by pairing ARA3 and ROB3. The threshold above which the addition of Robusta
can have a palpable effect on coffee aroma is 35% [31]. Alongside these mixtures, marketed
blends of different provenance and serving as test samples were considered. The 1st blend
B10% consisted of 90% Arabica (South American) and 10% Robusta (South-east Asian),
whereas the 2nd blend B30% comprised 70% Arabica (Central and South American) and
30% Robusta (Southeast Asian). Triplicate samples were prepared for each of the mixture
concentration levels.

After formulating the mixtures, water extracts of the pure coffee varieties, the mixtures,
as well as the marketed blends were prepared by pouring 100 mL Milli-Q water, heated
at boiling point, onto 8 g of coffee. After five minutes, the samples were filtered using a
25 μm pore-sized quantitative filter Whatman paper. The obtained extracts were cooled to
room temperature (25 ◦C) prior to analysis.

3.2. Instrumental Analysis

A benchtop MetriNIR Spectrometer (MetriNIR Research, Development and Service
Co., Budapest, Hungary) was used to collect the spectral data in the wavelength range
of 740–1700 nm. For a more representative spectra of each of the ground coffee mix-
tures, the cuvette was rotated between the three consecutive scans of each sample type
during scanning.

In the case of the aqueous samples, a thermoregulated cuvette with a sample layer
thickness of 0.5 mm was used to maintain the temperature of the samples at 25 ◦C. The
cuvette was thoroughly washed with Milli-Q water between measurements and dried for
the next sample. A total of 324 spectra, made up of three consecutive scans of the three
refills of the triplicates of each mixture, were acquired. For reference data, Milli-Q water
spectra were taken after every 5th sample measurement.

Two modes of spectra acquisition were adopted, diffuse reflectance mode in the case
of powders and transflectance mode for liquids.

3.3. Data Processing

The selected spectral ranges were the truncated 800–1670 nm region, used to reduce
spectral noise, as well as the first (1300–1600 nm) and second (800–1100 nm) overtone
regions of water (more specifically OH bond), necessary for the aquaphotomics based
analysis [17,32].

A set of spectral preprocessing methods were tested in terms of their effect on the
obtained results. Initially, an essential step was to conduct spectral smoothing using
Savitzky Golay filter by fitting the spectral points into a 2nd polynomial within the selected
window width (11, 17, or 19 points). The smoothing was also jointly applied with one of the
following pretreatments: multiplicative scatter correction (MSC), detrend (DeTr), standard
normal variate (SNV), 1st or 2nd derivative.
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The chemometric tools used for the statistical analysis of the multivariate data con-
sisted mostly of principal component analysis (PCA), used as a pattern recognition and
dimensionality reduction tool. In addition, hybrid principal component analysis-linear
discriminant analysis (PCA-LDA) models served as multi-class classifiers. Ensuring that
the number of PCs was optimal for further modeling was essential. In doing so, the PCs
guaranteeing a combination of the best validation accuracy and the minimal difference
between training and validation accuracies were selected. The dataset was split into a
calibration set (two thirds) and a validation set (one third) and the three-fold cross valida-
tion (CV) method was used to assess the predictive accuracy of the PCA-LDA model in
classifying pure Arabica and Robusta, their resulting mixtures at different blending ratios,
as well as the marketed blends.

Subsequently, to relate the NIR spectrum to the added Robusta, partial least squares
regression modelling (PLSR) was performed. Different validation methods were considered
before deciding upon the model that ensures the most accurate prediction of the Robusta-
to-Arabica ratio. The evaluation of the PLS models was done by computing the coefficient
of determination (R2) and the root mean square error (RMSE) of both the calibration and
cross-validation. These metrics assess the fit of the tested data to the regression line while
estimating the difference between predicted and actual values. The closer R2 is to 1 and
the lower RMSEC is, the more accurate the model [33]. As per the validation methods,
they ranged from the least robust leave one sample out validation to more robust cross-
validation based on the grouping defined by specific class variables (by repeats, by sample
type, etc.). Testing the accuracy of the predictive models was performed using the two
commercialized blends B10% and B30%. Only the best models were displayed in the
present manuscript.

Aquagrams, representative tools of the water spectral pattern, were investigated both
at the 1st and 2nd overtone regions at selected water matrix coordinates (WAMACs). These
WAMACs consisted of the following wavelengths: 890, 908, 924, 946, 954, 975, 1001, 1019,
1036, 1044, and 1060 nm in case of the 2nd overtone and involved 1342, 1364, 1374, 1384,
1412, 1426, 1440, 1452, 1462, 1476, 1488, and 1512 nm when plotted in the 1st overtone
range [34]. Based on literature, these wavelengths have been assigned to specific water
molecular structures and have demonstrated their practicality with regard to highlighting
the effect of certain perturbations on the studied system [17,19,22]. While both of the
overtone ranges (1st and 2nd) were considered, the one portraying the most water spectral
pattern differences between the studied samples corresponded to the 2nd overtone region
and was the one presented in the manuscript.

In order to minimize sources of variations within each sample type, averaging of the
repeats, refills, and consecutives was also attempted throughout the analysis.

4. Conclusions

To date, coffee adulteration issues have been addressed extensively, however; few are
the studies that were not based on complex coffee extraction methods. Even fewer studies
did not resort to chemical markers for the differentiation of the two coffee varieties (Arabica
and Robusta) in liquid state.

Our study sought to extend the research done on coffee quality analysis through the
application of both conventional NIR spectroscopy and its novel approach, aquaphotomics.

Conventional spectroscopy provided satisfactory results in terms of distinguishing
pure Arabica and Robusta ground coffee from different geographical origins with 100%
correct classification accuracy. When mixtures of these varieties were prepared by varying
the blending ratios, accurate classification and quantification models were achieved de-
pending on the Robusta to Arabica content. Only 5.55% of the ground coffee mixtures were
misidentified by means of LDA analysis. As per the prediction of the Robusta-to-Arabica
ratio, it was estimated with R2CV of 0.99 and an error (RMSECV) of 2.4% w/w.

On the other hand, implementing aquaphotomics-based research was found to give
typical spectral fingerprints to the aqueous blends. As the added Robusta increased, the
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corresponding mixtures had higher absorbances in the wavelengths associated with pure
Robusta. A prominence of bonds attributed to water shells, as well as V1 and V2 bonded
water was featured in their respective aquagrams. Conversely, those with higher Arabica
fraction presented characteristic spectral patterns at the WAMACS linked to pure Arabica.
The marked spectral features, in the latter case, were mainly attributed to an abundance
of high hydrogen bonded water structures and water clusters with two, three, and four
hydrogen bonds. The efficacy of the implemented approach was further corroborated
when marketed blends were examined, correctly discriminated, and their Robusta contents
accurately estimated (R2CV of 97% and 90% by NIRS and aquaphotomics respectively).

What the findings of this study pinpoint is that aquaphotomics could be a suitable, cost-
effective alternative to other technically demanding authentication tools. Most importantly,
it offers novel insights regarding the changes of the water spectral pattern induced by
the increased amount of Robusta. If implemented, this approach could reveal undeclared
blending of coffee and contribute to the detection of potential adulteration. Nevertheless, it
is worth pointing out that the applied method requires further refining with the inclusion
of other coffee mixtures prepared under different roasting and brewing processes.
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Abstract: Honey is a natural product that is considered globally one of the most widely important
foods. Various studies on authenticity detection of honey have been fulfilled using visible and
near-infrared (Vis-NIR) spectroscopy techniques. However, there are limited studies on stingless
bee honey (SBH) despite the increase of market demand for this food product. The objective of this
work was to present the potential of Vis-NIR absorbance spectroscopy for profiling, classifying, and
quantifying the adulterated SBH. The SBH sample was mixed with various percentages (10–90%)
of adulterants, including distilled water, apple cider vinegar, and high fructose syrup. The results
showed that the region at 400–1100 nm that is related to the color and water properties of the samples
was effective to discriminate and quantify the adulterated SBH. By applying the principal component
analysis (PCA) on adulterants and honey samples, the PCA score plot revealed the classification of the
adulterants and adulterated SBHs. A partial least squares regression (PLSR) model was developed
to quantify the contamination level in the SBH samples. The general PLSR model with the highest
coefficient of determination and lowest root means square error of cross-validation (R2

CV = 0.96 and
RMSECV = 5.88 %) was acquired. The aquaphotomics analysis of adulteration in SBH with the three
adulterants utilizing the short-wavelength NIR region (800–1100 nm) was presented. The structural
changes of SBH due to adulteration were described in terms of the changes in the water molecular
matrix, and the aquagrams were used to visualize the results. It was revealed that the integration of
NIR spectroscopy with aquaphotomics could be used to detect the water molecular structures in the
adulterated SBH.

Keywords: adulteration; stingless bee honey; visible and near-infrared spectroscopy; PCA; PLSR;
aquaphotomics

1. Introduction

Honey is a natural food that may be used not only as a sweetener but also as a medica-
tion because of its therapeutic effects on human health. Flower honey is the most prevalent
kind of honey, and it is made by honeybees (Apis Mellifera L.) from the nectar of various
types of flowers, depending on the geographical region and season, while stingless bee
honey is made from the nectar of trees and is a naturally higher moisture content [1]. Other
compounds are often added to commercially sold honey for nutrition and medical pur-
poses, and some are added to spoof the pure honey. Honey is often threatened by cheaper,
commercially accessible sugar syrups with similar chemical compositions [2]. Even if these
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standards are followed to maintain high levels of quality, contaminations and/or adulter-
ations might occur during manufacture, compromising the product’s quality and safety [3].
Adulterants in honey are any substances that are mixed with pure honey. Adulteration
raises glucose levels, which can lead to diabetes, belly weight gain, and obesity. It also
elevates blood lipid levels, which can lead to high blood pressure. Various adulteration
activities of honey have been reported in the market, with the most common being the
addition of edible syrups such as high-fructose corn syrup and corn syrup [4]. Many
approaches, both traditional and modern, have been used and developed to distinguish
pure honey from contaminated or non-honeys [5].

Spectroscopy has been more popular in the detection of honey adulteration in recent
years due to its speed, simplicity, environmental friendliness, and nondestructive nature.
It’s worth noting that strategies for proving the authenticity of products are always evolving
in response to these increasingly widespread behaviors [3]. Recently, several spectroscopy
methods, such as Raman spectroscopy [6], NIR spectroscopy on Apis mellifera [7–9], and
stingless bee honey [1,9] were conducted to determine the adulteration. The combination
of NIR spectroscopy application and chemometric methods [10,11] shows a simple, rapid,
and nondestructive method on adulterated honey. Moreover, honey consistency is possibly
fluid, viscous, or partially to completely crystalline [12]. Because hydrogen bonds, which
are associated with water, are present in most natural samples, this method can be used in
a variety of domains [9]. In the research of adulteration detection in honey, spectroscopic
techniques such as near- and mid-infrared spectroscopy were used [4]. Researchers are
constantly developing efficient and sensitive detection methods using NIR spectroscopic
approaches to detect adulterants in honey [13]. At present, honey adulteration is generally
detected on the bees’ honey. Stingless bee honey has a high-water content, slight sweetness,
acidic flavor, fluid texture, and slow crystallization [14]. Compared to bees’ honey, stingless
bee honey contains a higher amount of water, ranging between 25 to 56 g/100 g, and higher
acidity, which influences its shelf-life and keeping quality. Honey produced by stingless
bees (Melipona sp. and Trigona sp.) is recognized for its unique sour taste and odor [15].
Based on the local beekeepers’ report, the adulteration of SBH involves dilution with water
to increase the yield volume of the honey to fraudulently increase income. In addition, in
certain cases, cheaper honey is blended with a sour-tasting liquid such as vinegar to create a
sour taste that resembles that of SBH, and then market it at a high price commensurate with
the authentic SBH [16]. However, due to the complexity of food matrices, most standard
approaches can only detect a small number of adulterants in stingless bee honey without
a thorough examination of all of its attributes. Hence, less research is available on the
adulterated stingless bee honey.

After carbohydrates, water is the second-largest component of honey and is considered
as one of the most important features that affect several characteristics of honey, such as
viscosity, flavor, specific weight, shelf-life, and crystallization [17,18]. In the case of stingless
bee honeys, the water content ∼ 20% is generally higher compared to the genus Apis and
can be even higher than 40% depending on the bee species [19]. As a result, water is a
very significant component that should be considered during the analysis of SBHs. It
is well-known that different water molecular structures can be identified based on their
respective absorbance bands in the NIR region, providing the NIR spectroscopy with the
ability to detect subtle changes associated with water molecular structure changes. This is
especially utilized in aquaphotomics [20,21], a spectroscopy-based science that employs the
structure of water in bio-aqueous systems to interpret their functionality, and the results
can be visualized using simple and quick tools called aquagrams [22,23]. Recent studies
applied aquaphotomics for the detection of honey adulteration in which the structural
changes of honey upon adulteration were explained in the terms of the changes in the
water molecular matrix [9,13].

Apart from the common type of honey that is produced by bees of the genus Apis,
demand for the honey produced from the stingless bee genus has increased recently and
carries commercial value higher than the one of the genus Apis. However, despite holding
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increasing market demand, there are fewer studies and literature available regarding
stingless bee honey’s (SBH) physicochemical properties, particularly its optical visible and
near-infrared (Vis-NIR) properties. SBH has limited industrial production, lower shelf life,
and lack of an institutional quality standard, due to the scant knowledge about the product
and the distribution limitation of SBHs in the world market compared with honey from
the genus Apis [24]. This deficiency of information weighs down the definition of quality
attributes and standards concerning SBHs. Most of the physicochemical characteristics of
honey available are related to beehive products directed to Apis products [25]. As a result,
SBH is not controlled by food control authorities, since it is not included in the international
standards for honey [26]. For that reason, consumers have no quality assurance on SBH
products [25,27]. In other words, the lack of comprehensive physicochemical data allows
the recognition of possible adulteration activities to become even harder to implement for
SBH. Hence, this research is designed to quantify the alteration in the Vis-NIR spectra of the
SBH concerning adulteration by different percentages of added water, apple cider vinegar,
and high fructose syrup. In addition, multivariate analysis including principal component
analysis (PCA) and partial least squares regression (PLSR) is performed on the Vis-NIR
spectroscopy in the region of 400–1100 nm. What is more, the analysis of the adulterated
SBH using aquaphotomics is presented. To the best of the authors’ knowledge, this is the
first time to evaluate the adulterated SBH using the combination of aquaphotomics and
NIR spectroscopy in the region 800–1100 nm.

2. Results and Discussion

2.1. Vis-NIR Spectra of Pure and Adulterated SBH Samples

The raw spectra of the samples (n = 31) are presented in Figure 1, and the adulterated
samples are labeled by the type and percentage of adulteration. The spectral profiles in
the Vis-NIR region showed three distinctive groups, where fructose-syrup (FS)-adulterated
honey samples are particularly different compared to the water (W)- and apple-cider
(AC)-adulterated honey. Depending on the adulterant type, there is a vastly different
baseline offset, an effect that can be attributed to light scattering due to the sugar crystals
present in the honey samples [28,29]. Alternatively, an increase in the baseline could be
explained by increased bulk and hydration water content, that causes an increase in the
scattering [23,30,31]. Most probably, the two phenomena are inter-connected, suggesting
an altered water–sugar interaction by adding apple cider and water that results in changes
in the crystallization degree.

Figure 1. Spectra for pure SBH, adulterants, and adulterated SBH samples (n = 31).
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The Vis-NIR spectra (400–1100 nm) of pure SBH and the adulterants together with
SBH adulterated with various percentages of each adulterant are shown in Figure 2. It is
apparent from Figure 2 that the baseline offset shows the largest differences depending on
the percentage of added adulterant in the spectra of water-adulterated honey, followed by
apple cider and the smallest variations can be observed in the fructose-syrup-adulterated
honey samples. Interestingly, the spectrum of pure honey is furthest away from the fructose-
syrup-adulterated honey spectra. While the changes in the color of the honey may be subtle,
as can be seen in the visible part of the spectrum, the observed spectral characteristics
in the NIR region of the spectra suggest a change in other optical properties that may be
connected to the scattering of light, for example, the refractive index [32], or the optical
rotation, as was shown to be the case in other honey adulteration studies [33–35].

Figure 2. Vis-NIR spectra of (a) Pure SBH and adulterants and adulterated SBH by different percent-
ages of water (b), apple cider (c), and fructose syrup (d).

As can be seen in Figure 2a, there are differences in intensity and wavelength peak
between samples in the visible region. The peaks at a visible region for the pure SBH,
apple cider, and fructose syrup are located at 470 nm, 407 nm, and 489 nm, respectively.
The color of honey is the first quality aspect that affects consumer predilection. The color
of honey is related to the floral origin or the plant source, minerals, phenolic contents,
storage time, and temperature [36]. The absorbance at 400–500 nm is related to the honey
compounds that absorb the light, such as the blue–violet light range at 400 nm, that resulted
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in the characteristic orange-amber color of honey [37]. On the other hand, some intensity
differences can be observed in the visible region at 400–700 nm. The higher absorbance
intensity designates the dark color of the sample [38]. The pure SBH spectrum presented
the highest intensity in this range, followed by apple cider vinegar and fructose syrup.
Pure honey remained in the middle range, with its orange-amber color, followed by the
apple cider and fructose syrup, that exhibited different colors. The band around the region
between 550 nm and 600 nm characterizes the maximum emission of riboflavin (vitamin B2)
presented in the samples [39].

Likewise, the raw spectra in Figure 2a demonstrated that the absorption peaks of the
samples are mainly located in the NIR region. The peak of absorbance within the NIR
region for water and apple cider is located at 973 nm, which is associated with the second
overtone of the symmetric and asymmetric OH-stretching bands [40–42]. The apple cider
generally contains up to 94% of water content [43]. The NIR absorbance for fructose syrup
is further shifted to a higher wavelength with a peak of 995 nm, while the NIR peak for
pure SBH was recorded at 989 nm. The determination of the original Vis-NIR properties of
the samples is important in setting the potential benchmarking on the authenticity of the
SBH, thus allowing the detection—and, preferably, the quantification—of the adulterant
through the alteration on the spectral attributes of the sample. Figure 2b–d shows the
Vis-NIR spectra of SBH adulterated by different percentages of water, apple cider, and
fructose syrup, respectively. The adulteration is shown at an increasing percentage from
10 to 90%, while 0% refers to the spectrum of pure SBH and 100% to the spectrum of the
adulterant. The color of pure SBH can range from white to dark amber [44,45]. From the
images of the samples, the SBH adulterated with water and apple cider exhibits visible
color changes from light amber to water white (based on the Pfund scale) [46,47]. However,
the SBH sample adulterated with fructose syrup does not show significant changes from
the visual perception.

Spectroscopic and colorimetric techniques can provide a more exact evaluation of
honey color and are used to identify the small differences between the color of honeys [47].
A further possible practice for the determination of honey color is using the colorimetric
parameters based on spectral information. This can be achieved in a chromaticity diagram
(or a color space) developed for the perception of the human eye, such as the CIELAB/CIE
XYZ/CIELUV color space. In the case of honey analysis, the CIELAB color space is the
most widely applied [2,36,48,49], used in this study concerning illuminant D65 and a
visual angle of 10

◦
[48,49]. The absorbance spectra of the samples were transformed to

transmission spectra using the Unscrambler Software and transferred to a Chromaticity
Diagram template developed in the OriginPro 2021 Software. It must be highlighted that
colorimeters apply continuous filters and provide the X, Y, and Z tristimulus values as
output, while spectrometers measured the transmission/reflection/emission spectra. Since
color parameters values are derived from the spectral data, the results may carry the error
caused by the spectral resolution of the spectrometer.

Within the approximately uniform CIELAB color space, two-color coordinates, a∗ and
b∗, as well as lightness L∗ are defined. L∗ is an approximate measurement of the degree
of lightness within the range of 0–100 (0 for black till 100 for white). The a∗ coordinate
determines the greenness/redness of the sample. The greenish color is in the negative
range, while the reddish color is in the positive range. The b∗ coordinate indicates the blue
or yellow color, where blueness is in the negative range and yellowness in the positive
range. It was found that water and apple cider were the lightest by visual comparison and
have the highest values of the parameter L∗, that indicates the lightness—94.55 and 84.12,
respectively. The L∗ value decreased further in pure SBH (30.08) and fructose syrup (46.35).
The SBH in this study can be considered as dark honey, since L∗ ≤ 50 [36]. This could be
attributed to the floral source, the species of bee, and the location of honey production. It
was shown that the honey with the highest levels of total minerals exhibit quite low values
of L∗, coinciding with a dark color [49]. Furthermore, these results were in close relationship
with the absorbance spectra shown in Figure 2a and confirm that the absorbance increased
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with the decreasing lightness value, as reported by Bertoncelj et al. [36]. What is more, the
CIE XYZ (or CIE 1931) chromaticity diagram is displayed in Supplementary Figures S1
and S2. In these figures, the adulterated samples were labeled as H_W9 to H_W1, H_C9
to H_C1, and H_S9 to H_S1, which means the honey is adulterated with water, apple
cider vinegar, and fructose syrup from 90% to 10%, respectively. The chromaticity diagram
(Figure S1) and its zoom-in view (Figure S2) proved the variation in the value of L∗ due to
the addition of adulterants, which is related to the interpretation in Figure 2.

The plot of parameters a∗ and b∗ of the samples is shown in Figure 3. From the
diagram, it is apparent that, depending on L∗, the samples were clearly distinguished
from each other, as it was more obvious in adulterants and pure SBH. Additionally, the
adulterated honey with fructose syrup is clearly distinguished from the other adulterated
samples. Likewise, at a specific level of adulteration, the adulterated honey samples due to
water and apple cider vinegar at a specific range of a∗ and b∗ are overlapped in the (a∗, b∗)
scheme, resulting from their similar color characteristics.

Figure 3. Location zone of adulterants and honey samples in the (a∗, b∗) diagram.

The Vis-NIR spectra can be characterized with two main peaks, at 470 nm and 980 nm,
for the SBH as reported earlier [50]. The high fructose syrup showed a similar peak
characterization, at 500 nm and 980 nm. On the other hand, apple cider also showed two
main peaks at 400 nm and 970 nm, while water only exhibited a peak at 970 nm. In order
to be able to quantify the spectral alteration due to the added adulterant in the pure SBH
sample, the relationship between the absorbance at 470 nm and 970 nm with the percentage
of adulterant was plotted and is shown in Figure 4a and b, respectively. In general, there is
no substantial degradation in the value of absorbance for SBH adulterated with 10 to 60% of
water and apple cider. The spectral degradation begins to take place when the quantity of
adulterant is raised to 70% onwards. This observation was found for both 470 and 970 nm.
As presented in Figure 4, the relationship between the concentration of adulterant and
absorbance can be quantified by a linear correlation coefficient (R), where the R values of
0.8456 and 0.6653 were generated between the absorbance at 470 nm with the percentage
of water and apple cider, respectively. In addition, the R of 0.7295 was generated between
the absorbance at 970 nm with the percentage of water, but a very low R, of 0.3716, was
produced for the apple cider. Nevertheless, at 470 nm, the SBH adulterated with fructose
syrup showed no notable correlation with the spectral absorbance, with data fluctuating
between 1.548 and 1.822 with a standard deviation of 0.073. For a similar dataset, the
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absorbance at 970 nm dropped 0.353 points from 0.743 when the pure SHB sample was
added with 10% of syrup. However, the continuous addition of fructose syrup did not
cause further reduction in the value of absorbance, where the data only fluctuated between
0.202 and 0.39 with a standard deviation of 0.058.

Figure 4. Relationship between the percentage of added adulterant and absorbance at (a) 470 nm and
(b) 970 nm.

The peak shift in the Vis and NIR spectra towards the percentage of added adulterant
was also investigated. From Figure 5a, for the visible region, a hypochromic shift occurs
from 469 nm to 386 nm for water and from 466 nm to 405 nm for apple cider. SBH
adulterated with fructose syrup, on the other hand, causes a consistent bathochromic
shift from 469 nm to 489 nm, with the increment of added adulterant. The shift in the
wavelength is predominantly from 50% of added adulterants. The pattern of the response
curve is almost similar to Figure 4a due to the transformation in the SBH color caused by
the adulteration. Water and apple cider cause the SBH samples to lose their yellow-red
property, while the addition of fructose syrup enriched the yellow-red properties of the
SBH due to the original color properties of the fructose syrup (as can be seen in Figure 2).

The relationship between the wavelength of the NIR peak and the amount of the
adulterants in SBH samples is depicted in Figure 5b. Generally, the NIR region exhibits
a broad peak where multiple wavelengths share similar maximum values compared to
visible absorbance. This is more significant for SBH samples adulterated with apple
cider and fructose syrup. The NIR peak absorbance for pure SBH is located between
987 and 992 nm. The NIR peak shifted significantly to a lower NIR wavelength until it
reached the centralized water peak at 970 nm with the increase in water and apple cider. A
previous study reported that the combination of NIR wavelengths between 960 and 965 nm
within C-H and O-H bands can reliably quantify sugars including fructose, glucose, and
sucrose [51].

Generally, the addition of water and apple cider (predominantly composed of water)
reduced the values of the soluble solids content ‘SSC’ comparably, while the addition of
high fructose syrup increased the SSC further, especially at concentrations beyond 60%,
as shown in Figure 5c. Pure SBH has an average SSC of 74.5 oBrix. According to a review
written by [44], the SSC for SBH ranges from 64.5 to 75.8 oBrix and is lower than the one
for Apis mellifera honey due to its higher water content and lower sugar content. The
sugar composition of SBH was recently discovered to be predominantly trehalulose, which
explains its lower total fructose and glucose contents [52]. The pure apple cider recorded
4.1 oBrix contributed by sugar and organic acids. Pure high fructose syrup, on the other
hand, recorded a much higher SSC, at 17.8 oBrix.
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Figure 5. (a) Visible and (b) near-infrared peak absorbance of the samples against the percentage
of added adulterant, (c) relationship between soluble solids content (in oBrix) and the percentage
of added adulterant, and (d) absorbance at near-infrared peak and the soluble solids content of
the samples.

The wavelength of the NIR peak was plotted against the soluble solids content of the
samples, as shown in Figure 5d. The increase in oBrix value showed a gradual increment of
the NIR wavelength beyond 970 nm for both samples adulterated with water and apple
cider. These results are in agreement with some studies in which the experiment was
conducted to analyze the NIR properties of water-sugar solutions [51,53,54]. In these
studies, raising sugar concentration in water (i.e., high SSC) causes the water band to be
more symmetric and, as a result, shifts the peak absorbance towards the longer wavelength.
Omar et al. [50] also reported that the addition of water to both SBH and Apis mellifera
honey resulted in a shift of the NIR absorbance peak towards a lower wavelength. However,
the increase in oBrix value of the SBH that was adulterated with syrup exhibits a very
minimal shift towards a lower wavelength for the higher SSC of the adulterated samples.

2.2. PCA Analysis and PLSR Modeling

Room temperature Vis-NIR spectra of pure and adulterated honey were exported
from the spectral software system and introduced directly into the Unscrambler software
to generate the chemometric models. A PCA was performed on the Vis-NIR spectra
(400–1100 nm) due to its ability to decrease dimensionality. To enhance the spectral quality
and attain a good clustering for samples, the raw data were first pre-processed using
moving average smoothing (within a 25-segment size) and baseline transformations. The
3D score plot for all the samples according to the first three principal components (PCs) is
shown in Figure 6a. 2D PCA score plots of PC1 vs. PC2, PC1 vs. PC3, and PC2 vs. PC3
are presented in Supplementary Figure S3–S5, respectively. As presented in Figure 6a,
the samples were clustered into seven groups, that corresponded to the three adulterants
(water ‘W’, apple cider ‘AC’, and fructose syrup ‘FS’) and four groups of SBHs (pure
and adulterated honey). The honey samples were clustered into different groups and
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zones based on the presence of adulterants, suggesting that these samples have distinctive
properties concerning the adulteration type. In addition, the cumulative explained variance
of the first three PCs was 99.11% of the total variance of spectral data, which indicates that
these PCs can reflect most of the basic characteristics of the raw data.

 

Figure 6. PCA analysis: (a) 3D score plot of the first three PCs and (b) x-loadings of PC1-PC5 of
Vis-NIR spectra (400–1100 nm).
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The PCA loadings reveal the wavelengths that show the maximum difference at the
individual PCs [55]. The loadings of each wavelength to differentiate the SBHs were
evaluated and displayed in Figure 6b for the first five components (PC1 to PC5). Several
contributive wavelengths with high x-loadings are recognized at Vis and NIR regions.
These wavelengths including 442, 466, 471, 483, 498, 511, 558, and 597 nm in the Vis
region, and 816, 833, 847, 870, 908, 909, 960, 961, 965, 1018, and 1035 nm in the NIR region.
The peaks at the visible region are related to the color of the honey and the effect of the
adulterations’ type and level on the color of honey samples, while the peaks in the NIR
region are located within the areas of the third overtone of the C-H stretching band [56,57],
the second overtone of the OH stretching band of water [9,58,59], and the second overtone
of the N-H stretching band. These spectral features arise from the major components
of honey, including carbohydrates, water, proteins, and amino acids [60]. The findings
demonstrated that the potential adulteration of SBH by common adulterants such as water,
apple cider, and high fructose syrup can be discriminated with a clear separation. Despite
the complexity of detection involving the influences of the adulterants on the color changes
of the SBH honey, distinct trends can be discriminated by considering both visible and
NIR regions.

Table 1 summarizes the results of various pre-treatments that were applied to optimize
the calibration performance of the global PLSR model utilized to quantify the level of the
adulteration in the SHB samples. It is shown that R2

C and R2
CV are approximately similar

for all the models examined, and therefore the model with the lowest RMSECV was cho-
sen. As displayed in Table 1, the most accurate model that produces the lowest RMSECV
corresponds to the moving average smoothing and the first polynomial detrending trans-
formations using seven factors (LVs). The PLSR modeling results are presented in Figure 7.
Figure 7a shows the loading plot of the regression vectors of the best PLSR model (Factor 7).
The regression vectors with higher loading values displayed a high compatibility with the
spectral bands presented in the PCA analysis. The positions of the spectral peaks in the
regression coefficient plot of the model were marked to determine the bands that have
the biggest weights in the calibration on adulterated honey. These bands characterize the
diverse water structures and carbohydrates. Figure 7b demonstrated the linear regression
of actual and predicted adulteration levels in the SBH samples. The value of R2

C, R2
CV ,

RMSEC, and RMSECV were 0.98, 0.96, 3.93%, and 5.88%, respectively. The obtained values
of RMSEC and RMSECV of the global PLSR model suggested its good predictive capacity
and the appropriateness of the selected spectral region, 400–1100 nm.

Table 1. Calibration and cross-validation results of the PLSR model performed on pre-processed
spectral data at the range 400–1100 nm.

Pre-Processing Methods LVs RMSEC (%) RMSECV (%) R2
C R2

CV

Raw absorbance 7 3.65 6.43 0.98 0.95
Smoothing 7 4.20 6.49 0.97 0.95

Detrend 1st polynomial 7 2.34 6.33 0.99 0.95
1st derivative SG 6 3.85 6.29 0.98 0.95

Smoothing, Detrend 1st Polynomial 7 3.93 5.88 0.98 0.96
Smoothing, detrend 1st polynomial,

1st derivative SG 6 4.08 6.58 0.98 0.94
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Figure 7. PLSR model results: (a) regression coefficients plot of Factor 7 and (b) calibration (in blue)
and cross-validation (in red) at the 400–1100 nm spectral interval for SBH samples.

2.3. Evaluation of the Structural Changes of Adulterated SBH Based on Aquaphotomics

The aquagrams in Figures 8–10 presented the structural changes in stingless bee honey
after adulteration by water, apple cider, and fructose syrup, respectively. The radial axes
of aquagrams are defined by 16 absorbance bands that can be considered as WAMACs.
The aquagrams show WASPs of adulterated honey compared to the WASP of pure honey
(the black line on Figures 8–10). Clearly, the aquagrams of honey adulterated by water
and apple cider (Figures 8 and 9) showed similar WASPs. The first common characteristic
is the decrease of the absorbance of adulterated SBH samples in the region 980–1035 nm.
In this region, the higher the adulteration percentage the lower the absorbance, and this
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behavior can be noticed in regular steps of absorbance reduction. The lowest aquagram
line in this region corresponds to pure adulterants (water and apple cider, which is a
highly aqueous sample). The second common characteristic is the increase of absorbance
in the region 939–970 nm, and a gradual shift towards the lower wavelengths with the
increase in the percentage of adulteration. These observations are in agreement with the
previous findings by Omar et al. [50] on the NIR spectral behavior of SBH adulterated
with water. Particularly, it was noticed that the main NIR absorbance peak was related
to water absorbance located around 950–1050 nm and that as the honey was diluted with
the addition of water, the peak shifted towards lower wavelengths. Therefore, it can be
concluded that the observed characteristics showed that the honey is becoming more liquid
as it is more diluted by adulterants. In aquagrams, this process is represented by the
restructuring of water that contains more weakly hydrogen-bonded water and free water
as the percentage of adulterant is increased.

 

Figure 8. Aquagrams of pure SBH, water, and adulterated SBH with various percentages of water.

 
Figure 9. Aquagrams of pure SBH, apple cider vinegar, and adulterated SBH with various percentages
of apple cider vinegar.
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Figure 10. Aquagrams of pure SBH, fructose syrup, and adulterated SBH with various percentages
of fructose syrup.

The bands 939 nm, 944 nm, 960 nm, 970 nm, and 980 nm correspond to overtones of
the WAMACs located respectively at 1408.5 nm and 1416 nm (both bands can be assigned to
free water molecules), 1440 nm (water dimer), 1455 nm (water hydration shell OH-(H2O)4,5
and bulk water), and 1470 nm (can be attributed to water molecules with 2 or 3 hydrogen
bonds) [21]. In the region 980–1035 nm, the bands 989 nm and 996 nm can be ascribed to
overtones of the WAMACs located at 1483.5 nm and 1494 nm (both bands corresponding
to water molecules with 4 hydrogen bonds) [21]. The bands 1018 and 1035 nm are very
close to the bands which are identified as NIR absorbance bands for water (1010 and
1030 nm) [61], while the band at 1020 nm is attributed to OH with possible H-bonding in
water at 1–2 ◦C [62]. If it is assumed that both 1018 nm and 1035 nm bands are overtones of
water bands in the first overtone of the water region, the recalculation would produce the
wavelengths 1527 and 1552.5 nm, respectively. In the aquaphotomics application on honey
adulteration by Bazar et al. [13], the bands 1528–1532 nm and 1564–1572 nm have high
absorbance in pure honey and a decrease in a regular trend with the addition of adulterant,
similar to the performance in this study. They attributed the bands above 1500 nm (in
our case this would correspond to the bands above 1000 nm) to ice-like clusters of liquid
water, formed by a very small amount of monomeric water species, a major part of it bound
by one hydrogen bond at the periphery and two hydrogen bonds in the center. These
structures represent highly organized water structures with strong H-bonds. The ice-like
structures of liquid water are stable clusters with less free -OH and typically generated
around macromolecules such as sugars [53]. It was shown that the addition of sugar
decreases the amount of weakly H-bonded molecules, while it increases the number of
H-bonded water molecules, resulting in highly organized water structures [63]. This means
that these water structures include the main sugars in honey. In view of that, the bands
1018 nm and 1035 nm can be assigned to strongly hydrogen-bonded water in a crystallized
form that is presented in pure honey due to the high sugar content; this water can also
be thought of in terms of sugar–water interaction. The addition of water or apple cider
acts on these structures as a heater, melting them and creating more weakly hydrogen-
bonded water. These findings are in agreement with what was observed during the initial
inspection of the raw spectra in Figure 1 and confirm that the origin of the scattering and
changes in the baseline, that was so prominent in the case of adulteration by water and
apple cider, are indeed due to the altered water–sugar interaction, with the increase of bulk
and hydration water and changes in the crystallization of sugars in honey.
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A similar decrease in absorbance at aquagrams for honey adulteration by both water
and apple cider happens at the 909 nm band. This band was found to be strongly related to
the sugar C-H group [51,64–67], and so it can be assigned to the sugar–water interaction.
The entire 870–890 nm region can be attributed to carbohydrates [68], and the band at
895 nm may be related to some specific type in apple cider. The band at 895 nm clearly
makes the difference in spectral patterns of honey adulterated by water and apple cider
and is highly characteristic and presented with high absorbance in the case of apple
cider. Alternatively, it may also be ascribed to the absorbance of protonated water clusters
H+.(H2O)3 [69]. The region 816–865 nm incorporates several overlapped spectroscopic
features of compounds with C-H and O-H groups, including proteins, carbohydrates,
hydrocarbons, alcohols, and water [62], with water being a stronger absorber around
830–840 nm [68,70].

The aquagram of SBH adulterated with fructose syrup in Figure 10 shows a spectral
pattern quite different from those of Figures 8 and 9. With an increase in the percentage of
fructose syrup, there is an increase in absorbance at 1018–1035 nm and 909 nm. The fructose
syrup is a highly concentrated solution of sugars, and this agrees well with the assignments
of these bands to the sugar–water interaction. These two features are the most prominent
characteristic of honey adulterated with fructose syrup, while the absorbance shows a
marked decrease at other bands. Adulteration with fructose syrup seems to obliterate the
features of honey, resulting in a significant decline in absorbance at all bands, even when
the adulteration is at the lowest level of 10%. Hence, it can be deduced that the adulteration
of honey with fructose syrup is the most serious case compromising the honey’s structure
and functionality.

From the above discussion, our findings agree with the earlier reports about the
effects of the adulteration of honey. A fast and simple method for the detection of SBH
adulteration was presented using aquagrams for the region 800–1100 nm, where the most
common photodetectors available in the market offer the best sensitivity [51]. For the
development of a simple multispectral sensor, the results suggested that the bands at
865 nm and 980 nm have the highest specificity for the detection of the adulteration of SBH
by water. In the case of apple cider vinegar, the highest specificity for adulteration detection
was found at the bands 865 nm, 970 nm, and 980 nm, and lastly, for adulteration by fructose
syrup, the bands at 847 nm, 939 nm, 944 nm, 989 nm, and 996 nm. Therefore, using eight
wavelengths (847 nm, 865 nm, 939 nm, 944 nm, 970 nm, 980 nm, 989 nm, and 996 nm), a
simple and multispectral portable measurement system for detecting SBH adulteration can
be developed based on the method presented in this work, that allows for the detection of
adulteration and the type of adulterant.

3. Materials and Methods

3.1. Honey Samples

The pure stingless bee honey (SBH) sample was purchased from MUKAS Stingless
Bee Farm, which is located in Kedah, Malaysia. All samples were harvested in the year
2018, stored in airtight jars, and refrigerated until analysis.

3.2. Adulterants

The three types of adulterants used in this study were distilled water, apple cider
vinegar, and high fructose syrup, which are common SBH adulterants used in the market.
Both apple cider and fructose syrup were purchased from Sinaran Saintifik Enterprise,
Penang, Malaysia.

3.3. Honey Adulteration Sample Preparation

The pure SBH samples were adulterated by three different types of adulterants, which
were distilled water, apple cider vinegar, and high fructose syrup. The SBH samples were
adulterated with various degrees of adulteration (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%
and 90%). The mixture was classified as adulterated honey, and the sample was thoroughly
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shaken until a homogenous mixture was formed. Prior to analysis, the honey samples were
stored in glass jars, in a dark place, at room temperature. The overall number of samples
was 31, comprising 1 pure SBH sample (0%), 3 adulterants (100%), and 27 adulterated
honey samples (10–90%). The adulterated SBH samples consisted of 3 groups of 9 samples
each, adulterated with water, apple cider vinegar, and high fructose syrup, accordingly.
The adulteration level was from 10 to 90% with an interval of 10%.

3.4. Vis-NIR Spectroscopy

The visible and near-infrared (Vis-NIR) absorbance spectroscopy measurement of
the samples was conducted using the QE65000 spectroscopic system (Ocean Optics, Inc.,
Dunedin, FL, USA) with a spectral range between 400 and 1100 nm. Pure and adulterated
honey samples in glass holders (1 cm × 1 cm) were scanned at room temperature (∼25 °C)
using the QE65000 spectrometer. The absorbance measurement of the sample is relative to
an empty cuvette and was calculated using Equation (1):

Aλ = −log10

(
Sλ − Dλ

Rλ − Sλ

)
(1)

where:
Aλ is the absorbance at wavelength λ
Sλ is the intensity of light transmitted through the sample at wavelength λ
Dλ is the dark intensity at wavelength λ
Rλ is the intensity of light transmitted through the reference (empty cuvette)

3.5. Color Analysis

Color characteristics were determined using a Chromaticity Diagram template de-
veloped in the OriginPro 2021 Software Package (version 9.8, Origin Lab Corporation,
Northampton, MA, USA). The template was designed to calculate the color parameters
from the spectra according to the equations from the CIE Technical Committee [71]. The
CIELAB color space was utilized [2,36,48,49], with reference to illuminant D65 and a visual
angle of 10

◦
(CIE 1964 Supplementary Standard Observer) [48,49]. The wavelength range

used in the calculation was 380–780 nm [47].

3.6. Total Soluble Solids

The soluble solids content (SSC: oBrix) of the prepared samples was measured using a
PAL-3 refractometer from Atago, Co. (Tokyo, Japan) with a range of measurements from 0
to 93 oBrix and a resolution of 0.1 oBrix.

3.7. Multivariate Analysis

First, the Vis-NIR spectral data were preprocessed with some transformations to
minimize unwanted effects, that include baseline variation, light scattering, and path length
variances [72]. A moving average smoothing with a segment size of 25 was performed
to eliminate random variations of the data set and correct the scatter effect. Baseline
correction was used to adjust the spectral offset. The first-order detrending transformation
was used to remove the baseline of the signals in the spectral data [73] and detach the
particular absorption features [74]. The first derivative order of Savitzky–Golay (SG) with
25 smoothing points was utilized to reduce the baseline variation and augment the spectral
features [75].

A principal component analysis (PCA) was applied to study the clustering of the
samples. The three-dimensional (3D) score plot and the corresponding loadings of the
principal components (PCs) were presented for the pre-processed spectra. In addition, the
partial least squares regression (PLSR) model was developed to quantify the adulteration
level in honey samples. The regression model was validated by the full cross-validation
method. The precision and accuracy of the PLSR model was evaluated by the determination
coefficient (R2) and the root mean square error (RMSE) of calibration and cross-validation
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(R2
C, R2

CV , RMSEC, RMSECV). A good model should have a high R2 and a low RMSE. The
PLSR models with 1–10 factors (latent variables ‘LVs’) were examined, and the optimal
number of LVs was selected based on the lowest value of the RMSECV . Both PCA and
PLSR were performed using the Unscrambler Software (version 10.4, CAMO Software AS,
Oslo, Norway).

3.8. Aquagrams

An aquaphotomics analysis was applied to examine the influence of each adulterant
depending on the concentration. The raw spectra were pre-processed using Savitzky–
Golay’s second-order polynomial smoothing with 21 points to remove noise, linear baseline
correction to correct the baseline slope, and normal variate transformation (SNV) to remove
the baseline offset. These pre-processing methods were applied on datasets split according
to the adulterant type, because of the specific effects of each adulterant on the baseline. First,
the loadings of PCA and regression coefficients of PLSR were inspected for consistently
appearing and highly influential variables, that can be considered as Water Matrix Coordi-
nates (WAMACs). Based on this evaluation, the wavelength region from 800 to 1100 nm
was opted for aquaphotomics analysis, where 16 important absorbance bands were selected
to be presented on the aquagrams. Afterwards, the absorbance values were normalized
following the procedure for calculation of classic aquagrams [23], and the spectrum of pure
honey was subtracted to allow for the comparison with the adulterated honey samples.
The water absorbance spectral patterns (WASPs) of honey with each additive (water, apple
cider, and syrup) were presented on aquagram plots featuring normalized absorbance and
displayed on radar axes defined by selected WAMACs. Pre-processing was performed
using the commercially available software Pirouette 4.0 (Infometrix Inc., Bothell, WA, USA),
and the aquagrams were prepared in Microsoft Office Excel 2016 (Microsoft Co., Redmond,
WA, USA) and depicted using the OriginPro 2021 Software Package (version 9.8, Origin
Lab Corporation, Northampton, MA, USA).

4. Conclusions

The characteristics of pure and adulterated SBH were studied using visible (Vis) and
near-infrared (NIR) spectroscopy. The SBH was adulterated with various adulterants,
including distilled water, apple cider vinegar, and high fructose syrup, with a percentage
ranging from 10% to 90%. The visible peak of the SBH was altered, but the shift in the
visible peak was apparent only for the level of adulterants beyond 50%. On the other
hand, the shift in NIR is only significant for SBH adulterated with water and apple cider,
contributed by the change in the water structure of the samples. The classification of the
adulterants and both pure and adulterated SBHs was attained using a principal component
analysis (PCA). A partial least squares regression (PLSR) global model was developed to
quantify the adulteration level in the honey samples. An optimum PLSR prediction model
with R2

CV = 0.96 and RMSECV = 5.88 % was acquired. In conclusion, Vis-NIR absorbance
spectroscopy at the region 400–1100 nm has proven a promising method in identifying the
adulterated SBH. The alteration in the spectral attribute, however, is highly dependent on
the nature of the liquid added to the pure SBH. Furthermore, the results showed that the
region at 400–1100 nm that is related to the color and water properties of the samples is
effective to discriminate and quantify the adulterated SBHs.

For the first time, the adulteration of SBH has been investigated using the combination
of the spectroscopy technique and the aquaphotomics approach at the short-wavelength
NIR region (800–1100 nm). The adulteration level in SBH including 10% was identified,
irrespectively of the adulterant type. It was found that each adulterant resulted in a
change in the spectral pattern of honey in a unique way that can be explained by the
interaction of the adulterant with the chemical structure of honey. This method can be
applied for developing highly sensitive and portable measurement systems for detecting
adulterated SBH.
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//www.mdpi.com/article/10.3390/molecules27072324/s1, Figure S1. CIE x, y chromaticity diagram
showing the variation of color of the samples (n = 31). Figure S2. Zoom-in view of CIE x, y chromaticity
diagram of the samples (n = 31). Figure S3. 2D scores plot of PC1 vs. PC2 of the samples (n = 31).
Figure S4. 2D scores plot of PC1 vs. PC3 of the samples (n = 31). Figure S5. 2D scores plot of PC2 vs.
PC3 of the samples (n = 31).

Author Contributions: Conceptualization, A.F.O.; methodology, A.F.O.; software, M.E.R. and J.M.;
formal analysis, A.F.O., M.E.R. and J.M.; investigation, A.R.A.N.; resources, A.F.O.; data curation,
A.R.A.N.; writing-original draft preparation, A.F.O.; writing-review and editing, M.E.R., M.Z. and
J.M.; visualization and; supervision, A.F.O.; project administration and funding acquisition, A.F.O.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Tsuki no Shizuku Foundation, Japan of a research grant
for aquaphotomics.

Institutional Review Board Statement: Not avalilable.

Informed Consent Statement: Not avalilable.

Data Availability Statement: Not avalilable.

Acknowledgments: The authors would like to thank and acknowledge the financial support of a
research grant for aquaphotomics from Tsuki no Shizuku Foundation, Japan.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References

1. Ávila, S.; Hornung, P.S.; Teixeira, G.L.; Beux, M.R.; Lazzarotto, M.; Ribani, R.H. A chemometric spproach for moisture control in
stingless bee honey using near infrared spectroscopy. J. Near Infrared Spectrosc. 2018, 26, 379–388. [CrossRef]
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Abstract: In this study we aimed to investigate the effect of heat treatment on the spectral pattern of
honey using near infrared spectroscopy (NIRS). For the research, sunflower, bastard indigo, and acacia
honeys were collected from entrusted beekeepers. The honeys were not subject to any treatment
before. Samples were treated at 40 ◦C, 60 ◦C, 80 ◦C, and 100 ◦C for 60, 120, 180, and 240 min. This
resulted in 17 levels, including the untreated control samples. The 5-hydroxymethylfurfural (HMF)
content of the honeys was determined using the Winkler method. NIRS spectra were recorded
using a handheld instrument. Data analysis was performed using ANOVA for the HMF content and
multivariate analysis for the NIRS data. For the latter, PCA, PCA-LDA, and PLSR models were built
(using the 1300–1600 nm spectral range) and the wavelengths presenting the greatest change induced
by the perturbations of temperature and time intervals were collected systematically, based on the
difference spectra and the weights of the models. The most contributing wavelengths were used to
visualize the spectral pattern changes on the aquagrams in the specific water matrix coordinates. Our
results showed that the heat treatment highly contributed to the formation of free or less bonded
water, however, the changes in the spectral pattern highly depended on the crystallization phase and
the honey type.

Keywords: honey; heat treatment; NIRS; chemometrics; aquagram; PCA; PCA-LDA; PLRS;
WAMACs; HMF

1. Introduction

Honey, as a natural sweetener used since ancient times [1], is a perfect candidate for
the increasing demand for unprocessed, natural, and “healthy” products. According to the
literature, honey is produced by honeybees (Apis mellifera) from the nectar and sap of living
plants or honeydew [2,3]. Owing to its valuable nutritional composition and relatively
high price on the market, it represents an important value for the consumers. Honey
is composed of sugars (95% of the dry matter content [4]), water (<20%) and numerous
nutritious compounds, such as minerals, amino acids, vitamins, and phytochemicals [5,6].
The composition of honey is highly influenced by both botanical and geographical origin [6].
However, there are other factors—for example storage conditions or processing—that can
have an impact on the composition and sensory characteristics (e.g., aroma, color) of
honey [7,8]. The processing of honey includes heat treatment, which is often applied for
the elimination of the crystals or to delay crystallization.

Honey crystallization is a naturally occurring process, depending mainly on the ratio
of fructose and glucose and the water/glucose fraction. Other factors, such as the pres-
ence of pollen and other particles can also influence the crystallization process. Honeys
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with a higher glucose content (28–30 g/100 g), fructose/glucose ratio < 1.14 and/or glu-
cose/moisture ratio ≥ 2.1 crystallize faster. The crystals are usually not preferred by the
consumers due to the unpleasant organoleptic properties of the (rough) crystals [9,10].
Moreover, the crystallized state makes the handling of honey more difficult for the produc-
ers and beekeepers. Therefore, heat treatment can be applied for the liquefaction of honey,
for which numerous methods are available [11]. The most common techniques are the
treatment in chambers by hot air or water bath. Nowadays, different types of honey heater
equipments are also available [12,13]. According to Hungarian regulations, the core temper-
ature of honey cannot exceed 40 ◦C during the processing of honey [14], because at higher
temperature levels the composition of honey changes significantly [15]. Other adverse
aspects are also noticeable, including, but not limited to, changes of taste/aroma [16–18],
decay of vitamins [19], changes of the color [9,10,20,21], Maillard-reaction-induced decrease
or increase of antioxidants [9,22,23], decrease of enzyme activity (diastase, invertase), and
formation of hydroxymethylfurfural (HMF) [7,10,13,18,19,24]. These attributes also change
during long-term normal storage, but heating, especially above 50 ◦C, highly accelerates
these processes. One of the most important indicators of heat treatment is the HMF content,
which cannot be higher than 40 mg/kg in honeys (except honeys from tropical regions,
where the limit is 80 mg/kg) [2,3,25]. Nevertheless, even at temperatures lower than 60 ◦C,
significant changes can occur in terms of the composition and sensory properties of honey.
However, based on the literature, the detection of heat treatment below 60 ◦C can be
challenging when based on HMF content as the sole indicator [16,18,26–28].

Currently, multivariate, correlative techniques can offer fingerprint-like information
on the analytes, thus representing powerful alternatives to conventional methods. As one
of these techniques, near infrared spectroscopy (NIRS) has already been applied to detect
the changes deriving from heat treatment [18,29,30]. A new application field of NIRS, called
aquaphotomics, aims to check the changes in the water structure of the samples as a result
of different perturbations [31]. As honey is a supersaturated solution of sugars in water,
the aquaphotomics approach could be a perfect choice for the detection of overheating or
other mishandling of honey. Previously, aquaphotomics has been applied to detect changes
in honey resulting from adulteration with sugar syrups [32–35]. However, to the best of the
authors knowledge, the aquaphotomics approach has never been applied to evaluate the
effect of heat treatment on the compositional changes of honey.

Therefore, this study intends to investigate the effect of heat treatment on the spectral
pattern of unifloral honeys using aquaphotomics.

2. Results

2.1. HMF Content of the Honeys

The initial HMF contents of the three investigated honey types were different: sun-
flower honeys had an average HMF content of 18.55 ± 0.28 mg/kg, bastard indigo honeys
presented 14.68 ± 1.61 mg/kg, and acacia honeys contained 6.96 ± 0.38 mg/kg (Table 1.).
These all fulfill the requirements of the legislation (maximum 40 mg/kg) [2,3]. Based on
the two-way ANOVA test, the effect of time interval, temperature, and their interaction
was found to significantly affect the HMF content of all of the studied honey samples.

No significant difference was found among time intervals within the 40 ◦C group in
sunflower, bastard indigo, and acacia honeys. In the case of the 60 ◦C group, no clear trend
was observed. However, in the case of the honeys heated to 80 ◦C and 100 ◦C, the samples
heat treated for 60 min had significantly lower HMF content compared to honeys heat
treated for 120, 180, and 240 min. Moreover, an increasing trend can be observed in the
80 ◦C and 100 ◦C groups with the increase of the treatment time.

In the case of the honeys heat treated for 60 min, the sunflower and acacia honeys
treated at 100 ◦C had higher HMF contents compared to the lower temperatures when the
effect of temperature within time intervals was evaluated. Honey samples heat treated for
120 min showed different results in the case of the three honey types. The HMF values
of the sunflower honey (120 min group) showed that all the samples were significantly
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different from each other and the HMF value increased with the increase of the temperature.
Results of the bastard indigo honey showed that only the honeys heat treated at 100 ◦C
showed significantly higher HMF contents compared to the lower temperature groups.
Acacia honey showed no significant differences between 40 ◦C and 60 ◦C, while the 80 ◦C
group had significantly higher HMF contents than the honeys heated at lower temperature
levels; the same applied for the 100 ◦C treated group. The same trend was found in the
case of acacia honey for 180 min and 240 min treated honeys. The groups of the 180 min
and 240 min treatment of sunflower honey showed that only the 80 ◦C and 100 ◦C treated
honeys differed significantly from the other temperature levels. In the case of the bastard
indigo honey samples heated for 180 min, only the honeys heated at 100 ◦C showed a
significantly higher HMF compared to the honeys heated at lower temperatures. The
sunflower honeys heated for 240 min showed the same trend as the bastard indigo and
acacia honeys.

Table 1. Results of the HMF content of the honey samples from the heat treatment experiment.

Hydroxymethylfurfural Content, mg/kg

Control 40 ◦C 60 ◦C 80 ◦C 100 ◦C

Sunflower

Control 18.5 ± 0.3
60 min 20.2 ± 1.5 aA 16.2 ± 1 aA 17.6 ± 0.2 aA 40.3 ± 0.8 aB*
120 min 17.3 ± 1.3 aA 20.5 ± 0.7 bB 31.8 ± 1.3 bC* 155.1 ± 2.7 bD*
180 min 18.4 ± 1.6 aA 19.9 ± 1.8 bA 37.2 ± 0.6 cB* 241.5 ± 7.4 cC*
240 min 17.5 ± 1.4 aA 19.5 ± 2 abA 52 ± 2.7 dB* 463.6 ± 28.3 dC*

Bastard indigo **

Control 14.7 ± 1.6
60 min 14.1 ± 2.8 aAB 18 ± 2.3 abB 11.9 ± 1.1 aA 16.7 ± 0.9 aAB

120 min 15.1 ± 3.5 aA 15.8 ± 0.6 abA 14.3 ± 1 bA 81.4 ± 4 bB*
180 min 15.7 ± 1.1 aA 21.1 ± 3.5 bA 19.8 ± 0.6 cA 146.4 ± 2.3 cB*
240 min 12.9 ± 1.4 aA 13.7 ± 1.3 aA 28.2 ± 1.1 dB 306 ± 17.8 dC*

Acacia

Control 7.0 ± 0.4
60 min 9.1 ± 1.3 aA 7.7 ± 0.3 aA 8 ± 0.4 aA 16.1 ± 1.7 aB*
120 min 8 ± 0.6 aA 8.8 ± 1.4 aA 13.3 ± 0.9 bB* 44.7 ± 4.3 bC*
180 min 8.6 ± 1 aA 9.6 ± 0.3 aA 12.2 ± 0.8 bB* 89.1 ± 2.8 cC*
240 min 10 ± 1.1 aA 9.6 ± 0.9 aA 18.8 ± 2.4 cB* 211.6 ± 5 dC*

Letters represent the significant differences between the samples based on the results of an ANOVA test and
pairwise comparisons at p < 0.05: lowercase letters (a,b,c,d) stand for the differences between time intervals
(columns) within a temperature level; capital letters (A,B,C,D) are for the differences between temperature levels
within time intervals (rows); * are for a significantly different level compared to the control sample. ** Results of
bastard indigo were previously presented at a conference [29].

Sunflower and acacia honey samples heat treated at 80 ◦C for 120 min or longer, and
the samples heated at 100 ◦C (all time intervals) showed significantly higher HMF contents
compared to control. In the case of the bastard indigo honey, only the samples heated
at 100 ◦C for 120, 180, 240 min had a significantly higher HMF than that of the control.
Moreover, it should be highlighted that the limit (40 mg/kg) was reached only in the case
of the 100 ◦C treatment of the bastard indigo and acacia honeys, whereas for sunflower
honey, the temperature level of 80 ◦C and duration of 240 min induced a higher value than
the limit. This shows that longer low-level heat treatments and even higher temperatures
are not detected by this conventional method, however, even at these lower temperatures
(from 60 ◦C) irreversible changes occur in honeys. Our results are in line with the work
of Romanian researchers who also found that more intense HMF formation occurred at
higher temperatures, such as 100 ◦C [24]. Bogdanov [36] also showed that the HMF limit
of 40 mg/kg could be reached after one or two days at 60 ◦C or after a month at 40 ◦C.
However, in a Hungarian study it has been shown that the sensory properties of honey
such as the flavor, color, consistency, and odor changed at lower temperatures [37]; the
global taste was already affected at 40 ◦C and 60 ◦C, based on the results obtained by the
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potentiometric electronic tongue. Moreover, the group also found that the color changed
significantly at 50 ◦C and 60 ◦C [18].

The differences in the formation of HMF and the trends observed could originate
from the fact that the initial pH, free acidity, amino acid, and sugar composition (especially
fructose ratio) of the three honey types are different, which could have a significant impact
on the formation of HMF [38].

The obtained results demonstrate the poor ability of HMF to indicate heat treatments
of honey samples and thus the need for additional or alternative methods that can pro-
vide a higher sensitivity in the detection of such processes that may be misleading to
consumers. As such, NIRS and specifically aquaphotomics may be involved in the quality
authentication of honeys.

2.2. Models of the Botanical Origin of Honey Types

The NIRS-based models built for the discrimination of the three types of honey (acacia,
sunflower, and bastard indigo) not subjected to any heat treatment (control samples)
showed that all the three groups can be separated from each other with 100% accuracy using
principal-component-analysis-based linear discriminant analysis (PCA-LDA) (Figure 1a).
The aquagram of the honeys also showed completely different spectral patterns for the three
honey types. While sunflower honey was mainly characterized by high absorbances at the
wavelengths attributed to highly hydrogen-bonded water (1511 nm and 1489 nm), the most
abundant water molecular structures for acacia honey consisted of water shells (1363 nm),
combinations of antisymmetric and symmetric stretching modes of water and V1- and V2-
bonded water [39]. Similar to sunflower honey, bastard indigo honey also presented peaks
located at the water matrix coordinates (WAMACs), associated with strongly hydrogen-
bounded water molecules, but also at regions attributed to free water (1412 nm), thus
attesting the complexity of the physicochemical composition and the crystallization phase
of each of the studied honeys (Figure 1b).

Figure 1. Differentiation of the botanical origin of the three control honeys: (a) PCA-LDA score plot
for the discrimination of the botanical origin and (b) aquagrams of the honey samples of different
botanical origins.

2.3. Results of the Principal Component Analysis

Principal component analysis calculated separately for the three honey (acacia, sun-
flower, bastard indigo) types showed similar results. In the case of the sunflower honey
(Figure 2), there was a discrimination pattern through PC1 that described 99.40% of the
variance. The group of control samples was completely separated from the scores of honey
samples treated at different temperatures (40, 60, 80, 100 ◦C) and showed a slight overlap-
ping with the honey samples treated at 40 ◦C. The higher treatment levels overlapped with
each other. In this case the 1347 nm, 1446 nm, 1527 nm, and 1576 nm values contributed
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to the formation of PC1. The PCA model of heating time separation also showed a dis-
crimination tendency through PC1 that described 97.57% of the variance. Values obtained
at 1316 nm, 1405 nm, 1446 nm, 1489 nm, 1524 nm, 1553 nm, and 1585 nm contributed to
the formation of PC1. In this case, the control slightly overlapped with the honeys treated
for 60 min. However, it can also be seen that there are separated subgroups in each time
treatment group, which shows the higher effect of the temperature on the spectra of honey.

Figure 2. Principal component analysis of the control and heat-treated sunflower honeys: (a) PCA
score plot for temperature pattern visualization with a Savitzky–Golay smoothing (window size 13)
and SNV pretreatment; (b) the respective PCA loading plot; (c) PCA score plot for the time pattern
visualization with a Savitzky–Golay smoothing (window size 13) and Savitzky–Golay 2nd derivative
(window size 13, 2nd order derivative) pretreatment; (d) the respective PCA loading plot.

In the case of the bastard indigo honey, the trends were similar to the sunflower
honeys, where the 1534 nm and 1582 nm values contributed to PC1 with the highest weight.
The model built to visualize the effect of time intervals showed that the values obtained at
1335 nm, 1448 nm, 1531 nm, and 1579 nm had the highest contribution to PC1, however, in
this case, there was no obvious separation trend based on the time intervals.
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In the case of acacia honey, the trends were not as obvious as in the case of the other
two honey types. The PCA model presenting the temperature pattern showed only a slight
separation tendency through the first two principal components. PC1 was mainly obtained
by the wavelengths at 1405 nm, 1454 nm, 1524, and 1565 nm. The model depicting the time
pattern did not show any clear trend for the separation of the time intervals.

The wavelengths contributing to the model illustrating the temperature level pat-
terns showed that in the case of all the honey types, the regions at 1524–1534 nm and
1582–1585 nm were the most affected ones. The region at 1524–1553 nm can be assigned to
the ionic hydrogen bonding vibration in OH−(H2O)2-4 [40], while the 1582–1585 nm region
is characteristic of fructose, sucrose, and glucose [32].

The models showing the pattern of time interval discrimination were also similar
where 1316 nm and 1335 nm could be assigned to the weakly H-bonded water. The dom-
ination of the free -OH is related to this region. The peaks at 1405 nm, and 1432 nm and
1446 nm are related to the free water and water molecules with one hydrogen bond, respec-
tively, while the region at 1448–1454 nm can be assigned to the OH-(H2O)4,5 water solvation
shell. The assigned wavelengths also revealed that water molecules with four hydrogen
bonds were also formed by the heat treatment (1489 nm) [32,41].

Similar results were obtained in a Hungarian study investigating low-level heat
treatment of honeys (at 40, 50, and 60 ◦C for 30, 60, and 120 min) using near-infrared
spectroscopy in the range of 950–1630 nm. In this research, the sunflower honeys showed a
similar trend based on the PCA, the separation of the control sample was clear and a slight
overlapping was found with the 40 ◦C treated samples, however, the 60 ◦C treated honeys
separated completely from the control honey [18]. However, no clear separation tendency
was observed for the acacia honeys.

2.4. Results of the PCA-LDA Analysis

The general (including all the sublevels of time and temperature treatments) PCA-LDA
models, built separately for each honey type, did not provide strong classification accuracies
in the case of the different honey types. The general model built for the classification of the
different temperature levels showed average training (recognition) and cross-validation
(prediction) accuracies of 80.18% and 68.79%, 82.24% and 75.95%, and 64.82% and 48.44%
for the sunflower, bastard indigo, and acacia honeys, respectively. The models of the time
interval classifications weren’t effective with 52.70% and 35.29%, 63.78% and 41.33%, 47.38%
and 25.93% accuracies for the sunflower, bastard indigo and acacia honeys, respectively.
However, the detailed (i.e., built for the classification of time intervals within temperature
levels, or built for the classification of temperature levels within time intervals) models
provided better classification accuracies.

In Figure 3a,b, an example of the PCA-LDA score plot for the discrimination of the
temperature or time interval of the applied heat treatment within the time or temperature
groups, respectively, is showcased (detailed models). Loadings on the plot show the
20 wavelengths that contributed the most to the separation of the groups.

In each of the models, the presented results were chosen from 41 pretreatment combi-
nations after a leave-one-sample-out cross-validation, based on the best validation accuracy.

Detailed temperature-level PCA-LDA models (Table 2 upper part) provided the best
results in the case of the sunflower honey. Honeys heated for 240 min showed a 100%
classification accuracy of the temperature levels. The models of the honeys heated for
60 min showed a slightly lower accuracy (97.47%) after validation. The temperature groups
60 ◦C and 80 ◦C also provided worse results; however, in the case of all the models,
the control was classified correctly. The classification models of bastard indigo weren´t
accurate, but similarly, the honeys heated for four hours showed the best classification of
temperature. In this case, all the models provided 100% correct classification of the control.
Models of the acacia honey weren´t as performant as those of the other two groups, where
the control classification accuracy was higher in the honeys heated for longer time intervals.
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Figure 3. PCA-LDA score plot of the sunflower honey with the 20 most important loadings:
(a) temperature classification model of honeys treated for 60 min with a Savitzky–Golay smoothing
(window size 21) and SNV pretreatment; (b) time classification model of honey heated at 40 ◦C with
Savitzky–Golay smoothing (window size 13), MSC and detrending pretreatment.

Table 2. PCA-LDA classification accuracies of the detailed temperature level and time interval
classification models.

Temperature Classification within Time Group
Honey Subgroup Pretreatment Training % Validation % Control %

Sunflower

within 60 min sgol@2-21-0_snv 99.93 97.47 100
within 120 min sgol@2-13-0_sgol@2-13-2 97.74 87.55 100
within 180 min sgol@2-17-0 99.82 91.37 100
within 240 min sgol@2-13-0_sgol@2-17-2 100 100 100

Bastard indigo

within 60 min sgol@2-17-0_deTr 81.11 62.38 100
within 120 min sgol@2-17-0_deTr 88.99 78.56 100
within 180 min sgol@2-17-0_deTr 92.74 83.71 100
within 240 min sgol@2-13-0_sgol@2-21-1 97.92 93.22 100

Acacia

within 60 min sgol@2-21-0_deTr_msc 85.74 66.30 51.28
within 120 min sgol@2-13-0_sgol@2-17-1 91.11 59.94 69.23
within 180 min sgol@2-13-0_msc 91.56 72.17 76.92
within 240 min sgol@2-13-0_sgol@2-17-1 84.69 66.10 76.92

Time Classification within Temperature Group
Honey Subgroup Pretreatment Training % Validation % Control %

Sunflower

within 40 ◦C sgol@2-13-0_deTr_msc 98.63 96.36 100
within 60 ◦C sgol@2-17-0_sgol@2-21-1 90.58 72.47 100
within 80 ◦C sgol@2-21-0_sgol@2-13-1 84.80 57.27 100

within 100 ◦C sgol@2-13-0_sgol@2-13-2 89.95 72.21 100

Bastard indigo

within 40 ◦C sgol@2-17-0_deTr 97.05 95.16 100
within 60 ◦C sgol@2-17-0 76.15 47.94 100
within 80 ◦C sgol@2-13-0_sgol@2-13-2 82.80 55.40 100

within 100 ◦C sgol@2-17-0 89.52 61.66 100

Acacia

within 40 ◦C sgol@2-21-0_sgol@2-13-1 71.19 42.99 56.41
within 60 ◦C sgol@2-21-0_deTr_msc 62.21 31.96 71.79
within 80 ◦C sgol@2-17-0_msc 82.77 58.66 82.05

within 100 ◦C sgol@2-13-0_sgol@2-17-2 94.79 72.64 79.49

Each row represents the best model chosen from the 41 pretreatment combinations, the average classification
accuracies for the training, validation, and the control correct classification are computed from the leave-one-
sample-out cross validation confusion tables. sgol@x-y-z means Savitzky–Golay smoothing, where x denotes the
polynomial order, y the window size and z the order of derivation; msc denotes multiplicative scatter correction;
snv denotes standard normal variate; detr denotes detrending.
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The detailed models for the classification of the time levels within temperature groups
(Table 2 lower part) provided the best training and validation accuracies in the case of
the sunflower honey, followed by bastard indigo, and acacia samples. In general, these
models were worse than the models of the temperature classification within time intervals.
The validation accuracies of the sunflower and bastard indigo honeys showed similar
trends, where the best models were obtained for the time interval classification within
40 ◦C, followed by the model at 100 ◦C, while the models of the other two temperatures
were weaker. In the case of acacia honey, the best model was achieved for the time interval
classification within 80 ◦C, while similarly to bastard indigo, the worst model was obtained
for the 60 ◦C treated group. The control was classified correctly in all the models of
sunflower and bastard indigo. The models of the acacia honey provided the best results for
the control: a correct classification for the models with 80 ◦C, followed by 100 ◦C, 60 ◦C,
and 40 ◦C.

Poor results were also obtained for acacia samples in a Hungarian study [18]. This
could be due to the lower nutritional content and the different crystallization phases of
the honey samples. These results support the findings of Segato et al., 2019, who also
found that the changes in NIR spectra as a result of heat treatment are highly phase-related,
which could come from the fact that the scattering of the crystals is different in the different
crystallization phases [42].

2.5. Results of the Partial Least Square Regression of Honeys

The results presented here were chosen from 41 pretreatment combinations after
leave-one-sample-out cross-validation, based on the best R2CV.

Results of the general (including all the temperature levels or time intervals) PLSR
models of the three honey types provided the best results in the case of the sunflower
honeys, followed by bastard indigo, and acacia honeys. The prediction of temperature
provided a R2CV of 0.81 and RMSECV of 10.70 ◦C, R2CV of 0.76 and RMSECV of 11.82 ◦C,
R2CV of 0.36 and RMSECV of 19.00 ◦C for the sunflower, bastard indigo, and acacia
honeys, respectively.

The prediction model of time intervals was much worse where in all the honey
types, the R2CV was lower than 0.26 and the error RMSECV was higher than 60 min.
Therefore, more detailed models were calculated, their corresponding parameters are
shown in Supplementary Table S1.

The detailed temperature level PLSR models built for the prediction of the applied
temperature within the four studied time intervals (Supplementary Table S1 upper part)
provided the best results in the case of sunflower honey. The residual prediction deviation
(RPD) values were between 2.35 and 3.96 while the R2CV was higher than 0.80 in all four
models. The best prediction accuracy was obtained for the 240 min group. The model
parameters of the bastard indigo honey were worse than in the case of the sunflower honey,
however, the RPDCV values were >2.0 in all cases and the R2CV values were between 0.76
and 0.88. Similarly, the 240 min group provided the best results. The prediction models
of the acacia honey were worse than the results of the two other honey types. The RPD
values were below 2.0 and the R2CV values ranged between 0.29 and0.68. The best models
were obtained in the case of the 60 min group, while those built for the 180 min group were
less effective.

The detailed time interval PLSR models (Supplementary Table S1 lower part) also
provided better results in the case of the sunflower honey compared to the bastard indigo
and acacia honeys. The best results were obtained for the 40 ◦C group with an R2CV value
of 0.97 and RPDCV > 5.0. Lower prediction accuracies were obtained for the 80 ◦C group
with an R2CV of 0.83 and RPDCV of 2.45. In the case of the bastard indigo honey, the model
of the 40 ◦C group provided the best results (R2CV = 4.13 and RPDCV = 4.13). The 60 ◦C
and 80 ◦C groups models weren´t as accurate with R2CV < 0.5. For acacia honey, the most
accurate prediction was achieved in the case of the 100 ◦C group with R2CV and RPDCV
values of 0.83 and 2.45, respectively.
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Summarizing, similar to the results of PCA-LDA, the best results were achieved in the
case of the sunflower followed by the bastard indigo and acacia honeys.

2.6. Results of the Aquagrams Visualizing the Effect of Temperature and Time Intervals

The aquagrams plotted at the water matrix coordinates for each honey type as prede-
fined based on the subtraction spectra, the PCA loadings of the temperature (Figure 2a)
and time visualization models (Figure 2b), as well as the most contributing wavelengths
of the previously presented PCA-LDA models (Figure 3a,b) and PLSR regression mod-
els (Supplementary Figure S1b,d), are presented in Figure 4 (sunflower honey), Figure 5
(bastard indigo honey), and Figure 6 (acacia honey).

To better understand the effect of the heat treatment parameters (time and temperature)
on the water spectral pattern of each honey type, their respective aquagrams were inspected
while fixating one parameter and changing the other.

As portrayed in Figure 4, across the different temperature levels (Figure 4 upper part)
and time intervals (Figure 4 lower part), the control group for sunflower honey is markedly
distinguished from the heat-treated samples.

Within each time interval, and as the applied temperature increases, lower absorbances
at the highly hydrogen-bonded bands (1489 nm to 1513 nm) and higher ones at the free
water conformations are observed. This pattern is particularly pronounced at the 60 min
time frame (Figure 4e), where exceeding the temperature of 40 ◦C (maximum allowed) to
reach 60 ◦C translates into a larger scale change of the spectral pattern.

As can be seen from the aquagrams, at the lowest applied temperature of 40 ◦C, the
heating period can have a significant influence on the water structure (Figure 4a). This
influence can still be noticed at 60 ◦C (Figure 4b), but this change towards the less hydrogen-
bounded water structure is not that prominent anymore when higher temperatures are
considered (Figure 4c,d).

Figure 4. Aquagrams of the sunflower honey: (a–d) aquagrams showing pattern of time intervals;
(e–h) aquagrams showing the pattern of temperature levels.
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Figure 5. Aquagrams of the bastard indigo honey: (a–d) aquagrams showing pattern of time intervals;
(e–h) aquagrams showing the pattern of temperature levels.

Figure 6. Aquagrams of the acacia honey: (a–d) aquagrams showing pattern of time intervals;
(e–h) aquagrams showing the pattern of temperature level.
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Following the same rationale when analyzing the bastard indigo honey samples
(Figure 5), the impact of the temperature (Figure 5 upper part) and time interval (Figure 5
lower part) of the heat treatment is reflected in the aquagram through the liquefaction of the
initially bonded water into more free water structures (Figure 5). Again, the time interval
can be considerably impactful when it comes to affecting the existing water structures at
40 ◦C (Figure 5a), but not as much when the honey was heated up to 60 ◦C, 80 ◦C, and
100 ◦C (Figure 5b–d).

Explanation of the heat treatment effect on acacia honey (Figure 6), on the other hand,
was less manageable. While the alteration of the water conformation is clearly reflected
in the corresponding aquagram (Figure 6), these changes do not follow a logical pattern
either along the varying time intervals (Figure 6 upper part), nor on the basis of the applied
temperatures levels (Figure 6 lower part).

Such a behavior can be justified by the inherent differences in terms of the crystalliza-
tion state and the physicochemical features of acacia honey compared to sunflower and
bastard indigo honey samples [43]. This peculiar state has already been proven when the
water spectral patterns of the three studied honey types were investigated in the absence
of heat treatment (control group), where acacia, unlike the other two honey types, had
abundant free water and less hydrogen-bonded water molecules. Segato et al. [42] also
found that the changes of the spectral pattern in honeys are phase-related, and he also
found that honey that was initially in liquid state (such as acacia in this study) showed
less changes compared to the completely crystallized (like sunflower in our case) and less
crystallized samples (like bastard indigo honey in our case). The HMF content of the honeys
also showed similar trends: the HMF formation was the most intense in the sunflower
honey, followed by bastard indigo and acacia honeys (Table 1). However, it should be noted
that the NIRS seemed to be more sensitive to the changes from the effect of heat treatment,
as the aquagrams, PCA-LDA, and PCA models showed the changes even at lower levels,
while in the case of the HMF, only honeys heated at 80 ◦C for at least 120 min and 100 ◦C
showed significant changes compared to the control honeys.

These findings do illustrate that the potential adulteration of honey by means of
heat processing can be reflected in the respective aquagrams. Not only can this approach
indicate—to some extent—the differences induced by the temperature levels at different
time periods but it can also confirm the complexity of detecting such instances that are not
only dictated by the thermal treatment parameters but can highly depend on the initial
crystallization state of the honey.

3. Materials and Methods

3.1. Honey Samples

Three types of unifloral honey were collected from reliable beekeepers. The honeys
were not processed or heat treated after the collection from the beehive. Sunflower (He-
lianthus annuus), bastard indigo (Amorpha fruticosa), and acacia (Robinia pesudoacacia) honeys
were used in the study. Three bottles per honey type, each of 1 kg, were collected from the
three honeys (nine bottles in total). The three individual bottles were used as replicates (R)
in the experiments.

The samples were portioned out to 100 mL glass sample holders with a closing
polyethylene cap; 50 g of honey was weighed into the glasses. After portioning, the
samples were processed by heat treatment. The samples were heated to 40 ◦C, 60 ◦C,
80 ◦C, or 100 ◦C and kept at temperature for 60, 120, 180, or 240 min each. This resulted in
17 heat treatment levels (including the untreated control), where 3 samples were created
for each treatment level (the three replicates originated from the three bottles), resulting
in 51 samples per type and 153 samples in total. The heat treatment was performed in a
drying chamber.
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3.2. Hydroxymethylfurfural Measurements of Honey

HMF determination of honey was performed according to the guideline of the Interna-
tional Honey Commission [44], using the spectrophotometric Winkler method. A Thermo
Helios Alpha (Thermo Fischer Scientific Inc., Waltham, MA, USA) UV–VIS spectropho-
tometer (±0.001 units of absorbance, 1 cm light path) at 550 nm, using quartz cuvettes, was
applied for the HMF quantifications.

3.3. Near-Infrared Spectroscopy Measurements

The NIRS measurements were performed using a handheld NIR-S-G1 Spectrometer
(InnoSpectra Co., Hsinchu, Taiwan). Spectra were recorded in the range of 900–1700 nm,
with 3 nm wavelength step in a transflectance setup. The layer thickness of the sample in the
cuvette was 0.4 mm, which ensured that the maximum absorbance values did not exceed
two absorbance unit. Each sample was measured three times applying three different fills
with five consecutive scans, each resulting in 15 spectra per sample, and a total of 45 spectra
per heat treatment level (per unifloral honey). Samples were measured in randomized
order. After each five samples, a reference water sample was measured.

3.4. Statistical Analyis
3.4.1. ANOVA Analysis of the HMF Content

The HMF results of the honey samples were analyzed using ANOVA. Before the
building of the ANOVA models, assumptions such as the normality (using Shapiro–Wilk
test) and homogeneity of the variances (using Levene’s test) were checked. To calculate
which heat treatment levels differed significantly from the control, a one-way ANOVA test
was performed. Additionally, a two-way ANOVA was used to check if the temperature
level, time interval, and their interaction (time interval*temperature level) have a significant
effect on the HMF formation in honeys. In case of a significant interaction, the significant
differences within temperature and within time intervals were analyzed at the p < 0.05
significance level. Moreover, in the case of a significant ANOVA model, a post hoc test
was applied the following way: when the homogeneity of the variances was assumed,
Tukey’s test was used and if it was not assumed, then Games–Howell’s test was used for
the pairwise comparison [45].

3.4.2. Spectral Range and Spectral Pretreatments

The spectral range of 1300–1600 nm was applied throughout the analysis. The
evaluations were performed according to the protocol of aquaphotomics described by
Tsenkova et al., 2018 [39]. The three honey types were evaluated separately. Prior to the
data analysis, an outlier detection was applied on the dataset using the built-in outlier
detection function of the aquap2 package [46].

After the inspection of the raw spectra, spectral pretreatment optimization was
performed using 41 pretreatment combinations. A Savitzky–Golay (Sgol) smoothing
(2nd order polynomial) with different window sizes (21, 17, or 13) and derivation varieties
(no derivation, 1st, and 2nd derivative) was applied to reduce the noise in the spectra and
to reveal overlapping peaks. Standard normal variate or multiplicative scatter correction
was applied to reduce the baseline shift. Detrending and the aforementioned techniques
were tested in single, double, or triple variations.

3.4.3. Modellings of the NIR Dataset
Principal Component Analysis—PCA

Principal component analysis was performed on the three honey types separately to
reveal the patterns of time interval and temperature level. The PCA plots were colored
according to the temperature level and the time interval. The models of the PCA were built
using the best pretreatment obtained during the PCA-LDA of the general models (including
all the temperature or time intervals) built for the temperature and time discrimination. This
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resulted in two models per honey type—one model for the presentation of the temperature
pattern, and one for the time interval pattern.

PCA-Linear Discriminant Analysis—PCA-LDA

The hybrid PCA-LDA analysis was used to build the classification models. All the
models were built using the 41 pretreatment combinations. As a first step, a classification
model was built for the discrimination of the botanical types, then general models were
built for the classification of the temperature groups (general temperature model) and for
the classification of time groups (general time interval model), including all the sublevels of
time or temperature treatments. However, due to the high interaction of temperature and
time interval, models were also built for the classification of time intervals within each of the
temperature groups (detailed time interval models) and for the temperature levels within
each time interval (detailed temperature models). It resulted in a total of eight models
per honey type (four models for the time interval discrimination within the temperature
groups and four models for the temperature-level discrimination within the time intervals),
and 24 models in total after choosing the models with the highest validation accuracy. A
PC number optimization was also performed where the models with the highest validation
accuracy and at the same time lowest difference between training and validation accuracy
were chosen. The final models were validated using a leave-one-sample-out validation
(LOSO), where all scans of one replicate of the samples were left out in each iteration step
of the cross-validation.

Partial Least Square Regression (PLSR)

A partial least square regression was first performed on the three honey types sepa-
rately for the prediction of time intervals and temperatures. A PLSR was also performed to
regress on the time interval within each temperature level (detailed time interval models)
and temperature level within each time interval (detailed temperature-level models). This
also resulted in 8 models per honey type, and a total of 24 models, similarly to the PCA-
LDA analysis. The correlation between the actual and predicted values was reported by
the R2C and R2CV values. The error of the prediction was calculated using the root mean
square error of the training (RMSEC) and validation (RMSECV). Besides the RMSE values,
the residual prediction deviation (RPD) was also calculated for the training (RPDC) and
validation (RPDCV). All the models were validated with a leave-one-sample-out (LOSO)
cross-validation, where the spectra of one replicate of the samples were left out. In the case
of the PLRS models, the pretreatment optimization was also performed, where the models
with the best model parameters (based on the RMSECV, R2CV, and RPDCV) were chosen.

Subtraction Spectra

Subtraction spectra were calculated for the time interval subsets (detailed time interval
models) and temperature level subsets (detailed temperature level models), where the
control sample was subtracted from the others to reveal the wavelengths showing the
greatest changes occurring upon the heat treatment temperature or time, respectively. The
subtraction was performed on spectra that were pretreated with MSC and Savitzky–Golay
smoothing (2nd order polynomial, window size of 21) with a 2nd derivation separately.

3.4.4. Determination of the Water Matrix Coordinates for the Aquagrams

The wavelengths belonging to the water matrix coordinates were chosen from the
PCA loadings, PCA-LDA weights, PLRS regression vectors, and subtraction spectra. The
wavelengths presenting the highest change due to the temperature or the time interval
perturbation were collected. The assigned wavelengths were collected and grouped to the
12 water matrix coordinates (WAMACs) defined by Tsenkova [47] and the wavelengths
presented the most frequently (within one WAMAC) were chosen for the calculation of the
classic aquagrams.
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Calculation of the aquagrams was performed in such a way as to illustrate the spectral
pattern changes as a result of time intervals within one temperature level (detailed time
interval models) and also to illustrate the effect of temperature level within one time
interval (detailed temperature models). In total, 24 aquagrams were calculated, eight for
each of the three honey types.

4. Conclusions

In this study, three different honey types were analyzed in terms of the effect of the
heat treatment at different temperatures and different time intervals. The impact of the
applied processing was measured by determining the HMF content and by NIRS. The
temperatures and their interaction highly influenced the HMF formation of honey; however,
the temperature level had a higher effect than the time interval. The dynamics of HMF
formation differed for the three honey types, which underlines the importance of the initial
physicochemical composition, defined by the origin of the honey, in the HMF production.
However, only honeys heated at 80 ◦C and 100 ◦C provided significant changes in HMF
content, which shows the limited ability of HMF as a sole indicator of honey heat treatment.

The PCA-LDA models provided better results for the temperature-level classifications
than for the time interval. In general, sunflower honey provided better results on the
classification and prediction accuracies than the other two honey types. In all cases, the
worst model parameters were obtained for the acacia honeys. It can be concluded that the
NIRS was more sensitive than HMF in detecting the effect of heat treatment. Nevertheless,
these results indicate that the changes generated byheat treatment are related to the initial
crystallization phase (as the sunflower was completely crystallized, bastard indigo was mid-
crystallized and the acacia was in liquid form) and the composition of the samples; therefore,
it is not possible to set up general principles for the detection of heat processing in honeys.
On the other hand, our results prove that even at a low temperature treatment (40 ◦C),
measurable changes occur in the spectra of the honey, and that these spectral changes are
mainly related to the transformation of the highly bonded water to less H-bonded water or
free water. Besides the water structure, the sugar composition was also modified, which
could be concluded from the changes in the wavelength range of 1580–1590 nm.

Our research reveals the potential of NIRS and specifically aquaphotomics in the
detection of the changes induced in the water structure of honey by heat treatment. In the
future, it would also be important to see how the spectral pattern is affected as a result of
heat treatment after recrystallization and storage.

Supplementary Materials: The following are available online, Table S1: Results of the partial least
square regression models built for the prediction of time interval within temperature group and
temperature within time intervals. Figure S1: Partial least square regression plot of the sunflower
honeys: (a) regression plot of honeys heated for 60 min regressed on the temperature levels with
Savitzky–Golay smoothing (window size: 17) and detrending; (b) the respective regression vector;
(c) regression plot of honeys heated at 40 ◦C regressed on the time intervals with Savitzky–Golay
smoothing (window size: 17), detrending, and MSC; (d) the respective regression vector.
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Abstract: The consumption of ready-to-eat (RTE) leafy vegetables has increased rapidly due to
changes in consumer diet. RTE products are perceived as fresh, high-quality, and health-promoting.
The monitoring of the RTE quality is crucial in relation to safety issues. This study aimed to evaluate
the maintenance of RTE rocket salad freshness packed under modified atmospheres. A portable
E-nose, the electrolyte leakage test (which measures the index of leaf damage—ILD), and NIR
spectroscopy and Aquaphotomics were employed. Two trials were carried out, using the following
gas mixtures: (A) atmospheric air (21% O2, 78% N2); (B) 30% O2, 70% N2; (C) 10% CO2, 5% O2, 85%
N2. Samples were stored at 4 ◦C and analyzed at 0, 1, 4, 7, 11, and 13 days. ANOVA, PCA, PLS
were applied for data processing. E-nose and ILD results identified the B atmosphere as the best
for maintaining product freshness. NIR spectroscopy was able to group the samples according to
the storage time. Aquaphotomics proved to be able to detect changes in the water structure during
storage. These preliminary data showed a good agreement NIR/ILD suggesting the use of NIR for
non-destructive monitoring of the damage to the plant membranes of RTE rocket salad.

Keywords: storage; ready-to-eat rocket; water; NIR; E-nose; electrolyte leakage; Aquaphotomics

1. Introduction

The consumption of ready-to-eat (RTE) leafy vegetables has increased rapidly due
to changes that have occurred in the dietary pattern of the consumer. RTE products are
perceived as natural, fresh, convenient, high-quality, and health-promoting [1,2]. Rocket
(Eruca sativa Mill.) salad is principally consumed as an RTE product, either alone or mixed
with other vegetables [3]. It shows different characteristics from other types of salad, as
it belongs to the Brassicaceae family. For this reason, it is a source of compounds with
biological activity beneficial for human health, such as glucosinolates. Glucosinolates are
then hydrolyzed by the enzyme myrosinase with the release of isothiocyanates, which
are compounds with antimicrobial activity [4]. Because of its high content of bioactive
compounds, different health-promoting functions are attributed to rocket plants [5], but, as
with most leafy vegetables, rocket leaves have very high metabolic activity [6], which limits
their shelf-life. During storage, the high respiration rate and ethylene production lead to
leaf yellowing due to chlorophyll degradation, loss of turgidity, off-flavor development,
and general deterioration [7].

Many postharvest technologies, such as refrigeration and modified atmosphere pack-
aging (MAP), are successfully employed to delay the senescence of packed vegetables [8].
These techniques are determinants in preserving visual quality and microbial safety of
minimally processed fruit and vegetables during the supply chain [9]. MAP is effective
in prolonging the shelf-life of fresh-cut produce by modifying the ratios between gases
within the packaging. Successful applications of MAP (with low O2 and high CO2 lev-
els) to minimally processed fruits and vegetables have been extensively reported in the
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literature [2], since low O2 concentration causes a decrease in respiration, this inhibits the
growth of postharvest pathogens, and slows down the deterioration rate. However, very
low levels of O2 may induce anaerobic fermentation with the corresponding accumulation
of unpleasant odors, undesirable tastes, and tissue damage [2,8,10]. Moreover, the presence
of a very high CO2 concentration (25%) in the storage atmosphere has been found to be
deleterious for fresh-cut artichokes, while only slight beneficial effects were observed at
lower concentrations (5 and 15%) [11].

The monitoring of the quality of RTE vegetables is crucial, especially in relation to
safety issues [12]. It is essential to evaluate the product quality both during storage and at
the end of its shelf-life.

Several techniques are used to monitor the quality of fresh-cut fruit and vegetables
during shelf-life, such as the evaluation of texture, respiration rate, pH, microbiological
and sensory quality, nutritional and antioxidants status [13]. Among them, the electrolyte
leakage test measures the cell membrane permeability, resulting in an index of leaf damage.
This method is widely used in the investigation of various stress conditions, such as
quality changes during shelf-life in different ready-to-eat products [14–16], including rocket
salad [3,17]. However, all these methods are generally expensive and time-consuming,
require the destruction of the sample, and are not suited to automation.

Among the non-destructive techniques, the electronic nose (E-nose) is a fast and
reliable method to evaluate the volatile fingerprint in the headspace of food. According to
Gardner and Bartlett [18], the electronic nose is “an instrument which comprises an array of
electronic chemical sensors with partial specificity and an appropriate pattern-recognition
system, capable of recognizing simple or complex odors”. The sensors respond to the
whole set of headspace volatiles, giving an idea of the metabolic changes that take place in
the headspace of food [19]. More than 70 volatiles have been identified in the headspace of
fresh rucola, 20 of which contribute to the leaf aroma [20]. Some typical volatile compounds
found in RTE rocket salad are dimethyl sulfide, dimethyl disulfide, dimethyl sulfoxide, and
furans derivatives [20,21].

Near-infrared (NIR) spectroscopy, in combination with chemometrics and Aquapho-
tomics, represents a powerful, rapid, and non-destructive analytical tool to monitor the
quality of packaged foods by evaluating the changes occurring during the storage [22].

Aquaphotomics is a recent scientific discipline based on NIR measurements and multi-
variate spectral analysis that investigates the water–light interactions in biological systems.
This approach exploits the fact that changes in the water matrix reflect, as would a mirror,
the molecules the water surrounds [23,24]. Aquaphotomics is based on the high sensitivity
of water’s hydrogen bonds that reflect any change in the aqueous system highlighting
perturbations that can be observed, measured, analyzed, and interpreted [24]. According
to this approach, the NIR spectra acquired in living systems under various perturbations
(temperature, ion concentrations, oxidative stress, illumination, disease, and damage) are
characterized by 12 water absorption ranges (6–20 nm width each) in the spectral region of
the first overtone of water (1300–1600 nm). Such spectral ranges have been called Water Ma-
trix Coordinates (WAMACs) and labelled Ci, i = 1–12. Within the WAMACs, specific water
absorbance bands are related to specific water molecular conformations (water species and
water molecular structures) [24]. When a perturbation produces changes at specific water
absorbance bands, and when this is determined consistently and repeatedly throughout the
Aquaphotomics analysis, these water absorbance bands (WABs) are considered ‘activated’
by the respective perturbation. The selected WABs are plotted in spider charts, named
‘aquagrams’, which depict the Water Absorbance Spectral Patterns (WASPs) [24].

This work aimed to evaluate and monitor the changes occurring during the storage
of ready-to-eat rocket salad packed under modified atmospheres. The electrolyte leakage
test and rapid and non-destructive techniques, such as NIR spectroscopy coupled to
Aquaphotomics and a Portable Electronic Nose, were employed.
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2. Results and Discussion

2.1. E-Nose Analyses

In a previous preliminary work [25], the evaluation of the storage of the fresh-cut
spring rocket (Trial 1) was carried out only through two non-destructive techniques, elec-
tronic nose and NIR spectroscopy.

The E-nose was applied in order to evaluate the evolution of the volatile compounds
profile of rocket salad during storage. Preliminary results of Trial 1, only summarized
here, highlighted the great influence of three broad-range sensors, W5S, W1S, and W2S,
on the characterization of the samples. Such sensors are indicated as sensitive towards
a wide range of compounds; however, they possess some selectivity towards specific
compounds; respectively, methane, and alcohols for W1S and W2S. These compounds,
indeed, indicate anaerobic conditions or fermentation reactions likely characterizing the
late storage stages, and the related signals mainly characterized the last checkpoints of all
the samples. In particular, C samples showed a peculiar pattern, with an important impact
of the three sensors at all sampling points. The E-nose profile of treatment C underwent
major changes during the storage, while treatments A and B showed more constant sensor
values. Profile B reflected minimal variations occurring inside the rocket bag, suggesting
that the B atmosphere was the best in maintaining the product’s initial conditions [25].

In the second experiment carried out on second-cut autumn rocket (Trial 2) and fully
reported here, the three broad-range sensors were confirmed as the predominant ones
in the characterization of the samples. Figure 1 shows the biplot of PCA illustrating the
mutual relationships between samples and sensors.

Figure 1. Biplot of E-nose sensor responses and samples scores (average values) during the storage
of rocket salad.

The three broad-range sensors were responsible for the positioning in the multivariate
space of the longer-stored samples. W1S and W2S greatly described the sample C11 and, to
a lesser extent, C7 and A13. W5S mainly characterized the C13 sample. The other sensors,
sensitive to aromatic compounds, alkanes, terpenes, and organic sulfur compounds, were
located close to the axes intersection and described the short-term stored samples. These
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findings are in accordance with Mastrandrea et al. [26], who studied the changes in volatile
compounds responsible for flavor in wild rocket stored in MAP conditions. They found
volatile and aromatic compounds, including sulfur, C6, and C5 compounds, acetaldehyde,
isothiocyanate, and thiocyanate derivatives. These compounds are responsible for the
typical odor and flavor notes of fresh rocket [26]. Interestingly, A11, B11, and B13 samples
clustered close to the fresher samples, indicating that these two active atmospheres played
a crucial role in limiting metabolic changes inside the bags during the storage.

In Trial 2, E-nose profiles differed among the treatments (Figure 2a). Samples A and
B showed lower sensor values compared to treatment C, which was characterized, in
particular, by very high W5S sensor values.

Figure 2. E- nose profiles (a) and trend curves of W5S, W1S and W2S sensors (b) of the three treatments
during the storage: Trial 2. Data are reported as mean values ± standard deviation. Colored asterisks
indicate significant differences in the corresponding sensor signals according to ANOVA and Tukey’s
post hoc test (p < 0.05).

Figure 2b reports in detail the trend of the three broad-range sensors. Treatment A
showed constant values until t = 11 and then a marked significant increase at t = 13 of all
sensors. Treatment B showed significant differences on days 11 and 13 for the W1S and
W2S sensors and only at time t = 13 for the W5S. Sample C showed significant differences
for all sampling points with maximum values at the last checkpoint, indicating a possible
accumulation of a wide range of compounds, such as methane and alcohols, in the package
atmosphere. The fact that the three sensors mainly described the samples of treatment C,
which is characterized by low oxygen, agrees with the literature data [10,27–29]. Indeed,
alcohols, such as ethanol and methanol, have been reported to be released under restricted
O2 conditions [10,27]. Ethanol, for example, is considered a major fermentative metabolite,
while methanol is reported to come from enzymatic degradation of pectin by pectin methyl
esterase [28]. It can be assumed that in the C treatment, the lack of O2 for aerobic respiration
led to a switch to anaerobic respiration, with a release of alcohols. Increases in fermentative
volatiles such as ethanol are reported to negatively affect the sensory properties of the
product [30–32]. Indeed, Allende et al. [29] reported that products with high respiration
rates require high levels of O2 in the package to maintain their quality.
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2.2. Electrolyte Leakage Analyses

The present work also shows the results, of both trials, of the electrolyte leakage test.
The index of leaf damage (ILD), measured by an electrolyte leakage test, can be con-

sidered a good indicator of the product’s freshness [33]. In the first trial (spring mowing,
Figure 3a), ILD remained more or less constant in all treatments until day 4. On day 7, it
increased significantly only in C treatment (LSD > 0.61). In treatments A and B, the increase
in ILD took place only after 10 days. In any case, treatments A and B showed lower ILD
values than treatment C until the end of the storage (13 days).

In the second trial (autumn mowing, Figure 3b), the leaves’ behavior was slightly
different. All the treatments showed an ILD value far higher than in the first trial. ILD
values were constant until day 7, after which all the values increased almost exponentially.
Moreover, in this case, the C treatment showed the worst performance reaching, at the end
of the storage, the highest ILD value (LSD > 2.2).

Figure 3. Index of leaf damage (ILD) of rocket salad samples of trial 1 (a) and 2 (b) ± standard error.
The result of the LSD post-hoc test is reported in each graph (p < 0.05).

Considering both trials, the low ILD values of the samples in the first days agree with
the findings of Luca et al. [16], who reported a low index of leaf damage until day 8 of
shelf-life in wild rocket leaves. The higher value of treatment C at the end of the storage
period indicates that a modified atmosphere enriched with CO2 can negatively affect rocket
leaves, inducing faster deterioration of the samples. Mastrandrea et al. [34] obtained similar
results on rocket leaves under passive modified atmosphere conditions: high CO2 and low
oxygen concentration increased off-odors production and decreased shelf-life.

The different behavior of rocket leaves (higher deterioration in the second trial) can be
due to the two different seasons when the mowing took place. Environmental conditions,
including temperature, solar radiation, and rainfall, have an important influence on the
quality of brassica leafy species [35,36]. Furthermore, rocket is capable of regrowing after
mowing, giving under optimal pedo-climatic conditions up to 5–6 cropping in a season [37].
Hall et al. [38] reported that the harvest season and the mowing number affect the leaf
water content, with late cuttings and summer cuttings having higher dry weight (lower
water content). In the two experiments, two rocket harvests were analyzed— the first cut
in the early spring and the last cut in the early autumn. The different harvest season and
the cutting number could have affected the leaves’ composition, and especially their water
content [36,38,39]. For this reason, leaves from plants of the first trial (April) were probably
more resistant to deterioration than those of the second trial (October).
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2.3. NIR Spectroscopy and Aquaphotomics

NIR data of Trial 1, as well as those of E-nose, have recently been presented as a
poster [25]. In the present paper, these are reported in more detail and compared with those
of Trial 2 and with the electrolyte leakage data.

Figure 4 shows the averaged raw NIR spectra of the packed rocket salad samples
of Trial 1 (a) and 2 (b). The raw spectra showed broad and overlapped bands related to
water absorptions at 960–990 (second overtone -OH stretching), 1150–1170 (combination
of the first overtone -OH stretching and OH bending), and 1430–1440 nm (first overtone
-OH stretching) [24]. The spectra of leafy vegetables originate from the interaction of the
electromagnetic radiation with the compounds that absorb it (chlorophyll, carotenoids,
water, cellulose and hemicelluloses, starch, lignin, proteins) and from reflection and internal
scattering phenomena of the non-absorbed radiation [40]. The leaf can be modeled as a stack
of four layers, each of which owns different physical characteristics and optical properties.
The light interacting with the leaf can be subjected to phenomena of specular reflection,
absorption, transmission, and scattering [40–42]. The difference in vegetable surface,
thickness, and structure, as occurs for leaves and petioles, determines a different reflection
of the electromagnetic radiation [40]. Furthermore, the growing season is recognized to
have an influence on the chemical-physical characteristics of the leaves, such as the amount
of dry matter, the leaf area surface, and the thickness [43]. Bonasia et al. [44] reported higher
dry matter concentration, higher specific leaf area, and more thickened leaves for rocket
salad grown in winter-spring compared to the autumn-winter product. The differences in
the sample composition caused by the growing season could have affected the raw spectra
of Trial 2, which were more heterogeneous and dispersed than in the first trial. Furthermore,
rocket leaves from Trial 2 (October mowing) were more variable in shape and dimensions,
while the petioles were thicker than those from Trial 1 (April mowing). This distinct leaf
morphology probably caused a change in the arrangement of the layers of leaves and
petioles inside the package that gave rise to differences in the optical phenomena in the
two systems, resulting in different spectra.

The application of pre-treatments made the peaks narrower and more defined, allow-
ing their easier identification. Figure 4c,d show the detail of the second derivative spectra
truncated to 1300–1600 nm in order to examine the first overtone of the water. The presence
of wavelength shifts in the analyzed range supported the hypothesis that Aquaphotomics
could be helpful to discriminate between the different treatments.

2.3.1. Trial 1

To highlight and enhance the small differences found in the second derivative of the
spectra, the normalization was performed on Trial 1 spectra according to Tsenkova et al. [24]
(Figure 5).

The graph allowed the identification of the wavelengths most involved in the charac-
terization of the different samples. In order to identify further characterizing wavelengths,
the PCA and PLS models were calculated on the pre-treated spectra.

The explorative PCA explained 98% of the total variance showing samples grouped
according to the storage time (Figure 6): (i) t = 0; (ii) t = 1 samples; (iii) t = 4 samples;
(iv) t = 7 to t = 13 samples. Interestingly, sample B at 7 days located together with t = 4
samples. This suggested that the characteristics of the biosystem of the 4 days samples
were also maintained for 7 days rocket samples stored in atmosphere B.

According to the loadings plot (Figure 6b), the separation along PC1 between fresh and
longer-stored samples was mainly based on a wavelength of 1373 nm, while the separation
along PC2 was due to 1453 nm. According to Tsenkova et al. [24], these wavelengths
correspond to the absorbance of the free OH stretch and of strongly hydrogen-bonded
water, respectively.

A preliminary PLS model was built up with pre-treated spectra and the ILD index.
Figure 7 shows the scatter plot of the model (Figure 7a) together with the factor loadings
(Figure 7b).
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Figure 4. Averaged raw NIR spectra of the packed rocket salad samples of Trial 1 (a) and 2 (b) and
detail of the second derivative spectra truncated to 1300–1600 nm of Trial 1(c) and 2 (d).

Figure 5. Normalized spectra of the packed rocket salad samples of Trial 1.
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Figure 6. PCA score (a) and loading (b) plots of pre-treated NIR spectra of rocket salads of Trial 1
(each point corresponded to the mean spectra for each checkpoint).

Figure 7. Scatter plot of calibration (blue) and cross validation (red)performance of predictive models
built with pretreated NIR spectra and ILD values (a); PLS Factor Loadings (b).

The model showed an R-value in calibration of 0.92 and an R-value in cross-validation
of 0.83, with a standard error in cross-validation of 0.30%. The good performance of
the preliminary predictive model indicated some relationship between the NIR spectra
and the plant membrane damage index. The NIR spectrum of a leaf is indeed strongly
influenced by its structure, thickness, and state of hydration, which in turn is an index
of plant stress [45]. Aday [46] also found agreement between FT-NIR spectroscopy and
electrolyte leakage data on mushrooms treated with electrolyzed water in combination
with passive atmosphere packaging.

Based on the common WABs found in normalized spectra and in the PCA and PLS
loadings plots, 12 wavelengths inside the WAMACs ranges were selected for the con-
struction of aquagrams. Each wavelength corresponds to the absorption of specific water
molecular species. The wavelengths are listed and described in Table 1.
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Table 1. Selected wavelengths.

Selected Wavelengths WAMACs [22]

1342 C1—ν3
1366 C2—water solvation shell, OH-(H2O) n, n = 1, 2, 4
1373 C3—ν1 + ν3

1385 C4—water solvation shell, OH-(H2O)1,4 and superoxide,
O2-(H2O)4

1416 C5—free water molecules (S0)
1428 C6—water hydration, H-OH bend and O . . . O
1441 C7—water molecules with 1 hydrogen bond (S1)
1453 C8—ν2 + ν3, Water solvation shell, OH-(H2O)4,5
1466 C9—water molecules with 2 hydrogen bonds (S2)
1478 C10—water molecules with 3 hydrogen bonds (S3)
1490 C11—water molecules with 4 hydrogen bonds (S4)
1509 C12—ν1, ν2, strongly bound water

The aquagrams of Trial 1 highlighted differences among the samples, giving rise to
different WASPs for each sampling time and for each treatment (Figure 8).

Treatments A and C of the Trial 1 showed a shift from left to right up to the fourth
day; then, the graph went back to the left. For treatment B, the inversion occurred on the
seventh day. This behavior indicates a prevalence of hydrogen-bonded water species and
strongly-bound water [47] in the freshly cut rocket. With the progress of the storage, a
situation is reached in which free water or weakly hydrogen-bonded water prevails [47].
This point could indicate the loss of freshness of the product. From these premises, it can
be assumed that Aquaphotomics estimated the first loss of freshness after 4 days from
packaging for the A and C treatments, and after 7 days for the B treatment. This suggested
that treatment B was the best at preserving the freshness of rocket salad, in agreement with
the E-nose findings.

2.3.2. Trial 2

Based on the characteristics of the second sampling (autumn rocket, October mowing,
presence of larger leaves and long petioles), the adequacy of the Aquaphotomics model
was verified. The data processing procedure was repeated as for the first trial.

PCA is reported in Figure 9.
Again, there was a good separation of the samples according to the days of storage

along PC1, which accounted for 98% of the variance (Figure 9a). The group of samples from
day 4 was separated from the others along PC2. Interestingly, the B11 sample ranked along-
side the first checkpoints, while the C7 sample was superimposed on t = 11/13 samples.

According to the loadings plot (Figure 9b), the separation along PC1 between fresh and
longer-stored samples was mainly based on a wavelength at 1366 nm, while the separation
along PC2 was due to 1385 and 1521 nm. According to Tsenkova et al. [24], the wavelengths
at 1366 and 1385 nm correspond to the absorbance of water solvation shells.

The PLS regression between NIR spectra and ILD data was also tentatively applied to
the data from Trial 2. However, in this case, the results were not satisfactory. Better results
were achieved after the application of Moving Average smoothing and the first derivative
Norris Gap, obtaining R = 0.86 in calibration. However, the results in cross-validation
were not as encouraging (R cross-val = 0.54), not making the model useful for practical
use. It should be noted that the NIR spectra were acquired on both the sides of intact and
sealed salad bags and, therefore, on the whole salad, including both leaves and petioles.
Conversely, the ILD data resulted from a destructive analysis carried out exclusively on
the leaves. Furthermore, it can be observed from Figure 3b that the samples up to day
7 were characterized by a very low variability of ILD (2.5–3.7), with a detrimental effect
on quantitative calibrations [48]. These two aspects could explain the low performance
obtained for this model.
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Figure 8. Aquagrams of the rocket samples belonging to the three treatments during the storage:
Trial 1.
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Figure 9. PCA score (a) and loading (b) plots of pre-treated NIR spectra of rocket salads of Trial 2
(each point corresponded to the mean spectra for each checkpoint).

The aquagrams were built using the same WABS as in Trial 1 (Figure 10).
The aquagrams of Trial 2 showed a different and opposite profile compared to Trial 1.

As previously reported, the presence of plant material with different physiological and
metabolic characteristics, due to the different growing and harvesting season [38,39,43,44],
might have affected the hydration state of the stored product. Furthermore, morphological
variability could have influenced the aquagram trends.

Treatments A and B showed similar profiles, with the fresh product (t0) profile very
different from all the others. Consequently, it was difficult to identify a trend as a function
of storage time. Fresh samples located on the right side of the chart, showed a prevalence
of free water, while the stored samples were more characterized by bound water. The
profiles of checkpoints 1–13, on the other hand, looked very similar, and almost over-
lapped in the region of 1441–1478 nm. This could indicate that the major changes in water
occurred immediately after packaging. Major variations occurred at 1416–1428 nm and
between 1490–1509 nm. Conversely, treatment C showed different profiles for the various
sampling days.

These results suggested building a dedicated series of aquagrams not only as a function
of the applied perturbation but also of the variability of the raw material.

This topic should be investigated more in-depth to determine the role of water and
interactions with plant tissues during storage.
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Figure 10. Aquagrams of the rocket samples belonging to the three treatments during the storage:
Trial 2.

3. Materials and Methods

Two experimentations were carried out at the Research Centre for Engineering and
Agro-Food Processing of the Council for Agricultural Research and Economics (CREA IT,
Milan, Italy). Freshly harvested rocket leaves (Eruca sativa Mill.) were purchased from

276



Molecules 2022, 27, 2252

a local grower in Milan (Italy). The first test was carried out in spring on the first cut
rocket (Trial 1), while for the second experiment second cut autumn rocket (Trial 2) was
used. The fresh salad was immediately transported to the CREA-IT lab and inspected for
impurity and visual defects, discarding damaged and dehydrated leaves. The product
underwent washing in mildly chlorinated water (1% sodium hypochlorite solution) for
1 min, followed by rinsing in cold water, and centrifugation to remove the remaining
water. Rocket leaves (ca. 60 g) were packed in polypropylene film bags, and each bag was
sealed under atmospheric and modified headspace conditions. The following gas mixtures
were used: treatment A, atmospheric air (21% O2, 78% N2); treatment B, 30% O2, 70% N2;
treatment C, 10% CO2, 5% O2, 85% N2. Three bags were prepared for each evaluation day
for each treatment. All samples were stored at 4 ± 1 ◦C for 13 days and subjected to NIR,
E-nose, and electrolyte leakage analyses at scheduled sampling points: 0, 1, 4, 7, 11, and
13 days for NIR and electrolyte leakage analyses; 1, 4, 7, 11, and 13 days for E-nose analyses.

3.1. E-Nose Analyses

The E-nose measurements were performed in triplicate on 3 bags for each treatment
through a pierceable Silicon/Teflon disk, using a commercial portable electronic nose
(PEN3, Win Muster Airsense Analytic Inc., Schwerim, Germany). The instrument is made
up of a sampling apparatus, a detector unit containing the sensor array, and pattern-
recognition software (Win Muster v.16) for data recording. The sensor array is composed of
10 metal oxide semiconductor (MOS) type chemical sensors: W1C (aromatic compounds),
W5S (broad range), W3C (aromatic compounds), W6S (hydrogen), W5C (alkanes, aromatic
compounds, less polar compounds), W1S (broad range, methane), W1W (terpenes, organic
sulfur compounds, limonene, pyrazine), W2S (alcohols, broad range), W2W (aromatic
compounds, organic sulfur compounds), and W3S (methane aliphatic, reacts on high
concentrations > 100 mg/kg). The sensor response is given by the ratio between the
conductivity response of the sensors to both the sample gas (G) and the carrier gas (G0)
over time (G/G0). The E-nose analyses were performed following the conditions reported
by Vanoli et al. [49]. For each measurement, the conductivity G/G0 of the 10 sensors
at the time corresponding to the normalized maximum of all signals was taken as the
vector of the sensors’ signal. The average of the measurements of each replicate was used
for statistical analysis. Data were subjected to one-way analysis of variance (ANOVA)
for means comparison using Statgraphics ver. 5.1 (Manugistic Inc, Rockville, MD, USA)
software package. The means were separated using a Tukey’s HSD test, and their statistical
significance was determined at 5% (p < 0.05) level. The E-nose data were also analyzed by
principal component analysis (PCA) with the Unscrambler software package (v 9.7, Camo,
Inondhcim, Norway).

3.2. Electrolyte Leakage Test

The index of leaf damage (ILD) was measured by an electrolyte leakage test. The
analysis was performed in triplicate on 3 bags for each treatment. A method modified from
Kim et al. [33] was used for ion leakage evaluation. Rocket leaf blades were cut into 1 cm2

pieces, washed in distilled water, and blotted dry with paper towels. Two grams of the
cut samples were placed in a falcon tube containing 25 mL of Milli-Q water and shaken
for 1 h in a horizontal shaker at 100 strokes/minute. The initial conductivity (IC) of the
solution was measured with a digital conductivity meter (Accumet AR20, Fisher Scientific,
Waltham, MA, USA), and the tubes were frozen at −20 ◦C for one week. Frozen samples
were then held at room temperature for 24 h, shaken for 1 h, and final conductivity (FC)
was measured. The index of leaf damage was calculated as follows: ILD = (IC/FC) ∗ 100.
Differences among averages were calculated by one-way ANOVA (Statgraphics 5.1 statistic
software) and a least significant difference (LSD) post-hoc test. All the averages whose
difference exceeds the LSD value are statistically significant (p < 0.05).
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3.3. NIR Spectroscopy

Near-infrared spectra were collected in reflectance mode using the MicroNIR OnSite-
W (VIAVI Solutions Italia S.r.l., Monza, Italy) portable spectrometer. Spectra were acquired
in the spectral range between 900 and 1600 nm (50 scans; 125 reading points) on 3 bags for
each treatment, on both sides of the bags. Ten replicates for each side were collected, for a
total of 60 spectra for each treatment. Spectra of PET packaging (#10) were also collected,
and the average spectrum was subtracted from each sample spectrum. Before the analysis,
the instrument underwent calibration for the black, on the air, and for the white, on the
supplied standard tile.

3.4. Chemometrics and Aquaphotomics

Chemometric analysis of the NIR data was performed using the Unscrambler software
package (v 9.7, Camo, Inondhcim, Norway).

An explorative PCA was applied on spectra pre-processed using the Moving Average
smoothing (gap size 15 points) and the first derivative Norris Gap transformation (gap size
21 points) in the range of the first overtone of water (1300–1600 nm).

Predictive NIR models for the ILD index were computed by partial least square (PLS)
regression on spectra pretreated with the Standard Normal Variate (SNV) and the second
derivative Savitzky–Golay transformation (gap size 11 points).

Spectra were also pretreated according to Tsenkova et al. [24]: the second derivative
Savitzky–Golay filter (second-order polynomial fit and 21 points) and Multiplicative Scatter
Correction were applied to absorbance spectra to remove potential scatter effects. The
transformed spectra were then normalized by applying the following formula:

(Aλ − μλ)/σλ (1)

where Aλ is the transformed absorbance, μλ is the mean value of all spectra and σλ is
the standard deviation of all spectra at wavelength λ. The normalized spectra were then
properly averaged using MS Excel®.

Twelve wavelengths that showed the maximum or minimum values in the normalized
spectrum and the most impacting PCA or PLS loadings were chosen. The aquagrams were
then built up using the selected wavelengths.

4. Conclusions

E-nose and ILD results agreed in identifying the B atmosphere as the best for maintain-
ing the freshness of RTE rocket salad in both experiments.

According to E-nose results, the A and B atmospheres confirmed the plausible positive
and active role of oxygen concentration in maintaining the freshness of ready-to-eat rocket
and minimizing the occurrence of anaerobic fermentations. Treatment C with low oxygen
concentration seemed to lead to a switch to anaerobic respiration with a release of alcohols.

Similarly, the index of leaf damage suggested that in the C atmosphere composition,
the cell membrane underwent more degradation and damage than in the other treatments.

NIR spectroscopy was useful in observing samples distribution according to the
storage time, mainly based on wavelengths corresponding to the absorbance of the water
solvation shells. The aquagram proved to be a promising tool for detecting changes in
the water structure during storage in atmospheres with different gaseous compositions.
For Trial 1 the spider-charts gave rise to different WASPs for each sampling time and
treatment, suggesting that treatment B was the best at preserving the freshness of rocket
salad, according to the E-nose and ILD results. For Trial 2, aquagrams could not provide a
clear interpretation of the changes that occurred inside the bags. However, it was possible
to identify a greater variability in the WASPs in the C treatment during the shelf-life,
suggesting greater changes in the water structure compared to the A and B atmospheres.

Although the data are very preliminary, the good agreement between the NIR spectra
and the ILD data makes NIR spectroscopy a promising technique for non-destructively
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evaluating the damage status of the plant membrane of the RTE rocket salad during
the shelf-life.

NIR coupled with Aquaphotomics should be investigated more in-depth to determine
the role of water and interactions with plant tissues during shelf-life in order to confirm
these preliminary results.

Some other destructive parameters, such as consistency, fluorescence, ripening index,
are under evaluation to confirm these results obtained, using mainly rapid and non-
destructive techniques.
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Abstract: The development of non-destructive methods for early detection of cold stress of plants
and the identification of cold-tolerant cultivars is highly needed in crop breeding programs. Current
methods are either destructive, time-consuming or imprecise. In this study, soybean leaves’ spectra
were acquired in the near infrared (NIR) range (588–1025 nm) from five cultivars genetically engi-
neered to have different levels of cold stress tolerance. The spectra were acquired at the optimal
growing temperature 27 ◦C and when the temperature was decreased to 22 ◦C. In this paper, we
report the results of the aquaphotomics analysis performed with the objective of understanding the
role of the water molecular system in the early cold stress response of all cultivars. The raw spectra
and the results of Principal Component Analysis, Soft Independent Modeling of Class Analogies and
aquagrams showed consistent evidence of huge differences in the NIR spectral profiles of all cultivars
under normal and mild cold stress conditions. The SIMCA discrimination between the plants before
and after stress was achieved with 100% accuracy. The interpretation of spectral patterns before
and after cold stress revealed major changes in the water molecular structure of the soybean leaves,
altered carbohydrate and oxidative metabolism. Specific water molecular structures in the leaves of
soybean cultivars were found to be highly sensitive to the temperature, showing their crucial role
in the cold stress response. The results also indicated the existence of differences in the cold stress
response of different cultivars, which will be a topic of further research.

Keywords: cold stress; stress tolerance; soybean; water; near infrared spectroscopy; aquaphotomics;
water molecular species

1. Introduction

Soybean (Glycine max (L.) Merr.) is one of the most important crops in the legume
family with significant economic importance. It is a highly valued food in human and
animal diet [1,2] and has important medicinal and industrial applications [2,3]. Soybean
plants are susceptible to cold stress: cold halts the growth or results in injuries during all
stages of development [4–9]. Despite these constraints, soybean has continued its expansion
into cool climatic areas of the world [10,11]. In such areas, plants often undergo several
degrees of low-temperature stress, and occasional cold stress injuries lead to decreased
crop productivity and significant economic losses [12].

Soybean quality and production are dramatically affected by various abiotic stresses
and a thorough understanding of the plant stress response is important for developing
and breeding soybean with improved stress tolerance ability. Plants respond to all abiotic
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stresses with a series of morphological, physiological, cellular, biochemical and molecular
changes [13]. Their purpose is the adaptation to the existing stress conditions and counter-
acting stress effects [14]. Cold stress, defined as the temperature in a range low enough to
suppress growth without ceasing cellular functions, is known to induce several abnormali-
ties at various levels of cellular organization [15]: (1) altered fluidity and damage of the
membranes [16]; (2) the decrease in the uptake of nutrients and water, leading to cell desic-
cation and starvation [17]; (3) the conformational changes of proteins and nucleic acids [9];
(4) the decline in the rate of metabolic processes, reframing of gene expression [18] and
reduced cellular respiration [19]; (5) accumulation of osmolytes and cryoprotectants [20]
and (6) generation of reactive oxygen species [9,19,21].

The ability to measure plant stress responses in vivo is becoming increasingly impor-
tant and methods are sought for rapid assessment of the stress response. Therefore, the
development of non-destructive, rapid methodologies for early detection of plant response
to cold stress during its growth, on the spot, is of high importance for both development of
new varieties and as feedback in the agricultural industry.

Short-wavelength near-infrared (NIR) spectroscopy is a promising technique for fast
and non-destructive analysis of biological materials. This region, called the “optical win-
dow”, is the most useful region in the NIR for analyzing biological samples since it allows
deeper penetration and non-destructive measurements. The acquired NIR spectra allow
simultaneous analysis of many biomolecules in vivo. The absorption of molecules in the
NIR region is due to the combinations and overtones of vibrations such as stretching and
bending of CH, –OH and –NH functional groups, which engage in hydrogen bonding [22].
These functional groups are the primary structural components of major plant compounds—
water, proteins, oils and starch [23–25]. Compared to the water content, the rest of the
plant compounds are present in small quantities, resulting in their low signal in the NIR
region—their absorbance bands are often overpowered by water absorption. However,
water, with its strong capacity for hydrogen bonding, is very sensitive to any compositional
or environmental changes that a biosystem experiences, which in turn produces differences
in its spectrum, making it a source of information about the system as a whole and its
current environmental conditions [26]. This property of water—that in an interaction with
light it behaves like a mirror, revealing the structure (and function) of the system as a
whole—is the basis of the aquaphotomics method and scientific discipline [26]. It extends
the possibilities of traditional spectroscopy and offers a novel tool for studying biological
systems [27].

Many forms of biotic stress, such as viruses [28], and abiotic stress, such as cold,
drought, or salinity [29], affect water behavior on a cellular as well as on the whole plant
level, which provides the rationale to apply aquaphotomics to study the stress response. The
overall performance of a plant towards cold stress is a complex molecular phenomenon [30]
strongly linked to the water response at the molecular structure level. The usefulness of
aquaphotomics NIR spectroscopy was already demonstrated for non-destructive detection
of early response to biotic stress in virus-inoculated soybean plants 2 weeks prior to the
appearance of visual symptoms [28]. That work was the first to report evidence of a
considerable impact from a virus infection on the hydrogen bonding network of water
molecules in the infected soybean leaves and to suggest that reorganization of water at
the molecular level is a part of a plant’s response to stress conditions. The subsequent
research on abiotic stress, specifically, desiccation stress and differences in response between
resurrection plants (extremely desiccation-tolerant) and non-resurrection plants, has also
provided significant new insights into the importance of the molecular structure of water
for the preservation of plant tissues and survival in stressful conditions [31].

This paper reports the results obtained using a portable, non-destructive NIR instru-
ment for detection of cold stress response in leaves of different soybean cultivars genetically
modified to have different tolerances to cold stress. Using an aquaphotomics approach to
NIR spectral analysis, we specifically aimed at achieving the following objectives: (1) ob-
taining the NIR spectral signature of cold stress in soybean cultivars’ leaves that can serve
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as a tool for early stress detection, and (2) better understanding the physiological role of
water molecular species in a cold stress response.

2. Results

2.1. Raw Absorbance Spectra of Stressed and Non-Stressed Soybean Plants

The mean leaf absorbance spectra (LogT−1, where T is leaf transflectance) for soybean
cultivar varieties grown continually for three weeks at 27 ◦C (from now on, referred to
as “normal” or “no stress” conditions) and those grown for two weeks at 27 ◦C and then
for one week at 22 ◦C (from now on, referred to as “cold stress” conditions) are plotted
in Figure 1. The main feature of these spectra is a large absorbance peak in the visible
region between 650 and 660 nm. This spectral feature is related to the light absorption
by chlorophylls in the soybean leaves, which occurs in the visible part of the spectrum;
the largest amount of energy is absorbed by chlorophyll a around 660 nm [32–34]. In the
near-infrared domain (700–1050 nm), except for the differences in baseline, such strong
spectral features are not visible.

The mean absorbance spectra of soybean leaves before the imposed temperature
stress showed a small difference in the baseline offset between the cultivars, with the
highest baseline spectral profile belonging to the most susceptible cultivar E (cyan solid
line, Figure 1a, inset) and the lowest to the least susceptible cultivar A (black solid line,
Figure 1a, inset). However, when the temperature was decreased to 22 ◦C, the mean
absorbance spectra of soybean leaves showed decreased absorbance over the entire region.
Comparison of the spectra averaged for all the plants grown at 27 ◦C and for all of the
plants exposed to a 5 ◦C decrease in temperature (Figure 1b), revealed that decreased
absorbance in the entire range is, on average, a common spectral behavior of all cultivars.

From the different spectra calculated for each cultivar, by subtracting the average
spectrum of the plants grown in stressed conditions from the average spectrum of the
plants grown in normal conditions (Figure 1c), we also observed that this decrease is the
least intensive in the most cold-tolerant cultivar A and the most intensive in the cold
susceptible cultivar E. Interestingly, only cultivar A displayed the unique feature of an
actual subtle increase in absorbance, in the area 870 to 890 nm (approximately around
872 nm), which is usually attributed to the band of carbohydrates [35].

The near infrared part of the spectra when enlarged (~700–1050 nm, insets in Figure 1a–c)
shows a strong baseline offset caused by light scattering (which increases the effective
pathlength) or other physical differences in thickness or anatomy of the leaves. Despite
this, subtle nuances in the shape of the spectral lines suggest that spectral differences
also arise from the structural changes in the components of the leaves, which is especially
noticeable in difference spectra in Figure 1c at the indicated wavelengths 782, 815, 872,
944 and 998 nm. In the analyzed range, both the second and thrid vibrational frequency
overtones of the water OH stretching vibrations are located: second overtone around
970 nm and the third around 738 nm [36–38]; also around 836 nm is the third overtone of
the combination band [39]. Since in the normal conditions the relative water content of
soybean leaves is around 90% [40], it can be assumed that changes in the spectra of leaves
in this region would predominantly originate from the water absorbance bands. Water is a
strong absorber of NIR light and the spectra of samples with high water contents (>80%)
are strongly dominated by the signature from water [41].

The changes in baseline might occur due to several reasons. First, the thickness of
the leaves, which gives rise to different optical pathlengths is closely related to the water
content of the leaves, as it was reported not only for soybean, but other plants as well [42].
There are reports connecting the cold stress in soybean with a decrease in the relative
water content in leaves but at temperatures lower than employed in this research [43].
Furthermore, a horizontal shift in part of the 950–970 nm region was reported to be related
to changes in plant leaf water status during water stress [44,45].

In order to analyze all the spectral changes in more depth, in the following analysis,
the baseline shift and slope were removed using adequate preprocessing techniques.
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Figure 1. (a) Raw absorbance spectra of non-stressed (solid lines) and stressed (dashed lines) soybean
plants’ leaves in the vis-NIR region. Averaged for each cultivar separately—in normal growing
conditions (27 ◦C) and in the mild cold stress conditions (22 ◦C); (b) averaged spectra for all cultivars
together—in the absence of stress and in the cold stress conditions; (c) the difference spectra calculated
as the averaged spectrum for each cultivar at 22 ◦C was subtracted from the average spectrum of the
same cultivar at 27 ◦C.

2.2. Principal Component Analysis (PCA)—Exploratory Analysis of Cold Stress Effects on Spectra
of Soybean Cultivars’ Leaves

In order to better examine the changes in leaves due to the imposed stress and enhance
the absorption effects in the spectra, further analysis was performed on the truncated region
780–1000 nm, excluding the part attributed to pigments that may dominate the analysis.

The results of PCA, presented as scores and loadings plots in Figure 2 helped in
the detection of patterns in the spectral behavior of examined leaves. The scores plot
for the first three principal components (which together described 97% of the variance
in the spectra) showed sharp separation in two large clusters along the direction of PC1
(Figure 2a). On closer inspection, it was revealed that the PC1 component (which explained
81.3% of total variance) separated the group of non-stressed plants located in the negative
part of PC1 from the group of plants exposed to cold stress located in the positive part. The
loadings of principal components showed the importance of variables (wavelengths) for
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the computation of each of the PCs. The loading of PC1, which was the most important
for separation of the plants in no-stress and stress conditions, showed several important
features: positive peaks at 815, 926, 944 nm (specific for the plants during cold stress
conditions) and negative peaks at 873 and 985 nm (specific for the plants in the absence
of cold stress) (Figure 2a). The bands 926, 944 and 985 nm, being located in the second
overtone of water, can be attributed to absorbance of different water molecular species.
Specifically, 926 nm can be attributed to the bands of proton hydrates [46,47] or water
hydration shell [48], 944 nm to free water molecules [49,50], while 985 nm to hydrogen-
bonded water [51]. The band at 926 nm can alternately be assigned to lipids; around 930 nm
in biological samples there is usually a characteristic small lipid peak [52–54] to the lipid–
water mixture [55], though we cannot exclude the water–lipid interaction spectral feature.
Bands at 815 nm and 873 nm may be attributed to carbohydrates, although in different
forms, soluble carbohydrates and starch, respectively. The more detailed assignments will
be provided later in the Discussion.

Figure 2. Principal component analysis results: (a) Score plots for the first three components revealed
separation of plants according to the growing conditions. Two large groups of scores in the PC1-PC2
space correspond to the spectra of plants in the optimal growing conditions and during cold stress.
In the score plots PC1-PC3 and PC2-PC3, differences were observed between cultivar A and cultivar
E, respectively, compared to the other cultivars; (b) loadings of the first three principal components
describe 97% variation in the spectra. The loading of the PC1 describes variations in the spectra of
plants’ leaves as a result of changes in the temperature of the growing environment, while the PC2
and PC3 loading show spectral characteristics that distinguish cultivar E and cultivar A, respectively,
compared to the other cultivars.
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Next, in the PC1-PC2 scores plot, it can be seen that PC2 separates cold-susceptible
cultivar E in the non-stressed conditions—its scores are located in the negative part of PC2,
in contrast to all others. The loading vector of PC2 shows positive peaks at 831 and 900 nm,
while in the negative part there is a large, broad peak around 869 nm and a smaller one at
961 nm. Further, in the PC1-PC3 scores plot, PC3 separates cold-tolerant cultivar A during
stress conditions from all other cultivars—scores of this cultivar are located in the positive
part of PC3. The loading vector of PC3 shows positive peaks at 813, 876, 890, 908, 922, 942
and 995 nm and negative at 835, 855, 961 and 979 nm.

In summary, PCA analysis showed sharp separation between the spectra of plant
leaves from the investigated soybean cultivars when they were grown at optimal temper-
ature and after the temperature decrease. Further, the information from lower-order PC
components showed the existence of differences between cultivars, particularly separating
the weakest cultivar E during normal conditions, while the strongest cultivar A showed a
marked difference during stress conditions.

2.3. Soft Independent Modeling of Class Analogies for Detection of Plants’ Response to Cold
Stress—Discrimination of Non-Stressed and Stressed Plants

Soft independent modeling of class analogies (SIMCA) was first applied with the
purpose of supervised classification of plant leaves’ spectra according to the conditions at
which they were grown, i.e., no stress and cold stress, in order to develop a model for cold
stress detection.

The classification accuracy for the test set was 100%, while the interclass distance
(Mahalanobis distance) was 4.53, which shows reliable, strong separation between the
classes [56,57] (Figure 3a). Interestingly, on Cooman’s plot (Figure 3a) in the class of cold
stress, a separation was detected within the class-cultivar A (the most cold-tolerant) in
which it appeared separated from the others, further supporting the results of the PCA
analysis in that there is a difference in the reaction of this cultivar to cold stress when
compared to the rest of the cultivars.

To further explore this finding, SIMCA analysis was repeated in the same way as
before, but after the spectra of cultivar A were excluded from the dataset. The classifica-
tion accuracy in this case was also 100%, while the interclass distance increased to 6.67
(Figure 3b). In this case, the class seemed well-defined without any cultivars standing
out. The increase in interclass distance indicates that the exclusion of cultivar A actually
influences better separation of the classes of normal and cold stress conditions, as if the
difference in cultivar A before and after cold stress is not so big. It is interesting to note
that, in both analyses, plants in the normal conditions, in general, showed more variations
within the class (scattering of scores can be observed in Figure 3a,b), in contrast to the cold
stress class scores.

The discriminating powers of both SIMCA analyses were investigated for the wave-
lengths in the NIR spectra with the highest contribution for the distinction between classes
(not stressed vs. stressed plants) (Figure 3c). The most significant wavelengths (highest
discriminating power) in the case of the first SIMCA analysis, performed on the whole
dataset, were observed at 799–03, 827, 868–874, 880, 900, 908, 918–922, 928, 934, 943–946, 959,
973, 985 and 995–996 nm. When the spectra of cultivar A were excluded, the discriminating
power lacked a peak at 827 nm, showing this absorbance band is specifically important
for separation of other cultivars and A cultivar; it lacks the discriminating power when B,
C, D and E cultivar are being compared. The peak at 868–880 nm also changed, adding
much more weight to the band at 880 nm and making it the most influential variable for
discrimination of cultivars B, C, D and E.

2.4. Aquagrams

Because this part of the NIR spectra contains numerous overlapping bands it was
deemed necessary to examine in more detail the nature of absorbance bands and how their
assignments and interpretation can be related to what was already observed during the
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analysis. Therefore, the first step of the analysis was to calculate aquagrams in order to
present the differences in the stress response of all cultivars together as spectral patterns to
find the general features of the cold stress response in soybean (Figure 4).

Figure 3. (a) SIMCA analysis results when modeling was performed using the dataset with all
cultivars (A, B, C, D and E). Cooman’s plot of plants grown in normal conditions (27 ◦C) (black) and
plants exposed to mild cold stress for one week (22 ◦C) (red) shows excellent separation between
plants and reveals distinctive stress response in cultivar A; (b) SIMCA analysis results when modeling
was performed after the spectra of cultivar A were excluded from the analysis. Cooman’s plot of
plants grown in normal conditions (black) and plants exposed to mild cold stress for one week
(red) shows strong, reliable separation of classes without distinction of cultivars within the class;
(c) discriminating powers of SIMCA analyses. Comparison of discriminating powers shows that in
both cases almost the same wavelengths contributed to the successful separation of classes of plants
grown at normal temperature and in cold stress conditions. The exception is a peak at 827 nm, which
is missing in the discriminatory power of SIMCA performed on the dataset without cultivar A.

The aquagram was calculated over the entire spectral region to indicate the regions of
importance for separation between the cultivars grown in normal and temperature stress
conditions, from the aspect of main leaf tissue chromophores.

The aquagram indicated six regions that show a marked difference in leaves after the
cold stress, which can be interpreted as follows:

1. Region 772–799 nm: part of the third overtone of water stretching vibrations encom-
passing bands of hydrogen-bonded or ice-like water [36,58,59] found to be highly
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correlated to the sample temperature [59,60]. The temperature stress resulted in a
marked decrease in absorbance.

2. Region 800–830 nm: absorbance region that we tentatively assigned to CH of carbohy-
drates or hydrocarbons, not excluding their cumulative effect on the water molecular
structure. The literature sources report the following absorbance bands and their
interpretation in this range: 810 nm—related to oxidative metabolism in various cell
types and cell proliferation [3,7–11], 815 nm—related to oxidation and the state of
chloroplasts [61], 813 nm—absorbance band of aliphatic hydrocarbons [58,62], such
as ethylene—a plant hormone with a role in the regulation of oxidative stress [63],
shown to be produced during temperature stress in soybean leading to the oxida-
tive injury [64]. The region also contains absorbance bands that may be attributed
to water; specifically, 827–830 nm can be an absorbance band of small protonated
clusters [46,51,59,65,66], while 814–816 nm a protein–water interaction (unpublished
data) or carbohydrate–water interaction ([67], unpublished data). The temperature
stress resulted in a marked increase in absorbance in this region.

3. Region 830–840 nm: Absorbing region of both carbohydrates and water, with water
being a stronger absorber [35]. Centered at 836 nm is the second overtone of the com-
bination band of water [39]. According to numerous sources, the 835–841 nm can be at-
tributed to water highly influenced by temperature [59,60,68–71]. Several absorbance
bands of small proton hydrates are identified within this region: at 837 nm-(+H(H2O),
+H(H2O)2), +H(H2O)4, +H(H2O)6 [46,51,59,65,66] and at 841–841.5 nm-(+H(H2O),
+H(H2O)2), +H(H2O)4, (H+·(H2O)5) +H(H2O)6 [46,51,59,65,66]. The absorbance at
wavelength 840 nm was found to be related to the sample pathlength [60].

4. Region 841–900 nm: In this region both water and carbohydrates absorb, but at 870–
890 nm is a strong absorbance region of carbohydrates [35,72], in particular the band
878 nm can be attributed to starch [72], major component of the leaves, and one of
the key molecules mediating plant responses to abiotic stress, reported to decrease in
response to abiotic stress independently of plant species [73]. The absorbance in this
region shows a decrease in response to imposed temperature stress.

5. Region 900–959 nm: second overtone of water, the region that can be attributed to
various water molecular species that are not involved in hydrogen bonding, i.e., less
hydrogen-bonded water. The literature sources show rich information on particular
absorbance bands corresponding to the specific water molecular conformations, which
can all be connected to their respective locations in the first overtone region (1350–
1439 nm), encompassing C1 to C6 Water Matrix Coordinates—WAMACs, that is, water
solvation shells, proton hydrates, water vapor, trapped water, free water molecules
and the hydration band [26,74,75]. The aquagram shows increased absorbance in
this region after temperature stress, which is consistent with our previous findings of
biotic stress [28].

6. Region 960–1000 nm: Second overtone of water, the region that can be attributed to
various water molecular species that participate in hydrogen bonding, i.e., hydrogen-
bonded water. Similar to the previous region, this one can be related to the WAMACs
C7 to C11 in the first overtone of water, that is: water dimers, water solvation shells,
physi-adsorbed water or bulk water, and water molecules with 2, 3 and 4 hydro-
gen bonds [26,74]. The aquagram shows decreased absorbance in this region after
temperature stress (with the exception of a very small increase at 995 nm) in agree-
ment with what was also observed in region 1, from the 3rd overtone of the same
absorbance bands.

The aquagrams show that the absorbance spectral pattern of soybean leaves after
the imposed low-temperature stress is vastly different compared to the optimal growing
temperature (represented by zero line on aquagram). The difference can be related to the
known and reported stress responses in soybean: changes in the water status and water
molecular structure reorganization, changes in oxidative metabolism, possibly related to
the ethylene hormone and the state of the chloroplasts, increased moisture (gas phase) in

290



Molecules 2022, 27, 744

the leaves and their thickness and decrease in starch content. However, most importantly,
the absorbance bands of water that literature sources indicate as highly influenced by
temperature, were found to be the strong signature of the plant leaves’ spectral changes
as a reaction to temperature stress, showing direct relationship with the influence of the
environment on the water metabolism. The aquagram, Figure 4, testifies about the change
in the interaction of light energy and leaf tissues in soybean as a consequence of temperature
stress and can serve as a quick visualizing tool for the occurrence of a stress response.

Figure 4. Aquagrams showing differences in the average spectral pattern of all cultivars calculated
over the whole spectral range to present general effects of the cold stress response. The main
features of the stress response are found in the 2nd overtone of water region, 2nd overtone of water
combination band and 2 regions that can be attributed to 3rd overtone and combination bands of CH
compounds. (HB—hydrogen bonded, NHB—non-hydrogen bonded).

Lastly, retaining only the absorbance bands that showed high importance in the
previous analyses, a simple aquagram is made using 12 absorbance bands as radial axes
(Figure 5).

 

Figure 5. Aquagrams showing differences in the average spectral pattern of all soybean cultivars in
the conditions of no stress and during cold stress.
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The absorbance bands where increased absorbance of soybean leaves occurs in re-
sponse to cold stress are located at 815, 827, 900, 908, 928 and 944 nm. This absorbance
pattern speaks of increased solute accumulation (815, 827 nm [58,59,76–80]), increased
interaction of water and these solutes (900, 908 and 928 nm [26,46,48,75,81]) and increased
amount of free water molecules (944 nm [26,49,50]). All three phenomena are well-known
to occur in plants subjected to stress. While at this point it is not possible to clearly identify
what particular solutes are involved, it does not diminish the diagnostic value of the aqua-
gram to clearly show if the plants are under stress or not. Using only 12 wavelengths to
form a diagnostic marker also creates a good basis for the development of simply designed
and low-cost portable sensors for applications in the field.

3. Discussion

In this paper, we used aquaphotomics based on a near infrared spectroscopy method
for the evaluation of soybean plants in situ during imposed low-level temperature stress.
The research was directed toward two goals: (1) early temperature stress detection in soy-
bean based on the NIR spectral signature of cultivars’ leaves, and (2) better understanding
the molecular structure of water in leaves and how it is related to the overall stress response.

All our results, starting from the raw spectra analysis, over PCA exploration, SIMCA
discrimination and visual representation using aquagrams, consistently showed strong
evidence that a decrease of only 5 ◦C from the optimal growing temperature produced a
response in plant tissues that was captured in the spectra. This decrease could be considered
very mild cold stress, indicating that our method captured an early response to the changes
in the environment of plants. Previous studies on living systems revealed that even such
a small temperature decrease or increase is enough to induce antioxidant activities [82],
which means that the method employed in this work is sensitive enough to capture the
plants’ stress response early, before the damage of the tissues. It is interesting to notice that
detection of cold stress and discrimination analysis produced much poorer results when
the whole vis-NIR region was used in the analysis (data not shown), indicating superior
power of NIR spectroscopy because of the mild water absorbance used here as a source
of information.

In the raw spectra the change in environmental temperature brought a downward
shift of the baseline, caused by both physical and chemical changes in the leaves. Even in
this initial step of analysis, the differences in cold stress response between the cultivars
started to appear. The least cold-tolerant cultivar E showed the most intense change in the
spectral profile, while the most cold-tolerant cultivar A, the smallest change, being most
stable to the environmental perturbation.

The PCA analysis performed on preprocessed data, from which the effects of physical
differences were removed, showed that temperature change is the cause of the largest
variation in the spectral data, separating into two distinct groups scores of plants grown at
optimal temperature, from the scores of the same plants after the temperature stress. In ad-
dition, lower-order PCA components showed distinctive characteristics of cold-susceptible
cultivar E, whose scores were separated from the rest of the cultivars even in the condi-
tions of optimal growing temperature, while the characteristics of cold-tolerant cultivar
A became more distinguished after the exposure to lower temperatures. These findings
indicated that the NIR spectra contain information not only about the stress response but
also shed light on the specifics of cultivars and their individual stress responses.

SIMCA analysis further confirmed the results of PCA analysis, allowing persuasive
discrimination of classes of plants grown at normal temperature and after they were
exposed to cold stress. The value of interclass distance was large enough to confirm
distinctive spectral features that characterize the plants before and after the cold stress. The
accuracy of discrimination between the plants’ growth at optimal temperature and after the
temperature decreased for only 5 ◦C testifies to the high sensitivity of NIR spectroscopy and
the power of utilizing the spectral pattern as a multidimensional biomarker for capturing
the systematic stress response. Here, in this analysis, cultivar A was also distinguished
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compared to others when the stress occurred, once more indicating fewer variations in the
less susceptible plant to be its specific stress response. The difference in discriminating
power of SIMCA analyses performed with and without cultivar A in the dataset showed a
particular absorbance band located at 827 nm to be the feature that is highly specific for the
most cold-tolerant cultivar in relation to others.

By presenting the spectral profiles in aquagrams, the general, average reaction of all
cultivars showed visually clear distinction of plants’ leaves before and after cold stress.
The observed spectral differences were large in six wavelength regions indicated in the
aquagram, each of which was related to the main absorbers in leaf tissues and their
involvement in the stress response and the wavelength assignment was supported by the
current scientific literature. Throughout the analysis, we could witness the consistently
repeating several absorbance bands, all of which belong to the indicated six regions found to
be related mainly either to absorbance of water or carbohydrates. In summary, the findings
based on the aquagram profile show that the early cold stress response is characterized
by a decrease in the absorbance of hydrogen-bonded water and starch and increase in
weakly hydrogen-bonded water, free water and moisture. It is interesting to notice that
water absorbance bands of trapped water and strongly bound water, which are reported as
a water spectral pattern related to dehydration and damage of biological tissues [27,74,83],
were not observed during this study, indicating that at this stage of cold stress, the leaves
did not suffer injuries.

Further on, the changes in absorbance profile were connected to changes in starch
metabolism, oxidative metabolism and possibly other indicators of plant stress, such as
plant hormones and state of chloroplasts. Starch metabolism has recently emerged as
a key determinant of plant fitness under adverse conditions and is well-documented in
various plant species but still with fragmentary knowledge about the roles in the stress
response [73]. There are indications of its involvement in sugar metabolism enzymes, with
differences between soybean genotypes, particularly with respect to starch characteristics in
chloroplast ultrastructure [84]. The equal importance of the role of water and starch in the
spectral pattern of cold stress in soybean places a new spotlight on the water functionality
in the stress response. In particular, the interesting finding of the study is that specific
water species, which literature sources describe as highly related to the sample temperature,
were found as an important part of the stress response. The studies have reported that
plants have the ability to, for example, cool their leaves below that of the temperature of
the environment [85]. The temperatures of plants show that even with a 10 ◦C difference
compared to the air temperature, physiological measurements correlated highly with a
plant water stress index [86,87]. Plants have the ability to be cooled by transpiration, and in
reverse when the stomata are closed, the plant temperature increases. The existing thermal
imaging studies have shown the significant effects of cold and water stress on thermal
infrared spectra of different plants [88]. Similarly, infrared thermography had been utilized
for screening Arabidopsis plants with altered stomatal responses to drought based on the
leaf temperature because their leaves appeared colder compared to the wild type [89].

In our research, the result that soybean plants in response to cold stress decrease the
absorbance of hydrogen-bonded water and increase the absorbance of weakly hydrogen-
bonded water (which is also evident from the changes in the baseline offset) show that
plants work against cold environment by “internal heating”, i.e., reorganizing the water
molecular structure to be as if the temperature is higher. The observation that the magnitude
of changes was highest in cold-susceptible cultivar E while lowest in cold-tolerant cultivar
A suggests the possibility that the water in leaves of a cold-tolerant cultivar is already
in the more favorable state, which opens up a new line of research direction aimed at
examining the relationship between genetic modification and the end-result of a specific
water molecular structure in the leaves of cold-tolerant plants.

The existing findings, in addition to the observation of this research, strongly support
the possibility that water, not only its content but its structure, has an important role
in the regulation of the plant’s internal temperature, and certain water species that are
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temperature sensitive serve as signaling molecules, possibly initiating a cascade of events
in the stress defense system.

As we witnessed in the results of the present research, the genomic base of the soybean
cultivars may also dictate how sensitive the water molecular matrix of the leaves is to the
perturbation coming from the environment. However, this is a research topic of future
physiological, genetic and aquaphotomics studies. Hopefully, the integrated studies of
these various omics disciplines may uncover the specifics of the mechanism underlying
the different responses among cultivars and result in new strategies to breed soybean for
future climates.

4. Materials and Methods

4.1. Plant Materials

Seeds of five different soybean (Glycine max) cultivars that have different degrees of
cold stress tolerance, Kitamusume (A), Toyoharuka (B), Toyokomachi (C), Toyomusume
(D), Hokkaihadaka (E), with cultivar A being the most cold-tolerant and E being the most
cold-sensitive, were obtained from the Tokachi Agricultural Experiment Station (TAES),
Hokkaido, Japan. The cold stress tolerance level was based on the Tokachi Agricultural
Experiment Station grading based on the field performance. The cold tolerance of the
studied cultivars, their cold tolerant index (CTI), was assigned based on the multiple field
experiments. There are several research studies that have investigated the cold tolerance
ability and field performance of the soybean cultivars studied in this work, and other
cultivars as well, which can be used as a source of more information about the genotypic
differences [10,11,90–93].

4.2. Experimental Protocol—Experimental Conditions for Cold Stress Investigation

Two hundred plants, 40 plants per cultivar, were grown in plastic pots at 27 ◦C, 14 h
light/10 h dark (day/night) supply (22,000 Lux) for two weeks. After two weeks, 20 plants
from each cultivar were moved to 22 ◦C phytothron (“cold stress” conditions) and the
rest were kept continuously at 27 ◦C for up to three weeks (“normal” conditions—no
stress). The temperature of 27 ◦C was chosen because it is usually encountered in real field
conditions, while the mild cold stress temperature of 22 ◦C, i.e., decrease of only 5 ◦C, was
chosen because it is still within the optimum temperature window for soybean growth
(between 20 and 30 ◦C, [94]). If further reduced, prolonged exposure to low temperatures
(15–10 ◦C) may induce cultivar cold acclimation attributes [95], which was not an objective
of this study.

4.3. NIR Spectroscopy Measurements

Measurements were carried out non-destructively on single leaves using a handheld
type NIR spectrometer FQA-NIR Gun (Shizuoka Shibuya Seiki, Hamamatsu, Japan). Five
transflectance spectra (588 nm up to 1025 nm at 2 nm steps) from the first trifoliate leaves of
each plant were acquired using a custom designed reflectance probe as previously described
(Figure 6) [28]. Briefly, the modified probe allowed constant measuring conditions for all
leaves by preventing the environmental light interference, and a hinge-type bottom plate
of the modified probe provided a constant white background for all the measurements.
The sampled leaf was kept immobile, and spectral acquisition was performed within few
seconds, thus minimally interfering with the leaf functionality.

The acquired leaf reflectance spectra (R) were converted to absorbance spectra
(A = logR−1). For 5 cultivars with 40 biological replicates per cultivar and 5 acquired
spectra from the first trifoliate of each biological replicate, a dataset of 1000 absorbance
spectra for the analysis was obtained (500 for the plants grown in normal, and 500 for the
plants grown in stressed conditions).
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Figure 6. Acquiring soybean leaf spectra by handheld NIR spectrometer with a custom de-
signed probe.

4.4. Data Processing and Analysis

Principal component analysis (PCA) [96] of the whole spectral dataset in the spectral
range 780–1000 nm was performed after detrend and standard normal variate transfor-
mation [97] preprocessing to remove the baseline effects and improve separation of the
overlapping bands [98]. PCA was used on the whole dataset—firstly, for the general inspec-
tion and removal of outliers based on the values of the Mahalanobis distance [99]. Secondly,
the aim of performing PCA was to examine the information present in the dataset and to
detect possible existing patterns in data and relationships with variables. PCA transforms
the original data into new, orthogonal, variables called principal components (PCs) where
only the first few contain most of the useful information. The loadings of PCA indicate the
importance of wavelengths for computation of each PC.

Soft independent modeling of class analogies (SIMCA) [100] was applied to build
a supervised classification model for discrimination of plants in normal and stressed
conditions. A SIMCA model was tested on an independent test set containing 50% of the
original dataset, formed by selecting every other spectra (odd numbered spectra were used
for calibration, even numbered for validation). The test set used for validation was left
completely out during the modeling based on the calibration set.

An aquagram was used to visualize the changes in the water molecular matrix in the
leaves of all cultivars together in response to cold stress. Aquagrams were calculated using
the method for classic aquagrams [99], according to the following equation:

A′
λ =

Aλ − μλ

σλ
(1)

In the equation, A′
λ is a normalized absorbance, which is displayed on the aquagram,

and Aλ is the absorbance after detrend [98] and standard normal variate transformation
(SNV) [97] performed on spectral data acquired in the normal conditions and cold stress
conditions separately. The value μλ is the mean, while σλ is the standard deviation of all
the preprocessed spectra together after separately performed transformations. First, the
aquagrams were presented using as the wavelengths λ all the wavelengths from the whole
spectral range. This way of representing differences allowed for better identification of
major absorbers in the leaves and how they changed in response to stress. Finally, as is
usual practice in the aquaphotomics analysis protocol, only the most influential absorbance
bands were retained based on the frequency of their occurrence throughout the analysis [98],
and the simple aquagram was made using only 12 absorbance bands as radial axes.

The two transformations—detrending and standard normal variate transformations—
were performed prior to the aquagram calculation to cancel the differences in baseline
effects and were performed separately on data acquired during normal and during stress
conditions because the raw spectra showed differences in the baseline effects depending on
the conditions.
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The transformation of spectral data, data analysis and visualizations were performed
using the aquap2 package [101] in R Project statistical software [102]. Spectral subtraction
and peak detections in second derivative spectra and difference spectra were performed
using OriginPro® version 8.5 (OriginLab Corporation, Northampton, MA, USA). Aqua-
gram calculations were performed using Microsoft Excel 2016 (Microsoft Corp., Redmond,
WA, USA).

5. Conclusions

This study was conducted using near infrared spectroscopy and aquaphotomics as a
novel method for non-destructive detection of the cold stress response.

The research showed that the method was sensitive enough to detect the response
of the soybean plants even in very mild cold stress conditions and to discriminate with
100% accuracy the plants grown at optimal growing temperature and plants after they were
exposed to the cold stress.

The information in spectra that allowed the successful detection of cold stress response
was largely based on the water absorbance bands, testifying to the water structure playing
an important part in the primary stress response in soybean plants’ leaves. Additionally, the
role of carbohydrates and their interaction with water was found to be strongly associated
with the cold stress response.

Our results cast new light on the importance of water in plants’ adaptive response to
temperature change and its role in the cold tolerance ability of different soybean cultivars
contributing to a better understanding of this phenomenon, while at the same time provid-
ing a novel principle for the development of rapid, non-destructive methods for cold stress
detection that can be performed in the field.
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Abstract: This review is an attempt to incorporate water as a structural and thermodynamic com-
ponent of biomembranes. With this purpose, the consideration of the membrane interphase as a
bidimensional hydrated polar head group solution, coupled to the hydrocarbon region allows for the
reconciliation of two theories on cells in dispute today: one considering the membrane as an essential
part in terms of compartmentalization, and another in which lipid membranes are not necessary
and cells can be treated as a colloidal system. The criterium followed is to describe the membrane
state as an open, non-autonomous and responsive system using the approach of Thermodynamic of
Irreversible Processes. The concept of an open/non-autonomous membrane system allows for the
visualization of the interrelationship between metabolic events and membrane polymorphic changes.
Therefore, the Association Induction Hypothesis (AIH) and lipid properties interplay should consider
hydration in terms of free energy modulated by water activity and surface (lateral) pressure. Water
in restricted regions at the lipid interphase has thermodynamic properties that explain the role of
H-bonding networks in the propagation of events between membrane and cytoplasm that appears to
be relevant in the context of crowded systems.

Keywords: lipid hydration; water interphases; crowded systems; restricted environments; H bond-
ing propagation

1. Introduction

The air-water interface of a drop of water has its specific heat and hence its entropy
potential, i.e., an entropy potential independent of the bulk. A perturbation of such an
interface is conserved. This inevitably leads—due to the conservation of momentum and
the laws of thermodynamics—to propagation phenomena.

(Einstein, 1901)

According to cell membrane theory, membranes form the boundary of living cells and
regulate transport in and out of the cell by providing a dynamic barrier between the cellular
constituents and the extracellular environment. Within this paradigm, the basic structure of
the biological membrane is the lipid bilayer. The interactions between the constituent lipid
molecules are at expense of water which plays a major role in the membrane properties
such as stability, permeation and related functions [1].

The membrane theory has received most of the attention from physiologists and bio-
physicists due to the acceptance of the Fluid Mosaic Membrane (FMM) model formulated
originally by Singer and Nicholson [2] and modified by others [3,4].

All of them take the lipids as the responsible for forming a semipermeable membrane
encapsulating the cytoplasm which is justified from an evolution point of view with the
argument that one of the first steps in life is the formation of closed supramolecular
structures confining a reactive electrolytic media [5,6].
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Opposed to this view, the Association Induction Hypothesis (AIH) describes a cell as a
colloidal coacervate of gel proteins in water in which the protoplasm responds to metabolic
events through changes in protein conformation [7,8].

While the cell membrane theories mostly ignore water as part of the structure and the
thermodynamic (functional) properties derived from it, the AIH put emphasis on water
ignoring membranes and lipids. However, both theories contain relevant concepts to
understand cell physiology, which are in certain aspects, complementary to a unified cell
theory considering its functionality as the final goal.

For this purpose, the unique properties of water linked to membranes appear to be
a way by which the two proposals may converge. This requires a deeper knowledge of
water structure and hydration in biological membranes. Specifically, its role in surface
phenomena in different lipid assemblies and in contact with crowded systems. For this
purpose, a new view of the membrane in which the interphase region is taken as an open
bidimensional solution of lipid head groups is discussed.

With this aim, this article deals with the following concepts:

- A brief review of the membrane and coacervate theories

The membrane theory.
The coacervate theory

- The membrane interphase model.
- The membrane as an open system. Thermodynamic consequences.
- Membrane hydration and membrane state.
- The surface domains. Excluded volume concept.
- Critical water activity and the cut-off surface pressure

Critical states: packing and cut off pressure.
Cut off and critical water activity.

- Hydration and phase transition.
- The limits of the membrane in crowded systems and signal propagation.
- Unifying membrane approach with water colloid systems.
- The thermodynamic response: membrane state/hydration state/state- function relationship.

Responsive structures and H bond networks.

- Concluding remarks: Membrane hydration and membrane state. An alternative way
to membrane response.

2. A Brief Review of the Membrane and Coacervate Theories

2.1. The Membrane Theory

The classical paradigms supporting the actual membrane models are resumed below.
The lipid bilayer is the backbone of the membrane in which proteins can be inserted. In

some conditions, non-lamellar aggregates can be formed as transient structures depending
on the lipid composition [1].

The lipid bilayer conformation is a selective permeability barrier in which water and
non-polar solutes can cross driven by a concentration gradient. Permeability is evaluated
as a partition-diffusion process in which the lamellar conformation is not altered. Under
this paradigm, solutes dissolve in the membrane and water copermeates. On the other
hand, ions and most polar solutes cannot permeate the lipid membrane, and therefore, it
occurs due to the presence of specialized proteinaceous carriers or channels coupled to
metabolism (active transport). The cell is filled with ordinary water with small solutes
including K+ in solution. To compensate for the passive leaks, ion pumps located at the
membrane continuously operate, a process that is considered energetically impossible [8].

Under this view, ions and other biocompounds such as aminoacids are excluded
from membrane bulk due to their low solubility in the hydrocarbon region [9]. However,
experimental evidences have shown that water can be found as pockets in the membrane
structure favoring the permeation of some polar aminoacids [10,11]. Thus, the classical
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concept of permeability in which the bilayer is considered as a hydrocarbon slab where the
dielectric constant is 2 has strong limitations.

Based on the concept of the lipid assemble as a phase, the bilayer suffers structural
changes induced by temperature and water content by which permeability, area per lipid,
and thickness are drastically modified. The phase transition is mainly ascribed to the fusion
process of the hydrocarbon region in fully hydrated membranes.

The current models focus on the presence of different lipid lateral arrangements in
the membrane plane (domains) due to the heterogeneity in composition. Some lipids
in their pure form can stabilize in water forming non-lamellar structures such as phos-
phatidylethanolamines (PE) and glyceryl monooleate (GMO) [12,13]. Therefore, it has been
speculated that when those lipids are present in the membrane, non-bilayer structures may
be formed and therefore explain changes in permeability to ions and polar solutes. In these
conditions, some lipids may act as ionophores [14]. However, the phenomena seem to be
an all or none process, in which selectivity, specificity for ions, and gradual modulation
are not described. In all cases, little or no role of the water surface state of the membrane
has been considered.

The proposal of membrane theory relies on rules mainly deduced for bulk phases
large enough to neglect interfacial phenomena. Under this view, permeation occurs driven
by a chemical potential difference of the permeant between the bulk phases on both sides
of the membrane. Thus, permeability is interpreted in terms of the Henry law (partition of
a single solute between bulk water and the hydrocarbon region without water). In addition,
diffusion is considered to be governed by Fick’s law, meaning that the diffusion coefficient
is constant during the process.

The solubility-diffusion theory was questioned introducing the role of the polar head
group arrangements in a three-layer theory that incorporates the area dependence as a
primary modulating parameter [15]. This theory implicitly considers the presence of water
in the bilayer structure.

For convenience, bilayers (liposomes, vesicles) and monolayers (extended on the
air-water surface) have been extensively used as experimental model systems in a nearly in-
dependent way. Monolayers’ behavior was mostly analyzed considering that lipids behave
as a van der Waals gas spread on the water surface [16,17]. The water/lipid interaction is
not taken into account and, consequently, the membrane is described as a closed system in
thermodynamic equilibrium with the adjacencies. On the other hand, bilayers are modeled
as fully hydrated lipids in which lateral pressure cannot be controlled [17,18].

From the phenomenological point of view, an extensive discussion has led to some
consensus on the conditions in which monolayers may be considered equivalent to a bilayer
of the same lipid species. The bilayer equivalent pressure is accepted to be at around
Π = 30 mN/m at which the phospholipase A2 activity is similar in both systems [19–21].
Estimation of the bilayer equivalent pressure is purely theoretical because bilayer lateral
pressure is not experimentally measurable. Another frequently cited point is the bilayer
equivalent molecular area, which for DPPC bilayers is ~64 Å2, which is coincident with
that determined in monolayers at a saturation point [22,23].

2.2. The Coacervate Theory

The coacervate theory was first proposed by the Russian biochemist A.I. Oparin in
1936 [24]. According to it, the origin of life was preceded by the formation of mixed colloidal
units called ‘coacervates’. These are particles composed of two or more colloids which
might be proteins, lipids, or nucleic acids.

Under the view of this theory, the cell is described as a colloid with distribution
coefficients and adsorption coefficients as prime physical-chemical parameters allowing a
negative-entropy driven bioenergetics based on coherence [25].

Ling developed a complete colloid model for the living cell, the so-called ‘association-
induction-hypothesis’ (AIH), which is claimed to be able to explain the coherent behavior
of cells without the need to invoke the presence of the membrane [26].
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In short, the membrane theory favors the idea that a cell is a solution of proteins while
the coacervate view considers the cell as proteins dissolving water.

In this review, the consideration of water in the membrane extending the interphase
to the cell interior gives the possibility to reconcile both views in terms of considering the
cell as a crowded system [27].

3. The Membrane Interphase Model

The point that the bilayer/monolayer system cannot be appropriately treated with
laws defined for bulk macroscopic systems derives from the need to consider new paradigms
introducing concepts of surface physical chemistry [28]. This new view is based on Ein-
stein’s words in the heading of this article. Moreover, other physical chemists, namely
Guggenheim, Defay and Prigogine among others have called attention to the particular
phenomena of interphase, but they have not been explicitly incorporated into the classical
membrane literature.

The common factor behind the redefinitions of membrane properties within the new
paradigm of physical chemistry of surfaces is that water is not considered as part of the
membrane structure. Therefore, to include it, it is necessary to examine experimental
evidence concerning water in membranes and therefore to choose the right thermodynamic
approach in relation to surfaces.

There are, at least, three ways to describe the surface phenomena (Figure 1). The
first, defined by Gibbs, considers the interface as an ideal plane separating two milieus of
different physical-chemical properties (Figure 1A). This definition, when applied to the
membrane, takes into account the hydrocarbon core framed by the polar regions being
of similar properties than bulk water. In lipid membranes, the interface corresponds to
the plane running along the glycerol backbone in which carbonyl groups can be oriented
either towards the membrane or to the aqueous phase. This definition gives importance
to the separation of the non-polar region from the polar one, without giving relevance to
the physical-chemical properties of the head polar group region. Within this approach, the
capacitance and the thickness of the bilayer have been calculated. Although the thickness of
the bilayer does not fit a pure hydrocarbon slab, which suggests a more complex structure
in terms of dielectrics; most biophysical studies use this interface idea [29].
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Figure 1. Different schematical descriptions of the interface: (A) The Gibbs model, (B) The Guggen-
heim model and (C) The membrane interphase model.

In another definition, provided by Guggenheim, two phases of quite different po-
larities are separated not by a plane but by a finite region (called the interphase) whose
properties differ from the bulk phase which is in contact (Figure 1B). This region has quite
different properties in comparison with the two pure bulk phases in contact. It is, to some
extent, considered as a mixture of the two components although the exact ratios are not
easy to assess.
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The Guggenheim model is particularly appropriate to adapt to a lipid membrane if the
contribution of the head group region is taken into account (Figure 1C). In connection with
this definition, the thermodynamics of a monolayer was described by Defay-Prigogine (and
extended by Damoradam and Disalvo) as a bidimensional solution of polar head groups
embedded in water [30–32]. This visualization of the interphase makes that monolayers’
and bilayers’ behavior can be compared considering the physical chemistry of this region as
an aqueous polar solutions, something that in the current biological literature is absent [33].

The principal feature of the interphase is that it is conformed by an aqueous solution of
hydrated head groups that can be treated as ions in the solution. Thus, the physical chem-
istry of that region can be reasonably evaluated in terms of surface solution components
(head groups, ions, and water) in a bidimensional arrangement.

A direct consequence of this lipid membrane model is that water becomes a crucial
component of the membrane structure that defines its thermodynamic state.

In terms of structure, it gives a more realistic picture since the microscopic water
organization around the different membrane groups can be related with the macroscopic
response. The dynamics of these structures give place to fluctuations between water
populations with different energy and entropy contributions.

4. The Membrane as an Open System: Thermodynamic Consequences

The introduction of water as a membrane component changes the definition of a
membrane system from a closed to an open one. In consequence, the time-invariant state
is not an equilibrium in a closed system in which the maximum entropy or minimum
energy is reached when all forces are zero. In contrast, in an open system, the entropy is
maintained constant in a time-invariant state (steady-state) in which non null forces are
canceled out. In this state, the membrane exchanges water with the adjacent milieu at given
surface pressure. An unbalance either of surface pressure or water exchange produces a
transient state that the system tries to compensate for.

The approach of Defay-Prigogine in which the interphase is an ionic solution (Figure 1C)
is particularly adequate to describe this process and illustrative to extend the role of water in
the membrane in accordance with the coupled processes between solute and water named
above. According to these authors, when a solute is injected in the subphase of a monolayer,
it can diffuse from the bulk aqueous solution to the interphase driven by a concentration
gradient. In this process, the water activity at the interphase decreases which produces a
coupled flux of water into the interphase. This can explain the increase in surface pressure
produced by the insertion of bioeffector in the monolayers at a constant area, and extended
to bilayers also when the decrease in membrane density is considered [32,34]. It must be
taken into account that this increase in surface pressure is indeed a decrease in the surface
tension of the interphase, a point that will be analyzed in detail later.

Consequently, several of the above paradigms concerning permeability and dielectric
properties must be revised. Permeability is described by the interrelation of a partition
process of the permeant between water and membrane bulk, which is taken as a pure hydro-
carbon phase without water, and its diffusion in a homogeneous phase. This is supposed to
be valid for single water permeation driven by a permeant solute gradient of concentration
across the membrane. A more realistic picture was offered when Thermodynamics of
Irreversible Processes (TIP) was applied to explain the permeation of nonelectrolytes. It
was concluded that solute diffusion promotes a water flux and that osmosis induces also
solute permeation. These conclusions were sustained for the process across the membrane,
but no consideration of the changes in water content in the membrane itself was made [35].
This point is discussed in the next session.

5. Membrane Hydration and Membrane State

The introduction of the interphase as a binary aqueous solution as part of the mem-
brane structure and the notion of an open system regarding water imposes a different
thermodynamic approach to understanding membrane processes.
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The thermodynamics of the membrane as an open system is given by the entropy
production (dS/dt) that can be written in terms of the sum of forces (Xi) and fluxes (Ji)
operating on the system defined in two dimensions as in Equation (1):

dS
dt

= ∑ JiXi (1)

Thus,
dS
dt

=
ΠdA

dt
+

Δ μ dnW
dt

= JaΠ + JwΔμ = 0 (2)

where Π is suface pressure; dA
dt = Ja is the change in area (A); Δ μ is the gradient of chemical

potential of water and dnW
dt = Jw is the water flux.

For the sake of simplicity, the system is taken at constant temperature and in the
absence of electric fields and chemical reactions (this can be extended but it is beyond the
aim of this work).

When the system is in the steady state, the entropy production is constant and
thus dS/dt = 0.

Then,
JaΠ = JW Δμ (3)

As the surface pressure (π) can be expressed by the difference between the surface
tension of pure water (γ0) and surface tension of water with lipids (γ)

π =
(
γ0 − γ

)
(4)

Considering that Δμ = ΓWRTlnaW (5)

with ΓW equal to surface water concentration and aW equal to water activity,
It results in

γ = γ0 − ΓWRTlnaW (6)

In this condition, each value of water activity would correspond to a value of surface
tension. In other words, water activity fixes the surface tension, and vice versa, surface
pressure (surface tension) would give place to a given water activity.

This analysis denotes the importance of water in the determination of the thermody-
namic properties of monolayers and bilayers, mainly its propensity to react in the presence
of solute in the bulk phase. According to Equation (6), any process that affects water activity
will affect surface tension and hence denoted as a surface pressure increase. Therefore, at a
given water activity the membrane surface free energy state is fixed, and thus its propensity
to respond to solutes in the bulk adjacencies [22,36].

The point here is to define the properties of water in lipids in terms of its free energy
(i.e., surface tension)

6. The Surface Domains: Excluded Volume Concept

Cellular membranes are laterally heterogeneous systems that are probably involved
in function. The composition of membrane rafts as the archetypical lipid-driven plasma
membrane domains has been extensively discussed. The complexity and flexibility of lipid-
mediated membrane organization could be functionalized by cells. The different lateral
compositional heterogeneity is a ubiquitous feature of cellular membranes on various
length scales, conforming molecular assemblies. The nature of the micrometric domains in
terms of specific physicochemical properties is a matter of discussion [4,37].

The water content and its organization as H bond networks is concomitant to the
composition of lipids and its topology, such as rafts or domains. The mechanical proper-
ties to these water regions surrounding the lipid domains acts as a plasticizer along its
compressibility modulus [38].
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Thus, the friction between lipids and water at this point implies changes in water
properties (structure, density, and polarity among others) [33,39] and hence propensity to
H bond rearrangements.

These arrangements are affected by the surface pressure (i.e. the area available for the lipids)
and therefore its excess free energy of the regions exposed to bulk water changes consequently.
Therefore, the propensity of the membrane to “react” to bioeffectors (i.e., biologically relevant
compounds in the bulk adjacency) is modulated by water activity and the corresponding
surface tension of those regions (Equation (6)).

Different lipid packing states in biomembranes that form coexisting domains (i.e., relatively
ordered and disordered domains such as lipids in the liquid condensed or the liquid
expanded state) are assumed to have functional characteristics [40]. However, it must be
considered that each packing state implies different water levels and arrangements giving
place to regions in which water surface tension is different, i.e., the excess of surface free
energy. Thus, they act as an energy reservoir that would explain the responsiveness of lipid
membrane to bioeffectors present in the adjacent media (aminoacids, peptides, enzymes,
etc.). The changes in surface tension, as stated in Equation (6), are modulated by the
influence of lipids on water structure and this is manifested in conditions in which lipids
form a coherent array (at c.a. 5–10 mN/m) ending at the collapse pressure (c.a. 45 mN/m)
depending on the lipid [41]. Thus, a correlation between lipid packing and water activity is
inherent to functional activity.

To make explicit the role of surface activity in terms of water activity it is necessary to
extend some features of hydration of membranes in analogy to studies made on protein hy-
dration. This is particularly important if the aim is to explain the properties of a membrane
in the context of crowded systems [27].

Biological membranes can assume a number of different lipid packing states that may
correspond to domains in live cell membranes [42].

Packing is referred to in different structural membrane studies but the thermodynamic
properties inherent to it are not rigorously explained. These two aspects are related to
surface tension and excluded volume concept as will be explained below.

Excluded volume is a term that represents the unavailable volume of solvent for a
solute in a solution. In a simple description, solute dissolves in a salt solution in the water
beyond that the hydration shell of the ions. It is also applied to concentrated solutions of
macromolecules in which water as a solvent is drastically reduced. This view has been
particularly used to refer to the cell as a crowded system [43].

The mutual impenetrability of solute molecules into the hydration shell of the ions
and the steric repulsion between ions themselves plays a fundamental role in intermolec-
ular interactions. The activity of a solute depends on the volume that is available for
each molecular specie. The steric freedom (entropy) is a function of the size and shape
of the solute.

In terms of the bidimensional solution defined as the interphase, the impenetrability
in a lipid membrane is given by the polar head group surrounded by the hardcore of
hydration molecules (Figure 2) [44].

The hardcore region (blue region) only changes in drastic conditions of dehydration
or by the presence of certain compounds that may replace water such as sugars such
as trehalose [45–47].

Tightly bound water determines the excluded volume of the interphase region con-
tributing to the permeability barrier [48]. In this view, water layers are of a similar magni-
tude to the hydrocarbon region itself and constitute a repulsion barrier for many permeant
solutes and for membrane adhesion [49–52].

Assuming that the lipid hardcore of hydration is constant, expansion/contraction
processes change the water available for solutes in a lipid membrane beyond this hardcore.
Thus, the membrane state at a given surface pressure is determined by the relationship of
the amount of loosely bound water in relation to the hardcore which is influenced by the
presence of the lipids.
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Figure 2. Schematic representation of the excluded volume in the head group region (red spheres)
of a lipid membrane. (A). Blue region: hardcore first hydration shell. (B). Light blue region: water
available as solvent (confined water) although of different properties than bulk water.

In this regard, the thermodynamic response of an interphase (i.e., the change in surface
tension) to bioeffectors is related to water organized around the lipids beyond the first
hardcore hydration shell. This type of water between lipids beyond the first hydration shell
sustains the original model of Defay-Prigogine in which the interphase is a bidimensional
solution of hydrated head groups immersed in water [28,32].

7. Critical Water Activity and the Cut off Surface Pressure

7.1. Critical States: Packing and Cut off Pressure

Recalling that the surface tension of water varies according to the dimension and
quality of its environment, it is not difficult to comprehend that the physical chemistry of
water confined between lipids (the light blue region in Figure 2) with its hydration hardcore
(dark blue) can determine the membrane thermodynamic response.

The typical curves in Figure 3A denote the response of a monolayer at a given initial
surface pressure to a bioeffector added to the subphase. The plot of the magnitude of the
response (πf − πι) as a function of the initial surface pressure (πi) indicates that there is a
cut off surface pressure above which no membrane response is observed. This behavior is
usually related to the packing of the lipids at the interphase. In a simplistic interpretation,
there is no area available to the bioeffector to penetrate the monolayer.

However, the insertion process is not driven by the area but by free energy changes.
Therefore, other properties concerning the interphase must be relevant.

Packing is frequently taken as the equivalent of the ordered state. However, packing is
referred to lipid molecules i.e., the special arrangement in terms of distance. Such ordering
is ascribed to lipids immersed in water since properties are assumed to be measured in fully
hydrated membranes. The packing increased by compression enhances the hydrophobic
interactions of the monolayer or bilayer promoting a decrease in water order. Therefore,
the two concepts must be compatibilized with each other.

Packing is a geometric criterium and order-disorder is a thermodynamic one. However,
the geometrical criterium to some extent can be translated into thermodynamic terms if the
energy contribution is considered in terms of the excluded volume as described above.

7.2. Cut off and Critical Water Activity

The surface pressure can be expressed in terms of water activity (ai
w according to

equation π = −C Γw RT ln (ai
w), where Γw is the water concentration at the interface and
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C is function of the frictional coefficient lipid-lipid, lipid water and water lipid [33]. Thus,
the cut-off pressure reflects a critical water activity.

At the cut-off pressure, water activity beyond the hardcore is zero and no water
domains are formed. Thus, no effect of bioeffectors is found. This is produced at the
critical water activity (Figure 3D) above which water domains are formed (Figure 2B) and
the excess free energy triggers the bioeffector perturbation [32]. The water domains are
characterized by a surface tension fixed by the water activity according to Equation (6).

For a given water activity at the membrane, the perturbation (ΔΠ) depends on the type
of bioeffector, and of lipids and it may have different consequences. Among them, drastic
changes in the dielectric permittivity of the membrane maintaining the bilayer conformation
allow permeation of polar and ionic solutes, a process that cannot be explained by the
classical non-polar slab of the bilayer in classical models [28,53]. Another consequence is
the induction of non bilayered structure abandoning the bilayer conformation [54].

Figure 3. Perturbation of a responsive membrane to the different bioffectors. (A) Typical changes
of the monolayer surface pressure upon the addition of a bioeffector. (B) Difference of the final
and initial surface pressure for different initial surface pressures induced by a soluble protease as
a bioffector on DMPC (Δ) and DMPE (Δ) monolayers (taken from Ref. [55]). (C) Difference of the
final and initial surface pressure for different initial surface pressures induced by chlorogenic acid on
DPPC (•), Di 16:0 ether PC (•), DMPC (•) (taken from Ref. [56]). (D) Difference of the final and initial
surface pressure as a function of the initial water activity in the monolayer calculated according to
π = −C Γw RT ln (ai

w) for DPPC (•), Di 16:0 ether PC (•), DMPC (•) (See text).

Compression produces the collapse of the lipid monolayer at high pressures. In this
stage, lipids are packed to a limit in which the hard core first hydration layers are in contact
(Figure 2A). This is the minimum excluded volume (blue spheres) which implies a volume
non available for solutes. In a ΔΠ/Π curve as in Figure 3B,C, this value is reflected by
the critical cut-off, i.e., the pressure at which no response is observed. The response is
observed when the initial surface pressure is below the cut off, which is somewhat below
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the collapse pressure. In consequence, the water activity at the cut-off is higher than that at
the collapse (Table 1).

Table 1. Comparison of surface pressure and the corresponding water activities at the collapse and
cut off pressures [55,56].

Type of
Lipid

Bioeffector
πsaturation ± sd

(mN/m)
πcut off ± sd

(mN/m)
aw

(Saturation)
aw

(Cut Off)

DPhPC Aqueous protease 48.0 ± 0.7 39.6 ± 0.4 0.308 0.378
DOPC Aqueous protease 47.2 ± 0.9 41.4 ± 0.3 0.314 0.362
DMPC Aqueous protease 47.8 ± 0.8 41.5 ± 0.5 0.309 0.361
DPPC Aqueous protease 46.6 ± 0.6 39.5 ± 0.9 0.034 0.057
DMPE Aqueous protease 45.0 ± 0.5 30.6 ± 0.1 0.038 0.108

Di(ether) PC Aqueous protease 48.0 ± 0.7 31.9 ± 0.3 0.307 0.457
Di(ether) PE Aqueous protease 44.5 ± 0.5 29.4 ± 0.6 0.040 0.118

DMPC CGA 47.8 ±0.8 36.9 ± 0.3 0.160 0.243
DPPC CGA 61.4 ± 1.3 27.2 ± 0.3 0.011 0.134

16:0 dieter PC CGA 58.5 ± 1.1 32.4 ± 0.1 0.013 0.092

This means that the excluded volume sensitive for membrane response is larger than
the hardcore water inferred from the collapse pressure. This implies that the geomet-
rical space created is much lower than the molecule volume of the bioeffector. There-
fore, the insertion of the biocompounds can be more suitably explained in terms of
energetic considerations.

8. Hydration and Phase Transition

The increase in surface pressure produced by a bioeffector is a measure of the decrease
in surface tension. This means that the initial surface tension, which reflects a particular
free energy state of the membrane, is reduced and this can only be produced if initial
water arrangements have certain level of potential energy. These arrangements should be
reflected in the thermodynamic properties of the membrane.

Being the membrane composed of two slabs of a strongly different physical chemical
nature, the main phase transition should be an emergent of the system.

Heat causes a global thermal transition due to the interplay of molecular interactions
between the nonpolar and polar regions with water playing a fundamental role.

Considering the presence of water, the total enthalpic change in the transition can
be written as

ΔH = ΔHf + ΔHl (7)

where ΔHf is the enthalpy of fusion of the hydrocarbon chains and ΔHl is the energy
involved in the ionic network in the aqueous excluded region. In turn,

ΔHl = Er + ΔHh (8)

where Er energy of fusion of the ionic (polar groups) lattice and ΔHh the enthalpy of
hydration of the head groups.

ΔHf and Er are endothermic processes and ΔHh is an exothermic one. Thus, how en-
dothermic ΔH is, would depend, to a great extent, on the hydration of the polar groups [57].

Thus, the lipid propensity for membrane responsiveness involves water rearrange-
ments reflected in the ΔH values.

9. The Limits of the Membrane in Crowded Systems and Signal Propagation

The limits confining the interphase are not sharp. Water may penetrate the first
4C atoms, and the presence of the polar groups may affect layers of water in the bulk
solution. In terms of Molecular Dynamics (MD) this may have an extension of around
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12 Å [58]. This implies water facing different kinds of molecular residues and thus with
different free energy content with different capabilities to exchange.

There is a great content of ambiguity in the definition of the cell limits and cell
membranes: boundaries become in barriers and these in membranes, which finally are
resumed in bilayers giving to them the same hierarchy.

This confusing nomenclature is due, in our view, to macroscopic observations dis-
regarding the definition of interphases as a region separating two well-characterized
(continuous) regions.

A great deal of care has been taken to establish the limit between the hydrocarbon
core and the aqueous phase since Luzzati et al. [59] interpreted the X-ray diagram of lipid
suspensions, considering the former proposal of the lipoidal nature of the cellular boundary
by Overton [60].

Over the years, many assumptions have been made in order to calculate area per
lipid from measurements of interbilayer distance and membrane thickness [23,49,61,62].
The membrane thickness also includes the polar head groups. Needless to say, in these
calculations a simplification is dragged, e.g., the density of water (molar volume) is constant
and similar to the bulk [63].

Further, with the aid of molecular dynamics and new scattering methodologies, the
limit between water and the hydrocarbon region has become diffuse. Water can extend
into the first 4–5 C atoms below the carbonyl groups and from the plane of the phosphates
and the different polar residues attached to it, toward the external water. Consequently, the
neat differentiation of water near the groups and the bulk is gradually diluted [49,58,64].
In spite of these uncertainties, the phase properties of the membrane have been mostly
interpreted in terms of the properties of the non-polar region. However, the only region
that can be considered properly as a hydrocarbon phase is that at the terminal -CH3 residue
in the center of the bilayer. That is why most of the interpretations lay on the idea that
the phase transition is due to the fusion of the hydrocarbon chains that are affected by
water, but no consideration of the thermal properties of the water region itself is made [65].
However, in the phase transition water structure also changes and this change is implicit in
dynamic process [57].

The behavior of water beyond the hardcore (blue light region in Figure 2B) at the
phase transition is shown in Figure 4.
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Figure 4. Molar fraction of water monomer (A) water bound with less than four H bonds (B) and
tetracoordinated water molecules (C) as a function of temperature. Black symbols correspond to pure
water, red symbols correspond to water in the presence of lipids.

The data in Figure 4 clearly indicates that the thermodynamic properties of water
between lipids are different in comparison to bulk water, since a clear break is observed
in the presence of lipids that is absent in pure water. The main observation is that the
molar fraction of water monomers increases (part A) parallel to the water tetramer decrease
(part C), indicating an order-disorder transition. In both cases, a break is observed at the
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phase transition followed by the phospholipid groups (red dots) that is not present in pure
water (black dots). Thus, the transition in water associated with the membrane reflects the
membrane state.

If a living cell is represented by a water solution of proteins and ions enclosed by
the membrane as a bilayer, the general criterium is to take water inside having no major
differences from normal liquid water bathing the cells. In contrast, from the colloidal
point of view, cytoplasmic water is stabilized, essentially continuously, by interactions with
proteins, forming an extensive, ordered lattice in which the water molecules have reduced
translational and orientational freedom and ordered microscopic arrangements compared
with free water [64]. However, the so-called “bound” water invoked by the Ling’s AIH can
not only be ascribed to the presence of macromolecules in the microscopic heterogeneity of
the cytoplasm (due to the influence of cell organelles) but also to the presence of lipid ag-
gregates such as a membrane [65–67]. These concepts may be incorporated into membrane
theories without entering into conflict with Ling’s theory.

It is precisely the dynamics of lipid-water and water-lipid association that make it
possible to think in a dynamic, coherent coacervate responding to and driven by cell
metabolism. Moreover, the propensity of lipids to stabilize in different topological and
conformational arrays beside lamellas seems to be driven by lyotropic transitions, i.e., water
activity variations at a constant temperature [68,69].

The view of including water as a component of membrane structure inquires the
concept of bilayer as a permeability barrier. In addition, it introduces water as a participant
in the lipid conformational changes.

Despite this, it is quite reasonable that lipids in that context can suffer lyotropic phase
transitions maintaining the bilayer conformation and/or polymorphic changes abandoning
the lamellar conformation, in such a way that the bilayer, as usually pictured, is not a
continuous barrier [13,70].

Lipids interact between them by short-range (weak) forces that make them considered
a soft material. However, lipids have specific sites of hydration (phosphate-PO2

− and
carbonyl-CO groups) and acyl chains that impose a particular ordering of water molecules.
Moreover, the correlation of polar-polar and chain-chain interactions are modulated by
water content giving place to cooperative phenomena as described elsewhere [57,71–73].

In this regard, following the TIP approach [28,33] it is important to point out that water
content may be modulated by osmosis, and this should not be considered as a process to
produce a flux across the membrane (such as in the classical membrane theory) but as one
in which water is extruded from the membrane itself. That is to say, it may cause lyotropic
transitions. Even in the case that the bilayer is preserved, permeability is a much more
complex process than that described by partition and diffusion in the classical membrane
theory. This is so because the partition is not uniform along the membrane thickness, and
diffusion is not given by a constant coefficient as described by Fick’s law [32]. In contrast,
it varies along the process due to the relaxation of the water structure. Different water
activities can give place to changes in the lipid conformation different from bilayers in
extreme cases of dehydration [28].

10. Unifying Membrane Approach with Water Colloid Systems

If the membrane is taken, thermodynamically speaking, as an open system, it is
thought that exchanges of matter with the surroundings are allowed. The classical idea
of close systems is that membrane material is constant. The exchange of water through
the membrane barrier (transient or non-stationary water) is explained without altering
its composition and even maintaining constant its density (packing) along the process.
However, density can change maintaining the lipid constant, at surface pressures well
below the collapse, because the water content is modified. This is more noticeable when
water is dragged by a permeant. Water dissolves in kinks affecting the density of the lipid
matrix [41,57,72] and its dielectric properties due to solute penetration [53,74]. In this sense,
both, open and non-autonomous systems are interrelated concepts.
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In a non-autonomous system, the limit of the aqueous layer is not determined by the
membrane itself but by the media which is in contact with. Thus, if the membrane faces
a colloid aqueous one, such as cytoplasm, it will have different states than if the media is
pure bulk water.

In terms of compartmentalization, continuous semipermeable membranes are not
required as the FMM model does. Compartmentalization can be taken as a kinetic process
and not necessarily as a physical barrier. Different kinetics of solute penetration were found
at different cholesterol ratios in lipid monolayers and constant areas and at different surface
pressures, all of them related to changes in water activity in the interphase [22,41,75].

It is possible that the presence of lipids with the propensity to stabilize in non-bilayer
ensembles strongly affects the kinetics of permeation. The proposal that the dependence
of the conformation of the lipids with the state of the internal cytosol is an extension of
the concept of an open (non-autonomous) system, since it considers a structural change
in the lipid arrangement much more drastic than the lipid density changes in bilayers.
This would deserve further analysis within the frame of Thermodynamics of Irreversible
Processes (TIP) [33].

11. The Thermodynamic Response: Membrane State/Hydration State/State-Function
Relationship

As said, the concept of the open/non autonomous phase can be framed in terms
of Gibbs free energy. J.W. Gibbs was a visionary. It is not known if he was conscious
of that, but the extension of the physical thermodynamics to chemical systems is one
of the most relevant theoretically based experimental formalisms on which science is
based today [76,77].

The free energy decrease can be enthalpically or entropically driven. If water is the
messenger in order to make coherent the biochemical processes in cells including lipids,
the two aspects are fundamental. First, the energy exchange is driven by the energy of
hydrogen bond networks (water-water, water-lipid interactions) and by the entropy change
due to the unique properties of the structure of water itself. An example of this is the water
exchange between monomers and tetramers shown in Figure 4.

The important observation that the periodicity of glycolytic oscillations and that the
attendant coupled oscillations in water relaxation are slowed down by deuterium oxide
(heavy water) makes it reasonable that this is a consequence of the stronger energy of
the D-bonds in comparison to the H-bonds [54]. Thus, this increase in stability enhances
hydrophobic interactions and dampens oscillations.

Therefore, unstable or metastable systems have the root in the H bond strength of water
with itself and with the walls in a restricted environment [64,77–79]. Therefore, more details
in relation to hydrogen bonding energy in different spatial configurations are needed.

Responsive Structures and H Bond Networks

The presence of a cellular component governs the emergent properties that would
affect the cellular interior dynamically. This implies that water organization mainly by
hydrogen bonding should be higher, in terms of extension and stability, than bulk water. If
this is so it should be reflected in dielectric relaxation and NMR results [53,78]. However,
no more than 10% of cell water is supposed to be highly structured. The possibility of
highly organized water was thought to be confirmed when the polywater was apparently
discovered but was promptly demonstrated as a failure [80,81]. In addition, if the highly
structured water exists the strength of H bonds would damp oscillations as occurs in D2O as
denoted above [54].

However, the new perspective of introducing water as a structural/functional compo-
nent in cytoplasm and membranes can be reasonably accepted if interphase phenomena
are considered to play a key role [82]. This is more logical when the cell interior is thought
of as a crowded system, in comparison to a broth of protein ionic solution. In this regard,
volume chemistry should be replaced by surface chemistry [27,83,84].
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Lipids are part of the complex and crowded system and may determine kinetic and
relaxation phenomena that are not restricted to permeation across the membrane. The
relaxation implies the reorganization of water arrangements and therefore, changes in
polarization, density, and compressibility. These are noticeable properties of water derived
from hydrogen bonding network with noticeable plasticity [38].

The relaxation of water in the vicinity of lipid head polar groups measured with
fluorescence probes in cellular aggregates of lipids is a strong indication that responsive
behavior is due to water at the interphase which may be coupled to the cytosol [85–87]. The
physical coupling can be a combination of properties emerging from water arrangements
by H-bonds. As observed by FTIR, water bands are modified by the presence of lipids in
different states (gel or liquid crystalline). These bands change at the phase transition mir-
roring the phase transition in the lipid phase [57]. The changes in bands are a consequence
of the evolution of water populations from tetrahedral array (4H bonds) along 3, 2, 1, and
0H -bonded species [64]. The transition in the water populations “resonates” with the lipid
state, and probably with the interior cell structure and central metabolism as well [88,89].

The strong cohesion in the cytoplasm can be extended not only between proteins and
water but also between lipids and water. This statement fits with the association claimed in
the association-induction hypothesis.

The living state is defined as a cooperative state indicating that each state is well defined
and discrete and that there are neighbor-to-neighbor interactions among the individual
elements. These features have been found in lipid molecules in the processes of adsorption
of aminoacids and proteins to lipid membranes [90].

The cooperativity gives place to propagation. Polarized multilayers of water are not
only in proteins but also in lipids and its propagation from and to the interphase is a prop-
erty of the H bonds. According to AIH theory, fixed charges and associated counter-ions
are separated by up to three dielectrically saturated water layers. This is comparable to
the thickness of water layers in the membrane interphase polarized by charges such as
phosphate and carbonyl groups, constituting the excluded volume which contributes to the
repulsion forces and the responsiveness of the membrane (see Figures 2 and 3) [28,32,50,58].
The complete restriction of reorientation applies to the first hydration layer of these groups.
However, the shells beyond it and in between the acyl chains can be modulated by sur-
face pressure, mechanical constriction imposed by the water activity [65,91]. Membrane
expansion-contraction may be induced by intrinsic processes of the cell driven by metabolic
activity or by mechanical stress imposed by the external environmental conditions (osmotic
swelling and shrinkage) [92].

The dynamic behavior of water at a constant temperature can be of electrical nature,
more precisely derived from the dielectric properties implied in the polarization measured
with fluorescent probes.

The dielectric permittivity is, in turn, much higher in ice than in liquid water explained
by the higher degree of association of water molecules in a periodic array of tetrahedral
coordination (4H-bond population predominates).

The dielectric permittivity is due to the orientation in an electric field of the dipoles.
The common picture is that the reorientation implies the breaking of hydrogen bonds.
However, a complete rotation of the dipole can be achieved by displacement of the H along
with the H bond that remains unbroken. The water dipolar relaxation (rotational dynamics)
is represented schematically below (Figure 5).

The inversion in the direction of the water molecular dipole (arrows) can be conducted
without rotation of the molecule (i.e., without breaking H bonds), but with a displacement
of the protons along with the linear H bond. The extent of the propagation will be limited by
the density of states of 4, 3, 2, and 1-coordinated molecules by H-bonds giving a multiplicity
of polarization states. Thus, polarization at the interphase and the propagation to the cell
interior can be due to H displacement as in the Grothuss mechanism.
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Figure 5. Inversion of dipole direction by displacement of protons without molecular rotation. Protein
conformation may change inducing a water polarization by proton displacement that propagates to
the membrane interphase and vice versa.

Moreover, if water populations change as a consequence of changes in lipid phase
states or internal cell processes, a complex (and fast) response of polarization can result.
The lack of water would alter this propagation essential for the living state [88,89].

Thus, “dynamic interphase hydration” can be controlling the probability of lyotropic
mesomorphic transitions, allowing lipid self-assemblies and metabolically reactive struc-
tures in the cell to be coupled.

12. Concluding Remarks: Membrane Hydration and Membrane State. An Alternative
Way to Membrane Response

The consideration of the interphase as a bidimensional hydrated polar head group
solution coupled to the hydrocarbon region whose polarity varies according to its water
content deserves a new thermodynamic interpretation.

In this regard, the consideration of the excluded volume in the free energy of the lipid
interphase is useful to have a picture of the membrane in crowded and confined systems.

Thus, the description and characterization of crowding- and confinement-induced
effects in living organisms, which have been focused on considering proteins in the cell
cytoplasm, can be extended by the inclusion of the membrane itself as a crowded system
and in connection with the cell interior.
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The presence of water in the first 4C atoms and around the polar groups affects the
water properties and implies water with different free energy content in comparison to
pure bulk water, and hence with different capabilities to react.

Excluded volume can be modified by different chemical and physical conditions, such
as surface pressure, osmosis, mechanical forces, and membrane components (e.g., unsatu-
rated lipids and cholesterol) that may alter the lipid water ratio. This is the basic criterium
to describe the membrane state as an open, non-autonomous and responsive system as it
has been discussed [28,33].

The concept of an open/non-autonomous membrane system is visualized in the
interrelationship between metabolic events and membrane polymorphic changes.

Therefore, the AIH and lipid properties interplay should consider hydration in terms
of free energy modulated by water activity and surface (lateral) pressure.

This review is an attempt to incorporate the membrane as a structural component
following the AIH and coacervate proposal.

In a recent review, the breakdown of current paradigms in the bilayer knowledge
has been analyzed considering water as a fundamental structural and thermodynamic
component of membrane systems [28,33]. This proposal can be extended to lipids organized
in non-bilayer structures.

This criterium may also contribute to linking the role of lipids with Ling’s cell theory,
giving the water a central role from the thermodynamic viewpoint.

Thus, the challenging step forward is to take water organization at the limits of the
membrane as a structural, dynamic, and functional element in living cells that may pene-
trate lipid membranes [32,90]. In this view, the new physical-chemical tool includes Ther-
modynamic of Irreversible Process formalisms and their dissipative and non-dissipative
components to comprehend complex systems, such as cells and cell structures [28,87,92].

Author Contributions: A.S.R. and J.P.C. designed and carried out the experiments and statistical
analysi; E.A.D. conceptualization; E.A.D. and M.d.l.A.F. wrote and revised the paper; M.d.l.A.F.
supervised the study. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by funds from CONICET and ANPCyT.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that could have appeared to influence the work reported in this paper.

References

1. Luckey, M. Membrane Structural Biology: With Biochemical and Biophysical Foundations; Cambridge University Press:
Cambridge, UK, 2014.

2. Nicolson, G.L. The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and
dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta (BBA)-Biomembr. 2014, 1838, 1451–1466.
[CrossRef] [PubMed]

3. Israelachvili, J.N. Refinement of the fluid-mosaic model of membrane structure. Biochim. Biophys. Acta 1977, 469, 221–225.
[CrossRef]

4. Goñi, F.M. The basic structure and dynamics of cell membranes: An update of the Singer–Nicolson model. Biochim. Biophys. Acta
(BBA)-Biomembr. 2014, 1838, 1467–1476. [CrossRef] [PubMed]

5. Luisi, P.L. The Emergence of Life: From Chemical Origins to Synthetic Biology; Cambridge University Press: Cambridge, UK, 2016.
6. Deamer, D. The role of lipid membranes in life’s origin. Life 2017, 7, 5. [CrossRef]
7. Chaplin, M. Do we underestimate the importance of water in cell biology? Nat. Rev. Mol. Cell Biol. 2006, 7, 861. [CrossRef]
8. Ling, G.N. The physical state of water in living cell and model systems. Ann. N. Y. Acad. Sci. 1993, 125, 401–417. [CrossRef]
9. Wimley, W.C.; White, S.H. Membrane partitioning: Distinguishing bilayer effects from the hydrophobic effect. Biochemistry

1993, 32, 6307–6312. [CrossRef]
10. MacCallum, J.L.; Bennett, W.D.; Tieleman, D.P. Distribution of amino acids in a lipid bilayer from computer simulations. Biophys. J.

2008, 94, 3393–3404. [CrossRef]

316



Molecules 2022, 27, 4994

11. Bouchet, A.; Lairion, F.; Disalvo, E.A. Role of guanidinium group in the insertion of l-arginine in DMPE and DMPC lipid
interphases. Biochim. Biophys. Acta 2010, 1798, 616–623. [CrossRef]

12. Seddon, J.M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys.
Acta-Rev. Biomembr. 1990, 1031, 1–69. [CrossRef]

13. Caffrey, M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins
and complexes. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2015, 71, 3–18. [CrossRef] [PubMed]

14. Raja, M.; Spelbrink, R.E.; de Kruijff, B.; Killian, J.A. Phosphatidic acid plays a special role in stabilizing and folding of the
tetrameric potassium channel KcsA. FEBS Lett. 2007, 581, 5715–5722. [CrossRef] [PubMed]

15. Nagle, J.F.; Mathai, J.C.; Zeidel, M.L.; Tristram-Nagle, S. Theory of passive permeability through lipid bilayers. J. Gen. Physiol.
2008, 131, 77–85. [CrossRef]

16. Duncan, S.L.; Larson, R.G. Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys. J.
2008, 94, 2965–2986. [CrossRef] [PubMed]

17. Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta-Rev. Biomembr. 1996, 1286, 183–223. [CrossRef]
18. Shinitzky, M.; Barenholz, Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta

1978, 515, 367–394. [CrossRef]
19. MacDonald, R.; Simon, S. Lipid monolayer states and their relationships to bilayers. Proc. Natl. Acad. Sci. USA 1987, 84, 4089–4093.

[CrossRef]
20. Blume, A. A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim. Biophys. Acta

(BBA)-Biomembr. 1979, 557, 32–44. [CrossRef]
21. Pattus, F.; Slotboom, A.; de Haas, G. Regulation of phospholipase A2 activity by the lipid-water interface: A monolayer approach.

Biochemistry 1979, 18, 2691–2697. [CrossRef]
22. Disalvo, E.A.; Lairion, F.; Martini, F.; Tymczyszyn, E.; Frías, M.; Almaleck, H.; Gordillo, G.J. Structural and functional properties

of hydration and confined water in membrane interfaces. Biochim. Biophys. Acta 2008, 1778, 2655–2670. [CrossRef]
23. Nagle, J.F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta-Rev. Biomembr. 2000, 1469, 159–195. [CrossRef]
24. Lazcano, A.; Alexandr, I. Oparin and the origin of life: A historical reassessment of the heterotrophic theory. J. Mol. Evol.

2016, 83, 214–222. [CrossRef] [PubMed]
25. Schrodinger, E. What Is Life; Cambridge University Press: Cambridge, UK, 1944.
26. Ling, G.N. Physical Theory of the Living State; Blaisdell: Waltham, MA, USA, 1962.
27. Zhou, H.-X.; Rivas, G.; Minton, A.P. Macromolecular crowding and confinement: Biochemical, biophysical, and potential

physiological consequences. Annu. Rev. Biophys. 2008, 37, 375–397. [CrossRef] [PubMed]
28. Frías, M.; Disalvo, E. Breakdown of classical paradigms in relation to membrane structure and functions. Biochim. Biophys. Acta

(BBA)-Biomembr. 2020, 1863, 183512. [CrossRef]
29. McIntosh, T.; Simon, S.; Dilger, J. Location of the water-hydrocarbon interface in lipid bilayers. Water Transp. Biol. Membr.

1989, 1, 1–15.
30. Defay, R.; Prigogine, I.; Bellemans, A. Surface Tension and Adsorption; Wiley: New York, NY, USA, 1966.
31. Damodaran, S. Water activity at interfaces and its role in regulation of interfacial enzymes: A hypothesis. Colloids Surf.

B Biointerfaces 1998, 11, 231–237. [CrossRef]
32. Disalvo, E.A.; Hollmann, A.; Semorile, L.; Martini, M.F. Evaluation of the Defay-Prigogine model for the membrane interphase in

relation to biological response in membrane-protein interactions. Biochim. Biophys. Acta 2013, 1828, 1834–1839. [CrossRef]
33. Pinto, O.; Disalvo, E. A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes. PLoS ONE

2019, 14, e0212269. [CrossRef]
34. Viera, L.; Senisterra, G.; Disalvo, E. Changes in the optical properties of liposome dispersions in relation to the interlamellar

distance and solute interaction. Chem. Phys. Lipids 1996, 81, 45–54. [CrossRef]
35. van Zoelen, E.; Blok, M.; Stafleu, G.; Lancée-Hermkens, A.; de Jesus, C.H.; de Gier, J. A molecular basis for an irreversible

thermodynamic description on non-electrolyte permeation through lipid bilayers. Biochim. Biophys. Acta (BBA)-Biomembr.
1978, 511, 320–334. [CrossRef]

36. Wennerström, H.; Sparr, E. Thermodynamics of membrane lipid hydration. Pure Appl. Chem. 2003, 75, 905–912. [CrossRef]
37. Levental, I.; Veatch, S.L. The continuing mystery of lipid rafts. J. Mol. Biol. 2016, 428, 4749–4764. [CrossRef] [PubMed]
38. Pfeiffer, H. Hydration forces between lipid bilayers: A theoretical overview and a look on methods exploring dehydration.

Subcell. Biochem. 2015, 71, 69–104. [PubMed]
39. Swenson, J.; Kargl, F.; Berntsen, P.; Svanberg, C. Solvent and lipid dynamics of hydrated lipid bilayers by incoherent quasielastic

neutron scattering. J. Chem. Phys. 2008, 129, 07B616. [CrossRef]
40. Srivastava, A.; Malik, S.; Karmakar, S.; Debnath, A. Dynamic coupling of a hydration layer to a fluid phospholipid membrane:

Intermittency and multiple time-scale relaxations. Phys. Chem. Chem. Phys. 2020, 22, 21158–21168. [CrossRef] [PubMed]
41. Disalvo, E.A.; Pinto, O.A.; Martini, M.F.; Bouchet, A.M.; Hollmann, A.; Frías, M.A. Functional role of water in membranes

updated: A tribute to Trauble. Biochim. Biophys. Acta 2015, 1848, 1552–1562. [CrossRef]
42. Heimburg, T. Thermal Biophysics of Membranes; John Wiley & Sons: Berlin, Germany, 2008.
43. Rivas, G.; Ferrone, F.; Herzfeld, J. Life in a Crowded World: Workshop on the Biological Implications of Macromolecular Crowding;

John Wiley & Sons, Ltd.: Chichester, UK, 2004.

317



Molecules 2022, 27, 4994

44. Miyazaki, K.; Schweizer, K.; Thirumalai, D.; Tuinier, R.; Zaccarelli, E. The Asakura–Oosawa theory: Entropic forces in physics,
biology, and soft matter. J. Chem. Phys. 2022, 156, 080401. [CrossRef]

45. Andersen, H.D.; Wang, C.; Arleth, L.; Peters, G.H.; Westh, P. Reconciliation of opposing views on membrane–sugar interactions.
Proc. Natl. Acad. Sci. USA 2011, 108, 1874–1878. [CrossRef]

46. Luzardo, M.C.; Amalfa, F.; Nunez, A.M.; Diaz, S.; de Lopez, A.C.B.; Disalvo, E.A. Effect of trehalose and sucrose on the hydration
and dipole potential of lipid bilayers. Biophys. J. 2000, 78, 2452–2458. [CrossRef]

47. Lairion, F.; Disalvo, E.A. Effect of trehalose on the contributions to the dipole potential of lipid monolayers. Chem. Phys. Lipids
2007, 150, 117–124. [CrossRef]

48. Disalvo, E.; de Gier, J. Contribution of aqueous interphases to the permeability barrier of lipid bilayers for non-electrolytes.
Chem. Phys. Lipids 1983, 32, 39–47. [CrossRef]

49. White, S.H.; Jacobs, R.E.; King, G.I. Partial specific volumes of lipid and water in mixtures of egg lecithin and water. Biophys. J.
1987, 52, 663. [CrossRef]
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Abstract: While bulk water and hydration water coexist in cells to support the expression of biological
macromolecules, how the dynamics of water molecules, which have long been only a minor role in
molecular biology research, relate to changes in cellular states such as cell death has hardly been
explored so far due to the lack of evaluation techniques. In this study, we developed a high-precision
measurement system that can discriminate bulk water content changes of ±0.02% (0.2 mg/cm3)
with single-cell-level spatial resolution based on a near-field CMOS dielectric sensor operating at
65 GHz. We applied this system to evaluate the temporal changes in the bulk water content during
the cell death process of keratinocytes, called corneoptosis, using isolated SG1 (first layer of stratum
granulosum) cells in vitro. A significant irreversible increase in the bulk water content was observed
approximately 1 h before membrane disruption during corneoptosis, which starts with cytoplasmic
high Ca2+ signal. These findings suggest that the calcium flux may have a role in triggering the
increase in the bulk water content in SG1 cells. Thus, our near-field CMOS dielectric sensor provides
a valuable tool to dissect the involvement of water molecules in the various events that occur in
the cell.

Keywords: bulk water content; near-field CMOS dielectric sensor; fluorescence imaging; corneoptosis;
SG1 cell

1. Introduction

Since the birth of primitive life in the ocean about 3.5 billion years ago, life has evolved
on the basis of water. It is known that chemical reactions in living organisms would
not be possible without water, which forms the medium that accounts for most of the
weight of mammalian cells [1]. One of the most important roles of water molecules is
the hydration of biological macromolecules, as their conformation is stabilized by the
presence of surrounding hydration water [2]. Hence, the hydration environment in the
cell is considered to be a mirror of the cell activity [3–5], and some theoretical studies
have predicted that most of the water in a cell crowded with many biomolecules exists
as dynamically restrained hydration water [6,7]. However, in the past 15 years, sporadic
studies have experimentally evaluated water dynamics in cells, revealing that the majority
of intracellular water molecules exhibit bulk-like orientation and translational motions,
with only a fraction of hydration water [8–14]. This result suggests that both bulk water and
hydration water interacting with biomolecules are involved in some way in intracellular
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activities, and therefore, the equilibrium between bulk and hydration water may play an
important biological role in cellular functions.

Research to assess the amount of bulk and hydration water in cells originated in nu-
clear magnetic relaxation and neutron scattering experiments in the 2000s [8–11]. However,
these techniques require deuterium substitution or tissue freezing to highlight intracellular
water dynamics, and have not been able to observe intracellular water in its true physiolog-
ical state. Later, using terahertz spectroscopy [15–17], it was shown that about a quarter of
intracellular water in cultured human-derived cells under physiological conditions exists as
hydration water, but its uncertainty (more than ±5%) would not be small enough to observe
slight changes in the hydration state accompanied by changes in cell conditions [17]. In
addition, the wavelength of terahertz waves (300 μm at 1 THz) is sufficiently large for the
size of a cell and so it is difficult to obtain spatial resolution at the level of a single cell with
far-field spectroscopy, and thus, the water dynamics that can be obtained are limited to the
spatial average of a cell monolayer. Therefore, in order to clarify how intracellular water is
involved in cellular functions, an improved technique to evaluate the bulk or hydration
water content in cells with high precision at single-cell-level spatial resolution is required.

In recent years, we have found that the complex dielectric constant, ε̃ = ε′ − iε′′ , in
the millimeter-wave region (30–300 GHz) can be used to quantitatively evaluate the bulk
water content without interference from macromolecules and hydration water (including
confined water), because the contribution of dipolar relaxation of bulk water is far more
dominant in this region [18–21]. We developed a dielectric sensor with embedded LC
resonators oscillating at ~65 GHz, whose resonance conditions change to reflect the complex
dielectric constant of the sample, and analyzed the change in the bulk water content based
on the change in resonance frequency, thereby reducing the uncertainty of the evaluated
bulk water content by an order of magnitude compared to conventional spectroscopic
measurements [20]. The sensor consists of a two-dimensional array of resonators that sense
the dielectric responses of the near-field, and the information of all elements can be read out
in a CMOS circuit, so that the complex dielectric constant in the 65 GHz region (wavelength
of 4.6 mm) can be recognized with a spatial resolution of about 50 μm at video rate [22].
Therefore, this new dielectric sensor can be expected to be an elemental technology for
highly precise real-time evaluation of the bulk water content changes occurring in a single
cell, which will help elucidate the role of intracellular water.

In this study, we aim to evaluate the relationship between changes in cell state and in
the intracellular bulk water content using the near-field CMOS dielectric sensor operating
at 65 GHz, using cell death as an example, which involves enormous and irreversible
changes in cell physiology. Since changes in the position and morphology of cells may
have a significant effect on the measurement results when using near-field sensors, we
focus on corneoptosis, which is a process by which non-migratory SG1 cells (keratinocytes
located in the superficial layer of stratum granulosum of the skin epidermis) die under high
[Ca2+] and acidic conditions to transform into nonviable anuclear corneocytes that perform
barrier functions in the epidermis [23,24]. In this study, we develop an experimental
system that can characterize the bulk water content with ultimate precision using the
65 GHz near-field CMOS dielectric sensor, and present changes in the bulk water content
during corneoptosis of SG1 cells isolated from mouse epidermis, in parallel with time-lapse
fluorescence imaging.

2. Materials and Methods

2.1. Near-Field CMOS Dielectric Sensor Operating at 65 GHz

The CMOS dielectric sensor used in this study was a custom-made product, manufac-
tured by Sharp Corporation, with a measurement area of 3 × 4 mm on a 50 × 65 mm sensor
chip, in which LC resonators operating at around 65 GHz are arrayed in 24 rows, with even-
and odd-numbered rows vertically shifted by forming a zigzag arrangement within each
row, as illustrated in Figure 1a [20]. Each LC resonator is coupled to a voltage-controlled os-
cillator (VCO) and embedded in a frequency synthesizer loop, and its oscillation frequency
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is detected by a 32-bit frequency counter after down-conversion to ~100 MHz output fre-
quency by divide-by-3 injection-locked frequency divider and divide-by-200 divider [22].
This LC resonator, defined by the capacitance C0 and inductance L0, is implemented in
a top metal layer, on which a passivation layer (capacitance: C1) of several μm thickness
is formed. When the measurement sample with C2 − iG2 ∝ ε′2 − iε′′2 is applied on it, the
resonant frequency f of this LC resonator is given by [20,22]:

f =

⎡⎣2π

√√√√L0

{
C0 + C1

C1C2 + C22 + G22

(C1 + C2)
2 + G22

}⎤⎦−1

(1)

Equation (1) indicates that each LC resonator acts as a sensing element that measures
the complex dielectric constant of the sample through the resonant frequency f . The C0
and L0 of the resonators are strictly locked in a self-sustained manner according to the
VCO, and even with a gating time of 200 μs, the variation in the resonant frequency is
limited within ±0.17 MHz (under ideal circumstances), which is extremely small compared
to the center frequency (~65 GHz) [22]. Given that the impact of dipolar relaxation on
the complex dielectric constant (ε′2 and ε

′′
2) in the 65 GHz region is sufficiently larger for

bulk water than for macromolecules or hydration water [18–21], each resonator element
serves as a highly sensitive dielectric sensor that can characterize the bulk water content by
distinguishing small changes in the complex dielectric constant in the 65 GHz region, and
the two-dimensional spatial distribution of the bulk water content can be also evaluated in
real time by reading out a total of 1488 arrayed elements in the CMOS circuit. However, the
detection sensitivity of this dielectric sensor is not spatially uniform; the dielectric properties
of the sample near the gap of the LC resonator are most sensitive to the resonance frequency
in the planar direction, and the detection sensitivity decays exponentially with depth [22].
As a result, each LC resonator works as a near-field sensor reflecting the complex dielectric
constant at around 65 GHz in a region limited to ~50 μm in diameter and ~10 μm depth,
which is determined by the resonator structure and the thickness of the passivation layer,
thus enabling the precise evaluation of the bulk water content with single-cell-level spatial
resolution as long as the cell is located in the sensitive area of the LC resonator.

2.2. Experimental Setup of Fluorescence Imaging

To assess the morphology of the cells by acquiring the fluorescence images in parallel
with the dielectric sensor measurements, we set up a custom-made Tokai Hit imaging
chamber on the manual translation stage of a Nikon upright microscope (Eclipse Ni-U).
Inside the chamber was kept at 37 ◦C with humidified air containing 5% CO2 supplied
from a controller STGX (Tokai Hit, Fujimiya, Japan), and the dielectric sensor chip was
mounted on the substrate in the chamber. A stainless steel well with a diameter of 16 mm
and a depth of 5 mm is fixed around the measurement area of the dielectric sensor as a
liquid reservoir. A 20× water immersion lens (CFI Fluor 20× W, Nikon, Tokyo, Japan) is
approached through an opening in the chamber canopy until it is immersed in the liquid
filling the well, allowing acquisition of the fluorescence image of the dielectric sensor chip
surface in the upright position.

2.3. Preparation of SG1/SG2 Cell Suspension

By injecting exfoliative toxin-A into the dorsal skin of 4-month-old EGFPSG1 knock-in
mice (male), epidermal sheets (approximately 5 × 15 mm) containing SG2 cells (ker-
atinocytes in the 2nd layer of stratum granulosum) and SC cells (keratinized dead cells;
corneocytes) as well as SG1 cells were detached [23], and all cells were separated from
the sheets in trypsin solution containing Hoechst 33342 and CellMask Orange Plasma
(Thermo Fisher Scientific Inc., Waltham, MA, USA) at final concentrations of 10 μg/mL
and 15 μg/mL, respectively. After that, the extracellular [Ca2+] was reduced to less than ca.
1 nM by adding 1 mM ethylene glycol tetraacetic acid, and then SG1/SG2 cell suspensions
were prepared by adding MCDB 153 medium at pH 7.2 containing 3 μM DRAQ7 (Biostatus
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Ltd., Shepshed, UK) after centrifuge. As shown in the confocal images in Figure 1b, SG1
cells isolated by this procedure express EGFP in the entire cytoplasm except for numerous
intracellular granules, whereas SG2 cells are EGFP-negative. In the skin epidermis, SG1
cells are known to have a flattened Kelvin’s tetrakaidecahedron-like shape [25], but during
the isolation process, the expansion rate differs between the apical and basolateral side
of the cells, resulting in a polygonal saucer-like morphology. While SG1 cells can be cul-
tured in a viable state, SG2 cells are dead in the final cell suspension, presumably because
the cell membrane is directly damaged for a longer period of time than SG1 cells during
trypsin treatment.

Figure 1. (a) Illustration of the LC resonator array. Each resonator element is numbered by hmvn (m-th
in horizontal and n-th in vertical direction; 0 � m � 62, 0 � n � 24), and even- and odd-numbered
columns in the same row are vertically shifted in a zigzag arrangement. (b) Left: Confocal fluorescence
images of isolated SG1 cells (EGFP; green) stained with Hoechst 33342 (blue) and CellMask (orange).
Note that the scale of the cross-section planes is compressed to 50% compared to that of the top
view. Right: Tiled fluorescent labeling of SG1/SG2 cells stained with Hoechst 33342 and CellMask.
EGFP expression allows SG1 cells (EGFP-positive) to be fluorescently distinguished from SG2 cells
(EGFP-negative). (c) Upright fluorescence microscopy images of measured SG1 (EGFP-positive;
green) and SG2 (EGFP-negative) cells that meet the “single cell on a single element” condition at
t = 0 h. Both cells are stained with Hoechst 33342 (blue), CellMask (orange), and DRAQ7 (magenta).
The contours of the resonator structures, cells, and nuclei recognized by these fluorescent dyes are
manually traced with white, orange, and cyan lines.

2.4. Simultaneous Evaluation of SG1 Cell Death by Dielectric Sensor and Microscopy

We applied 600 μL of the SG1/SG2 cell suspension onto the measurement area of
the dielectric sensor placed at the focal point of the upright microscope and waited for
about 10 min until the cells were completely settled. After that, by observing the entire
measurement area (3 × 4 mm) while manually moving the translation stage of the micro-
scope, we identified 13 resonator elements that had only one cell on the sensitive area, i.e.,
elements that satisfied the “single cell on a single element” condition. By discriminating
SG1 cells from SG2 based on the EGFP expression, we found that 7 of the 13 cells were
SG1 cells and the remaining 6 were SG2 cells. After fixing the manual stage in the field of
view where one SG1 cell and one SG2 cell (Figure 1c), each of which fulfilled the “single
cell on a single element” condition, could be observed simultaneously, corneoptosis of SG1
cells was induced by gently replacing the medium in the wells with MCDB 153 medium at
pH 6.1 supplemented with 1 mM CaCl2 and 3 μM DRAQ7 at final concentration. After the
entire surface of the sensor was observed within 10 min to ensure that no change in the
position of the cells had occurred due to the replacement of the medium, simultaneous data
acquisition of the dielectric sensor and upright fluorescence microscope was performed
at 10-minute intervals with the initial measurement, t = 0 h, until the 16th hour in total.
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Since the dielectric sensor scans all 1488 elements in the CMOS circuit in a few seconds,
the resonant frequencies of all the elements with seven SG1 cells and six SG2 cells were
acquired almost simultaneously. With the fluorescence microscope, on the other hand, the
fluorescence of one SG1 and one SG2 cell each was only observed, because it performed
fixed-point observation in the same field of view.

3. Results and Discussion

3.1. Establishment of a High-Precision Evaluation for Resonant Frequency Changes

Figure 2a shows the time-dependent change in the resonant frequency f of a randomly
selected element with no cells in the sensitive area (hereafter referred to as the “primary el-
ement”), which observes only the dielectric responses of the culture medium. The resonant
frequency f fluctuated non-monotonically during the 16 h of continuous measurement,
with a maximum change of 0.0161 GHz (16.1 MHz). However, since stability of the center
frequency of the resonator in this dielectric sensor is typically controlled within ±1 MHz in
our experimental setup [20], this 16.1 MHz variation is considered to reflect fluctuations
in the dielectric properties of the medium rather than fluctuations in the resonator itself,
such as C0 and L0. The dielectric response of bulk water, which makes up most of the
medium, has a pronounced temperature dependence in the 65 GHz region [26], and the
resonant frequency f of the dielectric sensor downshifts by about 26 MHz for every 1 ◦C
increase in bulk water temperature [20]. Therefore, a change in the resonance frequency
of 16.1 MHz corresponds to about 0.6 ◦C in terms of temperature, but this level of temper-
ature fluctuation is conventionally tolerated in general cell culture, and besides, it is not
technically easy to keep the temperature more strictly constant over 10 h. However, since
the LC resonators in the dielectric sensor used in this study are arrayed at 50 μm intervals,
the temperature between two adjacent resonators is expected to be extremely close, and by
calculating their difference, the effect of temperature fluctuation on the resonant frequency
can be compensated over a long period of time. In fact, as shown in Figure 2a, the f of the
resonator element vertically adjacent to the primary element (“reference element”) shows a
quite similar time variation, keeping a constant difference of ~4 MHz regardless of time,
which originates from differences in the device constants such as the resonator (C0, L0) and
the passivation layer (C1) for each element. Therefore, in order to take into account this
effect, the frequency shift Δ f at time t for an individual LC resonator is defined as [20,22]:

Δ f (t) = f0 − f (t) (2)

where f0 is the resonance frequency when there is no sample on the resonator. Since the
frequency shift Δ f represents the change in f of the same element with and without the
sample, it can effectively cancel the effect of the device constant. The calculated frequency
shifts Δ f of the primary and the adjacent reference elements in Figure 2b show that they
were in good agreement, indicating that the difference in the resonant frequency f by
4 MHz seen in Figure 2a is indeed due to the difference in the device constants (C0, L0
and C1) between the elements, and there is little difference in the dielectric properties
(=temperature) of the sample sensed by the two adjacent elements. Here, we define the
difference between the frequency shift Δ fref(t) of the reference element and the frequency
shift Δ f (t) of the primary element,

δ[Δ f (t)] = Δ fref(t)− Δ f (t) (3)

as the difference frequency shift. As shown in Figure 2c, the δ[Δ f (t)] calculated from
Figure 2b was maintained at 0.02 ± 0.24 MHz for 16 h, allowing precise observation of the
change in resonance frequency over time. Using Equations (1)–(3), it is calculated that the
variation in the resonance frequency of ±0.24 MHz is comparable with changes of 0.002 in
the real part (ε′2) and 0.004 in the imaginary part (ε′′2) of the dielectric constant [20], which
are far smaller than the dielectric constant of pure water at 65 GHz (14.9 for the real and
23.7 for the imaginary part at 37 ◦C). Assuming that the dielectric constant change is solely
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due to the change in the bulk water content, the frequency shift of ±0.24 MHz corresponds
to a ±0.02% (i.e., ~0.2 mg/cm3 according to the water density of ~1.0 g/cm3) change in
the bulk water content using the analysis algorithm established in our previous study [20].
Therefore, this technique can identify changes in the bulk water content as a significant
difference if it is 0.02% or more.

Figure 2. (a) Oscillation frequency f (t) and (b) frequency shift Δ f (t) of the primary resonator element
with the liquid medium on top and its vertically adjacent resonator element (reference element).
(c) Time-dependent difference frequency shift δ[Δ f (t)] defined by Equation (3). (d) Difference
frequency shift δ[Δ f (t)] for the SG1 cell (green), the dead SG2 cell (red), and liquid medium (gray)
observed simultaneously by fluorescence microscopy. Standard deviations over 3–16 h (SG1 cell) and
0–16 h (SG2 cell and medium) are given for reference.

3.2. Evaluation of Intracellular Bulk Water Content Changes during SG1 Cell Death

Next, the element in which the cell is included in the sensitive area is considered to
be the primary element, and its adjacent element with no cells is used as the reference.
The difference frequency shift δ[Δ f (t)] in the live SG1 cell (at t = 0 h) and dead SG2 cells
measured while observing with the upright fluorescence microscope, and the same result
as in Figure 2c, named medium, are shown in Figure 2d. The medium showed almost
zero δ[Δ f (t)] throughout the entire measurement time, while that of the dead SG2 cells
averaged about 15 MHz over time, with a similar time variation (±0.26 MHz). Based on
Equation (3), this result indicates that Δ f (t) is smaller than the frequency shift Δ fref(t) of
the reference element (liquid medium) by ~15 MHz. Given that the complex dielectric
constant in the 65 GHz region decreases in both real and imaginary parts as the bulk water
content in the sample decreases [20], which results in a decrease in the frequency shift Δ f
(or an increase in f ), the larger time-averaged difference frequency shift δ〈Δ f (t)〉 in the
SG2 cell than in the medium indicates that the bulk water content in the SG2 cell is lower
than in the liquid medium. This result is considered to be natural because water accounts
for about 99% of the weight of the MCDB153 medium [27,28], while the water content
is relatively low due to the presence of organelles and some of the water is hydrated to
biomolecules in the cells [15–17]. As the dielectric sensor used in this study has a spatially
non-uniform sensitivity distribution [22], at this point, we are not able to determine the
absolute value of the bulk water content in the cell due to the presence of extracellular
water, but it is possible to observe the time-dependent change in the bulk water content
above 0.02%.
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Figure 2d shows that the difference frequency shift δ[Δ f (t)] in the SG1 cell decreases
monotonically until the second hour after induction of corneoptosis at t = 0 h and then
converges to a constant value at ~26 MHz, in contrast to the constant δ[Δ f (t)] of the
dead SG2 cell and liquid medium during 16 h of the continuous measurement (the larger
δ〈Δ f (t)〉 than that of the SG2 cell is because the observed SG1 cell occupies a larger part of
the sensitive area of the resonator element). By fitting this result with a single exponential
function, it was found that δ[Δ f (t)] of the SG1 cell decreased by 3.64 MHz with a time
constant τ = 0.55 h, which means that it takes 0.55 h for δ[Δ f (t)] to reach 63.2% (=1−e−1)
of equilibrium. In light of the above, the significant decrease in δ[Δ f (t)] during 0 � t � 2 h
indicates that the dielectric sensor reflects some phenomenon related to the initial process
of corneoptosis by the SG1 cell.

To confirm whether the monotonic decrease in δ[Δ f (t)] immediately after the corneop-
tosis induction is also observed in different cells, the measured δ[Δ f (t)] of the SG1 cells
(n = 7) that met the condition of “single cell on a single element”, as secured by fluores-
cence microscopy, were collected. In order to evaluate their response to time, ignoring
the effect of cell position on the sensitive area of the resonator element, the normalized
δ[Δ f (t)] adjusted to take values between 0 and 1 was derived, and then fitted with the
exponential function, as shown in Figure 3a. Considering that SG1 cells isolated from
mouse epidermis were used in this study, the time constant τ, which varied from 0.38 to
2.48 h, reflects the heterogeneity among cells. However, the characteristic of the temporal
change—δ[Δ f (t)] monotonically decreasing immediately after cell death induction and
then reaching a plateau—was common to all seven SG1 cells. The normalized δ[Δ f (t)]
of the n = 7 average of the SG1 cells, as well as the SG2 cells (n = 6) and liquid medium
(n = 9), are summarized in Figure 3b,c. The dead SG2 cells and medium showed almost
constant δ[Δ f (t)] over the 16 h of measurement, but only that of the SG1 cells showed
a significant exponential decrease, confirming the reproducibility of the results seen in
Figure 2d. Based on this finding, in the following, we will deepen the interpretation of
δ[Δ f (t)] by limiting it to the SG1 cell shown in Figure 2d, and compare it with biological
findings obtained by fluorescence labeling.

If we assume that the decrease in δ[Δ f (t)] of the SG1 cell by 3.64 MHz, found in
Figure 2d, is solely due to the change in the dielectric properties at around 65 GHz, this
result can be interpreted as an increase in the intracellular bulk water content in the early
stage of corneoptosis in SG1 cells (according to Equations (1)–(3), δ[Δ f (t)] decreases as
the bulk water content increases, and becomes δ[Δ f (t)] = 0 MHz when it is the same as
the liquid medium). However, each resonator element works as a near-field sensor that
is sensitive only to a spatially limited area, and therefore, the dielectric properties of the
sample sensed by the resonator change as the relative position of the cell to the resonator
element or the thickness of the cell changes. Hence, in order to understand the origin of the
δ[Δ f (t)] observed in Figure 2d, it is essential to observe the changes in cell position and
morphology based on microscopy. Figure 4a shows the temporal changes in the upright
fluorescence microscope images taken in parallel with the dielectric sensor measurement.
The SG1 cells express endogenous EGFP (green) with additional staining by CellMask (red)
for the plasma membrane, and membrane-permeable Hoechst 33342 (blue) and membrane-
impermeable DRAQ7 (orange) for the nucleus. Figure 4a shows that the isolated SG1 cell
do not migrate in parallel or rotate within the measurement time. Furthermore, time-lapse
imaging using confocal microscopy of a SG1 cell isolated from different mice on different
days revealed that in vitro corneoptosis causes loss of Hoechst 33342 fluorescence but
little change in depth and thickness, which is common to all observed cells (n = 7); a
cross-sectional image of one of them is shown in Figure 4b. These observations suggest
that SG1 cells are not migratory and that their three-dimensional morphology is largely
preserved throughout corneoptosis, at least in the in vitro environment. Therefore, we can
exclude the possibility that changes in the position or morphology of SG1 cells affect the
change in δ[Δ f (t)], and hence, the decrease in δ[Δ f (t)] seen in Figure 2d can be attributed
to an increased bulk water content in the cell. Calculated in the same manner as above, a
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decrease in δ[Δ f (t)] of 3.64 MHz corresponds to an increase in the bulk water content of
0.3% (~3 mg/cm3) [20]. Nevertheless, as SG1 cells have a convexly curved shape (Figure 1b)
and the liquid medium outside the cells also occupies the sensitive area of the dielectric
sensor, the bulk water content in the SG1 cell is considered to increase by more than 0.3%
in actuality.

Figure 3. (a) Normalized δ[Δ f (t)] of seven elements with a SG1 cell located in the sensitive area of
the resonator (offsetting is applied to avoid data overlap). Each of the experimental results was fitted
with the single exponential function with the time constant τ. The data with τ = 0.55 h represent a
normalized version of the results shown in Figure 2d. (b) Normalized δ[Δ f (t)] averaged over the
examined SG1 cells (n = 7) and SG2 cells (n = 6), and (c) liquid medium (n = 9). The error bars
represent the standard error.

In living cells, cellular stability is accomplished by a number of homeostatic processes,
and the cell volume (in other words, the intracellular water content) is maintained within a
certain range. However, when cell death is induced, failure of these homeostatic processes
results in volume changes specific to the cell death process [29,30]. For example, in apopto-
sis, monovalent cations, mainly sodium and potassium [31], are released from the cell, and
the resulting osmotic shock causes rapid loss of water through aquaporins [32], leading to a
tens of percent decrease in cell volume. On the other hand, in corneoptosis of SG1 cells, the
nucleus and mitochondria, which are essential for cell survival, are lost, while the keratin
network [33] and cornified envelope are developed in the cell [34] and the remaining cell
body is taken over by the corneocyte. Thus, the three-dimensional morphology of SG1
cells maintains its mechanical strength even after cell death, and as a result, no discernible
volume change is observed in corneoptosis in vitro, unlike other cell deaths. Nevertheless,
it is intriguing to note that corneoptosis, as well as other cell deaths such as apoptosis
(although the intracellular “bulk” water content was not directly assessed), share the same
event of changes in intracellular water content, and it is worth noting what causes the
one-step irreversible increase in the bulk water content seen in corneoptosis and what
biological significance it has in the cell death process.
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Figure 4. (a) Time-lapse fluorescence images of the SG1 cell (EGFP-positive) stained with CellMask
(orange), Hoechst 33342 (blue), and DRAQ7 (magenta) under pH 6.1 and 1 mM [Ca2+] conditions
(scale bar, 10 μm). The resonator structure is manually traced with white dotted line at t = 0 h to
show the relative position of the cell (nucleus) and the resonator. (b) Cross-sectional images of a
SG1 cell isolated from different mice on different days at 4-hour intervals observed with a confocal
microscope (scale bar, 10 μm). The cross-sectional outline at 0 h is superimposed to confirm that there
are no three-dimensional morphology changes in the cell.

3.3. Comparison of Changes in Intracellular Water and Cell Membrane Permeability

To further understand the relationship between changes in the intracellular bulk water
content and biological processes during corneoptosis, we will now quantitatively compare
δ[Δ f (t)] and fluorescence imaging in the same SG1 cell. In this experiment, nuclei of the
cells were stained with membrane-permeable Hoechst 33342 and membrane-impermeable
DRAQ7, and Figure 4a shows that the former showed strong fluorescence from t = 0 h,
while the latter increased its intensity from 0 to 4 h followed by a gradual decrease. In
order to interpret this temporal change, the fluorescence intensity of DRAQ7, IDRAQ(t),
normalized to a value between 0 and 1 is shown in Figure 5a. Consistent with a recent
report [23], the rapid increase in IDRAQ(t) seen immediately after induction of corneoptosis
reflects the binding of DRAQ7 dye to intracellular DNA due to the increase in cell mem-
brane permeability. However, once corneoptosis begins to set in, DNA degradation also
progresses due to the activation of deoxyribonuclease, and after the increase in membrane
permeability subsides, the effect of DNA degradation becomes apparent as a slow and
monotonous decrease in IDRAQ(t). In order to make a quantitative comparison with the
change in δ[Δ f (t)] seen in Figure 2d, the normalized IDRAQ(t) was fitted with the following
biexponential function:

IDRAQ(t) = ΔIp
(
1 − exp

[−t/τp
])

+ ΔId exp[−t/τd] (4)

where the first term on the right-hand side corresponds to the increase in DRAQ7 intensity
due to the increased cell membrane permeability, and the second term corresponds to
the gradual intensity decrease due to DNA degradation, with ΔI and τ representing
the amplitude and time constant of each process, respectively. Based on the best-fitting
parameters, the time evolution of cell membrane permeability and DNA degradation is
reproduced in the inset of Figure 5a.
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Figure 5. (a) Normalized fluorescence intensity of DRAQ7, IDRAQ(t), and its best-fitting biexponential
functions (dashed lines). The inset shows the time variation of the membrane permeability and
DNA degradation components of the biexponential function given by Equation (4). (b) Membrane
permeability defined by 1 − exp

[−t/τp
]
, and (c) normalized δ[Δ f (t)] and its exponential fit of the

same SG1 cell.

The observed membrane permeabilization is not limited to corneoptosis of SG1
cells, but is also observed in other cell deaths [29], and hence, the increased intensity
of membrane-impermeable dye is widely used as a probe of cell death accompanied by
plasma membrane disruption. Since the permeability of DRAQ7 with a molecular weight
of about 400 Da allows smaller water molecules to pass through the cell membrane in
and out of the cell, the increase in the bulk water content in the cell may be related to
increased membrane permeability. Aiming to evaluate this effect, we compared the mem-
brane permeability, 1 − exp

[−t/τp
]
, and the normalized frequency shift, δ[Δ f (t)], of the

same SG1 cell in Figure 5b,c. The results show that the time constant of δ[Δ f (t)] (τ = 0.55 h)
is separated from τp = 1.55 h by as much as one hour, even though the same cell was
observed simultaneously by the dielectric sensor and fluorescence microscope. Matsui et al.
recently reported that τp was in good agreement with the time constant for the leakage of
the fluorescent dye Rhod4-AM out of the cell [23], indicating that τp is a direct index of the
rate of cell membrane disruption because the time required for DRAQ7 molecules to bind
to DNA and show fluorescence after penetrating the cell membrane is sufficiently small
compared to τp. Therefore, the fact that the time constant of δ[Δ f (t)] was one hour shorter
than τp suggests that the bulk water content increased in the cell before the permeability
of the cell membrane increased. In addition, the fact that δ[Δ f (t)] reaches a plateau after
t = 2 h indicates that the intracellular bulk water content is almost unaffected by membrane
permeabilization and DNA degradation.

Previously, it was shown that when isolated SG1 cells were exposed to acidic medium
containing 1 mM [Ca2+], instantaneous calcium flux into SG1 cells was observed within
5 min, which possibly activates enzymes such as transglutaminase, deoxyribonuclease, and
aspartic protease in the cells, resulting in the progression of death into anuclear cells with
the cornified envelope [23]. In general, when an enzyme specifically binds to a substrate, a
portion of the hydration water immobilized in its active site is displaced [35,36], increasing
the number of water molecules that behave in a bulk-like manner [37]. Although it is
possible in principle to consider that the increase in the intracellular bulk water content
observed in this study is due to such a release of hydration water, the bulk water content
increased by enzyme-substrate binding cannot be more than 0.1% (~1 mg/cm3) at most
since the number of hydration molecules occupying the active site of the enzyme is small,
nor can it explain the irreversible change in δ[Δ f (t)]. On the other hand, it has been shown
that calcium plays an important regulatory role in the function of aquaporins, which are
involved in the rapid volume loss (water outflow) that occurs during apoptosis [38,39].
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This makes a possible scenario that elevated cytoplasmic [Ca2+] activates aquaporins at the
same time that corneoptosis is initiated, causing a water influx into the cell. The irreversible
increase in the bulk water content may alter a vital entropy sink for biochemical reactions
in the cell [40], resulting in changes in protein folding, self-assembly of membranes, and
expression of macromolecular functions [2].

4. Conclusions

While physicochemical studies have revealed that water is closely associated to the
functional expression of biological macromolecules, little is known about the involvement
of water in the actual cell crowded with numerous molecules. In this study, we aimed to
understand this issue in a paradoxical way by observing temporal changes of the intracel-
lular bulk water content during SG1 cell death (corneoptosis) into anuclear corneocytes.
Using a near-field CMOS dielectric sensor capable of measuring the complex dielectric
constant in the 65 GHz region with high sensitivity, we developed a measurement system
that can observe changes in the bulk water content of ±0.2 mg/cm3. We then found that
the bulk water content significantly increases by more than 3 mg/cm3 in an isolated SG1
cell in the early stage of corneoptosis, which is triggered by an increase in cytoplasmic
[Ca2+]. Simultaneous observation of the membrane-impermeable DRAQ7 fluorescence
intensity revealed that the time constant τ for the increase in the intracellular bulk water
content was found to be about one hour shorter than that for the change in DRAQ7 intensity,
indicating that changes in water dynamics in SG1 cells precede membrane permeabilization
in corneoptosis. Since such temporal changes in the bulk water content were not observed
in dead SG2 cells, it is possible that although living SG1 cells have a mechanism to actively
maintain low bulk water content, the induction of cell death by corneoptosis may upset
the equilibrium of water dynamics maintained in the cell, probably due to cytoplasmic
calcium-induced activation of aquaporin, which in turn promotes changes in the state of
macromolecules and hence the progression of cell death.

Although it is not possible to speculate further at this time due to the lack of available
experimental evidence, if this state-of-the-art near-field CMOS dielectric sensor, which
is still capable of acquiring data with high time resolution at video rates, can be further
developed to improve measurement precision and spatial resolution, and if it can be
integrated with surface modification technologies to reduce cellular migration, it is expected
that further studies using a wide range of cells and bacteria will elucidate, in a real-time
and non-invasive manner, the involvement of bulk water in various cell activities, not just
cell death.
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Abstract: Bovine respiratory syncytial virus (BRSV) is a major contributor to respiratory disease
in cattle worldwide. Traditionally, BRSV infection is detected based on non-specific clinical signs,
followed by reverse transcriptase-polymerase chain reaction (RT-PCR), the results of which can
take days to obtain. Near-infrared aquaphotomics evaluation based on biochemical information
from biofluids has the potential to support the rapid identification of BRSV infection in the field.
This study evaluated NIR spectra (n = 240) of exhaled breath condensate (EBC) from dairy calves
(n = 5) undergoing a controlled infection with BRSV. Changes in the organization of the aqueous
phase of EBC during the baseline (pre-infection) and infected (post-infection and clinically abnormal)
stages were found in the WAMACS (water matrix coordinates) C1, C5, C9, and C11, likely associated
with volatile and non-volatile compounds in EBC. The discrimination of these chemical profiles by
PCA-LDA models differentiated samples collected during the baseline and infected stages with an
accuracy, sensitivity, and specificity >93% in both the calibration and validation. Thus, biochemical
changes occurring during BRSV infection can be detected and evaluated with NIR-aquaphotomics in
EBC. These findings form the foundation for developing an innovative, non-invasive, and in-field
diagnostic tool to identify BRSV infection in cattle.

Keywords: absorbance; biofluid; cattle; chemometrics; discrimination; NIRS; transmittance; virus

1. Introduction

Bovine respiratory syncytial virus (BRSV) is an enveloped, non-segmented, negative-
stranded RNA virus that belongs to the order Mononegavirales. It is a member of the
pneumovirus genus within the Pneumovirinae subfamily of the Paramyxoviridae family [1,2].
The BRSV virion is made up of a lipid envelope generated from the host plasma membrane;
it contains three virally encoded transmembrane surface glycoproteins that are arranged
independently on the surface as spikes. These glycoproteins are the large glycoprotein G,
the fusion protein F, and the small hydrophobic protein SH [1,2]. BRSV is very contagious
and spreads through respiratory aerosols and via animal-to-animal contact [3]. During the
incubation period (2–5 days), BRSV replicates primarily in ciliated respiratory epithelial
cells and type II pneumocytes. After incubation, BRSV infection can be asymptomatic, or
clinical signs such as fever (39.4–42.2 ◦C) and cough with a seromucoid nasal and ocular
discharge can be present [2]. Clinical signs are typically mild; however, immunological
suppression and mucosal damage in the respiratory tract might lead to subsequent bacterial
infection, leading to BRDC (bovine respiratory disease complex) [1,4]. BRDC is the most
costly disease affecting young calves worldwide [5–7]. As a result, it is critical to design
new ways to prevent the spread of the primary causes of infection by this complex, which
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requires fast and non-invasive diagnostic tools to detect early cases of BRSV infection in
the herd.

Field diagnosis of BRDC and BRSV infection is conventionally based on visual-clinical
diagnosis (VCD) of the appearance and behavior of cattle, which is not specific for detecting
and treating the causal agent [8–10]. Specialized techniques to detect BRSV infection have
been developed and may include lung lavage, tracheal washes, and nasal swabs collected
from live cattle or post-mortem samples for virus isolation and recognition of cytopathic
effects in cell cultures [1,3]. Serological tests such as immunofluorescent antibody (IF)
and enzyme-linked immunosorbent (ELISA) assays are also used to detect viral infection,
exhibiting 47% and 60% sensitivity for BRSV, respectively. By comparison, analysis using
reverse transcription-polymerase chain reaction (RT-PCR), which is currently considered the
gold standard for BRSV diagnosis, has 99% sensitivity and specificity [1,3,11]. More recently,
analytical techniques such as nuclear magnetic resonance (NMR) and gas chromatography
based mass spectrometry (GC-MS) have been used in blood plasma, blood serum, nasal
secretions, and exhaled breath condensate to identify biomarkers related to BRDC to create
new diagnostic tools that facilitate appropriate treatment [12–17].

Near-infrared spectroscopy (NIRS) is a type of vibrational spectroscopy that measures
absorption resulting from the interaction of NIR light (700–2500 nm) with functional groups
of organic matter [18,19]. The application of NIRS to biological systems has often been
confounded by the strong overtone signal of the water matrix, which acts to not only
solvate biomolecules through hydrogen bonding but also has a complex and dynamic mi-
crostructure [18]. Aquaphotomics is a recent discipline in which the water spectrum arises
from the interactions of water with specific biological components, while also focusing on
how the biological composition influences the formation of water coordination spheres,
clusters, and ions, which have distinct absorbance bands described by the water matrix
coordinates (WAMACS) [20–23]. Thus, aquaphotomics is being increasingly applied to
detect changes in water-based systems and is particularly applicable to biological fluid
matrices in which a suite of biochemical changes occurs in response to shifts in organismal
homeostasis [24,25].

Exhaled breath condensate (EBC) can be collected non-invasively and has been used
to monitor respiratory disease in humans and animals [26–29]. EBC contains metabolites or
substances such as adenosine, ammonia, cytokines (small proteins ~5–25 kDa), hydrogen
peroxide, isoprostanes (free radical lipid peroxidation of arachidonate), leukotriene B4,
nitrogen oxides (NO2

− and NO3
−), and peptides demonstrated to be helpful in evaluating

oxidative stress and inflammatory response in the respiratory system [26,30], and which
have been detected by GC-MS [14,16,31–33]. We propose that with these known indicators
of inflammation evident in EBC, NIRS-based aquaphotomics coupled with chemometrics
may provide a mode of rapid analysis of respiratory disease that can be conducted in the
field. In this research, dairy calves were challenged with BRSV, and the EBC samples that
were collected before and after infection were assessed by NIRS-aquaphotomics to create
disease profiles and prediction equations, with a specific inquiry into the early stages of
disease progression.

2. Materials and Methods

2.1. Animals and Controlled Challenge

BRSV strain GA-1, P5 was propagated in Madin-Darby bovine kidney cell lines grown
in Dulbecco’s minimal essential medium with 10% fetal bovine serum and 2 mM of Gibco™
GlutaMAX™ Supplement. On day 7 post-inoculation of cells, the cell culture supernatant
containing −5.20 TCID50 units of BRSV per mL was collected. Then, 5 mL of the supernatant
was administered via a nebulizer (DeVilbiss Pulmo-Neb) through a custom-made face mask
to each of five non-vaccinated three-month-old Holstein steers weighing approximately
130 kg and housed in outdoor pens isolated from other cattle at Mississippi State University
(Animal Care and Use Committee IACUC-19-037) [17]. Clinical signs (VCD) of respiratory
infection, including rectal temperature, heart rate, respiratory rate, assessment of nasal and
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ocular discharge, presence of cough, breathing pattern, and character of lung sounds, were
evaluated before and after infection (Figure 1) [17,34].

Figure 1. Timeline for the BRSV controlled challenge carried out in five dairy calves. The stars point
out the days of the EBC collection.

2.2. Exhaled Breath Condensate (EBC) Collection

Samples were collected before and after the controlled challenge (D0). For the collec-
tion of EBC (n = 24), a sterile Nasco Whirl-PaK® sample bag with puncture-proof tabs (cat#
B01489) was placed over one of the calf’s nostrils for 15 min, ensuring that the breath was
blown into the collection bag (Figure 1). The bag with the aerosolized particles was stored
at −80 ◦C for 24 h, then thawed at room temperature (21 ◦C) to allow the condensation of
the particles forming liquid droplets. The droplets (approximately 500 μL total volume)
were stored in sterile Eppendorf tubes at −80 ◦C until NIRS analysis. To avoid discomfort
in the dairy calves, these samples were collected only five times on the following days:
D-11, D-3, D3, D5, and D13.

2.3. Spectral Signature Acquisition

Transmittance NIR spectra (n = 240) were collected from 300 μL of EBC using a portable
ASD FieldSpec®3 spectrophotometer and Indico®Pro software (Malvern Panalytical, ASD
Analytical Spectral Devices Inc. Boulder, CO. USA) as previously described by the au-
thors [32]. Ten spectral signatures were collected independently per sample. Each NIR
spectrum was taken across the wavelength range 350–2500 nm (interval = 1.4 nm for the
region 350–1000 nm and 2 nm for the region 1000–2500 nm; 50 scans; 34 ms integration).
Spectral signatures from sterile distilled water were collected as the reference solution
required for the aquaphotomics analysis [34].

2.4. Data Analysis

Based on the clinical signs (VCD) evaluated before and after the BRSV challenge, the
samples were classified as having been collected during the baseline, Asymptomatic, in-
fected, or Recovered stages relative to challenge. To avoid interference of the asymptomatic
phase or the recovery process in the interpretation of the aquaphotomics profiles, only an
equal number of samples designated as baseline (pre-infection) and infected (post-infection
and clinically abnormal) were used in the aquaphotomics evaluation and the statistical and
multivariate analyses (MVA) [34]. The absorbance of EBC and the reference solution was
transformed with the mathematical pre-treatments of SNV (Standard Normal Variate) with
de-trending (polynomial order: 2), baseline Offset & Linear baseline Correction, and a 2nd
derivative (polynomial order: 2, Gap Size: 25, Segment Size: 19, Savitzky-Golay smoothing
points: 25) (Unscrambler® X v.11, Aspen Technology Inc, MA, USA).
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2.5. Aquaphotomics Approach

Aquaphotomics was applied to determine the molecular organization of the aqueous
phase of EBC as a method to identify the biochemical changes caused by the infection.
PCA (principal component analysis) was performed on the mean-centered matrix of the
aquaphotomics region (1300–1600 nm) using full random cross-validation and the algorithm
SVD (singular value decomposition) as a first step in revealing trends in the spectra with
the goal of exploring the data, identifying dominant peaks in the loadings, and looking for
outliers (Hotelling’s T2 influence plot) [23]. Previously described WAMACS were used to
create barcodes and aquagrams using a spectral database containing samples from all the
calves (n = 200) [20,21,23,34]. Using Microsoft Excel 365®, the absorbance was normalized
by subtracting the mean transformed absorbance of distilled sterile water as the reference
solution from the mean transformed absorbance of each group (baseline or infected) and
then dividing the results by the standard deviation (SD) of each category [21,23]. For the
barcodes, WABS (water absorbance bands) within the WAMACS were identified by plotting
the normalized absorbance to identify the direction of the peaks before detecting the WABS
in each point of absorbance of the 12 WAMACS. These identified points were colored in
the barcode according to each category to compare chemical shifts [34]. For the aquagram,
the identified WABS for the baseline were selected as the points to be plotted in a radar
chart to obtain the WASPS (water absorbance spectral patterns), which indicate the trends
in the organization of the water molecules of the evaluated samples [21,23].

2.6. Chemometrics

The chemometric analysis was performed on the first overtone region of the near-
infrared transformed absorbance between 1300 and 1600 nm. Balanced databases
(n = 200) were generated to control the disproportion and diversity of the total num-
ber of samples collected [34]. These databases were used to create five datasets by stratified
random sampling and analyzed in a leave-one-animal-out approach to develop five PCA-
LDA (linear discriminant analysis) models using the Mahalanobis method [35,36]. To
produce the calibration and internal validation sets (128/32), spectra from four calves were
partitioned into an 80/20 percent distribution; spectra from the fifth calf were utilized as
the external validation set (n = 40) (Unscrambler® X v.11.0, Aspen Technology Inc, Bedford,
MA, USA). Within each model, nine predictions were tested using PCs (principal compo-
nents), explaining from 95% to 99.9% of the variation of the databases using the top-down
approach for PC selection methodology [34,37]. A total of 45 predictions were evaluated;
however, only the results from the ones with the best performance are shown in the results
section. Quality parameters, including the percentage of accuracy, sensitivity, and speci-
ficity, were carried out to establish the technique’s ability to classify true positive and true
negative samples [34,38]. ANOVA, and a pairwise mean comparison using Tukey-Kramer
HSD (honestly significant difference) test with alpha = 0.05 were used to assess significance
between models (JMP® 14.0, SAS Institute Inc., Cary, NC, USA); in addition, a pairwise
mean comparison using Student’s t-test with alpha = 0.05 was used to evaluate differences
between categories (baseline vs. infected).

3. Results

3.1. Aquaphotomics Findings

The aquaphotomic analysis for NIR spectral signatures collected for breath condensate
from dairy calves infected with BRSV revealed a consistent and expected spectral water
pattern in the wavelength range between 1300 and 1600 nm (Figure 2a). This region corre-
sponds to the first overtone of the functional groups O-H, C-H, and N-H forming molecules
containing water (H2O), alcohols (ROH), phenols (ArOH), simple amides (CONH2), amides
(CONHR), monoamides (RNH2), methylene (CH2), and methyl radicals (CH3) [18], which
are, in this case, likely related to the high content of water and the volatile and non-volatile
compounds in the EBC [30]. The pattern in the transformed absorbance (Figure 2b) was
also expected due to the application of a second derivative and Savitzky-Golay smoothing
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in the pre-treatment [39]. Chemical similarities were observed in the trends of the PCA
scores plot (Figure 2c), where both categories overlap. The dominant peaks identified in
the positive and negative directions of the PCA loadings (PC-1 = 1347, 1396, 1454, 1528 nm;
PC-2 = 1396, 1418, 1539 nm; PC-3 = 1338, 1380, 1431, 1524, 1576 nm) explained the aforemen-
tioned patterns, with the first three PCs accounting for 97% of the variation in the spectral
database (Figure 2d). There were no outliers in the Hotelling’s T2 influence plot (not shown).
These findings highlight the need to use both, aquaphotomics and chemometrics-based
MVA to reveal discriminating biochemical profiles of BRSV infection in EBC.

  
(a) (b) 

  

  
(c) (d) 

Figure 2. NIR absorbance from bovine EBC collected before and after BRSV infection. (a) Raw
or unprocessed NIR absorbance from baseline (n = 100) and infected (n = 100) stages relative to
infection, showing the characteristic water spectral pattern. (b) Transformed or processed absorbance
from baseline (n = 100) and infected (n = 100) stages displaying two prominent features at 1376 and
1424 nm. (c) PCA scores plot for samples of the baseline and infected stages from all the calves (n = 5)
challenged in this study (n = 200). (d) PCA loadings showing the dominant peaks influencing the
positive and negative trends in the scores plot: PC-1 = 81%, PC-2 = 12%, PC-3 = 4%.
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The normalized absorbance of EBC collected in the pre-infection baseline stage and
the infected stage when calves had clinical signs of disease revealed different patterns for
both categories, indicating differences in the chemical composition of EBC from healthy
and sick dairy calves (Figure 3a). Interestingly, at 1574 nm, a prominent feature in the
normalized absorbance from the infected stage was unveiled; this wavelength corre-
sponds to the first overtone of N-H stretching vibration and is not included in the current
described WAMACS.

 
(a) (b) 

  

 
(c) 

Figure 3. Aquaphotomics of EBC from dairy calves infected with BRSV. (a) Normalized ab-
sorbance for samples from the baseline (n = 100) and infected (n = 100) stages from all the calves
(n = 5) challenged in this study. (b) Aquagram created with the key WABS from the baseline stage.
(c) WAMACS barcode showing chemical shifts.

The WASPS in the aquagram (Figure 3b) indicate that water molecules in EBC from
both categories were highly organized in the WAMACS C3, C4, C5, and C6 and less orga-
nized in the coordinates C7 to C12, which are related to water dimers (S1) and water clusters
with two, three, and four hydrogen bonds (S2, S3, and S4) [21,23]. In this case, baseline
samples showed the highest absorbance at C4, and samples from the infected stage showed
the highest absorbance at C5. At C4 (1380–1388 nm), a change in the formation of complex
three-dimensional molecular spheres or hydration shells around solute molecules can be
implied, mainly concerning the lipid (total lipids, phospholipids, cholesterol, triglycerides,
eicosanoids, free fatty acids) and cytoplasmic (glucose, ammonia, lactate; pyruvic, succinic,
and oxaloacetic acids) metabolites known to increase in EBC during chronic pulmonary
disease [21,40–44]. At C5 (1398–1418 nm), two types of changes in the water matrix of EBC
can be inferred, the first one related to water molecules confined in a local field of ions and
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the second related to water molecules with free hydroxide ion (OH-) [21,23]. Moreover,
higher absorbances at C3 (1370–1376 nm) suggest that molecules were structured in water
symmetrical and asymmetrical stretching vibrations (ν1 + ν3) related to variations in the
EBC solute composition during the baseline or infected stage [21,23]. In addition, at C6
(1421–1430 nm), changes in the HOH bending frequency are suggested to occur [21,23].

The barcode (Figure 3c) shows shifts between EBC samples collected in both the
baseline and infected stages in five of the 12 known WAMACS in the coordinates C1,
C5, C7, C9, and C11 likely related to changes in the ratios of volatile and non-volatile
compounds. In the normalized absorbance from EBC collected during the infected stage,
NIR spectral peaks were right-shifted in C5 (1398–1418 nm), C7 (1432–1444 nm), and C11
(1482–1495 nm), more specifically to 1405, 1443, and 1490 nm, in comparison with initial
peaks at 1398, 1443, and 1489 nm found in spectra of the baseline samples, suggesting a
shift towards free water (C5), water dimers (C7), and water clusters with four hydrogen
bonds (C11) [21,23]. At C1 (1336–1348 nm) and C9 (1458–1468 nm), NIR spectral peaks
were left-shifted in samples from the infected stage at 1346 and 1458 nm in comparison to
1348 and 1489 nm during baseline, thus indicating a shift towards molecules structured in
water asymmetrical stretching vibrations (ν3) and water clusters with two hydrogen bonds
(S2) [21,23].

3.2. Discriminant Analysis Results

The results from the PCA-LDA models for classifying NIR-transformed absorbance
(1300–1600 nm) of EBC collected from calves before and after the BRSV infection can be
found in Table 1. On average, 7 ± 2 PCs explaining 99.6 ± 0.4% of the variation of the
database were selected to perform the analyses. In this case, no significant differences
(p < 0.05) were detected for the values of correctly predicted categories between the models
(1–5) or between stages (baseline and infected) when applying the ANOVA or the Student’s
t-tests. When evaluating the quality parameters from all the models simultaneously, signif-
icant differences (p < 0.05) were detected for the calibration values in comparison to the
internal validation and the external validation. During the calibration, percentages of accu-
racy, sensitivity, and specificity of 97 ± 6, 98 ± 4, and 96 ± 9%, respectively, were achieved,
indicating that 2 ± 4% of the transformed absorbance from samples of the infected stage
were classified as false negatives, and 4 ± 9% of the transformed absorbance from samples
of the baseline stage were classified as false positives. In the internal validation, the percent-
ages 96 ± 8, 99 ± 3, and 93 ± 17% were obtained for the accuracy, sensitivity, and specificity,
respectively. Hence, 1 ± 3% of the transformed absorbance from samples of the infected
stage were classified as false negatives, and 7 ± 17% of the transformed absorbance from
samples of the baseline stage were classified as false positives. Additionally, the external
validation set containing the spectra from the calf excluded during the calibration was
classified with percentages of 74 ± 21, 71 ± 27, and 76 ± 23%, for the accuracy, sensitivity,
and specificity, correspondingly. Here, 29 ± 27% of the transformed absorbance were
classified as false negatives, and 26 ± 23% were false positives to the viral infection. All
the calibration PCA-LDA plots showed similar tendencies where two well-defined groups
were found; in Figure 4, Model 4, omitting Calf 4, is shown as a representative of the five
performed models. These results suggest that the biochemical differences found in the
aquaphotomics evaluation due to changes in EBC composition during the infection can be
discriminated using chemometrics-based MVA methods with quality parameters higher
than the traditional clinical signs (VCD) and serological methods to detect this infection.
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Table 1. PCA-LDA for transformed absorbance (1300–1600 nm) classification and quality parameters
for bovine EBC collected before and after the BRSV challenge.

Model
# Selected

PCs

%
Explained
Variance

Category and
Quality

% PCA-LDA Mahalanobis

Cal 80% Val 20%
External

Validation

1
(Calf 1 out) 8 99.8

baseline 64/64 16/16 7/20
infected 64/64 16/16 9/20

% Accuracy 100 100 40
% Sensitivity 100 100 45
% Specificity 100 100 35

2
(Calf 2 out) 9 99.9

baseline 64/64 16/16 16/20
infected 64/64 16/16 20/20

% Accuracy 100 100 90
% Sensitivity 100 100 100
% Specificity 100 100 80

3
(Calf 3 out) 7 99.6

baseline 64/64 16/16 18/20
infected 64/64 15/16 10/20

% Accuracy 100 97 70
% Sensitivity 100 94 50
% Specificity 100 100 90

4
(Calf 4 out) 5 98.9

baseline 54/64 10/16 17/20
infected 59/64 16/16 20/20

% Accuracy 86 81 93
% Sensitivity 92 100 100
% Specificity 80 63 85

5
(Calf 5 out) 8 99.9

baseline 63/64 16/16 18/20
infected 64/64 16/16 12/20

% Accuracy 99 100 75
% Sensitivity 100 100 60
% Specificity 98 100 90

Mean ± SD 7 ± 2 99.6 ± 0.4
% Accuracy 97 ± 6 (a) 96 ± 8 (a,b) 74 ± 21 (b)
% Sensitivity 98 ± 4 (a) 99 ± 3 (a) 71 ± 27 (b)
% Specificity 96 ± 9 (a) 93 ± 17 (a) 76 ± 23 (a)

Values with different letters were significantly different (p < 0.05) between the calibration (Cal 80%), the internal
validation (Val 20%), and the external validation. No significant differences were detected in the prediction values
between models after applying ANOVA and Tukey-Kramer HSD (honestly significant difference).

 
Figure 4. PCA-LDA plot for the calibration of Model 4 developed with the transformed absorbance
(1300–1600 nm) from EBC collected before and after the BRSV challenge.
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4. Discussion

The exhaled breath condensate (EBC) comprises >99.9% condensed water vapor
and <0.1% aerosols [29,30]. While the condensing water absorbs water-soluble volatile
compounds, respiratory droplets containing non-volatile molecules compose a minor
fraction of the condensate [29,30]. The use of EBC as a biofluid to evaluate and detect
respiratory diseases in small and large animals has gained special relevance in veterinary
medicine [28,29]. The chemical composition of EBC from healthy and sick calves has been
previously reported [28–30]. In healthy animals, hydrogen peroxide (H2O2), which is a
volatile molecule in EBC, is well-known for its involvement in airway homeostasis [45,46].
During respiratory disease, H2O2 in EBC is considered a biomarker of inflammation and
oxidative stress caused by the release of reactive oxygen species (ROS) and nitrogen species
(RNS) from inflammatory leukocytes (neutrophils, eosinophils), monocytes (macrophages),
and airway epithelial cells [30,47]. EBC from Holstein calves with bronchopneumonia
(n = 15) also demonstrated higher levels of H2O2 in comparison to healthy neonatal calves
(n = 15) [33]. Similarly, significant increases (p < 0.05) in H2O2 were detected in EBC
collected from Holstein calves with mild (n = 20) and aggravated (n = 20) respiratory
disease (n = 20) [32]. The increase in H2O2 causes bronchoconstriction and coughing when
the mucous membranes of the trachea and bronchi become irritated as a result of their
heightened sensitivity [32,48]. Here, the right shifts in the C5 and C7 WAMACS and
WASPs from the aquaphotomics analysis are in alignment with increases in H2O2 found in
infected individuals.

The eicosanoid leukotriene B4 (LTB4) is a pro-inflammatory mediator produced by
neutrophils, eosinophils, macrophages, and epithelial cells that have been stimulated [28,49].
Leukotriene B4 (C20H32O4) is a known non-volatile component of bovine EBC and is
considered a biomarker of inflammation during respiratory disease [28–30,49,50]. Increased
levels of LTB4 in EBC were detected in two out of four calves infected with BRSV in
comparison with baseline values [49], similar to calves with Pasteurella multocida serovar
D, which also led to an increase in LTB4 after infection [49,50]. The observed changes
in the aquaphotomics parameters, a left shift of C1 and C9, for inducing localized water
structure would be consistent with increases in LTB4, and other lipid-based compounds
known to increase in response to infection. Urea (CH4N2O) and ammonia (NH3) are other
constituents of bovine EBC [26,51,52], and during homeostasis, the concentration of these
compounds is related to food intake and ventilation [52]. However, the EBC from calves
with induced bacterial pneumonia (n = 20) showed an increase in urea and ammonia, which
was attributed to a change in the permeability of the lung-capillary barrier [52]. Other
volatile organic compounds, such as acetaldehyde (C2H4O) and decanal (C10H20O), have
also been reported in the EBC from steers (n = 3) diagnosed with BRDC by clinical signs
(VCD), while heptane (C7H16), octanal (C8H16O), 2,3-butadione (C6H10), hexanoic acid
(C6H12O2), and phenol (C6H6O) were associated with healthy animals (n = 3) [14]. More
volatile compounds, as well as some chemical elements, have been detected at significant
levels in bovine EBC using an electronic nose, finding potential biomarkers for animals
with respiratory disease [31] that can be associated with the aquaphotomics profile found in
the present study. The compounds 1,2-dimethylcyclohexylamine (C8H17N), aliphatic acids
C2–C5, ammonia (NH3), cyclohexylamine (C6H13N), ethandal, methylamine (CH3NH2),
methylglyoxal (C3H4O2), and pyridine-carbaldehyde (C6H5NO) were detected in calves
with respiratory disease in comparison to healthy calves that only exhaled alkyl-, cyclic
amines [31]. Chemical elements evaluated in the EBC from 18 sick Holstein calves with
bronchopneumonia showed a significant decrease (p < 0.05) in Se and Zn, and an increase
in Al, Co, Mn, Mo, Na, P, Pb, and Sn in comparison to the EBC from 12 healthy subjects [16].

Biofluid spectroscopy is a novel clinical research technology that provides a straightfor-
ward approach to gathering diagnostic information from easily obtained samples [19,53–55].
The NIR spectra of biofluids provide a plethora of information and may be viewed as a
biochemical fingerprint of the sample state [56–58]. This is the first report on the use
of NIRS to successfully evaluate and discriminate BRSV infection from EBC for disease
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diagnosis in animals. The decrease in the values for the external validation in the PCA-
LDA are likely related to each individual calf’s immune response contributing to different
biochemical changes for the classification of the samples. The chemical profile found in
the aquaphotomics evaluation, and chemometric-based MVA analyses of NIR spectra are
likely the result of the absorbance of the functional groups O-H, C-H, and N-H forming
the molecules structuring the volatile and non-volatile compounds described for EBC from
healthy and sick calves with respiratory disease.

5. Conclusions

NIR-aquaphotomics profiles were established for EBC collected from dairy calves
challenged with BRSV based on the clinical signs following infection and the associated
biochemical changes occurring with cell signaling and immune response activation. The
aquaphotomics evaluation revealed changes in the organization of the aqueous phase of
EBC acquired during the baseline and infected stages in the WAMACS C1, C5, C9, and C11
likely to be associated with both, the volatile and non-volatile compounds conforming this
biofluid. Furthermore, the discrimination of the chemical profiles by PCA-LDA models
distinguished EBC from pre-infected and infected calves with an accuracy, sensitivity,
and specificity >93% in the calibration and validation. Here, the potential of NIRS in
combination with aquaphotomics and chemometrics-based MVA to profile and discriminate
this viral infection in unprocessed samples was demonstrated, providing evidence that the
method could be used to develop an innovative, rapid, and non-invasive tool to support
more effective diagnosis strategies for this problematic disease.
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42. Beganović, A.; Beć, K.B.; Grabska, J.; Stanzl, M.T.; Brunner, M.E.; Huck, C.W. Vibrational coupling to hydration shell—Mechanism
to performance enhancement of qualitative analysis in NIR spectroscopy of carbohydrates in aqueous environment. Spectrochim.
Acta-Part A Mol. Biomol. Spectrosc. 2020, 237, 118359. [CrossRef]

43. Makarevich, A.E.; Ivashkevich, D.L. Dynamics of Intermediate Substrates of Carbohydrates Metabolism in Exhaled Breath
Condensate During Copd Development. Chest 2006, 130, 170S. [CrossRef]

44. Makarevich, A.E. Lipid and carbohydrate metabolites changes in exhaled breath condensate and blood in acute exacerbation of
chronic bronchitis and chronic obstructive. Πрaктикуючий Лiкaр 2018, 7, 30–36.

45. Conner, G.E.; Salathe, M.; Forteza, R. Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am. J. Respir. Crit. Care
Med. 2002, 166, S57–S61. [CrossRef]

46. Knobloch, H.; Becher, G.; Decker, M.; Reinhold, P. Evaluation of H2O2 and pH in exhaled breath condensate samples: Methodical
and physiological aspects. Biomarkers 2008, 13, 319–341. [CrossRef] [PubMed]

47. Horváth, I.; MacNee, W.; Kelly, F.J.; Dekhuijzen, P.N.R.; Phillips, M.; Döring, G.; Choi, A.M.K.; Yamaya, M.; Bach, F.H.;
Willis, D.; et al. “Haemoxygenase-1 induction and exhaled markers of oxidative stress in lung diseases”, summary of the ERS
Research Seminar in Budapest, Hungary, September, 1999. Eur. Respir. J. 2001, 18, 420–430. [CrossRef] [PubMed]

48. Skulachev, V.P. The H2O2 sensors of lungs and blood vessels and their role in the antioxidant defense of the body. Biokhimiya
2001, 66, 1425–1429.

49. Reinhold, P.; Becher, G.; Rothe, M. Evaluation of the measurement of leukotriene B4 concentrations in exhaled condensate as a
noninvasive method for assessing mediators of inflammation in the lungs of calves. Am. J. Vet. Res. 2000, 61, 742–749. [CrossRef]

50. Reinhold, P.; Langenberg, A.; Becher, G.; Rothe, M. Exhaled condensate—A medium obtained by a non-invasive method for the
detection of inflammation mediators of the lung. Berl. Munch. Tierarztl. Wochenschr. 1999, 112, 254–259.

51. Reinhold, P.; Langenberg, A.; Foedisch, G.; Jena, M.R. The influence of variables of ventilation on the concentration of urea and
ammonia in the exhaled breath condensate Member’s Comments. Eur Respir J. 2004, 24, 2486.

52. Reinhold, P.; Langenberg, A.; Seifert, J.; Rothe, M.; Jena, G.B. Ammonia and urea in the exhaled breath condensate (EBC) and in
corresponding blood samples Member’s Comments. Eur Respir J. 2002, 20, 3034.

53. Theakstone, A.G.; Rinaldi, C.; Butler, H.J.; Cameron, J.M.; Confield, L.R.; Rutherford, S.H.; Sala, A.; Sangamnerkar, S.; Baker, M.J.
Fourier-transform infrared spectroscopy of biofluids: A practical approach. Transl. Biophotonics 2021, 3, e2020000255. [CrossRef]

54. Rutherford, S.H.; Nordon, A.; Hunt, N.T.; Baker, M.J. Biofluid Analysis and Classification using IR and 2D-IR Spectroscopy.
Chemom. Intell. Lab. Syst. 2021, 217, 104408. [CrossRef]

55. Shaw, R.A.; Mantsch, H.H. Infrared Spectroscopy of Biological Fluids in Clinical and Diagnostic Analysis. In Encyclopedia of
Analytical Chemistry; John and Wiley and Sons: Hoboken, NJ, USA, 2008. [CrossRef]

56. Ollesch, J.; Drees, S.L.; Heise, H.M.; Behrens, T.; Brüning, T.; Gerwert, K. FTIR spectroscopy of biofluids revisited: An automated
approach to spectral biomarker identification. Analyst 2013, 138, 4092–4102. [CrossRef] [PubMed]

346



Molecules 2022, 27, 549

57. Fabian, H.; Lasch, P.; Naumann, D. Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy. J. Biomed.
Opt. 2005, 10, 031103. [CrossRef] [PubMed]

58. Baker, M.J.; Hussain, S.R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R.A.; Thiéfin, G.; Sockalingum, G.D. Developing
and understanding biofluid vibrational spectroscopy: A critical review. Chem. Soc. Rev. 2016, 45, 1803–1818. [CrossRef]

347





Citation: Scholkmann, F.; Tsenkova,

R. Changes in Water Properties in

Human Tissue after Double Filtration

Plasmapheresis—A Case Study.

Molecules 2022, 27, 3947. https://

doi.org/10.3390/molecules27123947

Academic Editor: Stefano Materazzi

Received: 18 May 2022

Accepted: 10 June 2022

Published: 20 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Changes in Water Properties in Human Tissue after Double
Filtration Plasmapheresis—A Case Study

Felix Scholkmann 1,* and Roumiana Tsenkova 2

1 Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich,
University of Zurich, 8091 Zurich, Switzerland

2 Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University,
Kobe 657-8501, Japan; rtsen@kobe-u.ac.jp

* Correspondence: felix.scholkmann@usz.ch; Tel.: +41-44-255-93-26

Abstract: Double-filtration plasmapheresis (DFPP) is a blood cleaning technique that enables the
removal of unwanted substances from the blood. In our case study, we performed near-infrared (NIR)
spectroscopy measurements on the human hand tissue before and after a specific DFPP treatment
(INUSpheresis with a TKM58 filter), along with NIR measurements of the substances extracted via
DFPP (eluate). The spectral data were analyzed using the aquaphotomics approach. The analysis
showed that the water properties in the tissue change after DFPP treatment, i.e., an increase in small
water clusters, free water molecules and a decrease in hydroxylated water as well as superoxide in
hydration shells was noted. The opposite effect was observed in the eluates of both DFPP treatments.
Our study is the first that documents changes in water spectral properties after DFPP treatments in
human tissue. The changes in tissue water demonstrated by our case study suggest that the positive
physiological effects of DFPP in general, and of INUSpheresis with the TKM58 filter in particular,
may be associated with improvements in water quality in blood and tissues.

Keywords: double-filtration plasmapheresis; INUSpheresis; near-infrared spectroscopy; aquaphotomics;
water

1. Introduction

Introduced in the early 1980s by Agishi et al. [1], double-filtration plasmapheresis
(DFPP) allows the removal particles in blood plasma having sizes between the pore size of
the first (plasma separator) and second filter membrane (plasma fractionator). This is real-
ized by first separating the blood into plasma and blood cells (with the plasma separator)
and then fractioning the separated plasma into large and small molecular weight compo-
nents. Although the blood cells and plasma with small molecular weight components are
transfused back to the patient, the large molecular weight components (eluate) are filtered
out. DFPP is an effective, efficient and patient-friendly blood purification procedure.

The DFPP technique allows pathophysiological relevant molecules (e.g., circulating
autoantigens, autoantibodies, circulating immune complexes, damaged proteins) and tox-
ins (e.g., environmental toxins and toxins from microorganisms) to be removed from the
blood of a subject. This blood cleaning procedure has been successfully used therapeuti-
cally in many diseases [2–4], including myasthenia gravis [5–12], chronic inflammatory
demyelinating polyneuropathy [12], anti-glomerular basement membrane disease [13],
hypoglycemia and hyperglycemia induced by insulin antibodies [14], pancreatitis induced
by hypertriglyceridemia [15–17], Guillain–Barré syndrome [12,18–21], Crow–Fukase syn-
drome [12], rheumatoid arthritis [22–24], chronic hepatitis C [25,26], pemphigus [27,28],
bullous pemphigoid [29,30], atopic dermatitis [31], dermatomyositis [12], polymyositis [12],
membranous nephropathy [32], acute thallotoxicosis [33], antibody-associated vasculi-
tis [34–36], antisynthetase syndrome [37], diffuse proliferative lupus nephritis [38], refrac-
tory chronic urticaria [39], systemic lupus erythematosus associated with autoimmune
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thyroid disease [40], rhesus D-incompatible pregnancy [41], anti-PP1Pk isoantibodies-
incompatible pregnancy [42], adult onset Still’s disease [43], multiple sclerosis [12,44–46],
Eaton–Lambert syndrome [12], hemorrhagic fever [47], acquired thrombotic thrombocy-
topenic purpura [48], neuromyelitis optica [49,50], Graves’ disease [51], antiphospholipid
syndrome [52], age-related macular degeneration [53], diffuse cutaneous systemic sclero-
sis [54], co-infection infection with Hepatitis C and human immunodeficiency virus [55],
acute atherothrombotic brain infarction [56], cryoglobulinemia [57], inflammatory polyneu-
ropathy [58], chronic inflammatory demyelinating polyradiculoneuropathy [59], prevention
of antibody-dependent xenograft rejection [60,61] and even cancer [62].

Although DFPP has been widely and routinely used in clinical practice in Asia, es-
pecially in Japan, for decades, its use is not yet widespread in the West. For a few years
now, however, DFPP has been attracting increasing attention in Europe, largely due to the
development of a specific type of DFPP, called INUSpheresis, by developers and scientists
from Germany. For example, these researchers have recently shown that this type of DFPP
has great therapeutic potential for the treatment of metabolic and non-metabolic peripheral
neuropathy [63], borreliosis [64], Alzheimer’s disease [65] and chronic post-COVID-19
syndrome (“long-COVID”) [66].

In the case of the treatment of neuropathy patients [63], a significant reduction in total
cholesterol, triglycerides, LDL-cholesterol, serum C-reactive protein (sCRP), tumor necro-
sis factor-α (TNF-α), eosinophilic cationic protein (ECP), fibrinogen and the chemokine
RANTES (Regulated And Normal T cell Expressed and Secreted) could be achieved. Fur-
thermore, a significant amount of environmental toxins (including heavy metals and
pesticides) in the blood of neuropathy patients could be removed by applying this type
of DFPP. Such an improvement in the lipid profile and in inflammatory markers was also
evident in borreliosis patients treated with this type of DFPP [64], including a decrease
in the inflammatory lipid lipoprotein-associated phospholipase A2 (Lp-PLA2). A clinical
improvement in the patients was also evident. In case of Alzheimer’s disease patients
treated with this type of DFPP [65], a significant reduction in the concentration of RANTES,
fibrinogen, sCRP, ECP, TNF-α, and α2-macroglobulin (a marker of neuronal injury and gen-
erally increased in Alzheimer’s disease [67,68]) was evident. A significant amount of toxins
(e.g., aluminum and organophosphorus pesticides) could be also removed from the blood
of these patient with this procedure. In another recently published report, this specific type
of DFPP was described to be able to remove neurotransmitter receptor antibodies against ß-
adrenergic and muscarinic receptors (linked to myalgic encephalomyelitis/chronic fatigue
syndrome, ME/CFS) present in the blood of patients with post-COVID-19 syndrome [66].
The treatment alleviated symptoms of CFS in these patients.

The blood composition of people treated with DPFF using the INUSpheresis technol-
ogy with a specific filter (TKM58) has recently been shown to change significantly [69].
A decrease was found in the concentration of albumin, γ-globulins, triglycerides, total
cholesterol, HDL-cholesterol, LDL-cholesterol, liporotein(a), ferritin, fibrinogen, IgG, IgM,
IgA, total protein, INR, quick, platelets and an increase in erythrocytes, haematocrit and
leukocytes. Furthermore, proteomics showed significant changes in the concentration of
apolipoprotein-related proteins, parameters of the coagulation system, immunoglobulins,
parameters of the complement system and other inflammation-related proteins.

Human blood consists about 55% of plasma which is composed of 91% of water, 7% of
proteins (i.e., 57% albumin, 38% globulins, 4% fibrinogen and 1% prothrombin) and 2% of
other solutes [70]. The composition of the human body is also characterized by a high water
content. An adult human consists of about 40 L (men) and 30 L (women), respectively, of
water [71,72]. This total body water can be subdivided into intracellular water (ICW) and
extracellular water (ECW). Men have about 25 L of ICW and 15 L of ECW, women have
17 L of ICW and 11 L of ECW, and the ECW-to-ICW ratio (which can be determined by
bioelectrical impendence analysis) increases with age [72].
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Water in the tissue and blood exists in the form of free and bound water. Around
dissolved ions or dipoles, the dipoles of the water molecules are oriented and form a
hydration shell. The hydration shell of ions contains strongly bound water in the first
hydration layer, and less bound water in the further layers. In case of proteins, water plays
an essential role for folding, stability, and binding with other molecules [73]. Single water
monomers interact with each other, forming water clusters of the form (H2O)n which can
be neutral, protonated, deprotonated or auto-ionized [74,75]. Water in the blood (plasma)
and tissue is present in a variety of structures and states, which makes water so special in
biological systems.

Since the physicochemical properties of water can change when passing through
a filter or when the concentration of substances in the water change, we hypothesized
that such changes in the water of the blood plasma would also have to occur with blood
washing using DFPP. In order to verify this experimentally, we carried out corresponding
measurements using near-infrared (NIR) spectroscopy before and after a specific DFPP
treatment (INUSpheresis with the TKM58 filter) in one subject as a case study. It has not
previously been investigated how DFPP affects the water in the tissue and what water
properties the eluate has.

2. Material and Methods

2.1. Double-Filtration Plasmapheresis Treatments and Spectroscopic Measurements

DFPP INUSpheresis (with TKM58 filter) treatments were performed on a 39-year-
old man (first author, FS) at a private clinic in Switzerland in February 2022 on two
different days, one day apart. Each treatment lasted about 2.5 h. No official ethical
approval was necessary to conduct the measurements and report the results since it is a case
report (Kantonale Ethikkommission, Kanton Zürich) and measurements were conducted
by and on the first author (FS). The DFPP treatment was performed as part of a routine
medical treatment.

A portable and ultra-compact NIR spectrometer (MicroNIR 1700, Viavi, Milpitas, CA,
USA) was used to measure the diffuse reflectance spectra of the hand palm of the left hand
and of the eluate. Measurements were performed in the spectral range 950–1650 nm with
a nominal spectral resolution of 6.25 nm, an integration time of 11.7 ms and an average
of 1000 scans for each spectrum to ensure an optimal signal-to-noise ratio. 15 consecutive
measurements were performed for each measurement. Measurements were conducted in
the morning one day before the first DFPP treatment (day 1), in the morning on the day of
the first DFPP treatment (day 2), 1 h after the first DFPP treatment (day 2), in the morning
on the day of the second DFPP treatment (day 4), 1 h after the second treatment (day 4) and
in the morning one day after the second DFPP treatment (day 5). For each measurement it
was ensured that the hand had subjectively the same temperature and the NIR spectrometer
had also always the same temperature (T = 31.5 ◦C). Furthermore, the eluate of the first
and second DFPP treatment was also measured by placing the NIR spectrometer on the
plastic bag with the eluate inside and also measuring the spectrum of the plastic bag as a
reference. This measurement was performed at an instrument temperature of T = 35.4, 35.5
and 35.6 ◦C.

2.2. Data Analysis

First, the spectra of the hand tissue and eluate measurements were pre-processed
applying the SNV (standard normal variate) algorithm for baseline correction. SNV nor-
malization was performed on both datasets separately.

For the analysis of the hand tissue measurements, the difference spectra (XDiff) were
calculated for the first and second DFPP treatment according to
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(
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(
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)
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)
− X

(
before 2nd DFPP (day 4)

)
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while the indices A1 and A2 (and B1 and B2, respectively) refer to the calculation of the
difference spectra for the 1st DFPP (2nd DFPP, respectively) based on the data measured
on the same day (A1, B1) and 24 h apart (A2, B2). With this approach, the spectroscopic
measurement after the DFPP treatments were compared to two baselines (i.e., at the same
day and before/after 24 h).

For the analysis of the eluate measurements, the spectrum of the empty plastic bag
containing the eluate was removed from the spectrum of the eluate measured through the
plastic bag. With this, the spectra of the eluate itself was obtained.

To analyze the water spectral changes, the aquaphotomics approach was used [76–81].
12 spectral regions of particular interest in the region of the 1st overtone of water
(Ci, i = 1–12; Water Matrix Absorbance Coordinates, WAMACS) were analyzed in particular
by calculating the absorbance of the difference spectra in these 12 spectral regions and
visualizing the results on aquagrams to determine the specific water absorbance spectral
pattern [76,77]. A listing of the WAMACS with the corresponding water properties can be
found in Table 1 in Muncan et al. [79].

Data processing and visualizations were carried out in Matlab (R2017a, MathWorks,
Inc., Natick, MA, USA) and R (2022.02.0).

3. Results

The spectroscopic analysis of the hand tissue before and after the DFPP treatments
revealed clear differences in the spectral features in the first overtone spectral region of
water, i.e., in the region of the 12 WAMACS (Figure 1). The corresponding aquagram
(Figure 3a) shows the strongest increase in C6 (1421–1430 nm), corresponding to the
water hydration band [79], the H–O–H bending mode, as well as the O-H stretch vi-
bration mode, linked to the hydrogen bound strength of the water molecules [82]. The
strongest decrease was found to be in C4 (1380–1388 nm), corresponding to water hy-
dration shells (OH-(H2O),1,4), hydrated superoxide water clusters (O2-(H2O4)) and the
H2O symmetrical stretch vibration (2ν1) [79]. In general, there was a decrease in C2
(1360–1366 nm) to C4 (1380–1388 nm) (linked to weaker H-bounded water) and an increase
in C5 (1392–1412 nm) to C11 (1492–1494 nm) (linked to free water molecules and small
water clusters). Interestingly, this specific change in spectral properties was evident after
the first as well as the second DFPP treatment, whereas the first treatment caused the most
pronounced effect. After the first DFPP treatment, the number of small and large water
clusters increased, whereas after the second DFPP treatment, only the number of small
water clusters increased while the larger ones decreased slightly.
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Figure 1. (a) Measurement performed on the palm of the left hand. (b) Bag with eluate extracted
during the first DFPP treatment. The yellowish-brown color is striking, which is due to a high
concentration of filtered substances. Normal blood plasma is clearer and more yellowish. (c) Raw
spectra. (d) and (e) Difference spectra of the tissue measurements after the first (X1st DFPP

Diff (A1),
X1st DFPP

Diff (A2)) and second (X1st DFPP
Diff (B1), X1st DFPP

Diff (B2)) DFPP treatment. (f,g) show zoomed-in
regions with the 12 WAMACS. A listing of the WAMACS with the corresponding water properties
can be found in Table 1 in Muncan et al. [79].

The spectroscopic analysis of the eluate obtained after the first and second DFPP
treatment also revealed clear differences in the spectral features in the first overtone spectral
region of water (Figure 2). The corresponding aquagram (Figure 3b) shows the strongest
increase in absorbance at C2 (1360–1366 nm), corresponding to water salvation shells
(OH-(H2O)1,2,4) and C3 (1370–1379 nm), corresponding to symmetrical and asymmetrical
stretching vibration of water molecules (ν1 + ν3) [79]. The strongest decrease in absorbance
was at C6 (1421–1430) associated with the water hydration band, as well as the H-O-H
bending mode and O-H stretch vibration mode. Fascinatingly, the specific water absorbance
spectral pattern of the eluate is thus complementary to that measured in the tissue.
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Figure 2. (a) Measurement of the eluate. (b) Raw spectra. (c) Difference spectra. (d) Zoomed-in part
of (c) highlighting the region with the 12 WAMACS.

 

Figure 3. Aquagrams of the (a) tissue and (b) eluate spectra. The blue dashed circles refer to the
zero baseline indicating no changes in the difference spectra. Note the complementary specific water
absorbance spectral pattern of both aquagrams.

To complement the aquaphotomics-based NIR spectral analysis, the eluate obtained
from both DFPP treatment was also analyzed for toxic ingredients (IGL Labor GmbH,
Wittbek, Germany). The analysis revealed the presence of several toxins (Figure 4). The
ten highest detected concentrations were from aflatoxin B1 (596.2 nmol/L), chromium-VI
(591.0 nmol/L), lead (571.6 nmol/L), cadmium (558.1 nmol/L), arsenic (556.1 nmol/L), lin-
dane (516.3 nmol/L), cobalt (509.5 nmol/L), polycyclic-aromatic-hydrocarbons (493.1 nmol/L),
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disulfoton (489.2 nmol/L) and aluminum (429.3 nmol/L). The concentration of toxins was
generally significantly lower in the eluate from the second DFPP treatment compared to the
first one. The concentration of some toxins increased after the second DFPP treatment (DDT,
mercury, vinyl chloride), indicating that the first DFPP treatment most probably caused
a diffusion gradient from the tissue to the blood, releasing these toxins from the tissue
into the blood. The detoxification with DFPP is a multi-stage process whereby different
compartments in the human organism are cleaned.

 
Figure 4. Concentration of toxins detected in the eluate of the first and second DFPP treatment. The
first eluate showed a high amount of toxins whereas the amount was significantly reduced in the
second eluate, highlighting the ability of DFPP to remove toxins from the blood/tissue.

4. Discussion and Conclusions

In this study, we have shown that the water properties in the tissue change after
DFPP treatment (INUSpheresis with TKM58 filter). DFPP caused an increase in free water
molecules, small water clusters and a decrease in hydroxylated water clusters, superoxides
of water solvation shells and weaker H-bonded water. The opposite effect was observed in
the eluates of both DFPP treatments.

In our opinion, these observations can be caused by two processes involved. First, the
treatment filters out many molecules from the blood plasma to which water is bound in the
form of hydration shells. This is the fraction of rather weakly H-bound water (which was
reduced in the tissue after DFPP and was enriched in the eluates). Second, the process of
filtration will cause water passing through the fine filter pores in a hydrophilic material
to be structurally altered [83,84]. The formation of water clusters with stronger H-bonds
is favored.

Our study is the first to date to investigate changes in tissue water after a DFPP
treatment and also the first to perform a spectroscopic investigation of the eluates obtained
by DFPP. In particular, it is also the first analysis of this kind concerning this specific type of
DFPP, i.e., INUSpheresis with the TKM58 filter. We know of only one comparable study that
investigated the dialysate after dialysis using NIR spectroscopy and the aquaphotomics
approach [85]. This study showed that the absorption of 1398 nm and 1410 nm increased
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during dialysis. This finding is in line with our observation of an increase in this wavelength
range after DFPP.

The changes in tissue water demonstrated by our case study suggest that the positive
physiological effects of DFPP in general and of INUSpheresis with the TKM58 filter in
particular, may be associated with improvements in water quality in blood and tissues
related to the respective water molecular structures. Such an improvement in water
quality could, for example, be associated later on with improved blood circulation and
optimized metabolic processes. Our small study should serve as a stimulus to explore these
possibilities through further, larger and more comprehensive studies.

It should be noted that our study is based on the measurements of a single person and
two eluates. Generalizations of our results are only possible to a limited extent. As noted,
our case study serves to stimulate further research on the interesting results and to show
how an aquaphotomics-based analysis of NIRS data can be performed to investigate the
effects of a DFPP.
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