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Model-Informed Precision Dosing (MIPD)

Jonás Samuel Pérez-Blanco 1,2,* and José M. Lanao 1,2
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University of Salamanca, 37007 Salamanca, Spain

2 The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
* Correspondence: jsperez@usal.es

Model-informed precision dosing (MIPD) is an advanced quantitative approach fo-
cusing on individualized dosage optimization, integrating complex mathematical and
statistical models of drugs and disease combined with individual demographic and clinical
patient characteristics. MIPD has been highlighted as a current and useful tool for drug
dosage optimization in drug development processes and clinical practice.

This Special Issue focuses on new MIPD strategies and methodologies to optimize
drug dosage in specific populations. A total of twenty manuscripts, nineteen research
articles and one review article, are published in this Special Issue.

Population pharmacokinetics (popPK) and dose optimization in different types of
patients constitutes a useful working tool within the framework of the MIPD approach.
Population pharmacokinetic models are of essential in the selection of doses of a wide vari-
ety of drugs and especially drugs with a narrow therapeutic margin in special populations,
such as pediatric patients, critically ill patients, etc.

In this Special Issue, a total of eleven manuscripts on popPK and the dosage of various
drugs are presented, addressing antibiotics, including linelozid, meropenem, imipenem
and ciprofloxacin, in special populations such as critically ill patients. Other popPK studies
included in this Special Issue focus on different drugs, such as valproic acid in pediatric and
adult Caucasian patients, donezepil administered in patch formulations, levetiracetam in
critically ill patients with normal or augmented renal function, and monoclonal antibodies
such as infliximab or adalimumab for anti-TNF therapy in patients with inflammatory
bowel disease.

One of the manuscripts focuses on building a popPK model to establish MIPD al-
gorithm to optimize the dosing of linezolid in patients with multidrug and extensively
drug-resistant tuberculosis and propose three sampling occasions to derive an individual-
ized dose that results in effective and safe dosage regimens [1].

Considering the therapeutic importance of the use of antibiotics in patient populations
with great inter- and intra-individual variability, this Special Issue includes MIPD-based
dosing strategies for antibiotics, such as meropenem, imipenem and ciprofloxacin, for pa-
tients in intensive care units. Based on a popPK model of meropenem for critically ill adult
patients using probability target attainment (PTA), prolonged infusion or a high-dosage
regimen of meropenem is proposed, particularly when treating critically ill patients with
increased renal clearance or those infected with pathogens with decreased in vitro suscepti-
bility. This study also concludes that extracorporeal membrane oxygenation (ECMO) use
does not affect meropenem PK in critically ill patients [2].

A tabular precision dosing tool for the initial therapy of meropenem, integrating
hospital-specific pathogen susceptibility and based on popPK in intensive care units, was
developed [3]. Parametric and non-parametric popPK models were also optimized for the
dosage of imipenem in critically ill patients, which is appropriate for individuals with high
glomerular filtration rates (eGFRs), but insufficient for low eGFRs [4].

In another comparative study, an individual and popPK analysis of ciprofloxacin in
critically ill patients in the first 36 h of treatment was performed. No differences were

Pharmaceutics 2022, 14, 2731. https://doi.org/10.3390/pharmaceutics14122731 https://www.mdpi.com/journal/pharmaceutics
1



Pharmaceutics 2022, 14, 2731

reported between ciprofloxacin pharmacokinetic parameters between early and late phases
of treatment, and creatinine clearance was identified as a covariate of ciprofloxacin pharma-
cokinetics [5]. In this same type of population, a study on the population pharmacokinetics
of the antiepileptic levetiracetam in critically ill patients with normal or augmented renal
function was carried out, proposing specific dosing schemes for this kind of population [6].

The good predictability of a popPK model of valproic acid was found based on the
characterization of the valproic acid apparent clearance (CL/F) in pediatric and adult
Caucasian patients. The popPK model demonstrates the influence of co-administration
with carbamazepine, phenytoin, and phenobarbital on the pharmacokinetics of valproic
acid [7].

A two-compartmental popPK model of the antipsychotic donezepil with two transit
compartments was used for the characterization of this drug after the administration of
transdermal patches in comparison with the oral route of administration, establishing dose
equivalence between both routes of administration [8]. Additionally, and in the therapeutic
group of antipsychotics, a review on the PK and pharmacogenetic data regarding the
three major long-acting injectable (LAI) atypical antipsychotics, risperidone, paliperidone,
and aripiprazole, is included in this Special Issue. The main conclusions of this review
are the role of CYP2D6 in the PK of LAI aripiprazole and common aspects in the popPK
models developed for these drugs, such as the influence of body weight, administration
site, and needle characteristics. The manuscript also suggests that the combination of
pharmacogenetics and PK leads to individualized dosing antipsychotic therapy [9].

This Special Issue also includes three papers on popPK and the dosing of two mon-
oclonal antibodies, infliximab and adalimumab in patients with gastrointestinal tract
diseases, such as ulcerative colitis and Crohn’s disease.

The predictive performance of twelve different published infliximab popPK models for
inflammatory bowel disease patients was evaluated. Two of the models were suggested to
have the best predictive performance and may be used as MIPD approaches for infliximab
therapy in this kind of population [10]. A similar manuscript allows the best predictive
performance for two Adalimumab popPK models to be established [11].

Different dosing strategies have been tested in comparison to standard dosing for
increasing infliximab exposure during induction therapy in patients with ulcerative colitis.
A dose of 10 mg/kg improves the probability of endoscopic improvement together with
dose adaptation based on the interindividual variability of the patients [12].

In addition, this Special Issue includes several studies on pharmacokinetic/pharmacodynamic
models (PK/PD). Focusing on applications in the field of infectious diseases, three manuscripts of
this type are included. The anti-pseudomonal activity of different antibiotics against P. aeruginosa
was evaluated using a PK/PD analysis with three different PK/PD indices based on the probabil-
ity of target attainment (PTA). According to the results of this study, the most active antibacterial
against P. aeruginosa was ceftazidime/avibactam, followed by ceftolozane/tazobactam and
colistin [13]. In the same way, PK/PD analysis was used as a tool to optimize the treatment of
Neisseria gonorrhoeae infections. The conclusions of this study suggest that ceftriaxone and oral
cefixime are good candidates for treating gonorrhea [14].

A semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modelling and sim-
ulation approach was tested to evaluate the activity of Amphotericin B against Candida auris
in vitro. The model includes two fungal stages consisting of a drug-susceptible fungal
subpopulation and a drug-resistant subpopulation. In addition, a modified Emax sigmoidal
model better describes this drug effect [15].

Neutropenia is usually associated with palbociclib toxicity in patients with breast
cancer who are treated with this drug. A PK/PD model of five compartments, including
a blood compartment, stem cell compartment and three transit compartments, was used
to evaluate the relationship between plasma concentrations of palbociclib and absolute
neutrophile count. According to the results, palbociclib < 100 μg/L can limit the risk of
grade 4 neutropenia [16].
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The dosing individualization of ustekimab in Crohn’s disease was based on a semi-
mechanistic popPK/PD model composed of a two-compartment PK model linked to an
indirect response model. This model allows individualized treatments with ustekimab in
patients with Crohn´s disease [17].

Bayesian algorithms are a fundamental element of the MIPD framework because they
can be used to forecast individualized dosing to obtain target therapeutic concentrations in
patients enrolled in therapeutic drug monitoring (TDM) programs. In this Special Issue,
several papers focus on this objective.

Bayesian software is an important tool in hospitals for the routine dosage individu-
alization of a wide spectrum of drugs in different patient populations undergoing TDM
programs. Posologyr is an open-source R package developed for Bayesian individual
parameter estimation and dose individualization with different drugs. The performance of
this computer program was tested against NONMEM for maximum a posteriori (MAP)
points estimates and against Monolix for the estimation of full posterior distributions of
individual parameters in a wide variety of models [18].

In this Special Issue, two articles focused on Bayesian forecasting for dosage adaptation
following TDM. One of these addresses the predictive performance in vancomycin TDM
testing five different model-based approaches and suggests the potential benefit of model-
based vancomycin dosing in adult patients compared with the standard TDM [19]. The
other contribution focuses on the use of the routine TDM of tyrosine kinase inhibitors (TKI),
such as erlotinib, imatinib, lapatinib and sorafenib in cancer therapy. The results of the
study demonstrate the high inter- and intra-individual variability in the PK behavior of this
type of drug, as well as the utility of routine TDM to optimize doses and assess adherence,
as well as interactions with food and other drugs [20].

In summary, this Special Issue demonstrates the rise of the MIPD as a powerful tool in
the field of precision medicine for the optimization of treatments, with direct implications
in increasing the safety and efficacy of pharmacological treatments.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: We aimed to evaluate the predictive performance and predicted doses of a single-model
approach or several multi-model approaches compared with the standard therapeutic drug moni-
toring (TDM)-based vancomycin dosing. We performed a hospital-wide monocentric retrospective
study in adult patients treated with either intermittent or continuous vancomycin infusions. Each
patient provided two randomly selected pairs of two consecutive vancomycin concentrations. A
web-based precision dosing software, TDMx, was used to evaluate the model-based approaches. In
total, 154 patients contributed 308 pairs. With standard TDM-based dosing, only 48.1% (148/308)
of all of the second concentrations were within the therapeutic range. Across the model-based
approaches we investigated, the mean relative bias and relative root mean square error varied from
−5.36% to 3.18% and from 24.8% to 28.1%, respectively. The model averaging approach according to
the squared prediction errors showed an acceptable bias and was the most precise. According to this
approach, the median (interquartile range) differences between the model-predicted and prescribed
doses, expressed as mg every 12 h, were 113 [−69; 427] mg, −70 [−208; 120], mg and 40 [−84; 197] mg
in the case of subtherapeutic, supratherapeutic, and therapeutic exposure at the second concentration,
respectively. These dose differences, along with poor target attainment, suggest a large window of
opportunity for the model-based TDM compared with the standard TDM-based vancomycin dosing.
Implementation studies of model-based TDM in routine care are warranted.
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1. Introduction

Vancomycin is a glycopeptide antibiotic, administered intravenously to treat severe
infections due to Gram-positive bacteria. Vancomycin is widely used across different
patient populations [1]. Considering its relatively narrow therapeutic range, plasma con-
centrations are usually monitored during therapy, and therapeutic drug monitoring (TDM)
is ubiquitously applied to guide vancomycin dosing [2,3].

Until recently, most institutions used concentrations obtained during intermittent
(trough concentration, Ctrough) or continuous infusion to guide vancomycin dosing as was
recommended in the first consensus guideline for the TDM of vancomycin in 2009 [3].
In the 2020 update of this guideline, the ratio of the area under the concentration–time
curve over 24 h to the minimum inhibitory concentration (AUC/MIC) was recommended
over the use of vancomycin concentrations to guide the treatment of serious infections
caused by methicillin-resistant Staphylococcus aureus [2]. Despite this recommendation,
the pharmacokinetic/pharmacodynamic (PK/PD) index of interest that should be used
to guide vancomycin dosing is still under debate [4–7]. Some argue that the evidence
for using AUC/MIC-based TDM over the monitoring of vancomycin concentrations is
inconclusive and that it is too early to justify the increased resource use associated with
AUC/MIC monitoring [4,6,8]. As a result, there has not been a universal application of
AUC/MIC-based TDM of vancomycin to date, and single vancomycin concentrations are
still regularly used to guide dosing.

Irrespective of the PK/PD index, evidence reveals that many patients still experience
vancomycin exposure outside of the therapeutic range with standard TDM-based strategies,
associated with either reduced efficacy or increased toxicity [9,10]. Therefore, Bayesian
forecasting has been proposed to provide standardized and accurate dose adaptations
following the TDM of vancomycin [2,10]. Bayesian forecasting relies on the combina-
tion of previously developed pharmacokinetic population (pop) PK models and patient
information, such as plasma concentrations, previous dosing information, and patient
characteristics. The individually generated PK estimates then allow the prediction of fu-
ture exposure according to specific dosing adaptations. This whole process is commonly
referred to as model-informed precision dosing (MIPD) [11].

Currently, several dosing software modules offer vancomycin MIPD [11]. However,
the accuracy of model-based dosing recommendations depends on the PopPK model
used [12]. Several studies illustrated that it is particularly challenging to select one appro-
priate PopPK model of vancomycin for use in real-world clinical practice [13,14]. Recently,
Uster et al. suggested two multi-model approaches—a model selection algorithm (MSA)
and a model averaging algorithm (MAA)—that might address this important challenge
and stimulate the integration of model-based vancomycin dosing in clinical practice [15].

Therefore, in this study, we aimed to evaluate the predictive performance and the
predicted doses of a single-model approach and several multi-model approaches based on
seven vancomycin models for the Bayesian forecasting of vancomycin dosing compared
with the standard TDM-based dosing in a hospital-wide setting for both intermittent and
continuous infusion regimens in adults.

2. Materials and Methods

2.1. Study Design, Patients, and Data Collection

This study was designed as a retrospective, monocentric, and hospital-wide evaluation
study in adults. The study was approved by the Ethics Committee Research UZ/KU
Leuven (S65213).
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All adult patients admitted to any ward at the University Hospitals Leuven between
January 2019 and January 2021 and treated with either intermittent or continuous van-
comycin infusion were eligible for inclusion. To cover a hospital-wide adult patient popula-
tion, both patients admitted to the intensive care unit (ICU) wards and non-ICU wards were
included. Patients were excluded if they did not provide a minimum of three vancomycin
plasma concentrations measured consecutively during one treatment course. Patients with
two consecutive concentrations measured after >72 h were also excluded.

Demographic, clinical, and laboratory data were collected from the patients’ medi-
cal files. For each patient, two randomly selected pairs of two consecutive vancomycin
plasma concentrations were selected by a ‘Research Randomizer’ tool [16] as illustrated in
Figure 1. For each pair of two consecutive plasma concentrations, the vancomycin dosing
information was collected from the first vancomycin dose until the time of the second
vancomycin concentration.

Figure 1. Schematic representation of the inclusion of two pairs of two consecutive vancomycin
concentrations using a random example as illustration. The first concentration of each pair was used
to inform the model-based predictions. The second concentration was blinded from the models and
was used to evaluate the performance of the model-based prediction. The model-predicted dose
after the first concentration was used to evaluate the model-based doses compared with the standard
TDM-based doses.

2.2. Bayesian Forecasting

A free web-based MIPD software, TDMx [17], was used to evaluate the model-based
vancomycin concentrations and doses. Five different model-based approaches were evalu-
ated. First, a single-model approach using the Goti model [18] was evaluated. The Goti
model was developed using a large and heterogeneous set of hospitalized patients. This
specific model was selected as it was demonstrated to be the most suitable single model to
drive model-based vancomycin dosing in both hospitalized non-ICU patients [14] and ICU
patients [13]. Next, two automated multi-model algorithms were also evaluated, i.e., the
MSA and the MAA [15]. Both algorithms were recently developed and validated in a het-
erogeneous population and integrated into TDMx. In TDMx, MSA and MAA predictions
are based on seven vancomycin PopPK models [18–24]. These seven PopPK models were
developed in distinct populations covering a broad hospital setting, including hospitalized,
critically ill, extremely obese, dialysis, sepsis, trauma, and post-cardiac surgery patients.
Therefore, these vancomycin models were considered representative of the hospital-wide
adult patient population investigated in our study. The characteristics of these vancomycin
models were reported in detail previously [15]. All models included at least creatinine
clearance or serum creatinine and total body weight as covariates. All of the covariates
included in the seven vancomycin models were collected except for the Simplified Acute
Physiology Score (SAPS) score, which is not collected at our institution.
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Both multi-model approaches used all of the available models simultaneously to
provide predictions. The prediction of the MSA was the prediction of the best-fitting
model for an individual patient based on the goodness-of-fit of each model to the previous
vancomycin concentration (i.e., how well did the model predict the previous vancomycin
concentration). Similarly, the MAA considered the same previously collected data. How-
ever, instead of selecting the best-fitting model, the prediction of the MAA was based on
the weighted predictions of all of the PopPK models. The MSA and MAA both required a
criterion to quantify the individual model’s fit and to attribute the final weighting schemes.

Two different criteria to assess the models’ fit metrics were evaluated: the objective
function value (OFV) and the squared prediction errors (SSE). These weighting schemes
were described in detail previously [15]. The MSA and MAA were evaluated according to
these two weighting schemes. As such, we evaluated five different model-based approaches
in this study: the Goti model, the MSA with weighting according to the OFV (MSAOFV) or
the SSE (MSASSE), and the MAA with weighting according to the OFV (MAAOFV) or the
SSE (MAASSE).

2.3. Evaluation of the Model-Based Approaches

For each of the five above-mentioned model-based approaches, we evaluated the
predictive performance regarding the vancomycin model-based predictions. Subsequently,
the model-based approach with the best predictive performance was used to evaluate the
model-based vancomycin doses compared with the standard TDM-based doses. Addition-
ally, a sensitivity analysis was performed using the model-based approach with the worst
predictive performance to evaluate the robustness of the model-predicted doses across the
different model-based approaches.

Initially, the first vancomycin concentration of each pair was used to inform the model-
based predictions as illustrated in Figure 1. The second vancomycin concentration was
then used to evaluate the predictive performance of the model-based dosing by comparing
the model-based predicted concentration with the observed vancomycin concentration.
The model-predicted concentration was based on patient characteristics, previously admin-
istered doses (up to the second plasma concentration), and the previous and most recent
vancomycin concentration.

The bias, relative bias (rBias), and relative root mean square error (rRMSE) were
calculated to compare the individually predicted and observed second vancomycin concen-
tration of each pair.

Bias =
1
n
× ∑i

1(predictedi −observedi) (1)

rBias =
1
n
× ∑i

1(
predictedi − observedi

observedi
) × 100% (2)

rRMSE =

√√√√ 1
n
× ∑i

1
(predictedi − observedi)

2

(observedi)
2 × 100% (3)

where n is the total number of second vancomycin concentrations.
The predictive performance was considered acceptable if the mean bias was ≤±2 mg/L

for concentrations below 20 mg/L or if the rBias was ≤±10% for concentrations of 20 mg/L
and higher, thereby meeting the analytical quality requirements of the Royal College of
Pathologists of Australasia applied at our institution. The 95% confidence intervals of
the mean (relative) bias also included 0. Additionally, an rRMSE as low as possible was
aimed for.

At an individual level (i.e., for each pair separately), the acceptable bias was also
evaluated according to the above-mentioned criteria. The performance was considered
acceptable if the bias was ≤± 2 mg/L for concentrations below 20 mg/L or if the rBias
was ≤±10% for concentrations of 20 mg/L and higher. The classification accuracy was
also evaluated; it was defined as no change in exposure category (i.e., subtherapeutic,
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supratherapeutic, or therapeutic) between the predicted vancomycin concentration and
the observed concentration. Therapeutic exposure was defined as vancomycin concentra-
tions between 12.5–17.5 mg/L or 20–25 mg/L depending on intermittent or continuous
infusion, respectively.

Next, the prescribed doses were compared with the model-based doses predicted to
reach the target concentration of 15 mg/L and 22.5 mg/L according to the local hospital’s
guidelines for intermittent and continuous infusion, respectively. In clinical practice, it is
common to prescribe a dose that is considered to reach therapeutic exposure at steady state.
In contrast, model-based dosing aims to attain therapeutic exposure as soon as possible,
i.e., at the next dosing interval. Therefore, the model-based doses were predicted as the
first two doses to be administered after the first concentration of each pair. The prescribed
dose in clinical practice was compared with the model-predicted second dose—which was
a steady-state dose—since the model-predicted first dose was often not representative of
the steady-state dose. All model-predicted and prescribed doses were normalized to a
twice-daily dosing regimen, i.e., doses were expressed as dose every 12 h (q12h).

The absolute differences were calculated and evaluated graphically by comparing
observed versus individually predicted vancomycin concentrations. Additionally, the
correlation between the model-predicted and prescribed doses was evaluated using the
intraclass correlation coefficient (ICC), which is an index of agreement between two mea-
surements [25]. The ICC values were reported according to the best practices for reporting
ICC parameters [26]. The subgroup analyses were performed to investigate the dose
differences according to the vancomycin exposure at the second concentration (i.e., subther-
apeutic, supratherapeutic, or therapeutic exposure).

2.4. Statistics

Statistical and graphical analyses of the data were performed using IBM SPSS Statistics
27 and R (version 4.0.0, R Core Team, Vienna, Austria). The figures were constructed in
Microsoft PowerPoint (version 2203, Microsoft 365 MSO, Washington, DC, USA) and R
(version 4.0.0, R Core Team, Vienna, Austria). The data were reported as count and per-
centage or median and interquartile range (IQR) as appropriate. A Wilcoxon signed-rank
test was performed to evaluate the differences between vancomycin concentrations in
patients receiving intermittent or continuous infusions separately since different targets
were aimed for in both groups. The statistical significance was defined using a two-sided
p-value ≤ 0.05. In line with previous studies, we aimed to collect data from 150 patients to
represent the adult hospital-wide population that received vancomycin at the University
Hospitals Leuven. To further increase the sample size, two pairs of vancomycin concen-
trations were collected for each patient. As such, we considered data from 150 patients,
corresponding to 300 pairs of two consecutive vancomycin concentrations, appropriate
for performing a robust evaluation of the predictive performance and predicted doses of
model-based vancomycin dosing.

3. Results

3.1. Clinical Data

In total, 616 vancomycin concentrations were collected from 154 patients. Each patient
contributed four vancomycin concentrations (i.e., two pairs of two consecutive concen-
trations per patient). As shown in Table 1, both ICU and non-ICU patients receiving
intermittent and continuous infusion therapy were included. The median [IQR] age was
63 [53; 72] years old. The reasons for hospital admission and vancomycin therapy were
diverse, as illustrated in Table 1. On the day of the first vancomycin concentration, renal
replacement therapy was present in 23 (7.5%) of all pairs.
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Table 1. Patient characteristics.

Per Patient

All
(n = 154)

Intermittent
(n = 95)

Continuous
(n = 59)

Male, n (%) 103 (66.9) 68 (71.6) 35 (59.3)
Caucasian, n (%)/Afro-American, n (%) 149 (96.8)/5 (3.2) 90 (94.7)/5 (5.3) 59 (100)
Age (years), median [IQR] 63 [53; 72] 63 [55; 74] 60 [49; 68]
Weight (kg), median [IQR] 76 [64; 94] 77 [63; 95] 74 [65; 94]
Diabetes mellitus (type I, type II, and
corticosteroid-induced), n (%) 43 (27.9) 32 (33.7) 11 (16.8)

Intensive care unit, n (%) 60 (39) 30 (31.6) 30 (50.8)
In-hospital mortality, n (%) 43 (27.9) 17 (17.3) 26 (44.1)

Reason for Hospital Admission (n= 154)

Surgical, n (%) 54 (35.1) 45 (47.4) 9 (15.3)
Medical, n (%) 44 (28.6) 23 (24.2) 21 (35.6)
Emergency, n (%) 51 (33.1) 26 (27.4) 25 (42.4)
Others, n (%) 5 (3.2) 1 (1.1) 4 (6.8)

Focus of the Infection (n = 154)

Respiratory, n (%) 21 (13.6) 10 (10.5) 11 (18.6)
Gastrointestinal, n (%) 7 (4.5) 5 (5.3) 2 (3.4)
Endocarditis, n (%) 6 (3.9) 3 (3.2) 3 (5.1)
Urinary, n (%) 3 (1.9) 3 (3.2) 0 (0)
Skin and soft tissue, n (%) 19 (12.3) 16 16.8) 3 (5.1)
Bone and joint, n (%) 24 (15.6) 20 (21.1) 4 (6.8)
Catheter-related, n (%) 18 (11.7) 9 (9.5) 9 (15.3)
Abdominal, n (%) 15 (9.7) 9 (9.5) 6 (10.2)
Postoperative, n (%) 10 (6.5) 7 (7.4) 3 (5.1)
Neutropenic fever, n (%) 25 (16.2) 8 (8.4) 17 (28.8)
Other, n (%) 6 (3.9) 5 (5.3) 1 (1.7)

Clinical and Biochemical Data on the Day of the First Vancomycin Concentration Measurement

All
(n = 308)

Intermittent
(n = 190)

Continuous
(n = 118)

Serum creatinine (mg/dL), median [IQR] 0.83 [0.64; 1.22] 0.82 [0.61; 1.17] 0.84 [0.67; 1.34]
eGFR CKD-EPI (mL/min/1.73 m2), median [IQR] 87 [59; 104] 86 [61; 102] 88 [54.5; 107]
eCrCl CG (mL/min), median [IQR] 93 [58; 132] 90.2 [60; 132] 98 [51; 129]
Serum albumin (g/L) a, median [IQR], n 31.2 [27.8; 34.6], 175 30.5 [26.8; 34.3], 62 31.9 [29; 34; 8], 113
Serum urea nitrogen (mg/dL), median [IQR] 31 [21; 55] 28 [20; 45] 39 [24; 77]
SOFA score b, median [IQR], n 11 [7; 15], 120 8 [5; 12], 60 15 [11; 18], 60
Intermittent hemodialysis, n (%) 3 (1.0) 0 (0) 3 (2.5)
Intermittent peritoneal dialysis, n (%) 2 (0.6) 2 (1.1) 0 (0)
Continuous veno-venous hemofiltration, n (%) 18 (5.8) 5 (2.6) 13 (11)
Use of furosemide, n (%) 45 (14.6) 30 (15.8) 15 (12.7)

eCrCl CG: estimated creatinine clearance according to the Cockcroft–Gault equation; eGFR CKD-EPI: estimated
glomerular filtration ratio according to the Chronic Kidney Disease Epidemiology Collaboration equation; IQR:
interquartile range; n: count; SOFA: sequential organ failure assessment. a If available; b If ICU patient.

Among the first vancomycin concentrations of each pair, 45.1% were within the
therapeutic range, with 31.2% and 23.7% of the concentrations being subtherapeutic and
supratherapeutic, respectively. Following the standard TDM-based dose optimization,
48.1% of the second vancomycin concentrations of each pair were in the therapeutic range.
The proportion of the subtherapeutic concentrations decreased to 21.4%, in contrast with
the proportion of the supratherapeutic concentrations, which increased to 30.5% (Table 2).

As shown in Table 2, the median vancomycin concentration was 15 mg/L and
21.3 mg/L in the first sample of each pair and increased significantly to 15.7 mg/L and
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22.1 mg/L in the second sample in patients receiving intermittent (p = 0.004) and continu-
ous infusions (p = 0.0003), respectively.

Table 2. Vancomycin concentrations (two pairs per patient) during intermittent (trough) and continu-
ous infusion.

Vancomycin trough Concentrations during Intermittent Infusion (n = 190).

First concentration (mg/L), median [IQR] 15.0 [12; 17.7]
Second concentration (mg/L), median [IQR] 15.7 [13.7; 18.3]

Vancomycin Concentrations during Continuous Infusion (n = 118)

First concentration (mg/L), median [IQR] 21.3 [17.4; 23.5]
Second concentration (mg/L), median [IQR] 22.1 [19.3; 25;5]

Exposure at Second Concentration (n = 308)

Therapeutic exposure a, n (%) 148 (48.1)
Supratherapeutic exposure b, n (%) 94 (30.5)
Subtherapeutic exposure c, n (%) 66 (21.4)

a 12.5–17.5 mg/L (intermittent) and 20–25 mg/L (continuous); b >17.5 mg/L (intermittent) and >25 mg/L
(continuous); c <12.5 mg/L (intermittent) and <20 mg/L (continuous).

3.2. Evaluation of the Model-Based Approaches
3.2.1. Predictive Performance

Across the five model-based approaches investigated in our study, the mean bias in
the overall population ranged from −1.53 mg/L to −0.11 mg/L. Depending on the model-
based approach, the mean rBias ranged from −5.36% to 3.18% in the overall population, and
95% confidence intervals were all within ±10% as illustrated in Figure 2. However, the 95%
confidence intervals did not include 0 for the MSAOFV approach. The rRMSE was ≤28.1%
for all model-based approaches (Figure 2). The goodness-of-fit plots showed a clinically
acceptable fit of the predicted concentrations with the observed concentrations across all
five model-based approaches, as illustrated in Figure 3. At the individual level, acceptable
rBias was found in 38–46.4% of all predicted concentrations (Supplementary Table S1). The
classification accuracy was 47.7–55.5%, depending on the model-based approach.

The analyses in the subpopulations are shown in Table S2. The performance remained
similar or even better in non-ICU patients or patients receiving the intermittent vancomycin
infusion. However, in ICU patients or patients receiving the continuous vancomycin
infusion, the performance decreased slightly. In these patients, only the Goti model showed
95% confidence intervals of the mean rBias, including 0. Additionally, for two of the
multi-model-based approaches (i.e., MSAOFV and MAAOFV), the 95% confidence intervals
exceeded ± 10%.

3.2.2. Model-Predicted Vancomycin Doses Compared with Standard TDM-Based Doses

Based on the predictive performance, we selected the MAASSE approach as the model-
based approach with the best predictive performance (defined as a combination of the
lowest overall rBias and rRMSE). The dose differences were calculated with the doses
predicted according to the MAASSE approach. The median differences between the second
(i.e., steady-state) model-predicted dose q12h and the prescribed (i.e., standard TDM-based)
dose q12h were 113 [−69; 427] mg, −70 [−208; 120] mg, and 40 [−84; 197] mg in the case
of subtherapeutic, supratherapeutic, and therapeutic exposure at the time of the second
vancomycin concentration, respectively. These differences are depicted in Figure 4, together
with the differences between the first model-predicted dose and the prescribed dose. The
differences with the first model-predicted dose were substantially larger than that of the
second model-predicted dose.
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Figure 2. Overall relative bias and relative root mean square error of the predicted versus the observed
second vancomycin concentration of each pair for the five model-based approaches investigated
(i.e., the model selection algorithm [MSA] and the model averaging algorithm [MAA], according to
the objective function value [OFV] and the squared prediction errors [SSE], and the single-model
approach according to the Goti model). The blue dots represent the mean relative bias, and the blue
error bars represent the 95% confidence intervals.

Figure 3. Goodness-of-fit plots of the predicted versus observed second vancomycin concentration
of each pair for the five model-based approaches (i.e., the model selection algorithm [MSA] and the
model averaging algorithm [MAA], according to the objective function value [OFV] and the squared
prediction errors [SSE], and the single-model approach according to the Goti model). The blue line
represents the local polynomial regression fit. The line of identity represents a perfect model fit.
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Figure 4. Boxplots of the difference between the vancomycin doses predicted by the MAASSE

approach and the prescribed vancomycin doses, including the median (interquartile range) difference.
The doses were normalized to a twice-daily dosing regimen, i.e., the doses were expressed as dose
q12h. The differences were shown in three groups depending on the exposure at the time of the
second vancomycin concentration of each pair (i.e., subtherapeutic, supratherapeutic, or therapeutic).
The vancomycin doses were predicted based on the first vancomycin concentration of each pair of
concentrations. The red and blue boxplots represent the dose differences based on the first and second
dose predicted to reach therapeutic exposure, respectively. The therapeutic exposure was defined
as concentrations between 12.5–17.5 mg/L or between 20–25 mg/L for intermittent or continuous
infusion, respectively.

Overall, the ICC showed a moderate correlation between the second model-predicted
dose and the prescribed dose (0.656). The correlation remained moderate in the case of
the subtherapeutic and therapeutic vancomycin concentrations, as illustrated by an ICC of
0.665 and 0.596, respectively. In the case of the supratherapeutic vancomycin concentrations,
the ICC showed a good correlation (0.821).

For the sensitivity analysis, the MSAOFV approach was selected as the approach with
the worst performance as this was the only model-based approach that did not show an
overall mean rBias, including 0 in its 95% confidence intervals. As shown in , similar
differences between the second model-predicted dose q12h and the prescribed dose q12h
were observed with the MSAOFV compared with the dose differences calculated with the
MAASSE approach.

4. Discussion

In our study, we investigated TDM-based vancomycin dose optimization in a broad
and diverse population of hospitalized adult patients receiving either intermittent or
continuous vancomycin infusions. We demonstrated that a single-model approach or multi-
model approach performs well, as illustrated by the acceptable predictive performance.
Moreover, the model-based vancomycin dose predictions suggest a potential for increased
therapeutic exposure compared with the standard TDM-based dosing.

A great deal of vancomycin PopPK models have been developed in both specific
and general adult patient populations [13,14,27]. However, it remains challenging to
select and implement the right model to guide the vancomycin dosing for an individual
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patient. Many models have failed to show good predictive performance outside the
population they were developed in [13,14,27]. In our study, we showed that the Goti
model, as well as different multi-model approaches, performs acceptably well in a broad
set of hospitalized patients. The Goti model [18] as single-model approach is probably the
simplest model-based approach and covers many of the standard hospitalized patients.
Interestingly, we observed that the MAASSE approach showed slightly better performance.
A potential explanation might be that the multi-model approach performs better in specific
patient populations for which the Goti model is not suitable. It should be noted that we
only used the most recent previous vancomycin concentration to inform the TDM-based
dose optimization. Multiple previous concentrations were deemed unnecessary. This
agreed with recent studies demonstrating that performance metrics were superior [27], or
similar [14], when based on the most recent vancomycin concentration compared with a
higher number of previous concentrations.

Recently, Heus and co-workers [27] found that the Okada [28] and Colin [29] PopPK
models performed best in a set of non-ICU patients treated with continuous infusion van-
comycin. They also found the multi-model approaches investigated in this study performed
similarly well as these single models. Noteworthy, in their study, the Goti model showed
overall high imprecision and overpredicted the observed vancomycin concentrations. Heus
et al. related this discrepancy to the difference in the mode of administration and potential
variation in assay methods for vancomycin and serum creatinine concentration. In the
future, the performance of the multi-model approaches in the population investigated in
our study might be further improved by including the Okada and Colin models. Still, in
our study including both intermittent and continuous infusion, the Goti model performed
well. Our results are in accordance with previous studies that found the Goti model to
perform acceptably well with similar rBias and rRMSE in patients receiving intermittent or
continuous infusions of vancomycin [13,14]. Interestingly, these studies also included dial-
ysis patients, as in our study (23/308), whereas that of Heus and co-workers [27] excluded
dialysis patients. We also performed subanalyses to identify potential subpopulations in
which specific model-based approaches performed differently. Whereas the predictive
performance remained similar in non-ICU patients or patients receiving an intermittent
vancomycin infusion, the performance decreased slightly in ICU patients or patients receiv-
ing a continuous infusion. Nevertheless, the overall predictive performance was acceptable
in the total population for four out of the five model-based approaches (Supplementary
Table S1). In the future, the specific subpopulations in which the model-based approaches
perform worse should be further expanded on. The benefit of including additional models
in the multi-model approaches may also be investigated in order to make model-based
vancomycin dosing even more widely applicable.

Although the acceptable performance at an individual level was only found in
38–46.4% of all predicted concentrations, the classification accuracy was higher (47.7–55.5%).
It should be noted that we defined stricter criteria for acceptable performance than those of
previous studies (i.e., rBias ± 10% versus rBias ± 20% [13–15] or 2.5 mg/L [27]). Using an
rBias ± 20%, an acceptable bias was attained in 60.1–69.5% of all predicted concentrations,
which overestimated the classification accuracy. Eventually, the MAASSE approach was
selected to perform dose predictions, as overall it was the least biased and most precise
approach. Moreover, the MAASSE approach showed good performance at an individual
level and good classification accuracy compared with the other approaches.

Even though the vancomycin concentrations increased significantly after the standard
TDM-based dose optimization, less than 50% of all second concentrations still showed
therapeutic exposure (i.e., 48.1%). This agreed with a recent study revealing poor target
attainment in adults with real-life standard TDM-based vancomycin dosing [10].

In our study, the model-predicted doses show only moderate to good correlation
with prescribed doses. This finding illustrates a large opportunity for improvement in
therapeutic exposure during vancomycin therapy that might be addressed with model-
based TDM. The model-predicted doses suggest a potential increase in therapeutic exposure
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as suggested by the differences with the prescribed dose (Figure 4). In patients with
subtherapeutic vancomycin exposure after the standard TDM-based dose optimization,
the predicted doses are mostly larger than the prescribed doses. Hence, if the predicted
doses had been administered to those patients, the subtherapeutic exposure may have
been avoided in a substantial proportion of these patients. On the other hand, the lower
doses were most frequently predicted in patients with supratherapeutic exposure after
the standard TDM-based dose optimization. Therefore, less supratherapeutic exposure
may also be expected from model-based dosing. Considering a dose modification of
125 mg or more as clinically relevant, the model-based vancomycin dosing would most
frequently lead to a dose increase or a dose reduction in patients with a subtherapeutic or
supratherapeutic second vancomycin concentration, respectively (Supplementary Table S3).
In patients with a therapeutic second vancomycin concentration, the doses remained mostly
unchanged. These findings were also confirmed in the sensitivity analysis when using the
model-based approach with the worst predictive performance, i.e., the MSAOFV approach.
This finding strongly suggests that this is a benefit of the model-based vancomycin dosing
compared with that of the standard TDM-based dosing.

It should be noted that the dose differences were calculated with the second model-
predicted dose after the first TDM measurement. When using MIPD, the user should
be aware that model-based predictions aim for direct target attainment, often resulting
in relatively low or high doses immediately after a TDM measurement. In contrast, the
subsequent (i.e., second) dose will be more reflective of the steady-state dose required to
keep the exposure at the predefined target. This finding was confirmed by the large dose
differences observed when comparing the first model-predicted dose with the prescribed
dose (Figure 4). We opted to compare with the second model-based dose, as most often in
clinical practice the clinicians will adapt the vancomycin dose to the new steady-state dose
they believe is adequate for reaching the target exposure.

This study has several strengths. First, we intentionally performed our study in a
broad and heterogeneous set of adult patients, hence increasing its external generalizability.
Second, we evaluated both single and multi-model approaches. Third, we performed
a comprehensive evaluation of the model-based approaches using goodness-of-fit plots,
predictive performance, classification accuracy, and sensitivity analysis. Moreover, whereas
previous studies only evaluated the predictive performance [13–15,27], we also evaluated
model-predicted doses in relation to the exposure. Notwithstanding, several limitations to
our study should also be taken into account. First, we need to acknowledge the limitations
inherent to the retrospective and monocentric design of our study. Therefore, the findings
may not necessarily be extrapolated to other centers, and prospective validation is needed.
When prospectively validating model-based vancomycin dosing, one should be cautious of
those patients for which predicted exposure is substantially over- or underestimated (i.e., in-
acceptable rBias at the individual level). These might represent patients with erroneous
sampling or specific patients not appropriately covered by the included PopPK models.
Second, we only included a subset of all available vancomycin PopPK models. We did not
include the Okada [28] and Colin [29] models, which were recently found to perform the
best in continuous-infusion vancomycin patients without dialysis [27]. Nevertheless, our
analysis showed good overall predictive performance. Third, it should be noted that we
did not include children, although children may also benefit from a similar model-based
approach [10,29]. Fourth, our sample size of 154 patients is rather limited. However, our
sample size is within the range of previous studies investigating the predictive perfor-
mance of vancomycin model-based approaches. Interestingly, we performed an interim
analysis—after inclusion of the first 65 patients—that showed results similar to the final
results, hence supporting the robustness of our results [30]. Finally, we did not consider
AUC/MIC targets as these are not commonly used at our institution and were therefore
not available.

In conclusion, our study confirmed the predictive performance and illustrated the
potential benefit of model-based vancomycin dosing compared with the standard TDM-
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based dosing in a broad and heterogeneous population. The Goti model, as well as
most of the multi-model approaches, showed good overall performance. The MAASSE
approach showed the best overall performance. Using this approach, the clinically relevant
differences and moderate correlation between the model-based and prescribed dosing,
along with the poor target attainment with the standard TDM-based dosing, suggested a
large window of opportunity for the model-based TDM to increase therapeutic exposure.
Implementation studies—preferably prospectively—of the model-based TDM in routine
care are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14071459/s1, Supplementary Table S1: Acceptable
performance and classification accuracy across the five model-based approaches; Supplementary
Table S2: Relative bias and relative root mean square error of the five model-based approaches;
Supplementary Table S3: Clinically relevant differences between model-predicted and prescribed
vancomycin doses; Supplementary Figure S1: Boxplots of the difference between vancomycin doses
predicted by the MSAOFV approach and prescribed vancomycin doses.
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Abstract: Introduction: The main goal of treatment in cancer patients is to achieve the highest
therapeutic effectiveness with the least iatrogenic toxicity. Tyrosine kinase inhibitors (TKIs) are
anticancer oral agents, usually administered at fixed doses, which present high inter- and intra-
individual variability due to their pharmacokinetic characteristics. Therapeutic drug monitoring
(TDM) can be used to optimize the use of several types of medication. Objective: We evaluated
the use of TDM of TKIs in routine clinical practice through studying the variability in exposure
to erlotinib, imatinib, lapatinib, and sorafenib and dose adjustment. Materials and methods: We
conducted a retrospective analytical study involving patients who received treatment with TKIs,
guided by TDM and with subsequent recommendation of dose adjustment. The quantification of the
plasma levels of the different drugs was performed using high-performance liquid chromatography
(HPLC). The Clinical Research Ethics Committee of the Hospital Quirónsalud Torrevieja approved this
study. Results: The inter-individual variability in the first cycle and in the last monitored cycle was
46.2% and 44.0% for erlotinib, 48.9 and 50.8% for imatinib, 60.7% and 56.0% for lapatinib and 89.7%
and 72.5% for sorafenib. Relationships between exposure and baseline characteristics for erlotinib,
imatinib, lapatinib and sorafenib were not statistically significant for any of the variables evaluated
(weight, height, body surface area (BSA), age and sex). Relationships between height (p = 0.021) and
BSA (p = 0.022) were statistically significant for sorafenib. No significant relationships were observed
between Ctrough and progression-free survival (PFS) or overall survival (OS) for any drug, except in
the case of sunitinib (correlation between Ctrough and PFS p = 0.023) in the exposure–efficacy analysis.
Conclusions: Erlotinib, imatinib, lapatinib and sorafenib show large inter-individual variability in
exposure. TDM entails a significant improvement in exposure and enables more effective and safe
use of TKIs in routine clinical practice.

Keywords: therapeutic drug monitoring; tyrosine kinase inhibitors; cancer; personalized medicine

1. Introduction

The main goal of pharmacologic treatment in cancer patients is to achieve the highest
therapeutic effectiveness with the least iatrogenic toxicity. However, the dosage regimens to
achieve this goal can differ considerably from patient to patient. In routine clinical practice,
the standardized dosage regimens of the drugs administered are very satisfactory in some
patients but may show minimal efficacy or even generate adverse reactions in others [1].

Pharmacokinetic studies the relationship between the dosage regimens used and the
corresponding time course of drug and/or metabolite concentrations in the body [2]. The
inherent variability in pharmacokinetic processes constitutes one of the main causes of the
different clinical responses observed in individual patients.
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TDM is the clinical practice of measuring specific drugs at designated intervals to
maintain a constant concentration in a patient’s bloodstream, thereby optimizing individual
dosage regimens [3]. Drugs typically considered good candidates for TDM were those
with a narrow therapeutic window and a clear correlation between exposure and clinical
response as antibiotics, antiretrovirals, antiarrhythmics, anticonvulsants, immunosuppres-
sants or antineoplastics.

TKIs are a type of enzyme inhibitor that specifically block the action of one or more ty-
rosine kinases [4], involving processes such as cell proliferation and survival, transcription,
angiogenesis and progression to metastasis. Other effects are mediated by the interaction
with therapeutic targets such as epidermal growth factor receptor (EGFR), ATP-binding
cassette (ABC) transporters, vascular endothelial growth factor receptor (VEGFR), hu-
man epidermal growth factor receptor 2 (HER2), platelet-derived growth factor receptor
(PDGFR) or stem cell factor receptor (c-KIT) [5]. TKIs cause fewer non-specific toxicities
than standard chemotherapy due to their high affinity for specific molecular mutations of
tumor cells [6,7] and can be used both as monotherapy and in combination.

TKIs are usually given at a fixed dose and taken via the oral route. Fixed-dose therapies
present a wide range of plasma concentrations, with inter-individual variability in trough
concentrations (Ctrough) of up to 23 fold [8]. In the case of subtherapeutic exposure, selection
of resistant cell clones can be favored, or the agent inadequately considered non-active.
Overexposure can cause undesirable toxicities [9].

Although oral administration implies theoretical advantages to both patients and
the health system, evidence suggests that adherence to oral cancer therapies is far from
optimal [10–15]. Several studies have examined adherence to imatinib treatment in patients
with gastrointestinal stromal tumor (GIST) or chronic myeloid leukemia (CML), showing
high rates of non-compliance [11,12,16], which can result in a low Ctrough of imatinib [17].
In patients with CML treated for several years, poor adherence may be the most important
cause of not reaching adequate molecular responses [18]. Food–drug interactions and
gastrointestinal surgery are other areas of concern. High-fat meals can increase the area
under the plasma concentration–time curve (AUC) of nilotinib by up to 80% [19] and that
of lapatinib by more than 3 fold [20]. Pazopanib exposure in terms of AUC is doubled
when administered with food compared to when administered in the fasted state [21].
Saturation of gastrointestinal absorption has been described for nilotinib at doses greater
than 400 mg [22]; and for sorafenib at doses greater than 800 mg [23]. For pazopanib, due
to solubility limitations in the digestive tract, a dose higher than 800 mg does not translate
into an increase in plasma AUC [24]. Imatinib concentrations were significantly lower in
patients undergoing gastrectomy [25,26], possibly due to decreased gastrointestinal transit
time or lack of gastric acid secretion [26].

Regarding distribution process, most TKIs are substrates for membrane efflux trans-
porters (e.g., ABCB1 and ABCG2) or uptake transporters (e.g., SLC22A1) [27–31] and
present a high affinity for plasma proteins (e.g., 1-acid glycoprotein [AGP] and albumin),
with only the free fraction of the drug (corresponding to a small percentage of total plasma
levels) exerting any therapeutic action [32,33]. Other emerging parameters to consider are
body composition and muscle mass [34,35].

Pharmacogenetics causes part of the high inter-individual variability observed to date
in the metabolism of TKIs [8]. TKIs are primarily metabolized by CYP3A4, with a secondary
role for other CYP enzymes [27]. Interactions among drugs can explain why the metabolic
genotype does not accurately reflect the phenotype and limit the application of pharma-
cogenomic methods [36]. For all these reasons, dose adjustment is highly recommended for
TKIs [37]. Finally, some TKIs have active metabolites for which variations in the enzymes
responsible for metabolism translate into variations in plasma concentrations [8].

Most patients with advanced cancer acquire genetically based mechanisms of thera-
peutic resistance as the disease progresses [38]. Recent advances in high-throughput gene
expression profiling enable the identification of differentially expressed genes involved in
processes such as drug sensitivity and resistance, signaling pathways relevant to cancer
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biology, and tumor therapeutic targets in a semi-quantitative and rapid manner. Therefore,
it is of interest to explore not only mutations in the genome, but also the expression of
multiple genes capable of predicting the outcome of a drug in the clinical setting [39,40].

In general, there is a relationship between the concentration of the drug in plasma and
the response and toxicity of the drug. TDM relies on the hypothesis that the concentration
of a drug in the blood reflects the concentration at the site of action much better than
the administered dose and constitutes a valid tool to complement pharmacogenomic
techniques [41,42].

At present, there are more than 30 TKIs available for the treatment of several hemato-
logic and solid tumors. Pharmacokinetic parameters obtained through TDM may be an
important biomarker to optimize treatment [43]. Currently, there are numerous ongoing
studies of TKIs, usually with highly selected patients. Data on real-world populations are
necessary due to widespread use in very different clinical conditions.

The Plataforma de Oncología of Hospital Quirónsalud Torrevieja implemented TDM of
TKIs in 2010. Since then, many cases of drug–drug interactions, drug–food interactions, and
underdosing or overexposure to the drug at standard doses were detected. The results were
analyzed with the aim of evaluating variability in real-world populations and assessing the
effectiveness of TDM of TKIs in the routine clinical practice.

2. Materials and Methods

2.1. Patients

Patients were included in the present study if erlotinib, imatinib, lapatinib or sorafenib
was part of their cancer drug therapy in the period 2016–2020. Selection criteria were not
previously defined in this study, because the patient cohort should reflect a real-world
cohort.

Patients’ medical records were reviewed with the aim of studying all possible factors related
to the patient and the medication that may influence the evolution of the plasma concentrations
of TKIs. Sociodemographic and anthropometric, pharmacological treatment, clinical, toxicity
and therapeutic drug monitoring data were collected. Treatment response was determined
according to the RECIST.13. Adverse events were recorded by grade according to the Common
Terminology Criteria for Adverse Events version 3.0 (CTCAE v 3.0) [44].

This study was reviewed and approved by the Clinical Research Ethics Committee of
the Hospital Quirónsalud Torrevieja and conducted according to Good Clinical Practice
guidelines and the Declaration of Helsinki. Patients received information about this study
and provided written informed consent.

2.2. Treatment and Blood Sampling

Patients included in this study received drugs at doses previously established by their
doctors, according to data sheet indications and clinical judgment. In all cases, drug dose
was prescribed before the patient enrolled onto this study and was not affected by this
study prior to enrollment.

Monitoring was carried out in all cases after at least fifteen days from the start of
treatment, when the plasma levels of the drug were considered at steady state. Blood
samples were extracted just before ingestion of the tablet/s and at different times after
ingestion. The drug was administered in the fasted state and patients were told they could
eat food after the second blood sample was drawn. Sampling times, which are defined for
each drug in Table 1, were selected based on the optimal sampling theory and pharmacoki-
netic models previously published in the scientific literature [45–48]. Blood samples were
extracted into tubes with lithium heparin as an anticoagulant and immediately protected
from light with aluminum foil. The total blood volume extracted was between 4 and 5 mL
for each sample. All samples were centrifuged after extraction at 3500 r.p.m. for 10 min at
room temperature and the plasma obtained was frozen at −80 ◦C until bioanalysis.
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Table 1. Blood sampling times for monitored TKIs.

Drug Sampling Times

Erlotinib
Imatinib
Lapatinib

Before drug administration and then at 1, 2, 4 and 6 h after drug administration

Sorafenib Before drug administration and then at 1, 3, 6 and 8 h after drug administration

Bioanalysis was carried out using high-performance liquid chromatography (HPLC)
coupled with ultraviolet (UV) detection. All the techniques used for the quantification of
erlotinib, imatinib, lapatinib and sorafenib were previously validated in the Personalized
Pharmacotherapy Unit of Hospital Quirónsalud Torrevieja according to the Guidelines
of the Food and Drug Administration (FDA) [49] and the European Medicines Agency
(EMA) [50], in terms of linearity, precision, accuracy, selectivity, specificity and performance.

2.2.1. Erlotinib

As the stationary phase, an Ultrabase® C18 chromatographic column, 4.6 mm in
diameter by 150 mm in length, made of stainless steel and filled with a C18 reversed-phase
siliceous substrate with a particle size of 5 μm, was used. A mixture of 40% of 0.02 M
ammonium acetate, pH = 7, and 60% acetonitrile: methanol at a ratio of 70:30 (v/v) was
used as the mobile phase. The linearity of the technique included a concentration range of
0.05–7.5 μg/mL. The limit of quantification was 0.5 μg/mL. Solid–liquid extraction was
used and the analysis time was 9 min.

2.2.2. Imatinib

The stationary phase used was an Ultrabase® C18 chromatographic column, 4.6 mm in
diameter by 150 mm in length, made of stainless steel and filled with a C18 reversed-phase
siliceous substrate with a particle size of 5 μm. The mobile phase used was a 40% mixture
of 0.02 M ammonium acetate, pH = 7, and 60% acetonitrile: methanol at a ratio of 70:30
(v/v). The linearity of the technique included a concentration range of 0.05–5 μg/mL. The
limit of quantification was 0.5 μg/mL. Solid–liquid extraction was used and the analysis
time was 10 min.

2.2.3. Lapatinib

The stationary phase used was a Kromasil® C18 chromatographic column, 4.6 mm in
diameter by 150 mm in length, made of stainless steel and filled with a C18 reversed-phase
siliceous substrate with a particle size of 5 μm. The mobile phase used was a mixture
of acetonitrile and 0.02 M ammonium acetate, pH = 3.5, at a ratio of 53:47 (v/v). The
linearity of the technique included a concentration range of 0.02–10 μg/mL. The limit of
quantification was 0.2 μg/mL. Liquid–liquid extraction was used and the analysis time
was 12 min [51].

2.2.4. Sorafenib

The stationary phase used was a Kromasil® C18 chromatographic column, 4.6 mm in
diameter by 150 mm in length, made of stainless steel and filled with a C18 reversed-phase
siliceous substrate with a particle size of 5 μm. The mobile phase used was a mixture
of acetonitrile and 0.02 M ammonium acetate, pH = 3.5, at a ratio of 53:47 (v/v). The
linearity of the technique included a concentration range of 0.1–20 μg/mL. The limit of
quantification was 0.1 μg/mL. Liquid–liquid extraction was used and the analysis time
was 12 min [52].
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2.3. Pharmacokinetic Analysis
2.3.1. Erlotinib

The pharmacokinetic analysis of erlotinib, like that of imatinib, lapatinib and sorafenib,
was performed with the NONMEM VII version 2.0 software (ICON, Hanover, MD, USA)
using the POSTHOC option [53]. The program was compiled with the DIGITAL Visual
Fortran version 6.6C program. The graphics were made with the S-Plus 6.1 Professional
Edition program for Windows (Insightful, Seattle, WA, USA). A one-compartment phar-
macokinetic model with first-order absorption and elimination kinetics was selected to
describe erlotinib plasma concentrations, as performed previously by other authors [45].
The fixed-effect parameters estimated by the model were V (volume of distribution, L), CL
(plasma clearance, L/h) and Ka (absorption constant). The model included plasma ALT
concentration and age as covariates in CL, and weight in V.

2.3.2. Imatinib

To describe the plasma concentrations of imatinib, a one-compartment pharmacoki-
netic model with zero-order absorption and first-order elimination kinetics was selected, as
performed previously by other authors [46]. The model was parameterized in terms of D1
(zero-order absorption duration), V and CL, and included the plasma concentration of α
1-acid glycoprotein as a covariate in CL.

2.3.3. Lapatinib

In the case of lapatinib, a one-compartment pharmacokinetic model with first-order
absorption and elimination kinetics was selected, as performed previously by other au-
thors [47]. The fixed-effect parameters estimated by the model were V, CL and Ka. The
model included plasma ALT concentration and age as covariates in CL, and weight in V.

2.3.4. Sorafenib

Sorafenib plasma concentrations were described using a one-compartment pharma-
cokinetic model previously used by Jain L et al. to describe the pharmacokinetics of
sorafenib [48]. The model uses 4 absorption transit compartments, enterohepatic circula-
tion, and first-order elimination kinetics.

2.4. Statistical Methods

The statistical analysis was carried out with the SPSS software (version 20.0 for
Windows®, Chicago, IL, USA). All data were stored in the database and filtered through
distributions of unknown values for every variable and through distributions to detect
uncommon values. Two-sided significance tests were used in the analyses performed,
considering a probability of error α (p < 0.05) as significant.

For the descriptive analysis of the data, the categorical variables were expressed as a
percentage, while the continuous variables were expressed as the mean (standard deviation
(SD)). To describe the normality in the distribution of continuous variables, the distribution
profile of the values of each variable was evaluated through histograms and trend lines,
in addition to performing the Kolmogorov–Smirnov test. To validate the assumption of
homogeneity of variances, Levene’s test was used.

A linear regression model with an established Pearson’s correlation coefficient (r)
between continuous variables was used for the analytical treatment of the data.

To compare the mean values of continuous variables in different events, Student’s
t-test was used for those variables with a normal distribution and the Mann–Whitney U
test was used for those that did not follow a normal distribution.

To compare the variation in categorical variables (rash, diarrhea, fatigue, abdominal
pain, hypertension, and mucositis) between the first and the last monitored cycle, the
non-parametric chi-square test was performed.

To assess the relationship between treatments protocols and disease progression or
mortality, a Kaplan–Meier survival curve was plotted.
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3. Results

3.1. Patients

The plasma levels of erlotinib, lapatinib, imatinib or sorafenib were monitored in 58 pa-
tients (57% women and 43% men) receiving 141 cycles of each drug (mean 2.4 cycles/patient,
range 1–12) for dose individualization. A summary of all baseline characteristics of patients
is shown in Table 2.

Table 2. Baseline characteristics.

Baseline Characteristics
Treatment

Erlotinib Lapatinib Imatinib Sorafenib

Number of Patients in Treatment 22 16 9 11
Number of total cycles monitored 55 35 22 29
Cycles monitored by patient (n, %)

1 cycle 8 (38.1) 9 (56.3) 3 (33.3) 7 (63.6)
2 cycles 6 (28.6) 4 (25.0) 2 (22.2) 1 (9.1)
3 cycles 3 (13.6) 2 (12.5) 2 (22.2) 1 (9.1)
4 cycles 2 (9.5) – 1 (11.1) 1 (9.1)

>5 cycles 3 (14.3) 1 (6.3) 1 (11.1) 1 (9.1)
Gender (n. %)

Male 14 (63.6) 4 (25.0) 3 (33.3) 4 (36.4)
Female 8 (36.4) 12 (75.0) 6 (66.7) 7 (63.6)

Age (mean (SD). years) 63.0 (12.3) 54.5 (12.6) 50.8 (16.4) 57.1 (15.6)
Weight (mean (SD). Kg) 80.2 (14.6) 69.7 (11.0) 78.50 (18.2) 71.2 (13.3)
Size (mean (SD). cm) 169.7 (9.3) 163.8 (8.4) 168 (11.5) 166.6 (12.2)
Body surface area (mean (SD). m2) 1.9 (0.2) 1.7 (0.1) 1.87 (0.3) 1.8 (0.2)
Metastasis (number of patients. %) 19 (86.4) 15 (93.8) 5 (55.6) 9 (81.8)
Previous lines of treatment (range) 1.64 (0–7) 2.4 (1–6) 0.56 (0–2) 1.91 (0–5)

n: number of patients. SD: standard deviation.

A total of 710 plasma samples (307 for erlotinib, 137 for lapatinib, 114 for imatinib
and 152 for sorafenib) were analyzed according to sampling times detailed in Table 1. We
observed large interpatient variability for all drugs, as shown in Figure 1.

The mean interpatient variability in dose-normalized plasma concentrations in the first
monitored cycle, expressed as a coefficient of variation (CV, %), was 46.2%, 60.7%, 48.9%
and 89.7%, for erlotinib, lapatinib, imatinib and sorafenib, respectively. After TDM and dose
adjustments, the mean interpatient variability in dose-normalized plasma concentrations
in the last monitored cycle was 44%, 56%, 50.8% and 75.5%, respectively.

No significant effect of body weight, age, height or BSA on TKI plasma concentrations
was observed, except for a negative correlation between height (r = −0.4, p = 0.021) and
BSA (r = −0.4, p = 0.022) versus plasma concentrations of sorafenib. A non-significant
increase in the Ctrough of drugs was observed in women vs. men.

3.1.1. Erlotinib

In 21 of the monitored cycles (38.2%), the recommendation was to increase the pre-
scribed dose. A total of 5 of the 22 patients included in this study required a mean dose
increase of 46.6% in the last monitored cycle compared to the first one. In 30 of the mon-
itored cycles (54.5%), the recommendation was to maintain the current dose since the
concentrations were within the therapeutic target interval. In two of the cycles (3.6%), it
was recommended to decrease the dose, with a dose reduction of 24.9% in the last moni-
tored cycle with respect to the first one in 2 patients. In addition, in two of the monitored
cycles (3.6%), it was recommended to suspend administration of the drug.

24



Pharmaceutics 2022, 14, 1216

Figure 1. Dose-normalized plasma concentration profiles after administration of drug to patients
receiving the dose of erlotinib (A), lapatinib (B), imatinib (C) or sorafenib (D) in the first or last
monitored cycle. The symbols (circles and triangles) represent the mean dose-normalized plasma
concentrations of patients at different times. The error bar for each point represents the standard
deviation for each mean.
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3.1.2. Imatinib

In seven of the monitored cycles (31.8%), the recommendation was to increase the
prescribed dose since the concentrations were below the target therapeutic range—this
meant a mean dose increase of 77.7% in the last monitored cycle compared to the dose
administered in the first one for 3 of the 9 patients included. In 15 of the monitored cycles
(68.2%), the recommendation was to maintain the current dose since the concentrations
were within the therapeutic range. There were no recommendations to reduce the dose of
imatinib, since no concentrations were found above the target level.

3.1.3. Lapatinib

In five of the monitored cycles (14.3%), the recommendation was to increase the
prescribed dose—this meant a mean increase of 175% in the last monitored cycle with
respect to the first one for 2 of the 16 patients included. In 24 of the monitored cycles
(68.6%), the recommendation was to maintain the current dose since the concentrations
were within the therapeutic range. In three of the cycles (8.6%), it was recommended to
reduce the initial dose for concentrations above the therapeutic range, with a dose reduction
of 62.5% of the dose administered in the last cycle with respect to the first one in 2 of the
patients included. In three of the monitored cycles (8.6%), the recommendation was to
suppress the drug.

3.1.4. Sorafenib

In five of the monitored cycles (17.2%), the recommendation was to increase the
prescribed dose since the concentrations were below the therapeutic range, with a mean
increase of 200% in the last compared to the first one in 2 of the 11 patients included. In 21 of
the monitored cycles (72.4%), the recommendation was to maintain the current dose. In two
of the cycles (6.9%), it was recommended to decrease the initial dose since concentrations
were above the therapeutic range, with a reduction of 50% of the dose in the last one with
respect to that in the first one in 1 patient. In one cycle (3.4%), it was recommended to
suspend administration of the drug.

3.2. Response and Survival

Table 3 shows the survival data in terms of PFS and OS. The maximum follow-up
period was 100 months for erlotinib, 176 months for imatinib, 105 months for lapatinib, and
62 months for sorafenib.

Table 3. Survival analysis.

Drug
Progression-Free Survival (Months) Overall Survival (Months)

Median SE CI 95% Median SE CI 95%

Erlotinib 8 4.7 0.0–17.1 32 31.6 0.0–93.9
Imatinib 28 11.9 4.6–54.4 90 29.9 31.3–148.0
Lapatinib 8 3.0 2.1–13.9 46 18.9 9.0–83.0
Sorafenib 9 3.4 2.3–15.6 9 5.1 0.1–19.1

SE: Standard error. CI 95%: 95% confidence interval.

No significant relationship between PFS and Ctrough (p > 0.203 in all cases) or between
OS and Ctrough (p > 0.251 in all cases) was observed for none of the TKIs under study.

3.3. The Exposure–Toxicity Relationship

A total of 33 of the patients included in the present study developed toxicity at the
start of treatment: 9 erlotinib patients (45.4%), 5 imatinib patients (55.5%), 12 lapatinib
patients (75%), and 7 sorafenib patients (63.3%). The toxicity incidence data for each drug
are detailed in Table 4.
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Table 4. Incidence of toxicity.

Characteristic Erlotinib Imatinib Lapatinib Sorafenib

Patients with
toxicity [n. (%)] 9 (45.4) 5 (55.5) 12 (75.0) 7 (63.3)

Toxicity [n. (%)] RI G1 9 (45.4) Anemia G2 2 (22.2) RI G1 6 (37.5) Abdominal pain 2 (18.2)
Skin rash G1 5 (22.7) RI G1 2 (22.2) Anemia G1 3 (18.7) IR G1 2 (18.2)
Anemia G1 4 (18.1) Fatigue G1 1 (11.1) Diarrhea G1 2 (12.5) Anemia G1 2 (18.2)
RI G2 4 (18.1) Anemia G1 1 (11.1) Pain 2 (12.5) Diarrea G2 1 (9.1)
Skin rash G2 3 (13.6) RI G2 1 (11.1) Anemia G2 2 (12.5) Anemia G2 1 (9.1)
Skin rash G3 3 (13.6) Neutr. G3 2 (12.5) Thromb. G1 1 (9.1)
Diarrhea G2 3 (13.6) RI G2 2 (12.5)
Fatigue G2 2 (9.1) Skin rash G1 1 (6.2)
Anemia G2 2 (9.1) Skin rash G3 1 (6.2)
Mucositis G3 1 (4.5) Diarrhea G2 1 (6.2)
Thromb. G3 1 (4.5) Diarrhea G3 1 (6.2)

Mucositis G3 1 (6.2)
Anemia G3 1 (6.2)

n: number of patients. G: grade. RI: renal insufficiency. Thromb.: trombopenia. Neutr.: neutropenia.

Patients were classified into four groups to assess the toxicities developed based on
exposure to each of the drugs: (1) patients with drug concentrations below the target level
and without toxicities, (2) patients with drug concentrations below the target level and with
toxicities, (3) patients with drug concentrations above the target level and without toxicities
and (4) patients with drug concentrations above the target level and with toxicities. The
distribution of patients according to the four groups described above is shown in Figure 2.

Figure 2. Groups of patients according to exposure to the drugs under study.

4. Discussion

TDM aims to maximize the therapeutic effectiveness of pharmacologic treatments
while reducing the iatrogenic toxicity produced by them. TDM was typically considered
advantageous for drugs with a large inter-individual variability in exposure with rela-
tively low intra-individual variation, a significant exposure–efficacy relationship, a narrow
therapeutic window, and availability of a validated bioanalytical assay [22]. It has been
postulated recently that this could also represent a useful tool to individualize dosing and
optimize treatment using drugs with a wide therapeutic window and high cost [54–56].

TKIs are drugs with a narrow therapeutic window and high cost which are commonly
administered at fixed doses. Even though TKIs present high variability in their pharmacoki-
netics, which translates into high inter- and intra-individual variability in drug exposure

27



Pharmaceutics 2022, 14, 1216

as stated above [57,58], the standard dose described in the corresponding data sheet of
the drugs is administered to all candidate patients, resulting in unpredictable plasma
concentrations [27]. Clinical trials do not identify all real-world scenarios because frail
patients, those on specific diets, variable dosage intervals, or concomitant polimedication
are systematically excluded from them. Post-marketing studies detect or better describe
different side effects that can decrease adherence to the treatment, reducing the efficacy of
these drugs. TDM can improve tolerability and subsequently adherence [59].

Oral cancer therapies have theoretical advantages, both for patients and the healthcare
system, but not without drawbacks. Adverse effects increase therapeutic non-compliance
and symptoms of anxiety and depression. These, in turn, cause loss of control of the disease,
higher costs due to increased and longer admissions in the hospital, and loss of quality of
life. TDM, in this context, enables identification inadequate dosing, adapting the dose to
the individual needs of the patient and avoiding abandonment of therapy due to toxicity
or futility and unjustified changes in therapy caused by low plasma levels of the drug [59].

The present evaluation has been performed on adult real-world patients, with no
inclusion or exclusion criteria other than an expected efficacy of the TKI in their clinical
situation. They presented high variability in terms of tumor type, disease stage, pre-
treatment, duration of treatment, etc. In this population, the variability in drug exposure
can be much greater than in clinical trials and the response to treatment, both in terms of
efficacy and toxicity, reflects it. This enabled the detection of personalized influences of
different factors on exposure, response, and toxicity of TKI treatments and highlighted the
benefit of TDM in routine clinical practice.

4.1. Erlotinib

In the case of erlotinib, data on underdosed patients found in the present study
differed from those obtained by Lankheet et al. [60], who used a plasma concentration
of 500 mg/L as the therapeutic target [61] and found that 11.1% of patients had plasma
concentrations below the target, a percentage of underdosed patients that is clearly lower
than that reported here. In this study, all the patients included had a diagnosis of lung
cancer, so this lower percentage of underdosed patients may be due to lower interpatient
variability.

The data sheet of erlotinib [62] recommend a dose of 150 mg/day for adult patients
with non-small-cell lung cancer (NSCLC) and 100 mg/day for those with pancreatic cancer.
In the present study, patients started with standard doses, but five of them received higher
doses in the last cycle because they could not otherwise reach therapeutic levels within
the optimal range. Erlotinib dose adjustment is only recommended in the data sheet when
co-administered with CYP3A4 inhibitors or inducers, CYP1A2 inhibitors, or in smokers,
but, as shown, dose adjustments based on TDM are necessary in other situations.

No effect of weight, height, BSA, age or sex on the plasma Ctrough was detected in
the present study, as was the case in the patients studied by Lankheet et al. [60] and
other population studies involving 1859 NSCLC patients [63], 291 NSCLC patients [62],
80 NSCLC patients [64] and 204 pancreatic cancer patients [62].

A direct relationship between exposure to erlotinib and observed clinical response
must be proven [65]. Some authors describe a statistically significant correlation between
exposure and efficacy [66,67], while others only point to a non-statistically significant trend
or relationship between both parameters [68,69]. The preclinical study carried out by
Hidalgo et al. [61] suggested that a target Ctrough greater than 500 mg/L in humans would
be adequate for the inhibition of EGFR receptors, so this target concentration was adopted
for later studies.

In the present study, PFS is similar (8 months) to previously published results, whereas
OS is greater (32 months). Motoshima et al. found PFS and OS of 6.3 months and
16.9 months, respectively, in 26 NSCLC patients [67]. The differences observed may be due
to the smaller number of patients recruited in this study, their complexity and underlying
pathogenesis, and the follow-up time.
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No statistically significant relationship was found between dose-normalized Ctrough
and PFS (p = 0.630) or OS (p = 0.593). Similarly, Tiseo et al., in their study of 56 patients
with NSCLC, found no significant relationship between a Ctrough ≥ 4.6 nmol/mL or greater
skin toxicity (patients with greater skin toxicity had better results from treatment) with
an improvement in OS (p = 0.351) or PFS (p = 0.127) [66]. In a phase II study involving
16 NSCLC patients, Ctrough was measured on days 2 and 8 of treatment. The ratio of Ctrough
on day 8 to Ctrough on day 2 represented the accumulation of erlotinib over time. A high
ratio was related to a low metabolism of erlotinib and therefore higher exposure, and
correlated positively with PFS (p = 0.004) but not with OS [67]. Another study of patients
with HNSC evaluated three ranges of samples depending on the time elapsed after taking
the drug—in 42 patients, the Ctrough was between 20 and 25 h after the dose; in 77 patients,
Cmax was between 2 and 5 h post dose; in 47 patients, the concentration was stated for
between 5 and 10 h post dose. The median concentration between 5 and 10 h post dose for
erlotinib predicted better OS (p = 0.021) [68].

The main analytical parameters related to toxicity (hemoglobin, hematocrit, neu-
trophils, leukocytes, platelets, creatinine, bilirubin, GOT, GPT and alkaline phosphatase),
showed no significant differences in the first monitored cycle with respect to the last, as
with the defined toxicities themselves (fatigue, diarrhea, abdominal pain, hypertension,
mucositis, anemia, neutropenia, thrombocytopenia, and renal insufficiency (RI)). Most
of the grade 3 toxicities described were in the first monitored cycle (rash, mucositis and
thrombocytopenia), before carrying out TDM and dose adjustment, compared to the last
monitored cycle (13, 6% vs. 7.1%, 4.5% vs. 0%, and 4.5% vs. 0%, respectively). Grade 2 skin
rash was the only relevant toxicity observed in a higher percentage of patients in the last
monitored cycle (13.6% in the first monitored cycle vs. 14.3% in the last). This may be due
to the relationship between the skin rash produced by erlotinib and tumor response, for
which the rash is a potential marker of activity [68–71]. Development of cutaneous rash has
been related to drug exposure and clinical benefit with erlotinib. Soulieres et al. [68] reported
higher OS in patients who developed a grade ≥2 skin rash (p = 0.045, n = 115). In addition,
the Ctrough in this group of patients was higher, although not statistically significant, than the
Ctrough in patients with a rash grade lower than 2 (1097–1126 mg/L vs. 803 mg/L, p = 0.49).

No significant relationship was found between the different degrees of skin rash and
Ctrough (rash G1 p = 0.870, rash G2 p = 0.746 and rash G3 p = 0.374) in the present study. In a
phase II study of 57 NSCLC patients, the OS of patients with grade 2 rash was 19.6 months,
the OS of patients grade 1 rash was 8.5 months and the OS of patients without rash was
1.5 months [72]. Other groups reported similar results [66–69]. Despite some studies
showing a relationship between pharmacokinetic parameters and efficacy, and between
toxicity and treatment efficacy, pharmacokinetic parameters did not correlate with toxicity
in all cases [66–68]. This indicates that the skin rash is not simply a reflection of exposure
to erlotinib, in accordance with the results in this study. The largest study to determine
this relationship was carried out in 339 NSCLC patients, demonstrating a relationship
between AUC0–24 and Cmax with the appearance of rash. However, the correlation was not
considered relevant, as there was a large overlap in AUC0–24 and Cmax between patients
with and without toxicity [63].

The only significant correlation between the analytical parameters collected and Ctrough
was an inversely proportional relationship with alkaline phosphatase (p = 0.025). There
are studies that show a relationship between the pharmacokinetic parameters of erlotinib
and liver function, although none of them relates it with plasma concentrations [63]. These
results led to the recommendation of dose adjustment of erlotinib in hepatic insufficiency.

The relationship between Ctrough and grade 1 RI was the only statistically significant
(p > 0.013) relationship between Ctrough and a toxicity (fatigue, diarrhea, abdominal pain,
hypertension, mucositis, anemia and thrombocytopenia). It was not considered clinically
relevant, since the 10 patients who presented with grade 1 RI already presented with this at
the beginning of this study, in the first monitored cycle. In the literature, we have not found
studies showing a relationship between RI and Ctrough, although it seems logical to think
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that, since only 9% of a single dose is eliminated in the urine [73], there is no relationship
between renal function and the pharmacokinetic parameters of erlotinib.

4.2. Imatinib

Imatinib showed large variability both in the first and in the last monitored cycle
(mean CV first cycle 48.91% vs. mean CV last cycle 50.84%). In different populations,
the pharmacokinetic analysis revealed that weight, age, sex, diagnosis, AGP, albumin,
granulocytes, white series, hemoglobin and gastrectomy might be factors that explain
the variability between patients, but they have not been considered significant for dose
adjustments [26,28,33]. As with other TKIs, this variation can be explained by the oral
route, whether the drug is administered with food, presystemic metabolism at the intestinal
level, membrane transporters, binding to plasma proteins or hepatic metabolism through
cytochrome CYP3A4 and CYP3A5. In addition, therapeutic compliance can vary between
patients or even in the same patient [2,27]. Patients included in the present study show
variability in drug exposure comparable to that observed in other studies [60].

All imatinib dose adjustments made following TDM indications were to increase the
dose. In 31.8% of cycles, plasma concentrations were below the established 50% population
prediction interval. Dose adjustment in these patients led to a mean increase of 77.7% in the
last monitored cycle compared to the first. There are studies confirming the fact that after
8 months of treatment with imatinib, exposure to the drug decreases due to the induction
of liver enzymes [60,74].

As detailed in the data sheet of imatinib [75], the recommended dose for adult patients
ranges from 100 to 800 mg/day, depending on the indication. Although the patients
included started with the standard dose, three of them had to receive higher doses because
they did not reach therapeutic levels with the initial doses. Dose adjustment is only
recommended in the data sheet when co-administered with inhibitors or inducers of
CYP3A4, with liver dysfunction or RI [75]. As evidenced in this study, dose adjustments
based on TDM are necessary in additional situations where optimal therapeutic levels are
not reached if the patient’s condition allows it.

No significant relationship was observed between dose-normalized plasma Ctrough
in every cycle and PFS and OS. Other authors found that patients with lower exposure to
imatinib showed a lower overall rate of benefit (complete response + partial response +
stable disease), suggesting that a determinate level of Ctrough is necessary to maintain the
response in patients with GIST [76]. Another prospective study demonstrated a decrease
of approximately 30% in Ctrough after 3 months of treatment [74]. Therefore, it would be
advisable to repeat TDM after 3 months of treatment. Widmer et al. demonstrated the
relevance of achieving adequate levels of imatinib to maintain therapeutic responses in
a study of 38 patients with GIST [33]. This work also suggested that sustained exposure
is associated with a better response, more than total exposure to the drug. In the present
study, no relationship was found between Ctrough and PFS or OS, probably due to the low
number of patients recruited.

No significant differences were found in the analytical parameters or defined toxicities
in the first monitored cycle with respect to the last. Grade 2 toxicities observed, specifically
grade 2 anemia, were in the first cycle, before TDM and dose adjustment, compared to
the last (22.2% vs. 16.7%), except grade 2 RI (11.1% vs. 33.3%). Chronic RI is described
in the data sheet as an adverse reaction of unknown frequency for imatinib [75]. There
was no significant correlation between the analytical parameters and Ctrough, except for
hemoglobin and hematocrit, where a significant and inversely proportional relationship
with Ctrough was observed. Other authors reported a direct relationship between Ctrough
and analytical alterations or some toxic manifestations, probably related to longer treatment
or higher casuistry [77,78].
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4.3. Lapatinib

Patients treated with lapatinib in this study had different tumors: breast cancer, GIST,
pancreas, colon, esophagus, etc. Due to this heterogeneity, the dosage in the monitored
treatment cycles varied between 125 mg/day in some patients and 1250 mg/day. There is
no similar study in the literature on a real-world population for comparison.

Large variability was observed in the dose-normalized plasma concentrations at
different sampling times, both in the first cycle and in the last (mean CV first cycle: 60.7%
vs. average CV last cycle: 56.0%), in concordance with other TKIs previously analyzed.
Interpatient variability in lapatinib exposure found in the literature shows data for Ctrough
and an AUC of 55–97% and 42–117%, respectively [20,79–82], consistent with that obtained
in the present study. Regarding variability in intra-patient exposure, EPAR data for lapatinib
show a CV of AUC between 30% and 36% on average in healthy subjects. There are no
other studies in which variability has been measured. Therefore, patients included in
this study show interpatient variability in drug exposure comparable to the few studies
available in the literature. As other authors have shown for other TKIs, this variability may
be influenced by patients’ adherence to treatment, concomitant medication or previous
lines of treatment received, etc. [60].

As detailed in the data sheet of lapatinib [79], the recommended dose in adult patients
with HER2-positive breast cancer is 750 to 1500 mg/day, depending on the concomitant
medication administered. Dose adjustment is only recommended when cardiac events,
diarrhea or other grade 2 toxicities occur. In the case of severe hepatic insufficiency, it
is recommended to suspend treatment and not restart it. In the present study, 7 of the
16 patients treated began at a reduced dose for impaired liver function. Only in 2 of the
patients who started at a reduced dose was it necessary to increase the dose for inadequate
plasma levels. In the remaining 5 patients with a reduced dose, optimal levels within
the 50% population prediction interval were observed. In patients with impaired liver
function, TDM enabled the quantification of drug exposure and subsequent satisfactory
dose adjustment.

In situations other than impaired liver function in which optimal therapeutic levels are
not reached or when they are reached with doses lower than the standard, as long as the
patient’s condition allows it, dose adjustments based on TDM are necessary. Even so, based
on the data available in the literature, the individualization of the dose of lapatinib with
TDM based solely on a target dose is not recommended because they are studies carried
out in a very limited and heterogeneous population [57,58].

In the present study, no significant relationship was observed between dose-normalized
plasma Ctrough at each monitored cycle and PFS or OS. A clear exposure–efficacy relation-
ship for lapatinib has not been identified in the literature. Lapatinib was found to be well
tolerated at doses ranging from 175 to 1800 mg once daily or 500 to 900 mg twice daily [81].
In a phase I trial, it was found that most patients who responded to lapatinib had a Ctrough
ranging from 300 to 600 mg/L (n = 67 patients with metastatic solid tumors) [81]. However,
the results are difficult to interpret as response data are limited and the population is highly
heterogeneous.

The analytical parameters related to toxicity in the first monitored cycle with respect
to the last showed no significant differences, as with the defined toxicities themselves. The
most serious side effects observed, at grade 2 and grade 3, were mostly in the first cycle
(rash, diarrhea, mucositis, anemia and neutropenia), before performing TDM and dose
adjustment, compared to the last monitored cycle. It is remarkable in the case of lapatinib
that toxicities were detected in 25 cases in the first monitored cycle, while toxicities were
only detected in 5 cases after performing TDM. TDM of lapatinib reduced toxicity events
presented by the study population by 80%, very important in an otherwise useful drug
with a high degree of therapeutic withdrawal due to toxicity.

GOT and GPT were the only analytical parameters that correlated with Ctrough, show-
ing a directly proportional relationship. These data are consistent with those found in
the literature. Higher systemic exposure to lapatinib was previously described in patients
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with severe liver failure, with a mean AUC of lapatinib increased by more than 60% and
a 3-fold higher t1/2 than that observed in patients with normal liver function [79,80]. No
relationship was found between fatigue, rash, diarrhea, abdominal pain, hypertension,
mucositis or thrombocytopenia and Ctrough (p > 0.093). Other studies described similar
results, with diarrhea directly and positively related to dose (p < 0.03) but not to Ctrough.
This fact suggests that diarrhea is caused by a local effect of the drug on the intestinal
epithelium [81,82].

4.4. Sorafenib

Due to the different origin of the tumors treated with sorafenib (liver, breast, oral cavity,
etc.), the dosage guidelines varied from 200 mg/day in some patients to 600 mg/8 h in
other cases. There is no study in the literature that includes a similar real-world population
with TDM data for comparison with that shown here.

The large variability observed in dose-normalized plasma concentrations at different
sampling times in previous TKIs analyzed was also observed in the case of sorafenib
(mean CV first cycle: 89.7% vs. mean CV last cycle: 72.5%). In addition to other already
mentioned factors, sorafenib intake is recommended outside of meals or with a moderate or
low-fat meal due to the influence of food in pharmacokinetics. It also presents pre-systemic
metabolism at the intestinal level. The variability in exposure between patients found
in the literature shows data for Ctrough, AUC and apparent oral Cl of 25–104%, 12–117%
and 13–80%, respectively [83–86]. Therefore, the variability in drug exposure in patients
included in this study is comparable to that observed in other previously published studies.

The data sheet of sorafenib recommend a dose of 400 mg twice daily for adult patients
with hepatocellular carcinoma, renal cell carcinoma or differentiated thyroid carcinoma [83].
In the present study, only two patients started at the standard doses, while nine of the
patients started at a reduced dose, either because it was administered in combination with
chemotherapy, due to their age (78-year-old patient), as a result of cumulative toxicity,
or because they were in a bad clinical condition. One of the patients who started at a
reduced dose required an increase from 400 mg/day to higher than 1800 mg/day (350%)
to reach levels within the therapeutic range. Another patient required a 50% reduction
from 400 mg/day due to levels above the population prediction interval. (Sorafenib dose
adjustment is recommended in the data sheet only to manage possible toxicities or with
co-administration of neomycin or other antibiotics that cause ecological alterations in the
gastrointestinal microflora and may lead to decreased bioavailability or if the drug is
administered with inducers of metabolic enzymes. As has been observed in this study, it is
necessary to make dose adjustments based on TDM in situations other than suggested if
the patient’s condition allows it.

The correlation analysis of height and BSA with plasma Ctrough shows a positive
relationship in both cases (p = 0.021 and p = 0.022, respectively). No studies assessing the
clinical significance of this relationship were found.

In the present study, no significant relationship was observed between dose-normalized
plasma Ctrough at every monitored cycle and PFS (p = 0.940) or OS (p = 0.909). A clear
relationship between exposure and efficacy has not been established at present for sorafenib,
with some studies showing a relationship [87,88] and others not doing so [27].

The difference between the first and last cycles monitored was significant only for
hemoglobin (p = 0.031) and hematocrit (p = 0.031) when hematological parameters were
analyzed according to exposure to sorafenib. The most remarkable toxicities observed were
anemia and grade 3 neutropenia, which mainly occurred in the last cycle (50% and 25%,
respectively), that is, after performing TDM and dose adjustment. Hematological toxicities
such as anemia or neutropenia are described as frequent in the data sheet of sorafenib after
continued administration of the drug, even at levels within the therapeutic range [83]. The
correlation study performed between Ctrough and the different analytical parameters or
toxic manifestations show statistically significant results for platelets (r = −0.483, p = 0.043),
GPT (r = −0.478, p = 0.045) and alkaline phosphatase (r = −0.746, p = 0.001). Most of the
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studies which relate exposure and toxicity to sorafenib use AUC as a pharmacokinetic
parameter [34,87,89], so they are not comparable to the present study. Fukudo et al. showed
that Ctrough at steady state correlates with grade 2 hand–foot syndrome (p = 0.0045) and
hypertension (p = 0.0453). Although the toxicities they described were not the same as
those related in the present work, an exposure–toxicity relationship was shown in both
studies [88].

In the study by subgroups of the toxicities for each TKI evaluated, patients in group 1
(patients with concentrations below therapeutic levels and no toxicities) and group 4
(patients with levels above the therapeutic range and toxicities), the results are similar
to those reported in the literature for erlotinib and imatinib [60]. The authors conclude
that 65.7% of the patients treated with erlotinib and 47.3% of those treated with imatinib
would benefit most from TDM as a tool to improve the exposure–efficacy and exposure–
toxicity relationships. These percentages were slightly different from ours (63.7% and
55.5%, respectively), but significant enough to consider performing TDM. A total of 75.9%
and 36.4% of lapatinib and sorafenib patients, respectively, would benefit most from TDM.
There is no similar study in the literature to compare these results.

5. Conclusions

Erlotinib, imatinib, lapatinib and sorafenib show high inter-individual and intra-
individual variability in exposure. A similar scenario might be anticipated for other TKIs.

TDM of TKIs adds remarkable value to routine clinical practice. TDM enables as-
sessment of underdosing, lack of adherence to treatment and changes in exposure due to
interaction with food or other drugs. TDM-guided dose corrections result in a significant
improvement in exposure and enable more effective and safe use of TKIs, avoiding the
ineffectiveness and toxicity of these drugs in certain patients and clinical situations, as
has been the current practice with other medications (antibiotics, digoxin, anticonvulsants,
etc.).
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Abstract: (1) Background: The aim of this study was to explore the valproic acid (VPA) pharmacoki-
netic characteristics in a large population of pediatric and adult Caucasian patients and to establish a
robust population pharmacokinetic (PopPK) model. (2) Methods: A total of 2527 serum VPA samples
collected from 1204 patients included in a therapeutic drug monitoring program were retrospectively
analyzed. Patients were randomly assigned to either a model development group or an external
evaluation group. PopPK analysis was performed on 1751 samples from 776 patients with NONMEM
using a nonlinear mixed-effect modelling approach. The influence of demographic, anthropometric,
treatment and comedication variables on the apparent clearance (CL/F) of VPA was studied. The
bootstrap method was used to evaluate the final model internally. External evaluation was carried
out using 776 VPA serum samples from 368 patients. (3) Results: A one-compartment model with
first-order absorption and elimination successfully described the data. The final model included
total body weight, age and comedication with phenytoin, phenobarbital and carbamazepine with
a significant impact on VPA elimination. Internal and external evaluations demonstrated the good
predictability of the model. (4) Conclusions: A PopPK model of VPA in Caucasian patients was
successfully established, which will be helpful for model-informed precision dosing approaches in
clinical patient care.

Keywords: drug interactions; therapeutic drug monitoring; epilepsy; NONMEM; population
pharmacokinetics; valproic acid

1. Introduction

Valproic acid (VPA) is an antiepileptic drug (AED) that has been widely used in multi-
ple seizure types and various neurological and psychiatric disorders since its serendipitous
discovery in 1962 [1]. It is still considered a first-line option for treating generalized
epilepsies [2].

There are several oral formulations on the market, differing in their rate of absorption.
However, regardless of the formulation, VPA absorption is rapid and almost complete
with a bioavailability greater than 90% [1]. The metabolism of VPA is mainly character-
ized by three routes: glucuronidation via uridine diphosphate glucuronosyltransferase
(UGT) isoforms (50%), including UGT1A3/1A4/1A6/1A8/1A9/1A10/2B7; beta oxida-
tion in mitochondria (40%); and cytochrome P450 (CYP)-mediated oxidation (10%), such
as CYP2A6/2B6/2C9/2C19 [3–6]. Only a small amount of VPA is excreted unaltered in
urine (1–3%). VPA serum apparent clearance (CL/F) varies from 6 to 10 mL/h/kg [6],
with a half-life ranging from 12 to 16 h and from 8.6 to 12.3 h for adults and children,
respectively [5].
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Serum level monitoring was introduced as a result of the large interindividual vari-
ability (IIV) observed in the pharmacokinetic (PK) behavior of VPA, in order to individ-
ualize dosage regimens and to achieve a steady-state serum concentration between 50
and 100 mg/L [5]. It is essential to establish adequate and robust population PK (PopPK)
models of VPA and to investigate the influence of potential covariates on its PK behavior,
specially to quantify drug–drug interactions with other AEDs and the PK changes from
childhood to adulthood. Traditional pharmacokinetic methods make it difficult to estimate
pharmacokinetic parameters from clinically obtained sparse blood samples.

VPA exhibits saturable binding to serum proteins, which results in a higher unbound
fraction at high serum concentrations [7]. Some studies included VPA dose with its influ-
ence on its CL/F, probably to capture this phenomenon [7–16]. However, this nonlinear
PK behavior remains controversial [7], being highlighted as a potential confounding factor
of the commonly known “Therapeutic Drug Monitoring (TDM) effect”. In fact, in clinical
setting, subjects with higher CL/F will have a lower concentration of the drug, and con-
sequently higher doses will be administered and vice versa. That is why VPA dose is not
recommended for consideration as a potential covariate in PopPK models based on sparse
data from TDM [17].

Previous PopPK studies showed that total body weight (TBW), age, gender, ge-
netic factors, VPA dose and comedication had a significant influence on VPA PK
parameters [6–11,13–15,17–27]. However, few PopPK studies have been performed
with a wide range of ages of Caucasian patients. This study was performed with the
aim of exploring the PK characteristics of VPA in a large population of pediatric and
adult Caucasian patients and developing a robust VPA PopPK model for improving
current VPA therapeutic drug monitoring (TDM).

2. Materials and Methods

2.1. Study Design and Population Characteristics

Data from ambulatory patients (aged 0.11–92.9 years old) treated with VPA and fol-
lowed by the TDM program of the University Hospital of Salamanca were retrospectively
recruited for model development and external evaluation. Only mono- or dual therapies
were considered, and the following exclusion criteria were applied: (1) missing labora-
tory data/treatment information/concentration data; (2) inaccurate medication or blood
collection time records; (3) poor patient treatment adherence; (4) patients whose body
mass index (BMI) was outside the range of 16.0–39.9 kg/m2, in accordance with World
Health Organization (WHO) indications (for patients under 18 years of age, the criterion
used was three standard deviations from the means in the WHO tables for children) [28];
(5) nonsteady state achieved and (6) more than two AEDs administered concurrently.

Steady-state concentrations were assumed to have been reached a month after the
initiation of treatment or a dose change. Treatment adherence was assessed by means of
an interview with the attending health care provider. Demographic and anthropometric
information (age, gender, height (HGT), TBW, body surface area (BSA), BMI,), disease
information (seizure type and diagnosis), medication information (dosage forms, dosage
regimens and administration time), comedication with another antiepileptic drug other than
VPA (carbamazepine (CBZ), phenytoin (PHT), phenobarbital (PB), ethosuximide (ESM),
lamotrigine (LTG), topiramate (TPM) and clobazam (CLB)) and the analytical technique
used to determine serum concentrations were recorded for each patient.

All patients included in the study were randomly assigned to either a model develop-
ment or a model external evaluation group in an approximate 2:1 proportion stratified by
age groups (Table S1). The model development dataset consisted of 1751 serum concentra-
tion samples from 836 patients. In addition, 776 serum samples from 368 different patients
were used as an external evaluation dataset. Table 1 shows a summary of the baseline
characteristics of both the development and external evaluation datasets. No statistically
significant differences (p < 0.001) were shown for any covariate considered across the two
datasets considered.
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Table 1. Baseline patients’ characteristics.

Variable Level Development External

Subjects (n) 836 368

Age (years) 33.22 ± 23.90;
32.42 (0.11–89.42)

33.48 ± 22.73;
31.58 (0.67–92.92)

Total body weight (kg) 55.82 ± 26.08;
60.00 (6.70–125.00)

58.07 ± 24.59;
62.00 (6.50–110.00)

Height (cm) 149.00 ± 28.58;
160.00 (62.00–194.00)

152.17 ± 26.50;
160.00 (69.00–194.00)

Body mass index * (kg/m2)
23.04 ± 5.63;

23.31 (11.81–39.79)
23.36 ± 5.70;

23.36 (11.78–39.61)

Body surface area ** (m2)
1.50 ± 0.50;

1.63 (0.36–2.52)
1.55 ± 0.47;

1.68 (0.35–2.39)

VPA daily dose (mg) 1107.13 ± 587.00;
1000.00 (150.00–4500.00)

1177.04 ± 625.21;
1000.00 (200.00–4500.00)

Gender, n (%)
Male 451 (53.9) 188 (51.1)

Female 385 (46.1) 180 (48.9)
* body mass index [29]; ** body surface area [30]; VPA: valproic acid; SD: standard deviation. All continuous
covariates are expressed as mean ± SD; median (minimum–maximum).

The final PopPK model was evaluated internally and externally using the development
and external evaluation datasets, respectively, and for the last step, the two datasets
(development and external evaluation) were merged for evaluating potential differences in
the final PK parameter estimates. Thus, three types of datasets were used: the development,
the external evaluation and the merged datasets. The effect of demographic, anthropometric
and comedication variables on VPA CL/F was investigated.

2.2. Blood Sampling and Assay

VPA was administered orally in one of the following presentations: gastro-resistant
tablets (200 mg and 500 mg), coated prolonged-release tablets (300 mg and 500 mg) or oral
solution (200 mg/mL). The dose was adjusted in accordance with the observed VPA serum
level, clinical efficacy and any adverse reactions. All of the blood samples were taken as
a part of the routine TDM procedure. Fluorescent polarization immunoassay (FPIA) was
used to determine serum VPA concentrations, using a fluorescence polarization analyzer
(Abbott TDx analyzer) with an inter- and intra-assay variation coefficient of less than 10%
and a limit of detection of 0.7 mg/L [31,32]. Normally, serum VPA concentrations were
obtained at the end of the dosing interval and once the steady state had been reached.

2.3. Population Pharmacokinetic Modeling

NONMEM (v.7.5.1, ICON Development Solutions, Ellicott City, MD, USA), Perl-
speaks-NONMEM (PsN) v.5.2.6. (Uppsala University, Sweden, http://psn.sourceforge.net),
R v.4.1.2., RStudio v.2022.02.0+443 (RStudio, Boston, MA, USA) and Pirana v.3.0.0. (Certara,
Princeton, NJ, USA, http://www.certara.com) were used to apply a nonlinear mixed-effect
modeling methodology. The first-order conditional estimation method with interaction
(FOCEI) was used. The log-transforming both sides (LTBS) approach was applied to the
VPA concentrations [33]. Most concentrations (97.5%) in this study were steady-state
trough concentrations (Css

min), which could not totally reflect the absorption and distribu-
tion process characteristics. Considering the type of sampling points (Css

min and sparse
data) and information available in the literature, a one-compartment structural kinetic
model with first-order absorption and elimination was chosen as the base structural PK
model [8–10,14,15,17,24], and the absorption rate constant (Ka) was fixed at 2.64 h−1 for
oral solution (syrup), 0.78 h−1 for gastro-resistant tablets and 0.38 h−1 for modified-release
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coated tablets based on previous information [7,8]. In the case formulation information
in the clinical records was not available, oral solution and gastro-resistant tablets were
considered for patients younger and older than 12 years old, respectively. PK parameters
scaled to TBW were a priori included in the base model based on physiological reasons
and previous knowledge [34]. A standard allometric scale based on TBW with a single
exponential value of 0.75 was assumed for apparent clearance (CL/F), and a single expo-
nential value of 1.0 was defined for apparent volume of distribution (V/F). Estimation of
these exponents was also evaluated. Additional maturation functions for characterizing
physiological changes in addition to those explained by body size were also investigated.
Furthermore, the population value of V/F was fixed at 14 L for a typical patient of 70 kg in
accordance with previous studies [5]. Although these assumptions could be considered a
limitation, they enable the use of data generated during clinical practice (sparse data), and
this constitutes the foundations of the utility of the PopPK approach developed by Beal
and Sheiner in 1990 [35–37].

PK parameters were assumed log-normally distributed; thus, an exponential model
was used to describe the interindividual variability (IIV) in CL/F. The residual unknown
variability (RUV) was included as an additive error model after the natural logarithm trans-
formation of measured drug concentrations and model predictions (which is equivalent as
a proportional error in the natural scale) [33]. Additional error models, such as additive
and combined, were also tested.

Plausible variables previously identified in the literature and with physiological sig-
nificance were incorporated into the model for covariate screening and identification, by
means of a stepwise strategy performed in PsN (p-forward = 0.05, p-backward = 0.01). In
the forward step, the selected covariates were included in the base model one by one, and
only those causing a decrease in the objective function value (OFV) > 3.84 (p = 0.05, χ2

distribution with one degree of freedom) were incorporated into the full regression model.
Covariates were removed one at a time in the backward elimination step performed on the
final forward step model. A covariate resulting in an increased OFV of over 6.63 (p = 0.01,
χ2 distribution with one degree of freedom) was considered significant for CL/F prediction
and was retained in the final PopPK model. All other covariates that did not meet this
criterion were excluded. Linear and exponential functions were used to analyze continuous
covariates, whereas the dichotomous categorical covariates were analyzed by estimating
the change in the PK parameter with respect to the reference group (most common). Finally,
a conditional function was used for categorical covariates with more than two groups [38].

2.4. Model Assessment and Evaluation

Model selection was guided by run convergence minimization with at least 2 signif-
icant digits in parameter estimates, a successful covariance step, changes in minimum
objective function value (MOFV) for each nested model (p < 0.05, χ2-test, and ΔOFV > 3.84),
plausibility and precision of parameter estimates, evaluation of random effects (i.e., η and
ε) shrinkage, reduction in IIV and/or RUV and visual inspection of standard diagnostic
plots including goodness-of-fit plots (GOF). Performance of the final PopPK model was
assessed by both internal and external evaluation. A bootstrap resampling technique from
the development dataset was used to judge the reliability and stability of the final PopPK
model developed in the study. A total of 1000 bootstrap-resampled datasets were generated
from the original model development dataset, and each was individually fitted to the final
PopPK model with PsN. All PK parameters were estimated in the 1000 bootstrap datasets,
and the median and 95% confidence intervals (CI) of the parameters were compared with
the estimates of the final PopPK model parameters.

The external evaluation (external evaluation dataset) of the model using different
patients than those used for model development from a real (not simulated) population
with similar characteristics to the population used for model development was carried out
in three steps [39,40]:
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(1) Evaluation of the predictive capacity of the final PopPK model developed in the
external evaluation dataset, using the option MAXEVAL = 0 (Bayesian forecasting).
The mean prediction error (MPE) and root mean squared prediction error (RMSE)
were calculated to determine bias and precision, respectively [41]. These metrics
were evaluated by age group to confirm the accurate and precise-model-based VPA
predictions across the wide range of ages considered in this study.

(2) PK parameters’ re-estimation with the merged dataset (model development together
with external evaluation datasets) to confirm the stability of the final PK parameter
estimates when different patients were considered.

(3) Visual inspection of the GOF generated when VPAs of external evaluation dataset are
predicted through Bayesian forecasting (MAXEVAL = 0) based on a priori information
relying on the final PopPK model developed.

3. Results

3.1. Population Pharmacokinetic Modeling

A one-compartment model was selected as the structural model to describe VPA PK
profile. Age significantly influences CL/F, which was mainly captured by the inclusion of
TBW in CL/F following allometric scaling principles (IIV of CL/F decreased by 41% when
only considering TBW on CL/F).

Exponential and proportional error models for IIV and for RUV, respectively, success-
fully described the data (Table 2).

Table 2. PK parameters estimates (development, bootstrap and merged dataset re-estimation).

Final Model
(Development Dataset)

Re-Estimation
Final Model

(Merged Dataset)
Bootstrap ♦

Parameter Estimate
RSE
(%)

Shkg
(%)

Estimate
RSE
(%)

Shkg
(%)

Median 95% CI

Ka Fixed * - - - - - - -
CL/F 0.646 1.20 - 0.641 1.00 - 0.645 0.631–0.661
AGE −0.0154 64.3 - −0.0107 80.2 - −0.0154 −0.034–0.004
CBZ 0.512 13.4 - 0.549 11.7 - 0.513 0.379–0.658
PB 0.386 23.2 - 0.349 21.1 - 0.398 0.232–0.623

PHT 0.640 24.2 - 0.642 17.8 - 0.638 0.361–0.966
V/F Fixed ** - - - - - - -

IIV_CL/F
(%) 26.8 5.50 19.0 26.4 4.50 19.0 26.6 23.8–29.8

RUV (%) 57.7 3.80 17.0 56.0 3.30 17.0 28.1 25.8–30.4

♦ Bootstrap n = 1000 with successful minimization and no problems for 994 models. * Absorption rate constant
(Ka) was fixed at 2.64 h−1 for oral solution (syrup), to 0.78 h−1 for gastro-resistant tablets and to 0.38 h−1 for
modified-release coated tablets based on previous information [7,8]. ** Apparent volume of distribution (V/F)
was fixed at 14 L for a typical patient of 70 kg [5]. AGE: influence of age on CL/F; CBZ: influence of comedication
with carbamazepine (CBZ) on apparent clearance (CL/F) (expressed as a proportion); CI, confidence interval;
IIV_CL/F: interindividual variability (IIV) in CL/F (expressed as coefficient of variation in %); PB: influence of
comedication with phenobarbital (PB) on CL/F (expressed as a proportion); PHT: influence of comedication with
phenytoin (PHT) on CL/F (expressed as a proportion); RSE: relative standard error; RUV: residual unknown
variability (expressed as coefficient of variation in %); Shkg: shrinkage. See Equations (1) and (2) for the final
CL/F and V/F equations, respectively.

A visual inspection of the GOF plots allowed us to confirm an adequate description of
the data except for subjects weighting less than 24 kg and/or younger than approximately
6 years old (data not shown). Therefore, additional evaluations of CL/F were carried out.
Thus, the potential influence of age on VPA CL/F, were evaluated both as a standard matu-
ration function collapsing at 2 years old (Hill equation) and as an exponential relationship
centered on the age of 15, the cut-off point observed following a visual inspection of CL/F
with respect to age. Finally, age was included on VPA CL/F following an exponential
relationship as described in Equation (1), which, together with the comedications influence
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on CL/F identified in the covariate model evaluation procedure, considerably improved
the GOF in the youngest pediatric subjects (Figure 1).

 

Figure 1. Goodness-of-fit plots for the development dataset (upper panels) and the external evaluation
dataset (lower panels) colored by age classification (AGEC), • 28 d–2 y • 2–11 y • 12–18 y • >18 y.

The covariates fulfilling the statistical requirement for inclusion (p < 0.001) were,
in addition to TBW as an allometric relationship: AGE centered on the age of 15 and
introduced as a power function on CL/F and comedication with carbamazepine (CBZ),
phenytoin (PHT) and phenobarbital (PB) (Equation (1)). Furthermore, the association with
LTG and gender initially showed a statistically significant impact on CL/F (p < 0.005).
However, these covariates were not retained in the final model due to the lack of clinical
relevance, as the VPA CL/F was impacted by less than 10% in both cases. VPA V/F was
finally described following an allometric scaling relationship with a value of 14 L for a
typical adult patient (Equation (2)), as explained above.

CL/F [L/h] = 0.646 (TBW/70)0.75 × 1.640PHT × 1.386PB × 1.521CBZ × (AGE/15)−0.0154 (1)

V/F [L] = 14 (TBW/70)1 (2)

where TBW is the total body weight in kg, Age is the age in years and PHT, PB and CBZ
represent comedications of phenytoin, phenobarbital and carbamazepine, respectively;
these variables (comedication) take a value of 0 when absent and 1 when the drug is
administered simultaneously with VPA.

These results highlight the requirement of VPA dose intensification in combination
with other AEDs, especially in adults and very young children (1 year old), where VPA
serum concentration can be reduced by approximately 50% compared to the VPA adminis-
tered in monotherapy.

The estimated CL/F of VPA for a typical patient with a median TBW of 70 kg and
absence of any comedication was 0.646 L/h. Compared to the corresponding base model,
the IIV of CL/F decreased by about 48%, showing that the occurrence of these covariates
effectively improves the fit of the data.

Given the sampling strategy routinely applied in TDM procedures (mainly Css
min), V/F

was not able to be suitably estimated with sufficient physiological plausibility. Thus, V/F
was fixed at 14 L for a standard adult patient of 70 kg [5].

3.2. Model Evaluation

The bootstrap results (Table 2) demonstrate the robustness of the PopPK model. The
95% confidence interval (CI) of parameter estimates showed satisfactory overlap. The final
model proved to be highly stable, with a total of 99.6% bootstrap runs fitting successfully
without problems to the new datasets generated by bootstrapping. The bootstrap estimates
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resembled those of the population with errors lower than 50% in all the parameters, except
for the RUV value, potentially due to the sampling design.

All of the PK parameter estimates with the merged dataset (including both the devel-
opment and the external datasets) were within the 95% CI of the PK parameters obtained in
the bootstrap analysis (Table 2) (except the RUV, as previously mentioned), demonstrating
the adequate predictive power of the proposed final model (Source code of the final model
is available in Table S2).

The predictive performance of PopPK was assessed by means of a comparison between
the concentrations observed in the external evaluation dataset and those predicted by the
final model developed. Figure S1 shows an adequate distribution of the prediction errors
calculated (mostly distributed within ±30%) in the external evaluation dataset through
Bayesian estimation across all the different age classification groups supporting the correct
model predictability along ages. In addition, Table 3 shows the calculated MPE and RMSE
for population-predicted concentrations (PRED) and individual-predicted concentrations
(IPRED). Estimation errors were acceptable in the PK parameters estimated for fixed (<20%)
and random effects (<6%), as well as shrinkage values (<20%).

Table 3. Summary of precision and bias of the final model in the external evaluation dataset.

AGEC 28 d–2 y 2–11 y 12–18 y >18 y

IPRED PRED IPRED PRED IPRED PRED IPRED PRED

MPE, % 15.5 34.3 13.8 27.8 15.5 29.2 16.3 33.4
RMSE, % 18.2 37.5 19.6 37.8 19.7 36.4 23.7 56.8

AGEC: age classification group; MPE: median prediction error; RMSE: root mean squared prediction error. These
metrics were calculated considering both the individual valproic-acid (VPA)-predicted concentrations (IPRED)
and the population-predicted concentrations (PRED).

In the case of the PK parameter quantifying the impact of the age on VPA CL/F, the
standard error was high, which may limit its validity. However, bootstrap results confirm
the value estimated in a largest dataset, supporting, together with the GOF, its inclusion in
the final model. Internal evaluation by bootstrapping methodology demonstrated the good
predictability of the final PopPK model developed (Table 3).

Figure 2 shows the evolution of steady-state plasma VPA concentrations in different
scenarios: four age groups in mono- and dual therapy, with the antiepileptic drugs iden-
tified in the PopPK. The regimens shown were designed to achieve VPA concentrations
within the acceptable therapeutic margins in monotherapy.

Figure 2. Valproic acid (VPA) concentration–time profiles simulated with the final model developed.
The following acronyms represent the drug administered in each scenario: VPA monotherapy together
with carbamazepine (CBZ), phenobarbital (PB) and phenytoin (PHT); GR: gastro-resistant.
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4. Discussion

Individual differences in drug disposition could cause effective epilepsy management
to fail. Traditionally, VPA TDM was routinely carried out in a large number of hospitals,
which made it possible to individualize the dosage of this drug. To address the PK-guided
TDM of VPA, robust and sufficiently evaluated and wide applicability (age and weight
ranges), PopPK models are required to help optimize VPA dosage regimens. Soreducing
health care costs and improving treatment outcomes by using Bayesian algorithms and
drug serum concentrations taken during routine clinical monitoring.

A number of studies have developed VPA PopPK models in epileptic
patients [1,3,7–9,11,13–27,42–44]. Most of the previous PopPK models available were de-
veloped based on non-Caucasian populations, and some of them involved a small number
of patients, which limits their usefulness in the clinical setting. Furthermore, one-third of
the published PopPK models for VPA were not adequately evaluated at all, and several of
the remaining PopPK models did not have an external evaluation performed [6], which is
highly recommended by the European Medicines Agency (EMA) and the Food and Drug
Administration (FDA) [45,46], especially with studies carried out with real-world patients.

The development of this PopPK model is justified by the need for a model that has
been validated both internally and externally, making it possible to correctly estimate CL/F
in both children and adults, and does not include DDV as a covariate, so that it may be
used in dosage optimization.

Considering the large number of data available for model development and the wide
range of ages included (0.1–92.9 years old), special caution was taken to characterize PK
changes according to body size and years of life related to physiological maturation. In con-
clusion, the impact of total body weight on VPA CL/F following an allometric relationship
together with age for correcting maturation processes, mainly in young infants, adequately
described the large number of data considering the broad age spectrum (Figure 1). Gender
showed a slight influence on CL/F. However, this difference was not considered clin-
ically relevant (<10% change of VPA CL/F), and gender was not retained in the final
model. This finding is in agreement with other studies that tested the gender covari-
ate in the CL/F [1,3,7–9,11,13,14,18,21,23,26,42,44]. However, a few studies showed that
gender had a significant effect on CL/F, reporting a reduction from 5.7% to 35.4% in
women [10,16,19,24,27,43].

The most important factors affecting VPA PK are those related to their association
with drugs that induce or inhibit its metabolism. Consequently, we studied the effect of the
concomitant administration of classic AED (CBZ, PHT and PB) on VPA CL/F. To avoid the
complexity of PK interactions caused by multiple-drug coadministration, the influence of
a single AED when added to VPA treatment was analyzed. Therefore, the collected data
correspond to either mono- or dual therapies.

CBZ, PHT and PB interact with VPA by inducing the metabolism of CYP3A4, CYP2C19,
CYP2C9, UGT1A6, UGT1A9 and UGT2B7. This leads to a reduction in plasma VPA
levels (CBZ: 39%; PHT and PB: 37%) [5]. Despite the low number of patients undergoing
concomitant dual therapy (CBZ = 6.9%; PHT = 2.2% and PB = 2.3% in the development
dataset), the effects of the association with CBZ, PHT and PB on the CL/F of VPA were
highly determinant of the value of this parameter. In addition, association with LTG was
initially included in the model following statistical criteria but was not retained in the
final PopPK model due to the lack of clinical relevance, as CL/F of VPA was altered by
less than 10%.

In dual therapy with CBZ, a typical VPA CL/F value was estimated at 0.0150 L/h,
0.0157 L/h, 0.818 L/h and 2.258 L/h for typical reference for patients aged 1 year old
(mean weight 9.4 kg), 6 years old (mean weight 22.9 kg), 15 years old (mean weight
53.3 kg) and 35 years old (mean weight 73.5 kg), respectively, and 0.010 L/h, 0.103 L/h,
0.538 L/h and 1.484 L/h for the same patients when VPA was administered as monotherapy,
resulting in an increase CL/F of about 52%, with the consequent reduction in VPA serum
levels. These results are consistent with those calculated using models proposed by other
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authors, which estimate a 30–43% increase in the CL/F for patients between 5 and 15 years
old [7,13,15,16,21,27] and a 40–42% increase for patients over 15 years of age [7,14,18].

In association with PHT, typical VPA CL/F values for the previously mentioned
reference patients were estimated at 0.016 L/h, 0.169 L/h, 0.883 L/h and 2.434 L/h, re-
spectively, resulting in an increase in CL/F of about 64%, similar to the 54% reported by
Blanco-Serrano 1999 [14], but superior to the 11–43% reported by other authors [9,10,18,24].

In dual therapy with PB, typical VPA CL/F values for the previously mentioned refer-
ence patients were estimated at 0.014 L/h, 0.143 L/h, 0.746 L/h and 2.057 L/h, respectively,
resulting in an increase in CL/F of about 39%. This is similar to the 24% and 36% reported
by several authors [11,14]. However, this increase differs from values (10%, 11%, 12% and
57%) reported by other authors [9,10,16,21].

Considering the significant effect of dual therapy with CBZ, PHT and PB, it would
be necessary to reduce the a priori dose of VPA by approximately 52%, 64% or 39% of the
standard dose of VPA monotherapy, respectively, to obtain steady-state drug levels within
the reference therapeutic range (Css

min = 50–100 mg/L). Despite the significance of these
dual-therapeutic effects, no recommendations are given in the reference guidelines for VPA
dosing adjustments in patients that take these AEDs in combination [47,48].

According to the literature [5], CLB inhibits the metabolism of VPA, while ESM
increases it. However, this effect was not observed in the proposed models, probably due
to the low representativeness of these covariates in our population sample, lower than 2%
for all age group classifications.

Part of the CL/F IIV seen in the base model (60%) can be explained by the proposed
final model. The remaining unexplained PK variability was still relatively large, justifying
the need to perform TDM as a strategy to reduce individual PK uncertainty in order to
assist in personalized VPA dosage regimens.

The tendency observed in the conditional weighted residuals with respect to popu-
lation prediction (Figure 1) can be attributed to the fact that many data were taken from
the post-monitoring stage, and this biases the residual profile due to the effect of TDM.
However, this is not a model misspecification as all other goodness-of-fit measurements
appear to indicate the suitability of the model [49].

Before they can be used to reliably optimize dosage, PopPK models must be vali-
dated. Both internal and external evaluation procedures were used to successfully assess
the suitability of the developed PopPK model for application in dose individualization
(Table 3), supporting its implementation in TDM procedures together with Bayesian fore-
casting according to the correct model performance, adequate precision, accuracy and
prediction capability.

The typical population value of VPA CL/F in the monotherapy regimen in the final
model was 0.010 L/h, 0.103 L/h, 0.5381 L/h and 1.484 L/h for typical patients of 1 year
old (mean weight 9.4 kg), 6 years old (mean weight 22.9 kg), 15 years old (mean weight
53.3 kg) and 35 years old (mean weight 73.5 kg), respectively. These values were aligned
with the previous value reported in the scientific literature, where the ranges of CL/F were
0.18–0.37 L/h and 0.22–0.53 L/h in patients younger than 5 years and patients between
6 and 14 years, respectively [1,3,7,10,11,13,15,16,19,21–23,27,42–44], and 0.38–0.93 L/h in
patients ≥ 15 years [8–10,13,14,16–19,21–24,26,27,42,43]. VPA–protein binding decreases
in patients aged over 65, and this increases the free fraction that may be distributed and
eliminated, compensating the expected reduction in CL/F in elderly patients due to the
inevitable deterioration of liver function with age. The differences found between VPA
CL/F in adult and elderly patients were not as significant.

Our findings show the need to adjust the VPA dosage considering the dual thera-
pies with CBZ, PHT or PB to reach therapeutic concentrations (Css

min ≥ 100 mg/L). This
fact supports the need for CL/F’s proper characterization in order to optimize VPA
dosage regimens.

To the best of our knowledge, this PopPK model of VPA was developed in the largest
Caucasian population used to date. The study presented in this manuscript includes a very
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wide range of ages and a sufficient representation of the most common antiepileptic dual
therapies supporting its robustness and wide application in routine clinical practice to im-
prove dosage optimization. Indeed, the VPA PopPK model proposed should be considered
for model-informed precision dosing (MIPD) of this drug in Caucasian populations from
pediatrics to adults.

Besides all the strengths of the research carried out, some limitations might be ac-
knowledged, such as the retrospective and sparse sampling characteristics of the data,
potentially limiting additional evaluations, such as unbound VPA concentrations, addi-
tional comedications not taken into account or proper estimation of Ka and V/F. However,
the successful internal and external evaluations support the adequate descriptive and
predictive capabilities of the final VPA PopPK model developed.

5. Conclusions

This study adequately characterized the CL/F of VPA in a large number of Caucasian
patients across a very wide range of ages (from 0.1 to 89.4 years old) by using nonlinear
mixed-effect modeling and assessing the influence of anthropomorphic, demographic and
comedication factors on this parameter. The final PopPK model confirmed the influence of
coadministration with carbamazepine, phenytoin and phenobarbital and it demonstrated
good stability with an acceptable predictive ability in internal and external evaluations.
Based on the final model, which includes development and external evaluation datasets,
this PopPK model could be used in the design of a priori VPA dosage regimens and for
model-informed precision dosing (MIPD) strategies to optimize VPA treatments in clinical
patient management along with Bayesian algorithms during TDM procedures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14040811/s1, Figure S1: Prediction error (PE)
boxplot by age group calculated considering both the individual valproic-acid (VPA)-predicted
concentrations (IPRED) and the population-predicted concentrations (PRED) using the final PopPK
model developed and the external dataset, Table S1: Summary of number of subjects and valproic
acid (VPA) concentrations by age group and dataset type, Table S2: Source code of the final model.
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Abstract: Linezolid is an efficacious medication for the treatment of drug-resistant tuberculosis but
has been associated with serious safety issues that can result in treatment interruption. The objectives
of this study were thus to build a population pharmacokinetic model and to use the developed
model to establish a model-informed precision dosing (MIPD) algorithm enabling safe and efficacious
dosing in patients with multidrug- and extensively drug-resistant tuberculosis. Routine hospital
therapeutic drug monitoring data, collected from 70 tuberculosis patients receiving linezolid, was
used for model development. Efficacy and safety targets for MIPD were the ratio of unbound area
under the concentration versus time curve between 0 and 24 h over minimal inhibitory concentration
(f AUC0–24h/MIC) above 119 and unbound plasma trough concentration (f Cmin) below 1.38 mg/L,
respectively. Model building was performed in NONMEM 7.4.3. The final population pharmacoki-
netic model consisted of a one-compartment model with transit absorption and concentration- and
time-dependent auto-inhibition of elimination. A flat dose of 600 mg once daily was appropriate in
67.2% of the simulated patients from an efficacy and safety perspective. Using the here developed
MIPD algorithm, the proportion of patients reaching the efficacy and safety target increased to 81.5%
and 88.2% using information from two and three pharmacokinetic sampling occasions, respectively.
This work proposes an MIPD approach for linezolid and suggests using three sampling occasions to
derive an individualized dose that results in adequate efficacy and fewer safety concerns compared
to flat dosing.

Keywords: tuberculosis; population pharmacokinetics; linezolid; auto-inhibition of linezolid elimina-
tion; model-informed precision dosing; simulation

1. Introduction

Rifampicin-resistant (including multidrug-resistant (MDR)) tuberculosis (TB) is still
a global health threat, with close to half a million new cases annually [1]. MDR-TB is
defined as resistant to both isoniazid and rifampicin and extensively drug-resistant (XDR)
as resistant to isoniazid and rifampicin, plus any fluoroquinolone and at least one Group A
drug (levofloxacin, moxifloxacin, bedaquiline, or linezolid). Treatment of these infections
requires the use of second-line treatment, which is longer, associated with higher costs,
increased toxicity, and has a success rate of merely 59% [2,3]. Currently, one of the core
second-line anti-TB drugs used for the treatment of MDR- and XDR-TB is linezolid, a
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synthetic antibiotic from the oxazolidinone class, inhibiting the bacterial protein synthesis
by binding to the 23S rRNA of 50S ribosomal subunit [4]. Its two main inactive metabolites
are hydroxyethyl glycine and aminoethoxy acetic acid, excreted both renally (unchanged)
and non-renally [4]. The efficacy of linezolid has been suggested to be related to the ratio of
unbound area under the concentration versus time curve between 0 and 24 h over minimal
inhibitory concentration (f AUC0–24h/MIC) with a threshold above 119 [5,6]. As a potential
safety target for linezolid in TB treatment, it has been suggested that the unbound plasma
trough concentration (f Cmin) should be below 1.38 mg/L [6,7] since the time above f Cmin
is assumed to be related to mitochondrial toxicity [8,9].

Treatment of MDR- and XDR-TB with linezolid (nowadays usually in combination
with one of the later generation fluoroquinolones, bedaquiline, and another second-line
anti-TB drug) [10] is much longer than the standard treatment of other indications with
linezolid that have a maximum treatment length of 28 days, which has been shown to
lead to more serious adverse events [6,10]. A common adverse event, especially during
longer treatment, is myelosuppression (mainly thrombocytopenia, but also leukopenia and
anemia). Peripheral and optic neuropathy, lactic acidosis, hepatotoxicity, and hypoglycemia
occur more seldom but can be severe and irreversible (neuropathies) [6,11]. Linezolid’s
high toxicity during longer treatment contributes to a treatment discontinuation rate of
22.6% (141/624, based on 11 studies conducted between 2009 and 2018) [12]. One approach
to reduce the risk of developing serious adverse events and minimize the risk of early
treatment discontinuation is model-informed precision dosing (MIPD) [13]. MIPD is
guided by patient characteristics, individual plasma drug concentrations, and a population
pharmacokinetic (PK) or combined pharmacokinetic-pharmacodynamic (PKPD) model.
The approach can be used in TB treatment to reduce the risk of treatment failure as well as
toxicity [13–16]. The challenge in the treatment of MDR- and XDR-TB is to administer a
linezolid dose that is highly efficacious with limited toxicity. MIPD can be used to support
individual dose selection using a population PK model and targets for efficacy and safety.

The objectives of this work were to develop a population PK model, which, together
with pre-set efficacy and safety targets, can be used to develop an MIPD algorithm enabling
safe and efficacious dosing on an individual level.

2. Materials and Methods

2.1. Patients and Pharmacokinetic Data

Routine therapeutic drug monitoring (TDM) data from 70 MDR- or XDR-TB patients
receiving linezolid was collected at the TB center Beatrixoord in Haren, University Medical
Center Groningen (UMCG), The Netherlands, between 2007 and 2019. Due to the retro-
spective nature of this study and because TDM was already part of the routine treatment
protocol in the TB center, the need for subjects to provide informed consent was waived
by the Medical Ethical Review Board UMCG (METC 2013.492, ethical clearance date:
3 December 2013). Patient demographics, patient characteristics, linezolid total plasma
concentrations, and linezolid dosing regimens were retrieved from the medical charts. A
summary of patient demographics and characteristics is provided in Table 1. Linezolid was
administered in combination with other anti-TB drugs for up to 542 days with oral daily
doses (once daily (QD) or twice daily (BID)) ranging from 150 to 1200 mg. A summary of
all regimens included in the analysis can be found in Table S1 (Supplementary Materials).
Linezolid plasma concentrations were obtained at varying time points at up to seven in-
dependent sampling occasions in each patient. In most instances, a pre-dose sample was
taken before drug administration. Plasma total linezolid concentrations were quantified
using validated liquid chromatography coupled with the mass spectrometry (LC-MS/MS)
(ThermoFisher, San Jose, CA, USA) method with a lower limit of quantification (LLOQ) of
0.05 mg/L [17].
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Table 1. Demographics and covariates for patients included in the data set used for population
pharmacokinetic model building.

Parameter Unit All Patients

N 70

Mean weight (range) kg 61.2 (35.3–88.9)

Mean height (range) m 1.70 (1.50–1.93)

Mean creatinine clearance (range) mL/min 116.1 (40.7–150.0) a

Mean age (range) years 32 (15–70)

Mean body mass index (range) kg/m2 21.2 (15.5–32.6)

No. of male sex n (%) 38 (54.5)

No. with HIV n (%) 5 (7.1)

No. with diabetes n (%) 9 (12.9)

No. smoking n (%) 26 (37.1)

No. alcohol abuse n (%) 6 (8.6)

No. pregnancy n (%) 3 (4.3)

No. from indicated WHO region n (%)

African region 10 (14.3)

Region of the Americas 2 (2.9)

Southeast Asia region 6 (8.6)

European region
Eastern 27 (38.6)

Mediterranean region 15 (21.4)

Western Pacific region 10 (14.3)
a Calculated using the Cockcroft-Gault equation [18], using lean body weight instead of regular body weight
for patients with BMI higher than 25 and with creatinine clearance truncated at 150 mL/min (13 patients had
a calculated creatinine clearance above 150 mL/min). Age, bodyweight, body mass index, and creatinine
plasma concentration were registered on the day of admission. WHO region–region based on World Health
Organization (WHO) region classification describing origin of birth; ART–antiretroviral therapy; alcohol–alcohol
abuse characterized by more than 1 or 2 glasses of alcohol/day and less than 2 days/week with no alcohol;
n–number of patients.

2.2. Population Pharmacokinetic Model

A population pharmacokinetic model was developed based on data from 70 patients
(811 observations). One individual’s second sampling occasion was excluded from the
analysis as the treatment with linezolid was stopped one day before sampling. There were
two observations below LLOQ, which were set to LLOQ/2 since the usage of likelihood-
based methods such as the M3 and M4 method [19] did not seem necessary in light of the
sparseness of LLOQ data.

Model comparison during the modeling process was performed by comparing the
objective function value (OFV) of two nested hierarchical models, where a decrease in OFV
of 3.84 for one degree of freedom (addition or removal of one parameter) is considered to be
statistically significant at a 5% significance level according to the chi-squared distribution
(χ2-distribution).

2.2.1. Structural Model Building

Different disposition models were evaluated, including one- and two-compartment
models. In order to describe absorption, a first-order absorption with and without lag-time
and a transit absorption model [20,21] were tested. Transit absorption was hard-coded
with an increasing number of transit compartments (NN) until the most optimal number
of compartments was reached [20,21], as described in Equations (1) and (2). Equation (1)
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represents the first absorption transit compartment, while Equation (2) represents all other
transit compartments.

dA1

dt
= −ktr·A1 (1)

dAn

dt
= −ktr·A(n−1) − ktr·An (2)

ktr is the transit rate constant calculated as ktr = (NN + 1)/MTT, and MTT is the mean
transit time (estimated). The amount of drug in a certain transit compartment is described
by An, where n is the absorption compartment.

For drug elimination, linear elimination, Michaelis–Menten elimination kinetics,
as well as different approaches to account for drug-induced auto-inhibition of elimina-
tion [22–24] were explored. The first evaluated approach describing auto-inhibition of
elimination was developed for linezolid by Plock et al. [22], where an empirical inhibition
compartment is introduced, i.e., the drug concentration in the inhibition compartment
drives the auto-inhibition. Different previously published rate constant into the inhibi-
tion compartment (kIC) and concentration in the inhibition compartment yielding half of
clearance inhibition (IC50) values [22,25,26] were evaluated, and the ones providing the
best fit were fixed and retained in the model. The second approach, initially developed for
itraconazole [23], describes clearance inhibition dependent on dose with an exponential
function. Lastly, in a model originally developed for auto-induction of rifampicin elimina-
tion [24], the formation of an enzyme is described by a first-order enzyme degradation and
zero-order formation rate in which enzyme formation is stimulated by the presence of the
drug via a nonlinear (Emax) model. For description of linezolid elimination auto-inhibition,
the approach was reversed by inhibiting the enzyme formation.

2.2.2. Stochastic Model Building

Different residual error models on a normal scale were explored, including additive,
proportional and combined additive plus proportional models. All possible combinations
of inter-individual variability (IIV) and inter-occasion variability (IOV) were tested on
all structural parameters. IIVs and IOVs were modeled exponentially, assuming that
individual parameter values are log-normally distributed. Correlations were tested between
IIVs of absorption parameters.

2.2.3. Covariate Model Building

Allometric scaling of apparent clearance (CL/F) and apparent volume of distribution
(V/F) was introduced using bodyweight as a descriptor for body size [27–29]. The exponents
for the allometric relationships were fixed to 0.75 and 1 for CL/F and V/F, respectively [30],
and the terms were scaled to 70 kg. The impact of additional covariates including age,
sex, origin of birth (WHO region), HIV co-infection, diabetes, smoking, alcohol abuse,
pre-emptive use of erythropoietin, creatinine clearance (calculated using the Cockcroft-
Gault equation [18]) and the effects of concomitant P-glycoprotein (P-gp) inhibitors, P-gp
inducers, CYP3A4 inhibitors, and CYP3A4 inducers were assessed using the automated
stepwise covariate modeling (SCM) procedure in Perl-speaks-NONMEM (PsN) [31]. Values
of calculated creatinine clearance above 150 mL/min were truncated to 150 mL/min. Only
clinically plausible covariate relationships were explored (see Table S2, Supplementary
Materials). Missing covariate information was handled by imputing the mean value of a
covariate for continuous covariates and the mode for categorical covariates. Covariates
were selected in a forward inclusion step at a statistical significance level of p < 0.05 and
retained following a backward deletion step (p < 0.01). Statistically significant covariate
relationships from the SCM were also assessed for clinical significance. Clinical significance
was defined as a change in the typical parameter by more than 20% caused by the covariate
effect for categorical covariates and 20% change from the median for the 10% and 90%
percentiles of the continuous covariate. The covariates pregnancy, anti-retroviral therapy,
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and therapeutic use of erythropoietin were not evaluated since only 3, 4, and 0 patients,
respectively, exhibited the particular covariate.

2.2.4. Model Evaluation

Prediction-corrected visual predictive checks (pcVPCs), goodness-of-fit (GOF) plots,
scientific plausibility, and precision of model parameter estimates were evaluated. A
1000 sample sampling importance resampling (SIR) procedure was performed in PsN for
the final model to obtain the 90% nonparametric confidence interval for all parameters in
order to assess parameter uncertainty.

2.3. Model-Informed Precision Dosing Algorithm

An MIPD algorithm originally developed for dose individualization of rifampicin [15]
was adapted for dose optimization of linezolid treatment in patients with MDR- and XDR-TB.

A simulated population of 1000 hypothetical patients was created by bootstrapping
patient covariates, as well as individual MIC values from the original study population
(patient characteristics, see Table 1).

For the MIPD algorithm, the f AUC0–24h/MIC > 119 and f Cmin < 1.38 mg/L were used
as efficacy and safety targets [5,7], respectively, and the individualized dose should meet
both the efficacy and the safety target.

In order to obtain observed linezolid plasma concentrations for the simulated patient
population, the exposure following an initial dose of 600 mg QD was simulated for the first
day of treatment. In the next step, these concentrations were used to compute individual
PK parameters (empirical Bayes estimates (EBEs)), such as individual clearance or mean
transit time. Based on the individual PK parameters, the individual f AUC0–24h/MIC and
f Cmin were derived following doses of 150 mg to 1200 mg QD and 150 mg to 600 mg
BID (increments of 150 mg). The MIPD algorithm was then used to select the individual
dose that meets the efficacy and safety target. In case both the efficacy and safety were
reached, the lowest efficacious dose was selected. If two dosing regimens resulted in the
same f AUC0–24h/MIC, which is the case for the same daily dose administered once versus
twice daily, the dosing regimen leading to the lower f Cmin was chosen, ensuring safety.
If efficacy but not safety was reached, the lowest efficacious dose was selected, and a
warning was given regarding safety. If safety but not efficacy was attained, the highest
dose was chosen, and an efficacy warning was given. If neither efficacy nor safety could be
achieved, the highest dose was selected (1200 mg QD), and warnings regarding efficacy
and safety were reported. The selected individual dose was then used for simulation of
further sampling occasions using an adaptive dosing strategy. Using this workflow, in
total, three PK sampling occasions on days 1, 8, and 15 of treatment were simulated using a
sparse sampling (0, 2, and 5 h post dose) [32], updating the individual PK parameters at
every occasion using the newly obtained linezolid plasma concentrations.

For transformation of simulated total AUC0–24h and Cmin to f AUC0–24h and f Cmin,
respectively, linearity in protein binding across the simulated plasma concentration range
was assumed, and AUC0–24h and Cmin were multiplied by the fraction unbound (assumed
to be 0.69) [33].

In order to evaluate the performance of the MIPD algorithm, the true individual doses
were derived using information from all sampling occasions and a rich PK sampling for
EBE estimation.

To compare the performance of the MIPD algorithm using different amounts of
information for computation of the individual PK parameters, the relative bias (rBias)
Equation (3) and relative root mean squared error (rRMSE) Equation (4) were calculated
for f AUC0–24h/MIC and f Cmin as follows:

rBias =
1
N ∑i

1

predictedi−observedi
predictedi+observedi

2
×100 (3)
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rRMSE =

√√√√√ 1
N ∑i

1
(predictedi − observedi)

2(
predictedi+observedi

2

)2 × 100 (4)

The relative dose prediction error (rDPE), evaluating the accuracy in dose prediction,
was computed as follows Equation (5):

rDPE =
predictedDDi − trueDDi

trueDDi
× 100 (5)

where DD is the total daily dose.

2.4. Software

The data were analyzed with the non-linear mixed-effects modeling software NON-
MEM (v.7.4.3; Icon Development Solutions, Ellicott City, MD, USA) [34] using conditional
estimation with interaction (FOCE-I). Data handling and visualization were performed in
R (v.3.6.1; R Foundation for Statistical Computing, Vienna, Austria) [35]. Model diagnostics
were generated using Xpose4 (v.4.6.1) [31] and prediction-corrected visual predictive checks
(pcVPCs) were created with PsN (v.4.9.5) [31].

3. Results

3.1. Population Pharmacokinetic Model

The final population PK model consisted of a one-compartment disposition model
since a two-compartment model did not describe the data statistically significantly better
(p > 0.05). A transit absorption model including five transit compartments was statistically
significantly superior to an absorption lag-time model. The addition of a sixth transit
compartment did not improve the fit significantly. Incorporating Michaelis–Menten elim-
ination kinetics did not improve the model fit (OFV: 1978.5) compared to a model with
first-order elimination (OFV: 1974.9), and thus first-order kinetics were chosen for the
description of linezolid elimination. Based on goodness-of-fit plots (GOF) plots and
prediction-corrected visual predictive checks (pcVPCs), a slight underestimation at higher
concentrations was observed, suggesting the need to explore concentration-dependent auto-
inhibition of linezolid elimination. For that purpose, different models, including dose- and
time-dependency [23] as well as concentration- and time-dependency [22,24], were tested
to describe auto-inhibition of linezolid elimination. In the final model, the structure of a
previously developed concentration- and time-dependent elimination model developed by
Plock et al. [22] was implemented. The incorporated auto-inhibition model [22] consists of
an empirical inhibition compartment. Depending on the concentration in the inhibition
compartment (Ci), clearance (CL) from the central compartment (Ac) is inhibited, where
CL is a fraction of the original uninhibited value at the first dose. Equations (6) and (7)
describe the CL auto-inhibition:

dAc

dt
= ka·Aa − CL

Vd
·Ac·

(
RCLF + (1 − RCLF)·

(
1 − Ci

IC50 + Ci

))
(6)

dCi
dt

= kIC·
(

Ac

Vd
− Ci

)
(7)

where CL is the uninhibited clearance (L/h), Aa the linezolid amount in the absorption
compartment (mg), Ac the linezolid amount in the central compartment (mg), Ci the line-
zolid concentration in the inhibition compartment (mg/L), ka the absorption rate constant
(h−1), Vd the central volume of distribution (L), kIC the rate constant into the inhibition
compartment (1/h), RCLF the remaining CL fraction, and IC50 the concentration in the
inhibition compartment leading to half of the maximum clearance inhibition (mg/L). The
kIC was fixed to the best fitting literature value of 0.0005 h−1 [25] and IC50 to 0.38 mg/L [25]
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due to the fact that most of the patient data in this study were captured in steady state, thus
not enabling estimation of the inhibition parameters with sufficient precision.

The residual error model was a combined additive and proportional error on a normal
scale. IIV in CL/F and mean transit time (MTT) were statistically significant, as well as
IOV in CL/F, V/F, MTT, and ka. Covariances were not found to be statistically significant
between any of the parameters.

The parameters CL/F and V/F were allometrically scaled using bodyweight. Out of
all explored covariates, HIV on CL/F, sex on ka, administration of P-gp inhibitors on MTT
were found to be both statistically and clinically significant.

The NONMEM code for the final model is given in Text S1 (Supplementary Materials).
Goodness-of-fit plots are shown in Figure S1 (Supplementary Materials). The structure of
the final model is schematically represented in Figure 1, and the final parameter estimates
are provided in Table 2. The final model described the observed data well in all dose groups
based on the precision in parameter estimates, GOFs, individual plots (not shown), and
pcVPCs showing both the whole population (Figure 2) as well as strata for the different
patient covariates (Figure S2, Supplementary Materials).

Figure 1. Schematic representation of the final linezolid population pharmacokinetic model. First, the
dose is transferred into an absorption compartment (Abs) via five transit compartments (Transit 1–5),
where ktr is the transit rate constant describing the transfer between transit compartments, calculated
as the number of transit compartments (NN) + 1 divided by the mean transit time (MTT). The drug
is absorbed from Abs to the central compartment (indicated by Vd, the distribution volume of the
central compartment), described by the absorption rate constant (ka). Clearance (CL) from the central
compartment is inhibited based on the linezolid plasma concentration (Cinhib.comp) in an empirical
inhibition compartment (Inhibition comp.). The concentration- and time-dependency of the inhibition
(INH) is described by the Cinhib.comp leading to half of the maximum possible inhibition (IC50) and a
rate constant (kIC) representing the transfer from the central into the inhibition compartment. The
fraction of clearance remaining uninhibited is described by the parameter RCLF. The elimination of
the drug is described by first-order kinetics, which is inhibited by INH.
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Table 2. Parameter estimates from the final linezolid population pharmacokinetic model.

Parameter Description Estimate 90% CI c RSE% d

CL/F (L/h/70 kg) Apparent clearance (uninhibited) 6.3 5.6–7.0 6.4

Vd/F (L/70 kg) Apparent volume of distribution 50.6 48.5–53.1 3.1

ka (h−1) Absorption rate constant 1.8 1.5–2.1 13.8

MTT (h) Mean transit time 0.53 0.44–0.61 10.6

kIC (h−1)
Rate constant into the inhibition

compartment 0.0005 FIX e - -

IC50 (mg/L)
Concentration in the inhibition
compartment yielding half of

clearance inhibition
0.38 FIX e - -

RCLF Remaining clearance fraction
uninhibited 0.798 0.69–0.92 11.3

Covariates

HIV co-infection on CL/F Effect of HIV co-infection on CL/F 0.43 0.07–0.90 122.0

Sex on ka Effect of sex on ka 0.95 0.78–1.10 14.0

P-gp inhibitor on MTT Effect of P-gp inhibitor on MTT 0.96 0.84–1.09 9.0

Inter-individual variability

IIVCL/F (%CV) a Inter-individual variability in
apparent clearance (uninhibited) 0.26 0.21–0.31 13.0

IIVMTT (%CV) a Inter-individual variability in
mean transit time 0.62 0.40–0.80 19.9

Inter-occasion variability

IOVCL/F (%CV) b Inter-occasion variability in
apparent clearance (uninhibited) 0.27 0.23–0.30 9.0

IOVV/F (%CV) b Inter-occasion variability in
apparent volume of distribution 0.26 0.23–0.30 8.5

IOVka (%CV) b Inter-occasion variability in
absorption rate constant 0.93 0.71–1.16 15.2

IOVMTT (%CV) b Inter-occasion variability in mean
transit time 0.69 0.53–0.85 13.4

Residual variability

Proportional error (%) Proportional residual error 0.054 0.045–0.065 12.5

Additive error (mg/L) Additive residual error 0.53 0.483–0.570 7.0
a Inter-individual variability expressed as the standard deviation and in % of the parameter estimate. b Inter-
occasion variability expressed as the standard deviation and in % of the parameter estimate. c 90% CI is the 90%
percentile confidence interval obtained from a sampling importance resampling (SIR) procedure. d Standard
errors expressed as relative standard errors (standard errors for omegas relative to their variance estimates).
e Values obtained by a publication by Keel et al. [25]. IIV, inter-individual variability; IOV, inter-occasion
variability; RSE, residual standard error.

3.2. MIPD Algorithm

An MIPD algorithm incorporating adaptive dosing was developed for individualized
linezolid dosing in patients with MDR- and XDR-TB. The proposed MIPD workflow is
illustrated in Figure 3.
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Figure 2. Prediction-corrected visual predictive check (pcVPC) of the final linezolid population
pharmacokinetic model. The solid and dashed lines are the median, 2.5th and 97.5th percentiles of
the observed data, respectively. The shaded areas (top to bottom) are the 95% confidence intervals of
the 97.5th (light gray), median (gray), and 2.5th (light gray) percentiles of the simulated data based
on 1000 simulations. Open circles are prediction-corrected observation points.

Figure 3. Model-informed precision dosing workflow. MIC determination is performed on day 1 of
treatment and PK sampling on days 1, 8, and 15. A Bayesian forecast is then performed using the
population PK model, patient characteristics, and individual linezolid plasma concentrations. Taking
efficacy and safety into account, the dose is adjusted one week after PK sampling. MIC, minimal
inhibitory concentration; PK, pharmacokinetics.
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A flat dose of 600 mg QD led to efficacious and safe (f AUC0–24h/MIC > 119 and
f Cmin < 1.38 mg/L) exposures in 67.2% of the simulated patients (17.6% of the patients
did not meet the safety, 14.0%, not the efficacy, and 1.2% neither the efficacy nor the safety
target) (Figure 4). Using the MIPD approach, both the efficacy and safety targets were met
in 76.1%, 81.5%, and 88.2% of the simulated patients following dosing regimens derived
based on information from one, two, or three PK sampling occasions, respectively. Using
information from three occasions, 6.9% of the simulated patients did not meet the safety
target, 4.6% did not meet the efficacy target, and 0.3% did not meet the safety nor the efficacy
target (Figure 4). A Sankey plot (Figure S3, Supplementary Materials) was created showing
individual dose adjustments for three consecutive PK sampling occasions, indicating that
a significant part of the simulated patients received the appropriate dose when adjusted
based on information from the first sampling occasion. All doses selected by the MIPD
algorithm were QD doses since BID dosing would lead to a higher f Cmin.

Figure 4. Percentage of patients reaching both efficacy and safety, only efficacy, only safety, and
neither efficacy nor safety using information from one, two, and three sampling occasions to derive
individual PK parameters. The true individual PK parameters were obtained from a rich sampling in
order to derive the true optimal dose for comparison.

In order to determine how many sampling occasions are necessary to compute the
individual PK parameters and subsequently predict the f AUC0–24h/MIC and f Cmin with
sufficient accuracy and precision, the rRMSE and rBias were calculated for f AUC0–24h/MIC
and f Cmin predictions based on information from one, two and three sampling occasions.
Both the accuracy and precision in predictions of f AUC0–24h/MIC (rBias: −5.0%, −2.1%,
and −1.8%; rRMSE: 19.3%, 12.4%, and 8.1% for one, two, and three occasions) and f Cmin
(rBias: −8.9%, −2.7%, and −2.1%; rRMSE: 44.8%, 30.5%, and 20.2% for one, two and
three occasions) improved when additional information was added.

The relative dose prediction error decreased with increasing information used to
obtain individual parameters from sparse sampling (Figure 5), indicating that a higher
percentage of simulated individuals received a dose closer to the true dose.
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Figure 5. Violin plot showing the dose prediction error comparing the true dose to the individualized
dose derived based on information from one, two, and three sampling occasions, as well as flat dosing
of 600 mg QD for comparison.

4. Discussion

An MIPD workflow, using the here developed population PK model, was established,
enabling safe and efficacious dosing on an individual level.

Several studies have shown that linezolid clearance decreases with increasing doses.
This phenomenon has previously been described with either Michaelis–Menten elimi-
nation kinetics [36,37] or concentration- and time-dependent auto-inhibition of elimina-
tion [22,25,26]. In this work, Michaelis–Menten elimination kinetics was not supported by
the data; however, the inclusion of a concentration- and time-dependent auto-inhibition
of elimination described the data well, and its incorporation is crucial to be able to use
the population PK model for MIPD before steady state is reached. The mechanism behind
the auto-inhibition of linezolid elimination is not fully known yet. It is suggested that
for the metabolite’s hydroxyethyl glycine formation, reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) is needed [22,38]. As linezolid inhibits cytochrome c-oxidase
activity, it interrupts the synthesis of adenosine triphosphate (ATP), which is needed for
nicotinamide adenine dinucleotide phosphate (NADP) reduction to NADPH [22]. Lack of
NADPH results in decreased hydroxylinezolid formation, and thus, linezolid elimination
is inhibited.

In this work, both statistical and clinical significance were considered when incorpo-
rating covariates in the model. Three covariates fulfilled both criteria, HIV co-infection on
CL/F, sex on ka, and coadministration of P-gp inhibitors on MTT (Table 2). Typical CL/F was
43% higher in patients with HIV co-infection, and the effect of the covariate on the apparent
clearance could be explained by changes in kidney function or concomitant medication
(Table 2). Typical ka was 95% higher in females, possibly due to biological differences
between men and women, such as differences in gastric pH, gastric fluid flow, intestinal
motility, and gastric emptying [39]. Typical MTT was 96% higher in patients who received
P-gp inhibitors. The imprecision in the estimated effect of HIV on CL/F was high, with
a 90% confidence interval of 7–90% (Table 2), which is probably due to the low number

61



Pharmaceutics 2022, 14, 753

of HIV patients in the study population (n = 5/70). The covariate was kept in the model
since clearance is a parameter that can greatly influence plasma concentration. However,
the effect of HIV on CL/F estimated here should be interpreted with caution and studied
further. Allometric scaling, besides improving the model fit, was implemented in order to
be able to apply the population PK model to a pediatric population.

Linezolid has high efficacy for the treatment of MDR- and XDR-TB and a low resis-
tance development rate but is one of the most frequently reported anti-TB drugs to cause
severe adverse events, which might require early termination of treatment [40]. A recent
clinical trial investigating long-term linezolid treatment showed that toxicity was high,
with 81% of the patients suffering from peripheral neuropathy and 48% from myelosup-
pression [8]. According to our simulations, a flat dosing regimen of 600 mg QD led to
efficacious and safe exposures in 67.2% of the simulated patients, which is comparable to
previous findings [5,6,41]. While some work suggests that 600 mg BID is needed to reach
efficacy [42], other studies are in accordance with the here described findings. In the work
by Millard et al. [6], the majority of simulated patients reached the safety target following
doses of 300 mg QD, 300 mg BID, and 600 mg QD, but almost all subjects were above the
safety threshold with a dose of 600 mg BID. Alghamdi et al. [41] also suggested that 600 mg
QD is preferred in most patients with respect to safety. Furthermore, recent results from
the ZeNix trial presented in Berlin 2021 [43] highlight that cure is achievable with 600 mg
QD for 6 months, leading to less frequent adverse events compared to 1200 mg QD (38% vs.
24% for peripheral neuropathy and 22% vs. 2% for anemia) [43].

Besides studying the use of lower doses to increase safety, as in the ZeNix trial
(NCT03086486), individualizing a patient’s dose based on individual characteristics and
drug exposure with MIPD can be used as a tool to increase efficacy and safety [13–16].
MIPD provides individual dose suggestions, which is different from classical TDM, where
the achieved PK exposure after a dose is compared to a target without a precise dose
suggestion apart from the information that a dose is too high or too low. The here proposed
MIPD approach (Figure 3) ensures efficacy and safety on an individual level and can be
applied at any time during treatment. Simulations of 1000 virtual patients showed that
by using the MIPD approach, 88.2% reached efficacious and safe linezolid concentrations
with an individualized dose obtained using information from three sampling occasions.
After three sampling occasions, 6.9% of all simulated patients would get an efficacious but
not safe dose (17.6% following a flat dose of 600 mg QD), 4.3% would get a safe but not
efficacious dose (versus 14% for 600 mg QD flat dosing), and for 0.3% of the simulated
patients, the dose would be considered neither safe nor efficacious (versus 1.2% for 600 mg
QD flat dosing) (see Figure 4). Using information from three occasions resulted in 88.2%
of simulated patients reaching both the efficacy and safety target (improvement of 6.7%
compared to using information from two occasions), thus highlighting the importance
of the third occasion (Figure 4). In all simulated patients, a QD dosing strategy was
superior compared to BID due to the fact that the f Cmin is lower following QD dosing. The
superiority of a QD dosing strategy over BID has been shown previously [5,6,41] and could
be advantageous to increase patient adherence.

There are some limitations to this work. Firstly, since retrospective TDM data from
routine clinical care was analyzed and because patients were in their intensive phase of
TB infection, selection bias might have been introduced. In addition, it was only possible
to derive the dose prediction error for the total daily dose; thus, there was no distinction
between QD and BID dosing. However, since a QD strategy was superior to BID in all
simulated patients, it was not necessary here to compare the dose prediction error between
QD versus BID strategies. Furthermore, the parameters describing the auto-inhibition
of elimination were not identifiable in this work as the majority of samples were taken
at steady state, and thus the parameters related to elimination auto-inhibition had to be
fixed to values obtained from earlier studies [25]. In this work, efficacy and safety targets
from earlier defined PKPD indices were used for dose selection. A simulation study by
Kristoffersson et al. [44] showed that the use of longitudinal PKPD models can be more
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appropriate in certain situations than using PKPD indices. PKPD indices can further be
influenced by uncertainty in the obtained MIC value, both due to intra- and inter-laboratory
variability [45,46]. Since the MIC is determined in two-fold dilution steps, an error may
lead to a substantial change in the PKPD index and, subsequently, dose selection. These
findings indicate that MIPD based on a PKPD model might be more appropriate than based
on PKPD indices, which should be investigated in further studies. Furthermore, the safety
target has only been evaluated in one study with 38 participants [7], and the authors merely
explored f Cmin as a potential driver for toxicity. Other PK parameters such as AUC or
Cmax were not explored, and there is, therefore, a need to derive an updated individualized
safety target based on PK data combined with clinical safety outcome data. Lastly, the
developed MIPD approach should be validated in the clinic.

5. Conclusions

In conclusion, a linezolid population PK model for MDR- and XDR-TB patients was
successfully developed. This work presents an MIPD workflow for linezolid, which can be
used on any day of treatment, proposes to use three sparse sampling occasions to derive
the individualized dose, and suggests that an individualized dose would be beneficial from
an efficacy and safety perspective compared to a flat dose of 600 mg QD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14040753/s1, Text S1 NONMEM model code for
the final population pharmacokinetic model; Figure S1 Goodness-of-fit plots for the final population
pharmacokinetic model; Figure S2 Prediction corrected visual predictive checks (pcVPC) for the
final linezolid population pharmacokinetic model stratified on covariates; Figure S3 Sankey plot
showing individual dose adjustments for three consecutive PK sampling occasions, each one week
apart; Table S1 Summary of the different regimens included in the analysis dataset; Table S2 Covariate
relationships evaluated in the population pharmacokinetic analysis.
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Abstract: Model-informed precision dosing is being increasingly used to improve therapeutic drug
monitoring. To meet this need, several tools have been developed, but open-source software remains
uncommon. Posologyr is a free and open-source R package developed to enable Bayesian individual
parameter estimation and dose individualization. Before using it for clinical practice, performance
validation is mandatory. The estimation functions implemented in posologyr were benchmarked
against reference software products on a wide variety of models and pharmacokinetic profiles:
35 population pharmacokinetic models, with 4.000 simulated subjects by model. Maximum A
Posteriori (MAP) estimates were compared to NONMEM post hoc estimates, and full posterior
distributions were compared to Monolix conditional distribution estimates. The performance of
MAP estimation was excellent in 98.7% of the cases. Considering the full posterior distributions of
individual parameters, the bias on dosage adjustment proposals was acceptable in 97% of cases with
a median bias of 0.65%. These results confirmed the ability of posologyr to serve as a basis for the
development of future Bayesian dose individualization tools.

Keywords: clinical pharmacokinetics; dosage individualization; Bayesian dosing; therapeutic drug
monitoring; Maximum A Posteriori

1. Introduction

Model-informed precision dosing (MIPD) is an emerging dosing paradigm in which
mathematical models are used for dose optimization, using individual information such
as a patient’s age, organ function, and the results of therapeutic drug monitoring. Driven
by the increasing importance of information technology in health care [1], MIPD is being
promoted as a strategy to improve the efficiency of therapeutic drug monitoring and
improve standards of care [2].

Because of the complexity of generic modeling software such as NONMEM, MIPD
generally requires custom-made software tools tailored to the needs of clinical providers [1].
User-friendly software such as MWPharm [3], TDMx [4], and many others [5] have been
developed to meet various needs. Some of this software is freely available, some allows
specialist users to integrate their own models, and some has been validated for their
predictive performance, but few tools combine all of these features. Software that utilizes
publicly documented, accessible and reusable algorithms is even rarer.

Moreover, most of these software products rely only on Maximum A posteriori
Bayesian Estimation (MAP-BE), assuming that the mode of the posteriori distribution
leads to the prediction with the highest probability. However, Bayesian inference goes
beyond point estimates: full posterior (conditional) distributions retain information about
the uncertainty associated with individual parameter estimates. Taking this uncertainty
into account helps to improve the quality of the predictions, and full Bayesian approaches
have been shown superior to MAP-based approaches in dosing individualization [6].
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The posologyr software has been developed to address these issues. Featuring
Bayesian inference of individual parameters based on parametric nonlinear mixed-effects
modeling, posologyr is a free R package [7], licensed under AGPLv3 [8] to guarantee
external auditability and accessibility to the widest possible audience of R users.

The aim is for posologyr to be a reliable and open foundation for the development of
future MIPD tools. To this end, the extensive validation of the predictive performance of
the various implemented functions was an essential requirement.

2. Materials and Methods

2.1. Nonlinear Mixed Effects Models

Nonlinear mixed-effects models are frequently used for the analysis of pharmacoki-
netic data. They take into account different levels of variability, including inter-individual
variability, by incorporating random effects [9]. The observations can be described using the
following general nonlinear mixed-effects model implemented in the NONMEM software:

yij = f
(
xij, ψi

)
+ g

(
xij, ψi, εij

)
(1)

for i from 1 to N, and for j from 1 to ni. Where,

• yij is the jth observation of subject i;
• N is the number of subjects;
• ni is the number of observations of subject i;
• f is the function defining the structural model;
• g is the function defining the residual error model;
• xij is the vector of regression variables;
• for subject i, the vector ψi is a vector of individual parameters:

ψi = H(θ, ci, ηi ) (2)

where,

� θ is a vector of fixed effects;
� ci is a vector of covariates;
� ηi is a vector of normally distributed random effects, of length k, with variance-

covariance matrix Ω:

ηi ∼ N(0, Ω) (3)

• The residual errors εij are normally distributed random variables centered on 0, with
variance Σ:

εij ∼ N(0, Σ) (4)

In the Monolix software, the implementation of the residual error model differs, and
the nonlinear mixed-effects model becomes:

yij = f
(
xij, ψi

)
+ g

(
xij, ψi, ξ

)
εij (5)

where the residual error model is defined by the function g and some parameters ξ. The
residual errors are then random variables with mean zero and variance one.

2.2. Estimation of Individual Parameters
2.2.1. General Strategy

In the context of MIPD, the aim is to determine the individual parameters ψi of
a subject i, for which dosage personalization is needed. The estimation of individual
parameters requires (i) a model for (y, ψ) with the prior estimates of θ, xij, the Ω variance
covariance matrix, and, depending on the definition of the residual error model, either
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the Σ matrix, or the vector of parameters ξ; (ii) the input of the observed concentrations
y, the measurement times t, the individual covariates, and the administration regimen;
and (iii) algorithms capable of estimating and maximizing p(ψi|yi) . The fixed effects
of the population pharmacokinetic model are used as prior information, and the values
of the individual random effects ηi are estimated a posteriori, taking advantage of the
observed data.

2.2.2. Maximum A Posteriori

MAP estimation determines the vector of individual parameters with the highest
probability, i.e., the mode of the posterior distribution. In NONMEM, it is performed
during the POSTHOC step by minimizing the following objective function value (OFV),
based on the log likelihood (LL) [10]:

OFVi = −2LL(ηi) = ∑j

[
log σ2

ij +

(
yij − fij

)2

σ2
ij

]
+ ηi

TΩ−1ηi (6)

where σ2
ij is the variance of the residual error for individual i at time j.

While most Bayesian forecasting tools rely on the MAP estimation, this approach
does not necessarily predict the most probable outcome [6]. To provide a comprehensive
uncertainty quantification, it may be desirable to compute the full posterior distributions,
and not just point estimates such as the MAP.

2.2.3. Markov Chain Monte Carlo

While the probabilities of p(ψi) or p(ηi) cannot be directly calculated, Markov chain
Monte Carlo (MCMC) methods allow this distribution to be sampled. The typical procedure
is as follows: at each iteration of the algorithm, a new vector of individual parameters
ψi is drawn from a proposal distribution. The new value is accepted with a probability
that depends on p(ψi) and on p(yi|ψi) . After a transition period, the algorithm reaches a
stationary state where the accepted samples come from the posterior probability distribu-
tion p(ψi|yi) .

2.2.4. Sequential Importance Resampling

Particle filter algorithms, including Sequential Importance Resampling (SIR), are
another class of algorithms that asymptotically draw samples from the posterior probability
distribution, allowing for estimation of p(ψi|yi) . The SIR algorithm, consists of 3 steps [11]:

1. Step 1 (sampling): a defined number M of parameters are sampled from a multivariate
parametric proposal distribution;

2. Step 2 (importance weighting): weights are computed for each of the sampled vectors,
using the likelihood of the data given the parameter vector, weighted by the likelihood
of the parameter vector in the proposal distribution;

3. Step 3 (resampling): m parameter vectors are resampled from the M simulated vectors
(M > m), with probabilities proportional to their weighting.

Each step of the algorithm can be parallelized: for the same number of samples, the
time needed for estimation can be significantly reduced when compared to MCMC.

2.3. Implementation in Posologyr

The posologyr package (available at https://github.com/levenc/posologyr/, accessed
on 15 January 2022) builds on the RxODE [12] simulation framework, using the Fortran
package LSODA (Livermore Solver for Ordinary Differential Equations) for solving systems
of differential equations. It does not depend on any non-free licensed software, such as
NONMEM or Monolix, to run. Random effects of individual models (inter-individual,
inter-occasion), and residual error models are implemented within posologyr; RxODE is
employed as a deterministic simulation engine. For the MAP estimation, the OFV mini-
mization is performed with the L-BFGS-B algorithm [13] included in the optim package,
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a limited-memory approximation of the Broyden–Fletcher–Goldfarb–Shanno algorithm
(BFGS) allowing for box constraints. To avoid converging to a suboptimal local mini-
mum of the OFV, initial values of the parameters are drawn from the multinormal dis-
tribution ηi ∼ N(0, Ω). The MCMC algorithm of posologyr is an adaptation of the
Metropolis–Hastings algorithm from the R package saemix [14], slightly modified to esti-
mate the posterior distribution p(ηi|yi) and to use RxODE as a simulation engine. As in
the Metropolis–Hastings algorithm featured in Monolix, three different distributions are
used in turn with a (2,2,2) pattern for the proposal distribution: the population distribu-
tion, a unidimensional Gaussian random walk, or a multidimensional Gaussian random
walk [15]. For the random walks, the variance of the Gaussian is automatically adapted to
reach an optimal acceptance ratio. The number of iterations to be discarded following the
burn-in period, the number of Markov chains, and the number of iterations per chain are
user-defined. The SIR algorithm implemented in posologyr works by sampling from the
multinormal distribution N(0, Ω) using the rmvnorm function of the mvtnorm package.
The weightings are computed from the LL, i.e.,−0, 5 × OFV, following the simultaneous
simulation of the observations generated by the M individual parameter vectors from
the sampling step. The initial number of samples M, and the number of draws m in the
resampling step can be defined by the user.

2.4. Dosing Adjustment

In order to individualize treatments, posologyr features several dosage optimization
functions based on individual parameter estimates. The posologyr::poso_dose_conc and
posologyr::poso_dose_auc functions determine the optimal dose to reach, respectively, a tar-
get concentration at a given time, or a target area under the time-concentration curve (AUC)
over a given duration. The optimization is based on the minimization of the square of the
difference between the desired target (target concentration, target AUC) and the result of the
successive simulations. The posologyr::poso_time_cmin function determines by simulation
the time needed to reach a target concentration (typical application: the therapeutic drug
monitoring of aminoglycoside treatment). Finally, the posology::poso_inter_cmin function
estimates the optimal inter-dose interval to reliably achieve a target trough concentration
between each administration. All these functions allow optimization from MAP estimates
of individual parameters, but also from posterior distributions. In the latter case, the set of
probable profiles is simulated using RxODE, and the proportion p of the distribution to be
considered for optimization is set by the user. For example, for posologyr::poso_dose_auc
with p = 0.5, posologyr will determine the optimal dose so that 50% of the probable profiles
reach or exceed the target AUC.

2.5. Validation
2.5.1. Point Estimate: MAP

To allow for an extensive comparison of the performance of posologyr estimates and
NONMEM POSTHOC estimates [16] (NONMEM version 7.4.4, Dublin, Ireland: ICON),
the validation of the posologyr MAP algorithm was performed following the methodology
proposed by Le Louedec et al. [17]. The 35 population pharmacokinetic models (Table 1)
were transcribed for posologyr (an example is given in Appendix A): default monocompart-
mental with linear elimination, bicompartmental, with various absorption models (lag-time,
zero order, first order, combination of zero and first order kinetics, bioavailability), with
nonlinear Michaelis–Menten elimination associated or not with linear elimination, with
time-varying covariates, different residual error models (additive, proportional, mixed,
log-additive), with two types of observations (parent–metabolite model), and finally with
increasing levels of inter-individual variability (with variances ranging from 0.2 to 2).
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Table 1. Test models.

Model Characteristics
Model Number

(Number of Estimated Parameters)

Oral Administration IV Administration

Monocompartmental (default) 1 (3) 2 (2)

Absorption

Lag time 3 (4) /
Zero-order in Central compartment 4 (3) /
Zero-order in Depot compartment 5 (4) /
Dual 0- and 1st orders 6 (4) /
Dual 1st orders 7 (4) /
Bioavailability 8 (4) /

Distribution Bicompartmental 101 (4) 102 (3)

Elimination

Michaelis–Menten (KM, VMAX) 201 (4) 202 (3)
Cl + Michaelis–Menten (KM) 203 (4) 204 (3)
Cl + Michaelis–Menten (VMAX) 205 (4) 206 (3)
Cl + Michaelis–Menten (KM, VMAX) 207 (5) 208 (4)

Time-Varying Covariates Time-varying Cl 301 (3) 302 (2)

Residual Error Model

Metabolite 401 (5) 402 (4)
Additive 403 (3) 404 (2)
Mixed 405 (3) 406 (2)
Log-additive 407 (3) 408 (2)

Inter-individual
Variability (variance)

0.4 on all parameters 501 (3) /
0.6 on all parameters 502 (3) /
0.8 on all parameters 503 (3) /
1 on all parameters 504 (3) /
2 on Cl, 0.2 on Ka, Vc 511 (3) /
2 on Cl, Ka, 0.2 on Vc 512 (3) /
2 on all parameters 513 (3) /

Abbreviations: Cl, clearance; IV, intravenous 1 h infusion; Ka, absorption rate; KM, Michaelis–Menten constant;
Vc, central volume of distribution; VMAX, maximum rate; /, not applicable.

For models with time-varying covariates, the interpolation of variables between obser-
vations was performed using the “next observation carried backward” (nocb) approach,
similar to NONMEM. The data set simulated by mrgsolve [18] included 4000 subjects per
model, or 140,000 subjects in total. They were equally divided into 4 administration and
sampling schemes: single administration and rich sampling, single administration and
sparse sampling, multiple administration and rich sampling, and multiple administration
and sparse sampling. Doses of 10, 30, 60, 80, or 120 mg were administered to each group.
To address the nondeterministic nature of the selection of initial ηi for OFV minimization,
the pseudorandom generator seed was set to an identical value for all estimates using the
set.seed function of R.

2.5.2. Conditional Distributions

The estimates of the posologyr MCMC and SIR algorithms were compared to the
estimates of the MCMC algorithm from the conditional distributions task of Monolix
(version 2021R1. Antony, France: Lixoft SAS, 2020). As the computational time per
individual was significantly higher than for the validation of the MAP algorithm, the
validation was performed on a subset of the test models and the simulated subjects. The
conditional distributions were estimated based on 10,000 samples of each algorithm, for
each parameter. The SIR algorithm was run with settings M = 106 samples, and with
m = 104 resampling runs. The MCMC algorithm of posologyr was run with 2 Markov
chains, each starting with 200 burn-in iterations, discarded before drawing 5000 samples
from each chain. The models tested were as follows: the default single-compartment model
with oral administration (model #1); the model with lag-time (#3); the model with dual

71



Pharmaceutics 2022, 14, 442

zero and first order absorption (#6); the bicompartmental model with oral administration
(#101); the model with nonlinear Michaelis–Menten elimination and oral administration
(#201); the model with both linear and nonlinear Michaelis–Menten elimination with oral
administration (#207); the model with time-dependent clearance and oral administration
(#301); the model with mixed residual error (#405); the model with variance of the random
effects set to 1 for all parameters (#504); and the model with variance of random effects
equal to 2 (#513). For the model with time-varying covariates, the interpolation of variables
between observations was performed using the “last observation carried forward” (locf)
approach, similar to Monolix [19]. For model #405, the mixed residual error model was
set to combined1 in Monolix. To test the different administration and sampling schemes,
20 subjects were estimated for each model (to test each administration/sampling cohort,
and every dose level), i.e., 200,000 parameter samples estimated per algorithm. To ensure
reproducibility of the experiments, the pseudorandom generator seed was set to an identical
value for all estimates using the set.seed function of R for posologyr, and in the project
settings for Monolix.

2.6. Performance Analysis
2.6.1. Point Estimate: MAP

To allow comparability of the results of the performance evaluation of the MAP algo-
rithm of posologyr, the primary endpoints were identical to those proposed by Le Louedec
et al. [17]. The maximum absolute difference was obtained between posologyr (ηik, PGYR)
and NONMEM (ηik,NM) for each individual according to the following expressions:

Δη̂ik =
∣∣η̂ik,PGYR − η̂ik,NM

∣∣ (7)

Δη̂i = max(Δη̂ik) (8)

where k is the length of the vector η̂i. Based on this definition, several performance
thresholds were defined. For Δη̂i < 0.001, the estimate was considered excellent because,
assuming an individual exponential model, with a lognormal distribution of individual
parameters around a population median value, the impact on the parameter estimate
would be negligible: Δψi < 0.1%. For Δη̂i > 0.095, the estimate was considered discordant
(Δψi > 10%). The other estimates were considered acceptable. Finally, for each estimate,
the final result of the calculation of the OFV from the MAP estimates of posologyr was
compared to the OFV computed from the NONMEM POSTHOC estimates.

2.6.2. Conditional Distributions

Because of the stochastic nature of the estimation algorithms, and because of the
multivariate nature of the individual parameter vectors, the isolated posterior distributions
were not directly compared using numerical criteria. The validation endpoints were the
bias between the results of three different dosage adjustment functions built into posologyr,
taking the optimizations based on the posterior distributions produced using Monolix as
the reference. For each subject, and each function, the bias was calculated as follows:

bias =
∣∣∣∣Outputalgorithm − OutputMonolix

OutputMonolix

∣∣∣∣ (9)

where OutputMonolix is the result of the dose adjustment function based on the distribution
of individual parameters estimated using Monolix, and Outputalgorithm is the result of
the same dose adjustment function based on the distribution of individual parameters
estimated using either MCMC or SIR. One scenario per function was tested:

• Determination of the optimal dose to reach a concentration of 30 mg/L, 3 h after
administration, with posologyr::poso_dose_conc;

• Determination of the optimal dose to achieve an AUC0-12h of 500 mg·h/L, with
posologyr::poso_dose_auc;
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• Determination of the time to reach a trough concentration below 0.5 mg/L after a
100 mg dose, with posologyr::poso_time_cmin.

The p proportion was set at 0.89 in all cases. For all outcomes, the bias was considered
acceptable when ≤10%.

3. Results

3.1. Point Estimate: MAP

The performance of the posologyr MAP algorithm was satisfactory. The estimates
were excellent in 98.7% of the cases. The median Δη̂i was 7.70 × 10−6, and only 0.58% of all
estimates were discordant (Figure 1). Representative pharmacokinetic profiles of excellent
and discordant estimates, compared with NONMEM profiles, are given in Appendix B
(Figure A1).

Figure 1. Performance of posologyr MAP estimation by test model. The negative percentages are the
proportions of discordant estimates.

The greatest number of discordant estimates was observed for the models with lag-
time (model #3), and those with zero order absorption in the central compartment (models
#4 and #6). For these models, no discrepancies were found in the case of sparse sampling. In
contrast, for the 6000 patients in models 3, 4, and 6 with rich sampling, 9.5% of the estimates
were discordant. In the majority of these cases (402 of 570 subjects, or 70% of the estimates),
the OFV associated with the posologyr estimate was lower than that calculated based on
the NONMEM POSTHOC estimate, in support of a better performance of minimization
when using posologyr, leading to the most likely value of η̂i. Discordant MAP estimates
were also more frequently observed in models with increasing inter-individual variability
(models #504, #511, #512 and #513), up to a maximum of 3.3% for model 513, irrespective of
the administration or observation scheme. Again, for model #513, the posologyr OFVs were
lower than the NONMEM POSTHOC estimate in most cases (24 subjects out of 4000, or
99.4%). Extending the above observation regarding OFV to all 140,000 simulated subjects,
the estimates produced using posologyr were outperformed by the NONMEM POSTHOC
estimate in only 0.14% of cases.

3.2. Posterior Distribution

The performance of the SIR algorithm was satisfactory. Using the posologyr::poso_dose_conc
and posologyr::poso_dose_auc functions, the bias on dosage adjustment proposals based
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on SIR estimates was acceptable in 97% of cases (Figures 2 and 3). The median bias
was 0.65% (minimum: 0.00%, maximum: 31.41%). Elimination time predictions using
posologyr::poso_time_cmin were acceptable in 99.5% of cases (all but one subject) and the
median bias was 0.14% (minimum: 0.00%, maximum: 23.16%).

Figure 2. Adequacy of dose adaptation by tested model for a target AUC based on SIR posterior
estimates. The negative percentages are the proportions of discordant propositions.

Figure 3. Adequacy of dose adaptation by tested model for a target concentration based on SIR
posterior estimates. The negative percentages are the proportions of discordant propositions.

All outcomes considered, the greatest number of discordances between SIR and
Monolix was observed for models with significant inter-individual variability (#504 and
#513): 8.3%. For these subjects, proposals based on estimates from the MCMC algorithm
implemented in posologyr were discordant with propositions based on Monolix estimates
in 10.8% of cases. For the entire dataset, the estimates produced using MCMC exhibited
4.17% discrepancies with Monolix, with a median bias of 0.77%.
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For illustration purposes, the density curves of the posterior distributions computed
using the different algorithms for subject #1, model #003 are presented in Figure 4.

Figure 4. Density plots of the posterior distributions of ηi for subject #1 with model #003.mcmc, the
MCMC algorithm implemented in posologyr; mlx, the MCMC algorithm of Monolix; sir, the SIR
algorithm of posologyr; Cl, clearance; Ka, absorption rate; Vc, central volume of distribution; ALAG,
lag-time.

4. Discussion

A free and open-source software has been developed to allow for the Bayesian in-
dividualization of treatments. The performance of posologyr for individual parameter
estimation was benchmarked against NONMEM for MAP point estimates and against
Monolix for the estimation of full posterior distributions of individual parameters.

The MAP optimization function of posologyr showed excellent performance com-
pared to NONMEM for a wide variety of models and pharmacokinetic profiles. In par-
ticular, agreement with NONMEM’s POSTHOC estimates was excellent for the single-
compartment and two-compartment models, the models with nonlinear Michaelis–Menten
elimination, the model with time-dependent clearance, and the various residual error
models, for values of inter-individual variability lower than 1.

A greater number of discrepancies was observed for the different absorption models,
especially following administration with lag-time. This type of model produces discontinu-
ous time-concentration profiles, which to some degree may be responsible for difficulties in
determining the optimal values of individual parameters [20]. An increasing, but small,
number of discrepancies was also observed for increasing values of inter-individual vari-
ability. In these different cases, under the assumption that the OFV calculated from the
estimated individual parameters [10] is a satisfactory reflection of the minimization per-
formance, posologyr outperformed NONMEM’s POSTHOC estimates for the majority
of discordances.

The SIR algorithm implemented in posologyr demonstrated satisfactory performance
on the evaluated scenarios. The estimates of the posterior distributions of individual param-
eters led to dose adjustment proposals comparable to those based on the Monolix estimates.
The execution time of the different algorithms was not formally evaluated; however, the ob-
servations made during this study showed that the time required to obtain 10,000 samples
was 15 times shorter with the SIR algorithm of posologyr than with the MCMC algorithm
of posologyr. These results are reassuring with regard to the feasibility of developing a

75



Pharmaceutics 2022, 14, 442

probabilistic MIPD tool in R, opening the door to personalized treatment options informed
by knowledge of the uncertainty associated with individual parameter estimation [6]. Still,
in this preliminary study, the simulated population tested was limited to 200 patients, with
one scenario per function, and a single probability threshold; these exploratory results need
to be confirmed before considering the application of this methodology to therapeutic drug
monitoring. A thorough evaluation of the performance of SIR will be necessary in order
to define the precise scope of its application according to model types, sampling schemes,
and patient profiles. The evaluation of different sample sizes, and resampling numbers,
would also allow for the optimization of runtime without foregoing estimation quality.

The posologyr software is, and will remain, free and open source under the AGPLv3 li-
cense [8]. Now available at https://github.com/levenc/posologyr (accessed on 15 January
2022), it is scheduled for release via the comprehensive R archive network (CRAN) soon.
These decisions to make the software easy to distribute and to guarantee its external au-
ditability serve the purpose for which posologyr was developed: to provide a foundation
for future Bayesian dosage individualization tools.
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Appendix A

Model #207 transcribed for posologyr, to match NONMEM estimates:
mod_run207 <- list(

ppk_model = RxODE::RxODE({
centr(0) = 0;
depot(0) = 0;

TVVmax= THETA_Vmax;
TVVc = THETA_Vc;
TVKa = THETA_Ka;
TVKm = THETA_Km;
TVCl = THETA_Cl;

Vmax = TVVmax*exp(ETA_Vmax);
Vc = TVVc*exp(ETA_Vc);
Ka = TVKa*exp(ETA_Ka);
Km = TVKm*exp(ETA_Km);
Cl = TVCl*exp(ETA_Cl);

Cc = centr/Vc;
Ke = Cl/Vc;

d/dt(depot) = - Ka*depot;
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d/dt(centr) = Ka*depot - Vmax*(centr/Vc)/(Km+(centr/Vc)) - Ke*centr;
d/dt(AUC) = Cc;

}),
error_model = function(f,sigma){

dv <- cbind(f,1)
g <- diag(dv%*%sigma%*%t(dv))
return(sqrt(g))

},
theta = c(THETA_Vmax=10000, THETA_Vc=70.0, THETA_Ka=1.0, THETA_Km=2500,

THETA_Cl=4.0),
omega = lotri::lotri({ETA_Vmax + ETA_Vc + ETA_Ka + ETA_Km + ETA_Cl ~

c(0.2 ,
0 , 0.2,
0 , 0, 0.2,
0 , 0, 0, 0.2,
0 , 0, 0, 0, 0.2)}),

sigma = lotri::lotri({prop + add ~ c(0.05,0.0,0.00)}))

Model #207 transcribed for posologyr, to match Monolix estimates:
mod_dist_run207 <- list(

ppk_model = RxODE::RxODE({
centr(0) = 0;
depot(0) = 0;

TVVmax= THETA_Vmax;
TVVc = THETA_Vc;
TVKa = THETA_Ka;
TVKm = THETA_Km;
TVCl = THETA_Cl;

Vmax = TVVmax*exp(ETA_Vmax);
Vc = TVVc*exp(ETA_Vc);
Ka = TVKa*exp(ETA_Ka);
Km = TVKm*exp(ETA_Km);
Cl = TVCl*exp(ETA_Cl);

Cc = centr/Vc;
Ke = Cl/Vc;

d/dt(depot) = - Ka*depot;
d/dt(centr) = Ka*depot - Vmax*(centr/Vc)/(Km+(centr/Vc)) - Ke*centr;
d/dt(AUC) = Cc;

}),
error_model = function(f,sigma){

g <- sigma[2] + sigma[1]*f
return(g)

},
theta = c(THETA_Vmax=10000, THETA_Vc=70.0, THETA_Ka=1.0, THETA_Km=2500,

THETA_Cl=4.0),
omega = lotri::lotri({ETA_Vmax + ETA_Vc + ETA_Ka + ETA_Km + ETA_Cl ~

c(0.2 ,
0 , 0.2,
0 , 0, 0.2,
0 , 0, 0, 0.2,
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0 , 0, 0, 0, 0.2)}),
sigma = c(b_prop=0.05,a_add=0.00)

)

Appendix B

 

Figure A1. Simulated pharmacokinetic profiles from MAP estimates of posologyr (blue solid line)
and NONMEM (green dashed line). (A,C): discordant profiles (Δη̂i > 0.050). (B,D): concordant
profiles (Δη̂i < 0.001). Black dots: observed concentrations.
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Abstract: Donepezil patch was developed to replace the original oral formulation. To accurately de-
scribe the pharmacokinetics of donepezil and investigate compatible doses between two formulations,
a population pharmacokinetic model for oral and transdermal patches was built based on a clinical
study. Plasma donepezil levels were analyzed via liquid chromatography/tandem mass spectrometry.
Non-compartmental analyses were performed to derive the initial parameters for compartmental
analyses. Compartmental analysis (CA) was performed with NLME software NONMEM assisted
by Perl-speaks-NONMEM, and R. Model evaluation was proceeded via visual predictive checks
(VPC), goodness-of-fit (GOF) plotting, and bootstrap method. The bioequivalence test was based
on a 2 × 2 crossover design, and parameters of AUC and Cmax were considered. We found that
a two-compartment model featuring two transit compartments accurately describes the pharma-
cokinetics of nine subjects administered in oral, as well as of the patch-dosed subjects. Through
evaluation, the model was proven to be sufficiently accurate and suitable for further bioequivalence
tests. Based on the bioequivalence test, 114 mg/101.3 cm2–146 mg/129.8 cm2 of donepezil patch per
week was equivalent to 10 mg PO donepezil per day. In conclusion, the pharmacokinetic model was
successfully developed, and acceptable parameters were estimated. However, the size calculated by
an equivalent dose of donepezil patch could be rather large. Further optimization in formulation
needs to be performed to find appropriate usability in clinical situations.

Keywords: donepezil; transdermal patch; equivalent dose optimization; model-based approaches

1. Introduction

Donepezil is frequently prescribed to treat Alzheimer’s disease (AD). The drug en-
hances cognitive function by inhibiting acetylcholine esterase (which degrades acetyl-
choline), thus increasing acetylcholine concentrations in the central nervous system. This is
thought to prevent further degeneration of brain function. Currently, donepezil is approved
for the symptomatic treatment of AD, characterized by a long half-life in physiological con-
ditions [1,2]. In several clinical trials, cholinesterase inhibitors (including donepezil) slowed
long-term AD development and exhibited suitable tolerability and safety profiles [3–8].
Donepezil 5–10 mg daily is an approved treatment for mild to moderate AD, and a dose of
10–23 mg daily can be used to treat moderate to severe AD.

If a drug is to be taken orally, patient compliance is a major issue. AD patients suf-
fer from cognitive dysfunction. Thus, efforts have been made to increase the efficacy of
donepezil by modifying the formulations and using extended-release tablets and trans-
dermal patches. In a previous study on medication-nonadherent AD patients, those with
transdermal donepezil patches tended to be more compliant than patients on tablets or
capsules [9]. A transdermal patch prolonged treatment duration and patient adherence
and stabilized drug levels between dosing intervals. Moreover, the medication was readily

Pharmaceutics 2022, 14, 244. https://doi.org/10.3390/pharmaceutics14020244 https://www.mdpi.com/journal/pharmaceutics
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controlled by attaching or removing patches. In addition, avoidance of gastrointestinal
incompatibility and the first-pass effect of the liver offers huge benefits [10].

The most common method to prove bioequivalence between two different formula-
tions is to perform two-one-sided tests (TOST) followed by non-compartmental analysis
(NCA) [11]. Pharmacokinetic parameters such as AUC (area under plasma concentration
curve) and Cmax (peak concentration) are calculated for both sides. Their ratios are con-
sidered for determination. If the PK variability of a drug is high, the risk of a type I error
increases. Models such as the non-linear mixed effect model (NLME) can quantify and
distinguish between different kinds of variabilities represented as between-subject variabil-
ity (BSV) and within-subject variability (WSV). The model-based bioequivalent approach
is widely accepted in cases such as clinical trials with sparse sampling points, uneven
samplings between individuals caused by missing values, drugs with a long half-life and
high variabilities, and steady state-inducing studies [12].

When developing an extended-release donepezil formulation, it is essential to derive
Cmax and AUC values in bioequivalent doses. In general, transdermal patches exhibit PK
profiles that differ from those of orally administered drugs. In transdermal dosing, the
drug absorption process into the systemic circulation is slower than oral dosing in general,
resulting in smaller gaps between concentration peaks and troughs in a similar admin-
istration condition. It is thus difficult to harmonize the Cmax and AUC of a transdermal
patch, which reduces the bioequivalence margin. PK profiling of transdermal drug delivery
is compromised by high-level variability. Individual skin characteristics and metabolic
differences affect drug diffusion.

As mentioned previously, NLME model-based, equivalent dose optimization not only
yields optimal doses for bioequivalent trials but also facilitates dosing in clinical trials; this
is model-informed drug discovery. Here we compared test transdermal formulation and
reference oral formulation that differed in terms of the dosing schedule. Bioequivalence
data were derived from the secondary PK parameters of an iterative, simulated clinical
study. Then the optimal extended-release donepezil formulation was further investigated.

2. Materials and Methods

2.1. Clinical Study Design

A randomized, open-label, two-treatment, two-sequence, two-period (period I and II,
washout period in between), two-way crossover comparative bioequivalence study was con-
ducted in healthy male volunteers. The PK models of the donepezil patch and oral formu-
lations were derived from the clinical data sets of the TL/WZ/19/001141 study, which ad-
hered to the guidelines of the Declaration of Helsinki, good clinical practice, and the Interna-
tional Conference on Harmonization. Twelve healthy subjects aged 18–45 years with a body
mass index 18.5–30.0 kg/m2 were enrolled; all provided written informed consent. The clin-
ical study protocol was approved by the institutional review board of Raptim Research Ltd.
(Mumbai, India; IORG no. IORG0009526, DCGI reg. no. ECR/224/Indt/MH/2015/RR-18).
Each subject was healthy on physical examination, medical history taken, and standard clin-
ical laboratory tests. Exclusion criteria included any significant history or current evidence
of malignancy; chronic infection; cardiovascular, renal, hepatic, ophthalmic, pulmonary,
neurological, metabolic (endocrine), hematological, gastrointestinal, immunological, or
psychiatric disease; and/or organ dysfunction. In addition, any history of allergy or hyper-
sensitivity to or intolerance of donepezil or its excipients that, in the opinion of a clinical
investigator, would compromise safety-triggered exclusion.

Donepezil dose for humans was decided from in vivo pre-clinical experiments with
rats and minipigs in reference to in vitro skin permeability tests. The human equivalent
dose for donepezil in the formulation was converted on the basis of body surface area.

We placed donepezil patches (108 mg/96 cm2) on the torsos or backs of six test subjects
for 1 week, followed by a washout period of at least 21 days (to exclude any carryover
effect). The controls received donepezil tablets (Aricept; 10 mg) once a day for 1 week,
a total of seven times of dose.
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2.2. Preparation of Donepezil Patch

The donepezil-loaded patch was prepared using the solvent casting method reported
in the previous experiment, with a slight modification (Jung et al., 2019). Oppanol® N100
(15%, w/w) was dissolved in toluene, while Oppanol® B15 and B12 were prepared at a
concentration of 50% (w/w) in the mixture of toluene and n-heptane (1:1, w/w). Kristalex™
F85 hydrocarbon resin was dissolved in toluene to obtain a final concentration of 80% (w/w).
These solutions were mixed with homomixer (HIVIS MIX model 2P-03, PROMIX, Japan) at
50 rpm for 2 h by varying the ratio of each component of the donepezil-containing patch.
Then, the final solution was left for 1 h to remove air bubbles and set to a thickness of 100
or 200 μm applied to the release liner (Silicone-coated polyester film 7300A, Loparex, Cary,
NC, USA), and dried at 90 ◦C for 10 min using labcoater (CH-8156, Mathis AG, Oberhasli,
Switzerland). Backing membrane (ScotchpakTM 1012 PET film, 3M, St.Paul, MN, USA)
was attached to the dried patch, and the patch was cut into 10 cm2 (3.16 × 3.16 cm) or
20 cm2 (4.47 × 4.47 cm) sizes and packed in an aluminum foil pouch (ALLS 819202, Amcor,
Gent, Belgium). All patches were sealed with a bag sealer (Lovero, Wenzhou, Zhejiang,
China) and stored at room temperature before use.

In summary, Oppanol® N100, B12, and B15 were used as an adhesive and Kristalex™
F85 hydrocarbon resin as a tackifier. BHT, LP300 or NMP, Kristalex™ F85, and mineral oil
was used as stabilizer, permeation enhancer, tackifier, and plasticizer, respectively.

2.3. Quantitative Analysis of Donepezil in Plasma Using LC-MS/MS

Blood samples for donepezil assay were collected before dosing (within 2 h prior to
administration) and 4, 8, 12, 24, 48, 70, 72, 74, 76, 80, 96, 120, 144, 168, 216, 264, and 312 h after
administration. Samples were placed in prelabeled vacutainers with K3EDTA, centrifuged
at 4000 rpm for 10 min at 5 ◦C, and the plasma stored at −80 ◦C. We determined plasma
concentrations of donepezil using a high-performance liquid chromatography MS/MS
system equipped with a pump (LC-30AD, Shimadzu, Kyoto, Japan) and an API3500 mass
spectrometer. Donepezil and donepezil-d7 (internal standard) were separated on a reverse-
phase C18 Gemini column (4.6 × 50 mm, 3 μm). The mobile phase was acetonitrile:5 mM
ammonium acetate (90:10, v/v), and the flow rate was 0.6 mL/min. The oven temperature
was 50 ◦C, and the injection volume was 5 μL. An electrospray ionization interface operating
in the positive ion multiple reaction monitoring mode served as the ion source. The m/z
values of the precursor/product ions of donepezil ranged from 380.2 to 91.0; the dwell
time and collision energy were 200 ms and 48 V, respectively. The figures for donepezil-d7
were 387.2 to 98.1, 200 ms, and 45 V, respectively. The retention times of donepezil and
IS were 1.32 and 1.28 min, respectively. The calibration curves were linear over the range
0.40–85.14 ng/mL. The curve precision and accuracy were 92.6–106.9 and 4.3%, respectively.
The results of bioanalytical method validation were summarized in Supplementary Data
(Tables S1 and S2 and Figure S1).

2.4. Model Development

Non-compartmental parameters were calculated with the R package ncappc [13].
We derived the Cmax, Tmax, AUClast, AUCinf, λz, half-life (based on Λ-z), Vz (volume of
distribution, observed), and CL (clearance, observed). The parameter distributions were
evaluated, and the results were used to set the initial parameters for CA.

When performing CA, an adequate model structure had chosen to describe the drug
concentration profile for each formulation. Parameter estimation was performed with
the first-order conditional estimation with interaction (FOCE-I) method. Interindividual
variabilities were modeled exponentially, additively, and proportionally. In deciding the
error model for residual variability, additive, proportional, and combined error models were
tested [14]. We evaluated the adequacy of the parameters by calculating the decrease in the
objective function value. Data analyses were performed with NLME software NONMEM
(version 7.4; Icon Development Solutions, Ellicott City, MD, USA) assisted by Perl-speaks
NONMEM (PsN; version 5.2.6), R (version 4.1.1), and Rstudio (version 1.4.1717).
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Model evaluation was performed with PsN, and the R packages xpose and xpose4.
We drew goodness-of-fit (GOF) plots (including conditional weighted residuals) and used a
visual predictive check (VPC) to compare model predictions against observations. In terms
of nonparametric diagnostics, bootstrap (1000 replicates) was performed to evaluate the
precision of the final estimates.

2.5. Simulation to Optimize Equivalent Dose

The bioequivalence test of the oral and patch donepezil was based on a 2 × 2 crossover
design. We simulated data for 200 patients (100 each in the oral and patch groups). The
integrated donepezil PK model was used for simulation. The principal parameters used
to evaluate bioequivalence are the AUC and Cmax [15]. The plasma concentration-time
values from simulation were analyzed with R version 1.4.1 to obtain the AUC and Cmax for
each patient 672 to 840 h after administration (when the level of donepezil would be in the
steady state). We used an iterative process using various patch doses to determine the dose
that was bioequivalent to 10 mg oral donepezil. AUC and Cmax ratios within 0.8–1.25 of
the 90% confidence intervals (CIs) served as the bioequivalence criteria [15].

3. Results

3.1. Subject Demographics and NCA

Twelve healthy volunteers were enrolled, but only nine completed the study. Three
subjects (two in the test group and one in the control group) withdrew (for personal reasons)
in periods I and II. Data from the nine who completed both periods were used to develop
the PK model and for statistical analyses (Table 1). The test and reference products were
safe and well tolerated by fasting subjects. Four adverse events were reported during the
study, and one was reported during the post-study safety assessment. There was no serious
adverse event or major concern.

Table 1. Demographic and baseline data (n = 09) of evaluable subjects.

Parameter Age (yrs) Weight (kg) Height (cm) BMI (kg/m2)

Mean 29.56 66.11 165.94 24.00
SD 2.88 9.54 7.02 2.99

Median 30.00 63.10 168.40 24.67
Min 24.00 55.70 150.60 19.78
Max 33.00 80.90 173.60 27.33
%CV 9.73 14.43 4.23 12.46

Sex

Male 09 (100%)
Female 00

Race

Asian 09 (100%)
Other 00

Three subjects (two in the test group and another in the control group) withdrew from the study (for personal
reasons) in periods I and II.

NCA was performed with data to 24 h after oral administration and with oral and
patch data over the entire period. The Cmax, Tmax, and AUC values are listed in Table 2.
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Table 2. NCA parameters by study group.

Parameters
Mean (SD)

Oral
(0–24 h)

Oral
(0–312 h)

Patch
(0–312 h)

Cmax 20.26 (5.24) 53.86 (12.60) 28.62 (8.70)
Tmax 3.11 (1.17) 146.33 (0.87) 106.67 (41.76)

AUClast 286.62 (75.47) 6111.08 (2245.90) 5285.59 (1892.27)
AUCinf 575.02 (242.57) 6873.40 (2772.54) 5909.34 (2291.77)

Λz 0.03 (0.01) 0.02 (0.01) 0.01 (0.0017)
HL 22.25 (4.95) 37.74 (11.60) 71.17 (11.95)
Vz 590 (130) - 1080 (280)
Vss - 560 (140) -
Cl 20 (10) 10 (0.0030) 10 (0.0031)

SS: steady state, NS: non-steady state, Cmax: peak concentration, Tmax: peak time, AUC: area under curve,
HL: half-life (based on Λ-z), Vz: volume of distribution (observed), Cl: clearance (observed), Vss: volume of
distribution (steady state, observed).

3.2. Model Development

We developed a two-compartment PK model to describe the elimination of orally
administered donepezil. The FOCE-I method best described the drug concentrations.
The drug amount put in the gut is transferred to the central compartment at a first-order
rate (Equation (1)).

dGUT
dt

= −KA·GUT, (1)

where GUT stands for the drug amount disposed in the gut and KA for the rate of absorption
in the gastrointestinal tract.

The drug disposed in skin by transdermal patch form passes through additional
transit compartments; absorption by central compartments is thus delayed (Equation (2)).
The drug amount that enters the skin (from the patch depot) was related to the patch
dissolution percentage over time. We fit the relevant equation using in vitro data (Table S3).
The amount of drug disposed on the skin is decided by coefficient driven from the difference
between in vitro experiment and mean released amount measured by remains in the patch
after clinical trial (Equation (3)).

dSKIN
dt

= −KT·SKIN,

dTR1
dt

= KT·SKIN − KT·TR1,

dTR2
dt

= KT·TR1 − KT·TR2,

(2)

Drug dissolution =
78.257·Duration
Duration + 8.481

%·Patch dose,

Disposed amount in skin = 0.74·Drug dissolution,
(3)

where SKIN stands for the drug amount disposed in the skin from the formulation, KT for
the rate of drug transfer/absorption to the central compartment. TR1 and TR2 represent
the amount of the drug in the middle of transition. In Equation (3), Duration means the
time with patch attached in hours.

The central compartment receives drug amounts from both gut and skin, exchanges
given amounts with the peripheral compartment, and eliminates at a rate of first-order
kinetics (Equation (4))
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dCENT
dt

= KA·SKIN + KT·TR2 + KPC·PERI − KCP·CENT − KE·CENT,

KE = CL/Vcent,

KCP = Q/Vcent, KPC = Q/Vperi,

(4)

where CENT and PERI stand for drug amount in central and peripheral compartment,
KE for elimination constant, CL for clearance of oral and patch, Vcent and Vperi for central
and peripheral compartments’ volume of distribution. Q stands for intercompartmental
clearance between central and peripheral compartments. The patch and oral doses are
eliminated in the same compartment, but the clearances differ when the drug remains in
the patch (Figure 1).

Figure 1. Compartmental scheme for oral and transdermal patch combined donepezil model used
for bioequivalence test.

The GOF plots of observations versus predictions showed that the model predictions
were reasonable. Most conditional weighted residual values were included within ±2, and
the trends lay around zero (Figure S2). The VPC revealed that the model simultaneously
handled both oral and patch administration of the drug (Figure 2). With 1000 newly
generated data set with the bootstrap method, 992 successful runs were observed, indicating
the model’s robustness is sufficient. The model estimations are summarized in Table 3.

Table 3. The final parameter estimates of the donepezil integrated PK model.

Parameter Estimates (RSE%) IIV (RSE%) [Shr%] IIV in CV%

Oral

Ka (1/h) 0.0497 (25%) 0.00968 (28%) [51%] 9.9%
CL (L/h) 10 (9%) 0.13 (12%) [0%] 37.3%

Vc (L) 26.2 (35%) 0.198 (33%) [42%] 46.8%
Q (L/h) 15.6 (33%)
Vp (L) 562 (11%)

Patch Kt (1/hr) 0.027 (9%) 0.02 (37%) [31%] 14.2%

Total

Residual variability (RSE%)

Additive error 2.89 (13%)
Proportional error 0.0795 (29%)

OFV 1443.703
RSE: relative standard error, Shr: shrinkage, IIV: interindividual variability, CV: coefficient of variation, Ka: ab-
sorption rate constant, Vc: central volume of distribution, Vp: peripheral volume of distribution, Q: inter-
compartmental clearance, CL: clearance on central volume, Kt: rate constant for transit compartment.
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Figure 2. Visual predictive checks of donepezil in oral formulation (upper panel) and transdermal
patch (lower panel).

3.3. Simulation to Optimize Equivalent Dose

The bioequivalence results summarized in Table 4 indicate that weekly patch doses
from 114 mg/101.3 cm2 to 146 mg/129.8 cm2 were equivalent to the administration of
10 mg donepezil orally. Typical values used to assess bioequivalence (AUC and Cmax ratios)
lay within 0.8- to 1.25-fold of the 90% CIs. The lower and upper 90% CI bounds for the
AUC ratio were 85.61–97.06% for a 114 mg patch and 108.62–123.09% for a 146 mg patch.
The Cmax ratios were 82.07–91.51% and 102.98–114.88% for 114 mg and 146 mg donepezil,
respectively. The simulations for each bioequivalent dose are plotted in Figure 3.

Table 4. Results of the bioequivalence study on the simulation of the two donepezil formulations.

Range Parameter AUC Cmax

Minimum
(114 mg/101.3 cm2)

CI 90%
(Lower-Upper) 85.61–97.06 82.07–91.51

RT Ratio (%Ref) 91.16 86.66

Maximum
(146 mg/129.8 cm2)

CI 90%
(Lower-Upper) 108.62–123.09 102.98–114.88

RT Ratio (%Ref) 115.63 108.77
CI: confidence interval, RT Ratio: equivalence ratio of test formulation to reference formulation, “Test” refers to
patch donepezil dose, “Reference” refers to oral donepezil dose.
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Figure 3. Simulated oral dose of donepezil 10 mg daily (gray line/area) and transdermal patch doses
of 114 mg weekly (upper, green line/area) and 146 mg weekly (lower, red line/area). Lines: median
predictions. Shaded areas: percentiles 5 to 95.

4. Discussion

The donepezil patch could replace the original oral formulation; the dosing frequency
is thus reduced. The observed drug exposures (revealed by the Cmax and AUC ratios) were
slightly less than the predicted in vitro results, which indicates that adjustment of the patch
dose may be required.

In this study, a population pharmacokinetic model of donepezil was developed as a
two-compartment model for both oral and patch administration. Transit compartments
were successfully applied for patch formulation to delay the arrival time to reach the
central compartment. The same central compartment was used for both patch and oral
dose, and its clearance was estimated as 10 L/h. A recent study using a population PK
model of oral donepezil administration estimated an oral clearance of 12 L/h [16]. Another
report stated that donepezil hydrochloride clearance was 9.65 L/h after administration of a
10 mg tablet [17]. The NCA PK parameters were 10 L/h (CLss) and 560 L (Vss) after oral
administration of 10 mg drug. The Ka (absorption rate constant), Vc (central volume of
distribution), Vp (peripheral volume of distribution), and Q (intercompartmental clearance)
are listed in Table 2.

The VPC showed that the predictions were usually in agreement with the observations.
However, the CIs for each percentile was rather wide, perhaps because of the intrinsic vari-
ability inherent in most of the transdermal formulation and estimation difficulties caused
by flip-flop pharmacokinetics. It is thought that applying covariates of the study subject’s
skin condition would help minimize the variability of the model. However, bootstrapping
(1000 replicates) showed that the model was reliable and robust. The GOF data suggested
that the model was accurate in terms of both population and individual predictions. Plots
of the GOF of the conditional and individual weighted residuals (CWRES and iWRES) by
time showed that the residuals were evenly dispersed around the predictions. The model
was appropriate for further simulation study.

In a previous study, Yoon et al. 2020, described oral and patch formulation in two
different population models. The administered drugs in oral and transdermal route were
cleared in different spaces with different clearances. The study focused on separately
developing a descriptive model for both oral and patch formulation [18].

In this research, different PK profiles from formulations were described with one
integrated model and showed better agreement with the reported drug parameters. The
model can handle complicated dosing plans such as giving an oral titration period in patch
study. In vitro dissolution data is applied in deciding patch delivered dose so that the
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model can deal with further experiments of modifications on formulation. Overall, a more
simplified and generalized model for interpreting oral and patch formulation was made.

Finally, we performed bioequivalence testing of oral (10 mg) and patch donepezil
using a 2 × 2 crossover design (100 patients/group, 200 in total). The test was performed
on the simulated secondary NCA parameters. Iteration revealed that the patch-equivalent
drug dose lays between 114 and 146 mg (patch sizes of 101.3 and 129.8 cm2). Enhanced
skin penetration or an increase in drug concentration would reduce the size of the patch,
thus optimizing transdermal delivery of the drug by enhancing patient compliance.

For the first time, the inspection of appropriate patch doses satisfying the bioequiva-
lence between two different formulations was performed. This model-informed bioequiva-
lence assessment for different formulations was able to identify various kinds of variabilities
and is expected to provide more accurate, interpretable data compared to the standard
non-compartmental bioequivalence studies even in highly variable clinical situations.

5. Conclusions

To facilitate NCA-based bioequivalence testing, we built a population PK model for
donepezil using data from nine healthy volunteers. We performed bioequivalence testing
using secondary PK parameters derived from an iterative clinical simulation. A patch with
114–146 mg donepezil was equivalent to 10 mg oral donepezil.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics14020244/s1, Table S1: Intra- and inter-day precision and accuracy values,
Table S2: Stability of donepezil in human plasma, Table S3: Dissolution profile of oral and transder-
mal patch formulation, Figure S1: Representative chromatography of donepezil in human plasma
((A) double blank, (B) zero blank, (C) LLOQ, (D) sample obtained xx h after transdermal adminis-
tration, and € sample obtained xx h after oral administration), Figure S2: Goodness-of-fit plot of
model (A): Observation vs. population prediction, (B): Observation vs. individual prediction, (C):
individual weighted residuals vs. individual predictions, (D): conditional weighted residuals vs.
individual prediction, Figure S3: Pharmacokinetic profile of subjects with oral administration, Figure
S4: Pharmacokinetic profile of subjects with transdermal patch administration.
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Abstract: Population pharmacokinetic modeling and simulation (M&S) are used to improve an-
tibiotic dosing. Little is known about the differences in parametric and nonparametric M&S. Our
objectives were to compare (1) the external validation of parametric and nonparametric models of
imipenem in critically ill patients and (2) the probability of target attainment (PTA) calculations
using simulations of both models. The M&S software used was NONMEM 7.2 (parametric) and
Pmetrics 1.5.2 (nonparametric). The external predictive performance of both models was adequate
for eGFRs ≥ 78 mL/min but insufficient for lower eGFRs, indicating that the models (developed
using a population with eGFR ≥ 60 mL/min) could not be extrapolated to lower eGFRs. Simulations
were performed for three dosing regimens and three eGFRs (90, 120, 150 mL/min). Fifty percent
of the PTA results were similar for both models, while for the other 50% the nonparametric model
resulted in lower MICs. This was explained by a higher estimated between-subject variability of the
nonparametric model. Simulations indicated that 1000 mg q6h is suitable to reach MICs of 2 mg/L for
eGFRs of 90–120 mL/min. For MICs of 4 mg/L and for higher eGFRs, dosing recommendations are
missing due to largely different PTA values per model. The consequences of the different modeling
approaches in clinical practice should be further investigated.

Keywords: imipenem; population pharmacokinetic modeling; parametric; nonparametric; simulations

1. Introduction

Population pharmacokinetic (popPK) modeling and simulation is used to improve
antibiotic dosing and clinical outcomes of infections. Antimicrobial efficacy is determined
by the susceptibility of the drug in vitro (usually expressed as the minimal inhibitory con-
centration, MIC) and the exposure to the drug in vivo, which relies on the pharmacokinetics
and the dose [1]. PopPK models describe the variability of exposure to a drug, and are
therefore used to support dosing optimization. This optimization can take place in different
ways: individualization of dosing via therapeutic drug monitoring (TDM) software, im-
proving dosing regimens from the package insert (especially for specific subpopulations),
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and setting clinical breakpoints on a population level [2]. Clinical breakpoints are MICs
that categorize microorganisms as susceptible or resistant to specific antibiotics [3].

Several popPK modeling methods are available. Statistically, they are classified
as either parametric or nonparametric methods [2]. Parametric methods assume that
the population parameter distribution is known, with unknown population parameter
estimates [4]. Nonparametric methods make no assumption about the shapes of the
underlying parameter distributions, by which, theoretically, subpopulations are more
easily detected [5]. Many parametric and nonparametric popPK models are published
in the literature, often accompanied by simulations of the model which lead to dosing
recommendations [2]. Little is known about the differences in modeling and simulation
results between parametric and nonparametric methods, which may influence dosing
recommendations.

Previously, we described the development and results of parametric and nonpara-
metric popPK models of imipenem in critically ill patients [6]. Both models described
imipenem popPK well, and the population parameter estimates were similar. The same
covariate was included: the CKD-EPI (Chronic Kidney Disease Epidemiology Collabora-
tion) eGFR (estimated Glomerular Filtration Range) equation [7], which was unadjusted
for body surface area, on elimination rate Ke. The estimated between-subject variability
(BSV) was higher in the nonparametric model. External validation and simulations of both
models were not yet performed.

Like other beta-lactams, the antibacterial effect of imipenem is determined by the
percent of time of the dosing interval during which the free concentration remains above
the MIC (f T > MIC) [8]. Reported targets for beta-lactam antibiotics range from 20 to 100%
f T > MIC to 100% f T > 5xMIC [9–13]. Smaller preclinical and clinical studies suggest that the
required targets seem to be the highest in cephalosporines, followed by penicillins, and
then carbapenems [11,14]. Other M&S studies of imipenem in critically ill patients used
targets of 20–100% f T > MIC [15–17]. The DALI study showed a significant association of
positive clinical outcome (defined as no switch of addition of antibiotics needed) with
50% f T > MIC (OR 1.02) and 100% f T > MIC (OR 1.56) for eight beta-lactams in 361 critically
ill patients [18]. However, this study did not distinguish between the three classes of
beta-lactams. Due to the lack of consensus about the target, we chose to use two targets in
this paper (50% f T > MIC and 100% f T > MIC). A Swiss study in hospitalized patients treated
with standard imipenem dosing regimens from the package insert found a trend towards
increased clinical failure in case of trough levels < 2 mg/L (11% vs. 19%), indicating that
the dosing could be optimized. Unfortunately, this study was underpowered to detect a
significant difference [19].

The first objective of the current study was to determine which of the two previously
described imipenem models [6] delivers the best Bayesian posterior estimates to predict
the imipenem concentrations in an external independent database. The second objective
was to determine the probability of target attainment (PTA) for several doses and estimated
glomerular filtration rate (eGFR) values using simulations of both models.

2. Materials and Methods

2.1. Population PK Models

Two previously published parametric (using NONMEM 7.2) and nonparametric
(using Pmetrics 1.5.2) population PK models of imipenem in critically ill patients were used
for the analyses in this paper. The development and results of both models are described in
detail elsewhere [6]. Both models included two distribution compartments and the absolute
(unadjusted for body surface area) CKD-EPI eGFR [7] as a covariate on the elimination rate
constant (Ke). The parameter estimates in both models were comparable, except from the
estimated BSV, which was higher in the nonparametric model. The parameter estimates
are displayed in Supplementary Table S1.
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2.2. Population Used for Modeling

The models were built using imipenem PK data of 26 critically ill patients from a
previously published prospective cohort study [20] in the intensive care unit (ICU) of the
Geneva University Hospitals (Geneva, Switzerland). Inclusion criteria were suspected
or documented severe bacterial infection and age between 18 and 60 years. Exclusion
criteria were estimated glomerular filtration rate (eGFR) < 60 mL/min (measured by
the Cockcroft–Gault equation [21]), Body Mass Index (BMI) < 18 or >30 kg/m2, and
pregnancy. None of the patients received continuous renal replacement therapy (CRRT).
None of the patients used probenecid, which is the only drug that is known to influence
imipenem concentrations [22]. The usual dosing regimen for imipenem/cilastatin was
500 mg/500 mg every 6 h, administered by intermittent intravenous infusion for 30 min.

Peak (approximately 15–30 min after end of infusion), intermediate (midway be-
tween two sequential administrations), and trough (approximately 15 min before the
next dose) blood samples (n = 138) were collected on days 1, 2, 3, 4, and/or 6 of ther-
apy; 47% was drawn on the second day. After centrifugation of the blood, MOPS [3-
(N-morpholino)propanesulfonic acid], a stabilizing buffer that protects imipenem from
degradation [23], was added to an equivalent volume of plasma. Imipenem plasma con-
centrations were analysed by high-performance liquid chromatography (HPLC), with
ultraviolet (UV) detection at 298 nm. A median of three creatinine measures per patient
were available.

Fewer than 10% [24] of all concentrations (13/138 = 9.4%) were below the limit of
quantification (0.5 mg/L) and were excluded from the popPK analysis. All concentrations
above the LOQ (n = 125) were included for popPK analysis.

2.3. Population Used for Validation

The external dataset consisted of imipenem PK data of 19 critically ill patients from a
previously published prospective randomized study [25] in the ICU of the General Univer-
sity Hospital (Prague, Czech Republic). Inclusion criteria were hospital acquired pneumo-
niae (HAP) and age above 18 years. Exclusion criteria were carbapenem allergy, hepatic dys-
function (total serum bilirubin > 27 μmol/L), neutropenia (granulocytes < 500/mm3), acute
or chronic renal failure (serum creatinine > 280 μmol/L or CRRT), obesity (BMI > 35 kg/m2

or weight > 110 kg), and pregnancy. None of the patients used probenecid.
Patients were randomized to receive either short infusion (bolus group) or extended

infusion (extended group) of imipenem/cilastatin. Patients in the bolus group received
1 g/1 g imipenem/cilastatin every 8 h, administered by intermittent intravenous in-
fusion for 30 min. Patients in the extended group received an initial loading dose of
1 g/1 g imipenem/cilastatin over 30 min, followed by an infusion of 500 mg/500 mg
imipenem/cilastatin administered over 3 h every 6 h.

Blood samples (n = 114) were drawn on the second day of therapy: one sample prior to
infusion and then at 0.33, 0.67, 4, 6, and 8 h (bolus group) or 2, 3.17, 4, 5, and 6 h (extended
group). After centrifugation, MOPS buffer was added to an equivalent volume of plasma.
Imipenem plasma concentrations were analysed by HPLC-UV at 313 nm. One creatinine
measure per patient was available.

Fewer than 10% [24] of all concentrations (3/114 = 2.6%) were below the limit of
quantification (0.26 mg/L) and were excluded from analysis. All concentrations above the
LOQ (n = 111) were included for analysis.

2.4. External Validation

Imipenem concentrations of the external validation database were predicted using
the parametric and nonparametric models. Subsequently, the prediction errors (individual
predicted concentration minus observed concentration) and relative prediction errors
(prediction error/observed concentration) were calculated. The prediction errors were also
calculated using Monte Carlo simulations (n = 1000) of both models.
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To visualize the external validation, plots with predicted versus observed concen-
trations and visual predictive checks (VPCs) were generated. For each VPC, a set of
1000 simulated datasets (using one of the popPK models developed with the modeling
population) was created to compare the observed concentrations of the external validation
database with the distribution of the simulated concentrations. Stratification on dose
(500 mg and 1000 mg) and eGFR (measured by the CKD-EPI equation unadjusted for BSA)
was applied. For eGFR, stratification in three groups (19–46, 50–89, and 90–178 mL/min)
and two groups (19–59 and 79–178 mL/min) was performed. These ranges were chosen to
create equal groups.

2.5. Simulations

Monte Carlo simulations were performed using the final models. The three imipenem
dosing regimens from the package insert [22,26] were evaluated: 500 mg every 6 h (q6h),
1000 mg every 8 h (q8h), and 1000 mg q6h, each for a predefined eGFR (measured by
the CKD-EPI equation unadjusted for BSA) of 150, 120, and 90 mL/min. The infusion
rate was 1000 mg/h for each dosing regimen. Five thousand subjects were simulated for
each combination of dosing regimen and eGFR. For each simulated concentration–time
profile, the f T > MIC was calculated for MICs of 0.015–64 mg/L. The unbound imipenem
concentrations were calculated from the total concentration using a fixed value for protein
binding of 20% [22]. Subsequently, the probability of target attainment (PTA) for 50% and
100% f T > MIC was calculated. A PTA threshold of 97.5% [3] was chosen.

2.6. Software

Parametric population PK modeling and simulation was performed using NONMEM
(version 7.2, ICON Development Solutions, Ellicott City, MD, USA), Intel Visual Fortran
Compiler XE 14.0 (Santa Clara, CA, USA), RStudio (version 1.1.456; RStudio, Boston,
MA, USA, 2018), R (version 3.5.1; R foundation, Vienna, Austria, 2018), XPose (version
4.6.1; Uppsala University, Department of Pharmaceutical Biosciences, Uppsala, Sweden,
2018), PsN (version 4.6.0; Uppsala University, Department of Pharmaceutical Biosciences,
Uppsala, Sweden, 2016), and Pirana [27] (version 2.9.4; Certara, Princeton, NJ, USA, 2018).
The f T > MIC and PTA were calculated using Excel 2013.

Nonparametric population PK modeling, simulation, and calculation of f T > MIC and
PTA was performed using Pmetrics version 1.5.2 (Laboratory of Applied Pharmacokinetics
and Bioinformatics, Los Angeles, CA, USA) [28], Intel Visual Fortran Compiler XE 14.0
(Santa Clara, CA, USA), RStudio (version 1.1.456), and R (version 3.5.1). The raw VPC data
were imported from Pmetrics into PsN (version 4.6.0) using the Pirana interface [27] to
generate VPCs with the same layout as NONMEM. VPC plots were subsequently created
using XPose (version 4.6.1) within RStudio (version 1.1.456).

3. Results

3.1. Population

Demographic and clinical characteristics of the population (n = 26) used to build the
popPK models and of the validation population (n = 19) are summarized in Table 1. None
of the patients received continuous renal replacement therapy (CRRT). The medians of the
APACHE II score and age were higher in the validation group compared to the modeling
population. The median eGFR was lower in the validation group. Six validation subjects
had an absolute CKD-EPI eGFR lower than the minimum of 51 mL/min in the modeling
group, while one validation subject had an eGFR above the maximum of 172 mL/min in the
modeling population. The other characteristics were comparable between the two groups.
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Table 1. Demographic and clinical characteristics of the population (n = 26) used to build the popPK models and of the
validation population (n = 19). APACHE, Acute Physiology and Chronic Health Evaluation; eGFR, estimated Glomerular
Filtration Range; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; BMI, Body Mass Index; BSA, Body
Surface Area.

Parameter
Modeling

Population
Validation Population

Male, n (%) 18 (69) 14 (74)
APACHE II score, median (range) 22 (7–35) 26 (13–42)
Age (years), median (range) 51 (25–59) 64 (26–90)
Creatinine at inclusion (μmol/L), median (range) 59 (28–108) 98 (44–235)
eGFR CKD-EPI at inclusion (ml/min/1.73 m2), median (range) 116 (50–143) 73 (20–145)
eGFR absolute CKD-EPI at inclusion, unadjusted for BSA (ml/min), median (range) 119 (51–172) 79 (19–178)
Height (cm), median (range) 175 (155–190) 170 (150–190)
Total bodyweight (kg), median (range) 75 (50–107) 78 (45–110)
BMI (kg/m2), median (range) 25 (18–35) 28 (18–34)
BSA (m2), median (range) 1.89 (1.51–2.23) 1.92 (1.40–2.29)
Presumed infection, n (%)
Respiratory tract infection 16 (62) 19 (100)
Intra-abdominal infection 4 (15) -
Bloodstream infection 3 (12) -
Surgical site infection 1 (4) -
Meningitis 1 (4) -
Gynecological infection 1 (4) -

3.2. External Validation

The graphs of individual and population predicted concentrations plotted against
the observed concentrations of the external dataset (Figure 1) were comparable for the
two models. Both models showed good predictive performance for 500 mg as well as
1000 mg, except for concentrations higher than approximately 20 mg/L for the 1000 mg
dose (see also the visual predictive checks (VPCs) in Figure 2). The same deviation of
the peak concentration was still shown in VPCs without samples during infusion (data
not shown).
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Figure 1. Cont.
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Figure 1. Individual (I [IPRED], II, and III) and population (I (PRED), IV, and V) concentrations, predicted using the
parametric model (a) and the nonparametric model (b), plotted against the observed concentrations of the external dataset.
The two dose groups, 500 mg and 1000 mg, are differentiated in graphs II and IV and two eGFR groups (measured by the
CKD-EPI unadjusted for BSA) in graphs III and V. The log-transformed concentrations of the parametric model (a) are back
transformed for an easier comparison with the untransformed concentrations in the figures of the nonparametric model (b).
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Figure 2. Cont.
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(IVb) (Vb) 

Figure 2. Visual Predictive Checks (VPCs) of both models using the external validation database. Circles: observed
concentrations. Upper, middle, and lower lines: 95th, 50th, and 5th percentile of observations. Shaded areas: 95%CI of
the corresponding percentiles of predictions. I: both dose regimens, II: 500 mg, III: 1000 mg, IV: eGFR 20–59 mL/min,
V: eGFR 79–178 mL/min. The log-transformed concentrations of the parametric model (a) are back transformed for an
easier comparison with the untransformed concentrations in the figures of the nonparametric model (b).

The VPCs with eGFR stratification on three groups were unclear due to the small
group size (data not shown). Stratification on the two eGFR groups was better, but the VPC
plots are still not optimal due to the different sampling times of both dosing groups, which
were equally distributed among the eGFR groups (see Figure 2). The individual plots
in Figures 1 and 2, with stratification on the two eGFR groups, show that the predictive
performance for eGFRs of 19–59 mL/min (n = 9) was worse than for eGFRs of 79–178
mL/min (n = 10). The VPCs show that both models predict too high concentrations for the
trough levels of the low eGFR group. The median relative prediction error (Table 2) was
higher for trough levels in the low eGFR group (parametric: 83% and nonparametric: 88%)
than in the high eGFR group (−24% and −19%). These prediction errors were comparable
for the 500 mg and 1000 mg in each eGFR group (data not shown).

Table 2. Prediction errors of the parametric and nonparametric popPK models using the external validation database
(111 concentrations). The prediction errors were also calculated after 1000 simulations (111.000 concentrations) of both
models. In the last 4 columns, a selection of the simulations (trough levels only) per eGFR group are shown. PE = prediction
error (mg/L) = individual predicted concentration—observed concentration. RPE = relative prediction error (%) = prediction
error/observed concentration.

KERRYPNX

External Database Simulations Simulations (Selection) Simulations (Selection)

111 Concentrations
1000 × 111

Concentrations
1000 × 17 trough

eGFR19-59
1000 × 18 trough

eGFR79-178

Parametric PE (mg/L) RPE (%) PE (mg/L) RPE (%) PE (mg/L) RPE (%) PE (mg/L) RPE (%)

97.5% 3.83 105 8.97 252 9.74 360 2.03 225
75% 0.61 19 1.97 56 3.92 167 0.38 31
50% −0.02 −1 −0.04 −1 2.13 83 −0.50 −24

25% −1.52 −20 −2.20 −31 0.72 23 −1.64 −53
2.5% −30.55 −52 −28.63 −74 −3.16 −41 −3.15 −82

Nonparametric PE (mg/L) RPE (%) PE (mg/L) RPE (%) PE (mg/L) RPE (%) PE (mg/L) RPE (%)

97.5% 3.89 54 30.68 594 28.96 996 7.08 564

75% 0.51 15 3.22 83 5.66 221 0.80 58

50% −0.43 −9 0.02 0.5 2.24 88 −0.33 −19

25% −1.74 −29 −2.47 −39 0.32 11 −1.56 −56

2.5% −25.99 −58 −24.77 −79 −4.15 −63 −3.36 −91
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The median prediction error and median relative prediction error after 1000 simula-
tions were similar to the single external validation for both models (Table 2), although the
97.5–2.5% range is larger after the simulations using the nonparametric model. The wider
distribution of the nonparametric model is also shown in the VPCs in Figure 2.

The proportion of observations between the 5th and 95th simulated percentiles in the
VPCs in Figure 2 are: 96% (Ia), 95% (IIa), 94% (IIIa), 81% (IVa), 88% (Va), 96% (Ib), 97% (IIb),
96% (IIIb), 81% (IVb), and 95% (Vb).

3.3. Simulations

The highest MICs with a probability of target attainment (PTA) >97.5% for a target of
50% and 100% f T > MIC attained by several imipenem dosing regimens and eGFR values
of 150, 120, 90 mL/min are shown in Table 3 for both models. Fifty percent of the MICs
calculated using the parametric model were equal to those calculated by the nonparametric
model and the other half of the MICs were lower for the nonparametric model. The PTAs
for the full MIC profile from 0.015 to 64 mg/L are shown in Supplementary Table S2.

Table 3. The highest MIC for which a probability of target attainment (PTA) of 97.5% is reached at
targets of 50% and 100% f T > MIC by several imipenem dosing regimens and eGFR values (measured
by the CKD-EPI equation unadjusted for BSA) of 150, 120, and 90 mL/min. The PTAs were calculated
by Monte Carlo simulations (n = 5000) using parametric and nonparametric popPK models.

eGFR (ml/min) Dose Regimen Target fT > MIC

Highest MIC (mg/L)
with PTA > 97.5%

Parametric Nonparametric

150

500 mg q6h 100% 0.125 0.06

1000 mg q8h 100% 0.125 0.03

1000 mg q6h 100% 0.25 0.125

500 mg q6h 50% 0.5 0.25

1000 mg q8h 50% 0.5 0.5

1000 mg q6h 50% 1 1

120

500 mg q6h 100% 0.125 0.125

1000 mg q8h 100% 0.25 0.06

1000 mg q6h 100% 0.25 0.25

500 mg q6h 50% 0.5 0.5

1000 mg q8h 50% 1 0.5

1000 mg q6h 50% 2 1

90

500 mg q6h 100% 0.25 0.25

1000 mg q8h 100% 0.25 0.25

1000 mg q6h 100% 0.5 0.5

500 mg q6h 50% 1 0.5

1000 mg q8h 50% 1 1

1000 mg q6h 50% 2 1

4. Discussion

The external validation of parametric and nonparametric popPK models of imipenem
in critically ill patients showed that the predictive performance of both models was suffi-
cient in patients with high eGFRs (79–178 mL/min). However, the models could not be
extrapolated to patients with lower eGFRs, as they were hardly included in the population
used to build the model. The PTA simulations using both models were therefore performed

100



Pharmaceutics 2021, 13, 2170

for eGFR ≥ 90 mL/min only. Fifty percent of the PTA calculations resulted in similar MICs
for both models, while the other half of the simulations resulted in lower MICs for the
nonparametric model.

Our external validation simulations showed that the median PE and RPE were com-
parable for both models, although the ranges of the PE and RPE were wider for the
nonparametric model. This was also shown in the VPCs and can be explained by the higher
BSV in the nonparametric model. In contrast to the external validation simulations, the
original external validation (without simulations) showed higher medians of the PE and
RPE for the nonparametric model. However, the mean PEs (−1.9 mg/L parametric and
–1.8 mg/L nonparametric) were similar. Given the similar external validation simulation
results, this deviation of median PEs and RPEs might be caused by the small study size.

The poor predictive performance for low eGFRs can be explained by the paucity of
subjects with renal impairment in the modeling population. Only 1 of 26 patients in the
modeling population (n = 26) had an eGFR lower than 90 mL/min, while this applied
to 12 of 19 patients in the validation population. After the external validation showed
that both popPK models could not be extrapolated to low eGFRs, we decided to perform
the PTA simulations for eGFR ≥ 90 mL/min only, deviating from the original plan to
also simulate for lower eGFRs. The cut-off of 90 mL/min was chosen from a practical
point of view, in line with the package inserts [22,26] instead of the eGFR ranges from the
VPCs (19–59 and 79–178 mL/min), which were chosen to create two equal groups. The
popPK models are still applicable to a high proportion of critically ill patients. Augmented
renal clearance (defined as increased renal elimination of circulating solutes and drugs
as compared with normal baseline [29]) has been reported in approximately 30–65% of
critically ill patients [30].

The VPCs stratified on dose showed for both models a good predictive performance for
the 500 and 1000 mg regimens, except for peak concentrations (Cmax) for the 1000 mg dose.
This dose could not be tested during popPK modeling because the modeling population
only used 500 mg. The higher than predicted Cmax is not likely to be explained by non-
linear PK [22,31]. The most probable reasons for the Cmax deviation are the critical timing
of the peak samples and the variable PK in critically ill patients [32], which is also shown
by others [31,33–35]. However, it is important to realize that, instead of Cmax, the trough
level is relevant for the targets of 50–100% f T > MIC. Importantly, the simulations did not
show different prediction errors for trough levels after 500 mg and 1000 mg. Therefore, we
decided to include 1000 mg dose regimens in the PTA simulations.

Our external validation findings emphasise the importance of such a validation when
popPK models are used to optimize dosing strategies based on PTA simulations, or to
individualize dosing by therapeutic drug monitoring software. PopPK model publications
often not include external validation. A survey of the literature revealed that only for 7%
of popPK models published between 2002 and 2004 (n = 324) was an external evaluation
performed [36]. To our knowledge, a more recent survey does not exist.

Our simulations showed that 50% of the PTA results were comparable for both models,
while the other half resulted in lower MICs for the nonparametric model, although the
majority (7/9 = 78%) differed by only one dilution. The lower MICs could be caused
by a higher estimated BSV of the popPK parameter values in the nonparametric model,
leading to a wider range of concentrations. It is impossible to judge which of the models
represents the “truth”. The parametric model could have included too little variability or
the nonparametric model could be too flexible. Probably, the truth is somewhere in between.
We compared our simulation results with other published M&S studies of imipenem in
critically ill patients, of which one was based on a parametric model [15] and two on
nonparametric models [16,17]. Despite differences in parameter estimates, our finding of
higher MICs with the parametric model was confirmed by these papers [15–17]. Similar to
two studies [15,17], we showed that it is difficult to reach high MICs from 1 mg/L with
an increased target of 100% f T > MIC, which confirms again that more prospective studies
about the required target of beta-lactams in critically ill patients are needed. The regression
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analysis of the original study [20], with four beta-lactams from which we analysed a
subgroup, did not find a significant association between clinical failure and trough levels
below 2 mg/L, indicating that an elevated target of 100% f T > MIC might not be necessary
in this population. Even a larger study was underpowered to find a significant association
between clinical failure and troughs below 2 mg/L [19]. Importantly, the latter study [19]
proved that fear about toxicity at high doses of 3–4 g/day is unnecessary, as patients
receiving these doses did not have increased toxicity compared to the standard dose
of 2 g/day.

Based on the 50% f T > MIC target simulations, we conclude that a high dose of 1000 mg
q6h is required to maximize the probability to reach MICs of 2 mg/L (e.g., for Enterobac-
terales [37]) in critically ill patients with eGFRs of 90–120 mL/min, although the PTAs
using the nonparametric model were below the 97.5% cut-off but still above 90% (see
Supplementary Table S2). This is in line with the American prescribing information [26].
However, they recommend this dosing regimen also for MICs of 4 mg/L (e.g., for Pseu-
domonas aeruginosa), similar to the European product characteristics [22], although these
brochures are of course not specifically dedicated to critically ill patients. Considering our
simulation results, it is difficult to give dosing recommendations for MICs of 4 mg/L, and
also for higher MICs of 2 mg/L and eGFRs of 150 mL/min, because the PTA values differ
largely per modeling approach. For example, for 1000 mg q6h, eGFR 90, 50% f T > MIC, and
MIC 4 mg/L, the PTA was 90% for the parametric model and 63% for the nonparametric
model (see also Supplementary Table S2). Dosing regimens may look acceptable following
the parametric model, while the nonparametric model might plead for increased dosing.
As previously stated, the truth may be somewhere in between. One of the objectives of
our study was to determine which of the two previously described imipenem models
delivers the best Bayesian posterior estimates to predict the imipenem concentrations in an
external independent database. It was not possible to assign a winner, because the external
predictive performance of both models was adequate. However, as the dosing simulations
based on the models show different results, more research on this topic is clearly needed.
Until now, we recommend all readers of M&S papers to be aware of the consequences of
the chosen modeling approach before implementing the dosing recommendations of these
papers in clinical practice.

Few studies comparing parametric and nonparametric M&S are available in the lit-
erature. Precluding the studies with currently outdated software [38–41], we found eight
comparison studies [42–49]. For three of these studies, the parameters of both models
could not be compared due to a different model structure [42,43] or unreported values [46].
The majority of the remaining five comparison studies showed comparable parameter
estimates of both models [45,47–49], although the BSV of the parametric estimates was
often higher for the nonparametric model [44,45,47], similar to our findings. The three
comparison studies that performed an external validation of both models concluded that
the nonparametric models provided the lowest relative prediction error (RPE) for concen-
trations [46] and area under the curve [43,44], although for one of the latter studies [44],
the RPE of the concentrations was similar. Our external validation showed a compara-
ble RPE for both models after simulations, reflecting a good predictive performance of
both models. PTA calculations using both modeling approaches were only performed
by one previous study [48], which concluded that the PTA versus MIC profiles (based
on 10,000 simulations) were similar. This seems to be caused by the similar parameter
estimates and BSV of these models. Contrary to the latter study, our PTA simulations show
different results for both modeling approaches, which could be explained by the higher
BSV of our nonparametric model.

This paper has a few limitations. The main limitation is that the modeling population
did not include 1000 mg dose regimens as well as patients with impaired renal function. A
drawback of the validation population was that only 12 patients matched the eGFR range of
the modeling population (51–172 mL/min). Another limitation is that the simulations were
performed with a fixed value of protein binding because only total drug concentrations
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were available. However, the consequences seem to be low given the small protein binding
of 20% [22].

5. Conclusions

The external predictive performance of parametric and nonparametric popPK models
of imipenem in critically ill patients was adequate for subjects with high eGFRs, but insuffi-
cient for low eGFRs. This was explained by a paucity of subjects with renal impairment
in the modeling population. External validation of popPK models is important to test the
possibility of extrapolation to other populations. The PTA simulations of both models
indicated that 1000 mg q6h is suitable to reach MICs of 2 mg/L in critically ill patients with
eGFRs of 90–120 mL/min. However, for MICs of 2 mg/L and an eGFR of 150 mL/min,
and for MICs of 4 mg/L, dosing recommendations could not be given because the PTA
values differed largely per modeling approach. The consequences of the different modeling
approaches in clinical practice should be further investigated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13122170/s1, Table S1: Population parameter estimates; Table S2: Probabilities
of target attainment (PTA) simulations.
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Abstract: The prevalence and mortality rates of severe infections are high in intensive care units
(ICUs). At the same time, the high pharmacokinetic variability observed in ICU patients increases
the risk of inadequate antibiotic drug exposure. Therefore, dosing tailored to specific patient charac-
teristics has a high potential to improve outcomes in this vulnerable patient population. This study
aimed to develop a tabular dosing decision tool for initial therapy of meropenem integrating hospital-
specific, thus far unexploited pathogen susceptibility information. An appropriate meropenem
pharmacokinetic model was selected from the literature and evaluated using clinical data. Probability
of target attainment (PTA) analysis was conducted for clinically interesting dosing regimens. To
inform dosing prior to pathogen identification, the local pathogen-independent mean fraction of
response (LPIFR) was calculated based on the observed minimum inhibitory concentrations dis-
tribution in the hospital. A simple, tabular, model-informed dosing decision tool was developed
for initial meropenem therapy. Dosing recommendations achieving PTA > 90% or LPIFR > 90% for
patients with different creatinine clearances were integrated. Based on the experiences during the
development process, a generalised workflow for the development of tabular dosing decision tools
was derived. The proposed workflow can support the development of model-informed dosing tools
for initial therapy of various drugs and hospital-specific conditions.

Keywords: model-informed dosing tool; intensive care unit; antibiotic therapy; antimicrobial
stewardship; meropenem; pathogen susceptibility

1. Introduction

Rational antibacterial therapy requires more than the appropriate choice of the antibi-
otic drug. Equally important are dosing regimens leading to an effective drug exposure
linked to improved clinical success [1,2]. In intensive care unit (ICU) patients, the selection
of an appropriate dosing regimen for an individual patient is challenging. The broad
range of pathophysiological changes leads to high pharmacokinetic (PK) variability, which
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results in substantial differences in drug exposures between patients receiving the same
dosing regimen [3–7]. To address these challenges, drug concentration measurements
in combination with model-informed Bayesian dosing software have been suggested to
monitor and, if needed, adjust dosing in this patient [8,9]. Unfortunately, in many hospi-
tals, reliable, timely, and frequent concentration measurements of antibiotic drugs other
than aminoglycosides are not implemented, and the use of Bayesian dosing software to
inform subsequent dose adaptation is not common [10,11]. The lack of specialist expertise
and structured processes, the costs for software and bioanalysis, and inconsistent global,
national, and local regulations (e.g., concerning liability) impede the widespread imple-
mentation of model-informed Bayesian dosing software [12]. If software-based tools and
frequent concentration measurements are not feasible, one promising alternative to indi-
vidualise antibiotic therapy is tabular model-informed dosing tools or algorithms. These
dosing tools can provide adequate initial dosing regimens for a wide range of patients,
based on their patient characteristics and PK models of the drugs. In this context, existing
PK models could be leveraged for a local patient population to circumvent the need for
further PK studies.

Commonly, at the start of antibiotic therapy, neither the pathogen nor its susceptibility
to the antibiotic are known. In many cases, both remain unknown during the course of an-
tibiotic therapy [13]. Thus, patients without determined pathogen and its susceptibility are
empirically treated based on the reported PK/pharmacodynamics (PD) breakpoints of the
suspected pathogens [14]. The timely initiation of adequate empiric therapy is associated
with decreased mortality rates, decreased length of hospitalisation, and decreased health
care costs in patients with severe infections [15]. However, this strategy does usually not
utilise available knowledge of a hospital regarding the susceptibility of local pathogens,
and thus, it accepts the risk of unnecessary high or low and possibly toxic or ineffective
antibiotic concentrations.

Meropenem is a broad-spectrum antibiotic frequently used to treat severe infections in
ICU patients. It is considered to be a safe and well-tolerated antibiotic drug [16]. However,
changes in meropenem PK in chronic disease patients, such as chronic kidney disease,
can increase the risk for ineffective or toxic meropenem exposure [17]. The antimicrobial
activity of meropenem is linked to the time period of the unbound concentration exceed-
ing the minimum inhibitory concentration (MIC) of a pathogen. Therefore, the PK/PD
index is f T>MIC [18]. Recently, a concentration measurement program for beta-lactam
antibiotics at selected ICUs of Charité-Universitaetsmedizin Berlin, a tertiary care centre
with a total of >3000 in-patient beds, was initiated. Observational unpublished data from
that program showed >60% of measured minimum meropenem concentrations outside
the locally defined target range of one to five times MIC. Consequently, the main goal
of the present study was to improve the initial meropenem therapy in ICU patients and
to optimise antibiotic dosing prior to pathogen detection. Hence, this study (i) aims to
develop a tabular model-informed dosing tool to optimise initial therapy of the antibiotic
meropenem at Charité-Universitaetsmedizin Berlin and for this (ii) investigated how to
integrate previously observed, yet unexploited local pathogen susceptibility information
into dosing decisions. Ultimately, a generalised workflow for the development of tab-
ular model-informed dosing decision tools for initial antibiotic therapy to foster their
implementation at the point-of-care was developed.

2. Materials and Methods

2.1. Patient Population and Meropenem Concentration Measurements

For the development of the model-informed dosing tool, 306 routine blood samples,
dosing information immediately prior to sampling, and patient-specific data of 81 ICU
patients receiving meropenem therapy at two ICUs (Department of Infectious Diseases and
Respiratory Medicine; Department of Surgery) at Charité-Universitaetsmedizin Berlin were
collected (approval: Charité Ethics Committee, EA4/053/19). For a subset of 34 patients
with 66 samples, the full dosing history was recorded.
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Meropenem concentrations were determined by Labor Berlin (Labor Berlin—Charité
Vivantes GmbH, Berlin). Samples were sent to the laboratory within 1 h, centrifuged,
and stored at −20 ◦C until plasma meropenem concentrations were measured After pro-
tein precipitation with methanol, meropenem concentration was quantified using high-
performance liquid chromatography (C8 reverse phase column and a 4 min step-elution
gradient (0.2% HCOOH/MeOH)) coupled with tandem mass spectrometry (electrospray
ionisation (ESI+) in multiple reaction monitoring). The used bioanalytical method was
validated according to the protocol of the Society of Toxicological and Forensic Chem-
istry (GTFCh) showing good analytical performance (inaccuracy: <±5.9% relative error,
imprecision: ≤6.3% coefficient of variation, calibration range: 2–30 μg/mL).

2.2. Pharmacokinetic Model Selection, Reduction, and Evaluation

Exclusively minimum meropenem concentrations and only 66 samples including the
full dosing history were available. As a consequence, the PK data were unsuitable for
PK model development. Instead, a published PK model was selected, evaluated for its
appropriateness, and applied for the development of the dosing decision tool. The selection
of the PK model was based on a high similarity of patient characteristics between the local
study population and the model-underlying population.

To ensure the adequacy of the selected PK model for the new patient population,
it was evaluated using median prediction errors and normalised prediction distribution
errors (NPDEs) [19,20]. Model-predicted concentrations were obtained by 500 stochastic
simulations based on the design and patient characteristics in the subset with full dosing
history. To include parameter uncertainty, stochastic simulations were repeated for 1000 PK
parameter sets obtained by bootstrapping of the dataset and re-estimation of the PK
model. To assess possible deviations of the NPDEs from the standard normal distribution,
the Wilcoxon signed-rank test (mean �= 0), Fisher ratio test (variance �= 1), and Shapiro–
Wilks test (normality assumption) were used. Simulations and bootstrap analyses were
performed using NONMEM 7.4.3 (ICON Development Solutions, Ellicott City, MD, USA)
and PsN version 4.7.0) [21]. NPDEs were analysed using the npde package (v. 2.0) in
R/Rstudio (v. 3.5.0/v. 1.1.447) [22].

2.3. Pharmacokinetic/Pharmacodynamic Targets

Based on current literature evidence, the PK/PD target for ICU patients receiving short-
time or prolonged meropenem infusions was defined as 100%f T>MIC, while for patients
receiving continuous meropenem infusions, it was defined as 100%f T>4*MIC to prevent
steady-state meropenem concentrations within the mutant selection window [23,24]. The
mutant selection window refers to a range of antibiotic drug concentrations in which only
the growth of the most susceptible strains of a pathogen is suppressed. As a consequence, a
growth advantage is provided to already available less susceptible strains in the pathogen
population. Over a longer period of time, drug concentrations within the mutant selection
window increase the proportion of less susceptible pathogens and thus the risk for resistant
mutations to prevail [25]. Given that 100%f T>MIC cannot be achieved for an intravenous
drug infusion on the first day of therapy, the attainment of a target of 98%f T>MIC was
assessed. Total concentrations were evaluated due to the low (≈2%) protein binding of
meropenem [26]. Furthermore, to assess target attainment based on a single observed
minimum meropenem concentration and to limit toxicities arising from high minimum
meropenem concentrations, an additional target was introduced: the target range for
minimum plasma concentrations was defined to be 1–5xMIC [27].

2.4. Development of the Dosing Decision Tool
2.4.1. Selection and Evaluation of Dosing Regimens

Dosing regimens were preselected based on their feasibility to integrate into local
clinical routine. To reduce the number of eligible dosing regimens emerging from the
possible combinations of the four variables (loading dose, infusion dose, infusion dura-
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tion, dosing interval), deterministic simulations were performed. Comparing the dosing
regimens, those achieving higher predicted minimum meropenem concentrations were
further considered. The remaining dosing regimens (Table 1) were evaluated for proba-
bility of target attainment (PTA); for each dosing regimen and patient, the meropenem
concentration time profile was predicted 1000 times (Monte Carlo simulations), and the
probability to attain the PK/PD target was calculated for each individual MIC value). PTA
was computed for treatment days 1 and 2 across target concentrations values ranging
from 1 to 32 mg/L and creatinine clearance values were estimated according to Cockcroft
and Gault (CLCRCG) [28] ranging from 10 to 300 mL/min (10–150 mL/min in steps of
10 mL/min, above in steps of 50 mL/min). PK model parameter uncertainty was incorpo-
rated by repeating each Monte Carlo simulation and the respective PTA analysis 1000 times
using the PK parameter sets obtained from a non-parametric bootstrap. A dosing regimen
leading to a PTA ≥ 90% for the median of the 1000 computed PTA values was considered
adequate [29]. All dosing regimens reaching a PTA ≥ 90% were further ranked according to
higher probability of minimum concentrations being in the defined target range (1–5xMIC)
and subsequently according to lower total daily dose. Thus, for each CRCLCG group and
MIC value, a single dosing recommendation was derived.

Table 1. Meropenem dosing regimens investigated in probability of target attainment analysis for
potential inclusion in the dosing decision tool.

Dosing
Regimen

Dose Per
Infusion [mg]

Infusion
Duration [h]

Dosing
Interval [h]

Total Daily
Dose [mg]

1 1000 4 6 4000
2 1000 4 8 3000
3 1000 4 12 2000
4 2000 4 6 8000
5 2000 4 8 6000
6 2000 4 12 4000
7 3000 4 6 12,000
8 3000 4 8 9000
9 3000 4 12 6000
10 4000 4 6 16,000
11 4000 4 8 12,000
12 4000 4 12 8000
13 4000 24 24 4000
14 6000 24 24 6000
15 8000 24 24 8000

All dosing regimens were administered in combination with a 1000 mg meropenem loading dose; Grey: Dosing
regimen selected for the developed dosing tool.

2.4.2. Integration of Locally Available Pathogen Information

As a high number of antibiotic therapies are initiated prior to pathogen detection,
dosing recommendations accounting for this situation were developed. Based on the PTA
results and the pathogen-independent MIC distribution observed at Charité-Universitaets-
medizin Berlin in the previous year, the local pathogen-independent mean fraction of re-
sponse (LPIFR) was introduced as metric for each dosing regimen: To determine the LPIFR
for a dosing regimen (LPIFRDR), first, the PTA for each investigated MIC level (PTAMIC,DR)
was multiplied by the relative MIC frequency ( nMIC

NMIC,total
; nMIC = number of MIC values

observed at a MIC level, NMIC,total = total number of observed MIC values) at this level in
the distribution of MIC values in patients treated at Charité-Universitaetsmedizin Berlin.
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Next, the resulting MIC-frequency weighted PTA values were summarised per dosing
regimen (Equation (1)):

LPIFRDR = ∑MIC

(
PTAMIC,DR × nMIC

NMIC,total

)
. (1)

An LPIFR of ≥90% was considered adequate. Within each CRCLCG group, dosing
regimens with a LPIFR ≥ 90% were selected and ranked by lower total daily dose.

2.5. Retrospective Evaluation of the Dosing Decision Tools Using Real Patient Data

Prior to implementation into clinical practice, the developed dosing decision tool was
evaluated using the observed local patient population. The total daily dose of the dosing
regimens recommended by the dosing decision tool for the local study population was
compared to the total daily dose of the actual administered dosing regimens. For this
purpose, the dataset of the local study population was stratified based on target attainment
(above, below, and in the defined target range of 1–5xMIC) and the administered and
recommended daily dose were compared.

3. Results

3.1. Pharmacokinetic Model Selection, Reduction, and Evaluation

A PK model developed by Ehmann et al. was selected for evaluation based on the high
similarity in patient characteristics between the population used for model development
and the local study population (Table 2 and Supplementary Material S1, Figure S1) [30].
The two-compartment model included a piecewise linear relation between CLCRCG and
clearance (CL), a power relation between body weight and the central volume of distribu-
tion (V1), and a linear relation between serum albumin concentration and the peripheral
volume of distribution (V2). Of these three covariates, Ehmann et al. demonstrated that
only CLCRCG had a clinically relevant impact on PTA [30]. Therefore, for the development
of the dosing tool, CLCRCG was kept as the only covariate in the model.

Table 2. Overview of patient characteristics.

Patient Characteristic
Charité

Universitätsmedizin-Berlin
Ehmann et al.

Categorical n (%) n (%)

No. of patients 81 42
No. of meropenem samples 306 1376

Male 55 (67.9) 27 (56.3)
No. of extracorporeal membrane oxygenation 8 (9.88) 6 (12.5)

Continuous (unit) Median (5th–95th percentile) Median (5th–95th percentile)

Age (years) 64.0 (40.0–81.0) 55.5 (32.0–69.9)
Weight (kg) 75.0 (48.0–116) 70.5 (47.4–121)

Creatinine clearance # (mL/min) 74.4 (24.7–253) 80.8 (24.8–191)
Serum albumin concentration (g/dL) 2.68 (2.00–3.60) 2.80 (2.20–3.56)

# Calculated using Cockcroft–Gault formula [28]. Creatinine clearance and serum albumin concentration determined on sample level, all
other characteristics determined on patient level.

This new reduced PK model was a two-compartment model with first-order elim-
ination, interindividual variability on CL, V1 and V2, inter-occasion variability on CL,
and a combined proportional and additive residual variability model (Supplementary
Material S1, Figure S2). For this new reduced model, the PK parameters were re-estimated
using the original dataset of the full model [30]. CL was shown to linearly increase with
increasing CLCRCG up to an inflection point of 154 mL/min. An extensive internal model
evaluation of the reduced model demonstrated high parameter accuracy and precision,
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robustness and predictive performance and, thus, applicability of the PK model to the new
population (Supplementary Material S1, Text and Figure S3).

In Figure 1, prediction errors are plotted against observed meropenem concentrations
in the 34 ICU patients with full dosing history. The median prediction error across all
observations was −1.2 mg/L, indicating a slight bias towards underprediction. The 50%
prediction error interval ranging from −3.5 to +2.5 mg/L indicated acceptable precision for
the ICU patient population the model was applied to with a single outlier (Figure 1). Other
samples of the same patient showed acceptable prediction errors, and therefore, this sample
was excluded from the subsequent NPDE analysis. While the overall NPDE distribution
did not significantly differ from the standard normal distribution (global adjusted p-value:
0.0976), the Wilcoxon signed-rank test revealed a significant (p-value 0.0325) deviation
from a mean of 0 and therefore confirmed a small bias (NPDE mean: 0.296; detailed results:
Supplementary Material S1, Tables S2 and S3; Figure S4).

Figure 1. Absolute prediction error (mg/L) plotted against observed meropenem concentrations (n = 66) when predicting
concentration based on the reduced pharmacokinetic model for the data in the subset. Points: median prediction error
per sample. Colours: individual patients (i = 34). Error bar: 90% prediction interval of prediction error per sample. Solid
horizontal line: median prediction error. Dashed line: 50% prediction interval of median prediction error. Dotted line: 90%
prediction interval of median prediction error.

3.2. Development of the Dosing Decision Tool
3.2.1. Selection and Evaluation of Dosing Regimens

Deterministic simulations demonstrated that 2000 mg loading doses provided little
further benefit over 1000 mg loading doses, the latter being sufficient to reach minimum
meropenem concentrations above minimum meropenem concentrations in steady state
(Figure 2A). Furthermore, short-term (0.5 h) infusions were inferior to prolonged infusions
(4 h) with short-term infusions generally having higher maximum and lower minimum
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concentrations for the same daily dose (Figure 2B). Consequently, dosing regimens with
a 2000 mg loading dose and short-term infusions were not further considered for PTA
analysis. PTA analysis of the 15 remaining dosing regimens (Table 1) showed that for
prolonged (4 h) infusions, four-times-daily dosing (i.e., a 6 h dosing interval) reached
higher PTA values with lower total daily doses than three-times-daily dosing (Table 3).
Furthermore, four-times-daily dosing of prolonged infusions (4 h) reached higher PTA
values than continuous infusions with the same total daily dose, which was due to the
higher targets for continuous infusions (Table 3). For pathogens with MIC ≥ 8 mg/L in
patients with augmented renal clearance (≥150 mL/min), none of the investigated dosing
regimens reached a PTA ≥ 90%.

Figure 2. Predicted meropenem concentration–time profiles based on deterministic simulations
using the reduced population pharmacokinetic model for a patient with creatinine clearance of
80.8 mL/min. (A) After either a 1000 (solid line) or a 2000 mg (dashed line) loading dose followed by
prolonged (4 h) 1000 mg meropenem infusions with a dosing interval of 8 h. (B) After either a short-
term (0.5 h; dashed line) or a prolonged (4 h; solid line) 1000 mg meropenem infusion administered
every 8 h.

Table 3. Probability of target attainment for different dosing regimens administered to a patient with
a creatinine clearance according to Cockroft–Gault of 120 mL/min and infected by a pathogen with a
minimum inhibitory concentration of 4 mg/L for meropenem.

Total Daily Dose [mg]
Probability of Target Attainment, %

PI, 6 h Interval PI, 8 h Interval CI, 24 h Interval

4000 75.0 - 16.2
6000 - 58.0 67.7
8000 97.0 - 67.6
9000 - 76.8 -

12,000 99.4 - -
Abbreviations: PI: Prolonged (4 h) infusion, CI: Continuous infusion.
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Finally, dosing recommendations stratified by patient’s CLCRCG and determined
MIC were summarised in a single concise table (Figure 3).

Figure 3. Front page of the developed dosing decision tool for initial meropenem dosing in intensive care patients. Dosing
recommendations are stratified for creatinine clearance according to Cockroft and Gault and target (minimal meropenem
concentration or local pathogen-independent mean fraction of response (LPIFR), see text) MERO: meropenem; q6h: every
6 h dosing; q8h; every 8 h dosing; q12h: every 12 h dosing; PTA: probability of target attainment; MIC: minimal inhibitory
concentration.

3.2.2. Integration of Locally Available Pathogen Information

If the pathogen and its MIC value are not known at the time of dosing selection,
two options are implemented in the dosing tool: an empirical dosing regimen based on
non-species related EUCAST breakpoints for meropenem or a dosing regimen based on
the LPIFR metric and pathogen-independent MIC distribution data from ICUs at Charité-
Universitaetsmedizin Berlin. A short summary of both options was added on the backside
of the dosing decision table (Supplementary Material S2). Compared to targeting the
pathogen independent ‘susceptible/susceptible at increased exposure’ (2 mg/L) or the
‘susceptible at increased exposure/resistant’ (8 mg/L) EUCAST breakpoints, the LPIFR
substantially reduced the drug exposure in patients while still assuring a desired percentage
of 90% of patients being above the PK/PD target of 98%T>MIC. Based on the LPIFR, the
daily dose for a patient with a creatinine clearance of 120 mL/min was 4000 mg, whereas
there was a three-fold higher dose of 12,000 mg when targeting the EUCAST susceptible at
increased exposure/resistant breakpoint (8 mg/L).

3.3. Retrospective Evaluation of the Dosing Decision Tools Using Real Patient Data

Of the 306 meropenem samples of the local study population, 46 (15.0%) were found to
be below and 160 (52.3%) were found to be above the defined target range. The retrospective
application of the developed tool recommended a change in dosing for the majority (77%)
of patients with concentrations observed outside the target range (Figure 4). For 72% of the
patients with minimum meropenem concentration below the target range, the developed
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dosing tool recommended an increased daily dose, while for 78% of the patients with
samples above the target range, a lower daily dose was recommended.

Figure 4. Frequency of daily meropenem dose adjustments by comparing the recommended daily
dose to the actual administered daily dose at Charité-Universitaetsmedizin Berlin, stratified by
non-attainment of the target range of the administered dosing regimen. Of 306 samples, 46 were
below and 160 were above the target range.

4. Discussion

A concise dosing decision tool for initial meropenem dosing incorporating local
susceptibility data was developed for the specific local needs. Additionally, a generalised
workflow that can be used as blueprint for the development of such a dosing decision
tool at the point-of-care was derived based on our experiences (Figure 5). After the
identification of the elevated risk of inadequate antibiotic drug exposure in ICU patients, a
local collaboration was established to assess and, if needed, improve antibiotic dosing. The
close interprofessional collaboration between the antimicrobial stewardship (AMS) team,
infectious disease specialists, critical care specialists, pharmacists, the clinical laboratory
and pharmacometricians proved to be a vital part of the development process and should
enable best adaptation to the local clinical routine. Bi-weekly meetings of the study team
enabled continuous discussions, feedback, and adjustments throughout each step of the
course of action.

As a mandatory prerequisite, the external PK model evaluation assured good predic-
tive performance between the developed tool and the local patient population. The slight
bias of the PK model to underpredict observed meropenem concentrations led to slightly
lower PTA values for each dosing regimen and can be considered as an additional safety
margin. The first evaluation of the dosing decision tool using retrospectively collected
data suggests a substantial potential to improve target attainment. For 72% of the patients
with concentrations below the target, a dose increase was recommended, and for 78% of
the patients with concentrations above the target, a dose reduction was recommended.
The suggested reduction of daily dose for 23% of samples below the target is due to the

115



Pharmaceutics 2021, 13, 2128

recommendation of four-times-daily dosing instead of the three-times-daily dosing being
administered: This more frequent administration of meropenem achieved higher PTA
values despite reduced daily doses (Table 3). At the same time, the suggested increase in
daily dose for 10% of the sample above the target range is mostly likely due to the selected
PK model: The safety margin included in the PK model leads to more conservative, higher
dosing recommendations to guarantee effective drug exposure. Additionally, in both cases,
the high PK variability observed in critically ill patients renders a perfect recommendation
for all patients untenable. To conclude, the retrospective evaluation highlighted the po-
tential of the tool to improve meropenem therapy in critically ill patients. As next step, a
prospective clinical trial should investigate the impact of the dosing decision tool on target
attainment. The approach and workflow presented can improve acceptance and therefore
the implementation of model-informed dosing decision tools at the point-of-care.

Figure 5. Steps (blue) considered in the generalised workflow development of a tabular precision
dosing tool for initial therapy together with recommendations (yellow) to support each step.

All recommended dosing regimens included a 1000 mg loading dose to ensure an
immediate achievement of sufficiently high meropenem concentrations at the start of
antibiotic therapy. Regardless of the loading dose used (1000 mg vs. 2000 mg), the
minimum meropenem concentration after the first maintenance dose was higher than
or equal to minimum concentrations in steady state. Therefore, a 2000 mg loading dose
showed no additional benefit compared to a 1000 mg loading dose and was considered
to be an unnecessary higher drug exposure for patients and thus not retained in the
dosing tool. Due to the different PK/PD targets for prolonged and continuous infusions,
prolonged infusions provided higher target attainment for the same daily dose and as a
consequence represent all integrated dosing regimen. In order to keep an explicit and clear
structure in the dosing decision tool, only one dosing regimen was incorporated for each
individual CLCRCG and MIC value. Overall, only six different initial dosing regimens
(Table 2) were included in the dosing decision tool. This simplicity aims to achieve an
initial dose individualisation to optimise dosing in ICU patients while maintaining a
level of standardisation and avoiding complication of the ICU ward process. One further
important note on the integrated dosing regimen: The dosing regimens selected and
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integrated into the tool were selected based on their ability to reach a predefined PK target.
As a consequence, high daily doses (up to 16 g) are included in the tool for high target
concentrations. However, for such high targets, a change in antibiotic should be considered.

A further feature in the dosing decision tool is the use of local, hospital-specific and
pathogen-independent MIC values. The LPIFR metric facilitates dosing based on not only
patient characteristics but additionally on local bacterial susceptibility conditions in the hos-
pital. While we foresee that this approach is a valuable opportunity to reduce unnecessary
high meropenem dosing, we also strongly advise to apply it with caution: As local MIC
distributions can vary over time, these need to be monitored and dosing suggestions based
on LPIFR need to be updated regularly. Furthermore, in the rare event of a pathogen with
high MIC values (>8–32 mg/L), the risk of target non-attainment could be underestimated
until the MIC is determined. Therefore, it is vital to communicate those limitations to the
decision-making team and encourage a dosing increase or change of antibiotic if higher
MIC values are expected. In general, the dosing regimen recommendations based on
the LPIFR metric should only be used as long as there is no further information about
the pathogen (e.g., MIC) available. Furthermore, patients receiving renal replacement
therapy (RRT), obese patients, and paediatric patients were not included in the PK model
development and evaluation. Consequently, the derived dosing recommendations do not
apply to those patient populations but only to adult critically ill patients.

For critically ill patients receiving antibiotics, drug measurements linked with Bayesian
dosing software have been recommended for dose individualisation [3]. To date, this very
promising approach could not always be implemented into clinical practice. Individualised
meropenem therapy guided by concentration measurements is still only available in very
few hospitals [10]. As an alternative, tabular dosing decision tools based on PTA analysis
of an evaluated PK model can be used for initial dosing. Furthermore, these tabular dosing
decision tools can provide dosing recommendations prior to the first drug measurement to
improve dosing in this especially crucial time window of antibiotic drug therapy [31].

To optimise meropenem dosing, several complementary model-based tools or algo-
rithms exist: the MeroRisk calculator supports the identification of critically ill patients at
risk of suboptimal exposure and different model-based algorithms or nomograms provide
dosing suggestions [30,32,33]. Unfortunately, none of the tools matched our local condi-
tions and objectives: The dosing regimens frequently used at Charité-Universitaetsmedizin
Berlin were either not included in the available tools or were part of a multitude of dosing
regimen recommendations complicating the daily use of the tool. Furthermore, the risk
of reaching toxic minimum concentrations was not considered in those other tools, and
an evaluation of the underlying PK models would have been necessary. Most likely, this
situation is similar for a wide range of drugs, model-based tools, and hospitals. Even
when model-based tools or PK models are available for a specific drug in a specific patient
population, the selected target or the clinical setting might hinder implementation and use.
In those situations, local initiatives are needed to develop a dosing decision tool fit for the
situation on site. As presented in our example, routine drug measurements can be used to
evaluate published PK models instead of conducting expensive clinical trials to develop
new PK models as the basis for new tools. Furthermore, by employing the LPIFR, antibiotic
dosing prior to pathogen detection can be adapted to local susceptibility patterns. Even
though tools developed to fit local conditions might be more difficult to transfer to other
institutions, we believe the advantages of local initiatives clearly outweigh this drawback.
The approach with the generalised workflow (Figure 5) may serve as a blueprint to a
wide range of hospitals, patient populations, and drugs to develop a sophisticated dosing
decision tool providing optimised initial dosing adapted for local conditions and objectives.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13122128/s1, Supplementary Material S1: Pharmacokinetic model selection,
reduction and evaluation, Supplementary Material S2: Dosing decision tool.
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Abstract: Pseudomonas aeruginosa remains one of the major causes of healthcare-associated infection
in Europe; in 2019, 12.5% of invasive isolates of P. aeruginosa in Spain presented combined resistance
to ≥3 antimicrobial groups. The Spanish nationwide survey on P. aeruginosa antimicrobial resistance
mechanisms and molecular epidemiology was published in 2019. Based on the information from this
survey, the objective of this work was to analyze the overall antimicrobial activity of the antipseu-
domonal antibiotics considering pharmacokinetic/pharmacodynamic (PK/PD) analysis. The role of
PK/PD to prevent or minimize resistance emergence was also evaluated. A 10,000-subject Monte
Carlo simulation was executed to calculate the probability of target attainment (PTA) and the cumula-
tive fraction of response (CFR) considering the minimum inhibitory concentration (MIC) distribution
of bacteria isolated in ICU or medical wards, and distinguishing between sample types (respiratory
and non-respiratory). Ceftazidime/avibactam followed by ceftolozane/tazobactam and colistin,
categorized as the Reserve by the Access, Watch, Reserve (AWaRe) classification of the World Health
Organization, were the most active antimicrobials, with differences depending on the admission
service, sample type, and dose regimen. Discrepancies between EUCAST-susceptibility breakpoints
for P. aeruginosa and those estimated by PK/PD analysis were detected. Only standard doses of
ceftazidime/avibactam and ceftolozane/tazobactam provided drug concentrations associated with
resistance suppression.

Keywords: Pseudomonas aeruginosa; pharmacokinetic/pharmacodynamic (PK/PD) analysis; Monte
Carlo simulation; antimicrobial resistance; probability of target attainment (PTA); cumulative fraction
of response (CFR)

1. Introduction

The World Health Organization (WHO) has declared antimicrobial resistance as one of
the top 10 global public health threats facing humanity [1]. The emergence of resistance to
multiple antimicrobial agents in pathogenic bacteria has become a significant public health
concern, as there are few, or even sometimes a complete lack of, effective antimicrobial agents
available for infections caused by these bacteria. This fact is especially relevant considering
that, in the last 10 years, no new group of antibiotics has been marketed in Europe [2].
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P. aeruginosa is an opportunistic pathogen that is difficult to treat and eradicate, because
it has evolved multiple mechanisms of resistance categorized as intrinsic, acquired, or
adaptive [3]. In fact, it has an extraordinary ability to develop resistance to nearly all
antimicrobials available either by chromosomal mutations or by acquisition of localized
genes in transferable elements [4].

P. aeruginosa remains one of the major causes of healthcare-associated infection in
Europe, and according to the EARS-Net report 2019, in Spain, 12.5% of invasive isolates of
P. aeruginosa presented combined resistance to ≥ 3 antimicrobial groups [5]. In the ENVIN-
HELICS national registry 2019 (Spanish National ICU-Acquired Infection Surveillance
Study), P. aeruginosa was the second most frequently isolated microorganism, just behind
Escherichia coli, as a cause of nosocomial infections in intensive care units (ICUs), and
the third most frequent (after E. coli and Staphylococcus aureus) in community-acquired
infections requiring ICU admission [6]. Del Barrio-Tofiño et al. [7] published in 2019
the Spanish nationwide survey on P. aeruginosa antimicrobial resistance mechanisms and
molecular epidemiology. This study showed that up to 26.2% of the isolates were classified
as multidrug-resistant (MDR: non-susceptibility to at least one agent in at least three
antibiotic classes), 17.3% as extensively drug-resistant (XDR: non-susceptibility to at least
one agent in all, but one or two antibiotic classes), and 0.1% as pandrug resistant (PDR:
non-susceptibility to all agents in all antimicrobial categories). ICU isolates were more
frequently MDR/XDR than those from other wards. DTR (difficult-to-treat resistance) is a
novel classifier of antimicrobial co-resistance that integrates the impact of resistance into
antibiotic choices [8]. Recently, the Infectious Diseases Society of America published a
guidance for the treatment of DTR-P. aeruginosa [9].

The optimization of the use of antimicrobial agents is one of the five strategic objectives
included in the global action plan endorsed in 2015 by the World Health Assembly to face
antimicrobial resistance [10]. The major indicator of the effect of the antibiotics (pharmacody-
namics, PD) is the minimum inhibitory concentration (MIC), but antimicrobial optimization
also requires information about the time evolution of the antibiotic concentration in the pa-
tients (pharmacokinetics, PK). Pharmacokinetic/pharmacodynamic (PK/PD) analysis has
been applied in recent years to optimize therapy, with the aim of maximizing the efficacy
and reducing side effects of new and old antibiotics, as well as minimizing the emergence
of resistance [11,12]. Currently, it is clearly established that inadequate exposure to antimi-
crobials can lead to the amplification of resistant subpopulations. The generation of resistant
mutants within a bacterial population is an inevitable event, but it is possible to intervene to
avoid or reduce the amplification of such subpopulation, and thus to preserve the activity of
antimicrobials [13]. Different strategies have been implemented in hospital care to optimize
the antimicrobial dosage regimens [14] and, in this context, PK/PD analysis has become an
essential tool to be included in antimicrobial stewardship programs [15].

Therefore, based on the information of the large-scale Spanish nationwide survey on
P. aeruginosa molecular epidemiology and antimicrobial resistance, the objective of this
work was to analyze the overall antimicrobial activity of the antipseudomonal antibiotics
considering PK/PD criteria. The antimicrobial therapy optimization by PK/PD analysis
was applied separately for ICU and medical ward isolates, as well as distinguishing
between respiratory and non-respiratory isolates, to support the selection of the appropriate
antimicrobial and predicting the dosage regimen with a higher probability of success. A
secondary objective was to evaluate the role of PK/PD analysis to prevent or minimize the
emergence of resistance to these antimicrobials.

2. Materials and Methods

2.1. Antimicrobials and Pharmacokinetic Data

Tables 1 and 2 show the evaluated antimicrobials, their dosage regimens according to
the European Committee on Antimicrobial Susceptibility Testing (EUCAST) [16], and the
PK parameters in ICU and medical ward patients, respectively. Population PK parameters
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were obtained from the literature. Prospective studies performed in critically ill and in
medical ward patients with infections were selected.

Table 1. Pharmacokinetic parameters for each antimicrobial agent from published studies among critically ill patients
(mean ± standard deviation).

Antimicrobial
Agent

Dosing
Regimen

Infusion
Time (h)

Vd (L) Cl (L/h) Ke (h−1) Fu References

Amikacin 25–30 mg/kg q 24
h 0.5 36.27 ± 8.34 5.58 ± 1.56 [17]

Aztreonam 2 g q 6 h 2
27.20 ± 20.80 9.60 ± 5.00 0.72 [18]3

Cefepime 2 g q 8 h 0.5
21.80 ± 5.10 7.62 ± 1.98 0.85 [19,20]3

Ceftazidime
2 g q 8 h 0.5

18.90 ± 9.00 0.27 ± 0.21 0.80 [21]1 g q 4 h 3

Ceftazidime/
avibactam

2/0.5 g q 8 h 2
34.78 ± 10.49 6.14 ± 3.80 0.90

[22–24]50.81 ± 14.32 11.09 ± 6.78 0.92

Ceftolozane/
tazobactam

1/0.5 g q 8 h
2/1 g q 8 h 1

20.40 ± 3.70 7.20 ± 3.20 0.79 [25,26]32.40 ± 10.00 25.40 ± 9.40 0.70

Ciprofloxacin 400 mg q 8 h 1 13.60 ± 5.80 [27]

Colistin 150 mg q 12 h 0.5 2.92 ± 2.72 [28]

Imipenem 1 g q 6 h 1
28.70 ± 9.70 11.40 ± 3.53 0.80 [29]2

Meropenem 2 g q 8 h 0.5
22.70 ± 3.70 13.60 ± 2.08 0.98 [30]3

Piperacillin/
tazobactam

4/0.5 g q 6 h 0.5
19.40 ± 7.76 13.80 ± 4.77 0.75 [31]4

Tobramycin 6–7 mg/kg q 24 h 0.5 17.50 ± 5.25 0.25 ± 0.01 [32]

Vd: volume of distribution; Cl: total clearance; Ke: elimination rate constant; Fu: unbound fraction.

Table 2. Dosing regimen and pharmacokinetic parameters for each antimicrobial agent from published studies in non-
critically ill patients (mean ± standard deviation).

Antimicrobial
Agent

Dosing Regimen
Infusion
Time (h)

Vd (L) Cl (L/h)
AUC

(mg/L · h)
Fu References

Amikacin 25–30 mg/kg q 24 h 0.5 15.80 ± 3.50 5.87 ± 0.98 [33]

Aztreonam 2 g q 6 h 2 0.14 ± 0.04 (L/kg) 4.41 ± 0.63 0.40 [34]3

Cefepime 1 g q 8 h 0.5 0.28 ± 0.25 (L/kg) 7.00 ± 4.30 0.80 [35]2 g q 12 h 3

Ceftazidime 1 g q 8 h 0.5
15.75 ± 1.50 6.96 ± 1.08 0.90 [36]3

Ceftazidime/
avibactam

2/0.5 g q 8 h 2
18.70 ± 1.65 7.53 ± 1.28 0.90 [24,37]25.30 ± 4.43 12.30 ± 1.96 0.92

Ceftolozane/
tazobactam

1/0.5 g q 8 h
2/1 g q 8 h 1

13.50 ± 2,83 4.76 ± 1.13 0.79 [38–40]18.20 ± 4.55 20.51 ± 4.40 0.70

Ciprofloxacin 400 mg q 12 h 1 20.80 ± 5.70 [41]

Colistin 150 mg q 12 h 0.5 2.92 ± 0.10 [42]

Imipenem 500 mg q 6 h 1
16.50 ± 3.75 10.50 ± 1.38 0.90 [43]2

Meropenem 1 g q 8 h 0.5
20.25 ± 3.00 14.40 ± 1.80 0.92 [43]3

Piperacillin/
tazobactam

4/0.5 g q 8 h 0.5
11.25 ± 1.50 10.22 ± 2.12 0.70 [43]4

Tobramycin 6–7 mg/kg q 24 h 0.5 20.50 ± 11.40 5.19 ± 0.91 [44,45]

Vd: volume of distribution; Cl: total clearance; AUC: area under the curve; Fu: unbound fraction.
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2.2. Microbiological Data

Microbiological data (MIC distributions) were extracted from the Spanish nationwide
survey study about P. aeruginosa isolates collected from 51 participating hospitals, covering
all 17 Spanish regions during October 2017 [7], carried out by the GEMARA-SEIMC/REIPI
group [46]. The collection included up to 30 consecutive health care-associated non-duplicated
(one per patient) P. aeruginosa clinical isolates from respiratory, urinary, blood-stream, skin
and soft tissue, and osteo-articular, as well as other sample types, and ICU, medical ward,
surgical ward, emergency room, and other sources were recorded for each isolate.

Isolates were classified according to the admission service (ICU or medical wards) and
according to the sample type (respiratory and non-respiratory). Respiratory samples were
collected from tracheal aspirate, bronchial aspiration, sputum, bronchoalveolar lavage,
pleural fluid, and bronchial brushing in ICU. In medical wards, the origin of these samples
was the same as that from patients from the ICU and nasopharyngeal aspirate and sputum
(from cystic fibrosis patients). Based on the location, 91.5% of isolates were collected
outside the ICU (only 8.5% of isolates were from ICU). Most samples from ICU patients
were from respiratory sources (58.3%); by contrast, most samples collected from medical
ward patients were from non-respiratory sources (69.4%).

Susceptibility was recalculated according to the EUCAST breakpoints 2021 [16]. It is
important to consider that, in 2019, EUCAST changed definitions of susceptibility testing
categories, and intermediate (I-category) was defined as susceptible at increased exposure.
Concerning antipseudomonal antimicrobials included in this study, aztreonam, cefepime,
ceftazidime, ciprofloxacin, imipenem, and piperacillin/tazobactam are included in this
new I-category. The EUCAST breakpoint for imipenem changed from 8 mg/L in 2018 to
4 mg/L in 2021. Table 3 shows the susceptibility rate of P. aeruginosa strains classified by
admission service and sample location.

Table 3. Percentage of P. aeruginosa susceptible strains in 2017, classified by admission service and sample location, according
to the Spanish nationwide survey [7] and applying EUCAST clinical breakpoints [16].

Susceptibility (%)

ICU Medical Ward Patients

Antimicrobial Agent and
Dosing Regimen

Total Respiratory
Non-

Respiratory
Total Respiratory

Non-
Respiratory

Amikacin 91 ** 93 ** 90 ** 92 ** 96 ** 97 **

Aztreonam 70 64 77 87 87 87

Cefepime 67 69 65 80 72 82

Ceftazidime 64 67 60 81 79 83

Ceftazidime/avibactam 85 87 83 95 ** 96 ** 95 **

Ceftolozane/
tazobactam 81 87 73 96 ** 95 ** 96 **

Ciprofloxacin 52 46 60 62 55 65

Colistin 95 ** 96 ** 94 ** 95 ** 96 ** 94 **

Imipenem 55 57 52 75 72 75

Meropenem 71 73 69 80 87 87

Piperacillin/
tazobactam 57 57 58 75 73 76

Tobramycin 74 75 73 84 84 85

** susceptibility ≥90%; underlined and in italics, susceptibility ≥80% and <90%.
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2.3. PK/PD Analysis and Monte Carlo Simulation

Depending on the activity pattern of the antimicrobial, three different PK/PD indices
have been defined as the best descriptors of clinical efficacy [12]: (i) for concentration-
dependent activity antimicrobials, the ratio of the total or free-drug maximum concentration
(Cmax) to the MIC (Cmax/MIC) or the area under the total or free-drug concentration–time
curve, typically over a 24 h period, to the MIC (AUC24h/MIC); (ii) for time-dependent
patterns, the percentage of time the free drug concentration remains above the MIC through-
out the dosage interval (%ƒT>MIC); and (iii) AUC24h/MIC concentration-dependent with
time-dependence antibiotics [11,47].

Table 4 shows the PK/PD indexes and the magnitude of the targets associated with
the success of therapy for each antimicrobial. For time-dependent pattern antimicrobials,
steady-state concentration (Css) > 4 × MIC was selected as the primary endpoint to evaluate
the suitability of the continuous infusion dosage regimens in ICU patients [48].

Table 4. Pharmacokinetic/pharmacodynamics (PK/PD) index and target magnitude for each antimi-
crobial agent.

Antimicrobial Agent PK/PD Target References

Amikacin Cmax/MIC > 10 [49]

Aztreonam %ƒT>MIC > 60 [18]

Cefepime %ƒT>MIC > 70 [50]

Ceftazidime %ƒT>MIC > 70 [12]

Ceftazidime/
avibactam

%ƒT>MIC > 50%
%ƒT > 1 mg/L > 50% [23]

Ceftolozane/
tazobactam

%ƒT>MIC > 60%
%ƒT > 1 mg/L > 20% [25,26]

Ciprofloxacin f AUC24h/MIC > 125 [51]

Colistin f AUC24h/MIC > 25–35 [52]

Imipenem %ƒT>MIC > 40 [12]

Meropenem %ƒT>MIC > 40 [51]

Piperacillin/tazobactam %ƒT>MIC > 50 [41]

Tobramycin Cmax/MIC > 10 [36]

Time-dependent antimicrobials
Continuous infusion Css > 4 × MIC [48]

%ƒT>MIC: Percentage of time that the antimicrobial free serum concentration remained above the MIC;
%f T > 1 mg/L: cumulative percentage over a 24 h period that the free drug concentration exceeded a 1 mg/L
threshold concentration; ƒAUC24h: area under the free drug concentration–time curve over a 24 h period; Cmax:
maximum drug plasma concentration; MIC: minimum inhibitory concentration; Css: steady-state concentration.

PK/PD indices and the defined targets for suppression of the emergence of resistance
are presented in Table 5.

With the defined PK/PD targets, the probability of target attainment (PTA) and the
cumulative fraction of response (CFR) were calculated by Monte Carlo simulation with
Oracle® Crystal Ball Fusion Edition v.11.1.2.3.500 software (Oracle Inc., Redwood City,
CA, USA) and using 10,000 random iterations of the data. Logarithmic transformation
was applied to the mean and the standard deviation of all pharmacokinetic parameters to
normalize their distributions, whereas protein binding was included as a fixed value.
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Table 5. The pharmacokinetic/pharmacodynamic (PK/PD) indices reported to suppress the emer-
gence of antibiotic resistance for P. aeruginosa.

Antimicrobial PK/PD Index PK/PD Index Magnitude References

Total Drug Free Drug

Cefepime Cmin/MIC ≥ 3.8 [53]

Ceftazidime %ƒT>MIC ≥ 100 [54]

Ceftazidime/avibactam %ƒT>MIC ≥ 87 [55]

Ceftolozane/tazobactam %ƒT>MIC ≥ 80 [56]

Piperacillin/tazobactam Cmin/MIC ≥ 5 [57]

Meropenem Cmin/MIC ≥ 3.8 [53]

Imipenem AUC24/MIC = 140 [58]

Ciprofloxacin f AUC24/MIC ≥ 385 [59]
Cmin: minimum concentration; MIC: minimum inhibitory concentration; %ƒT>MIC: percentage of time that the
antimicrobial-free serum concentration remains above the MIC; AUC24h: area under the concentration–time curve
from 0 h to 24 h.

2.3.1. Probability of Target Attainment (PTA) Estimation

PTA is the probability that a specific value of the PK/PD index associated with the
efficacy of the antibiotic is achieved at a certain MIC [12]. PTA was calculated using the
following equations:

• Time-dependent activity antimicrobials;
• IV infusion.

% f T>MIC = [(t2 + ti)− t1]· 100
τ

(1)

where %ƒT>MIC is the proportion of time that the free serum concentration remains above
the MIC at steady state (%) over a dosage interval, t1 (h) corresponds to the time at which the
free serum concentration reached the MIC during the infusion phase; t2 (h) corresponds to the
post-infusion time at which the free serum concentration equaled the MIC in the elimination
phase; and τ is the dosage interval. The times t1 and t2 were calculated as follows:

t1 =
(MIC − f Cmin,ss)

( f Cmax,ss − f Cmin,ss)
tin f (2)

t2 = Ln
(

f Cmax,ss

MIC

)
· Vd

Cl
(3)

where Ke is the elimination rate constant.
The minimum and maximum serum concentrations of unbound drug (mg/L) at

steady state, ƒCmin,ss and ƒCmax,ss, respectively, were estimated according to the following
equations using the total clearance (Cl), volume of distribution (Vd), infusion time (ti),
dosage interval (τ), total dose administered (D), and unbound fraction (ƒu):

f Cmin,ss = f Cmax,ss· e−
Cl
Vd−(τ−ti) (4)

f Cmax,ss = fu· D
Cl· ti

·(1 − e−
Cl
Vd ·ti ) · 1

1 − e−
Cl
Vd ·

(5)

• Continuous infusion

Css =
k0

Cl
(6)

where Css is the steady-state concentration, ko is the infusion rate, and Cl is the total clearance.

• Concentration–time-dependent antimicrobials;
• Cmax/MIC: ratio of the maximum drug plasma concentration divided by the MIC.
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Cmax =
ko ·

(
1 − e(−

Cl
Vd ·ti)

)
Cl ·

(
1 − e(−

Cl
Vd ·τ)

) (7)

where ko is the infusion rate, Ke is the elimination rate constant, ti is the infusion time, Cl
is the total clearance, and τ is the dosage interval.

• AUC24h/MIC: ratio of the area under the antimicrobial concentration–time curve for
24 h divided by the MIC.

AUC24h =
D
Cl

(8)

where AUC24h is the area under the serum concentration–time curve over 24 h.
PTA values (%) were calculated for each dosage regimen for both ICU and medical

ward dose regimens for an MIC range from 0.0125 to 512 mg/L. Considering that the actual
PTA in an individual patient may be significantly different from what would be concluded
from a conventional simulation [60], 95% confidence intervals were calculated as the range
from the 2.5th to the 97.5th percentile of the set of estimated values.

The dosage regimens were considered successful if PTA was ≥90%, whereas a PTA
≥80%, but <90% was associated with moderate probabilities of success [61].

2.3.2. Calculation of the Cumulative Fraction of Response (CFR)

CFR is the expected probability of success of a dosage regimen against bacteria in the
absence of the specific value of MIC, thus the population distribution of MICs is used [12].
It was calculated using Equation (9):

CFR = ∑n
i−1 PTAi × Fi (9)

where CFR (%) results from the total sum of the products of the PTA at a certain MIC times the
frequency (Fi) of isolates of microorganism exhibiting that MIC over the range of susceptible
pathogens. The range of MIC concentrations tested for each antimicrobial includes dilutions
below the susceptibility breakpoint; therefore, it is adequate to estimate CFR.

The CMI ranges evaluated for each antimicrobial were as follows: amikacin (2–128 mg/L),
aztreonam (2–56 mg/L), cefepime and ceftazidime (1–128 mg/L), ceftazidime/avibactam and
ceftolozane/tazobactam (0.5–64 mg/L), ciprofloxacin (0.125–32 mg/L), colistin (0.5–16 mg/L),
imipenem (0.5–64 mg/L), meropenem (0.5–128 mg/L), piperacillin/tazobactam (4–512 mg/L),
and tobramycin (0.25–64 mg/L).

The 95% confidence intervals were calculated as the range from the 2.5th to the 97.5th
percentile of the set of estimated values.

A CFR ≥80%, but <90% was associated with moderate probabilities of success,
whereas a CFR ≥90% was considered as optimal against that bacterial population [12].

2.3.3. Calculation of the Joint Probability of PK/PD Target Attainment

Joint PTA, calculated for beta-lactam and beta-lactamase inhibitor combinations, are
defined as the simultaneous attainment of each individual PTA [23]. It was calculated by
determining first if, in each simulated population, the PTA for the beta-lactamase inhibitor is
achieved. If this threshold was met, the joint PTA is considered to be the calculated beta-lactam.

3. Results

Figures 1 and 2 feature the PTA values calculated by Monte Carlo simulation, con-
sidering the EUCAST breakpoints (including susceptible and intermediate categories), at
MIC values ranging from 0.125 mg/L to 512 mg/L for each antimicrobial dosage regimen
recommended in both ICU and medical wards. PTA values collected in the Supporting
Information (Tables S1 and S2) include the 95% confidence interval.

For ICU dosage regimens, PTAs higher than 90% were obtained with ceftazidime/
avibactam, cefepime, ceftazidime, ceftolozane/tazobactam imipenem, meropenem, and
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piperacillin/tazobactam depending on the dose regimen, although, in the case of cefepime,
ceftazidime, and piperacillin/tazobactam, only when they are administered as extended
infusion. PTA values were under 80% for amikacin and aztreonam, covering MICs up to
4 mg/L and 2 mg/L, respectively, far from the clinical breakpoint (16 mg/L). For medical
ward regimen dosages, PTAs higher than 90% were observed for aztreonam, the two
new combinations of cephalosporins with beta-lactamase inhibitor, colistin, imipenem,
meropenem, and piperacillin/tazobactam, if extended infusion (4 h) is considered. All
other antimicrobials showed PTA values under 80% for all dosage regimens evaluated.
Tobramycin administered at 7 mg/kg q 24 h showed a PTA value of 72%, although the 95%
confidence interval ranged from 69% to 84%, that is, including values corresponding to
moderate probabilities of target attainment (>80–90%).

Figure 1. Estimated probability of target attainment (PTA) values for different dosing regimens in both ICU and medical
ward patients for amikacin, aztreonam, cefepime, ceftazidime, ceftazidime/avibactam, and ceftolozane/tazobactam. The
solid horizontal lines indicate MIC covered by the clinical EUCAST breakpoints (including susceptible and intermediate
categories) of P. aeruginosa for each antimicrobial. ICU: intensive care unit; MW: medical ward; S: susceptible; I: intermediate
category (susceptible at increased exposure).
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Figure 2. Estimated probability of target attainment (PTA) values for different dosing regimens in both ICU and medical
ward patients for colistin, ciprofloxacin, imipenem, meropenem, piperacillin/tazobactam, and tobramycin. The solid hori-
zontal lines indicate MIC covered by the clinical EUCAST breakpoints (including susceptible and intermediate categories)
of P. aeruginosa for each antimicrobial. ICU: intensive care unit; MW: medical ward; S: susceptible; I: intermediate category
(susceptible at increased exposure).

Table 6 features the CFR values obtained, including the 2.5th and 97.5th percentiles,
considering the MIC distribution of the isolates classified by admission service and sample
location. CFR values estimated from the MIC profile of ICU isolates were below 75% for
most antimicrobial regimens, and only ceftazidime/avibactam showed a CFR > 90% (95%),
although, with colistin, it was 89%. Only moderate probabilities of success were obtained
with ceftolozane/tazobactam (both dosage regimens), ceftazidime (dose 1 g q 4 h, both
standard and extended infusion), and meropenem. CFR for amikacin was 71%, despite its
high susceptibility values (>90%).
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Table 6. Cumulative fraction of response (CFR) calculated for all dosing regimens classified by admission service and
sample location. Numbers in parentheses indicate the 2.5th and 97.5th percentiles.

Antimicrobial Agent
and Dosing Regimen

CFR (%)

ICU Medical Ward Patients

Amikacin Total Respiratory Non-Respiratory Total Respiratory Non-Respiratory

25 mg/kg q 24 h 71 (68–74) 77 (75–79) 63 (60–66) 92 (91–94) ** 88 (86–90) * 94 (93–96) **

30 mg/kg q 24 h 72 (69–75) 81 (78–84) 67 (64–70) 92 (91–94) ** 90 (88–92) ** 95 (94–97) **

Aztreonam

2 g q 6 h (2 h inf.) 65 (62–69) 62 (59–65) 70 (67–73) 86 (83–87) * 85 (83–87) * 87 (84–89) *

2 g q 6 h (3 h inf.) 69 (66–71) 66 (64–70) 71 (68–74) 86 (84–88) * 85 (83–87) * 87 (85–89) *

Cefepime

1 g q 8 h (0.5 h inf.) 57 (54–60) 51 (48–54) 53 (50–57)

2 g q 12 h (0.5 h inf.) 48 (45–51) 45 (42–48) 46 (43–49)

2 g q 8 h (0.5 h inf.) 68 (71–61) 67 (64–69) 65 (62–68)

1 g q 8 h (3 h inf.) 63 (59–66) 59 (56–62) 65 (62–68)

2 g q 12 h (3 h inf.) 53 (49–55) 53 (51–55) 55 (53–59)

2 g q 8 h (3 h inf.) 77(75–80) 76 (73–78) 73 (70–75)

Ceftazidime

1 g q 4 h (0.5 h inf.) 80 (78–83) * 83(81–86) * 78 (75–81)

1 g q 8 h (0.5 h inf.) 68 (65–70) 63 (60–66) 64 (60–66)

2 g q 8 h (0.5 h inf.) 76 (74–79) 76 (73–79) 72 (69–75)

1 g q 4 h (3 h inf.) 85 (82–87) * 85 (83–87) 81 (78–83) *

1 g q 8 h (3 h inf.) 73 (71–76) 75 (72–77) 74 (72–77)

2 g q 8 h (3 h inf.) 79 (76–82) 81 (79–83) * 77 (74–80)

Ceftazidime/avibactam

2/0.5 g q 8 h (2 h inf.) 95 (94–97) ** 98 (97–99) ** 93 (92–95) ** 97 (96–98) ** 98 (97–98) ** 97 (96–99) **

Ceftolozane/tazobactam

1/0.5 g q 8 h (1 h inf.) 84 (81–86) * 85 (82–87) * 81 (78–83) * 95 (94–96) ** 92 (91–94) ** 96 (95–98) **

2/1 g q 8 h (1 h inf.) 86 (84–88) * 92 (91–94) ** 83 (81–86) * 96 (95–97) ** 95 (94–96) ** 97 (95–98) **

Ciprofloxacin

400 mg q 12 h 53 (50–57) 43 (40–47) 58 (55–61)

400 mg q 8 h 54 (51–57) 48 (45–50) 59 (56–63)

Colistin

150 mg q 12 h 89 (86–90) * 88 (86–90) * 88 (87–90) * 95 (94–96) ** 95 (94–97) ** 94 (93–95) **

Imipenem

500 mg q 6 h (1 h inf.) 75 (72–78) 75 (73–77) 78 (76–80)

1 g q 6 h (1 h inf.) 77 (74–79) 83 (81–85) * 77 (75–80)

500 mg q 6 h (2 h inf.) 77 (75–80) 75 (73–78) 78 (75–80)

1 g q 6 h (2 h inf.) 81 (79–84) * 83 (81–85) * 76 (73–79)

Meropenem

1 g q 8 h (0.5 h inf.) 79 (77–82) 80 (77–82) * 80 (78–84) *

2 g q 8 h (0.5 h inf.) 77 (74–80) 79 (77–82) 73 (71–76)

1 g q 8 h (3 h inf.) 84 (81–86) * 82 (80–84) * 83 (81–86) *

2 g q 8 h (3 h inf.) 82 (79–84) * 86 (84–88) * 77 (75–80)
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Table 6. Cont.

Antimicrobial Agent
and Dosing Regimen

CFR (%)

ICU Medical Ward Patients

Amikacin Total Respiratory Non-Respiratory Total Respiratory Non-Respiratory

Piperacillin/tazobactam

4/0.5 g q 8 h (0.5 h inf.) 51 (48–54) 50 (46–54) 50 (47–53)

4/0.5 g q 6 h (0.5 h inf.) 53 (49–56) 52 (49–56) 55 (52–59)

4/0.5 g q 8 h (4 h inf.) 79 (76–82) 75 (73–78) 76 (74–79)

4/0.5 g q 6 h (4 h inf.) 64 (61–67) 67 (64–70) 68 (64–70)

Tobramycin

6 mg/kg q 24 h 72 (69–75) 72 (69–75) 71 (68–75) 81 (79–84) * 80 (78–83) * 81 (79–83) *

7 mg/kg q 24 h 70 (67–73) 71 (69–74) 72 (69–75) 82 (79–84) * 82 (79–84) * 83 (81–85) *

** susceptibility ≥90%; * susceptibility ≥80% and <90%; inf: infusion time.

Table 7 shows the probability to reach the suppression of the emergence of antimi-
crobial resistance, taking into account the MIC distribution of the isolates against the
studied antimicrobials. For ICU patients, with the dosage regimens used in clinical prac-
tice, no treatment allows to obtain probabilities higher than 90%. Ceftazidime/avibactam
reaches a probability of 89% (87–91%) and the highest dose of ceftolozane/tazobactam
reaches 86% (84–88%). For medical ward patients, values > 90% were reached only with
ceftolozane/tazobactam and ceftazidime/avibactam.

Table 7. Cumulative fraction of response (CFR) calculated for all dosing regimens considering PK/PD
indices to suppress the emergence of resistance. Numbers in parentheses indicate the 2.5th and
97.5th percentiles.

CFR (%)

Antimicrobial Agent and
Dosing Regimen

ICU Medical Ward Patients

Cefepime

1 g q 8 h (0.5 h inf.) 20 (18–23)

2 g q 12 h (0.5 h inf.) 14 (12–16)

2 g q 8 h (0.5 h inf.) 10 (9–12)

1 g q 8 h (3 h inf.) 19 (17–22)

2 g q 12 h (3 h inf.) 16 (14–19)

2 g q 8 h (3 h inf.) 19 (17–21)

Ceftazidime

1 g q 4 h (0.5 h inf.) 78 (76–81)

1 g q 8 h (0.5 h inf.) 26 (23–29)

2 g q 8 h (0.5 h inf.) 65 (62–68)

1 g q 4 h (3 h inf.) 81 (79–84) *

1 g q 8 h (3 h inf.) 51 (48–54)

2 g q 8 h (3 h inf.) 69 (66–72)

Ceftazidime/avibactam

2/0.5 g q 8 h (2 h inf.) 89 (87–91) * 91 (90–93) **

Ceftolozane/tazobactam

1/0.5 g q 8 h (1 h inf.) 77 (75–80) 96 (95–97) **

2/1 g q 8 h (1 h inf.) 86 (84–88) * 97 (97–98) **
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Table 7. Cont.

CFR (%)

Antimicrobial Agent and
Dosing Regimen

ICU Medical Ward Patients

Ciprofloxacin

400 mg q 12 h 0 (0–0)

400 mg q 8 h 36 (33–39)

Imipenem

500 mg q 6 h 0 (0–0)

1 g q 6 h 42 (39–45)

Meropenem

1 g q 8 h (0.5 h inf.) 0 (0–0)

2 g q 8 h (0.5 h inf.) 5 (4–7)

1 g q 8 h (3 h inf.) 1 (0–2)

2 g q 8 h (3 h inf.) 15 (13–18)

Piperacillin/tazobactam

4/0.5 g q 8 h (0.5 h inf.) 0 (0–0)

4/0.5 g q 6 h (0.5 h inf.) 2 (1–3)

4/0.5 g q 8 h (4 h inf.) 0 (0–0)

4/0.5 g q 6 h (4 h inf.) 8 (7–10)
** CFR ≥ 90%; * CFR ≥ 80% and < 90%; inf: infusion time.

4. Discussion

P. aeruginosa is among the antimicrobial-resistant gram-negative bacteria challenging
current health care. The establishment of programs of antimicrobial activity surveillance
integrating local epidemiologic is essential to guide clinicians towards appropriate empiric
treatments. The incorporation of PK/PD analysis into these programs affords a valuable
complementary tool for a rational antimicrobial and dosage regimen selection. The Spanish
nationwide survey on P. aeruginosa antimicrobial resistance mechanisms and molecular
epidemiology [7] showed that the highest susceptibility rates in both ICU and medical
ward isolates were detected for amikacin, ceftazidime/avibactam, ceftolozane/tazobactam,
and colistin and, except for these last three antimicrobials, a high prevalence of XDR pheno-
types and resistance was documented. In this work, the overall antimicrobial activity of the
antipseudomonal antibiotics was assessed by PK/PD analysis to estimate the probability of
success of the treatments, incorporating the variability of the pharmacokinetic parameters
and the bacterial population. Ceftazidime/avibactam, followed by ceftolozane/tazobactam
and colistin, were the most active antimicrobials, with differences depending on the ad-
mission service, sample type, and dose regimen. Furthermore, the new combinations of
cephalosporins with beta-lactamase inhibitors provided drug exposures associated with
resistance suppression at recommended doses.

Standard surveillance indices based on MIC values are insufficient to detect changes in
antimicrobial agents´overall activity, as some less obvious variations in MIC distribution may
result in treatment efficacy loss. In this regard, different studies on P. aeruginosa [40,62,63]
highlight that the susceptibility rates and the probability of treatment success estimated by
the PK/PD analysis are complementary tools that should be considered together to guide
antimicrobial therapy. Our results (Figures 1 and 2) show relevant discrepancies between
EUCAST-susceptibility breakpoints and those estimated by PK/PD analysis, defined as the
highest MIC value at which a high probability of target attainment is obtained (PTA ≥ 90%).
In this sense, the EMA also defends the use of PTA to predict whether a treatment may be
useful against a specific microorganism, and underlines its relevance for the treatment of
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infections caused by multi-resistant bacteria [61]. Besides, in 2019, EUCAST implemented
changes to the definitions of susceptibility testing categories to emphasize the relationship
between breakpoints and exposure of the organism for the agent at the site of infection,
even recommending extended infusions for some time-dependent antimicrobials. As can be
observed in Figures 1 and 2 and Supplementary Tables S1 and S2, prolonged infusions of
time-dependent antimicrobials enhance PTA against non-susceptible P. aeruginosa isolates,
thus being a potential therapeutic option for infections due to multidrug-resistant microor-
ganisms. However, in our study, this fact was relevant only for piperacillin/tazobactam. A
recent systematic review [64] concluded that, prior to the implementation of prolonged infu-
sion of antipseudomonal beta-lactam regimens, institutions should consider its advantage
according to multiple variables including local incidence of P. aeruginosa infections, MIC
distributions, pharmacokinetic variables, and PTA, as well as implementation challenges.

The Spanish nationwide survey [7] also indicated a complex scenario with major
differences in local epidemiology, including carbapenemase production, that need to be
acknowledged in order to guide antimicrobial therapy. The estimation of CFRs allows
estimating the probability of success for a treatment without knowledge of the suscepti-
bility of the specific isolate responsible for the infection, but taking into account the MIC
distribution of a particular institution or hospital wards or regions/countries [11]. Overall,
a lack of concordance between susceptibility and CFR values was detected, especially
relevant in ICU. With the exception of amikacin, discordances in ICU show higher values
of CFR than susceptibility rates. Therefore, taking into account the MIC distribution of
UCI isolates in Spain, PK/PD analysis predicts, for the recommended dose regimens, a
probability of treatment success higher than that expected if only the susceptibility data
are considered. On the contrary, considering the isolates from medical wards, when dis-
crepancies are detected, susceptibility percentages are higher than the CFRs calculated,
which may justify treatment failures when dosing selection is based on the susceptibility
rate without considering the antibiotic exposure. These results emphasize the importance
of taking into account the susceptibility MIC distribution of the isolates of the geographical
area or hospital setting and the PK/PD analysis to support empiric therapy.

Monte Carlo simulations were also performed to calculate CFR in ICU for time-
dependent antimicrobials administered as continuous infusion at the highest doses, except
for ceftazidime/avibactam, with a CFR value of 95% at the recommended dose, and
imipenem due to stability concerns. All antimicrobials evaluated, except for ceftolozane/
tazobactam (CFR 85%), provided low CFR values (< 60%) at the PK/PD endpoint of
Css > 4 × MIC. The low values could be due to the restrictive target selected; however,
this endpoint would allow for maximal bacterial killing and protection against bacterial
regrowth considering that critically ill patients are vulnerable to suboptimal dosage and
represent a source of selection of resistance to antibiotics [52]. These results agree with those
obtained in other studies [65] reporting the target attainment of beta-lactam antibiotics in
critically ill patients.

Regarding sample location, recently, Abuhussain et al. [66] conducted a study on
the in vitro potency of antipseudomonal beta-lactams against blood and respiratory iso-
lates of P. aeruginosa from ICU and non-ICU patients; these authors concluded that the
blood sample isolates were more susceptible. In our study, no relevant differences were
observed in susceptibility and CFR values between respiratory and non-respiratory iso-
lates, although, for ceftolozane/tazobactam, the susceptibility of respiratory ICU strains
was higher than that of non-respiratory ones. In this regard, for ICU isolates, respiratory
and non-respiratory, ceftazidime/avibactam was able to attain CFR > 90%, and a high
dose of ceftolozane/tazobactam, indicated for hospital-acquired pneumonia including
ventilator-associated pneumonia [24], provided CFR > 90% only for respiratory infections.

As a final point, PK/PD analysis based on the MIC distributions of the Spanish na-
tional survey was applied to estimate the probability of the suppression of the emergence
of resistance to the different antimicrobial dosage regimens. Different works have reported
the required antimicrobial PK/PD indices to suppress the emergence of P. aeruginosa an-
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tibiotic resistance [53–59], although no standardized methods are currently established
to determine the antibiotic exposure for the attainment of resistance suppression. In
our study, none of the dosage regimens commonly used in ICU patients were able to
attain high probabilities of resistance suppression, although ceftazidime/avibactam and
ceftolozane/tazobactam 2/1 g q 8 h provide moderate probabilities (>80–90%). These new
antimicrobial combinations were the only ones able to provide concentrations associated
with the suppression of resistance at dosage regimens recommended for medical ward
(CFR > 90%). Different studies have also concluded that the exposure required for resis-
tance suppression is usually much higher than that to assess the treatment efficacy [11,54].
Consequently, to avoid resistance, the use of alternative dosage strategies should be consid-
ered, such as extended or continuous infusions, or the use of some antibiotic combinations
for which in vitro studies have demonstrated a clear advantage [47].

With the aim of emphasizing the importance of antimicrobial appropriate use, support-
ing the development of tools for antibiotic management, and to reduce bacterial resistance,
in 2019, the WHO released the Access, Watch, Reserve (AWaRe) classification [67], which cat-
egorizes the antibiotics into different stewardship groups. All antipseudomonals evaluated
in this study are included in the Watch or Reserve category, except amikacin (Access). Apart
from aztreonam, three other antimicrobials are held in reserve, ceftazidime/avibactam,
ceftolozane/tazobactam, and colistin, which, in this work, were found to be the three most
active against P. aeruginosa in terms of susceptibility and CFR, and only the two combinations
are able to suppress the emergence of resistance at standard doses.

Finally, this study presents some limitations: (i) PK/PD analysis was carried out using
the mean PK parameter and their variability, without considering the possible influence
of covariates on the PK behavior of the drugs; (ii) PK information was extracted from
studies carried out in critically ill patients and in hospital ward patients and available
in the literature; and (iii) many of existing studies determining the exposure required to
suppress the emergence of resistance were conducted in vitro, and we have not found the
PK/PD indices required to suppress specifically the emergence of resistance of P. aeruginosa
for all antimicrobials.

5. Conclusions

Considering the susceptibility rate and PK/PD criteria, the most active antimicrobial
against P. aeruginosa was ceftazidime/avibactam, followed by ceftolozane/tazobactam and
colistin, all of them categorized as Reserve by the AWaRe WHO classification. Notewor-
thy discrepancies between EUCAST-susceptibility breakpoints for P. aeruginosa and those
estimated by PK/PD analysis were observed, as well as a lack of concordance between
P. aeruginosa isolates susceptibility and CFR values. Our results also highlight the impor-
tance of considering the local susceptibility profile, such as the admission service of the
patient or the sample location, as well as the PK/PD analysis to support empiric therapy. In
this sense, prolonged infusions of time-dependent antimicrobials enhance PTA against non-
susceptible P. aeruginosa isolate. Furthermore, antimicrobial stewardship programs need
to consider not only the efficacy, but also the capacity to suppress resistance emergence
to select the proper treatment, in terms of optimal choice of drug and dosage regimen.
In this work, based on PK/PD analysis, only standard doses of ceftazidime/avibactam
and ceftolozane/tazobactam provided drug concentrations associated with resistance sup-
pression, confirming the need to use different dosage regimens or alternative therapeutic
strategies to prevent or minimize resistance emergence.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13111899/s1, Table S1: Probability target attainment (PTA) (%) at each value
of minimum inhibitory concentration (MIC) in ICU patients. Numbers in parenthesis indicate the
2.5th and 97.5th percentiles. The solid vertical lines indicate the intercept with the EUCAST clinical
breakpoints of P aeruginosa. Grey shading indicates PTA > 90%. Table S2: Probability target attainment
(PTA) (%) at each value of minimum inhibitory concentration (MIC) in medical ward patients. Numbers
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in parenthesis indicate the 2.5th and 97.5th percentiles. The solid vertical lines indicate the intercept
with the EUCAST clinical breakpoints of P aeruginosa. Grey shading indicates PTA > 90%.
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Abstract: Limited studies have investigated population pharmacokinetic (PK) models and optimal
dosage regimens of meropenem for critically ill adult patients using the probability of target attain-
ment, including patients receiving extracorporeal membrane oxygenation (ECMO). A population
PK analysis was conducted using non-linear mixed-effect modeling. Monte Carlo simulation was
used to determine for how long the free drug concentration was above the minimum inhibitory
concentration (MIC) at steady state conditions in patients with various degrees of renal function.
Meropenem PK in critically ill patients was described using a two-compartment model, in which
glomerular filtration rate was identified as a covariate for clearance. ECMO did not affect meropenem
PK. The simulation results showed that the current meropenem dosing regimen would be sufficient
for attaining 40%f T>MIC for Pseudomonas aeruginosa at MIC ≤ 4 mg/L. Prolonged infusion over 3 h or
a high-dosage regimen of 2 g/8 h was needed for MIC > 2 mg/L or in patients with augmented renal
clearance, for a target of 100%f T>MIC or 100%f T>4XMIC. Our study suggests that clinicians should
consider prolonged infusion or a high-dosage regimen of meropenem, particularly when treating
critically ill patients with augmented renal clearance or those infected with pathogens with decreased
in vitro susceptibility, regardless of ECMO support.

Keywords: meropenem; population pharmacokinetics; critically ill patient; adult; extracorporeal
membrane oxygenation; Monte Carlo simulation

1. Introduction

Antibiotic treatment is a major factor in determining the survival of critically ill
patients diagnosed with sepsis. Altered pharmacokinetics (PK) in these patients is a major
obstacle for clinicians when determining an adequate antibiotic dosage regimen [1]. The
“third spacing” phenomenon caused by vasodilation and capillary leakage in sepsis patients
increases the volume of distribution and lowers the drugs’ serum concentration, especially
for hydrophilic antimicrobials [1,2], such as β-lactams and aminoglycoside, that are more
affected by pathophysiological changes than lipophilic drugs [3].

Meropenem, a carbapenem β-lactam agent with a wide spectrum of activity against
Gram-positive and Gram-negative pathogens, is used for the treatment of severe infections
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caused by multidrug-resistant organisms in intensive care unit (ICU) patients, including
those on extracorporeal membrane oxygenation (ECMO) support [4–7]. A large heterogene-
ity was observed in the volume of distribution (over two-fold) in sepsis patients admitted
to the ICU and receiving meropenem [3]. ECMO may further complicate PK changes
in volume of distribution and clearance [8,9], which highlights the need for optimizing
meropenem dosage in adult patients on ECMO. However, the effects of ECMO on the
optimal dosage for meropenem have not been elucidated. Limited studies have performed
population PK modelling and evaluated the pharmacodynamic (PD) alterations associated
with ECMO [10–12]. Moreover, knowledge regarding the PK/PD profile of meropenem
during ECMO and its clinical relevance for different ethnicities is also limited.

This study aimed to construct a population PK model for meropenem in critically ill
Korean adult patients, including those receiving ECMO, to explore the effects of ECMO on
meropenem PK. Moreover, we investigated optimal dosage regimens of meropenem by
assessing the probability of PK/PD target attainment for various regimens using Monte
Carlo simulations.

2. Methods

2.1. Patients

This prospective study was conducted in Hallym University Sacred Heart Hospi-
tal (840-bed university-affiliated tertiary referral hospital), Anyang, South Korea, from
September 2020 to April 2021. Clinical indications for meropenem included: empirical
management of sepsis from unknown source, nosocomial infections, and prophylactic
administration for patients undergoing ECMO. Patients with a history of β-lactam allergy
or a positive skin test result for meropenem were excluded. The demographic factors
between the ECMO and the non-ECMO groups were compared. If meeting normality, the
t-test was performed; otherwise, the Wilcoxon rank-sum test was used.

2.2. ECMO Apparatus

The ECMO system used was the Permanent Life Support (PLS) System (MAQUET,
Rastatt, Germany), which consists of a broad range of HLS Cannulae and the Rotaflow
Console. The PLS Set includes the PLS-i Oxygenator. A total of 1 L of plasma solution or
normal saline was infused into the circuit, and the total circuit volume was 500–600 mL.

2.3. Study Design

Patients were able to participate at any time after the initiation of meropenem admin-
istration. Patients received 500 or 1000 mg of meropenem for 30 min every 8 or 12 h via
intravenous (IV) infusion. Five blood samples were collected after the first dose following
patients’ enrollment, and two samples were collected at steady state after four or five
consecutive doses. The planned sampling times for model development were as follows:
(1) immediately before dosing, (2) 0.5, 1, 4, and 8 h after the start of the infusion for the
8 h interval, and (3) 0, 0.5, 1, 6, and 12 h after the start of the infusion for the 12 h interval.
Samples were collected before (trough level) and 30 min after (peak level) the fourth or
fifth dosage, for model validation.

2.4. Meropenem Assay

Meropenem plasma concentrations were analyzed using high-performance liquid
chromatography (HPLC)–tandem mass spectrometry (MS). The HPLC system consisted
of a prominence LC-20A System (Shimadzu, Japan) and a Gemini C18 column (Kinetex;
Phenomenex, Torrance, CA, USA). The MS detection was conducted using a hybrid triple
quadrupole/Linear Ion trap mass spectrometer (API4000 QTRAP; SCIEX, Framingham,
MA, USA). Briefly, a 100 μL aliquot of plasma sample was pipetted into a centrifuge tube.
Next, 100 μL of acetonitrile containing an internal standard (20 μg/mL, ceftazidime) was
added to the tube and then vortexed for 1 min. After centrifugation at 12,000 rpm for
2 min, the supernatant was transferred to another centrifuge tube, and 100 μL of 0.1%
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formic acid was added to the tube. An aliquot of 10 μL was injected into the LC–MS/MS
system. The lower limit of quantitation was 0.2 mg/L. The assay results were linear
over a range from 0.2 to 200 mg/L (R2 = 0.99). Intraday precision and accuracy of the
validation concentration range (0.5, 5, and 50 mg/L) analyzed using standard samples
were 2.98–3.92% and 96.53–110.07%, respectively. Interday precision and accuracy of the
validation concentration range (0.5, 5, and 50 mg/L) analyzed using standard samples for
3 days were 0.5–2.7% and 89.9–100.0%, respectively.

2.5. Population PK Analysis

Population PK modeling was implemented using the Nonlinear-mixed effects mod-
elling software (NONMEM® 7.5, ICON Development Solutions, Elliot City, MD, USA).
The first-order conditional estimation with interaction (FOCEI) method was used to es-
timate measured (fixed) and unexplained (random) effect parameters. FOCEI allows
the interaction between the inter-individual variability (IIV, η) of PK parameters and the
residual variability (RV) of measured concentrations. RV was caused by inter-individual
variability, measurement error, assay error, and model misspecification. One-, two-, and
three-compartment structural models were investigated using the PK model library in
NONMEM. All PK processes were assumed to follow first-order kinetics rather than zero-
order infusion. The PK parameter was defined as θi = θ × exp(ηi), where θ is the typical
value of the PK parameter, θi is an individual PK parameter, and ηi is a random effect
associated with IIV, which is assumed to have a normal distribution with a mean of 0 and a
variance of ω2. Proportional, additive, or combined proportional and additive error models
were tested for RV, which was assumed to have a normal distribution with a mean of 0
and a variance of σ2. A power parameter was tested to allow for nonlinear heteroscedastic
variances [13].

Models were evaluated and selected based on NONMEM objective function values
(OFVs), precision of parameter estimates (relative standard errors), shrinkage of IIV, and
diagnostic goodness-of-fit plots. In a log-likelihood ratio test, a decrease in the OFV (ΔOFV)
between two nested models, having 1 degree of freedom greater than 3.84 or 2 degrees
of freedom greater than 5.99, was considered statistically significant at p < 0.05 for model
improvement. Diagnostic plots included the following four plots: conditional weighted
residuals (CWRES) vs. time, CWRES vs. model-predicted population concentration (PRED),
observation vs. PRED, and observation vs. model-predicted individual concentration.

Perl-speaks-NONMEM software (PSN, version 5.2.6, available online:
https://uupharmacometrics.github.io/PsN, accessed on 17 June 2021)) was used for
searching covariates, evaluating a model with visual predictive check and conducting
nonparametric bootstrap to obtain 95% confidence intervals (CIs). To search significant
covariates for the PK parameters, stepwise forward inclusion and backward exclusion
processes were conducted. Statistical significance was set at p < 0.01 (ΔOFV < −6.635 for
1 degree of freedom) for inclusion and p < 0.001 (ΔOFV > 10.83 for 1 degree of freedom)
for exclusion. A significant covariate should have both statistical significance and clinical
relevance. The tested covariates for structural PK parameters were age, sex, height, weight,
body surface area (BSA), serum albumin level, serum protein level, serum creatinine
level, serum cystatin C level, primary diagnosis, comorbidity, renal function, ECMO type
(veno–arterial (VA) or veno–venous (VV)), and ECMO flow rate. The renal function was
calculated by applying Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI),
modified CKD-EPI, Modification of Diet in Renal Disease (MDRD), modified MDRD, and
Cockcroft-Gault (CG) formulations to determine the total clearance (CL). The modified
CKD-EPI and MDRD estimates were adjusted using individual BSA values, where BSA
was calculated by applying the Du Bois formula. Visual predictive check with prediction
and variability correction (VPCPVC) was performed using PSN by comparing the final
PK model with the measured plasma concentrations with 80% prediction intervals from
1000 virtual datasets. Nonparametric bootstrapping was performed to investigate the
stability of the final PK model. The median and 95% confidence interval for the estimates
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of bootstrap samples (n = 2000) were generated to evaluate the parameter estimates of the
final PK model. R software (version 4.0.4, available online: www.rproject.org, accessed on
11 March 2021) was used for the postprocessing of model output and visualization.

The individual PK parameters between ECMO and non-ECMO groups were compared.
If meeting normality, an independent t-test was used; otherwise, Wilcoxon rank-sum test
was used.

2.6. Assessment of Prediction Performance

The predictive performance of the final PK model was assessed visually using the
relative prediction error (rPE) vs. the observed concentration plot and numerically using
the relative bias (rBias) for accuracy and the relative root-mean-square error (rRMSE)
for precision.

rPE =
CP − CO

CO

rBias = 100%
1
N ∑

i

CP − CO

CO

rRMSE = 100%

√√√√ 1
N ∑

i

(CP − CO)
2

C2
O

where CO indicates the observed concentrations, and CP v the predicted concentrations.

2.7. PD Target Attainment

Four Monte Carlo simulations were implemented. The first simulation was conducted
to explore the adequacy of the recommended dosage regimen (for a creatinine clearance
[CLCR] > 50 mL/min, 1 g every 8 h by i.v. infusion; for a CLCR of 26–50 mL/min, 1 g every
12 h by i.v. infusion; for a CLCR of 10–25 mL/min, 500 mg every 12 h by i.v. infusion; for a
CLCR < 10 mL/min, 500 mg every 24 h i.v. infusion) when treating adult patients infected
with Pseudomonas aeruginosa (P. aeruginosa). A total of 10,000 individual PK parameters
were generated for virtual patients assuming a log-normal distribution for each parameter
with the typical parameter values and the IIV of the final PK model. The selected covariate,
glomerular filtration rate (eGFR) estimated using the CKD-EPI equation, was generated
assuming a log-normal distribution within the range of 0 to 130 mL/min. Patients were
treated empirically without knowing the pathogen, while minimum inhibitory concentra-
tion (MIC) values were generated using the clinical breakpoint distribution of MICs set by
the European Committee on Antimicrobial Susceptibility Testing. They were randomly
assigned to the 10,000 virtual patients. The steady-state concentration–time profiles of the
virtual patients were generated using the simulated individual PK parameters and the
recommended dosage regimen.

The antimicrobial activity of meropenem is related to the cumulative percentage of
a 24 h period during which the free drug (unbound to protein, f ) concentration exceeds
the MIC for a pathogen, in steady-state condition (f T>MIC). The parameter f was fixed at
98%. The tested treatment targets were 40%f T>MIC, 100%f T>MIC, and 100%f T>4XMIC. A
dosage strategy was considered adequate if the probability of target attainment (PTA) was
greater than or equal to 90%. The PTAs for treatment target were compared for various
combinations of renal function, MICs, and dosage regimen of the patients.

The second, third, and fourth simulations were conducted to determine the opti-
mal dosage regimen for 40%f T>MIC, 100%f T>MIC, and 100%f T>4XMIC as treatment targets,
respectively. A total of 1000 individual PK parameters were generated for virtual pa-
tients assuming a log-normal distribution for each parameter, whereas the covariate was
generated by applying a uniform distribution within the range 0 to 170 mL/min. The
patients were divided into the six renal function groups (0 < CLCR ≤ 10, 10 < CLCR ≤ 25,
25 < CLCR ≤ 50, 50 < CLCR ≤ 90, 90 < CLCR ≤ 130, and 130 < CLCR ≤ 170 mL/min). Steady-
state concentration–time profiles of the 1000 virtual patients were generated for various
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combinations of the three doses (0.5, 1, and 2 g), two dosing intervals (8 and 12 h), four
infusion times (0.5, 1, 2, and 3 h), and MICs (0.060, 0.125, 0.25, 0.5, 1, 2, 4, 8, and 16 mg/L).

3. Results

3.1. Patient Characteristics

The demographic and clinical characteristics of the 26 patients are described in Table 1.
Eight adult patients received ECMO (veno–arterial (VA) ECMO, n = 7; veno–venous (VV)
ECMO, n = 1). One of the 18 patients in the non-ECMO group and one of the eight patients
in the ECMO group received continuous renal replacement therapy. Patients on ECMO
support were younger (median age, interquartile range [IQR]; 64.0 [56.3–66.5] vs. 72.0
[66.0–80.3] days; p = 0.0167). The severity scores, including the APACHE II (median [IQR];
12 [10–14] vs. 10 [7–14]; p = 0.0321) and SOFA scores (median [IQR]; 9.50 [8.00–12.5] vs. 5.00
[3.00–7.75]; p = 0.0051), were significantly higher in patients in the ECMO group compared
to those in the non-ECMO group.

Table 1. Patients’ characteristics (median (IQR)).

Parameter ECMO (n = 8) Non-ECMO (n = 18) p-Value

ECMO type VA 7/VV 1
CRRT Yes 3/No 5 Yes 1/No 17

Sex male 4/female 4 male 14/female 4
Age (year) 64.0 (56.3–66.5) 72.0 (66.0–80.3) 0.0167 c

Height (cm) 162 (153–169) 165 (156–170) 0.6544 d

Weight (kg) 63.5 (61.9–66.3) 54.4 (50.5–64.5) 0.1731 d

Body surface area (m2) 1.67 (1.61–1.75) 1.63 (1.51–1.72) 0.5074 c

ICU duration (days) 25.0 (6.00–43.5) 6.50 (4.00–17.8) 0.1249 d

APACHE II 21.0 (19.5–22.5) 16.0 (12.0–18.0) 0.0321 c

SOFA 9.50 (8.00–12.5) 5.00 (3.00–7.75) 0.0051c

BUN (mg/dL) 26.9 (22.0–33.0) 22.6 (10.8–46.6) 0.8675 d

Scr (mg/dL) 0.820 (0.518–1.15) 0.615 (0.458–1.43) 0.9557 d

Cystatin C (mg/dL) 1.48 (1.43–1.90) 1.34 (0.985–1.86) 0.5411 c

Albumin (g/dL) 3.00 (2.83–3.20) 2.55 (2.30–2.98) 0.0364 c

Protein (g/dL) 5.15 (4.88–5.75) 5.05 (4.70–5.75) 0.5448 d

CLCR, Cockcroft-Gault (mL/min) 76.9 (59.5–105) 73.4 (32.7–92.6) 0.4367 d

GFR, MDRD (mL/min/1.73 m2) 86.9 (67.1–132) 111 (47.5–160) 0.9119 c

GFR, modified MDRD (mL/min) b 88.7 (67.0–115) 95.1 (45.0–153) 0.8676 d

GFR, CKD-EPI (mL/min/1.73 m2) 87.7 (70.0–105) 91.6 (45.6–103) 0.7145 c

GFR, modified CKD-EPI (mL/min) b 82.4 (70.0–94.9) 77.7 (43.6–97.0) 0.5883 c

IQR, interquartile range; ECMO, extracorporeal membrane oxygenation; VA, veno–arterial; VV, veno–venous; CRRT, continuous renal
replacement therapy; APACHE II, Acute Physiology and Chronic Health Evaluation; SOFA, sequential organ failure assessment; BUN,
serum blood urea nitrogen level; Scr; serum creatinine level; CLCR, creatinine clearance; GFR, glomerular filtration rate; MDRD, Modification
of Diet in Renal Disease; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration. b The modified MDRD and CKD-EPI equations
adjusted to individual BSA are GFR (mL/min) = GFR (MDRD or CKD-EPI) × (BSA/1.73 m2). c Independent t-test. d Wilcoxon
rank-sum test.

3.2. Population PK Analysis

A total of 125 samples were used to develop a population PK model, and 44 samples to
validate the final model. The concentration–time profile of meropenem was best described
by a two-compartment model. The NONMEM OFVs for one-, two-, and three-compartment
models were 689.840, 6540.693, and 640.694, respectively.

The structural parameters for the two-compartment model were total clearance (CL),
central volume of distribution (VC), peripheral volume of distribution (VP), and intercom-
partmental clearance (Q) between VC and VP. The inter-individual variability (IIV) was
estimated for CL, V1, and V2 (Table 2). In the final PK model (OFV 611.402), GFR was
estimated using the CKD-EPI equation and identified as a statistically significant covariate
of CL. The IIV for CL was reduced from 55.2% to 31.4% after the covariate were included.
ECMO therapy did not affect the meropenem PK in this study.
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Table 2. Population PK parameter estimates for meropenem.

Parameter Estimates
RSE (%)

[Shrinkage (%)]
Bootstrap Median (95% CI)

Structural model
CL = θ1 × (1 + θ2 × (CE − 91.57))
θ1 (L/h) 6.37 7.41 6.32 (5.42–7.23)

θ2 0.00925 10.3 0.00932 (0.00680–0.0110)
VC (L) 9.07 12.2 8.97 (3.92–12.0)

Q (L/h) 10.7 21.5 10.6 (4.73–31.0)
VP (L) 7.91 13.6 8.17 (5.35–11.1)

Inter-individual variability
CL (%) 31.4 15.8 [3.70] 29.9 (18.0–38.7)
VC (%) 43.6 22.5 [14.7] 41.0 (0.000–95.4)
VP (%) 36.6 21.0 [41.3] 34.5 (0.000–55.7)

Residual variability
Proportional error (%) 24.6 29.3 [24.2] 24.1 (10.3–41.5)

Power parameter 0.865 10.0 0.897 (0.533–1.38)

ECMO, extracorporeal membrane oxygenation; RSE, relative standard error; CL, total clearance; θ1, typical population value for CL; θ2,
covariate coefficient for CE; VC, central volume of distribution; VP, peripheral volume of distribution; Q, inter-compartmental clearance
between VC and VP; CE, glomerular filtration rate estimated by CKD-EPI equation.

The PK parameter estimates were not significantly different between the ECMO and
the non-ECMO groups (Table 3). Residual error was well described using a proportional
error model. The power parameter for RV reduced the relative standard error (RSE) of the
IIV for CL from 27.3% to 22.5%. When IIV was expressed as a standard deviation, if the
RSE of IIV exceeded 25%, it was not significant.

Table 3. Comparison of population PK parameter estimates between the ECMO and the non ECMO groups.

Parameter ECMO non ECMO p-Value

CL 6.34 (4.84–7.92) 5.05 (3.43–7.37) 0.5782 b

VC (L) 8.37 (7.35–8.89) 8.53 (7.21–11.7) 0.6567 c

VP (L) 8.11 (7.75–8.86) 8.28 (6.55–8.64) 0.4258 b

VSS (L) 16.2 (15.6–17.9) 17.2 (14.7–21.0) 0.6140 b

ECMO, extracorporeal membrane oxygenation; CL, total clearance; VC, central volume of distribution; VP, peripheral volume of distribution;
VSS, steady-state volume of distribution. b Independent t-test. c Wilcoxon rank-sum test.

The diagnostic goodness-of-fit plots for the final PK model are depicted in Figure 1.
Conditional weighted residuals (CWRES) were randomly distributed around the x-axis,
indicating no systemic deviation in the structural model (Figure 1a) or in the residual
error model (Figure 1b); most of them remained within ±2 times the normalized standard
deviation. The observation values were randomly distributed around the line of identity,
indicating no evidence of misspecification of the structural, IIV, or RV model (Figure 1c,d).

VPCPVC is shown in Figure 2, where most of the observations fall within the 80%
prediction interval of the simulated concentrations, and the observed 10th, 50th, and 90th
percentiles are overlaid with 95% CIs of the simulated 10th, 50th, and 90th percentiles. This
plot suggests that the final PK model correctly explained the data and had appropriate
predictive performance. The time course for individual observed, individual predicted,
and population predicted concentrations is shown in Figure S1.
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Figure 1. Goodness–of–fit plots. (a) Conditional weighted residuals (CWRES) versus time, (b) CWRES versus population
predicted concentration (PRED), (c) observed concentration versus PRED, and (d) observed concentration versus individual
predicted concentration. The dashed lines indicate smooth curves.

3.3. Assessment of Prediction Performance

Figure S2 displays the relative prediction error (rPE) vs. the observed concentration.
As shown, most values are distributed around the x-axis. When the concentration exceeded
50 mg/L, underprediction was observed. When all subjects were included, the relative bias
(rBias) and relative root-mean-square error (rRMSE) were 17.5% and 91.5%, respectively.
However, when two subjects with extreme outliers were excluded, the rBias and rRMSE
were 1.59% and 29.4%, respectively.

3.4. PD Target Attainment

Figure 3 shows the PTA of empirical therapy using the current dosage regimen in the
first simulation. The recommended dosage regimen achieved 90% PTA at 40%f T>MIC when
the MIC was less than 8 mg/L; however, it did not achieve 90% PTA at 100%f T>MIC when
the MIC was greater than 0.25 mg/L. If the target was 100%f T>4XMIC, the current regimen
could not reach the 90% PTA regardless of the MIC.
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Figure 2. Visual predictive check plot. Plots from virtual concentrations of 1000 simulated
datasets. Closed circles, observed serum meropenem concentrations; solid lines, the 10th, 50th,
and 90th percentiles of observations; dashed lines, the 10th, 50th, and 90th percentiles of simulated
serum meropenem concentrations; shaded areas, 95% confidence intervals for each percentiles of
simulated concentrations.

Figure 3. Probabilities of target attainment (PTA) of empirical therapy using the current dosage
regimen for patients with an eGFR of 0–130 mL/min/1.73 m2. Bars indicate the MIC distribution for
P. aeruginosa.

In the second simulation, optimal dosage regimens were explored to achieve PTA > 90%
at 40%f T>MIC (Figure 4). In the case of patients with an eGFR of 26–50 mL/min/1.73 m2, a
regimen of 1 g every 12 h using i.v. infusion over 30 min could attain a 90% PTA when the
MIC was 4 mg/L. However, a dosage regimen of 0.5 g every 12 h was also appropriate for
patients in this study. As expected, a prolonged infusion enhanced the PTA. For patients
with eGFR values of 90–130 mL/min/1.73 m2, a dosage regimen of 1 g every 12 h using
i.v. infusion over 2 h was optimum when the MIC was 4 mg/L, whereas 30 min or 1 h of
infusion was not.
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Figure 4. PTAs (40%f T>MIC). Simulation results with three doses (0.5, 1, and 2 g), two dosing intervals (8 and 12 h), four
infusion times (0.5, 1, 2, and 3 h), various degrees of renal function, and various MICs.

In the third simulation, optimal dosage regimens were explored to achieve PTA > 90%
at 100%f T>MIC (Figure 5). In the case of patients with an eGFR of 50–90 mL/min/1.73 m2,
a regimen of 1 g every 8 h using i.v. infusion over 30 min or prolonged infusion over 3 h
could attain a 90% PTA when the MIC was 1 mg/L and 2 mg/L, respectively. For patients
with augmented renal clearance (eGFR values of 130–170 mL/min/1.73 m2), a regimen
of 1 g every 8 h using prolonged i.v. infusion over 3 h was optimum only when the MIC
was equal to or less than 0.25 mg/L, and a high-dosage regimen of 2 g every 8 h using
prolonged i.v. infusion over 3 h was optimum when the MIC was less than 1 mg/L.
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Figure 5. PTAs (100%f T>MIC). Simulation results with three doses (0.5, 1, and 2 g), two dosing intervals (8 and 12 h), four
infusion times (0.5, 1, 2, and 3 h), various degrees of renal function, and various MICs.

In the fourth simulation, optimal dosage regimens were explored to achieve PTA > 90%
at 100%f T>4XMIC (Figure 6). In the case of patients with an eGFR of 50–90 mL/min/1.73 m2,
a regimen of 1 g every 8 h using i.v. infusion over 30 min could attain a 90% PTA when the
MIC was ≤0.25 mg/L, and the high-dosage regimen of 2 g every 8 h using prolonged i.v.
infusion over 3 h could attain a 90% PTA when the MIC was ≤1 mg/L. For patients with
augmented renal clearance (eGFR values of 130–170 mL/min/1.73 m2), the high-dosage
regimen of 2 g every 8 h using prolonged i.v. infusion over 3 h was optimum only when
the MIC was less than 0.25 mg/L.
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Figure 6. PTAs (100%f T>4XMIC). Simulation results with three doses (0.5, 1, and 2 g), two dosing intervals (8 and 12 h), four
infusion times (0.5, 1, 2, and 3 h), various degrees of renal function, and various MICs.

4. Discussion

This study presents the PK properties of meropenem in critically ill Korean adult
patients, including those undergoing ECMO. The PK of meropenem was best described by
a two-compartment model, in which the glomerular filtration rate (GFR) was estimated
using the CKD-EPI equation and identified as a significant covariate for CL. The final
PK model demonstrated good predictive performance, while using ECMO did not affect
meropenem PK. The results of Monte Carlo simulations to achieve more than 90% PTA
at 40%f T>MIC suggest that the current dosage regimen of meropenem using i.v. infusion
over 30 min is sufficient to treat P. aeruginosa at MIC ≤ 4 mg/L in the case of patients with
a CLCR of 50–90 mL/min/1.73 m2. Prolonged i.v. infusion of meropenem over at least
2 h could attain a 90% PTA when the MIC is 4 mg/L for patients with augmented renal
clearance (eGFR values of 130–170 mL/min/1.73 m2). However, to achieve PTA > 90% at
100%f T>MIC or 100%f T>4XMIC, prolonged infusion over 3 h or a high-dosage regimen of 2 g
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every 8 h should be considered, particularly for MIC > 2 mg/L or in patients with an eGFR
of 130–170 mL/min/1.73 m2.

Prescribing an antibiotic with a narrow therapeutic range is one of the most chal-
lenging concerns in the treatment of critically ill patients with time-varying and highly
variable PK. The current paucity of knowledge about PK regarding ECMO use in critically
ill patients makes it more difficult to adjust dosage regimens. Regardless of ECMO support,
PTA for achieving 100%f T>MIC and 100%f T>4XMIC in the present study was low when
meropenem was used following the currently recommended dosage regimen to treat even
susceptible P. aeruginosa (MIC ≤ 2 mg/L) in patients with normal renal clearance. These
results are consistent with those of previous studies that performed population PK model-
based simulations in critically ill patients, including those on ECMO support [10–12]. We
postulate that prolonged infusion of meropenem over 3 h or a high-dosage regimen of
6 g/day should be considered, particularly for treating critically ill patients with increased
renal clearance and those infected with less susceptible pathogens, to provide appropriate
meropenem concentrations to them and those on ECMO support. Real-time therapeutic
drug monitoring (TDM)-guided dosing optimization of meropenem using dosing software
could further help clinicians to improve clinical outcomes and reduce toxicity in critically
ill patients [14–16]. Evaluating the influence of TDM of meropenem on clinical outcomes
in ECMO patients is warranted, since the use of inappropriate meropenem concentrations
is possible, especially when using the standard-dose regimen [17].

Regarding poor clinical outcomes associated with elevated meropenem MIC [18–20],
the development of guidance for appropriate meropenem dosage optimization for empiri-
cal treatment should be considered to overcome antimicrobial resistance in the ICU [21].
High-dosage regimens of meropenem using prolonged infusion over 3 h could be consid-
ered for the empirical treatment in critically ill patients [22–25], which is supported by our
simulation results revealing the low PTA of empirical therapy using the current dosing
regimen. Previous studies have reported the positive impact of prolonged meropenem
infusion on clinical outcomes such as hospital mortality in critically ill patients [26,27]. Pro-
viding patients with ECMO support may help to better evaluate the influence of prolonged
infusion or high-dosage regimen on clinical outcomes in critically ill patients.

The PK profile of meropenem in our study was well described by a two-compartment
model. Model-predicted typical values of CL and steady-state volume of distribution
(VSS = VC + VP) for meropenem were 6.37 L/h and 17.0 L, respectively. These values
were consistent with the results of previous population PK studies including patients
with mild to severe renal impairment (CL, 2.0–7.7 L/h; VSS 14.2–26.7 L) [28,29] or patients
on ECMO (CL, 2.79–14.7 L/h; VSS, 15.3–33.6 L) [10–12]. The mean (s.d.) CL and VSS
of individual estimates for patients without ECMO support were 5.90 (3.60) L/h and
17.8 (5.47) L, respectively, while those for patients on ECMO support were 6.55 (2.14) L/h
and 17.0 (2.70) L, respectively. There were no differences between the two groups when
independent t-tests for CL (p = 0.5782) and VSS (p = 0.6140) were performed after the
Shapiro–Wilk normality test, which was consistent with the results of three population PK
studies involving ECMO patients that found no effect of ECMO on meropenem PK [10–12].
In these three studies, which included 10 to 14 patients on ECMO, the presence or absence
of ECMO was not selected as a covariate affecting PK parameters, and ECMO factors
such as VA/VV types, flow rate, or pump speed were not included as covariates in the
pharmacokinetic model [10–12]. Shekar et al. compared the results of a population PK
analysis of 11 ECMO patients with previously published data from 10 non-ECMO patients
and found that ECMO patients demonstrated reduced meropenem CL and an increased
VSS when compared with controls, but these changes were not statistically significant [10].
Gijsen et al. compared 14 ECMO patients with 11 non-ECMO patients in one study and
found no PK alteration by ECMO use [12]. We believe that variations in meropenem PK
among critically ill patients of different races, regardless of ECMO support, are limited
because the renal clearance of meropenem is largely dependent on the passive process of
glomerular filtration [30–32].
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We tested the effect of renal function on meropenem clearance. When renal function
was estimated using Cockcroft–Gault (CG), Modification of Diet in Renal Disease (MDRD),
modified MDRD, CKD-EPI, and CKD-EPI equations on the basic PK model, the OFV
decreased by 24.512, 24.948, 22.202, 27.933, and 24.270, respectively. Therefore, the eGFR
estimated using the CKD-EPI equation was considered the best covariate explaining the
individual variation in CL. In previous population PK studies of meropenem, renal func-
tion calculated by CG equation [10,11,28,33–35], CKD-EPI formula [12], or MDRD [29,36]
formula was selected as a covariate affecting CL. The difference in the reduction of OFV
was not substantial in our study; there would have been no significant differences in the
predictive performance of the model even if other formulas for renal function were used.
In our study, only GFR estimated by the CKD-EPI equation was included as a covariate
affecting CL, while a recently developed model included body weight and eGFR as covari-
ates [12]. However, since the coefficients of body weight were fixed, only eGFR was the
covariate selected by the modeling process.

The predictive performance of the final PK model was evaluated using an external
validation dataset. Predictive errors of 203% and 564% were observed in two patients.
The two samples were collected immediately prior to dosing but were recorded as being
collected after initiating dosing; it was more likely to be an error in the documentation
than an error in the conduct of the clinical trial. However, since the exact cause could not
be identified, we analyzed all data and had poor predictive performance. When the two
subjects were excluded, rBias and rRMSE decreased from 17.5% to 1.59% and from 91.5%
to 29.4%, respectively, showing that our model has good predictive ability. The range of
rBias and rRMSE of the tobramycin model that showed good performance ranged from
4.9% to 29.4% and from 47.8% to 66.9%, respectively [37].

Our study has some limitations. First, the number of patients on ECMO support
(n = 8) was too small to accurately detect the effect of ECMO on meropenem PK parameters,
although the total number of patients (n = 26) was sufficient to construct a population PK
model. Given the physicochemical properties of meropenem, ECMO therapy may not
significantly affect its PK. Second, only one covariate was included in the final PK model;
hence, it is difficult to directly use this model for personalized treatments of patients.
It is necessary to improve the model through follow-up studies. Third, the predictive
performance of the final PK model for 26 patients was not good. The number of blood
samples used for external validation was small and substantially affected by two extreme
values. However, our model could accurately predict most meropenem concentrations for
validation. Fourth, we did not validate our results of PK/PD analysis by evaluating clinical
outcomes. Despite these limitations, our study is valuable because it is, to the best of our
knowledge, the first population PK analysis of meropenem using model-based simulations
in critically ill Korean patients, including those on ECMO support. We believe that the
present study has important clinical implications for future research to develop the optimal
dose recommendation for such important populations.

5. Conclusions

Our model shows that ECMO use does not affect meropenem PK in critically ill
patients. Our simulation results suggest that the current dosing regimen of meropenem
using i.v. infusion over 30 min may be related to a suboptimal concentration for empirical
treatment in ICU. Therefore, prolonged i.v. infusion over 3 h or a high-dosage regimen
of 2 g every 8 h should be considered, particularly at MIC > 2 mg/L or in patients with
augmented renal clearance. Further studies are warranted to validate our model-based
regimen, such as assessing the clinical outcomes and evaluating the influence of TDM on
clinical outcomes in critically ill patients, including those on ECMO support.

151



Pharmaceutics 2021, 13, 1861

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13111861/s1, Figure S1: Individual fit plots. Closed circle, observed concentra-
tion; solid line, individual-predicted concentrations; dotted line, population-predicted concentrations,
Figure S2: Relative prediction errors vs observations for the final population pharmacokinetic model
of meropenem: (a) plots for all subjects (n = 26), (b) plots excluding the two patients with extreme
values (n = 24).
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Abstract: The aims of this study were to characterize the antifungal activity of amphotericin B against
Candida auris in a static in vitro system and to evaluate different dosing schedules and MIC scenarios
by means of semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modelling and simula-
tion. A two-compartment model consisting of a drug-susceptible and a drug-resistant subpopulation
successfully characterized the time-kill data and a modified Emax sigmoidal model best described the
effect of the drug. The model incorporated growth rate constants for both subpopulations, a death
rate constant and a transfer constant between both compartments. Additionally, the model included
a parameter to account for the delay in growth in the absence or presence of the drug. Amphotericin
B displayed a concentration-dependent fungicidal activity. The developed PK/PD model was able to
characterize properly the antifungal activity of amphotericin B against C. auris. Finally, simulation
analysis revealed that none of the simulated standard dosing scenarios of 0.6, 1 and 1.5 mg/kg/day
over a week treatment showed successful activity against C. auris infection. Simulations also pointed
out that an MIC of 1 mg/L would be linked to treatment failure for C. auris invasive infections and
therefore, the resistance rate to amphotericin B may be higher than previously reported.
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1. Introduction

Candida auris is a multidrug-resistant fungal pathogen that has emerged globally as a
cause of different infections, such as severe cases of fungemia [1,2]. Candidemia due to this
pathogen is associated with a high rate of mortality, especially in immunocompromised
patients. Other risk factors for C. auris candidemia include previous exposure to antibiotics
and underlying diseases such as diabetes, cardiovascular diseases or COVID-19 [3,4].

Additionally, the virulence and pathogenic capacity of C. auris and the decreased
susceptibility to antifungal drugs is greatly worrying. Tentative epidemiological break-
points for available antifungal drugs have recently been published. Those reports highlight
that C. auris has high MIC values for polyenes, azoles, echinocandins and nucleoside ana-
logues [5,6]. However, MIC related susceptibility categorization of C. auris isolates should
be cautiously interpreted, since species-specific clinical breakpoints have not yet been
defined [7]. C. auris is resistant to fluconazole and both intrinsic and acquired resistance
has been reported [5,8]. Reduced susceptibility to the other azoles, including the newest
isavuconazole, has also been described [8]. Echinocandins are the first line treatment to
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treat C. auris infections [9], but resistance to these drugs or therapeutic failures can emerge
rapidly in C. auris [10].

Regarding amphotericin B, a wide range of MIC values has been reported, with resis-
tance rates ranging from 0 to 30% using 1 mg/L as cut-off [7,11–15]. Recently, amphotericin
B was described as the only in vitro fungicidal agent against C. auris, unlike echinocan-
dins [16]. These facts, alongside with the fact that amphotericin B is the first alternative
to echinocandins for C. auris infections [17,18], make it an interesting drug whose activity
against this pathogen needs to be studied in deep.

In the current worrying scenario of reduced effective treatments to deal with C. auris
infections, in vitro studies that use time–kill (T-K) curve experiments and pharmacoki-
netic/pharmacodynamic (PK/PD) models to simulate different dosing schedules and
activity profiles, offer an attractive tool to describe the observed antifungal activity and to
predict the efficacy of the studied drugs. There are few PK/PD models from in vitro kinetic
data developed for antifungal drugs and Candida: caspofungin and fluconazole against
Candida albicans [19]; voriconazole against Candida spp. [20]; and recently, anidulafungin
against Candida spp. [21]. However, despite the relevance of C. auris, PK/PD modelling of
antifungal drugs for this emergent species is still lacking.

The aim of this study was to develop a semi-mechanistic PK/PD model for ampho-
tericin B against C. auris that can (a) describe the in vitro T-K experiment of clinical isolates
of C. auris exposed to amphotericin B and (b) simulate the expected T-K curves for different
dosing regimens and MIC scenarios.

2. Materials and Methods

Six C. auris blood isolates from the outbreak in Hospital Universitario y Politécnico La
Fe (Valencia, Spain) were included in this study [22]. The MIC, defined as the minimum
concentration producing ≥90% growth reduction, was determined following EUCAST
guidelines [23]. The MIC of amphotericin B for the six isolates was 1 mg/L.

Amphotericin B was obtained from Sigma-Aldrich (Madrid, Spain) as a powder. Stock
solutions were prepared with DMSO as solvent and stored at −80 ◦C until use.

Static T-K curve experiments were carried out on flat-bottomed microtitre plates in
RPMI medium (Sigma-Aldrich), with a final volume of 200 μL per well at 37 ◦C for 48 h.
C. auris blood isolates were grown at 37 ◦C for 24 h prior to the start of the experiment
to obtain fungal cultures in early logarithmic phase growth. Cells were suspended in
sterile distilled water to achieve a starting inoculum size of 1–5 × 105 colony forming units
(CFU)/mL and added to the microtitre plate containing amphotericin B at concentrations
0.25, 0.5, 1, 2 and 4 times the MIC. Growth control was also measured by adding the
inoculum to wells containing RPMI medium without amphotericin B. Sample for viable
counts were taken at 0, 2, 4, 6, 8, 24 and 48 h, plated in triplicate onto Sabouraud dextrose
agar (SDA) and incubated for 24–48 h at 37 ◦C. Depending on drug concentration, samples
were either first diluted in PBS or plated directly. When it was expected a sterilizing activity,
the whole well was sampled onto an SDA plate. Experiments were performed in duplicate
for each isolate on different days. The lower limit of detection was 5 CFU/mL. However,
due to the well-known sterilizing activity of amphotericin B, all the samples that showed
no growth at all were considered to be 0 CFU/mL. Carryover effect was determined as
previously described [24].

The basis of the semi-mechanistic model included two fungal stages in the PD part of
the model, consisting of a drug-susceptible fungal subpopulation (S) and a drug-resistant
subpopulation (R) [25]. This two-subpopulation model accounted for the biphasic killing
behaviour observed in the individual isolate static T-K curves (individual plots not shown).

First-rate order constants that defined both populations were the natural growth rate
(kgrowth), natural death rate (kdeath) and the transfer constant from S into R (kSR). The
equation that described S subpopulation in the absence of drug was as follows:

dS/dt = kgrowthS × S × (1 − e−αt) − kdeath × S − kSR × S (1)
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where dS/dt is the change in the number of the S subpopulation as a function of time.
It was not possible to perform a simultaneous estimation of both kgrowthS and kdeath

in this experimental setting. Hence, in an initial fit, kgrowthS was estimated by fitting a
single-stage model [19] to the control data. Based on this estimation of kgrowth (0.118 h−1)
and on previous analysis, kdeath was then fixed to 0.01 h−1 for final parameter estimation
in the two-stage model. Parameter α accounted for the delay in growth observed due to
experimental settings.

A specific kgrowth was estimated for the R subpopulation (kgrowthR) to account for the
regrowth observed at certain concentrations from 24 to 48 h. The kdeath parameter was
negligible in the final equation describing R subpopulation, hence it was not considered in
the following equation:

dR/dt = kgrowthR × R + kSR × S (2)

As previously mentioned, kSR is the parameter that described the transfer of fungal
cells from a susceptible state into a resistant one. It was defined as follows:

kSR =

(
kgrowth − kdeath

)
× (S + R)

Nmax
(3)

where S and R are the compartments with susceptible and resistant fungal populations,
respectively, and Nmax is the maximum total density of fungal population in the stationary
phase (in log CFU/mL).

The effect of amphotericin B on the fungal killing of the susceptible subpopulation
was modelled using an Emax sigmoidal equation:

Drug effect =
Emax × Ch

ECh
50 + Ch (4)

where Emax is the maximum achievable drug-induced fungal killing-rate constant, EC50
is the drug concentration necessary to achieve half the maximum effect, C is the drug
concentration and h is a Hill factor or sigmoidicity factor that modifies the steepness of the
slope and smoothens the curve.

The final model for the S and R subpopulations were described according to
Equations (2) and (5):

dS/dt = kgrowthS × S ×(1 − e−αt) − Drug effect × S − kdeath × S − kSR × S (5)

dR/dt = kgrowthR × R + kSR × S

All T-K data were transformed into log CFU/mL and simultaneously analysed in
NONMEM v7.4 with ADVAN13 subroutine and first-order conditional estimation method
(FOCE). Residual variability was estimated by using an additive model. As six clinical
isolates were analysed, inter-individual variability (IIV) was checked. Additionally, inter-
occasion variability (IOV) was also investigated to account for the variability that might
have arisen either from each experimental day or from microtitre plate batch preparation.
Model performance was assessed by precision of parameter estimates, changes in objective
function value (OFV) and evaluation of diagnostic plots. Final model selection was also as-
sisted by the performance of visual predictive checks (VPCs) and non-parametric bootstrap.
VPCs were performed and graphically represented with NONMEM and S-PLUS software,
stratified by concentration, with the experimental plots overlaid by the median and 95%
prediction interval of a simulated virtual population of 1000 individuals. Non-parametric
bootstrap was conducted by resampling 1000 datasets using Perl speaks NONMEM (PsN).

In vivo PK parameters for amphotericin B deoxycholate were extracted from a tricom-
partmental model previously described in the literature, V1 = 0.136 L/kg; V2 = 0.275 L/kg;
V3 = 1.4 L/kg; Cl = 0.013 L/h/kg; Q12 = 0.35 L/h/kg; and Q13 = 0.026 L/h/kg [26]. The ef-
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fect of treatments with standard clinical doses of 0.6, 1 and 1.5 mg/kg/day were simulated
for a virtual population of 1000 patients, considering free drug plasma concentrations for
a typical unbound fraction of 0.045 [27]. Additional simulations were performed to test
scenarios where amphotericin B MICs for C. auris were 0.06–0.5 mg/L, according to the
following equation [28]:

MIC =

(
d

Emax − d

)1/h
× EC50 (6)

where d is a drug-independent constant and h is the Hill factor. The EC50 value for each
MIC scenario was then included in the PK/PD model and simulations were performed
similarly. All simulations were conducted with NONMEM and S-PLUS.

3. Results

3.1. Time-Kill Experiments

Graphical representation of mean T-K curves for all isolates and replicates is shown in
Figure 1. No antifungal carryover was observed. Amphotericin B showed concentration-
dependent fungicidal activity. Fungicidal effect (3 log reduction compared to initial in-
oculum) was rapidly achieved, at 2 and 4 h, for concentrations of 4 mg/L and 2 mg/L,
respectively. At concentrations of 1 mg/mL (equal to MIC), the effect was fungistatic
overall, with a biphasic killing kinetic trend that showed fungal regrowth by the end of the
experiment in some clinical isolates.

Figure 1. Mean time–kill curves for amphotericin B against C. auris. Each data point represents the
mean result ± standard deviation (error bars) of the six isolates and replicates.

3.2. Semi-Mechanistic PK/PD Modelling

The developed model was able to describe successfully the effect of amphotericin B
against the studied C. auris clinical isolates. This model could characterize the initial and
higher killing rate at the higher amphotericin B concentrations, 2 and 4 mg/L, as well as
the biphasic trend or regrowth observed in most experiments with the concentration of
1 mg/L. A schematic illustration of the final model is shown in Scheme 1.
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Scheme 1. Schematic illustration of the final PK/PD model. The total fungal population consists of
two different subpopulations (S + R), with a first-rate order constant (kSR) that describes the transfer
of fungal cells from a susceptible state (S) to a resistant one (R). Amphotericin B (AMB) exerts its
effect on the susceptible subpopulation. kgrowthS: growth-rate of susceptible subpopulation; kgrowthR:
growth-rate of resistant subpopulation. kdeath: death-rate constant of the susceptible subpopulation.

Final model parameters and the standard error of the estimates, alongside bootstrap
estimations are presented in Table 1. Considering the standard errors and the bootstrap
results, the parameters of the model were properly estimated. Candida related parameters
were kgrowthS and kdeath for S subpopulation (0.111 h−1 and 0.01 h−1, respectively) and
kgrowthR for R subpopulation (0.01 h−1). kdeath and kgrowthR were fixed whereas kgrowthS
was allowed to be estimated. When the model incorporated different values of α (delay
in growth) for the absence or presence of the drug, a better fit was achieved. A modified
Emax sigmoidal model best described the effect of the drug; Emax was equal to 0.784 h−1

and EC50 was equal to 1.88 mg/L (1.88 times bigger than the MIC). Hill factor was fixed
to enable a proper estimation of the PD parameters. Variability in the response was best
captured by IOV on EC50 rather than IIV, where each occasion (four in total) was defined
as each prepared batch of microtitre plates. Model appropriateness was supported by the
VPCs depicted in Figure 2.

Figure 2. Visual predictive check (VPC) for the final model, with the observed fungal counts (full circles), the mean
prediction (solid line) and 95% model prediction interval (shaded area) of the simulations.
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Table 1. Parameter estimates (typical values and relative standard error –RSE– as CV %) and bootstrap estimates (mean and
95% CI) of the PK/PD model.

Parameter Description
Model Estimate and RSE

(CV %)
Bootstrap Estimate
(Mean and 95% CI)

kgrowthS (h−1)
Fungal growth rate constant

of the S subpopulation 0.111 (3%) 0.111 (0.101–0.116)

kgrowthR (h−1)
Fungal growth rate constant

of the R subpopulation 0.01 (fixed) -

kdeath (h−1) Fungal death rate constant 0.01 (fixed) -

Emax (h−1)
Maximum kill rate constant of

amphotericin B 0.784 (12%) 0.795 (0.635–1.04)

EC50 (mg/L)
Concentration of

amphotericin B at which 50%
of the Emax is achieved

1.88 (3%) 1.89 (1.78–2.05)

h
Hill factor that that modifies

the steepness of the slope and
smoothens the curve

4 (fixed) -

α (control) Delay in fungal growth in the
absence of drug 0.748 (3%) 0.754 (0.664–0.882)

α (drug) Delay in fungal growth in the
presence of drug 0.231 (10%) 0.233 (0.193–0.274)

Nmax (log CFU/mL) Maximum fungal density 7.66 (1%) 7.67 (7.47–7.87)

σ (log CFU/mL) Residual error 0.271 (14%) 0.270 (0.190–0.327)

π1 (%CV) Occasion 1 0 (fixed) -
π2 (%CV) Occasion 2 9.5 (35%) 9.22 (2.45–15.34)
π3 (%CV) Occasion 3 18.4 (24%) 18.76 (10.07–28.12)
π4 (%CV) Occasion 4 7.5 (37%) 7.13 (2.75–13.19)

3.3. Simulation of Standard Treatments Using Human PK Data

The simulated total and unbound concentrations of amphotericin B for typical intra-
venous dosing regimens of 0.6, 1 and 1.5 mg/kg/day and their expected activity on C. auris
after a one-week treatment are shown in Figure 3. None of the simulated standard dosing
scenarios showed successful activity against C. auris.

Additional simulations with MIC scenarios of 0.06, 0.125, 0.25 and 0.5 mg/L (with
EC50 of 0.12, 0.24, 0.47 and 0.94 mg/L, respectively) for a 1-week period are presented in
Figure 4.

Simulations with the lowest dose, 0.6 mg/kg/day, showed that a fungistatic activity
would be achieved at the 5th day of treatment for MIC values of amphotericin B of
0.06 mg/L. The next simulated dose, 1 mg/kg/day, resulted in fungicidal activity from the
second day onwards and fungistatic with the first administration. Finally, the highest dose
of 1.5 mg/kg/day led to a fungicidal endpoint immediately after the first administration.
Additionally, for an MIC of 0.125 mg/L a fungistatic effect would be achieved at the 3rd
day, and fungicidal at the 5th day at this highest dose level.
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Figure 3. Predicted total (top row) and unbound (mid row) plasma concentrations of amphotericin
B (D-AMB) and the effect on fungal burden (bottom row) for the treatment of 0.6 mg/kg/day (a),
1 mg/kg/day (b) and 1.5 mg/kg/day (c) of amphotericin B. The mean (solid line) and 95% prediction
interval (coloured space) are represented.

Figure 4. Simulations of the effect of amphotericin B on fungal burden by MIC and by dosing regimens of 0.6 mg/kg/day
(a), 1 mg/kg/day (b) and 1.5 mg/kg/day (c). Black line: MIC of 0.5 mg/L; blue line: MIC of 0.25 mg/L; purple line: MIC of
0.125 mg/L; green line: MIC of 0.06 mg/L.

4. Discussion

C. auris is an emergent fungal pathogen with reduced susceptibility to first-line anti-
fungal agents. Amphotericin B is an antifungal drug with proven efficacy against invasive
candidiasis and a low resistance-rate despite more than six decades of use; a correct and
thorough knowledge about the activity of this drug against C. auris is necessary. To date,
most susceptibility studies on this pathogen have focused on the determination of the
MIC. The MIC is the standard PD parameter used as a marker of fungal susceptibility
and antimicrobial efficacy, yet it possesses some limitations. The antimicrobial activity
of drugs is a dynamic process, while MIC is a threshold value. Concentrations below or
above the MIC are ignored and thus, a more precise and quantitative information about
the concentration-effect profile of the drug is often missing [29]. It is also noteworthy that
even for the same microbial species, same MIC values among different isolates can result
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in different killing kinetics [24]. Thus, studies that characterize the antimicrobial activity
beyond the measurement of MIC are needed. In vitro time–kill curves allow obtaining
more information about the effect of different drug concentrations on microbial population
over a time period. In combination with PK/PD M&S, these time–kill curve experiments
provide an interesting tool to predict and simulate untested scenarios that may help in
decision-making and design of further studies.

As determined for other species of Candida [30,31], in the present study amphotericin
B showed concentration-dependent activity against C. auris in T-K experiments. Fungicidal
activity was achieved at concentrations ≥2 mg/L and in less than 2 h. These results are in
agreement with the only published work based on T-K curve methodology against C. auris,
in which MIC values of amphotericin B were also 1 mg/L [16]. Additionally, this killing
kinetic pattern has also been described for other species of Candida that have been regarded
as resistant to amphotericin B treatment [31,32].

Few PK/PD models are available for antifungal agents [19–21]. To our knowledge,
the present study is the first work that used a semi-mechanistic approach to model the
antifungal activity of amphotericin B against C. auris. The static T-K experiments performed
showed fungal regrowth or a biphasic trend, and therefore, a semi-mechanistic model that
included two fungal subpopulations with different susceptibility to the drug best captured
this behaviour. This approach has been extensively applied to successfully model antibiotic
activity [25,33]. In the model of the present study, the emergence of resistance is triggered
by a high microbial count, with the susceptible population switching to a resistant one,
a process described by a first-order rate constant that also accounted for the self-limiting
growth rate, as it has been previously proposed by other authors [25,34]. The model best
fitted the data when a different growth rate constant for the resistant subpopulation was
defined (kgrowthR); this parameter was estimated to be 10 times lower than the growth rate
constant for the susceptible subpopulation (kgrowthS), which is in agreement with the ‘fitness
cost’ observed in some species of Candida when they develop resistance mechanisms [35].
Moreover, phenotypic switching during treatment with amphotericin B has been described
for Candida lusitaniae [36], a closely related species of C. auris. Nevertheless, the main
goal of model building was to accurately describe the antimicrobial activity and perform
simulations rather than to provide insight into resistance mechanisms, for which specific
microbiological and molecular procedures would be needed. On the other hand, the lack of
similar PK/PD models reports for C. auris or amphotericin B in the literature has precluded
comparisons.

A three-compartment model for amphotericin B deoxycholate [26] was implemented
for the simulation of plasma concentrations of the drug in human patients for dosing
regimens of 0.6, 1 and 1.5 mg/kg/day. The latter is more commonly used for invasive as-
pergillosis rather than for candidemia [37], but we considered this dosing schedule for sim-
ulation purposes too due to the low susceptibility profile of C. auris and the concentration-
dependent PD of amphotericin B shown in the present study, in concordance with other
in vitro and in vivo results [16,38]. Higher doses were not considered due to the toxicity
of the drug. Amphotericin B, as many antifungal agents, is highly bounded to plasma
proteins, around 95% at clinically achievable concentrations [27], and this feature was taken
into account in the PK/PD simulations.

With regard to the different pharmaceutical formulations available, liposomal am-
photericin B (L-AMB) is the current first choice due to its improved safety profile and
comparable efficacy to conventional amphotericin B deoxycholate. However, the cost can
be too high for healthcare systems in developing countries, which makes the conventional
formulation still relevant and listed as essential drug [39]. On the other hand, it is still
not clear which fraction of the total plasma concentration of L-AMB is active, as protein
binding is not applicable for this formulation [40], which makes the bridging between
in vitro experiments and in vivo simulations harder to perform. Therefore, the simulations
were carried out for the deoxycholate formulation. Nevertheless, studies in animal models
of invasive candidiasis and clinical trials have shown similar efficacy for both formula-
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tions [40]. This may reflect a comparable exposition of the fungal population to free drug
and therefore conclusions driven by PK/PD simulations may be applicable for L-AMB too.
In fact, EUCAST susceptibility breakpoints are based on adult standard dosages of both
formulations [41].

As previously mentioned, an approach solely based on the MIC of antimicrobials
provides limited information. Conversely, PD parameters derived from the analysis of
T-K curves, such as Emax and EC50, give more detailed information on the activity of the
drug. However, obtaining these data in the clinical setting is time-consuming, laborious
and usually not feasible. This drawback can be overcome by employing mathematical
relationship between the MIC and EC50, as it has been demonstrated in the present study,
since it is possible to link the results of the PK/PD modelling and simulation of T-K curves
with the MIC of the drug [28].

Simulations of standard dosages of amphotericin B deoxycholate pointed out that the
treatment would not be effective against the clinical isolates tested in this study. Addition-
ally, other possible treatment outcomes were tested by simulating different susceptibility
scenarios, with MICs below 1 mg/L. Standard treatments of 0.6 and 1 mg/kg/day would
only be effective against C. auris isolates for an MIC of 0.06 mg/L. However, a higher
dosage of 1.5 mg/kg/day would also be effective for an MIC up to 0.125 mg/L. Therefore,
contrary to expectations [7], susceptibility breakpoint of amphotericin B for C. auris might
be lower than 1 mg/L. Similar threshold values for amphotericin B have been reported for
other species of Candida and filamentous fungi, such as Aspergillus. In a murine model of
invasive candidiasis caused by Candida krusei, a daily dose of 1 mg/kg of amphotericin
B was effective in reducing the kidney fungal burden when the MIC of the drug was of
0.125 mg/L, but ineffective when MIC was of 0.5 mg/L [42]. In another murine model
study, doses of 1.5 mg/kg/day of amphotericin B resulted in a 15-day survival percentage
of >50% for Candida glabrata and <25% for Candida tropicalis, the MIC being 1 mg/L for
both species [43]. In an in vitro dynamic system that mimicked human PK of unbound
amphotericin B against Aspergillus, those species considered resistant to amphotericin B had
a probability of target attainment (PTA) of 0% when the MIC was 1 mg/L; for a PTA of 80%
an MIC of 0.25 mg/L was needed [44]. On the other hand, a work that analysed the effect
of antifungal drugs against C. auris infection in a murine model of invasive candidiasis
concluded that the MIC cut-off for amphotericin B was 1.5 mg/L [38]. However, variability
between strains was high and the 50% effective dose (ED50) was as high as 5 mg/kg/day, a
dose that can be lethal [45].

The results obtained in this study should be cautiously interpreted, as in vitro-in vivo
correlation studies for amphotericin B against C. auris are lacking. Even though T-K curve
methodology is a more complex technique that provides further information than MIC
determination, it is still an in vitro approximation to the much more complex in vivo reality.
Factors such as host immunity status and drug tissue distribution are overlooked, whereas
fungal burden may be overestimated, as growth rate is much faster in the rich environment
of the microbiological broth culture than in the human infection sites [46]. Nevertheless,
the developed model and simulation results may help in the design of future preclinical
and clinical studies, providing a useful tool for dosing regimen selection. It would also be
of interest to further confirm in a murine candidiasis model if the MIC of 1 mg/L is linked
to treatment failure.

5. Conclusions

In conclusion, the developed PK/PD model was able to properly characterize the
antifungal activity of amphotericin B against C. auris. The simulations highlighted that an
MIC of 1 mg/L would be linked to treatment failure and in consequence, the amphotericin
B resistance rate in this fungal species may be higher than previously reported [1]. These
results may be extrapolated to C. auris clinical isolates with similar EC50/MIC ratio. Never-
theless, further studies are needed to fully characterize the susceptibility profile of C. auris
and optimize antifungal therapy.
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Abstract: Palbociclib is an oral CDK4/6 inhibitor indicated in HR+/HER2- advanced or metastatic
breast cancer in combination with hormonotherapy. Its main toxicity is neutropenia. The aim of
our study was to describe the kinetics of circulating neutrophils from real-life palbociclib-treated
patients. A population pharmacokinetic (popPK) model was first constructed to describe palboci-
clib pharmacokinetic (PK). Individual PK parameters obtained were then used in the pharmacoki-
netic/pharmacodynamic (PK/PD) model to depict the relation between palbociclib concentrations
and absolute neutrophil counts (ANC). The models were built with a population of 143 patients.
Palbociclib samples were routinely collected during therapeutic drug monitoring, whereas ANC were
retrospectively retrieved from the patient files. The optimal popPK model was a mono-compartmental
model with a first-order absorption constant of 0.187 h−1 and an apparent clearance Cl/F of 57.09 L
(32.8% of inter individuality variability (IIV)). The apparent volume of distribution (1580 L) and the
lag-time (Tlag: 0.658 h) were fixed to values from the literature. An increase in creatinine clearance
and a decrease in alkaline phosphatase led to an increase in palbociclib Cl/F. To describe ANC
kinetics during treatment, Friberg’s PK/PD model, with linear drug effect, was used. Parameters
estimated were Base (2.92 G/L; 29.6% IIV), Slope (0.0011 L/μg; 28.8% IIV), Mean Transit Time (MTT;
5.29 days; 17.9% IIV) and γ (0.102). The only significant covariate was age on the initial ANC (Base),
with lower ANC in younger patients. PK/PD model-based simulations show that the higher the
estimated CressSS (trough concentration at steady state), the higher the risk of developing neutropenia.
In order to present a risk lower than 20% to developing a grade 4 neutropenia, the patient should
show an estimated CressSS lower than 100 μg/L.

Keywords: palbociclib; neutropenia; pharmacokinetic/pharmacodynamic

1. Introduction

Palbociclib is an oral inhibitor of cyclin 4 and 6 dependent kinases (CDK4/6) used in
HR+/HER2- breast cancer [1–5]. An absolute gain of 10.3 and 5.4 months in progression-
free survival was observed, respectively, in patients treated with palbociclib and letrozole
compared to letrozole alone, and in patients treated with palbociclib and fulvestrant
compared to fulvestrant alone in patients previously treated with hormone therapy. The
recommended dose of palbociclib is 125 mg per os once daily for 21 days out of 28.
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Treatment continues until progression or serious adverse events. Dosage adjustments are
made based on the occurrence of adverse events [3,5]. The most common adverse event is
neutropenia [1–7]. To avoid complications, at the beginning of treatment with palbociclib
and at the beginning of each cycle, as well as on day 15 of the first two treatment cycles, a
blood count is performed. An absolute neutrophil count (ANC) ≥ 1000/mm3 (N: 1700 to
7500/mm3) is recommended to start/continue the treatment [3,5].

Two pharmacokinetic/pharmacodynamic (PK/PD) models describe the relationship
between palbociclib and ANC kinetics. The first model developed by Sun et al. [8] is a pop-
ulation PK/PD model based on palbociclib phase II and III data. This model, derived from
PK/PD models used for cytotoxic drugs (i.e., Friberg’s model [9]), is the first PK/PD model
applied to palbociclib in humans. It showed the impact of age, weight, and food effect on
the pharmacokinetics (PK) of palbociclib and the impact of gender and albuminemia level
on ANC kinetics. The second model, developed by Chen et al. [10], is a preclinical PK/PD
model, constructed from in vitro data and using PK/PD data from endogenous G-CSF
(granulocyte colony stimulating factor) studies. The authors used several concentrations of
palbociclib on cell cultures to describe the effect of palbociclib on granulocyte stem cells.
An inhibitory effect (i.e., by an inhibition effect of stem cells entering the S phase and a
stimulation effect of stem cells entering the G0 phase) is modeled in order to mimic the
palbociclib effect on the proliferation of the bone marrow stem cells.

The aim of the present work was to describe the PK of palbociclib and to model the
PK/PD relationship between long-term kinetics of ANC and palbociclib concentrations,
in the general population, based on data from real-life follow-up. Additionally, based on
those models, simulations were conducted to determine the optimal exposure that limits
the risk of neutropenia to a reasonable one.

2. Materials and Methods

2.1. Patients and Sampling

All consecutive patients included in the study from 28 October 2018 to 15 March 2021
received palbociclib as breast cancer (RH+/HER2- or HER2+ non-amplified) treatment
in our institution. Patients with incomplete dosing history or insufficient ANC at the
period of the study were not included in the PKPD part of the study (minimum of 3 ANC’s
samples per patient). Patient data were retrieved retrospectively from the patient record
management software. Palbociclib therapeutic drug monitoring is routinely performed in
our institution. Thus, blood samples to quantify patient palbociclib exposure were available.
Additionally, ANC were extracted from biology reports completed during treatment as
required by the marketing authorization or during any patients’ hospitalizations, if deemed
appropriate, during the first treatment year.

No specific informed consent was required, as samples were regular. However, a
general consent was signed by patients stipulating that its data may anonymously be used
for research purposes. Thus, data used in this manuscript were recorded in such a manner
that confidentiality was ensured following these guidelines. Additionally, our protocol of
analyses was approved by our Institutional Review Board and was in accordance with the
Declaration of Helsinki.

2.2. Analytical Methods of Palbociclib

Palbociclib blood samples were analyzed by liquid chromatography-mass spectrom-
etry using the method described by Jolibois et al. [11] which allows the simultaneous
measurement of palbociclib, olaparib, cabozantinib, pazopanib, sorafenib, sunitinib and
desethyl-sunitinib. After blood collection, samples were rapidly centrifuged and frozen
until the analysis. Sample extraction was performed as follows: 150 μL of human plasma
and 100 μL of NaOH were added to 10 μL of an internal standard solution (containing
isotopic palbociclib, olaparib, cabozantinib, pazopanib, sorafenib and sunitinib). Samples
were vortexed for a few seconds, then 700 μL of ethyl acetate was added. After being
vortexed for 30 s, the samples were centrifuged at 10,000 RPM for 5 min. In an extraction
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tube, 600 μL of supernatant were collected and evaporated under nitrogen flow. The dried
samples were reconstituted with 150 μL of a mixture of 55% of methanol/45% of solvent
A (ammonium acetate 1 M in water, pH adjusted to 3.2 with formic acid). The samples
were vortexed for 30 s and filtrated using Captiva ND Lipids plates and assayed with
an LC-MS/MS device. With this method, the lower limit of quantification (LLOQ) of
palbociclib was 6 ng/mL, and the between-run and within-run accuracy and precision
were lower than 13.3% and 12.9% for the lowest level control, 7.5% and 10.0% for the
medium level control and 2.8% and 5.0% for the highest level control, respectively.

2.3. Population Pharmacokinetic Model

Several population pharmacokinetic (popPK) models have been tested. The base
model was a 1-compartmental model with first-order absorption and elimination clearance.
Other models were tested such as with an absorption lag-time or a 2-compartmental model.
Residual error was described either with an additive, a proportional or a combined error
model.

2.4. Pharmacokinetic/Pharmacodynamic Model

The aim of this PK/PD model is to describe the relationship between the plasma
concentrations of palbociclib and the ANC kinetic during the first year of treatment. Indi-
vidual pharmacokinetic parameters were estimated with the popPK model and used as
individual constants (regressors in Monolix®) in the model in order to compute palbociclib
concentrations.

The structural model used as base is the one initially developed by Friberg et al. [9] to
describe cytotoxic-induced neutropenia. This model is a semi-mechanistic model mimick-
ing neutropoiesis (Figure 1).

 

Figure 1. Pharmacokinetic/pharmacodynamic model. C◦: concentration of palbociclib; CIRC: compartment corresponding
to the circulating neutrophils; CIRC0: ANC at time 0 in CIRC compartment; CIRCt: ANC at time t in CIRC compartment;
Cl/F: palbociclib apparent clearance; ED: drug effect; γ: feedback mechanism; ka: palbociclib absorption constant; kcirc: rate
of elimination of neutrophils from the systemic circulation; kprol: rate of stem cell proliferation; ktr: maturation rate; MTT:
mean transit time; PROL: proliferation compartment; Slope: sensitivity to palbociclib-induced neutropenia; Tlag: palbociclib
absorption lag time; TRX: transit compartments; V/F: palbociclib apparent volume of distribution.

This model is composed of five compartments. First, a PROL compartment, which
is assumed to contain stem cells that will become neutrophils after maturation via three
transit compartments (TR1, TR2 and TR3). Lastly, a CIRC compartment corresponding to
the circulating neutrophils.

The endogenous effect of G-CSF is represented by a feedback mechanism γ. The
drug effect (ED) is a linear proportionality constant relating palbociclib concentration to
its effect on stem cells in the PROL compartment. It represents individual sensitivity to
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palbociclib-induced neutropenia. The mean transit time (MTT) is the average time it takes
for a stem cell to reach the CIRC compartment. ktr is equal to the number of compartments
plus one (i.e., 3 + 1) divided by MTT. The rate of stem cell proliferation is kprol. The rate
of elimination of neutrophils from the systemic circulation is kcirc. In most applications of
Friberg’s model, it is assumed that the transfer constant (ktr) is equal to the proliferation
constant (kprol) which is equal to the elimination constant of circulating neutrophils (kcirc).
This simplifies the calculations and reduces the analysis time. At baseline, compartments
PROL, TR1, TR2, TR3 and CIRC are equal to the same value: Base. The ANC were log-
transformed to facilitate the estimation of parameters. An additive residual error was
used on log-transformed values (i.e., corresponding to a proportional error model on
non-log-transformed data).

Patients without ANC samples or with incomplete follow-up history were not in-
cluded in the analyses.

2.5. Estimation of Model Parameters and Software Used

To develop the popPK and the PK/PD model, a nonlinear mixed effects regression
approach was used. For this step, the Monolix® software version 2020R1 was used (Lixoft
SAS, Antony, France). The estimation of the population parameters was performed us-
ing the SAEM (Stochastic Approximation Expectation-Maximization) algorithm. The
interindividual variability (IIV) was coded as Parami = Parampop × eη with Parami the
individual parameter value, Parampop the typical population value, and η the random
effect that follows a normal distribution centered on 0 and of standard deviation ω. The
result of this random effect is given as the coefficient of variation (CV in %) which is equal
to: CV =

√
eω2 − 1.

2.6. Covariate

For population PK analysis, covariates were selected based on routinely available data
and physiological considerations. Continuous covariates selected for the popPK model
were age, weight, creatininemia, creatinine clearance (Clcr) according to the Cockcroft–
Gault formula, aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT),
γ-glutamyltranspeptidase (γ-GT), lactate dehydrogenase, total bilirubinemia, alkaline
phosphatase (ALP) and albuminemia, whereas concurrent hormonotherapy (fulvestrant/
letrozole/others/NK (not known)) was the only categorical covariate.

For PK/PD analysis, covariates were selected based on previous knowledge [8,9,12].
Continuous selected covariates for the PK/PD model were age and albuminemia. Selected
categorical covariates were long-term hormonotherapy (yes/no/NK), previous radio-
therapy (yes/no/NK), presence of metastases (yes/no/NK), concurrent hormonotherapy
(fulvestrant/letrozole/others/NK), and the number of previous lines of chemotherapy.

Missing covariates were replaced by the median value in our population.
The selection of covariates was undertaken in the same way for the popPK and the

PK/PD model. Covariates were plotted against random effect from the base models (i.e.,
models without covariates) in order to search for any tendency. Additionally, Wald tests
were performed. If the Wald test was significant (p < 0.05) or if the graphical approach
shows a relationship between the random effect and a covariate, a forward/backward
approach was conducted [13]. Significant covariates were then included independently
in the model. A covariate was considered relevant if a decrease in the objective function
value (OFV) of 3.84 points (significant at 0.05) was observed. All covariates leading to
an improvement in the OFV were then added to the model, leading to a full covariate
model. Covariates were then excluded one by one and change in OFV was monitored.
A covariate was considered relevant if an increase in the OFV of 6.64 points (significant
at 0.01) was observed after its removal. The final model is the one with all covariates
considered relevant after forward/backward steps.
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The effect of continuous covariates was defined as follows:

Parami = Parampop ×
(

COVi
COVmed

)βCOV

(1)

With Parami the individual parameter, Parampop the typical value of the population
parameter, COVmed the median value of the covariate in the population, COVi the value of
the individual covariate, βcov the impact of the covariate.

For categorical covariates, one class will be considered the reference class:

Parami = Parampop × eβ∗covi (2)

With Parami the individual parameter, Parampop the typical value of the population
parameter, Covi the covariate coded as 0 (reference class) and 1 and β the impact of the
covariate.

2.7. Model Evaluation

Final model selection was based on comparison of the models’ OFV, the relative
standard error (RSE%, i.e., precision) of the parameter estimates, the ability of Monolix® to
converge a parameter to a typical population value (i.e., if the model estimates the same
parameter value after several runs), and graphical diagnostics plots, including observations
versus individual predictions plots, and residual errors plots (individual residuals versus
time or observed concentrations). The control of normalized prediction distribution errors
(NDPE), numerical predictive checks and corrected visual checks were also performed.

Observations versus individual predictions plot visualizes the fit of the model to the
data used. The RSE allow for judgement of the stability of the final model.

2.8. Simulation

Using Simulx2020R1® software, the impact of covariates on ANC kinetics was ex-
plored using simulation of the final PK/PD model. The simulations were run over 100
days with 28-day cycles (21 days with 125 mg palbociclib daily followed by 7 days off).
Each covariate was set to either its median value or its minimum and maximum. IIV were
not considered.

In addition, 5,000 ANC time courses were computed according to each CresSS. The
proportion of patients with at least grade 3 and the proportion of patients with grade 4
neutropenia was then calculated.

2.9. Palbociclib Exposure vs. Dose Reduction and Cut-Off Estimation

Trough palbociclib concentrations at steady state (CresSS) during the first cycle were
estimated via the final popPK model for each patient. Palbociclib areas under the curve of
concentration time course (AUC in mg.h/L) for a single dose were computed according to
the relation AUC = Dose/Cl (with the Dose, the dose at initiation in mg, Cl, the individual
clearance estimated via the final popPK model in L/h). Percentage of patients with dose
reduction was computed for 4 groups of patients according to their exposure metrics values
(AUC or CresSS). Only patients who started treatment at full dose (i.e., 125 mg/d) and with
complete intake and follow-up history were included.

3. Results

3.1. Population Description

All of our patients were female and their characteristics are presented in Tables 1 and 2.
In the construction of the popPK model, 181 samples from 143 unique patients were used.
One hundred and eight patients had one PK sample taken, 32 patients had two different
PK samples, and 3 patients had three different PK samples. Samples from the same patient
were considered as independent.
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Table 1. Patients’ demographic and biological characteristics. ALP: alkaline phosphatase; ALAT: alanine aminotrans-
ferase; ASAT: aspartate aminotransferase; Clcr: creatinine clearance; γ-GT: γ-glutamyltranspeptidase; popPK: population
pharmacokinetic; PK/PD: pharmacokinetic/pharmacodynamics.

Population Used to Build the popPK Model
(n = 143)

Population Used to Build the PK/PD Model
(n = 128)

Median (min–max) Number Median (min–max) Number

Age (years) 69 (40–92) 63 (40–92)

Serum creatinine (μmol/L) 68.0 (31.0–301.8) 68.0 (31–169.7)

Weight (kg) 67 (37–140) 66 (37–140)

Clcr (according to
Cockcroft–Gault formula)

(mL/min)
71.6 (22.1–282.3) 73.5 (22.1–282.3)

ALAT (UI/L) 18 (6–237) 17 (6–237)

ASAT (UI/L) 23 (12–205) 22 (12–205)

γ-GT (UI/L) 29 (9–1113) 28 (9–1113)

ALP (UI/L) 89 (11–819) 81 (11–644)

Lactate dehydrogenase (UI/L) 224 (85–675) 216 (85–675)

Total bilirubin (mg/L) 5.0 (1.5–27.2) 4.7 (1.5–27.2)

Albumin (g/L) 39.9 (20.0–48.0) 39.0 (20.0–48.0)

Plasma protein (g/L) 70.6 (53.0–98.0) 69.0 (53.0–88.0)

Table 2. Patients’ treatment and disease characteristics. NK: not known; popPK: population pharmacokinetic; PK/PD:
pharmacokinetic/pharmacodynamic.

Population Used to Build the popPK Model
(n = 143)

Population Used to Build the PK/PD Model
(n = 128)

Median (min-max) Number Median (min-max) Number

Number of previous
chemotherapies 2 (0–12) 2 (0–12)

Long-term hormonotherapy

Yes 93 (65.0%) 90 (70.3%)

No 40 (28.0%) 38 (29.7%)

NK 10 (7.0%) 0 (0.0%)

Previous radiotherapy

Yes 73 (51.0%) 73 (57.0%)

No 60 (42.0%) 55 (43.0%)

NK 10 (7.0%) 0.0 (0.0%)

Metastases

Yes 108 (75.5%) 105 (82.0%)

No 25 (17.5%) 23 (18.0%)

NK 10 (7.0%) 0.0 (0.0%)

Concurrent hormonotherapy

Fulvestrant 48 (33.6%) 45 (35.2%)

Letrozole 71 (49.6%) 69 (53.9%)

Others 14 (9.8%) 14 (10.9%)

NK 10 (7.0%) 0 (0.0%)
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Palbociclib samples were collected between day 1 and 28 after the start of the cycle. Of
these, 31 samples (18%) were collected during the first 8 days. The samples were collected
between 0.9 and 197.25 h after the last administration of palbociclib. The mean concentra-
tion was 77 (±80.2) μg/L, while concentrations ranged from 6 (LLOQ) to 229 μg/L. No
concentration was below the LLOQ. Doses administered during the PK evaluation were 75
mg (n = 16), 100 mg (n = 38), and 125 mg (n = 127) per day, 21 days out of 28.

3.2. Population Pharmacokinetic Model

The model that best described the PK data was a mono-compartmental model with
an absorption lag-time (Tlag), an absorption rate (ka), and an additive error model. The
lack of early observations (4% of the samples were taken 2 h maximum after the last
intake) did not allow us to estimate Tlag and V/F, so they were fixed to the values of a
mono-compartmental model of palbociclib developed by Royer et al. [14]. IIV was added
only on Cl/F, as when other IIV were added, the estimations were not sufficiently precise.
Parameter values estimated by Monolix® are presented in Table 3. The RSE are below 40%,
showing a good stability of the model.

Table 3. Estimated parameters of the final popPK model. ALP: alkaline phosphatase; Cl/F: palbociclib apparent oral
clearance; CV: coefficient of variation; Clcr: creatinine clearance according to Cockcroft–Gault formula; IIV: inter individuality
variability; ka: Palbociclib absorption rate; med: median; RSE: relative standard error; Tlag: Palbociclib absorption lag time;
V/F: palbociclib apparent volume of distribution.

Population PK Model
without Covariates

Final Population PK Model
with Covariates

Bootstrap of the Final
Population PK Model a

Consequences
of Covariates

Objective Function
Value 1775.75 1734.37

Parameter RSE (%) Parameter RSE (%) Parameter 2.5th–97.5th
percentiles

Cl/F (L/h) 57.42 3.2 57.13 2.8 57.21 [54.19–60.42]

Clcr (med = 71.6
mL/mn) on Cl/F . . 0.44 15.1 0.46 [0.35–0.57]

Cl/F increase
when Clcr
increase

ALP (med = 88.6 UI/L)
on Cl/F . . −0.14 34.1 −0.15 [−0.24–−0.05]

Cl/F increase
when ALP
decrease

V/F (L) 1580 . 1580 . . .

ka (h−1) 0.187 21.2 0.187 22.2 0.18 [0.17–0.19]

Tlag(h) (fix) 0.658 . 0.658 . . .

Cl/F IIV (CV %) 41.4 6.5 32.6 9.3 30.7 [21.8–37.1]

Additive error (μg/L) 10.12 19.6 13.84 20.5 14.70 [6.46–22.48]
a Estimates are presented with the median and 2.5th–97.5th percentiles values of the bootstrap (n = 1000).

Construction of a bicompartmental model was not possible, as the model failed to
converge on typical second-compartment population parameters (second-compartment
volume and inter-compartment clearance).

Covariates tested according to graphical approach and/or Wald test were creatinine-
mia, creatinine clearance (according to the Cockcroft–Gault formula), age, weight, and ALP
concentration. Fourteen patients had missing covariates, so they had the median value for
our population. Only two covariates significantly decreased OFV after forward/backward
approach: Clcr and ALP concentration on apparent clearance (Cl/F). Their addition resulted
in a decrease in OFV of 41.38 points and a decrease in Cl/F IIV of 8.8%.

The numerical predictive checks (Supplementary Figure S1) showed a good adequacy
of the model with our data. The cumulative distribution function and the probability
density function of the NDPE also showed a reasonable agreement (Supplementary Figures
S2 and S3).
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The Figure 2A,B shows a good fit of the final popPK model to the data. The population
predictions versus observed concentration did not show any particular mismatch, whereas
a slight under-prediction of high values and an over-prediction of low values is observed
when individual predictions are compared to observed palbociclib concentrations.

Figure 2. Observations versus population or individual predictions. (A) Palbociclib observations
versus palbociclib population predictions of the popPK model. (B) Palbociclib observations versus
palbociclib individual predictions of the popPK model. (C) ANC observations versus ANC popu-
lation predictions of the PK/PD model (log scale). (D) ANC observations versus ANC individual
predictions of the PK/PD model (log scale). The x-axis represents the population or individual
predictions, and the y-axis represents the observations. The red line (solid line) represents the trend
of the points. The black line represents the y = x line.

3.3. Pharmacokinetic/Pharmacodynamic Model

Of the 143 patients used for the popPK model, 15 patients could not be used for the
PK/PD analysis: 10 patients without ANC samples in our database and 5 patients with
incomplete intake and follow-up history (but not related to toxicity).

PK/PD patients’ characteristics are presented in Tables 1 and 2. One thousand five
hundred and eight ANC were recovered, i.e., an average of 11.8 ANC per patient with a
minimum of 3 and a maximum of 41. The duration of follow-up ranged from 35 days to
1 year (13 cycles). ANC values ranged from 0.29 G/L to 8 G/L. One point six percent of
samples had a value below 0.5 G/L, 25.7% between 0.5 and 1 G/L, 50.8% between 1 and
2 G/L and 21.9% above 2 G/L.

Several semi-mechanistic models were tested, such as Friberg’s model with an Emax
effect, a model with more complex G-CSF effect and a model with quiescent compartments
of stem cells. The most relevant model was the one developed by Friberg with a linear drug
effect. During the model building phases, Monolix® failed to converge to a value for gamma
variability. By removing this variability, the OFV did not change significantly (<3.84), so
this variability was removed. The parameters estimated by Monolix® are presented in
Table 4. The RSE of the population parameters are less than 40% showing good model
stability.
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Table 4. Estimated parameters of the final PK/PD model. CV: coefficient of variation; IIV: inter individuality variability;
med: median; MTT: mean transit time; RSE: relative standard error.

Population PK/PD Model
without Covariates

Final PK/PD Model with
Covariates

Consequences
of Covariates

Bootstrap Simulation

Objective
Function Value

2410.37 2400.90

Parameter RSE (%) Parameter RSE (%)
Median

Parameter a
2.5th–97.5th
Percentiles

Base (G/L) 2.94 3.70 2.92 3.55 2.95 [2.75–3.16]

Slope (L/μg) 0.0011 6.60 0.0011 6.46 0.0011 [0.0009–0.0014]

MTT (days) 5.32 4.81 5.29 4.93 5.36 [4.61–6.30]

Gamma 0.109 7.52 0.103 7.01 0.104 [0.085–0.137]

Base IIV (CV %) 31.8 8.67 29.6 9.21 29.0 [24.6–33.1]

Age on Base
(med = 63.7 years) 0.465 34.00

Base increases
with age
increase

0.51 [0.23–0.78]

Slope IIV (CV %) 26.4 12.80 28.8 11.70 28.0 [21.2–34.1]

MTT IIV (CV %) 18.1 21.00 17.9 21.10 19.0 [10.0–33.0]

Exponential error 0.34 2.40 0.34 2.02 0.33 [0.31–0.36]
a Estimates are presented with the median values of the bootstrap (n = 100).

Covariates significant in the forward step were age and albuminemia on Base, but
only age was significant in the backward step. Age decreased the OFV of the final model
by 9.47 points and the baseline IIV by 2.2%. The median parameters of the 100 bootstrap
simulations are close to the parameters estimated in the final PK/PD model (Table 4).

The observations versus individual predictions plot (Figure 2C,D) comparing observa-
tions to predictions shows a slight underestimation of the highest values (> 2.5 G/L) and
an overestimation of lowest values (< 0.6 G/L).

The corrected visual predictive checks (Supplementary Figure S4) showed that the
model gave a good description of the ANC during the first year of treatment with palboci-
clib. The cumulative distribution function and the probability density function of the NDPE
showed a good distribution of the empirical NDPE of the PK/PD model (Supplementary
Figures S5 and S6).

3.4. Simulation

Looking at the different simulations of ANC kinetics as a function of covariates
(Figure 3), we observe that a “median” patient (i.e., with median covariates) does not
experience neutropenia. Decreased Clcr or increased ALP leads to an increase in plasma
concentrations and therefore in the neutropenic effect. According to our model, the younger
a patient, the lower her baseline ANC. Consequently, younger patients are more at risk of
neutropenia.
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Figure 3. Simulation of the impact of different covariates’ values on ANC time course. (A) Simulations
of palbociclib treatment with median covariates except Clcr. (B) Simulations of palbociclib treatment
with median covariates except ALP. (C) Simulations of palbociclib treatment with median covariates
except age. Cycle of 21 days of treatment (125 mg of palbociclib per day), then 7 days of therapeutic
pause. In each graph, only one covariate is changed, the others are fixed at the median value. The
extreme values of the covariates in the population were selected for each simulation.

The risk of developing a grade 3 or 4 neutropenia at the nadir increases with estimated
CresSS (Figure 4). At an estimated CresSS of 100 μg/L, a patient has an 18% risk of developing
grade 4 neutropenia (Figure 4).

Figure 4. Risk of grade 3 or grade 3/4 neutropenia depending on the residual concentration at steady
state. 5000 simulations of ANC kinetics were simulated at every CresSS to 0 at 250 μg/L.
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3.5. Palbociclib Exposure vs. Dose Reduction and Cut-Off Estimation

Of the 143 patients, 127 could be used to calculate the relation between palbociclib
exposure and a dose reduction (10 patients without complete intake and follow-up history
and 6 patients who began at dose lower than 125 mg/d). Of these 127 patients, 75 were not
subject to a dose decrease during treatment.

For both the estimated AUC and estimated CresSS, we observed that the proportion of
patients with a dose reduction was more important in the highest exposure group (estimated
AUC > 2.77 mg.h/L or estimated CresSS > 95 μg/L): 75% to 78.1% of the most exposed patients
had a dose decrease, compared to 25% to 32.3% in the other groups (Figure 5).

 
Figure 5. Proportion of patients with dose reduction. Black bars represent AUC (Area under the curve
(in mg.h/L)) and gray bars represent CresSS (Residual concentration at the steady state (in μg/L)). High
exposure group (n = 32): 2.77 < AUC < 5.63 or 95 < CresSS < 204, intermediate high exposure group
(n = 32): 2.17 < AUC < 2.76 or 70 < CresSS < 94, intermediate low exposure group (n = 32): 1.76 < AUC <
2.16 or 53 < CresSS < 69, and low exposure group (n = 31): 1.12 <AUC < 1.75 or 27 < CresSS < 52.

4. Discussion

Neutropenia is the most common adverse event during treatment with palbociclib
[1–3,5,6,15]. In the event of grade 3 (ANC < 1 G/L) and grade 4 (ANC < 0.5 G/L) neu-
tropenia, the treatment is interrupted, and the dose may be reduced [3,5]. Investigation
of ANC kinetic during palbociclib treatment may provide a better understanding of the
exposure-toxicity relationship and allow us to predict which patients are more at risk.
This study is the first PK/PD model of ANC time-course in real-life patients treated by
palbociclib during one year.

To our knowledge, the only popPK model of palbociclib built from rich data is the
one developed by Sun [16]. This model was built with data from phase I and I/II clinical
trials (183 patients with an average of 10.6 observations per patient). This model is a
bicompartmental model with an absorption lag time and a first-order constant of absorption.
With our data, the estimation of either lag time or bicompartmental model was impossible.
Indeed, only 4% of the samples were taken before the 2nd hour after the last dose and 5.5%
after the 30th hour after the last dose. This lack of early and late observations makes it
impossible to estimate parameters associated with the second compartment. Moreover, in
contrast to the model proposed by Royer [14], we were not able to estimate the value of
the volume of distribution and the variability of the absorption constant. Nevertheless, we
observeda good fit of the model to the data as shown in Figure 2B.

During the covariate step, in addition to ALP, age, weight, creatininemia and Clcr
(according to the Cockcroft–Gault formula) were significantly linked to Cl/F IIV when
added solely. However, during the backward step, only the Clcr (and ALP) showed a
significant impact. This may be explained by the fact that Clcr considers all the other
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covariates. Although renal elimination is not the major elimination route of palbociclib,
study showed a relationship between renal insufficiency (according to the Clcr calculated
by the Cockcroft–Gault formula) and palbociclib AUC, which quantifies the exposure to
palbociclib. A decrease in Clcr leads to an increase in the AUC as a consequence of a
decrease in the elimination of palbociclib [17]. According to its main route of elimination
(i.e., hepatic [3,5]), the model also showed a relationship between ALP and palbociclib
elimination. The higher the ALP, the lower the elimination. An increase in ALP can be
explained by liver damage secondary to breast cancer or during liver disease [18].

Parameters estimated to describe the ANC time course were Base (2.92 G/L; 29.6%
IIV), Slope (0.0011 L/μg; 28.8% IIV), Mean Transit Time (MTT; 5.29 days; 17.9% IIV) and γ

(0.102). They are close to most of the previous PK/PD models for other compounds, but
also to the model by Sun [9,19,20]. The fact that a patient experiences metastases and/or
has already had chemotherapy and/or long-term hormone therapy and/or radiotherapy
could suggest that the patient suffers from an advanced disease and therefore a poorer
general condition that could lead to a higher risk of neutropenia [21]. After modelling the
ANC kinetic, these covariates did not show a significant impact in our PK/PD model, nor
the type of concomitant hormone therapy. The fact that these covariates did not emerge
as significant indicates that these characteristics are not of major interest in the choice
of palbociclib dosage. This observation is in agreement with several other pre-existing
models that did not show relationships between these covariates and ANC kinetics during
cytotoxic dosing [9,19,20].

The only covariate that emerged as significant in the PK/PD model was the effect
of age on the patient circulating neutrophils at baseline. The older the patient, the more
circulating neutrophils at the beginning of treatment. In several existing models, a negative
correlation between ANC at initiation and albuminemia was highlighted: the lower the
albuminemia, the higher the ANC. According to Schmitt et al. [12], the relationship between
albuminemia and circulating neutrophils can be explained by the fact that low albuminemia
is a sign of inflammation and therefore of increased neutrophils synthesis. In the paper by
Sun, the impact of albuminemia on ANC was also evidenced, with a parameter associated
with baseline albuminemia of −1.03. In our data, albuminemia did not show a significant
impact on ANC at initiation, whereas age did. In our population, there is a negative
correlation between age and albuminemia (data not shown), which may explain why age
has an impact on the parameter Base. Indeed albuminemia showed a significant impact
in the forward step but not in the backward step. Part of the effect of albuminemia must
be accounted for by age. Sun also showed the impact of gender on the Base value. Our
study cannot evidence this correlation because all our patients were female. Nevertheless,
Base value is lower than the one for women estimated by Sun (2.92 versus 3.63 G/L). Our
study is based on real life patients and not on patients selected for clinical trials. Therefore,
we may treat patients in poorer general condition and with lower ANC. Among other
parameters independent of treatment intake, MTT and γ do not differ too much from
pre-existing models [8,9,19,20].

Regarding the limitations of this work, we assume a good compliance of the patient,
and an error-free completion of patients’ information. However, as we conducted a retro-
spective study, some patient records did not include all the blood samples recommended
by the French drug agency (ANSM). The poor estimation of the extreme values of our data
can be explained by the low number of observations for patients with grade 3 (25.7%) and
grade 4 (1.6%) neutropenia. The small number of patients may also be a limitation in the
determination of covariates. A last limitation of our work is the absence of PK/efficacy
analysis. A non-significant trend between mean trough concentrations and progression-free
survival was highlighted [22]. Yet, our data were not mature enough to draw any firm
conclusion for efficacy.

Because no formal target concentration exists for palbociclib, Mueller-Schoell et al. sug-
gest using the mean trough concentration observed in the clinical trials (61 μg/L) as a
target [23]. This concentration leads to a risk of grade 3 neutropenia of approximately 31%
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and of grade 4 neutropenia of approximately 2%. As patients experiencing severe palbociclib-
induced neutropenia are at low risk of infection [24], we have refined this therapeutic target
to a higher value. Based on our simulations, in order to avoid a risk of grade 4 neutropenia
greater than 20%, estimated CresSS should not exceed 100 μg/L. This is confirmed, in real life,
by the fact that patients with CresSS > 95 μg/L benefit of nearly 3 times more dose reductions
than patients with lower exposure (Figure 5). Thus, a CresSS lower than 100 μg/L seems
reasonable to avoid severe toxicity. It should be noted that, as not all measured concentrations
were trough at steady-state, CresSS was estimated for all patients. Thus, all our interpretations
are based on CresSS estimated from our popPK model.

5. Conclusions

A popPK model and a semi-mechanistic PK/PD model constructed from general
population data were presented. Interindividual variability in Cl/F was partially explained
by Clcr and ALP concentration. Interindividual variability in ANC at baseline was also par-
tially explained by age (without any physiological explanation). Based on our simulations,
an estimated palbociclib CresSS below 100 μg/L would limit the risk of grade 4 neutropenia
below 20% and should not be exceeded. In order to obtain a full target (i.e., a low boundary
in addition to this high boundary), exposure/efficacy relationships should be investigated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13101708/s1. Figure S1. Numerical predictive checks (NPC) of the palbociclib
final population pharmacokinetic model. Figure S2. Cumula tive distribution functions of the
normalised prediction distribution errors (NPDE) of the final Palbociclib population pharmacokinetic
model. Figure S3. Probability density function of the normalised prediction distribution errors
(NPDE) of the final Palbociclib population pharmacokinetic model. Figure S4. Prediction corrected
visual predictive checks (VPCc) of the final Palbociclib pharmacokinetic/pharmacodynamic model.
Figure S5. Cumulati ve distribution functions of the normalised prediction distribution errors
(NPDE) of the final Palbociclib pharmacokinetic/pharmacodynamic model. Figure S6. Probability
density function of the normalised prediction distribution errors (NPDE) of the final Palbociclib
pharmacokinetic/pharmacodynamic model.
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Abstract: The aim of this study was to apply molecular epidemiology, antimicrobial surveillance,
and PK/PD analysis to guide the antimicrobial treatment of gonococci infections in a region of the
north of Spain. Antibiotic susceptibility testing was performed on all isolates (2017 to 2019, n =
202). A subset of 35 isolates intermediate or resistant to at least two antimicrobials were selected to
search for resistance genes and genotyping through WGS. By Monte Carlo simulation, we estimated
the probability of target attainment (PTA) and the cumulative fraction of response (CFR) of the
antimicrobials used to treat gonorrhea, both indicative of the probability of treatment success. In
total, 2.0%, 6.4%, 5.4%, and 48.2% of the isolates were resistant to ceftriaxone, cefixime, azithromycin,
and ciprofloxacin, respectively. Twenty sequence types were identified. Detected mutations were
related to antibiotic resistance. PK/PD analysis showed high probability of treatment success of
the cephalosporins. In conclusion, multiple populations of N. gonorrhoeae were identified. We can
confirm that ceftriaxone (even at the lowest dose: 250 mg) and oral cefixime are good candidates to
treat gonorrhea. For patients allergic to cephalosporins, ciprofloxacin should be only used if the MIC
is known and ≤0.125 mg/L; this antimicrobial is not recommended for empirical treatment.

Keywords: N. gonorrhoeae; antibiotic resistance; cephalosporins; azithromycin; pharmacokinetic/
pharmacodynamic (PK/PD) analysis; whole-genome sequencing (WGS)

1. Introduction

Sexually transmitted infections (STIs) are a serious global health problem [1]. The
prevalence of gonorrhea has increased significantly in recent years. The World Health
Organization (WHO) estimates that there are 87 million new cases of gonorrhea each
year [2].

In recent years, the most frequently prescribed antibiotics for the treatment of gonor-
rhea have become less effective, in part due to the inexorable progression of gonococcal
antimicrobial resistance [3,4]. In 2018, the WHO reported the expansion of multidrug-
resistant strains of N. gonorrhoeae worldwide [5]. In Europe, the Euro-GASP (depending
on the European Centre for Disease Prevention and Control) provides important data
at the European level on antimicrobial resistance, which are used to inform treatment
guidelines [6]. Thus, the determination of antimicrobial susceptibility to identify isolates
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with less susceptibility and resistance to antimicrobial agents, and monitoring of strain
populations via molecular techniques to identify gonococcal clones that are important for
driving the transmission of multidrug-resistant gonococci, become crucial. Additionally,
ensuring effective empirical therapy is also essential.

Current guidelines—such as the European guidelines for the diagnosis and treat-
ment of gonorrhea in adults [7], and the Center for Disease Control and Prevention (CDC)
Treatment Guidelines for Gonococcal Infection [8], both from 2020—recommend a dual
therapy with extended-spectrum cephalosporins (ESCs, such as ceftriaxone or cefixime)
and azithromycin for the treatment of uncomplicated gonorrhea when the antimicrobial
susceptibility is unknown. Some guidelines recommend fluoroquinolones as an alternative
treatment of pharyngeal infections if the isolate is known to be fluoroquinolone-susceptible
and there are indications against using ceftriaxone—for instance, history of severe hyper-
sensitivity to cephalosporins [7,9].

Recently, improved methods for the evaluation of the effects of pharmacokinetics (PK)
and pharmacodynamics (PD) on treatment outcomes have become available for a number
of other infections. In this regard, better data and new research on PK contributors to gon-
orrhea treatment outcomes are needed [10]. PK/PD analysis integrates information about
the concentration of the drug that reaches the infection site and induces the therapeutic
response, and the susceptibility of the pathogen to the antibiotic, expressed as the minimum
inhibitory concentration (MIC). This allows researchers or clinicians to select the optimal
antibiotic and dosing regimen for each infectious process and patient in order to enhance
the effect of the antibiotic, minimizing the incidence of side effects and the emergence of
resistance [11].

The aim of this work was to apply molecular epidemiology—including whole-genome
sequencing (WGS) information, antimicrobial surveillance data, and PK/PD analysis—to
guide the antimicrobial treatment of gonococci infections.

2. Materials and Methods

2.1. N. gonorrhoeae Isolates

All isolates from 2017 to 2019 were collected at the Microbiology Service of the Univer-
sity Hospital of Araba (HUA). The hospital, located in the Basque Country (Spain), covers
a population of ~400,000 inhabitants, and has 780 beds.

Non-duplicated N. gonorrhoeae isolates from patients attending to the Emergency,
Infectious Disease, and Primary Care services were included in the study. Gonococcal
isolation was performed on chocolate agar PolyViteX VCA and Chocolate agar PVX plates
(bioMérieux, Marcy-l’Étoile, France). The suspected colonies were then identified by
mass spectrometry using the MALDI-TOF MS (Microflex LT, Bruker-Daltonics, Bremen,
Germany) methodology [12].

This study met the exemption criteria of the ethics committee of clinical research
because the isolates analyzed were collected in routine practice, and did not allow the
identification of patients.

2.2. Antibiotic Susceptibility Testing

Isolated strains were subjected to antibiotic susceptibility testing using the MIC gra-
dient strip tests (Liofilchem, Roseto degli Abruzzi, Italy) according to the manufacturer’s
instructions. The minimum inhibitory concentrations (MICs) of tetracycline, penicillin,
cefixime, ceftriaxone, ciprofloxacin, and azithromycin were determined. From the MIC
distribution data of all of the isolates, the calculation of MIC50 and MIC90—i.e., the low-
est concentration of the antimicrobial capable of inhibiting 50% and 90% of the isolates,
respectively—was performed. Resistance rates were calculated with reference to the Euro-
pean Committee on Antimicrobial Susceptibility Testing (EUCAST) [13] and the Clinical
and Laboratory Standards Institute (CLSI) [14]. The current EUCAST MIC breakpoints
for penicillin are ≤0.06 mg/L (susceptible) and >1 mg/L (resistant); for ceftriaxone and
cefixime, ≤0.125 mg/L (susceptible) and >0.125 mg/L (resistant); for ciprofloxacin, ≤0.03
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mg/L (susceptible) and >0.06 mg/L (resistant); and for tetracycline, ≤0.5 mg/L (suscep-
tible) and >1 mg/L (resistant). For azithromycin, the EUCAST epidemiological cutoff
(ECOFF) of 1 mg/L was used to identify non-wild-type (WT) isolates. CLSI breakpoints
were the following: for penicillin, ≤0.06 mg/L (susceptible), 0.12–1 mg/L (intermedi-
ate), and ≥2 mg/L (resistant); for ceftriaxone and cefixime, ≤0.25 mg/L (susceptible);
for azithromycin, ≤1 mg/L (susceptible); for ciprofloxacin, ≤0.06 mg/L (susceptible),
0.12–0.5 mg/L (intermediate), and ≥1 mg/L (resistant); and for tetracycline, ≤0.25 mg/L
(susceptible), 0.5–1 mg/L (intermediate), and ≥2 mg/L (resistant).

2.3. WGS Molecular Epidemiology and Antimicrobial Resistance Determinants

A subset of 35 strains intermediate or resistant to at least two of the antimicrobials
tested were selected to search for resistance genes and genotyping through WGS. The DNA
of the strains was extracted using the NucleoSpin Tissue Kit (Macherey-Nagel, Duren,
Germany) and sequenced using the Illumina MiSeq platform with the Nextera DNA Flex
Library Prep Kit (Illumina, San Diego, CA, USA). The genomic information was received
as small nucleotide sequence reads, and longer sequences as contigs. These sequence data
were submitted to GenBank under the BioProject accession number PRJNA684048 (https://
www.ncbi.nlm.nih.gov/sra/PRJNA684048, accessed on 10 December 2020). Subsequently,
the assembled genomes of the isolates were input to the ResFinder 3.2 tool on the CGE
website (https://cge.cbs.dtu.dk, accessed on 10 December 2020) for the identification of
acquired antimicrobial resistance genes and chromosomal mutations. Default thresholds of
90% identity and 60% gene coverage were employed. Additionally, the PubMLST tool was
employed to detect antimicrobial resistance determinants (https://pubmlst.org/neisseria/,
accessed on 10 December 2020). Multilocus sequence typing (MLST) and N. gonorrhoeae
multi-antigen sequence typing (NG-MAST) were performed on the sequences produced
by WGS, and they were compared with existing alleles on the Neisseria MLST website
(http://pubmlst.org/neisseria/, accessed on 10 December 2020) and NG-MAST (http:
//www.ng-mast.net/, accessed on 10 December 2020) schemes for the determination of
allele numbers and sequence types (STs). All new alleles or STs were submitted to the
NG-MAST or MLST website curators to be assigned an allelic number and ST. The genomic
epidemiology of the isolates was determined based on whole-genome analysis. An SNP
phylogenetic tree, based on FASTQ files, was generated by using the default settings of the
MINTyper 1.0 server, available at https://cge.cbs.dtu.dk/services/MINTyper/ (accessed
on 10 December 2020). The complete genome of isolate FA1090 (NC_002946.2) was used as
a reference. Furthermore, a genome-based clustering was also performed using the TYGS
platform, accessible at https://tygs.dsmz.de/ (accessed on 10 December 2020).

2.4. Pharmacokinetic/Pharmacodynamic (PK/PD) Analysis

In order to predict the probability of PK/PD target attainment, different antibiotics
and dosing regimens were evaluated (Table 1).

From the published pharmacokinetic parameters listed in Table 1 [15–19], and from
the study sample MIC distribution, we estimated the probability of target attainment
(PTA, defined as the probability that at least a specific value of a PK/PD index is achieved
at a certain minimum inhibitory concentration) and calculated the cumulative fraction
of response (CFR, defined as the expected population probability of target attainment
for a specific drug dose and a specific population of microorganisms). PK/PD indices
and values related to efficacy are also listed in Table 1. Five-thousand-subject Monte
Carlo simulations with Oracle® Crystal Ball Fusion Edition v.11.1.2.3.500 (Oracle USA Inc.,
Redwood City, CA, USA) were used to estimate the PTA and CRF values, indicative of
the probability of target success. PTA and CFR ≥ 80% but < 90% were associated with
moderate probabilities of success, whereas a CFR ≥ 90% was considered optimal against
that bacterial population. More detailed information about the PTA and CFR calculations
is presented in the Supplementary Materials.
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Table 1. Dose regimen, PK/PD index, and pharmacokinetic parameters used for simulations.

Ciprofloxacin Azithromycin Ceftriaxone Cefixime

Dose regimen 500 mg
single dose, PO

1 g, 2 g
single dose, PO

0.25, 0.5, 1 g
single dose, IM

2 g/day, IV

400 mg/day, PO

PK/PD index AUC0–∞/MIC
≥125

AUC0–∞/MIC
≥59.5

f T>MIC ≥ 20 h (IM)
f T>MIC ≥ 60% (IV)

f T>MIC ≥ 60%

AUC0–∞ (mg h/L) 10.7 ± 2.6
CL/F (L/h) 144 ± 39.5

Ke (h−1) 0.082 ± 0.029 0.204 ± 0.02
Vd (L) 14.70 ± 4.93 19 ± 0.03

Fu 0.05 0.35
F 1 0.42 ± 0.045

Ka (h−1) 1 0.55
References [15,16] [17,18] [19] [19]

IM: intramuscular; IV: intravenous; PO: oral; AUC0–∞: area under the plasma concentration vs. time curve from 0
to infinity; CL: clearance; F: bioavailability; Fu: unbound fraction; Ka: absorption constant rate; Ke: elimination
constant rate; Vd: volume of distribution.

3. Results

3.1. N. gonorrhoeae Isolates and Antibiotic Susceptibility Testing

A total of 202 isolates of N. gonorrhoeae were collected in the study period (2017–2019).
Of these, 85% were collected from men, and 15% from women. In men, the urethral
exudate was the most common sample (87%); other locations were anal exudate (11%) and
pharyngeal exudate (2%). Endocervical (64%) and vaginal exudate (33%) were the most
common among women, and anal exudate (1%) was also detected. The average age was 31
years (range 14–67) and 33 years (age range 16–61) for men and women, respectively. A
total of 10 patients had N. gonorrhoeae-positive cultures in two anatomical sites (7 pharynx
and rectum, 3 pharynx and urethra), but only one isolate per patient was included in the
susceptibility study.

Table 2 shows the antimicrobial susceptibility of N. gonorrhoeae isolates. The higher
resistance rates were obtained for ciprofloxacin and tetracycline. Eleven isolates were
resistant to azithromycin (5.4% of the total), all of which were collected in 2019. Resistant
isolates had MICs of 1.5 mg/L (n = 5), 2 mg/L (n = 5), and 16 mg/L (n = 1). The percentage
of isolates resistant to cephalosporins varied depending on the EUCAST and CLSI clinical
breakpoints: for cefixime, resistance rates were 6.4% (EUCAST) and 1.6% (CLSI), and for
ceftriaxone they were 2.0% (EUCAST) and 0.5% (CLSI). The MIC distribution of the six
antibiotics is presented in Figure S1.

Table 2. Antimicrobial susceptibility of 202 N. gonorrhoeae isolates collected in 2017–2019 (n = 202).

Antimicrobial
MIC Range

(mg/L)
MIC50

(mg/L)
MIC90

(mg/L)
R (%)

EUCAST
R (%)
CLSI

Penicillin 0.002–64 0.19 3 12.6 12.6
Cefixime 0.008–0.75 0.008 0.047 6.4 1.6

Ceftriaxone 0.002–0.5 0.008 0.094 2.0 0.5
Azithromycin 0.016–16 0.19 0.75 5.4 a 5.4
Ciprofloxacin 0.015–64 0.012 8 48.2 45.2
Tetracycline 0.9->256 1 32 34.2 34.2

MIC: minimum inhibitory concentration; MIC50 and MIC90: minimum inhibitory concentration at which 50%
and 90% of the isolates were inhibited, respectively; R: percentage of resistant isolates. a: According to the
epidemiological cutoff (ECOFF) value.

3.2. Genotyping: MLST and NG-MAST

MLST genotyping identified multiple distinct populations of N. gonorrhoeae in the
isolates of HUA in 2017–2019 (Table 3). Overall, a total of 20 MLST STs were identified
among the 35 isolates analyzed, with ST-9363 being the most common (n = 8), followed
by ST-7363 (n = 4) and ST-7822 (n = 3), while 14 STs were represented by a single isolate.
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Two new MLST STs (ST-14274 and ST-14304) were previously unreported, and resulted
from combinations of known alleles. NG-MAST further discriminated between strains
with identical MLST-STs, and 27 different NG-MAST STs were observed among the 35
isolates analyzed. ST-6765 predominated (n = 7), ST-470 and ST-13070 were observed in
two isolates, and the remaining STs were represented by single isolates. Additionally, six
NG-MAST STs (17.1%) were previously unreported, and resulted from new combinations
of known alleles.
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3.3. Antimicrobial Resistance Determinants

Genomic markers associated with resistance to ciprofloxacin, tetracycline, β-lactams,
and azithromycin were found (Table 3). All of the ciprofloxacin-resistant strains investigated
presented two substitutions in GyrA and one or two substitutions in ParC. At GyrA, they
presented substitutions in positions 91 (all presented an S91F) and 95 (D95A/G/N). The
main amino acid substitution observed in ParC was S87R (n = 13), either alone, or associated
with S88P. Other substitutions included D86N and E91G.

The tetM gene was detected in the four highly tetracycline-resistant strains (MIC ≥
24 mg/L). The V57M substitution in the ribosomal protein S10 subunit encoded by the
rpsJ gene was detected in 33/35 (94.3%) of the strains investigated, irrespective of their
tetracycline susceptibility. Chromosomal mutations in the porB gene were also found in
tetracycline-resistant strains. The G120K substitution was detected in 14 isolates, and was
associated with A121G/N/D.

The only sequenced isolate resistant to ceftriaxone (MIC: 0.25 mg/L) presented the
penA mosaic allele XXXIV associated with an L421P substitution in PBP1, a G120K/A121N
in the PorB, and an adenine deletion (-35A Del) in the mtrR promoter.

Twenty-five isolates showed different degrees of penicillin resistance. The four high-
level penicillin-resistant strains (n = 4; MIC ≥ 2 mg/L) carried the blaTEM-1B gene, which
encodes the TEM-1 β-lactamase; these four strains were β-lactamase producers, as de-
termined by the nitrocefin test. The remaining isolates (n = 21) presented an MIC range
between 0.19 and 0.75 mg/L. Nineteen isolates were associated with non-mosaic penA
alleles, with non-mosaic II being the most common (n = 10); the remaining six isolates
were associated with mosaic penA alleles (mosaic X and XXXIV, n = 3 each). The major
amino acid substitution observed in the PBP1 protein was Leu421Pro (n = 13), which
was correlated with a degree of intermediate resistance. Simultaneous substitutions at
amino acids G120 and A121 in the PorB porin—associated with decreased intake of several
antimicrobials—were observed in 16 penicillin-resistant isolates, with the substitutions of
G120K/A121N being the most common (n = 10).

The 13 isolates with an MIC of 1–2 mg/L against azithromycin were associated
with mutations in the promoter region and coding sequence of the mtrR genes, and with
mutations in the gene encoding the 23S rRNA. Two isolates presented the C2599T mutation
in the 23S rRNA gene associated with a G45D substitution in the MtrR protein. A deletion
of one guanine (G), 20 nucleotides downstream of the -35A deletion, was observed in
the mtrR promoter of 11 isolates; their sequences showed a 98.48% identity with that
of strain 38,194 (GenBank accession number KT954125), and 86.36% with strain FA1090
(GenBank accession number NC_002946). The -35A deletion in the repeated sequence of
the mtrR promoter was not observed in the resistant isolates; however, it was observed in
six susceptible isolates (MIC, <0.5 mg/L) as the only mechanism related to azithromycin
resistance. In the MtrR protein, the amino acid substitutions of A39T (n = 3) and G45D (n =
2) were detected in azithromycin-resistant strains. The alignment of partial sequences is
presented in Supplementary Figure S2.

Whole-genome SNP-based phylogenetic analysis of the 35 sequenced isolates revealed
a great genetic dissimilarity between isolates, with differences ranging from 0 to 2378 SNPs;
however, three clades involving non-azithromycin-susceptible isolates were identified
(Figure 1). Clade 1 consisted of three isolates belonging to MLST ST-7822, with an Ala39Thr
substitution in the MtrR gene and a deletion of one G, 20 nucleotides downstream of where
the -35A deletion occurs; no SNP differences were observed. Clade 2 consisted of two
isolates belonging to MLST ST-1580, with the C2599T mutation in the 23S rRNA gene and
a Gly45Thr substitution in the MtrR gene; no SNP differences were observed. Clade 3
consisted of eight closely related isolates belonging to MLST ST-9363, with a deletion of
one G, 20 nucleotides downstream of where the -35A deletion occurs; differences between
these isolates ranged from 0 to 20 SNPs. The same three clusters were obtained when the
phylogenetic tree was constructed from the whole genome (data not shown).
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Figure 1. Clustering of the 35 N. gonorrhoeae sequences obtained by WGS, based on genome SNPs;
red indicates non-azithromycin-susceptible isolates.

3.4. Pharmacokinetic/Pharmacodynamic (PK/PD) Analysis

Figure 2 shows the probability of target attainment (PTA) values of all of the antimicro-
bial agents studied, as well as their MIC distribution. On the basis of the simulation results,
and taking into account the targets for the different antimicrobial agents, PTA values equal
to or higher than 90% were achieved with (1) azithromycin at single doses of 1 g and 2 g,
for MICs up to 0.064 and 0.125 mg/L, respectively; (2) ceftriaxone at 250, 500, and 1000 g,
administered intramuscularly as single doses, for MICs up to 0.064, 0.125, and 0.25 mg/L,
respectively, and for MICs equal to or lower than 1 mg/L for 2 g/day via the intravenous
route; (3) cefixime at 400 mg/day by oral route, for MICs up to 0.125 mg/L; and (4) single
oral doses of ciprofloxacin at 500 mg, for MICs up to 0.125 mg/L.

Table 4 features the CFR values obtained after the PK/PD analysis and Monte Carlo
simulations. Values higher than 90% were only achieved with the two cephalosporins.

Table 4. Cumulative fraction of response (CFR) calculated for all antibiotics and dosing regimens.

Antibiotic Dosing Regimen CFR (%)

Ciprofloxacin 500 mg, single dose, PO 51

Azithromycin 1 g single dose, PO 33
2 g single dose, PO 64

Ceftriaxone

1 g, single dose, IM 100
500 mg, single dose, IM 98
250 mg, single dose, IM 96

2 g/day, IV 100

Cefixime 400 mg/day, PO 97
PO: oral administration; IM: intramuscular; IV: intravenous.
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Figure 2. Probability of target attainment (PTA) of azithromycin, ceftriaxone, cefixime, and
ciprofloxacin. Grey bars: MIC frequency.
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In supplementary Tables S2–S9, the mean, median, and 2.5% and 97.5% confidence
intervals of PTA and CFR for every antimicrobial and dosing regimen are presented.

4. Discussion

To address the antimicrobial resistance problem, more efficient means of evaluating
therapies for gonorrhea are needed. Our purpose in this study was to apply molecular
epidemiology—including whole-genome sequencing (WGS) information, antimicrobial
surveillance data, and PK/PD analysis—to guide the antimicrobial treatment of gonococci
infections in the Basque Country (Spain).

In this region of the north of Spain, the percentage of resistance was of the same order
as recent data obtained from Madrid [20] and Barcelona [21,22], and also of those reported
in other European countries [23]. As expected, the highest percentage of resistance was
detected for ciprofloxacin (>45%). The historical resistance of gonococci to ciprofloxacin is
very well known, and it has been related to the incidence of gonorrhea at the population
level. In fact, ciprofloxacin is no longer recommended for treatment of this STI, except
for pharyngeal infections if susceptibility has been proven or if the patient is allergic to
β-lactams [9].

In spite of the differences in the resistance breakpoint between EUCAST [13] and
CLSI [14] for ciprofloxacin (0.125 and 1 mg/L, respectively), the percentage resistance
we obtained was similar, since very few isolates are affected by the discrepancies in the
breakpoints (Figure 1). However, discrepancies in the clinical breakpoint for cephalosporins
(0.25 mg/L from EUCAST and 0.5 mg/L from CLSI) justify the difference in the percentage
resistance for cefixime (6.5% vs. 1.6%) and ceftriaxone (2.0% vs. 0.5%). Unlike the other
antibiotics, all isolates resistant to azithromycin were collected in 2019 (n = 11). These data
are consistent with the recent increase in the resistance of N. gonorrhoeae to azithromycin in
Spain and worldwide [22,23]. Some studies support the notion that the selection/induction
of azithromycin resistance in N. gonorrhoeae may be associated with the general use of
azithromycin for the treatment of respiratory infections or non-gonococcal urethritis [24].
According to the susceptibility profile, azithromycin and cephalosporins are the most
active antimicrobials. These results are in agreement with the European guidelines, which
recommend the use of a dual therapy with ceftriaxone and azithromycin for all gonorrhea
cases [7].

Antibiotic susceptibility data were consistent with those obtained through WGS,
and the mutations detected were related to resistance to the studied antibiotics. The
genomic study detected the main antimicrobial resistance determinants associated with
resistance to β-lactams (penA, porB, ponA, mtrR, and blaTEM1-B), ciprofloxacin (gyrA and
parC), and tetracycline (tetM and rpsJ). All ciprofloxacin-resistant strains presented two
substitutions in GyrA, together with substitutions in the ParC protein, while among the
ciprofloxacin-susceptible isolates, no mutations in the gyrA and parC genes were detected,
as previously reported [25]. Regarding ceftriaxone—and as expected—the mutations found
in the analyzed resistant isolates were associated with reduced susceptibility or resistance
to ESC [26]. Tetracycline resistance in N. gonorrhoeae may be related to the presence of the
plasmid-mediated TetM protein (MIC, 16–64 mg/L), or to mutations in some chromosomal
genes (MIC, 2–4 mg/L) [27,28]. In our study, the tetM gene was detected only in high-level
resistant isolates; meanwhile, low-level resistant isolates only presented mutations in the
chromosomal genes penB (PorB), rpsJ (S10), and mtrR and its promoter. These isolates
presented at least two or three mutated genes, suggesting that more than one antimicrobial
resistance determinant is needed to confer resistance.

Resistance to β-lactams, macrolides, and tetracycline may result from overexpression
of the MtrCDE efflux pump related to mutations in the promoter and/or coding regions of
the mtrR repressor, which causes not only resistance, but also an increase in the MIC [25].
The -35A deletion in the promoter sequence—the most common mutation—was detected
only in isolates recovered in 2017 and 2018, but it was not observed in those from 2019.
Several mutations—including insertions, deletions, or transversions—have been described
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in this promoter region [29]. Related to azithromycin resistance, a guanine (G) deletion in
this promoter was observed in most of the azithromycin-resistant isolates, either alone or
associated with the A39T substitution in MtrR repressor. In some isolates, this mutation
was associated with substitutions in the MtrD protein (data not shown), so the exact
contribution of this G deletion to antimicrobial resistance should be determined.

The majority of genotyped azithromycin-resistant isolates were MLST ST-9363. In
a recent study carried out in Barcelona (Spain) [22], this genotype was associated with
outbreaks of N. gonorrhoeae with high-level azithromycin resistance (MIC ≥ 256 mg/L)
between 2016 and 2018. In that study, this genotype was found mainly in men who have
sex with men. Contrary to Barcelona isolates, our ST-9363 isolates were not high-level
azithromycin resistant, and their MIC values were 1 and 2 mg/L. The phylogenetic analysis
of both the SNPs and the complete genome using the WGS showed similar results and,
together with the application of the other epidemiological markers and antibiotic resistance,
allowed the epidemiological characterization of the strains analyzed. The joint analysis of
the data obtained from the WGS allowed the detection of three clusters that involved eight,
three, and two non-azithromycin-susceptible isolates, respectively, all of them isolated in
2019 and with an MIC ≥ 1 mg/L to azithromycin.

Among the interventions to mitigate the current and future impact of antimicrobial re-
sistance, the development of new generations of antimicrobials is one of the most accepted.
Another recognized strategy to diminish antibiotic resistance is the optimization of the
dosing regimen of available antimicrobials. PK/PD analysis and Monte Carlo simulation
have shown to be very useful tools to select adequate antibiotic dosages, with the goal of
increasing treatment efficacy and reducing the risk of multidrug-resistant pathogens [30].
Although integrated PK/PD analysis has been applied to identify changes in the antimi-
crobial activity of antibiotics [31,32], until now it has not been applied to gonorrhea for
optimizing dosage and correlating exposure with clinical outcomes [33]. Therefore, by
using Monte Carlo simulation, we evaluated the probability of PK/PD target attainment by
MIC (PTA), as well as taking into account the MIC distribution (CFR), which is indicative
of treatment success.

At EUCAST susceptibility breakpoints, all antibiotics except for azithromycin and the
lowest dose of ceftriaxone provided high (>90%) probability of treatment success (Figure 2).
Moreover, the highest doses of ceftriaxone also showed adequate results for higher MICs (1
g IM would cover an MIC of 0.25 mg/L, and 2 g/day IV would cover an MIC of 1 mg/L).
Regarding azithromycin in monotherapy, 1 g would be an option only when the MIC is
0.064 mg/L or lower, and 2 g if the MIC is equal to or lower than 0.125 mg/L.

Empirical treatments with antimicrobial drugs (i.e., without susceptibility testing)
provide progressive development of decreasing susceptibility, which threatens personal
and public health. The estimation of CFR is a very useful tool to guide empirical treatments,
since it allows us to know which antimicrobial and dose regimen would have the best
likelihood of success to treat bacterial isolates from a particular hospital or geographical area.
Considering the MIC distribution of our isolates, CFR values—indicative of the probability
of empirical treatment success (Table 4)—allow us to confirm that ceftriaxone (even at the
lowest dose: 250 mg) and oral cefixime are good candidates to empirically treat gonorrhea
(CFR around 100%) in our geographical area. On the other hand, ciprofloxacin should
not be used empirically. For both ESCs and ciprofloxacin, the probability of treatment
success was correlated with the susceptibility rate. However, the susceptibility rate of
azithromycin was much higher than the estimated CFR. This discrepancy may be explained
in part by the fact that, in contrast to β-lactams—which do not accumulate within the cell
(extracelluar: intracellular ratio of 1)—azithromycin achieves intracellular concentrations
several-fold higher than in plasma and extracellular fluid [34]. Taking into account that N.
gonorrhoeae presents intracellular localization, the treatment success of azithromycin may
be underestimated.

Our results are consistent with the European guidelines for the diagnosis and treatment
of gonorrhea in adults [7], and with the CDC [8], both of which recommend ceftriaxone
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monotherapy for the treatment of uncomplicated gonorrhoeae. Because N. gonorrhoeae
remains highly susceptible to ceftriaxone, and azithromycin resistance is increasing, pru-
dent use of antimicrobial agents supports limiting their use. In spite of that, continuous
monitoring for the emergence of resistance to this cephalosporin is necessary in order to
ensure the efficacy of the recommended regimens. In this sense, surveillance programs and
health care provider reports of treatment failures are essential.

For empirical treatment, the WHO recommends that the selected gonorrhea treatment
should have ≥95% probability of being effective—that is, 5% or fewer of gonococcal isolates
are likely to be resistant to the antimicrobial used for first-line empirical treatment [35].
In our opinion, PK/PD analysis must be also considered; in this sense, the selection of
the most adequate antibiotic and dosing regimen should be based on local epidemiology.
Moreover, PK/PD analysis results are also beneficial when the MIC value is known, and
in the case of ceftriaxone, would allow the selection of lower doses. In previous studies,
PK/PD analysis has been shown to be a useful tool for the surveillance of antimicrobial
activity, as a complement to the simple assessment of MIC values [32,36–38]. Thus, it could
be applied to guide therapy along with surveillance programs of gonococcal resistance. In
this sense, the surveillance of gonococcal antimicrobial resistance could be implemented
with PK/PD analysis by using the susceptibility data collected by the Euro-GASP.

This study presents some limitations. First, PK/PD analysis was performed by using
the mean and standard deviation of the PK parameters, without considering the potential
influence of covariates on the PK profile; second, our simulations are based on plasma con-
centrations and, therefore, dosing recommendations may be more beneficial for gonococcal
bacteremia than for extragenital infection.

In spite of these limitations, our study represents a good example of how to combine
molecular epidemiology, antimicrobial surveillance, and PK/PD analysis to provide quality
data to support treatment guidelines—especially empirical treatments.

5. Conclusions

In our geographical area, multiple distinct populations of N. gonorrhoeae were identi-
fied. We can confirm that ceftriaxone (even at the lowest dose: 250 mg) and oral cefixime
are good candidates to treat gonorrhea. For patients allergic to β-lactam antibiotics, or with
pharyngeal infections, ciprofloxacin should be only used if the MIC is known and is equal
to or lower than 0.125 mg/L; this antimicrobial is not recommended to be used empirically.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13101699/s1, Figure S1: MIC frequency of all antimicrobials studie. Figure S2:
Alignment of partial sequences of the mtrR promoter from Neisseria gonorrhoeae FA1090 (GenBank
accession number NC_002946), Neisseria gonorrhoeae 38197 (GenBank accession number KT954125),
and some N. gonorrhoeae isolates from this study. The -10 and -35 promoter sequences for the
mtrR gene are shown in overlines. The 13-bp inverted repeat (IR) is underlined. Lowercase letters
represent the single-base-pair deletion (-35A Del) within the IR. *—location of the single base-pair
deletion (G) 20 nucleotides downstream of where the -35A deletion occurs; Table S1: Dose regimen,
PK/PD index, and pharmacokinetic parameters used for simulations; Table S2: Probability of target
attainment (PTA) and cumulative fraction of response (CFR) of ciprofloxacin, 500 mg, single dose,
oral administration; Table S3: Probability of target attainment (PTA) and cumulative fraction of
response (CFR) of azithromycin, 1 g, single dose, oral administration; Table S4: Probability of target
attainment (PTA) and cumulative fraction of response (CFR) of azithromycin, 2 g, single dose, oral
administration; Table S5: Probability of target attainment (PTA) and cumulative fraction of response
(CFR) of ceftriaxone, 250 mg, single dose, intramuscular administration; Table S6: Probability of
target attainment (PTA) and cumulative fraction of response (CFR) of ceftriaxone, 500 mg, single
dose, intramuscular administration; Table S7: Probability of target attainment (PTA) and cumulative
fraction of response (CFR) of ceftriaxone, 1 g, single dose, intramuscular administration; Table S8:
Probability of target attainment (PTA) and cumulative fraction of response (CFR) of ceftriaxone, 2
g/day, intravenous administration; Table S9: Probability of target attainment (PTA) and cumulative
fraction of response (CFR) of cefixime, 400 mg/day, oral administration.
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Abstract: Levetiracetam is a broad-spectrum antiepileptic drug commonly used in intensive care
units (ICUs). The objective of this study is to evaluate the adequacy of levetiracetam dosing in
patients with normal or augmented renal clearance (ARC) admitted to the ICU by population
modelling and simulation. A multicentre prospective study including twenty-seven critically ill
patients with urinary creatinine clearance (CrCl) > 50 mL/min and treated with levetiracetam
was developed. Levetiracetam plasma concentrations were best described by a two-compartment
model. The parameter estimates and relative standard errors (%) were clearance (CL) 3.5 L/h (9%),
central volume of distribution (V1) 20.7 L (18%), intercompartmental clearance 31.9 L/h (22%), and
peripheral volume of distribution 33.5 L (13%). Interindividual variability estimates were, for the CL,
32.7% (21%) and, for V1, 56.1% (29%). The CrCl showed significant influence over CL. Simulations
showed that the administration of at least 500 mg every 8 h or 1000 mg every 12 h are needed in
patients with normal renal function. Higher doses (1500 or 2000 mg, every 8 h) are needed in patients
with ARC. Critically ill patients with normal or ARC treated with levetiracetam could be at high risk
of being underdosed.

Keywords: levetiracetam; augmented renal clearance; intensive care; critically ill patients; population
pharmacokinetic; modelling; Monte Carlo simulations; seizure

1. Introduction

Levetiracetam is a broad-spectrum antiepileptic drug with proven efficacy in treating
multiple seizure types, in both the adult and paediatric population. Because of its improved
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safety profile and ease of use compared to other conventional antiepileptic drugs such
as phenytoin, it is frequently used in the treatment of status epilepticus and in seizure
prophylaxis after a neurologic injury, being a commonly used treatment in intensive care
units (ICUs) [1–3].

Levetiracetam has a linear pharmacokinetic profile. It is rapidly and almost completely
absorbed when administered orally, with a time to reach the peak concentration (Tmax) of
1–2 h and a high bioavailability (>95%). Its apparent volume of distribution is 0.5–0.7 L/kg
with non-significant plasma protein binding (<3%). Renal clearance represents the main
elimination mechanism with a 66% of the dose excreted unchanged in urine, which leads
to a good correlation between levetiracetam clearance and a patient‘s creatinine clearance
(CrCl). Additionally, a fraction of the dose (24%) is eliminated by metabolism through
enzymatic hydrolysis of the acetamide group, carried out by a type B esterase, mainly
in blood. Clinically relevant interactions are not expected, as this metabolic pathway is
only responsible for the metabolism of a small part of the administered dose. Additionally,
levetiracetam does not induce or inhibit CYP enzymes resulting in minimal drug-drug
interactions. The metabolites have no known pharmacological activity and are renally
excreted [1,4,5].

There is no clear correlation between levetiracetam serum concentration and efficacy
or tolerability. The current reference range for trough concentrations is 12–46 mg/L [6],
although some authors have proposed a more modest target range of 6–20 mg/L [7]. The
favourable pharmacokinetic profile together with the absence of major drug interactions
and broad therapeutic window makes routine therapeutic drug monitoring (TDM) unnec-
essary. However, TDM, as a way to ensure effective and safe exposures, may be indicated
in certain circumstances, such as in patients with altered levetiracetam clearance. This is
the case of elderly patients, children, pregnant women, patients with renal insufficiency or
critically ill patients [8,9].

In fact, the pharmacokinetic behaviour of levetiracetam has been poorly studied
in critically ill patients with augmented renal clearance (ARC). The ARC, defined as a
CrCl > 130 mL/min/1.73 m2, is present in 20–65% of critically ill patients, being more
common in certain conditions, such as traumatic brain injury (TBI) (85%) or subarachnoid
haemorrhage (SAH) (100%). Although the physiological mechanism responsible for ARC
in critically ill patients is not well-defined, the combination of systemic inflammation
coupled with a greater renal functional reserve and together with intensive fluid therapy
and the administration of inotropic and vasopressor drugs could explain this phenomenon.
The presence of ARC could lead to faster elimination of renally excreted drugs, such as
levetiracetam, potentially resulting in subtherapeutic concentrations and poorer clinical
outcomes [10–13].

In this regard, the aim of this study is to evaluate the adequacy of levetiracetam dosing
for the achievement of therapeutic levels in patients with normal or high renal clearance
admitted to the ICU by the characterization of the levetiracetam pharmacokinetics by
population modelling and simulation.

2. Materials and Methods

2.1. Study Design and Patient Population

A multicentric open-label prospective study was conducted in critically ill patients
admitted to the ICUs of Araba University Hospital (Vitoria-Gasteiz, Spain) and Doce de
Octubre Hospital (Madrid, Spain). Patients were recruited during 2019 and 2020 follow-
ing a protocol previously approved by the Basque Clinical Research Ethics Committee
(EPA2018019 (SP)). The study was carried out in accordance with ICH Guidelines for Good
Clinical Practice. Samples and data from patients were provided by the Basque Biobank
(www.biobancovasco.org) and were processed following standard operation procedures
with appropriate ethical approval. ICU patients were eligible if they were treated with
levetiracetam and had a CrCl > 50 mL/min measured in urine. The exclusion criteria were
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age less than 18 years, pregnancy or hypersensitivity to the active substance or to any of
the excipients.

2.2. Drug Administration, Sampling Procedure and Analytical Method

Each patient received a dose of 500, 1000 or 1500 mg of levetiracetam every 12 h, as
a 30-min intravenous infusion. For each patient, blood samples (3 mL) were taken at 0 h
(pre-dose), at the end of the infusion (0.5 h) and at the end of the dosing interval (12 h).
Moreover, one sample was taken within the intervals of 1–2 h, 3–5 h and 6–8 h after drug
administration. Each sample was immediately centrifuged at 3000 rpm for 10 min to collect
the plasma, which was immediately frozen at −20 ◦C. Within the following week, samples
were stored at −80 ◦C until analysis.

Plasma concentrations of levetiracetam were quantified with a high-performance
liquid chromatography (HPLC) assay with ultraviolet detection at a wavelength of 205 nm.
The method was validated following the US Food and Drug Administration (FDA) (2018)
and the European Medicines Agency (EMA) (2012) guidelines. Separation was performed
on a Symmetry® C18 (4.6 mm × 150 mm × 5 μm) column (Waters, Milford, Massachusetts,
United States) eluted with ammonium phosphate and acetonitrile (95:5, v:v) mobile phase
and it was delivered at 1.2 mL/min. Sample preparation consisted of protein precipitation
with acetonitrile and centrifugation for 10 min at 15,000× g. The supernatants were then
injected into the HPLC system.

The assay was linear over the concentration range from 2 to 100 mg/L. Specificity
was assessed using six blank standards and lower limit of quantification (LLOQ) level
samples. The chromatograms were checked for interference, with no interference peaks
detected at the retention time of levetiracetam. Intra–batch and inter–batch accuracy and
precision were evaluated at four different concentration levels (LLOQ and low, middle,
and high-quality control) in six replicates. The intra–day and inter–day coefficients of
variation (CV) and bias were never above 15%. Stock solution stability, the stability of
levetiracetam in storage conditions (at −20 ◦C for one month and at −80 ◦C for one
year), freeze–thaw stability of the analyte in the matrix from freezer storage conditions
to room temperature, and auto-sampler rack stability were also evaluated and confirmed.
Levetiracetam substance for standards and quality controls was a reference standard,
United States Pharmacopoeia, USP.

2.3. Noncompartmental Analysis

PK parameters for levetiracetam were initially explored by noncompartmental anal-
ysis using Phoenix 64 (Build 8.3.0.5005, Certara, Princeton, NJ, USA). The following PK
parameters were provided for levetiracetam: the area under the concentration-time curve
within the dosing interval (AUC12), peak plasma concentration (Cmax), apparent systemic
clearance (CL), elimination half-life (t1/2) and apparent volume of distribution (Vz). Area
under the concentration-time curve was calculated using the linear-log trapezoidal rule.
Afterwards, the correlation between clearance and CrCl at an individual level was explored.

Statistical analysis was performed with IBM® SPSS® Statistics for Windows, Version
26. Student t tests were used to compare the pharmacokinetic parameters of levetiracetam
between patients in different groups. Statistical significance was assessed at p < 0.05.

2.4. Pharmacometric Modelling

Nonlinear mixed-effects modelling was implemented in NONMEM (v.7.4), using
first-order conditional estimation method with interaction (FOCE+I). On the basis of visual
exploration of the data and a review of the literature, one- and two-compartment models
were considered to describe the levetiracetam concentration-time data. Regarding the
variability model, interindividual variability (IIV) associated with the structural pharma-
cokinetic parameters was modelled exponentially, whereas the residual variability was
tested as either proportional, additive or combined error model. The significance of the
off-diagonal elements of the Ω variance–covariance matrix was also explored.
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Selection between models was based on the following criteria. First, biological plau-
sibility. Second, a significant reduction in the objective function value (OFV = −2 ×
log-likelihood). Third, the precision of the parameter estimation expressed as the rela-
tive standard error (RSE [%]) and calculated as the ratio between the standard error and
the parameter estimate. Fourth, visual inspection of the goodness-of-fit (GOF) plots, in-
cluding the observed versus individual and population predicted concentration and the
residuals plots.

The covariates assessed at baseline evaluated in the analysis included demographic
factors (sex, age, height and serum albumin), CrCl (measured in urine), blood chemistry
(glucose, albumin, total bilirubin, haemoglobin and leukocytes), acute physiology and
chronic health evaluation (APACHE II) and diagnosis. Random effects associated with
parameters of interest were plotted versus covariates to explore potential relationships and
the Stepwise Covariate Model building tool of Perl speaks NONMEM (v.4.8) was performed
as a preliminary selection of covariates. Categorical covariates were modelled as a shift
in the typical value for the least common categories, whereas continuous covariates were
modelled using linear, exponential or power functions after centring on the median. CrCl
was explored as a continuous covariate, but it was also dichotomized into two groups,
CrCl < 130mL/min or CrCl ≥ 130 mL/min. Covariates were retained in the model if
their inclusion produced a significant decrease of the OFV ≥ 3.84 units (equivalent to
p < 0.05 for one degree of freedom) in comparison with the previous model without
the covariate. This forward inclusion approach was followed by its reverse (backward
elimination) removing those covariates, whose elimination did not produce a significant
increase of the OFV ≤ 6.63 (equivalent to p > 0.01 for one degree of freedom). Therefore,
when all the statistically significant covariates were added to the model, each of them was
individually removed. If the removal of a covariate was found not to be significant it was
dropped in favour of the simpler model.

2.5. Final Model Evaluation

GOF plots were used as the first indicator of goodness-of-fit, including the plotting of
model-based individual predictions (IPRED) and population predictions (PRED) versus
the observed concentrations (DV), conditional weighted residual errors (CWRES) vs time
after dose (TAD) and the CWRES vs PRED. The parameter precision was evaluated by
running a 2000 sample bootstrap (PsN v.4.8). Finally, a simulation-based model diagnostic
to study the performance of the final model, a prediction-corrected Visual Predictive Check
(pcVPC), was constructed by replicating 1000 studies with the same design as the original
clinical study and representing the 10th, 50th, and 90th percentiles of the observed data
and the 95% confidence intervals for the mentioned predicted percentiles, based on the
simulated data sets.

2.6. Dosing Simulations

Using the same dosing regimens administered to patients, 1000 subjects with dif-
ferent CrCl were simulated (80, 120, 160, 200 and 240 mL/min) to evaluate the impact
of the covariate on the levetiracetam clearance. Moreover, stochastic simulations were
performed to predict levetiracetam plasma minimum concentrations (Cmin) under various
dosing regimens (doses from 500 mg to 2000 mg given at either 12- or 8-h intervals, as
a 30-min intravenous infusion) and to estimate the probability of target attainment. The
target trough concentrations were 12 to 46 mg/L at steady state as recommended by the
International League Against Epilepsy (ILAE). A lower target trough range (>6 mg/L)
was also investigated. Simulations with the final model were performed with 1000 virtual
subjects with CrCl values within the range from 80 to 240 mL/min. CrCl cut-off values
were selected based on the observed distribution of CrCl values of the population included
in the study and on the summary of product characteristics of levetiracetam, where dosage
adjustments are recommended for CrCl below 80 mL/min, but not above this threshold [1].
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Simulations extending infusion time to 2 h were performed in those situations in which
target attainment with a minimum probability of 80% was not reached.

3. Results

3.1. Patient Demographics

Twenty-seven critically ill patients were included in the study. The main diagnoses
were haemorrhagic strokes (n = 10), trauma (n = 8) or other diagnostics such as meningitis,
space occupying lesions, convulsive crisis, encephalopathy, arteriovenous malformations
or low level of consciousness. Subject characteristics are described in Table 1. A total of
158 plasma samples were analysed, with a median of six, and a minimum of five, plasma
samples per patient. Most of the patients (18 out of 27) were treated with 500 mg/12 h of
levetiracetam and 10 presented ARC. Levetiracetam was well tolerated, as no evidence
of adverse events was recorded, even with the highest dose. Concentration versus time
profile of levetiracetam in all the patients is represented in Figure 1.

Table 1. Characteristics of the population included in the study.

Covariate N (%) Median (Range)

Sex:
• Male 18 (67) -
• Female 9 (33) -

ARC (CrCl > 130 mL/min):
• Yes 10 (37)
• No 17 (63)

Diagnostic:
• Haemorrhagic strokes 10 (37) -
• Trauma 8 (30) -
• Others 9 (33) -

Age (years) - 60 (23–81)
Weight (kg) - 80 (58–115)
Height (cm) - 168 (148–189)
BSA (m2) 1 - 1.9 (1.59–2.33)
APACHE II - 18 (5–35)
CrCl (mL/min) 2 - 117 (54–239)
Glucose (mg/dL) - 142 (91–337)
Albumin (g/dL) - 3.4 (2.1–3.9)
Total bilirubin (mg/dL) - 0.6 (0.2–2.1)
Hemoglobin (g/dL) - 11.6 (6.7–14.5)
Leukocytes (109/L) - 10.4 (3–24.6)

APACHE: acute physiology and chronic health evaluation; ARC: Augmented renal clearance; BSA: Body Surface
Area; CrCl: creatinine clearance. 1 Body surface area (Du Bois method) = 0.007184 × Height 0.725 × Weight 0.425.
2 Creatinine clearance= [Urine creatinine (mg/dL) × Volume of urine per minute (mL/min)]/Creatinine plasma
level (mg/dL).

3.2. Noncompartmental Analysis

Pharmacokinetic parameters obtained with noncompartmental analysis are summa-
rized in Table 2. The dose-normalized Cmax and CL were significantly higher in patients
with ARC than in those with normal CrCl (p > 0.05). Figure 2 shows the correlation between
CrCl and levetiracetam clearance calculated by noncompartmental analysis.

3.3. Population Pharmacokinetic Modelling

Plasma concentrations were best described by a two-compartment linear model,
characterized by drug total body clearance (CL), central volume of distribution (V1),
peripheral volume of distribution (V2) and intercompartmental clearance (Q). IIV was
exponentially included for CL and V1, and no correlation was detected between the
random effects associated with the pharmacokinetic parameters. Residual variability was
proportionally modelled. The goodness of fit of the base model was verified by GOF plots.
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Figure 1. Spaghetti plots for plasma levetiracetam concentration-time profiles, according to dose received by each subject.
In black, lines represent profiles after dose of 500 mg, blue lines, 1000 mg and red lines, 1500 mg. Dashed lines represent the
target concentration values (6 mg/L, 12 mg/L or 46 mg/L).

Table 2. Levetiracetam pharmacokinetic parameters (mean and standard deviation) at steady state
following intravenous administration of 500–1500 mg every 12 h to critically ill patients.

Cmax
(mg/L)

Cmax/D
(L−1)

AUC12

(mg·h/L)
AUC12/D

(h/L)
t1/2(h)

CL
(L/h)

Vz
(L)

No ARC 36.36
(17.93)

0.053
(0.032)

186.49
(97.79)

0.267
(0.118)

8.86
(6.13)

4.28
(1.40)

54.41
(42.79)

ARC 24.25
(12.41)

0.036
(0.011) *

121.05
(66.08)

0.182
(0.081)

7.25
(4.11)

6.51
(2.65) *

61.09
(25.07)

ARC: Augmented renal clearance; Cmax: peak plasma concentration; D: dose; AUC12: area under the
concentration-time curve within the dosing interval, t1/2: elimination half-life; CL: apparent systemic clear-
ance; Vz: apparent volume of distribution; * statistically significant differences between patient with or without
ARC (p < 0.05).

 

Figure 2. Plot of the individual levetiracetam clearances (CL) calculated by noncompartmental analysis vs. creatinine
clearances (CrCl) for the 27 patients.
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Both the CrCl, as a continuous variable, and the ARC, as a categorical covariate
showed significant influence over CL. CrCl was selected for the final model since the
reduction in IIV was greater than with the categorical variable (5.6% vs 3.9%). trauma
vs non-trauma diagnosis and APACHE II also showed influence over V1. However, they
were eventually excluded from the final model since their individual deletion did not
significantly increase the OFV. Therefore, the final model only considered the CrCl as a
covariate of the total clearance.

The final model equations were:

CL(L/h) =

(
3.5 +

(
CrCl
120

)2.5
)
× eη1

V1(L) = 20.7 × eη2

where CL is clearance, CrCl is urinary creatinine clearance, V1 is central volume of dis-
tribution, η1 and η2 represent the interindividual variability for CL, and V1, respectively,
which followed normal distributions with a mean of 0.

Inclusion of the CrCl on the CL decreased the unexplained IIV of CL from 38.3% in
the base model to 32.7% in the final model and a statistically significant drop of the OFV
was obtained with respect to the base model (ΔOFV > 6.63). The population PK model
and the results of the bootstrap analysis are shown in Table 3. The residual standard
errors revealed that all parameters were precisely estimated. Moreover, the estimates
of the parameters were very similar to the median values obtained from the bootstrap
analysis. Figure 3 displays the GOF plots for the final model. Figure 4 shows the correlation
found between CrCl and levetiracetam clearance. The pcVPC, provided in Figure 5,
confirmed that the model appropriately predicts both central tendency and variability of
the observed concentrations.

Table 3. Base and final population pharmacokinetic models estimates, shrinkage a values and
bootstrap results.

Parameter
Base Model Estimate

(RSE (%))
Final Model

Estimate (RSE (%))
Bootstrap

Median (95% CI)

CL (L/h) = θnr +
(CrCl/120)θr 4.6 (8) -

θnr - 3.5 (9) 3.5 (2.8–4.1)
θr 2.5 (17) 2.5 (0.9–3.9)

V1 (L) 20.8 (18) 20.7 (18) 20.8 (13.4–27.7)
Q (L/h) 31.4 (21) 31.9 (22) 30.9 (22.5–47.8)
V2 (L) 34.1 (14) 33.5 (13) 34.2 (19.9–45.4)

IIV_CL (%) 38.3 (19) 32.7 (21) 30.7 (20.2–48.3)
IIV_V1 (%) 54.4 (29) 56.1 (29) 58.0 (22.6–114.0)

RE_proportional (%) 22.3 (15) 22.3 (15) 21.5 (15.7–27.7)
CL, clearance; CrCl, creatinine clearance; V1, central volume of distribution; Q, intercompartmental clearance; V2,
peripheral volume of distribution; IIV, inter-individual variability; RE, Residual error; RSE, Relative standard
errors; CI, Confidence interval. a CL ηsh = 2%; V1 ηsh = 23%; εsh = 12%.

3.4. Dosing Simulations

Tables 4 and 5 show the probability of target attainment for simulated patients with
different CrCl, calculated as the percentage of virtual subjects (n = 1000) who had leve-
tiracetam trough concentrations above the previously defined values. Considering the
target of trough concentrations higher than 12 mg/L, with the twice daily dosing regimen,
probabilities higher than 80% were only obtained in patients with no ARC and with the
highest doses. More specifically, doses of 1500 mg and 2000 mg every 12 h would be
needed for patients with CrCl of 80 and 120 mL/min, respectively. In patients with CrCl
of 160 and 200 mL/min, dosing schedules with 8-h interval would be needed (doses of
1500 and 2000 mg, respectively). With those dosing regimens, the probability of Cmin to
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exceed the value of 46 mg/L is low (<5%) in the respective group of patients. Notably,
in patients with CrCl of 240 mL/min the targeted minimum concentration of 12 mg/L
was not reached even with doses of 2000 mg every 8 h. Extending the infusion time of the
2000 mg dose to 2 h in this group, did not increase enough the probability of reaching the
targeted minimum concentration of 12 mg/L (from 59% to 67%).

Figure 3. The goodness of fit plots of individual predicted (IPRED) versus the observed (DV) levetirac-
etam concentrations (top-left), population predicted (PRED) versus DV levetiracetam concentrations
(top-right), conditional weighted residuals (CWRES) versus PRED (bottom-left) and CWRES versus
time after dose (bottom-right) of the final model.

Figure 4. Plot of the individual predicted levetiracetam clearances (CL) estimated by population PK
analysis vs. creatinine clearance (CrCl) for the 27 patients. Lines represent the 5th, 50th, and 95th
percentiles of 1000 simulations performed at CrCl values of 80, 160, 200, and 240 mL/min.
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Figure 5. Prediction-corrected visual predictive check of the final model. The dots represent the prediction–corrected concen-
trations (mg/L). The continuous line represents the 10th, 50th and 90th observed percentiles. Simulation-based 95% confi-
dence intervals for the median and the 10th and 90th percentiles are displayed by dark and light grey shading, respectively.

Table 4. Probability of target attainment based on simulations of the final population model with different doses adminis-
tered every 12 h. In bold are represented those probabilities ≥80%.

CrCl (mL/min) Dose (mg)
Perfusion

Duration (min)

Daily Dose
(mg)

Probability of Cmin (%)
>6 mg/L >12 mg/L >46 mg/L

Twice Daily (Tau = 12 h)

80 500 30 1000 62 12 0
1000 30 2000 93 60 0
1500 30 3000 99 85 3
2000 30 4000 100 94 14

120 500 30 1000 43 6 0
1000 30 2000 86 43 0
1500 30 3000 95 72 2
2000 30 4000 98 85 6

160 500 30 1000 22 1 0
1000 30 2000 67 22 0
1500 30 3000 87 51 0
2000 30 4000 94 69 2

200 1000 30 2000 39 6 0
1500 30 3000 68 25 0
2000 30 4000 80 42 0

240 1500 30 3000 37 7 0
2000 30 4000 55 15 0

Cmin, Minimum levetiracetam concentration; CrCl, creatinine clearance; Tau, dosing interval.
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Table 5. Probability of target attainment based on simulations of the final population model with different doses adminis-
tered every 8 h. In bold are represented those probabilities ≥80%.

CrCl (mL/min) Dose (mg)
Perfusion

Duration (min)

Daily Dose
(mg)

Probability of Cmin (%)
>6 mg/L >12 mg/L >46 mg/L

Three Times Daily (Tau = 8 h)

80 500 30 1500 94 51 0
1000 30 3000 100 93 5
1500 30 4500 100 99 31

120 500 30 1500 84 33 0
1000 30 3000 99 84 2
1500 30 4500 100 96 17

160 500 30 1500 65 12 0
1000 30 3000 94 65 0
1500 30 4500 99 89 5
2000 30 6000 100 97 17

200 500 30 1500 38 4 0
1000 30 3000 83 39 0
1500 30 4500 95 69 1
2000 30 6000 98 84 5

240 1000 30 3000 61 15 0
1500 30 4500 80 38 0
2000 30 6000 89 59 1
2000 120 6000 94 67 1

Cmin, Minimum levetiracetam concentration; CrCl, creatinine clearance; Tau, dosing interval.

When considering the lower target trough concentrations of >6 mg/L twice daily
dosing regimens were able to reach the therapeutic interval with a probability greater
than 80%, except in patients with CrCl of 240 mL/min, in which dosing every 8 h seemed
mandatory. In detail, 1000 mg every 12 h would be suitable for patients with normal renal
function, 1500 mg every 12 h for patients with CrCl of 160 mL/min, 2000 mg every 12 h
for patients with CrCl of 200 mL/min and 1500 mg every 8 h for patients with CrCl of
240 mL/min.

4. Discussion

In this study, a population pharmacokinetic model of levetiracetam in critically ill
patients was developed, for a better selection or optimization of the dose regimen, with
special focus on ARC condition. ICU patients commonly show altered pharmacokinetics
due to their intrinsic heterogeneity and the disease status that can lead to suboptimal
drug concentrations. In fact, the high variability observed in levetiracetam concentrations,
partially explained by patients’ renal function, suggested the need for dosing optimization
in patients with ARC and Monte Carlo simulations revealed the need of high doses to
attain the target concentrations.

The ARC condition has recently drawn attention due to its prevalence (present in
20–65% of the patients [10,14] in the intensive care setting), and its potential impact on
the elimination of the drugs, especially those primarily eliminated by renal excretion.
Pharmacokinetics of renally excreted antimicrobials, such as vancomycin, β-lactams or
linezolid, have demonstrated to be significantly modified in patients with ARC [15–19],
leading to sub-therapeutic concentrations. In this regard, clinicians should routinely assess
the renal function of critically ill patients, by measuring urinary CrCl, not only with the
aim of detecting renal impairment, but also, to detect ARC, in order to adjust drug doses.

Levetiracetam is a widely used drug in ICUs, both in treatment and in prophylaxis
of seizures, and is mainly excreted unchanged in urine (66%) making it vulnerable to
suffer from increased elimination in patients who display ARC. Nevertheless, the effect
of ARC on levetiracetam serum concentrations has been poorly investigated. In a case
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report, Cook et al. described a 22-year-old girl with severe TBI who displayed ARC. The
patient presented a higher than usual systemic clearance of levetiracetam and required
significantly higher dose [20].

In a study published by Spencer et al. [21], in 12 neurocritical care patients requiring
seizure prophylaxis who received 500 mg twice daily, they found a higher levetiracetam
clearance and a shorter half-life, compared with previously published results in healthy
volunteers. ARC was not present in their population, but there was a statistically significant
relationship between the systemic clearance of levetiracetam and estimated CrCl. Just
one patient with renal impairment (CrCl 42 mL/min), achieved a steady-state trough
concentration greater than 6 mg/L. Recently, two population pharmacokinetic models
of levetiracetam in neurocritical patients have been published [22,23]. Sime et al. [22]
developed a population pharmacokinetics model in 30 critically ill patients with TBI or
SAH without renal disfunction. ARC (urinary CrCl > 130 mL/min/1.73 m2) was present
in 70% of the patients. Urinary CrCl was found as a covariate that significantly influences
levetiracetam clearance, whereas body surface area (BSA) was found to influence leve-
tiracetam clearance, volume of distribution and the absorption rate constant. For every
40 mL/min/1.73 m2 increase in urinary CrCl, levetiracetam clearance increased by 50%
and the median trough concentrations were reduced by 50%. They performed dosing
simulations with dosages ranging from 1000 mg every 12 h to 2000 mg every 8 h and
concluded that for urinary CrCl greater than 120 mL/min/1.73 m2, none of the simulated
regimens had a probability of 80% or above of achieving trough concentrations higher
than 12 mg/L. Similarly, Ong et al. [23] have recently developed a population pharma-
cokinetics model in 20 neurosurgical patients with TBI, SAH or brain tumour resection.
ARC (estimated CrCl > 150 mL/min/1.73 m2) was present in 30% of the patients. In this
study, no covariates were found to significantly influenced levetiracetam pharmacokinetic
parameters. They also performed Monte Carlo simulations showing a low probability of
reaching trough concentrations > 6 mg/L with the 500 mg twice daily dosing regimen. A
dose of 1000 mg twice daily was required to achieve a probability of 80%.

In our study, the pharmacokinetics of levetiracetam were best described by a two-
compartment model, agreeing with that reported by Sime et al. [22] and Ong et al. [23].
None of the variables analysed had a significant influence on V1. Trauma diagnosis showed
statistical significance at a level of p < 0.05, but not at the level of p < 0.01, probably because
of the scarce number of patients presenting this diagnosis (n = 10), and thereby; was not
retained in the final model. Other authors have found significant influence of BSA [22,24] or
body weight [25] in levetiracetam V1 and/or CL. In a systematic review about levetiracetam
pharmacokinetics [25] in paediatric population, healthy subjects or non-critically ill adults,
great differences in the volume of distribution, with values from 33 L to 69.9 L (calculated
for a 75 kg subject), were reported. In our study, the total volume of distribution was 54.9 L,
in the range of most studies, although higher than that observed by Sime et al. (32 L) and
Ong et al. (37.2 L) [22,23].

In our model, the levetiracetam CL was only dependent on CrCl, which had a great
influence on patients with ARC (mean levetiracetam CL increased from 4.5 L/h to 9.2 L/h
in patients with CrCl from 120 to 240 mL/min). Sime et al. [22] also included CrCl as
a covariate for CL. However, for similar values of CrCl, their model estimates higher
levetiracetam clearance. The discrepancies observed between both models could, in part,
be due to the differences among the recruited subjects; Sime et al. [22] included only TBI
and SAH patients, whereas our population was more heterogeneous according to diagnosis,
and also, to age, body weight and CrCl. Ong et al. [23] found similar levetiracetam clearance
to that found in our study (3.6 vs. 4.1 L/h for a mean CrCl of 100 mL/min), however, they
could not include CrCl as a covariate. This may be, in part, because the subjects included
in their study had a narrower range of CrCl than our patients. Moreover, it has to be
considered that their patients’ renal function was estimated according to equations, instead
of being based on CrCl measured in urine.
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Despite the differences in the in the PK parameters, all studies bring out the risk of
not achieving the target concentrations in ARC patients. Currently, the most accepted
target is to achieve trough concentrations between 12 and 46 mg/L, proposed by ILAE [6],
although other authors have proposed lower values. This is the case of the Norwegian
Association of Clinical Pharmacology, which recommends target trough concentrations of 5
to 41 mg/L [26]. While ILAE recommendations are based on a retrospective database study
that only included the highest doses used by each patient [3], the latter also considered
other studies (globally 45% of all samples were below 12 mg/L, and 80% of all samples
were between 5 and 25 mg/L) [26]. Moreover, other authors also propose a target trough
range of 6–20 mg/L based on typical concentrations values reached with doses ranging
from 500 to 1500 mg every 12 h [7].

In our study, a dose of 500 mg every 12 h has shown to be insufficient in critical
patients with normal or augmented renal function. In fact, 100% and 67% of these patients
had at least one sub-therapeutic level considering the threshold of 12 mg/L or 6 mg/L,
respectively. Our results corroborate the need for dose optimization, as the risk for under
dosing is highly variable and dependent on the dosing regimen and the renal function of
the patients.

Monte Carlo simulations showed that the maximum dose approved in the summary
of product characteristics (1500 mg every 12 h) only guarantees to achieve trough concen-
tration of 12 mg/L in critically ill patients with CrCl ≤ 80 mL/min. In fact, the probability
to achieve target trough concentrations higher than 12 mg/L is very low in ARC patients
receiving levetiracetam in a twice daily dosing. Doses of 1500 mg and 2000 mg every 8 h
are needed to achieve probabilities >80% for individuals with CrCl ≥ 160 and 200 mL/min,
respectively, while in patients with CrCl of 240 mL/min, or higher this objective was not
reached, even with 2000 mg every 8 h. Several studies have proposed prolonged or continu-
ous infusion to ensure therapeutic concentrations of drugs in patients with ARC [19,27]. We
evaluated in patients with CrCl ≥ 240 mL/min if the probability of achieving Cmin target
would improve by prolonging the infusion time to 2 h. Monte Carlo simulation showed
only a mild improvement. Longer infusions were not studied due to concerns about the
stability of levetiracetam solutions at room temperature beyond 4 h [28]. When considering
the target trough concentrations of 6 mg/L, probabilities greater than 80% were obtained
with 1500 mg every 12 h only for patients with CrCl up to 160 mL/min. Sime et al. [22]
reported worse results in their population, as they concluded that even with doses as
high as 6 g of levetiracetam per day, trough concentrations within the currently accepted
target range were not guaranteed. Therefore, further studies are needed in order to better
elucidate the optimal dosing regimen in this population. Moreover, although the role
of TDM of levetiracetam has not yet been established, its use in ascertaining compliance
and managing patients that are at risk of being over- or under-dosed, such as critically ill
patients, would be surely helpful. In addition, it is important to bear in mind that ARC is
a dynamic a temporary situation [10], and accordingly, the renal function of the patients
should be daily evaluated in order to adjust dosing regimens if needed.

This study has several limitations. Firstly, this study enrolled a relatively small number
of patients, leading to a lack of external validation of the population PK model and limited
statistical power. Previous studies were also carried out with a similar number of patients
(20–30 patients) [22,23], but a larger sample could allow including any other covariates able
to explain some of the remaining variability. In any case, accurate and precise estimates of
all parameters were obtained, since a rich sampling strategy was followed in our study.
Finally, the lack of consensus about the trough concentration target is a point to address.
It would be advisable to determine a well-defined and universally accepted therapeutic
range, although it is difficult to establish a correlation between drug concentration and
clinical efficacy when levetiracetam is administered prophylactically to prevent seizures.
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5. Conclusions

A population pharmacokinetic model has been developed for levetiracetam in criti-
cally ill patients with normal or ARC. The pharmacokinetics of the drug were best described
by a two-compartment model and CrCl was found to have a significant effect on levetirac-
etam clearance, which can lead to a high risk of under-exposure, especially in patients
with ARC. According to our results, the administration of 500 mg every 12 h could not
be enough to achieve the target plasma concentration in the studied population. At least
500 mg every 8 h or 1000 mg every 12 h could be needed in patients with normal renal
function. Even the maximum dose approved in the summary of product characteristics
(1500 mg every 12 h) could be insufficient in the presence of ARC. However, further studies
with a greater number of patients are necessary to determine effective and safety dose
regimens in ARC patients.
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Abstract: Model-informed precision dosing (MIPD) may be a solution to therapeutic failure of
infliximab for patients with ulcerative colitis (UC), as underexposure could be avoided, and the
probability of endoscopic improvement (pEI; Mayo endoscopic subscore ≤ 1) could be optimized. To
investigate in silico whether this claim has merit, four induction dosing regimens were simulated:
5 mg/kg (label dosing), 10 mg/kg, covariate-based MIPD (fat-free mass, corticosteroid use, and
presence of extensive colitis at baseline), and concentration-based MIPD (based on the trough
concentration at day 14). Covariate- and concentration-based MIPD were chosen to target the same
median area under the infliximab concentration-time curve up to endoscopy at day 84 (AUCd84), as
was predicted from 10 mg/kg dosing. Dosing at 5 mg/kg resulted in a mean ± standard deviation
pEI of 55.7 ± 9.0%. Increasing the dose to 10 mg/kg was predicted to improve pEI to 65.1 ± 6.1%.
Covariate-based MIPD reduced variability in exposure and pEI (65.1 ± 5.5%). Concentration-based
MIPD decreased variability further (66.0 ± 3.9%) but did so at an increased average dose of 2293 mg
per patient, as compared to 2168 mg for 10 mg/kg dosing. Mean pEI remained unchanged between
10 mg/kg dosing and MIPD, since the same median AUCd84 was targeted. In conclusion, quantitative
simulations predict MIPD will reduce variability in exposure and pEI between patients with UC
during infliximab induction therapy.

Keywords: infliximab; monoclonal antibody; ulcerative colitis; inflammatory bowel disease; en-
doscopy; population pharmacokinetics-pharmacodynamics; simulations; therapeutic drug monitor-
ing; model-informed precision dosing

1. Introduction

Infliximab is a monoclonal antibody that binds and neutralizes the functional activity
of tumor necrosis factor-alpha (TNFα). Based on the results of the landmark Active Ulcera-
tive Colitis Trials (ACT) 1 and 2, infliximab was approved for inducing and maintaining
remission in patients with moderate-to-severe ulcerative colitis (UC) [1]. In these studies,
endoscopic improvement (defined as a Mayo endoscopic subscore ≤ 1) was achieved in
about 60% of patients after administration of three infliximab infusions (5 mg/kg body
weight, at weeks 0, 2, and 6; endoscopy at week 8). In post-marketing studies, endoscopic
improvement rates were lower (e.g., 47% in Brandse et al. [2]), making unpredictable
outcomes of infliximab induction therapy a challenge [2–5].

Dose finding in ACT 1 and 2 failed to show a consistent benefit of 10 mg/kg dosing
over 5 mg/kg dosing [1]. However, higher infliximab serum concentrations during induc-
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tion therapy were found to correlate with short-term endoscopic improvement, as well as
long-term relapse-free and colectomy-free survival [6]. To date, the infliximab exposure-
response relationship in patients with UC has been well-established [4,7–9]. Consequently,
it has been hypothesized that targeting infliximab to a predefined “optimal” exposure has
the potential to improve the response rate and identify primary non-responders (defined
as non-response despite optimal infliximab exposure) [2,10,11]. To date, most therapeutic
drug monitoring (TDM) studies of infliximab focus on maintenance therapy, whereas
induction therapy is relatively unexplored. Moreover, the utility of TDM of infliximab in
patients with UC remains controversial because of poor evidence from prospective TDM
studies [10,12–14]. One potential reason for the weak evidence can be the use of inefficient
TDM algorithms (analogous flowcharts and decision trees) in these TDM studies [15].
Therefore, model-informed precision dosing (MIPD), a more efficient and precise dose
optimization strategy as compared to analogous TDM, has been suggested as a way out of
this dilemma [15,16].

MIPD can be implemented through either a priori or a posteriori dose optimization,
both utilizing a population pharmacokinetic (popPK) model that serves as a prior. A priori
dose optimization is done by involving patient’s covariates/characteristics that explain
between- and within-subject variability, while a posteriori dose optimization (Bayesian fore-
casting) is based on previous infliximab serum concentration measurements [17]. Through
these two approaches, the MIPD software tool can recommend a dose that facilitates at-
tainment of the therapeutic target exposure. Patient covariates such as C-reactive protein
(CRP), serum albumin, antibodies to infliximab (ATI), body weight or fat-free mass, and
fecal calprotectin have previously been identified in popPK modeling studies [9,18].

In a previous popPK and exposure-response modeling analysis, we identified the
relation between the area under the infliximab concentration-time curve up to endoscopy
at day 84 (AUCd84) and the probability of endoscopic improvement at day 84 [18]. Based
on these results, we suggested that increased exposures would result in better clinical
outcomes. We further suggested that any increased drug consumption may be offset
through the use of MIPD. In the present work, we investigated these claims further by
performing population simulations of these different dosing scenarios and comparing
exposures, probability of endoscopic improvement, and average drug consumption.

2. Materials and Methods

2.1. Population Pharmacokinetic and Exposure-Response Models

A previously published one-compartment popPK model with interindividual and in-
teroccasion variability was used to simulate infliximab exposure [18]. This model was built
on a total of 583 samples from 204 patients with UC, and included C-reactive protein (CRP),
serum albumin, and fat-free mass (FFM) as time-varying covariates, and Mayo endoscopic
subscore, presence of extensive colitis, and corticosteroid use as baseline covariates.

Even though dose proportionality applies, when administering a higher dose of
infliximab (cf. Section 2.3. Dosing Scenarios), a more positive disease evolution is expected,
thereby influencing the time-course of CRP and serum albumin, both acute phase proteins,
and possibly fat-free mass as well. Since the original dataset used for popPK model building
did not include patients on higher infliximab doses (cf. Section 2.2 Virtual Population), and to
avoid bias in the scenarios with higher dosing, we chose to re-estimate the model without
these covariates. In theory, this should increase the unexplained interoccasion variability
and residual error instead.

The logistic regression exposure–response model was adapted as well. The model
was built on a subset of 159 patients and fitted the original data well [18]. However, this
model predicted an ever-increasing probability of endoscopic improvement with increasing
infliximab exposure. This could not be reconciled with the current line of thinking for
infliximab treatment in UC, which assumes the existence of intrinsic non-responders [19].
The model was adapted to introduce maximum transition probabilities Emax,3→2 and
Emax,2→1/0 for transitioning from a severe disease state (Mayo endoscopic subscore 3) to
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a moderate disease state (Mayo endoscopic subscore 2) and from a moderate disease state
to endoscopic improvement (Mayo endoscopic subscore 1 or 0), respectively. Likelihood
profiling was performed to identify the confidence bound for these parameters [20]. These
Emax parameters were varied across a wide range of values and the associated AUC50s
(i.e., the infliximab exposures required to achieve half-maximal transition probabilities)
were estimated, yielding a log-likelihood (LL) estimate for each parameter set. Estimates
with Δ2LL = 3.84 showed the lower 95% confidence bound for the exposure–response
model. These parameter estimates were then used for subsequent simulations.

2.2. Virtual Population

To construct the virtual population for the dosing simulations, the original clinical
dataset was used [7]. Only patients with a baseline Mayo endoscopic subscore of 2 or 3
were included, resulting in a source dataset of 194 patients. This dataset was expanded
through Monte Carlo sampling of interindividual variability (200 samples per individual
patient), yielding a total of 38,800 virtual patients.

Baseline covariates were collected in a study conducted in accordance with the princi-
ples of good clinical practice and the Declaration of Helsinki. All patients provided written
informed consent prior to participation in the Ethics Committee-approved IBD Biobank
[B322201213950/S53684], whereby patients’ characteristics and samples were collected
prospectively on a series of predefined time points.

2.3. Dosing Scenarios

Four distinct dosing scenarios were evaluated. First, a standard dosing regimen of
5 mg/kg at days 0, 14, and 42 was applied to all virtual patients. Based on the exposure–
response analysis of the original dataset, there was support for a higher dose [18]. Therefore,
10 mg/kg was evaluated as a second dosing scenario.

We aimed for covariate-based and concentration-based MIPD to result in the same
mean predicted probability of endoscopic improvement as in the 10 mg/kg dosing scenario.
Therefore, MIPD scenarios were designed to target the same median AUCd84 as was
predicted from the 10 mg/kg dosing scenario. The third dosing scenario was purely based
on the covariates (a priori MIPD). The popPK model was used to determine the covariate-
based dose required to hit the exposure target associated with the predefined probability
of endoscopic improvement.

Finally, Bayesian forecasting (a posteriori MIPD) was evaluated as a fourth dosing
scenario. The first dose was the same as in the covariate-based MIPD scenario. The
sampled interindividual variability was used to simulate the trough concentration on
day 14 resulting from the covariate-based first dose. Residual error was sampled and
added to this concentration. This simulated concentration was subsequently used to
perform an empirical Bayesian estimation of the patient’s individual PK parameters. These
individual estimates were then used to adapt the subsequent doses at days 14 and 42. Both
doses were adapted to the same value, predicted to result in an AUCd84 exposure metric
resulting in the target probability of endoscopic improvement.

2.4. Evaluation of Dosing Scenarios

The mean dose per patient and resulting exposures (AUCd84) in each scenario were
evaluated graphically as density plots. To quantify efficacy, the mean probability of en-
doscopic improvement was evaluated, as this reflects the expected fraction of patients
attaining endoscopic improvement. Additionally, the mean overall dose per patient was
evaluated. Finally, a robustness analysis was performed to determine whether our conclu-
sions hold for other Emax parameter values.

2.5. Software

The adapted popPK and exposure–response models were estimated using NONMEM
(version 7.4.3; Icon Development Solutions, Gaithersburg, MD, USA). Simulation of the
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dosing scenarios was performed using R (version 4.0.2; R Foundation for Statistical Com-
puting, R Core Team, Vienna, Austria) with RxODE [21] and tdmore. The tdmore R package
was developed at KU Leuven to perform simulation and evaluation of MIPD. It is available
as open-source at github.com/tdmore-dev/tdmore (accessed on 27 August 2021). The
NONMEM code and tdmore R code are provided in the Supplementary File.

3. Results

3.1. Population Pharmacokinetic and Exposure-Response Models

The popPK model was adapted to include only covariates at baseline. As expected, the
interindividual variability on the elimination rate constant and the proportional residual
error increased (Table S1, Supplementary Material). A visual predictive check of the
updated popPK model is available in Figure S1.

Likelihood profiling of the exposure–response model showed a wide range of proba-
ble Emax,3→2–Emax,2→1/0 pairs. In Figure S2, the likelihood profile is shown for different
parameter combinations. The Δ2LL = 3.84 contour line in red shows parameter combina-
tions limits for Emax,3→2–Emax,2→1/0 of either 92.6–100% or 100–78.4%. Figure 1 shows the
simulated PD model at parameter estimates with associated Δ2LL = 3.84. Based on this
plot, Emax,2→1/0 = 78.4%/Emax,3→2 = 100% was selected for further simulations, as the most
“pessimistic” scenario. The remainder of the possible parameter values were explored in
the sensitivity analysis.

Figure 1. Exposure–response dataset (bars), binned per cumulative area under the curve (AUC)
at day 84 and categorized according to Mayo endoscopic subscore at day 84, and corresponding
simulated exposure–response models (lines representing the fraction of patients achieving a Mayo
endoscopic subscore ≤1 [lower line] and ≤2 [upper line]). The original exposure–response model
of Dreesen et al. [18] is shown as a black dashed line (Emax,3→2 and Emax,2→0/1 are both 100%).
Colored lines represent models at Δ2LL = 3.84 with Emax,3→2 93% and different Emax,2→1/0 values.
All presented models fit the exposure–response dataset equally well (at α = 0.05) but have different
predictions outside the observed exposure range.
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3.2. Dosing Simulations: Exposure and Efficacy

Simulation results are summarized in Table 1 and will be presented hereafter as me-
dian [95% prediction interval] for exposure (AUCd84) and mean ± standard deviation for
probability of endoscopic improvement. As exposure and efficacy targets differ depend-
ing on the baseline endoscopic disease severity, results are reported for baseline Mayo
endoscopic subscores of 2 (moderate disease severity; reported first) and 3 (high disease
severity; reported second), separately. Exposures and associated probabilities of endoscopic
improvement are shown in Figures 2 and 3.

Table 1. Summary of the simulation results.

AUCd84 (mg/L × Day) pEI (%)
Cumulative Dose

(mg)

Baseline Mayo
Endoscopic Subscore Dosing scenario median [90%PI] mean ±sd mean ±sd

2

5 mg/kg 2455 [1215–4805] 61.2 ±5.51 1090 ±196
10 mg/kg 4910 [2431–9609] 68.6 ±3.60 2181 ±393

Covariate-based MIPD 4895 [2661–8522] 68.7 ±3.08 2166 ±443
Concentration-based

MIPD 5095 [3683–6879] 69.3 ±1.67 2298 ±613

3

5 mg/kg 1979 [953–3990] 50.3 ±8.36 1078 ±214
10 mg/kg 3958 [1906–7981] 61.6 ±6.05 2155 ±428

Covariate-based MIPD 3933 [2123–7045] 61.7 ±5.06 2137 ±417
Concentration-based

MIPD 4125 [3056–5431] 62.8 ±2.51 2287 ±643

Combined
(2:3; 49%:51%)

5 mg/kg 2210 [1049–4448] 55.7 ±8.96 1084 ±205
10 mg/kg 4419 [2098–8895] 65.1 ±6.11 2168 ±411

Covariate-based MIPD 4372 [2302–7940] 65.1 ±5.46 2151 ±431
Concentration-based

MIPD 4561 [3209–6516] 66.0 ±3.91 2293 ±628

The systematically lower exposure at a baseline Mayo endoscopic subscore of 3 (severely active ulcerative colitis), as compared to a baseline
Mayo endoscopic subscore of 2 (moderately active ulcerative colitis), may mechanistically be explained by a higher target load (target-
mediated drug disposition) and protein-losing enteropathy (fecal drug loss). AUCd84, the area under the infliximab concentration-time
curve from baseline up to endoscopy at day 84 (week 12); MIPD, model-informed precision dosing; pEI, probability of endoscopic
improvement; PI, prediction interval; q, quantile; sd, standard deviation.

The 5 mg/kg dosing scenario resulted in an AUCd84 of 2455 [1215–4805] mg × day/L
and 1979 [953–3990] mg × day/L, for baseline Mayo endoscopic subscore 2 and 3, respec-
tively. This resulted in a predicted probability of endoscopic improvement of 61.2 ± 5.5%
and 50.3 ± 8.4%. By increasing the dose to 10 mg/kg, exposure doubled to 4910
[2431–9609] mg × day/L and 3958 [1906–7981] mg × day/L. Probabilities of endoscopic
improvement also increased to 68.6 ± 3.6% and 61.6 ± 6.1%.

Adapting the dose based on relevant covariates allowed more precise dosing, as
between-population-variability can be taken into account. As can be seen in Figure 2,
covariate-based MIPD resulted in the same median exposure as 10 mg/kg dosing, at a
reduced variability (4895 [2661–8522] mg × day/L and 3933 [2123–7045] mg × day/L, for
baseline Mayo endoscopic subscore 2 and 3, respectively). Dose adaptation based on the
trough concentration measured at day 14 (Bayesian forecasting) further reduced this vari-
ability (5095 [3683–6879] mg × day/L and 4125 [3056–5431] mg × day/L). The probability
of endoscopic improvement followed a similar pattern, with similar mean probabilities
across 10 mg/kg dosing, covariate-based MIPD, and concentration-based MIPD.
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(a) 

 
(b) 

(c) 

Figure 2. (a) Density plots of exposure in each of the four dosing scenarios, per baseline Mayo endoscopic subscore. Vertical
lines show median exposure per scenario. (b) Density plots of the mean doses in each of the four dosing scenarios, per
baseline Mayo endoscopic subscore. Vertical lines show overall mean dose per scenario. (c) Density plots of the individual
probability of endoscopic improvement in each of the four dosing scenarios, per baseline Mayo endoscopic subscore. Vertical
lines show overall mean pEI per scenario. CAUC, cumulative area under the curve; MIPD, model-informed precision
dosing; pEI, probability of endoscopic improvement.
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Figure 3. Predicted mean probability of endoscopic improvement versus median exposure, with 90% prediction interval in
each scenario, per baseline Mayo endoscopic subscore. Black lines show model-predicted response. CAUC, cumulative area
under the curve; MIPD, model-informed precision dosing.

3.3. Dosing Simulations: Drug Consumption

Looking at the average infliximab dose used per patient (see also Figure 2), 5 mg/kg
dosing resulted in 1084 mg per patient, and 10 mg/kg dosing doubled the dose usage
to 2168 mg per patient. Covariate-based MIPD used an average of 2151 mg per patient.
Concentration-based MIPD used, at average, 2293 mg per patient.

3.4. Sensitivity Analysis

The analysis presented above assumed an Emax plateau of 78% for the probability of
transitioning from a Mayo endoscopic subscore of 2 (moderate disease severity) to a Mayo
endoscopic subscore of 0 or 1 (endoscopic improvement). This plateau benefited MIPD, as
overexposed patients were dose-reduced without significantly reducing the probability
of endoscopic improvement, while underexposed patients were dose-increased, thereby
significantly increasing the probability of endoscopic improvement.

Repeating our simulation study with higher values for Emax,2→1/0 decreased this
benefit, further favoring 10 mg/kg dosing, as is illustrated in Figure 2. Other parameter
combinations at Δ2LL = 3.84, as well as for the base model (Δ2LL = 0), consistently showed
less favorable results for MIPD.

At Emax,3→2–Emax,2→1/0 of 92.6–100%, the probability of endoscopic improvement
for 10 mg/kg dosing was 77.0% [62.7–86.5%] and 65% [48.1–76.7%], for baseline Mayo
endoscopic subscore 2 and 3, respectively, at an average drug consumption of 2168 mg per
patient. Bayesian forecasting resulted in a probability of endoscopic improvement of 77.6%
[71.7–82.3%] and 65.8% [59.4–70.9%], for baseline Mayo endoscopic subscore 2 and 3, at an
average drug consumption of 2293 mg per patient.

4. Discussion

In this study, we compared four possible dosing scenarios for infliximab induc-
tion therapy in patients with UC: 5 mg/kg weight-based dosing (label dosing), and
three dosing strategies with increased exposure: 10 mg/kg weight-based dosing, covariate-
based MIPD, and concentration-based MIPD, all with unchanged timing of the infusions
(day 0, 14, and 42). The 10 mg/kg dosing scenario was predicted to significantly improve
endoscopic outcomes as compared to 5 mg/kg dosing. By design, MIPD (based on either
covariates or the day 14 trough concentration) resulted in the same median exposure
(AUCd84) and, consequently, the same mean probability of endoscopic improvement as
observed in the 10 mg/kg dosing scenario. MIPD was predicted to successfully adapt
individual patient doses, reducing the interindividual variability in infliximab exposure
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and, with it, the probability of endoscopic improvement, thereby providing “more equal”
chances of endoscopic remission to all patients. Surprisingly, it did so at a higher average
drug consumption per patient. Underexposed patients indeed received a relative dose
increase, while overexposed patients received a relative dose decrease. However, this
is a non-zero sum, as, e.g., 10 mg × 2 + 10 mg × 0.5 > 10 mg + 10 mg. Therefore, our
simulation study showed improved outcomes under 10 mg/kg dosing as compared to
5 mg/kg dosing and showed additional benefit of MIPD over 10 mg/kg for reducing
variability in exposure and efficacy between patients; however, at a higher direct drug
cost. Performing MIPD may thus require a willingness to “pay for equality” amongst
patients [22]. Consequently, we may consider shifting focus from outcome rates at the
population level (the traditional industry perspective) to outcome chances at the individual
patient level. It is at the individual patient level that MIPD may show value. Since the
majority of patients attain the target under empirical dosing, it is important that future
MIPD studies are restricted to vulnerable populations, such as patients with acute severe
ulcerative colitis [23].

The simulations described in this work were based on a previously established popPK
model and exposure–response model of infliximab [18]. These models described the
relation between the infliximab dose and exposure, and the AUCd84 and the probability of
endoscopic improvement at day 84, respectively. The models were established on a dataset
of 204 patients with moderate-to-severe UC. Since the majority of the infliximab doses in the
original cohort were 5 mg/kg (approximately 90%), and only about 10% of the doses were
10 mg/kg, it should be noted that the exposure–response model was built on a relatively
limited range of exposures. The exposures simulated in the present work exceed this range.
However, this weakness was mitigated by a thorough analysis of exposure–response model
parameter confidence intervals and likelihood profiling, and a sensitivity analysis. Our
findings hold throughout the full range of probable model parameter values.

The exposure–response model assumes a causal effect between exposure and response.
Previous clinical studies have indeed found a correlation between low trough concentra-
tions and primary nonresponse to anti-TNFα therapy [24]. However, the causality assumed
in our exposure–response model was never established in clinical studies. In light of this,
time-varying disease-related covariates may instead be simulated in a joint model, avoid-
ing potential underestimation of exposure at higher doses and reduced disease severity.
Further research is needed to definitively establish whether non-response at low trough
concentrations is due to mechanistic failure (pharmacodynamic [PD] failure) or underexpo-
sure (PK failure), as others have attempted to model this distinction [25,26]. Underexposure
can be resolved through dose increase, while the mechanistic failure suggests switching to a
different drug with another mechanism of action. A more fine-grained model of continuous
endpoints may distinguish between PK and PD failure.

High exposure to infliximab may pose safety concerns. The 10 mg/kg dosing may
result in very high exposures, which were predicted in the present study to be beneficial
to patients. In reality, these highly exposed patients may present with adverse drug
reactions such as infections, especially in the elderly, and MIPD may benefit these patients
by reducing toxicity [27–29].

Our findings seemingly contradict the pivotal ACT 1 and 2 trials [1], which showed
no significant difference between 5 mg/kg and 10 mg/kg in endoscopic improvement rates
on day 56 of therapy. Nevertheless, in the post-hoc PK-PD analysis of ACT 1 and 2, the
exposure–response relationship has been established [6]. It would be worthwhile to repeat
the presented modeling and simulation exercise, including the data from these pivotal
trials. Notwithstanding these results, clinical trials are currently underway, evaluating an
intensified induction regimen of 10 mg/kg [30].

MIPD of infliximab has been implemented in clinical practice mainly in tertiary care
centers, however, even there, the confidence in MIPD is crumbling as the results of the land-
mark TAXIT, TAILORIX, and NOR-DRUM trials do not live up to expectations [12,14,31].
Our research showed that in silico simulations are a low-cost alternative to these clinical
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studies. Nevertheless, the translation of findings from a virtual trial into the real world may
be challenged by noise due to, for example, sampling and measurement errors, rounding
of doses and dosing intervals, etc. [32].

MIPD is classically used to improve the probability of target attainment, with the
target window defined by efficacy and toxicity. In this context, efficacy is ever-increasing
with higher exposures, while a dose increase is largely limited by cost rather than toxicity. It
may be interesting to quantify the effect of infliximab as quality-adjusted life years (QALY)
instead, allowing a direct comparison to increased cost and a straightforward optimization
of QALY/cost.

In summary, we performed simulations to illustrate and predict the impact of three
dosing strategies for increasing infliximab exposure during induction therapy as compared
to 5 mg/kg weight-based label dosing, thereby improving the probability of endoscopic
improvement. The use of 10 mg/kg dosing was indeed predicted to improve the probability
of endoscopic improvement to 65.1% at an average drug consumption of 2168 mg per
patient during induction therapy. Individualized dose adaptation could maintain the
same mean probability of endoscopic improvement while reducing variability between
individual patients. Although MIPD showed benefit for reducing variability in exposure
and efficacy between patients, this comes at a higher direct drug cost as compared to
10 mg/kg weight-based dosing.
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Abstract: Ustekinumab is a monoclonal antibody used in Crohn’s disease (CD). Dose optimization
in case of non-response and the role of pharmacokinetic–pharmacodynamic (PK-PD) monitoring
remain unresolved dilemmas in clinical practice. We aimed to develop a population PK-PD model
for ustekinumab in CD and simulate efficacy of alternative dosing regimens. We included 57 patients
and recorded their characteristics during 32 weeks after starting with ustekinumab therapy. Serum
ustekinumab concentration was prospectively measured and fecal calprotectin (FC) concentration
was used to monitor the disease activity. Ustekinumab PK-PD was described by a two-compartment
target-mediated drug disposition model linked to an indirect response model. Lower fat-free mass,
higher serum albumin, previous non-exposure to biologics, FCGR3A-158 V/V variant and lower
C-reactive protein were associated with higher ustekinumab exposure. Model-based simulation
suggested that 41.9% of patients receiving standard dosing achieve biochemical remission at week 32.
In patients not achieving remission with standard dosing at week 16, transition to 4-weekly subcuta-
neous maintenance dosing with or without intravenous reinduction resulted in comparably higher
remission rates at week 32 (51.1% vs. 49.2%, respectively). Our findings could be used to guide
stratified ustekinumab treatment in CD, particularly in patients with unfavorable characteristics,
who might benefit from early transition to 4-weekly maintenance dosing.

Keywords: ustekinumab; inflammatory bowel disease; fecal calprotectin; pharmacokinetics-
pharmacodynamics; therapeutic drug monitoring

1. Introduction

Crohn’s disease (CD) is a debilitating, relapsing-remitting, incurable inflammatory
disease of the digestive tract [1]. Treatment goals have shifted from symptomatic improve-
ment to a combination of endoscopic and clinical remission [2]. Biomarker remission was
identified as an adjunct treatment goal with fecal calprotectin (FC) being sensitive for
endoscopic disease activity [3,4].
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Ustekinumab is an IgG1κ monoclonal antibody that binds with high affinity to the
p40 subunit shared by interleukin 12 (IL12) and interleukin 23 (IL23) [5]. Standard dosing
with weight-based intravenous induction followed by 90 mg subcutaneous injections every
8 weeks is not effective for all patients, with real-world studies reporting that only up to one
half of the patients achieve clinical remission, and up to 25% of patients achieve endoscopic
remission [6–11]. The exposure–response relationship between peak ustekinumab serum
concentration after the induction dose and endoscopic remission at 24 weeks suggests
that a subset of patients not responding to conventional dosing may benefit from dose
escalation [11]. Recent real-world studies assessing off-label intensified maintenance
therapy with 90 mg administered every four weeks in patients with insufficient response
have shown favorable rates of clinical, biochemical and endoscopic remission [12–15].

It remains unclear which patients are best suited for dose optimization, what is the
most suitable dosing strategy (intravenous re-induction or dosing interval shortening for
subcutaneous therapy) and how pharmacokinetic–pharmacodynamic (PK-PD) monitoring
could improve the effectiveness of ustekinumab. Moreover, clinical PK studies of ustek-
inumab in CD are scarce and data on how demographic, pathophysiological, and genetic
factors impact the drug’s PK and PD, are limited.

Our objective was to develop a population PK-PD model linking ustekinumab dosing
regimen to the time course of FC concentrations. Through model-based simulations, which
integrate both PK and PD data, we aimed to explore different dosing strategies, which are
increasingly used in daily clinical practice.

2. Materials and Methods

2.1. Patients and Study Design

This was a prospective observational study in patients with CD starting treatment
with ustekinumab at a single tertiary referral center. The study design and clinical results
have partially been reported elsewhere [11]. Briefly, consecutive patients aged ≥18 years
with CD who started treatment with ustekinumab between October 2017 and June 2019
were screened for eligibility and included in the current study, regardless of baseline endo-
scopic disease activity. They received a weight-based intravenous induction dose (≤55 kg:
260 mg; 55–85 kg: 390 mg; >85 kg: 520 mg) infused over one hour at baseline, followed by
a fixed subcutaneous maintenance dose of 90 mg every 8 weeks. The duration of follow-up
was 32 weeks.

2.2. Pharmacokinetic and Pharmacodynamic Data

Serum samples for the PK analysis were prospectively collected at baseline, 1 h after
the end of the intravenous infusion (peak), and subsequently at weeks 2, 4, 8, 9, 10, 12, 16,
20, 24, and 32. Fecal samples of the first morning bowel movement were collected for the
PD analysis at baseline, and subsequently at weeks 8, 16, 24, and 32. Ileocolonoscopies
were performed within 2 months before starting ustekinumab to determine the presence
of mucosal ulcerations to define endoscopically active luminal disease at baseline. Blood
samples for genotyping analyses were collected at baseline.

Serum unbound ustekinumab concentration (hereafter referred to as ustekinumab con-
centration) was measured with a validated enzyme-linked immunosorbent assay (ELISA,
ImmunoGuide®, AybayTech Biotechnology, Ankara, Turkey), with a lower limit of quan-
tification (LOQ) at 0.35 μg/mL [11]. Antibodies to ustekinumab were measured with a
drug-tolerant ELISA in serum samples with ustekinumab concentration <1 μg/mL [10].
FC was measured with a Calprest ELISA assay (Eurospital, Triest, Italy) with a measure-
ment range of 15.6–500 mg/kg.

Genomic DNA was isolated from whole blood collected in EDTA tubes by using a
FlexiGene DNA kit (Qiagen, Hilden, Germany). The concentration and purity of DNA were
measured on NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer (Thermo
Fischer Scientific, Waltham, MA, USA). Genotyping of single nucleotide polymorphisms
(SNPs) was performed by TaqMan® Pre-Designed SNP Genotyping Assays (Thermo Fischer
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Scientific, Waltham, MA, USA) on a LightCycler 480II real-time polymerase chain reaction
instrument (Roche, Basel, Switzerland) according to manufacturer’s recommendations.
SNPs were selected based on previously identified associations with ustekinumab treatment
outcomes in psoriasis or a possible role in the mediation of IgG clearance [16–18]. The
analyzed SNPs and the specific assays used were: IL12B (rs3212227, assay ID: C_2084293_10;
rs3213094, assay ID: C_29927086_10; and rs6887695, assay ID: C_1994992_10), FCGR2A
(rs1801274, assay ID: C_9077561_20) and FCGR3A (rs396991, assay ID: C_25815666_10).
To validate our results, 20% of the samples were re-genotyped for each SNP, and the results
were found to be reproducible with no discrepancies noted.

Demographic characteristics (age, weight, height, sex), clinical data (co-morbidities,
disease history and disease location, concomitant and previous treatment) and biochemical
markers (C-reactive protein (CRP), serum albumin) were recorded. Fat-free mass (FFM)
was determined using the Janmahasatian model [19].

2.3. Statistical Analysis and Pharmacokinetic–Pharmacodynamic Modeling

Descriptive statistics were used to present the data as non-normally distributed with
medians and inter-quartile ranges (IQR). The nonlinear mixed-effects methodology and
NONMEM® software (version 7.3, Icon Development Solutions, Ellicott City, MD, USA)
was used to analyze the PK and PD data and develop a population PK-PD model, linking
ustekinumab concentrations, patients’ characteristics and FC at all time points.

A population PK model was developed using the ustekinumab concentrations con-
verted to nanomolar concentration, assuming its molecular weight of 149 kDa. A linear one-
and two-compartment models, and approximations of the target mediated drug disposition
(TMDD) model were tested [20–23]. First-order absorption of ustekinumab was assumed
after the subcutaneous dosing. Considering the concentration of ustekinumab target (p40
subunit of IL12 and IL23) was not measured, it was modeled as a latent variable in TMDD
models. The PK studies in monkeys report a bi-exponential decline of the cytokines con-
taining the p40 subunit (IL12 and IL23) [24,25]. Therefore, the PK data were extracted from
these studies and PK parameters for the IL12 and IL23 were estimated and allometrically
scaled to human. These estimates were used as initial estimates of the PK parameters of the
target disposition in the TMDD models. One- and two-compartment models were tested to
describe the distribution of the target.

Additive, proportional and combination (additive + proportional) error models were
tested for residual variability. The logit transformation was used to describe the interindi-
vidual variability (IIV) of fraction of absorbed ustekinumab and the exponential model
was used to describe the IIV of other parameters. The model with the lowest Akaike
information criterion (AIC) was used as a base PK model (Table S1), for the subsequent
covariate model building.

To explain the estimated IIV in the PK parameters, the candidate parameter–covariate
relationships were selected based on scientific plausibility, previously reported relation-
ships, and trends in correlation plots between individual PK parameters and covariates.
Stepwise covariate procedure (p < 0.05 in the forward inclusion, p < 0.01 in the back-
ward elimination) was used to test the significance of parameter–covariate relationships.
To estimate the effect of the body size, FFM was chosen over total body weight, considering
the distribution of monoclonal antibodies is predominantly limited to extracellular fluids.
The evaluated continuous covariates were: disease duration, FFM, baseline serum CRP
concentration and serum albumin concentration. The evaluated categorical covariates were:
previous biological therapy (bio-naïve), smoking, and SNPs in IL12B (rs3212227, rs3213094,
rs6887695), FCGR2A (rs1801274) and FCGR3A (rs396991). Linear and power model were
tested for continuous covariates and dominant and recessive grouping combinations were
tested for SNPs.

The individual PK parameters obtained from the final PK model were used for the
subsequent PD analysis [26], to describe the relationship between ustekinumab PK, target
disposition and FC concentration. The bio-phase distribution model, indirect response
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model and signal transduction (transit compartment indirect response) model were tested
to describe the delay between ustekinumab PK and PD [27]. Exponential model, as well as
Box-Cox transformation were tested to describe the IIV of baseline FC concentration (FC0).

Laplacian estimation with interaction was used for parameter estimation. The M3
method was used for data below the lower or above the upper LOQ [28]. AIC was used
for model comparison. The model was internally validated with a visual predictive check
(VPC, n = 2000) and parameter uncertainty was assessed with bootstrap with replacement
method (n = 2000).

2.4. Model Based Simulations

The final PK-PD model and NONMEM® were used for simulation of various treatment
regimens and scenarios of PK and PD monitoring. The proportion of patients achieving
biochemical remission (FC < 100 mg/kg) at week 8, week 16, week 24 and week 32 after the
first dose was estimated for every treatment regimen, to compare the efficacy. This cut-off
was chosen based on test characteristics identified by meta-analyses [29], with emphasis on
studies using the same assay as our center, considering the large inter-assay variability [30].

First, a virtual population of 10,000 CD patients was created, which resembled the
observed cohort regarding the distributions and correlations of patients’ characteristics.
Subsequently, several clinically relevant scenarios were simulated, as follows:

(a). All patients received standard ustekinumab treatment, with weight-based induction
dose at baseline, followed by fixed 90 mg maintenance doses every eight weeks
(standard treatment);

(b). All patients received weight-based induction dose at baseline followed by fixed 90 mg
maintenance doses every four weeks;

(c). All patients received weight-based induction doses every eight weeks;
(d). Patients receiving standard treatment who were not in remission at week 16, switched

to maintenance doses every four weeks from week 20;
(e). Patients receiving standard treatment who were not in remission at week 16 received

a weight-based reinduction dose at week 16, and continued with maintenance doses
every eight weeks;

(f). Patients receiving standard treatment who were not in remission at week 16 received
a weight-based reinduction dose at week 16 and switched to maintenance doses every
four weeks from week 20.

R software, version 4.0.2 (R Development Core Team, Vienna, Austria), RStudio
version 1.3.1073 (RStudio Team, PBC, Boston, MA, USA) and packages mvtnorm, plyr,
dplyr, reshape2 and ggplot2 were used for creating the virtual patient population, data
wrangling and visualizations.

3. Results

3.1. Baseline Patient Characteristics

The study included 57 patients: the median disease duration was 14 years (IQR 7–22),
66.7% (38/57) had been previously exposed to biological therapy, and 77.2% (44/57) had
endoscopically active disease at baseline (Table 1). All patients completed the study.
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Table 1. Patients’ characteristics at baseline (n = 57).

Characteristic Value

Women, n (%) 32 (56)
Age at UST initiation, years, median (IQR) 49 (32–56)

Weight, kg, median (IQR) 70 (59–84)
Fat-free mass a, median (IQR) 45 (39–62)

Height, cm, median (IQR) 169 (163–179)
Intravenous ustekinumab dose, n (%)

260 mg 9 (15.8)
390 mg 35 (61.4)
520 mg 13 (22.8)

Disease duration, years, median (IQR) 14 (7–22)
Disease location, n (%)

ileal (L1) 17 (29.8)
colonic (L2) 4 (7)

ileocolonic (L3) 36 (63.2)
upper gastrointestinal involvement (L4) 6 (10.5)

Fistulizing perianal disease, n (%) 10 (17.5)
History of CD-related surgery, n (%) 34 (59.6)

Smoking status, n (%)
active smoking 10 (17.5)

previously smoking 12 (21.1)
never smoked 35 (61.4)

Previous biological therapy, n (%) 38 (66.7)
previous anti-TNF exposure 38 (66.7)

previous vedolizumab exposure 10 (17.5)
previous anti-TNF and vedolizumab exposure 9 (15.8)

Systemic steroids at baseline, n (%) 9 (15.8)
Topical steroids at baseline, n (%) 3 (5.3)

Immunomodulators at baseline, n (%) 5 (8.8)
azathioprine 4 (7)
methotrexate 1 (1.8)

Harvey–Bradshaw score, median (IQR) 6 (3–10)
Fecal calprotectin, mg/kg, median (IQR) 134 (53–213)
C-reactive protein, mg/L, median (IQR) 3 (3–11)

Serum albumin, g/L, median (IQR) 43 (41–44)
Endoscopically active disease at baseline, n (%) 44 (77.2)

Samples available (ustekinumab measurement), n 574
Samples available (Fecal calprotectin), n 224

Samples with fecal calprotectin below the limit of
quantification, n (%) 15 (6.8)

Samples with fecal calprotectin above the limit of
quantification, n (%) 11 (5)

Genotype frequencies
IL12B rs3212227, n (%)

A/A 37 (64.9)
A/C 17 (29.8)
C/C 3 (5.3)

IL12B rs3213094, n (%)
C/C 37 (64.9)
C/T 17 (29.8)
T/T 3 (5.3)

IL12B rs6887695, n (%)
G/G 22 (38.6)
C/G 25 (43.9)
C/C 10 (17.5)

FcGR2A rs1801274, n (%)
A/A 21 (36.8)
A/G 29 (50.9)
G/G 7 (12.3)
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Table 1. Cont.

Characteristic Value

FcGR3A rs396991, n (%)
A/A 21 (36.8)
A/C 31 (54.4)
C/C 5 (8.8)

CD—Crohn’s disease; IQR—interquartile range; TNF—tumor necrosis factor; UST—ustekinumab. a The fat-free
mass was predicted using the semi-mechanistic model developed by Janmahasatian et al. [19].

3.2. Pharmacokinetic and Pharmacodynamic Data

A total of 574 serum samples was available for ustekinumab measurement. Five sam-
ples had an ustekinumab concentration below the lower LOQ, and none of the analyzed
samples had measurable antibodies to ustekinumab. SNPs were analyzed for all patients,
and all genotype frequencies were in Hardy–Weinberg equilibrium (Table 1). A total of
224 samples was available for FC measurement. There were 15 samples with FC concentra-
tion below the lower LOQ and 11 samples above the upper LOQ.

3.3. Pharmacokinetic–Pharmacodynamic Model

A quasi-equilibrium approximation of the TMDD model [23] best described the time
profile of the ustekinumab concentration (Table S1). The model (Figure 1) assumes rapid
binding of ustekinumab to the target antigen and was extended with distribution of the
unbound ustekinumab and unbound target into a peripheral compartment since it resulted
in an improved fit (Table S1). The binding was assumed in the central compartment.
Estimated parameters comprised linear ustekinumab PK, linear target PK and parameters
related to the binding of ustekinumab to the target (Table 2). The terminal half-life of
ustekinumab after the induction dose in a typical patient was estimated at 17 days and the
volume of distribution was low, with volumes of central and peripheral compartment of
ustekinumab estimated at 3.57 L and 3.30 L, respectively. There was a high IIV of the rate
constant of target synthesis (Ksyn), with the coefficient of variation estimated at 99.5%.

Table 2. Base and final pharmacokinetic model parameter estimates.

Parameter (Units) Base Model Final Model

Estimate Estimate Bootstrap Median (95% CI)

Ustekinumab
pharmacokinetics

Ka (day−1) 0.518 0.381 0.380 (0.341–0.422)
CL (L/day) a 0.264 0.277 0.275 (0.259–0.294)
FFM on CL / 0.598 0.596 (0.539–0.673)

bio-naïve on CL / −0.227 −0.232 (−0.280–−0.192)
Serum albumin on CL / −0.0165 −0.0170 (−0.0224–−0.0127)

Vc (L) b 2.18 3.57 3.56 (3.41–3.70)
FFM on Vc / 0.590 0.587 (0.534–0.644)
Q (L/day) 20.1 1.89 1.88 (1.69–2.11)

Vp (L) c 5.04 3.30 3.27 (3.01–3.52)
FFM on Vp / 0.586 0.581 (0.512–0.660)

Fraction absorbed, F (%) 71.7 / /
FCGR3A-158 V/V / 88.8 88.8 (86.1–92.4)

FCGR3A-158 V/F, F/F / 71.0 70.8 (65.3–75.8)
Target pharmacokinetics
Ksyn (nmol/L × day−1) d 1.65 × 10−8 9.86 × 10−9 9.85 × 10−9 (8.75 × 10−9–1.09 × 10−8)

Serum CRP on Ksyn / 0.0846 0.0843 (0.0772–0.0883)
Kdeg (day−1) 1.85 × 10−10 9.26 × 10−10 9.26 × 10−10 (8.53 × 10−10–1.06 × 10−9)
Vc–target (L) 18.8 2.44 2.44 (2.27–2.81)

Qtarget (L/d) 0.752 0.493 0.488 (0.440–0.539)
Vp–target (L) 22.6 11.0 10.9 (9.87–12.0)
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Table 2. Cont.

Parameter (Units) Base Model Final Model

Estimate Estimate Bootstrap Median (95% CI)

Binding
Kint (day−1) 1.71 × 10−7 2.83 × 10−6 2.82 × 10−6 (2.56 × 10−6–3.15 × 10−6)
Kd (nmol/L) 0.350 0.168 0.168 (0.154–0.196)

Interindividual variability
IIV CL (%, CV) e 27.9 (13) 18.0 (16) 18.0 (16.0–20.1)
IIV Vc (%, CV) e 32.9 (16) 9.79 (22) 9.79 (8.88–10.8)
IIV Vp (%, CV) e 21.5 (23) 24.1 (24) 23.6 (19.7–26.0)
IIV F (%, SD) e 16.6 (21) 17.3 (22) 17.4 (15.8–20.2)

IIV Ksyn (%, CV) e 105 (25) 99.2 (27) 98.4 (83.4–110)
Residual variability

Additive RUV (nmol/L) e 4.46 (18) 4.55 (17) 4.58 (4.09–5.86)
Proportional RUV (%) e 7.84 (18) 7.77 (17) 7.74 (6.94–8.55)

CI—confidence interval; Ka—ustekinumab absorption rate constant after subcutaneous administration; CL—clearance of ustekinumab;
FFM—fat-free mass; Vc—volume of distribution in central compartment; Q—intercompartmental clearance; Vp—volume of distribution in
peripheral compartment; F—fraction of absorbed ustekinumab after subcutaneous administration; Ksyn—rate constant of target synthesis;
CRP—C-reactive protein; Kdeg—rate constant of target degradation; Kint—elimination rate constant due to binding; Kd—equilibrium
constant; IIV—interindividual variability; CV—coefficient of variation; SD—standard deviation; RUV—residual unexplained variabil-

ity. a CL
(

L
day

)
= 0.277 × ( FFM

45

)0.598 × (1 − 0.0165 × (Serum albumin − 43)) × (1 − 0.227 × bio − naïve). b. Vc (L) = 3.57 × ( FFM
45

)0.590

c. Vp (L) = 3.30 × ( FFM
45

)0.586
. d. Ksyn

(
nmol

L × day−1
)
= 9.86 × 10−9 × (1 + 0.0846 × (CRP − 3)). e. For variability terms % shrinkage is

presented in brackets.

 

Figure 1. Schematic of the population pharmacokinetic–pharmacodynamic model. A first-order
absorption of ustekinumab (drug) is assumed after the subcutaneous administration. The distri-
bution of the unbound drug and unbound target is described with the two-compartment models.
The binding is assumed in the central compartment and is described with the quasi-equilibrium
approximation of the target-mediated drug disposition model. The stimulating effect of the unbound
target on the fecal calprotectin is described with the indirect response model. Ka: ustekinumab ab-
sorption rate constant after the subcutaneous administration; Vc: volume of distribution in the central
compartment; Vp: volume of distribution in the peripheral compartment; QUST: intercompartmental
clearance of unbound ustekinumab; CL: clearance of unbound ustekinumab; Ksyn: rate constant of
target synthesis; Kdeg: rate constant of target degradation; KD: constant of the equilibrium between
unbound drug, unbound target and drug-target complex; Kint: rate constant of internalization of the
drug-target complex into the cells; Qtarget: intercompartmental clearance of unbound target; Kin: rate
constant of calprotectin production; Kout: rate constant of fecal calprotectin degradation.
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Covariates associated with PK parameters were as follows: ustekinumab clearance
was higher with increasing FFM, decreasing serum albumin, and in patients with previous
exposure to biologics (Table 2). A power model described the increase of volumes of the
central and peripheral compartment of ustekinumab with increasing FFM (Table 2). The
fraction of absorbed ustekinumab was higher in valine homozygous (V/V) patients of
rs396991 FCGR3A polymorphism, compared to phenylalanine homozygotes (F/F) and
heterozygotes (V/F) combined (Table 2, Figure S1). Additionally, Ksyn increased with
increasing baseline CRP (Table 2).

The concentration of the unbound target was linked to the FC concentration via
the indirect response model, which best described the stimulating effect of the unbound
target on the FC production (Table 3). Thus, the model explains the ustekinumab effect on
the decrease in FC concentration via the intermediate target layer (Figure 1). The initial
concentration of the target and FC were modelled as Ksyn/Kdeg and FC0, respectively.
In the absence of ustekinumab, steady concentration of the target and FC is assumed.
In contrast, when ustekinumab is administered and bound to the target, the unbound
target concentration decreases, which inhibits the FC production. Exponential model best
described the IIV on FC0 and patients who started ustekinumab due to endoscopically
active disease, had higher baseline FC concentration, which was accounted for in the PD
model as a binary covariate on FC0 (Table 3). There was a good agreement between model
predictions and the observed data (Figure 2 and Figure S2).

Table 3. Final pharmacodynamic model a parameter estimates.

Parameter (Units) Estimate Bootstrap Median (95% CI)

Kout (day−1) 0.0581 0.0641 (0.0249–0.110)
FC0 (mg/kg)

Patients without ulcers at
baseline 102 105 (54.4–188)

Patients with ulcers at
baseline 213 214 (157–287)

Emax (%) 219 227 (128–442)
C50 (nmol/L) 2.46 2.56 (0.413–13.9)

Interindividual variability
IIV FC0 (%) b 99.0 (2) 98.0 (75.0–128)

Residual variability
Proportional RUV (%) b 57.3 (17) 56.4 (48.8–65.0)

CI—confidence interval; Kout—fecal calprotectin degradation rate constant; FC0—baseline fecal calprotectin
concentration; Emax—maximum effect; C50—target concentration at half-maximum effect; IIV—interindividual

variability; RUV—residual unexplained variability. a. dFC
dt = FC0×Kout

1+
Emax× Ksyn

Kdeg

C50+
Ksyn
Kdeg

×
(

1 + Emax×unbound target concentration
C50+unbound target concentration

)
−

Kout × FC. b. For variability terms % shrinkage is presented in brackets.

3.4. Simulations

The simulation of patients receiving standard ustekinumab regimen demonstrates that
patients with weight ≤55 kg have lower ustekinumab concentration in the induction phase,
and higher ustekinumab concentration in the maintenance phase, compared to patients
with weight >55 kg. In addition, patients in the lowest weight group had higher unbound
p40 and FC concentrations during the induction phase (Figure S3).

After the first ustekinumab administration, the unbound target rapidly decreases.
A subsequent increase in the target concentration is observed, due to the constant target
synthesis. A faster increase in the target concentration in patients with weight >55 kg is
observed, compared to patients with weight ≤55 kg, because of the fixed 90 mg subcuta-
neous dose in the maintenance phase and thus higher exposure to ustekinumab of patients
with weight ≤55 kg (Figure S3). In addition, initial target concentration influences the
peak ustekinumab concentration. A patient with the 10-fold higher Ksyn compared to the
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typical value, would have approximately 15 μg/mL lower peak ustekinumab concentration
(Figure S4).

 

Figure 2. Visual predictive check (n = 2000) of the final pharmacokinetic (A) and final pharmacody-
namic (B) models. Observations (points), medians (black lines), 5th and 95th percentiles (dashed
black lines), 95% confidence intervals of the simulated medians (grey shaded areas), 2.5th and 97.5th
percentiles (blue shaded areas).

The dynamics of the FC are similar across the weight groups, with faster increase of
the FC concentration in higher weight groups (Figure S3). Patients with the endoscopically
active disease at baseline had higher FC concentration, and only these patients were
considered for the rest of simulations.

The proportions of patients in remission at week 32 receiving standard treatment
with maintenance dosing every 8 weeks, treatment with initial induction and subsequent
maintenance dosing every four weeks from week 4 or treatment with induction dosing
every eight weeks are 41.9%, 52.2% and 56.0%, respectively (Figure 3). In patients not
achieving remission with standard treatment at week 16, transition to subcutaneous main-
tenance dosing every 4 weeks with or without intravenous reinduction resulted in similar
biochemical remission at week 32 (51.1% vs. 49.2%, respectively), while reinduction and
continuation with maintenance dosing every 8 weeks was comparable to standard dosing
(Figure 4).
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Figure 3. Proportion of patients achieving biochemical remission at weeks 8, 16, 24 and 32, with
standard treatment (�), treatment with initial induction, followed by maintenance dosing every four
weeks from week 4 (•) and induction dosing every eight weeks (�).

Figure 4. Proportion of patients who achieved biochemical remission at weeks 8, 16, 24 and 32, with
standard treatment (�), treatment where patients not in remission at week 16 received maintenance
dosing every four weeks from week 20 (•), treatment where patients not in remission at week 16
received intravenous reinduction at week 16 and continued with maintenance dosing every eight
weeks (�), and treatment where patients not in remission at week 16 received intravenous reinduction
at week 16, followed by maintenance dosing every four weeks from week 20 (+).
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4. Discussion

Clinical PK studies of ustekinumab are relatively scarce, and there is currently no
consensus on the optimal management of inadequate response to treatment. To our
knowledge, this is the first study to present a semi-mechanistic PK-PD model linking
ustekinumab PK, CD patients’ clinical characteristics, binding to p40 subunit and FC
dynamics. Additionally, we are the first to evaluate the influence of genetic factors on
ustekinumab PK-PD in CD. Model-based simulations suggest the possibility of achieving
better outcomes with intensified dosing and provide further insight into managing patients
with insufficient response at week 16.

Building on previous work identifying an exposure–response relationship for ustek-
inumab for biochemical and endoscopic outcomes [8,10,11,31], our PK-PD model suggests
that rates of biochemical remission could be improved by using intensified dosing regimens
to increase ustekinumab exposure (Figure 4). A subgroup of patients at risk of insufficient
exposure to ustekinumab (albumin < 43 g/L, previously exposed to biological treatment,
V/F or F/F genotype of rs396991, CRP > 5 mg/L) were predicted to benefit the most from
dosing escalation. These patients could also be considered for potential proactive dosing
escalation in future studies (Figures S5 and S6). The proportion of patients achieving
biochemical remission decreased with an increasing number of unfavorable covariates, and
this trend was attenuated by dosing escalation (Figure S6).

Different approaches have been used in patients not responding or losing response
to standard dosing of ustekinumab: dosing interval shortening [12–15], intravenous rein-
duction [32] or a combination of both [32,33]. These modifications were made at week 16
of treatment or later. Clinical remission, defined as a Harvey–Bradshaw Index ≤ 4, was
reported in 28–40% of patients after interval shortening to every 4 weeks [12–14], CRP
normalization occurred in 22% of patients [12]. The interpretation of endoscopic remission
rates around 35% (4/11, 14/39) is confounded by low numbers and potential selection
bias where patients with biochemically active disease did not undergo endoscopic as-
sessment [12,14]. None of the studies conducted so far were designed and powered to
compare the efficacy of different strategies. Simulations based on our model showed that
switching to maintenance dosing every 4 weeks from week 16 leads to similar rates of
biochemical remission at week 32 regardless of an additional intravenous reinduction
dose. A single additional reinduction dose followed by maintenance every 8 weeks is
expected to provide only transient benefit (Figure 4). This is broadly concordant with the
findings of a retrospective real-world series, where 15/18 patients responded clinically to
an additional intravenous infusion and 10/15 required escalated subcutaneous dosing in
ongoing maintenance [32]. Even patients already on maximized subcutaneous dosing may
benefit from an additional intravenous infusion, although none of these studies included
PK assessment [33].

Our findings should be compared with the recently reported results of the STARDUST
trial (NCT03107793) evaluating the efficacy of a treat-to-target (T2T) approach to guide
treatment escalation decisions compared to standard of care (SOC) [34]. Clinical responders
at week 16 underwent randomization, dosing in the T2T arm was first determined based
on the change in endoscopic score from baseline and subsequently on combined clinical
and biomarker (CRP, FC) monitoring. At week 48, endoscopic response (T2T: 37.7%;
SOC: 29.9%) and remission (T2T: 11.4%; SOC: 14.5%) were not significantly different
between the two groups. Notably, only 17% of patients in the T2T arm were on four-weekly
dosing at week 48, although this percentage is also affected by the 20% discontinuation
rate in this arm as patients not achieving treatment targets within four weeks of starting
four-weekly dosing discontinued the study. It also remains to be seen what proportion of
discontinuations was driven by clinical disease activity despite biochemical remission, as
both were required to meet the target. Despite these results, dose escalation may still hold
added benefit, particularly if applied early after induction to a selected subpopulation of
patients unlikely to respond to standard dosing due to low drug exposure.
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The estimated terminal half-life in our study is in accordance with PK studies in
psoriasis, psoriatic arthritis, and IBD [35–38], reporting half-life between 19 and 22 days.
The distribution of ustekinumab into tissues was limited, which is consistent with its
high molecular weight and hydrophilic properties. Ustekinumab linear clearance was
in range of reported clearance values in other studies in IBD [37–39], and the TMDD PK
model is consistent with the recent findings of the TNF-mediated PK of infliximab in
ulcerative colitis [40]. Notably, the elimination of ustekinumab in our model was captured
in two catabolic pathways, distinct for IgG antibodies [41]: a linear, non-specific clearance,
and a nonlinear, specific clearance, mediated by the binding of the antibody to its target.
Therefore, a higher concentration of the target reflecting increased inflammatory burden
may lead to accelerated ustekinumab clearance and lower ustekinumab concentration. In
CD, the concentration of the p40 subunit is related to the disease activity, although the
reported serum concentrations of IL12 and IL23 are highly variable [42,43].

The PK model additionally includes a bi-exponential decline of the concentration of
the target, which reflects the possible distribution of the target to other tissues and is in line
with the in vivo studies of IL12 and IL23 [24,25]. Thus, the initial binding of ustekinumab
to the target in the serum may explain the influence of the target on the peak ustekinumab
concentration and volume of distribution (Figure S4). The subsequent redistribution of
the target from other tissues into the serum, as well as the constant target synthesis, may
explain the target-mediated ustekinumab clearance.

We have identified similar factors influencing ustekinumab PK compared to other
studies [35–38]. Ustekinumab exposure was found to increase with decreasing FFM.
However, dosing regimens seemed similarly efficient in patients stratified by the weight
according to the induction dose (Figure S6). This indicates that the weight is not related
with ustekinumab efficacy and is in line with the recent post hoc analysis of IM-UNITI
study, assessing the impact of body mass index on clinical efficacy [44]. The exposure
increased with increasing serum albumin, as well. A more severe disease may result in
a leakage of the albumin and drug into the bowel. The correlation may additionally be
explained by the role of FcRn in homeostatic regulation of both, IgG and albumin [45].
Moreover, ustekinumab exposure was higher in bio-naïve patients. Presumably, these
patients are less likely to have a more severe type of disease compared to those who
have previously failed therapy with other biologics. Therefore, bio-naïve patients may
express lower target concentrations, which leads to lower ustekinumab clearance and
higher exposure.

We also observed higher fraction of absorbed ustekinumab, and higher exposure
related with V/V variant of the rs396991 polymorphism, otherwise known as FCGR3A-158
V/F (Figure S1, Table 2). This is a functionally significant polymorphism in FCGR3A gene,
which encodes the FcγRIIIa receptor. Our finding is highly interesting, since it mirrors
the studies reporting association between the V/V genotype and better outcomes of CD
treatment with infliximab [46,47]. The V variant is presumably related with higher affinity
between FcγRIIIa and the IgG antibodies, compared to the F variant, which may result
in altered binding at the absorption site and lead to a variable response to treatment in
IBD [48]. However, further studies are necessary to clarify the clinical relevance and the
mechanistic involvement of FCGR3A-158 polymorphism in ustekinumab PK-PD.

The indirect response PD model for FC has been previously used in a PK-PD studies
of infliximab and ustekinumab in CD [38,49]. Notably, the rates of FC degradation are
similar, which may additionally account for the different FC measurement assays. In our
study, all patients regardless of the endoscopic disease activity were included, and the
presence of mucosal ulcerations at baseline was associated with higher baseline FC and
CRP, indicating a higher inflammatory burden in patients with confirmed active luminal
disease. Antibodies to ustekinumab were not detected in any of the tested samples, which
is consistent with the low observed rates of immunogenicity in registration studies [50–52].

Specifically, our PK-PD model is in line with the recent study by Wang et al. [38], who
reported a PK-PD model linking ustekinumab, FC and endoscopic outcomes, based on the
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sparse data from an exposure-response study by Verstockt et al. [10]. Notably, the estimated
ustekinumab linear CL is similar (Wang et al.: 0.235 L/day; our study: 0.277 L/day), both
models assumed the disposition of ustekinumab into the peripheral compartment and
included similar covariates affecting the PK (Wang et al.: serum albumin, body weight;
vs. our study: serum albumin, FFM, bio-naïve, FCGR3A-158, CRP). The difference in the
percent of bio-naïve patients (Wang et al.: 5%; vs. our study: 33%) and the testing of the
genetic data in our study may in part explain the different covariate model structure. The
simulated median trough steady state ustekinumab concentration for standard regimen
(Wang et al.: 1.3 μg/mL; vs. our study: 1.5 μg/mL) and regimen with maintenance dosing
every 4 weeks (Wang et al.: 5.3 μg/mL vs. our study: 5.1 μg/mL) were similar, as well.

Additionally, both studies used indirect response PD models with comparable Kout
estimate for FC (Wang et al.: 0.0416 day−1; vs. our study: 0.0581 day−1), although there was
a large observed difference in the average FC concentration due to the different assay [53],
and in our model the FC concentration was linked to the latent target instead of the
ustekinumab. The residual unexplained PD variability was relatively high in both studies,
at more than 55%. Nevertheless, both studies suggested the potential benefit of the shorter
interval of the maintenance dosing.

Our findings should be interpreted in the context of the study’s limitations. The
model was developed in a small cohort of patients and the target concentration was not
measured. Despite the plausibility of covariates explaining the PK of ustekinumab, which
overlap with findings from other immune-mediated inflammatory diseases and models
for other monoclonal antibodies in IBD, the model should be further validated in an
independent cohort. Notwithstanding the correlation between endoscopic outcomes and
FC concentrations, normalization of the latter is neither an independent treatment goal nor
does its normalization guarantee endoscopic remission as observed in the STARDUST trial.
Finally, outcomes of simulations based on our model should be regarded as hypothesis-
generating for future study design and not used to inform clinical practice here and now.

In conclusion, this article presents a semi-mechanistic population PK-PD model for
ustekinumab in CD, and the findings could be used to guide future attempts to personalize
treatment with ustekinumab in CD. Especially patients with low serum albumin, previous
failure of biological therapy, FCGR3A-158 V/F or F/F variant and high CRP might benefit
from early optimization of ustekinumab therapy to 4-weekly maintenance dosing.
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Abstract: Infliximab is approved for treatment of various chronic inflammatory diseases including
inflammatory bowel disease (IBD). However, high variability in infliximab trough levels has been
associated with diverse response rates. Model-informed precision dosing (MIPD) with population
pharmacokinetic models could help to individualize infliximab dosing regimens and improve therapy.
The aim of this study was to evaluate the predictive performance of published infliximab population
pharmacokinetic models for IBD patients with an external data set. The data set consisted of 105 IBD
patients with 336 infliximab concentrations. Literature review identified 12 published models eligible
for external evaluation. Model performance was evaluated with goodness-of-fit plots, prediction- and
variability-corrected visual predictive checks (pvcVPCs) and quantitative measures. For anti-drug
antibody (ADA)-negative patients, model accuracy decreased for predictions > 6 months, while
bias did not increase. In general, predictions for patients developing ADA were less accurate for
all models investigated. Two models with the highest classification accuracy identified necessary
dose escalations (for trough concentrations < 5 μg/mL) in 88% of cases. In summary, population
pharmacokinetic modeling can be used to individualize infliximab dosing and thereby help to
prevent infliximab trough concentrations dropping below the target trough concentration. However,
predictions of infliximab concentrations for patients developing ADA remain challenging.

Keywords: infliximab; population pharmacokinetics; inflammatory bowel disease; model-informed
precision dosing; dose individualization

1. Introduction

Infliximab is an intravenously administered recombinant chimeric monoclonal anti-
body that inhibits both soluble and membrane-bound tumor necrosis factor alpha (TNF-
α) [1]. Infliximab is approved for treatment of various chronic inflammatory diseases
including the inflammatory bowel diseases (IBD) Crohn’s disease (CD) and ulcerative
colitis (UC) [2,3]. After its approval in 1999 by the European Medicines Agency (EMA),
infliximab revolutionized the treatment of CD and UC because of its ability to induce long-
term remission, reduce hospitalizations, and restore quality of life [4,5]. Today, infliximab
is still widely used and available as different biosimilars [3].

Pharmaceutics 2021, 13, 1368. https://doi.org/10.3390/pharmaceutics13091368 https://www.mdpi.com/journal/pharmaceutics
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Infliximab exhibits linear pharmacokinetic behavior, while low trough concentra-
tions are associated with impaired or even loss of response to infliximab therapy [6–9].
UC patients with detectable serum infliximab trough concentrations showed a 4 times
higher probability and CD patients even a 13 times higher probability of being in clin-
ical remission, making serum infliximab levels a predictor of clinical response [6,9–12].
According to a recent guideline from the American Gastroenterological Association Insti-
tute, infliximab should be dosed to achieve target trough concentrations of ≥ 5 μg/mL
in order to improve therapy outcome [13]. However, a high inter-individual variabil-
ity in infliximab trough levels has been observed contributing to a high rate of treat-
ment failure [9,12–14]. About 10–40% of patients fail to respond to induction therapy
(primary non-response) [15], and subsequently, 13% of patients lose response annually af-
ter initially responding (secondary non-response) [16]. One of the reasons for primary and
secondary non-response is the formation of anti-drug antibodies (ADAs) against infliximab,
leading to an increased infliximab clearance (CL) [9,17,18].

A good understanding of the high variability in infliximab trough levels is essen-
tial for dose individualization strategies [4,19–22]. In the past, several efforts have been
made to characterize infliximab pharmacokinetics (PK), including the quantification and
explanation of inter-individual variability, and to develop population pharmacokinetic
models for dose individualization [21,23–27]. While these analyses identified various
covariates (e.g., albumin levels, sex, weight, ADA development, and use of concomi-
tant immunomodulators) that influence infliximab CL and volume of distribution (Vd),
the covariates could only partly explain the observed inter-individual and inter-occasion
variability (IOV) [23,24,26,27].

Thus, population pharmacokinetic models combined with data from therapeutic
drug monitoring could help to optimize drug dosing regimens in individual patients via
model-informed precision dosing (MIPD) [28–32]. Infliximab models have recently been
used to simulate dosing regimens for different patient populations or for evaluation of
individualized dose adjustments and incidences of loss of response [31,33,34]. However,
a comprehensive external evaluation of the different infliximab population pharmacoki-
netic modeling approaches including assessment of accuracy and bias of model predictions
over time as well as the ability to predict the need for dose escalation is still pending.
Hence, the aim of this work was to provide an overview of published infliximab popu-
lation pharmacokinetic models for patients with IBD as well as to evaluate and compare
model performance with a focus on differences between ADA-negative and ADA-positive
subpopulations in a Bayesian forecasting setting using an external data set.

2. Materials and Methods

2.1. External Evaluation Data Set

For predictive external model evaluation, data originated from a previously published
observational study that was reviewed and approved by the institutional review board of
the Medical University of Vienna [35]. All participating patients had signed an informed
consent form.

Patients with an established diagnosis of CD and UC were enrolled in the study.
All participants had previously responded to induction therapy, receiving three infusions
at weeks zero, two, and six, and were assigned to a maintenance dosing regimen. Serum
samples of patients (median 2, range 1–12 samples) were collected during infliximab
therapy at both midpoint and trough times of a dosing interval while exact time points were
not specified in the protocol. Laboratory and demographic data were collected, including
serum infliximab concentrations, ADA levels, serum albumin concentrations, C-reactive
protein levels, weight, use of concomitant immunomodulators, Harvey–Bradshaw index
(HBI), and smoking status.

Serum infliximab concentrations used in this analysis were measured with a com-
mercially available enzyme-linked immunosorbent assay (ELISA) method (Immundiag-
nostik Germany, Bensheim, Germany) with a lower limit of quantification (LLOQ) of
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2.68 ng/mL [36]. ADA concentrations were determined using the homogeneous mobility
shift assay (HMSA) from Prometheus Labs Inc., San Diego, CA, USA with an LLOQ of
3.13 U/mL [37]. Patients were assigned to the ADA-positive patient cohort if any measured
ADA concentration was above the threshold of 6.6 U/mL [37,38].

2.2. Population Pharmacokinetic Models and Software

A comprehensive and systematic literature search in PubMed was performed for in-
fliximab population pharmacokinetic analyses in patients with IBD. The search terms were
“infliximab” AND “population” AND “pharmacokinetics” and reference lists of identified
articles were manually screened for further eligible studies. Subsequently, modeling and
study information was collected, including model structure, population pharmacokinetic
parameter values, covariates, inter-individual variability, residual variability, information
on patient cohorts, disease type, number of patients, number of collected blood sam-
ples, and ADA immunogenicity rate. The population pharmacokinetic models described
in the gathered studies were implemented and evaluated using the nonlinear mixed ef-
fects modeling software NONMEM® version 7.4 (Icon Development Solutions, Ellicott
City, MD, USA). Computations for prediction- and variability-corrected visual predictive
checks (pvcVPCs) were generated with the PsN (version 4.9.0) tool “vpc” [39,40]. Data
management, graphics, and quantitative model diagnostics were carried out using the R
programming language version 3.6.3 (R Foundation for Statistical Computing, Vienna,
Austria) and R Studio® version 1.2.5019 (R Studio, Inc., Boston, MA, USA).

2.3. Model Performance Evaluation

For the implemented population pharmacokinetic models, all parameters
(fixed and random effects) were set to published values of the respective study. To as-
sess the potential applications in a clinical setting, model performances to predict serum
infliximab concentrations with a Bayesian approach were evaluated with the external data
set. Here, the first measured serum infliximab concentration of each patient (CMAP) was
used for maximum a posteriori (MAP) estimation of individual pharmacokinetic parameters
(empirical Bayes pharmacokinetic parameter estimates [EBEs]) considering interaction be-
tween inter-individual variability and residual variability for prediction of subsequent serum
infliximab concentrations (Bayesian forecasting). As recommended by Abrantes and cowork-
ers, IOV was included in the estimation of EBEs but excluded in the calculation of indi-
vidual pharmacokinetic parameters used for predictions [41]. For prospective predictions,
individual patient covariates for times after CMAP were imputed using last observation
carried forward.

Visual and quantitative methods were applied for the evaluation of predictive model
performances. Goodness-of-fit plots of individual predicted infliximab concentrations
vs. observed infliximab concentrations were generated for visual evaluation. Moreover,
two quantitative measures were calculated, including the median symmetric accuracy
(ζ, Equation (1)) and the symmetric signed percentage bias (SSPB, Equation (2)) to evaluate
the model regarding prediction accuracy and prediction bias.

ζ = 100 ×
[

e
(

median
(∣∣∣ln (

yi
xi

)∣∣∣)) − 1
]

, (1)

SSPB = 100 ×
[

sign
(

median
(

ln
(

yi
xi

)))]
×

[
e
(∣∣∣median

(
ln

(
yi
xi

))∣∣∣) − 1
]

. (2)

In Equations (1) and (2) xi represents the ith observed infliximab serum concentration
and yi the corresponding predicted serum concentration.

ζ represents the typical absolute percentage error with 50% of absolute percentage
errors below ζ [42]. The SSPB, a measure of bias, estimates the central tendency of the er-
ror penalizing underprediction and overprediction equally as illustrated by Morley and
coworkers [42].
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As mentioned before, dose escalation can be beneficial in patients with trough concen-
trations below the target threshold of 5 μg/mL. Hence, a model’s ability to correctly predict
the need for dose escalation was further investigated. For that, observed and predicted
trough concentrations were split into two categories: Ctrough < 5 μg/mL (dose escalation
needed) and Ctrough ≥ 5 μg/mL (no dose escalation needed). Correct predictions of need
for dose escalation are referred to as “true positive” while correct predictions of no need
for dose escalation are referred to as “true negative”. Model accuracy, i.e., the fraction
of observed and corresponding predicted trough concentrations, both <5 μg/mL or both
≥ 5 μg/mL, were calculated for all models. Here, model classification performance was
evaluated for trough samples in which ADA status was negative and for trough samples
in which ADA status was positive individually.

In addition, pvcVPCs were performed with multiple replicates (n = 1000) of the study
population. The simulated concentrations (median, 5th, and 95th percentiles), the corre-
sponding 95% confidence intervals as well as prediction- and variability-corrected observed
concentrations (with median, 5th, and 95th percentiles) were plotted against time after dose.

3. Results

3.1. Characteristics of Published Population Pharmacokinetic Models of Infliximab in Patients
with IBD

The comprehensive literature search in PubMed for population pharmacokinetic anal-
yses of infliximab in patients with IBD revealed 25 population pharmacokinetic models,
which are listed in Table 1 together with the respective model characteristics. The models
partially differ both in base model structure as well as tested and integrated covariates.
The majority of the studies used a 2-compartment model (n = 18) with first-order elimi-
nation, while seven models implemented a 1-compartment model. Yet, five out of seven
studies that used a 1-compartment base model were developed with sparse data including
only infliximab trough samples in the model building process.

Integrated covariates on infliximab CL and central volume of distribution (Vc) include
patient characteristics (sex, weight, and age), clinical characteristics (albumin levels, HBI,
ADA status, etc.) as well as concomitant medication of immunomodulators (IMM).

Of the 25 models, 14 included albumin concentrations, 14 weight, and four sex as a co-
variate on CL. Moreover, four models included an IOV for the CL parameter. Eighteen
models integrated ADA as a covariate (sixteen as binary, one as ordinal, and one as contin-
uous covariate), two models implemented a risk function of developing ADA, and three
did not include ADA status in the model since only a small fraction of patients in the re-
spective model building data set were ADA positive (≤3%). Two studies did not include
ADA-positive patients for the model building process (see Table 1).

Furthermore, model building data sets vastly differed in patient and sample numbers,
patient cohort (patients with CD/UC; adult/pediatric patients) as well as sampling times
(see Table 1). Eleven models used data from both patients with CD and UC, eleven from
patients with CD, and three from patients with UC. The majority of models were developed
with data from adult patients (19/25), three with data from both adult and pediatric
patients, and three with data from pediatric patients only.

3.2. Eligible Population Pharmacokinetic Models for Evaluation

Twelve out of 25 population pharmacokinetic models (entries marked with an asterisk
in Table 1) were eligible for model performance evaluation with the external data set. From
Fasanmade et al., 2011, two of three models that were developed using a data set of adult
patients and a data set of both pediatric and adult patients, respectively, were included
in the analysis [24]. Edlund et al. published three different approaches for handling
the ADA covariate [43]. All three models based on ADA measurements by HMSA were
included in the analysis and are, hereafter, referred to as I (ADA covariate on the patient
level), II (ADA covariate on sample level), and III (ADA concentrations as a continuous
covariate). Eleven out of 25 models (Ternant et al., 2008 [44], Dotan et al., 2014 [45], Ter-
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nant et al., 2015 [46], Brandse et al., 2017 [47], Kevans et al., 2018 [48], Dreesen et al.,
2019 [49], Matsuoka et al., 2019 [50], Petitcollin et al., 2019 [51], Dreesen et al., 2020 [27],
Bauman et al., 2020 [21], and Kantasiripitak et al., 2021 [26]) could not be evaluated because
of data set incompatibility (e.g., missing covariates in our data set) or lack of reported model
implementation details. The model by Grišić et al. was not included in the analysis as
it was specifically focused on modeling the effects of pregnancy affecting infliximab PK [52].
In summary, models developed by Aubourg et al., 2015 [53], Buurman et al., 2015 [54],
Brandse et al., 2016 [55], Edlund et al., 2017 (I–III) [43], Fasanmade et al., 2009 [23], Fasan-
made et al., 2011 (adults and adults/children) [24], Passot et al., 2016 [56], Petitcollin et al.,
2018 [25], and Xu et al., 2012 [57] were implemented and included in the external evalua-
tion. Additional information on the investigated models regarding assumptions for model
implementation (e.g., handling of missing units or ambiguities) are outlined in Section 1 of
the Supplementary Materials.

3.3. External Evaluation Data Set

Four hundred serum infliximab concentrations from 124 patients were available
in the data set. Data from 11 patients (33 infliximab concentrations total) were excluded
because of insufficient information on the respective dosing regimen (e.g., unknown
time of dosing). Three concentrations below the LLOQ (<1% of samples) were excluded
from the external evaluation (M1 method) [58]. Moreover, 28 concentrations classified as
pharmacokinetically implausible (concentrations that did not decrease over a sampling
period of at least seven days within a dosing interval) were removed from the analysis.
Consequently, eight patients lacked informative infliximab PK data, i.e., at least one sample
with detectable infliximab concentrations, and were therefore excluded from the analysis.

As a result, a total of 336 infliximab concentrations from 105 patients with IBD,
including 76 cases of CD and 29 cases of UC, were available for external evaluation (median
number of infliximab samples per patient: 2; range: 1–12). Twenty-two patients had at
least one positive ADA sample. In total, ADA levels above the threshold of 6.6 U/mL were
measured in 49 samples. An overview of clinical and demographic patient characteristics
of the external data set is presented in Table 2. Infliximab was administered to patients
using various dosing regimens with a median (interquartile range (IQR)) infliximab dose
of 5.5 (5.1–5.9) mg/kg and a median (IQR) dosing interval of 8.0 (7.7–8.6) weeks.
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Table 2. Clinical and demographic patient characteristics.

Characteristic Median or No. Range IQR

Patients, n 105
Sex, female, n (%) 50 (48)

Patients with CD, n (%) 76 (72)
Patients with UC, n (%) 29 (28)

ADA-positive patient status, n (%) 22 (21)
IMM 1, n (%) 17 (16)

Nonsmoker, n (%) 35 (33)
Smoker, n (%) 41 (39)

Past smoker, n (%) 28 (27)
Unknown smoking status, n (%) 1 (1)

Body weight 1 [kg] 70 47–115 59–80
Height 1 [cm] 171 155–190 165–178

Albumin 1 [g/dL] 4.35 2.53–5.08 4.12–4.54
CRP 1 [mg/dL] 0.29 0.02–7.49 0.11–0.49

HBI 1 1 0–18 1–3

Total serum samples, n 336
ADA-positive serum samples, n (%) 49 (15)

Note: ADA: anti-drug antibodies; CD: Crohn’s disease; CRP: C-reactive protein; HBI: Harvey–Bradshaw index; IMM: immunomodulators
(including azathioprine and methotrexate); IQR: interquartile range; No.: number; UC: ulcerative colitis; 1 at the time of first drug sampling.

3.4. Predictive Model Evaluation Goodness-of-Fit Plots

The first concentration (CMAP) was used for MAP estimation of EBEs, and all sub-
sequent concentrations were predicted. Data was split into two sets of ADA-positive
and ADA-negative patients. Additionally, for ADA-negative patients, predictions were
stratified for different time intervals after CMAP (i.e., “within 1 month”, “between 1 and
6 months” and “>6 months”). For ADA-positive patients, predicted concentrations were
stratified as follows: infliximab concentrations for patients that have not been tested ADA
positive yet (“before ADA+”), concentrations measured within one month or at first ADA
detection (“1st time ADA+ and ≤1 month”), and concentrations measured after one month
of first ADA detection (“>1 month of being ADA+”).

Goodness-of-fit plots (Figure 1) show that model predictions of infliximab concen-
trations for most ADA-negative patients (turquoise symbols) matched precisely with
the observed concentrations. However, predictions of concentrations of ADA-positive
patients (pink symbols), especially those measured within and after one month of first
ADA detection, were less accurate (turquoise symbols). Additionally, in ADA-negative
patients, predictions of concentrations measured more than six months after CMAP showed
larger deviation from the corresponding observed concentrations compared to predictions
of concentrations measured within the first six months after CMAP in this study setting.
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Figure 1. Individual predicted versus observed serum infliximab concentrations for twelve different population pharmacoki-
netic models (a–l). Concentrations of anti-drug antibody (ADA) negative patients are shown in turquoise, concentrations
of ADA-positive patients in pink. Concentrations used for maximum a posteriori (MAP) estimation (CMAP) are depicted
as triangles, the remaining symbols depict predictions in different time intervals after CMAP. Black solid lines represent
the lines of identity, gray dashed lines mark the target trough concentration of 5 μg/mL. In (k), one serum concentration
falls outside the plotting range but is included in the full plot depicted in the Supplementary Materials. a: adults; a/c:
adults/children; (neg): ADA-negative patients; (pos): ADA-positive patients.

3.5. Accuracy and Bias of Model Predictions

ζ values represent a measure of accuracy with smaller values indicating higher accu-
racy, while SSPB values represent a measure of bias with values closer to zero indicating
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less bias. Figure 2 shows the development of ζ and SSPB values over time for all included
population pharmacokinetic models in the ADA negative (Figure 2a,b) and ADA-positive
(Figure 2c,d) patient subpopulations. The last category (“all pred”) subsumes unstratified
results for all predicted concentrations excluding CMAP. The corresponding ζ values were
calculated for all 12 models to be within 26–44% (median: 30%) for ADA-negative patients
and 77–215% (median: 92%) for ADA-positive patients. SSPB values for all models were
within −22–27% (median: 6%) for ADA-negative patients and 8–145% (median: 43%) for
ADA-positive patients.

The models exhibiting the highest overall accuracy (lowest ζ) for predicted concentra-
tions in ADA-negative patients were the two models by Fasanmade et al., 2011, both with
ζ values of ~26%. Regarding bias in model predictions, four models had absolute SSPB
values of ≤5% (with SSPB values for Fasanmade et al., 2009: −3%; Xu et al., 2012: −1%;
and the two models from Fasanmade et al., 2011: −5%).

ζ values for predictions in ADA-negative patients increased from a median of 25%
(predictions within one month of CMAP) and 28% (predictions one to six months after
CMAP) to 54% (predictions more than six months after CMAP) over time (see Figure 2a).
In contrast, the median SSPB value for model predictions in ADA-negative patients did
not increase over time (median (SSPB < 1 month): 7%, median (SSPB 1–6 months): 8%, median
(SSPB > 6 months): 2%; Figure 2b). All calculated ζ and SSPB values for each model are listed
in Table S1 and Table S2 of the Supplementary Materials.

In ADA-positive patients, predictions of infliximab concentrations were less accu-
rate, especially for concentrations measured within and after one month of first ADA
detection (Figure 3c, median (ζ 1st time ADA+ and ≤ 1 month): 97%, median (ζ > 1 month ADA+):
301%). For some models, bias (SSPB) was still low for predictions of concentrations
when patients were tested ADA positive for the first time and within one month of de-
tection (Petitcollin et al., 2018: −1%, Fasanmade et al., 2009: −2%, Fasanmade et al., 2011
(adults/children): 5%, Edlund et al., 2017 (II): 9%, and Edlund et al., 2017 (III): −9%) but
was high for all models regarding concentrations measured more than one month after
patients tested ADA positive for the first time (range of SSPB values: 78–344%).

ζ values for model simulations of CMAP were 0–24% (median: 9%) for ADA-negative
patients and 0–43% for ADA-positive patients (median: 12%). The corresponding SSPB
values were −24–0% (median: −5%) for ADA-negative patients and −13–22% for ADA-
positive patients (median: −4%).

The model by Edlund et al., 2017 (III) included ADA concentrations measured by
HMSA (Prometheus Laboratories, San Diego, CA) as a continuous covariate on infliximab
CL [43] in contrast to a binary covariate (i.e., ADA negative or ADA positive) as imple-
mented in other evaluated models. However, since model predictions were executed with
individual patient covariates imputed from time of CMAP, model predictions for later time
points could not benefit from continuous measurements of ADA concentrations and other
time-varying covariates. In order to examine these potential benefits for the model by
Edlund et al., 2017 (III), predictions were also performed with fully informed covariates for
the ADA-positive subpopulation and results are depicted in Figure 2c,d (green dashed line).
This led to an improvement in both model accuracy and bias, especially for concentrations
measured more than one month after patients tested ADA positive for the first time (ζ: 130%
vs. 206% and SSPB: 11% vs. 206%).

Predictions with fully informed time-varying covariates were also performed for all
other evaluated models for both ADA-negative and ADA-positive patients, and results are
shown in Tables S3 and S4, as well as in Figures S1 and S2 in the Supplementary Materials.
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(a) (b)

(c) (d)

Figure 2. Model prediction accuracy (ζ, (a,c)) and bias (SSPB, (b,d)) over time. The upper panel shows results for anti-drug
antibody (ADA) negative patients, the lower panel for ADA-positive patients. Numbers in parentheses refer to the number
of observed concentrations in the respective time interval. “all pred” covers all predicted concentrations excluding
concentrations used for maximum a posteriori (MAP) estimation (CMAP) of individual pharmacokinetic parameters. Solid
lines depict the results for model predictions using patient covariates determined at the time of CMAP. The green dashed
line shows the results for predictions with the model by Edlund et al., 2017 (III), using measured time-varying covariates.
a: adults; a/c: adults/children; ADA+: anti-drug antibody positive; cov: covariates; (neg): ADA-negative patients, (pos):
ADA-positive patients; pred: predictions; SSPB: symmetric signed percentage bias; ζ: median symmetric accuracy.

3.6. Predictions of “Need for Dose Escalation”

According to the American Gastroenterological Association Institute Guideline, the tar-
get trough concentration for infliximab is ≥5 μg/mL [13]. In total, 69 serum trough sam-
ples from the external data set exhibited infliximab concentrations ≥ 5 μg/mL (no dose
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escalation needed), 90 trough samples exhibited infliximab concentrations < 5 μg/mL
(dose escalation needed). For serum trough samples in which ADA status was negative,
67 samples showed infliximab trough levels ≥5 μg/mL (50%) and 67 showed infliximab
trough levels < 5 μg/mL (50%). In contrast, for serum trough samples in which ADA status
was positive, only 2 samples showed infliximab levels ≥ 5 μg/mL (8%) and 23 showed
infliximab levels < 5 μg/mL (92%).

Table 3 presents the results regarding model abilities to correctly predict the need for
dose escalation in the external data set. Results were split into two groups—predictions for
serum trough samples in which ADA status was negative and predictions for serum trough
samples in which ADA status was positive. Models with the highest accuracy for the ADA-
negative sample cohort were the models by Edlund et al., 2017 (II + III), and the models
by Fasanmade et al., 2011, with 113/134 (84%) correct predictions. For the ADA-positive
sample cohort, the model by Buurman et al., 2015, correctly classified 20 of 25 (80%)
concentrations to be above or below the threshold of 5 μg/mL. In summary, the investi-
gated models correctly identified the need for dose escalation (i.e., trough concentration
< 5 μg/mL) in 63–89% of cases. In 4–43% of cases a dose escalation would have been recom-
mended (predicted trough concentration < 5 μg/mL) although the measured concentration
was above the target concentration.

Table 3. Predictions of “need for dose escalation” (i.e., trough concentration <5 μg/mL [13]).

ADA Negative ADA Positive

Dose Escalation Needed?
(Cobs < 5 μg/mL)

Yes (n = 67) No (n = 67) Yes (n = 23) No (n = 2)

Correctly Predicted? Yes No Yes No Accuracy Yes No Yes No Accuracy

Aubourg et al., 2015 48 19 63 4 82.8% 13 10 2 0 60.0%

Brandse et al., 2016 62 5 39 28 75.4% 18 5 0 2 72.0%

Buurman et al., 2015 38 29 62 5 74.6% 19 4 1 1 80.0%

Edlund et al., 2017 (I) 51 16 61 6 83.6% 16 7 2 0 72.0%

Edlund et al., 2017 (II) 50 17 63 4 84.3% 15 8 1 1 64.0%

Edlund et al., 2017 (III) 50 17 63 4 84.3% 16 7 1 1 68.0%

Fasanmade et al., 2009 54 13 58 9 83.6% 17 6 1 1 72.0%

Fasanmade et al., 2011 (a/c) 60 7 53 14 84.3% 19 4 0 2 76.0%

Fasanmade et al., 2011 (a) 60 7 53 14 84.3% 19 4 0 2 76.0%

Passot et al., 2016 44 23 64 3 80.6% 13 10 2 0 60.0%

Petitcollin et al., 2018 62 5 48 19 82.1% 15 8 0 2 60.0%

Xu et al., 2012 56 11 52 15 80.6% 18 5 1 1 76.0%

Note: a: adults; a/c: adults/children; ADA: anti-drug antibody; Cobs: observed trough concentration.

3.7. Prediction- and Variability-Corrected Visual Predictive Checks (pvcVPCs)

The results of pvcVPCs for each investigated population pharmacokinetic model are
presented in Figure 3. The pvcVPCs showed a clear overprediction of the 95th percentile
of observations for the models by Aubourg et al., 2015, Edlund et al., 2017 (II), Fasan-
made et al., 2009, and Xu et al., 2012, but predictions of median infliximab concentrations
were reasonable for all four models. The model by Petitcollin et al., 2018, overpredicted
and the model by Brandse et al., 2016, underpredicted both the median and 95th percentile
of observations. In contrast, the model by Buurman et al., 2015, overpredicted the 5th
percentile while slightly underpredicting the 95th percentile. Model simulated median
and 95th percentile showed high agreement with the corresponding median/percentile ob-
served for the model by Passot et al., 2016. However, the 5th percentile was overpredicted
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most of the time. The remaining four models showed high congruence with a slight initial
underprediction of the median observations for the two models by Fasanmade et al., 2011,
and the model by Edlund et al., 2017 (III).

Figure 3. Prediction- and variability-corrected visual predictive checks (pvcVPCs) of serum infliximab concentrations for
each investigated population pharmacokinetic model (a–l). Prediction- and variability-corrected observed concentrations
are shown as black circles, observed medians are depicted as black solid lines, 5th and 95th data percentiles as black
dashed lines. The model simulations (n = 1000 replicates) are depicted as gray solid lines (median) and blue dashed lines
(5th and 95th percentiles). Colored areas represent the simulation-based 95% confidence intervals for the corresponding
model-predicted median (gray areas) and 5th and 95th percentiles (blue areas). For ease of comparison, y-axis upper
limits were set to 140 μg/mL. Plots with automatic y-axis limits are shown in the Supplementary Materials. a: adults; a/c:
adults/children; Pvc: prediction- and variability-corrected.

4. Discussion

Several MIPD approaches have recently shown major success in supporting and op-
timizing dosing regimen selection for various drugs [28,59–62]. As infliximab trough con-
centrations exhibit high inter-individual variability and, hence, contribute to a high rate
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of primary and secondary non-response [9,12–14,18] and as infliximab drug exposure is
a predictor of clinical response [6,10–12], dose selection for infliximab could benefit consider-
ably from population pharmacokinetic modeling and MIPD [31,63]. Consequently, many
efforts have been made to analyze infliximab PK, quantifying and explaining inter-individual
variability in various population pharmacokinetic models [21,23–27,43–49,51–57].

However, for the application of population pharmacokinetic models, an extensive
assessment including internal and external evaluation regarding accuracy, robustness,
and predictive performance is crucial [64]. While different methods have been applied
in the respective internal model evaluations, only a fraction of the models has been evalu-
ated with an independent data set [34,65–68], and a comprehensive external evaluation for
predictive model performances has not been conducted yet. External evaluation with an in-
dependent data set allows the evaluation of model performance regarding prediction and
variability in patients with a clinical background similar to the internal data set and thus
evaluates not only the modeling approach itself, but also other study-related factors [64].

As shown in this analysis, differences in the predictive performances of the 12 investi-
gated models could be observed by external evaluation, and trends in the predictability of
infliximab concentrations could be identified for the ADA-negative as well as the ADA-positive
subpopulation when using first measured infliximab concentration for estimation of EBEs.

While in ADA-negative patients the absolute SSPB values, as a measure of model
bias, did not increase for virtually all models from the predictions of concentrations within
one month (SSPB median of 7%) to the predictions of concentrations after more than six
months of CMAP (SSPB median of 2%), model accuracy decreased noticeably for predictions
of concentrations more than six months after CMAP in this study setting (median (ζ < 1 month):
25%, median (ζ 1–6 months): 28%, median (ζ > 6 months): 54%). As this observation also held true
for model predictions performed with time-varying covariates, yet to a lesser extent, long-term
predictions should be treated carefully because of the deterioration in model accuracy.

Different analytical methods have been used to measure infliximab and ADA concen-
trations in the population pharmacokinetic analyses, leading to differences in immuno-
genicity rate [17]. While in some studies, “drug sensitive” methods (ADAs not detectable
in the presence of infliximab because of analytic interferences) were used to measure
ADA concentrations, “drug-tolerant” assays were applied in other investigations, yielding
a much higher rate of ADA-positive patients (up to 62% compared to as low as 1%) [21,51].
Nevertheless, 18 out of 23 models that included ADA patients implemented ADA sta-
tus as a covariate. The five remaining studies identified only ≤3% of patients as ADA
positive or used a risk function of developing ADA. The implementation of ADA status
in the majority of models highlights the importance of ADA for the PK of infliximab.

Predictions in ADA-positive patients showed much larger deviations from the corre-
sponding observed values compared to predictions in ADA-negative patients: While pre-
diction accuracy for concentrations before the first ADA-positive blood sample (median(ζ):
31%, range: 17–89%) were similar compared to predictions for ADA-negative patients, pre-
dictions became much less accurate as soon as ADA status turned positive (median(ζ): 97%,
range 72–361%). As noted, for predictions in this analysis, individual patient covariates for
times after CMAP were imputed (last observation carried forward). This especially affected
predictions of concentrations in patients showing changes in important covariates such as
ADA status. Hence, model predictions were also performed with time-varying covariates
(depicted in the Supplementary Materials). While improvements in model predictions
were especially noted for concentrations in ADA-positive blood samples, predictions still
exhibited ζ values of >100% for concentrations more than one month after patients tested
ADA positive for the first time, albeit the inclusion of ADA status in most models.

The study by Edlund et al., 2017, aimed to tackle the challenges of predicting inflix-
imab CL in ADA-positive patients [43]. The corresponding population pharmacokinetic
model was based on the models by Fasanmade et al., 2011, and Ternant et al., 2015, with
the advancement of including ADA concentrations as a continuous covariate [43]. As a re-
sult, when using time-varying covariates, the model by Edlund et al., 2017 (III), showed
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the highest accuracy and least bias for model predictions in ADA-positive patients for “all
pred”. However, the respective model predictions were still less accurate and showed
a higher bias compared to predictions for the ADA-negative patient cohort. Additionally,
the implemented covariates albumin and IMM in the model by Fasanmade et al., 2011,
were not found to be statistically significant with the data set used for model development
by Edlund et al., 2017 [43]. This may have contributed to the slightly lower accuracy
and higher bias for predictions in ADA-negative patients compared to the models by
Fasanmade et al., 2011.

One reason for the observed overprediction in ADA-positive patients could be due
to the fact that the exact time of ADA onset is often unknown. ADA-positive patients
develop ADA during a time period of unknown length before they test positive for the first
time, which is supported by findings from Petitcollin and coworkers [51]. A close and
regular monitoring for ADA using drug-tolerant assays as well as the development and
application of models identifying predictors of ADA development [69] might help to
improve predictive performances for ADA-positive patients.

For predictive performance evaluation in Bayesian forecasting, only the first measured
serum infliximab concentration of each patient was used for MAP estimation of EBEs
(CMAP). Due to the design of the study, CMAP was usually a midpoint concentration and
results should be interpreted with this in mind. However, using a midpoint infliximab
concentration for estimation of EBEs to predict the subsequent trough level allows potential
adjustment of the current dosing interval before infliximab concentrations drop below
the target concentration of 5 μg/mL.

As infliximab therapy can be adapted based on trough levels [13], model performances
to correctly predict the need for dose escalation (i.e., trough concentration <5 μg/mL) were
further investigated. The two examined models by Fasanmade et al., 2011, correctly
identified 79 of 90 (88%) trough concentrations to be below the target trough concentration
(true positive) while correctly identifying 53 of 69 (77%) trough concentrations to be above
the target trough concentration (true negative). This represented the highest classification
accuracy of correctly identified infliximab trough samples (132/159, 83%) in this study
setting. The model by Brandse et al., 2016 [55], exhibited the highest true positive rate
(89%); however, it was accompanied by a low true negative rate of 57%. The model by
Passot et al., 2016 [56], showed the highest true negative rate (96%) with a low true positive
rate of only 63%. While a high false negative rate yields an increased number of patients
with insufficient infliximab levels and, hence, decreased drug effect, a high false positive
rate corresponds to an increased number of patients with higher exposure and potentially
higher rates of adverse effects (e.g., rate of infection [70]). It should be noted that these
measures only reflect whether model predictions were correctly below or above the target
trough concentration and do not assess how much predictions deviated from the actual
measured concentration.

The investigation of factors leading to differences in model performances was out-
side the scope of this study, but it is worth mentioning that the vast majority of blood
samples from the external data set were collected during infliximab maintenance therapy.
In contrast, three examined models were developed with data only from the first 6 weeks
(Brandse et al., 2016 [55]), “treatment initiation” (Aubourg et al., 2015 [53]), and the first
22 weeks of infliximab treatment (Passot et al., 2016 [56]), which might have affected
prediction performance. The model by Petitcollin et al., 2018, was included in the anal-
ysis to study the performance of a model with implemented ADA risk function instead
of an ADA covariate, although the model was developed with data from pediatric pa-
tients [25]. While the corresponding CL and Vd model parameters appear comparable to
parameters in infliximab models developed with adult patients [25,43,46,56], the difference
in patient cohorts might still explain larger deviations between predicted and measured
infliximab concentrations observed in the corresponding pvcVPC and goodness-of-fit plot.

There are some limitations of this analysis, which are discussed in the following
paragraphs. Since the study was based on routine therapeutic drug monitoring data,
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a full dosing schedule was not available for all patients. In such cases, regular dosing
from the start of treatment with infliximab and from every change in dosing regimen was
assumed. Moreover, sampling times as well as the included patient cohort, treatment
period (induction vs. maintenance therapy), analytical methods, or dosing regimens
in the external data set could have affected the results of the analysis. Hence, further
evaluations with independent data sets should be conducted in future studies.

Another factor influencing the results of an analysis is the choice of quantitative
measure. Here, median symmetric accuracy (ζ) and symmetric signed percentage bias
(SSPB) values were computed. As illustrated by Morley et al., ζ attenuates the issues
with asymmetric penalty and effects of outliers while maintaining interpretability [42].
ζ is a robust measure of accuracy minimizing the effect of the skewness of the distribution
of absolute errors [42]. The SSPB estimates the central tendency of the error and can be
interpreted similar to a mean percentage error (MPE) [42]. However, in contrast to the MPE,
SSPB is not affected by the likely asymmetries in the distribution [42]. As illustrated
throughout the analysis, different performance metrics stratified by different patient co-
horts (here, ADA-negative and ADA-positive patients) can be of interest when evaluating
population pharmacokinetic models in the framework of MIPD. Since different models
showed strengths in different measures, we could not appraise which published model
was the “best” model, as this also depends on the question of interest and was beyond
the scope of this analysis.

Additionally, because of data set incompatibility (e.g., missing covariates) or the lack
of reported model implementation details, only 12 of the 25 identified population pharma-
cokinetic models of infliximab in IBD could be evaluated. While this work already adds
a comprehensive analysis to recently published evaluations of single models, an external
evaluation including additional covariates (such as the erythrocyte sedimentation rate or
fecal calprotectin [21,27]) would be of interest for future studies. Moreover, new modeling
approaches (e.g., pharmacokinetic/pharmacodynamic models [27,49]) regarding treatment
efficacy could investigate recent findings such as the relation of intestinal microbiota to
anti-TNF-α treatment outcome in IBD patients [71,72]. Improvement in gut microbial
dysbiosis in IBD patients has been observed during infliximab therapy [71,73], and fecal
microbiota has been suggested as a response indicator of infliximab treatment [72]. Fu-
ture pharmacokinetic/pharmacodynamic studies that examine therapeutic outcome could
further investigate this interplay of intestinal microbiota and infliximab therapy. For this,
the presented comprehensive external evaluation can also serve as guidance to adopt
a suitable population pharmacokinetic model in order to explore these complex response
mechanisms.

5. Conclusions

This work presents an external evaluation of the predictive performance of 12 pub-
lished infliximab population pharmacokinetic models in IBD patients using an independent
data set. Differences in predictive performance regarding model accuracy, model bias,
and need for dose escalation have been observed for both ADA-negative and ADA-positive
patients. Using the first measured infliximab concentration for MAP estimation (CMAP)
in a Bayesian forecasting setting, overall model accuracy decreased for predictions more
than six months after CMAP for ADA-negative patients, while bias did not increase. The two
investigated models by Fasanmade et al., 2011, showed the highest dose escalation clas-
sification accuracy of correctly identified infliximab trough samples (83%) in this study
setting. Overall, the investigated population pharmacokinetic models showed a classifi-
cation accuracy of 75–84% for ADA-negative samples and of 60–80% for ADA-positive
samples. The results of this predictive performance evaluation could help to guide and plan
future MIPD approaches with infliximab population pharmacokinetic models to improve
individual dosing strategies and prevent infliximab trough concentrations dropping below
the target concentration. Yet clinical application needs to be tested and confirmed in larger,
prospective clinical trials. In comparison to predictions for ADA-negative patients, model
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predictions of serum concentrations for ADA-positive patients showed lower accuracy and
higher bias. Thus, predictions with population pharmacokinetic models remain particularly
challenging for ADA-positive patients and for patients with unknown ADA status.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13091368/s1, Electronic Supplementary Materials: Additional evaluation
results. Figure S1: Individual predicted versus observed serum infliximab concentrations for the pop-
ulation pharmacokinetic model by Petitcollin et al. 2018. Concentrations of anti-drug antibody
(ADA) negative patients are shown in turquoise, concentrations of ADA positive patients in pink.
Concentrations used for maximum a posteriori (MAP) estimation (CMAP) are depicted as triangles,
the remaining symbols depict predictions in different time intervals after CMAP. The black solid line
represents the line of identity, grey dashed lines mark the target trough concentration of 5 μg/mL.
(neg): ADA negative patients; (pos): ADA positive patients, Figure S2: Model prediction accuracy
(ζ, a and b) and bias (SSPB, c and d) for anti-drug antibody (ADA) negative pa-tients over time.
The left panel shows ζ and SSPB values for model predictions with fixed covariates determined
at the time of the first measured serum infliximab concentration of each patient (CMAP), the right
panel shows ζ and SSPB val-ues for model predictions with time-varying covariates. “all pred”
covers all predicted concentrations excluding CMAP. Numbers in parentheses refer to the number
of observed concentrations in the respective time interval. (neg): ADA negative patients, pred:
predictions; SSPB: symmetric signed percentage bias; ζ: median symmetric accuracy, Figure S3:
Model prediction accuracy (ζ, a and 2b) and bias (SSPB, c and d) for anti-drug antibody (ADA)
positive pa-tients over time. The left panel shows ζ and SSPB values for model predictions with
fixed covariates determined at the time of the first measured serum infliximab concentration of each
patient (CMAP), the right panel shows ζ and SSPB val-ues for model predictions with time-varying
covariates. “all pred” covers all predicted concentrations excluding CMAP. Numbers in parentheses
refer to the number of observed concentrations in the respective time interval. (pos): ADA pos-itive
patients, pred: predictions; SSPB: symmetric signed percentage bias; ζ: median symmetric accuracy,
Figure S4: Prediction- and variability-corrected visual predictive check (pvcVPC) of serum infliximab
concentrations for the population pharmacokinetic model by Petitcollin et al. 2018. Prediction-
and variability-corrected observed concen-trations are shown as black circles, observed median
is depicted as black solid line, 5th and 95th data percentiles as black dashed lines. The model
simulations (n = 1000 replicates) are depicted as grey solid line (median) and blue dashed lines
(5th and 95th percentiles). Colored areas represent the simulation-based 95% confidence intervals for
the corresponding model-predicted median (grey areas) and 5th and 95th percentiles (blue areas).
Pvc: prediction- and variability-corrected, Table S1: ζ and SSPB values for model predictions with
fixed covariates at time of CMAP for ADA negative patients, Table S2: ζ and SSPB values for model
predictions with fixed covariates at time of CMAP for ADA positive patients, Table S3: ζ and SSPB
values for model predictions with time-varying covariates for ADA negative patients, Table S4: ζ
and SSPB values for model predictions with time-varying covariates for ADA positive patients.
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Abstract: Adalimumab is a monoclonal antibody used for inflammatory bowel disease. Due to its
considerably variable pharmacokinetics, the loss of response and the development of anti-antibodies,
it is highly recommended to use a model-informed precision dosing approach. The aim of this
study is to evaluate the predictive performance of different population-pharmacokinetic models
of adalimumab for inflammatory bowel disease to determine the pharmacokinetic model(s) that
best suit our population to use in the clinical routine. A retrospective observational study with
134 patients was conducted at the General University Hospital of Alicante between 2014 and 2019.
Model adequacy of each model was evaluated by the distribution of the individual pharmacokinetic
parameters and the NPDE plots whereas predictive performance was assessed by calculating bias and
precision. Moreover, stochastic simulations were performed to optimize the maintenance doses in
the clinical protocols, to reach the target of 8 mg/L in at least 75% of the population. Two population-
pharmacokinetic models were selected out of the six found in the literature which performed better
in terms of adequacy and predictive performance. The stochastic simulations suggested the benefits
of increasing the maintenance dose in protocol to reach the 8 mg/L target.

Keywords: pharmacokinetics; drug monitoring; adalimumab; inflammatory bowel diseases; Crohn’s
disease; colitis; ulcerative

1. Introduction

Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel
diseases (IBD) characterized by the intermittent destructive inflammation of the intestinal
tract associated with significant morbidity, high burden of hospitalization and a severe
impact on the quality of life of patients. There are several pharmacological alternatives
available, including corticosteroids, immunosuppressive agents (methotrexate or azathio-
prine) and monoclonal antibodies that have shown clinical response in the treatment of
these diseases [1–3].

Adalimumab is a human monoclonal antibody that binds specifically to the tumor
necrosis factor (TNF) and neutralizes its biological function, decreasing the process of
inflammation. Adalimumab is effective for induction and maintenance of remission in
patients with moderate-to-severe IBD older than 6 years who fail with corticosteroids,
immunosuppressive agents or other biologic therapy [4–6].
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261



Pharmaceutics 2021, 13, 1244

Several published studies of adalimumab have shed light on the clinical relevance
of individualized dosing. Historically, the empiric approach to adapt the adalimumab
dosage consists of intensifying the treatment in patients with loss of response and later,
if this fails, switching to another biological treatment. In the last decade, several studies
have shown that some patients can experience a loss of response to adalimumab or can
develop antibodies against adalimumab (AAA) after long periods of subtherapeutic drug
levels [7–14]. However, most of the time, the serum concentration guide dosing was done
through algorithms [15,16].

In this line, Model-Informed Precision Dosing (MIPD) is the approach based on the
use of population PK (PopPK) models and prospective Bayesian approach to increase the
homogeneity in the drug exposure in patients in order to improve outcomes of treatments
by achieving the optimal balance between efficacy and toxicity for each individual pa-
tient [17]. IBD patients could benefit from dose optimization because adalimumab has
highly variable pharmacokinetics (PK) [16,18].

Recently, a multicenter retrospective study showed that the potential importance of
early monitoring levels of adalimumab and MIPD approach can prevent immunogenicity
and achieve better long-term outcomes in terms of IBD-related surgery or hospitalization,
lower risk of developing AAA or serious infusion reactions and also it proved to be more
cost-effective in comparison to empirical and/or reactive dose optimization program dose
escalation [19]. However, the selection of the appropriate PopPK model is fundamental to
apply MIPD, especially when there are multiple models in the literature in patients with
IBD. The structural model is defined, in most of them, as one-compartment model with
linear kinetics in the absorption and elimination processes, although the value of the PopPK
parameters, and the covariates included in the model, vary significantly. Therefore, the aim
of this study is to evaluate the predictive performance of PopPK models of adalimumab
found in literature, in patients with IBD to determine the pharmacokinetic model(s) best
suited for our population to subsequently use it in the clinical setting using MIPD.

2. Materials and Methods

2.1. Literature Search

A systematic literature search was conducted of databases in the field of Health
Sciences: MEDLINE (via PubMed), Embase and Scopus. To define the search terms, the
Medical Subject Headings (MeSH), a thesaurus developed by the U.S. National Library
of Medicine, was used. The MeSH descriptors “Chron Disease”, “Colitis, Ulcerative”,
“adalimumab” and “pharmacokinetics” were considered suitable. Likewise, these terms,
“inflammatory bowel diseases” and “pharmacokinetics” were used to query the databases
using the title and abstract field (Title/Abstract). The search was performed from the first
available date until May 2021 according to the characteristics of each database. Additionally,
a manual search for population models was conducted by inspecting the bibliographies of
relevant journal articles to minimize the number of unrecovered papers by the review.

The following search was used in Pubmed, and it was adapted to the other databases:
(((((“Inflammatory Bowel Diseases”[Mesh]) OR (Inflammatory Bowel Diseases[Title/
Abstract])) OR (((Crohn Disease[Title/Abstract]) OR (Crohn’s Disease[Title/Abstract]))
OR (“Crohn Disease”[Mesh]))) OR ((ulcerative colitis[Title/Abstract]) OR (“Colitis, Ulcera-
tive”[Mesh]))) AND ((Adalimumab[Title/Abstract]) OR (“Adalimumab”[Mesh]))) AND
((Pharmacokinetics[Title/Abstract]) OR (“Pharmacokinetics”[Mesh])).

The inclusion criteria were the following: original articles published in peer-reviewed
journals, articles that describe a novel population pharmacokinetic model and pertinent
works with the available complete text, which must be written in English or Spanish.
Additionally, the full text of the document should be accessible and only one version
of each document was included. The following were the exclusion criteria: articles that
included different diseases to CD or UC and studies developed in animal models.
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The following information was extracted from the articles: patient characteristics,
model structure, typical PopPK parameters, inter-individual variability (IIV), residual
variability (RV) and covariates.

2.2. Study Design

A retrospective observational study was conducted at the General University Hos-
pital of Alicante, performed on patients diagnosed with IBD undergoing treatment with
adalimumab and who followed a dose optimization program developed between 2014 and
2019.

2.3. Patients and Data Collection

Trough serum concentrations (TSC) were collected from patients diagnosed with mod-
erate or severe IBD treated with adalimumab in General University Hospital of Alicante,
Spain. The following inclusion criteria were applied: participants had to be diagnosed
with IBD, treated with adalimumab, and there had to be at least two adalimumab TSC in
their medical history. Exclusion criteria included patients treated with other monoclonal
antibodies different to adalimumab like infliximab, vedolizumab and ustekinumab and
subjects who were diagnosed with other autoimmune diseases different to IBD such as
rheumatoid arthritis, psoriasis and ankylosing spondylitis.

Relevant data were collected from the medical records and included age, sex, height,
body weight, lean body weight (LBW), body mass index (BMI), AAA status and AAA
serum concentration, dose of adalimumab, adalimumab serum concentration, serum
albumin levels, serum C-reactive protein (CRP) levels, fecal calprotectin (FCP), type of
disease, use of concomitant immunomodulators and time of the event recorded. Missing
values of continuous covariates were imputed by their expected mean values. Data were
excluded from the analysis if there was uncertainty about any relevant information such as
the time of dosing or the time of drug concentration measurement and the loss to follow-up
during their treatment.

Serum adalimumab concentrations and AAA were measured using an enzyme-linked
immunosorbent assay (LISA TRACKER Duo Drug + ADAb from TheraDiag®) with a limit
of quantification established to be 0.1 mg/L. Patients were considered as positive for AAA
if titers were above 10 mg/L on at least one occasion.

2.4. Evaluation of Model Adequacy

The first step in the evaluation of the different PopPk models found in the literature
was the evaluation of the model adequacy by analyzing and comparing how the different
PopPK models describe the studied population using all the available TSC in the dataset
(full dataset). Models that show the greater systematic bias in the Empirical Bayesian
estimate (EBEs) of the PK parameters, or in the Normalised Prediction Distribution Errors
(NPDE) [20,21] will be discarded. Only the models that described properly our population
will be used to evaluate the predictive performance later.

Therefore, the distribution of the EBEs of the PK parameters for each of the PopPk
models was calculated after performing a post-hoc analysis using the full dataset. Then, this
distribution would be compared with the theoretical distribution of these PK parameters
according to each of the PopPK models.

On the other hand, any trends observed in the NPDE plots (e.g., cone-shaped graph)
might indicate model misspecifications and inferior model adequacy.

2.5. Evaluation of Predictive Performance

The evaluation of predictive performance was only performed in those models which
best describe the studied population, according to the evaluation of the model adequacy.

To evaluate the predictive performance, the individual predictions of the last TSC
were estimated for each patient, using the EBEs. These last TSC concentrations, named “last
observed TSC”, were left out and not used to calculate the EBEs. To evaluate the predictive
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performance, the bias and the precision were calculated with the last observed TSC by
comparing them with their individual predictions calculated by each of the PK models. The
predictive performance of the patients was evaluated considering two different scenarios;
Scenario 1: The EBES were calculated from the previous TSC obtained from each patient 2
Scenario 2: The EBES were calculated from the two previous TSC of each patient.

The mean prediction error (MPE, Equation (1)) and root mean square prediction error
(RMSPE, Equation (2)) were calculated for bias and precision, respectively.

MPE =
∑
(
Ŷ − Y

)
n

(1)

RMSPE =

√
∑
(
Ŷ − Y

)2

n
(2)

In both equations Y-hat represents the model-predicted adalimumab concentration, Y
represents the observed adalimumab concentration, and n is the number of observations.

A bootstrap of the data was performed to compare the statistical significance of the
differences between bias and precision among the selected models.

2.6. Clinical Impact

Stochastic simulations were performed to optimize the initial maintenance doses in
the clinical protocols, in order to acquire the target TSC in at least 75% of the population.
The dosage regimens that were simulated were 40 and 80 mg administered subcutaneously
every week or every other week. The target TSC that were considered were 8 mg/L for
clinical remission [18,22].

2.7. Software

The PopPK models found in the literature were implemented in NONMEM® version
7.4 software package [23]. The posterior statistical analysis and graphics were performed
using R software v4.0.3 [24], implemented in R-studio v1.3.1093 [25].

2.8. Ethical Considerations
2.8.1. Ethics Approval

All studies were conducted in accordance with principles for human experimentation
as defined in the Declaration of Helsinki and were approved by the Human Investigational
Review Board of each study center.

2.8.2. Consent

The need for written consent was waived because of the retrospective nature of
the study.

3. Results

3.1. Literature Search

A total of 211 publications 72, 52 and 87 from PubMed, Embase and Scopus, respec-
tively, from 2003 to 2021, were found and collected in the search of databases using the
keywords mentioned in the methods section. After removing duplicate articles and ap-
plying the inclusion and exclusion criteria, six PopPK models [26–31] were selected. The
models were numbered from 1 to 6 and are referred to as M1 to M6. All selected PopPK
models were one-compartment models. Four of them included only trough levels of adal-
imumab (M2, M3, M4 and M5) whereas the others (M1 and M6) derived from complete
profiles of serum concentrations of adalimumab. Five of the six models were developed us-
ing NONMEM® software, while one model (M2) was developed using Monolix® software.
Further information can be found in Table 1.
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Typical values for adalimumab apparent clearance (CL/F) in the studies ranged from
11.7 to 17.5 mL/h, with the lowest value being reported in studies performed with pediatric
population (M3). The typical apparent volume of distribution (V/F) ranged from 4.07 to
13.5 L. The absorption rate constant (ka) was estimated in three models and fixed in the
others. All models estimated the IIV (coefficient of variation [CV], in percent) associated
with adalimumab CL/F, with values ranging from 16.4% to 65%. Three models (M1,
M2 and M5) estimated the IIV of V/F ranged from 35.1% to 48%. The summary of the
characteristics of each study is listed in Table 2.

3.2. Patients

The dataset included 134 IBD patients in treatment with adalimumab with at least
two TC. Baseline demographics, disease characteristics and missing values for the different
covariates of the patient population are listed in Table 3. 75% of the patients are below
57 years old and 75 kg. Approximately 85% of the patients were diagnosed as CD and 8%
of them developed AAA.

82 patients were treated subcutaneously with 160/80 mg and 18 with 80/40 mg at
weeks 0/2 as an induction phase. For the rest, the information regarding the induction
phase was not available in their medical histories. Following this phase, as a maintenance
phase, all patients were treated with 40 mg of adalimumab every other week. A total of
398 TSC in the maintenance phase were available for the analysis, where 25.4% of these
concentrations were over 8 mg/L, 46.3% between 3 and 8 mg/L and 28.3% below 3 mg/L
in the first measure. AAA were detected in 11 patients. 73 patients were on a concomitant
immunomodulator (azathioprine, 6 mercaptopurine, methotrexate or prednisone).

The dosage regimen was increased to 40 mg every 10 days or 40 mg every week, on
31 and 70 dose adjustments, respectively. Similarly, the dosage regimen was increased to
80 mg every other week or 80 mg every week, on 7 and 11 dose adjustments, respectively.
On the other hand, on 7 dose adjustments, the dosage regimen was decreased to 40 mg
every 3 weeks, at any time during their treatment. In 36 patients the dosage regimen was
maintained at 40 mg every other week.

3.3. Evaluation of Model Adequacy

The distribution of the individual CL/F obtained in the post-hoc analysis compared
with their theoretical distribution is represented in Figure 1. The distribution of the
individual V/F was not performed because half of the models (M3, M4 and M6) did not
include IIV in the V/F. The QQ-plot of the NPDE and their distribution versus time are
depicted in Figure 2.

In M2 and M4, the 20% and 80% percentiles of the EBE of CL/F are close to the 95%
confidence interval of the 20% and 80% percentiles of the simulated distribution of CL/F
for these models. Moreover, the NPDE performed better in these models. Hence, M2
and M4 were the models that best described the studied population, with less bias and
better NPDE performance. Therefore, the predictive performance would be evaluated in
these models.

3.4. Evaluation of Predictive Performance

Figure 3 shows the predictive performance for M2 and M4 represented as the IRES vs.
the model-based prediction of the last observed TSC. Both models behave similarly, with a
limited bias and a similar dispersion of the IRES. Table 4 also shows the bias and precision
for M2 and M4 and their confidence interval. M2 and M4 are statistically better (p < 0.05)
than the other models in terms of bias and precision in both scenarios (data not shown).
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Table 3. Summary of characteristics of included patients.

Characteristics
Count (%)/

Median (Percentile 25th–75th)
Missings, n (%)

Patients 134 0
Age (yr) 45 (34–57) 0

Sex, male, n (%) 70 (52.2%) 0
Weight (kg) 66 (58–75) 1 (0.75%)

Body mass index (kg/m2) 23.85 (20.52–27.36) 10 (7.46%)
Lean Body Weight (kg) 46.84 (42.60–52.10) 10 (7.46%)

Albumin (g/dL) 3.84 (3.53–4.12) 5 (3.73%)
CRP (mg/dL) 0.64 (0.25–2.1) 37 (27.61%)
FCP (mg/kg) 487 (217.11–884.68) 37 (27.61%)

IBD type, CD, n (%) 115 (85.8%) 0
Concomitant immunomodulator, n (%)

Aminosalicylate 7 (5.2%) 0
Methotrexate 10 (7.5%) 0
Azathioprine 53 (39.6%) 0

6-Mercaptopurine 6 (4.5%) 0
Corticosteroids 16 (11.9%) 0

Combined 14 (10.4%) 0
Adalimumab serum samples 398 0

Adalimumab serum concentrations (mg/L) 6.75 (4.58–8.65) 0
AAA serum concentrations (mg/L) 29 (4.53–76.30) 0

AAA positive, n (%) 11 (8%) 0
CRP: C-reactive protein; FCP: fecal calprotectin; IBD: inflammatory bowel disease; CD: Crohn’s disease; AAA:
antibodies against adalimumab.

Figure 1. Histograms of EBEs for CL/F. Red dashed line; 20th and 80th percentile of EBEs CL/F; blue solid line represents
the density of the simulated CL/F; blue dotted line, 95% confidence interval (CI) for the 20th and 80th percentiles of
simulated CL/F. The M numbers represent the models described in Table 1.
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Figure 2. NPDE for each model. (a) Quantile-quantile plot of the npde versus the corresponding quantiles of a normal
distribution. (b) Plot of npde versus time. Solid horizontal lines are the lines corresponding to 0, 5% and 95% critical values;
gray solid lines, prediction intervals; blue-shaded area, 90% confidence interval (CI) of the 5% and 95% critical values;
pink-shaded area, 90% CI of 0; red-shaded area, outliers of the bounds of the CI. The M numbers represent the models
described in Table 1.

Figure 3. Individual residual (IRES) versus the individual predicted concentrations for M2 and M4
in Scenario 1 and Scenario 2. The mean IRES (black solid line) represents the bias of each model; red
dashed line, 5th and 95th percentile for IRES; blue dotted line to highlight the line corresponding to 0.
The M numbers represent the models described in Table 1.
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Table 4. Values of bias and precision with its 95% confidence interval for each model in both scenarios.

Model Scenario 1 Scenario 2

Bias Precision Bias Precision

M2 −0.59
(−1.37:0.19) 4.61 (3.55:5.67) 0.012

(−1.27:1.29) 5.43 (3.81:7.06)

M4 −0.91
(−1.62:−0.19) 4.30 (3.47:5.12) 0.52 (−0.52:1.56) 4.43 (3.49:5.37)

The M numbers represent the models described in Table 1.

3.5. Clinical Impact

The results of the stochastic simulations of different dosage regimens using M2 and
M4 are summarized in Figure 4. None of the dosage regimens could reach the desired target
(TSC > 8 mg/mL) in at least 75% of the population that developed AAA. Similarly, 40 mg
every other week was insufficient to reach the target for at least 75% of the population
without AAA, although it is the standard dose recommended by protocol. 40 mg every
week or 80 mg every week or every other week are enough to reach the target in at least
75% of the population. Interestingly, according to M2, the plasma concentration profiles of
40 mg every week or 80 mg every other week are very similar, which is not the case in M4.

Figure 4. Stochastic simulation of the 25th percentile of serum concentrations over time for M2 and M4. Black dotted line
was drawn to highlight the line corresponding to 8 mg/L. (a) Serum concentrations of patients without AAA. (b) Serum
concentrations of patients with AAA. The M numbers represent the models described in Table 1.

4. Discussion

The MDPI applied in the clinical routine commonly makes use of PopPK models found
in literature, given the lack of data available to develop in-house models in most of the
hospitals. However, these models must be validated in the target population. An important
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aspect to validate is the predictive performance of the models, in similar conditions to
the clinical routine. Many validations published in the literature do not really validate
the predictive performance, but rather evaluate the model adequacy to the data. In the
present work, the predictive performance was done with TSC that has not been used to
calculate the EBEs, mimicking the real-world scenario. To our knowledge, this is the first
validation and comparison of the PopPK models of adalimumab in the literature for their
use in clinical routine. Six PopPK models for adalimumab were found in the literature
for CD and/or UC patients, with similar structure (one-compartment model), although
the covariates included differ among them. The PopPK models included patients with
both induction and maintenance treatment, and only one was performed with data from
pediatric population.

The model adequacy showed that M2 and M4 performed better than the rest. However,
the mean individual CL/F obtained in all six PopPK models after the Bayesian post-hoc esti-
mation (Figure 1) is somehow higher than the expected mean CL/F. One possible explanation
for this systematic trend is that the mean albumin value of our population is slightly lower
than the referenced in the models found in literature, which indicates a worse disease control.
There are several studies that demonstrate the correlation between low levels of albumin and
an increase in the clearance of other similar drugs like infliximab [32,33].

Consequently, four out of the six models were discarded due to the significant bias
in the distribution of the NPDE as well as the EBEs of the PopPK parameters, therefore,
the models M2 and M4 were the candidates to evaluate the predictive performance. The
predictive performance of both models performed reasonably well, with a bias less than
−0.91, which is less than 13% of the trough target (8 mg/L). The bootstrap analysis of the
predictive performance showed no statistical difference between both models, so, with the
available data, both models could be considered as equally good for the clinical routine
purposes. AAA is considered the covariate with the highest impact in the pharmacokinetic
parameters, according to the results of the stochastic simulations.

According to the drug label, the recommended maintenance dose after the induction
phase is 40 mg every other week [5]. This scheme results in a mean steady-state TSC of
approximately 7 mg/L in Crohn’s disease patients, which agrees with the mean steady-state
TSC observed in our population (7.3 mg/L). So far, the exposure target is highly dependent
on the therapeutic objective (clinical, endoscopic, biochemical or histologic remission) and
whether patients are diagnosed with CD or UC [34]. A recent study showed that patients
with concentrations <8.3 mg/L had more risk to develop AAA by week 12 and experienced
less clinical benefit from dose escalation due to a loss of response [22]. Another study
indicates that 8–12 mg/L TSC of adalimumab are required to achieve mucosal healing
in 80–90% of IBD patients [18]. According to the stochastic simulations performed with
M2 and M4 and considering a target TSC over 8 mg/mL, the recommended maintenance
regimen dosage that should be included in the protocols is 40 mg every week or 80 mg
every other week, in order to reach the target in, at least, 75% of the population. These
recommendations are in line with the MDPI interventions in our population, where 75% of
the patients needed a dose increase to reach the 8 mg/mL target.

The limitation of this study relies on its retrospective design, where patients were
selected for MDPI based on the clinical decision of the physician, which implies a bias
in the severity of the disease, reflected in the mean albumin values of our population. A
prospective study in which patients were included for MDPI in a structured way regardless
of the clinical situation of the patients should be carried out to avoid selection bias and
validate these results in a wider population.

In summary, two of the PopPK models found in the literature were found to be better
than the others in terms of model adequacy and predictive performance. However, the
EBEs of the individual CL/F were found biased when compared with the population mean
values in the models. That suggested the need to update the model with the available data.
On the other hand, the stochastic simulations performed with these models suggested the
benefits of increasing the maintenance dose in protocol to reach the 8 mg/L target.
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Abstract: The aim of this prospective PK study was to evaluate the pharmacokinetics of ciprofloxacin
dosed within the first 36 h (early phase) and after 3 days of treatment (delayed phase) using individual
and population PK analysis. The secondary aim of the study was to evaluate possible dosing
implications of the observed PK differences between early and delayed phases to achieve a PK/PD
target for ciprofloxacin of AUC24/MIC ≥ 125. Blood concentrations of ciprofloxacin (1 and 4 h
after dose and trough) were monitored in critically ill adults in the early and delayed phases of
the treatment. Individual and population PK analyses were performed. Complete concentration-
time profiles in the early phase, delayed phase, and both phases were obtained from 29, 15, and
14 patients, respectively. No systematic changes in ciprofloxacin PK parameters between the early and
delayed phases were observed, although variability was higher at the early phase. Both individual
and population analyses provided similar results. Simulations showed that after standard dosing,
it is practically impossible to reach the recommended ciprofloxacin PK/PD target (AUC/MIC
≥ 125) for pathogens with MIC ≥ 0.5 mg/L. A dosing nomogram utilizing patients’ creatinine
clearance and MIC values was constructed. Both individual and population analyses provided
similar results. Therapeutic drug monitoring should be implemented to safeguard the optimal
ciprofloxacin exposure.

Keywords: ciprofloxacin; pharmacokinetics; covariates; dosing; NONMEM; renal function

1. Introduction

Antibiotic treatment is commonly used to eradicate bacterial infections in critically
ill patients admitted to the intensive care unit. Ciprofloxacin is a wide-spectrum an-
tibiotic that is commonly prescribed for various infections either in monotherapy or
in combination with other antibiotics [1]. Its bactericidal action is distinguished by an
activity primarily against Gram-negative aerobic bacteria, of which Pseudomonas aerug-
inosa and Enterobacterales are the most clinically important [2]. Specific pharmacoki-
netic/pharmacodynamic (PK/PD) target for ciprofloxacin is defined as the ratio of the 24 h
area under the concentration-time curve (AUC24) over the minimum inhibitory concentra-
tion (MIC), where the MIC is determined as the lowest concentration of an antibiotic that
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prevents visible growth of bacteria in vitro [3]. Generally, attaining the PK/PD target of
AUC24/MIC ≥ 125 should be predictive of sufficient anti-infective treatment. Nonethe-
less, AUC24/MIC ≥ 125 is usually not attained in critically ill patients treated with the
standard recommended doses of ciprofloxacin (200–1500 mg/day), as shown in previous
studies [4–6].

Both population and individual PK analyses are well-established and recognized
types of PK explorations with distinct features that may lead to the preference for one
procedure over another. In a population PK analysis performed using non-linear mixed-
effects modeling (NLME), data of all patients included in the study are analyzed at the
same time, providing estimates of population parameter values and inter- and intra-
individual variability [7]. There are several advantages of the population PK analysis, such
as the possibility to analyze sparse and unbalanced data, identification and quantification
of predictive covariates, and ability to distinguish between inter- and intra-individual
variability, or residual unexplained variability [7]. On the other hand, individual PK
explorations are generally conducted to describe PK parameters and determine the most
prominent factors with the highest potential to affect drug exposures. Although this
individual approach leaves many possible sources of variability unexplored, the most
important ones are generally better captured in a limited-sample-size population, provided
a sufficient number of samples is obtained.

There is a high heterogeneity in the group of critically ill patients regarding the pa-
tients’ age, comorbidities, disease severity, pathogens and loci of infections [4,8]. Various
pathophysiological factors in these patients usually lead to alteration of PK of the drugs.
Altered PK of a drug may result in an inadequate exposure, causing insufficient bacterial
eradication, an increased risk of antibiotic resistance, and surplus morbidity and mortal-
ity [9]. Therefore, detailed understanding of the PK of an individual antibiotic drug is
necessary for its dosing optimization. Volume of distribution (Vd) can be increased due to
the reduced protein binding, systemic inflammatory response syndrome (SIRS), and capil-
lary leak [10]. Additionally, the elimination rate can be impaired or augmented, depending
on the clinical condition of the patient [10]. SIRS can downregulate CYP enzymes, and this
may lead to reduced clearance (CL) of drugs cleared by these enzymes [10]. On the other
hand, CL of an antibiotic can be enhanced in sepsis, burn injury, or by concomitant use of
inotropic agents [10].

Our hypothesis was that there might be a context-sensitive pharmacokinetic profile
of ciprofloxacin as a result of complex instability of factors affecting ciprofloxacin PK in
critically ill patients at the beginning of treatment, compared to likely more-stabilized
conditions after 3 days of treatment.

The aim of this prospective study was therefore to evaluate the pharmacokinetics of
ciprofloxacin dosed within first 36 h (early phase) and after 3 days of treatment (delayed
phase). The secondary aim of the study was to evaluate possible dosing implications of the
observed PK differences between the early and delayed phases to achieve a PK/PD target
for ciprofloxacin of AUC24/MIC ≥ 125.

2. Materials and Methods

2.1. Study Design

This was a prospective, open-label (laboratory-blinded) pharmacokinetic study in
adult patients treated with intravenous ciprofloxacin admitted to the Department of Anes-
thesiology and Intensive Care Medicine, Second Faculty of Medicine, Charles University in
Prague, and Motol University Hospital between February 2019 and June 2020. The study
was approved by the local Ethics Committee under No. EK 1492/18 on 2 January 2019 and
was conducted in compliance with the Declaration of Helsinki. Written informed consent
was obtained from all subjects before undertaking any study-related procedures. The study
was registered in EudraCT under No. 2019-003732-24.

Ciprofloxacin was administered according to the standard clinical care in 30 min
intravenous infusions of 400 or 600 mg every 8 or 12 h. The choice of dosing regimen was
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at the discretion of the clinician. Blood samples for the PK analysis were taken at 1, 4, and
7.5 or 11.5 h following completion of the infusion (the last sample was taken as a trough,
depending on the dosing interval). This concentration-time profile was collected twice
during the therapy—at the early phase (within 36 h after initiation of ciprofloxacin dosing)
and at the delayed phase (72–96 h after initiation of ciprofloxacin dosing). Patients from
whom at least one complete concentration-time profile was not collected were excluded
from the study. Blood samples (5 mL) were collected via cannula into serum collecting tubes
without clot activator and immediately placed in the cold. Samples were then centrifuged
at 4500× g for 10 min at 4 ◦C, and serum aliquots were stored at −80 ◦C until analysis.

The following demographic, laboratory, and clinical features of patients were recorded
as a potential covariates of ciprofloxacin pharmacokinetics: sex, age, body weight, height,
smoking status, total bilirubin, serum creatinine, fluid balance, and co-medication with
norepinephrine and furosemide. All clinical and laboratory parameters were determined
separately on each sampling day. Hence, actual values were used for PK analysis both in
the early and delayed phase.

Creatinine clearance (CLCR) was measured using serum creatinine (enzymatic assay)
and 24 h urine output. CLCR was calculated using the traditional equation CLCR = UCR ×
V/SCR, where UCR is urine creatinine level (μmol/L), V is the urinary flow rate (mL/s),
and SCR is the serum level of creatinine (μmol/L) [11].

Glomerular filtration rate was also estimated using Chronic Kidney Disease Epidemi-
ology Collaboration (CKD-EPI), Modification of Diet in Renal Disease (MDRD), Cockroft–
Gault (C-G), and revised Lund–Malmö (L-M) formulas [12–15].

For each patient, body surface area (BSA) according to the DuBois formula and lean
body mass (LBM) according to the Boer formula were calculated [16,17].

2.2. Bioanalytical Assay

Acetonitrile (ACN) and methanol (MeOH) (all LC-MS grade) were obtained from
Honeywell (Charlotte, NC, USA). Ammonium acetate, formic acid, and ammonia solution
25% (all LC-MS grade) were supplied by Fluka (Buchs, Switzerland). Ultra-pure water
was produced by a Smart2Pure system (Thermo Fisher Scientific, Waltham, MA, USA).
Charcoal-stripped fetal bovine serum and ciprofloxacin (≥98%) were purchased from
Sigma-Aldrich (Saint Louis, MO, USA), and internal standard ciprofloxacin-d8 (IS) from
TRC (Totonto, ON, Canada). Standard stock solutions were prepared in water/acetic acid
(60/40 v/v) at a concentration of 1 mg/mL and stored at −20 ◦C.

For serum samples, protein precipitation was used. Several procedures and reagents
were tested; e.g., ACN, ACN/MeOH, and ACN/formic acid mixtures in several ratios.
For the final procedure, 10 μL of IS solution (5 μg/mL) was added to 100 μL of serum and
vortexed. Then, 200 μL of ice-cold mixture of ACN with 0.1% of formic acid was added
and vortexed for 5 min. The procedure was repeated with another 200 uL of ACN/formic
acid. The mixture was centrifuged at 13,000× g for 15 min, then 400 μL of the supernatant
was evaporated and reconstituted in 500 μL of 10% methanol. All samples were prepared
in triplicate.

The same procedure was used for the calibration curve; 100 μL of stripped bovine
serum was spiked with ciprofloxacin standard solution to construct a calibration curve
with the final range of 0.1–750 ng/mL.

For the UHPLC-MS/MS analysis, an Agilent 1290 Infinity UHPLC system coupled
with an Agilent 6460 Triple quadrupole mass spectrometer (Agilent Technologies, Inc.,
Santa Clara, CA, USA) was used. Chromatographic separation was performed on a Kinetex
EVO C18 column (2.1 × 50 mm; 1.7 μm) equipped with a guard column (both Phenomenex,
Torrance, CA, USA). The mobile phases for gradient elution were ammonium acetate in
water (0.5 mM) with ammonia solution, pH adjusted to 10.5 (A) and methanol (B). The
flow rate was 0.45 mL/min and column temperature 30 ◦C. Gradient elution was carried
out as follows: 0 min, 90:10 (A:B); 2 min, 60:40; 3.5 min, 0:100; 4.5 min, 0:100; 4.7 min, 90:10;
6.5 min, 90:10.
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The MS/MS apparatus was operated in positive mode. The applied conditions of the
electrospray ion source were: drying gas temperature 300 ◦C; drying gas flow 13 L/min;
sheath gas temperature 350 ◦C; sheath gas flow 11 L/min; nebulizer pressure 40 psi; nozzle
voltage 0 V; capillary voltage 2500 V. Multiple reaction monitoring (MRM) mode was
used for the detection. Two transitions of m/z were used: 332.14 → 314.1 and 231 for
ciprofloxacin and 340.19 → 322.2 and 235 for ciprofloxacin-d8.

An Agilent Mass Hunter (Agilent Technologies, Inc., Santa Clara, CA, USA) was used
for data acquisition and quantification of samples.

2.3. Primary PK Analysis

Individual ciprofloxacin pharmacokinetic parameters—Vd, CL, and elimination half-
life (t1/2)—were calculated in a one-compartmental pharmacokinetic model with first-order
elimination kinetics based on individual demographic and clinical data and observed
ciprofloxacin serum levels using MWPharm++ software version 1.8.2 (MediWare, Prague,
Czech Republic). The ciprofloxacin PK data derived from Drusano et al. was used for an
a priori estimation of the concentration-time profile in each patient [18]. These estimated
PK profile curves were a posteriori individualized to maximize fitting with observed
concentration points in each patient. The fitting was performed using Bayesian method
separately for both the early and delayed phase concentrations set. The goodness of fit was
expressed using weighted sum of squares and root mean square values.

Subsequently, a Mann–Whitney U-test and linear regression model were used to
evaluate the relationships between ciprofloxacin individual PK parameters with categorical
and continuous variables, respectively. PK parameters and measured CLCR obtained from
early and delayed concentration-time profiles were compared using a Mann–Whitney
U-test (for this analysis, only patients with both complete phase profiles were included).
GraphPad Prism software version 8.2.1 (GraphPad Inc., La Jolla, CA, USA) was used for all
comparisons, and p-levels < 0.05 were considered as statistically significant.

2.4. Population PK Analysis

Population PK analysis was performed using NONMEM version 7.3.0 (ICON De-
velopment Solutions, Ellicott City, MD, USA) and PsN v3.4.2 [19,20] both running under
Pirana 2.9.0 [21]. Modeling was carried out using the first-order conditional estimation
method with interaction (FOCE-I). R 3.3.2 was used for the visualization of the data and
model diagnostics.

Model development was performed in three steps:

(1) Development of structural and statistical model

For the structural model, one- and two-compartment models were tested to describe
the distribution of ciprofloxacin. First-order clearance of ciprofloxacin was assumed.
Log-normally distributed inter-individual variability terms with estimated variance were
tested on each PK parameter. As change in the clinical status of the patients between the
early phase and delayed phase of ciprofloxacin treatment was expected, inter-occasional
variability was also tested. Proportional, additive, and combination error models were
tested for the residual error model.

(2) Covariate analysis

The following variables were tested as covariates (characteristics predictive of inter-
individual variability):

• Body weight, height, LBM, BSA, serum level of bilirubin, CLCR, age, daily fluid
balance, and doses of concomitantly used drugs (noradrenalin and furosemide) were
tested as continuous covariates;

• Smoking status (smoker/non-smoker), concomitant therapy with continuous veno-
venous hemodialysis—CVVHD (on CVVHD/off CVVHD) and sex were tested as
categorical covariates.
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A stepwise covariate modeling procedure was performed. Continuous covariates were
tested in linear and power functions. Categorical covariates were tested by estimating the
parameter value for one category as a fraction of the parameter value for the other category.
For model selection, a decrease in objective function value (OFV) of more than 3.84 points
between nested models (p < 0.01) was considered statistically significant, assuming a χ2

distribution. Additional criteria for model selection were relative standard error (RSE)
of the estimates of structural model parameters <30%, physiological plausibility of the
obtained parameter values, and absence of bias in goodness-of-fit (GOF) plots.

(3) Validation of the final model

To evaluate the stability of the model, a bootstrap analysis was performed. In this pro-
cedure, 1000 replicates of the original data were generated, and the parameter estimates for
each of the 1000 samples were re-estimated by NONMEM in the final model. The median
and 95% confidence intervals (CI) obtained for each parameter estimated for bootstrap
samples were compared with the estimates in the final model. The predictive properties
of the structural and statistical model were validated using normalized prediction distri-
bution errors (NPDEs). For this, the dataset was simulated 1000 times, after which the
observed concentrations were compared to the range of simulated values using the NPDE
package developed for R [22]. Additionally, a visual predictive check (VPC) was performed
to evaluate the predictive accuracy of the final model [23]. For this, 1000 replicates of
the original dataset were simulated using the final model parameter estimates, and the
simulated distribution was compared with that from the observed data. The 95% CIs for
the 10th, 50th, and 90th percentiles of the simulations were calculated from all replicates
and presented graphically.

Monte Carlo Simulations

Monte Carlo simulations (n = 1000) were performed to assess the probability of target
attainment (PTA) of the PK/PD target for ciprofloxacin (AUC/MIC ratio > 125) for various
MICs (0.0625 to 1 mg/L). Standard dosing regimens consisting of 400 mg b.i.d. and t.i.d
were simulated for different levels of CLCR (0.5, 1, 1.5 mL/s). Dosing regimen was regarded
to be successful if the PTA was >100%.

3. Results

3.1. Study Population

There were 35 patients enrolled in the study. Five patients were excluded due to
deviations in sampling times or missing samples. Complete concentration-time profile in
the early phase, delayed phase, and both phases was obtained from 29, 15, and 14 patients,
respectively. The main reasons for not completing both study phases were discontinua-
tion of ciprofloxacin therapy, patient transfer from the intensive care unit, or significant
deviations from sampling schedule. Demographic, laboratory, and clinical characteristics
of patients are summarized in Table 1. The most frequent indications for ciprofloxacin use
were acute exacerbations of chronic obstructive pulmonary disease, lower respiratory tract
infections, and soft tissue infections. Among patients included in the PK analysis (n = 30),
only one subject received CVVHD support, and none were treated with extracorporeal
membrane oxygenation. Ciprofloxacin dose ranged from 800 mg/day (400 mg every 12 h)
to 1200 mg/day (400 mg every 8 h or 600 mg every 12 h). In total, 132 ciprofloxacin serum
concentrations were included in the analysis.
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Table 1. Demographic, laboratory, and clinical characteristics of patients (n = 30).

Characteristics Early Phase (n = 29) Delayed Phase (n = 15)

Sex (M/F) 21/8 11/4
Age (years) 58 (35–85) 57 (35–85)

Body weight (kg) 90 (56–140) 90 (58–130)
Height (cm) 175 (150–196) 175 (160–190)

BSA (m2) 2.09 (1.60–2.65) 2.09 (1.60–2.45)
LBM (kg) 63 (44–81) 63 (44–76)

Smoking status (Y/N/NA) 15/6/8 9/3/3
CLCR (mL/s) 1.16 (0.12–3.32) 1.36 (0.66–2.49)

CKD-EPI (mL/s) 1.60 (0.16–2.98) 1.24 (0.76–2.37)
MDRD (mL/s) 1.70 (0.18–4.26) 1.99 (0.94–4.95)

C–G (mL/s) 1.77 (0.25–4.96) 2.10 (0.72–5.31)
L–M (mL/s) 1.45 (0.20–2.81) 1.76 (0.82–2.95)

Total bilirubin (μmol/L) 11.3 (3.5–90.3) 11.0 (4.4–46.4)
Fluid balance (mL/day) −490 (−4000–4300) −500 (−3502–1900)

Norepinephrine (mg/day) 17 (0–61) 5 (0–60)
Furosemide (mg/day) 5 (0–320) 19 (0–148)

Data are presented as median (range). BSA—body surface area; LBM—lean body mass; CLCR—measured
creatinine clearance; M—men; W—women; Y—yes; N—no; NA—not available; CKD-EPI—Chronic Kidney
Disease Epidemiology Collaboration; MDRD—Modification of Diet in Renal Disease; C–G—Cockroft–Gault; and
L–M—revised Lund–Malmö equations for estimation of glomerular filtration rate.

3.2. Primary PK Analysis

Individual pharmacokinetic parameters of ciprofloxacin are summarized in Table 2.
Median (interquartile range) weighted sum of squares and root mean square values were
7.43 (2.60–10.98) and 0.96 (0.91–0.98), respectively. We observed medium to high inter-
individual variability of PK parameters normalized per kg of body weight demonstrated
by coefficients of variation of 46%, 74%, and 37% for Vd, CL, and t1/2, respectively (early-
phase group). On the contrary, there were no significant differences either in ciprofloxacin
PK parameters or in measured CLCR between the early and delayed phases (p-values of
0.2798, 0.6673, 0.7088, and 0.5189 for body-weight-normalized Vd, CL, t1/2, and CLCR,
respectively).

Table 2. Individual pharmacokinetic parameters of ciprofloxacin.

PK Parameter Early Phase (n = 29) Delayed Phase (n = 15)

Vd (L) 136.9 (76.6–322.6) 158.3 (98.0–386.6)
Vd (L/kg) 1.73 (0.76–3.83) 1.98 (0.75–4.55)
CL (L/h) 18.59 (8.13–74.94) 20.57 (6.20–74.63)

CL (L/h/kg) 0.209 (0.068–0.906) 0.291 (0.107–0.878)
t1/2 (h) 5.6 (2.3–11.7) 4.7 (2.8–11.6)

Data are presented as median (range). Vd—volume of distribution; CL—clearance; t1/2—elimination half-life.

Both ciprofloxacin Vd and CL were significantly and positively related with CLCR
(p = 0.0009 and p < 0.0001, respectively) and negatively related with age (p < 0.0001 for
both Vd and CL). Since CLCR significantly decreased with increasing age (p < 0.0001),
we assumed that the real independent variable was only CLCR. Measured CLCR was the
most predictive of the ciprofloxacin CL (r2 = 0.6275), but estimated glomerular filtration
rates according to various formulas were also significantly related to ciprofloxacin CL
(r2 of 0.4342, 0.4301, 0.4088, and 0.3701 according to CKD-EPI, L-M, MDRD, and C–G
equation, respectively). The weakest predictive performance for estimating of ciprofloxacin
CL was observed in serum creatinine level (r2 = 0.1717). These relations are presented in
Figure S1. Ciprofloxacin CL was also negatively related to the daily dose of norepinephrine
(p = 0.0249), but analogically, since the dose of norepinephrine was associated with CLCR
(p = 0.0060), we assumed that the only dependent variable and the real covariate was CLCR.
Both ciprofloxacin Vd and CL were also positively related with height (p = 0.0263 and
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p = 0.0240, respectively). PK of ciprofloxacin was neither related to body weight nor to any
derived body-size descriptors such as BSA and LBM. We also observed no relationships
with smoking status, serum level of bilirubin, fluid balance, or daily dose of furosemide.
There were no differences in the ciprofloxacin PK between the sexes.

Based on the strongest observed relationship (ciprofloxacin CL = 18.54 × CLCR +
3.261; r2 = 0.6275) and the well-known equation (AUC = dose/CL), we constructed a nomo-
gram (Figure 1) representing the relation between patient CLCR, MIC for pathogen, and
ciprofloxacin PK/PD target attainment (AUC24/MIC ratio of 125) at the usual ciprofloxacin
dosage (800 or 1200 mg/day).

Figure 1. Nomogram representing the relation between patient creatinine clearance (CLCR), mini-
mum inhibitory concentration for the pathogen (MIC), and ciprofloxacin PK/PD target attainment
(AUC24/MIC ratio of 125) at the usual ciprofloxacin dosage (800 or 1200 mg/day). The white area of
the graph corresponds to renal clearance and MIC values, for which the standard dosing could not
achieve the PK/PD target.

3.3. Population PK Analysis

Observed ciprofloxacin plasma concentrations were best described by a one-compartment
model with log-normally distributed intra-individual variability on CL and Vd. A com-
bination residual error model provided the best description of residual variability. Inter-
occasion variability tested as a third level of random effects was not found to be significant.

Inclusion of CLCR in a linear relationship as a covariate on CL resulted in a statistically
significant improvement of the model fit (p < 0.001). Inclusion of this covariate in the model
led to a decrease in inter-individual variability of CL from 71.6% (basic model without
covariates) to 44.9% (final model). None of the other covariates were statistically significant.

The final parameter estimates are presented in Table 3. In the final model, for a typical
individual with CLCR of 1.25 mL/s, CL and Vd were 21.5 L/h and 143 L (34%), respectively.
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Table 3. Parameter estimates of the final model for ciprofloxacin in critically ill patients.

Parameter
(Units)

Final Model
(RSE %)

Bootstrap Method
(95% CI)

Fixed effects
CL (L/h) = CLp + θCLCR × (CLCR/1.25)

CLp (L/h) 5.4 (28%) 5.33 (2.21–8.50)
θCLCR 16.1 (16%) 16 (11.3–21.8)

Vd (L) = Vdp
Vdp (L) 143 (9%) 142 (112–168)

Inter-individual variability
CL (%) 44.9% (3%) 43.6% (34.9–52.4)
Vd (%) 34.8% (17%) 43.6% (34.9–52.4)

Residual variability
Additive (%) 0.981 (34%) 1.05 (0.6–2.1)

Proportional (%) 4.78 (26%) 4.5 (2.3–7.5)
RSE—relative standard error of the estimate; CL—clearance; CLp—population clearance value; CLCR—creatinine
clearance; θCLCR—increase in CL per L/s CLCR; Vd—volume of distribution; Vdp—population volume of
distribution value.

The precision of the estimated structural parameter values was acceptable, with
RSE values below 30%. The basic GOF plots in Figure 2 indicate that the final model
could describe the data accurately, as the predicted population and predicted individual
concentrations were described without bias. All median parameter values in the bootstrap
procedure were within 10% of the values obtained in the final model fit, indicating that the
model was robust.

 
Figure 2. Goodness-of-fit plots for the final model for ciprofloxacin concentrations in critically
ill patients. (A) Population-predicted ciprofloxacin concentrations vs. observed ciprofloxacin con-
centrations. (B) Individual-predicted ciprofloxacin concentrations vs. observed ciprofloxacin con-
centrations. (C) Conditional weighted residuals (CWRES) vs. population-predicted ciprofloxacin
concentrations. (D) Conditional weighted residuals (CWRES) vs. time after last dose.

The distribution of the NPDEs obtained with the model for the dataset had a mean of
0.039 (SE = 0.087) and variance of 1 (SE = 0.12). Neither of these values were significantly
different from the expected values of 0 (p = 1) and 1 (p = 1), respectively (Figure 3). This
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indicates that predictions regarding the structural model and the variability in the data were
accurate. Adequate performance of the final model was confirmed with the VPC analysis
(Figure S2). However, the VPC showed that the median of the observed concentrations did
not fall into the CI of median prediction (red shaded area); therefore, caution should be
taken when using this model for extrapolation to early time points after dosing.

Figure 3. Visual output of the normalized prediction distribution error (NPDE) analysis. Shown at
the top are the QQ plot and histogram of the NPDEs in the overall dataset. The red dotted line and
blue shaded areas show the expected trends and 95% confidence intervals of these trends, while the
dark blue lines and bars show the observed NPDE distributions. At the bottom, the individual NPDE
values for each observation are plotted versus time and versus the predicted concentrations with the
symbols. The solid lines in the bottom graphs indicate the mean (red) and the 95% percentiles (blue)
of the NPDEs, and the shaded areas are the simulated 95% confidence intervals of the NPDE median
(red) and 95% percentiles (blue), while the dotted red and blue lines show the expected values for the
median and 95% percentiles.

Monte Carlo Simulations

Figure 4 shows the PTA values for different dosing regimens (400 mg b.i.d. and
t.i.d.) of ciprofloxacin for various MIC values (0.0625–1 mg/L) for patients with different
values of CLCR (0.5, 1, 1.5 mL/s). Dosing regimen including 400 mg b.i.d. (Figure 4A) was
sufficient for MICs ≤ 0.125 mg/L, but was insufficient for MICs ≥ 0.25 mg/L, except for
impaired renal function (CLCR = 0.5 mL/s). Dosing regimen consisting of ciprofloxacin
t.i.d. (Figure 4B) enabled PTA > 100% for MIC ≤ 0.25 mg/L. No approved dosing regimen
achieved sufficient PTA for MICs ≥ 0.5 mg/L.
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Figure 4. Monte Carlo simulations for ciprofloxacin PTA (AUC/MIC > 125) at different creatinine
clearance (CLCR) values. (A) 400 mg two times daily and (B) 400 mg three times daily.

4. Discussion

Variability in the clinical status of the patients between the early phase and delayed
phase of ciprofloxacin treatment was expected, therefore inter-occasion variability was
tested. However, no significant differences of ciprofloxacin PK parameters between the
early and delayed phases of treatment was observed. Similarly, inter-occasion variability
tested as a third level of random effects in the population PK analysis, and it was not
significant. Since shifts in body fluid have been implicated as a major cause of alteration
in distribution [24], it can be assumed that especially Vd of hydrophilic drugs may be
altered. Ciprofloxacin is lipophilic, and as such it is likely to be less susceptible to changes
in distribution during critical illness; however, our study could not precisely describe the
distribution phase. Substantial changes in functional of eliminating organs resulting in
significant variability of a drug CL are also common in critically ill patients [24]. In our
study population, we consistently observed higher spread (both increase and decrease) of
renal-function status in the early phase in comparison with the delayed phase. However,
median CLCR values were without statistically significant difference (p = 0.5189) in both
phases, and thus no significant difference in ciprofloxacin CL between the early and delayed
phase was also noted.

In a recent position paper, individualized antibiotic dosing was unambiguously rec-
ommended for aminoglycosides, glycopeptides, beta-lactams, and linezolid, while for
ciprofloxacin (fluoroquinolones), the therapeutic drug monitoring was neither recom-
mended nor discouraged [25]. The nomogram based on individual PK analysis (Figure 1)
shows that at standard dosage (800–1200 mg/day), it was practically impossible to reach the
recommended ciprofloxacin PK/PD target (AUC/MIC ≥ 125) when the MIC ≥ 0.5 mg/L
(except for patients with moderate to severe renal impairment). This observation was
consistent with ciprofloxacin-resistance breakpoint value of 0.5 mg/L stated by the Euro-
pean Committee on Antimicrobial Susceptibility Testing (EUCAST). On the other hand, the
ciprofloxacin PK/PD target should be reached at standard dosing when the MIC is less than
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0.25 mg/L (except in patients with augmented renal clearance), which fully corresponds
with the EUCAST-sensitivity breakpoint value for ciprofloxacin. However, it is evident
from the nomogram that in patients with augmented renal clearance, even a ciprofloxacin
dose of 1200 mg/day may not be effective, and on the contrary, commonly used doses may
lead to overexposure in patients with renal impairment.

Monte Carlo simulations were performed to assess PTA of the ciprofloxacin PK/PD
target (AUC/MIC ≥ 125). Dosing regimen including 400 mg b.i.d. was sufficient for
MICs ≤ 0.125 mg/L but was insufficient for MICs ≥ 0.25 mg/L, except for patients with
impaired renal function (CLCR = 0.5 mL/s). Additionally, a dosing regimen consisting of
ciprofloxacin 400 mg t.i.d. enabled PTA > 100% for MICs ≤ 0.25 mg/L. Finally, no dosing
regimen achieved sufficient PTA for MICs ≥ 0.5 mg/L. Similar results were obtained in
the previous studies conducted in critically ill patients [4,26]. Roberts et al. showed that
for a directed therapy against P. aeruginosa (MIC value of 0.5 mg/L), a dose of 600 mg t.i.d.
would be needed to achieve an adequate PTA in patients with septic shock [26]. Although
simulations show daily doses > 1200 mg would be required for optimal exposure of
ciprofloxacin for MICs ≥ 0.5 mg/L, it is important to note that these dosing regimens have
never been prospectively and externally validated. Higher doses increase risk of unwanted
effects, which may go undiscovered in critically ill patients who are predisposed to similar
adverse effects due to co-medication or their underlying illness. Relatively high incidence
of both augmented renal clearance and impaired renal function status among critically
ill patients support the clinically reasonable approach to implement therapeutic drug
monitoring of fluoroquinolones to safeguard efficacious and safe antimicrobial treatment
in this vulnerable patient population.

We can distinguish between the individual and population approaches to perform PK
analyses. Advantages and disadvantages of these approaches or their suitability for specific
situation are often discussed, but there is a lack of direct comparison of these methods on
the same dataset [27]. Population approach offers significant advantages with respect to
comprehensive PK exploration and drug-dosing posology in the population, while the
individual approach is superior in terms of the routine clinical care of an individual patient.
We analyzed data from our study using both individual and population PK approaches.
The median values of ciprofloxacin PK parameters from individual analysis were almost
the same as Vd and CL values for a typical individual in the final population model. CLCR
also proved to be the main independent covariate of ciprofloxacin CL in both analyses.
In individual analysis CLCR was also associated with ciprofloxacin Vd. This observation
can be explained by fluid retention in patients with impaired renal function resulting in a
relative decrease in distribution space for lipophilic agents such as ciprofloxacin. Relation
of PK parameters with body size is common, but body weight is usually the strongest
covariate, especially in lipophilic drugs [28]. Since we observed only a weak relationship
with height in the individual PK analysis and the other body size descriptors were without
significance, it might be considered as a chance finding.

We also compared glomerular filtration rate (measured CLCR) with multiple esti-
mation equations (CKD-EPI, L–M, C–G, and MDRD) and simple serum creatinine level
as determinants of ciprofloxacin CL. As expected, the best predictive performance was
shown for measured CLCR (r2 = 0.6275). The CKD-EPI or L–M showed numerically better
performance in comparison with MDRD, C–G, or simple serum creatinine level, which was
in accordance with previous observations in other renally excreted antibiotic agents [29,30].
The MDRD formula is applicable primarily in chronic kidney disease subjects. The C–G
equation includes body weight, which can lead to a distortion in under- or overweight pa-
tients. This may be the reason for the worse performance of glomerular filtration rate
calculated by the MDRD or C–G formulas when used in a heterogeneous population. How-
ever, estimation of glomerular filtration rate by means of any equation may be reliable only
in patients with a stable renal function. Therefore, measurement of CLCR is considered the
“gold standard” in the routine care of patients with unstable renal functions, and estimation
methods will likely not be used in the patient population included in our study.
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For the individual PK analysis, we used a two-stage method, in the first stage of
which the values of the PK parameters in each patient were calculated. Although we used
mean (SD) from Drusano et al. as a Bayesian prior [18], the PK parameters were adapted
as random variables via a large number of iterations to achieve maximum fitting of the
simulated PK profile with the true observed concentration points in each individual. The
fitting was very tight, as evidenced by the goodness-of-fit values. In the second stage, the
individual PK parameters were associated with patient characteristics using regression
models (continuous variables) or column statistics (categorical variables). The values
of PK parameters obtained from this analysis corresponded well with data from other
ciprofloxacin individual PK studies [31–34].

Although a direct comparison of findings between population PK studies using a
NLME approach is difficult due to differences in parameterization and covariate relation-
ships, it is possible to make comparisons between parameter values for typical individuals.
So far, two studies using NLME modeling to describe PK ciprofloxacin in critically ill pa-
tients have been published [4,26]. One of these studies (Roberts et al.) was conducted
in patients with sepsis [26]. To allow comparison of PK parameters, we calculated param-
eter values for the typical individual from our study with CLCR of 1.25 mL/s using the
provided equations in the corresponding publications. The estimated values of CL in this
study for a typical individual (21.5 L/h) were similar to the values reported in the previous
studies (25 L/h according to Abdulla et al. [4], and 15 L/h according to Roberts et al. [26]).
Moreover, Roberts et al. [26] found CLCR to be a significant covariate for CL, and this
relationship was described as a power function. In our study, this relationship was found
to be linear. On the other hand, Abdulla et al. [4] found no significant covariates for CL.
Regarding Vd, we found no predictive covariates, similarly to Abdulla et al. [4]. Conversely,
Roberts et al. [26] reported body weight to be a predictive covariate for central Vd.

The studies by Abdulla et al. [4] and Roberts et al. [26] found the two-compartment
model to provide the best description of ciprofloxacin disposition, whereas we selected a
one-compartment model. These differences can be explained by a relatively sparse blood
sampling at early time points after onset of treatment with ciprofloxacin in the current study,
therefore caution should be taken when using this model for extrapolation to early time
points after dosing. This was also confirmed by the VPC, as the median of the observed
concentrations did not fall into the CI of the median prediction in the early time points
after the first dose of ciprofloxacin.

5. Conclusions

In conclusion, we described PK of ciprofloxacin using both individual and population
approaches and obtained similar results. We observed no changes in ciprofloxacin PK
parameters between the early and delayed phases of treatment. CLCR (as a marker of
functional renal status) was identified as a significant covariate of ciprofloxacin PK. Stan-
dard dosing regimens might be insufficient for achieving the optimal therapeutic target,
therefore therapeutic drug monitoring should be implemented to increase the probability
of optimal ciprofloxacin exposure and to avoid unnecessary high concentrations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13081156/s1, Figure S1: Relationships of ciprofloxacin clearance (CLCIP) with
creatinine serum concentrations, with measured creatinine clearance (CLCR), and with glomerular
filtration rate estimations according to Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI), Modification of Diet in Renal Disease (MDRD), Cockroft-Gault (C-G), and revised Lund-Malmö
(L-M) equations, Figure S2: Visual predictive check of the final model. Black dots—observations,
black dashed lines—80%-interval and median of the observations, red shaded area—95%-confidence
interval (CI) of the median prediction, blue shaded area—95%-CI of the 10 and 90th prediction interval.
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Abstract: Over the last two decades, pharmacogenetics and pharmacokinetics have been increas-
ingly used in clinical practice in Psychiatry due to the high variability regarding response and side
effects of antipsychotic drugs. Specifically, long-acting injectable (LAI) antipsychotics have different
pharmacokinetic profile than oral formulations due to their sustained release characteristics. In
addition, most of these drugs are metabolized by CYP2D6, whose interindividual genetic variability
results in different metabolizer status and, consequently, into different plasma concentrations of
the drugs. In this context, there is consistent evidence which supports the use of therapeutic drug
monitoring (TDM) along with pharmacogenetic tests to improve safety and efficacy of antipsychotic
pharmacotherapy. This comprehensive review aims to compile all the available pharmacokinetic and
pharmacogenetic data regarding the three major LAI atypical antipsychotics: risperidone, paliperi-
done and aripiprazole. On the one hand, CYP2D6 metabolizer status influences the pharmacokinetics
of LAI aripiprazole, but this relation remains a matter of debate for LAI risperidone and LAI paliperi-
done. On the other hand, developed population pharmacokinetic (popPK) models showed the
influence of body weight or administration site on the pharmacokinetics of these LAI antipsychotics.
The combination of pharmacogenetics and pharmacokinetics (including popPK models) leads to a
personalized antipsychotic therapy. In this sense, the optimization of these treatments improves the
benefit–risk balance and, consequently, patients’ quality of life.

Pharmaceutics 2021, 13, 935. https://doi.org/10.3390/pharmaceutics13070935 https://www.mdpi.com/journal/pharmaceutics
289



Pharmaceutics 2021, 13, 935

Keywords: population pharmacokinetic models; pharmacogenetics; LAI; risperidone; paliperidone;
aripiprazole; CYP2D6; antipsychotics

1. Introduction

Schizophrenia is a severe mental disorder that is presented clinically heterogeneously
in patients. It is estimated that approximately 0.7–1% of the world population suffer from
this condition, currently affecting 24–25 million people worldwide according to data from
the World Health Organization [1–3]. Mainly, it causes disorder of behavior, thoughts, per-
ception and emotions. The core features are positive symptoms (delusions, hallucinations
and disorganized speech), negative symptoms (such as abulia, anhedonia and social with-
drawal), cognitive impairment (mainly in speed of mental processing, working memory
and executive functions) and affective symptoms (i.e., anxiety and depression) [4]. There
are well-defined instruments such as the Brief Psychiatric Rating Scale (BPRS), the Scale for
the Assessment of Positive Symptoms (SAPS), the Scale for the Assessment of Negative
Symptoms (SANS) or the Positive and Negative Symptoms Scale (PANSS) to measure
these positive and negative symptoms as well as general psychopathology. In clinical
studies, reductions in these scales have been used to define treatment response [5]. There
are several theories that try to explain the pathophysiology of this complex and highly poly-
genic disease, including brain structure defects or neurochemical alterations [6]. Recently
Genome Wide Association Studies have supported some of those classic neurochemical
hypotheses such as the dopaminergic and glutamatergic from a genetic perspective [7].
Nowadays, the pharmacological treatment of schizophrenia is based on antipsychotics, a
family of drugs which are classified into two separate groups: first generation or typical
(i.e., haloperidol, chlorpromazine) and second generation or atypical (i.e., risperidone,
paliperidone, aripiprazole). Both of them present affinity toward D2 receptors and reduce
positive symptoms. Atypical antipsychotics form a heterogenous group of drugs with
regard to their different receptor affinity. In addition to D2 receptor affinity, they have other
pharmacological actions involving different signaling pathways such as serotoninergic
receptors (5-HT2A,5-HT1A and 5-HT2C) that could be the main cause of their safer profile
compared to typical antipsychotics [8].

The effectivity of these drugs is far from expected. Treatment resistance requires dose
optimization that is based on a trial-and-error method caused by the current inability to
predict response to treatment; this added to severe and frequent adverse events are com-
monly the reasons that lead the patients to discontinue antipsychotic therapies. The main
handicap of oral antipsychotics formulations is adherence. Many factors have influence
on non-adherence such as forgetting doses of medication, adverse events during therapy
and poor insight that condition drug intake. According to various studies, which define
adherence as taking medication at least 75% of the time, non-adherence is around 50% of
treated patients [9,10]. This problem has been partially solved since typical long-acting
injectable (LAI) antipsychotics were released. Later, arrival of atypical LAI antipsychotics
introduced an improvement in the safety profile of these drugs, which are administered
at long intervals of time (from 2 weeks to 3 months). At this point, the tandem of phar-
macogenetics and pharmacokinetics plays a key role, and personalized prescription of
antipsychotics improves the safety and efficacy of pharmacotherapy. Combining pharma-
cogenetics with therapeutic drug monitoring (TDM) of LAI antipsychotics would be a great
tool to predict and anticipate patient response in order to achieve mental wellness and
minimize side effects. Furthermore, population pharmacokinetic (popPK) models should
be considered as a useful tool to understand the relationship between patient characteristics
and drug exposure.

Among all over the genes involved in pharmacokinetics of drugs, the Cytocrome P450
family is, by far, the most important in terms of interindividual variability. Most of drugs
that are commonly used in psychiatry are CYP2D6-dependent [11,12], an enzyme encoded
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from a highly polymorphic gene. Nowadays, there are already 145 alleles described for
CYP2D6. These alleles can have different functions, frequency and clinical impact on
metabolism across different populations [13–15]. Depending on allele combination, it is
possible to differentiate the following metabolizer status [16–21]: extensive or normal
metabolizer (EM/NM): their metabolic pathway is not altered; poor metabolizers (PM):
the activity enzyme is significantly reduced or absent; intermediate metabolizer (IM): those
who can metabolize substances in lower ratios compared to an EM but better than a PM.
Rapid or ultrarrapid metabolizer (UM): enzymatic hyperactivity compared to EM. Those at-
tracting more interest are PM, IM and UM due to their risk of developing adverse reactions
or lack of efficacy in clinical practice [22–24], so currently development in this area of knowl-
edge holds great promise for reducing time between diagnosis and seeking an effective
treatment. Lastly, a mismatch has been observed between the genotype-based prediction
of CYP450-mediated drug metabolism and the true capacity of an individual to metabolize
drugs (phenotype) due to non-genetic factors, which is called phenoconversion [25].

Compared to classical pharmacokinetics, where several samples at different time
points are collected from a patient to estimate their individual pharmacokinetic parameters
(clearance, distribution volume, half-life, etc.), population pharmacokinetics (popPK) ana-
lyzes the pooled data available of several patients in order to estimate pharmacokinetic
parameter values and their variance, identify covariates and study the random effects
(parameter variance which cannot be explained by covariates). All this information imple-
mented in a mathematical model (popPK models) plus Bayesian computational methods
allows us to estimate our patients’ individual pK parameters, which can be a very helpful
tool to individualize dosing and optimize the treatment efficacy and safety.

The three major prescribed LAI-antipsychotics are risperidone, paliperidone and arip-
iprazole, while LAI-olanzapine prescription has been decreasing over time [26]. Our aim is
to comprehensively review all the available literature about these three major prescribed
LAI-antipsychotics pharmacogenetics and pharmacokinetics, including the existing popPK
models as a crucial tool for predicting drug exposure, focusing on risperidone, paliperidone
and aripiprazole.

2. Long-Acting Risperidone

Risperidone is an atypical antipsychotic derived from benzisoxazole with potent
D2 and 5-HT2 receptor antagonism. LAI risperidone is an aqueous suspension of mi-
crospheres formed by a glycolic and lactic acid degradable matrix where risperidone
is encapsulated [27]. More recently, a new formulation of once-monthly subcutaneous
LAI risperidone has been approved by the FDA in which risperidone is suspended in
ATRIGEL®, a polymer that solidifies in contact with tissues [28,29].

2.1. Pharmacokinetics

Considering the physicochemical properties of polymers of risperidone, a reduced
release occurs a few days after injection (around 1% of the dose administered) followed by
a lag time of 3 weeks and then a significant release is observed in weeks 4–6 [27,30]. Due to
this lag phase, oral supplementation should be given in the first three weeks of treatment.
Metabolism of risperidone goes through hydroxylation and N-dealkylation processes in
which CY2D6 plays a predominant role in the formation of 9-OH-risperidone (9-OH-R),
main active and “equipotent” metabolite [31]. Product monograph states that the half-life
(t1/2) of risperidone plus 9-OH-R is 3–6 days [32] and the steady-state is reached after the
fourth injection and maintained for 4–5 weeks after the last injection [30]. As well as t1/2,
steady-states were determined by inspection of the concentration–time curve and not by
the rule of the five t1/2. As Lee et al. [33] point out, this can cause an underestimation of
the time when the steady state is reached and can lead to an increase in dosage and an
accumulation of the drug.

More recently, a new formulation of once-monthly subcutaneous LAI risperidone has
been approved by the FDA, in which risperidone is suspended in ATRIGEL®, a polymer
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that solidifies in contact with tissues, providing a sustained release. Risperidone ATRIGEL®

does not need oral supplementation due to its characteristic pharmacokinetic profile. After
subcutaneous injection, a first peak appears 4–6 h post-dose followed by a second one
10–14 days after. Steady state is reached by the end of the second injection and the apparent
half-life ranges between 8 and 9 days [28,29].

With regard to the therapeutic range of reference, the German working group for
neuropsychopharmacology and pharmacopsychiatry (AGNP) Consensus Guidelines for
Therapeutic Drug Monitoring established between 20 and 60 ng/mL for risperidone plus
9-OH-R [34]. This range is derived exclusively from orally given risperidone studies,
extrapolating this range to patients treated with long-acting formulations, which has not
yet been extensively studied. Two different studies used this AGNP range [35,36] but the
other two studies differ and propose other ranges for LAI risperidone [37,38]. De Leon
et al. [39] proposed an updated therapeutic range (20–30 ng/mL) for LAI risperidone
as a consequence of the prolonged absorption of LAI formulations and the reduction in
the administration frequency, which leads to less oscillations at steady-state conditions.
Despite this, until new data about LAI risperidone are available, the AGNP therapeutic
reference range is the most recommended [40].

2.2. Pharmacogenetics
2.2.1. Efficacy

Polymorphisms in the CYP2D6 gene could affect plasma concentrations of risperidone
plus 9-OH-R (active moiety) although the product monograph reflects that concentration
of the active moiety is the same in PM individuals as in other phenotypes [32]. Therefore,
adjusting the dose to the patient’s phenotype is not necessary but many published studies
differ on this point. It is suggested that CYP2D6 metabolizer status cause differences in
active moiety exposure and consequently in efficacy and tolerability, but there are still
controversies (Table 1).

Table 1. Studies between CYP2D6 phenotype and relation with active moiety exposure.

Study LAI/Oral n Race
Age

(Median)
Male/Female

CYP2D6
Phenotypes

Outcome

Vermeulen A
et al. [41] Oral 407 NR 38 267/140 PM/IM/NM Irrelevant

Scordo MG
et al. [42] Oral 37 Caucasians 41 30/7 PM/IM/NM/UM Irrelevant

Cho HY et al.
[43] Oral 24 Asian 24.6 NR PM/NM Irrelevant

Hendset, M
et al. [35] LAI 90 Caucasians 38 53/37 PM/IM/NM/UM

Relevant
(higher plasma exposure

for IM and PM)

Llerena A et al.
[44] Oral 35 Caucasians 43 NR PM/IM/NM/UM Irrelevant

Choong, E et al.
[45] LAI 42 Caucasian

(76%) 35 30/12 PM/IM/NM/UM

Relevant
(higher plasma exposure
for IM and PM and lower

for UM)

Leon, J. D et al.
[46] Oral 277 Caucasian

(78%) 43.7 150/127 PM/IM/NM/UM
Relevant

(higher plasma exposure
for PM)

Jovanović, N
et al. [47] Oral 83 Caucasians 30.3 17/66 PM/NM/IM Irrelevant
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Table 1. Cont.

Study LAI/Oral n Race
Age

(Median)
Male/Female

CYP2D6
Phenotypes

Outcome

Jukic, M et al.
[48] Oral 725 Caucasians 42.8 355/370 PM/IM/NM/UM

Relevant
(higher plasma exposure
for IM and PM and lower

for UM)

Locatelli, I et al.
[49] LAI 50 Caucasian 30 39/11 PM/IM/NM/UM Irrelevant

Vandenberghe,
F et al. [50] Oral 150 Caucasian

(81%) 39 82/68 PM/IM/NM/UM
Relevant

(higher plasma exposure
for PM)

Gunes, A et al.
[51] Oral 46 Caucasian 45 35/11 PM/NM/PM

Relevant
(higher plasma exposure

for PM)

Classified in relevant (significative association between CYP2D6 phenotype and active moiety exposure) or irrelevant (no significative
association between CYP2D6 phenotype and active moiety exposure or incorrect assignment of CYP2D6 genotype due to missing copy
number variation analysis). Abbreviations: PM, Poor Metabolizer; IM, Intermediate Metabolizer; NM, Normal Metabolizer; UM, Ultra
Metabolizer; NR: Not reported. Those studies that do not analyze the number of copies of the gene have been classified as irrelevant.
Among those classified as relevant, it is important to highlight that they should be taken as a guideline, taking into account that the main
limitation is the high heterogeneity that exists between the different methods of analysis used, as well as the polymorphisms explored in
the determination of the phenotype of CYP2D6.

A recent meta-analysis of 15 studies involving 2125 patients taking oral risperidone
concluded that CYP2D6 activity is associated with increased exposure of both risperidone
and active moiety. Risperidone steady-state plasma concentration was 2.35-fold higher in
IM and 6.20-fold higher in PM, while active moiety concentration was 1.18-fold higher in
IM and 1.44-fold higher in PM [52].

Furthermore, some studies suggest that PM are associated with a greater number
of adverse events and treatment discontinuation which decreases clinical efficacy [53,54].
In addition, some popPK models based on oral regimens of risperidone showed large
differences in CL/F depending on CYP2D6 phenotype. Mean CL/F values reported by
Feng et al. were 65.4, 36 and 12.5 L/h for EM, IM and PM, respectively [55]. The popPK
model developed by Sherwin et al. [56] obtained mean values of CL/F for EM, IM and
PM patients of 37.4, 29.2 and 9.38 L/h, respectively. Similar differences in CL/F between
PM (three-fold lower) and EM individuals were reported by Thyssen et al. [57] in a study
including pediatric and adult patients. More recently, a popPK model based on oral
regimen of risperidone showed that a reduced activity of CYP2D6 (PM) could increase up
to a 106% steady-state plasma concentration and up to a 53% higher Cmax compared with
NM, so dose adjustment may be necessary [58].

Nevertheless, LAI antipsychotics exhibit large differences compared to oral formu-
lations in terms of their PK profile due to their slow and sustained absorption. To our
knowledge, only a popPK LAI model of the risperidone ATRIGEL® formulation has been
published, which found body mass index and dose as covariates of absorption rate con-
stants and risperidone and 9-OH-R distribution volumes, respectively. In contrast, CYP2D6
polymorphisms were not statistically significant to any structural popPK parameter [59],
which might be explained by the unbalanced and reduced number of patients recruited.

It is possible to obtain approximated information about CYP2D6 activity using quan-
titative methods by the following ratios. On the one hand, the R/9-OH-R ratio (relates
risperidone and 9-OH-R plasma concentrations) values <1 are normal plasma ratios that
indicate normal CYP2D6 activity (UM, NM, IM) while a value >1 indicates a lack of activity
(PM) or the presence of a strong inhibitor [39,60,61]. On the other hand, total risperidone
C/D ratio is a measure of drug clearance that relates the concentration of the active moiety
with the dose of risperidone. The normal value for oral risperidone and for LAI formula-
tion is approximately around 7 ng/mL per mg/day and patients with ratios >14 ng/mL
per mg/day are expected to be CYP2D6 PM [40,60]. Previous procedures could be an
alternative for psychiatrists and could be a possibility for clinicians who do not have
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access to genotype CYP2D6, but it is important to take into account that these methods
would only be useful when CYP2D6 constitutes the main pathway of metabolization. It
is important to take into account that the CYP2D6 allele combination in a patient is an
invariable condition; once analyzed it will not change. Thus, analyzing polymorphisms
in CYP2D6 by pharmacogenetics can be useful to select the most appropriate drugs for
a patient, avoiding adverse effects or lack of efficacy concerning its CYP2D6 metabolizer
status. As a result, individualized treatment selection would become easier for prescribers.

Therefore, it seems clear that genetic variations in CYP2D6 have an impact on plasma
concentrations of risperidone, but there are controversies when it comes to relating it to
the efficacy of the treatment and clinical outcome. A study of 136 patients diagnosed
with schizophrenia and evaluating clinical improvement using the Positive and Negative
Syndrome Scale (PANSS) did not showed association between CYP2D6 activity variations
and clinical outcome [61]. Along the same line another study of 83 drug-naïve patients
experiencing a first episode of psychosis did not match the clear relation between CYP2D6
genetic variations and clinical improvement [47]. On the contrary, another study of 76
patients with schizophrenia evaluated changes on total PANSS and CYP2D6 polymorphism
founding correlation between PMs and better response to risperidone treatment. Only
three patients were classified as PMs but the power of the study was enough to establish
an association with PANSS improvement. [62]. Likewise, Jukic et al. recently identified a
higher incidence of therapeutic failure (discontinuation or switch to another antipsychotic)
in PMs [48]. These pharmacogenetic studies are based on oral risperidone administration
and not all of them had been conducted in patients with schizophrenia.

2.2.2. Safety

Antipsychotics can cause hyperprolactinemia by blocking dopaminergic receptors at
the tuberoinfundibular system [63]. Risperidone was reported to have a high prevalence
of hyperprolactinemia among all atypical antipsychotics [64,65]. Association between
CYP2D6 and hyperprolactinemia was described in a observational study of 47 children
and adolescents with autism spectrum disorder in a long-term treatment with risperidone;
the number of patients with hyperprolactinemia was 100% (2/2) for PM, 47% (8/17) for
IM, 48% (12/25) for NM and 0% (0/2) for UM [66]. Sex influence in hyperprolactinemia
incidence has been studied, observing a higher incidence in female than in males, a study
of Schoretsanitis et al. [67] involving 111 patients (61 males and 49 females) evaluates
association between CYP2D6 activity, risperidone levels and sex finding a significant
association across them. Another cause of reduced patient compliance is weight gain
produced by risperidone, relation between genetic polymorphisms and this adverse drug
reaction is still under study. Some studies like the one performed by Lane et al. found
significant association between CYP2D6×10 allele (PM) and weight gain but data about
this relation up-to-date are limited [68].

Extrapyramidal Symptoms (EPS) are the most evaluated adverse effects with CYP2D6
in a large number of studies. Nevertheless, it is not clear the impact of CYP2D6 variations
on EPS from risperidone. Several studies showed no significant difference between these
two variables and only a few find some correlation. Adverse effects were also examined
in a study of 70 healthy volunteers, several genes and respective polymorphisms were
associated with adverse effects (CYP2C9, NAT2, DRD2, CYP2C19) but no relation was
found between CYP2D6 polymorphisms and EPS [69]. De Leon et al. [53] showed this
association in 73 patients with moderate to severe EPS and 81 patients that discontin-
ued risperidone due to EPS. CYP2D6 PM phenotype was associated with the first group
(OR = 3.4; CI = 1.5–8.0, p = 0.004) and with the second group. (OR = 6; CI = 1.4–25.4,
p = 0.02). Another recent study evaluated 22 patients and the Drug-induced Extrapyrami-
dal Symptoms Scale (DIEPSS) score; they observed that DIEPSS score was significantly
higher in the IM group (7) than in the EM group (15) [70]. A summary of LAI-risperidone
pharmacokinetic and pharmacogenetic characteristics is available in Table 2.

294



Pharmaceutics 2021, 13, 935

Table 2. Summary of PK/PG characteristics of LAI-Risperidone.

Drug
Main Active
Metabolite

Therapeutic
Reference

Range
Metabolism

TDM
Recommendation

(33)
Mean PK Values

Genetic Test
Recommendation

(94)

LAI-
Risperidone

microespheres

9-OH-
Risperidone 20–60 ng/mL CYP2D6/CYP3A4 2

Tmax: 28 days
Tss: 8 weeks

T1/2: 3–6 days
Informative

LAI-
Risperidone
ATRIGEL®

9-OH-
Risperidone 20–60 ng/mL CYP2D6/CYP3A4 2

Double Tmax:
4–6 h and

10–14 days
Tss: 8 weeks

T1/2: 8–9 days

Informative

Abbreviations: Tmax, time to maximum concentration after administration; Tss, time to reach steady state; t1/2, apparent half-life of
elimination. TDM Levels of recommendation: 1: Strongly recommended; 2: Recommended; 3: Useful; 4: Potentially useful (33). Genetic test;
informative: the label contains information stating that a particular gene affects or does not effect drug efficacy, not clinically significant.

3. Long-Acting Paliperidone

Paliperidone (9-OH-Risperidone) is the primary active metabolite of risperidone.
This long-acting drug is formulated as a palmitate ester of paliperidone in an aqueous
suspension of nanocrystals resulting in a sustained release profile [71,72]. This technology
confers an increased solubility, absorption and bioavailability [73]. Monthly formulation
(PP1M) was approved by the FDA in 2009 and trimestral formulation (PP3M) in 2015,
a semi-annual formulation is currently being developed [74]. For developing PP3M,
the manufacturer used a PP1M population-pharmacokinetic model and avoid phase II
study [75]. The main difference between PP1M and PP3M is that this last one has an
increased particle size what allows its longer sustained release [76].

3.1. Pharmacokinetics

Paliperidone palmitate is slowly dissolved at the injection site after the intramuscular,
deltoid or gluteal, administration and then rapidly hydrolyzed. Peak plasma concentration
is achieved 13 days after injection while steady-state conditions last nearly 8 months. The
apparent half-life ranges between 25 and 49 days. In contrast to risperidone, paliperidone
is not extensively metabolized in the liver and nearly half of the dose is excreted unchanged
in urine, so dose reduction is recommended in patients with mild renal impairment [71].
LAI Paliperidone treatment is not recommended in patients with moderate to severe
renal impairment.

A popPK model of LAI PP1M statistically identified BMI, creatinine clearance, injec-
tion site (deltoid vs. gluteal), injection volume and needle length as statistical covariates,
demonstrating that administration procedure and the site of injection play a key role on
PP1M pharmacokinetic profile [77]. The summary of product characteristics recommends
a first deltoid injection of 234 mg of paliperidone palmitate followed by a second deltoid
injection of 156 mg one week later [71]. Different studies evaluated therapeutical equiva-
lence of deltoid versus gluteal injection sites. While some authors stated that differences
between deltoid and gluteal injection are not clinically relevant [78], Yin et al. reported that
it can compromise maintenance treatment [79]. A case report observed that absorption rate
after gluteal injection decreased in obese patients due to subcutaneous fat [80]. According
to this, another study estimates that time to reach steady-state differs by 4 weeks between
deltoid (38w) and gluteal (42w) injection [81]. It seems that deltoid injection provides
better absorption so it should be chosen instead of the gluteal zone whenever is possible,
especially in obese patients.

On the other hand, PP3M is approved for use in patients previously treated with
PP1M formulation for at least 4 months with a dose 3.5 times higher than the previous
PP1M dosage. PP3M has a larger particle size compared to PP1M, which allows for longer
sustained release and administration every 3 months. Peak plasma concentrations are
achieved 30–33 days after administration while consecution of steady-state lasts nearly
15 months. Apparent half-life ranges from 84 to 95 days (deltoid administration) versus 118

295



Pharmaceutics 2021, 13, 935

to 139 days (gluteal administration). This difference in half-life of PP3M depending on site
of injection could be due to flip-flop kinetics that occur on these long-acting formulations.
According to Schoretsanitis et al., urgent real-world half-life studies are needed in steady-
state conditions to clarify dose-dependent half-lives on dose and influence of injection
site [40]. The most relevant parameters of the popPK models of PP1M and PP3M are
summarized in Table 3.

Table 3. Population pharmacokinetic models of paliperidone palmitate.

Author Formulation Model Covariates Parameters Values Equations

Samtani et al.
[77] LAI-PP1M

- One-compartment model
with first-order elimination
- Dual and sequential input
absorption: rapid zero order
followed by first-order
absorption after a lag time.
- Flip-flop kinetics due to
dissolution rate limited
absorption.

- SEX, AGE, IVOL
and INJS on Ka
- CLCR on CL
- BMI and SEX on
Vd

KA: 0.488 h−1

CL: 4.95 L/h
VD: 391 L

CL = 4.95 × ( CLCR
110.6

)0.376

V = SEX× 391× ( BMI
26.8

)0.889

SEX = 1 for males
SEX = 0.726 for females

Magnusson
et al. [82] LAI-PP3M

- One-compartment model
with first-order elimination
- Dual and sequential input
absorption processes: rapid
zero absorption followed by
first-order absorption.

- IVOL on Ka
- INJS and SEX on
Kamax
- CLCR on CL
- BMI on Vd

KA: not available.
CL/F: 3.84 L/h
VD/F: 1960 L

CL = 3.84 × ( CLCR
115

)0.316

V = 1960 × ( BMI
26.15

)1.18

Abbreviations: LAI: long-acting injectable. PP1M: once-monthly paliperidone palmitate. PP3M: once every 3 months paliperidone
palmitate. IVOL: injection volume. INJS: injection site. BMI: body mass index. NDLL: needle length. KA: first-order absorption rate
constant. Kamax: maximum absorption rate. CL: clearance. VD: apparent volume of distribution. CL/F: clearance relative to bioavailability
(in the absence of intravenous administration). VD/F: apparent volume of distribution relative to bioavailability (in the absence of
intravenous administration).

With regard to the reference range, AGNP consensus guidelines established the
paliperidone palmitate reference range between 20 and 60 ng/mL, but this range is again
an extrapolation from oral paliperidone studies and discordance exists. A study of non-
steady-state patients revealed that 45% of them were under the AGNP range [83]; on the
other hand, two different studies agreed with the AGNP therapeutic range [84,85].

3.2. Pharmacogenetics

Metabolism and elimination information provided by the manufacturer are based on
a study of five healthy male subjects given a 1 mg single dose of 14C-paliperidone oral
solution; 59% of the dose was excreted unchanged in urine. They identified four metabolic
pathways but none of them metabolized more than 6.5% of the dose. Three subjects were
classified as EM and two were classified as PM for CYP2D6 using the dextrometorphan
metabolic ratio. No differences in the overall plasma pharmacokinetics were observed
between EM and PM. A total of 80% of the administered radioactivity was recovered in
urine and 11% in the feces [86]. The small sample size (n = 5) of the study and the fact
of oral administration instead of injectable does not make it possible to draw definitive
conclusions with a sufficient level of evidence. Another study including 31 patients treated
with paliperidone (Oral: 9 LAI: 22) did not find a statistical difference in either for the C/D
ratios between different CYP2D6 phenotypes (4 PM, 3 IM, 22 EM, 2 UM) [87]. A summary
of LAI-paliperidone pharmacokinetic and pharmacogenetic characteristics is available in
Table 4.
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Table 4. Summary of PK/PG characteristics of LAI-Paliperidone.

Drug
Main Active
Metabolite

Therapeutic
Reference

Range
Metabolism

TDM
Recommendation

(33)
Mean PK Values

Genetic Test
Recommendation

(94)

LAI-
Paliperidone

PP1M
- 20–60 ng/mL

60% excreted
unmetabolized/

CYP2D6/CYP3A4
In vitro

2
Tmax: 13 days

Tss: 8–9 months
T1/2: 25–49 days

Informative

LAI-
Paliperidone

PP3M
- 2–60 ng/mL

60% excreted
unmetabolized/

CYP2D6/CYP3A4
In vitro

2

Tmax: 30–33 days
Tss: 15 months

T1/2: 84–95 days
(deltoid)

118–139 days
(gluteal)

Informative

Abbreviations: Tmax, time to maximum concentration after administration; Tss, time to reach steady state; t1/2, apparent half-life of
elimination. TDM Levels of recommendation: 1: Strongly recommended; 2: Recommended; 3: Useful; 4: Potentially useful (33). Genetic
test; informative: label contains information stating that a particular gene affects or does not affect drug efficacy, not clinically significant.

With these data it is expected that co-treatment with cytochrome inducers does
not play any role in metabolism of paliperidone; however, a study performed by Yasui-
Furukori et al. [88] in steady-state conditions observed that paliperidone concentrations
decrease nearly 48% when carbamazepine, a potent CYP3A4 inductor, was administered
concomitantly. Due to the lack of evidence regarding the influence of CYP2D6 polymor-
phisms in paliperidone plasma concentrations (Table 5), it is not expected that it could be
associated with a higher risk of adverse effects.

Table 5. Studies between CYP2D6 phenotype and the relation with paliperidone plasma exposure.

STUDY Oral/LAI n Race
Age

(Median)
Male/Female

CYP2D6
Phenotypes

Outcome

Vermeir et al.
[86] Oral 5 Caucasian 51 5/0 PM/NM * Irrelevant

Lisbeth et al.
[87] Oral/LAI 31 Caucasian 35 22/9 PM/IM/EM/UM Irrelevant

Berwaerts
et al. [89] Oral 60 Caucasian

(75%) NR 60/0 NM/UM
Irrelevant

(Coadministration
with paroxetine)

Irrelevant outcome (no significative association between CYP2D6 phenotype and paliperidone plasma exposure or incorrect assignment of
CYP2D6 genotype due to missing copy number variation analysis). Abbreviations: PM, Poor Metabolizer; IM, Intermediate Metabolizer;
NM, Normal Metabolizer; UM, Ultra Metabolizer; NR: Not reported. * Phenotyped using the dextromethorphan metabolic ratio.

4. Long-Acting Aripiprazole

Aripiprazole was the first antipsychotic to have partial agonist effects at D2 receptors.
This property, plus D3 and 5-HT1A partial agonism and 5-HT2A receptor antagonism
translates, into a reduction in negative, positive and cognitive symptoms of schizophrenia,
minimizing the risk of some adverse effects compared with other atypical antipsychotics.

4.1. Pharmacokinetics

The aripiprazole once monthly (AOM) long-acting injectable is the monohydrate
polymorphic form of aripiprazole [90]; currently, doses of 400 mg and 300 mg are approved
for induction (along with 14 days of oral supplementation) and maintenance therapy of
schizophrenia. Recently, an induction start of two injections of 400 mg has been approved,
avoiding the need for oral supplementation for 14 days [90]. Due to low solubility, AOM
absorption into the systemic circulation is slow and prolonged after intramuscular injection.
Peak plasma concentration is reached after 4 days in deltoid injection versus 5–7 days in
gluteal injection, in steady-state conditions. The mean apparent half-life is 29.9 days for
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300 mg and 46.5 days for 400 mg; steady-state concentrations are achieved by the fourth
injection for both sites of injection according to the manufacturer [90,91].

Systemic metabolism is carried out mainly by liver biotransformation, mediated by
CYP3A4 and CYP2D6, yielding to its main active metabolite dehydro-aripiprazole [92].
Dehydro-aripiprazole is also a ligand at the D2 receptor and has similar pharmacological
properties to the original compound [93]. At steady state, this metabolite represents
up to 40% of plasma drug concentration [94]. Therefore, both compounds are thought to
contribute to the antipsychotic effects. As well as risperidone and paliperidone, aripiprazole
and dehydro-aripiprazole are substrates of P-gp [95]. In this case, to our knowledge
no literature is available about binding affinity to P-gp of aripiprazole and dehydro-
aripiprazole.

Recently, the new lauroxil LAI aripiprazole formulation has been approved. After
intramuscular injection, aripiprazole lauroxil slowly dissolves and it is then hydrolyzed to
aripiprazole. Peak plasma concentrations are achieved 41 days post-dose, while the steady-
state is reached after 4 months. Supplementation with oral aripiprazole is needed 21 days
after first administration. A 1-day regimen composed of 30 mg oral aripiprazole plus an
intramuscular 675 mg nanocrystalline aripiprazole has also been approved. Aripiprazole
lauroxil can be after administrated every 4, 6 or 8 weeks depending on the dose.

Therapeutic reference range based on oral formulation studies were reported between
100 and 350 ng/mL for aripiprazole and 150 and 500 ng/mL for the active moiety (arip-
iprazole plus dehydro-aripiprazole) [34]. AOM 400 mg provided sustained mean plasma
concentrations comparable to those achieved by oral aripiprazole, 10–30 mg/day at steady-
state. These data were evaluated in a 24-week, open-label, phase I study conducted in
41 patients with schizophrenia, receiving oral supplementation with 10 mg of aripiprazole
for the first 14 days following the initial injection [91,96]. Pharmacokinetic data about AOM
are to date limited; no third-party studies with PK analysis are available.

A study performed by the manufacturer comparing deltoid and gluteal administration
verified that exposure was similar between the two injection sites but absorption rate and
Cmax were higher in the deltoid group; it seems that, as in other LAI antipsychotics, deltoid
administration is a better injection site [96].

Most relevant parameters of the popPK models of aripiprazole lauroxil are summa-
rized in Table 6, which simultaneously modeled aripriprazole and dehydro-aripriprazole
observations. Surprisingly, factors related with its administration (needle length or in-
jection volume) were not statistically significant covariates in LAI-aripiprazole lauroxil
pharmacokinetics, in contrast to PP1M and PP3M findings. CYP2D6 and total weight
significantly affected LAI-aripiprazole pharmacokinetics.

Table 6. Population pharmacokinetic model of LAI aripiprazole.

Author Formulation Model Covariates Parameters Values Equations

Hard et al.
[97]

Aripiprazole
lauroxil

- 2-compartment model
with sequential zero-order
absorption followed by a
first-order process
- Zero-order conversion of
aripiprazole lauroxil to
aripiprazole

- CYP2D6 PM on
CL
- Total weight on
Vd

KA: 0.574 h−1

CL/F: 0.767 L/H
(PM) vs. 2.02 L/h
(non-PM)
VD/F: 2122 L

CL equation not
reported

VD = 268 ×
(

WT
70

)

Abbreviations: KA: first-order absorption rate constant. CL/F: clearance relative to bioavailability (in the absence of intravenous
administration). VD/F: apparent volume of distribution relative to bioavailability (in the absence of intravenous administration).

4.2. Pharmacogenetics

The FDA recommends dose adjustment for aripiprazole in patients who are known
CYP2D6 PMs and AOM product monograph recommends an adjusted dose of 300 mg
for this group of patients [90]. According to these data, C/D ratios observed in 62-patient
study treated with oral aripiprazole indicated that PMs typically need 30–40% lower
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doses to achieve similar serum concentrations as NMs [98]. As aripiprazole and dehydro-
aripiprazole are regarded as equipotent [93], Suzuki et al. [99] in a study of 89 healthy
patients demonstrated that subjects with any or reduced functional alleles (×5 and ×10)
for CYP2D6 had higher C/D ratios of the active moiety of the two compounds than those
without the alleles. In a recent retrospective cohort study including pharmacokinetic data
of 890 patients it was found that aripiprazole active moiety exposure increased 1.6 times
and 1.4 times for PMs and IMs, respectively [48]. All these data and those of other studies
are available in Table 7, showing the necessary dose adjustment in PMs.

Table 7. Studies between CYP2D6 phenotype and the relation with aripiprazole plasma exposure.

Study Oral/LAI n Race
Age

(Median)
Male/Female

CYP2D6
Phenotypes

Outcome

Suzuki et al.
[99] Oral 89 Asian 38 46/43 IM/NM/UM

Relevant
(higher plasma exposure

for IM and PM)

Suzuki et al.
[100] Oral 63 Asian NR 36/33 PM/IM Relevant

(For ×10 allele)

Hendset et al.
[54] Oral 266 Caucasian 33 NR IM/NM Irrelevant

Hendset et al.
[98] Oral 62 Caucasian 31 29/33 PM/NM

Relevant
(higher plasma exposure

for PM)

Belmonte
et al.* [101] Oral 148 Caucasian 26 85/63 PM/IM/NM/UM

Relevant
(higher plasma exposure

for PM and IM)

Tveito et al.
[102] Oral/LAI 635

(469/166) Caucasian 40 294/341 PM/IM/NM/UM
Relevant

(higher plasma exposure
for PM and IM)

Jukic et al.
[48] Oral 890 Caucasian 37 400/490 PM/IM/NM/UM

Relevant
(higher plasma exposure

for PM and IM)

Lisbeth et al.
[87] Oral/Lai 18 (17/1) Caucasian 36 11/7 PM/IM/NM/UM

Relevant
(higher plasma exposure

for PM)

van der
Weide et al.

[103]
Oral 130 Caucasian NR NR PM/IM/NM/UM Irrelevant

Azuma
et al.** [104] Oral 27 Asian NR NR IM/NM

Relevant
(Coadministration with

CYP2D6 inhibitors)

Kubo et al.**
[105] Oral 20 Asian 24 20/0 IM/NM Irrelevant

Classified in relevant (significative association between CYP2D6 phenotype and active moiety exposure) or irrelevant (no significative
association between CYP2D6 phenotype and active moiety exposure or incorrect assignment of CYP2D6 genotype due to missing copy
number variation analysis). Abbreviations: PM, Poor Metabolizer; IM, Intermediate Metabolizer; NM, Normal Metabolizer; UM, Ultra
Metabolizer; NR: Not reported. * Those studies which do not analyze the number of copies of the gene have been classified as irrelevant.
Among those classified as relevant, it is important to highlight that it should be taken as a guideline, taking into account that the main
limitation is the high heterogeneity that exists between the different methods of analysis used, as well as the polymorphisms explored in
the determination of the phenotype of CYP2D6. ** Single-dose study.

Current FDA recommendation only takes into account dose adjustment in CYP2D6
PMs, but available studies show that dose reduction should also be carried out in CYP2D6
IMs. In this sense, Tveito et al. [102] established that IM phenotype increases aripiprazole
plasma concentration by 50% and active moiety concentration by 40%, both compared to
NM. Further pharmacogenetic studies must be carried out in order to confirm this effect
on plasma exposure, which could entail updating the product information regarding this
group of patients. Among all the studies, only a few of them were performed with AOM, in
which substantial influence of CYP2D6 phenotype on serum concentrations was observed
too, as in oral formulations [102].
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Aripiprazole is generally well tolerated due to its good safety profile concerning
extrapyramidal reactions which are less common than in the other atypical antipsychotics,
except for akathisia [106,107]. Hendset et al. [98] observed that CYP2D6-defective alleles
patients were associated with more potent adverse effects. In addition, a case–control
study with eight patients suggested that IM and PM CYP2D6 status are more frequently
associated with extrapyramidal reactions [108]. Another study found that PM and IM were
associated with higher incidence of nausea/vomiting due to higher plasma concentrations
of aripiprazole in these subjects [101]. A summary of LAI-aripiprazole pharmacokinetic
and pharmacogenetic characteristics is available in Table 8.

Table 8. Summary of PK/PG characteristics of LAI-Aripiprazole.

Drug
Main Active
Metabolite

Therapeutic
Reference

Range
Metabolism

TDM
Recommendation

(33)
Mean PK Values

Genetic test
Recommendation

(94)

LAI-
Aripiprazole
Monohydrate

Dehydro-
aripiprazole

100–350 ng/Ml
Active moiety:

150–500 ng/mL
CYP2D6/CYP3A4 2

Tmax: 4–7 days
Tss: 4 months

T1/2
400 mg: 46.5 days
300 mg: 29.9 days

Actionable

LAI-
Aripiprazole

Lauroxil

Dehydro-
aripiprazole

100–350 ng/mL
Active moiety:

150–500 ng/mL
CYP2D6/CYP3A4 2

Tmax: 41 days
Tss: 4 months

T1/2: 53.9–57.2 days
Actionable

Abbreviations: Tmax, time to maximum concentration after administration; Tss, time to reach steady state; t1/2, apparent half-life of
elimination. TDM Levels of recommendation: 1: Strongly recommended; 2: Recommended; 3: Useful; 4: Potentially useful (33). Genetic test;
Informative: this label contains information stating that a particular gene affects or does not affect drug efficacy, not clinically significant;
Actionable: this label may contain information about changes in efficacy due to gene variants.

Only a few of the summarized studies are developed using LAI formulations of an-
tipsychotics; there is an urgent need for independent and real-world LAI antipsychotics
TDM studies to clarify pharmacokinetic data such as the half-life and therapeutic refer-
ence range.

5. Pharmacokinetics/Pharmacogenetics Implementation

Pharmacogenetics can also contribute to understand antipsychotics behavior in the
organism, and this information can be totally complemented with pharmacokinetics data
of LAI. The use of pharmacogenetics on treatment optimization is exemplified in different
case reports [109–111]. Moreover, nowadays there are multiple initiatives that are already
translating pharmacogenetics into clinical care around the world. To cite several examples,
there is the Electronic Medical Records and Genomics (eMERGE-PGx) and St. Jude Chil-
dren’s Research Hospital that are using pharmacogenetic analysis to guide treatment in
patients; both initiatives are from the United States [112,113]. In Europe, the Ubiquitous
Pharmacogenomics project (U-PGx) can be found, with seven countries taking part, one
of them Spain [114]. In our country, there are already hospitals incorporating pharmaco-
genetics into health services [115]. There is also a Pharmacogenomic Society, the Spanish
Society of Pharmacogenetics and Pharmacogenomics (SEFF), which is actively working
on promoting pharmacogenetics knowledge and developing guidelines for healthcare
professionals [116].

Viability of pharmacogenetics testing in psychiatry has been observed. Five years ago,
two different studies were performed where physicians were asked about pharmacogenet-
ics in psychiatry practice. Around 95% of the physicians believe that this can help them
and their patients in decision-making [117] and 80–85% think that pharmacogenetics will
become a standard practice in the future [117,118], which is currently a reality as afore-
mentioned [119]. Curiously, in 2012 Mas et al. [120] studied CYP2D6 polymorphisms in
151 patients treated with risperidone and realized that PMs received the lowest doses and
UM the higher doses, without physicians knowing patients’ metabolic status. However, a
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preventive pharmacogenetics test would resolve the casuistry with better cost-effectiveness
for the health care system and the patient versus traditional prescribing methods [121].

As we have mentioned, schizophrenia implies a great economic cost for health care
systems, families and society. A study performed in patients with psychiatric conditions
taking drugs not recommended based on genetic information showed that they have 69%
more total health care visits, 67% more medical visits and three times more medical absence
days compared to patients taking drugs recommended based on their genotypes [122].
Another study associated CYP2D6 PMs and UMs to longer hospital stay duration compared
to EMs [123]. In 2013, Herbild et al. [124] demonstrated cost-effectiveness of preemptive
CYP2D6 or CYP2C19 genotyping in patients with schizophrenia. TDM and preemptive
genotyping of patients could reduce the time spent seeking the right antipsychotic drug
and dose, minimizing hospital stay and visits, preventing adverse drug reactions and
reducing associated costs. To all of these expenses must be added the expensive treatment
with LAI, so studies focused on therapies with this group of drugs are needed to assess the
cost–benefit ratio of preemptive CYP2D6 genotyping.

6. Unsolved Questions and Future Directions

According to the LAI risperidone product monograph, 9-OH-R has similar phar-
macological activity to risperidone [32]; however, oral paliperidone has been approved
with twice the daily dose of risperidone. Accordingly, de Leon et al. [60,125] suggest that
risperidone is twice as potent as paliperidone. In this sense, brain imaging studies showed
that lower doses of risperidone cause a similar percentage of binding to higher doses of
paliperidone [126,127]. This could be explained by the high affinity of paliperidone to P-gp,
minimizing blood–brain barrier (BBB) penetration.

The correlations between plasma and brain concentration for risperidone and 9-OH-R
have been studied by Aravagiri et al. [128] in rats documenting differences in the distribu-
tion of both compounds in the brain, showing plasma/brain ratios of 6.7 for risperidone
and 32.9 for 9-OH-R. These differences could be explained by two different factors: first,
affinity of risperidone and 9-OH-R for P-glycoprotein (P-gp) in BBB. Wang et al. [129] con-
ducted a study in abcb1a/b knockout mouse model dysfunctional in P-gp. Data showed
that the ratio of plasma to brain of 9-OH-R was 2.4-fold higher than that for risperidone.
This could mean that 9-OH-R presents a higher affinity for P-gp than risperidone and it
could explain the greater toxicity of risperidone than 9-0H-R [60]; second, hydroxylation of
risperidone to 9-OH-R makes it more hydrophilic, decreasing the ability to cross the BBB.

A preliminary assessment has demonstrated the prediction performance of D2/3
receptor occupancy a priori to optimize the dosing regimen based on risperidone blood
concentrations. Accordingly, a 65–80% D2/3 receptor occupancy is associated with maxi-
mal effectiveness, minimal risk of adverse events and reduced risk of relapse in patients
receiving supra-therapeutic doses [130]. Similar D2/3 receptor occupancy was also re-
ported by Shin et al. after aripiprazole administration, demonstrating the improvement of
the cognitive function in a small sample size of patients with schizophrenia [131]. Therefore,
predictive popPK models are encouraged to better characterize the PK properties of LAI
antipsychotics and identify the sources of inter-individual variability in order to establish a
PK/PD framework able to assess D2/3 receptor occupancy. The mathematical framework
would allow the evaluation of dosing strategies in special sub-groups of patients, which
will help to achieve an optimal efficacy/safety balance.

7. Conclusions

Atypical LAI have resulted in a great increase in safety compared with the previously
available typical LAI. However, limited evidence has restricted the proper characterization
of their pharmacokinetic properties, specifically regarding LAI of risperidone, paliperi-
done and aripiprazole. The role of CYP2D6 has been demonstrated on the PK of LAI
aripriprazole, although it remains uncertain for LAI risperidone and LAI paliperidone. In
spite of that fact, the developed popPK models showed common aspects regarding the
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influence of body weight, administration site and needle characteristics on the pharma-
cokinetic behavior of these drugs. However, the reduced number of patients enrolled, the
prolonged drug half-life and the limited number of clinical studies available may limit the
identification of covariates and pharmacogenetic effects that would help to explain the
large inter-individual differences concerning drug exposure. Pharmacogenetic analysis
should be considered with caution because the CYP2D6 polymorphisms analyzed in each
study are different. Assuming that all the polymorphisms that were not analyzed are
wild-type allele; consequently, exceedance of NM would be obtained. The CYP2D6 gene is
a complex gene, which presents duplications, deletions and even non-functional hybrids
and, therefore, requires a more exhaustive approach to be able to determine the relationship
between kinetics and genetics. Additional evaluations, including continuous PK endpoints,
are encouraged to provide a more comprehensive characterization of the PK/PD properties
of LAI in order to guide the individual dose selection.
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