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Editorial

Surface Water Quality Modelling
Karl-Erich Lindenschmidt

Global Institute for Water Security, School of Environment and Sustainability, University of Saskatchewan,
11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada; karl-erich.lindenschmidt@usask.ca

Surface water quality modelling has become an important means of better understand-
ing aquatic and riparian ecosystem processes at all scales, from the micro-scale (e.g., bottom
sediment dynamics), to the meso-scale (e.g., algal bloom growth) and the macro-scale
(e.g., the role of cascading reservoirs in sediment transport). Increasingly, surface water
quality models are being coupled to other models (e.g., hydrological models) to determine
catchment area impacts on water quality. These impacts include future climate change and
land-use developments. Coupling with water resource dynamics models also provides
insight into changes in water supply and demand and flow regulation as they relate to
surface water quality. Modelling the quality of surface waters under ice-covered conditions
has also gained special attention due to the increased realization that a holistic all-year
perspective is required to deepen our understanding of aquatic ecosystem functioning (e.g.,
the impact of lake ice phenology on spring succession of phytoplankton) (excerpts and
adaptations from my Global Water Futures https://gwf.usask.ca/ (accessed on 16 February
2023) reporting and https://www.mdpi.com/journal/water/special_issues/surface_water
(accessed on 16 February 2023) announcement).

Table 1 summarises the contents of the papers [1–10] submitted to this Special Issue
into categories of global region, type of water body and model or modelling approach
used. From North America, modelling exercises on rivers in Canada have been reported,
particularly the Athabasca [9] and South Saskatchewan [1] rivers in western Canada. The
Athabasca River is a natural flowing river draining a catchment area that is predominantly
forested, whereas the South Saskatchewan River is a prairie river mostly draining agricul-
tural lands and regulated by the Gardiner Dam, which impounds Lake Diefenbaker. Both
studies look at the transport and fate of heavy metals (copper, nickel and vanadium) to
verify the sources of these metals, with copper stemming mainly from anthropogenic and
nickel and vanadium from geogenic sources.

The water quality of a Canadian reservoir, Buffalo Pound Lake, was also modelled [7].
Buffalo Pound Lake receives water from Lake Diefenbaker (mentioned above) and is an
important drinking water source for southern Saskatchewan. Managing water transfers
from Lake Diefenbaker is an important aspect when modelling the algal-nutrient dynamics
in Buffalo Pound Lake.

China is represented in this Special Issue by the modelling applications of surface
waters in Guangzhou Province [2] of southern China and the estuary Sanmen Bay in
Zhejiang Province of eastern China [3]. Both applications use chemical oxygen demand
(COD) as a determinant to assess the impact of urban pollutants on aquaculture facilities.
A study of the transport of nutrients, particularly ammonium nitrogen, in overland runoff
from the Haihe River basin near Beijing and the Poyang Lake basin, which drains into
the Yangtze River in east central China [8], is also available. The Haihe River basin
study looks more at reducing diffuse loadings, whereas the Poyang Lake basin study
investigated point loadings as mitigation options to control sediment and nutrient loadings
in receiving waters.
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Table 1. Summary of the models used, surface waters investigated and study regions of the articles
in this Special Issue, Surface Water Quality Modelling.

Model Region

Canada China Vietnam India South Korea Malawi Nordic Europe

HEC-RAS river [1]
WASP river [1] river [5] river [5]
WASP

(Quasi-2D) river [9]

statistical river [2]
Delft 3D estuary [3]
Machine
Learning river [4]

conceptual lake [6]
CE-QUAL-W2 reservoir [7]

SPARROW overland [8]
various river [10]

Other river water-quality modelling studies reported from Asia include the Yamuna
River in northern India [5], the Ara River in South Korea [5] and the La Buong River in
Vietnam [4], listed in the order of wetness ranging, respectively, from dry, moderately wet
to wet. Typical water-quality constituents such as biological oxygen demand (BOD) and
dissolved oxygen (DO) with different arrays of total or dissolved nutrients were modelled
for different seasons (dry/wet, spring/summer/autumn/winter).

One study from Africa (Lake Malombe in Malawi) [6] and another from Nordic Europe
(various rivers in Norway, Sweden, Finland, eastern Germany and Poland) [10] are included
in this Special Issue. The first study links overarching demographic, socio-economic,
climatic and other factors to the lake’s ecosystem health. The second study focuses more
on river ice processes and reveals the importance of increased water temperatures from
urban heat islands and increased salinity due to fertilizer applications in agricultural areas
for long-term trends in water parameters.

The Special Issue also provides a spectrum of different model applications, from the
more conceptual [6], to empirical approaches [2,4,8] to the more deterministic methodolo-
gies [1,3,5,7,9]:

Conceptual modelling:

The conceptual model uses driver, pressure, state, impact, and response (DPSIR)
indicators to assess the ecosystem health of Lake Malombe in Malawi [6].

Empirical modelling:

A diagnostic model consisting of visible near-infrared spectroscopy combined with
partial least squares discriminant analysis was applied to determine the water quality
status of 127 surface water sites [2]. Twelve machine-learning approaches were employed
to assess the water quality of the La Buong River in Vietnam [4]. SPARROW, too, is an
empirical model relating catchment area characteristics and discharges to nutrient loading
in large river basins [8].

Deterministic modelling:

The WASP (Water Quality Analysis Simulation Program), originally developed by the
US Environmental Protection Agency, is a popular model applied to rivers and lakes to track
water quality changes in surface water bodies [1]. Its modules of HEAT, EUTRO and TOXI
allow a diverse set of processes and constituents to be modelled. The discretisation scheme
also allows different dimensionality schemes, from one-, two- and three-dimensional
schemes but also a quasi-two-dimensional scheme, where one-dimensional equations are
applied across a two-dimensional discretisation network providing flexibility in model
setup at lower computational expenditure [9]. Coupling to a hydraulic model such as
HEC-RAS gives the WASP modelling system a better description of the hydraulic flow
fields [1]. The two-dimensional CE-QUAL-2D and three-dimensional Delft 3D models

2
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provide more descriptive power by including changing constituent concentrations in depth,
such as in lakes and reservoirs [7], plus lateral gradients, such as in estuaries [3], not just
longitudinally, which is often the only dimension requirement for modelling rivers [1].

Acknowledgments: The Guest Editor wishes to express their gratitude to all authors’ and reviewers’
contributions to this Special Issue.

Conflicts of Interest: The author declares no conflict of interest.
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Modelling Transport and Fate of Copper and Nickel across the
South Saskatchewan River Using WASP—TOXI
Saurabh Prajapati 1,2 , Pouya Sabokruhie 2, Markus Brinkmann 1,2,3,4,* and Karl-Erich Lindenschmidt 1,2

1 School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 0X1, Canada
2 Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada
3 Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
4 Centre for Hydrology, University of Saskatchewan, Saskatoon, SK S7N 1K2, Canada
* Correspondence: markus.brinkmann@usask.ca

Abstract: The South Saskatchewan River (SSR) is one of the most important river systems in
Saskatchewan and, arguably, in Canada. Most of the Saskatchewan residents, industries, and power-
plants depend on the SSR for their water requirements. An established 1D modelling approach was
chosen and coupled with the Hydrologic Engineering Center’s River Analysis System (HEC-RAS).
The WASP (Water Quality Analysis Simulation Program) stream transport module, TOXI, is coupled
with flow routing for free-flow streams, ponded segments, and backwater reaches and is capable
of calculating the flow of water, sediment, and dissolved constituents across branched and ponded
segments. Copper and nickel were chosen as two metals with predominantly anthropogenic (agricul-
ture, mining, and municipal and industrial waste management) and geogenic (natural weathering
and erosion) sources, respectively. Analysis was carried out at ten different sites along the South
Saskatchewan River, both upstream and downstream of the City of Saskatoon, in the years 2020 and
2021. Model performance was evaluated by comparing model predictions with concentrations of
copper and nickel measured in a previously published study. The model performed well in estimating
the concentrations of copper and nickel in water samples and worked reasonably well for sediment
samples. The model underestimated the concentration values at certain segments in both water and
sediment samples. In order to calibrate the model more accurately, extra diffusive contaminant loads
were added. While several default parameter values had to be used due to the unavailability of
primary historical data, our study demonstrates the predictive power of combining WASP—TOXI
and HEC-RAS models for the prediction of contaminant loading. Future studies, including those on
the impacts of global climate change on water quality on the Canadian prairies, will benefit from this
proof-of-concept study.

Keywords: copper; nickel; trace metals; pesticides; WASP; HEC-RAS

1. Introduction

Contamination of the environment with various trace metals has been of significant
concern for many decades due to their potential to cause deleterious impacts on exposed
wildlife and humans. Trace metals have several unique chemical properties that dictate
their environmental fate and bioavailability. Trace metals such as copper, nickel, zinc,
and lead are inclined to interact with other elements and organic molecules present in
the environment. Assessments of environmental fate and risks of trace metal exposure to
wildlife and humans historically only accounted for these interactions superficially and
are most commonly based on total metal concentrations. Thus, there is a need to develop
methods and strategies to overcome this limitation and help improve risk assessments
for both anthropogenic metal contamination, e.g., with copper, and geogenic background
contamination, e.g., with nickel.

Copper reacts strongly with various functional groups present in soils and sediments,
such as iron oxides and manganese oxides [1]. Localized deposits can be caused by
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anthropogenic activities such as mining, managing municipal and industrial waste, using
copper as a pesticide in agriculture, and water treatment [2]. As a result, copper may enter
the freshwater system naturally, as a result of human activity, or due to the corrosion of
pipes and fittings in water distribution systems [3,4]. Copper is utilised in a wide variety of
products, including pipes, paints, refinery oils, and construction materials, because of its
malleability, conductivity, alloying potential, and resilience to corrosion and wear [2,4,5].
Copper exists in four different oxidation states: Cu (elemental copper), Cu (I) (cuprous ion),
Cu (II) (cupric ion), and Cu (III) [6]. In water and sediment systems, Cu (II) is a species
that is frequently found [7]. Since copper (I) is unstable, it easily oxidises to copper (II),
which then undergoes additional redox processes and becomes hydrated in the presence
of water molecules. The hydrated Cu (II) ion binds to dissolved organic and inorganic
molecules as well as particulate debris [8]. In soil, copper does not often bioaccumulate or
even hydrolyze in any form [9]. Cu speciation is complicated and dependent on a number
of variables, including water chemistry (dissolved oxygen, pH, and redox potential), water
hardness, and sediment–water interaction [10]. The toxicity of copper in freshwater is
mainly driven by various chemical parameters and water quality. According to the biotic
ligand model (BLM) proposed by [10], metal toxicity is driven by the accumulation of metal
at a discrete site of action (biotic ligand). Metal speciation results in formation of inorganic
and organic complexes [11]. As discussed above, Cu (II) adsorbs to particulate matter and
forms dissolved complexes with both organic and inorganic ligands. This ability of Cu (II) is
a major contributor for it to be the major contributor to copper toxicity (ECCC 2021). Water
quality monitoring datasets from Environment and Climate Change Canada (ECCC) were
compiled for different provinces and territories. Total copper concentrations of Canadian
jurisdictions varied with an overall range from 0.002 (Ontario) to 5723 µg/L (Saskatchewan).
The median copper concentrations ranged from 0.3 µg/L for Prince Edward Island (PEI) to
1.8 µg/L for Manitoba.

Nickel (Ni) is one of the most common elements on Earth and is widely distributed in
the environment [12]. Ni occurs mostly in the mineral form at an average concentration
of ~75,000 µg/kg in the Earth’s crust. Ni is known to have a widespread distribution
in the environment and is an essential component for many industrial and commercial
uses. Various uses of nickel include electroplating, as a catalyst for fat hardening, coloring
ceramics, electrical components, ammonia adsorption processes, and other metallurgical
operations [13]. Nickel is released into the environment in various forms, predominantly
from natural sources and few anthropogenic activities. Natural weathering and erosion
of geological materials release nickel into surface waters and soils in Canada. Forest fires
can be short-term but intense sources [14]. Mining, smelting, petroleum refining, and
manufacturing industries are other major emitters [15]. Nickel moves in both particulate
and dissolved forms in natural waters. The transport and fate of nickel in freshwater rely
on various factors such as the pH, redox potential, ionic strength, type, and adsorption
type [16]. Nickel toxicity is dependent upon the route of exposure and the solubility of
a nickel compound [17]. The movement of nickel in the environment is high in acidic
organic-rich soils, which can lead to groundwater contamination [18]. In sediments and
suspended solids, most of the nickel is distributed among organic materials, precipitated
and coprecipitated particle coatings, and crystalline particles.

Studying metal speciation in freshwater systems is challenging, as the applied method-
ologies need to be very sensitive to be able to recognize minute differences in relative
proportions of metal species at trace concentration levels. Various models have been used
to compare predictions of metal speciation to experimental values, which has been docu-
mented in a few studies [19–22]. Models such as the biotic ligand model (BLM), the Winder-
mere humic aqueous model (WHAM), the NICA–Donnan model, and WASP—TOXI [23]
have been developed to study or predict metal speciation in the environments at varying
levels of complexity. BLMs determine metal speciation and predict metal toxicity to biota
in aqueous systems using computational modelling. WHAM is based on the Humic Ion-
Binding Model and assumes that proton and metal complexation occurs at two groups
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of discrete sites with strong and weak binding affinities [24]. The NICA–Donnan model
considers carboxylic- and phenolic-type groups for determining site strengths [25]. In a
study [26], modelled in situ concentrations of Cd, Cu, Ni, and Pb were compared with
measured values by employing different speciation techniques, specifically the Humic Ion-
Binding Model VI (WHAM 6) and the NICA–Donnan model. Both the models were found
to be reasonably accurate and performed consistently for metal speciation in freshwater.
However, concentrations of total dissolved Cu and Pb were underestimated by a large
magnitude. While this finding is generally promising, the complexity of identifying an-
thropogenic versus geogenic sources of contamination, impacts of water chemistry/quality
on the fate of metals, hydrology, and morphodynamics requires an integrated modelling
strategy that accounts for all of these processes.

In this study, we used the Water Quality Analysis Simulation Program (WASP) to
model the fate of the metals nickel (predominantly from geogenic background) and copper
(predominantly from anthropogenic sources) between water and sediments in the South
Saskatchewan River through the sampling periods of 2020 and 2021. With an average
discharge of 277 m3/s (min: 68 m3/s, max: 731 m3/s) in 2020 and 134 m3/s (min: 68 m3/s,
max: 330 m3/s) in 2021, the hydrology in these two sampling years was noticeably different
(both measured at the outlet of Lake Diefenbaker). Additionally, Southern Saskatchewan
experienced a unique pattern of precipitation in the two sampling years, with an average of
297.4 mm in 2020 and 180.7 mm in 2021 (ECCC historical weather data). This study makes
use of trace metal concentrations and other physicochemical variables recently published
by our group [27]. Comparing the predictive power of WASP for trace metal concentrations
in sediment and water across two hydrologically different sampling periods, encompassing
both a flood and a drought year, bears a considerable potential to test the model across
a wide range of hydrologic conditions and, thus, the potential utility of this model in
forecasting, e.g., with the goal of testing the impacts of climate change scenarios.

2. Materials and Methods
2.1. Study Site

The Saskatchewan River system, which originates in Alberta’s Rocky Mountain head-
waters and flows through Canada’s plains, is made up of the South and North Saskatchewan
Rivers. The South Saskatchewan River Basin, which includes the major cities of Saskatoon,
Swift Current, Red Deer, Calgary, Lethbridge, and Medicine Hat, is situated in the southern
regions of Alberta and Saskatchewan (Figure 1). Big Stick Lake, Bow River, Oldman River,
Red Deer River, Seven Persons Creek, South Saskatchewan River, and Swift Current Creek
are all parts of the South Saskatchewan River Basin [28].
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The Red Deer, Bow, and Oldman rivers meet at the confluence of the South Saskatchewan
River, which is fed by the glaciers of the Rocky Mountains. From its source, the South
Saskatchewan River flows for another 1392 kilometres. The SSR has an average discharge
of 280 m3/s at the Saskatchewan River Forks. It covers a watershed of approximately
146,100 km2, of which 1800 km2 are in Montana, United States, and 144,300 km2 are in
Alberta and Saskatchewan [29]. Agriculture accounts for two-thirds of the land cover [30].

2.2. Modelling Approach

The change of heavy metals in the South Saskatchewan River system was studied using
the Water Quality Analysis Simulation Program 7.52 (WASP) coupled with HEC-RAS. The
WASP model could be used to simulate many different aquatic systems. The application
could simulate hazardous water contamination using the concepts of mass, momentum,
and the conservation of energy. The hydrodynamics of the model domain was simulated
using the hydraulic model HEC-RAS 6.3. Since HEC-RAS was developed by the U.S. Army
Corp of Engineers (USACE), all users and organizations have access to a free version of the
model. HEC-RAS is available to everyone and does not require a license, making it a key
benefit of utilizing it as a modelling tool. HEC-RAS can model flow, sediment transport,
water quality in one-dimensional (1D) steady and unsteady flow, and two-dimensional (2D)
unsteady flow of rivers. The model uses geometric data representation and geometric and
hydraulic computer algorithms for a network of river channels. The HEC-RAS program
can simulate an input flood using either a (1D) unsteady flow model or a (2D) unsteady
flow model following these parameters.

Flow data were acquired from available flow data from the Water Survey of Canada
(WSC) station at Lake Diefenbaker, which has an operational gauge (records available from
1966 to the present). That station is about 13 km upstream of the modelling upstream bound-
ary (gauge 07DA001—South Saskatchewan River Below Lake Diefenbaker). The HEC-RAS
model was calibrated by modifying Manning’s N to obtain the best match of the water
level at 05HG001—South Saskatchewan River at Saskatoon and 05KD007—Saskatchewan
River below the forks.

A 1D modelling approach was chosen as the optimum method for simulating the
South Saskatchewan River sites. A 1D modelling approach was found to be reasonable
for the region with optimum processing times. One-dimensional modelling can give
results that are on par with, or better than, 2D models for rivers and floodplains where the
predominant flow directions and forces follow the main river flow route, with less effort and
fewer computing resources [31]. It was expected that the system was mixed both laterally
and vertically. Previously, 1D WASP and HEC-RAS coupling [32] and quasi-2D [33,34]
have been carried out.

HEC-RAS carried out the hydrodynamic part of the modelling, and the output of
the HEC-RAS model was used as an input (for water depth at each segment) for the
WASP model.

2.3. Setup for Water Quality Modelling

The water quality part of the study was modelled using the Water Quality Analysis
Simulation Program (WASP 7.32). Due to some stability problems, the newer version
of WASP was not considered for the current study. WASP was first created in the 1980s
and has undergone numerous improvements [35]. The general dynamic model WASP
uses a segmentation network to solve the conservation of momentum, energy, and mass
equations and simulate the transport of contaminants and sediment. The WASP model
is frequently utilized to address sediment transport [34], heavy metal transfer [33], and
water quality issues [36,37]. The WASP stream transport module, TOXI, is coupled with
flow routing for free-flow streams, ponded segments, and backwater reaches and is capable
of calculating the flow of water, sediment, and dissolved constituents across branched
and ponded segments. Additionally, model boundary constraints and input parameters
are defined.
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Water flows through a network of branching streams, which may contain both free-
flowing and ponded parts, and is calculated using the standard WASP8 stream transport
model. Flow routing can be estimated for free-flowing stream reaches, ponded reaches,
and backwater or tidally-influenced reaches for one-dimensional branching streams or
rivers. Advective transport can be driven through free-flowing portions with the simple yet
practical kinematic wave flow routing method. The kinematic wave equation determines
the propagation of flow waves and the fluctuations in flows, volumes, depths, and velocities
that arise from the varied upstream inflow. This well-known equation is the solution to the
one-dimensional continuity equation and a simplified form of the momentum equation
that considers gravity and friction.

2.4. Kinematic Wave

For most simple river systems, the kinematic wave formulation is applicable. The
kinematic wave calculates flow wave dissemination and flow velocity variations over a
network of streams. The roughness of the slope and river bottom affect kinematic flow
waves. By changing the Manning equation (Equation (1)) in the continuity equation and
differentiating cross-sectional area with respect to time, the kinematic wave differential
equation may be produced (Equation (2)).

Q =
1
n

A5/3

B2/3 S0
1/2 (1)

∂Q
∂x

+ αβQβ−1 ∂Q
∂t

= 0 (2)

where Q is the flow rate, x is longitudinal distance in channel, t is time, α and β are functions
of hydraulic coefficients, S0 is the slope of the channel, n is the Manning friction factor,
A is the cross-sectional area, and B is the channel width. The depth exponent is used
along with segment geometries to estimate hydraulic coefficients, which are later used to
calculate segment flow depths under specific flow rates. [38] gave a complete description of
WASP’s stream transport. To quantify variations in velocities, widths, and depths across the
network, the kinematic wave based on solutions of one-dimensional continuity equations,
and a condensed version of the momentum equation that takes the effects of friction and
gravity into account, was utilized.

2.5. Discretization

The river network was discretized using a 500 m interval. This led to 319 horizontal,
one-dimensional water segments in WASP. Segment widths, average depths, and depth
exponents were among the hydrodynamic metrics produced by HEC-RAS. The depth
exponent controls channel shape in WASP. For these segments, a depth exponent value
of 0.3 was used to simulate an uneven cross-section. Along with segment widths, slopes,
and roughness factors, these depths are used in simulations to determine segment depths.
The model’s input variables include channel geometry, flow routing, boundary conditions,
environmental time functions, loads, and initial segment conditions. Hydraulic parameters
were obtained using a calibrated and validated HEC-RAS model and utilized as inputs for
the flow functions in WASP [38]. From the 319 HEC-RAS cross-sections separated by 500 m,
geometry for the WASP segments (average depths, widths, and slopes) was derived. Based
on the station’s water quality data closest to the study region, spatial linear interpolation
was used to identify the boundary and initial conditions for the current investigation.

The study’s duration was from 2020 to 2021. Initial heavy metal concentrations for
each model component were derived by interpolating between two nearby long-term
monitoring stations: the upstream boundary conditions were defined using the nearest
long-term heavy metal data, which was Outlook. The boundary data for downstream was
used based on the data from Weldon Ferry.
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A segment length of 500 m was used for modelling. This length is deemed appropriate
based on processing times, a reasonable uniform volume for segments, and an acceptable
mixing. Benthic segments were inserted underneath each section of surface water to
quantify erosion and sedimentation. The measured concentration at the upstream and
downstream boundaries was used to calibrate the deposition rate of metals. In the HEC-
RAS model, the spaces between each pair of cross-sections were split into individual WASP
segments. Output files of the hydrodynamic model (HEC-RAS) were specific for each cross-
section. These results then needed to be averaged between two consecutive cross-sections
to obtain the exact values for each WASP segment. This procedure is shown in Figure 2
and was implemented in Microsoft Excel (Version 2211) for all input values.
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2.6. Visualization, Calibration, and Validation

The modelled heavy metal concentrations and hydrodynamics were calibrated and
validated. The calibration of heavy metal concentrations involved several iterations in
the parameter space within reasonable parameters of the observed values. The best curve
fitting with the observed data was achieved by choosing the optimum parameter values.
To validate the model, a run with these values was compared against an independent set of
field data.
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An effective way to review model simulations and calibrate them using collected data
is to utilize the post-processor (MOVEM). Results from every WASP run, as well as others,
can be visualized using MOVEM. MOVEM allows the modeller the choice of two graphical
representations of the results: geometric grid and x/y plots. There is no restriction on
how many geographical grids, x/y plots, or even model result files a user can employ in
a session.

3. Results
3.1. Deposition Rates and Overall Concentration Trends

First, it was assumed that the deposition rate for copper and nickel should be the same
as sediment. Deposition rates for copper and nickel were calibrated using the sampled
concentration at the upstream and downstream model boundaries (Figure 3). A previously
developed model for sediment transport was used, and the model was calibrated with an
acceptable range of deposition [38]. Concentration plots (Figure 4) show the trend for both
trace metals at selected sampling sites (Downtown, Clarkboro Ferry, and Highway 312) for
both water and sediment samples. Concentration values for all sites can be found in the
Supplementary Information.
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Both trace metals were modelled for the same time periods for water and sediment in
the years 2020 and 2021 and matched to the field sampling of water and sediment samples
to maintain uniformity.

3.2. Copper

In 2020, copper concentrations were observed in the range of 1–5 µg/L except for two
sites (Highway 3 and Weldon Ferry), with values at 42.2 µg/L and 20.2 µg/L, respectively
(refer to Supplementary Information). Cu concentrations in river water in 2021 were in the
range of 0.8 µg/L to 5 µg/L. That the observed concentrations remained uniform, for the
most part, is indicative of the complex mixing of copper across the sampling sites, whereas
elevated concentrations of copper at Highway 3 and Weldon Ferry could be attributed to
various constructions around the location (bridges and roadway) in this area (S. Prajapati,
pers. obs.). Many of the measured concentrations were over the long-term CCME water
quality guideline for Cu of 4 µg/L at the given water hardness > 180 mg/L CaCO3, which
indicates that risks to aquatic life could not be excluded. Sediment Cu concentrations
ranged from <LOQ to 19 mg/kg in 2020 and <LOQ to 15 mg/kg in 2021 [27]. Since the
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resulting concentrations are below the CCME ISQG of 35.7 mg/kg, the authors do not
expect adverse effects. In sediments, Cu ranged from 1–15 mg/kg, with Clarkboro Ferry
being on the higher end for both sampling years, with values in the range of 12–15 mg/kg.
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Figure 4. Concentrations of Cu and Ni in water and sediment for selected sites during the 2020 and
2021 field seasons.

Figures 5 and 6 show a longitudinal comparison of measured and modelled copper
concentrations in water and sediment for 2020 and 2021. The concentrations modelled
through the sampling time points almost uniformly increased between the upstream and
downstream boundaries of the study area. Copper concentrations for water samples
remained mostly consistent for June 2020, August 2020, and October 2020, but increased
gradually and became more consistent in June 2021 and August 2021. Within the study
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period, discharge and flow velocity of the South Saskatchewan River were highest in
June 2020, which can explain this observed pattern of copper concentrations, as increased
discharge would cause significant erosion of riverbanks and stream beds. Thereafter,
longitudinal profiles for August 2020, October 2020, and June 2021 remained relatively
consistent throughout the segments.
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field seasons.

3.3. Nickel

In 2020, nickel concentrations ranged consistently from 2–6 µg/L for water samples
and ranged from 0.3–1.4 µg/L in 2021. The high-flow season in 2020 (due to elevated
discharge and precipitation mentioned above) helps explain the almost three- to fourfold
greater nickel concentrations in that year. Levels of nickel in sediments for 2020 ranged from
10.5–25 mg/kg and mostly remained consistent throughout the year. However, in contrast
to concentration values for water samples, the concentration of nickel in 2021 remained
around the same range, with a very slight decrease, ranging from 10–20 mg/kg. No
measured values were observed to be over the long-term CCME water quality guidelines
for Ni of 150 µg/L at the given water hardness > 180 mg/L CaCO3.

Longitudinal profiles for nickel (Figures 5 and 6) followed almost the same trend as
those for copper, with very little variability in concentration values during the different
sampling time points. Nickel concentrations remained consistent for August 2020, October
2020, June 2021, and August 2021, with a slight gradual increment with every major
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segment (i.e., sampling station). The concentration values followed a similar trend of
gradual increase. For sediment samples, the modelled progressions again followed similar
patterns in August 2020, October 2020, and June 2021, with a consistent and slight decline
throughout the study area. Again, high flow in 2020 could explain the three- to fourfold
greater nickel concentrations in 2020 compared to 2021 water samples. Similarly, for
sediment samples, settling and transverse mixing can contribute to consistent and slight
declines in the concentration values.

4. Discussion

Observed copper concentrations in water were consistent and followed similar trends
to the observed values for most of the sampling time points. An exception to that is the
observed values in the October 2020 sampling time points, where the copper concentration
values were significantly higher than that of the trend following the WASP simulated
values. This could be attributed to roadwork and bridge construction in the area, which
would have been impossible for the model to cover. In sediment samples, the majority of
the WASP simulated values were underestimated compared to the observed values, with
a few exceptions. This could be the result of the continuous accumulation of metals in
sediments over many years, which was not accounted for in the current modelling exercise.

Modelled nickel concentrations in water samples across 2020 and 2021 also followed
a similar trend, without major discrepancies from the observed values. For sediment
samples, there were a few instances where the observed values were higher than those
of the modelled progression. The model tended to underestimate the nickel concentra-
tions for sediment samples, following a similar trend to the copper concentrations for
sediment samples.

During simulations, the model was found to be underestimating the concentrations at
downstream segments. Additional diffuse loads were added to compensate for matching
the simulated values with measured values. This significantly improved the accuracy
for both metals. For water samples, additional loads (~1–3 kg/day) were included at
major segments (sampling stations) as diffuse loads. The loads were increased 100-fold
for the calibration of sediment samples. Calibration process determined these amounts.
Copper and nickel are both known to sequester in the sediment bed and are less likely to be
suspended in water. Copper, as mentioned above, enters the environment mainly through
anthropogenic sources [4]. The release and remobilization of sediment-bound copper have
been well-documented in various studies; however, the overall impacts are minor [39,40].
Mobility of nickel, on the other hand, is site-specific and depends on the soil type and
pH [41]. These observations can be attributed to the higher observed values of nickel and
copper in the sediment samples in the current study.

The model used in the current study is an extension of the previously developed model
1D WASP and HEC-RAS coupling [32] and quasi-2D [33,34]. In the study [38], the mixing
of vanadium and sediment was modelled with a quasi-2D modelling approach in the lower
Athabasca River. The authors observed a marked increase in vanadium concentration along
the river. The model was successful in capturing the transverse mixing from tributary
water with mainstream water.

As mentioned earlier, modelling freshwater systems is challenging, involving many
complex processes that affect contaminants’ transport and fate [42], which demands sensi-
tive methods to obtain accurate results for different metals. With limited data availability,
understanding metal speciation becomes difficult in such systems [43]. The current study
for the South Saskatchewan River system serves as a preliminary study focusing on trace
metal transport and fate. This study also provides an understanding of how the concen-
trations of trace metals (Cu and Ni) vary across upstream and downstream of the South
Saskatchewan River. There were a few CCME ISQG exceedances for Cu concentrations,
and there are no guidelines outlined for Ni (as of now). Although there may be no im-
mediate danger just yet, contamination of aquatic systems cannot be excluded. Further
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study involving more metals in the model with sufficient input parameters would be an
ideal recommendation.

5. Conclusions

The aim of this study was to better understand trace metal fate and interaction in the
South Saskatchewan River. Two trace metals, copper (Cu) and nickel (Ni), were selected on
the basis of their presence in the region. Copper is used in a wide range of products such
as construction, pipes, industrial equipment, etc., resulting in widespread anthropogenic
contamination with Cu. In contrast, nickel has a geogenic background in Saskatchewan and
is transferred to the aquatic environment by effluents, leachates, and runoff from mining
activities and the general land surface.

A 1D modelling approach was successfully applied in studying the trends and patterns
of trace metal fate in the river and sediment. The simulations provided interesting data
for both the trace metals and gave an insight into how the metals travel and react between
water and sediment in the South Saskatchewan River.

A number of parameters needed to be assumed due to the lack of availability of
consistent raw data for the modelling of these two trace metals. Improved availability
of these parameter values would help make the model more efficient and accurate in
predicting future trends with increased/decreased flows.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15020265/s1, Trace metal concentrations can be found in the
spreadsheet attached Table S1: Heavymetal concentrations.xlsx.
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Abstract: Chemical oxygen demand (COD) is one of the indicators used to monitor the level of
pollution in surface water. To recycle agricultural water resources, it is crucial to monitor, in a timely
manner, whether COD in surface water exceeds the agricultural water control standard. A diagnostic
model of surface water pollution was developed using visible near-infrared spectroscopy (Vis-NIR)
combined with partial least squares discriminant analysis (PLS–DA). A total of 127 surface water
samples were collected from Guangzhou, Guangdong, China. The COD content was measured using
the potassium dichromate method. The spectra of the surface water samples were recorded using
a Vis-NIR spectrometer, and the spectral data were pre-processed using four different methods. To
improve the accuracy and simplicity of the model, the synthetic minority oversampling technique
(SMOTE) and the competitive adaptive reweighted sampling (CARS) algorithm were used to enhance
model performance. The best PLS–DA model achieved an accuracy of 88%, and the SMOTE–PLS–DA
model had an accuracy of 94%. The SMOTE algorithm could improve the accuracy of the model
despite the sampling imbalance. The CARS–SMOTE–PLS–DA model achieved 97% accuracy, and the
CARS band selection technique improved the simplicity and accuracy of the discrimination model.
The CARS–SMOTE–PLS–DA model improved the discrimination accuracy by 9% over that of the
PLS–DA model. This method can not only save human and material resources but is also a new way
for real-time online discrimination of COD in surface water.

Keywords: surface water; vis-NIR spectroscopy; chemical oxygen demand; SMOTE; CARS; PLS–DA

1. Introduction

Sustainable development of the ecological environment is the common demand for the
survival of all mankind, and the recycling of agricultural water resources is urgent. Surface
water is one of the main sources of water for agricultural irrigation and an important
factor affecting the quality of crops [1,2]. With the rapid advancement of industrializa-
tion in modern society, the random discharge of industrial wastewater has become an
increasingly serious environmental problem. Extensive domestic garbage and industrial
chemical residues flow into surface water, resulting in the deposition of a variety of harmful
chemicals. This poses a serious threat to the recycling of agricultural water resources [3,4].
Accurate judgment of surface water pollution is one of the means to ensure the quality of
agricultural cultivation.

Surface water pollutants are mainly organic and are generally quantitatively indicated
by the chemical oxygen demand (COD). Conventional methods to test COD include the
dichromate method and the permanganate index method. These methods not only require
chemical reagents but also have the shortcomings of complex chemical reactions and long
time periods. Moreover, they are likely to cause secondary pollution if the chemical reagents
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are not handled properly [5]. Hence, to protect and recycle surface water resources, it is
necessary to develop a rapid, effective, and eco-friendly detection technology to accurately
evaluate the degree of surface water pollution [6].

Visible near-infrared spectroscopy (Vis-NIR) is a green, non-destructive, and rapid
detection technique. It is widely used in fields such as the ecological environment and
medicine through a combination of statistical modeling and chemometric methods [7].
This analytical technique not only provides rich qualitative and quantitative information
on substances but also has the advantages of being non-destructive and easy to apply.
Therefore, this technique is widely used to detect various water pollution indicators [8]. The
analytical method of this technique mainly involves the establishment of a calibration model
using the spectra and conventional values of the target components. Linear discriminant
models such as partial least squares discriminant analysis (PLS–DA) are commonly used in
spectral modeling owing to their simple structure and ease of operation [9]. PLS–DA is a
classification technique based on partial least squares. Its mathematical basis is principal
component analysis, and the regression model between the independent variable and the
categorical variable of the training sample is mainly established by the information of the
samples in the process of features selection, and then the characteristic variables related to
the classification are effectively extracted [10].

On the one hand, the accuracy and stability of the model will be affected by less
representative sample data and the skewed distribution of sample categories [11]. Uneven
distribution can easily occur when collecting samples. Therefore, the key factor affecting
the performance of the classification model is the quantity distribution of the samples
in different categories. Common machine learning algorithms adopt a balanced training
set, where all categories are represented equally [12]. However, such treatment leads to
a certain error in the prediction of categories with a large number of samples, whereas
categories with a small number of samples are prone to misclassification [13]. On the
other hand, the accuracy and stability of the model will suffer from redundancy in the
spectral data. If the entire Vis-NIR band is used to train the model, it is often too complex
and may produce inefficient models [14]. Some spectral variables may contain irrelevant
or even noise information, which may distort the true relationship between the sample
information and Vis-NIR predictors. Spectral selection algorithms are applied to overcome
the drawbacks of spectral analysis. The competitive adaptive reweighted sampling (CARS)
algorithm is one of the most commonly used band selection strategies [15]. This algorithm
eliminates unimportant spectral variables when extracting the optimal subset of such
variables according to the regression coefficients. However, it has not been validated
whether this algorithm can effectively discriminate if the COD of surface water exceeds the
threshold through Vis-NIR.

In our last article, we achieved quantitative predictions for surface water, but not very
good predictions for COD greater than 120 mg/L [16]. In this experiment, samples that
were more seriously polluted and whose COD was greater than 600 mg/L were added, and
the method of qualitative discrimination was tried to achieve high-accuracy COD online
discrimination, which provided new ideas for surface water quality management.

The purpose of this study was to explore the best comprehensive modeling approach
of Vis-NIR to diagnose whether the COD of surface water exceeds its management value.
The following objectives were considered: (1) to understand the effect of spectral pre-
processing methods on the discrimination results of surface water COD; (2) to improve
the distribution of sample categories using the synthetic minority oversampling technique
(SMOTE) algorithm; (3) to develop a CARS-SMOTE-PLS-DA model for rapid determina-
tion of COD in surface water using the CARS band selection algorithm and the SMOTE
algorithm; and (4) to determine the important wavelengths for the discrimination of surface
water COD and the relevant components of surface water pollution.
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2. Materials and Methods
2.1. Study Area and Sample Collection

The samples for this study were provided by the South China Research and Monitoring
Analysis Center, South China Institute of Environmental Sciences, Ministry of Ecology
and Environment. These samples were from Guangzhou, Guangdong, China. Surface
water was collected from an inland river in Guangzhou that was often used as the water
source for agricultural irrigation and the daily life of residents. A total of 127 samples
were collected from 15 July to 15 October 2021. They were placed in sealed test tubes and
labeled in the sampling order, and then delivered to the laboratory at room temperature on
16 October 2021. The COD value of each sample was determined in all experiments using
the conventional permanganate index method [17]. The measured COD values were used
for the calibration and validation of spectral analysis.

2.2. Chemical Analysis and Contamination Assessment

To determine the COD content of surface water, a known amount of potassium dichro-
mate solution was added to 127 surface water samples with silver salts as the catalyst in a
strong acid medium. After boiling and refluxing, the unreduced potassium dichromate
in the samples was titrated with ferrous ammonium sulfate using the ferroin indicator
solution as the indicator. The mass concentration of oxygen consumed was calculated
based on the amount of potassium dichromate consumed, which was the specific value
of COD.

The collected surface water samples were divided into two categories according to the
COD threshold value (40 mg/L) required for Class V in the environmental quality standards
for surface water (GB3838-2002), which is applicable to surface water for agricultural use
and in the general landscape. They were further coded as binary 0 or 1 to indicate the COD
content of each water sample as below or above the threshold, respectively [18].

2.3. Spectrum Acquisition and Pre-Processing

An XDS Rapid Content liquid grating Vis-NIR spectrometer (with a transmission
attachment and a 2 mm quartz cuvette) from FOSS, Denmark was used for this study. The
spectra were collected in the range of 400–2500 nm, including most of the NIR region. The
wavelength sampling interval was 2 nm. An appropriate amount of sample was placed
in a quartz cuvette with an optical path of 2 mm to collect the spectra. Each sample was
scanned thrice in the NIR spectrometer. Then, the average spectrum of the three scans was
taken as the acquisition spectrum. At the end of each acquisition, the quartz cuvette was
cleaned with distilled water and dried with filter paper. The spectrum of each sample was
measured at room temperature (24 ± 1 ◦C) and humidity (46% ± 1% RH).

The measured spectrum was inevitably affected by instrument noise and the ambient
environment. Therefore, four spectral pre-processing methods were used for the spectra
of the water samples: first derivative (FD), second derivative (SD), multiplicative scatter
correction (MSC), and standard normal variate (SNV) [19].

2.4. Sample Set Partitioning and Model Evaluation Parameters

The sample set partitioning based on joint X-Y distance (SPXY) [20,21] was used. The
training and test sets were partitioned with a ratio of 3:1. The training set could identify
different classes of spectral patterns upon fitting the classification model, whereas the test
set was used to evaluate the performance of the model. The specific partitioning results
with the surface water sample information are shown in Table 1.
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2.5. Evaluation of the Model Performance

The accuracy, sensitivity, and specificity were used to evaluate the overall performance
of the classification models. The classification accuracy refers to the ratio of the number of
samples correctly discriminated to the total number of samples in the classification model
when testing the established model using the prediction set. Sensitivity and specificity
are two key metrics for the classification model that indicate the percentage of positive
and negative samples correctly classified, respectively. When the accuracy, specificity, and
sensitivity are closer to 1, the classification model has better performance.

Accuracy = TP+TN
TP+FP+TN+FN (1)

Sensitivity = TP
TP+FN (2)

Specificity = FP
FP+TN (3)

where TP denotes the number of positive samples in the predication set correctly classified
by the mode; FN denotes the number of positive samples in the test set incorrectly classified
by the model; FP denotes the number of negative samples in the test set incorrectly classified
by the model; and TN denotes the number of negative samples in the test set correctly
classified by the model.

2.6. Synthetic Minority Oversampling Technique

When modeling algorithms are applied directly to data with uneven and unbalanced
sample distribution, samples in the categories with smaller quantities are prone to misclas-
sification, which reduces the overall accuracy [22]. Therefore, improving the discrimination
accuracy of minority samples in discriminant analysis is a key issue. The numbers of
collected surface water samples with COD values below and above the threshold were
quite different; the number of samples with COD values above the threshold was small.
Therefore, the oversampling method of the SMOTE algorithm was used to improve the
sample distribution. New surface water categories were generated in the training set such
that below-threshold and above-threshold samples obtained balanced observations (equal
number of samples per category in the training set). The SMOTE algorithm proposed
by Chawla et al. [23] is an efficient oversampling technique that can be used to avoid the
overfitting that arises from the direct replication of a small quantity of samples. The SMOTE
technique runs the oversampling difference by introducing synthetic examples into the
spectral space and adding K-nearest neighbors. The K value was set to five to control the
newly generated examples. For the original dataset, the sample training set corresponding
to each pre-processing method generated a SMOTE-processed training set.

2.7. Competitive Adaptive Reweighted Sampling

CARS is a wavelength selection method that adopts the Darwinian evolution theory
of “survival of the fittest”. The key wavelengths selected are those with relatively large
absolute coefficients in the multiple linear regression model. This selection method conducts
a wavelength selection based on the exponential decay function (EDF) and then selects the
key wavelengths based on the competitive wavelength selection of adaptive reweighted
sampling [24,25]. The algorithm implementation is divided into the following four steps:

(1) Perform monte carlo sampling and select a certain proportion of samples to build a
calibration model;

(2) Use EDF to remove the number of wavelengths with low absolute values of
regression coefficients;

(3) Calculate the root mean square error cross-validation (RMSECV) and filter out signifi-
cant wavelengths using adaptive reweighted sampling (ARS);

(4) Select the subset with the lowest RMSECV as the best wavelength combination.
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EDF can realize the rapid elimination and selection of wavelengths. In each sampling
process, the wavelength ratio to be retained is calculated by using EDF. The calculation
formula of the wavelength ratio is as follows:

ri = aeki (4)

Among them, a is related to two fast constants, which are related to the number of
spectral wavelengths p and the number of sampling runs N in CARS.

a =
( p

2
) 1

N−1 (5)

k =
ln( p

2 )
N−1

(6)

After forced wavelength reduction by EDF, ARS is used to imitate the principle of
survival of the fittest, and wavelengths are eliminated in a competitive manner. In ARS,
variables will be randomly weighted and sampled, and variables with larger weights will
be selected.

The aforementioned algorithms were run in MATLAB (R2018a, Math Works, Inc.,
Natick, MA, USA).

3. Results and Discussion
3.1. Descriptive Statistics

The statistics of the COD values for surface water samples measured in the laboratory
and the partitioning of the sample set are shown in Table 1. The PH of these samples
ranges from 5.63 to 8.92. The COD values of all surface water samples varied between 4
and 688 mg/L, with a mean value of 61.98 mg/L and a median value of 27 mg/L. It was
also evident that the number of samples with a COD value below the threshold value far
exceeded that of samples with a COD value above the threshold value. Samples with a
COD value larger than the threshold value may be influenced by human activities and
natural factors related to landscape changes, such as domestic wastewater discharge. The
training and test sets were divided using the SPXY method with a ratio of 3:1. A total of 95
and 32 samples in the dataset were divided into the training and test sets, respectively. The
results of the division are shown in Table 1.

Figure 1a shows the distribution of COD content of surface water samples. Most COD
values were between 1 and 100 mg/L. Samples with COD values greater than 40 mg/L
were designated as contaminated samples and those with COD values less than 40 mg/L
were uncontaminated samples. A total of 25 samples in the training set were contaminated
and 70 samples were uncontaminated, whereas 14 samples in the test set were contaminated
and 18 samples were uncontaminated. This indicated a large gap between the number of
uncontaminated and contaminated samples in the training set, which was likely to affect
the modeling results. Therefore, in the subsequent analysis, the SMOTE algorithm was used
to generate new surface water categories in the training set, so that the uncontaminated
and contaminated samples achieved balanced observations. The impact of the excessive
gap between the number of categories on the modeling was examined by comparing this
with the modeling results without using the SMOTE algorithm. Additionally, the feasibility
of the SMOTE algorithm was verified. With the application of the SMOTE algorithm, the
uncontaminated samples (<40 mg/L) in the training set increased from 25 to 70, forming
a new training set. The numbers of uncontaminated and contaminated samples in the
training set are shown in Figure 1b.
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Figure 1. (a) Histogram of surface water COD value distribution, (b) distribution of training set
samples before and after SMOTE expansion, (c) t−SNE visualization results plot.

The Vis-NIR spectral data were mapped into two-dimensional space using the t-
distributed stochastic neighbor embedding (t-SNE) visualization algorithm. Thus, the vari-
ability and inherent characteristics of the Vis-NIR spectral datasets of the uncontaminated
and contaminated samples could be understood more intuitively. During visualization, the
t-SNE method can preserve the nonlinear structure of the spectral dataset [26]. In contrast
to principal component analysis, t-SNE searches for the data structure based on a random
probability distribution over the domain graph [27]. The visualization results of the surface
water sample dataset upon using the t-SNE algorithm are shown in Figure 1c. The dataset
forms two distinct clusters, wherein each point represents a sample, and the axes represent
the first two dimensions of the t-SNE features. These t-SNE visualization results further
validate the feasibility of using the Vis-NIR spectral technique for discriminant analysis of
surface water COD.

3.2. Spectral Absorption Characteristics

Figure 2a–d present the original spectra of surface water and those after SD pre-
processing for 400–2500, 1200–1500, and 1800–2200 nm, respectively. In Figure 2a, the
spectra of uncontaminated and contaminated samples show similar trends and shapes.
However, after SD pre-processing, the spectra show multiple peaks and troughs. Since
there are large peaks and troughs near 1800 nm, the spectra after SD pre-processing were
locally amplified to obtain Figure 2c,d. These figures show more pronounced absorptions
at 1400, 1450, and 1980 nm, which may be caused by the stretching vibrations of the O-H,
C-H, and N-H bonds, respectively [28–30]. They also show that the uncontaminated and
contaminated samples exhibited large differences in these three bands.

3.3. Correlation Analysis between Wave Bands

Figure 3 shows the correlation between wavelength points. Vis-NIR is an indirect
technique for rapid measurement and discrimination that requires a small amount of pre-
pared samples and does not use harmful chemicals. It can qualitatively discriminate COD
contamination in surface water using spectral absorption characteristics [31]. However,
interference of instrument noise and high coincidence of information bands of various com-
ponents occur during measurement. Vis-NIR also has a wide wavelength range. Therefore,
there is extensive irrelevant band information. Figure 3 shows that the correlation between
the 1050 wavelength points is different, with some features showing a strong correlation
and others showing a weak correlation. Therefore, it is necessary to choose the appropriate
wavelength band for modeling and obtain a model with high performance by removing
non-informative bands.
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3.4. Comparison of Classification Results

The discrimination results of the PLS–DA, SMOTE–PLS–DA, and CARS–SMOTE–
PLS–DA models with different pre-processing methods for surface water samples are
summarized in Table 2. The sample sets were divided using the SPXY method and saved
as the training and test sets. The raw spectra were pre-processed differently. In the PLS–
DA model, the spectral pre-processing had different effects on surface water pollution
discrimination. FD and SD had positive impacts on the accuracy of the model. The model
achieved the best prediction results after SD pre-processing. The accuracy of the training
set and the accuracy, sensitivity, and specificity of the test set of the PLS–DA model were
0.88, 0.88, 0.83, and 0.93, respectively. However, the MSC and SNV pre-processing methods
had a negative impact on the accuracy of the model. With either pre-processing method,
the accuracy of the modeling results decreased compared to that with the original spectra.
The pre-processed training and test sets were saved separately. The training set was
SMOTE-processed to obtain a new training set, which was then subjected to PLS–DA. The
SMOTE–PLS–DA modeling results are shown in Table 2. Compared with those of the PLS–
DA model, the SMOTE–PLS–DA model accuracy with the FD, SD and MSC pre-processing
methods was improved. Among them, for the FD pre-processing method, the training
and test set accuracies of the model improved by 7% and 7%. For the SD method, the
training and test set accuracies of the model improved by 9% and 6%. For the MSC method,
the training and test set accuracies of the model improved by 12% and 3%. However,
the accuracy of the SMOTE–PLS–DA model of the SNV pre-processing method was not
improved, but the sensitivity of the model was greatly improved.

Table 2. Summary of discrimination results of partial least squares discriminant analysis (PLS–DA),
synthetic minority oversampling technique (SMOTE)–PLS–DA, and competitive adaptive reweighted
sampling (CARS)–SMOTE–PLS–DA models with different pre-processing methods for surface water.

Sample
Type

Model
Algorithm Pre.p * Number of

Bands
Number of

Training Sets
Number of

Test Sets
Accuracy of

Training Sets
Accuracy of

Test Sets Sensitivity Specificity

Surface
water

PLS–DA

RS

1050

95 32 0.85 0.84 0.83 0.86
FD 95 32 0.87 0.84 0.82 0.90
SD 95 32 0.88 0.88 0.83 0.93

MSC 95 32 0.74 0.69 0.68 0.69
SNV 95 32 0.76 0.75 0.73 0.80

SMOTE–
PLS–DA

RS 140 32 0.89 0.88 0.96 0.63
FD 140 32 0.94 0.91 0.95 0.90
SD 140 32 0.97 0.94 0.89 0.93

MSC 140 32 0.86 0.72 0.63 0.85
SNV 140 32 0.75 0.75 0.82 0.70

CARS–
SMOTE–
PLS–DA

RS 8 140 32 0.88 0.88 0.83 0.93
FD 10 140 32 0.94 0.94 1.00 0.80
SD 38 140 32 0.99 0.97 0.94 1.00

MSC 47 140 32 0.83 0.78 0.84 0.69
SNV 85 140 32 0.85 0.84 0.91 0.70

Notes: * Pre.p: Pre-processing; The boldfaced rows indicate the best pretreatment methods and their results.

To simplify the model and further improve its prediction performance, the raw spectra
were pre-processed using four different methods and subjected to feature selection. Then,
the training set was processed using the SMOTE algorithm to obtain the results of CARS–
SMOTE–PLS–DA, as shown in Table 2. The accuracy of the model improved after CARS
feature selection. After SD pre-processing, the training and test set accuracies of the
model improved by 11% and 9%, respectively, compared to those of the PLS–DA model.
The sensitivity and specificity were greatly enhanced. The simplicity of the model also
improved, with 1050 wavelength points being reduced to 38. The CARS algorithm further
improved the model performance and simplified the model, compared to the SMOTE–
PLS–DA model. The training set accuracy of the model improved and the sensitivity and
specificity increased to a greater extent.
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To further investigate the performance of the three models, the receiver operating
characteristic (ROC) curves of the four different pre-processing methods and surface water
score map were plotted and analyzed, the ROC is a comprehensive evaluation index
reflecting the continuous variables of the sensitivity and specificity in the classification
problem [32], as shown in Figure 4. The points of each curve in Figure 4c are closer to
the upper left corner than those in Figure 4a,b, indicating that the prediction accuracy
corresponding to each pre-processing method improved with the application of CARS and
SMOTE algorithms. However, for the PLS–DA model, the ROC curve is closer to the dashed
line after pre-processing with MSC and SNV. In other words, the model performance was
reduced. For the SMOTE–PLS–DA model, the ROC curve of the original spectra is closer to
the dashed line, i.e., the model performance was poorer. For the CARS–SMOTE–PLS–DA
model, compared with Figure 4a, all five curves are closer to the upper left corner, whereas
the ROC curves of MSC and SNV are below that of the original spectra. In other words,
the MSC and SNV pre-processing methods reduced the model performance. Moreover,
the ROC curve of SD is closer to the upper left corner, i.e., the modeling effect with SD
pre-processing was better.
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model. FD: first derivative; SD: second derivative; MSC: multiple scattering correction; SNV: standard
normal variate.

In Figure 4d, it can be seen that a large number of samples with a label value of 1 have
scores below 0 and a number of samples are misclassified; in Figure 4e, after SMOTE, it can
be seen that for samples with the label value of 1, the score has improved significantly, but
there are still a number of samples with scores below 0. In order to further improve the
score, we used the CARS algorithm to improve the performance of the model. In Figure 4f,
we can see that only two samples with the sample label of 1 have scores below 0, at the
same time, the scores of the samples with the label −1 are all located below 0, and the
model prediction was greatly improved.
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4. Discussion
4.1. Band Analysis by CARS Algorithm

The results of the CARS feature selection of the SD pre-processed spectra are shown in
Figure 5a. A total of 38 bands were selected as key variables from 1050 wavelength points,
mainly located near 430–500, 550–600, 700–860, 1050–1080, 1900–2000, and 2350–2400 nm.
To verify whether the selected 38 bands could represent the variability between uncon-
taminated and contaminated surface water samples, the scores of the bands were plotted,
as shown in Figure 5b. There was large variability in the scores of the 38 bands; this also
proved the feasibility of these bands selected by CARS. The greatest variability in the
scores was found near 498 nm; this may be caused by C-H bond vibrations of aromatic
hydrocarbons in the vicinity [28,33].
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The chemical bonds corresponding to the main bands of the Vis-NIR region screened
by CARS and the possible corresponding contamination components are shown in Table 3.
The band most screened by CARS was near 400–860 nm; this may arise from the vibration
of C-H and N-H chemical bonds, such as those in aromatic hydrocarbons [28,34].

Table 3. Basic chemical bonds, absorption wavelengths, and possible associated water pollution
components of main spectral bands screened by competitive adaptive reweighted sampling (CARS)
for visible near-infrared region.

Locations of Selected
Spectral Variables (nm) Possible Fundamental Bonds Possible Related

Constituents

800 C-H Organics (aromatics)
1000 N-H Organics (amine)
1100 C-H Organics (aromatics)
1200 C-H Organics (aromatics)
1380 O-H Water
1500 C-O Organics (aromatics)
1800 C-H Organics
2100 N-H Organics (amine)
2400 C-O Organics (Carbohydrates)

4.2. Implication of Proposed Strategy

The CARS–SMOTE–PLS–DA modeling approach proposed in this paper not only
improves the discrimination accuracy of the PLS–DA model but also simplifies the model
input variables. When using Vis-NIR as the input for the PLS–DA model, most spectral
variables may be redundant; on the other hand, fewer spectral input variables may result in
the loss of COD-related information. A spectral selection algorithm can solve both problems,
and the optimal number of input spectra for a balanced model can be found using spectral
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variable selection. The modeling effect can reduce due to the large difference between the
number of contaminated and uncontaminated surface water samples collected. To solve
this problem, the feasibility of the SMOTE algorithm in solving the problem of uneven
sample distribution was explored. The feasibility of PLS–DA and SMOTE–PLS–DA was
experimentally verified before conducting CARS–SMOTE–PLS–DA. The discrimination
accuracy improved after SMOTE solved the problem of the uneven sample distribution.
Finally, the Vis-NIR spectra of surface water were subjected to band selection after the
pre-processing with four different methods. Combining the CARS selection algorithm with
the SMOTE algorithm not only improved the discrimination accuracy of the model but also
reduced the input of the discrimination model.

In this study, the surface water samples were collected for a total of 4 months, covering
both the rainy and non-rainy seasons in Guangzhou. Changes in the rainy season will
lead to changes in COD because the runoff generated by the rainfall in the rainy season
will cause pollutants from land sources to enter the water, resulting in an increase in COD.
From the principle of COD chemical detection, these pollutants are all aerobic substances.
The aerobic substances in the surface water during the rainy season and non-rainy season
have a general law and there will be no major changes in components due to the rainy
season. We carried out Vis-NIR detection on a large number of samples and used a surface
water model to grasp the quantitative relationship between all aerobic substances and COD
values as much as possible. We used the CARS–SMOTE–PLS–DA model to realize the
online monitoring of large COD values, which provides a new way of discriminating for
the management of seriously polluted surface water.

5. Conclusions

This study employed a new approach with CARS–SMOTE–PLS–DA and Vis-NIR to
judge whether surface water can meet the COD standard (40 mg/L) for agricultural use
and the general landscape. It demonstrated the feasibility and effectiveness of introducing
the CARS band selection technique and the SMOTE algorithm into Vis-NIR analysis. The
CARS–SMOTE–PLS–DA modeling approach not only had a higher overall accuracy but
also produced a more simplified model. The optimal pre-processing method for all three
modeling methods was SD, with PLS–DA yielding an accuracy of 88% with the input of
1050 wavelength points. Compared to the PLS–DA model, the CARS–SMOTE–PLS–DA
model exhibited an 11% improvement in accuracy and a 96% reduction in wavelength
input. The CARS–SMOTE–PLS–DA model experienced a 5% improvement in accuracy and
a 96% reduction in wavelength input compared to the SMOTE–PLS–DA model. Overall, the
surface water COD discrimination method (CARS–SMOTE–PLS–DA model) proposed in
this paper has the advantages of novelty, eco-friendliness, simplicity, and broad prospects.
It is a novel method for real-time online surface water COD discrimination, which is
conducive to the management and development of surface water resources.
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Abstract: Estuarine environmental capacity is the foundation for coastal biological diversity and self-
purification capacity. Hence, studies on the marine environmental capacity (MEC) are the foundation
for the total discharge control and water quality improvement of land-based pollutants. In the
article, A calibrated two-dimensional hydrodynamic model was used to study the environmental
characteristics of Sanmen Bay, including the tides, the residual currents, the tidal prism, and water
exchange abilities. The model results were used to estimate the environmental capacity of the bay.
Taking the pollution problem in Sanmen Bay as an example, the method of response factor, the
sub-unit control method, and the phased control method were used to estimate the environmental
capacity, pollutant amounts, and the pollutant reduction in the bay. The concentrations of COD,
inorganic nitrogen, and acid salt in Sanmen Bay are spatially varied, with higher values occurring in
the western part and in the inner bay. The half exchange time of the whole bay is about 23 days, and
the exchange time of 95% water body is about 60 days. The evaluation of MEC cannot only provide
technical support for the offshore aquaculture industries but also provide a scientific basis for the
total control of terrigenous pollutants in coastal cities in Southern Zhejiang Province.

Keywords: marine environmental capacity (MEC); response factor; water exchange; residual;
Sanmen Bay

1. Introduction

With the fast development of the coastal economy and marine aquaculture, estuaries
are suffering a lot from terrestrial and oceanic pollutants. Understanding the characteris-
tics of pollutants and estimating the marine environmental capacity (MEC) in estuaries
provides a theoretical foundation for coastal management. The deteriorated environment
of bays feeds back to and constrains the economy of coastal cities. Therefore, identify-
ing sources and sinks of pollutants, and estimating the estuarine environmental capac-
ity is quite important for coastal development (Yoon et al., 2020; Halpern et al., 2008;
Syvitski et al., 2005) [1–3].

The main reason for the deterioration of the offshore water environment is that a large
number of pollutants produced on land are discharged into it, including inorganic nitrogen,
active phosphate, and heavy metals, etc. (Chen et al., 2008; Cui et al., 2013) [4,5].

The first step to conduct total discharge control is to assess the MEC of pollutants.
(Wu et al., 2005) [6]. MEC refers to the maximum load of pollutants that can be accom-
modated in a specific sea area under the premise of making full use of the marine self-
purification capacity without causing pollution damage (Linker et al., 2013) [7].

Sanmen Bay is located on the coast of the East China Sea (Figure 1a). It is a macro-tidal
turbid estuary, with a maximum tidal range of approximately 2 m at the bay mouth and
suspended sediment concentration (SSC) of 1.192 kg/m3 at the middle of the bay. It has
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four tributaries. With the fast development of human activities, the pollution problem is
becoming increasingly heavy in the bay.
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quality control stations in Sanmen Bay.

Identification of the contamination source is a part of the systematical analysis to find
the pollution source fundamentally. Because how much a certain water body can hold is on
the premise of pollution intensity which also plays the role to decide how to distribute for
such a specific object.

According to the various forms of pollution being discharged into the water body,
pollution sources can be divided into point source pollution and non-point source pollu-
tion. Non-point source pollution is referred to as water body pollution caused by rainfall
run-off, this kind of contaminant entered into the soil or underground water body in a
wide, microcrystalline, and dispersive way. Since the 1960s, research on non-point source
pollution has caught the interest of scientists throughout the world. So far non-point source
pollution feature, impact factor, load quantification on pollution output, and mechanism of
pollutant migration and transformation have made great achievements.

A certain amount of contaminant emission poured is permitted. Because natural
water body holds a certain amount of environmental capacity for a sort of pollution. Total
emission radically depends on assimilative capacity, distribution of total water pollutants
based on the limit of water environmental capacity.

34



Water 2022, 14, 2083

According to the environmental quality survey results of the Sanmen Bay sea area
from 2015 to 2016, and combined with the marine environmental function zoning, the
researchers evaluated and classified the current situation of the environmental quality of
the sea area (Liang et al., 2021) [8]. A 2-D hydrodynamic and pollutant model of Sanmen
Bay is established based on Deift3D. Combined with the current hydrological status of
Sanmen Bay, the transport and diffusion laws of COD, TP, and TN in the bay are analyzed
(He et al., 2018) [9].

After conducting Clean Water Act in 1972, although industrial and municipal pollution
has been under effective control by carrying out NPDES (National Pollutant Discharge
Elimination System), the water quality has not been radically improved. Previous research
showed that it is non-point source pollution that mainly polluted the rivers, lakes, and
surface waters in estuaries. Also, non-point source pollution polluted underground water
and degradation of wetland ecosystem. For such a reason, the Clean Water Act includes a
guide rule, named TMDL (Total Maximum Daily Load), aiming at controlling both point
source pollution and non-point source pollution. The acting emphasis is on figuring out
non-point source pollution load and elimination in key water areas. Such a concept (MEC)
was raised by Japanese scholars in the environment field in 1968. Japanese researcher
Yanowokio (1968) claimed that environmental capacity is determined by environment
quality standards, i.e., keeping total contamination loads within a permitted limit [10].

Streeter and Phelps (1952) raised a simple S-P model, which is the earliest form of water
quality model [11]. The development of the water quality model can be concluded into
5 periods: 1925–1960, BOD-DO coupled model was raised based on the S-P model; during
1960–1965, spatial variety, physical, kinetic factors, and temperature were introduced into
the model as a state variable, in the same the heat exchange between air and the water
surface was also considered; during 1965–1970, as the computer started to be applied,
people increasingly deeply understand biochemical oxygen consumption; the calculation
method was developed from 1-D to 2-D; during 1970–1975, water quality model has
developed into mutually non-linearity. In the last 20 years, space dimensionality has been
into 3-D, the emphasis of study gradually turned into improving the dependability and
evaluation of the model. In this way, dependability on the calculation of environmental
capacity has been enhanced [12–16].

The eutrophication degree of seawater, the enrichment degree of heavy metals in
sediments and the potential ecological hazard effects were comprehensively analyzed.

In this study, we take Sanmen Bay as an example, to study the characteristics of water
exchangeability and marine environmental capacity, using both numerical models and
field data.

Sanmen Bay is located in the monsoon subtropical humid climate zone. Affected by the
monsoon climate, it has four distinct seasons and a mild climate. The weather changes are
complex and disastrous weather is frequent. Disastrous weather of different degrees can be
encountered in all seasons. The seasonal variation of temperature is obvious. Sanmen Bay
has abundant rainfall, mainly from March to September. The whole year can be roughly
divided into two rainy seasons and two relatively dry seasons. The wind direction of
Sanmen Bay varies with seasons. Typhoons, rainstorms, and sudden small-scale disastrous
weather occur from time to time.

2. Materials and Methods
2.1. Model Descriptions

A calibrated two-dimensional hydrodynamic model was used to reproduce the coastal
oceanic and environmental characteristics of Sanmen Bay. Delft 3D simulates water surface
elevation, velocity, water quality, waves, and morphology. Flow, Hydrodynamics were
used in this study. The governing equations of the Delft3D hydrodynamic model in
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the vertical sigma coordinate system and horizontal curvilinear coordinate system are
expressed as follows:
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where ξ is the coordinate direction under the Delft3D curvilinear coordinate system corre-
sponds to the X-axis of the rectangular coordinate system, η is the Y-axis, ζ is the height of
the water surface above the zero scale line of the Z coordinate, d is the depth from the zero
scale line of the Z coordinate to the bottom of the water, U is the velocity for X-axis, V is
the velocity for Y-axis,

√
Gηη is conversion coefficient for X-axis and

√
Gξξ is conversion

coefficient for Y-axis.
The three-dimensional convection-diffusion equation in the water quality module is

as follows:

Cover∂C
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∂2C
∂z2 = S + fR(C, t) (2)

where C is substance concentration, D is diffusion coefficient, S is the inflow term, fR(C, t)
is the reaction term.

2.2. Model Configurations

The model domain contains Sanmen Bay and its adjacent seas. The open ocean
boundary is from 28◦31′ N to 29◦26′ N, the east part can extend to 122◦27′ E. Jiaojiang River
runoff is considered at the open boundary. The measurements were conducted in the bay
between the Nantian station and the Linhai station (Figure 2a).
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Figure 2. Tidal elevation in (a) Jiantiao station and (b) Gangdi station (2 December 2009 to
12 December 2009).
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According to the calculation region, to generate orthogonal curvilinear grid scatter
with the 2-D hydrodynamic model. The Mesh quantity is 629 × 674. In the study region,
the minimal edge length is about 50 m, the maximum edge length is about 220 m, and the
computational time step is set at 60 s. Charted depth data is gained from the historical
chart. ADI method is used to solve the problem.

The computational domain is about 100 km on the x-axis and 110 km on the y-axis.
The grid consisted of 423,946 elements, forming a mesh of orthogonal curvilinear grid with
variable cell widths ranging from 220 m in the area of the open sea to 50 m in Sanmen Bay.
The bathymetry data were interpolated linearly and were corrected with the satellite chart
(Figure 1a).

The model was run for a further one month for the period from 1 December 2009 to
30 December 2009.

To calculate the environment capacity, we firstly determine water quality goal by
dividing functional the water area, then conduct a numerical simulation to consider the
quantitative response relation between pollution emissions and water environmental quality.

2.3. Model Validation

Hourly water elevation from 3 December to 12 December in 2009 is taken from Jiantiao
station and Gangdi station are compared with model elevations in Figure 2. The result of
verification basically agreed with the measured data. The relative error of the whole process
could be controlled within 10%. According to spring tides and neap tides verification, the
result can basically reflect the tide wave transformation of Sanmen Bay.

The current velocity and direction of each verification point coincides with the mea-
sured data, what’s more, the current velocity summit and direction changing moment are
both close to each other, and relative error could be controlled under 20%. In a conclusion,
the numerical simulation in Sanmen Bay can basically reflect the regional hydrodynamic sit-
uation, which offers a basis for further research on water exchange and water environmental
capacity (Figures 3 and 4).
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Compared with the measured values, the calculated values of the total tidal mean
concentration in the whole sea area are also close, with an error of only 1.96%, indicating
that the water quality model has successfully simulated the distribution of inorganic
nitrogen concentration in Sanmen Bay.

The validation of COD is shown in Table 1. The model can simulate the contami-
nants well.

Table 1. Validation of COD.

Station Flood (Model) Ebb (Model) Average (Model) Observation Error/(%)

S1 0.6777 0.7055 0.6916 0.717 −3.60
S2 0.6225 0.6749 0.6487 0.661 −1.91
S3 0.5673 0.6360 0.6016 0.640 −5.93
S4 0.5399 0.5942 0.5671 0.556 2.06
S5 0.5376 0.5483 0.5430 0.535 1.49
S6 0.6963 0.7078 0.7020 0.728 −3.51
S7 0.6539 0.6997 0.6768 0.630 7.43
S8 0.6105 0.6739 0.6422 0.583 10.25
S9 0.6986 0.7020 0.7003 0.660 6.06
S10 0.6865 0.6965 0.6915 0.594 16.51

Average 0.6432 0.6658 0.6545 0.642 1.96
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2.4. Method to Estimate the MEC

The marine environment capacity (MEC) is decided by the following factors:

(1) The hydrogeology condition of the marine environment, such as marine space, loca-
tions, tidal conditions, self-purification abilities, and other natural conditions as well
as group features of the ocean ecosystem.

(2) Rules on the utilization function of the specific maritime area usually differ. Different
maritime functional areas carry out different water quality standards so that their
water capacity varies.

(3) Physicochemical property. The environment capacity relies on self-purification which
is decided by the physicochemical property of contaminants. Various kinds of contam-
inations do harm to people through different toxicities. Thus, environment capacity
changes as the concentration permitted to exist differ.

The response coefficient method is adopted here for the research on environment
capacity. By taking residual capacity maximum as principal, this study has Sanmen Bay
for example, and then calculates the distribution of the marine environment capacity of
Sanmen Bay.

Given that velocity and diffusion coefficient is determined, a convection-diffusion
equation can be regarded as a linear equation.

The formula is shown as follows:

C(x, y, z) =
m

∑
i=1

Ci(x, y, z) (3)

where C(x, y, z) means the concentration of each position (mg/L). Ci(x, y, z) means the
concentration of the ith position (mg/L).

The concentration field formed separately by each source can also be regarded as some
times of the one formed when a certain source strongly discharges pollution.

Ci(x, y, z) = Qi·αi(x, y, z) (4)

where Qi is the ith pollution source’s emission; αi is the response coefficient field of the
ith pollution source, referring to one point’s concentration under unit source intensity. αi
reflects the ith point’s response level to the ith pollution source.

According to the response coefficient and controlling goals of each controlling point,
to work out the environment capacity by the linear programming method. The main steps
are as follows:

(1) After working out each source’s response coefficient field, researchers should extract
each controlling point’s corresponding response coefficient value.

(2) Pollution source’s permitted emission might correspond to the total residual emis-
sion maximum worked out by linear programming (LP) under the condition where
controlling points meet the demand of water quality.

Taking Sanmen Bay, for example, this paper studies total amount control and emission
cutdown management. One of the central basis of management of the marine environment
is environment capacity. Contaminants picked to be calculated should reflect the water
quality, degree of contamination, and operability on the management of environment
capacity and contamination controlling and other aspects. Considering pollution source,
the water quality of Sanmen Bay, and linking to the control index of land-sourced pollutants,
Sanmen Bay’s prime pollutants are nutrient salt formation such as nitrogen, phosphorus,
etc. COD is a comprehensive index to describe the degree of water pollution. According to
relevant provisions, CODs, (chemical oxygen demand) TN (total nitrogen), and TP (total
phosphorus) should be taken into consideration in calculation of environment capacity
or cutdown. Based on investigations of Sanmen Bay and relevant provisions on seawater
quality, this paper will calculate by controlling the content of CODMn, inorganic nitrogen
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and labile phosphate in seawater and then gets a result. Finally, the research will make a
conversion from the result to environment capacity or cutdown for COD, TN, and TP.

3. Results
3.1. Hydrodynamics in the Bay
Field Observation and Analysis

Surface water elevations were measured by WSH at the Jiantiao station and Gangdi
station, both recorded at a 60-min sampling interval. The velocity data discussed in this
paper are measured by ADP at 400 KHz and 600 KHz in these two stations.

The tidal characteristic values of Jiantiao Station and Gangdi Station are less than 0.5,
so it can be inferred that the tide of Sanmen Bay belongs to the regular semidiurnal tide
(Table 2).

Table 2. Tidal eigenvalue (HO1 , HK1 and HM2 means the amplitudes of H1, O1 and M2 respectively).

Date
(HO1 +HK1 )/HM2

Jiaotiao Station Gangdi Station

2009.7 0.36 0.32
2009.12 0.36 0.33

The current property ratios ((WO1 + WK1)/WM2) of L1, L2, and L3 are all less than
0.5, indicating that the M2 tidal component of Sanmen Bay is dominant and is the main
tidal component. The tidal current type of Sanmen Bay belongs to the regular half day
tidal current. Generally, the bay is greatly affected by the tidal component of the shallow
sea. The calculation results also prove this point. Among them, the value (WM4/WM2) of
theL1 station is the smallest. This is mainly because the L1 station is located at the mouth
of Sanmen Bay, with an open water surface and deep depth, so it is less affected by the tidal
component of the shallow sea (Table 3).

Table 3. Tidal current eigenvalue (WO1 , WK1 and WM1 means the length of long semi axis of partial
current ellipse of O1, K1 and M1 respectively).

Station Layer
(WO1 +WK1 )/WM2 WM4 /WM2

July 2009 December 2009 July 2009 December 2009

L1

surface - 0.283 - 0.059
0.2H - 0.227 - 0.209
0.6H - 0.244 - 0.049
0.8H - 0.235 - 0.147

bottom - 0.267 - 0.133

L2
layer 0.104 0.222 0.213 0.250

bottom 0.061 0.292 0.182 0.208

L3
layer 0.235 0.211 0.250 0.452

bottom 0.206 0.348 0.267 0.688

3.2. Model Result Hydrodynamics in the Bay

Figure 5 shows the torrent velocity vector of ebb and flood tide during spring and
neap tide in December 2009.
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After the tidal waves propogate from the outer sea into Sanmen Bay through southeast
to the northwest, the tidal motion characteristics are formed mainly with standing waves
in the bay, while ebb and flood last little. The tidal current in Sanmen Bay is basically
reciprocating, and the flow direction is mostly influenced by the topography. The flood
tide flowing into the bay mouth is mainly in the northwest direction, and the ebb tide is
mainly in the southeast direction. The water channels and harbor branches are basically
along the longitudinal axis, among them Shipu Harbor’s flood tide flow to the west, and
ebb tide flow to the east. The open sea area from the bay mouth to the outer bay shows
swirling current characteristics in different degrees.

During the flood period, the East China Sea tide waves propagate from the southeast
side of the large area along the northwest direction, which mainly enters Sanmen Bay
through its mouth. Most of the flood tide flows into the bay in the northwest through the
bay mouth after passing through the Maotou Sea. A small part of the tide flows into the
bay from east to west via Shipu Port. The two flood tides merge in the bay and then divide
into four flows towards the summit of the bay. The first one flows into Jiantiao Harbor,
the second one flows into Qimen Harbor and Haiyou Harbor through the Shepan water
channel, the third one flows into Liyang Harbor and Qingshan Harbor, the fourth one flows
into Baijiao water channel. The direction of the flood tide in each port branch is basically
parallel to the longitudinal axis of the port branch, and the velocity is similar to that of the
flood flow in the open sea. On the large area of shallow shoals which are apart from the
port branch, the floodplain shows a slow flow and diffusing state.

During the ebb flow, the flow direction is basically opposite to that of flood flow,
and the main stream is along southeast. The water at the bay summit leaks out of the
trough. After the ebb tides converge, most of them flow out of the Sanmen Bay mouth in
the southeast direction, and a small part of it flows out from west to east via Shipu Port.
The Yushan Islands which is in the southeast corner of the calculation area and the Dongji
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Islands in the southwestern part are both affected by the underwater topography, and the
direction of the flood and ebb tides change to a certain extent, and the local currents are
relatively complicated.

3.3. Water Exchange Ability in the Bay

Luff et al. (1996) introduced the concept of the Half-life period, which is defined as the
time required for the concentration of the conservative substance to be diluted to half of
the initial concentration by convection diffusion. The definition is based on the fact that it
is almost impossible for the final concentration of a substance to be zero, and the rate of
dilution represents the rate of water quality change, that is, the exchange capacity of the
sea area.

Based on the concept of half exchange time, this study calculated the diffusion, trans-
port, and dilution speed of conservative matter in each grid point of Sanmen Bay by using
the transport and diffusion model of conservative materials, so as to study the water
exchange capacity of Sanmen Bay.

3.3.1. Passive-Tracer Concentrations

Based on the previous hydrodynamic model, the water exchange model for the trans-
port of regional passive-matter concentration is established (Figure 1c).

In the closed boundary condition, the current is 0 ( ∂C
∂n = 0), different treatment methods

are adopted for the inflow and outflow of the model, and the inflow material concentration
is 0, and the outflow material concentration is calculated by the model. The flow conditions
are automatically obtained from the flow model.

According to the conservative material model, the whole continuous tidal process
is applied as the calculation tide pattern, and the diffusion, transportation, and dilution
process of the conservative material in the calculation water area are obtained continuously.
Figure 6 shows the distribution of conservative materials at different times over three
months. Note that the concentration value of conservative substances on each grid point
not only represents its own concentration, but also is an important indicator of local water
exchange degree. The period of the water exchange rate reaching 95% is about 60 days.
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After five days (Figure 7a), the water exchange degree of different regions in the bay
is quite different. On the whole, the concentration of conservative material decreased
gradually from the top of the bay to the estuary, indicating an increased exchange degree
from the bay head to the bay mouth. At the same time, the water exchange degree of the bay
mouth section increased gradually from the west to the east part of the bay. The direction
of concentration isoline near the bay mouth was NNE-SSW, and the water exchange rate
reached more than 90% on the fifth day in the bay mouth. The water exchange capacity of
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Shipu port is relatively strong, and the water exchange rate from the bay head to the bay
mouth rises from 40% to about 80%.

Figure 7. Conserved matter distribution after 5 days (a), 15 days (b), 30 days (c), 45 days (d) and
60 days (e).

Half a month later, most of the water areas in the bay that had not been exchanged
five days ago have been exchanged to a certain extent, and the concentration value has
dropped to less than 0.9 units.

One month later, except for the small tidal flats with high elevation in Xiaodao, most
of the water bodies in Sanmen Bay have completed semi exchange, and the water exchange
rate in the Bay has basically reached more than 60%. To facilitate the observation of the con-
centration distribution in the bay, the upper limit of concentration in the figure is changed to
0.4 units. The concentration isolines at the top and mouth of the bay continue to move into
the bay, and the concentration gradient is significantly reduced. The overall distribution
trend of the water exchange degree is still similar to that before. The concentration contour
line in the western part of the bay is roughly along the NE-SW direction, and the relatively
high concentration waters are mainly located in Qimen port and Haiyou harbor, with a
concentration value of between 0.25 and 0.35. The concentration of Shipu port in the bay
head has dropped below 0.1 unit.

Figure 8d,e shows that the trend of concentration distribution and isoline trend in
the bay are close, while the overall concentration decreases and the concentration contour
continues to be extrapolated. After one and a half months, the exchange ratio of all water
bodies in the bay reaches more than 85%; after two months, the exchange ratio of most
water bodies in the bay reaches more than 90%, except for some waters at the top of the
west of the Bay. It can be considered that the water exchange in Sanmen Bay has been
basically completed at this time.
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3.3.2. Water Exchange Ability

Tidal prism means the volume of tidal water that a certain bay can hold. It is an
important indicator of the environmental assessment of a bay and an important parameter
reflecting the exchange of sea water in the bay. The amount of tidal prism is of great
significance to the marine environment, the exchange of water bodies in the bay, the
maintenance of the port branch, and the water depth in the channel. Sanmen Bay is a
typical semi-enclosed bay, the rivers flowing into the bay is mountainous rivers. Therefore,
when calculating the tidal volume of Sanmnen Bay, the tidal volume flowing out of the
coastal estuary from the calculation area is ignored, and only the part in Sanmen Bay is
considered. Two tidal current channel sections between the bay and the open sea, the
Sanmen Bay section and Shipu Port are perpendicular to the longitudinal axis of the main
waterway and Shipu section (Figure 8).

The tidal volume is defined as the newly added tidal volume entering the bay from
the low tide time to the high tide time in any one tide cycle. The tidal volume of a tidal
cycle can be expressed as:

Q =
∫ Thigh

Tlow

∫

A1

U1D1dA1dt +
∫ Thigh

Tlow

∫

A2

U2D2dA2dt (5)

The hydrodynamic model is ideal for the simulation results of regional tides and tidal
current processes. The simulated flow field can basically reflect the calculation of regional
hydrodynamics. The calculation results can be used as the basis for the study of water
exchange and water environment capacity in Sanmen Bay.

The tidal volume of Sanmen Bay is relatively large. It’s between 15× 108 ∼ 30× 108m3

during a spring-neap tidal cycle, 20× 108 ∼ 30 × 108m3 during spring tides, and
15× 108 ∼ 18× 108m3 during neap tides. The average tidal prism is about 20.78× 108m3.

According to the results of numerical calculation of water exchange, the distribution
of semi exchange capacity in Sanmen Bay varies greatly in different regions of the bay.
Generally speaking, the water exchange capacity of the bay mouth and Shipu port is strong,
and the water exchange in the west of the bay is relatively slow compared with that in the
East. On the whole, the half exchange time of water in Sanmen Bay is less than 23 days,
and 95% of the water exchange period is within 50 days in relatively open main water area;
the half exchange time of water body in most areas of the branches is more than 10 days,
and 95% of the water exchange period is more than 50 days; the water exchange time of the
west end of Shipu port is longer than that of the east end, the half exchange period is less
than 8 days, and 95% of the water exchange period is less than 40 days.
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4. Discussion
4.1. Estimation of Environmental Capacity

Based on the precondition that to maintain the function of the environmental capacity
of water, pollutant emission maximum that receiving waterbody can endure, that is to
say, are permissible quantity of pollutants under the goal of water quality and hydro-
logical condition. According to the situation of the water environment in Sanmen Bay,
to calculate environment capacity about CODMn is to figure out the maximum value of
emissions’ sum from pollution loads at all outfalls. Gaining value which is as great as
possible on environment capacity is important. Yet important management methods for
contaminants controlling and environment protection might coordinate with the operability
of management.

Working out a linear programming problem is to figure out a linear function’s maxi-
mum or minimum under the constraint of a set of linear equations or inequations.

The response coefficient method for environment capacity calculation transforms into
a linear programming maximization problem [12]. It means:

Object function:

max
n

∑
j=1

Qj (6)

Constraint equation:

C0i +
n
∑

j=1
αijQj ≤ Csi, (i = 1, 2, . . . , m)

Qj ≥ 0, (j = 1, 2, . . . , n)
(7)

where, j means pollutant sources’ serial number, n means the number of sources; i means
the serial number of control points of water quality, m means the number of control points
of water quality; C0i means background concentration of control points; αai means the
coefficient of the jth pollution source’s emission at the ith control points of water quality.

To quickly obtain the maximum value, the problem was transformed into the stan-
dard forms in linear programming. Let Ci = Csi − C0i, to convert the inequation into an
equivalent equation.

Object function:
maxQ = ∑n

j=1 Qj (8)

Constraint equation:

∑n
j=1 αijQj ≤ Ci, (i = 1, 2, . . . , m) (9)

Qj ≥ 0, (j = 1, 2, . . . , n) (10)

where, Ci means the ith concentration capacity of the control points of water quality.
Environment capacity assessment in this study involved COD, labile phosphate, and
inorganic nitrogen. Control stations distribution can be seen in Figure 1d.

4.1.1. The Responses Factor Field of COD

According to the method of response factor, the response factor field of pollution
source in each catchment unit needs to be calculated first. The response factor field uses
the same region and mesh as the pollution diffusion model. The initial condition was set
as 0 to exclude other source strength’s influence. The concentration field (also known as
response factor field) is as Table 4 shows.
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Table 4. CODMn concentration field (mg/L).

Number Bapu Jiantiao Haiyou Qimen Liyang Baijiao Shipu

1 0.0043 0.0035 0.0030 0.0028 0.0030 0.0019 0.0010
2 0.0011 0.0026 0.0025 0.0023 0.0025 0.0017 0.0010
3 0.0005 0.0015 0.0015 0.0015 0.0016 0.0012 0.0010
4 0.0002 0.0004 0.0005 0.0005 0.0005 0.0008 0.0012
5 0.0039 0.0046 0.0037 0.0037 0.0036 0.0021 0.0010
6 0.0010 0.0042 0.0053 0.0053 0.0054 0.0032 0.0013
7 0.0003 0.0010 0.0012 0.0012 0.0013 0.0034 0.0037
8 0.0010 0.0115 0.0097 0.0097 0.0096 0.0028 0.0012
9 0.0008 0.0040 0.0059 0.0059 0.0064 0.0053 0.0019
10 0.0007 0.0025 0.0029 0.0029 0.0029 0.0157 0.0039
11 0.0008 0.0057 0.0239 0.0239 0.0150 0.0029 0.0012
12 0.0008 0.0052 0.0108 0.0108 0.0196 0.0037 0.0014
13 0.0005 0.0020 0.0024 0.0024 0.0025 0.0281 0.0039
14 0.0005 0.0020 0.0023 0.0023 0.0024 0.0114 0.0069
15 0.0004 0.0016 0.0019 0.0019 0.0020 0.0077 0.0076
16 0.0007 0.0052 0.0273 0.0273 0.0140 0.0027 0.0011
17 0.0007 0.0051 0.0118 0.0118 0.0198 0.0028 0.0011
18 0.0004 0.0019 0.0022 0.0022 0.0023 0.0380 0.0035

4.1.2. Environmental Capacity of CODMn

To figure out CODMn permitted emission at each catchment according to Linear Pro-
gramming, this study took the maximum concentration during a whole tide as background
concentration to estimate the capacity. Parameters about the permitted emission of CODMn
are shown in Table 5.

Table 5. Parameter on CODMn (mg/L).

Number C0i Csi Number C0i Csi

1 0.952 3 10 0.827 3
2 0.944 3 11 0.852 3
3 0.921 3 12 0.844 3
4 0.882 3 13 0.815 3
5 0.892 3 14 0.820 5
6 0.857 3 15 0.830 5
7 0.852 3 16 0.877 3
8 0.842 5 17 0.849 3
9 0.837 3 18 0.811 3

Linear programming solving was conducted on 7 catchment units based on the max-
imum remaining capacity. The maximum remaining emission permitted can be seen in
Table 6. CODMn concentration of each control station and utilization rate can be seen in
Table 7. Based on the result calculated with present source strength, concentration distribu-
tion was used to estimate the emission permitted which shows that only Puba and Shipu
can still discharge. The result of solving the constraint conditions of each control station
is concentrated in two stations, because the calculation of linear programming is carried
out according to the mathematical conditions. When selecting the largest group of total
capacity among all feasible solution, it is obviously reasonable for the catchment which is
relatively close to the open sea.

Table 6. Emission permitted of COD (×104 t/a).

Catchment Puba Jiantiao Haiyou Qimen Liyang Baijiao Shipu

COD Emission Permitted 13.34 0 0 0 0 0 18.22
Overall Amount 31.56
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Table 7. Concentration of each control station concentration at the maximum environmental capacity
of COD.

Control Station
Number

COD
Concentration Utilization Rate Control Station

Number
COD

Concentration Utilization Rate

1 3.000 100.00 10 3.000 100.00
2 1.827 60.90 11 1.760 58.67
3 1.572 52.40 12 1.850 61.67
4 1.526 50.87 13 2.934 97.80
5 2.819 93.97 14 4.444 88.88
6 1.874 62.47 15 4.769 95.38
7 2.812 93.73 16 1.680 56.00
8 1.789 35.78 17 1.657 55.23
9 2.088 69.60 18 2.721 90.70

Table 7 shows Station 1 and Station 10 have reached the limited values. According to
the prediction results of COD environmental capacity, without considering the uniformity
principle, only from the aspect of maximum source strength increment, under the condition
of meeting the control objectives, the maximum COD pollutant discharge capacity of
Sanmen Bay is about 31.56× 104t/a, which is the maximum theoretical calculation result
under the calculation conditions.

4.2. Reduction of Main Pollutants

As the nitrogen and phosphorus nutrients in Sanmen Bay have exceeded the standard,
different emission reduction schemes for inorganic nitrogen and active phosphate should
be analyzed. In this paper, the phased control method is used to calculate the pollutant
reduction. Firstly, pre-calculation is conducted to analyze the influence of the variation of
pollution source strength of each catchment on the distribution of the concentration field,
so as to provide the basis for determining the formal calculation scheme and preliminarily
determine the minimum reduction required to reach the target. Secondly, the reduction
scheme is determined according to the phased control target. Finally, the results of each
scheme were compared and selected, and the reduction of inorganic nitrogen pollutants in
each catchment was determined on the basis of meeting the requirements of the phased
control index for environmental capacity calculation of Sanmen Bay.

The water quality model was used to simulate a different reduction of inorganic
nitrogen source strength, and the concentration of sea area under 0.65 mg/L was found to
be relevant to the reduction of source strength [17,18]:

S = 336.43e0.9146x (11)

S means area, x means percentage of source strength.
According to the model result, when the recent source strength reduction reaches

14.0%, the available sea area reaches 378.16 km2, which accounts for 60.28% of the total area
in Sanmen Bay. Mid-term and long-term is long from the present, the natural conditions
and socio-economic conditions may change significantly so that the prediction is likely to
deviate (Figure 9). The water quality improvement target needn’t be completed accurately.
According to the model result, when the source strength reduction reached 30.0% and
44.0%, the available area can reach 441.72 km2 in middle term and 497.62 km2 in long term
(Table 8).
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Table 8. Result of source strength reduction.

Number Reduction Rate of Source Strength/% Area/km

1 5 356.08
2 10 369.59
3 15 384.04
4 20 399.52
5 25 421.77
6 30 445.04
7 35 461.04
8 40 480.69
9 45 510.17
10 50 536.15

5. Conclusions

A calibrated two-dimensional hydrodynamic model was built and fully validated to
study the environmental characteristics of Sanmen Bay, including the tides, the residual
currents, the tidal prism, and water exchange abilities.

Tides in the bay are regular semidiurnal tides, and the average tidal range is more
than 4 m. The shallow water component has a certain influence on the tidal currents. The
SSC in the bay is high, and is mainly caused by tidal current. The average tidal prism of
the bay is about 20.78× 108m3.

The distribution of semi-exchange capacity of water bodies varies greatly in different
regions of the bay. Generally speaking, the water exchange capacity of the bay mouth and
Shipu port is strong, and the water exchange in the west of the bay is slower than that in
the East. The half exchange time of the whole bay is about 23 days, and the exchange time
of 95% water body is about 60 days; the half-exchange time of relatively open sea area is
less than 15 days, and 95% of water exchange time is about 50 days.

The concentrations of COD, inorganic nitrogen, and acid salt in Sanmen Bay showed a
trend of being higher in the inner estuary and lower outside of the bay, and was higher in
the western part and lower in the eastern part. The concentration of COD was lower than
0.60 mg/L in most areas of the eastern part of the bay, while was higher than 0.65 mg/L
in the western part of the bay. The concentration of inorganic nitrogen was more than
0.70 mg/L near the west coast. The concentration of acid salt was lower in the outer bay,
while was higher in the inner bay.
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Abstract: For effective management of water quantity and quality, it is absolutely essential to estimate
the pollution level of the existing surface water. This case study aims to evaluate the performance of
twelve machine learning (ML) models, including five boosting-based algorithms (adaptive boosting,
gradient boosting, histogram-based gradient boosting, light gradient boosting, and extreme gradient
boosting), three decision tree-based algorithms (decision tree, extra trees, and random forest), and
four ANN-based algorithms (multilayer perceptron, radial basis function, deep feed-forward neural
network, and convolutional neural network), in estimating the surface water quality of the La Buong
River in Vietnam. Water quality data at four monitoring stations alongside the La Buong River for the
period 2010–2017 were utilized to calculate the water quality index (WQI). Prediction performance
of the ML models was evaluated by using two efficiency statistics (i.e., R2 and RMSE). The results
indicated that all twelve ML models have good performance in predicting the WQI but that extreme
gradient boosting (XGBoost) has the best performance with the highest accuracy (R2 = 0.989 and
RMSE = 0.107). The findings strengthen the argument that ML models, especially XGBoost, may
be employed for WQI prediction with a high level of accuracy, which will further improve water
quality management.

Keywords: La Buong River; machine learning algorithms; surface water quality; water quality index (WQI)

1. Introduction

Surface water in rivers is a fundamental freshwater source, which plays an essential
role in socio-economic development and the environment [1]. However, surface water
bodies are under severe pressure because of exaggerated human activities, such as industri-
alization, urbanization, and population growth [2,3]. Additionally, poor management of
water quantity and quality and climate change have reduced water quality during the past
few decades, which leads to surface-water pollution [4,5]. Therefore, the evaluation and
estimation of the water quality level in rivers are of great concern today.

The water quality index (WQI) has been extensively used to assess and classify the
surface water and groundwater quality. This index by Brown et al. [6], is computed based
on the physicochemical parameters of the water (e.g., temperature, pH, turbidity, dissolved
oxygen (DO), biochemical oxygen demand (BOD), and concentrations of other pollutants),
to estimate the level of water quality. The WQI provides quantitatively meaningful in-
formation to decision makers and planners for water resources management. However,
the WQI formulations consist of lengthy calculations and thus require a lot of time and
effort [5]. Additionally, the WQI formulations are inconsistent as these usually utilize
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different equations [7]. Accordingly, to deal with the mentioned issues, it is absolutely vital
to have an alternative approach for computationally efficient and accurate estimation of
the WQI.

In recent years, machine learning (ML) techniques have been extensively used for river
water quality assessment, including WQI estimation [8]. These techniques have proved
to be powerful tools for modeling complex non-linear behaviors in water-resource re-
search [9]. Our literature review demonstrates that each ML algorithm has its strengths
and shortcomings, and its behavior is dependent on the input variables of water quality
in the different study regions. Regarding the simulation and prediction of water quality,
the capability of adaptive boosting (Adaboost) [10], gradient boosting (GBM) [11], ex-
treme gradient boosting (XGBoost) [12], decision tree (DT) [13,14], extra trees (ExT) [4],
random forest (RF) [10,15], multilayer perceptron (MLP) [16], radial basis function
(RBF) [17], deep feed-forward neural network (DFNN) [18], and convolutional neural
network (CNN) [19] has been reported. Although there are many ML algorithms, re-
searchers are still being confronted with problems, including which ML techniques should
be applied or most appropriate for a specific problem.

In Vietnam, the WQI proposal by the Ministry of Environment and Natural Resources
(MONRE) [20] requires lengthy calculations and consequently demands a lot of time and
effort. However, to the best of our knowledge, no study on the use of machine learning
techniques in predicting the WQI has been conducted in Vietnam. Therefore, the present
study aimed to assess the performance of twelve ML algorithms, consisting of five boosting-
based algorithms (Adaboost, GBM, histogram-based gradient boosting (HGBM), light
gradient boosting (LightGBM), and XGBoost), three decision tree-based algorithms (DT,
ExT, and RF), and four ANN-based algorithms (MLP, RBF, DFNN, and CNN), in predicting
the WQI of the La Buong River in Vietnam. The La Buong River is one of the important
rivers that provides water supply for domestic, agricultural, and industrial usages in the
southern key economic region of Vietnam.

2. Study Area

The La Buong River (10◦45′–11◦00′ N, 106◦50′–107◦15′ E), a tributary of the Dong
Nai River, has a length of approximately 56 km and a basin area of 475.8 km2 (Figure 1).
The La Buong River Basin is located in the western part of the Dong Nai province in
the southern key economic region of Vietnam. The topography of the basin ranges from
10 to 385 m above sea level. The basin has a tropical monsoon climate with two different
seasons: a 6-month rainy season, lasting from May to October, and a 6-month dry season,
lasting from November to April. The average annual temperature was 25.4 ◦C, the average
annual rainfall was 1786 mm, and the average annual streamflow was 7.1 m3/s in the
period 1981–2015 [21]. Rhodic Ferralsols and Ferric Acrisols are the main soils of the
basin (accounting for approximately 75% of the basin area). More than 80% of land in the
basin is utilized for agricultural development (cashew, coffee, and rubber). The La Buong
River Basin is heavily influenced by cropping activities and livestock in the upper basin
and industrial activities in the lower basin. Urbanization and industrial development are
predicted to rise in the coming years [22].

52



Water 2022, 14, 1552
Water 2022, 14, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. The La Buong River and location of the WQ monitoring stations. 

3. Data and Methods 
3.1. Data Collection and Processing 

Eight years (2010 to 2017) of bimonthly WQ data at four WQ monitoring stations 
alongside the La Buong River (Figure 1) were collected from the Dong Nai Department of 
Natural Resources and Environment. The measured WQ data consisted of ten variables: 
temperature (T), pH, DO, BOD, COD, turbidity (TUR), total suspended solid (TSS), coli-
form, ammonium (NH4+), and phosphate (PO43−). Sampling, preservation, storage, and 
analysis procedures followed the national guidelines for monitoring surface water. 

In the current study, the ten WQ variables were utilized to compute the WQI based 
on Decision No. 879/QD-TCMT, issued by the Ministry of Natural Resources and Envi-
ronment (MONRE) of Vietnam [20]. The WQI is expressed as follows: WQI = WQI୮ୌ100 15 WQIୟହୟୀଵ × 12 WQIୠଶୠୀଵ ×WQIୡ൨ଵ/ଷ (1)

where WQIa is the WQI values for chemical variables (DO, BOD, COD, NH4+, and PO43−), 
WQIb is the WQI values for physical variables (TSS and TUR), WQIc is the WQI value for 
biological variable (coliform), and WQIpH is the WQI value for pH. 

Based on the WQI values, the river water quality is classified into five levels: excellent 
(WQI = 91–100), good (WQI = 76–90), fair (WQI = 51–75), poor (WQI = 26–50), and very 
poor (WQI = 0–25). Full details on the guideline for calculating WQI can be found in 
MONRE [20]. The descriptive statistics of the WQ variables and WQI is exhibited in Table 
1. The TSS, TUR, and coliform concentrations presented considerable variations, with high 
coefficient of variation (CV) values of 153.9% for TSS, 158.4% for TUR, and 343.2% for 
coliform. The high differences in these variables can be explained by the sources (point 
source and nonpoint source) and nature of the pollution [23]. Furthermore, the differences 
can be associated with seasonal effects of hydro-climatic conditions in the study area. Ad-
ditionally, the WQI values indicated that the water quality of the La Buong River varies 
from a very low quality (WQI = 3.02) to excellent quality (WQI = 98.30). 

Figure 1. The La Buong River and location of the WQ monitoring stations.

3. Data and Methods
3.1. Data Collection and Processing

Eight years (2010 to 2017) of bimonthly WQ data at four WQ monitoring stations
alongside the La Buong River (Figure 1) were collected from the Dong Nai Department of
Natural Resources and Environment. The measured WQ data consisted of ten variables:
temperature (T), pH, DO, BOD, COD, turbidity (TUR), total suspended solid (TSS), coliform,
ammonium (NH4

+), and phosphate (PO4
3−). Sampling, preservation, storage, and analysis

procedures followed the national guidelines for monitoring surface water.
In the current study, the ten WQ variables were utilized to compute the WQI based on

Decision No. 879/QD-TCMT, issued by the Ministry of Natural Resources and Environment
(MONRE) of Vietnam [20]. The WQI is expressed as follows:

WQI =
WQIpH

100

[
1
5

5

∑
a=1

WQIa ×
1
2

2

∑
b=1

WQIb ×WQIc

]1/3

(1)

where WQIa is the WQI values for chemical variables (DO, BOD, COD, NH4
+, and PO4

3−),
WQIb is the WQI values for physical variables (TSS and TUR), WQIc is the WQI value for
biological variable (coliform), and WQIpH is the WQI value for pH.

Based on the WQI values, the river water quality is classified into five levels: excellent
(WQI = 91–100), good (WQI = 76–90), fair (WQI = 51–75), poor (WQI = 26–50), and very
poor (WQI = 0–25). Full details on the guideline for calculating WQI can be found in
MONRE [20]. The descriptive statistics of the WQ variables and WQI is exhibited in Table 1.
The TSS, TUR, and coliform concentrations presented considerable variations, with high
coefficient of variation (CV) values of 153.9% for TSS, 158.4% for TUR, and 343.2% for
coliform. The high differences in these variables can be explained by the sources (point
source and nonpoint source) and nature of the pollution [23]. Furthermore, the differences
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can be associated with seasonal effects of hydro-climatic conditions in the study area.
Additionally, the WQI values indicated that the water quality of the La Buong River varies
from a very low quality (WQI = 3.02) to excellent quality (WQI = 98.30).

Table 1. Descriptive statistics of the observed WQ variables and WQI in the La Buong River during
2010–2017 (n = 220).

Variables Unit Min Max Mean Median Std.
Deviation CV%

T ◦C 25.60 32.80 28.59 28.55 1.48 5.2%
pH 5.84 8.42 7.03 7.07 0.39 5.6%
DO mg/L 2.04 8.63 5.75 6.12 1.53 1.5%

BOD mg/L 2.00 24.00 6.40 5.00 3.66 3.6%
COD mg/L 3.00 113.00 19.87 16.00 14.91 15.6%
NH4

+ mg/L 0.03 11.10 0.89 0.31 1.52 1.5%
PO4

3− mg/L 0.02 2.90 0.58 0.51 0.41 0.4%
TSS mg/L 2.00 1402.00 85.48 31.00 156.52 153.9%
TUR NTU 2.00 1280.00 82.36 24.00 158.36 158.4%

Coliform MPN/100
mL 430.00 930,000.00 28,195.00 9300.00 96,766.23 343.2%

WQI 3.02 98.30 42.72 33.91 31.86 79.3%

The La Buong River WQ data were divided into two parts: 70% for the training
process and 30% for the testing process. The ratio of this division is used widely in the
data-driven modeling [1,7]. To improve the training speed and predictive accuracy of the
ML models, the WQ data were normalized to a 0–1 range before the modeling process
using the following equation:

x′ i =
xi − xmin

xmax − xmin
(2)

where x′ i and xi are the normalized and original values of a WQI variable (i.e., pH, DO,
BOD, etc.) at a station, and xmin and xmax are the minimum and maximum values of that
variable, respectively.

3.2. Machine Learning Models

As mentioned above, the current study utilized twelve ML models for predicting WQI
with three major groups: boosting-based algorithms, decision tree-based algorithms, and
ANN-based algorithms.

3.2.1. Boosting-Based Algorithms

Boosting algorithm is an ensemble meta-algorithm method that aims to improve the
predictive performance of several given weaker algorithms by primarily reducing bias
and variance in supervised learning problems [24]. The basic principle of the boosting
method starts by creating a model from the training data, and then conducting a second
model based on the previous one by reducing the bias error that arises when the first
model could not infer the relevant patterns in the given data. Every time a new learning
algorithm is added, the weights of data are readjusted, also known as “re-weighting”.
These models are added sequentially until the training data is reasonably predicted or the
maximum number of learners have been added to the ensemble model [25]. Five types of
boosting-based algorithms were utilized in the current study, including adaptive boosting
(AdaBoost), gradient boosting (GBM), histogram-based gradient boosting (HGBM), light
gradient boosting (LightGBM), and extreme gradient boosting (XGBoost). Full details on
these boosting-based algorithms can be found in Wu et al. [26].
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3.2.2. Decision Tree-Based Algorithms

The decision tree and its many variants are the other types of learning algorithms that
divide the input space into regions and has separate parameters for each region [27]. They
are classified as the non-parametric supervised learning method that is widely applied
for classification and regression, as well as visually and explicitly represent decisions
and decision making. The typical structure of a decision tree is a tree-like flowchart,
as the name goes, in which each internal node represents a “test” on an attribute, each
branch represents the outcome of the test, and each leaf node represents a class label
(decision taken after computing all attributes). Besides, the paths from root to leaf represent
classification rules. In the present study, three decision tree-based models were assessed
with respect to different learning algorithms, including decision tree (DT), extra trees (ExT),
and random forest (RF). Full details on these decision tree-based algorithms can be found
in Ahmad et al. [28].

3.2.3. ANN-Based Algorithms

In recent decades, AI-based models have been developed considerably to achieve
a state-of-the-art architecture, comprising a number of learning algorithms and modern
computational structures, across various aspects in studies on river water quality mod-
eling [8]. ANN-based models have recently gained popularity due to its robustness and
capability to handle nonlinear data even with its typically structured, single hidden layer, or
advanced-structured, multiple hidden layers. Basically, ANN includes three layers: input,
hidden, and output layers. In case of increasing complexity of the problem, the number
of layers will rise and the computational resources will consequently also rise. In this
study, both the mentioned structures of the ANN-based models were utilized for predicting
WQI, such as multilayer perceptron (MLP), radial basis function (RBF), deep feed-forward
neural network (DFNN), and convolutional neural network (CNN). Full details on these
ANN-based algorithms can be found in Tiyasha et al. [8] and Tahmasebi et al. [29].

3.3. Construction of ML Models

As a first important step for constructing the ML model, the selection of input variables
is required to determine a sufficient number of the variables, which have enough underlying
information to predict WQI. Moreover, this selection could improve the model accuracy by
avoiding the undesirable impact on the predictive performance. In the current study, ten
WQ variables were identified as potential inputs. There are several existing methods to
assess the input combinations, including autocorrelation function, partial autocorrelation
function, cross-correlation function, and correlation coefficient. In the midst of these
techniques, the correlation coefficient was selected for the current study because of its
efficient and straightforward [4].

Table 2 presents that the WQ variable with the highest value of R2 was coliform,
followed by TSS, TUR, COD, BOD, PO4

3−, NH4
+, pH, DO, and T. It is noteworthy that

the WQ variables of coliform, TUR, and TSS had the highest correlations with WQI due to
impacts of cropping and livestock activities on water quality in the La Buong River. Based
on the correlations of ten WQ variables with WQI, ten input variable combinations are
listed in Table 3.

After selecting the input WQ variables, the fitted values of model parameters for each
ML model were determined using a “trial and error” technique [23]. With the twelve ML
models and ten scenarios of input variable combinations, 120 ML models for predicting
the WQI were built during the training process and the performance of these models
was evaluated during the testing process [7]. In the present study, the scikit-learn library,
a Python-based package, was utilized to develop the twelve ML modes for predicting
the WQI.
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Table 2. Coefficient of determination (R2) between the ten WQ variables and WQI.

Variables T pH DO BOD COD NH4
+ PO43− TSS TUR Coliform

R2 0.056 0.107 0.069 0.261 0.385 0.364 0.276 0.565 0.476 0.775

Table 3. Scenarios of input variables for the current study.

Scenarios Input Variables

S1 Coliform
S2 Coliform, TSS
S3 Coliform, TSS, TUR
S4 Coliform, TSS, TUR, COD
S5 Coliform, TSS, TUR, COD, BOD
S6 Coliform, TSS, TUR, COD, BOD, PO4

3−

S7 Coliform, TSS, TUR, COD, BOD, PO4
3−, NH4

+

S8 Coliform, TSS, TUR, COD, BOD, PO4
3−, NH4

+, pH
S9 Coliform, TSS, TUR, COD, BOD, PO4

3−, NH4
+, pH, DO

S10 Coliform, TSS, TUR, COD, BOD, PO4
3−, NH4

+, pH, DO, T

3.4. Performance Evaluation of ML Models

In the current study, two model efficiency statistics, namely, the root mean square
error (RMSE) and coefficient of determination (R2), were utilized to evaluate the goodness
of fit between the predictions and observations. RMSE measures the deviation between
the observed and predicted values, and R2 measures the degree of correlation between the
observed and predicted data [30].

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(3)

R2 = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi −O

)2 (4)

where n is the total number of predicted values, Oi is the observed value, O is the mean of
observed values, and Pi is the predicted value.

4. Results and Discussion
4.1. Performance Evaluation of Boosting-Based Models

Table 4 exhibits the model performance of the boosting-based algorithms during
the testing process. Results showed that AdaBoost-S2 (R2 = 0.973 and RMSE = 0.175)
had the highest performance in predicting WQI among the AdaBoost models, GBM-S7
(R2 = 0.989 and RMSE = 0.108) had the highest performance among the GBM models,
HGBM-S2 (R2 = 0.967 and RMSE = 0.183) had the highest performance among the GBM
models, LightGBM-S6 (R2 = 0.986 and RMSE = 0.119) had the highest performance among
the LightGBM models, and XGBoost-S9 (R2 = 0.989 and RMSE = 0.107) had the highest
performance among the XGBoost models under the S1–S10 scenarios. Additionally, the
comparison plots of the measured WQI values with the WQI values predicted by AdaBoost-
S2, GBM-S7, HGBM-S2, LightGBM-S6, and XGBoost-S9 in the testing period are shown in
Figure 2. Generally, these models replicated very well the measured WQI during the testing
period. However, there are small discrepancies between the measured and predicted WQI
high or low values (especially those of AdaBoost-S2 and HGBM-S2). On the whole, the
comparison between the boosting-based models under the S1–S10 scenarios demonstrates
the XGBoost-S9 model as the best performance model.

56



Water 2022, 14, 1552

Table 4. Efficiency statistics of the 12 ML model under the 10 scenarios of input variable combinations
during the testing process.

Models S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

AdaBoost RMSE 0.550 0.175 0.211 0.205 0.205 0.207 0.212 0.212 0.221 0.219
R2 0.690 0.973 0.959 0.960 0.962 0.964 0.960 0.961 0.955 0.958

GBM RMSE 0.552 0.183 0.130 0.131 0.118 0.120 0.108 0.122 0.117 0.109
R2 0.682 0.967 0.983 0.983 0.986 0.986 0.989 0.986 0.987 0.989

HGBM RMSE 0.542 0.183 0.203 0.204 0.202 0.203 0.198 0.198 0.197 0.200
R2 0.695 0.967 0.958 0.957 0.958 0.958 0.960 0.960 0.960 0.959

LightGBM RMSE 0.545 0.166 0.138 0.155 0.152 0.119 0.160 0.158 0.143 0.167
R2 0.691 0.973 0.981 0.976 0.977 0.986 0.974 0.975 0.979 0.972

XGBoost RMSE 0.552 0.179 0.133 0.127 0.121 0.112 0.120 0.119 0.107 0.111
R2 0.683 0.968 0.982 0.984 0.986 0.988 0.986 0.987 0.989 0.988

DT RMSE 0.553 0.206 0.183 0.158 0.147 0.216 0.199 0.205 0.199 0.238
R2 0.681 0.957 0.966 0.976 0.979 0.954 0.960 0.957 0.960 0.941

ExT RMSE 0.553 0.177 0.158 0.164 0.126 0.149 0.199 0.142 0.202 0.197
R2 0.681 0.968 0.974 0.973 0.985 0.978 0.963 0.981 0.959 0.962

RF RMSE 0.554 0.162 0.126 0.127 0.121 0.123 0.125 0.123 0.123 0.129
R2 0.680 0.974 0.984 0.984 0.986 0.985 0.985 0.985 0.985 0.984

MLP RMSE 0.532 0.153 0.192 0.132 0.141 0.196 0.928 0.307 0.996 0.515
R2 0.711 0.976 0.964 0.984 0.980 0.961 0.127 0.901 0.080 0.768

RBF RMSE 0.620 0.360 0.385 0.511 0.595 0.562 0.632 0.728 0.845 0.803
R2 0.679 0.887 0.858 0.760 0.687 0.689 0.607 0.516 0.276 0.370

DFNN RMSE 0.543 0.162 0.170 0.169 0.189 0.190 0.215 0.173 0.206 0.217
R2 0.702 0.973 0.972 0.971 0.971 0.967 0.953 0.972 0.958 0.954

CNN RMSE 0.485 0.185 0.203 0.180 0.158 0.221 0.139 0.243 0.265 0.348
R2 0.773 0.965 0.962 0.964 0.977 0.961 0.982 0.942 0.937 0.895
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4.2. Performance Evaluation of Decision Tree-Based Models

Table 4 also presents the model performance of the decision tree-based algorithms
during the testing process. The results indicated that DT-S5 (R2 = 0.979 and RMSE = 0.147),
ExT-S5 (R2 = 0.985 and RMSE = 0.126), and RF-S5 (R2 = 0.986 and RMSE = 0.121) had the
highest performance in predicting WQI among the DT models, ExT models, and RF models
under the S1–S10 scenarios, respectively. Figure 3 displays the comparisons between
the predicted and measured WQI for the DT-S5, ExT-S5, and RF-S5 models during the
testing period. In general, all three models reproduced well the measured WQI and small
differences between the measured and predicted WQI high or low values can be seen.
Regarding the model performance of the decision tree-based models, RF-S5 had the highest
accurate prediction.
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4.3. Performance Evaluation of ANN-Based Models

According to the model performance of the ANN-based algorithms during the test-
ing period (Table 4), MLP-S4 (R2 = 0.984 and RMSE = 0.132), RBF-S2 (R2 = 0.887 and
RMSE = 0.360), DFNN-S2 (R2 = 0.973 and RMSE = 0.162), and CNN-S7 (R2 = 0.982 and
RMSE = 0.139) are the best models for predicting WQI among the MLP models, RBF mod-
els, DFNN models, and CNN models under the S1–S10 scenarios, respectively. Figure 4
illustrates the comparisons between the predicted and measured WQI for the MLP-S4,
RBF-S2, DFNN-S2, and CNN-S7 models during the testing period. Generally, these four
models reproduced well the measured WQI during the testing period. Moreover, small
differences between the measured and predicted WQI high or low values can be observed
for most models, except for RBF-S2, which show a considerable discrepancy. Regarding the
model performance of the ANN-based models, MLP-S4 had the highest accurate prediction
(R2 = 0.984 and RMSE = 0.132).
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4.4. Discussion

A comparison of twelve ML models, including five boosting-based algorithms (Ad-
aboost, GBM, HGBM, LightGBM, and XGBoost), three decision tree-based algorithms (DT,
ExT, and RF), and four ANN-based algorithms (MLP, RBF, DFNN, and CNN), was con-
ducted to evaluate their performance in predicting the WQI based on the model efficiency
statistics. Based on the model performance of the twelve ML models, our findings indicate
that all ML models could predict the WQI well for this study area, but the best scenarios
of input variables to the ML models are different. This can be explained by the fact that
each ML algorithm will respond in a different way to different input variables and data
patterns [31]. As reported by Morton and Henderson [32] and Yang and Moyer [33], water
quality data are characterized by a nonlinear distribution. In general, Adaboost, HGBM,
RBF, and DFNN achieved good results under the S2 scenario of the input variables; DT, ExT,
and RF achieved good results under the S5 scenario; and GBM and CNN achieved good
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results under the S7 scenario. In addition, MLP, LightGBM, and XGBoost performed well in
Scenarios S4, S6, and S9, respectively. These findings indicate that most accurate prediction
is dependent on the ML model parameters for the given scenario of input variables, which
is consistent with results of Hussain and Khan [31].

After comparison of all twelve ML models, it indicated that the XGBoost model
outperforms other ML models in the study area. In comparison with other studies, DFNN
performs better than XGBoost, MLP, and RF in the Mahanadi River Basin in India [5].
Asadollah et al. [4] indicated that ExT is superior to DT and support vector regression (SVR)
in the Lam Tsuen River in Hong Kong. Moreover, DT performs better as compared to the
MLP model in the Rawal Dam lake in Pakistan [14]. In general, different ML algorithms
will give different performance when applied to different regions. Therefore, exploring
and developing a generalized ML model for applications of water quality assessment is an
ongoing struggle.

As stated in previous studies, an important gap is a lack of considering cross influ-
ences between the explanatory variables, namely, the cross-correlation between land-use
classes and the cross-correlation between climate conditions in influencing river water
quality [34–36]. Land-use change and climate change affect hydrological components, and
consequently river discharge and pollutant transport [21]. Therefore, it is essential to
take into account land-use and climate changes, which may improve the accuracy of the
ML models.

5. Conclusions

This research work was conducted to investigate the capability of twelve ML models,
namely, five boosting-based algorithms (Adaboost, GBM, HGBM, LightGBM, XGBoost),
three decision tree-based algorithms (DT, ExT, and R)), and four ANN-based algorithms
(MLP, RBF, DFNN, and CNN), in predicting the WQI. The four WQ monitoring stations
alongside the La Buong River were considered as a case study. Two model efficiency
statistics (i.e., R2 and RMSE) were chosen for performance comparison of the different
ML models. XGBoost achieved an R2 of 0.989 and RMSE of 0.107 in the testing process,
thus being the most appropriate ML algorithm in the study area. It was followed by GBM,
LightGBM, RF, ExT, MLP, CNN, DT, DFNN, AdaBoost, HGBM, and RBF. Generally, our
findings strengthen the argument that ML models, particularly XGBoost, can be utilized
for predicting the WQI with a high degree of accuracy, which will further improve water
quality management.
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Abstract: Water quality is highly affected by riverside vegetation in different regions. To comprehend
this research, the study area was parted into wet and dry regions. The WASP8 was applied for the
simulations of water quality profile over both Waterways selected from each region. It was found
that the Ara Waterway, located in the wet regions, has a higher water quality variation in seasonal
scale than that of the Yamuna Waterway, which is in the dry region. The interrelationship between
river water quality variables and NDVI produce higher association for water quality variables with
Pearson correlation coefficient values of about 0.66, 0.68 and −0.58, respectively, over the annual and
seasonal scales in the energy limited regions. This approach will help in monitoring the seasonal
variation and effect of the vegetation biomass on water quality for the sustainable water environment.

Keywords: WASP8; Ara Waterway; Yamuna River; NDVI; anthropogenic activities

1. Introduction

Water is one of the most important natural assets available to mankind, and its quality
is entirely dependent on the local environment, utilization, treatment and reuse as per
necessities and anthropogenic activities such as industrial, household, agriculture and
mining operations. A rapid surge in population has exponentially intensified the demands
of clean water globally [1–4]. Water quality is a key environmental issue due to its influence
on aquatic life and the general health of the water ecosystem [5,6]. Generally, water
quality management is performed using different water quality models of water channels
and rivers, the point and nonpoint sources playing a vital role in the nitrogen dynamics,
biochemical oxygen demand (BOD), and dissolved oxygen (DO) [7–10]. The surface
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water quality modelling can be an effective means for the simulating and predicting of
contaminants fate and transport in the sustainable water environment [11,12], which can
significantly save an enormous amount of labour cost, material, time, and laboratory
experiments. Furthermore, it is unreachable for the in-situ sampling and experiments in
some situations due to weather, hazardous, or unusual ecological issues. The simulated
results of different water quality models under different contamination levels are imperative
parts of different impact assessment reports and offer a base for the different environmental
agencies and correct decision-making [13–15]. Hence, water quality modelling becomes a
vital tool to recognize the pollution of a surface water environment, as well as the ultimate
fate and behaviors of contaminants in the river environment.

Because of technological advancements, surface water quality (SWQ) modelling tools
have been greatly improved in the twenty-first century, which has led to a wide range
of SWQ models being developed. Several water-quality models are currently in use
for decision-making and policy development in various water ecosystems around the
world [16,17]. In recent years, numerous water quality models (WQM), such as the WASP
model, QUASAR, and WASP-2 models, and the MIKE and BASINS models, have been
developed for simulating the importance of the water quality of water bodies like rivers
and lakes containing contaminants. These models were widely used in the United States,
Europe, Australia, and the rest of the world [17–21]. However, WASP is the best open
source model [22] for modelling the fate and transport of contaminants in rivers, lakes, and
reservoirs, according to a recent analysis of the existing open source models.

The water quality factors were simulated using the SWQ model WASP (water quality
simulation software). To model SWQ, the US Environmental Protection Agency (EPA)
developed the WASP model [23]. The WASP models have undergone numerous iterations
and have been frequently used for SWQ model evaluations during this time span [24–26].
Over the DaHan river, the WASP model has already been used [27] to simulate water quality
profiles and inform policymaking. The WASP was used to model the Love River’s pollutant
transit and fate, and the resulting river safety plans were established [28]. For these
reasons and more, a great deal of research has used the WASP model in various countries
throughout the world to estimate the environmental impacts of various administrative
policies and to estimate pollutant loads in order to develop long-term strategies [29,30].

The water quality has been widely affected by vegetation distribution, from naturally
grown to human cultivated, which is an important determinant of river water quality
and has a dynamic role to play in the water environment. Vegetation distribution can be
estimated using an index called vegetation index, which is a mathematical intermingling
of different spectral bands that highlights the spectral appearances of green vegetation
so that they seem diverse from other image landscapes. Simple and efficient methods
for descriptive and analytical assessment of green cover, robustness, and growth pattern
have been developed using remote sensing-based canopies. There are various vegetation
indices, with many having similar correlation and equaling functions. These indices have
been broadly applied within a remote sensing application using different unmanned aerial
vehicles (UAV) and satellite datasets [31,32].

The extent to which vegetation distribution hierarchically influences water environ-
ment at spatial and temporal scales is a crucial question. Dosskey et al. [33] reviewed
many studies and summarized the major findings by which vegetation influences the
chemistry of surface water quality, as well as how water chemistry varies among a green
vegetation. All the previous studies only focus on the relationship among the water quality
and vegetation indices using random water quality sampling data, which does not explain
the spatial effects of vegetation on the water quality over an entire river profile. This study
focuses on: (1) Analysing the seasonal variation of stream water quality over different
geo-graphical regions such as energy limited (wet) and water limited (dry) regions. (2) To
set up a space-time scale inter-relationship among water quality and vegetation indices.
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2. Materials and Methods
2.1. Study Area

The study was conducted over energy limited and water limited regions on the basis
of the global climatological aridity index (GCAI). Regions were separated using global data
assimilation system (GLDAS) datasets conferring to the concept of a framework known
as Budyko [34,35]. The GCAI is a numerical indicator of the degree of dryness or wetness
(GCAI = PTm/Pm, where PTm = mean annual potential evapotranspiration and Pm =
mean annual precipitation). The regions having an index value GCAI < 1.5 were classified
as “energy limited”, and those with GCAI > 1.5 as “water limited” [36]. Two Waterways
were selected, one from the energy limited regions: Gyeongin Ara Waterway also known as
Ara Canal, South Korea, and the other from the water limited region: Yamuna River, India.
Figure 1 shows a description of the study area, Waterways, and point source locations.
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Figure 1. Study area description.

2.1.1. The Gyeongin Ara Waterway

The Gyeongin Ara Waterway is a recently constructed canal in South Korea. The main
source of the flow in the Ara Waterway is the naturally sourced water from the Han River
and the Gulpocheon River. The Ara Waterway was built to control flood indemnities in the
basin of the Gulpocheon River and also to encourage the socio-economic growth of the area
by reducing logistic expenses. The Waterway connects the Han River to the Yellow Sea.
The Han River passes through Seoul and the western coastline zone of South Korea. There
are two operation gates at both ends of the Waterway. The Han River side has a canal gate
which is situated beside the Haengju bridge downstream of the Han River, while the Yellow
Sea side has another gate that is situated at the Incheon city beside the western coastline
zone of South Korea. The Ara Waterway has an overall length of about 19 km, while the
width of the Waterway channel is about 85 m, and the mean depth of flowing water is
6.3 m. The head water inflow is discharged directly into the Waterway from the Han River,
while there are other point sources, including water inflow from the Gulpocheon River, the
irrigation dam, and the Rubber dam especially, during flood seasons.
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2.1.2. The Yamuna River

The Yamuna Waterway, also primarily known as the Yamuna River, is the main source
of domestic supply for New Delhi, India. It receives a huge volume of pollution in the
stretch between New Delhi and Agra. From Palla, it travels about 10 km to Waziarabd,
where the river’s water is drained to the greatest extent possible for the city of New Delhi’s
domestic use. Thereafter, a small quantity of river water is observed, especially during the
summer seasons.

After the Wazirabad barrage, a major drain known as the Najafghar drain enters the
river. However, after the Najafghar drain, there are a total of thirteen small- to medium-
sized drains that join the Yamuna River downstream. Approximately 39 km downstream
of Palla, the river departs the city near the Okhla Barrage. The Yamuna basin has a total
area of 9500 hectares, of which 8000 hectares are direct runoff [36]. Point sources, which
discharge contaminated materials directly into the Yamuna River, are the most significant
sources of Yamuna water pollution.

2.2. Data Set

This study used three different types of data sets, GLDAS 2.1 data, point source
inflow, the initial con-centration of water quality variables, and Landsat 8 satellite data.
The GLDAS (global land data assimilation system) datasets have been prepared through
the collaboration of the following international agencies: NOAA, NASA, GSFC, and the
NCEP. The GLDAS simulated datasets were developed to deliver medium resolution
datasets by assimilating satellite-based and ground-based measurements involving the land
surface models and data integration methods. Numerous land surface models have been
created for the simulation of water and energy flux transferences among the ground and
atmosphere interactions [37]. The water quality modelling data included point discharge,
point source pollutant loadings of BOD, DO, T-N, river hydraulics characteristics data,
and environmental parameters used in model simulations as the annual and seasonal
bases for the year 2014. The water quality and river hydraulic characteristics data for the
Yuma River, India, were obtained from various government and private agencies such
as the Ministry of Environment, Upper Yamuna River Board, India River Forum, and
Central Pollution Control Board. While the Water quality and hydraulic characteristics
data of Ara Waterway, Republic of Korea were obtained from different Korean water and
environment agencies such as the Ministry of Environment Korea, KWater, ECOREA, the
national ATLAS of Korea, and Water and Environment Partnership in Asia (WEPA). The
Landsat 8 satellite, cloud free images from Operational Land Imager (OLI) level-1 were
utilized for the calculations of the vegetation index in all four seasons for the year 2014.

2.3. Water Quality Modeling

The US Environmental Protection Agency (EPA) has developed the WASP model for
resolving issues of water quality. The WASP model has been continually developed over
the years, allowing for greater simplicity of use and superior modelling of water quality in
a wide range of water environments [24,38,39]. The WASP model is a water column and
sediment-based dynamic simulation software for rivers and ponds. Toxicant transformation
and advanced eutrophication are two kinetic modules in the WASP8 model employed
in this investigation. One of the most complex modules, the advanced eutrophication
module, incorporates many eutrophication characteristics. Many mass balance equations
are included in this module to calculate the fate, transformations, phytoplankton, BOD,
DO, and nitrification dynamics of pollution. This diagram shows the WASP8 model’s
interconnections, features, and structure (Figure 2). In order to calculate any parameters of
water quality, the equation of mass balance is utilized, which is represented in Equation (1).

dC
dt

= −A
dUC
dx

+
d

dx

(
EA

dC
dx

)
± SC (1)
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Whereas C represents the concentration of different parameters of water quality fac-
tors, U represents the average water velocity, A represents the cross-sectional area, and x
represents the distance in one dimension. SC stands for exterior and internal sinks and
sources, whereas E stands for longitudinal dispersion coefficient.

The model was developed using the required hydraulics and the water quality datasets
from 2014 to 2015. The Ara Waterway longitudinal profile was equally divided into
23 segments, containing headwater inflow from the Han River and two other inflow
sources from the irrigation dam and the rubber dam. The Yamuna Waterway longitudinal
profile was divided into 34 segments. The inflow drains include Najafghar, Khyber Pass,
Drain No 14, Magazine Road, Metcalf House, Sweeper Colony, Mori Gate, Tonga Stand,
Sen Nursing, Civil Military Drain, Drain No 14, Barapulla, Power House, Maharani Bagh
Drain, Hindon Cut, and the Agra Canal Abstraction. Boundaries, which included the most
upstream segments of the Ara Waterway (segments 1 to 23), while the Yamuna Waterway
includes point source inflow and obstructions throughout the Waterway longitudinal
profile (segments 1 to 34), and was added as an initial concentration to the simulation for
all the water quality variables.

2.4. Vegetation Indices

The vegetation indices are spectral transformations of two or more spectral bands com-
bined to improve the involvement of plant properties, permit appropriate space time scale
inter and intra-comparisons of global photosynthetic activities and vegetation structure
distinctions. In this study, we calculated vegetation index, entitled normalized difference
vegetation index (NDVI). A commonly applied vegetation index, the NDVI has long been
used in ecology, remote sensing, and geography to assess the characteristics of green vegeta-
tion, including its amount (biomass), nature, and status. NDVI is a benchmark for spectral
band ratio applications [40]. The NDVI monitors the vegetation state, density, and intensity
of plant growth, and can be calculated from the reflectance values of the red (RED) and the
infrared band (NIR). The NDVI values range from −1.0 to +1.0, lower values indicating
sparse vegetation while higher values indicate lush green land. The NDVI was obtained
from the reflectance values of Landsat 8 scenes by means of ArcGIS. Prepossessing of
Landsat 8 scenes was performed using ENVI 5.2 software and metadata information. The
following equation used to calculate the NDVI values was expressed as Equation (2):

NDVI =
(NIR− RED)

(NIR + RED)
(2)
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2.5. Model Accuracy Assesment

The model’s accuracy was assessed by contrasting the actual results with those pre-
dicted by the model. It was determined that the calibrated and validated results from the
prior experiments were accurate using the following five statistical estimators:

Goodness-of-fit between observed and expected data can be measured using the
coefficient of determination (R2). The R2 has a value of 0 to 1. If R2 is near to 1, then the
model’s predictions match the actual data quite well.

R2 =

{
N
∑

i=1

(
Oi −Oi

)(
Si − Si

)}2

N
∑

i=1

(
Oi −Oi

)2 N
∑

i=1

(
Si − Si

)2
(3)

When comparing observed and expected results, the MAE assesses the absolute
quantitative deviation. The formula for MAE is as follows:

MAE =
1
N

N

∑
i=1
|Oi − Si| (4)

An index known as the mean absolute percentage error (MAPE) was calculated to
appraise the precision of the modelled outputs. The fewer the errors, the closer the fittings
of the modelled results [41], which were defined as four different stages of fitting levels,
each conferring to model evaluations such as excellent, good, reasonable, and poor. If
MAPE value <10%, fitting level is excellent, if MAPE value is 10–20%, fitting level is good,
if MAPE value: 20–50%, fitting level is reasonable, and if MAPE value >50%, fitting level
is poor.

MAPE =
1
N

N

∑
i=1

∣∣∣∣
Oi − Si

Oi

∣∣∣∣ (5)

Here, S is a modeled outcome for a similar profile place where field observations
were made for calibration and validation processes, and O is the observed value obtained
from the mainstream sampling point. The total number of all the measurements were
represented by N, and i is ith comparison. An observational average and a model-based
simulation average are used to calculate O and S, respectively, for each location.

3. Results
3.1. Evaluation of the WASP8 Model for Its Reliability

Assessment of the WASP8 consists of a model calibration and validation investigation
to establish its applicability for involvement analysis.

The WASP8 Calibrations and Validations

The surface water quality model WASP8 was primarily calibrated through the mea-
sured data attained from the four sampling locations (M1–M4) along the longitudinal
stream of the Yamuna river and three sampling stations of the Ara Canal (m1–m3) Water-
way on March, 2014 (spring) using the same measured coefficients (Figures 3 and 4). Then,
the data collected from June (summer), September (autumn) and December (winter) were
used to validate the model also by means of the same estimated reaction constants and
model coefficients (Figures 5 and 6). Calibrated and validated results of the longitudinal
pro-file of T-N, BOD, and DO, agreeing well with the measured values at monitoring
stations and both measured and simulated, had the analogous trend of variations. The Ara
Waterway shows comparatively large seasonal variation, which might be due to higher
mean annual rainfall in the wetter region [42].
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Figure 6. Confirmation of water qualities in the Yamuna Waterway for summer, autumn, and
winter seasons.

The mean absolute percentage error (MAPE) evaluation shows that the values were
enclosed among 3.5–22.61% (excellent–reasonable) (Table 1). The mean absolute error
(MAE) shows overall estimator errors are less and agreed well with the measured data
both in model calibration and validation processes (Table 2). The values of coefficient of
determination R2 had good agreement with measured data and appeared to be very close
to 1 (Table 3). Moreover, all applied statistical estimators show high value of R2 (close
to 1) and lower values of errors of estimators. Overall, longitudinal profile of Yamuna
Waterway shows small seasonal variation among water quality variables. At the headwater,
water quality was comparatively better. However, after addition of point inflow through
Najaf-garh drain water quality was further deteriorated. While, Ara Waterway showed
large noticeable variation in water quality variables among each season. Total nitrogen
shows a decreasing trend as it moves toward a downstream end in all seasons, while BOD
and DO show further deterioration in water quality as they go toward a downstream end
of the waterway profile in winter and summer seasons. In spring and autumn, BOD and
DO both show improvement in water quality profile as higher rate fresh water point inflow
is incorporated in waterways.
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Table 1. Fitting level assessment of the WASP8 outcomes with MAPE process.

River Season
T-N (%) BOD (%) DO (%)

Calibration Validation Calibration Validation Calibration Validation

Yumna River

Spring 17.07 16.25 10.22 9.14 8.11 9.21
Summer 10.37 9.36 8.33 8.43 6.34 6.56
Autumn 7.54 8.34 6.91 7.25 6.08 6.73
Winter 14.67 16.32 15.5 13.94 6.62 6.94

Ara Water Way

Spring 22.61 22.24 7.55 8.92 15.34 16.31
Summer 9.70 9.56 5.75 4.95 8.53 8.94
Autumn 12.4 13.1 3.50 4.31 7.41 7.64
Winter 16.71 15.93 7.73 6.72 11.79 12.45

MAPE value, excellent; <10%, good; 10–20%, reasonable; 20–50%, bad; >50%

Table 2. Fitting level assessment of the WASP8 outcomes with MAE estimator.

River Season
T-N (%) BOD (%) DO (%)

Calibration Validation Calibration Validation Calibration Validation

Yumna River

Spring 0.15 0.16 0.62 0.58 0.12 0.13
Summer 0.11 0.12 0.35 0.27 0.08 0.07
Autumn 0.09 0.11 0.31 0.35 0.06 0.08
Winter 0.17 0.15 0.78 0.66 0.14 0.12

Ara Water Way

Spring 0.13 0.14 0.44 0.51 0.10 0.11
Summer 0.09 0.11 0.29 0.25 0.06 0.07
Autumn 0.11 0.11 0.31 0.28 0.08 0.08
Winter 0.16 0.14 0.52 0.47 0.13 0.11

Table 3. Fitting level assessment of the WASP8 outcomes with R2 estimator.

River Season
T-N (%) BOD (%) DO (%)

Calibration Validation Calibration Validation Calibration Validation

Yumna River

Spring 0.81 0.84 0.85 0.88 0.87 0.84
Summer 0.89 0.83 0.88 0.92 0.87 0.82
Autumn 0.88 0.93 0.90 0.89 0.93 0.89
Winter 0.84 0.81 0.86 0.91 0.92 0.94

Ara Water Wa

Spring 0.82 0.80 0.86 0.88 0.85 0.81
Summer 0.87 0.94 0.90 0.89 0.91 0.88
Autumn 0.92 0.96 0.91 0.88 0.93 0.91
Winter 0.86 0.89 0.88 0.93 0.94 0.89

3.2. Spatial Scale Interrelationship between the Water Quality and Vegetation Indices

In the following study, we calculated vegetation index of both the Yamuna and the
Ara Waterway basins at an annual and seasonal scale for the year 2014. For the case of
the Ara Waterway, the vegetations are distributed sparsely along the coastline region, the
Yellow Sea, while, the Yamuna Waterway has a dense vegetation beside the upstream and
downstream regions. The NDVI values around −0.26 or less depicts a water body, values
near −0.046 show snow, values near 0.002 show clouds, values near 0.025 show bare soil
and values greater than 0.6 show dense vegetation. Table 4 shows the interrelationship
among the vegetation index and water quality variables during the different seasons. At
an annual and seasonal scale, both waterways showed higher interrelationship among
vegetation index, T-N and BOD.

71



Water 2022, 14, 1058

Table 4. The value of correlation coefficient among vegetation index and water quality variables.

Stream Period T−N_ NDVI BOD_ NDVI DO_ NDVI

Ara

R2 R2 R2

Annual 0.66 0.68 −0.58
Spring 0.69 0.68 −0.59

Summer 0.52 0.62 −0.57
Autumn 0.62 0.66 −0.42
Winter 0.42 0.47 −0.39

Yamuna

Annual 0.55 0.51 −0.5
Spring 0.58 0.41 −0.5

Summer 0.42 0.48 −0.4
Autumn 0.35 0.44 −0.39
Winter 0.41 0.45 −0.37

However, vegetation cover has negative and the lower correlation coefficient values
with DO. Overall, the water quality of the Ara Waterway has a higher correlation coefficient
value than the Yamuna Waterway. From these results, we can interpret that there is some
relationship between river water quality and vegetation bio-mass, and the relationship is
stronger when it comes to the case of the wetter region. So, the vegetation results in more
effects on stream water quality located in wetter regions.

Over basic relationships between vegetation and random point data, the use of long-
term profiles provides advantages over the use of point-based water quality data. The
vegetation index values take into account all green vegetation. NDVI values, for example,
illustrate the effect of grassland, as well as agricultural and residential land values in a
largely vegetated area. These values may be more or less associated with environmental
conditions as a whole than they would be individually.

The NDVI value can, however, indicate the health of crop vegetation at various
phonological growth stages, including lowered status or enhanced vegetation in a farming
watershed, which may be a result of fertilizer use. Alternatively, one can examine the
physical link between quality of water and a vegetation index by analyzing a regulated
set of water quality and the average value of nearby vegetation indexes. Although other
factors affecting the water quality include increased vegetation, greenness and moistness
are related to the activities of plant physiology. Water consumption and enhanced nutrient
uptake, such as oxygen and nitrogen demand, could be linked to the vegetated area, which
may result in even less chemicals entering the water stream via non-point source linkage. In
order to discover the root reason of the correlation between quality of water and vegetation
indicators, more research is needed.

3.3. Study Limitation

In the following study, we tried to illustrate the importance of seasonal and regional
based water quality management and a connection with vegetation and stream water
quality. Understanding the variability in vegetation index values, of course, will depend
on the mixture of different vegetation types. Because higher values of vegetation indices
are not necessarily the only reason for higher interrelationship, water quality might also
be affected with several degrees to different types of vegetation such as riverside forest
or bushes.

Human errors introduced in this study might include errors in river boundary and
general errors in the WASP modelling development. Any small variation in the segment
length and vegetation index area of interest could result in a large percentage error in setting
the interrelationship between the water quality and vegetation indices. In some cases, no
equal number of Landsat 8 cloud free scenes is available in each season for vege-tation
index acquisition. However, the study applied the average of all the available image indices
for each season, and then a similar methodology was also performed with the water quality
data for model simulation.
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More than only vegetation biomass may have contributed to stream pollution, as
evidenced by the lower R2 values observed. Types of vegetation, land cover, soils, and
other contaminant sources are all examples of these elements in play. It is possible to
gain insight into the factors affecting the relations of interest by performing this type
of interrelationship analysis. Future research that incorporates extensive water quality
modelling with a variety of vegetation assessments and land cover classifications could be
helpful in addressing this issue.

The outcomes presented in the following study showed an interrelationship among
the water quality and the vegetation indices, which revealed that there must be a connection
between the green vegetation biomass and the stream water quality. Furthermore, in the
spring season, correlations were highest for the case of total nitrogen and biochemical
oxygen demand due to the presence of higher vegetation [30]. This study also supports
the theories of [31], who hypothesized that vegetation indices have the potential to some
extent in illustrating stream water quality. This work is the first of its kind to use advanced
water quality modelling to show how plant indices and stream water quality are linked at
the spatial scale of river segments. Furthermore, this is also the first time that geographical
regions were divided into a wetter and a drier region on the basis of the global climatological
aridity index to investigate in a broad context.

4. Conclusions

Stream water quality was predicted using the WASP8 model in this study, which was
applied to the longitudinal profile of both waterways. The modelling results were appraised
through the assessment of fitting levels with MAPE analysis over both average and seasonal
scales. The results showed a large temporal variation of the water quality concentration
among seasonal scale in the Ara Waterway, which comes in the wet region, while in the
dry region Yamuna Waterway showed small-scale seasonal variation in a longitudinal
profile of the river water quality. Furthermore, an interrelationship was investigated among
vegetation indices and water quality variables.

The Ara Waterway, which comes in wetter regions, showed relatively better connection
between water quality variables and vegetation indices on the annual scale for T-N, BOD
and DO with Pearson correlation coefficient values at about 0.66, 0.68 and −0.58, respec-
tively. The seasonal scale interrelationship between water quality and NDVI also showed
strong linkage in the energy limited region over the Ara Waterway than that of the water
limited region, with a maximum correlation coefficient value occur in the spring season.

The seasonal variation of water quality variables over different geological locations
will help us to understand the water quality management over different climatic regions.
The management of water quality dynamics and its relationship with vegetation indices
over different climatological regions will help us in monitoring and managing water quality
with different strategy levels. The results of this research are advantageous for water quality
management and waterway restoration, as they highlight the effects of vegetation and the
relationship between water quality and vegetation indices. The variance in water quality
may vary with the variation in season and vegetation biomass. Thus, better water quality
of sustainable water environment could be achieved by making management strategies
conferring to the different geographical region’s specific vegetation patterns.
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Abstract: Inland freshwater shallow lake ecosystem degradation is indistinctly intertwined with
human-induced factors and climate variability. Changes in climate and human-induced factors
significantly influence the state of lake ecosystems. This study provides evidence of the driver,
pressure, state, impact, and response (DPSIR) indicators for freshwater lake ecosystem dynamics,
taking Lake Malombe in Malawi as a case study. We used the DPSIR framework and Tobit model
to achieve the study’s objectives. The study’s findings indicate that top-down processes gradually
erode Lake Malombe’s ecosystem state. The lake resilience is falling away from its natural state due
to increasing rates of drivers, pressures, and impacts, indicating the lake ecosystem’s deterioration.
The study shows that demographic, socio–economic, climatic drivers, pressures, state, and responses
significantly (p < 0.05) influenced the lake ecosystem’s resilience. The study suggests that substantial
freshwater ecosystem management under the current scenario requires a long-term, robust, and
sustainable management plan. The findings from this study provide a roadmap for short-term and
long-term practical policy-focused responses, particularly in implementing a freshwater ecosystem
restoration programs in Malawi and Africa more broadly.

Keywords: DPSIR models; ecosystem state; Lake Malombe; tobit model

1. Introduction

Global inland freshwater shallow lakes are under severe stress [1,2]. Duggan et al. [3]
identified ecological stressors such as pollution, climate change, over-exploitation, hydro-
logical modification, habitat destruction, and invasion of alien species as the leading causes
of freshwater ecosystem degradation. World crises such as poverty, rapid population
growth, economic expansion, and climate change are also identified as the most significant
emerging threats [4,5]. These identified threats are escalating such that the current scale of
biodiversity loss in freshwater lakes is rapid and is considered an invisible tragedy while
attracting little public, political, or scientific interest [1]. In Africa, climate change, pollution,
eutrophication, and invasion of alien species are increasingly threatening the sustainability
of inland freshwater shallow lakes [6–10]—impeding efforts to achieve United Nations Sus-
tainable Development Goals (SDGs)—in particular SDG 14 (life underwater), SDG 15 (life
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on land), SDG 13 (climate action), SDG 1 (no poverty), SDG 6 (clean water and sanitation),
SDG 2 (zero hunger), SDG 3 (good health and well-being), SDG 12 (responsible production
and consumption), and Aichi Biodiversity Targets [11].

Estimates show that about 13 million hectares of global forest lands have been con-
verted to cropland [12]. This conversion has significantly contributed to habitat degradation,
eutrophication, pollution, food web alteration, and physical degradation, particularly in
inland freshwater shallow lakes [13]. The Living Planet Report revealed that the global
freshwater species population has declined by 83% since the 1970s, outpacing marine and
terrestrial ecosystems. About 32% of the world’s amphibian species are now threatened
with extinction, a much higher proportion than threatened birds (12%) or mammals (23%),
amouting to a total of 168 species [1,3]. About 40% of river systems globally have already
been polluted, with the statistics showing an increasing trend [14]. Eutrophication, pesti-
cides, and alteration of the biological communities continue to threaten ecosystem services’
(ESs) functioning [15]. The United Nations Environmental Protection report indicates that
about 30–40% of the lakes and reservoirs in the world have been affected by eutrophica-
tion [16]. Davidson & Finlayson [17] reported that 54–57% of natural wetlands had been
lost, though this figure could be as high as 87%. A tremendous increase in freshwater
demand, coupled with rapid population growth, has led to freshwater ecosystem crises [18].
The estimates show that about 3.6 billion people are currently facing water crises, and the
projections show an increasing trend to around 5.7 billion by 2050 [19].

Although ecosystem dynamics in most African inland freshwater shallow lakes are
not well documented due to a lack of data, it is very apparent that climate change and
human activities have negatively affected these lakes [20]. Inland freshwater shallow lakes
have been experiencing severe water level drops due to decreased precipitation and above
average water temperatures [21–23]. For example, it has been reported that Lake Victoria
dried up about 6000 years ago [20]. Once the most significant freshwater lake in Africa, Lake
Chad has shrunk dramatically in the last 40 years due to climate variability [24]. In Kenya,
Lake Naivasha, an official Ramsar Site (30,000 ha), turned into a shallow mud pool during
the 2009 drought [5]. Lake Chilwa has undergone twelve recession periods between 1900
and 2012, resulting in the loss of aquatic biodiversity [25]. The ecosystem of pan-shaped
Lake Chiuta in Malawi has shown a high amplification of negative consequences produced
by climatic-forcing mechanisms that have impacted Lake Malombe [26]. The water levels
and chemical compositions of Lake Kyoga, Lake Tana, Lake Victora, Lake Baringo, Lake
Kariba, and Lake Nakuru have changed [27]. The phytoplankton production in Lake
Victoria has doubled, and algal biomass has increased fourfold due to increased nutrient
enrichment from human activities and industrial and domestic waste [28]. Lake Barigo’s
depth had decreased from 8.9 m to less than 1.9 m by 2003 due to increased human and
livestock populations, coupled with deforestation [20]. Only one river is currently flowing
of the seven rivers flowing into Lake Barigo in the 1970s. Alien species such as water
hyacinth invaded Lake Naivasha in 1988, Lake Victoria in 1990, and is currently reported in
river systems such as the Shire River that connects Lake Malawi to Lake Malombe. Salvinia
mollesta invaded Lake Kariba in the 1970s and Lake Naivasha in the 1980s [8]. More than
50% of the endemic fish fauna in Southern Africa are listed as highly threatened categories
of the IUCN [29]. There are still visible signs of water quality deterioration in many African
freshwater ecosystems where rapid population growth is not matched by an expansion of
ecosystem services [30].

Lake Malombe is one of the biodiversity hotspots in Malawi, accommodating various
habitat types of terrestrial and aquatic flora and fauna of conservation interest [31–33]. The
lake further supports various socio–economic activities such as fisheries and water supply
that sustain the local population’s livelihoods [34,35]. Despite its ecological and economic
significance, the lake has been overstretched due to human actions, climate variability, and
landscape transformation [13,26]. Due to unprecedented economic pressures, rampant
sedimentation, and water quality degradation [32,36,37], increased human population and
climate change have further increased the burden on the lake [38]. Attempts were made to
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understand the socio–ecological systems and develop a sustainable ecosystem management
plan for the lake [39,40]. However, human exploitation frustrated the effort [41]. This
paper aims to use the DPSIR and Tobit models to concurrently identify Lake Malombe
management priorities and select appropriate monitoring indicators of the lake. The
DPSIR model is a socio–economic framework that links the ecosystems’ changes to the
social and economic drivers and political responses [42]. It was initially developed by the
Organisation for Economic Co-operation and Development (OECD) and adopted by the
United Nations and the European Environmental Agency [43]. The framework detects
and defines processes and interactions in human–ecological systems [44,45] and is highly
linked to the ecosystem-based management approach. The DPSIR framework in this study
is linked to the following research questions: “What is happening to the Lake Malombe
freshwater ecosystem and why? (“D”, “P”, and “S”), “What are the consequences for the
lake ecosystem and local population? (“I”), and “what has been done and how effective is
it?” “R”. However, to assess the influence of DPSIR indicators on the lake ecosystem, the
following research question was framed: “To what extent do the DPSIR indicators influence
the Lake Malombe ecosystem?”. Since the DPSIR indicators are fragmented, the tobit model
is recommended to explain the influence of these indicators on the lake’s ecosystem [46].

1.1. The Theory Underpinning the DPSIR Model

The Driver–Pressure–State–Impact–Response (DPSIR) model in Figure 1 is an instru-
ment used to detect and define processes and interactions in human–ecological systems [47].
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It was developed in the late 1990s by the Organisation for Economic Co-operation and
Development (OECD) and subsequently adopted by the United Nations and the European
Environmental Agency [47]. The model provides a precise outlook in understanding the
dynamics of the interface between human–natural systems and, in the process, provides a
procedure for emptying and evaluating specific elements of this human–nature ecological
interface in a manner that is both spatial–temporal on one hand and process-oriented on
the other [48]. The DPSIR model uses similar means to other geospatial techniques focused
on land–vegetation–dynamic analysis to provide an instructive podium for devaluing the
intricacy of such modifications. The approach is recommended by several researchers such
as Friend and Rapport [49], Borja et al. [50], Mang et al. [51], Bell [52], Pinto et al. [53],
Sarmin et al. [54], Gari et al. [55], and Zare et al. [56], and is derived from PSR (pressure–
state–responses)—with (D) being added later to describe underpinning drivers.
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1.2. The Debate over the DPSIR as a Policy Supporting Tool

The DPSIR framework is known for its potential and usefulness in research to pro-
vide policymakers with a clear and meaningful explanation of cause–effect relationships.
According to Gebremedhin et al. [57], the DPSIR model helps summarize and visualize
the cause–effect interactions of the lake ecosystem in a simplified way. The Malawi
government recommended the DPSIR framework in its Decentralized Environmental Man-
agement Guidelines [58]. The model extensively analyzed environmental issues originating
from human activities [52]. Malawi’s 2010 State of Environmental Outlook Report also
adopted the integrated environmental ssessment approach based on the DPSIR model to
depict environmental trend dynamics in Malawi. Other researchers have also described
the model as helpful in providing the basis for policy-relevant research [59]. Although the
DPSIR model has received enormous support, many heated arguments have been going on
over recent decades regarding its relevance to ecosystem management, especially at the
local level. Niemeijer and De Groot [60] argued that the DPSIR model focuses too much on
unidirectional causalities between indicators and does not address the complex interrela-
tionships found in reality. Other studies have noted that the DPSIR model framework does
not demonstrate how different drivers and responses can be dealt with locally [61]. The
model has further been disputed for failing to consider social concerns [58]. In other words,
the DPSIR model ignores certain critical viewpoints and concerns of the affected groups
of individuals [43]. It further displays a selective understanding of issues, making other
researchers argue that the model could be biased and deemed irrelevant by some actors
whose concerns are ignored [43]. Ecologists have always argued that humans protect what
they value [62]. A natural ecosystem can only be protected by those who benefit from it.
Individuals or groups affected by ecosystem change due to social and ecological changes
have the potential to find a sustainable solution to address the impact [61]. This implies that
failure to consider the concerns of many individuals could make ecosystem management
complex [63]. Therefore, several researchers have suggested various approaches to improve
the model to make it more flexible and easy to understand in order to communicate with
various stakeholders at multiple levels. Tscherning et al. [43] suggested that incorporating
social and economic concerns into the DPSIR model could make the model more effective
and relevant. Svarstad et al. [63], on the other hand, suggested that various narratives need
to be applied in the DPSIR model to accommodate multiple discourses of stakeholders.
Niemeijer and De Groot [60] also suggested that unidirectional causal chain networks need
to be replaced with multiple causal chain networks to provide a more reliable basis for se-
lection, identify and specify indicators, and effectively help policymakers and managers to
determine the precise starting points of monitoring. It is further noted that the application
of the DPSIR model, along with other approaches, may provide baseline data for further
research and assist researchers in framing their research objectives based on practical issues.

2. Materials and Methods
2.1. Study Area

Lake Malombe, in Figure 2 (14◦40′0′ ′ S and 35◦15′0′ ′ E), occupies a narrow north–south
tectonic basin at the southern extension of the East African Great Rift Valley complex. It
is the second-largest inland freshwater shallow lake in Malawi with a water depth of less
than 6 m, length of 30 km, and width of 17 km [32]. Hydrologically, the inflow and outflow
of the Shire River make the most significant contribution to Lake Malombe’s water budget,
except during the drought period when Lake Malawi’s water level is too low to feed into
Shire River [64].
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Figure 2. Map of Lake Malombe catchment (Makwinja et al., 2021a).

The rainfall period falls into three categories; early rainfall characterized by heat thun-
derstorms over the high ground of the escarpment area occur in October and November,
the inter-tropical convergence zone (ITCZ) and the eastward encroachment of the moist
Congo air mass associated with thunderstorms in December and March, and the south-
easterly wind that brings rainfall over high ground in April and May. The temperature
ranges from 13 ◦C to 35 ◦C, and average annual rainfall ranges from 600 mm on the rift
valley floor to 1600 mm in the mountainous areas. Lake Malombe plays an essential role in
the local economy and biodiversity protection. Its catchment consists of diverse habitats,
including grassland, forest, shallow tidal areas, open waters, swampland, and mangroves
that support diverse terrestrial and aquatic flora and fauna. The lake ecosystem supports
approximately 90% of the local population in fishery activities within 10 km of the lake.

2.2. Data Collection
2.2.1. Grey Literature Search Strategy and Documentation

The framing of the DPSIR model indicators began with a systematic search of docu-
mentation. The DPSIR indicator selection was based on the following criteria: (1) indicator
reflects ecosystem changes in state and management; (2) availability, accessibility, and
consistency of indicators within the specified period of analysis; (3) independence and
ability to eliminate multicollinearity; and (4) representation and superiority of the indicator
over other indicators in a similar category. These criteria were achieved by searching
available databases and their information within the specified period. Several scientific
peer-reviewed article databases, including ScienceDirect, ResearchGate, Google Scholar,
Web of Science, SciELO, LibGen, PubMed, Science-Hub, internet archives, Scopus, Cross-
Ref, EcoPapers, BioOne, academic research databases, and others were searched. These
databases were chosen based on their ability to highlight various similar peer-reviewed
articles. The targeted sources were peer-reviewed journal articles, book sections, and
scientific reports written in English.

We used multiple keyword combinations such as “Lake Malombe Pressure-State-
Responses,” “Lake Malombe Pressure-State-Impact-Responses,” “Lake Malombe Driver-
Pressure-State-Impact -Response,” “Lake Malombe State change,” “Lake Malombe Pressure-
State-Response,” “Lake Malombe Pressure-State-Impact Responses,” “Lake Malombe
Driver-Pressure-State-Effect-Action,” “Lake Malombe State-Change,” and “Lake Malombe
Pressure-Response model”. The primary database search involved screening titles and
abstracts based on keywords. The open search yielded 600 scientific peer-reviewed arti-
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cles, reports, and policy documents. The articles were further classified into “General”
(those that were general and focused on the concept of freshwater ecosystems broadly) and
“Specific” (those articles explicitly focusing on the Lake Malombe ecosystem). The articles
accessed from peer-reviewed journals were further assessed based on the publisher’s rank-
ing (A* to C) where “A*” indicates highly credible sources and “C” credible sources, the
relevance of the research article to the research theme, publisher identity, and reliability.
These research selection criteria resulted in 105 scientific articles. The selected research
articles were categorized as national (those conducted in Malawi), local (those specific to
Lake Malombe), regional, and global. Data collected from the systematic review were used
in qualitative and quantitative analysis.

2.2.2. Primary Data

Three traditional authorities (T/As), namely T/A Mponda, T/A Chimwala, and T/A
Chowe, were ultimately selected for interviews. These three traditional authorities en-
gage in fishing and farming and represent the two predominant Lake Malombe livelihood
groups, inland and shoreline, each with distinct socio–ecological characteristics. Six univer-
sity graduates coordinated face-to-face interviews held in Yao or Nyanja—native languages.
The interviews were audio-recorded with participant consent and transcribed for funda-
mental content analysis. Semi-structured interviews were conducted with individuals in
each community. Local leaders were approached first, then additional participants were
engaged through the snowball sampling technique. The semi-structured format ensured
that all key questions were addressed while providing ample space for the respondents to
freely express their own experiences, opinions, and knowledge of the lake ecosystem DPSIR
indicators. The interviews covered household activities, changes in the lake ecosystem
service functions, the socio–ecological system, and associated coping mechanisms. Four
focus group discussions (FGDs) per traditional authority were organized separately for
households whose dominant livelihood was fishing or farming, with 10 to 12 villagers
representing different socio–economic and demographic backgrounds. This design made it
possible to capture a representative cross-section of residents and avoid bias through overly
influential individuals. Each FGD consisted of two parts: in the first part, the participants
constructed a timeline of social–ecological development from the 1970s onward, mapping
and identifying critical drivers linked to ecosystem changes, pressures, current ecological
conditions, livelihood activities, governance structure, and responses and ranking them
based on the consensus reached. The second part involved the mental models. The men-
tal model systematically identifies and deliberates critical events and drivers of the lake
ecosystem dynamics that threaten its resilience, interaction, causes (pressures), state, conse-
quences (impacts) for ecological and livelihood dynamics, coping mechanisms, and future
policy directions. Several transect walks accompanied by villagers were also undertaken to
households, local markets, fish landing sites, and farmlands to help us understand the lake
ecosystem, landscape, socio–economic activities, and other livelihood practices.

The consultative meetings were conducted with the Mangochi District Environmental
Office, the District Agriculture Development Office, the District Forest Office, the District
Water Office, the District Disaster Risk Management Office, the District Director of Planning
and Development Office, the District Fisheries Office, and the Liwonde National Park Office.
Data collected from the consultative meetings helped us to develop the DPSIR framework
following the Organisation for Economic Co-operation and Development (OECD) frame-
work. The participatory rapid appraisal (PRA) approach was also used to collect data
focusing on drivers, pressures, state change, impact, previous responses, and other related
critical issues and was achieved through direct involvement with the local communities
in the study area. The PRA encompassed a wide range of field trips, interviews, informal
meetings, field observations, and in-depth key informant interviews. Before visiting the
study area, a list of broad questions about the Lake Malombe ecosystem functions were
framed. The duration of the field study was 30 days. The interviews and meetings were
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recorded and notes were taken after asking for interviewees’ consent. The field trips were
wrapped up by promising to send the interviewees a feedback report of the findings.

2.3. Construction of DPSIR Framework and Data Weighting

Weighting techniques were employed to select the appropriate indicators for the
DPSIR framework. Specifically, entropy and analytic hierarchy techniques were used to
weight indicators in different DPSIR networks. “Pressure,” “state,” and “response” were
weighted using the hierarchy procedure. The entropy weighting technique was used
to select appropriate “driving force” indicators and “impacts.” The ecosystem resilience
performance was demonstrated using a plot. The index of each DPSIR class was determined,
after pre-determined indicator weighting, using the following specific steps [65]:

X′ij =
Xij −min

(
X1j, X2j, . . . , Xnj

)

max
(
X1j, X2j, . . . , Xnj

)
−min

(
X1j, X2j, . . . , Xnj

) + 1 (1)

i = 1, 2, . . . , n; j = 1, 2 . . . , m

Equation (1) demonstrates that greater the index, the more reliable it is. Conversely,
Equation (2) suggests that indicators with a smaller index are best. Note that n means the
number of indicators, m is a valuation indicator, and xij is an index.

X′ij =
max

(
X1j, X2j, . . . , Xnj

)
− Xij

max
(
X1j, X2j, . . . , Xnj

)
−min

(
X1j, X2j, . . . , Xnj

) + 1 (2)

i = 1, 2, . . . , n; j = 1, 2 . . . , m

The next step is to calculate the proportion of the i-th plan under the j-th indicator:

ρij =

(
X′ij

)

∑n
i=1 X′ij

+ 1, j = 1, 2, . . . , m (3)

The entropy of the j-th indicator is calculated as:

ei =
1

ln ni−1

n

∑
i=1

pij ln pij (4)

The weight indicator is calculated as:

Wi =
1− ei

∑n
j=1(1− ei)

, j = 1, 2, . . . , m (5)

The comprehensive score of each indicator is determined as:

Si =
m

∑
j=1

Wj ∗ ρij, 1, 2, . . . , n (6)

2.4. Tobit Model

James Tobit introduced the Tobit model in 1958. The model assumes that many
variables have a lower or upper limit and takes these as limiting values. For example, the
decision as to whether the Lake Malombe ecosystem is changing may be characterized as a
dichotomous choice between two mutually exclusive alternatives (negative or positive). A
breakpoint in the explanatory variables could depict this. In the Tobit model, Y denotes
that the change in the lake ecosystem function depends on DPSIR indicators and could
be expressed as x vectors meaning explanatory variables. The Y variable is defined in
the context of a limited variable that takes on two values; Y ∼ Y∗ if the results of the
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ecosystem change are positive and Y ∼ 0 if the results are negative. It should be noted that
the probability y takes only values of 1 or 0 [65] and the thresholds of all members in the
sample are distributed among different values of the explanatory variables. This can be
demonstrated by a sigmoid curve (Figure 3).
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The explanatory variables (DPSIR indicators) considered in the Tobit model include
a demographic driver (Dd), socio–economic drivers (Ds), climatic drivers (Dc), pressures
(P), socio–economic states (Ss), environmental states (Se), impacts (I), capacity building
and governance responses (RCBG), institutional measure responses (RIM), livelihood
intervention responses (RLI), and environmental intervention responses (REI). Having
clarified these concepts, we define a Tobit model [66] as follows:

Y∗ = X′β + ε, with ε
∣∣∣X ∼ N

(
0; δ2

)
, with y = y∗i f y∗ >0, and y = 0 otherwise

where y is the observed variable of interest, and Y∗ is a latent variable. The above equation
describes three things. First, the expected effect of x on Y∗ is monotonic. Second, the
residuals follow a normal distribution. Lastly, the dependent variable is left censored.

2.5. Data Analysis

Data were analyzed using a critical discourse approach and content analysis. The
DPSIR framework guided the identification, structuring, and representation of system
elements and their interactions. Field recordings were decoded and notes were scanned
to identify, classify and group various stakeholders’ ideas and concepts. Metadata from
primary sources were exported in STATA version 15 and analyzed using descriptive and
inferential statistics.

3. Results

This study analyzed the Lake Malombe freshwater ecosystem using the DPSIR model
(Figure 4). The primary goal was to provide concise and specific information about the driv-
ing forces, socio–economic and environmental pressures, socio–economic and environmen-
tal states, impacts resulting from spatial and temporal changes of the lake, and responses.
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Figure 4. DPSIR model for Lake Malombe Inland freshwater shallow lake.

3.1. Drivers and Pressures

The driving force is the root cause for the spatial and temporal changes of the lake
ecosystem state (Figure 4). It can be interpreted as a demographic, socio–economic, or
natural factor.

The stakeholders ranked rapid population growth as the highest indicator for the
demographic driver (0.96). The pressure associated with this driver includes high land-
scape conversion, increased unplanned settlement, over-exploitation of lake resources,
destruction of mangroves and other aquatic plants for farming, fishing, high-rate conver-
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sion of wetlands into farmlands, buildup of municipal and domestic waste, poaching, and
increased demand for biomass energy (Figure 5).
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Figure 5. Pressure on the Lake Malombe ecosystem.

Poverty was the highest (0.84) socio–economic driver, followed by illiteracy (0.74).
Vertical fishing efforts (0.53) and horizontal fishing efforts (0.49) ranked the lowest. The
pressures triggered by these socio–economic drivers include illegal fishing (0.78) (ranked
the highest), gravel and sand mining along rivers and streams (0.68) (Figure 5), increased
destructive gears (0.67), brick making, and kilning (0.48). Climate change was ranked the
highest (0.89) natural driver, with extreme weather events (0.59) and strong heat waves
(0.47) ranked the lowest. The pressures triggered by these drivers include the drying up
of rivers (0.79), frequent floods (0.62), a poor rainfall distribution pattern characterized by
prolonged dry spells (0.74), soil erosion (0.78), and sediment deposits (0.67), as expressed by
the following anecdote: “During the intense precipitation, debris from the upland areas are
washed away into the lake damaging the mangroves and contribute to the lake siltation.”an
older man at Chimwala Village, Nov 2019. Figure 6 shows comprehensive indices for
drivers and pressures exerted on the Lake Malombe ecosystem from 1970 to 2020.
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Figure 6. Inter-annual variation of the driver and pressure index.

The inter-annual variation index followed the linear pattern demonstrated by the
linear regression coefficients (R squared = 0.9). The theoretical explanation of the current
observation is that these drivers and pressures will continue influencing the spatial and
temporal changes of the ecosystem.

3.2. State and Impacts

The state index refers to the condition of the lake ecosystem resulting from drivers
such as demographics, socio–economic factors, and natural factors and pressures such as
environmental factors. The socio–economic states comprised those factors affecting the
local population’s well-being. The stakeholders mentioned low fishery productivity (0.67),
disease outbreak (0.87), loss of revenue (0.68), and food and nutrition insecurity (0.54) as the
socio–economic states. The environmental states comprised factors such as decreased lake
levels (0.93), water quality degradation (0.59), low rainfall (0.49), degraded landscape (0.65),
ecosystem disservices (0.57), and alien species such as water hyacinth invasion (0.69) that
affect the lake ecosystem function. Lake ecosystem resilience changes impact the local
population and the environment. In this study, the impact index is defined as the socio–
economic and environmental impacts that affect the local population’s livelihood, social
welfare, and the environment due to the changing state of the lake ecosystem. The impacts
in this study were linked to socio–economic factors, which include communities’ exposure
to vulnerability (0.94), population displacement (0.65), increased crime rate (0.55), socio–
economic traps, HIV prevalence (0.87), hunger (0.89), and disease outbreak (0.68). The
environmental state is linked to impacts such as decreasing ecosystem provisioning services
(EPSs), reduced climate regulation (0.32), reduced supporting services (0.65), decreasing
biodiversity (0.82), and loss of genetic diversity (0.67). Figure 7 shows the comprehensive
indices of the states and impacts on the Lake Malombe ecosystem.

The coefficients of linear regression (R squared) for state and impact were above 0.9,
suggesting that these dependent variables are the function of the explanatory variable
(time) and that the current state and impact will continue to increase with time.
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Figure 7. Inter-annual variation of the state and impact index.

3.3. Responses

The response index refers to the measures taken to improve the state of the lake.
These measures may act towards any DPSIR indicators within the framework to ensure
the lake ecosystem’s high efficiency and resilience. Apart from direct actions acting on
the DPSIR indicators, the responses focusing on behavioral and attitude changes towards
changes to the lake ecosystem through participation and involvement are vital. Different
stakeholders interviewed mentioned various strategies to acknowledge the existing drivers,
pressures, states, and impacts around Lake Malombe. These strategies were classified
into capacity building and governance (0.56), institutional measures (0.36), livelihood
intervention (0.62), and environmental interventions (0.59). Capacity building focuses
on equipping local communities with the skills and knowledge required to manage the
lake ecosystem. These include technical training on biodiversity conservation, ecosystem
services, and environmental awareness campaigns.

Governance is focused on the establishment of local structures such as environmental
protection committees (EPC), beach village committees (BVC), and fishery associations
(FA) to champion the management of the lake ecosystem. Institutional measures include
government policies, institutional frameworks, and management strategies. Examples of
management policies mentioned during the key informant interviews and FGDs include
water, fishery, environmental, climate change, and forestry policies. The legal and insti-
tutional frameworks include the Fisheries Conservation and Management Regulations of
2000, the Forestry (Amendment) Act of 2017, the Water Resources (Water pollution control)
Regulation Act of 1978 (amended 1997), and the Environment Management Act of 1996
(No. 23 of 1996). The management plans and strategies include the National Biodiversity
Strategy and Action Plan II (2015–2025), the National Forest Landscape Restoration Strat-
egy, fisheries management plans such as co-management, and the ecosystem approach to
fishery management. Livelihood interventions are activities, such as aquaculture, backyard
farming, and livestock production, that aim to promote the local population’s welfare.
Environmental interventions focus on restoring the lake ecosystem. The environmental
interventions identified from the interviews include protecting the fish habitat, conserving
and managing the lake catchment (including protected areas such as the gazetted forest in
upland areas and national parks’ rehabilitation of fish breeding grounds), reafforestation
programs in agroforestry, water conservation, and conservation farming. Figure 8 shows
the comprehensive indices of responses to drivers, pressures, states, and impacts on the
Lake Malombe ecosystem over time.
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Figure 8. Inter-annual variation of the state and impact index.

The coefficients of linear regression (R squared) for the responses being above 0.0005
suggests that the initiatives taken in Lake Malombe to reverse past and current trends are
inadequate to address the drivers, pressures, state, and impacts.

3.4. Lake Malombe Ecosystem Resilience and Influencing Factors

Lake Malombe’s ecosystem state can be depicted as a multidimensional surface where
troughs and crests represent the lake ecosystem’s stable and unstable state. Figure 9 shows
that the lake ecosystem is drawn to troughs, in which resilience is equivalent to the depth
of a depression that keeps an ecosystem state at equilibrium with time. At the equilibrium,
the lake ecosystem is resilient to drivers, pressures, and impacts that noticeably change the
ecosystem state around the trough.
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Figure 9. A cup diagram illustrating the Lake Malombe ecosystem’s resilience.

A reduction in resilience is illustrated as a shallowing of the depression due to in-
creased demographic, socio–economic, and natural drivers and pressures. Entropy tech-
niques modify the weight of the DPSIR indicators. By calculating the weight of each
indicator, key factors that influence the lake ecosystem resilience were identified. The mul-
ticollinearity test was conducted before regression analysis to check whether the covariates
in the Tobit model were independent of each other. The correlation coefficient matrix in
Table 1 showed no multicollinearity in the model, suggesting that the selected variables fit
the regression analysis.
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Table 1. Correlation matrix of variables.

Dd Ds Dc P Ss Se I RCBG RIM RLI REI

Dd 1
Ds 0.33 1
Dc 0.12 0.06 1
P 0.01 0.00 0.03 1
Ss 0.21 0.31 0.18 0.12 1
Se 0.02 0.10 0.15 0.09 0.13 1
I 0.07 0.01 0.21 0.10 0.11 0.20 1
RCBG 0.02 0.13 0.11 0.13 0.03 0.12 0.03 1
RIM 0.02 0.12 0.02 0.03 0.02 0.09 0.02 0.07 1
RLI 0.04 0.06 0.04 0.00 0.02 0.04 0.00 0.08 0.24 1
REI 0.11 0.1 0.13 0.14 0.11 0.21 0.13 0.16 0.21 0.02 1

Note: Dd = demographic drivers, Ds = socio–economic drivers, Dc = climatic drivers, P = pressures,
Ss = socio–economic state, Se = environmental state, I = impact, RCBG = capacity building and governance
responses, RIM = institutional measure responses, RLI = livelihood intervention responses, REI = environmental
intervention responses.

The Augmented Dickey–Fuller (ADF) co-integration test in Table 2 shows that p < 0.05,
indicating the existence of a co-integration relationship in the panel data. Demographic,
socio–economic, and climatic drivers, pressures, socio–economic state, and environmental
state were significant (p < 0.05) and negative, suggesting that these indicators negatively
influenced the lake ecosystem’s resilience.

Table 2. The empirical results of the Tobit model.

DPSIR
Indicators Coefficient Std.Error z-Statistic p Value

Dd −0.060 0.010 −3.201 0.003
Ds −0.086 0.021 2.710 0.041
Dc −0.056 0.010 6.619 0.021
P −0.065 0.010 4.321 0.044
Ss −0.089 0.007 4.120 0.004
Se −0.002 0.002 3.231 0.003
I −0.007 0.001 2.043 0.043

RCBG 0.012 0.012 0.450 0.059
RIM 0.094 0.001 0.013 0.048
RLI 0.063 0.001 −4.234 0.021
REI 0.012 0.012 6.450 0.012

Heteroskedasticity and autocorrelation-consistent (HAC) ADF t-test = −88.032, HAC = 0.003, residue variance
= 0.01, p value = 0.001. Note: Dd = demographic drivers, Ds = socio–economic drivers, Dc = climatic drivers,
P = pressures, Ss = socio–economic state, Se = environmental state, I = impact, RCBG = capacity building
and governance responses, RIM = institutional measure responses, RLI = livelihood intervention responses,
REI = environmental intervention responses.

On the other hand, response indicators such as livelihood and environmental inter-
vention responses were positive and significant (p < 0.05), suggesting that these indicators
positively influenced the lake ecosystem resilience.

4. Discussion
4.1. Drivers and Pressures

This study depicts the drivers, pressures, states, impacts, and responses that influence
the resilience of inland tropical freshwater shallow lakes’ ecosystems. Among the drivers,
rapid population growth has resulted in multiple pressures that degrade the state of the
Lake Malombe ecosystem. Evidence shows that in 1998 the western bank of Lake Malombe
had 8400 households and the eastern bank had 2657 [32]. Using the Malawi national
average household size of a five-person per household, the total population in 1998 was
estimated at 42,000 on the west bank and 13,285 on the east bank [67]. Factor in 3% annual
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population growth rate for Mangochi district [38], and the projected population in 2020 was
estimated at 82,891 on the west bank and 25,657 households on the east bank. However, the
FISH project report revealed that the population trend in the South East Arm where Lake
Malombe is located has increased from 295,891 in 1998 to 404,850 in 2008 [27]—making
it one of the most densely populated areas (average of over 500 people/km2) in Malawi.
This demographic trend is linked to poverty [33]. The 2011 integrated household survey
ranked Mangochi, where Lake Malombe is located, as second among the top four districts
(Machinga, Balaka, and Zomba) in Malawi with the highest rates of poverty (0.13 USD/day)
and first in terms of the rate of ultra-poor residents (0.08 USD/day)—compared to the
national average of 2 USD/day) [33]. Approximately 99% of the local population in the
catchment area predominantly depend on fishing for their sustenance [35]. Other sources
of income include fish sales from aquaculture, cash crops, rainfed and irrigated food
crops, employment, rentals, non-farm businesses, and others. The daily income generated
from these socio–economic activities is less than 2 USD/day with the exception of fishery
(Figure 10a).
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The expenses in Figure 10b indicate that income is spent mostly on food, while saving
is the least common use of money—indicating the local population’s socio–economic trap.
In the Lake Malombe context, the socio–economic trap is where the local population has
limited alternatives to mobilize adequate resources to overcome the shocks and remain
in the poverty trap [35,68]. The overall household income is less than 1 USD per day
(Figure 10a). The Lake Malawi Basin Program Integrated Household Survey in 2008
put it at 0.74 USD per day, suggesting that the local population’s over-dependence on
lake resources is triggered by poverty and a lack of alternative livelihood options [52,69].
Sandhu & Sandhu [69] and Suich et al. [70] demonstrated the link between poverty and the
ecosystem’s resilience. In the Lake Malombe context, poverty pushes vulnerable individuals
to desperately over-depend on the lake and exploit even those resources deemed conserved
for future generations [35]. This is also the typical scenario in African Great Rift Valley
lakes where over-exploitation of lake ecosystem resources is extensive [71], triggering a
multitude of direct effects on the riparian populations while undermining the capacity of
the lake ecosystem resources to support human livelihoods [71] continuously. The increase
in vertical and horizontal effort is associated with poverty, rapid population growth, and a
lack of adaptation strategies to the changing ecosystem [31]. The decline in fish biomass
landings reported by Makwinja et al. [41] suggests that vertical fishing effort triggered
the lake ecosystem dynamics, which eventually leads to over-exploitation of the resource,
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leading to socio–economic struggles. The scenario depicted in this study is expected in
African freshwater ecosystems where poor and economically vulnerable social groups
exploit the ecosystems, either as fisherfolks, crew members, or traders [72,73].

Lake Malombe is categorized as one of the areas in Malawi susceptible to climatic
variability. The eastern part of the lake is a drought-prone area [32]. Dry spells and floods
in the past have had substantial socio–ecological impacts on the lake ecosystem and the
local communities in Lake Malombe [32]. The Lake Malombe hydrological regime indicates
that it is shaped by extreme weather events such as increased rainfall, prolonged drought,
and temperature fluctuation, which consequently threaten socio–ecological components
such as livelihood, aquatic vegetation, and biodiversity [74]. Christia et al. [74] and Thanh
et al. [75] have pointed out that increased rainfall variability affects water quality, toxic
bacteria blooms, and dissolved nutrient concentration, spreading water-borne diseases.
Unexpected extreme weather events such as heavy rains, drought, and rising temperatures
add more pressure on the existing challenges such as declining ecosystem productivity, soil
fertility, water quality degradation, toxic bacteria blooms, and dissolved nutrient concen-
tration, consequently spreading water-borne diseases [75]. The findings align with what
Njaya et al. [40], Okpara et al. [76], Lemoalle et al. [77], Likoya [78], Limuwa et al. [79], and
Desta [80] reported in Lake Chilwa, the Shire River Basin, and Lake Malawi in Malawi.
Cowx and Aya [81], Jamu et al. [31], Wood et al. [82], Dulanya et al. [26], Makwinja et al. [23],
Williams et al. [83], and Nkwanda et al. [84] also pointed out the same scenarios in Chia
Lagoon, Central Malawi, Lake Chilwa in Southern Malawi, and the Lilongwe River Basin.
Guo et al. [85] also demonstrated how human activities such as draining inland freshwater
shallow lakes and land use transformation in the basin influenced seasonal flooding in
the Poyang Lake basin in China. In West Africa, Li et al. [86] demonstrated how human
activities such as landscape alteration in Niger and the Lake Chad basin are strongly linked
to changes in hydrological regimes at the watershed scale, leading to a disproportionately
large impact on water balance. Elias et al. [83] linked aggressive agricultural expansion to
the collapse of the lake ecosystem of the Ethiopia Central Rift Valley. Agricultural develop-
ment has been identified as putting significant pressure on the mangrove ecosystem [87].
In the Southern Part of the Andaman Islands, about 6 km2 of mangroves were cleared out
during the last three decades (1979–2013) for fishing, severely impacting the mangrove
ecosystem and biodiversity. In Malaysia, human encroachment, agriculture, and coastal
erosion have been identified as putting pressure on freshwater ecosystems [54].

4.2. State and Impacts

Human and environmental drivers, alongside other pressures occurring across mul-
tiple scales, have shaped the current state of the Lake Malombe ecosystem (Figure 11).
Increased phytoplankton production, invasion of alien species, water quality degradation,
drying up of rivers, over-exploitation of fisheries, increased erosion, shrinking of the lake,
and a catastrophic decline in fish stocks, as reported by Hara [88], Dulanya et al. [26],
Froese et al. [89], and Makwinja et al. [35], have depressed the lake ecosystem’s resilience.
The depletion of high trophic level fish species in the 1980s led to what can be described
as top-down cascading effects of human food web alterations [37]—a common scenario in
many African inland freshwater shallow lakes’ ecosystems [90–92].
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Figure 11. The current state of the Lake Malombe ecosystem.

The impact indicator in this study is contributed to by severe biodiversity loss, local
communities’ exposure to vulnerability, population displacement, increased crime rates, a
socio–economic trap, HIV/AIDs prevalence, hunger, disease outbreak, decreasing ecosys-
tem provisioning services (EPSs), reduced climate regulation, reduced supporting services,
decreasing biodiversity, and a loss of genetic diversity. Increased removal of mangroves,
habitat degradation, fishing efforts, extreme lake level decreases, and rivers’ drying up [31]
are linked to declining fish biomass and loss of revenue, and this has widened the socio–
economic gap between the poor and the rich, as demonstrated by the Gini coefficient
of 5.6 and an average income of 1.74 USD per household per day [33]. Diseases such as
diarrhea, dysentery, and schistosomiasis are common, particularly in the flooded areas
of Lake Malombe. Figure 12a shows that water-borne diseases such as diarrhea are the
most prominent, followed by dysentery and then schistosomiasis. Figure 12b shows that
drought, floods, heavy storms, and dry spells are more prevalent in the three traditional
authorities around Lake Malaombe.

Schistosomiasis in Lake Malombe is linked to a declining population of molluscivorous
fishes (Mylochromis spp., and Tramatocranus placodon) due to human and environmental
pressures, which enables Bulinus nyassanus (the host of human urinary schistosomes) to
survive in open waters [93]. Diarrhea and dysentery are highly linked to a decline in
forest and shrubland leading to increased seasonal flooding and water pollution. Similar
cases are reported in the Lake Chilwa Basin [94], Tonle Sap Lake in Cambodia [95], and
Lake Malawi [40]. Makwinja et al. [5] estimated that Lake Malombe lost approximately
8.92 million USD in revenue from fishing within the period from 1982 to 2019 and about
79.83 million USD from 1999 to 2019 due to landscape transformation. In line with these
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findings, Malawi is currently losing approximately 93 million USD annually due to a
decline in ecosystem service functions and unsustainable use of biodiversity [96].
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Figure 12. Lake Malombe disease outbreak and significant hazards. (a) Disease oubreak. (b) Major
hazards.

4.3. Response

Response in this study refers to the actions adopted by the decision-makers, managers,
and local communities to reverse the situation [97]. Figure 4 categorized the responses
into an institutional framework consisting of livelihood intervention and environmental
intervention. The institutional framework refers to the government policies and other
related legal frameworks formulated to manage freshwater ecosystem service functions in
Malawi. The Fisheries Act contains regulations that aim to maximize fishery production
with a maximum sustainable yield (MSY) as a reference point. The Fisheries Department,
through this act, enforces a closed season, minimum mesh size, licensing, gear restriction,
and habit protection in Lake Malombe. However, the challenge is that the act focuses on
reducing the vertical and horizontal fishing effort to manage Oreochromis species. Other
existing threats, such as the declining population of the potamodromous (O. microlepis),
the commercial extinction of L. mesops, the impacts of climate change, and the effect of
siltation on fish biodiversity, are given low priority [31]. The command–control nature of
the act also makes it costly and challenging to implement due to increased non-compliance
and strong resistance from the local fishing communities [98]. Again, Lake Malombe’s
ecosystem health is shaped by multiple interactions between socio–ecological components
rather than a single factor; hence, the Fisheries Act alone cannot effectively reverse the
situation. Other related policies such as forestry, water, land, wildlife, irrigation, and
tourism formulated to safeguard biodiversity and the lake ecosystem lack synergy and
have conflicting key priorities that compromise the conservation effort. National Climate
Change Management and fisheries policies do not explicitly explain how the lake ecosystem
can withstand the shocks instigated by decreasing water levels due to rainfall fluctuation
and drought, which cause the disappearance of aquatic vegetation, reducing fish breeding
areas and biodiversity. Illegal exploitation of lake ecosystem resources in Lake Malombe
is complex and often driven by economic, social, and instructional factors. For example,
increased poverty fuels illegal exploitation of the lake’s resources. Limited funding, the
lack of a robust governance system, increased corruption, and inadequate monitoring and
enforcement leave the conservation managers few options to address the lake ecosystem
challenges. Livelihood and environmental intervention refer to the projects aimed at
reducing the local population’s over-dependence on the lake ecosystem services while
stimulating their participation in conservation. In Lake Malombe, promoting aquaculture
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and income-generating activities such as craft-making and bee-keeping as a substitute
for expanding farming around Lake Malombe, charcoal production, and artisanal fishing
have been used as livelihood interventions. However, the challenges of these interventions
involve the current competing interests among the implementers. Data on the effectiveness
and success of these projects have also been scarce, making it difficult to track the progress
and their impacts. Environmental intervention refers to those projects focused on ecological
restoration and climate change resilience. The success of these interventions depends on
how the local population embraces these socio–ecological governance systems and policy
reforms. If the communities fail to generate sufficient income from the interventions, they
eventually return to lake resource over-exploitation. Figure 8 demonstrates that although
the response (R) factor increased slowly, it was the lowest among all indicators, suggesting
that the current interventions are inadequate to reverse the situation in Lake Malombe.

4.4. Lake Malombe Ecosystem Resilience and Influencing Factor

Resilience is the ability of the lake to maintain a state of equilibrium after being
subjected to external or internal stressors [99]. The freshwater lakes’ resilience follows a
nonlinear pattern in which perturbations such as drivers, pressures, and impacts move
the lakes away from their natural state, but after interventions the balance is restored and
the ecosystem returns to its normal state. Lake Malombe, like any other freshwater lake,
can maintain its natural ecological state when exposed to drivers, pressures, impacts, and
responses. What can be inferred from Figure 9 is that the lake ecosystem resilience is falling
away from its natural state due to increasing rates of drivers, pressures, states, and impacts—
an indicator of the lake ecosystem’s deterioration. Similar scenarios have been reported
in China [100], New Zealand [101], and the Mekong river in China, Myanmar, Thailand,
Lao PDR, Cambodia, and Vietnam [102]. The effect of demographic, socio–economic, and
climatic factors as drivers, pressures, and environmental states were significant (p < 0.05)
and negative, suggesting that these indicators negatively influenced the lake ecosystem
resilience and contributed to its degradation. A similar scenario is depicted in Infranz
Wetland, Ethiopia [103] and Dianchi Lake in China [59]. Few response indicators such
as livelihood and environmental intervention were positive and significant (p < 0.05),
suggesting that these indicators slighltly influence the state of the lake ecosystem positively.
Although multiple measures have been taken to conserve and protect the lake ecosystem,
the results show that there is still much to achieve sustainability and attain the ideal state
of the Lake Malombe ecosystem.

As seen in Figures 6 and 7, the steady increase in drivers, pressures, and impacts
pushes the lake ecosystem to a deteriorated state. The deteriorated lake ecosystem often
shows resilience to restoration activities as strong internal positive feedback loops need
to overcome the stressors characterized by internal feedback loops that keep the lake in
its state of equilibrium. It has been argued that maintaining the lake ecosystem resilience
at a desirable state is the most pragmatic and practical approach to managing the inland
freshwater shallow lake ecosystems. Unfortunately, many African freshwater lakes depict
the other side of the story. About 40–90% of the shallow lakes in East Africa have dramati-
cally shrunk—the same scenario reported in Lake Chilwa, Lake Chiuta, and other satellite
lakes in Malawi [32,38,104]. Figure 9 further shows that the risk index in the Lake Malombe
ecosystem reached its worst level between the 1990 and 2000—as evidenced by a lower
index value, which indicates the worsening condition of the lake ecosystem. A similar
observation was made in New Zealand [101]. Based on the interviews, the responses to the
current state of the lake ecosystem in Lake Malombe are hampered by institutional capac-
ities such as lack of funds and training and inadequate technical staff. These limitations
are the leading cause of inadequate management plans and strategies for improving the
current lake ecosystem’s state. Additionally, the continuous removal of forest and grass for
farming, fuel, settlements, and construction materials in the upland areas of the catchment
will only continue to degrade the lake catchment beds, which are the recipients of debris
during the heavy siltation brought by intense precipitation.
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5. Conclusions

This study used DPSIR and Tobit models to demonstrate that the state of the Lake
Malombe ecosystem is declining, and its vulnerability is linked to demographic, socio–
economic, and climatic drivers. It explored the relevant drivers, pressures, states, impacts,
and response indicators that are helpful when making management decisions and for-
mulating long-term policy-focused responses. The study further demonstrates that the
lake ecosystem resilience is falling away from its natural state due to the increasing rates
of drivers, pressures, states, and impacts—an indicator of the lake ecosystem’s deterio-
ration and a demonstration of how the top-down processes are gradually eroding the
lake ecosystem’s health. The study demonstrates that substantial freshwater ecosystem
management under the current scenario requires a long-term, resilient sustainability plan.
This can be achieved through individual and collective efforts. Medium and long-term
conservation efforts and environmental and livelihood projects can help to reduce poverty
and over-dependence on the lake ecosystem. The institutional measures for tackling lake
resource exploitation should also be adjusted promptly through a series of response mea-
sures by local authorities, the local population, and conservation agencies. Challenges
related to sedimentation, aquatic biodiversity losses, and water quality degradation require
an effective, integrated lake basin restoration programs. There is also a need to integrate
different policies relating to land, fisheries, wildlife, climate change, tourism, irrigation,
agriculture, food security, and national population to achieve the goal of a sustainable
integrated freshwater ecosystem. This integration will help to reduce the existing threats
to the lake ecosystem service functions such as cultivation and the conversion of forests,
wetlands, and river banks into farmland, which are driven by rapid population growth and
poverty.

Author Contributions: R.M. conceptualized the study, developed the methodology, sourced the data,
analyzed the data, and developed the original manuscript. S.M., C.C.K., E.K., I.B.M.K., T.A. and F.N.
supervised the study, reviewed and edited the manuscript, and visualized and validated the study.
All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by the African Centre of Excellence for Water Management (ACEWM)
through the World Bank’s African Centres of Excellence (ACE II) Project, grant number GSR/9316/11.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analyzed during the current study are available from the
corresponding author upon reasonable request.

Acknowledgments: The authors wish to thank the Malawi University of Business and Applied
Sciences for providing financial support towards the publication of this paper.

Conflicts of Interest: The authors of this paper declare that there are no conflict of interest.

References
1. Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod,

S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873.
[CrossRef] [PubMed]

2. Ho, L.; Goethals, P. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable
Development Goals (SDGs). Water 2019, 11, 1462. [CrossRef]

3. Duggan, I.; Rixon, C.; Maclssac, H. Popularity and propagule pressure: Determinants of introduction and establishment of
aquarium fish. Biol. Invasion 2006, 8, 377–382. [CrossRef]

4. Martins, J.; Camanho, M.; Gaspar, M. A review of the application of driving forces-Pressure-State-Impact-Response framework to
fisheries management. Ocean Coast. Manag. 2012, 69, 273–281. [CrossRef]

5. Makwinja, R.; Kaunda, E.; Mengistou, S.; Alamirew, T. Impact of land use/land cover dynamics on ecosystem service value—A
case from Lake Malombe, Southern Malawi. Environ. Monit. Assess. 2021, 193, 1–23. [CrossRef]

6. Fetahi, T. Eutrophication of Ethiopian water bodies: A serious threat to water quality, biodiversity, and public health. Afr. J. Aquat.
Sci. 2019, 44, 303–312. [CrossRef]

96



Water 2022, 14, 619

7. Olaka, L.A.; Ogutu, J.O.; Said, M.Y.; Oludhe, C. Projected Climatic and Hydrologic Changes to Lake Victoria Basin Rivers under
Three RCP Emission Scenarios for 2015–2100 and Impacts on the Water Sector. Water 2019, 11, 1449. [CrossRef]

8. Ogutu-Ohwayo, R.; Hecky, R.E.; Cohen, A.S.; Kaufman, L. Human impacts on the African Great Lakes. Environ. Boil. Fishes 1997,
50, 117–131. [CrossRef]

9. Njiru, J.; van der Knaap, M.; Kundu, R.; Nyamweya, C. Lake Victoria fisheries: Outlook and management. Lakes Reserv. 2018, 23,
52–162. [CrossRef]

10. Dersseh, M.G.; Kibret, A.A.; Tilahun, S.A.; Worqlul, A.W.; Moges, M.A.; Dagnew, D.C.; Abebe, W.B.; Melesse, A.M. Potential of
Water Hyacinth Infestation on Lake Tana, Ethiopia: A Prediction Using a GIS-Based Multi-Criteria Technique. Water 2019, 11,
1921. [CrossRef]

11. IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019.

12. Earles, J.M.; Yeh, S.; Skog, K.E. Timing of carbon emissions from global forest clearance. Nat. Clim. Chang. 2012, 2, 682–685.
[CrossRef]

13. Makwinja, R.; Mengistou, S.; Kaunda, E.; Alamirew, T. Land use/land cover dynamics, trade-offs and implications on tropical
inland shallow lakes’ ecosystems’ management: Case of Lake Malombe, Malawi. Sustain. Environ. 2021, 7, 1969139. [CrossRef]

14. Bi, W.; Weng, B.; Yuan, Z.; Ye, M.; Zhang, C.; Zhao, Y.; Yan, D.; Xu, T. Evolution Characteristics of Surface Water Quality Due to
Climate Change and LUCC under Scenario Simulations: A Case Study in the Luanhe River Basin. Int. J. Environ. Res. Public
Health 2018, 15, 1724. [CrossRef] [PubMed]

15. Miles, A.; DeLonge, M.S.; Carlisle, L. Triggering a positive research and policy feedback cycle to support a transition to agroecology
and sustainable food systems. Agroecol. Sustain. Food Syst. 2017, 41, 855–879. [CrossRef]

16. Yang, X.-E.; Wu, X.; Hao, H.-L.; He, Z.-L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9,
197–209. [CrossRef] [PubMed]

17. Davidson, N.C.; Finlayson, C.M. Extent, regional distribution and changes in area of different classes of wetland. Mar. Freshw.
Res. 2018, 69, 1525. [CrossRef]

18. Makwinja, R.; Kosamu, I.B.M.; Kaonga, C.C. Determinants and Values of Willingness to Pay for Water Quality Improvement:
Insights from Chia Lagoon, Malawi. Sustainability 2019, 11, 4690. [CrossRef]

19. Li, Y.; Zhang, Z.; Shi, M. Restrictive Effects of Water Scarcity on Urban Economic Development in the Beijing-Tianjin-Hebei City
Region. Sustainability 2019, 11, 2452. [CrossRef]

20. Ogutu-Ohwayo, R.; Balirwa, J. Management challenges of freshwater fisheries in Africa. Lakes Reserv. Res. Manag. 2006, 11,
215–226. [CrossRef]

21. Hall, N.D.; Stuntz, B.B.; Abrams, R.H. Climate Change and Freshwater Resources. Nat. Resour. Environ. 2008, 22, 30–35.
22. Djoudi, H.; Brockhaus, M.; Locatelli, B. Once there was a lake: Vulnerability to environmental changes in northern Mali. Reg.

Environ. Change 2013, 13, 493–508. [CrossRef]
23. Makwinja, R.; Chapotera, M.; Likongwe, P.; Banda, J.; Chijere, A. Location and Roles of Deep Pools in Likangala River during

2012 Recession Period of Lake Chilwa Basin. Int. J. Ecol. 2014, 2014, 294683. [CrossRef]
24. Magrin, G. The disappearance of Lake Chad: History of a myth. J. Political Ecol. 2016, 23, 205–222. [CrossRef]
25. Jones, E.R.; O’Flynn, H.; Njoku, K.; Crosbie, E.J. Detecting endometrial cancer. Obstet. Gynaecol. 2021, 23, 103–112. [CrossRef]
26. Dulanya, Z.; Croudace, I.; Reed, J.; Trauth, M. Palaeoliminological reconstruction of recent environmental change in Lake

Malombe (S. Malawi) using multiple proxies. Water SA 2014, 40, 717–728. [CrossRef]
27. Okech, E.; Kitaka, N.; Omondi, S.; Verschuren, D. Water level fluctuations in Lake Baringo, Kenya, during the 19th and 20th

centuries: Evidence from lake sediments. Afr. J. Aquat. Sci. 2019, 44, 25–33. [CrossRef]
28. Bootsma, H.; Hecky, R. The major socio-economic benefits from these three major African conservation of the African Great Lakes:

A Limnological Perspective. Conserv. Biol. 1993, 7, 644–656. [CrossRef]
29. Jordaan, M.; Chakona, A. Protected Areas and Endemic Freshwater Fishes of the Cape Fold Ecoregion: Missing the Boat for Fish

Conservation? Front. Environ. Sci. 2020, 8, 502042. [CrossRef]
30. Swallow, B.M.; Sang, J.; Nyabenge, M.; Bundotich, D.K.; Duraiappah, A.K.; Yatich, T.B. Tradeoffs, synergies and traps among

ecosystem services in the Lake Victoria basin of East Africa. Environ. Sci. Policy 2009, 12, 504–519. [CrossRef]
31. Jamu, D.; Banda, M.; Njaya, F.; Hecky, R.E. Challenges to sustainable management of the lakes of Malawi. J. Great Lakes Res. 2011,

37, 3–14. [CrossRef]
32. FISH. Environmental Threats and Opportunities Assessment (ETOA) of Four Major Lakes in Malawi; USAID/FISH Project; Pact

Publication: Lilongwe, Malawi, 2015.
33. Makwinja, R.; Kaunda, E.; Mengistou, S.; Alemiew, T.; Njaya, F.; Kosamu, I.B.M.; Kaonga, C.C. Lake Malombe fishing

communities’ livelihood, vulnerability, and adaptation strategies. Curr. Res. Environ. Sustain. 2021, 3, 100055. [CrossRef]
34. Makwinja, R.; Mengistou, S.; Kaunda, E.; Alamirew, T. Lake Malombe fish stock fluctuation: Ecosystem and fisherfolks. Egypt. J.

Aquat. Res. 2021, 47, 321–327. [CrossRef]
35. Makwinja, R.; Mengistou, S.; Kaunda, E.; Alamirew, T. Economic value of tropical inland freshwater shallow lakes: Lesson from

Lake Malombe, Malawi. Afr. J. Ecol. 2021, 29, 1–15. [CrossRef]
36. Hara, M.; Njaya, F. Between a rock and a hard place: The need for and challenges to implementation of Rights-Based Fisheries

Management in small-scale fisheries of southern Lake Malawi. Fish. Res. 2016, 174, 10–18.

97



Water 2022, 14, 619

37. Makwinja, R.; Mengistou, S.; Kaunda, E.; Alamirew, T. Spatial distribution of zooplankton in response to ecological dynamics in
tropical shallow lake: Insight from Lake Malombe, Malawi. J. Freshw. Ecol. 2021, 36, 127–147. [CrossRef]

38. Government of Malawi. Mangochi District State of Environment and Outlook; Mangochi District Council: Mangochi, Malawi, 2014.
39. Njaya, F. Ecosystem approach to fisheries in southern Lake Malawi: Status of the fisheries co-management. Aquat. Ecosyst. Health

Manag. 2018, 21, 159–167. [CrossRef]
40. Njaya, F.; Donda, S.; Béné, C. Analysis of Power in Fisheries Co-Management: Experiences from Malawi. Soc. Nat. Resour. 2012,

25, 652–666. [CrossRef]
41. Makwinja, R.; Mengistou, S.; Kaunda, E.; Alemiew, T.; Phiri, T.; Kosamu, I.; Kaonga, C. Modeling of Lake Malombe Annual Fish

Landings and Catch per Unit Effort (CPUE). Forecasting 2021, 3, 39–55. [CrossRef]
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Abstract: Water quality models are an emerging tool in water management to understand and
inform decisions related to eutrophication. This study tested flow scenario effects on the water
quality of Buffalo Pound Lake—a eutrophic reservoir supplying water for approximately 25% of
Saskatchewan’s population. The model CE-QUAL-W2 was applied to assess the impact of inter-basin
water diversion after the impounded lake received high inflows from local runoff. Three water
diversion scenarios were tested: continuous flow, immediate release after nutrient loading increased,
and a timed release initiated when water levels returned to normal operating range. Each scenario
was tested at three different transfer flow rates. The transfers had a dilution effect but did not affect
the timing of the nutrient peaks in the upstream portion of the lake. In the lake’s downstream section,
nutrients peaked at similar concentrations as the base model, but peaks arrived earlier in the season
and attenuated rapidly. Results showed greater variation among scenarios in wet years compared to
dry years. Dependent on the timing and quantity of water transferred, some but not all water quality
parameters are predicted to improve along with the water diversion flows over the period tested.
The results suggest that it is optimal to transfer water while local watershed runoff is minimal.

Keywords: CE-QUAL-W2; water quality model; reservoir management; water transfers

1. Introduction

A variety of management tools are required to effectively understand, predict, and
optimize surface water quality. This includes traditional information such as data from well-
designed monitoring programs, and increasingly relies on the use of water quality models.
Water quality models are critical for assessing situations that cannot be directly measured,
to better understand system constrains, and for examining scenarios, including operational
changes. Reservoir management has benefitted especially from the growing application
of water quality models to the problems of regulated flowthrough and anthropogenic
water demands. These models have been applied globally to issues such as selective
withdrawal strategies for optimizing water temperatures and quality e.g., [1–4], and water
quality simulations e.g., [5–7]. Other uses include modelling nutrient loading from the
watershed [8,9], impacts of pisciculture [10], reservoir contaminant scenarios [11], and
impacts of changing climate and streamflow on reservoir water quality [12].

Canada has one of the highest rates of water availability per capita per year [13].
Canada also has one of the world’s highest per capita water use [14]. The Prairie region
contains 80% of Canada’s agriculture [15], with agriculture accounting for an 86.5% share
of surface water use in the South Saskatchewan River Basin [16]. The climate of the
Prairies is highly variable with an extreme temperature range and periodic floods and
droughts [15]. The landscape is semi-arid, and many users compete for limited water
resources [17]. Population growth and irrigation expansion will place further pressure on
Prairie reservoirs showing signs of water stress [18].
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Buffalo Pound Lake

Buffalo Pound Lake (BPL) is the water source for approximately 25% of the provincial
population of Saskatchewan, Canada. Water demands from BPL include municipal, indus-
trial, and agricultural abstractions, and the lake is an important recreational waterbody. The
importance of BPL has resulted in numerous scientific studies over the years e.g., [19–24],
and organizational reports from environmental consultancy firms and government agen-
cies. The water quality of BPL is a continuing concern. The lake is situated in an area that
experiences high runoff variability associated with its variable climate and is therefore
subject to periods of both high and low runoff. BPL is located within a former glacial-melt
channel in the Upper Qu’Appelle River Basin. Glacial till on the prairies has abundant
nutrients and salts and most prairie lakes are therefore naturally eutrophic [25]. In contrast,
BPL’s supply reservoir Lake Diefenbaker (LDief) is located in the South Saskatchewan
River Basin. LDief receives much of its water from the Rocky Mountains and acts as a
nutrient and sediment trap [26,27]. Water sourced from LDief is therefore generally lower
in nutrients, salts, organic carbon, and sediment relative to runoff received from BPL’s
local watershed.

Several recent studies have evaluated options for augmenting the water supply from
LDief to BPL to meet increasing water demand from proposed irrigation expansion projects
e.g., [28–31]. However, there are physical constraints on how much water can be diverted to
BPL. Water levels in the Qu’Appelle River watershed are managed as a whole system that
includes multiple downstream lakes—one of which is a lake tributary to the Qu’Appelle
that can act as a large surge tank during periods of high water. The diversion of flow into
BPL from LDief is also dependent on channel capacity and the amount of upstream runoff
from BPL’s local watershed in any given year.

Given the complexity of managing the water system, there is a need to better un-
derstand how BPL water quality is affected under different inflow scenarios—notably in
years with high runoff from its local watershed versus drier years when the majority of
water is transferred from LDief. This in turn can form the basis for developing tools and
information to help inform decisions on flow management.

Water quality models are an emerging tool for managing water resources on the
Prairies. Within the last few years, the first complex water quality models have been
applied to BPL as part of a targeted collaborative research strategy. The most recent
study, that tested the sensitivity of a BPL CE-QUAL-W2 (W2) model to its boundary data,
concluded that flow management strategy may be the most important aspect of water
quality management in BPL [32]. The W2 model was calibrated to a historical period
due to the empirical data available at the time the model was developed. Regardless, the
results clearly implied that any proposed change in flow regime was anticipated to impact
BPL’s water quality. This model offers a highly relevant platform for assessing whether
inter-basin water diversion from LDief, during periods of high local watershed inflows,
makes a difference to water quality.

In this paper we use the W2 model to evaluate the effect of different water diversion
volumes on the water quality of BPL. Analysis of diversion scenarios provides insight
into how flow management in a variable climate environment impacts water quality. This
research updates the pre-existing calibrated W2 model, extending the calibration period by
including an additional 6.5 years of recent data. The lake now benefits from an expanded
monitoring program including water quality profile data, and the reinstatement of an
upstream flow gauge. This new data covers a natural period of several wet years, with
large watershed runoff events, followed by several relatively dry years where source water
shifted to a higher percentage from LDief. The goal of this research was to test whether the
updated model provided suitable outputs to assess different water management scenarios.
A secondary goal was to undertake scenario assessments using W2. These would determine
how different transfer rates would have affected water quality in BPL after the lake received
a substantial amount of poor water from local runoff. We anticipated that increasing flows
from LDief would result in higher water quality, as defined by lower levels of nutrients in
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BPL. The type of modelling approach used in this study can provide an informative tool
for investigating this important management question in other aquatic systems.

Section 2 describes the base model set-up and calibration, and details of how the
water diversion scenarios were developed. Section 3 presents the results of the base model
calibration and results of the scenarios.

2. Methods
2.1. Study Site

BPL is a shallow (mean depth 3.8 m), long (30 km), and narrow (<900 m) impounded
lake. BPL is a cold polymictic, wind-driven lake that readily mixes when ice-free. Air
temperatures range from an average daily minimum of −17.7 ◦C in January to an average
daily maximum of 26.2 ◦C in July [33]. On average the lake is ice-covered from November to
April, with approximately 30% of annual mean precipitation (365.3 mm) falling as snowfall.

The lake was impounded in 1939 and the dam was most recently upgraded in 2000 [34].
Since the 1950s water to BPL has been supplemented from the South Saskatchewan River
Basin. At first, water was pumped but, after construction of Lake Diefenbaker (LDief)
in 1967, water has been diverted from LDief via the Qu’Appelle River Dam through
the Upper Qu’Appelle River channel to BPL (Figure 1). The main inflows into BPL are
through these controlled inter-basin transfers of water. Mean daily discharges at flow
gauge 05JG006 (Elbow Diversion), situated 3.3 kms below LDief (Figure 1), ranged from
1.4 m3/s to 5.9 m3/s over 20 years (min 0.013 m3/s/max 14.2 m3/s; 1999–2019, Water
Security Agency hydrometric data). The Upper Qu’Appelle River channel consists of two
sections, a channelized section (35 km) and the meandering natural river channel (62 km).
Over recent years, the provincial Saskatchewan Water Security Agency (WSA) has worked
to improve channel conveyance including deepening sections and undertaking various
erosion control projects. Not considering water needs due to the expanded irrigation
proposals, the current channel capacity is considered sufficient to meet present and future
anticipated water demands.
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BPL’s water quality is affected by its source waters and in very wet years water quality
can be influenced by a surge in nutrients, organic carbon, and dissolved ions from overland
run-off [30]. The region has a semi-arid to dry-subhumid climate with long-term ratios
of precipitation to potential evapotranspiration (P/PET) of between 0.5 and 0.65 [35,36].
BPL’s gross watershed area is 3340 km2; however, the actual area that contributes flow in
any given year is much lower. The area that contributes runoff to BPL in median runoff
years, known as the effective drainage area, is 1300 km2. The reason for the variability
of area contributing runoff to BPL includes low P/PET, the generally flat landscape with
numerous pothole depressions that are often hydrologically isolated or poorly connected,
and differences in landscape water content among years, notably fullness of wetlands
and soil moisture content. This means that in dry years BPL receives little runoff from its
watershed whereas in wet years it can receive substantial amounts.

The lake is split into separate waterbodies by an old highway (causeway) and the
current highway (Figure 1). Inflows to BPL occur in the upper basin. Approximately 4 km
from the inflow, the lake is constricted to a 53 m gap at the old highway before entering a
triangular lake section between the two highways. The lake then constricts under a 45 m
long bridge before entering the main lake body.

Lake residence time is highly variable, ranging from approximately 6 to 36 months [37].
Part of this variability is due to the occasional occurrence of backflows into the lake and
variability of watershed runoff among years. When flows in Moose Jaw Creek, a tributary to
the Qu’Appelle River downstream of BPL, exceed 50 to 60 m3/s, water levels increase such
that water downstream of BPL flows backwards through the dam into BPL (‘backflow’).
This occurrence is infrequent (<20% of years) and to minimize the effect on water levels and
water quality in BPL the dam’s gates are closed; however, water can still backflow into BPL
through the dam’s fish passage channel and over its radial gates. Typically, water volumes
that backflow are low, although in a few years they represent a significant proportion of the
lake’s volume.

2.2. Model Set-Up

W2 is a complex two-dimensional coupled hydrodynamic and water quality model
suitable for use in a range of waterbodies. The model is laterally averaged and includes a dy-
namic ice model, so is capable of multi-year simulations of a long, narrow, seasonally frozen
waterbody such as BPL. The longitudinal segments and vertical layers are user defined and
can be variable throughout the grid. Several types of inflow can be specified with individual
temperature and constituent files. Numerous hydraulic structures and withdrawals can be
placed throughout the grid. The W2 model has been in continuous development since 1986
and has been applied to numerous waterbodies worldwide. A complete description of the
model development, hydrodynamic and ecological equations, and model assumptions are
provided in the user manual [38]. This study used CE-QUAL-W2 version 4.2.2, the most
recent public version at the time of undertaking the model simulations.

A 30 m resolution digital elevation model (DEM) representing the lake’s bathymetry
from Terry et al. [39] was used in the current project. The bathymetry grid was extended to
include the additional 4 km long upper basin (upstream of Highway 2) (Figures 1 and 2).
Previous studies did not include this section, making inflows less reliable, as the flow gauge
was located above the omitted lake section. This led to uncertainty about the effect that
this upper basin had on flows and nutrient transport. The most upstream tip of the lake
was too shallow for the boat to navigate when collecting bathymetry and is excluded from
the DEM. The shoreline around this section would also complicate the W2 model grid and
is above the point of inflows (Figure 1). The DEM’s lake extent was created when water
levels were close to the operating full supply level, although water levels can occasionally
surpass this during very wet years. The W2 model grid extends 1 m vertically from the
surface of the DEM to account for these high-water events. The final model grid consists
of 100 longitudinal segments around 300 m and up to 28 vertical layers of 0.25 m depth.
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W2 has the ability to reflect constrictions in the model’s grid, which were included at the
highway locations (Figure 2).
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2.3. Data & Calibration

The W2 simulation period covered 6.5 consecutive years between April 2013 and
December 2019. The first years were wet with flood events occurring in 2013–2015. The
latter half of the study years were relatively dry.

The hydrological data used in the model were sourced from several datasets. Previous
W2 models for BPL had been calibrated using data ending in 1993, after which Environment
and Climate Change Canada (ECCC) discontinued the flow gauges above and below BPL.
ECCC reinstated the upstream flow gauge (05JG004) in June 2015. Herein, gauge 05JG004
is referred to as the Keeler Bridge gauge (Figure 1). The ECCC downstream gauge has not
been reinstated to date; however, the WSA began recording operating logs for the BPL dam
structure outflows in January 2014. The WSA conducted a nutrient mass-balance study
of the length of the Qu’Appelle River between April 2013 and March 2016 and derived
inflows and outflows to BPL [40].

Giving preference to the gauged data, inflows were taken from the WSA nutrient
mass-balance study (1 April 2013–31 May 2015), and ECCC flow gauge 05JG004 (1 June
2015–31 December 2019). Outflows from the BPL dam were provided by the WSA nu-
trient mass-balance study (1 April 2013–31 December 2013), and WSA dam operations
log (1 January 2014–31 December 2019). Withdrawal data were provided by the Buffalo
Pound Water Treatment Plant (BPWTP) for the main intake pipes to its treatment facility.
Withdrawal amounts for a smaller intake pipe supplying surrounding industries were
extrapolated from 1995–2013 data, as up-to-date data could not be obtained. Backflows into
BPL during a downstream flood event occurred in spring 2013 and spring 2015 and were
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derived by the WSA. These were included in the model as a tributary entering the most
downstream segment. ECCC in-lake water level observations—5-min intervals averaged
over 24-h—were used to close the water balance using the W2 water balance tool. This tool
is recommended by the developers of W2 and prevents instabilities in the model during
simulation due to abrupt changes in water levels. Flows may be positive or negative and
are generally added to the model as a distributed tributary entering all segments equally.
Adjustment flows were greatest during spring freshet (April 2013, 2014, 2015, 2018) and
large precipitation events (June 2014, July 2015) and were assumed to be principally related
to ungauged runoff.

Hourly meteorological data (air temperature, dewpoint temperature, wind speed and
direction) were downloaded for ECCC climate station Moose Jaw A, located approximately
40 kms south of the lake. The landscape is flat and open between the two locations, and it
is expected that the weather conditions will not have differed significantly for modelling
purposes. Cloud cover data were not always available and any gaps in cloud cover data
at Moose Jaw A were filled in from the nearby ECCC climate station at Regina Interna-
tional Airport. Daily total precipitation was from the ECCC climate station ‘Buffalo Pound
Lake’ located at the site of the BPWTP. Precipitation temperature was set at dewpoint
temperature as per W2 recommendations, or zero if the dewpoint was negative. Evapora-
tion was calculated internally by the model based on provided meteorological data and
geographic location.

BPL inflow water quality constituent concentrations and water temperatures were
from measurements collected at Marquis station (Figure 1). For the two backflow events,
backflowing constituent concentrations and water temperatures were taken from measured
data at the Buffalo Pound Dam. Precipitation water quality constituent concentrations were
not modelled.

The WSA provided water quality measurement data for June 2015–December 2019 for
13 in-lake stations, plus one station at the dam outflow. The 13 in-lake stations were located
within eight different model segments. Data were averaged for segments with more than
one station if recorded on the same day. The BPWTP also provided weekly observations
for April 2013–December 2019 from a long-term dataset. The weekly samples are collected
in the early morning at the BPWTP pumping station, located on the downstream end of the
lake. Water is pumped from the lake through two pipes approximately one metre off the
lakebed. The water travels three kilometers to the pumping station, rising approximately
82 m in elevation. The BPWTP intake pipes are in segment 86 of the model grid. A WSA
sampling station is also located in this segment.

The historical BPL WQ model was calibrated in-depth through sensitivity analyses
and semi-automated calibration [32,39,41]. For this study, parameter calibration values
were initially set based on the older model. With the new data added, the eight model
segments corresponding with water quality stations were plotted and results visually
compared against the June 2015–December 2019 WSA data. The BPWTP data were plotted
in segment 86 to validate the period April 2013–May 2015. Algal taxonomy data did not
exist during previous modelling, and in this study the algal rates were updated to better
reflect group composition per BPWTP data. Modelled groups were diatoms, green-algae,
and cyanobacteria. The organic matter decay rates, and sediment oxygen demand were
also recalibrated using the new WSA longitudinal profile water quality data. Wet years
and dry years were treated the same in the model. The principal coefficients for the final
calibrated model are listed in Table 1. Plots showing model outputs are shown in the
results section. Plots focus on model segments 5, located at the top section of the upper
basin, segment 32, located near the upstream end of the main lake body downstream of
the highway, and segment 86, where the BPWTP intake is located. A description of the ice
module and relevant coefficients can be found in Terry et al. [41].
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Table 1. Main coefficients used in the water quality model (previous model rates in parentheses if
changed) from Terry and Lindenschmidt [32]).

Coefficient Description Value Units

TSED Sediment temperature 10.3 ◦C
CBHE Coefficient of bottom heat exchange 0.3 W m−2

SOD Zero-order sediment oxygen demand 0.1–1.2 (1.2) g O2 m−2 day−1

PO4R Sediment release rate of phosphorus (fraction of SOD) 0.001
NH4R Sediment release rate of ammonium (fraction of SOD) 0.001 -

NH4DK Ammonium decay rate 0.12 day−1

NO3DK Nitrate decay rate 0.1 day−1

LDOMDK Labile DOM decay rate 0.1 (0.25) day−1

RDOMDK Refractory DOM decay rate 0.001 (0.012) day−1

LRDDK Labile to refractory DOM decay rate 0.01 (0.001) day−1

LPOMDK Labile POM decay rate 0.08 (0.32) day−1

RPOMDK Refractory POM decay rate 0.001 (0.012) day−1

LRPDK Labile to refractory POM decay rate 0.01 day−1

SSS Suspended solids settling rate 1.0 m day−1

EXSS Extinction due to inorganic suspended solids 0.01 m−1/(g m−3)
EXOM Extinction due to organic suspended solids 0.01 m−1/(g m−3)
EXH20 Light extinction coefficient for pure water 0.25 m−1

BETA Fraction of incident solar radiation absorbed at the water surface 0.55 -
WSC Wind shelter coefficient 0.9 ◦C

Algal Coefficients Diatoms Greens Cyanobacteria

AG Maximum algal growth rate, day−1 1.5 (2.5) 2.0 (1.0) 0.5 (0.9)
AM Maximum algal mortality rate, day−1 0.1 0.1 (0.15) 0.1
AS Algal settling rate, m day−1 0.2 (0.02) 0.1 (0.15) 0.02 (0.1)

AHSP Algal half-saturation for phosphorus limited growth, g m−3 0.003 0.003 0.003
AHSN Algal half-saturation for nitrogen limited growth, g m−3 0.014 0.014 0 * (0.01)

AT1 Lower temperature for algal growth, ◦C 2.0 10.0 10.0
AT2 Lower temperature for maximum algal growth, ◦C 8.0 30.0 35.0
AT3 Upper temperature for maximum algal growth, ◦C 15.0 35.0 40.0
AT4 Upper temperature for algal growth, ◦C 24.0 40.0 50.0

ACHLA Ratio between algal biomass and chlorophyll a in terms of mg
algae/µg chl a 0.05 0.04 0.1

* Denotes nitrogen fixation–Dolichospermum spp. (formerly Anabaena) are one of the dominant cyanobacteria
taxa in BPL.

2.4. Scenarios

Three scenarios were developed for modelling LDief releases, with each scenario
being tested at flow rates of 4 m3/s, 8 m3/s, and 12 m3/s for a total of nine simulations.
These rates are within the hydrological constraints of the current Upper Qu’Appelle system.
Scenario one is the constant flow scenario. It simulates a constant release rate from LDief
for the entire model period. This would be a situation where the augmented water transfers
from LDief occurred on a permanent year-round basis. There may be practical constraints
to transferring water in wet years; however, the simulation is of theoretical interest.

Scenario two is the immediate release scenario. This was designed to investigate BPL’s
response if LDief releases started immediately after the first high flow event occurred in
2014. Vandergucht et al.’s [40] nutrient mass-balance report found that inflows at Keeler
Bridge and nutrient concentrations at Marquis increased rapidly on 7 April 2014. Flows
peaked at 65.6 m3/s on 9 April 2014. Model simulated releases commenced as soon as
flows returned to rates <10 m3/s on 16 April 2014. This scenario was designed to mimic a
management response of transferring additional water from LDief in reaction to increased
nutrient loading into BPL. Modelled transfers started when flow in the Upper Qu’Appelle
subsided sufficiently in consideration of channel capacity and continued until the end of
the simulation. As with the previous simulation there are practical limitations with this
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approach during subsequent high-flow events, but this scenario specifically focusses on the
response of BPL on initiating LDief transfers.

Scenario three commences after the first 2014 high flow event but with a delayed
initiation and for a defined duration, referred to as the timed release scenario. Water
transfers from LDief started on 9 May 2014. This date coincides with the time when 2014
flood levels in BPL lowered to near operating full supply level. This scenario assumed that
additional water from LDief could not be added to BPL until water levels were sufficiently
low. Water transfers terminated on 12 March 2015, when the following spring freshet
caused notable increases in flow.

The scenarios were included in the model structure as a tributary entering the same
upstream segment as the main inflows, which reflects the nature of the system’s hydrology.
For each simulation, outflows of equal rates were added to the BPL dam outflow file
to aid the water balance. All scenarios used the same tributary water temperature and
constituent files.

Scenario Input Files

Flow, water temperature, and constituent concentrations were required for input
files for simulating the water releases from LDief. Water temperatures were assumed
to be the same as the temperatures observed at Marquis station. Although temperature
data existed for Highway 19 (Hwy 19), located 1.9 kms of channel length below LDief’s
outflow (Figure 1), consistent temperature changes occurred along the length of the Up-
per Qu’Appelle channel. Data at the Marquis station were more representative of the
temperature of water flowing into BPL regardless of the source.

As with water temperature, constituent concentrations change along the Upper
Qu’Appelle channel. Nutrients in rivers and streams cycle between the water column
and sediments during transit [42,43]. Sources and sinks include recycling by aquatic
biota, settling and resuspension of the sediment bed, adsorption to suspended solids, and
biochemical transformations such as denitrification. Reoccurring patterns in constituent
changes from upstream to downstream were examined so that they could be accounted for
in the simulated LDief releases. Constituent concentrations at both Hwy 19 and Marquis
water quality stations were compared during periods when flows were similar at both
stations, a time when overland flow and tributary contributions from the watershed would
have been minimal. Transit time, as a function of flow at Elbow Diversion (Figure 1),
was calculated using a logarithmic function Equation (1) produced by a one-dimensional
hydrologic river model (HEC-RAS) applied previously to the Upper Qu’Appelle River for
winter flow testing [44]:

Transit Time (days) = −1.178 ∗ ln(flow) + 4.7491; (R2 = 0.9742) (1)

Using the transit time equation, the flow at Elbow Diversion and water quality at
Hwy 19 were matched with their downstream counterparts at Keeler Bridge and Marquis.
Where the absolute difference in flow was greater than 0.5 m3/s the corresponding pair
of water quality observations were removed from the sample set. For the remaining pairs
of water quality observations, changes in concentration were calculated. Ordinary least
squares regression analysis was performed between these differences and flow at Elbow
Diversion to test if the regression model could be used to estimate net change in LDief
concentrations for a given flow rate. The analysis was restricted to observations after
1 June 2015, which was the date the Keeler Bridge flow gauge was reinstated. In April 2016
the WSA changed their water quality reporting laboratory. For orthophosphate (PO4

3−-P),
ammonium (NH4-N), and nitrate-nitrite (NO3-N + NO2-N, or NOx), many observations
after this date were at or under new reporting limits of detection of PO4

3−-P < 0.02 mg/L,
NH4-N < 0.02 mg/L, and NOx < 0.04 mg/L. The change in concentrations between the two
water quality stations could not be calculated, and these observations were removed from
the paired samples for the regression analysis. A greater number of samples may have
returned different relationships between the three constituents and flow.
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The difference between upstream and downstream concentrations for total suspended
solids (TSS), total phosphorus (TP), PO4

3−-P, dissolved organic carbon (DOC), and total
dissolved solids (TDS) were found to be significantly related to flow (Table 2); however,
for DOC and TDS, the amount of variance explained was low. The strongest relationships
were for TSS and phosphorus (P).

Table 2. Regression models of the net change in concentration values for constituents travelling along
the Upper Qu’Appelle River, as a function of flow at the upstream Elbow Diversion gauging station.
Constituents are total suspended solids (TSS), total phosphorus (TP), orthophosphate (PO4

3−-P),
dissolved organic carbon (DOC), total dissolved solids (TDS), ammonium (NH4-N), total nitrogen
(TN) and nitrate-nitrite (NOx). Flow is average daily flow in m3/s and constituents are in mg/L.

Observations Adjusted
R Square

Standard
Error

p-Value
(Flow)

p-Value
(Intercept)

TSS (TSS = 24.600 ∗ Flow − 3.880) 40 0.567 61.756 <0.001 0.808
TP (∆TP = 0.025 ∗ Flow − 0.008) 40 0.540 0.067 <0.001 0.655

PO4
3−-P (∆PO4

3−-P = 0.007 ∗ Flow − 0.002) 8 0.511 0.019 <0.05 0.828

DOC (∆DOC = −0.262 ∗ Flow + 2.064) 40 0.133 1.798 <0.05 <0.001
TDS (∆TDS = −42.700 ∗ Flow + 331.88) 40 0.123 303.886 <0.05 <0.001

NH4-N (∆NH4-N = −0.389 ∗ Flow + 3.256) 8 0.051 2.722 0.286 0.080
TN (∆TN = 0.023 ∗ Flow + 0.003) 40 0.032 0.278 0.138 0.969

NOx (∆NOx = −0.002 ∗ Flow − 0.01) 23 −0.030 0.046 0.551 0.610

The change in concentrations for TSS, TP, and PO4
3−-P are plotted in Figure 3. The

regressions show a positive significant relationship with flow. The intercepts of all three
relationships were rejected at 5% significance. Soluble P is strongly sorbed to suspended
solids and bed sediments [45,46]. As a result, both soluble and particulate P concentrations
can be influenced by the same hydrological processes that resuspend and transport sed-
iments at different flow rates. Changes in TP and PO4

3−-P concentrations show similar
outcomes to TSS in the regression models. At higher flow rates, linear relationships be-
tween suspended solids and flow can break down as mobilized sediments are depleted
and increasing water volume dilutes concentrations [47]. This is evident in the pattern for
TSS in Figure 3.
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Figure 3. Regression plots for the three constituents that displayed a stronger relationship (adjusted
R square > 0.5) between change in concentrations during transport along the Upper Qu’Appelle River
with flow rate. Flow is average daily flow in m3/s at the WSA gauging station Elbow Diversion.

The change in concentrations for variables DOC and TDS had a significant relationship
with flow, as seen by the p-values. However, for a physical process, the ability of the
regression model to explain the variability was low based on the adjusted R square value,
and not suitable for predicting the nutrient transformations for the LDief releases. TDS
formation and composition is influenced by site specific biological and chemical processes
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such as decay of organic materials, pH, temperature, and mineral types [48]. DOC chemi-
cal composition can be altered through prolonged reservoir storage before downstream
release [49], and can be highly variable during storm events [50]. Thus, the transformations
and recycling occurring along a river stretch will be inconsistent.

NH4-N, total nitrogen (TN), and NOx did not have a significant flow relationship.
Poor or unexpected relationships between concentrations of particulate and dissolved
forms of N with flow have been found previously [51].

The positive relationships for TP and TSS could not be incorporated into the scenario
input files. The inflow constituent files in W2 require a split between organic and inorganic
substances for the boundary data and the model requires inorganic suspended solids (ISS)
rather than TSS. ISS were not included in the modelled constituents as observations just for
the inorganic forms were not available. Likewise, variables such as Chlorophyll-a (CHLA),
TP, TN, and DOC are not accepted by W2 as inputs but are derived by the model using
inflow concentrations for PO4

3−-P, NH4-N, NOx, algae concentrations, and organic matter
(OM). The OM concentrations need to be split into four compartments in the inflow files
(labile and refractory components of dissolved and particulate organic matter: LDOM,
RDOM, LPOM & RPOM). The organic N, P and carbon content of the OM is calculated
internally by W2 based on user-specified fixed ratios. If the organic N and P fractions are
known then they can be directly included in the timeseries data as OM sub-compartments
(e.g., LDOM-P, LDOM-N, RDOM-P, etc.). W2 does not double count the OM and OM-
P/OM-N loading when added in this manner. Available laboratory results for OM did not
meet the required W2 inputs. Available data included DOC, and these were used as the
basis for estimating OM compartments based on knowledge of the source water.

The positive transformation relationship for PO4
3−-P could be accounted for in the

scenario input files, and W2 assumes all phosphorus to be completely available for uptake
in this form. The tributary inflow constituent file included PO4

3−-P concentrations after
the regression model in Table 2 had been applied. For the remaining inflow constituents
in the LDief files, TDS, NH4-N, NOx, LDOM, RDOM, LPOM & RPOM remained at Hwy
19 concentrations, while CHLA and DO used input concentrations from Marquis. No
CHLA data were available for Hwy 19, and for DO we use the same assumptions as for
water temperature.

3. Results and Discussion
3.1. Model Calibration

Results from the updated model generally correspond well with measured data for
the parameters tested (Figure 4). Modelled TDS matched observed data well. This was
expected because of the relatively conservative nature of TDS. The variability of inflow
TDS within and among years is reflected in the segment 5 results but further down the
lake this is muted due to travel length and mixing, as expected. Total DOC followed
a similar pattern to TDS. Modelled DO concentrations were largely driven by seasonal
changes in temperature. Measured and modelled nutrient concentrations did not match as
well as some other parameters, notably in segment 32 for TN, and during the wet years
in downstream segment 86. CHLA in segment 5 was modelled well, and the measured
CHLA peaks in 2018 and 2019 were reflected by the model. CHLA measurements can
be highly variable spatially and temporally, and water quality models should capture
the seasonal range of values rather than the variability of individual observations. By
segment 86, modelled CHLA had a consistent seasonal pattern, although the amplitude
did not capture the range in measured values in all years. In particular, the model did not
capture winter algal blooms in the downstream segments. Interestingly, the model results
showed an early spring algal bloom occurring in segment 86 in April 2013. This was the
timing of the first backflow event into BPL that brought elevated concentrations of nutrients
as seen by the corresponding spike in TP and DOC at this time. TDS concentrations were
lower in the backflowing water, and the dilution of in-lake concentrations can also be seen
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in the plots. The second backflow event occurred in March 2015, which can again be seen
on the plots of segment 86.
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Figure 4. Model results for BPL for the calibration period April 2013–December 2019. Segment 5 is
located upstream in the top section of lake. Segments 32 and 86 are both located in the main body of
the lake. Water Security Agency observed in-lake sample data (red *) are included from June 2015.
Observed weekly data provided by the Buffalo Pound Water Treatment Plant (green +) are shown in
segment 86. Inflow constituents DO = dissolved oxygen, and CHLA = Chlorophyll-a.

Spring freshet plus intense rain-events led to several high-flow and loading events in
the spring and summer of 2014. High concentrations of TP, TN, and DOC can be seen in the
plots for segment 5. TP, TN, and DOC are derived internally in W2, and useful for checking
the model’s overall treatment of the different sources and sinks of each key constituent. It
appears that the nutrient loading in this period was overstated in the model’s boundary
data. The sampling frequency for the Marquis station water quality data ranged from
3 days to 1 month between April and September 2014, with high concentrations of PO4

3−-P,
for example, recorded in all but two of 14 samples. Stored nutrients in the watershed,
riverbed, and riverbanks can be quickly mobilized once flows pass a critical threshold.
This local mobilization begins on the rising limb of the hydrograph and often peaks in
advance of the flow peak [52,53]. More distant nutrient sources in overland runoff and
subsurface flow can arrive both before or after the flow peak dependent on the hydrological
event and site [52,53]. Travel time in the Upper Qu’Appelle channel can be under two
days in high flows, and nutrient spikes dissipate in BPL rapidly. The recorded nutrient
concentrations around this time were unlikely to be sustained at high concentrations over
the entire five months but, rather, capture several peak events over these wet months.
WSA in-lake data were not available for verification of inflowing nutrient concentrations,
and concentrations were therefore added as per the available Marquis observations. The
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BPWTP weekly sample set indicated that the model was overstating TP, TN, and DOC as
far downstream as segment 86 in that year.

The most significant outcome from the development of the BPL model is that the
model appeared to handle both extended wet and dry conditions without predicted results
deviating too far from actual observations. A major challenge in multi-year simulations is
having only one set of coefficients to represent a range of environmental conditions. The
model has been calibrated to relatively dry periods, including the original 1986–1993 period.
The same coefficients were then used for model validation of two extremely wet years
(April 2013–June 2015) with reasonable success, per the segment 86 comparison with the
BPWTP data. Benefits of updating the model to the most recent data available were that
the water quality scenarios became more relevant to current lake conditions. In addition,
the extension of the model grid to include the top section of the lake, and the addition of
the new longitudinal profile data means much of the uncertainty was removed from the
previous modelling work of Terry and Lindenschmidt [32]. While the parameters of the
older model did not require much change, the comparison of output in several segments at
once allowed the model assumptions to be evaluated in greater detail. The final model was
deemed suitable for running the management scenarios.

3.2. Model Simulations

For all scenarios there is a general pattern change from the wet period, shortly after
the start of the scenarios in the spring of 2014, to the dry period after around 2016. The
wet period saw larger magnitude concentration changes and larger differences among the
scenarios, whereas scenario results were more similar to each other during the dry period
(Figure 5).

For the constant flow scenario (Figure 5), of note are the peak concentrations during
high flow events. At the upstream end, segment 5 was closely aligned with inflows and
inflow concentrations, and the additional constant discharge had a dilution effect but
did not affect the timing of the peaks. In segments 32 and 86, the scenario constituents
regularly peaked at similar concentrations to the base model, yet the peaks occurred much
earlier in the season and decreased more rapidly. The peak events also subsided after each
freshet or high precipitation event and multiple peaks of shorter duration were evident.
The maximum residence time according to W2 is 338.4 days for the baseline model. This
reduces to only 82.2 days when a constant discharge of 12 m3/s is simulated. The lake is
shallow, and materials easily suspend in the water column through wind stress and water
flow. The additional discharge velocity from the LDief releases transported the constituents
more rapidly and further through the lake model.

Outside of the peak events, TDS, DOC and TN concentrations decreased along with
additional LDief flows. TN showed substantial reduction in concentrations in the later
drier years at all three flow rates. TDS and DOC also showed reduction in concentrations
in these same years, although results were closer to baseline.

TP demonstrated the opposite behaviour, and outside of the large 2014 and 2015
loading events, TP concentrations increased from baseline with each rise in LDief discharge.
CHLA largely followed the trend of the nutrients with reduced concentrations in the wet
years, when nutrients were smaller than the base model, and higher concentrations in the
dry years when TP was increased by the scenarios.

The difference in behaviour of TP can be explained by the PO4
3−-P boundary data.

The percentage of PO4
3−-P in TP according to the WSA data between April 2013–March

2016 was 4–100% at Hwy 19 (avg. 32%), and 5–86% (avg. 39%) at Marquis. The W2
model assumes all available P for uptake is of this form with PO4

3−-P a large proportion of
derived TP. PO4

3−-P is the only constituent to which a regression model transformation
was applied to estimate nutrient transformations in the Upper Qu’Appelle River. The
relationship with flow was significant; however, the regression equation was not strong
and based on only eight observation pairs, though the regression relationship with TP and
flow was also positive (Figure 3), implying a transformation equation of some kind was
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required. Conversely, if linear relationships break down at higher discharge, as per TSS,
then the equation may not have applied equally at all three flow rates across time. Clearly,
further work is needed to establish a method for estimating nutrient transformations along
the Upper Qu’Appelle. This could be achieved through targeted sampling at different
times of year, and/or model chaining or extension of the W2 lake model through the Upper
Qu’Appelle channel.
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For the immediate release scenario (Figure 6), the model responded quickly to the
initiation of the LDief transfers. Concentrations in segment 5 immediately returned to
the concentrations modelled in the constant flow scenario, as would be expected so close
to the inflow point. In segment 32 concentrations were similar, although TN peaked at
slightly higher concentrations in this scenario when the transfers started—most obviously
at the transfer rate of 12 m3/s. By segment 86 there were no noticeable differences in
concentration between the scenarios on initiation of transfers. As per the constant flow
scenario, constituent peaks decreased in segment 5 with the LDief transfers during the
period of high overland runoff. This led to lower concentrations overall in the downstream
segments as the model traced the water quality signal from the releases.

For the timed release scenario (Figure 7), transfers were terminated in March 2015
prior to spring freshet. The model responded similarly to the other scenarios on com-
mencement of the water transfers. Of most interest in this scenario was the impact that
terminating the transfers ahead of the freshet had on 2015 concentrations. By pre-lowering
the concentrations through the LDief transfers, and then reducing overall loading during
the freshet itself by stopping the transfers, TDS, DOC, TP, and TN all peaked at far lower
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concentrations that year in segment 86. Constituent concentrations did not return to higher
concentration baseline levels until mid-July 2015, four-months after LDief water transfers
were terminated. Segment 86 is of interest as model results are more removed from input
values, and it is located at BPWTP intake, so is of most management relevance. It should be
noted that concentrations returned to baseline levels much more rapidly in the upstream
segments and constituents peaked at similar concentrations to the base model for the 2015
freshet. The timed release is most likely to have returned better results than the constant
flow and immediate release scenarios in segment 86 that year as the reduced flow velocity,
from the termination of transfers, increased residence time and allowed more materials to
settle in the model.
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The total spread of predicted concentrations at segment 86 illustrates the overall impact
on water quality concentrations per scenario (Figure 8). For DOC, TP, and TN results for
all scenarios and the base model appear positively skewed. This data distribution infers
that most predicted concentrations were small (the box plus left tail includes 75% of the
predicted concentrations). The whiskers in Figure 8 are plotted at interquartile range (IQR)
∗ 1.5, with the remaining data, beyond the whiskers, representing the infrequent high
concentration loading events (e.g., freshet). TDS demonstrated increasing skewness with
the duration of LDief releases and increased transfer rates.
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Figure 7. Output for five model-derived water quality constituents of interest at segments 5, 32 and
86 for the timed release scenario.

The constant flow and immediate release scenarios show a decrease in the median
value and the IQR range for both TDS, DOC, and TN over the base model. This indicates
that predicted concentrations over the model period were lowered by the LDief water
transfers. TP displayed opposite behaviour to the other constituents, which may in part
be a result of the transformation equation applied to PO4

3−-P in the LDief constituent file.
Overall, CHLA did not change greatly from the base model due to scenario predictions
showing both increases and decreases in concentrations over the simulation period, as per
the time series plots.

In the timed release scenario, the LDief water was released for only 306 days (12.4%
of days) with the rest of the inflows the same as the base model. This shorter duration
of water transfers did not alter the overall median and IQR as markedly as the other two
scenarios. Segment 86 results from the timed release scenario (Figure 7) suggest that, if
the water transfers had been repeated once the 2015 freshet had subsided and continued
between the subsequent freshets, then the medians and IQR range may have been much
lower. Such a scenario would have been similar to the immediate release scenario but with
transfers stopped temporarily each year during flood periods.

Overall, the scenario results implied that adding additional transfers of water from
LDief resulted in a greater number of days with lower levels of nutrients. As we anticipated,
the influx of better-quality source water from LDief improved the general water quality
of BPL. The constant flow scenario appeared to be the most effective at lowering total
concentrations in the plotted segments at all three transfer rates.
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At the same time, the increased discharge transported constituents more rapidly and
further through the lake during peak events. This created shorter, more frequent peaks at
the location of the BPWTP intake pipe than occurred with the base model—with the freshet
nutrient peaks arriving earlier in the season. These results are consistent with the decrease in
residence time and increased flow velocity from adding the additional discharge volume in
the scenarios. The timed release scenario results, at segment 86 for the 2015 freshet, suggest
that pausing the water transfers during periods of high flow may reduce the intensity of the
nutrient peak arriving at the BPWTP intake location. It may be that trying to push as much
water as one can at any time is not always effective at attaining water quality goals. In
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addition, pausing the water transfers during high flow events will need to occur to ensure
flows remain within the Upper Qu’Appelle’s channel capacity.

4. Concluding Remarks

Stakeholder engagement at the model design stage helps give confidence in the
modelling process and end results. Workshops have shown that end users have a better un-
derstanding of what is being modelled, modelling possibilities and limitations, e.g., [54,55].
Stakeholders are more satisfied with output because model scenarios have been tailored to
meet their own specific objectives. In this study, the provincial water management agency,
the WSA, was provided with the opportunity to refine the scope of the model development
and scenarios in order to address pertinent questions about water diversion strategy. For
example, the WSA were keen to incorporate the extension to the model bathymetry to
remove uncertainties in results brought to light in earlier studies, e.g., [32]. In turn, the
enhanced in-lake water quality sampling by the WSA allowed this bathymetry to be imple-
mented and tested in the model. The result was a more robust model that satisfies both
stakeholder and scientific objectives. With this study we are bridging the needs of the end
user and water quality modelling.

The modelled results show that, dependent on the timing and quantity of water
transferred, the increased volume of water is predicted to decrease some water quality
parameters in BPL. A flow rate of 12 m3/s was most effective at lowering total concen-
trations for all scenarios. BPL’s residence time is highly variable and scenario results
indicate that the lake will respond rapidly to increased discharge velocity. The expan-
sion of the model grid, and inclusion of the newer profile data, removed the uncertainties
existing in the original BPL model with regards to hydrology and transport. There is
strong support that the timing of LDief water transfers is important. Results for the timed
release scenario suggest the optimum timing would be to wait until overland runoff is at
a minimum before commencing water transfers, followed by terminating transfers before
runoff resurges. Constituent concentrations near the treatment plant intake are lowest
during the 2015 freshet for this scenario (Figure 7). Another benefit to this approach is
that the risk of flooding the Upper Qu’Appelle system during natural high runoff events
is reduced.

The difference in TP behaviour with and without the transformation equation un-
derscores the need to understand how constituents change along the Upper Qu’Appelle
before releasing any transfers. Such a study would require higher-frequency sampling
data along the Upper Qu’Appelle than is available at present. Options include extending
the W2 model upstream to LDief, or the coupling of two or more water quality models
in a river–lake chain. The simulations in this study were based on current environmental
conditions and should be treated with caution for long-term planning. Climate is changing
in the Prairies and the climate change signal may eventually outweigh the benefits of
releasing additional water from LDief. Testing the flow management options under climate
change simulations will be the next step for the BPL model.
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Abstract: Ammonium nitrogen (NH4
+-N), which naturally arises from the decomposition of organic

substances through ammonification, has a tremendous influence on local water quality. Therefore,
it is vital for water quality protection to assess the amount, sources, and streamflow transport of
NH4

+-N. SPAtially Referenced Regressions on Watershed attributes (SPARROW), which is a hybrid
empirical and mechanistic modeling technique based on a regression approach, can be used to
conduct studies of different spatial scales on nutrient streamflow transport. In this paper, the load
and delivery of NH4

+-N in Poyang Lake Basin (PLB) and Haihe River Basin (HRB) were estimated
using SPARROW. In PLB, NH4

+-N load streamflow transport originating from point sources and
farmland accounted for 41.83% and 32.84%, respectively. In HRB, NH4

+-N load streamflow transport
originating from residential land and farmland accounted for 40.16% and 36.75%, respectively. Hence,
the following measures should be taken: In PLB, it is important to enhance the management of
the point sources, such as municipal and industrial wastewater. In HRB, feasible measures include
controlling the domestic pollution and reducing the usage of chemical fertilizers. In addition,
increasing the vegetation coverage of both basins may be beneficial to their nutrient management.
The SPARROW models built for PLB and HRB can serve as references for future uses for different
basins with various conditions, extending this model’s scope and adaptability.

Keywords: Poyang Lake Basin; Haihe River Basin; SPARROW; ammonium nitrogen; nutrient transport

1. Introduction

An excess of nutrients, which are generated from point and non-point sources and are
eventually transported to water bodies, has led to severe eutrophication throughout the
world in recent years [1]. Eutrophication of water bodies causes toxic algal blooms, oxygen
depletion, loss of biodiversity, and thereby, the degradation of water quality and aquatic
ecosystem services [2]. Ammonium nitrogen (NH4

+-N), which naturally arises from the
decomposition of organic substances through ammonification, is a critical nutrient pro-
duced by human activities such as fertilizing, livestock breeding, and municipal wastewater
treating. Synthetic nitrogen fertilizers are slightly absorbed by crops (about 10%), while
large quantities of synthetic nitrogen are exported to aquatic systems through surface runoff
and decomposed to NH4

+-N [3]. Domestic and industrial wastewater are also important
manners, by which NH4

+-N enters into aquatic systems. Excessive NH4
+-N leads to eu-

trophication, endangering aquatic species and polluting water sources [4]. Since NH4
+-N

has a tremendous influence on local water quality, it is vital for water quality protection to
assess the amount, sources, and transport of NH4

+-N [5].
Previous research has focused on the processes of NH4

+-N stream transport. For
instance, Jin et al. employed the Integrated Nitrogen Catchments (INCA-N) model to link
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upstream processes to downstream water quality of NH4
+-N in the Hampshire Avon catch-

ment [6]. Ervinia et al. applied the INCA-N model to identify the source and processes of
NH4

+-N in the Jiulong River Watershed (JRW) [7]. Zhang et al. employed QUAL2K model
to explore the transport of NH4

+-N in a creek watershed with sparse data in southeast of
China [8]. Xue et al. simulated the land surface hydrological runoff and routing processes
in the Xiaoqing River Basin and analysed the concentration of NH4

+-N temporally and
spatially, using the Soil and Water Assessment Tool (SWAT) model and HEC-RAS model [9].
Dai et al. assessed the sources and transport of ammonium nitrogen in a karst basin using
the SPAtially Referenced Regressions on Watershed attributes (SPARROW) model [5].

Complex models, such as Agricultural Non-point Source (AGNPS), Hydrological
Simulation Program FORTRAN (HSPF), INCA-N, and SWAT, which have been developed
to evaluate water quality and sources of nutrients [10], have hefty data requirements [11]
and are time-consuming processes [12]. Hybrid empirical and mechanistic models based
on regression, such as the SPARROW model, can be used to conduct studies at different
spatial scales on nutrient transport with smaller input datasets, such as data on nutrient
load, nutrient sources, and landscape properties. Since it was first established by the
U.S. Geological Survey (USGS) [13], SPARROW has been extensively applied in North
America [14–24], Asia [25–30], New Zealand [31,32], Spain [33,34], and Brazil [35] with
satisfactory performance. SPARROW has been employed in studies on regions of various
sizes, from 153 km2 [36] to 3.2 million km2 [37]. Furthermore, the model performs well
in both estimating the influences of human activities on the environment [38,39], and
analyzing scenarios of climate change [40,41] or land use change [42,43].

Poyang Lake Basin (PLB) consists of five main river watersheds. Its water exchanges
with Yangtze River after the streamflow of the five main rivers are injected into Poyang
Lake, the largest freshwater lake in China [44]. PLB is a typical southern water basin in
China, since it has a massive quantity of water and better water quality than northern water
basins in China. Haihe River Basin (HRB), which contains seven major river watersheds,
has a high population density and numerous large cities. Therefore, it plays an important
role in the politics and economy of China [45]. The water quantity and quality of HRB
is seriously affected by human activities, such as irrigation, fertilization, point sources,
etc. The main purposes of this paper were to (1) establish SPARROW models in PLB
and HRB and figure out the NH4

+-N load and streamflow transport in these two basins;
(2) compare NH4

+-N load and streamflow transport between PLB and HRB and identify
the distinctions between the two basins; (3) offer assistance in future control measures for
better management in PLB and HRB.

2. Materials and Methods
2.1. Study Area

PLB is located in southern China, between 113◦ E–118◦ E and 24◦ N–30◦ N, as shown
in Figure 1a. The drainage area of PLB is 162,271 km2, of which 156,743 km2 is located in
Jiangxi Province (the total land area of Jiangxi Province is 166,946 km2), accounting for
97% of the drainage area of PLB and 94% of the total land area of Jiangxi Province [46].
PLB belongs to a subtropical warm and humid monsoon climate zone. The average annual
temperature is about 16.3–19.5 ◦C, generally increasing from north to south. The vegetation
type is subtropical, evergreen, broad-leaved forest. PLB is composed of five main tributary
rivers, namely, Ganjiang River, Fuhe River, Xinjiang River, Raohe River, and Xiushui River,
as well as several smaller rivers. These rivers finally flow into Poyang Lake, and the outflow
of Poyang Lake inject into Yangtze River through the Hukou station. The span of PLB
covers a length of 620 km from north to south and a width of 490 km from east to west. The
basin is surrounded by mountains in the east, west, and south; has hills and valley plains
crisscrossing the central part; and there is the Poyang Lake plain in the north. The terrain
of PLB is high in the south and low in the north, which is conducive to water convergence.
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Figure 1. Location and Digital Elevation Model (DEM) of (a) PLB and (b) HRB.

The annual average total amount of water resources in PLB was 163.06 billion m3,
while the annual average total amount of water uses is 17.67 billion m3 and the annual
average quantity of wastewater is 4.39 billion m3. The total water resources of Ganjiang
River, Fuhe River, Xinjiang River, Raohe River, and Xiushui River are 89.13, 20.19, 21.11,
15.77, and 16.86 billion m3, respectively. The average annual runoff in PLB into Poyang
Lake is 142.73 billion m3. The annual average runoff totals of Ganjiang River, Fuhe River,
Xinjiang River, Raohe River, and Xiushui River into Poyang Lake are 81.26, 16.20, 18.53,
14.04, and 12.70 billion m3, respectively.

HRB is located in northern China, between 112◦ E–120◦ E and 35◦ N–43◦ N, as shown
in Figure 1b. The scope of HRB covers eight provinces (or cities). The total area of Beijing
and Tianjin, 91% of the area of Hebei province, 38% of the area of Shanxi Province, 20% of
the area of Shandong Province, 9.2% of the area of Henan province, 13,600 km2 of Inner
Mongolia Autonomous Region, and 1700 km2 of Liaoning Province belong to Haihe River
Basin—318,200 km2 in total. The climate of HRB is semi-humid and semi-arid. It is located
in the temperate East Asian monsoon climate area. The annual average temperature is
1.5–14.0 ◦C [47]. The vegetation types in HRB are various due to the monsoon climate.
HRB is constituted by seven major river watersheds, Luan River, Beisanhe River, Yongding
River, Daqing River, Ziya River, Zhangweinan Canal, and Tuhai-Majia River. These rivers
mostly flow from west to east, and finally discharge into Bohai Bay. HRB is bordered
by the Shanxi Plateau and Yellow River Basin in the west, the Mongolia Plateau and the
inland river basin in the north, the Yellow River in the south, and the Bohai Sea in the
east. The total terrain of HRB is high in the northwest and low in the southeast, which
is composed of three landforms: plateau, mountain, and plain. Plateaus and mountains
are located in the north and west of HRB, covering an area of 189,400 km2, accounting for
60% of the basin area. The east and southeast of HRB are covered by a plain, which covers
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128,400 km2, accounting for 40% of the basin’s area. The annual average total amount of
water resources in HRB was 30.30 billion m3, while the annual average total amount of
water uses is 37.00 billion m3 and the annual average quantity of wastewater is 5.98 billion
m3. HRB belongs to an area with an extreme water shortage. The total amount of inter
basin water transfer in HRB was 3.51 billion m3 (including the amount of water diverted
from Yangtze River and Yellow River). The total water resources of Luanhe River, Beisanhe
River, Yongding River, Daqing River, Ziya River, Zhangweinan Canal, and Tuhai-Majia
River are 4.67, 4.38, 2.49, 4.65, 6.36, 4.41, and 3.32 billion m3, respectively. The average
annual runoff in HRB into Bohai Bay was 3.51 billion m3. The annual average runoff totals
of Luanhe River, Beisanhe River, Daqing River, Ziya River, and Tuhai-Majia River into
Bohai Bay are 0.92, 1.05, 0.64, 0.34, and 0.54 billion m3, respectively. It is obvious that PLB
has far more water resources than HRB, especially the amounts of water delivered to the
outlets. Such difference might be explained by the lesser amounts of precipitation, the
larger area of plain terrain, and the larger demand for water supply in HRB, leading to
the lesser NH4

+-N loads delivered to the outlets compared to PLB. The summary of water
resources of the main rivers in PLB and HRB is in Tables S1 and S2.

2.1.1. Nutrient Sources

Point source data in 2017 of NH4
+-N in PLB and HRB were provided by Chinese

Research Academy of Environmental Sciences and Ecological Environment Monitoring
and Scientific Research Center of Haihe River Basin and Beihai Sea Area, respectively. The
load from point sources involved municipal and industrial wastewater treatment plants.
The median annual load in PLB from point sources was 125,744 kg/year of NH4

+-N, with a
range of 4479–1,568,808 kg/year. The median annual load in HRB from point sources was
42,084 kg/year of NH4

+-N, with a range of 0–2,952,298 kg/year.
Farmland, woodland, grassland, and residential land were considered as non-point

sources of nutrients [48]. Land use data in 2015 were acquired from the Data Center
for Resources and Environmental Sciences of Chinese Academy of Sciences (https://
www.resdc.cn/data.aspx?DATAID=184, accessed on 22 December 2020) and used to label
farmland, woodland, grassland, water body, residential land, and barren land. In PLB,
there were 24.60% farmland, 67.15% woodland, 4.20% grassland, 1.98% water body, 2.04%
residential land, and 0.01% barren land, as shown in Figure 2a. In HRB, there were 49.03%
farmland, 19.16% woodland, 18.45% grassland, 2.44% water body, 9.74% residential land,
and 1.18% barren land, as shown in Figure 2b. It is clear that the areas of woodland and
grassland in PLB were almost equal to those in HRB; and that the areas of farmland and
residential land in PLB were far smaller than those in HRB.

2.1.2. River Network and Nutrient Load Estimates

The river network was obtained from the Digital Elevation Model (DEM) data (90 m× 90 m)
of PLB and HRB by using ArcHydro tools; 85 and 310 stream reaches were delineated,
respectively. The DEM data were downloaded from the Geospatial Data Cloud site, Com-
puter Network Information Center, Chinese Academy of Sciences (http://www.gscloud.
cn/sources/accessdata/306?pid=302, accessed on 28 December 2020).

Streamflow data in 2017 were available from only Qiujing, Meigang, Wanjiabu,
Hushan, Waizhou, Dufengkeng, and Lijiadu stations in PLB, which were provided by
the Jiangxi Academy of Environmental Sciences. Streamflow at ungauged watersheds
in PLB was estimated by using a GWLF model [49]. The version of the GWLF model
used in this study was ReNuMa version 2.2.2 [50]. Streamflow data were available from
203 stations in HRB, which were provided by Ecological Environment Monitoring and Sci-
entific Research Center of Haihe River Basin and Beihai Sea Area. Streamflow at ungauged
watersheds in HRB was simulated by interpolation analysis using the GIS platform. Water
quantity station distributions are shown in Figure 3a,c.
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Water quality data in 2017 were provided monthly by the Jiangxi Academy of Envi-
ronmental Sciences from 58 sites for PLB, and by Ecological Environment Monitoring and
Scientific Research Center of Haihe River Basin and Beihai Sea Area from 144 sites for HRB.
Water quality station distributions are shown in Figure 3b,d.

Annual nutrient loads of these sites were assessed as follows:

Loadi = Flowi × Conci (1)

where Loadi is the Annual nutrient load of reach i, Flowi is simulated by the GWLF
model (or interpolation analysis) as above, and Conci represents the mean annual instream
NH4

+-N concentration.

2.1.3. Land-to-Water Delivery Variables

The model’s land-to-water delivery variables were mainly determined by the spatial
attribute data. Annual average precipitation, annual average temperature, and slope were
used in model calibration. The data of precipitation and temperature were downloaded
from China Meteorological Data Service Centre (http://data.cma.cn/data/cdcdetail/
dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html, accessed on 19 June 2020). The slope
data were extracted from DEM. The data of delivery variables were transformed to the
final type of SPARROW model by using GIS platform.

2.2. SPARROW Model

The total load leaving a given reach in the SPARROW model is considered as the sum
of the load produced by itself and the load delivered from its upper stream [51]. The total
load leaving reach i can be expressed mathematically as follows:

F∗i =


 ∑

jεJ(i)
F′j


δi A

(
ZS

i ; θS

)
+
(
∑NS

n=1 Sn,iαnDn

(
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i ; θD

))
A′
(

ZS
i ; θS

)
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where Fi* is the total load leaving reach i (kg/year), F′j is the load leaving upstream
reaches from reach j, the set J(i) is all upstream reaches of reach i, δi is the proportion
of load delivered to reach i contributed by adjacent upstream reaches, A

(
ZS

i ; θS
)

is a
function of first-order loss processes related to stream size, and A′

(
ZS

i ; θS
)

is the square
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Sn,j is the nutrient source n in reach i, NS is the total number of nutrient sources, αn

is the coefficient of nutrient source n, and the land-to-water delivery term Dn
(
ZD

i ; θD
)

is
defined as follows:

Dn
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ZD

i ; θD

)
= exp

(
∑MD

m=1 ωnmZD
m iθDm

)
(3)

where ZD
m i is the land-to-water variable m within reach i, MD is the total number of delivery

variables, θDm is the coefficient of delivery variable m, and ωnm is the delivery index for
judging whether source n uses delivery variable m or not.

Stream delivery function, considered as an attenuation process acting on flux, is
formulated by a first-order reaction rate process. The proportion of the load remaining
after the delivery to the outlet of reach i is expressed as an exponential function:

A
(

ZS
i ; θS

)
= exp

(
−∑CS

c=1 θScTS
c i

)
(4)

where TS
c i is the average travelling time of a stream in reach i, which is classified as in-

stream decay class c. c is the number of in-stream decay class c streams, CS is the total
number of in-stream decay classes, and θSc is the coefficient corresponding to average
travelling time of stream. Two in-stream decay classes were used in the PLB and HRB
SPARROW models.
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The estimation method of the SPARROW model is a nonlinear weighted least squares
(NWLS) algorithm performed by the SAS procedure PROC MODEL, based on Equation (2).
NWLS, which is a robust technique to solve nonlinear problems, can be considered as
an iterative linear estimation process, since it is related to the ordinary least squares [51].
Bootstrap analysis is used to validate the model and perform the uncertainty analysis. The
bootstrap procedure is executed by randomly selecting with replacement monitored loads
from the observations in the original calibration data set and fitting separate regression
models to the resampled data [32].

2.3. GWLF Model

GWLF is a combined distributed/lumped parameter model [52], which simulates
monthly and annual streamflow, sediment transport, and associated nitrogen and phos-
phorus fluxes. GWLF was designed to be used in mixed-use watersheds (such as urban,
multiple agricultural land uses, and forested land use). Streamflow from each land use
category is parameterized using a variation of the Soil Conservation Service (SCS) curve
number formulation; erosion is generated using the Universal Soil Loss Equation (USLE).
The wastewaters from residences are considered a septic system component in GWLF
model. The Excel Solver is used to make calibration in GWLF [53].

3. Results
3.1. Calibration and Validation of GWLF Model

The period from 2015 to 2016 was chosen for model calibration, and 2017 was used for
model validation of streamflow. The parameters used during calibration were recession
coefficient, seepage coefficient, and SCS curve numbers of different land use types. The
optimized parameters are listed in Table S3. The Nash–Sutcliffe efficiency (NSE) is provided
to analysis the model performance. Figure 4 shows the results of calibration and validation
at seven gauged stations in PLB. The NSE of calibration ranges from 0.67 to 0.96, while the
NSE of validation ranges from 0.51 to 0.88. Such results indicate an acceptable predictive
capability of GWLF to estimate streamflow.

3.2. Calibration of SPARROW Models and Uncertainty Analysis
3.2.1. Calibration of SPARROW Models

NWLS calibration of SPARROW models in 2017 was executed, based on 58 and 144
water quality stations in PLB and HRB, respectively. The correlation coefficient (R2), the
mean square error (MSE), the root mean square error (RMSE), and the NSE (see Table 2)
were assessed to evaluate the performances of the models.

Table 1. Results of SPARROW models.

Basin Number of Observations R2 MSE RMSE NSE

PLB 58 0.89 0.25 0.50 0.88
HRB 144 0.53 1.91 1.38 0.52

For the results of SPARROW models for PLB and HRB, the values of R2 were 0.89 and
0.53, respectively, which verified the acceptability of SPARROW models. MSE were 0.25
and 1.91, respectively. The RMSE for the models were around 0.50 and 1.38, respectively.
Although the RMSE of HRB was significantly higher, similar values have been reported
by other studies (RMSE = 1.40 [54], RMSE = 0.96 [16]). In addition, the NSE values were
similar to the R2 values, which indicated the robustness of the models. Figures 5a and 6a
are scatterplots of predicted values versus observed values, in which the majority of the
points are located in the vicinity of bisection. The scatterplots of residuals illustrated
homoscedasticity (Figures 5b and 6b). The aforementioned analysis implied rational
performance of the SPARROW models.
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3.3. Calibration of SPARROW Models and Uncertainty Analysis
3.3.1. Calibration of SPARROW Models

NWLS calibration of SPARROW models in 2017 was executed, based on 58 and 144
water quality stations in PLB and HRB, respectively. The correlation coefficient (R2), the
mean square error (MSE), the root mean square error (RMSE), and the NSE (see Table 2)
were assessed to evaluate the performances of the models.

Table 2. Results of SPARROW models.

Basin Number of Observations R2 MSE RMSE NSE

PLB 58 0.89 0.25 0.50 0.88
HRB 144 0.53 1.91 1.38 0.52

For the results of SPARROW models for PLB and HRB, the values of R2 were 0.89 and
0.53, respectively, which verified the acceptability of SPARROW models. MSE were 0.25
and 1.91, respectively. The RMSE for the models were around 0.50 and 1.38, respectively.
Although the RMSE of HRB was significantly higher, similar values have been reported
by other studies (RMSE = 1.40 [54], RMSE = 0.96 [16]). In addition, the NSE values were
similar to the R2 values, which indicated the robustness of the models. Figures 5a and 6a are
scatterplots of predicted values versus observed values, in which the majority of the points
are located in the vicinity of bisection. The scatterplots of residuals illustrated homoscedas-
ticity (Figures 5b and 6b). The aforementioned analysis implied rational performance of
the SPARROW models.
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3.3.2. Parameters and Uncertainty Analysis

The bootstrap method was used to perform uncertainty analysis of SPARROW model
parameters. Point sources, farmland, woodland and grassland, and residential land were
considered as the main NH4

+-N sources. Tables 3 and 4 show the evaluation of PLB and
HRB, respectively. The coefficients of these sources all fell into the 90% confidence interval.
The coefficients of farmland, woodland and grassland, and residential land were larger
than 1, similar to the coefficients reported in other studies [55,56]. The coefficients of point
sources were lower than 1, which suggested overestimates in the data of point sources.

Slope, average precipitation, and temperature were chosen as the land-to-water deliv-
ery variables for the SPARROW models. The coefficients of these sources all fell into the 90%
confidence interval. Point sources and average precipitation showed statistical significance
(p < 0.05) for PLB, while only average temperature showed statistical significance (p < 0.05)
for HRB. Both stream decay variables lay in the 90% confidence intervals for PLB and HRB.
Meanwhile, only the reach decay factor of a small river showed statistical significance
(p < 0.05) for HRB.
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Table 3. Evaluation of parameters in PLB.

Model Parameter Unit Value Standard
Error

Unbiased
Value p-Value Lower

90% CI
Upper
90% CI

Point sources kg·year−1 0.532 0.196 0.518 0.009 0.204 0.878
Farmland kg·km−2·year−1 218.034 214.467 281.267 0.314 −27.661 436.068

Woodland and
grassland kg·km−2·year−1 24.413 41.268 31.735 0.557 −3.313 48.826

Residential land kg·km−2·year−1 1101.034 2126.541 −580.387 0.607 −5085.246 2202.069
Precipitation cm 0.003 0.001 0.003 0.002 0.002 0.004

Slope % −0.060 0.100 −0.087 0.551 −0.215 0.007
Small river day−1 0.070 0.133 0.052 0.599 −0.172 0.252
Large river day−1 0.017 0.104 0.008 0.873 −0.207 0.139

Table 4. Evaluation of parameters in HRB.

Model Parameter Unit Value Standard
Error

Unbiased
Value p-Value Lower

90% CI
Upper
90% CI

Point sources kg·year−1 0.040 0.023 0.032 0.078 0.002 0.052
Farmland kg·km−2·year−1 26.838 15.649 23.760 0.089 2.564 45.117

Woodland and
grassland kg·km−2·year−1 6.556 5.102 5.336 0.201 −6.636 13.112

Residential land kg·km−2·year−1 114.065 61.755 116.572 0.067 −9.354 226.851
Precipitation cm 0.013 0.021 0.012 0.539 −0.014 0.034
Temperature ◦C 0.148 0.072 0.132 0.042 −0.005 0.263
Small river day−1 0.438 0.084 0.423 <0.05 0.300 0.635
Large river day−1 0.114 0.081 0.094 0.165 −0.045 0.186

3.4. Nutrient Estimates
3.4.1. Nutrient Load

Figure 7a,b show the incremental loads of NH4
+-N in each catchment in PLB and

HRB. The incremental load ranged from 4513 to 1,468,867 kg/year in PLB. The middle
reach of Ganjiang River delivered the maximum incremental NH4

+-N load to Poyang Lake
(Figure 7a). Fuhe River’s downstream catchment and the upstream reach of Raohe River
had large load deliveries. The upstream reach of Xinjiang River and the downstream reach
of Ganjiang River had large incremental load.

In HRB, the incremental load ranged from 10 to 1,121,252 kg/year (Figure 7b). The
upstream reach of Daqing River had the maximum incremental NH4

+-N load delivery.
The upstream reach of Ziya River and the middle reach of Daqing River made large
incremental NH4

+-N load deliveries. The upstream reaches of Majia River, Beisanhe River,
and Zhangweinan Canal; and the downstream portions of Beisanhe River and Tuhai River,
had large incremental NH4

+-N load.

3.4.2. Nutrient Sources

Nutrient source apportionment was analyzed for the major river watersheds in PLB
and HRB (Tables 5 and 6, respectively) [57]. On average, NH4

+-N from point sources
(industrial and sewage discharge), farmland, woodland and grassland, and residential land
accounted for 43.09%, 32.14%, 10.70%, and 14.07%, respectively, in PLB. Point sources were
the main NH4

+-N sources in the Ganjiang, Fuhe, Xinjiang, and Xiushui River watersheds.
In the Raohe River watershed, farmland was the dominant NH4

+-N source.
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Figure 7. Incremental loads (kg/a) of NH4
+-N in (a) PLB and (b) HRB.

Table 5. Nutrient sources’ fluxes and fractions in main rivers in PLB.

River
Point Sources Farmland Woodland and

Grassland Residential Land Total

Flux
(ton/a)

Fraction
(%)

Flux
(ton/a)

Fraction
(%)

Flux
(ton/a)

Fraction
(%)

Flux
(ton/a)

Fraction
(%)

Flux
(ton/a)

Fraction
(%)

Ganjiang 7005 49.48 4193 29.61 1150 8.12 1811 12.79 14158 100.00
Fuhe 1478 44.87 1146 34.81 286 8.69 383 11.63 3293 100.00

Xinjiang 1593 48.33 972 29.48 259 7.86 473 14.33 3297 100.00
Raohe 656 15.18 1764 40.85 978 22.66 921 21.32 4318 100.00

Xiushui 628 48.56 397 30.67 146 11.32 122 9.46 1293 100.00
Total 11,359 43.09 8471 32.14 2820 10.70 3709 14.07 26,360 100.00

Table 6. Nutrient sources’ fluxes and fractions of main rivers in HRB.

River
Point Sources Farmland Woodland and

Grassland Residential Land Total

Flux
(ton/a)

Fraction
(%)

Flux
(ton/a)

Fraction
(%)

Flux
(ton/a)

Fraction
(%)

Flux
(ton/a)

Fraction
(%)

Flux
(ton/a)

Fraction
(%)

Luan 132 14.35 299 32.48 202 21.90 288 31.28 921 100.00
Beisanhe 1449 26.71 1421 26.20 241 4.44 2313 42.65 5424 100.00
Yongding 394 19.84 846 42.61 222 11.19 523 26.35 1985 100.00

Daqing 3260 38.44 2740 32.30 197 2.32 2284 26.93 8481 100.00
Ziya 926 14.10 3253 49.52 208 3.17 2182 33.21 6569 100.00

Zhangweinan
Canal 527 12.48 1909 45.21 262 6.20 1525 36.11 4223 100.00

Tuhai-Majia 913 19.29 1976 41.74 7 0.15 1837 38.81 4734 100.00
Total 7602 23.51 12,444 38.48 1339 4.14 10,952 33.87 32,336 100.00

In HRB, NH4
+-N from point sources (industrial and sewage discharge), farmland,

woodland and grassland, and residential land accounted for, on average, 23.51%, 38.48%,
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4.14%, and 33.87%, respectively. In Luanhe, Yongding, Ziya, Zhangweinan Canal, and
Tuhai-Majia River watersheds, farmland was the primary NH4

+-N pollution source. In the
Beisihe River watershed, residential land was the dominant NH4

+-N source. Point sources
were the main NH4

+-N sources in the Daqing River watershed.

4. Discussion
4.1. Delivery Fraction

Figure 8 illustrates the fraction of the load that each reach delivered to the target reach
through the drainage lines of rivers. The fraction of NH4

+-N entering Poyang Lake from
rivers ranged from 0.61 to 1.00, with an average of 0.86 (Figure 8a). Meanwhile, the fraction
of NH4

+-N entering Bohai Bay from rivers in HRB ranged from 0 to 0.99, with an average
of 0.22 (Figure 8b). As shown in Figure 8, the delivery fraction of a specific reach is related
to its distance to the target reach. In both basins, the delivery fraction decreases as the
distance increases. The average delivery fraction of HRB is much lower than that of PLB,
because the streamflow of PLB is much larger than that of HRB and the terrain of PLB is
steeper than that of HRB.
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4.2. Nutrient Delivery to Outlets

Figure 9 shows the loads and yields of NH4
+-N delivered to the target outlets in each

catchment in PLB. Figure 10 shows the loads and yields of NH4
+-N delivered to the target

outlets in each catchment in HRB. Fuhe River’s downstream catchment had the maximum
incremental NH4

+-N load delivered to Poyang Lake (Figure 9a). The middle reach of
Ganjiang River and the upstream reach of Raohe River had large load deliveries. The
upstream reach of Xinjiang River and the downstream reach of Xiushui River had large
load deliveries.
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Figure 10. (a) Loads and (b) yields of NH4
+-N delivered to the target outlets in HRB.

The yield was calculated as the division of the incremental load of a specific reach
delivered to the river watershed outlet by the incremental reach area. Yield reflects the
intensity of NH4

+-N transferred to the river watershed outlets. Such analysis helps to
identify major contributing areas to the water quality of outlets. As shown in Figure 9b, the
middle reach of Ganjiang River had the highest NH4

+-N yields. The downstream portions
of Ganjiang River, Fuhe River, Xinjiang River, and Raohe River had high incremental
NH4

+-N loads, but the downstream portion of Ganjiang River had a larger NH4
+-N yield

than the others. These regions belong to the central urban areas of major cities in Jiangxi
Province, which is perhaps the reason why these catchments have high yields.

In HRB, the downstream reach of Beisanhe River had the maximum incremental
NH4

+-N load delivery (Figure 10a). The downstream reach of Tuhai-Majia River had a
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large incremental NH4
+-N load delivery. The downstream reaches of Daqing River and

Luan River had large incremental NH4
+-N load deliveries.

As shown in Figure 10b, the downstream reach of Yongding River had the highest
NH4

+-N yield. The middle reaches of Beisanhe River and Daqing River had higher NH4
+-N

yield than their downstream reaches. The middle reaches of Zhangweinan Canal and Tuhai-
Majia River also had high NH4

+-N yields.
By combining incremental load, load delivery, and yield results, it could be found

that the densely populated area in both PLB and HRB contributed the most to the NH4
+-N

load. However, the difference between the two basins was that the point sources of PLB
played the dominant role in the transport of load delivery, whereas the residential land was
the dominant sources of load delivery in HRB, as shown in Figure 11. The contributions
of farmland in both basins cannot be omitted, either. In PLB, NH4

+-N load delivery
originating from point sources and farmland accounted for 41.83% and 38.84%, respectively.
In HRB, NH4

+-N load transport originating from residential land and farmland accounted
for 40.16% and 36.75%, respectively.
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The phenomenon above might be explained by the following reasons. Firstly, the
proportion of residential land in HRB was much bigger than that in PLB, and thus the
residential land contributed more to the load delivered to the outlets in HRB. Secondly, the
streamflow of PLB is much larger than that of HRB, which leads to the decrease of NH4

+-N
removal in streamflow and makes the point sources the dominant sources in PLB. Lastly,
the urbanization and point sources management of PLB might be inferior to those of HRB.

4.3. Strategy for Nutrient Management

Nutrient delivery abatement is vital for the water quality of the receiving waterbody.
The results of SPARROW models in this study are meaningful for evaluating NH4

+-N load
transport, critical regions of high load delivery, and dominant nutrient sources.

Based on the studies above, policies of enhancement were proposed. Since PLB
has more water resources and steeper terrain, some upstream and middle reaches still
transport large amounts of NH4

+-N load to the outlets, similar to the reaches around the
lake. Therefore, it is crucial that more attention should be paid to the reaches around the
lake and the upstream and middle reaches, which deliver a large amount of NH4

+-N load to
outlets, especially the centers of big cities. At the same time, the point sources and farmland
were recognized as the dominant sources contributing to the load delivered to the outlets
in PLB. Consequently, it is important to enhance the management of the point sources in
these reaches, such as municipal and industrial wastewater. In addition, since PLB already
contains high proportions of woodland and grassland, it is important to establish buffer
zones along rivers by planting vegetation or building wetlands, in order to increase the
absorption of NH4

+-N.
Owing to relatively fewer water sources and more plain terrain in HRB, the middle and

downstream reaches contributed more to the NH4
+-N load delivered to the outlets. Hence,

the management among these reaches should be enhanced. In HRB, the residential land
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and farmland both have critical positions in the delivery of NH4
+-N loads to the outlets,

due to the large amount of residential land and the high population density. Consequently,
controlling the domestic pollution and reducing the usage of chemical fertilizers are feasible
measures to be undertaken urgently. In addition, increasing the woodland and grassland
coverage to enhance the retention of nutrients in land areas may be a sound measure to
reduce the NH4

+-N load delivered to the outlets.

5. Conclusions

The SPARROW model is a spatial explicitly method to address nutrient load and
streamflow transport in watersheds. This study developed SPARROW models in two
multi-rivers basins in China, which cover large areas in the north and south of China,
respectively. These two basins have quite different conditions in many aspects, including
weather, water resources, and land use. The SPARROW models were used to evaluate
NH4

+-N load streamflow transport, critical regions of high load delivery, and dominant
nutrient sources in these two basins, which further provided basin-specific advice to the
authorities. Based on the results of this study, the point sources and the farmland are the
dominant source of NH4

+-N entering Poyang Lake, while the residential land and farmland
are the major sources of NH4

+-N entering Bohai Bay. The following measures should be
taken: In PLB, especially among the centers of big cities, it is important to enhance the
management of the point sources, such as municipal and industrial wastewater. In addition,
it is also advised to establish buffer zones along rivers by planting vegetation or building
wetlands, in order to increase the absorption of NH4

+-N. In HRB, controlling the domestic
pollution and reducing the usage of chemical fertilizers are feasible measures that should
be urgently considered. Moreover, increasing the woodland and grassland coverage to
enhance the retention of nutrients in land areas may be a sound measure for the reduction
of the NH4

+-N load delivered to the outlets.
The SPARROW models built for PLB and HRB can serve as references for future uses

for different basins with various conditions, extending this model’s scope and adaptability.
Remarkably, at twice the size of PLB, HRB has more plain terrain, less water resources
and more long-distance canals, which lead to more difficult in its modelling. Hence, the
SPARROW model developed in HRB is a worthy possibility for similar research in future.
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Abstract: A quasi-two-dimensional (quasi-2D) modelling approach is introduced to mimic transverse
mixing of an inflow into a river from one of its banks, either an industrial outfall or a tributary. The
concentrations of determinands in the inflow vary greatly from those in the river, leading to very
long mixing lengths in the river downstream of the inflow location. Ideally, a two-dimensional (2D)
model would be used on a small scale to capture the mixing of the two flow streams. However,
for large-scale applications of several hundreds of kilometres of river length, such an approach
demands too many computational resources and too much computational time, especially if the
application will at some point require ensemble input from climate-change scenario data. However,
a one-dimensional (1D) model with variables varying in the longitudinal flow direction but averaged
across the cross-sections is too simple of an approach to capture the lateral mixing between different
flow streams within the river. Hence, a quasi-2D method is proposed in which a simplified 1D solver
is still applied but the discretisation of the model setup can be carried out in such a way as to enable
a 2D representation of the model domain. The quasi-2D model setup also allows secondary channels
and side lakes in floodplains to be incorporated into the discretisation. To show proof-of-concept, the
approach has been tested on a stretch of the lower Athabasca River in Canada flowing through the
oil sands region between Fort McMurray and Fort MacKay. A dye tracer and suspended sediments
are the constituents modelled in this test case.

Keywords: lower Athabasca River; oil sands region; quasi-2D modelling; water-quality analysis
simulation program (WASP); water-quality modelling

1. Introduction
1.1. Background

Much of the process water from oil sands surface mining operations is recycled and
managed in tailing ponds. However, the capacity for storage is approaching unmanageable
and unsustainable levels; hence, some release of treated process water into the Athabasca
River is anticipated as early as 2025 [1]. The release of treated process water may pose a risk
to aquatic species and to humans who harvest and consume these species, in particular fish.
Therefore, effective models to describe the transport and fate of oil sands related substances
are required [2]. These substances can be transported downstream and deposited in Lake
Athabasca and the Peace-Athabasca-Delta (PAD); in addition, secondary channels and
lakes within the floodplain along the lower river reach may also trap released sediment
and associated constituents. An important objective of this research is to determine the fate
of such effluent within these features using computer modelling.
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1.2. Water-Quality Modelling

The development of complex three-dimensional integrated hydrodynamic, sediment
transport, and water quality models has been proposed to characterize the transport and
fate of sediment and associated constituents in the lower Athabasca River, advocated
by several researchers and government agencies [2]. However, the implementation of
complex modelling frameworks may not be advantageous for many reasons, including
cost, the time required to develop the framework, and lengthy model simulation times.
Additionally, model complexity can obfuscate rather than elucidate key processes, and
both overly complex and overly simple models can have reduced reliability.

We propose using the Water Quality Analysis Simulation Program (WASP) [3] to de-
velop a model to characterize the fate and transport of sediment and associated constituents
within the lower Athabasca River. WASP is a dynamic compartment-modelling program
for aquatic systems, including both the water column and the underlying benthos. Its rep-
resentation of sediment and material kinetics is more sophisticated than other commonly
used models [4]. WASP is a widely used framework for developing site-specific models
for simulating toxicant concentrations in surface waters and sediments over a range of
complexities and temporal and spatial scales. WASP has an advanced toxicant module that
includes representation of a range of solids classes, with individual physical and chemical
characteristics. Solids classes can be organic materials (e.g., plankton, algae, detritus) or
inorganic (e.g., sand, silt, clay).

1.3. Quasi-Two-Dimensional Modelling

This paper describes a unique quasi-two-dimensional representation of river hy-
draulics that is particularly suited to the application of the WASP model to accurately
represent the configuration of the lower Athabasca River with a high level of compu-
tational efficiency. In the current study, we introduce a novel approach to modelling
transverse mixing in a river with secondary channels and side lakes to study the water
quality along the area of the Athabasca River with extensive oil sands development.

In order to maintain short computational times, a one-dimensional (1D) modelling
approach is necessary. However, the transverse mixing along the river requires modelling
with at least a two-dimensional (2D) representation, especially since the lengths of complete
mixing along this river are relatively long (>100 km). Hence, the use of a quasi-two-
dimensional (quasi-2D) approach is proposed, in which flow is simulated in 1D, but in
such a way to allow a 2D discretisation of the domain.

Quasi-2D water-quality modelling has been carried out in the past for other ap-
plications. For off-channel storage facilities (polders) along the Elbe River in Germany,
Lindenschmidt et al. [5] modelled dissolved oxygen and nutrient dynamics for various
flow regimes (low, medium, high (flood) flows). Deposition of sediments and heavy metals
in the off-channel storage basins was captured using the quasi-2D method [6–8]. The
quasi-2D approach has also been used to capture flows between main river channels and
their floodplains, in particular through dike breaches [9] and capping flood peaks using
side-channel storage [10,11]. Flow between the Mekong River and its delta [12] and be-
tween the Po River and a portion of its floodplain [13] were simulated using quasi-2D
models. Sediment transport was included in a quasi-2D model of the Rhine River’s main
channel and floodplain [14]. In this study, we extend the quasi-2D approach to model
transverse mixing in rivers.

1.4. Objectives

The objectives of this study are to:

1. Develop a quasi-2D modelling approach to characterise transverse mixing of two
water streams of different sediment concentrations.

2. Assess the role of drawing on the output of additional models to complement the
implementation of models with different complexity and spatial scale.
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3. As proof of concept of the approach, the sediment transport along the lower Athabasca
River was quantified. The model domain includes a secondary channel and side lake
connected hydraulically to the river’s main stem.

2. Site Description

The Athabasca River (see Figure 1) is a northern river (ice-covered in winter) in
western Canada that originates on the eastern slopes of the Rocky Mountains and flows
approximately 1500 km in a north-easterly direction to empty into Lake Athabasca. It is
the longest unregulated river in Alberta. For the last 80 km, the river flows through the
Athabasca Delta. The Athabasca Delta is part of the larger Peace-Athabasca Delta (PAD),
which is the largest inland delta in North America. The PAD is an important ecosystem
for many aquatic and terrestrial plant and animal species, and the area has been named
both a Ramsar and United Nations Educational, Scientific and Cultural Organization
(UNESCO) World Heritage site. From a human perspective, the PAD is an important social,
cultural and economic entity for many of the Aboriginal communities in the area. Many
conservation efforts have been carried out to maintain the ecological integrity of the aquatic
and terrestrial systems.

Referring to Figure 1, the average discharge at the Water Survey of Canada (WSC)
gauge at Embarras (gauge 07DD001–Athabasca River at Embarras Airport), which is
approximately 80 km upstream of the PAD, is around 850 m3/s. The total catchment area
draining at the same gauge is approximately 156,000 km2. Much of the basin’s land use
consists of forests (89%) with some agricultural lands (8%). The basin is sparsely populated
(≈200,000 inhabitants), with the population concentrated in a few urban centres, which
release effluent from municipal wastewater treatment plants into the river.
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The oil sand region covers a large area of Northern Alberta and has one of the richest
deposits of petroleum in the world. For a 65 km stretch of the lower Athabasca River,
between Fort McMurray and downstream of Fort MacKay (see Figure 1), the river flows
through the active oil sand surface mines. Much of the oil is extracted through open-pit
mining and processed using water from the Athabasca River. Almost 5% of the river’s
average flow has been allocated for anthropogenic usage. Although approximately half of
that amount is allocated for surface and in situ mining activities, less than 1% is used [15].

The lower Athabasca River contains many islands, secondary channels, wetlands,
and floodplain lakes. Many of these secondary channels freeze to the bottom or have
low oxygen levels during winter [16]. Sediment deposition areas occur downstream of
tributaries (confluence bars), in mid-channel bars, in secondary channels and in side lake
and wetland areas along the river. During high flow events, substantial amounts of oil
sands material can be transported from tributaries into the river to be deposited in these
depositional areas. Over time, these areas of high oil sands material are mixed and diluted
with water and sediment coming from upstream.

To show proof-of-concept, the domain modelled in this study is only a short stretch
of 15 km. It is part of a larger system (>200 km) that is to be modelled in the future, with
additional outfalls and sensitive depositional areas (e.g., secondary channels and side
lakes). The model domain is indicated in Figure 2 and was chosen based on the location
of proposed outfalls from oilsands operations. One particular side lake of interest in this
study is Shipyard Lake, which is located near the Suncor oil facilities on the east side
of the Athabasca River and is within the model domain. The lake, shown in Figure 3,
has a surface area of 21.3 ha and a maximum depth of 2.2 m [17]. It is essentially a large
wetland area that is flooded by higher flows from the Athabasca River [17]. Numerous
small creeks feed the lake and water from the Athabasca River flows into Shipyard Lake
over a low levee between the watercourse and water body. Flow begins to overflow the
levee at an Athabasca River flow of 2800 m3/s [18], which corresponds to a water surface
elevation of 237.7 m a.s.l. just upstream of the lake [18]. This corresponds to a water level
elevation of approximately 240.1 m a.s.l. at the Athabasca River gauge downstream of Fort
McMurray [19], the location of which is shown in Figure 2.
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A secondary channel is also included in the model domain, also shown in Figure 3.
Indicated in the figure is the location of a cross-section of the Athabasca River main stem
and the secondary channel, which is shown in Figure 4. Some water does flow into the
secondary channel from the Athabasca River at a flow of 600 m3/s.
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Athabasca River main stem and secondary channel with water-level profile at a flow of 600 m3/s.
The location of the cross-section in indicated in Figure 3.

A major tributary of the Athabasca River is the Clearwater River (see Figures 1 and 2),
which flows from the east into the Athabasca River at Fort McMurray. For an average
flow of 600 m3/s at the gauge on the Athabasca River downstream of Fort McMurray
(gauge 07DA001–Athabasca River below Fort McMurray), the average annual flow from
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the Clearwater River recorded at the Draper gauge (gauge 07CD001–Clearwater River at
Draper) is 116 m3/s and ranges from 30 to 500 m3/s (see Figure 5).
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Figure 5. Flows recorded by the Athabasca River gauge below Fort McMurray (gauge 07DA001) and
the Clearwater River gauge at Draper (gauge 07CD001). Flows are of daily means recorded on the
same day over a 30-year period (1990–2019)).

Total suspended solids (TSS) data from four stations along the Athabasca River were
used in the analysis:

• Athabasca River upstream of the Firebag River confluence (Alberta Environment and
Park’s long term monitoring station AB07DA0980; Figure 1)

• Old Fort/Devil’s Elbow (Alberta Environment and Park’s long term monitoring
station AB07DD0010 (open water) and AB07DD0105 (ice-cover); Figure 1)

• Athabasca River upstream of the Horse River—(Alberta Environment and Park’s long
term monitoring station AB07CC0030; Figure 2)

• Clearwater River upstream of Waterways (Alberta Environment and Park’s monitoring
station AB07CD0200/210/090 Clearwater River upstream of Waterways; Figure 2)

Empirical relationships between TSS concentrations and river discharge are provided
in Appendix A, from which equations were established and are shown in Figure 6 for a
lower flow regime. Sediment transport was simulated only for the 2800 m3/s flow since, in
this scenario, Athabasca River water flows into both the secondary channel and Shipyard
Lake. A total flow of 2800 m3/s at the Athabasca River gauge below Fort McMurray
corresponds to a flow of 250 m3/s for the Clearwater River (from Figure 5), yielding,
through simple subtraction, a flow of 2550 m3/s at the Athabasca River station upstream of
Fort McMurray. From Figure 6, the TSS concentrations are respectively 575.5 and 86.8 mg/L
for the upper Athabasca and Clearwater rivers.
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3. Hydraulic Modelling Setup

Water level gauges are not present within the 15 km modelling domain. There is
an active gauge (records from 1957 to present) at the Water Survey of Canada (WSC)
station approximately 13 km upstream of the modelling domain at Fort McMurray (gauge
07DA001–Athabasca River below Fort McMurray) and a discontinued gauge (recordings
only from 1959 to 1966) approximately 16 km downstream of the modelling domain at
Fort MacKay (gauge 07DA003–Athabasca River near Fort MacKay). The average flow
at the gauge at Fort McMurray is about 600 m3/s. This flow was used to calibrate the
WASP simulations of tracer mixing from a hypothetical outfall from the right bank at the
upstream boundary of the model domain. A flow of 2800 m3/s was used for validation
and to simulate flow from the Athabasca River into Shipyard Lake.

The hydraulic model HEC-RAS [20], developed by the U.S Army Corps of Engineers,
was used to generate the segmentation for the WASP water quality model. The water
level elevations of the HEC-RAS model at flows 600 and 2800 m3/s, which formed the
geometrical basis for the WASP segmentation, were verified with flow simulations using
the hydraulic model ONE-D, a hydrodynamic model that uses a finite difference implicit
scheme for the solution ([21,22] both referenced in [23]). Both mass and momentum of
sub-critical fluid motion are conserved for open-channel flow. The model is robust and well-
tested with many consultancy applications (e.g., [24,25]). Bathymetry data were obtained
from Alberta Environment and Parks (AEP) [26].

Figure 7 shows how the water level profiles modelled in ONE-D match with the water
level elevations recorded at the gauges at Fort McMurray and Fort MacKay for an average
flow of 600 m3/s and a higher flow of 2800 m3/s. The water level elevations modelled with
HEC-RAS for the same steady-state flow coincide well with the ONE-D water level profile.
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4. Water-Quality Modelling Setup

The Water Quality Analysis Simulation Program (WASP 8.32) was used to model the
water quality of the river-lake system. WASP is a general dynamic model that applies a
segmentation network to solve the conservation of momentum, energy, and mass equations
and simulate contaminant and sediment transport. WASP was initially developed in the
1980s and has undergone many upgrades since then. WASP is a widely used model,
especially in North America, for addressing various environmental and water quality
concerns. The WASP segmentation can be structured in 1D for streams, or 2D for rivers
with branching channels or 3D for lakes.

The WASP stream transport module, TOXI, is able to calculate the flow of water,
sediment and dissolved constituents through branched and ponded segments and is
coupled with flow routing for free flow streams, ponded segments, and backwater reaches.
The kinematic wave was used for the 1D flow routing, which is based on solutions of
one-dimensional continuity equations and a simplified form of the momentum equation
that considers effects of gravity and friction, and calculates variations in velocities, widths
and depths throughout the network. Flow through the ponded segments is calculated
based on a sharp-crested weir equation, which calculates outflow based on water elevation
above the weir crest, using kinematic wave flow for a river and ponded weir overflow for
a lake. For the current study, boundary and initial conditions were defined based on water
quality data of the closest station to the study area by spatial linear interpolation.

Input data for the model includes channel geometry, flow routing, boundary condi-
tions, environmental time functions, loads and initial conditions for segments. Geometry
for the WASP segments (average depths, widths and slopes) was extracted from the fifty-
eight HEC-RAS cross-sections, which were spaced at a distance of 493 m apart. Segments
are a series of discretized components used to estimate the model state variables at every
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time step. The sediment transport model is an independent set of routines with associated
parameters for the model.

The domain was modelled with a network of river segments, a secondary channel
and a side lake. Water quality modelling of such a complex system requires special
consideration of the varying hydrodynamics within the system. The primary segments of
the system are 493 m long; as mentioned before, right stream segments accommodate 20%
of the width of cross-sections produced by HEC-RAS for the 600 m3/s scenario and 10% of
the width for the 2800 m3/s flow scenario.

Bathymetric information for Shipyard Lake was obtained from a bathymetry survey
carried out by Golder [17]. The lake was divided into two segments:

• a deep part with a surface area of 14 ha and an average depth of 1.5 m and
• a shallow part with a surface area of 7.3 ha and an average depth of 0.75 m.

As mentioned above, the mixing length for the stream is long, and the geographical
complexity of the study area cannot be represented with a 1D modelling approach alone.
On the other hand, a 2D approach would require higher data computational resources
for such a long stream. Quasi-2D models can be a reasonable alternative by using the
simplicity of a 1D solution but still capturing 2D discretisation of the substance transport.
The approach is purely a balance of water and mass between each adjoining segments. This
includes the exchange of water and mass between each adjacent-lying, left and right stream
segments. The exchange is a small percentage of the water flowing into each of those
segments from their upstream segments. The exchange alternates from right-to-left and
left-to-right stream segments along the model domain. The flow exchange was calibrated
in such a way that the constituents within the two streams mixed together more and more
as we moved further downstream along the domain. The flow transfers between adjacent
segments were calibrated so that the concentrations matched the observed dispersion
pattern calculated with the Athabasca River Model (ARM). Concentration gradients were
generally higher between the left and right stream segments at the upstream boundary
leading to more rapid mixing in this area; as we move further downstream, the mixing
between the adjacent segments of each stream led to a decrease in their concentration
gradients and a decrease in the mixing rate.

In this study, results from one model, ARM, were used to calibrate the mixing sim-
ulated with WASP. However, field data sampled not only longitudinally along the flow
direction of the river, but also transversely across the river can be used to calibrate the
model, an example of which is provided in a follow-up study to simulate the transport of
vanadium [27].

The stretches between every two cross-sections of the HEC-RAS model were divided
into two stream tubes. The flow from the Clearwater River controlled the segment on the
right side (right stream), and the main Athabasca River system controlled the segments
on the left side (left stream), as shown in Figure 8. Flow for the secondary channel was
supplied through the right side stream. It was estimated that 2% of flow into Shipyard
Lake was required to maintain water volume continuity. The flow through Shipyard Lake
was anticipated to flow back into the right side stream just downstream of the lake. A
schematic of the segmentation is shown in Figure 9.
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In order to characterize erosion and sedimentation, benthic segments were added
under each surface water segment. Solids can be separated into clay, silt and sand, which
can refine simulation results of solids. The user has four choices for simulating solids in
WASP: solid flow fields, descriptive, the mechanistic Van Rijn equation, and the mechanistic
Robert equation. Currently, WASP has two kinetic modules for modelling sediment
transport. For the current study, the advanced toxicant module was used because it is
considered to be the best module to simulate oil-sands associated substances.

5. WASP Mixing Calibration (Q = 600 m3/s)

Calibration of the mixing of the WASP model was done using simulation results from
the Athabasca River Model (ARM) [16,17]. ARM is a vertically averaged, two-dimensional
mixing model used to predict substance concentrations varying across the width and
length of the lower Athabasca River for various flow conditions. The model’s calculations
are analytical/explicit in nature, so there is no discretization other than differentiating
between different reaches with different mixing and hydraulic parameters. ARM applies
analytical solutions for river dispersion equations under steady-state conditions. Mid-field
mixing is represented by dispersion equations described by Fischer et al. [28]. The same
representation is used for passive ambient mixing in the Cornel Mixing Zone Expert System
(CORMIX) [29] except that, for ARM, transverse mixing coefficients have been calibrated
based on a tracer-dye study completed in 2003 [30,31] and validated using a range of data
sources [32]. The calibration of ARM is described in [30,31].

A hypothetical conservative tracer was chosen to calibrate the mixing path of the
WASP model to the ARM predictions. A load of 5670 kg/day, which led to the chemical
concentration of 1 mg/l in the most-upstream segment (Segment 1) was added. The flow
system included two upstream boundary conditions: the Athabasca River water for the
left stream boundary and the Clearwater River water for the right stream boundary.

As expected, the conservative tracer was transported to the left stream when a flow
was designated between them. Segments divided by islands (segment combinations 16–17,
18–19 and 20–21) had no flow between them. WASP simulated the concentrations of the
tracer in each segment. These values were compared with values predicted by the ARM
model and shown in Figure 10.
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Figure 10. Calibration of WASP with ARM data of the mixing between the left and right streams of
the Athabasca River at a flow of 600 m3/s.

Good agreement for both left and right streams was observed. As can be seen, both
models predicted the same trend for both streams: a reduction in chemical concentrations
in the right stream and an increase in chemical concentrations in the left stream. Contour
plots of the tracer concentrations modelled in WASP and ARM are shown in Figure 11.
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Figure 11. Contour maps for tracer concentration based on the ARM model (left panel) and WASP
model (right panel) for the 600 m3/s flow scenario. Relative width is based on the fraction of the
river width.

6. WASP Mixing Validation (Q = 2800 m3/s)

A simulation with a higher flow of 2800 m3/s was carried out for which both Shipyard
Lake and the secondary channel became flooded. The results of the two models for the two
streams are shown in Figure 12. Again, mixing is evident since the tracer concentrations are
increasing in the right stream and decreasing in the left stream, both in the flow direction.
Mixing is more rapid for the 2800 m3/s scenario since the tracer concentrations drop to 40%
of the original concentration at the end of the 15 km stretch, whereas the concentrations
only drop to 55% in the 600 m3/s scenario (Figure 10). Contours of the tracer concentrations
simulated in ARM and WASP are provided for the 2800 m3/s flow case in Figure 13. The
same trend for the mixing was observed for both flow rates studied herein. For the higher
flow rate, faster mixing was observed, which can be explained by higher turbulence and
more chaotic eddies which follow observations by Dimotakis [33] and Sreenivasan [34].
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7. Sediment Transport Modelling

Suspended solids and benthic sediments are key components of the water quality of
rivers and lakes. When the flow velocity decreases, as is the case when, for example, a river
flows into a lake or reservoir, suspended sediments will settle out. Key constituents in oil
sands process water, such as selenium and polycyclic aromatic hydrocarbons, tend to sorb
to fine sediments. For the current study, separate size classes were represented using the
descriptive solids transport option in WASP. For the descriptive solids transport, constant
settling and resuspension velocities were defined for each segment. Settling velocity of silt
and clay were calculated from Stokes Law, and the settling velocity of sand was estimated
based on the equation from Ferguson and Church [35].

Size classes for suspended solids were estimated based on suspended sediment sam-
ples collected from the Lower Athabasca River using continuous flow centrifugation in
2012 and 2013 as part of the Joint Oil Sands Monitoring Program [1].

Measured TSS data were fitted versus the flow rate for the sediment sampling stations.
Power functions were used to fit the data yielding acceptable r2 values (r2 > 0.6) for all
correlations. This provided equations to estimate TSS based on the given flow rates. For
the sediment transport simulation, we used the flow scenario of 2800 m3/s because at
that flow, both the secondary channel and Shipyard Lake are flooded by Athabasca River
water. A flow of 2800 m3/s corresponds to a flow of 250 m3/s for the Clearwater River
(from Figure 5), and a flow of 2550 m3/s along the upper Athabasca River reach, which
represents a flow ratio of approximately 10–90%, respectively. Although the model domain
is situated downstream of the Athabasca/Clearwater river confluence, for the purpose of
showing proof-of-concept in this study, the 10/90 percentage ratio was maintained for the
right/left streams.

After obtaining TSS values for the flow scenario for the water quality stations, an
interpolation was done to obtain initial sediment concentrations for each segment along
the study area (see Figure 14). For segments on the right stream (segments with odd
numbers), linear interpolation between Clearwater River at Draper and Athabasca/Firebag
confluence was carried out. For left stream segments (segments with even numbers), values
were interpolated between the station upstream of the Athabasca/Clearwater confluence
and Athabasca/Firebag confluence. After obtaining TSS amounts for each segment, the
average ratio of long-term means was used to estimate the concentration of silt, clay and
sand in each segment. Initial concentrations for benthic segments were estimated from
available bed sediment data for the Lower Athabasca River collected as part of the Regional
Aquatics Monitoring Program [36].
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Figure 14. Initial TSS concentration along modelling domain; flow is from left to right.

The model was run until it reached an equilibrium state, after which no significant
changes in the sediment concentrations in the surface water segments were observed. It
was assumed that an equilibrium state has been reached when there was no significant
change in sediment concentration in the water body for more than a simulation time of 24
h. For the current study, clay, silt and sand were modelled, and the results of these for both
the left and right streams of the Athabasca River are shown in Figure 15.
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The mechanics of solid transport in WASP are based on advection, and suspended
sediments are only transported transversely when there is a flow routed between segments
of the right and left streams. It is evident that the left stream segments have higher sediment
concentrations than the right stream segments. In addition, sediment concentrations tend
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to drop in the left stream and increase in the right stream, both with flow direction, which
is attributed to the transverse mixing, as is the case for the tracer simulations.

For all segments, including left and right streams, it was observed that, for the water
columns, the amount of sediments decreases in order from silt, to clay and then sand. Due
to the higher settling velocity for sand, it can be expected that there would be more sand
deposits in the river compared to silt and clay. Sand is typically transported as a bedload
or during higher velocity flows due to its roughness and higher density [37–39]. Due to its
low settling velocity, clay is the dominant sediment texture in the water column.

At Shipyard Lake, a considerable deposition of sediment in the lake was simulated
compared to the sediment in the right stream of the Athabasca River (see Figure 16). The
flow through the lake is in the direction of: right stream→ deep part→ shallow part→
right stream (further downstream). The higher sedimentation in the lake is due to the drop
in flow velocity of the water entering the lake. Much of the sediment of all three textures is
deposited in the deeper part of the lake with some additional deposition in the shallow
lake area. The amount of solids increases in the surface benthic segments because settling
dominates over resuspension in the lake.
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Figure 16. Water-column concentrations of clay, silt and sand in the right stream of the river and the
deep and shallow portions of Shipyard Lake.

The simulations with WASP were very fast, taking only about 30 s for the model to
reach steady state. This is much faster than a two-dimensional approach that was carried
out in which a “relatively coarser grid was used for all of the main chemical constituent
runs due to their higher computational requirements” [40]. Our approach presented here
would be an alternative to creating a second grid.

8. Summary and Conclusions

A novel methodology was proposed to simulate transverse mixing along a long stream
of a river network with a secondary channel and side lake. A steady-state water quality
model based on two flow scenarios (600 and 2800 m3/s) was developed to study transverse
mixing and sediment deposition in the modelling domain.

The first objective of this study was to model transverse mixing in the river-lake
system. Good agreement with the previously developed ARM model was observed. It
was established that a quasi-2D approach is a reasonable and accurate means of modelling
transverse mixing of the system with a minimal processing time compared to more complex
2D models. The approach is also well suited for scaling up to a larger river network in future
work by extending the modelling domain from Fort McMurray to the Athabasca Delta.

The second objective was to quantify deposition of sediments along the system. As
expected, much of the sediment load deposits are found within the secondary channel
and the side lake, with less deposition in the main channel. It was observed that coarser
materials tend to deposit in the deep part of the lake, where the Athabasca River water
first enters the lake. Due to the longer settling time for finer sediments, they were the main
sediments suspended in the main stem.
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The last objective was to emphasize the importance of drawing on the output from
additional models to complement the water-quality modelling exercise. To support the
water-quality modelling with WASP, the hydrodynamics of the water-quality modelling
domain was analyzed using HEC-RAS and ONE-D. The ONE-D model has an extended
domain that incorporates recordings from gauge stations. The calibrated and validated
ARM model was also useful to calibrate the transverse mixing within the WASP model.
Should we scale up to extend the modelling stretch from Fort McMurray to the Athabasca
Delta, additional models, in particular a hydrological model of the Athabasca River basin,
should also be included. This will be essential to predict the state of the river’s water
quality under a changing climate scenario in the future. The impacts of an ice cover on the
river’s water quality should also be considered in future research.
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Appendix A

Figures A1–A4 provide a wider range of total suspended sediment (TSS) vs. flow (Q)
for Athabasca River upstream of Fort McMurray (Figure A1), Clearwater River (Figure A2),
Athabasca River upstream of Firebag River (Figure A3 and Athabasca River at Old Fort
(Figure A4).
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Choryński, A.; Gustafsson, D.;

Halicki, M.; Hentschel, B.;

Karjalainen, N.; Kögel, M.; Kolerski,

T.; et al. Assessing and Mitigating

Ice-Jam Flood Hazards and Risks: A

European Perspective. Water 2023, 15,

76. https://doi.org/10.3390/

w15010076

Academic Editor: Olga Petrucci

Received: 30 November 2022

Revised: 14 December 2022

Accepted: 16 December 2022

Published: 26 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Commentary

Assessing and Mitigating Ice-Jam Flood Hazards and Risks: A
European Perspective
Karl-Erich Lindenschmidt 1,* , Knut Alfredsen 2 , Dirk Carstensen 3, Adam Choryński 4 , David Gustafsson 5,
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Abstract: The assessment and mapping of riverine flood hazards and risks is recognized by many
countries as an important tool for characterizing floods and developing flood management plans.
Often, however, these management plans give attention primarily to open-water floods, with ice-jam
floods being mostly an afterthought once these plans have been drafted. In some Nordic regions,
ice-jam floods can be more severe than open-water floods, with floodwater levels of ice-jam floods
often exceeding levels of open-water floods for the same return periods. Hence, it is imperative that
flooding due to river ice processes be considered in flood management plans. This also pertains
to European member states who are required to submit renewed flood management plans every
six years to the European governance authorities. On 19 and 20 October 2022, a workshop entitled
“Assessing and mitigating ice-jam flood hazard and risk” was hosted in Poznań, Poland to explore
the necessity of incorporating ice-jam flood hazard and risk assessments in the European Union’s
Flood Directive. The presentations given at the workshop provided a good overview of flood risk
assessments in Europe and how they may change due to the climate in the future. Perspectives from
Norway, Sweden, Finland, Germany, and Poland were presented. Mitigation measures, particularly
the artificial breakage of river ice covers and ice-jam flood forecasting, were shared. Advances in ice
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processes were also presented at the workshop, including state-of-the-art developments in tracking
ice-floe velocities using particle tracking velocimetry, characterizing hanging dam ice, designing
new ice-control structures, detecting, and monitoring river ice covers using composite imagery from
both radar and optical satellite sensors, and calculating ice-jam flood hazards using a stochastic
modelling approach.

Keywords: European Union’s Floods Directive; hydro-electric power; ice-jam flood hazard; ice-jam
flood risk; space-borne remote sensing

1. Introduction

On 19 and 20 October 2022, a workshop entitled “Assessing and mitigating ice-jam
flood hazard and risk” was held in Poznań, Poland, hosted by the first author with spon-
sorship from the Global Water Futures research program (https://gwf.usask.ca/ accessed
on 14 December 2022). The workshop brought together an international team of engineers,
scientists, and officials from universities, research facilities, and government agencies from
Europe to review the state-of-the-art developments of and explore advances in ice-jam flood
hazard and risk assessments. Government agencies from central, eastern, and northern
European countries (e.g., Norway, Sweden, Finland, Germany, and Poland) are in need of
new tools to assess ice-jam hazards and risks in order to propose new means of mitigating
consequences of ice jamming and ice-jam flooding to communities, infrastructure, and
ship navigation. These are issues that will also help research and ice-flood management of
rivers in other cold-region countries (e.g., U.S.A., Canada, and Russia) affected by river ice
processes and ice flooding.

The Poznań workshop was opened by a welcome from Professor Klaudia Borowiak,
the Dean of the Faculty of Environmental and Mechanical Engineering at the Poznań Uni-
versity of Life Sciences. It ran over the course of two half days with numerous presentations,
as listed in Table 1. Most of the participants are shown in the group photo in Figure 1.
This workshop was a follow-up to the workshop entitled “Developing an ice-jam flood
forecasting system for the Oder River” held in Wroclaw, Poland on 26 and 27 November
2018 [1]. The Poznań workshop summarized in this commentary extends the capabilities of
the ice-jam flood forecasting discussed in the Wroclaw workshop by to exploring methods
and requirements for the assessment and mapping of ice-jam flood hazards and risks from
a European perspective. An important question posed at the workshop was: should ice-jam
flood hazard and risk assessment and mapping be explicitly mentioned in the EU Floods
Directive, at least for members of Nordic countries and countries with continental climates?
Comments from Norway, Sweden, Finland, Germany, and Poland are provided in the sec-
tion “Potential of including ice-jam flood hazard and risk in the EU Floods Directive” below.
The section is preceded by “Flood risk and the European Union’s Floods Directive” and
“Changes to flood risk and ice-jam flood risk due to future climate” to provide background
information on the EU Floods Directive and to provide some context on how ice-jam flood
risk may change with the climate in the future. Presentations that introduced measures to
mitigate ice-jam flood risk and technical advances in ice research to help improve ice-jam
flood risk characterization are also summarized in subsequent sections below. Remarks on
the workshop outcomes and an outlook for future research themes related to ice-jam floods
conclude the commentary.

The paper is structured to capture the topics presented at the workshop. Section 2
provides introductory material in the topic of flood risk and how it is administered in the
EU Floods Directive. Section 3 provides a perspective of future flood risk in a changing
climate. Perspectives from Norway, Sweden, Finland, Germany, and Poland of including
ice-jam flood risk in the EU Floods Directive are provided in Section 4. Section 5 explores
different techniques used to mitigate ice-jam risks, such as artificial breakage, flood warning
systems, and ice-jam flood forecasting. Current technical advances in river ice research
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are showcased in Section 6, with topics on particle tracking velocimetry to monitor ice-
jam covers, hanging dam characterization, design of ice-control structures, processing
composite radar and optical space-borne remote sensing imagery for ice characterization,
implementing air-borne remote sensing tools (drones) for ice-cover monitoring, and new
modelling approaches in quantifying ice-jam flood hazards. Conclusions and an outlook
are found at the end of the paper.

Table 1. Oral talks presented at the workshop.

Presenter Presentation Title

Day 1

Klaudia Borowiak Welcoming remarks from the Dean of Environmental and Mechanical Engineering, Poznan
University of Life Sciences

Mateusz Zagata Polish perspectives on mitigating ice-jam flood risk along the Oder River
Michael Kögel, Fabian Möldner & Dirk Carstensen A river with ice floods - the Oder river
Iwona Pinskwar & Zbigniew W. Kundzewicz Changes in flood risk in the Odra and Vistula river basins
Marika Kornaś-Dynia & Włodzimierz
Marszelewski

Monitoring of ice phenomena on the Warta River in Poznań over a 60-year period
(1961–2020)

Maik Renner & Michael Roers Challenges for operational flood warning under ice-jam conditions at the Oder River in
Brandenburg

T. Niedzielski, M. Halicki, J. Remisz, G. Walusiak &
M. Witek

Applying satellite altimetry over the Odra River to issue hydrological predictions at virtual
stations

Michał Kubicki River Ice Detection on High Definition Optical and Radar Satellite Sensors
Karl-Erich Lindenschmidt Advances in ice-jam flood forecasting, risk assessment and mitigation

Day 2
Bogusław Pawłowski Causes of the February 2021 ice jams in the upper Włocławek reservoir
Knut Alfredsen Ice flood risk reduction in Norway
David Gustafsson Ice-jam flood risk in Sweden
Tomasz Kolerski Assessment of the ice jam severity based on the numerical models results
Adam Choryński, Iwona Pinskwar & Zbigniew
Kundzewicz Flood risk reduction in Poland

Maksymilian Rybacki Modeling flood scenarios from ice jams using MIKE 21 Flow Model FM
Ewelina Szałkiewicz Determination of the probability of exceedance of maximum ice-jam water states
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Figure 1. Most of the participants of the workshop: 1. Cornelia Lauschke, 2. Maciej Zdralewicz, 3. 
Tomasz Kolerski, 4. Grzegorz Walusiak, 5. Maik Renner, 6. Joanna Remisz, 7. Michal Halicki, 8. 
Matylda Witek, 9. Dirk Carstensen, 10 Michal Kubicki, 11. Bogusław Pawłowski, 12. Michael Roers, 
13. Karl-Erich Lindenschmidt, 14. Tomasz Niedzielski, 15. Michal Szydlowski, 16. Ewelina 
Szalkiewicz, 17. Wlodzimierz Marszelewski, 18. Iwona Pinskwar, 19. Maksymilian Rybacki, 20. 
Michael Kögel, 21. Zbigniew W. Kundzewicz, 22. Marika Kornas-Dynia, 23. Mateusz Zagata, and 
24. Adam Chorynski (photo taken by Bogusław Pawłowski). 

Figure 1. Most of the participants of the workshop: 1. Cornelia Lauschke, 2. Maciej Zdralewicz,
3. Tomasz Kolerski, 4. Grzegorz Walusiak, 5. Maik Renner, 6. Joanna Remisz, 7. Michal Halicki,
8. Matylda Witek, 9. Dirk Carstensen, 10 Michal Kubicki, 11. Bogusław Pawłowski, 12. Michael Roers,
13. Karl-Erich Lindenschmidt, 14. Tomasz Niedzielski, 15. Michal Szydlowski, 16. Ewelina Sza-
lkiewicz, 17. Wlodzimierz Marszelewski, 18. Iwona Pinskwar, 19. Maksymilian Rybacki, 20. Michael
Kögel, 21. Zbigniew W. Kundzewicz, 22. Marika Kornas-Dynia, 23. Mateusz Zagata, and 24. Adam
Chorynski (photo taken by Bogusław Pawłowski).
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2. Flood Risk and the European Union’s Floods Directive

According to the Intergovernmental Panel on Climate Change (IPCC), risk is defined as
the potential for consequences where an object of value is at stake and where the outcome is
uncertain. The components of such risks are hazards, exposure, and vulnerability. Referring
to Figure 2, a hazard is the potential occurrence of a physical event that may cause adverse
impacts. The “presence of people, livelihoods, species or ecosystems, environmental
functions, services, and resources, infrastructure, or economic, social, or cultural assets
in places and settings that could be adversely affected” [2] is referred to as exposure.
Vulnerability can be understood as the “propensity or predisposition to be adversely
affected” [2].
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“The purpose of [the European Union’s Floods] Directive is to establish a framework for
the assessment and management of flood risks, aiming at the reduction of the adverse
consequences for human health, the environment, cultural heritage and economic activity
associated with floods in the [European] Community.” [4]; Chapter 1, Article 1.

Implementation of the Floods Directive is on a six-year cycle with the European
Union’s member states required to follow three consecutive steps: (i) preliminary flood risk
assessments, (ii) hazard maps and flood risk maps, and (iii) flood risk management plans
(FRMP). The ultimate goal is to devise a FRMP for each member state to:

1. Reduce flood risk by maintaining and increasing the existing water catchment reten-
tion capacity, eliminating, or avoiding an increase in land development in areas of
particular flood risk, determining the conditions for the possible development of areas
protected by embankments, and avoiding growth and determining development
conditions in areas with a low probability of flood occurrence.

2. Reducing the existing flood risk by limiting development in floodplains and reducing
the vulnerability of facilities and communities to flood risk.

3. Improving the flood risk management systems which require implementation of
forecasting and issuance of warnings about meteorological and hydrological hazards,
making the responses of people, companies, and public institutions to floods more
effective, increasing resilience to return to preflood states quickly, requiring effective
postflood analyses, building legal and financial instruments that discourage or en-
courage certain behaviors to increase flood safety, and building educational programs
to improve awareness and knowledge of the sources of flood hazards and risks.

3. Changes to Flood Risk and Ice-Jam Flood Risk Due to the Future Climate

Observational data show that extreme precipitation is becoming more extreme, nearly
on a global scale [5]. Observed connections between heavy precipitation and air tem-
perature broadly agree with the Clausius–Clapeyron law, foreseeing an increase in the
vapor-holding capacity of the atmosphere at a rate of approximately 6–7% per 1 ◦C warm-

162



Water 2023, 15, 76

ing. This sensitivity may be much higher for precipitation on a subdaily scale, i.e., close to
14% per degree of warming for hourly precipitation [6,7].

However, this increase in extreme rainfall does not reflect higher discharges in rivers
and decreases are observed at many stations. Globally, the number of stations with sig-
nificant decreasing trends prevails over the number of stations with significant increasing
trends [8].

In the future, along with the warming climate, atmospheric water vapor content is
likely to increase, hence the potential for the occurrence of heavy precipitation is on the rise.
According to Huo et al. [9], short-duration extreme precipitation may prevail over long-
duration extremes. Extreme precipitation events with intensity exceeding the infiltration
capacity and the conveyance capacity of the system will very likely result in urban and
flash floods of increasing frequency and magnitude. Strong increases in the frequencies of
extreme precipitation events (from the 95th to the 99.97th percentile) based on an analysis of
observations was presented by Myhre et al. [10]. The total precipitation from these intense
events almost doubles per degree of warming, mainly due to changes in frequency. As
shown by Hettiarachchi et al. [11] such extremely intense short-duration events will cause
flooding in most areas.

The frequency and magnitude of fluvial (river) floods is expected to increase in many
regions, but the statement that these kinds of floods are on the rise has not been substanti-
ated. However, projections for the future indicate a greater increase in land areas where
river floods become more frequent, compared to the fraction of areas for which fluvial
floods will decrease.

At this time there is a lack of consistency between the trends observed in river dis-
charges, which do not indicate an increase, and the model-based projections for the future,
which show increasing trends. However, climate change has accelerated, and some changes
may yet reveal themselves, so the change expected for the far future could be considerably
different from the trend that is now observed [3].

4. Potential of Including Ice-Jam Flood Hazards and Risks in the EU Floods Directive
4.1. Norwegian Perspective

Although ice jams are mentioned in the new guidelines for flood zone maps currently,
after hearing from the Norwegian Water Resources and Energy Directorate (NVE), it
appears that the guidelines may not be very clear on a specific procedure for mapping
ice-induced flooding. For regulated rivers, there are some restrictions on operations to
avoid ice-induced floods, particularly the placement and adjustment of intakes to prevent
exposing open water to frigid air and avoid huge frazil generation. Operational restrictions
are mainly related to freeze-up flooding due to frazil and anchor ice, but also to the risk
of breakup in the case of accidental shutdowns and water being released into bypass
reaches. In the proposed guidelines, it is stated that ice jams rarely exceed the 200-year
open water flood in Norway, and therefore it is not a central component in the flood
zone mapping procedure, since the 200-year level is critical in the Norwegian building
code. The guidelines acknowledge that it can be an issue and recommend considering ice
where problems with ice have been observed in the past. This can particularly be an issue
where water is diverted from the river (but not on the 200-year return period level). At
best, ice jams that have threatened hydro-power generation or are caused by hydropower
shutdowns are archived using maps or local images, an example of an ice-jam event that
occurred on the Svorkmo River in Norway is shown in Figure 3.

4.2. Swedish Perspective

The Swedish Meteorological and Hydrological Institute (SMHI) also sees the main
issue of ice-jam flood hazards to be frazil ice and ice-jam impacts on hydropower (occasion-
ally there are also problems in nonregulated rivers), but it has no official mandate or task
to provide ice information. However, the institute does produce ice-breakup forecasts for
the Torne River, including forecasts of breakup dates and a “severity degree” factor indi-
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cating the risk for ice-jam complications. The forecasts are provided in collaboration and
conjunction with forecasts provided by the Finnish Environment Institute (SYKE), which
acquires the necessary ice depth data. Both institutes are involved in research projects to
further develop river ice forecasting and monitoring capabilities. An example of a flood
hazard map indicating some past flood extents due to ice jams is given in Figure 4.
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4.3. Finnish Perspective

The EU Floods Directive does consider floods caused by frazil ice and ice jams, even
though they are not specifically mentioned in the directive itself. However, according
to the directive, the preliminary flood risk assessment should be based on information
regarding ice-jam or frazil-ice floods that have occurred in the past and provide an outlook
for potential future floods. Hence, from a Finnish perspective, the Floods Directive does
take ice-jam floods sufficiently into account.
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In Finland, there are areas of potentially significant flood risk, where designation is
based on ice-jam flood risk (risk for significant adverse consequences by ice jams causing
floods). Additionally, goals and measures in the flood risk management plans for those
areas are targeted specifically for preventing ice jamming or taking action when there
are rapidly rising floodwaters due to ice jams. Finnish government authorities have also
prepared flood hazard and risk maps for those areas with past ice-jam flood occurrences
(roughly based on similar open water flow velocities), for example for Tornio in Figure 5.
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4.4. German Perspective

The Oder River is the river that is most often affected by ice jams in Germany. This
area, in the most eastern part of the country, experiences continental temperatures in winter.
Ice jams generally occur during freeze-up events and are greatly influenced by backwater
from the wind setup in the Baltic Sea entering the river’s mouth at Szczecin. Ice blockage,
in particular, is problematic for flooding at river structures such as bridge piers and weirs.
Efforts to release ice jams are carried out by German and Polish ice breakers, but the flow
of released ice is hampered by the very mild slope of the lower reaches of the Oder River.
Vulnerabilities exist at dikes which have breached in the past due to ice-jam flood events.
“The stretch along the Oder Bruch, formally an inland delta drained for agricultural use, is
particularly vulnerable due to its containment through dikes and the sediment accretion
of the riverbed to elevations higher than the surrounding land. A catastrophic event of
extended flooding throughout the adjacent low-lying area of the Oder Bruch occurred in
March 1947, in which ice jams caused backwaters to overtop and breach dikes along the
Oder Bruch at two locations, with breach widths of over 100 m. Flooding was extensive,
leading to the evacuation of 20,000 people” [14]. The fact that ice jamming has become less
frequent along the Oder River in recent decades, plus the advances in flood protection and
ice defense measures, warning systems, and corresponding disaster control measures, have
led to a lack of perception by the people of the dangers and risks of ice-jam floods along
the German Oder riverbanks.

4.5. Polish Perspective

At the preliminary flood risk assessment stage and based on the Floods Directive
Reporting Guidance 2018 to the European Commission, Poland can identify different types
of floods e.g., fluvial and pluvial (from rivers or overland runoff), sea water (flooding of land
by water from the sea, estuaries, or coastal lakes) and artificial water-bearing infrastructure
(flooding of land by water arising from artificial, water-bearing infrastructure, or failure of
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such infrastructure). Floods resulting from blockages or restrictions may also be identified,
a category which would include ice-jam floods. Other mechanisms that fall into this
category include blockages of sewerage systems, restrictive channel structures such as
bridges or culverts, and natural occurrences, such as landslides.

It is still uncertain if flood hazard and risk maps for ice jams will be developed
for Poland in the future. Much depends on the results of the next preliminary flood
risk assessment and the decisions of government authorities. Currently, the Institute of
Meteorology and Water Management, a National Research Institute, is working on various
aspects of flood protection, including mathematical modeling of ice jams and determining
flood hazards from ice phenomena. Figure 6 shows the results of a preliminary study
modelling flood hazard areas from ice jams along the test section of the Oder River.
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In the upcoming publishing of the river basin management plan for Poland, locations
of past ice jams have been identified and mapped for the Vistula River basin, shown in
Figure 7. Concentrations of ice-jam locations are indicative of river stretches with a higher
propensity for ice-jam flood hazards.

In regard to the changing climate in Poland, in the headwaters of the Vistula River,
in the Carpathian Mountains in southern Poland, mean annual air temperatures at the
Beskid Zywiecki station have increased by more than 2 ◦C over the past 40 years. Generally,
increases in annual air temperature for stations in the upper Vistula River basin were at the
rate of +0.13 ◦C per 10 years to +0.29 ◦C per 10 years (based on the period 1951–2015) [15].
Annual total precipitation has also increased, with an increasing trend of approximately
100 mm over the past 50 years. Lupikasza et al. [15] found trends in annual precipitation at
ten stations located in the upper Vistula River basin to vary from −7.2 mm per 10 years up
to 16.5 mm per 10 years for the period 1951–2015. The intensity of precipitation has also
changed, with the number of days of precipitation totaling more than 5 and 10 mm/day
increasing over the same time period. Pinskwar et al. [16] also found that, for the area of
the upper Vistula River basin, the number of days with precipitation equal to or above
10 mm as well as 20 mm increased in the period 1991–2015 in comparison to 1961–1990.
This has repercussions on the flows along the Vistula River and the degree of substances
transported from the catchment area into the receiving waters. The more intense rainfalls
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lead to a greater supply of eroded material to the rivers, exacerbated by the increased
weathering of rocks and erosion due to rising air temperatures. The additional sediment
transported in rivers can lead to increased accretion of the riverbed, particularly at the inlet
of reservoirs, as is the case for the Wloclawek Reservoir showcased below in the Section
“Ice characterization of a hanging dam”.
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Ice phenomena and phenology have also changed in rivers in Poland. Since 1960, ice
phenomena generally appear on the Warta River in December or January of each winter,
and the trend is that their occurrences have been delayed by approximately three days per
decade at the gauge at Poznań. The ice season generally ends in February or March, with
the trend in the end dates occurring approximately four days earlier each decade. This
leads to a progressive shortening of the ice season, as shown in Figure 8. The figure also
reveals a significant increase in the trend in mean air temperatures measured in Poznań.
An interesting correlation between air temperature and the duration of the ice season
can be drawn between the two, as indicated in Figure 9. A suggestion was made at the
workshop to model water temperature and apply a correction to the ice phenology due
to urban heat islands. One of the workshop participants mentioned that most gauges in
Poland, with long-term records of ice phenology and thicknesses, are situated in urban
centres, which may result in steeper trends toward shorter ice durations and thinner ice
nation-wide compared to potential trends due to climatic conditions alone. The additional
heat may stem from effluents such as those from wastewater treatment plants or altered
air temperatures. In particular air temperature changes should be tested since a large
urban area may be required for a significant effect to occur on river ice. A hydrological
modelling system with the capability of simulating river temperatures, e.g., the MESH-RBM
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modelling system [17,18], could help determine biases in ice phenology and thicknesses
when comparing “actual” water temperatures (due to climate change and urban heating)
to “natural” water temperatures (due to climate change alone). Increased transport of
dissolved substances, particularly from the application of fertilizers in the surrounding
agricultural region, can also lead to a shortening of the ice season.
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On the lower Vistula River, the duration of ice phenomena during the winters in the 
period 1960–2014 has also decreased [19]. The strongest negative trend was observed in 
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Figure 8. Changes in the duration of ice phenomena on the Warta River in Poznań against the
backdrop of the average air temperature in the cool half-year (November to April) in 1961–2020;
1—ice phenomena, 2—average air temperature in the cool half-year, 3—linear trend of ice phenomena
in 1964–2020 and 4—linear trend of the average air temperature in the cool half-year in 1961–2020;
n—no data (source: data from IMWM-NRI and RWMB in Poznań). (data source: IMWM-NRI and
RWMB in Poznań).
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Figure 9. Correlation between average air temperature in the cool half-year (November to April) and
duration of the ice phenomena on the Warta River in Poznań for the time period 1964–2020.

On the lower Vistula River, the duration of ice phenomena during the winters in
the period 1960–2014 has also decreased [19]. The strongest negative trend was observed
in the cross-section of the station situated immediately downstream of the river dam in
Wloclawek, approximately −1.5 days/year. Negative trends of −1.64 to −1.97 days/year
were also observed at other gauging stations. Negative trends were greater downstream of
the Wloclawek Dam than upstream.
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5. Ice-Jam Flood Risk Mitigation Measures
5.1. Artificial Ice-Cover Breakage

In order to reduce flood hazards and risks due to ice jamming, ice breakers operate
along major waterways to artificially break up ice covers (see Figure 10). The icebreaking
operation on the Oder River along the Polish–German border is carried out jointly by
the Polish and German waterways administrations. The technical management of the
breakage operation of both icebreaker fleets (seven Polish and six German with two reserve
icebreakers, one Polish and one German) is exercised by the Polish administration.
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Figure 10. Icebreakers releasing an ice jam on the Oder River (source: RZGW, Szczecin).

Generally, a permanent ice cover develops first on Dabie Lake in Szczecin (see map in
Figure 11), where frazil ice travelling down the Oder River accumulates and juxtapositions
upstream along the Oder River’s main stem and its tributaries, the Warta and Lusatian
Neisse rivers. Icebreaking begins with crushing the permanent ice cover on Dabie Lake and
freeing a gutter through the ice cover to make room for ice floes broken upstream along
the river. Frontal icebreakers are directed upriver to break the consolidated ice cover along
the river, while linear icebreakers crisscross Dabie Lake to prevent the broken ice from
stagnating and refreezing.
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Figure 11. Main stem of the Oder River and its major tributaries (drawn by the first author).

Icebreaking on the Oder River continues upstream towards the mouth of the Warta
River, where the resources are split, with the larger part of the icebreaker fleet continuing
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breakage along the Oder River towards the Lusatian Neisse River mouth and the remaining
icebreaker force working its way up the Warta River to the Notec River mouth. Caution
must be taken not to begin breakage operations too early so as not to create a large amount
of ice floes flowing from the upper sections of the Oder River and its tributaries to the lower
reach of the Oder River to create ice jams and, thus, risk inducing a flood artificially.

5.2. Flood Warning under Ice Conditions

Operational flood warning relies on river gauge monitoring. The federal state of
Brandenburg, Germany defines four different flood alert levels, which are specified for
representative river gauges used in flood reporting services, see Figure 12. An alert
level is proclaimed when water levels exceed a certain alert stage and local authorities
must take action. The alert levels require increasing operational flood defense actions
with increasing water stages [20]: alert level AI—water level reporting service (German:
Meldebeginn), AII—control service at flood defense infrastructure such as dikes (German:
Kontrolldienst), AIII—guard duty (German: Wachdienst), and AIV—civil protection (German:
Hochwasserabwehr). These four alert levels allow quick assessment of the potential severity
of a flood across different rivers in Brandenburg. The gauges used for the alert level system
require high reliability and redundancy of sensors and communication networks.
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Figure 12. Alert levels for flood warnings (source: Landesamt für Umwelt Brandenburg).

Flood alert gauges are linked to specific sections of a river which are defined according
to the local flood risk and hydraulic conditions, as well as the appropriate administrative
units. Figure 13 highlights the river sections used for flood alerts at the lower Oder River
in Brandenburg, with panel A showing the sections under normal flood conditions. Since
ice-jam flood dynamics are completely different at the lower Oder River, with ice-jams
moving upstream, two important adjustments have been implemented. First, river sections
upstream of the gauges are used for warning (Figure 13B) and lower alert stages are
defined, since ice-jams typically lead to damaged dikes and abrupt rises in water levels
are expected. With these adjustments the flood warning system is more representative of
ice-flood conditions.

5.3. Ice-Jam Flood Forecasting

Ice-jam flood forecasting is a key component in any flood management plan to reduce
flood hazards and risks. Advances have been made in the development of ice-jam flood
forecasting methodologies and systems, particularly for the Athabasca River at Fort McMur-
ray, Alberta [21], the upper reaches of the Saint John River, New Brunswick [22], and the
Sanhuhekou bend of the Yellow River in China [23]. These methodologies and systems have
also been implemented successfully in ice-jam flood forecasting systems for operational
use by the government of Newfoundland and Labrador for the lower (Atlantic) Churchill
River [24,25] and by the government of Manitoba for the lower Red River in Manitoba [26].
Requirements for an operational ice-jam flood forecasting system for the Oder River have
been laid out in [1] and the need to include such methodologies for ice conditions can be
seen in Figure 14, which shows a rapid rise in the backwater levels at Hohensaaten-Finow
(see map in Figure 11 for the location) caused by an ice jam downstream of that gauge in
February 2021. Forecasts on the rising limb of the event grossly underestimated the water

170



Water 2023, 15, 76

levels attained by the ice jamming since no river ice processes are integrated in the current
hydraulic model used for operational forecasting. The roughness coefficients and the rating
curves implemented in the model also require updating to reflect ice-jam backwater effects.
An ice-jam hydraulic model has been set up for the Oder River [27] between Ratzdorf and
Kienitz (see Figure 11 for locations) and needs to be extended to Dabie Lake to include
ice-jam backwater effects at Hohensaaten-Finow.
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operational use by the government of Newfoundland and Labrador for the lower (Atlan-
tic) Churchill River [24,25] and by the government of Manitoba for the lower Red River in 
Manitoba [26]. Requirements for an operational ice-jam flood forecasting system for the 
Oder River have been laid out in [1] and the need to include such methodologies for ice 
conditions can be seen in Figure 14, which shows a rapid rise in the backwater levels at 
Hohensaaten-Finow (see map in Figure 11 for the location) caused by an ice jam down-
stream of that gauge in February 2021. Forecasts on the rising limb of the event grossly 
underestimated the water levels attained by the ice jamming since no river ice processes 
are integrated in the current hydraulic model used for operational forecasting. The rough-
ness coefficients and the rating curves implemented in the model also require updating to 
reflect ice-jam backwater effects. An ice-jam hydraulic model has been set up for the Oder 
River [27] between Ratzdorf and Kienitz (see Figure 11 for locations) and needs to be ex-
tended to Dabie Lake to include ice-jam backwater effects at Hohensaaten-Finow. 

Figure 13. Tracking an ice-jam cover progression using the alert level system, which links gauge
readings to upstream river reaches (source: Landesamt für Umwelt Brandenburg) with (A) for normal
flood conditions and (B) for ice-jam conditions.
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6. Technical Advances in River Ice Research
6.1. Particle Tracking Velocimetry

A novelty presented at the workshop is determining flow velocities of ice using
particle tracking velocimetry, which allows the velocities and trajectories of ice floes to
be measured remotely. The method tracks the flow velocities of many ice floes using a
sequence of images. It includes measuring the camera position and orientation (camera
pose), automatic extraction of the water area for feature searching, particle detection and
filtering, particle tracking and filtering, and scaling the tracks of (ice floe) velocities [28].
Figure 15 shows such trajectories with velocities of ice floes across the west channel of the
lower Oder River during the February 2021 ice-jam event.
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6.2. Ice Characterization of a Hanging Dam

In February 2021, a severe ice jam occurred in the upstream end of the Wloclawek
Reservoir on the Vistula River near Plock [29]. This area is one of the most ice-jam prone
river stretches in Poland. Evidence points to sediment accretion at the reservoir inlet as
the reason for the increase in this area’s propensity to ice jamming, indicated by a shift in
the rating curve over time between the years 2009 and 2020. Efforts to break up the ice
jam with ice breakers were hindered by the shallow depth of the reservoir inlet. Dredging
works have been cut back in recent years even though the intensity of sedimentation has
increased due to greater transport of sediment from the upstream catchment area, with an
accretion rate of approximately 5 cm/year downstream of Plock. Despite the shortening of
the duration of the ice season, the ice-jam flood risk of this reservoir section remains high.

To determine the volume of ice in the hanging dam that caused the jamming and the
thickness of the hanging dam in relation to the water depth, cross-sections of the ice with
depth were surveyed at the upstream end of the hanging dam using a sounding device
(weight) to penetrate the hanging dam ice. During these frazil slush penetration tests,
changes in the compactness of the ice deposits constituting the hanging dam were also
recorded to determine the amount of ice grounded on the reservoir bottom during the
ice-jam event. Three grades of compactness were classified:

• firm accumulations—sounder must be driven into the ice by force.
• compact accumulations—sounder remains stationary within the slush.
• loose accumulations—sounder penetrates the accumulation driven by its own weight.

The cross-section of the depths of the hanging dam is shown in Figure 16, indicating
a decrease in the ice compactness with depth. A water layer was still evident between
the bottom of the hanging dam and the reservoir bottom (no grounding); however, the
hanging dam did fill a substantial percentage of the cross-sectional flow area. Flow velocity
on the right side of the cross-section would have been greater where loose slush ice did not
deposit, whereas on the left side, flow velocities would have been less, allowing frazil ice
to be deposited on the underside of the hanging dam.

6.3. Design of New Ice-Control Structure

Ice jams are initiated when ice transport conveyance is reduced locally along a river
stretch, particularly in meanders or in areas where the river narrows and obstacles are
present in the river (e.g., islands, bridge piers, and sand bars) [30]. A continuous high
inflow of ice from upstream can also help in the initiation process of ice jams. High volumes
of inflowing ice can lead to increases in ice thicknesses constricting the cross-sectional
flow area, resulting in the impediment of discharge under the ice jam with an increase in
water surface elevations in the section upstream of the jam. One means of reducing the
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influx of ice in an ice-jam prone area is to arrest the flow of ice upstream of a potential
ice-jam location using an ice-control structure (ICS), shown in Figure 17 [31]. The structure
mostly impedes the ice transport further downstream but not the flow of the water, which
is allowed to bypass the ice accumulation. A transverse set of piers only partially spans
across the channel from one bank; the piers then extend longitudinally upstream parallel to
the bank to form a side channel between the longitudinal set of piers and the bank. This
side channel provides a passage of water to flow around the accumulation of ice which
is held back by the piers. With this design, additional space in an adjacent floodplain to
bypass water around the ice accumulation is not required.
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Figure 17. Ice-control structure (photo courtesy of US Army Cold Regions Research and Engineering
Laboratory, Hanover, New Hampshire; used with permission).

6.4. River Ice Detection Using Optical and Radar Satellite Imagery in Tandem

The aim of river ice monitoring using satellite data is to (i) provide spatially constant,
frequent information about the presence of ice along a river course, (ii) provide imagery sup-
port for water management services, and (iii) detect possible threats and natural disasters
provoked by ice jams. The two satellite sensors used in this study were:

• Sentinel-1, which is a radar sensor using C-band frequency in two polarization modes
(VV/VH). Two satellites (A and B), launched in 2014 and 2015, provided ~2-day revisit
times across all of Europe with a spatial resolution of ~10 m and a swath width of
~250 km for the GRD product in IW mode

• Sentinel-2, which is an optical sensor with 13 spectral bands. Two satellites (A and
B), launched in 2015 and 2017, provided ~5-day revisit times across Europe to acquire
imagery with a spatial resolution of 10, 20, and 60 m with a swath width of ~290 km.
Imagery was delivered in UTM grid cuts with overlap.
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Figure 18 provides a combined product of the Sentinel-1 and Sentinel-2 images of the
west and east channels of the lower Oder River. Sentinel-1 images were calibrated, speckle
filtered, terrain corrected, and rescaled to dB, whereas the Sentinel-2 images underwent
atmospheric correction, resampling to consistent spatial resolution of 20 m, and spectral
indices calculations to strengthen the classification of the desired coverage classes (water,
snow or ice, vegetation, and bare soil) before a composite of the two images was created.
There are some limitations with both sensors. For example, misclassifications may occur
between smooth black ice covers and open water. Misclassifications are also possible when
predefined waterbeds are changed due to changing water levels. For Sentinel-2 imagery,
misclassifications may also occur when differentiating between smooth black ice and open
water. Image areas can also be misclassified as turbid waters or waters having an algal
bloom. Clouds will also hamper Sentinel-2 image clarity.
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The high-resolution sensors from the Sentinel family proved very useful in detecting
ice coverage, including ice jams. The Sentinel-2 optical sensor offers better thematic
accuracy and should be treated as a primary source for ice classification, whereas the
Sentinel-1 radar sensor offers the possibility of providing observations even under cloudy
conditions and can be used as a secondary or auxiliary source for ice classification. Ice jams
are well presented in the images from both sensors. Success in these composite images
have led to the creation of the high-resolution snow and ice monitoring service, developed
between 2019 and 2021 under the auspices of the Europe Environmental Agency
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6.5. Stochastic Model to Assess Ice-Jam Flood Hazards

The chaotic nature of ice-jam formation and flooding can be captured using a stochastic
modelling approach. In this approach, a deterministic river ice hydraulics model runs
many times, with each run having a different set of input values for the parameters and
boundary conditions. These values are randomly selected from frequency distributions
of each parameter and boundary condition. This results in an ensemble of possible ice-
jamming outcomes along a river reach of interest. Such an approach has been newly
developed to quantify ice-jam flood hazards and risks [32,33]. Figure 19 conceptualizes the
approach, which requires frequency distributions of the boundary conditions (shown at the
top of Figure 19) and parameter values (not shown) to be input to the deterministic river
ice hydraulic model RIVICE (see [34,35]) for model descriptions). The boundary conditions
include:

• upstream water flow Q (Figure 19a) represented by an extreme-value distribution of
the flows at instantaneous water level maxima during ice-jam events,

• volume of inflowing ice accumulating in the ice jam Vice (Figure 19b), which is a
function of Q, with the scatter represented by a confidence band within which random
variables are selected,

• downstream water level W (Figure 19c), which is a function of the upstream discharge.
• Location of the ice-jam lodgment x (Figure 19d), which is represented by a stepped

uniform distribution to capture the predisposition of ice jamming in some stretches
over others.
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Figure 19. Conceptualization of the stochastic modelling framework for ice-jam flood hazard assess-
ment; explanations for each subfigure are provided in the main text (drawn by the first author).

Parameters are generally uniform distributions between minimum and maximum
values determined through calibration.

Using a Monte Carlo approach (Figure 19e), RIVICE runs hundreds of times, with
each simulation having a different set of boundary conditions and parameter values cho-
sen randomly from all distributions. One output is an ensemble of backwater profiles
(Figure 19f), the results of which can be compiled within a probabilistic context using
percentile profiles of exceedance probabilities (Figure 19g). The water level elevations at a
gauge can then be compared to the annual exceedance probabilities of the levels recorded
at the gauge (Figure 19h). Discrepancies between the simulated and recorded exceedance
probabilities can be reduced by adjusting the percentage of the confidence band in the Q vs.
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Vice relationship with the processes, including the Monte Carlo simulations, having to be
repeated.

Referring to Figure 20, artificially breaking up the ice cover, for example using an
ice breaker as described in the section “Artificial ice-cover breakage” above, can be im-
plemented as an option to mitigate ice-jam flood hazards and risks. This scenario can be
simulated within the stochastic modelling framework by removing those stretches in the
lodgment location distribution (Figure 20D). It is assumed that ice cannot lodge to form
an ice jam in areas that have been artificially broken. Rerunning the Monte Carlo analysis
should lead to a change in the elevations of the percentile profiles of the backwater level
ensemble.
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Figure 20. Adjustment in the boundary condition frequency distribution within the stochastic
modelling framework when considering mitigation options, such as artificially breaking the ice cover
to hinder ice-jam lodgments; explanations for each subfigure are provided in the main text (drawn by
the first author).

At the workshop, research was also presented on the testing of different solutions
applied to probability analyses of ice jams and ice covers. Time series of the maximum
water stages were determined using: (i) extreme-value approaches using annual maximum
water staging [36], and (ii) the peak-over-threshold (POT) method. The main idea of
the POT method is to prepare a series of maxima on the basis of all events occurring in
the analyzed time period that exceed an assumed threshold value, the so-called cut-off
level [37]. The application of the POT method makes it possible to include, within the
time series, the fact that ice phenomena may occur several times in one year, and, within
the empirical probability, the fact that ice phenomena do not occur every year [38]. The
final probability of exceedance for the POT time series was determined using the following
tested distributions: log-normal, Gumbel, Pearson III, Gamma, log-Gamma, and Pareto.

6.6. Monitoring with UAVs

Growing access to unmanned aerial vehicles (UAVs), also known as drones, opens
new possibilities to observe ice on rivers and reservoirs. Even low-cost UAVs are now
capable of taking nadir photographs with predefined frontal and side overlap. Such images
are standard input data for the structure-from-motion (SfM) algorithm, the products of
which are dense point clouds and the resulting digital surface models as well as orthopho-
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tomaps. Recently, this popular approach has been adopted to determine the spatial extent
of snow [39] or ice [40] as well as to reconstruct snow depth [41] or ice thickness [40].

Figure 21 presents aerial imagery of two frozen reservoirs in the Izerskie Mountains
(southwest Poland) as well as two fragments of the unfrozen Oder River (west Poland). It
is apparent from the figure that the visual analysis of imagery leads to the differentiation
between frozen (top row in Figure 21) and unfrozen water (bottom row in Figure 21),
enabling the detection of the presence of ice. Additionally, it is simple to discriminate
between spatially uneven ice cover on water reservoirs in Rozdroże Izerskie and Polana
Izerska and snow-covered banks or bare land. The knowledge about snow depth and
extent and ice thickness and extent, acquired just after collecting UAV data within the
concept of rapid mapping [42], may be useful, for instance, to assess the risks of avalanches,
snow-melt floods, or ice jams.
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Figure 21. Fragment of single aerial image taken in central projection by a UAV over Rozdroże
Izerskie in southwest Poland showing two interconnected frozen reservoirs (top left), fragment of the
SfM-based orthophotomap of Polana Izerska in southwest Poland centered on a frozen reservoir (top
right), fragments of the SfM-based orthophotomaps of the Oder River in west Poland in Pomorsko
(bottom left) and Tarnawa (bottom right) showing an unfrozen river channel (source: Department
of Geoinformatics and Cartography, University of Wrocław).

7. Conclusions

The workshop brought together many scientists and government officials who were
involved in the field of river ice in their work and research. The venue provided an
opportunity to present ideas and exchange knowledge in the field of ice-jam flood hazards
and risks and how the subject was approached and applied in each of the EU member’s
countries. One key takeaway message from the workshop was that ice-jam floods are
important components in the flood hazard and risk assessment and should be catalogued
in the Flood Management Plans of the EU Floods Directive deliverables, but ice-jam floods
do not need to be explicitly expressed within the directive itself. This may be partially
due to the fact that, in rivers of northern and eastern countries, which are members of
the European Union, the floodwater levels for a certain annual exceedance probability (or
return periods) from ice jamming is generally lower than for those of open-water floods.
A more comprehensive examination of other rivers is required for this statement to be
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thoroughly conclusive. Depending on the region, ice-jam flood hazards and risks have
different foci, for example, hydropower operations in Norway and shipping navigation in
Poland and Germany.

At the workshop, many new advances were also presented on monitoring and mitigat-
ing ice-jam flood hazards and risks, including application with particle tracking velocimetry,
hanging dam characterization, ice-control structure design, remote sensing of ice covers,
and modelling ice-jam flood hazards and hazard reductions. As an outlook, areas that need
research furtherance include:

• safely measuring flows under covers of loose ice accumulations,
• incorporating near-ground (trail cameras), aerial (drones), and space-borne (satellites)

remote sensing imagery into integrated monitoring systems for quick response to
ice-jam flood hazard developments, and

• real-time monitoring of ice-cover elevations as a proxy for ice-thickness measurements.

8. Outlook

The workshop focused more on the technical aspects of flood risk assessment. A
follow-up workshop could include the social aspects of ice-jam flood risk [43], for exam-
ple community resilience [44] and socioeconomic vulnerabilities [45]. Research has also
been carried out with agent-based modelling (ABM) to incorporate both technical and
social aspects in flood risk assessments and management, on the individual [46], house-
hold [47] and regional [48] levels, in policy and decision making. An application of ABM
specific to ice-jam flood risk assessment and mitigation is currently being explored by
Ghoreishi et al. [49,50].
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