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Optical technology is one of the key technologies that have been widely used for
communication, computing and sensing. By utilizing different degrees of freedom for
photons, optical signals can be detected and processed in different dimensions, including
amplitude, phase, polarization, time, frequency, and spatial mode. Multidimensional signal
processing technologies have thus been broadly studied to improve the performance of
communication, sensing and even computing systems. Recently, innovative optical signal
processing methods and devices have emerged to serve those needs driven by applications
including but not limited to optical fiber transmission, supercontinuum generation, phase
conjugation, free space optical communication, optical beamforming, photonic integration,
fiber amplification, pose estimation and so on.

This Special Issue aims to explore those emerging and enabling technologies of signal
processing methods and devices for optical communication, optical computing, and op-
tical sensing. This Special Issue consists of two review papers, one communication, and
seven articles.

As for optical signal processing in fiber communications, Y. Zhu et al. presented a
proof-of-concept study of stimulated Brillouin scattering (SBS)-induced nonlinear distortion
for 10 Gbaud and 28 Gbaud SSB 16QAM transmission over 80 km standard single mode
fiber (SSMF) based on a Kramers–Kronig receiver with a significantly reduced bit error
rate [1]. M. Tan et al. compared the transmission performances of 600 Gbit/s PM-64QAM
WDM signals over 75.6 km of single-mode fiber (SMF) using EDFA, discrete Raman,
hybrid Raman/EDFA, and first-order or second-order (dual-order) distributed Raman
amplifiers [2]. They also reviewed and studied the designs of distributed Raman amplifiers
with respect to nonlinear compensation and bandwidth extension in a mid-link optical
phase conjugation system [3,4].

As for optical signal processing for sensing applications, J. Yang et al. designed a
silica-cladded Germania-doped ring-core fiber (RCF) that supports orbital angular momen-
tum (OAM) modes. By optimizing the fiber structure parameters, a beyond-two-octave
supercontinuum spectrum of the OAM1,1 mode can be generated [5]. Regarding 3D human
pose estimation, T. Xu et al. reviewed and summarized the recent development on the
point cloud-based pose estimation of the human body [6]. The challenges involved and
problems to be solved in future studies have also been discussed.

For free space and space division multiplexing applications, C. Álvarez-Roa et al.
investigated the application of free space optical (FSO) communications, energy harvest-
ing, and unmanned aerial vehicles (UAVs) as key technology enablers of a cost-efficient
backhaul/fronthaul framework for 5G and beyond (5G+) networks [7]. Y. Duan et al.
presented a low-complexity robust adaptive beamforming (RAB) method based on an
interference-noise covariance matrix (INCM) reconstruction and SOI SV estimation [8].
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L. M. Torres et al. studied the linear multiple-input multiple-output (MIMO) receiver
designed to optimize the minimum mean square error (MMSE) for a coherent SDM optical
communication system, without previous assumptions on receiver oversampling or analog
front-end realizations [9].

For the photonic integrated optical signal processing applications, Z. Wang et al.
demonstrated a machine learning-based method for agile dispersion engineering of inte-
grated photonic waveguide using a horizontal double-slot structure [10]. Agile dispersion
shapes, including broadband low dispersion, constant dispersion and slope-maintained
linear dispersion, can be obtained efficiently with high precision.

The Special Issue of optical signal processing only covers few aspects of the powerful
and attractive capabilities of optics. Enabling methods, materials, devices, chips and
systems for optical signal processing are emerging every day. Optical signal processing
powered next-generation communication, computing and sensing can be highly expected.

Conflicts of Interest: The authors declare no conflict of interest.
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Nonlinear Distortion by Stimulated Brillouin Scattering in
Kramers-Kronig Receiver Based Optical Transmission

Yuzhu Zhu 1,2, Jiangbing Du 2,*, Weihong Shen 2 and Zuyuan He 2
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2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong

University, Shanghai 200240, China
* Correspondence: dujiangbing@sjtu.edu.cn

Abstract: Nonlinear distortion for single-sideband (SSB) signals will significantly reduce the per-
formance of Kramers–Kronig (KK) receiver-based optical transmission. In this work, we present
a proof-of-concept study of stimulated Brillouin scattering (SBS)-induced nonlinear distortion for
10 Gbaud and 28 Gbaud SSB QAM16 transmission over 80 km standard single mode fiber (SSMF)
based on a KK receiver. Significantly reduced bit error rate (BER) has been experimentally observed
due to the SBS and the threshold of SBS at about 7 dBm is detected for such an 80 km SSMF link. With
left sideband (LSB) modulation of SSB, together with optical filtering, reduced SBS nonlinear distor-
tion has been achieved with ~2 dB power tolerance improvement. The results reveal an important
issue of SBS-induced nonlinear distortion, which would be of great significance for KK receiver-based
optical transmission applications.

Keywords: nonlinear distortion; Kramers–Kronig receiver; stimulated Brillouin scattering

1. Introduction

In recent years, the rapid development of information industries, such as autonomous
driving, 5G, and so on, has led to an urgent demand for data transmission, especially for
optical interconnection. Intensity modulation/direct detection (IM/DD) is widely used
for optical interconnection at conventional 1310 nm and 15,500 nm wavebands, and has
recently been extended to the 2 micron waveband [1,2]. Advanced modulations have been
proposed for versatile IM/DD systems [3–5], in which nonlinear distortion becomes a
very fatal issue due to the much tighter signal-to-noise ratio (SNR) budget, as well as the
higher peak-to-average-power-ratio (PAPR). Normally, DD system can only be applied to
IM signal for the detection of amplitude information rather than phase information [6]. In
2016, Mecozzi et al. proposed a Kramers–Kronig (KK) self-coherent receiver [7]. On the basis
of satisfying the minimum phase condition of signal [8], the phase of the optical field can be
restored by its intensity through a KK relationship by using a single photodetector (PD) [9–12].
This scheme has attracted widespread attention since it was proposed. Many studies have
been carried out which prove the excellent performance of the KK receiver [13–15].

However, the KK receiver requires that the signal should meet the minimum phase
condition, leading to a single sideband modulation (SSB) with a considerably high carrier-
to-signal power ratio (CSPR), which could be over 10 dB. Serious nonlinear distortion can
be expected for such a SSB signal due to the high CSPR, high PAPR, and tight SNR budget.
The high CSPR is needed to maintain a small bit error rate (BER) [16–18]. However, on
the other hand, nonlinear distortion by stimulated Brillouin scattering (SBS) will be easily
excited for km-level distance optical fiber transmission. Particularly, with a guard band
between the carrier and signal, the carrier itself can be considered as a standalone narrow
linewidth continuous wave, which makes the SBS threshold even smaller, leading to worse
SBS nonlinear distortion. Therefore, the investigation of SBS based nonlinear distortion to
KK receiver-based optical fiber transmission is urgently needed.

Sensors 2022, 22, 7287. https://doi.org/10.3390/s22197287 https://www.mdpi.com/journal/sensors3
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In this work, we carried out a proof-of-concept study with solid experiments to unfold
the nonlinear distortion limitation by SBS for KK signals, which is a unique phenomenon
for KK receiver due to the high CSPR property of SSB signal. A significant reduction in the
transmission performance due to SBS is observed for 10 Gbaud and 28 Gbaud SSB QAM16
signal transmissions over 80 km SSMF based on a KK receiver. The method of sideband
filtering is proposed to reduce nonlinear distortion by SBS. Those results are of increasing
value to researchers in this field, along with the increased use of a KK receiver in optical
communication applications, which offer a higher data rate and long transmission distance.

2. Nonlinear Distortion Due to SBS for SSB Signals

Figure 1 shows the schematic mechanism of SBS induced nonlinear distortion for SSB
signals. The generation of a SSB signal can be realized by standard in-phase and quadrature
(IQ) modulation, optical filtering, or carrier-signal offset combination, which is adopted in
this work. As depicted by Figure 1a,c, left single-sideband (LSB) and right single-sideband
(RSB) SSB signals can be flexibly obtained. The SSB signal can be realized with or without
guard band between the carrier and the signal. Improved optical detection can be obtained
for SSB with guard band, as shown by Figure 1e,g.

Figure 1. SBS induced nonlinear distortion for SSB signals. (a) RSB without guard band; (b) RSB
without guard band after SBS distortion; (c) LSB without guard band; (d) LSB without guard band
after SBS distortion; (e) RSB with guard band; (f) RSB with guard band after SBS distortion; (g) LSB
with guard band; (h) LSB with guard band after SBS distortion.

As an important nonlinear distortion, SBS can be easily induced due to its comparably
low threshold. In conventional applications, the signals are modulated with a high data
rate without significant carrier power left and, thus, lead to neglected SBS. However, for
the KK receiver, the SSB signal is needed with a high carrier power in order to maintain a
small detection error. Typical CSPR exceeds 10 dB, which makes the SBS issue no longer
neglectable, as shown in Figure 1b,d. In particular, as for SSB signals with guard band, the
carrier is in fact a standalone laser with narrow linewidth. The SBS threshold would be even
lower, and significant nonlinear distortion due to SBS can be expected, as schematically
shown in Figure 1f,h.
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3. Experimental Setup

The experimental setup for the KK receiver-based optical transmission is built for the
investigation of the SBS induced nonlinear distortion for SSB signals, as shown in Figure 2.

 
Figure 2. Experiment setup and DSP. Here, ECL: external cavity laser; PC: polarization controller;
IQM: in-phase and quadrature modulator; AWG: arbitrary waveform generator; VOA: variable
optical attenuator; EDFA: erbium-doped fiber amplifier; OBPF: optical bandpass filter; DSO: digital
storage oscilloscope.

At the transmitter, a pseudo-random bit stream (217−1) is generated by a 54 GSa/s
arbitrary waveform modulator (AWG), which is mapped into a QAM16 signal after en-
coding. The baud rate Rs is set to 10 Gbaud and 28 Gbaud, respectively. Then, the signal
is pulse-shaped with a root-raised cosine (RRC), and the roll-off coefficient α = 0.01. The
signal spectrum bandwidth is Bs = (1 + α)Rs. A continuous wave light from an external
cavity laser (ECL1) at 1550 nm is fed into the IQ modulator. Additionally, the other ECL
(ECL2, with a linewidth of 15 KHz) generates a continuous wave (CW) as an optical carrier,
whose power can be adjusted to obtain a different output total power and CSPR. The optical
SSB QAM16 signal is then launched into the 80 km standard single mode-fiber (SSMF)
at 1550 nm.

At the receiver, the transmitted optical field is first detected by the PD with a 3 dB
bandwidth of ~22 GHz, and the electrical signal is captured by an 80 GSa/s digital storage
oscilloscope (DSO, Keysight DSOZ592A). As shown by the inset of Figure 2, an optical
bandpass filter (OBPF) before PD can be used for the filtering of the SBS influence, so as to
reduce the nonlinear distortion.

Since the nonlinear square root operation and logarithmic operation of the KK algo-
rithm will broaden the frequency spectrum of the signal, the signal is up-sampled before
the KK algorithm processing, and the sampling rate is generally set to 4 [7]. Then, the KK
receiver algorithm is used to recover the amplitude and phase of the signal, and the detail
is shown in Figure 3. Due to the frequency interval between the carrier and the signal, the
signal is an intermediate frequency signal at this time, and it needs to be down-converted
to demodulate the baseband signal. To mitigate the inter-symbol interference caused by
the limited bandwidth, a feedforward equalizer (FFE) is applied. However, the FFE boosts
the in-band noise, which reduces the in-band signal-to-noise ratio (SNR). Therefore, a
maximum likelihood sequence decision (MLSD) equalizer consisting of a post-filter and a
conversional MLSD is employed. The post-filter is a two-tap finite impulse response filter.
In addition, post-dispersion compensation is used in DSP for the 80 km SSMF transmission.
After recovering the optical field with a KK receiver, the time domain information of the
signal is transformed to the frequency domain by the fast Fourier transform (FFT) technique,
and then the phase shift due to dispersion is converted back. Finally, the signal is converted
to the time domain by the inverse fast Fourier transform (IFFT) technique.

5
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Figure 3. Signal processing of the KK receiver scheme.

4. Results and Discussions

At a launch power of 11 dBm, corresponding to a CSPR of 13 dB, SBS can be easily
observed. Figure 4 shows the optical spectra of the 10 Gbaud and 28 Gbaud QAM16 SSB
signals after the 80 km SSMF transmission. From Figure 4a,d, one can clearly find the Stokes
component induced by SBS at 1550.24 nm and 1550.27 nm for 10 Gbaud and 28 Gbaud
QAM16, respectively, which exactly corresponds to an SBS frequency shift of 10.8 GHz
with respect to the carrier wavelength. The anti-Stokes component will lead to attenuation
at the shorter wavelength side with the same frequency shift. At 10 Gbaud, the anti-Stokes
component is outside of the signal. The anti-Stokes component is completely buried in the
LSB signal at 28 Gbaud. Therefore, it is unable to be observed from the spectra.

 
Figure 4. Optical spectra of the 10 Gbaud and 28 Gbaud QAM16 signals. (a) 10 Gbaud LSB signal
before OBPF; (b) 10 Gbaud LSB signal after OBPF; (c) 10 Gbaud RSB signal after OBPF; (d) 28 Gbaud
LSB signal before OBPF; (e) 28 Gbaud LSB signal after OBPF; (f) 28 Gbaud RSB signal after OBPF.

Using a flattop OBPF with high roll-off, one can mitigate the SBS induced nonlinear
distortion by removing the Stokes component from the signal, as shown in Figure 4b,e for
LSB signals. As for the RSB signal at a lower speed, such as 10 Gbaud in Figure 4c, the
Stokes component would be too close to the signal and, thus, cannot be filtered out. As for
the RSB signal at higher speeds, such as 28 Gbaud in Figure 4f, the Stokes component is
also completely buried in the signal and, thus, cannot be filtered out either. Therefore, it
can be expected that LSB suffers less SBS nonlinear distortion compared with RSB after the
OBPF filtering.

Figure 5 shows the BER of the 10 Gbaud signal for back-to-back (B2B) and after 80 km
SSMF transmission. One can observe from Figure 5a that the BER performances are at the
same level and vary within a very small range along with the increase in the launch power
for B2B. This is reasonable, since there is not yet any nonlinear distortion, and the CSPR is
already large enough for the KK receiver to obtain an optimal BER. However, in Figure 5b,
after 80 km SSMF transmission, significantly increased BER can be observed when the
launch power exceeds ~7 dBm, which is mainly due to the existence of SBS. This is due
to several reasons. The first is that the increased launch power is purely from the carrier
from ECL2, with signal power remaining unchanged for the branch of ECL1 in Figure 2.
Thus, CSPR increases accordingly, which should lead to reduced BER without nonlinear
distortion. Secondly, signal power remains unchanged, which means that the nonlinear

6



Sensors 2022, 22, 7287

distortion due to Kerr effect by the signal is also maintained. Thirdly, the increase in BER is
mainly induced by the increased carrier power, which can only be explained by the SBS
induced nonlinear distortion.

7%HD-FEC 7%HD-FEC

Figure 5. BER versus launch power. (a) 10 Gbaud for B2B; (b) after 80 km SSMF transmission.

As previously discussed, the nonlinear distortion caused by SBS can be mitigated with
the use of OBPF. The conclusion can also be proved by the BER results in Figure 5b, which
presents reduced BER for the signals after OBPF. Particularly, one can also observe reduced
BER for LSB with respect to RSB, which is in good accordance with the principle. There
is a ~2 dB power tolerance improvement for LSB with OBPF filtering with respect to the
error-free BER of 3.8 × 103.

The nonlinear distortion can also be observed from the constellations, as depicted in
Figure 6, at different launch powers of 5 dBm, 11 dBm, and 14 dBm. For both RSB and
LSB, significantly increased noise rather than constellation shape distortion can be found
in Figure 6b,c,e,f. This is also a proof of SBS rather than Kerr for the nonlinear distortion.
Meanwhile, one can also observe slightly improved constellation noise performance for
LSB at 14 dBm compared with that of RSB, which is in good agreement with previous
predictions as well as the BER results.

   

(a) RSB, LP = 5 dBm (b) RSB, LP = 11 dBm (c) RSB, LP = 14 dBm 

   

(d) LSB, LP = 5 dBm (e) LSB, LP = 11 dBm (f) LSB, LP = 14 dBm 

Figure 6. Constellation of 10 Gbaud QAM16 after 80 km SSMF transmission. (a) RSB, LP = 5 dBm;
(b) RSB, LP = 11 dBm; (c) RSB, LP = 14 dBm; (d) LSB, LP = 5 dBm; (e) LSB, LP = 11 dBm; (f) LSB,
LP = 14 dBm.
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Similar performance can be observed for SSB signals at the 28 Gbaud data rate. The
BER curves are shown in Figure 7. As for the B2B case in Figure 7a, BERs are maintained
at almost the same level, since the CSPR is large enough with the absence of nonlinear
distortion. The increased BER can be found in Figure 7b when the launch power exceeds
7 dBm, which is the same as that of the 10 Gbaud signals. This is also reasonable, since
the threshold of the SBS should be the same for different data rates, which is one more
proof of the SBS nonlinear distortion. The mitigation of the SBS nonlinear distortion can
also be achieved by using the OBPF filtering with reduced BER for both LSB and RSB.
However, there is no significant difference between LSB and RSB. We believe that this is
due to the bandwidth limitation of the signal channel for 28 Gbaud, which to a certain
extent erases their performance difference. This can also be observed from the performance
of the constellations, as shown in Figure 8, in which the noise difference between LSB and
RSB at 14 dBm is much smaller for 28 Gbaud than that for 10 Gbaud.

7%HD-FEC 7%HD-FEC

Figure 7. BER versus launch power. (a) 28 Gbaud for B2B; (b) after 80 km SSMF transmission.

   
(a) RSB, LP = 5 dBm (b) RSB, LP = 11 dBm (c) RSB, LP = 14 dBm 

   
(d) LSB, LP = 5 dBm (e) LSB, LP = 11 dBm (f) LSB, LP = 14 dBm 

Figure 8. Constellation of 28 Gbaud QAM16 at 80 km SSMF transmission. (a) RSB, LP = 5 dBm;
(b) RSB, LP = 11 dBm; (c) RSB, LP = 14 dBm; (d) LSB, LP = 5 dBm; (e) LSB, LP = 11 dBm; (f) LSB,
LP = 14 dBm.
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On the whole, SBS has different impacts on signals with varying data rates, and some
of the impacts of the nonlinear distortion by SBS as CSPR increased can be alleviated by
utilizing OBPF to filter out the component of SBS. The SBS has a greater overall impact on
the higher data rate transmission systems than it does on the lower data rate systems when
OBPF can be applied to filter out peak of SBS. For the higher rate transmission system,
the impact of SBS on the RSB signal is greater than that on the LSB signal under the same
experimental conditions.

5. Conclusions

In this work, the SBS induced nonlinear distortion for 10 Gbaud and 28 Gbaud SSB
QAM16 transmission over an 80 km SSMF based on a KK receiver is experimentally
observed and investigated for the first time. Significantly reduced BER can be induced
along with the increase in CSPR due to SBS, which makes SBS an unneglectable issue
for KK receiver-based systems. An SBS threshold of about 7 dBm is detected for such an
80 km SSMF link. Different nonlinear distortion performances are found for LSB and RSB
signals, and LSB performs better than RSB. Here, a ~2 dB power tolerance improvement is
achieved by LSB with optical filtering to remove the SBS. The proof-of-concept results in
this work unfold an important issue of SBS-induced nonlinear distortion, which would be
of great significance for KK receiver-based optical transmission applications.
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Abstract: In this paper, we design a silica-cladded Germania-doped ring-core fiber (RCF) that
supports orbital angular momentum (OAM) modes. By optimizing the fiber structure parame-
ters, the RCF possesses a near-zero flat dispersion with a total variation of <±30 ps/nm/km over
1770 nm bandwidth from 1040 to 2810 nm for the OAM1,1 mode. A beyond-two-octave supercon-
tinuum spectrum of the OAM1,1 mode is generated numerically by launching a 40 fs 120 kW pulse
train centered at 1400 nm into a 12 cm long designed 50 mol% Ge-doped fiber, which covers 2130 nm
bandwidth from 630 nm to 2760 nm at −40 dB of power level. This design can serve as an efficient
way to extend the spectral coverage of beams carrying OAM modes for various applications.

Keywords: orbital angular momentum; nonlinear optics; supercontinuum

1. Introduction

Orbital angular momentum (OAM) has gained widespread attention due to its twisted
helical phase front and doughnut-shaped intensity distribution. OAM beams have the-
oretically infinite topological states and unique phase singularity. Therefore, OAM has
been applied to a variety of cutting-edge technologies, such as optical communication
systems [1–6], super-resolution microscopy [7,8], optical sensing [9–11], laser material
processing [12,13] and imaging [14–17]. Especially in the field of communication, OAM
beams with different topological numbers can form an orthogonally modal set, which
can be effectively multiplexed and demultiplexed. Therefore, we can transmit multiple
independent beams simultaneously in the same space and frequency band. The spectral
efficiency and data capacity of the communication systems can thus be improved by us-
ing OAM mode division multiplexing (MDM), since coaxial beams with different OAM
states can be efficiently separated. Meanwhile, many methods for the generation of OAM
beams have been proposed and experimentally demonstrated by using different types
of converters [18,19]. It is of great significance to effectively maintain the OAM beams
propagating in the optical fiber. Unfortunately, the OAM beams cannot propagate stably
in a conventional fiber, in which the quasi-degenerate modes can be easily coupled to
each other. Ring-core fiber (RCF) could potentially solve the problem, as the OAM beams
have a similarly ring-shaped intensity profile [20]. OAM beams can be generated from
Gaussian beams, but a single OAM beam still has a narrow wavelength range, which
limits its application in many fields. Therefore, supercontinuum (SC) generation of OAM
beams spanning thousands of nanometers wavelength range is of great significance for
applications that require broadband OAM beams.

Sensors 2022, 22, 6699. https://doi.org/10.3390/s22176699 https://www.mdpi.com/journal/sensors11
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SC has important applications in many fields, such as optical communication [21],
optical frequency comb [22,23] and optical coherence tomography [24,25], which has made
it an active research field for decades. One of the most important applications of SC in
optical communications is to serve as a multi-wavelength source for ultra-broadband
WDM systems [26]. In addition, SC is widely used for all-optical analog-to-digital conver-
sion [27] and TDM-to-WDM-to-TDM conversion [28]. Launching ultrashort pulse with
an optical vortex state has been demonstrated to generate SC maintaining optical vortex
properties [29]. Moreover, one pioneer research has indicated that an octave-spanning
SC of OAM beams could be generated through specially designed optical fibers [30]. In
particular, the spectral range of the SC is the key factor to be considered. Recently, SC
carrying OAM in fiber has been reported to effectively expand the spectral coverage of
the OAM beams [31–34]. However, most of the core materials used were As2S3, which is
a toxic and harmful substance. In addition, it is not trivial to process and manufacture
optical fibers composed of this material [35]. Thus, we choose to use Germania as the core
material, which has been widely used in optical fiber manufacturing.

For decades, Germania-doped silica has been one of the most common materials for
optical fiber communication due to its excellent physical properties and compatibility
with silica glass. Germania-doped silica features lots of excellent properties, such as high
mechanical strength, long-term structural stability, low sensitivity to ionizing radiation,
low chemical activity, close thermal expansion, etc. These characteristics make it possible to
fabricate optical fibers with good geometrical quality and long operation life. In addition,
the fabrication of Germania-doped silica fibers has also been demonstrated to be feasible
in previous experimental studies [36,37]. Furthermore, this material possesses both low
intrinsic absorption and Rayleigh scattering in the near-infrared (IR) spectral range, which
leads to very low loss over a wide spectral range.

In this work, we design a 50 mol% Ge-doped ring-core silica fiber supporting OAM
modes. We tune its structural parameters to 1 μm inner SiO2 radius and 1.8 μm Ge-doped
ring width, making the ring-core fiber possessing flat and low dispersion with a small
variation of <±30 ps/nm/km from 1040 to 2810 nm. A 70 fs 120 kW secant hyperbolic
pulse train with the central wavelength of 1400 nm is chosen to be the input source, which
is finally broadened into an over-two-octave SC spectrum carrying the OAM1,1 mode with
the wavelength from 630 nm to 2760 nm at −40 dB of power level by propagating through
a 12 cm long designed 50 mol% Ge-doped ring-core silica fiber. COMSOL Multiphysics
software is used to simulate the OAM mode properties, and MATLAB-based generalized
pulse-propagation equation is used to simulate the process of SC generation.

2. Concept and Fiber Structure

The schematic diagram of SC generation for the OAM mode is illustrated in Figure 1a.
When an intense ultrashort pulse is launched into the optical fiber, the spectrum is widened
because of the interaction between the dispersion of the transmission medium and various
nonlinear effects. The cross-section of the fiber with a low-index inner SiO2 substrate, a
high-index Ge-doped ring and a SiO2 cladding is shown in Figure 1b.

The material index difference between the silica cladding and Germania-doped annu-
lar region is large enough, leading to a large effective refractive index separation between
the adjacent modes, which guarantees the modal separation and reduces the corresponding
modal crosstalk. Furthermore, this design substantially reduces the modal coupling. There-
fore, the choice of fiber materials and the design of fiber structure can perfectly support
the propagation of OAM modes. Moreover, the Germania-doped materials have higher
nonlinear coefficients than silica over a wide transparent window close to the near-infrared,
potentially enabling efficient SC generation in a broad spectral range for the OAM mode.
Additionally, we set the cladding diameter to 125 μm, which is identical to the standard
single-mode fiber (SMF). Here, our investigation focuses on the SC generation of HE2,1,
corresponding to the l = 1 OAM mode, which is composed of HEeven

2,1 + i × HEodd
2,1 .
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Figure 1. (a) Schematic diagram of SC generation; (b) Cross-section of the Ge-doped silica fiber.

With respect to fabrication, the selection of material and the design of the RCF structure
are realistic, and RCFs composed of SiO2 and Ge-doped SiO2 have been manufactured in
practice [38], which has shown good performance on the transmission of OAM modes,
especially for the OAM1,1 mode.

3. Fiber Properties and Dispersion Optimization

In optical waveguides, SC generation is closely related to dispersion conditions. A
flat and low dispersion is preferable to achieve SC generation over a wide bandwidth. We
calculate the dispersion D by Equation (1), which is in the unit of ps/nm/km [39].

D = −λ

c
d2ne f f

dλ2 , (1)

where c is the velocity of light in free space, and neff is the effective refractive index of the
OAM mode propagating in the designed RCF. To optimize the designed Ge-doped RCF
with flat and low dispersion, we investigate the structure parameters, including the doping
concentration of Germania, ring width (Δr) and SiO2 ring radius (r1).

The doping concentration of Ge is first optimized, and the dispersion curve of OAM1,1
mode is shown in Figure 2. One can see that the dispersion curve moves up with the
increase in doping concentration under conditions of the same fiber geometric structure,
while the smaller doping concentration leads to a faster-changing dispersion. All the
dispersion curves for fibers with different doping concentrations have similar trends, which
increase first and then decrease over the wavelength.

It is worth noting that higher doping concentration enables the RCF to support the
OAM1,1 mode over a wider wavelength range. As higher doping concentration makes
the refractive index difference between the ring core and the cladding higher, the OAM
mode will have a larger cut-off wavelength with a higher doping concentration, which
will directly affect the upper wavelength limit of the SC generation. Finally, the Ge-doped
concentration is set to 50 mol%, which can potentially reach the target of generating SC
with more than two-octave spectral broadening.

Figure 3a illustrates the effect of different ring widths (Δr) on the HE2,1 mode disper-
sion curve. Under the conditions of the same inner silica radius, we can clearly see that the
dispersion curve rises as the ring width increases, and the smaller ring width leads to a
faster-changing dispersion. Furthermore, we optimize the inner SiO2 radius (r1), which has
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less effect on the dispersion, as shown in Figure 3b. The upward trend of the dispersion
curve becomes more obvious as r1 increases.

Figure 2. Dispersion-wavelength curves at different Ge-doping concentrations.

 

Figure 3. Dispersion-wavelength curves for different (a) ring width (Δr) and (b) fiber inner SiO2

radius (r1).

The fiber is relatively dispersive in the short wavelength range due to large material
index change. The solid black line in the figure represents the dispersion from 500 nm
to 3000 nm of the HE2,1 mode in the designed RCF with optimized structure parameters
(r1 =1 μm, Δr =1.8 μm). It can be clearly seen that the optimized RCF structure has a flat
and near-zero dispersion profile over a wide wavelength range in the near-infrared region
with a total dispersion variation of <±30 ps/nm/km over a 1770 nm bandwidth from
1040 nm to 2810 nm.

Figure 4 depicts the intensity and phase distributions of the OAM1,1 mode under
different wavelengths supported in the designed RCF. The upper and the lower color bars
represent the normalized mode field intensity and the phase change of the OAM1,1 mode,
respectively. These results are calculated through full-vector finite-element method (FEM).
One can notice in Figure 4 that the intensity distributions of the OAM1,1 mode maintain
annular shape constantly, which is well confined within the Ge-doped ring of the fiber, and
the effective mode field area increases with wavelength. Meanwhile, the OAMl,1 mode
shows a 2lπ phase change azimuthally. The azimuthal phase variation of OAM1,1 is 2π,
corresponding to a topological charge number of 1.
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Figure 4. Normalized intensity and phase distributions at different wavelengths of OAM1,1 mode
supported in the designed RCF.

In the SC generation process, loss is one of the most significant factors. The fiber
loss shown in Figure 5a is determined by calculating the imaginary part of the effective
refractive index for the OAM1,1 mode [40] according to the material loss of silica and Ge-
doped silica [41,42]. As the OAM1,1 mode cannot be supported normally in the designed
RCF for a wavelength larger than 3400 nm, the fiber loss is set to infinity for wavelengths
beyond 3400 nm. Nonlinearity is another important parameter that affects the efficiency
of the nonlinear process. The nonlinear coefficient (γ) and effective mode area (Aeff) of
the OAM1,1 mode are displayed in Figure 5b. The nonlinear coefficient decreases as the
effective mode area increases with the wavelength, as illustrated in Figure 4.

Figure 5. (a) Loss, (b) nonlinear coefficient and effective mode field area (Aeff) of the RCF with the
optimized design.

4. Supercontinuum Generation

SC generation is simulated numerically using the generalized pulse-propagation
equation, which takes into account the contributions of both the linear effects (dispersion
and loss) and the nonlinear effects (Kerr nonlinearity effect, self-steepening effect, etc.) [39].

∂A
∂z

+
1
2

(
α(ω0) + iα1

∂

∂t

)
A − i

∞

∑
n=1

inβn

n!
∂n A
∂tn = iγ

(
1 +

i
ω0

∂

∂t

)⎛⎝A(z, t)
∞∫

0

R(τ)|A(z, t − τ)|2∂τ

⎞⎠ (2)

where A is the electric field envelope, α is the loss coefficient, ω0 is the input pulse frequency,
βn is the group velocity dispersion (GVD), and n is up to 10 in our simulation, τ is the
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present time frame, R(t) is the nonlinear response function. The functional form of R(t)
can be expressed as [39]

R(t) = (1 − fR)δ(t) + fR

(
τ−2

1 + τ−2
2

)
τ1 exp(−t/τ2) sin(t/τ1) (3)

where fR represents the fractional contribution of the delayed Raman response. The
Raman response function coefficients used in Equation (2) are fR = 0.18, τ1 = 12.2 fs,
τ2 = 83 fs, respectively [43]. The nonlinear refractive index n2 for 50 mol% Ge-doped silica is
3.81 × 10−20 m2/W [44], and a full-vector model is used to obtain the Kerr nonlinear
coefficient in the simulation [45,46].

The generated supercontinua in the designed fiber with 1 μm inner SiO2 radius and
1.8 μm ring width are shown in Figure 6. We further analyze several key influence factors,
including the pump center wavelength, pump peak power and pulse width. The material
refractive indices of silica and 50 mol% Ge-doped silica are obtained using the Sellmeier
equations in our model [47,48].

 

Figure 6. Influence of the initial pulse parameters on SC generation of OAM1,1 after a 12 cm designed
Ge-doped RCF for different (a) λ0 (P0 = 120 kW, TFWHM = 70 fs); (b) P0 (λ0 = 1400 nm, TFWHM = 70 fs);
(c) TFWHM (λ0 = 1400 nm, P0 = 120 kW).
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The influence of the input center wavelength (λ0) is illustrated in Figure 6a. The
designed 12 cm RCF is pumped by 70 fs 120 kW secant hyperbolic pulses at 1300 nm,
1400 nm and 1500 nm, respectively. One can note that the spectrum obtained by a pump
centered at 1400 nm is wider than that at 1300 nm. It reaches more than two-octave
spectral broadening, and it is flatter than that at 1500 nm. Furthermore, the output
spectrum broadens more widely in the long wavelength range when the pump central
wavelength gradually increases. Its spectral power gradually decreases below 1150 nm,
which is due to the large normal dispersion for the wavelength shorter than the zero-
dispersion wavelength around 1150 nm. This region has a greater requirement for the
pump power, and as the pump center wavelength gradually moves away, the power spec-
tral density generated in this region also decreases. Further research found that when the
peak power of the input pulse continues to increase, the problem of insufficient pumping at
1150 nm could be solved. In simulations, we found that the spectrum can be easily extended
to the short wavelength range as the nonlinear coefficient increases while wavelength de-
creases. Therefore, pumping at a larger wavelength can further extend the SC into the
larger wavelength region. However, the overall quality of the generated SC becomes worse
as the pump wavelength moves away from the local minimum of chromatic dispersion.

Then, a 1400 nm 70 fs secant hyperbolic pulse with different input peak power (P0)
is launched into a 12 cm RCF. The simulation results are shown in Figure 6b. The fiber
is pumped by input pulses with different peak powers of 90 kW, 120 kW and 150 kW,
respectively. It can clearly be seen that higher peak power will lead to larger SC broadening,
while when it reaches a certain range, higher input peak power will induce spectral
fluctuation and degrade the SC flatness. An input pulse with a peak power of 120 kW is
chosen to achieve a balance between spectral broadness and its flatness. Moreover, we
find that symmetrical broadening occurs at lower pump peak power resulting from SPM;
nevertheless, the spectrum tends to broaden more toward the longer wavelength region at
higher pump peak power as four-wave mixing (FWM) rises in the long wavelength region.

Finally, the impact of the full-width at half maximum (TFWHM) of the input pulse is
illustrated in Figure 6c. Short pulses of 120 kW with the central wavelength of 1400 nm
possessing different pulse widths of 40 fs, 70 fs, 100 fs, respectively, are chosen as the input
source launched into the designed RCF. When the peak power is a determined value, the
nonlinear effect of the input pulse with a larger pump pulse width is more evident, as it
contains more energy and a narrower frequency spectrum, which is the primary reason for
the spectral roughness. Thus, we can obviously see that there is more fluctuation in the
output SC for an input pulse with a larger pulse width. Furthermore, the output spectrum
of the 40 fs input pump pulse is narrower than the others, and the power at 1150 nm is
already below −40 dB. This is because the input pulse with shorter duration has a lower
total input power and a wider frequency spectrum, which is equivalent to a smaller power
spectral density, and thus, it does not provide enough power in the long wavelength region
and at around 1150 nm. According to the additional simulation results, the pump power
can be boosted to further extend the output SC span for the 40 fs input pulse case.

We finally chose 120 kW 70 fs pulse at 1400 nm as the pump source, as the correspond-
ing femtosecond laser pump sources are already available [49]. Figure 7 illustrates the
process of SC broadening using the 120 kW 70 fs input pulse with central wavelength of
1400 nm after the propagation of 0, 0.5, 1, 3, 6 and 12 cm fiber lengths, respectively. On
account of the strong nonlinearity and low dispersion of the designed RCF, the generation
of the broadband SC can be achieved in only a few centimeters propagation length. The
nonlinear length (LNL) and the dispersion length (LD) provide the length scales over which
nonlinear or dispersive effects become important for pulse evolution. These two factors
can be expressed as [39]

LNL =
1

γP0
, LD =

T0
2

|β2| (4)

where γ is the nonlinear coefficient, P0 and T0 are the peak power and initial width of input
pulse, respectively, β2 is the second-order GVD. The LNL and LD for the designed RCF are

17



Sensors 2022, 22, 6699

0.78 mm and 53 mm, respectively, which means nonlinearity and dispersion act together as
the pulse propagates along the 12 cm long RCF. Obviously, the nonlinear effect is stronger
than the dispersion effect and plays a leading role in the process of spectrum broadening.

Figure 7. Broadening of the output spectra obtained at different lengths of the designed Ge-doped
silica RCF.

Figure 8a displays the temporal evolutions of the corresponding SC under different
propagation distances, while Figure 8b illustrates the spectral evolutions. After propagating
through a 12 cm designed RCF, the SC is extended to approximately 2600 nm wavelength
range spanning over two octaves. In the first place, the output pulse is symmetrically
broadened around the input pulse wavelength because of the SPM. In the anomalous
dispersion region, the high-order soliton effect widens the SC spectrum in the frequency
domain and compresses it in the time domain. Then, it splits into fundamental-order
solitons, which evolve into several impulse components in the time domain. The broad-
ened spectrum generates dispersive waves in the normal dispersion region. Then, in the
normal dispersion region, optical wave breaking (OWB) leads to the generation of new
spectrum components [50], and finally, a SC is obtained. The walk-off effect gradually
becomes apparent after propagating 1 cm, as illustrated in Figure 8b, which results from the
accumulated dispersion. After 8 cm propagation length, the spectrum broadening tends to
be stable and smoother, as shown in Figure 8a.

Figure 8. (a) Spectral and (b) temporal evolutions of the pump pulses with OAM1,1 mode propagat-
ing along the 12 cm optimized RCF.
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5. Conclusions and Perspective

In summary, we design a 50 mol% Ge-doped ring-core silica fiber supporting OAM
modes with optimized parameters of 1 μm inner SiO2 radius and 1.8 μm Ge-doped ring
width, making the ring-core fiber possessing flat and low dispersion with a small variation
of <±30 ps/nm/km from 1040 to 2810 nm. It is used for OAM SC generation with a 70 fs
120 kW secant hyperbolic pump pulse centered at 1400 nm. The simulation results show
that an over-two-octave SC carrying the OAM1,1 mode in the near-infrared region can
be generated after 12 cm long RCF, expanding from 630 nm to 2760 nm. This designed
RCF can well support the propagation of OAM modes and generate the corresponding SC,
which could be utilized for various optical applications. Moreover, it is also prospective
that SC carrying higher-order OAM modes can be potentially achieved with the RCF.
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Abstract: In this paper, we investigate various designs of distributed Raman amplifier (DRA) to
extend amplification bandwidth in mid-link optical phase conjugation (OPC) systems and compare
bands 191–197 THz and 192–198 THz giving a total bandwidth of 6 THz using a single wavelength
pump. We demonstrate the use of highly reflective fiber Bragg grating (FBG) to minimize gain
variation across a WDM grid by optimizing forward and backward pump powers as well as the
wavelength of FBGs for original and conjugated channels. Finally, we also simulate OSNR and
Kerr nonlinear reduction as a product of signals asymmetry and nonlinear phase shift (NPS) for
all channels.

Keywords: Raman amplification; optical fiber communications; optical phase conjugation

1. Introduction

Optical phase conjugator (OPC) in a long-haul transmission system can effectively
compensate for both linear (e.g., chromatic dispersion) and nonlinear (e.g., the fiber Kerr
nonlinearity) impairments, and therefore can improve the data capacity or transmission
distance [1–27]. The efficiency of how much the fiber nonlinearity can be compensated
assisted by mid-link OPC was limited by several factors, such as the slope of the chromatic
dispersion map of the transmission fiber and the signal power profile along the fiber [1–6].
The symmetry of chromatic dispersion slope can be tailored by optimizing the dispersion
map using a combination of transmission fiber and dispersion compensating fiber [9]. This
can be used together with erbium-doped fiber amplifiers (EDFA) which is the most widely
used amplification technique; however, it requires special transmission fiber and dispersion
compensating fiber to maintain the dispersion map symmetry. Another way to maximize
fiber nonlinearity compensation efficiency with OPC is to use distributed Raman ampli-
fication to make the signal power profile symmetrical. Distributed Raman amplification
generates optical gain using Raman pump lasers over the standard transmission fiber,
providing distributed amplification along the whole fiber rather than a discrete or lumped
amplification within a few meters of doped fiber as in EDFA. DRA can be highly flexible
to specifically tailor the signal power profiles to be highly symmetrical before and after
the OPC [3–6]. The pump wavelength can be adjusted with fiber Bragg gratings (FBG)
with selected center wavelength [28–40]. The use of distributed Raman amplification can
improve the maximum transmission distance or data capacity without the mid-link OPC
(or the first half of the link before the OPC) and therefore if the symmetry of the link can
be maintained at a very high level for all channels, the overall transmission performances
or data capacity can be significantly improved using mid-link OPC due to the efficient
compensation of fiber nonlinearity [4–6].

We show, for the first time, that the transmission bandwidth can be extended using
FBGs at two different wavelengths for transmitted and conjugated channels in mid-link op-
tical phase conjugation. The novel design approach allows for the highest OPC bandwidth
using Raman amplification and gives the lowest asymmetry for a single channel up to date
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for designs of distributed Raman amplification schemes which are aimed to improve the
symmetry of the link for the transmission systems.

2. Distributed Raman Amplification

In telecommunication systems, there are several Raman configurations that can be
used. In a single span unrepeatered submarine transmission, second order bi-directional
pumping with two FBGs in the front and the end of the span provides great signal power
distribution along the fiber compared to first order amplification, which ultimately in-
creases transmission reach [37–40]. Depending on the application, the same approach
might not work in long-haul transmission. Forward pumping can help with signal power
distribution creating a quasi-lossless transmission medium [32]; however, the benefits of
low noise and signal power variation become meaningless in coherent data transmission
due to forward relative intensity noise (RIN) [32–36]. In [36] we compared six different
Raman configurations, including first order, second order and dual order and have shown,
experimentally, that bi-directionally distributed Raman amplification with a single FBG
at the end of the transmission span, forming a half-open cavity with random distributed
feedback (DFB) lasing [28], significantly decreases accumulation of amplified spontaneous
emission (ASE) noise built up across the transmission span and keeps signal power vari-
ation low [28–40], extending data transmission by almost 900 km to a record distance of
7915 km. In this particular scheme the forward Raman laser pump at 1366 nm amplifies the
backward propagating random DFB lasing at the frequency specified by the wavelength of
the FBG. This approach allows for a RIN transfer reduction [32–36] from the noisy forward
Raman pump to the Stokes-shifted light, becoming an efficient solution for a long-haul
coherent data transmission format [33–36].

The schematic design of the random DFB Raman laser amplifier is shown in Figure 1.
Two Raman fiber laser pumps downshifted in wavelength to 1366 nm (approximately two
Stokes shifts from the signal) were located at each end of the standard single mode fiber
(SMF). The span length was 60 km. A half-open cavity random DFB laser was formed at
the wavelength of the FBG at the end of the fiber that amplifies original and conjugated
WDM channels in the OPC system. We assume that fiber used for the FBGs is the same
as transmission fiber, which is standard SMF fiber. By optimizing the wavelength of the
FBG, rather than deploying a seed at different wavelength, the spectral gain profile of the
amplified WDM signals can be modified and enhanced. This is visualized by an example
shown in Figure 2 where we compare the Raman gain shift resulting from FBGs at different
wavelength. To avoid polarization gain dependance in WDM transmission, Raman pump
lasers at both ends and lasing at the wavelength of the FBG were fully depolarized.

Figure 1. Raman fiber laser-based amplifier with a half-open cavity random lasing.

Figure 2. The Raman gain shift using FBGs centered at 1448 nm (red) and 1458 nm (black). The right
figure is zoomed on the 16 WDM signals wavelength range.
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3. Simulation

The spectral components of the OPC system described in Section 2 was simulated
using an experimentally confirmed model [32–40] that takes into account residual Raman
gain from the primary pump at 1366 nm to the signal in the C-band as well as pump
depletion from both pumps to the lower order pumps and the signal components, double
Rayleigh scattering (DRS) and amplified spontaneous emission (ASE) noise for each of
the signals. Noise was calculated in a room temperature of 24 ◦C and 0.1 nm bandwidth.
Wavelength dependent Raman gain coefficient and attenuation factor were independently
chosen for each WDM component as well as primary pump and lasing at the frequency of
the FBG using tables for the SMF. Rayleigh backscattering coefficients for Raman pump,
lasing and signal were 1.0 × 10−4, 6.5 × 10−5 and 4.5 × 10−5 km−1, respectively. In [28] we
showed that higher reflectivity (99%) provides lower nonlinear phase shift compared with
70% and 50% as well as better power efficiency performance without sacrificing output
OSNR. To find the best gain profile, the center wavelength of high reflectivity (99%) FBGs
was varied from 1456 to 1464 nm for WDM section of transmitted channels and from 1442
to 1454 nm for the conjugated copy with a 2 nm step. The loss and bandwidth of the FBG
in the simulations was set to 0.2 dB and 200 GHz, respectively.

Figure 3 illustrates the WDM grid of the mid-link OPC system. Total bandwidth of 6 THz
consists of 30 transmitted WDM channels with 100 GHz spacing ranging from 192–194.9 THz
and 30 WDM conjugated copies of the original signal in the range 195.1–198 THz (we also
present results for 191–197 THz grid). We assumed 200 GHz as the guardband in the middle
of the grid centered at 195 THz for the optical phase conjugator. The signal power profile of
each WDM component of the original and conjugated signal was simulated independently.

Figure 3. WDM grid of the transmitted (left) and the conjugated (right) WDM channels in a mid-link
OPC system. “*” denotes conjugated channels.

Forward pump power of the Raman fibre laser at 1366 nm was simulated from
0.7 to 1.6 W with 100 mW step. Backward pump power was simulated to give 0 dB net
gain for the channel under investigation, then the rest of the WDM channels were simu-
lated with the same forward and backward pump powers: one set of results consists of
30 possible combinations (optimisation towards first channel CH1, second channel CH2
and so on). Conjugated signals were simulated with the same pocedure. To summarise, we
simulated every possible combination varying forward pump power (0.7–1.6 W) for each
installed FBG (1442–1454 nm for original and 1456–1464 nm for conjugated WDM grid) and
finally compared asymmetry between both WDM channel sets to achieve the best overall
asymmetry performance in an OPC system with second order Raman amplification.

The asymmetry was calculated using formula:∫ L
0 |P1(z)− P2(L − z)|dz∫ L
0 [P1(z) + P2(z)]/2dz

× 100 (1)

where L is the span length and P1 and P2 represent signal power evolution of the transmitted
and conjugated channels, respectively.
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4. Results and Discussion

4.1. 191–197 THz WDM Grid

For a given WDM grid bandwidth, the key factors that need to be optimized for the
best performance overall in a mid-link OPC system are the wavelength of the FBG and the
forward and backward pump powers. Both optimizations must be done separately for the
original and conjugated WDM grid. Our initial investigation was done for a WDM grid
191–197 THz. Firstly, we had to select the right set of FBGs that will have a performance
impact for residual channels located at the beginning and the end of the band.

In Figure 4 we show the impact of the FBG wavelength on asymmetry performance
in WDM grid under investigation. Here, the central wavelength of the FBG for original
channels was set to 1462 nm (the best configuration) and the one of the FBG for conjugated
channels was varied from 1442–1450 nm. The asymmetry of residual side channels can
be improved by 12% (CH1: 21% with 1450 nm and 33% with 1442 nm). However, this
advantage is lost for CH6 and CH7 where the asymmetry performance is reversed, hence
we need average overall performance. In this case the matching FBGs pair was 1462 nm
for original and 1446 nm for conjugated WDM grid (we also simulated FBG for original
WDM grid from 1456–1464 nm, however, for clarity we only show the best performing
configuration with 1462 nm). Next, we optimized forward and backward pump powers for
original and conjugated WDM grid.

Figure 4. Impact of a FBG choice on asymmetry performance in 191–197 THz grid. Wavelength of a
FBG for original WDM grid was set to 1462 nm and FBG for the conjugated copy was varied from
1442–1450 nm.

In Figure 5 we show the impact of pump power on asymmetry performance for
original and conjugated WDM grid. Forward pump power for both configurations was
varied from 1–1.6 W. Backward pump power from 2.6–2.9 W for original (191–193.9 THz)
and 1.6–1.9 W for conjugated (194.1–197 THz) WDM grid. The difference in backward
pump power for each WDM grid results from wavelength dependent Raman gain and
fiber attenuation.

By analyzing all possible combinations of FBG, forward and backward pump powers
for original and conjugated WDM grid, we found the profile that gave the best average
asymmetry of 6.4%; however, this figure is biased by first residual channels that are on the
edge of Raman gain profile.
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Figure 5. Impact of pump power choice (original WDM grid) on asymmetry performance. Forward
pump power of the conjugated grid fixed to be 1.3 W. FBG for original and conjugated WDM grid
was set to 1462 and 1446 nm, respectively.

In Figure 6 we show the best profile with the following settings: FBG 1462 nm with
forward pump power 1 W for the original, and FBG 1446 nm with 1.3 W forward pump
power for the conjugated WDM grid.

Figure 6. WDM grid with the best average asymmetry of 6.4%. Forward pump power was set to be
1 W and 1.3 W and FBG to 1462 nm and 1446 nm for original and conjugated WDM grid, respectively.

4.2. 192–198 THz WDM Grid

Based on the results shown in Section 4.1, we decided to repeat the simulations with
a grid shifted by 1 THz to avoid the worst performing channels in the beginning of the
spectrum. The new grid was set to 192–198 THz. Based on the knowledge from the previous
configuration we only tested the FBG sets 1458–1460 nm and 1450–1454 nm for original
and conjugated WDM grid, respectively.

In Figures 7 and 8, we show the impact of a FBG choice on asymmetry performance in
192–198 THz grid. The optimum configuration giving the lowest average asymmetry was
with FBG set to 1460 nm and 1450 nm for the original (Figure 9) and conjugated (Figure 10)
WDM grid, respectively. The right choice of a FBG helps to optimize the gain profile of the
WDM band, which will particularly have an impact for an on–off gain of residual front and
end channels. This will directly affect asymmetry performance.
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Figure 7. Impact of a FBG choice on asymmetry performance in 192–198 THz grid. FBG for original
WDM grid was set to 1458 nm and conjugated varied from 1450–1454 nm.

Figure 8. Impact of a FBG choice on asymmetry performance in 192–198 THz grid. FBG for original
WDM grid was set to 1460 nm and conjugated varied from 1450–1454 nm.

Figure 9. Impact of pump power choice (original WDM grid) on asymmetry performance. Forward
pump power of the conjugated grid was fixed to be 1.3 W. FBG for original and conjugated WDM
grid was set to 1460 and 1450 nm, respectively.
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Figure 10. Impact of pump power choice (conjugated WDM grid) on asymmetry performance.
Forward pump power of the original grid was fixed to be 1.1 W. FBG for original and conjugated
WDM grid was set to 1460 and 1450 nm, respectively.

After choosing the right FBG set for our WDM band we optimized forward and
backward pump powers. This time we extended the range and simulated 0.7–1.4 W
forward pump power. Backward pump power was stable for all possible configurations
and oscillated within the 50 mW range around 2.3 W for the original and 1.8 W for the
conjugated WDM grid.

By shifting our band by 1 THz we managed to improve average asymmetry by 0.5%
achieving 5.9% with only three channels (CH1, CH2 and CH30) with figures above 10%.
In this regime (asymmetry below 10%) we exceeded 35 nm bandwidth of the C band
(1530–1565 nm) from ~4.3 THz to 5.4 THz (27 WDM channels with asymmetry below 10%,
giving total 54 channels). As seen in Figure 11, the majority of channels (CH7–CH24) were
below 5%, which is a very impressive result covering 3.4 THz.

Figure 11. WDM grid with the best average asymmetry of 5.9%. Forward pump power was
set to be 1.1 W and 1.3 W and FBG to 1460 nm and 1450 nm for original and conjugated WDM
grid, respectively.

In a single channel regime CH21 achieved asymmetry 2.1%, which is the lowest
asymmetry in a 60 km span up to date (see Figure 12). This value most likely would be
even lower if a single channel only would be simulated with the same configuration due to
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the Raman pump depletion. Signal power variation in the original and conjugated channels
is very low, below 2 dB, comparing to 12 dB when using EDFA.

Figure 12. Signal power profile of original (blue) and conjugated (red) channel with lowest asymmetry
of 2.1% in a 60 km standard SMF span.

In Figure 13 we show OSNR and NPS results for an optimized 6 THz WDM grid
(192–198 THz) for both original (CH1–CH30) and conjugated (CH31–CH60) channels in a
60 km span. We can notice small OSNR variation within 1 dB range between the best and
the worst performing channels for both simulated grids, thanks to the combined gain from
the first order pump at 1366 nm and lasing at the wavelength of the FBG. NPS variation
was also very low across all but the first two channels; however, at these values of NPS it
is insignificant.

Figure 13. OSNR (blue) and NPS (red) simulations for original (CH1–CH30) and conjugated
(CH31–CH60) channels.

5. Conclusions

We present, for the first time, the use of half-open cavity random DFB Raman laser
amplification with combinations of different FBGs to extend the bandwidth of the mid-link
OPC system beyond the standard C band. We performed gain profile optimization in a
60 km standard SMF span utilizing a 6 THz bandwidth with total of 60 WDM channels.
With a fine optimization of FBGs and pump powers, we achieved for the first time a record
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5.9% average asymmetry in a 192–198 THz band using single wavelength 1366 nm Raman
laser pump only in an OPC system. We also achieved 2.1% asymmetry performance for a
single channel, which is the lowest asymmetry achieved to date in a 60 km standard SMF
span length. The results show the potential for further improvement by utilizing 6 THz
band using DWDM with a 25 GHz or even 12.5 GHz spacing that would increase the total
transmission capacity of an OPC system by an order of magnitude.
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Abstract: In this paper we investigate the application of free space optical (FSO) communications,
energy harvesting, and unmanned aerial vehicles (UAVs) as key technology enablers of a cost-efficient
backhaul/fronthaul framework for 5G and beyond (5G+) networks. This novel approach is motivated
by several facts. First, the UAVs, acting as relay nodes, represent an easy-to-deploy and adaptive
network that can provide line-of-sight between the base stations and the gateways connected to the
core network. Second, FSO communications offer high data rates between the UAVs and the network
nodes, while avoiding any potential interference with the 5G radio access networks. Third, energy
harvesting in the optical domain has the potential to extend the UAVs’ battery life. Nevertheless, the
presence of atmospheric turbulence, atmospheric attenuation, and pointing errors in the FSO links
severely degrades their performance. For this reason an accurate yet tractable modelling framework
is required to fully understand whether an UAV-FSO backhaul/fronthaul network with energy
harvesting can be applied. To this end, we consider a composite channel attenuation model that
includes the effect of turbulence fading, pointing errors, and atmospheric attenuation. Using this
model, we derive analytical closed-form expressions of the average harvested energy as a function
of the FSO link parameters. These expressions can be used to improve energy harvesting efficiency
in FSO link design. We have applied our proposed expressions to evaluate the energy harvested
in vertical FSO links for a variety of real scenarios under a modified on-off keying (OOK) scheme
optimized for energy harvesting. From the simulations carried out in this paper, we demonstrate
that significant values of harvested energy can be obtained. Such performance enhancement can
complement the existing deployment charging stations.

Keywords: BER; vertical link; pointing errors; FSO; OOK; energy harvesting; atmospheric turbulence

1. Introduction

1.1. Overview of FSO Communications

The combination of the high bandwidth of optical communications with the flexibility
of wireless technologies offered by free-space optical (FSO) communications has led to a
fresh wave of innovation and research activities in this field [1]. Aside from the higher
bandwidth, FSO communications offer several advantages over classical RF based wireless
communications. First of all, the extremely high carrier frequencies inherent to the optical
links make FSO detectors immune to multipath fading which severely degrades the perfor-
mance of RF links [2,3]. Furthermore, FSO technology has the potential to reduce cost and
consumed energy. The spectrum above 300 GHz is unlicensed, so operators do not have
to pay for exclusive access in optical bands. Moreover, the components used in FSO links
are cheaper, smaller, lighter and have lower power consumption as compared to that of
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RF components [4]. More importantly, FSO technology does not interfere with RF systems,
which paves the way to mixed RF/FSO approaches where the optical links complement
the existing RF infrastructure [5,6]. Due to all these benefits, FSO communications have
found their place in diverse applications such as space communications [7–9], underwater
communications [10–13], indoor local area networks [14], data center networks [15], and
mobile backhaul [6,16,17].

However, wireless optical links are affected by many impairments that may com-
promise their performance, so an accurate channel modeling is needed to anticipate the
potential benefits of FSO-based approaches. These impairments are mainly categorized
into four different effects: namely, pointing errors (i.e., misalignment losses), atmospheric
losses, atmospheric turbulence (also called scintillation), and noise [1].

Thus, pointing errors are related to the misalignment of the transmit beam with respect
to the field of view of the receiver. For fixed links of a few hundred meters, increasing the
beam divergence can alleviate the misalignment loss at the expense of a higher geometric
loss. Nevertheless, longer link distances or links with moving nodes require appropriate
pointing, acquisition, and tracking procedures to mitigate the adverse effect caused by
pointing errors [18].

Next, atmospheric loss is due to the presence of particles that either absorb or scatter
the transmitted light (in that latter case, only the fraction of light scattered out of the
location of the receiver is considered). In particular, the particles that affect FSO communi-
cation systems include those ones associated with rain, snow, fog, pollution, and smoke,
among others.

On the other hand, the atmospheric turbulence or scintillation, is explained by inhomo-
geneities in the pressure and the temperature of the atmosphere that induce variations of
the air refractive index along the transmission path [19]. These fluctuations cause random
variations in the amplitude and phase of the received signal, i.e., fading, that lead to a con-
siderable degradation in long-distance links. Several statistical models have been proposed
in the literature to fully characterize the turbulence fading. The log-normal [20] distri-
bution has been accepted as an accurate model for weak turbulence conditions whereas
negative exponential [21] and Rayleigh [22] distributions have been used to model strong
turbulence. For this reason, there have been remarkable research efforts to establish a
common statistical model to characterize any turbulence condition. In this context the
Gamma-Gamma distribution represents an appealing model that allows tractable analysis
of the link performance while modelling turbulence conditions ranging from weak to strong
turbulence [21].

Finally, the last adverse effect in FSO links is produced by noise. Background noise
is the dominant one in most optical links. This noise is present due to the fact that the
receiver collects some undesirable radiations such as reflected or scattered sunlight from
hydrometeors or other objects. This radiation is mitigated by means of narrow spectral
bandpass and spatial filtering prior to the photo-detector (PD). However, a non-negligible
background noise might fall within the spatial and frequency ranges of the detector causing
a random electrical signal that is added to the desired signal. This noise term can be mod-
eled according to a Poisson distribution [23]; nevertheless, when the number of received
photons associated with this background radiation is high enough, the Poisson distribution
can be approximated by a Gaussian distribution [24]. These facts motivate the inclusion of
an additive white Gaussian noise (AWGN) model in FSO links.

1.2. Related Work

The advances in pointing, acquisition, and tracking [18] have enabled the application
of FSO communication to unmanned aerial vehicles (UAVs), which can act as relay nodes
in 5G and beyond (5G+) cellular networks. This approach is especially promising in the
context of backhaul/fronthaul networking [25] since the mobility of UAVs and the height
at which they operate provides a reliable line-of-sight link for a high-bandwidth FSO
connection [6]. In addition, the location of the relay nodes can be changed, making this
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kind of network adaptable to changes in weather and traffic needs. For instance, if any
base station (BS) is highly loaded, UAVs can connect to that BS to readjust the backhaul
traffic. Accordingly, if the atmospheric loss conditions worsen, e.g., due to fog, UAVs could
approach the BSs to maintain a reliable FSO data connection.

However, one of the main drawbacks associated with extending the network with
aerial access points is related to the service interruption when UAVs land to recharge
their batteries. UAVs need to fly back to a nearby charging station to recharge their on-
board battery frequently. For this reason, energy-efficient frameworks are preferred to
extend the service time provided by UAVs. To this end, two different solutions (or a
combination of both) are normally proposed: (i) trajectory optimization; and (ii) energy
harvesting. The former approach consists on a route design to minimize the consumed
energy while guaranteeing a target rate with a given node [26,27]. On another note, energy
harvesting (EH) involves capturing, and storing energy from external sources, e.g., solar
power, thermal energy, wind energy, or kinetic energy, which is generally known as ambient
energy [28]. Interestingly, we can remark on the simultaneous lightwave information and
power transfer (SLIPT), which is a kind of EH, where the captured energy comes from
the optical signal that carries the information [29]. This latter approach is very promising
since the optical signal uses narrower beams, and thus the emitted energy is concentrated
towards the receiver, which makes SLIPT systems particularly efficient. Despite their
relevant and potential benefits to extend the UAVs battery life, the number of works
focused on the application of SLIPT for FSO-based UAVs nodes is limited. For the sake of
clarity, some of these works are described below.

To start with, in [30] a two hop, mixed FSO-RF relaying scheme is proposed and
analyzed assuming Gamma-Gamma turbulence fading and pointing errors. Under these
assumptions, the outage probability in terms of the bivariate Fox-H function is derived. The
proposed scheme considers a first hop in the optical domain where the relay can capture
the energy from the received light. Then, this energy is used for RF signal transmission.
Results reveal that a larger PD responsivity results in a better performance.

A pioneering work about the application of FSO with EH to UAVs-based networks for
5G backhauling is detailed in [6], and assessed via simulations in terms of capacity and cost.
Simulation results are obtained for various different conditions involving atmospheric loss,
turbulence loss, and pointing errors. Further investigation was performed in [31] where the
SLIPT scheme was posited as an optimization problem to maximize the harvested energy
while guaranteeing a target rate, for different typical modulations such as pulse amplitude
modulation (PAM) and pulse position modulation (PPM).

A novel view about the SLIPT communication between BSs and UAVs nodes was
presented in [32]. This work relies on mathematical tools from stochastic geometry to
analyze the performance of UAVs based networks. With this approach, the main metrics
are obtained as spatial averages over infinite realizations involving different BSs and UAVs
locations. To assess the effectiveness of EH and FSO based communication, the joint
energy and the signal-to-noise ratio (SNR) coverage probability are derived, i.e., the joint
probability of the UAV receiving enough energy to ensure successful operation (hovering
and communication) and having a received SNR higher than a given threshold.

To finish this brief review, we must cite the work presented in [33] where a mixed
FSO/RF network with EH was proposed. In this scheme, ground stations transmit backhaul
traffic to the UAVs, which act as moving BSs. Subsequently, the UAVs transmit RF signals
to the ground users. Accordingly, the UAVs harvest and store the received energy coming
from the ground stations through their FSO links. The proposed framework is considered
as an optimization problem to maximize the energy efficiency.

1.3. Contributions

Despite their relevance, none of the aforementioned studies, e.g., [6,29–33], consider
two important aspects: (i) the random nature of the EH, which is inherited from the
variability of the optical channel; and (ii) the trade-off between bit error rate (BER) and EH.
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In this paper, we investigate the influence of this random behavior on the design of EH-
optimized links, while fulfilling a target BER. This will be achieved by transmitting a certain
fraction, ζ, of the peak transmission power, Pm, with the logical symbol ‘0’. As shown
in this paper, a proper design of the ζ maximizes the harvested energy while fulfilling a
desirable reliability in terms of the BER.

More specifically, we aim to respond to the following inquiries: (i) the optimum ζ
value to maximize the harvested energy while fulfilling a target BER; and (ii) the maximum
average harvested energy that can be achieved under realistic link conditions. To address
those two issues we derive some closed-form expressions for the two main metrics here
considered: the average BER and the average harvested energy. Therefore, the paper’s
contributions can be summarized as follows:

1. We propose an accurate mathematical model for the UAV-based approach to provide
backhaul connectivity for 5G+ networks [6]. To this end, ground stations and UAVs
establish FSO links with EH to recharge the UAVs batteries and extend the service time.
Furthermore, the UAVs will have another FSO link with the BSs to provide backhaul
connectivity. The mathematical model considers realistic channel impairments such
as turbulence fading (scintillation), atmospheric loss, pointing errors, and additive
white Gaussian noise (AWGN).

2. We derive analytical closed-form expressions of the average harvested energy as a
function of the FSO link parameters. These expressions can be used to improve energy
harvesting efficiency of the FSO links.

3. Closed-form expressions for the BER have been obtained for links using a variant of
the on-off Keying (OOK) scheme that has been properly modified to maximize the EH.
With this scheme, which is referred to as OOK-EH, a certain fraction, ζ, of the peak
optical power, Pm, is also transmitted with the symbol ’0’ to recharge the batteries of
the UAV.

4. We obtain the optimal ζ value that maximizes the average harvested energy while
maintaining its associated BER smaller than a target BER. Such a target BER is defined
in practical communication standards to guarantee a reliable transmission.

5. The performance associated with the proposed scheme is corroborated with extensive
Monte Carlo (MC) simulations in diverse and realistic atmospheric conditions. An
excellent agreement between theoretical and simulation results is observed. Results
reveal that the combination of FSO, EH, and UAVs provide reliable backhaul links
while capturing energy to extend the UAVs service time. Let us recall that short
lifetime of the batteries mounted on drones is seen as the main limitation of the
proposed approach. For this reason, one of the main targets of our work is to obtain
the optimal amount of energy that can be collected to charge the batteries of the UAVs
involved in the system, as discussed in [30,31], while maintaining its performance in
terms of BER.

The rest of the paper is structured as follows. In Section 2 the system model is
mathematically described, including the signal as the channel model. Then, the main
metrics are presented and derived in Section 3, namely, the expressions for the amount of
harvested energy by the system and its BER. In Section 4 numerical results are obtained
to assess the benefits of the proposed scheme, which allows to identify both trends and
limiting factors. Finally, relevant conclusions are discussed in Section 5.

2. System Model

2.1. Proposed Scenario

We consider a flying backhaul/fronthaul network composed of UAVs that provides re-
liable connectivity to a 5G+ radio access network (RAN). The UAVs act as networked flying
platform (NFP) nodes that can react to changes in weather or traffic
conditions [34]. Its ground-to-air links are based on FSO technology with EH. This solution
has four remarkable benefits: (i) its FSO links provide the required high data rates for the
backhaul or fronthaul connections; (ii) FSO links do not cause interference to the 5G RAN;
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(iii) UAVs can adapt their location to the traffic and channel conditions; and (iv) EH extends
the UAVs’ service time and thus, improves the network performance.

This approach is illustrated with Figure 1 where it shows the representative nodes
and connections. The backhaul traffic represents the IP data transmissions between the 5G
core network and the BSs in distributed RAN approaches [35]. Accordingly, the BSs fully
implement the 5G RAN protocol stack, and thus they are source/destination of IP packets
towards/from the core network.

Vertical 
Backhaul/Fronthaul

Plane

FSO LINK

AUV

AUV

NFP Node

NFP Node
Mother NFP Node

Small cell

Small cell

Small cell

Small cell

Outdoor
picocell

Vertical
BackhBackhBackhBackhBacBacBackhackhackhackhackhBackhBackha aulauauaulaulaulauuuuaul////////FF tF tF tF tFFronthhhhhhaul

Plane

NFP NNode

NFNFFP NFFFFF Node
therMoMotMMMoooooo N

Figure 1. Possible 5G + network scenarios where FSO will extend or complement existing deployments.

A recent approach to the classical distributed RAN arises with the cloud RAN
(C-RAN) [36], where a base band unit (BBU) centralizes the RAN processing of many
small cells. The signal transmission related to each cell is carried out by radio remote heads
(RRHs) that are connected with the BBUs through fronthaul links. This latter approach
offers two main benefits compared to distributed RAN. First, C-RAN reduces costs since
each small cell can be implemented with a RRH, cheaper than a complete BSs. Second,
C-RANs ease the implementation of coordinated mechanisms for interference mitigation.

Coming back to Figure 1, it is straightforward to see the different backhaul links
between the core network and the BSs through the FSO-UAVs based network. This scheme
requires a FSO gateway that creates the link with a mother NFP node, i.e., a mother UAV
that forwards the IP traffic towards the NFP node currently connected to the target BS.
Analogously, the fronthaul links between the BBU and the RRHs also require a connection
between a FSO gateway and the mother NFP node. Certainly, many applications beyond
classical mobile networks can benefit from the proposed scenario shown in Figure 1 since
it can provide backhaul/fronthaul connectivity to 5G V2X, or even future underwater
communications [11–13,37].

2.2. Received Signal Model

Throughout this paper, we consider a non-coherent intensity modulation with direct-
detection (IM/DD) scheme since it is a practical and widely extended technique for FSO
communications [38]. With this scheme, the intensity of the emitted light is employed to con-
vey the information. Therefore, the PD output current can be expressed as follows [39,40]

i = hRx + n, (1)

where x is the transmitted intensity in W, R is the detector responsivity in W/A, h is the
channel coefficient and n represents the noise term at the receiver side. We assume that the
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shot noise induced by the ambient light is the dominant noise source in our analysis. Thus,
we model n as a signal-independent zero-mean Gaussian noise with variance given by

σ2
n = 2qRBnPamb, (2)

where q denotes the electron charge, Bn is the receiver noise bandwidth, and Pamb is the
ambient light power. This latter term can be obtained as Pamb = πr2SnBoΩFOV , where r is
the receiver aperture radius, Sn is the ambient light spectral radiance, Bopt is the optical
bandwidth in nm and ΩFOV is the receiver field of view (FOV) in srad.

The transmitted intensity is taken as symbols drawn with equal probability from the
OOK constellation such that x ∈ {P1, P0}, where P1 and P0 represent the power correspond-
ing to the transmission of a ‘1’ and a ‘0’, respectively.

In this respect, we can cite three primary atmospheric phenomena that affect optical
wave propagation and that constitute the total channel coefficient h: (i) the deterministic
path loss, hl characterized by absorption and scattering; (ii) the geometric spread and point-
ing errors hp; and (iii) the refractive-index fluctuations (i.e., the atmospheric turbulence),
ha, leading to irradiance fluctuations. Thus, the total channel attenuation is modeled as the
product of these aforementioned channel factors as:

h = hlhpha, (3)

where hp and ha are random variables (RVs). In the next sections, we describe the un-
derlying distribution that model those RVs. Finally, we define the signal to noise ratio
as [41]:

SNR =
(RhPav)

2

σ2
n

, (4)

where Pav = (P0 + P1)/2 represents the average transmit power.

2.3. Atmospheric Turbulence Model

In order to model the intensity fluctuations caused by the atmospheric turbulence,
the statistical Gamma-Gamma distribution is here assumed because of its mathematical
tractability and accuracy to characterize a wide variety of scenarios ranging from weak to
strong turbulence. Thus, and following [21], the probability density function (pdf) of ha is
written as

fha(ha) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
h(α+β)/2−1

a Kα−β

(
2(αβha)

1/2
)

, (5)

where Kp(x) is the modified Bessel function of the second kind, and Γ(x) is the Gamma
function, with α representing the effective number of large-scale cells of the scatter-
ing process and with β denoting the effective number of small-scale cells. Namely,
from [39], these latter parameters, α and β, can be obtained as

α =
[
exp

(
0.49σ2

R(1 + 1.11σ12/5
R )−7/6

)
− 1

]−1
, (6)

and
β =

[
exp

(
0.51σ2

R(1 + 0.69σ12/5
R )−5/6

)
− 1

]−1
, (7)

respectively, where σ2
R is the Rytov variance which, for uplinks paths, is defined as [39]

σ2
R = 2.25k7/6(Z − z0)

5/6
∫ Z

z0

C2
n(z)

(
z − z0

Z − z0

)5/6
dz, (8)

with C2
n(z) being the index of refraction structure parameter at altitude z, whereas k = 2π/λ

is the optical wave number and Z and z0 are the UAV and transmitter heights, respectively.
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2.4. Atmospheric Attenuation

For optical waves, the effect of the atmospheric attenuation suffered by the light
propagating through the atmosphere is mainly caused by either absorption as scattering
by air molecules in addition to both absorption and scattering by solid or liquid particles
suspended in the air which, as a last resort, indicates the effect of weather conditions
on the transmitted laser beam. Absorption and scattering are often grouped together
under the topic of extinction, defined as the reduction or attenuation in the amount of
radiation passing through the atmosphere. Mathematically speaking, such attenuation is
incorporated using the well-known Beer–Lambert law [42–44] given by:

hl = exp (−a(λ)L), (9)

where a(λ) is the wavelength dependent attenuation coefficient (extinction coefficient)
and L = Z − z0 is the propagation path length from the transmitter. As commented, the
coefficient a depends on weather conditions and can be obtained from the atmospheric
visibility. Since the attenuation coefficient hardly changes over long periods of time, we
have assumed hl as a deterministic coefficient in our analysis.

2.5. Geometric Spread and Pointing Error Model

In addition to attenuation and atmospheric turbulence, geometric beam spread and
pointing accuracy also affect the performance of these systems. The geometric loss is
caused by the divergence of the transmit beam when propagating through the atmosphere,
as ωz = θT · L, with ωz being the received beam waist, with θT denoting the transmitter
divergence angle, whereas L is the propagation path length. Since the received beam
width is usually wider than the lens aperture size, part of the transmitted power cannot be
collected, leading to loss. Thus, this geometric loss depends mainly on the ratio between
the received beam waist, ωz, and the receiver aperture radius, r. However, during the
designing of a FSO link, it is possible to control the beamwidth produced at a certain
distance, and therefore the ratio ωz/r, by adjusting properly the laser parameters.

On the other hand, imperfections in the pointing, acquisition, and tracking process
between the ground stations and the UAVs can also cause loss. Note that both phenomena
are interrelated and, thus, accurate modeling frameworks have been proposed to account
for both effects. To this end, in this work, we consider the general model proposed
in [44,45]. According to this model, a Gaussian beam profile is assumed with a beam waist,
ωz, on the receiver plane and a circular aperture receiver of radius r; then, the attenuation
due to the geometric spread with pointing error can be approximated as the Gaussian form

hp ≈ Ao exp

(
− 2ρ2

ω2
zeq

)
, (10)

where ρ, is the radial pointing error, Ao is the fraction of collected power without pointing
error, i.e., only due to geometric spread, and ω2

zeq is the equivalent beam width. Here, Ao

and ω2
zeq are given by Ao = erf(μ)2 and ω2

zeq = ω2
z
√

πerf(μ)/[2μ exp(−μ2)], respectively,
being erf(·) the error function and μ =

√
πr/(

√
2ωz). Moreover, considering independent

identical Gaussian distribution for the horizontal x and y displacement in the receiver plane,
the radial error ρ =

√
x2 + y2 is modeled as Rayleigh distribution with a jitter variance

at the receiver σ2
s . Under these assumptions, the channel attenuation, hp, can be seen as a

function of the radial displacement, ρ, which is a RV. Hence, the pdf of hp can be seen as a
random variable transformation problem, which leads to the following expression [45]:

fhp(hp) =
γ2

Aγ2
o

hγ2−1
p , (11)
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where γ = ωzeq/(2σs) denotes the ratio between the equivalent beam radius at the receiver
and the pointing error displacement standard deviation.

2.6. Composite Channel Model

Once the three factors included in Equation (3) have been individually discussed, the
statistical characterization of the composite channel h = hahlhp can be achieved. Thus,
from [45],

fh(h) =
2γ2(αβ)

α+β
2

(Aohl)γ2 Γ(α)Γ(β)
hγ2−1

∫ ∞

h
Aohl

h
α+β

2 −1−γ2

a Kα−β(2
√

αβha) dha. (12)

where α and β parameters include the information on the strength of the turbulence, with
γ containing the severity of the pointing error, where Ao denotes the geometric spread
attenuation and with hl being the path loss.

3. System Performance

In this paper, two metrics are considered to evaluate the performance of FSO vertical
links. First, the amount of harvested energy in the UAV is analyzed through the average
EH parameter. Second, the received signal quality is studied in terms of the bit error rate
(BER) parameter.

In particular, we must remark that the harvested energy analysis detailed below is
valid for any modulation scheme; nevertheless, our BER analysis will be particularized for
a variant of the OOK scheme previously optimized for energy harvesting under a fixed
peak power constraint [31]. An OOK scheme was selected because of its simplicity and low
power consumption, especially interesting due to limited on-board UAVs battery lifetime.
In such a scheme, named OOK-EH, a power P1 = Pm is emitted for the transmission of a
logical ‘1’, where Pm is the peak power of the laser; whilst a fraction of Pm is carried for
transmitting a logical ‘0’, i.e.,

P0 = ζPm, (13)

where 0 ≤ ζ < 1. In contrast to the classical OOK, where no light is emitted when a
logical ‘0’ is transmitted, our proposed scheme always carries a power level that will
depend on the ζ parameter. This added DC component increases the average optical
power Pav and can be used to improve energy collection by adjusting the ζ parameter
appropriately. Furthermore, and in order to maximize the harvested energy, a power level
Pm is also emitted when the transmitter is idle. However, any increase in the P0 level
will reduce the dynamic range given by the peak average optical power ratio (PAOPR)
and, consequently, its associated BER will be increased. The PAOPR is given by 2/(1 + ζ).
Consequently, there is an important trade-off between increasing harvested energy and
degrading BER. For any particular set of channel conditions, this trade-off is achieved for
an optimal ζ that maximizes the harvested energy while keeping the BER performance
below a predetermined target BER.

In order to evaluate the performance of any vertical FSO link with our proposed
OOK-EH technique under realistic channel conditions, analytical closed-form expressions
for the average EH and BER are derived in this section, considering the aforementioned
main phenomena degrading the quality of the received signal, i.e., noise, turbulence, path
loss, geometric spread and pointing errors.

3.1. EH Performance

An EH module is added to the receiver to collect the energy from the received signal.
This module extracts the DC component, IDC, of the electrical signal that is obtained by the
PD, i. The DC current is then either stored or directly used to feed other modules such as
the information detection module and the UAV’s motor, which translates into extending
the UAV’s battery lifetime. Figure 2 illustrates a block diagram of the receiver where the
EH and information detection modules are shown. As it can be observed, the EH module
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is formed by a Schottky diode and a low-pass filter (LPF), which are passive devices, and
thus, its associated power consumption is limited and could be included in the conversion
efficiency, ζ [46]. Furthermore, this approach does not require either any control logic or
any additional module to obtain the DC current.

PD
Schottky 

diode
LPF

detector

i DCI
energy harvesting module

information detection module

{ }0,1,1,...

received beam

Figure 2. Block diagram of the proposed receiver structure with EH. An optical circular converging
lens would be placed in front of the PD.

As described in [29,31,47], the harvested energy per second in the optical receiver is
given by

EH = f Vt IDC ln

(
1 +

IDC
Io

)
, (14)

where f , Vt and Io stand for the photo-detector’s fill factor, thermal voltage, and dark
saturation current, respectively. The DC component of the output current, IDC, is written
as [47]:

IDC = RhPav. (15)

Here, R denotes the PD responsivity in A/W, with h being the composite channel attenua-
tion coefficient, whereas Pav represents the average transmitted power.

As can be noticed, the harvested energy is random due to the influence of the channel
attenuation coefficient h. Therefore, to obtain the collected energy over a long period of
time, the average EH (AEH) is derived as:

AEH =
∫

h>0
fh(h) f VtRhPav ln

(
1 +

RhPav

Io

)
dh, (16)

where fh(h) is the pdf of the composite channel attenuation according to (12). Employing
the expressions [48] (Eqs. (07.34.21.0011.01) and (07.34.21.0085.01)), the solution of this
integral can be written in a closed-form as

AEH =
γ2 f VtRPav Aohl

αβΓ(α)Γ(β)
G1,5

5,3

(
Aohl RPav

Ioαβ

∣∣∣∣ 1, 1,−γ2,−α,−β
1,−1 − γ2, 0

)
. (17)

Moreover, when only the effect of turbulent fading is considered, and fh(h) is given
by (5), the above equation reduces to

AEH =
f VtRPav(Aohl)

2

(αβ)2Γ(α)Γ(β)
G1,5

5,3

(
Aohl RPav

Ioαβ

∣∣∣∣ 1, 1,−1,−1 − α,−1 − β
1,−2, 0

)
. (18)
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where the term Pav, which is present in Equations (16)–(18), is expressed as Pav = Pm(1 + ζ)/2
in case of OOK-EH. From Equations (17) and (18), the amount of harvested energy is not
depending on the modulation scheme itself but on the average transmitted power. Of
course, the particular channel conditions and the type of PD and rest of modules shown in
Figure 2 will influence on the amount of energy any UAV can extract.

3.2. EH Optimization

In view of the expressions for the average harvested energy derived above, it is
straightforward to observe that they depend on: first, the channel and link conditions
(i.e., attenuation and turbulence, fundamentally); second, on the transmitter and receiver
systems with a given pointing misalignment loss, geometric spread, and maximum peak
power, Pm; and third, on the parameter ζ. In this section, we consider all these parameters
as uncontrollable variables that depend on the channel and the physical devices, except for
the ζ variable, that can be adjusted to maximize the harvested energy.

Therefore, we notice that if ζ increases, then the average harvested energy also in-
creases; however, this fact adversely affects on the BER performance of the system. In this
respect, there exists an interesting trade-off between EH and reliability. We consider in
this work that the communication system includes a simple forward error correction (FEC)
decoder, which defines a maximum pre-FEC BER, normally referred to as BERtarget. Such
a target is the maximum BER of the coded bits before the FEC decoder to guarantee an
error-free transmission with high probability.

We assume two widely adopted target BER values of BERtarget =5 × 10−5 and
BERtarget = 10−8 related to different FEC options as defined in [49]. Interestingly, the
latter target BER is related to a BASE-R code, which is also know as Fire Code FEC (FC-FEC)
as is defined in (clause 74 of [49]). This latter code requires a very small computational
complexity for its decoding.

Thus, we pose the optimization problem for the design of the proposed FSO system
with EH as follows

arg min
ζ∈[0,1)

AEH

s.t. BER < BERtarget (19)

The above problem is solved numerically in Section 4 to determine the optimal ζ value
and assess the maximum AEH that can be obtained with the proposed framework under
realistic and diverse channel conditions.

3.3. BER Performance

Now, we derive closed-form expressions of the BER for the OOK scheme used for
SLIPT. Hence, the received BER can be written as

BER = p0Pe(1|0) + p1Pe(0|1), (20)

where Pe(1|0) and Pe(0|1) represent the probability of false alarm and the probability
of missed detection, respectively. In our analysis, we assume equally-likely symbols,
p0 = p1 = 0.5 in many different realistic scenarios.
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First, for an ideal scenario without neither turbulence nor pointing error (in (3), h is
reduced to h = Aohl), the terms Pe(1|0) and Pe(0|1) can be expressed as [50]:

Pe(1|0) = 1
2

erfc

(
it − is0√

2σ2
n

)
=

1
2

erfc

(
it − is1 ζ√

2σ2
n

)
(21)

Pe(0|1) = 1
2

erfc

(
is1 − it√

2σ2
n

)
; (22)

with is0 and is1 denoting the received photocurrent corresponding to the transmission of a
logical ‘0’ and a logical ‘1’, respectively; where it is the optimal detection threshold and σ2

n is
the noise variance given in Equation (2). On another note, and from (13), the photocurrents
is0 and is1 can be expressed as is0 = RhζPm and is1 = RhPm, respectively. In addition, it can
be written as a function of ζ as

it =
is1 + is0

2
=

is1(1 + ζ)

2
. (23)

Recall that, for this ideal AWGN channel, h has a deterministic behavior since nei-
ther turbulence-induced nor misalignment fadings were considered yet. Accordingly, its
associated BER is obtained by substituting (21) and (22) into (20), and it is given by

BER = erfc

(
RhPm(ζ − 1)/2√

2σ2
n

)
. (24)

Second, we consider a more realistic scenario where atmospheric turbulence is now
considered, although misalignment fading is still not included Therefore, the channel
attenuation coefficient, h, becomes a RV since the turbulence-induced scintillation now in-
corporated into h follows the Gamma-Gamma pdf shown in (5). Thus (24) must be averaged
with the corresponding pdf describing the behavior of h, and [48] (Eqs. (07.34.21.0013.01)
and (07.34.21.0085.01)) are, again, used to solve the resulting integral:

BER =
2(α+β)

8π
√

πΓ(α)Γ(β)
G2,4

5,2

(
8(RAohl Pm(ζ − 1)/2)2

(σnαβ)2

∣∣∣∣ 1−α
2 , 2−α

2 , 1−β
2 , 2−β

2 , 1
0, 1

2

)
(25)

Finally, when pointing errors are also taken into account, (21) and (22) must be now
averaged with respect to (12). Hence,

BER =
2(α+β)γ2

16π
√

πΓ(α)Γ(β)

G2,6
7,4

(
8(RAohl Pm(ζ − 1)/2)2

(σnαβ)2

∣∣∣∣ 1−γ2

2 , 2−γ2

2 , 1−α
2 , 2−α

2 , 1−β
2 , 2−β

2 , 1

0, 1
2 , −γ2

2 , 1−γ2

2

)
, (26)

after having used [48] (Eqs. (07.34.21.0013.01) and (07.34.21.0085.01)). As a previous step, ei-
ther the complementary error function, (erfc(·)), and the Bessel’s K function were expressed
in terms of Meijer’s G functions from [48] (Eqs. (03.04.26.0006.01) y (06.27.26.0006.01)).

As can be seen from these latter equations, the exact expression for the error probability
is given in terms of Meijer’s G-function, which may be difficult to facilitate further analytical
studies. Hence, it would be possible to obtain simpler expressions after some mathematical
approximations following the approximation given in [51] involving an upper bound
and a lower bound for the Gaussian Q-function that represents the behavior in terms
of error probability of an ideal Gaussian channel, as shown in Equation (22), and based
on series expansion. Additionally, and for a future work, we have planned to use a
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more generic model for the turbulence, the Málaga model [52] and its formulation from
Generalized-K functions [53]. Thus, as commented in [54], its pdf can be approximated
by a Gauss–Laguerre quadrature. Since the Gamma-Gamma model employed in our
paper is a particular case of the Málaga model [52], then this Gauss–Laguerre quadrature
can also be applied. Thus the upper bound given in [54] and [51] (Equation (19)) can
be employed.

4. Results and Discussions

In this section we analyze the impact of FSO link parameters on system performance
in terms of energy harvesting and quality using the AEH and BER expressions derived in
the previous section. This analysis allows to identify which are the key design parameters
and the trade-offs to be considered in order to properly choose such parameters.

For our numerical analysis, we have assumed the values given in Table 1. In particular,
we consider a vertical FSO link consisting of a ground-based optical transmitter located at a
height z0 and a receiver mounted on a UAV hovering on the ground at a height Z. Therefore,
the separation between both is L = Z − z0. The transmitter transmits a light beam with
a divergence angle θT= 1 mrad [6] and a peak power Pm operating at a wavelength of
1550 nm. The receiver, as in [44], is composed of an optical circular converging lens whose
effective light collection area is characterized by an aperture radius, r, of 10 cm with a
responsivity R = 0.5 A/W. Some commercial implementations following these features
can be found at [55,56] Therefore, for L = 300 m [57], the ratio of the beam waist to the
aperture radius of the receiver is (ωz/r) = 3 (remember that a source with a 1 mrad
divergence angle was considered) while, for L = 1000 m, (ωz/r) = 10. To cover a large
area on the ground, a field of view FOV= 45◦ is assumed. Due to this large FOV, shot noise
caused by ambient light is the dominant source of noise in the receiver. A spectral radiance
Sn = 1 mW/(cm2 nm srad), with an optical bandwidth Bo = 10 nm and a noise bandwidth
Bn = 1 GHz are assumed to obtain σ2

n from (2).
Regarding the turbulence, we calculate the magnitudes of α and β, with the ex-

pressions (6) and (7), considering the values of C2
n(z) provided by the Hufnagel–Valley

model [39] for different link heights, assuming C2
n(z0) = 1.7 × 10−13 m−2/3. Thus, α and

β vary between 25 and 30 for heights between 300 m and 1000 m, leading to σ2
R << 1,

which corresponds to a very weak turbulence condition. In addition, we consider a jitter of
σs = 10 cm [58] to model the pointing error.
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Finally, we use the attenuation coefficients corresponding to very clear air, clear air,
and haze shown in Table 1.

Table 1. System parameters.

FSO Parameters
Parameter Symbol Value

Operating Wavelength λ 1550 nm

Transmitter divergence θT 1 mrad

Responsivity R 0.5 A/W

Receiver aperture radius r 10 cm

Field of view FOV 45◦

Optical Bandwidth Bo 10 nm

Noise Bandwidth Bn 1 GHz

Spectral radiance Sn 1 mW/cm2 nm srad
Turbulence, pointing error and climatic parameters

Parameter Symbol Value

Structure parameter C2
n(z0) 1.7 × 10−13 m−2/3

Number of large-scale cells α 30

Number of small-scale cells β 30

Jitter variance σs 10 cm

Attenuation coefficient (very clear air) a 0.0647 dB/km

Attenuation coefficient (clear air) a 0.2208 dB/km

Attenuation coefficient (haze) a 0.7360 dB/km
EH parameters

Parameter Symbol Value

Fill factor f 0.75

Dark saturation current Io 10−9 A

Thermal voltage Vt 25 mV

Figure 3 shows the typical attenuation of vertical optical links (Figure 3a) together
with the potential energies harvested (Figure 3b) for different separation distances between
any UAV and the ground BS, ranging between 200 m and 1000 m.
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Figure 3. (a) Average optical channel loss as a function of link length. (b) Average harvested energy as
a function of the link length. Both figures consider different UAV jitters and weather conditions and a
beam divergence of 1 mrad. To obtain the AEH, a single transmitter with Pav =500 mW is assumed.

Channel loss depicted in Figure 3a is calculated by −10 log(h̄), with h̄ = (hl Aoγ2)/(1+
γ2) representing the average attenuation coefficient calculated from Equation (12). It is
straightforward to check how the coverage provided by any deployed UAV enhances
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with increasing its altitude but, as shown in Figure 3a, at the cost of a significant increase
in power losses at the receiver. Specifically, that increase is mainly caused by the beam
broadening induced by the transmitter divergence. Namely, for L =300 m (i.e., (ωz/r) =3,
as commented above), a power loss of 8.5 dB is reached for σs = 0.1 m. That value grows to
18 dB for L =1000 m as (ωz/r) =10. In both cases, a transmission divergence of 1 mrad
and a 10 cm aperture radius were considered.

In addition, Figure 3b shows that increasing the channel loss dramatically reduces the
harvested energy. Thus, for a single transmitter with a Pav = 500 mW, the AEH drops from
18 mJ/s for the best case at 200 m; to less than 2 mJ/s at 1000 m. Note that the AEH in the
figure has been calculated using Equation (17). Finally, Figure 3 shows how atmospheric
losses are not relevant for the amount of energy the UAV can harvest due to the short link
lengths considered in the analysis. Furthermore, they can be neglected without loss of
accuracy when the UAV is affected by UAV’s jitter caused by its motor vibration.

Moreover, both figures also show the impact on the link performance of the pointing
deviation caused by the jitter inherent to the UAV that acts as receiving side. For example,
it can be observed that an increase in the UAV’s jitter (higher σs) is more detrimental when
flying at lower altitudes than at higher altitudes. The reason for this is that the ωz/r ratio
decreases for lower altitudes due to the beam divergence angle and, thus, the random
variations inherent to the UAV location cause a more serious channel loss than in higher
altitudes, even causing that the communication link may even be interrupted if the UAV
moves out of the transmitted beam footprint. Consequently, energy harvesting is less
affected by jitter as the UAV is operating at a higher altitude and, accordingly, the ωz/r
ratio increases. Figure 4 summarizes this discussion.

Figure 4. Adverse effect of UAV’s jitter caused by its motor vibration versus altitude in the flight
state. It is supposed that the same UAV is flying at two different altitudes and affected by a same
value of σs. For the case of the UAV operating at the lower altitude, the communication link may
even be interrupted due to the presence of UAV’s jitter. Of course, for a higher altitude, the beam
broadening induces more serious power losses at the receiver.

Following the analysis of the channel behavior from Figure 3, now, Figure 5 shows the
BER performance of the OOK and OOK-EH schemes under different channel impairments
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as a function of the received SNR. To illustrate the behavior of the OOK-EH scheme, a
ζ = 0.8 has been assumed. In addition, two ratios ωz/r have been taken as representative
values: (ωz/r) = 3 and (ωz/r) =10, corresponding to UAV heights of 300 m and 1000 m,
assuming a transmission divergence θT = 1 mrad. BER curves plotted in black represent the
case of (ωz/r) = 3; whilst the curves plotted in red depict the performance for (ωz/r) = 10.
In addition, solid lines represent the BER of the ideal channel with h = Ao, i.e., assuming
only the geometric loss; whereas the dashed lines include the adverse effect of the random
medium, i.e., either solely turbulence or both turbulence and pointing error.
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Figure 5. Average BER for the OOK and OOK-EH schemes versus signal-to-noise ratio for a vertical
FSO link under different channel impairments and different values of the ratio (wz/r). A transmitter
with a divergence θT =1 mrad and a Pm up to 20 dBm is assumed.

These results, which are calculated from the expression (25) for the case of only
considering turbulence-induced fading; and from (26) for the combined scenario with
turbulence and pointing error, have been validated using Monte Carlo simulations. Note
that BER curves for the ideal channel and the one associated to the turbulent channel with
no pointing errors are identical for both (ωz/r) ratios. In this figure, simulation (Monte
Carlo) results are drawn with markers whereas theoretical results are drawn with either
solid or dashed lines. In all cases, a perfect match is shown between the simulated results
and those obtained from the derived expressions.

From the aforementioned Figure 5, it can be seen that turbulence and pointing error
affect the BER with different severity depending on the ωz/r ratio. As far as turbulence
is concerned, it affects BER equally regardless of the ratio ωz/r. However, as expected,
pointing error causes a very severe degradation for lower ωz/r ratios. The figure shows
that, for (ωz/r) = 3, the SNR degradation caused by pointing errors is huge, on the order
of 15 dB for a target BER of 5 × 10−5, while for (ωz/r) = 10, the degradation is nearly
negligible. In fact, the BER curves considering turbulence and turbulence with pointing
error almost overlap.

Optimization for EH

As described in the previous section, the process of optimizing the modified OOK
scheme for EH consists of choosing the optimal ζ value that maximizes the average EH
while keeping the BER below the target value for each channel condition. Note that, since
the increase in EH is achieved at the cost of degrading the link quality, the maximum ζ
value will depend on the considered channel impairments, i.e., turbulent fading, pointing
error, and atmospheric attenuation. Consequently, a lower channel degradation will lead
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to higher ζ values and, thus, to higher harvested energies. The value of the optimal ζ has
been obtained numerically from expression (26) by setting the link parameters and the
target BER.

To form a complete picture of the dependence of optimum ζ on the FSO link pa-
rameters, Figure 6 shows the optimal value of ζ as a function of transmitter peak power
considering different ωz/r ratios, jitters and target BERs. In all cases, the turbulence fading
and the path loss corresponding to “very clear air” are included. As can be seen in the
figure, as the peak power of the transmitter increases, the optimum ζ value also increases.
In our analysis, realistic power values up to 35 dBm have been considered. Note that, since
the UAV is intended to collect as much energy as possible, the power value chosen in the
link design will be high. Therefore, the optimal ζ values will also be high. For the highest of
the powers considered (Pm =35 dBm), the value of ζ is always higher than 0.8. In addition,
as expected, the optimal ζ values obtained for the 10−8 target rate (red lines) are lower than
for 5 × 10−5 (blue lines) and, similarly, higher jitter values lead to lower ζ values. From
that Figure 6, it can be concluded that values of ζ higher than 0.8 one can be selected for
realistic propagation scenarios.
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Figure 6. Optimal ζ values for the proposed OOK-EH scheme as a function of the transmitted peak
power considering different (ωz/r) ratios, jitters and target BER. These ζ values maximize the average
harvested energy while maintaining the target BER. Turbulence fading (α = 30, β = 30) and “very
clear air” conditions are assumed.

On a different matter, Figure 7 depicts the average harvested energy for the OOK and
OOK-EH schemes as a function of the peak transmitted power. For the OOK-EH scheme,
the optimal ζ values obtained in Figure 6 have been here employed.

Hence, from the AEH results depicted in Figure 7, the following comments can be
drawn. First, it is clearly observed that the energy collected with the OOK-EH scheme
(black lines) is higher than that of the OOK scheme (red lines). In fact, the energy harvested
by the OOK-EH scheme tends to twice that in OOK scheme as the transmitted power
increases. Figure 7 also shows that a minimum Pm is required to achieve the previously
selected BER target (a power below Pm cannot satisfy the performance required by the BER
target and, accordingly, no energy would be harvested). This Pm is higher for the ratio
ωz/r =3 than for ωz/r =10 due to what was explained when introducing Figures 3–6.
Therefore, the choice of the ratio ωz/r has a huge impact on the value of the collected
energy. The figure shows that the energy obtained with ωz/r = 3 is much higher than that

51



Sensors 2022, 22, 5684

obtained with ωz/r =10. In particular, for the highest power considered (Pm=35 dB), the
AEH is about 70 mJ/s for ωz/r =3, while it hardly reaches 10 mJ/s for ωz/r = 10. Note
that the AEH values shown in that figure are consistent with those ones published by other
authors in [31] and [47] for peak transmitted powers of 100 and 200 mW, respectively.
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Figure 7. Average harvested energy for the OOK and OOK-EH schemes versus peak transmitted
power considering different (ωz/r) ratios and target BER. Turbulence fading (α =30, β =30), a jitter
(σs = 0.1 m) and “very clear air” conditions are assumed. A single transmitter has been considered.

As explained above, one of the main features affecting energy harvesting is the ωz/r
ratio. In this respect, it is possible to design transmitters for EH with an accurate control
of their beam width since significant gains can be achieved with the appropriate selection
of ωz/r. Thus, when increasing this ratio, the pointing problem is relaxed and, as well,
the negative effect inherent to the jitter is reduced, i.e., when increasing ωz/r then fading
induced by jitter suffered by the receiver is less intense since the received beam waist
becomes (much) bigger than the receiver aperture radius. In this respect, although the
received spot can wander due to the jitter effect, however, the total amount of caught power
in the receiver side is maintained without significant variations since the size of the received
beam waist is large compared to the receiver aperture radius. Consequently, the amount of
power that can be captured from the section of the beam illuminating the receiver is, more
or less, of the same magnitude. On the contrary, for smaller values of ωz/r, the sway in the
received beam footprint caused by misalignment is more critical in the sense that such a
sway may make all the received beam spot drop out of the receiver photosensitive area. For
that critical situation, the amount of captured power in the receiver would drop to zero. Of
course, large ωz/r values lead to both severe geometrical losses (since most of the received
footprint area is spread out of the physical photosensitive area implemented in the receiver
side) and, consequently, low values of harvested energy. Therefore, the design of any FSO
link should try to minimize this ratio by using adaptive pointing tracking systems [18].

It is worth noting that all the the results of average EH shown so far are for a single
vertical FSO link between a given BS and UAV. Nevertheless, each UAV could receive
simultaneous transmissions from a number of BSs as long as their locations fall within
the region, R ⊂ R2, covered by the FOV of the UAV’s receiver. The area of such a region,
|R|, can be expressed in terms of the FOV angle and the height of the UAV, Z, as follows:
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|R|= π(Z tan(FOV/2))2. Therefore, the average number of BSs, N, that are covered by
the FOV of the receiver is written as N = |R|λBS, where λBS is the BS density expressed in
number of nodes per m2. Assuming that the macro BSs are spatially distributed according
to a hexagonal grid, with a number of RRHs, nRRHs, randomly distributed within each
macro cell as described in [59], that BS density leads to λBS = (1+nRRHs)

2
√

3( ISD
2 )

2 , where the term

ISD stands for the inter-site distance (ISD), which is the distance between two neighbouring
macro BSs. Finally, according to sections 6.1.2 and 6.1.4 of [59], Thus, for a given FOV, the
value of N can be obtained as a function of the UAV height. In the case of dense urban
microcellular deployment scenarios, the value of N increases from 6 to 62 when the height
of the UAV increases from 300 m to 1000 m. However, despite the significant increase in
the number of BS, the total collected energy hardly changes due to the increase of optical
link loss with UAV height.

As a conclusion, considering the AEH results shown in Figure 7 and the number of
BSs covered by the UAV’s receiver described above, the total AEH that can be obtained
for considered scenario in very clear air conditions with a target BER of 5 × 10−5 and
assuming realistic transmitted powers between 30 and 35 dBm is in the range between 134
and 450 mJ/s for a UAV height of 300 m and between 164 and 558 mJ/s for a UAV height of
1000 m. This free energy collected from the information-carrying FSO signals complements
the energy harvested from the terrestrial optical and RF wireless power transfer (WPT)
charging stations and contributes to extend the battery life of UAVs.

5. Concluding Remarks

In this paper, we have investigated the application of FSO, UAVs, and EH as an adapt-
able and efficient solution to provide backhaul/fronthaul connectivity to 5G+ networks.
There are many benefits supporting this approach. First, FSO technology provides high
bandwidth for the 5G RAN. Second, FSO communication links do not interfere with the
RF based 5G RAN. Third, the UAVs, which act as flying nodes of a backhaul/fronthaul
network, can adapt to changes in weather and traffic conditions to provide reliable links.
Nevertheless, the limited battery of the UAVs causes service interruptions when the UAVs
need to recharge them. For this reason, we propose the use of EH to collect energy from the
transmission of information signals to combine with the EH from the terrestrial optical and
RF WPT charging stations. All these techniques are thought to enhance the on-board battery
lifetime of UAVs. To assess the benefits of the proposed approach we have considered a
realistic yet tractable channel model that includes the effect of turbulence fading, pointing
errors and atmospheric attenuation. Using this model, analytical closed-form expressions
of the average harvested energy and the bit error rate of an OOK scheme optimized for
information transmission and power transfer are derived. The derived expressions allow to
evaluate the performance of vertical FSO links between ground-based BSs and UAVs and
to properly select the link parameter to optimize the harvested energy while guaranteeing
a reliable connection.

Results show that there exists an interesting trade-off between reliability and
harvested energy.
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Abbreviations

The following abbreviations are used in this manuscript

AWGN Additive white Gaussian noise
BBU Base band unit
BER Bit error rate
BS Base station
C-RAN Cloud RAN
EH Energy harvesting
FEC Forward error correction
FSO Free space optical
IM/DD Intensity-modulation direct-detection
MC Monte Carlo
NFP Networked flying platform
OOK On-off keying
pdf Probability density function
PAM Pulse amplitude modulation
PPM Pulse position modulation
RAN Radio access network
RRH Radio remote head
RV Random variable
SLIPT Simultaneous light-wave information and power transfer
UAV Unmanned aerial vehicle
V2X Vehicular-to-everything
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Abstract: The use of digital signal processors (DSP) to equalize coherent optical communication
systems based on spatial division multiplexing (SDM) techniques is widespread in current optical
receivers. However, most of DSP implementation approaches found in the literature assume a
negligible mode-dependent loss (MDL). This paper is focused on the linear multiple-input multiple-
output (MIMO) receiver designed to optimize the minimum mean square error (MMSE) for a coherent
SDM optical communication system, without previous assumptions on receiver oversampling or
analog front-end realizations. The influence of the roll-off factor of a generic pulse-amplitude
modulation (PAM) transmitter on system performance is studied as well. As a main result of the
proposed approach, the ability of a simple match filter (MF) based MIMO receiver to completely
eliminate inter-symbol interference (ISI) and crosstalk for SDM systems under the assumption of
negligible MDL is demonstrated. The performance of the linear MIMO fractionally-spaced equalizer
(FSE) receiver for an SDM system with a MDL-impaired channel is then evaluated by numerical
simulations using novel system performance indicators, in the form of signal to noise and distortion
ratio (SNDR) loss, with respect to the case without MDL. System performance improvements by
increasing the transmitter roll-off factor are also quantified.

Keywords: coherent optical communication; optical fiber communication; MIMO adaptive equalizer;
matched filter; MMSE; spatial division multiplexing (SDM); polarization division multiplexing;
fractional-spaced equalizer (FSE)

1. Introduction

The increasing demand of higher bit rates, combined with the environmental require-
ment of energy-efficient communication systems, is driving the development of ultra-high-
capacity fiber optic communications. In this context, recent advances in spatial division
multiplexing (SDM) using multimode or multicore fibers in long- and short-distance
links [1,2] cannot be possible without the extensive use of multiple-input multiple-output
(MIMO) signal processing.

Since the initial proposal to use polarization-division multiplexing (PDM) in a single
mode fiber (SMF) [3] to double the capacity of a coherent optical communication system,
MIMO signal processing [4,5] has become necessary to process and recover the parallel
transmitted data streams even before the signal processing used was identified as a MIMO
equalizer [6]. The channel model for PDM in SMF and its relation with the non-linear
Schrödinger equation [7], its representation by means of the 2 × 2 Jones matrix [8] and
as a multi-section system [9] has been extensively discussed in previous works. Multiple
contributions to adaptive MIMO equalizers using the flexibility of digital signal processors
(DSP) have been developed [7,10,11], where normally the equalization is divided into two
parts: The first one, with an invariant chromatic dispersion (CD) compensation for each

Sensors 2022, 22, 798. https://doi.org/10.3390/s22030798 https://www.mdpi.com/journal/sensors57
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of the polarizations; and a second one, with an adaptive 2 × 2 MIMO linear equalizer to
resolve the crosstalk between the modes [12].

SDM [13] using multimode fibers (MMF) [14] or few mode fibers (FMF) [15,16], ap-
peared as a solution for communication systems reaching speeds well above 100 Tb/s
when combined with wavelength multiplexing techniques [17]. Therefore, the optical
channel model, based on the Jones matrix, was extended to represent the multiple fiber
modes [18–20], and adaptive linear MIMO equalization [21] was studied and updated as
an extension of the PDM case [2]. There are works that study the complexity of direct time
and frequency domain implementations of the adaptive MIMO equalization, both for a
linear design [12,22–24] and a nonlinear one [25], and also in the optical domain [26]. An
important difference of SDM systems w.r.t. PDM systems is that the modal dispersion (MD)
in SDM systems is higher than the equivalent polarization dispersion in PDM systems,
reaching the same order of magnitude of the CD [20]. This boosts looking for simpler
DSP schemes that avoid the enormous complexity required from the classical equalizers
proposed for a PDM system and initially adapted to SDM systems [24]. In particular, linear
MIMO receiver designs have been proposed for SDM systems [27,28] by expanding PDM
systems [12,21,29], where a fractional-spaced equalizer (FSE) with an oversampling rate rov
of two is used. A review of different combinations of fiber types and DSP schemes reported
in the literature with their associated complexity is summarized in [1].

The impact of mode-dependent loss (MDL) in long-haul optical links has more re-
cently been studied, especially in the associated loss in the channel capacity when using
minimum mean square error (MMSE) MIMO receivers [27,30]. This fact has initiated a
race towards nonlinear receivers that can improve performance in the presence of MDL,
increasing the receiver complexity notably [31,32]. However, performance evaluation of
SDM systems that incorporate MIMO FSE receivers in the presence of MDL and the impact
that pulse-amplitude modulation (PAM) pulses roll-off factor have on this performance,
still deserve attention.

This paper provides a framework for the analysis of linear MIMO receivers for SDM
that includes a continuous-time MIMO matched filter followed by a MIMO linear filter,
without making prior assumptions about oversampling or the continuous-time optical
front-end. This approach provides, for example, a theoretical basis for possible silicon
photonics optical front-ends capable of SDM equalization. We show that the generalized
linear MIMO MMSE receiver, for channels with negligible MDL, can be simplified to a
matched filter MIMO receiver, which completely eliminates the ISI and crosstalk introduced
by the channel.

When the optical channel exhibits a significant MDL, we include linear equalization
and carry out numerical simulations to get the performance of a system that consists of:
A PAM transmitter with square-root raised cosine pulses; a complete long-haul optical
channel with SDM; and a MIMO receiver based on the FSE approach with oversampling of
two. To this end, an ensemble of thousands of random optical channels has been generated
and the system performance is evaluated by means of the signal to noise and distortion ratio
(SNDR) loss at the receiver output w.r.t., the one of an optimal equivalent system without
ISI and crosstalk. These results are presented for a configuration with a set of parameters
for a fiber, transmitter, and receiver, which is representative of current technology.

The paper is structured as follows. After a short section of defining the notation used
(Section 2), we begin by describing the optical channel model for a long-haul communi-
cation system using SDM, including CD, MD, and MDL impairments (Section 3). Next, a
communication system based on a generalized PAM transmitter with square-root raised
cosine pulses, and a linear MIMO receiver designed under the MMSE optimization criterion
are discussed in Section 4. In Section 5, the numerical simulations are presented and SNDR
loss metrics are given for the optical communication system with a FSE MIMO receiver for
different values of channel dispersion (including MDL) and roll-off factor of the square-root
raised cosine pulses. Finally, conclusions are summarized in Section 6.
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2. Notation

Matrices are represented as M, and vectors as v. Vectors are column vectors unless
otherwise noted. �x	 denotes the largest integer less than or equal to x. x∗ represents the
conjugate of x, MH denotes the Hermitian of M, and vT represents the transpose of the
vector v. E[x] is the expectation operator applied to the random variable x. i ∈ {1, . . . , D} is
used to index a mode among the D modes used in the fiber and ∗ represents the convolution
operator. The result of the convolution operator applied to a D1 × D2 matrix a(t) and a
D2 × D3 matrix b(t) is a D1 × D3 matrix denoted as c(t) and given by:

c(t) = a(t) ∗ b(t) (1)

where each of the elements of c(t), denoted as cij(t), are obtained as in a simple matrix
multiplication, but substituting the product by the convolution operator:

cij(t) =
D2

∑
k=1

aik(t) ∗ bkj(t). (2)

Similarly, the result of the convolution operator applied to a D1 × D2 matrix a(t) and
a time dependent signal y(t) is a D1 × D2 matrix denoted as d(t) where d(t) = a(t) ∗ y(t).
Each of the elements of the matrix d(t) are obtained as in a multiplication of a matrix with
a scalar, however substituting the product by the convolution operator:

dij(t) = aij(t) ∗ y(t). (3)

F{y(t)} denotes the Fourier transform of the continuous-time signal y(t) and F−1{Y(ω))}
the denotes inverse Fourier transform of Y(ω). Similarly, for the discrete-time signal y[n]
we denote its corresponding discrete Fourier transform as Y(Ω).

3. Long-Haul Optical Link MIMO Channel Model

In this section we describe the multi-section optical channel model used in this work.
The effect of the channel noise is discussed separately in Section 4. The relationship between
the input vector x(ω) = [x1(ω), x2(ω), . . . , xD(ω)]T of complex electric field amplitudes
of each of the D modes propagating along the fiber, and the corresponding output vector
y(ω) = [y1(ω), y2(ω), . . . , yD(ω)]T can be modeled, after neglecting non-linear effects, as
a multiple-input multiple-output linear system Htot(ω) [2]:

y(ω) = Htot(ω)x(ω), (4)

where Htot(ω) is a D × D matrix that models the signal propagation along the channel. For
D = 2, the system is equivalent to a classical PDM over a SMF, and Htot(ω) takes the form
of the Jones matrix [8]. For D > 2, extensions to the Jones matrix have been proposed to be
adequate for the SDM model [19,20].

In the case of long-haul systems, Htot(ω) can be further modeled as a concatenation
of Kamp spans composed of the optical fiber and an optical amplifier [2,18,33,34]. Hence,
the whole channel transfer function can be written as:

Htot(ω) = HCD(ω) · H(ω), (5)

where HCD(ω) = e
(
− j

2 ω2 β̄2�tot

)
is a single-input single-output (SISO) term that models the

mode-averaged distortion due to CD, β̄2 represents the mode-averaged CD per unit length,
and �tot denotes the total link length. The matrix H(ω) includes inter-mode cross-talk,
MDL and MD effects of the complete MIMO system. Equation (5) can be written as a
product over the Kamp spans:
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H(ω) =
Kamp

∏
k=1

H(k)(ω), (6)

where H(k)(ω) is the channel response of the kth span. We use k ∈ {1, . . . , Kamp} to index
the spans in the optical channel. We can write out H(k)(ω) as [20,34]:

H(k)(ω) = V(k)Λ(k)(ω)(U(k))H , (7)

where the diagonal matrix Λ(k)(ω) for a given span k includes the MDL effects and the MD
of each mode w.r.t. the mode-averaged value [33], and can be expressed as:

Λ(k)(ω) = diag
([

e
(

1
2 g(k)1 −jωτ

(k)
1

)
, . . . , e

(
1
2 g(k)D −jωτ

(k)
D

)])
, (8)

being g(k) = [g(k)1 , g(k)2 , . . . , g(k)D ] the uncoupled modal gains and τ(k) = [τ
(k)
1 , τ

(k)
2 , . . . , τ

(k)
D ]

uncoupled modal group delays. We assume that the uncoupled modal group-velocity
dispersion is equal to zero for all the k spans [33].

The k-th span mode coupling is modeled by the frequency-independent V(k) and U(k)

matrices. It is important to note that, by considering that all the modes propagating through
the fiber experience the same attenuation, both matrices are unitary, i.e.,

V(k) · (V(k))H = I = U(k) · (U(k))H . (9)

Alternatively, H(ω) can also be written by applying a singular value decomposition
(SVD), as the product of two unitary matrices U(tot)(ω) and V(tot)(ω), and a diagonal
matrix Λ(tot)(ω) as [35]:

H(ω) = V(tot)(ω)Λ(tot)(ω)U(tot)H
(ω) (10)

where now, the diagonal matrix Λ(tot)(ω) is given by:

Λ(tot)(ω) = diag
([

e
(

1
2 g(tot)

1 −jωτ
(tot)
1

)
, . . . , e

(
1
2 g(tot)

D −jωτ
(tot)
D

)])
(11)

where g(tot) = [g(tot)
1 , g(tot)

2 , . . . , g(tot)
D ] are the coupled modal gains of the overall channel

and τ(tot) = [τ
(tot)
1 , τ

(tot)
2 , . . . , τ

(tot)
D ] denote the coupled modal group delays.

Note that in (10), both U(tot)(ω) and V(tot)(ω) unitary matrices have in general fre-
quency dependence, in contrast to U(k) and V(k) in (7) that have not [27,33].

4. SDM Communication System Model

This section describes the model employed to represent the communication system
established over the optical channel with multiple spans. The SVD of the channel in (10) can
be useful for designing a transmitter based on a precoding matrix combined with a linear
receiver, as used in wireless systems [36]. However, this approach becomes unfeasible for
long-haul optical communication systems, since the end-to-end channel side information
needed to build the transmitter precoding matrix changes faster than the time needed for
the system to collect, send, and process that information [33]. Therefore we focus on a
SDM system with no channel side information that uses a linear receiver to cope with the
channel impairments as shown in Figure 1 [37].

The binary data symbols, s[n] = [s1[n], s2[n], . . . , sD[n]]
T , are PAM modulated in

parallel for each of the i ∈ {1, . . . , D} optical modes using the same transmitter pulse P(ω)

to get the PAM signals, denoted by the column vector x(t) = [x1(t), x2(t), . . . , xD(t)]
T .

In Figure 1, T is the transmitted symbol period and the first block represent D parallel
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PAM modulators working at a symbol rate (and, hence, it includes the discrete-time to
continuous-time conversion). The transmitted signal is distorted by ISI and crosstalk
introduced by the MIMO channel, modeled with the Htot(ω) matrix described in Section 3.
It has been shown that the noise in a MDL-impaired system is additive and spatially
white [21]. Therefore, in this work we add before the receiver, as part of the channel, an
additive white Gaussian noise (AWGN) vector n(t) = [n1(t), n2(t), . . . , nD(t)]

T , which, for
a certain mode i, has a variance equal to N0

2 .
The resulting continuous-time signal vector y(t) = [y1(t), y2(t), . . . , yD(t)]

T is pro-
cessed by a MIMO receiver to obtain the estimation of the transmitted symbols s[n], de-
noted as ŝ[n] = [ŝ1[n], ŝ2[n], . . . , ŝD[n]]

T . In this work we focus on linear MIMO receivers
and so, the estimation part in the receiver is depicted in Figure 1 with a generic linear
filter of response O(ω), which is followed by a sampler working at the symbol rate. In the
following, we propose linear MIMO receiver structures based on the MMSE criterion of an
estimated symbol vector.

Figure 1. Spatial division multilpexing (SDM) communication system model with linear multiple-
input multiple-output (MIMO) receiver.

4.1. Transmitter

The transmitted data in each of the D modes are modulated using a PAM with a
square-root raised cosine pulse p(t) with roll-off factor equal to α and normalized power,
which can be expressed as [38]:

p(t) =
4α

π
√

T
· cos

(
[1 + α]πt

T
)
+

T·sin([1−α] πt
T )

4αt

1 −
(

4αt
T

)2 . (12)

Hence, we can write the sequence of PAM pulses for a given mode i as:

xi(t) =
∞

∑
n=−∞

si[n]p(t − nT), (13)

where si[n] is a random variable with values taken from the set defined by the PAM
modulation scheme. Let us define the global impulse response q(t) as the convolution of

the transmitting pulse p(t) and the optical channel impulse response matrix htot(t) as:

q(t) = htot(t) ∗ p(t), (14)

so that q(t) is a D × D matrix of impulse responses. This way, qij(t) describes the impulse
response between the transmitter mode i and the receiver mode j. Therefore, we can write
the relationship between the transmitted symbols sj[n] and the received signal in mode i,
yi(t), as:

yi(t) = ∑
n

D

∑
j=1

sj[n]qij(t − nT) + ni(t) (15)

with ni(t) as the noise in the i-th receiver mode.
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4.2. Linear MMSE MIMO Receiver

The most widely used linear MIMO receiver for SDM systems is based on the design
of filter O(ω) in Figure 1 to minimize the mean squared error (MSE), which is called a
linear MMSE MIMO receiver [28,37,39]. Mathematically, the MSE for the linear MIMO
receiver under the MMSE criterion is defined as:

σ2
MMSE-LE = E

[
eH [n]e[n]

]
(16)

where
e[n] = s[n]− ŝ[n] (17)

with ŝ[n] as the output vector of the linear MIMO receiver O(ω).
It is well known that the structure of a linear MMSE MIMO receiver can be divided

into a matched filter QH(ω) operating in continuous time, a sampler operating at the
symbol rate, and a discrete-time equalizer of response W(Ω), as presented in Figure 2.

Figure 2. SDM communication system model with linear minimum mean square error (MMSE)
MIMO receiver.

We denote as y′[n] the vector of samples after the match filter QH(ω) = F{qH(−t)}
in the receiver and a symbol rate sampling, being q(t) = F−1{Q(ω)} defined in (14).

Now, we define the sampled impulse response at t = nT of the convolution of q(t) and its

matched filter qH(−t), which represents the equivalent discrete channel response as:

g[n] = q(t) ∗ qH(−t)
∣∣∣
t=nT

, (18)

and its discrete Fourier transform pair as:

G(Ω) =
∞

∑
n=−∞

g[n] · e−jΩn. (19)

Hence, the optimal discrete-time MIMO equalizer Wopt(Ω) according to the MMSE
criterion becomes:

Wopt(Ω) =

[
G(Ω) + I ·

(
N0

2

)]−1
, (20)

where we are considering a normalized transmission power equally distributed in each of
the D modes.

When G(Ω) satisfies the Nyquist criterion for MIMO systems G(Ω) = I, there is
neither ISI nor cross-talk at the matched filter output, further equalization would not be
needed, and the optimum linear receiver consists only in the matched filter. However, if
such a criterion is not fulfilled, the equalizer W(Ω) is essential and some SNDR loss at the
output will be unavoidable w.r.t. the ideal case.

62



Sensors 2022, 22, 798

4.3. Matched Filter-Based Receiver for SDM

In this subsection we will explore the optical channel requirements to reduce the linear
MIMO receiver O(ω) in Figure 1 to a simple matched filter-based receiver. Furthermore,
we will show that the resulting receiver is optimal in the sense that the discrete-time system
response of the SDM communication system is the identity matrix, followed by the addition
of the AWGN noise.

Let us first write out:
Q(ω) = P(ω) · Htot(ω), (21)

where Htot(ω) and P(ω) are the Fourier transforms of htot(t) and p(t), respectively and
according to what is plotted in Figure 2. It follows that:

Q(ω)H = P∗(ω) · Htot(ω)H . (22)

The signal at each of the D branches yi(t), defined in (15), is processed before sampling
by the continuous-time filter QH(ω). The equivalent scheme for this matched filter-based
MIMO receiver is shown in Figure 3a. By using the linearity of the system we can rearrange
Figure 3a to obtain Figure 3b. Then, elaborating the expression Q(ω)QH(ω) we obtain that:

Q(ω)QH(ω) = P(ω) · Htot(ω) · HH
tot(ω) · P∗(ω) = P(ω) · H(ω) · HH(ω) · P∗(ω), (23)

where we have used that:
HCD(ω) · H∗

CD(ω) = 1. (24)

(a) (b)

Figure 3. SDM communication system model with matched filter-based receiver (a) and its reordered
version (b).

From (10) we have that:

H(ω) · H(ω)H =(Kamp−1

∏
k=1

V(k)Λ(k)(ω)U(k)H

)
· V(Kamp)Λ(Kamp)(ω)U(Kamp)

H

· U(Kamp)Λ(Kamp)H
(ω)V(Kamp)H

·
(Kamp

∏
k=2

U(Kamp−k+1)Λ(Kamp−k+1)H
(ω)V(Kamp−k+1)H

)

=

(Kamp−1

∏
k=1

V(k)Λ(k)(ω)U(k)H

)
· V(Kamp) · |Λ(Kamp)(ω)|2 · V(Kamp)H

·
(Kamp

∏
k=2

U(Kamp−k+1)Λ(Kamp−k+1)H
(ω)V(Kamp−k+1)H

)
.

(25)
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And the diagonal matrix:

|Λ(Kamp)(ω)|2 =

diag
([

e
1
2 g

(Kamp)
1 −jωτ

(Kamp)
1 , . . . , e

1
2 g

(Kamp)
D −jωτ

(Kamp)
D

])
·

diag
([

e
1
2 g

(Kamp)
1 +jωτ

(Kamp)
1 , . . . , e

1
2 g

(Kamp)
D +jωτ

(Kamp)
D

])
=

∣∣∣∣diag
([

e
1
2 g

(Kamp)
1 , . . . , e

1
2 g

(Kamp)
D

])∣∣∣∣2
(26)

that does not allow simplifying (25) unless the following holds:

|Λ(Kamp)(ω)|2 = e
(

g(Kamp)
)
· I. (27)

This latter condition is equivalent to assuming that:

e
(

1
2 g(Kamp)

)
= e

(
1
2 g

(Kamp)
1

)
= e

(
1
2 g

(Kamp)
2

)
= · · · = e

(
1
2 g

(Kamp)
D

)
, (28)

or, in other words, that the MDL is negligible for the Kamp-th span. When the condition
expressed in (27) is satisfied for all the spans of the system, we can commute the terms
in (25), and therefore, we can obtain:

H(ω) · H(ω)H =
Kamp

∏
k=1

|Λ(k)(ω)|2 =
Kamp

∏
k=1

e(g(k)) · I = e
(

∑
Kamp
k=1 g(k)

)
· I . (29)

Revisiting (23), and plugging in (29) under the assumption of a negligible MDL in the
optical channel, we can write:

G(ω) = Q(ω) · QH(ω) = |P(ω)|2 · e
(

∑
Kamp
k=1 g(k)

)
· I . (30)

Therefore, without loss of generality, e
(

∑
Kamp
k=1 g(k)

)
= 1 can be assumed and, after

sampling at the symbol rate, (30) can be written as:

G(Ω) =
1
T
·

∞

∑
l=−∞

∣∣∣∣P(Ω + 2πl
T

)∣∣∣∣2 · I = I, (31)

where we have used that p(t) defined in Equation (12) is a square-root raised cosine pulse
satisfying the Nyquist criterion.

Regarding the filtered noise waveforms z1(t) to zD(t) in Figure 4a, they have an auto-
correlation function matrix Rzz(t), whose Fourier transform pair Sz(ω) can be expressed as:

Sz(ω) = Q(ω) · Sn(ω) · QH(ω), (32)

where Sn(ω) is the Fourier transform of the autocorrelation function matrix Rnn(t) =

I · N0
2 · δ(t) of the received noise vector n(t) = [n1(t), n2(t), . . . , nD(t)]

T . We remind that
the noise components of the noise vector n(t) were assumed uncorrelated with identical
power in each mode equal to N0/2. Using (30) and (32) leads to:

Sz(ω) =
N0

2
· Q(ω) · QH(ω) =

N0

2
· |P(ω)|2 · e

(
∑

Kamp
k=1 g(k)

)
· I. (33)
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Using the previous assumptions about gains g(k) and P(ω) made before, we obtain
that the sampled noise vector z[n] = [z1[n], . . . , zD[n]]T has an autocorrelation matrix
function Rzz[n] = I · N0

2 · δ[n].
Therefore, we can conclude that a D × D MIMO coherent optical communication

system using a continuous-time matched filter as a receiver completely eliminates channel
ISI and crosstalk when the MDL in the channel is negligible. Moreover, the equivalent
discrete-time system model reduces to D discrete parallel AWGN channels as shown
in Figure 4b. Hence, there would be no loss of performance w.r.t. the AWGN channel
without distortion.

(a) (b)

Figure 4. MIMO coherent optical communication system model with matched filter-based receiver in
the absence of mode-dependent loss (MDL) (a) and its equivalent discrete-time system model (b).

5. Numerical Simulation of Linear MIMO FSE Receiver for MDL-Impaired
Optical Channel

In this section, we assess the performance of the ideal MMSE linear receiver when
MDL is present. Specifically, we study the SNDR degradation at the receiver output w.r.t.
the case when the MDL is negligible. To carry out this study, we will use a FSE-based
receiver, as shown in Figure 5, which is the most common implementation of the ideal
linear filter in discrete-time systems (see O(ω)in Figure 1). Note that this scheme is only
valid for integer oversampling rates rov.

Figure 5. SDM communication system model with linear fractionally-spaced equalizer (FSE) MIMO
receiver and integer oversampling rate rov.

The FSE oversampling rate rov has been set to two [1,12] and the discrete-time equalizer,
with a WFSE(Ω) response, has been designed with a number of taps Ntaps large enough so
that any further increase does not lead to a significantly better SNDR at the receiver output.
The decimated output of WFSE(Ω), by a rov factor, are the estimated symbol ŝ[n].

We define the receiver performance metric for each mode i, L(i), as the difference in
dB between the output SNR of an ISI and crosstalk-free system with D parallel AWGN
channels (see Figure 4b), and the output SNDR of the FSE-based receiver, denoted as
SNDRout.

5.1. Channel Model

We decide to carry out the numerical simulations of the H(ω) channel model described
in (6) in the time domain, so that the relative delays of the different modes can be easily
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described as a time shift between them. The different mode amplitudes can also be handled
simply by a diagonal matrix. The chromatic dispersion, which have a SISO frequency
response HCD(ω) that does not depend on the mode i ∈ {0, . . . , D}, is represented as [7]:

HCD(ω) = e−jβ ω2
2 , (34)

where β = β̄2�tot, and �tot = Kamp�span when all spans are considered of equal length.
The MDL effect is modeled with an amplification factor for each mode and each optical

amplifier (located at the end of each span). These factors are considered time-invariant for a
given channel realization in the form of a vector for the k-th span g(k) = [g(k)1 , g(k)2 , . . . , g(k)D ],

where g(k)i for i ∈ {0, . . . , D} is expressed in dB and taken from a Gaussian distribution

with zero mean and standard deviation (STD) σg. The sum of all factors ∑D
i=1 g(k)i is set to

0 for normalization purposes. Hence, the amplitudes matrix of the k-th span, frequency
independent, is given by:

A(k) = diag
([

e
(

1
2 g(k)1

)
, . . . , e

(
1
2 g(k)D

)])
. (35)

Alternatively, for each span k of the communication link we have the delays matrix:

Λ(k)(ω) = A(k) · diag
([

e−jωτ
(k)
1 , . . . , e−jωτ

(k)
D

])
, (36)

being τ(k) = [τ
(k)
1 , τ

(k)
2 , . . . , τ

(k)
D ] the vector that models the MD with group delays for each

mode of the k-th span.
To obtain the delays, we generate the first D/2 values of τ(k) from a Gaussian distri-

bution with STD σgd, and the second D/2 values are taken as the opposite of these, which

satisfies that ∑D
i=1 τ

(k)
i = 0, since we consider that the system uses polarization multiplexing

as part of the SDM [40].
The time-domain impulse response for each of the spans k is calculated by applying

the inverse Fourier transform to (7) and can be expressed as:

h(k)(t) = V(k)A(k)d(k)(t)U(k), (37)

where
d(k)(t) = diag

([
δ(t − τ

(k)
1 ), . . . , δ(t − τ

(k)
D )

])
, (38)

and we have used that the matrices A(k), U(k), and V(k) are constant.
Equation (37) describes that incoming signal at the kth span is multiplied by the unitary

matrix U(k), then each modal impulse response is delayed by τ
(k)
i , the amplification factor

is set by the diagonal matrix A(k) and the mode-mixing unitary matrix V(k) is applied.
Finally, the impulse response of the complete channel is given by:

htot(t) = h(Kamp)(t) ∗ h(Kamp−1)(t) ∗ · · · ∗ h(1)(t) ∗ hCD(t), (39)

where hCD(t) = F−1{HCD(ω)}.
Note that, due to the random nature of g(k) and τ(k) in each k span, we can generate

an arbitrary number Nch of channel realizations of Htot(ω) = F{htot(t)} for a given value
of σg and σgd.

Since we consider all the modes to be strongly coupled, the U(k) and V(k) matrices
of each span k are modeled as unitary Gaussian random matrices obtained from a QR
factorization of a complex random matrix whose elements have a zero mean and STD equal
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to 1. The two orthogonal matrices after QR factorization of two independent realizations of
the random matrix are used as U(k) and V(k), respectively.

We consider a total number of Kamp = 100 spans, each �span = 50 km long. For the
fiber parameters, we used the multi-core fiber data reported in [41], considering the number
of modes D = 6 and the central wavelength λc = 1469 nm. The selection of this multi-core
fiber allow us to compare the results of this work with those presented in [28], and to obtain
the fiber parameters needed for the numerical simulations from [41].

We take 2% as the underestimation dispersion factor that is applied to the dispersion
coefficient DCD to obtain the residual CD experienced by the receiver. For the gain STD
σg, we considered several values in the range of the systems referenced in [27]. For the
numerical simulations, we compute a total of Nch = 10,000 realizations of the channel
frequency response Htot(ω) defined in (5).

5.2. Transmitter and Linear MIMO FSE Receiver Parameters

As described in Section 4, the transmitter uses a generalized PAM modulation and an
square-root raised cosine for pulse shaping with a roll-off factor equal to α. We will show
results of the numerical simulation for several values of α. The symbol period T has been
set for a symbol rate Rs = 64 GBaud. The FSE-based MIMO receiver has an oversampling
factor rov = 2, and a number of equalizer taps Ntaps = 1000 has been selected to ensure that
it does not limit the receiver performance for the considered channel MDL.

5.3. Signal-to-Noise at the Input of the Receiver

The signal-to-noise ratio at the input of each mode
(

S
N

)
in
(i) for i ∈ {0, . . . , D} is

defined as: (
S
N

)
in
(i) =

Pin(i)
N0/2

. (40)

The signal-to-noise at the input of the receiver SNRin in dB can be written as:

SNRin = 10 · log10

(
1
D · ∑D

i=1 Pin(i)
N0/2

)
= 10 · log10

(
1
D

·
D

∑
i=1

(
S
N

)
in
(i)

)
, (41)

and it is taken from the set of values in Table 1. Pin(i) is the receiver input power in the
mode i for the current channel realization.

5.4. Performance Loss Metric for FSE-Based MIMO Receiver

We define the performance loss metric (in dB) of the FSE-based MIMO receiver in
MDL-impaired channels for certain mode i as:

L(i) = SNRin(i)− SNDRout(i) (42)

where SNR(in)(i) = 10 · log10

(
S
N

)
in
(i), and SNDRout = [SNDRout(1), SNDRout(2), . . . ,

SNDRout(D)]T is calculated as defined in [42] and Equation (28) in [43] for MIMO imple-
mentation of the FSE. Given a set of system model parameters, the numerical simulation
will generate a total of D · Nch values of L(i). The average loss AL is calculated for each
channel realization of among the available Nch as:

AL =
1
D

D

∑
i=1

L(i). (43)

Two FSE-based MIMO receiver performance metrics can be extracted from the D · Nch
calculated values of L(i):

• ML95 is defined as the 95th percentile of the L(i) distribution obtained for any optical
channel realization and mode;
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• AML95 is defined as the 95th percentile of the AL distribution obtained for any optical
channel realization.

The values for the parameters used in the simulation are summarized in Table 1.

Table 1. Simulation parameters.

Parameter Symbol Value and Reference

Span length �span 50 km
Number of spans Kamp 100

Number of spatial and polarization modes D 6

Center wavelength λc 1469 nm [41]
Modal dispersion στ/

√
�span 3.1 ps/

√
km [41]

Dispersion coefficient DCD = − 2πc
λ2

c
β̄2 20.1 ps/(nm·km) [41]

Underestimation dispersion factor UCD 2% [9]
Amplifier gain STD σg 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 dB

Symbol rate Rs = 1/Ts 64 GBaud
Oversampling factor rov 2

Roll off factor α 0.1, 0.5, 0.7, 0.9
Number of channel realizations Nch 10000

Signal to noise ratio at the receiver input SNRin 60 30 15 10 6.2 5 dB [27]
Number of taps Ntaps 1000

5.5. Numerical Simulation Results

The first result is focused on the impact of PAM pulses roll-off factor α and MDL level,
represented by σg, on the SDM optical system performance. Figure 6 shows that for systems
with transmitters using a higher α, the degradation is a bit lower. The effect is higher with
increasing σg for systems working at a high regime of SNRin, as seen in Figure 6b.

(a)

Figure 6. Cont.
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(b)

Figure 6. ML95 (up) and AML95 (down) as defined in Section 5.4 for SNRin = 5, 6.2, and 10 dB (a)
and SNRin = 15, 30, and 60 dB (b) for different values of the transmitter roll-off factor α. Note that
σg = 0 corresponds to a channel without MDL.

In practical systems, the allowable loss of SNDRout in a channel with elements intro-
ducing MDL w.r.t. an ideal channel without MDL is around 1–2 dB. We can observe that,
assuming a maximum degradation of 2 dB in the system with a 95% confidence, σg values
of the amplifiers should not exceed 0.2 dB. These results are in agreement with the capacity
limits of a MIMO MMSE receiver and MDL channel calculated in [27].

A second result is presented in Figure 7, where the probability distribution of AL and
SNRin estimated from the analysis of all channel realizations is plotted. We are comparing
different levels of SNR regimes, with SNRin = 5, 6.2, and 10 dB (Figure 7a) and SNRin =
15, 30, and 60 dB (Figure 7b), for a roll-off factor of α = 0.9. The upper and lower limits of
the blue boxes represent the 25th and 75th percentiles respectively. The red line inside the
box indicates the median of the metric. In case the distribution of values was Gaussian,
the whisker bounds correspond to 2.7 times the STD of the metric or, in other words, the
number of values between the upper and lower bounds of the whiskers contains 99.3%
of the values. Values outside these limits are considered outliers and are individually
represented by red crosses.

We make the following observations from Figure 7:

• The distribution of AL is not Gaussian, as we can observe by comparing the difference
between upper and lower outliers for higher σg values and their asymmetry;

• There are no negative values of AL, since the FSE MIMO receiver cannot improve on
average the SNRin. However, by taking all values of L(i) for any received mode i,
we can find that, for certain channels and modes, the FSE MIMO receiver can locally
improve the SNRin(i) of a particular mode i, but always at the cost of another mode
of the receiver;

• The performance degradation depends on the SNRin. In a low SNRin regime (5 dB,
Figure 7a), the degradation is measured lower in absolute values when compared to
the high SNRin regime (60 dB, Figure 7b);

• The STD of the performance degradation also depends on the SNRin. In the low
SNRin regime (5 dB, Figure 7a), the STD of the degradation is lower when compared
to the high SNRin regime (60 dB, Figure 7b);

• The performance degradation measured as AL is milder than measured as L(i) when
more than 95% coverage of the channels is considered. Note that the difference is
negligible when median values are taken into account.
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(a)

(b)

Figure 7. Probability distribution for AL as defined in (43) (up) and L(i) as defined in (42) (down)
for SNRin = 5, 6.2, and 10 dB (a) and SNRin = 15, 30, and 60 dB (b). α = 0.9 for all graphs. Note that
σg = 0 corresponds to a channel without MDL.

6. Conclusions

This work explored long-haul fiber-optic SDM coherent systems with PAM raised-
cosine pulses. We investigated the overall system performance under different configu-
rations of the optical channel. For that purpose, we modeled this channel with a MIMO
multi-span structure that included the several dispersion terms and modal losses factors.

It was demonstrated that the linear MMSE MIMO receiver completely eliminated ISI
and crosstalk when the number of taps was sufficiently high and the optical channel was
free of MDL. Moreover, the generic structure of the linear MMSE MIMO receiver could be
simplified to a continuous-time matched filter and still retained the same properties. This
observation paves the way for analog receivers that simply implement the matched filter of
the optical channel, eliminating all channel impairments when MDL is negligible.

70



Sensors 2022, 22, 798

We also defined performance metrics to assess the losses of a linear MIMO receiver
implemented using a MIMO FSE with an oversampling factor of two for an optical channel
that exhibited significant MDL. We have shown that such loss depends on the transmitter
PAM pulses roll-off factor and the SNR level at the receiver input. We also determined that
the performance degradation could be limited by processing the D output modes together
by averaging the D output SNDR values at the receiver.

This fact opens a way to exploit this loss compensation between modes at the receiver
output. The design of specific forward error correction codes taking into account this aspect
could improve the final performance of the system in terms of bit error rate. Constructing
the message to be encoded, including bits or signals belonging to all modes, could improve
system performance w.r.t. constructing messages with bits or signals from only one mode.
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Abstract: Adaptive beamforming is sensitive to steering vector (SV) and covariance matrix mis-
matches, especially when the signal of interest (SOI) component exists in the training sequence. In
this paper, we present a low-complexity robust adaptive beamforming (RAB) method based on
an interference–noise covariance matrix (INCM) reconstruction and SOI SV estimation. First, the
proposed method employs the minimum mean square error criterion to construct the blocking matrix.
Then, the projection matrix is obtained by projecting the blocking matrix onto the signal subspace of
the sample covariance matrix (SCM). The INCM is reconstructed by replacing part of the eigenvector
columns of the SCM with the corresponding eigenvectors of the projection matrix. On the other hand,
the SOI SV is estimated via the iterative mismatch approximation method. The proposed method
only needs to know the priori-knowledge of the array geometry and angular region where the SOI is
located. The simulation results showed that the proposed method can deal with multiple types of
mismatches, while taking into account both low complexity and high robustness.

Keywords: robust adaptive beamforming; orthogonality; blocking matrix; interference-plus-noise
covariance matrix reconstruction

1. Introduction

Adaptive beamforming adjusts the weight vector according to the application envi-
ronment to enhance the SOI by suppressing interference and noise, and it has been widely
used in radar, sonar, microphone array speech processing, wireless communication, radio
astronomy, and other areas [1–3]. Generally, the standard Capon beamformer (SCB) obtains
the maximum-array-output-signal-to-interference-plus-noise ratio (SINR) if the covariance
matrix and SOI SV are accurately known [4]. However, severe performance degradation
may occur in the presence of SV and INCM mismatches due to the fact of array calibration
errors, finite snapshots, and other factors, especially when the SOI component is presented
in the INCM [5,6]. Therefore, various RAB algorithms have been proposed to ensure the
robustness of beamformers over the past years. In general, these RAB methods can be
classified into the following types [6,7]: diagonal loading (DL) technique, eigenspace-based
(ESB) technique, uncertain-set based technique, and covariance matrix reconstruction-based
technique.

DL is one of the most classical RAB methods for improving the robustness of a
beamformer, which is derived by imposing a quadratic constraint either on the norm of the
weight vector or on its SOI SV [8,9]. However, its major challenge is that it is difficult to
choose the optimal DL level in different scenarios. To overcome this drawback, parameter-
free methods in [4,10–13] can automatically compute the DL level without specifying
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any additional user parameters. Regrettably, these methods fail to provide satisfactory
performance in high-input signal noise rates (SNRs).

The ESB technique is another type of traditional RAB method that is performed by
projecting nominal SV onto the signal-plus-interference subspace to eliminate the arbitrary
SV mismatch of SOI [14–17]. However, serious performance degradation will appear at
low-input SNRs. In [15], a modified ESB method based on covariance matrix enhancement
was proposed to improve the performance at low SNRs. In addition, the authors in [17]
proposed a method to obtain the basis vector of signal subspace among the eigenvectors of
the SCM. However, these methods perform poorly in the presence of large SV mismatch
and high-input SNRs.

The uncertain-set-based technique utilizes a spherical or ellipsoidal uncertainty con-
straint setting on the nominal SV to estimate the SOI SV including the worst-case-based
(WCB) method [5,18], doubly constrained method [10,19], probabilistically constrained
method [20,21], and linear programming method [22]. However, these methods do not
eliminate the SOI component from the SCM, and severe performance degradation will
occur in the presence of high-input SNRs [7]. In addition, most of them need to solve
the second-order cone programming (SOCP) problem, which leads to high complexity.
Actually, the uncertain-set-based technique has been demonstrated to be equivalent to the
DL method [6].

The above methods are mainly aimed at estimating SOI SV or SCM. Although these
methods can improve the robustness of a beamformer, all still suffer from serious per-
formance degradation at high-input SNRs. In order to overcome this drawback, a new
type of RAB method based on INCM reconstruction has been developed in recent years.
The authors of [23] firstly employ the SCB to estimate interference SV and reconstruct the
INCM, but the power of interference was not accurately estimated. Gu, in [24], proposed
an RAB method based on INCM reconstruction and SV estimation, where the INCM is
reconstructed by integrating over the complement of the SOI angular region. However, the
complexity is increased significantly. Subsequently, in [25,26], low-complexity shrinkage-
based mismatch estimation (LOCSME) and the sparsity of the source distribution were
used to significantly reduce the complexity. Unfortunately, these methods can achieve
good performance only in certain conditions. To resist more types of mismatches, a new
estimator for INCM based on interference SV and power estimation is presented in [6], and
a QCQP problem with new inequality constraint was established to estimate the SOI SV.
In [27], the authors constructed and solved a set of linear equations to obtain the estimation
of interference power. Furthermore, the residual noise power was considered to improve
the estimation accuracy of incident signal power in [28]. In [29], the iterative mismatch
approximation method was employed to estimate the power and SV of all incident signals;
then, these estimates were used to reconstruct the INCM. In [30], all nominal SVs were
adjusted to an accurate version by a line search along the corresponding gradient vector.
Together with the recorded power, the INCM was reconstructed. The Capon spectrum
can be approximated as the power of noise when the SV mismatch is large enough. To
overcome this drawback, the authors in [31] used the principle of maximum entropy power
spectrum to reconstruct the interference and SOI covariance matrix by estimating all pow-
ers of incident signals. Different from the above INCM reconstruction-based methods, the
authors in [32] reconstructed the INCM by projecting the interference subspace onto the
received snapshots, which can effectively eliminate the SOI component and achieve good
performance. In [33], the INCM reconstruction relies on using the average value of noise
eigenvalues instead of the eigenvalue of the SOI to eliminate a noticeable part of the SOI.
Ai et al. [34] presented an RAB algorithm for subspace projection and covariance recon-
struction (SPCMR) that employs subspace projection and oblique projection to estimate the
SOI SV and interference powers accurately. In [35], each SV was derived from the vector
located at the intersection of two subspaces. Meanwhile, the estimate of each SV was given
in a closed-form expression.
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In this paper, a low-complexity RAB method based on INCM reconstruction and SOI
SV estimation is proposed. Unlike previous methods, the INCM in the proposed method
was reconstructed utilizing the orthogonality of subspace. First, based on the idea of the
matrix filter in [36,37], the minimum mean square error criterion was employed to construct
the blocking matrix. Then, we performed eigen-decomposition on the SCM and obtained
the orthogonal projection matrix of the signal subspace. By projecting the blocking matrix
onto the orthogonal projection matrix, a projection matrix was obtained. Subsequently,
the INCM was reconstructed by replacing the eigenvector columns of the SCM, which can
span to the signal subspace with the corresponding eigenvectors of the projection matrix.
Finally, the SOI SV was estimated by employing the iterative mismatch approximation
method presented in [29]. The theoretical analysis and simulation results demonstrated
that the proposed method can efficiently deal with multiple types of mismatches.

The rest of this paper is organized as follows. The signal model and necessary
background regarding the adaptive beamforming method is introduced in Section 2. In
Section 3, the proposed RAB methods are described in detail, and the feasibility analysis of
the blocking matrix is performed. The simulation results are provided in Section 4. Finally,
conclusions are drawn in Section 5.

2. Signal Model and Background

Consider a uniform linear array (ULA) composed of M omnidirectional sensors that
are illuminated by L + 1 far-field uncorrelated narrowband signals, which consist of one
SOI and L interferences. The array complex sample vector at time k can be presented as:

x(k) = xs(k) + xi(k) + xn(k), (1)

where xs(k) = s0(k)a0 and xi(k) = ∑L
l=1 sl(k)al , respectively, represent the M × 1 vector of

the SOI and interference signal component in the received data. sl(k) and al(l = 0, . . . , L)
are the lth incident signal waveform and corresponding SV. xn(k) is additive complex
Gaussian noise with a zero mean and a variance of σ2

n , which is uncorrelated with all the
other signals. In this paper, the sensors were spaced at half of the wavelength. The nominal
SV from θ can be written as:

a(θ) =
[
1, e−j 2πd

λ sinθ , . . . , e−j(M−1) 2πd
λ sinθ

]T

=
[
1, e−jπsinθ , . . . , e−j(M−1)πsinθ

]T
,

(2)

where (·)T denotes the transpose, and λ and d, respectively, denote signal wavelength and
distance between two adjacent sensors.

The output of the beamformer is written as:

y(k) = wHx(k), (3)

where w = (w1, . . . , wM)T is the complex beamformer weight vector, and (·)H is the
Hermitian transpose. The optimal beamformer weight vector, w, can be calculated by
maximizing the output SINR, which is defined as follow:

SINR � σ2
0

∣∣wHa0
∣∣2

wHRi+nw
, (4)

where σ2
0 = E

[
|s0(k)|2

]
and a0 denote the SOI power and SV, E[·] denotes the expectation

operator of the stochastic variable. Ri+n ∈ CM×M denotes the precise INCM which can be
written as:
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Ri+n = E
{
[xi(k) + xn(k)][xi(k) + xn(k)]

H
}

=
L
∑

l=1
σ2

l alaH
l + E

[
xn(k)xH

n (k)
]

= Ri + σ2
nI,

(5)

where σ2
l = E

[
|sl(k)|2

]
and I denote the lth interference power and identity matrix,

respectively, and σ2
n is the noise power. The main purpose of the optimal beamformer is to

maximize the output SINR while keeping the SOI undistorted at the same time, which is
the so-called the minimum variance distortionless response (MVDR) problem [2]:

min
w

wHRi+nw s.t.wHa0 = 1. (6)

The optimal beamformer weight vector is given by:

wopt =
R−1

i+na0

aH
0 R−1

i+na0
. (7)

In practical applications, the precise INCM Ri+n is always unavailable, and it is usually
replaced by SCM R̂:

R̂ =
1
K

K

∑
k=1

x(k)xH(k), (8)

where K denotes the number of snapshots. As K increases, R̂ converge to the actual one.
It has been proved that replacing Ri+n by SCM R̂ does not change the optimal output
SINR [2]. Substituting the actual SOI SV a0 by the nominal SV a0 based on the known
array structure, the optimal weight vector becomes the sample covariance inversion (SMI)
beamformer:

wSMI =
R̂−1a0

aH
0 R̂−1a0

. (9)

With the optimal weight vector, the Capon spatial power spectrum, is employed as a
power estimator over all directions [28]:

P̂(θ) = wH
SMIR̂wSMI

= 1
aH(θ)R̂−1a(θ)

, (10)

where a(θ) is the nominal SV associated with θ ∈ (−90◦, 90◦).

3. Proposed Method

The main idea of the proposed method is to utilize the reconstructed INCM and the
corrected SOI SV to derive the optimal weight vector. Depending on the minimum mean
square error criterion, a blocking matrix is obtained. The orthogonality of the subspace is
employed to derive the projection matrix, and the INCM is reconstructed by replacing the
eigenvector columns of the SCM such that they can span to the signal subspace with the
corresponding eigenvectors of the projection matrix. The optimal weight vector is obtained
along with the SOI SV estimated by the iterative mismatch approximation method.

3.1. INCM Reconstruction

Different from Capon power spectrum integration and interference estimation based
INCM reconstruction methods, we present a blocking matrix based on the matrix filter
principle in [36,37], which is suitable for suppressing signals illuminating within a spe-
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cific angular region. Consider a blocking matrix G ∈ CM×M, the property of G can be
described as:

GHa(θ) =
{

a(θ), θ ∈ Θp
0, θ ∈ Θs

, (11)

where Θs denotes the stopband angular region, and the direction of arrival (DOA) of the
SOI lies in it. Θp denotes the passband angular region which contains the locations of
interference. Sampling Θs and Θp uniformly with the Ns and Np sampling points, the corre-
sponding angular sequences can be presented as θp

(
p = 1, . . . , Np

)
and θs (s = 1, . . . , Ns).

The blocking matrix design problem based on the minimum mean square error criterion
can be described as:

min‖
G

GHP − P̆‖F, (12)

where ‖·‖F denotes Frobenius norm. P =
[
a
(
Θp

)
, a(Θs)

] ∈ C
M×(Np+Ns) denotes the

nominal manifold matrix, and P̆ =
[
a
(
Θp

)
, 0M×Ns

] ∈ C
M×(Np+Ns) denotes the desired

manifold matrix. The solution to (12) can be found by taking the gradient of F(G) =
GHP − P̆F and making it equal to zero:

∂F(G)
∂G = ∂

∂G tr
[(

GHP − P̆
)H(

GHP − P̆
)] 1

2
= 0

G =
(
PPH)−1PP̆H .

(13)

Performing eigen decomposition on R̂ yields:

R̂ =
M
∑

i=1
ΓiuiuH

i = UΓUH

= UsΓsUH
s + UnΓnUH

n ,
(14)

where Γ1 ≥ Γ2 ≥ · · · ΓM−1 ≥ ΓM denotes the eigenvalues of R̂ arranged in descending
order. The minimum eigenvalue can be approximately considered as the estimation of the
noise power σ̃2

n [6]. ui ∈ CM×1 is an eigenvector associated with Γi. Us = (u1, . . . , uL+1) ∈
CM×(L+1) and Un = (uL+2, . . . , uM) ∈ CM×(M−L−1), respectively, denote the signal
subspace eigenvectors and the noise subspace eigenvectors. Γs = diag(Γ1, . . . , ΓL+1) ∈
CM×(L+1) and Γn = diag(ΓL+2, . . . , ΓM) ∈ CM×(M−L−1) are diagonal matrices. According
to the properties of the eigen subspace, we have:

span{u1, . . . , uL+1} = span{a0, . . . , aL}, (15)

where span{u1, . . . , uL+1} denotes the spanned subspace generated by the vector group
{u1, . . . , uL+1}. Then, any accurate SV al can be expressed as a linear combination of
columns of Us [27], which means that the projection matrix Φ = UsUH

s G is orthogonal to
a0. Q = ‖ΦHa(θ)‖2 is used to measure the orthogonality between projection matrix Φ
and a(θ). Assume that the SOI and interference impinge on the half-wavelength spacing
ULA with M = 10 from θ0 = 3◦, θ1 = −35◦, and θ2 = 42◦, the stopband and passband
region are set as Θs = (θ0 − 6◦, θ0 + 6◦) and Θp = (−90◦, θ0 − 6◦)

⋃
(θ0 + 6◦, 90◦). It can

be observed from Figure 1 that Q will be much smaller when θ = θ0 than θ = θ1,2. This
means Φ and a(θ0) are orthogonal or approximately orthogonal. In addition, the value
of Q corresponding to θ1,2 is equal to ‖a(θ1,2)‖2. Hence, projection matrix Φ collects the
spatial information of interference and removes the spatial information of the SOI.

Consider that the interference SV lies in the signal subspace spanned by the dominant
eigenvectors of Φ. Then, employing eigen decomposition on Φ to obtain the signal subspace:

Φ = BΛBH = BsΛsBH
s + BnΛnBH

n , (16)
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where B = [b1, . . . , bM] = [Bs, Bn] and Λ = diag{λ1, . . . , λM) , respectively, denote unitary
and diagonal matrices. bl , l = 1, . . . , M denotes the eigenvector corresponding to λl , which
are arranged in descending order. In addition, Bs contains L + 1 eigenvectors columns
corresponding to the L + 1 largest eigenvalues, and span{b1, . . . , bL+1} can be considered
as the signal subspace.

Figure 1. The value of ‖ΦHa(θ)‖2 versus θ.

Substituting Bs back into (14) and replacing Us, then we can obtain the reconstructed INCM:

R̃i+n = BsΓsBH
s + UnΓnUH

n , (17)

plotting the power spectrum of R̃i+n by replacing R̃i+n with R̂ in (10), which is written as:

P̃(θ) =
1

aH(θ)R̃
−1
n+ia(θ)

. (18)

The spatial power spectrum distribution based on (10) and (18) is drawn in Figure 2.
The SOI was assumed to be impinging from θ0 = 3◦ with a fixed SNR = 30 dB and that
two interferences were impinging from θ1 = −35◦ and θ2 = 42◦ with a fixed interference-
to-noise rate (INR) INR = 20 dB, respectively. This shows that the blocking matrix can
effectively filter the SOI components and interference components are retained. Therefore,
R̃i+n can be used as an INCM to derive the beamformer.

 
Figure 2. Comparison of the Capon power spectrum (10) and the power spectrum based on (18) with
SNR = 30 dB, INR = 20 dB, and K = 100.
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3.2. SOI SV Estimation and Beamformer Weight Vector Calculation

For estimating the SOI SV, we employed the iterative mismatch approximation method
proposed in [29] to correct the presumed SOI SV. The iterative mismatch approximation
method depends on searching for the SV mismatch in the margin of the amplitude and
phase error. In the presence of SV mismatches, the actual SOI SV can be written as
a0 = a0 + e = α ◦ a0 ◦ ejβ. Employing the principle of estimating the signal steering
vectors via maximizing the beamformer output power [16], the estimated SOI SV ã0 can be
obtained by solving the pseudo-optimization problem:

max
α,β

P̃
(
θq, α, β

)
s.t. |1 − αm| ≤ ε

|βm| ≤ Φ,

(19)

where ◦ denotes the Hadamard product, and the power spectrum associated with θq, α, β is

written as P̃
(
θq, α, β

)
= 1/

(
α ◦ a(θq

) ◦ ejβ)HR̂−1(
α ◦ a

(
θq
) ◦ ejβ). ε and Φ denote the prede-

fined boundary values of the amplitude and phase mismatch, respectively. α = (α1, . . . , αM)T

and β = (β1 . . . , βM)T denote the amplitude and phase mismatch vectors, respectively. The
iterative mismatch approximation method is described in Algorithm 1. In addition, the initial
nominal SOI SV is associated with the middle value of Θs.

Algorithm 1. Iterative mismatch approximation method.

Input: ε, Φ, aq, R̂−1

Output: ãq, pwr
1: Initialize a = aq
2: for it1 = 1 . . . M
3:

~
Θα =

[
αql , αqh

]
= [1 − ε, 1 + ε],

~
Θβ =

[
βql , βqh

]
=
[
ej(−Φ), ej(Φ)

]
4: for it2 = 1 . . . depth

5: Eap =
~
Θβ ⊗ ~

Θα, Eap ∈ C1×4

6: ai(it1) = aq(it1)Egp(i), i = 1, . . . , 4
7: Calculate p(i) by substituting ai into Equation (10)
8: (pwr, idx) = max(p)

9: Zoom out of the amplitude/phase error area built by
~
Θα and

~
Θβ to Eap(idx)

10: Update
~
Θα and

~
Θβ

11: end

12: ãq(it1) = aq(it1)Eap(idx)
13: end

Then, the estimated SOI SV ã0 can be corrected as ãq. Substituting (17) together with
ã0 back into the Capon beamformer (7), the robust adaptive beamforming based on INCM
reconstruction via the projecting matrix and SV estimation can be written as:

w̃ =
R̃
−1
i+nã0

ãH
0 R̃

−1
i+nã0

. (20)

In a general case, the estimated SOI SV may be imprecise. Hence, we took ã0 as an
input parameter and performed multiple iterations to improve accuracy. The iteration was
terminated when the following conditions were satisfied:∣∣∣∣∣∣∣

σ̃2
q

∣∣∣current − σ̃2
q

∣∣∣
previous

σ̃2
q

∣∣∣
previous

∣∣∣∣∣∣∣ < ϕ, (21)
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where ϕ and σ̃2
q denote a predefined saturation coefficient and power corresponding to ãq,

respectively. The method we propose is summarized in Algorithm 2.

Algorithm 2. Proposed RAB method.

1: Calculate the SCM R̂ using (8) and eigen decompose R̂ to obtain US and σ̃2
n ;

2: Obtain the blocking matrix G using (13) and the projection matrix Φ = UsUH
s G;

3: Eigen decompose Φ to obtain Bs and reconstruct INCM via (17);
4: Using the iterative mismatch approximation method in Algorithm 1 to estimate the SOI SV;
5: Substitute R̃i+n and ã0 back into (20) to obtain the weight vector.

The number of floating-point operations (flops) was employed to measure the com-
putational complexity. The computational complexity of the proposed method is mainly
determined by calculating the SCM R̂ and matrix eigen decomposition, calculating G
and estimating SOI SV ã0. Calculating the SCM R̂ costs approximately O

(
M2K

)
flops.

Calculating G costs approximately O
(

NS M2 + NP M2 + 2M3) flops. The computational
complexity of matrix inversion and eigen decomposition is approximately O

(
M3) flops.

Assuming that depth = D, the computational complexity of estimating the SOI SV would
be approximately O

(
M3 + 3DM

)
flops. In practice, calculating G is independent of R̂ and

can be seen as a pre-processing operation of the proposed method. With K � M ∼= D, the
overall complexity of proposed method is approximately O

(
M2K

)
flops. In [6], the major

computations were conducted to solve a QCQP problem and estimate interference SVs.

Suppose that S denotes the number of search points in
—
Θ, the computational complexity

is O
(
max

(
M2S, M3.5)). In [30], the sample points, N, for the line search significantly af-

fected the adjustment of the SVs. Hence, when N > M, the computational complexity is
O
(

LNM2). The computational complexity of the MEPS-IPNC in [31] was O
(

M2L
)
, where

L is a small multiple of M. In [32], the computational complexity was O
(
max

(
M2 J, M2S

))
,

where S and J are the number of the sampling points in Θs and Θs ∪ Θi. In [33], the com-
putational complexity was declared to be O

(
M3). In [34], the computational complexity

was O
(
max

(
M2 J, M2S

))
, where S and J are the number of the sampling points in Θ and

—
Θ. In [35], the computational complexity was declared to be O

(
M2 I(L + 1)

)
, where I is the

number of sample points for Θ and Θi−l . Clearly, since the power spectrum calculation,
power spectrum integration, and QCQP problem solving are avoided in our proposed
method, it has the lowest computational complexity. Furthermore, prior information
regarding the SOI angular region and array geometry are needed.

4. Simulation

In this section, a half-wavelength spacing ULA with M = 10 was considered. We
assumed that there existed an SOI impinging from the direction of θ0 = 3◦ and two interfer-
ences impinging from θ1 = −35◦ and θ2 = 42◦. The additive noise was presumed to be a
complex circularly symmetric Gaussian zero-mean unit-variance spatially and temporally
white process. All these sources were narrowband and assumed to be independent to
the noise. To obtain each output SINR point, 200 Monte Carlo trials were used in each
simulation. The proposed method was compared with the RAB method based on INCM
reconstruction and steering vector estimation (INCM-SVE) in [6], subspace-decomposition
and SV adjustment (SDA) in [30], MEPS-IPNC in [31], INCM reconstruction via orthogonal-
ity of subspace (INCM-OS) in [32], desired signal eigenvalue replacement (DSEB) in [33],
SPCMR in [34] and INCM reconstruction via the intersection of subspaces (INCM-IS)
in [35]. For all methods involved in the comparisons, the angular region was presumed to

be Θ = Θs = (θ0 − 6◦, θ0 + 6◦) and
—
Θ = Θp = (−90◦, θ0 − 6◦)

⋃
(θ0 + 6◦, 90◦). and the

interference angular region to be Θi = (θi − 6◦, θi + 6◦). The number of non-dominant
eigenvectors of the matrix C was set as L = 7, and the RCB boundary was ε =

√
0.1 in [6].

The N = 7 dominant eigenvectors of matrix B were employed for B1 in [32]. ξ = 0.95 as
in [33]. The constant satisfying μ = 0.9 and τ =

√
0.1 were as in [34]. Sampling points
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L = 5M and S = 20 were as in [31]. The scale factor μ̃ = 0.1 and the sampling points
N = 2μ̃/0.01 were as in [30]. For the proposed method, the amplitude and phase mismatch
boundary were set as ε = 0.3 and Φ = 6◦, respectively, the depth of the iteration was set
as depth = 10, and the saturation value was ϕ = 0.05. Furthermore, the MATLAB CVX
toolbox was used to solve the QCQP optimization problem in [6]. In our simulations, the
optimal output SINR can be calculated by:

SINRopt = σ2
0 aH

0 R−1
i+na0. (22)

4.1. Example 1: Mismatch Due to the Amplitude and Phase Error of the SV

In the first example, the influence of the SVs with arbitrary amplitude and phase errors
on the beamformer output SINR was considered. The relationship between the mth element
of the nominal SV and the actual SV was modeled as am = αmamejβm , where the arbitrary
amplitude error, αm, and phase error, βm, on each array sensor, respectively, followed the
Gaussian distribution N

(
1, 0.052) and N

(
0, (5◦)2

)
[6]. Figure 3a depicts the output SINR of

the tested methods versus the input SNR for the fixed number of snapshots K = 100. It was
observed that the proposed method had a similar performance among the tested methods
except in [32,33] at high SNRs. In addition, the performance of the proposed method was
only lower than in [6] when the SNR was low. However, the computational complexity
of our method was obviously lower than that in [6]. In Figure 3b, the output SINRs are
shown versus the number of snapshots for the fixed SNR = 30 dB and INR = 20 dB. The
proposed method had a similar performance to the tested methods in [6,30,34,35], and the
number of snapshots did not affect the performance of our proposed method.
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Figure 3. Output SINRs in the case of amplitude and phase errors versus (a) input SNR with K = 100;
(b) the number of snapshots with SNR = 30 dB.

4.2. Example 2: Mismatch Due to the Random Look Direction Error

In the second example, the influence of the random look direction errors on the
beamformer output SINR was considered. Assuming that the look direction mismatch
of both the SOI and interferences were uniformly distributed in (−5◦, 5◦). That is means
that the DOA of the SOI was uniformly distributed in (−2◦, 8◦), and the DOAs of the two
interference were uniformly distributed in (−40◦, 30◦) and (37◦, 47◦). Note that the random
DOAs of the SOI and interferences changed in each trial while remaining constant over
snapshots. Figure 4a shows the output SINRs of the tested methods versus the input SNRs
with the fixed snapshots K = 100. It was observed that our proposed method was only
inferior to that in [6] in the performance at low SNR and inferior to that in [6,35] at high
SNRs. Figure 4b depicts the output SINRs of the tested methods against the snapshot
number at SNR = 30 dB and INR = 20 dB. It was observed that the performance of
our proposed method was similar to that in [30] when K > 40. In addition, the methods
in [33,34] were significantly affected by mismatches due to the look direction error.
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Figure 4. Output SINRs in the case of the look direction error versus (a) input SNRs with K = 100;
(b) the number of snapshots with SNR = 30 dB.

4.3. Example 3: Mismatch Due to the Incoherent Local Scattering Error

In the third example, the influence of the incoherent local scattering error on the
beamformer output SINRs was considered. The SOI was assumed to have a time-varying
signature, which was modeled as:

x̂s(k) = s0(k)a0 +
4

∑
p=1

sp(k)a
(
θp
)
, (23)

where a0 denotes the SOI SV. a
(
θp
)
(p = 1, 2, 3, 4) denotes the incoherent scattering signal

SV, and the DOAs, θp, are independently distributed in a Gaussian distribution drawn
from a random generator N(θ0, 4◦) in each trial. sp(k) are independently and identically
distributed zero-mean complex Gaussian random variables independently drawn from a
random generator, N(0, 1). In addition, θp changes from trial to trial, while it remains fixed
over the samples. At the same time, sp(k) changes both from trial to trial and from sample
to sample. In this case, the SOI covariance matrix is no longer a rank-one matrix and the
output SINR should be expressed as [5]:

SINRopt =
wHRsw

wHRi+nw
. (24)

The optimal weight vector can be obtained by maximizing the SINR [5]:

wopt = P
{

R−1
i+nRs

}
, (25)

where P{·} denotes the principal eigenvector of a matrix. Figure 5a shows the output SINRs
of the tested methods versus the input SNRs with the fixed snapshots K = 100. It was
observed that the performance of our proposed method was similar to that in [6,30] at high
SNRs and only lower than in [33] at low SNRs. However, the method in [33] had severe
performance degradation at high SNRs. Figure 5b depicts the output SINRs of the tested
methods against the snapshot number at SNR = 30 dB and INR = 20 dB. It was observed
that the proposed method had a similar performance with the tested methods in [6,30,35],
and the number of snapshots did not affect the performance of our proposed method.
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Figure 5. Output SINRs in the case of incoherent local scattering error versus (a) input SNRs with
K = 100; (b) the number of snapshots with SNR = 30 dB.

4.4. Example 4: Mismatch Due to the Coherent Local Scattering Error

In the fourth example, the influence of the coherent local scattering mismatch on
the beamformer output SINRs was considered. The coherent local scattering mismatch
usually occurs in multipath propagation scenarios. Assume that the SOI is distorted by
local scattering and consists of four coherent paths; the actual SV is formed as:

â0 = a0 +
4

∑
p=1

ejΦp a
(
θp
)
, (26)

where a0 denotes the SOI SV. a
(
θp
)
(p = 1, 2, 3, 4) denotes the coherent signal path from

θp. θp are independently distributed in a Gaussian distribution drawn from a random
generator, N(θ0, 4◦), in each trial. Φp denotes the path phase and uniformly distributed
in (0, 2π) from trial to trial. θp and Φp change from trial to trial, while it remains fixed
over the samples. Figure 6a shows the output SINRs of the tested methods versus the
input SNRs with the fixed snapshots K = 100. It was observed that the performance of
the optimal beamformer had an approximately 6 dB increment in output SINRs due to
the extra paths. The performance of our proposed method was similar to that in [6,30,35]
at high SNRs. The method in [6] achieved the best performance at the cost of the highest
complexity compared with the others. Figure 6b depicts the output SINRs of the tested
methods against the snapshot number at SNR = 30 dB and INR = 20 dB. It was observed
that the proposed method had a small impact on the number of snapshots.
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Figure 6. Output SINRs in the case of coherent local scattering error versus (a) input SNR with
K = 100; (b) the number of snapshots with SNR = 30 dB.

5. Conclusions

In this paper, we proposed a low-complexity RAB method based on INCM recon-
struction via subspace projection. In this method, the component of the SOI in the SCM
was eliminated by replacing the eigenvector columns in the SCM such that they could
span to the signal subspace with the corresponding eigenvectors in the projection matrix.
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Meanwhile, the SOI SV was estimated by employing the iterative mismatch approxima-
tion method. Since the calculation of the blocking matrix can be seen as pre-processing,
the complexity of INCM reconstruction only depends on a countable number of matri-
ces’ eigen decomposition and multiplication. Both the analysis and simulation illustrate
that the proposed method is robust to various types of mismatches while maintaining
low complexity.
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Abstract: Chromatic dispersion engineering of photonic waveguide is of great importance for Pho-
tonic Integrated Circuit in broad applications, including on-chip CD compensation, supercontinuum
generation, Kerr-comb generation, micro resonator and mode-locked laser. Linear propagation
behavior and nonlinear effects of the light wave can be manipulated by engineering CD, in order
to manipulate the temporal shape and frequency spectrum. Therefore, agile shapes of dispersion
profiles, including typically wideband flat dispersion, are highly desired among various applications.
In this study, we demonstrate a novel method for agile dispersion engineering of integrated photonic
waveguide. Based on a horizontal double-slot structure, we obtained agile dispersion shapes, in-
cluding broadband low dispersion, constant dispersion and slope-maintained linear dispersion. The
proposed inverse design method is objectively-motivated and automation-supported. Dispersion
in the range of 0–1.5 ps/(nm·km) for 861-nm bandwidth has been achieved, which shows superior
performance for broadband low dispersion. Numerical simulation of the Kerr frequency comb was
carried out utilizing the obtained dispersion shapes and a comb spectrum for 1068-nm bandwidth
with a 20-dB power variation was generated. Significant potential for integrated photonic design
automation can be expected.

Keywords: dispersion engineering; slot waveguide; inverse design; deep neural network; optical
frequency comb

1. Introduction

Photonic Integrated Circuit (PIC) is essential for integrated optical systems, and thus
plays a key role in broad applications. In a PIC, the control of waveguide’s chromatic dis-
persion is of central importance in most of applications, which significantly influences the
propagation of light field and the generation of various nonlinearity effects [1]. Waveguides
with agile shapes of dispersion profiles could potentially constitute various functional
devices. The targets of dispersion engineering may include fiber-induced dispersion com-
pensation, tunable dispersion for mode locking of lasers, as well as many other relevant
devices [2–5]. For instance, the generation of a light soliton comb requires a flat and low
anomalous dispersion [6–9], while with normal dispersion, dark soliton, can be generated
for obtaining improved optical combs [10–13]. Meanwhile, constant or extremely large
dispersion may also be useful in applications of optical phase array, on-chip FWM/OPA
process, and optical delay line [14–18]. In this way, agile dispersion with various shapes
are highly desired for various on-chip applications.

The dispersion applied in a photonic integrated circuit is mainly designed by changing
the materials and structures of a waveguide. One of the common ways to shape the
dispersion is to change the dimensions of its structures [19,20], and find the target structure.
This is a process of forward design, which may be quite difficult to execute due to the
large amount of multi-parameter sweeping of simulation and optimization for complex
structures. More complex structures of waveguides usually support the potential for
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better performance of dispersion design. The increased parameter inevitably leads to
higher calculation difficulties. Therefore, a key point of dispersion engineering for a
waveguide is to find an appropriate structure accurately and efficiently that possesses
the target dispersion profile. By considering this situation, machine learning might be a
valid method to achieve this objective. Through proper training of the Neural Network,
mapping between input and output coefficients can be solved. Then, multiple parameters
can be optimized simultaneously. This kind of inverse design method has been applied to
quite a lot of photonic structure and fiber designs [21–24], and was found to be competent
for supporting photonic design automation (PDA).

This paper proposes a novel inverse design approach to solve agile dispersion en-
gineering by using Neural Network. A horizontal double slot waveguide structure is
adopted with As2S3 and Si3N4 utilized. After generation of a certain amount of data
set, the inverse design method cost little time for completing optimization. This process
provides better accuracy, efficiency, and lower-complexity for fast and agile dispersion
design of waveguides with reusability for design automation. Moreover, it can be extended
to other kinds of optical devices. Therefore, great potential for design automation of PIC
can be expected.

2. Principle of Dispersion Inverse Design

2.1. Waveguide Structure for Inverse Design

For the inverse design in this work, a horizontal double slot waveguide structure
was adopted. Figure 1a shows six structural parameters of H1, H2, H3, Hs1, Hs2, and
W, which have low refractive index materials lying between high index materials and the
area of low index materials is called slot. In this work, the materials, As2S3 and Si3N4, are
employed as different high index materials, respectively, and SiO2 is a low index material.
The cladding is air. The material, As2S3, also named chalcogenide glass, has broadband
infrared transparency and low linear and nonlinear propagation loss at C band and 2 μm
band, and has been gradually applied for photonic integrated chips [25]. The material,
Si3N4, is renowned for its extremely low propagation loss and relatively mature chip
processing. Due to low TPA at C band, Si3N4 has been utilized among various nonlinear
mechanisms. Two kinds of materials have broad applications and play important roles in
photonic integration. In this way, universality can be verified by applying these materials
to inverse design processes.

Moreover, slot structures have large degrees of freedom with multiple parameters for
better dispersion engineering. They are able to confine intense light field in the slot area,
which favors the generation of various nonlinear effects [26]. Furthermore, horizontal slots
have greater fabrication tolerance due to smaller sidewall angle and less loss, compared
with vertical slot [27]. In terms of double and single slot structures, the former could confine
significant light field in a wider wavelength range, as shown in Figure 1b,c, which means
greater potential to achieve agile dispersion in a broader waveband [28]. The wavelengths
corresponding to maximum ratio of double- and single-slot are marked in the Figure by
dot lines in Figure 1c.

Figure 1. Cont.
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Figure 1. (a) Structures of horizontal double slot waveguide; (b) comparison of light field between single- and double-slot;
(c): Comparison of the ratio for normalized power in slot area.

Considering all the reasons mentioned above, we chose this horizontal double slot
waveguide with materials of As2S3 and Si3N4 as target objective of inverse design.

2.2. Data Generation and Inverse Design Process

The entire design process was aided by Neural Network for dispersion engineering,
as shown in Figure 2. The main data required involved the dispersion of a large amount of
waveguide structures, which was varied with wavelength, forming a dispersion profile. The
dispersion profiles with respect to wavelength λ are calculated by the second derivative of
the effective index ne f f , which can be obtained by Finite Element Method (FEM) simulation
using commercial software (COMSOL for example). The relationship between ne f f and D
can be described as follows in Equation (1):

D = −(λ/c)·
(

∂2ne f f /∂λ2
)

. (1)

Among the simulation experiments, material dispersion has been taken into account
by scientists [29], as illustrated by Sellmeier Equation with different values for As2S3 and
Si3N4.

 

Figure 2. (a) Flow chart of the whole proposed inverse design method; (b) schematic principle of inverse design via
Neural Network.
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The above equation clarifies the method for obtaining dispersion profiles, and one
important part of the Neural Network-based inverse design is to obtain a proper data
set, which contains different structural parameters of waveguides with corresponding
dispersion profiles. The amount and variation range of a data set should be appropriately
decided, otherwise it might waste time in generating data and the training network, or
make the network fail to locate the intrinsic connection between the waveguide and its
dispersion. Based on the data set, the network could be fed and trained.

In detail, given that it is almost impossible to obtain the analytical solution of the
dispersion profiles, those in the data set were all numerical solutions. Each of the profiles
contained many points, which are dispersion values corresponding to their wavelengths,
and these points were calculated using Equation (1) mentioned above. The entire profile
represents the dispersion variation of one set of structural parameters (six specific structural
parameters form one set). For the essential data set, we use the six structural parameters
[H1, H2, H3, Hs1, Hs2, W] and materials in simulation to obtain the dispersion values
through indirect calculation from ne f f . Notably, we let H1 equal to H3, in order to reduce
the computation in the research, as the change of H1 and H3 has a similar influence on
waveguide’s dispersion [6]. Therefore, the data contained dispersion values varying with
wavelength, λ, which represent the dispersion profile mentioned above, as well as the
corresponding set of structural parameters. The entire data set consisted of thousands of
pieces of data.

The data set is divided into input and output parts. The input part contains the dis-
cretely dispersion profile [D1, D2, . . . , Dn], while the output part contained the structural
parameters [H1, H2, H3, Hs1, Hs2, W]. The variation range of those parameters in the data
set is shown in Table 1. Further, discrete dispersion values from 1500 nm to 3500 nm for
As2S3 waveguide and 1000 nm to 3000 nm for Si3N4 waveguide with an interval of 50 nm
were calculated. Specific wavelength bands were selected and some of the values taken
out to consider the target in the training process. Prior to training, proper preprocessing
and normalization for the original data is essential. Here, we simulated the structures
again where the data are identified as null values due to the calculation error of software.
Then, we converted all the structural parameters into range [0, 1] via linear mapping (for
example, for parameter W, the maximum value in W is converted to 1 and the minimum
one is converted to 0), in order to increase the calculating efficiency. The same conversion
was also applied to the dispersion values where the interval was [−1, 1]. After that, the
input and output data were fed into the network, which is trained by adjusting the weight
of each layer and comparing the error value continuously. The error value, here, means the
difference between the predicted values from network and the actual values in the data set.
The training process stops after specific number of epochs in the network. One epoch means
a circulation in network training, after which the error value will gradually decreases. The
number of epochs selected in our model is 200, considering both the efficiency and accuracy.
There will be a convergence of error value if proper settings of network are made. After
completing a careful search and attempts were made to identify the settings corresponding
to a much lower convergence (stated in Section 2.3), an inverse design model was used to
obtain proper mapping between discrete dispersion and structural parameters.
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Table 1. Structure parameter ranges of As2S3 and Si3N4 waveguides.

Material Parameter Min (nm) Max (nm)

As2S3

W 880 975
Hs1 97 122
Hs2 102 125
H1 310 340
H2 945 975
H3 310 340

Si3N4

W 1120 1280
Hs1 155 180
Hs2 145 170
H1 300 325
H2 950 975
H3 300 325

2.3. Network for the Inverse Design

After data generation, the core of inverse design followed—the construction and
training of the network. Establishing a network with an appropriate structure is essential,
as it is determinant of prediction accuracy. In our work, Deep Neural Network (DNN) was
utilized. Both input and output data can be regarded as one-dimensional column vectors,
feeding into the DNN. The structure of DNN is shown in Figure 2b. An open-source artifi-
cial Neural Network library Keras, based on Python, is applied. In terms of the network,
there are four hidden layers and 200 neurons in each layer. Linear rectification function
Relu and Sigmoid are applied in four hidden layers and an output layer, respectively. We
selected the mean square error (MSE) as the loss function and Adam algorithm as the
optimizer. The loss function, here, demonstrates how we measure the error value between
predicted value and actual value, and the optimizer is the method by which the network
decreases the error level. We also use the dropout layer to weaken over fitting [30–32]. The
detailed settings of network are shown in Table 2.

Table 2. Settings of the Neural Network.

Used NN Library Hidden Layers Neurons per Layer

Keras 4 200

Activation function Loss function Optimizer

Relu and Sigmoid Mean Square Error Adam algorithm

In order to confirm the performance and accuracy of the trained network, we compared
and identified the error value between the predicted parameters obtained by network and
the actual value. Utilizing the test data set, an objective dispersion value set [D1, D2, . . . ,
Dn] could be formulated and placed into the trained network, then structural parameters
could be predicted [H1, H2, H3, Hs1, Hs2, W], the corresponding dispersion value could
be calculated. The actual structures of that dispersion are already known from the test data.
Understanding whether the error between the predicted and actual structures are low or
not is standard for confirming the performance of the trained network. Given that our aim
was to obtain waveguide structure where the dispersion characteristic satisfied the specific
profiles, this straightforward factor represented the error of structural parameters between
predicted and actual values. Considering this, a comparison of predicted and actual values
is displayed in the following part of Sections 3.1 and 3.2.

For the inverse design process, a set of dispersion values (optimization aims) were
used to meet the target performance, they were then fed into the trained network, in order to
predict the corresponding structural parameters. Similarly, these predicted parameters were
simulated to identify the real dispersion values, evaluate accuracy and the performance
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of the trained network. The procedure of inverse design is shown in the schematic of
Figure 2b.

3. Results and Analysis

3.1. Inverse Design of As2S3 Waveguide

We generated the As2S3 waveguide data set with a scale of about 6000, and these
data are divided into the train set and test set at a ratio of 80:20. Both the train and test
set contain a number of complete pieces of data, which are used to train the network and
check the performance of the network, respectively. Among the settings for the network,
the ratio of 80:20 was one available option, and the algorithm automatically completes the
division. The train set was used for training, including calculating the loss function and
the optimizer to adjust the weight throughout the training process. Whereas, the test set
was used for the network to check the values of loss function—it was not involved in the
training process as it could only be used for testing. In this way, we ensured the reliability
performance of the network evaluation via the test set. The results are displayed below.

For the inverse design of the As2S3 waveguide, we selected the target wavelength
bands, ranging from 2000 nm to 2800 nm and from 1800 nm to 2900 nm, respectively (a
wide and a narrow band), which means the input of network is on 9 [D1, D2, D3 . . . ,
D9] dimensions or 11 [D1, D2, . . . , D11] dimensions, and the output was made up of
6-dimensional structural parameters [H1, H2, H3, Hs1, Hs2, W].

For the different target wavelength bands, where the structures of the network are
the same, the different combinations of dispersion values were extracted from the data set
to feed the network as input data. This also represents the efficiency and reusability of
inverse design method. We did not use the entire dispersion values (1500 nm to 3500 nm
for As2S3 waveguide and 1000 nm to 3000 nm for Si3N4 waveguide) due to the influence of
the intrinsic zero dispersion of materials, which result in a rapid variation of waveguide’s
dispersion inevitably. The reason for generating a data set with extra dispersion values was
to retain the possibility of adjusting the target wavelength band freely by selecting different
dispersion values as input of the network. This should not be time-consuming, and with
different input data, the training process only lasts several tens to hundreds of seconds.

In Figure 3, the prediction of two of the six structural parameters were used to display
the training results for examples. The target wavelengths, in this study, are 2000 nm to
2800 nm. The X-axis is the actual parameter, and the Y-axis is the predicted values obtained
by setting target dispersion as the corresponding dispersion values from test set. This
scatter diagram does not display all the testing results, which are in a large amount. As
shown in Figure 3, most of points are close to the straight line of y = x with a small variation,
which represents good performance of the network with the predicted values well close to
actual values. We calculated the mean absolute error values of each structural parameters
predicted by the trained network to check performance of the network more straightfor-
ward, as shown in Table 3. We found that the MAE values of those structural parameters
are all less than 1 nm, which is highly within the tolerance for practical fabrication.

In order to achieve the practical application of photonic integrated circuit design,
we set three goals for dispersion engineering: Broadband low dispersion in different
wavelength bands, broadband constant dispersion with positive or negative values, and
slope-maintained linear dispersion, where the target dispersion values are all 0, a certain
constant value, and a linear function respectively. By applying the trained network,
predicted structures corresponding to the target dispersion can be obtained. We place
these structural parameters into simulation, calculate the actual dispersion profiles, then
compare the actual and target dispersion for verification.

Table 3. Mean Absolute Error of predicted structural parameters.

Mean Absolute Error (MAE) Hs1 Hs2 H1&H3 H2 W

As2S3 Slot Waveguide 0.24 0.16 0.38 0.45 0.55
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Figure 3. Actual and predicted data for As2S3 waveguide.

The results of the inversely designed dispersion profiles of As2S3 waveguide obtained
from trained Neural Network are shown in Figure 4. The detailed structural parameters,
mentioned in Figure 4, is shown in Table 4.

In Figure 4a, the target wavebands are 1800–2900 nm and 2000–2800 nm respectively,
which represents a wider band and a narrower band. Horizontal dotted line in the ex-
panded Figure refers to the target dispersion values, which remained at zero, and represents
the broadband low dispersion. The corresponding structures are A1 and A2, predicted by
the network. Dispersion of A1 varies between 0–4.5 ps/(nm·km) for a 1154-nm bandwidth
from 1885 nm to 3039 nm and dispersion of A2 varies between 0–1.5 ps/(nm·km) for an
861-nm bandwidth from 1945 nm to 2806 nm. The results of the predicted structures do
not exactly follow the target bands due to the error of network. We found that, given that
Structure A1 has a longer target band, its flatness of dispersion curve is not better than
that of A2. However, it has a wider wavelength range with a relatively low dispersion.
Compared with Reference [6], a much lower dispersion in a slightly narrower bandwidth
was obtained by the proposed network.

Table 4. The structural parameters of mentioned dispersion engineering waveguide.

Structure (nm) Hs1 Hs2 H1&H3 H2 W

As2S3 Slot Waveguide

A1 111.5 112 330 961 930
A2 114.5 105 330 962 907.5
A3 104 114 330 1010 911
A4 101 116 329 919 880
A5 98 114 323 1037 893
A6 107 116 329 892 898
A7 103.5 102 328 960 923.5
A8 111 101.5 325 958 915
A9 100 123 330 957 880

A10 98 126 330 961 847

Figure 4b,c show the results of broadband constant dispersion and slope maintained
linear dispersion. The target waveband is 2000–2800 nm. Figure 4b shows five dispersion
curves for structure A1, A3, A4, A5 and A6. The dispersion curve for A1 is for comparison.
Broadband constant dispersion of 30, −30, 50, and −50 ps/(nm·km) can be predicted by
the network. All five dispersion curves have wavebands of constant dispersion containing
the target band, and the range of constant dispersion slightly exceeds the target band. As
in Figure 4a, the horizontal dotted lines in Figure 4b refer to target values being fed into the
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network, corresponding to constant values mentioned above. Moreover, Figure 4c shows
the linear dispersion curves with four different slopes, corresponding to structures A7, A8,
A9, and A10 predicted by the network. The vertical dotted lines, lying on 2000 nm and
2800 nm, indicate the linear area, whereby the four dispersion slopes are maintained to be
0.04, 0.02, −0.02, −0.04 ps/(nm2·km), respectively. This kind of linear dispersion may be
useful for compensation in fiber systems.

  

 
Figure 4. Inversely designed dispersion curves of As2S3 waveguides. (a) Broadband low dispersion for different target
wavebands; (b) broadband maintained constant dispersion; (c) slope maintained linear dispersion.

3.2. Inverse Design of Si3N4 Waveguide

Our proposed dispersion engineering method can also be applied to Si3N4 double
slot waveguide, and it proves universality in photonic waveguide design. The process of
network training is basically similar to that of As2S3 waveguide, but the new data set needs
to be generated for theSi3N4 waveguide. The selected target wavelength band range from
1300 nm to 2200 nm and 1200 nm to 2400 nm, a wider band and a narrower band. Different
material dispersion and modal refractive index should be expected for Si3N4 waveguide.

The scatter diagram containing the prediction of two parameters for Si3N4 waveguide
is shown in Figure 5, and the mean absolute error values of the results for Si3N4 waveguide
are shown in Table 5. The target band is 1300 nm to 2200 nm. The MAE values are also at a
lower level, indicating good performance of prediction. However, the performance of the
inverse design for Si3N4 waveguide is not as good as that of As2S3 waveguide, in terms of
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the predict accuracy in scatter diagram and mean absolute error value in Table 5. In fact,
there might be a best interval for scale of data set and variation range of the parameters
in the data set, if deviated from this interval, the performance of network will decrease
when other conditions remain unchanged. We attempted to find the best interval for
Si3N4 waveguide, but a difference exists, maybe due to the sub-par interval for that of
Si3N4 waveguide. Nonetheless, the results in Figure 6 show that the network for Si3N4
waveguide also possess satisfying performance, thus the difference between Tables 3 and 5
can be tolerated. The detailed structural parameters mentioned in Figure 6 are shown in
Table 6.

 

Figure 5. Actual and predicted data for Si3N4 waveguide.

Table 5. Mean Absolute Error of predicted structural parameters.

Mean Absolute Error (MAE) Hs1 Hs2 H1&H3 H2 W

Si3N4 Slot Waveguide 1.27 1.88 1.13 0.99 2.33

As for the predicting results, in Figure 6a, for structure B1, the broadband low dis-
persion varies from 0 to 5.8 ps/(nm·km) ranging from 1226 nm to 2368 nm for a 1142-nm
bandwidth and for structure B2, dispersion varies from 0 to 1.4 ps/(nm·km) from 1306 nm
to 2067 nm for a 761-nm bandwidth. Horizontal dot lines in zoom-in figure are the tar-
get dispersion values, all zero here, which represents broadband low dispersion. These
well performed results in terms of much broader and lower dispersion compared with
Reference [7] would be highly useful for broadband nonlinear processing applications on
Si3N4 platform.

Similar to As2S3, dispersion engineering, with maintained constant values or main-
tained dispersion slopes, is also carried out using the proposed method, as shown in
Figure 6b,c. Constant dispersions of 30, −30, 50, and −50 ps/(nm·km), ranging from 1300
nm to 2200 nm with small variations, are obtained by structure B3 to B6. While, the hori-
zontal dot lines are target values, corresponding to the certain dispersion. The dispersion
slopes of 0.04, 0.02, −0.02, −0.04 ps/(nm2·km) from 1300 nm to 2200 nm are maintained,
as indicated by the vertical dot lines, and obtained by Structure B7 to B10, as shown in
Figure 6c.
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Figure 6. Inversely designed dispersion curves of Si3N4 waveguides. (a) Broadband low dispersion for different target
wavebands; (b) broadband maintained constant dispersion; (c) slope maintained linear dispersion.

Table 6. The structural parameters of mentioned dispersion engineering waveguide.

Structure (nm) Hs1 Hs2 H1&H3 H2 W

Si3N4 Slot Waveguide

B1 176.5 171.5 307 941 1309
B2 161 149 318 939.5 1131
B3 162 159.5 298 979 1216.5
B4 161 172 327 889 1189
B5 162 156 299 1035 1216.5
B6 175 159 325 855 1189
B7 165 147.5 307 953 1293
B8 161 151 306.5 937 1218
B9 168 156 324 938 1126
B10 183 155 325 935 1120

3.3. Influence of Sidewall Angle in Fabrication

Considering the fabrication of the horizontal double slot waveguide, there always
exists a sidewall angle α, which means the wall of the waveguide is not perfectly vertical,
as shown in the Figure 7a. This may influence the light field distribution and then corre-
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spondingly change the waveguide dispersion. As shown in Figure 7b, the waveguide in the
left is perfectly vertical and the waveguide on the right has a sidewall angel of 5 degrees.

 

  

Figure 7. (a): Waveguide with sidewall angles; (b) fundamental modes for waveguides with sidewall angle of 0 and
5 degrees; (c) dispersion curves with different sidewall angles for Structure A1; (d) dispersion curves with different sidewall
angles for Structure B1.

Using Structure A1 and B1 as examples, the dispersion of the waveguide, with different
sidewall angles from 0 to 5 degrees, was investigated. The results are shown in Figure 7c,d,
respectively. We found that when the sidewall angle increases, the dispersion curves of the
waveguide bend slightly. The dispersion of As2S3 waveguide changes more significantly
than that of Si3N4 waveguide. A relatively high precision for As2S3 and Si3N4 waveguide
fabrication needs to be maintained to keep the sidewall angle at a small level, in order to
obtain the designed dispersion profile.

The fabrication of horizontal slot waveguide has already been studied in several
works [33,34]. In view of the silicon nitride horizontal slot waveguide, the thin film of
silicon nitride and silica can be deposited on silica wafer in the specific order via low
pressure or plasma enhanced chemical vapor deposition (LPCVD/PECVD). The depositing
thickness of film can be controlled by the duration time of deposition. After that, a
dry etching method, such as reactive ion etching (RIE), can be applied to complete the
processing of waveguide, which will result in a high performance of fabrication.

3.4. Generation of Frequency Combs via Double Slot Micro-Ring Resonator

It can be inferred from the study in [29] that a well-designed flat and low anomalous
dispersion is conducive for generating the Kerr frequency comb with board bandwidth and
small power variation. We formulated micro-ring resonators with double-slot structure,
with B1 and B2 specific structures. Then, we adopted their dispersion curve into a simula-
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tion of Kerr frequency comb, in order to verify the performance of practical application via
inverse design process.

The dynamics of comb generation in micro-ring resonators is well-described by the
Lugiato-Lefever equation, which can be described as Equation (2) below [35,36]:

∂Ãμ(t)
∂t

=
(
−κ

2
+ i(2πδ0) + iDint(μ)

)
Ãμ

− igF [|A|2 A]μ +
√

κex·sin (2)

where Ãμ and A means spectral and temporal envelopes of light field in resonators, re-
spectively, and their relationship follows the Fourier transform. While, κ is loss rate of
the resonator and κex is coupling rate between bus waveguide and resonator, g is Kerr
frequency shift, and |sin|2 represents the pump power. Dint(μ) means the integrated disper-
sion of μth frequency component and this can be calculated through the dispersion curve
obtained above. δ0 is pump detuning. In our simulation, FSR of comb is set to be 200 GHz,
corresponding to L = 850 μm and R = 135 μm. The loss of waveguide (Si3N4) is set to be
0.1 dB/cm and the resonator is assumed critical coupling, which means κ = κex. The Q
value of resonator is 6.5 × 106. The power and wavelength of pump is 1 W and 1800 nm.
The pump detuning is 56 times of resonator FWHM, around 4.88 GHz.

Based on the conditions mentioned above, the flat and broad spectrums of Kerr
frequency comb are obtained from Structure B1 and B2, as shown in Figure 8, in order to
compare influence of dispersion. The peak of spectrum in the longer wavelength area is
generated because of the zero-value of integrated dispersion, according to Reference [9].
The spectrum in Figure 8a has a wide wavelength range and the power variation is
relatively smooth. Quantificationally speaking, for a 10-dB power variation, the bandwidth
of spectrum is measured to be 564 nm from 1515 nm to 2079 nm. For a 20-dB variation, the
bandwidth of spectrum is measured to be 1068 nm from 1415 nm to 2483 nm. In Figure 8b,
the spectrum of B2 possesses smaller power variation around the narrower band due
to the smaller dispersion. For a 10-dB power variation, the band width of spectrum is
measured to be 777 nm from 1416 nm to 2193 nm. It lacks bandwidth due to the narrower
range of low dispersion. In addition, comb spectrum of strip waveguide is an envelope of
square of hyperbolic secant [9]. In comparison, the spectrum of double slot waveguide has
the potential to extend to low power variation. In practical terms, this could be adjusted
according to the actual demands.

 

Figure 8. Cont.
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Figure 8. (a) Spectrum of Kerr frequency comb generated from micro-ring resonator with Structure B1; (b) spectrum of Kerr
frequency comb generated from micro-ring resonator with Structure B2.

4. Conclusions

In this work, a Neural Network aided inverse design method is demonstrated for agile
dispersion engineering of a horizontal double slot waveguide structure. The proposed
objective-motivated, automation-supported inverse design method provides rapid opti-
mization with high performance. Broadband low dispersion, constant dispersion and slope
maintained linear dispersion were achieved for As2S3 and Si3N4 waveguides. These well-
performed studies achieved results of versatile dispersion profiles that would be highly
useful for broad applications. We believe this can be extended to very broad photonic
devices to obtain ultimate performance far beyond dispersion. Significant potential can be
expected for photonic design automation of integrated circuit.
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Abstract: We compared the transmission performances of 600 Gbit/s PM-64QAM WDM signals over
75.6 km of single-mode fibre (SMF) using EDFA, discrete Raman, hybrid Raman/EDFA, and first-
order or second-order (dual-order) distributed Raman amplifiers. Our numerical simulations and
experimental results showed that the simple first-order distributed Raman scheme with backward
pumping delivered the best transmission performance among all the schemes, notably better than
the expected second-order Raman scheme, which gave a flatter signal power variation along the fibre.
Using the first-order backward Raman pumping scheme demonstrated a better balance between the
ASE noise and fibre nonlinearity and gave an optimal transmission performance over a relatively
short distance of 75 km SMF.

Keywords: Raman amplification; optical fibre communication

1. Introduction

In unrepeatered coherent transmission systems, distributed Raman amplification
(DRA) can provide a better signal-to-noise ratio (SNR) than lumped (EDFA, discrete Raman
amplification) or hybrid amplification techniques (hybrid Raman/EDFA) [1–7]. Particularly,
higher-order DRA (second-order) has been advantageous in the transmission performance
compared with first-order DRA because it minimises the signal power variation along the
fibre and demonstrates a better balance between the amplified spontaneous emission (ASE)
noise and the Kerr nonlinearities of the optical fibre in long-haul transmission systems [4].
However, as the data capacity of the optical transceiver has been increased from 100 Gb/s
PM-QPSK to 600 Gb/s PM-64QAM, the maximum reach has significantly decreased from
several thousand kilometres with QPSK to metro-network or data-centre-interconnect
(DCI) with 64QAM [8,9], which can usually go up to a hundred kilometres or more. In such
applications, the optimisation of the amplification technique remains to be investigated,
so we would like to determine which amplification scheme delivers superior transmis-
sion performance over a relatively short fibre length with dual-polarisation 69 GBaud
64QAM signals.

In this paper, we expand our work on the optimisation of amplifiers in [10] and
numerically and experimentally evaluate the performances of different representative
amplification techniques used for transmission over 75.6 km SMF. The following discrete,
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hybrid, and distributed optical amplifiers are considered: EDFA, discrete Raman ampli-
fication, hybrid Raman/EDFA, first-order Raman-only amplification, and second-order
(dual-order) distributed Raman amplification. First, we characterise the signal and noise
power profiles of each scheme numerically and experimentally, and then we conduct the
measurement of optical signal-to-noise ratio (OSNR) with 1 channel and 11 channels. It
is shown that the noise level of the second-order DRA is indeed slightly lower than that
in the other schemes. Finally, we experimentally evaluate how optical amplifiers perform
using an 11-channel WDM grid with a 600 Gbit/s (69.4 Gbaud, 832 Gbit/s line rate) PM-
64QAM real-time transceiver over 75 km SMF. Although our OSNR characterisations show
that the second-order distributed Raman amplification had the lowest ASE noise level,
the first-order distributed Raman amplification gave the best transmission performance,
demonstrating the optimum balance between the linear noise and the fibre nonlinearities.
Based on the simulated signal and noise power profiles, our transmission simulations show
the same results as the experiment. For a short-reach metro network or DCI application
with high-data-rate transceivers, the distributed Raman amplifier delivered the best trans-
mission performance, compared with any other amplification scheme, including hybrid
Raman/EDFA, discrete Raman, and EDFA only. However, the first-order distributed Ra-
man scheme, with a simpler setup and lower pump power, performed better than the
second-order scheme.

2. Experimental Setup and Characterization of All Amplification Schemes

Figure 1 shows our experimental setup. We conducted an unrepeated single-span
experiment to evaluate the transmission performances of different optical amplification
schemes using a high-data-rate signal. A commercially available transceiver was used to
generate a 69.4 Gbaud polarization-division-multiplexed (PDM)-64QAM signal (50 Gbaud
for the signal and the remainder for the FEC and other overheads), or a 34.7 Gbaud PDM-
64QAM signal, corresponding to 600 Gbit/s and 300 Gbit/s data capacity, respectively.
Ten channelized ASE signals spaced at 100 GHz (ranging from 1543.73 nm to 1551.72 nm)
and the PDM-64QAM modulated signal centred at 1547.72 nm were combined via a
95/5 coupler to give an 11-channel WDM grid. The output signal was amplified by an
EDFA and attenuated by a variable optical attenuator (VOA) to adjust the signal launch
power to the fibre span. The amplified fibre link was a 75.6 km SMF with a WDM coupler
(~0.8 dB attenuation) which gave a total attenuation of ~15.3 dB. The output signal from
the link was amplified by an EDFA and then attenuated by a VOA in order to maintain
a constant input power of −5 dBm to the receiver. The built-in real-time DSP algorithm
was used to compensate for the linear impairments, and the BERs were calculated over
1 trillion (10ˆ12) bits.

There were five amplification schemes investigated over the single 75.6 km SMF
span, as illustrated on the right side of Figure 1, and the experimentally measured and
simulated signal power profiles along the fibre are shown in Figure 2a. Scheme (a) was
EDFA only to compensate the overall ~15 dB loss from the fibre and the WDM coupler,
where the signal power in dBm decreased linearly along the fibre as shown in Figure 2a
and amplified within the last few metres of the fibre. Scheme (b) was a discrete Raman
amplifier that used two first-order Raman pumps at 1425 nm (~320 mW pump power) and
1445 nm (~350 mW pump power). Similarly, this is also a lumped amplification scheme,
but 7.5 km of inverse dispersion fibre (IDF) was used as the Raman gain medium [5]. The
main drawback of discrete Raman amplification in scheme (b) was the relatively long
length of the gain fibre (7.5 km in this case), causing higher loss and higher accumulated
fibre nonlinearity, compared to only a few metres in the EDFA case. Figure 2b clearly
illustrates that the signal power using the discrete Raman amplifier decreased linearly, as
was observed with the EDFA, but the amplification started within the last ~8 km. This
extra length of Raman gain fibre could potentially increase both the linear ASE noise and
the fibre nonlinearity when conducting the signal transmission. Scheme (c) was a hybrid
amplification scheme combining the DRA and EDFA, which used first-order backward

102



Sensors 2021, 21, 6521

(BW) Raman pumping and an EDFA [6,9]. The first-order DRA provided ~5 dB Raman
gain with 160 mW pump power at 1455 nm, and the EDFA provided ~10 dB gain. Thus, as
demonstrated in Figure 2a, the signal power variation along the fibre was ~10 dB compared
with 15 dB using the EDFA-only or discrete Raman scheme. Scheme (d) was a distributed
Raman amplifier using a first-order BW-propagated Raman pump at 1455 nm. The pump
power at 1455 nm was ~410 mW, giving a signal power variation of ~6.5 dB. Scheme (e) was
effectively a dual-order BW Raman pumping scheme, which used a second-order 1365 nm
pump in addition to the 1455 nm seed pump. The pump power was ~940 mW at 1365 nm
and ~25 mW at 1455 nm, giving a total pump power that was significantly higher than that
in the other schemes but giving only ~4 dB signal power variation, which was the lowest
of all the amplification schemes tested [2,3,10,11].

 

Figure 1. Experimental setup showing high-data-rate transmission with different amplification schemes: (a) EDFA only;
(b) discrete Raman amplifier; (c) hybrid Raman/EDFA; (d) first-order distributed Raman amplifier; (e) second-order
distributed Raman amplifier.

  
Figure 2. (a) Experimentally measured (dotted line) and simulated (solid line) signal power profiles along the fibre with
five different amplification schemes; (b) Simulated noise power profiles along the fibre.
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Figure 2b shows the simulated noise power profiles along the fibre for schemes (c),
(d), and (e) from Figure 1. In EDFA and discrete Raman schemes (Figure 1a,b), the fixed
ASE noise was added at the end of the fibre. In the discrete Raman amplifier, the noise was
generated and accumulated over the last 8 km of the gain fibre, resulting in the highest noise
power of all schemes—even higher than the EDFA scheme [12]. The hybrid Raman/EDFA
was partially a distributed Raman amplifier where the noise was distributed over the whole
transmission fibre, with the exception of EDFA noise which was added at the very last
point of the fibre, increasing the overall noise level. From the two distributed schemes, the
noise level of the second-order scheme was higher than that of the first-order scheme for
the first ~73 km; however, within the last 2 km, the noise power of the first-order scheme
dramatically exceeded the noise of the second-order scheme.

Figure 3 compares WDM (a) and a single channel (b) output signal spectra for all
amplification schemes after the 75.6 km transmission span. The two DRA schemes showed
significantly lower ASE noise levels (potentially higher signal-to-noise ratio) compared
with the other three schemes, by approximately 5–6 dB, which means that the transmission
performance in the linear regime is likely to show the same trend. The second-order
distributed Raman scheme (blue) performed the best in terms of received OSNR, followed
by the first-order scheme (red) with a slightly higher noise level as numerically shown
in Figure 2b. This means that the superior noise performance using the second-order
pumping was not obvious in the single 75.6 km span.

  
Figure 3. The output spectra from different optical amplifiers over a 75.6 km SMF: (a) with 11-channel input; (b) with
1 channel input.

3. Results and Discussion

The transmission performance was tested experimentally using a PM-64QAM WDM
signal centred at 1547.72 nm and confirmed through simulation with signals of 600 Gb/s
(Figure 4a) and 300 Gb/s (Figure 4b). We conducted a numerical simulation of the trans-
mission performance of the PM-64QAM system, taking into account the simulated signal
and noise power profiles for each amplification scheme. The simulation setup was similar,
a PRBS length of 216-1 was used instead of 215-1. The propagation of the dual-polarisation
complex envelope of an optical signal in optical fibre is governed by the coupled nonlinear
Schrödinger equations (Manakov equations) and was simulated using the well-known
split-step Fourier method [13,14], with a step size of 0.3 km using the simulated signal
power profiles shown in Figure 2a. The noise from EDFAs implemented in the experiments
at the transmitter and the receiver was taken into account in the simulations (ASE noise
power density for each EDFA was approximately −155 dBm/Hz). To emulate EDFA noise,
Gaussian noise with PSD of −144 dBm/Hz and −149 dBm/Hz was added at the end of
the fibre for EDFA-only and hybrid Raman/EDFA, respectively. In addition, for the two
distributed schemes, Raman noise was simulated as Gaussian noise, which was added
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to the signal after each step (0.3 km), aligning with the simulated noise profiles shown
in Figure 2b. We used the same signal and noise power profiles for all the signal launch
powers for simplicity. At the receiver, after coherent detection, the channel under test was
filtered using an ideal low-pass filter. In order to take the imperfection of the DSP chain
used in the experiments into account, the simulation results were also normalized by the
same amount of the experimentally maximum achievable SNR, which was fixed at 20 dB.

  
(a) (b) 

Figure 4. Simulated and experimental BER performances over a 75.6 km SMF with different amplification schemes
measured at the centred channel (at 1547.72 nm): (a) 600 Gb/s PM-64QAM WDM transceiver; (b) 300 Gb/s PM-64QAM
WDM transceiver.

Figure 4a,b shows the BERs versus signal launch power for 600 Gbit/s and 300 Gbit/s
64QAM signals. The solid lines are the numerical simulation results, and the dots are
experimental results. The BERs at the optimum powers for EDFA, discrete Raman, and
hybrid Raman/EDFA agree with the noise level analysis above; of these three schemes
which used lumped amplification, the hybrid scheme showed the best BER as being
more distributed, followed by the EDFA, and the discrete Raman scheme gave the worst
BER performance due to the long Raman gain fibre at the end of the span. All three of
these schemes performed significantly worse than the two distributed Raman schemes.
The first-order Raman scheme showed better transmission performances at the optimum
signal launch power for both signals and data rates. In the linear regime, the BERs
with the second-order Raman scheme almost overlapped with the first-order Raman
scheme. This means that the benefit from using the higher-order Raman pumping was
not revealed in such a short transmission distance because the transmission performance
in the linear regime was also influenced by the noise from the transceiver [7] and the
EDFAs at the transmitter and the receiver. However, in the nonlinear regime, the first-order
scheme gave a larger signal power variation along the fibre, as shown in Figure 3a, and
consequently had a lower average signal power. Therefore, the first-order DRA scheme
showed significantly greater tolerance against the fibre nonlinearity and better transmission
performances than the second-order DRA. The experimental results were confirmed with
our numerical simulations, as illustrated in Figure 4. As for short-reach high-data-rate
coherent transmission systems, the simple first-order distributed Raman scheme, requiring
low pump power, gave the best transmission performance compared with any other
scheme, including the dual-order Raman scheme, hybrid Raman/EDFA, discrete Raman,
and EDFA-only schemes.
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4. Conclusions

In this paper, we demonstrate the experimental and numerical characterisation and
optimisation for representative optical amplifiers, including an EDFA, a discrete Raman
amplifier, a hybrid Raman/EDFA, first-order only, and second-order (dual-order) dis-
tributed Raman amplifiers, with a 600 Gb/s PM-64QAM transceiver (11-channel WDM
grid) over a 75.6 km SMF. Our stand-alone characterisation results demonstrate that the
second-order Raman scheme had flatter signal power profiles along the fibre, the lowest
ASE noise level, and the highest OSNR. However, in the experimental transmission test,
the first-order distributed Raman amplifier gave the best overall transmission overall
performance. In the linear regime, the improvement introduced by higher-order pumping
was not apparent, and therefore the first-order scheme showed similar performance to the
second-order Raman scheme. However, because of the lower average signal power, the
first-order scheme showed significantly superior transmission performance in the nonlinear
regime in comparison with the second-order scheme. Therefore, the simpler first-order
scheme gave the optimum balance between the linear noise and fibre nonlinearities in a
single-span system with a high-data-rate transceiver. In addition, both distributed schemes
demonstrated better BERs than the hybrid and discrete schemes. As expected, the hybrid
Raman/EDFA scheme showed better performance than discrete schemes. Due to the
extra 7.5 km Raman gain fibre, the discrete Raman scheme performed worst among all the
amplification schemes considered.
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Abstract: In this paper, we review different designs of distributed Raman amplifiers which have been
proposed to minimize the signal power profile asymmetry in mid-link optical phase conjugation
systems. We demonstrate how the symmetrical signal power profiles along the fiber can be achieved
using various distributed Raman amplification techniques in the single-span and more realistic multi-
span circumstances. In addition, we show the theoretically predicted results of the Kerr nonlinear
product reduction with different Raman techniques in mid-link optical phase conjugator systems,
and then in-line/long-haul transmission performance using numerical simulations.

Keywords: Raman amplification; coherent fiber optic communications; optical phase conjugation

1. Introduction

Mid-link optical phase conjugation (OPC) has been used to compensate both linear
(e.g., chromatic dispersion) and the nonlinear (e.g., the Kerr nonlinearity) impairments of
the optical fiber, which can significantly enhance the maximum transmission distance or the
data capacity, particularly for a relatively long-haul transmission system [1–28]. There are a
few limiting factors in the optical fiber link which constrain the efficiency of combating the
nonlinear impairment in a mid-link OPC system, such as the chromatic dispersion slope
and the signal power profile along the fiber [1–3]. Erbium-doped fiber amplifiers (EDFAs)
are the most widely used amplification technique to compensate the loss in the optical
fiber, but typically for a mid-link OPC system using the EDFAs in the link demonstrates
that the either the maximum reach is not significantly extended, or the performance gain is
modest [4–9], even when dispersion management is employed [10,11]. This is because of
the lack of symmetrical signal power profiles before and after a mid-link OPC [12,13]. With
increased availability of high power semiconductor pump lasers, and increased confidence
in fiber power handling, Raman amplifiers are extensively used in unrepeatered submarine
systems and terrestrial transmission systems [29,30], significantly improving the signal-
to-noise ratio. Distributed Raman amplification (DRA) essentially uses the transmission
fiber as the Raman gain medium and provides the signal amplification along the fiber, in
comparison with an EDFA which is a lumped amplifier using a short Erbium-doped fiber
as the gain medium. The design of DRA is highly flexible: Pump wavelength can be chosen
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and adjusted with fiber Bragg gratings (FBGs). A purposefully built DRA can also improve
the power symmetry of the optical fiber link, enabling enhanced efficiency of nonlinearity
compensation, and therefore the overall transmission performances [31–33]. Thus, the DRA
not only provides an improved signal-to-noise ratio (SNR) without OPC, but also gives
a large margin in the transmission performance (maximum reach, BER or data capacity)
improvement when using an OPC to compensate a significant portion of nonlinear product
in the transmission systems. In [12,13], K. Solis-Trapala et al. investigated the signal power
symmetry and transmission performance of the bidirectional pumping over dispersion
flattened non-zero dispersion-shifted fiber (NZDSF) in a mid-link OPC system, but the
selected Raman scheme was restricted to first-order bidirectional pumping with similar
pump power from both directions. The conclusion was that the shortest fiber length (25 km)
gave the highest signal power profile symmetry. This optimized fiber length of 25 km is too
short for realistic fiber spans in current optical transmission systems.

In this paper, we review various designs of distributed Raman amplification schemes
aimed at improving the symmetry of the link for the transmission systems with mid-link
optical phase conjugators. We show the optimized Raman amplification designs over single
fiber span and multiple fiber spans (two) which can both demonstrate symmetry levels
of above 93%. For the single-span link with a 50 km standard single mode fiber (SSMF)
with backward Raman pumping only, the dual-order DRA can achieve 97% signal power
profile symmetry and 39 dB nonlinear product compensation. This leads to more nonlinear
product compensation, 12 dB higher, in comparison with conventional first-order DRA.
For longer span links (e.g., 62 km), bidirectional Raman pumping is required to achieve
good symmetry. A distributed Raman scheme based on the random distributed feedback
laser architecture has been shown to maximize the signal power profile symmetry (97%
symmetry) without introducing significant transmission performance penalty from relative
intensity noise (RIN) of forward pumping. This proposed scheme can give 37.6 dB nonlinear
product compensation, comparable to the 39 dB over 50 km dual-order backward pumping
Raman scheme. Furthermore, for multi-fiber-span (i.e., 2 × 50 km SSMF) links, the impact
of loss between the spans is crucial when optimizing the symmetry. The conventional
dual-order backward-pumped DRA can give only ~66% signal power profile symmetry,
achieving ~17 dB nonlinear product compensation. An over-pumped first span using
the net gain to compensate the loss between spans would help improve the symmetry
to 81% leading to a 25 dB nonlinear product reduction. The best solution is that a 25 cm
erbium-doped fiber (EDF) is embedded in the conventional dual-order DRA, but the Raman
pumps are used to pump the EDF and so compensate the loss between the two spans,
which enables the overall link symmetry to be optimized to 93.9% providing up to 32 dB
nonlinear product compensation with 50 km per span. In addition, we demonstrate that
in a relatively short transmission system (100–200 km), the higher signal power profile
symmetry, the higher the nonlinear threshold (up to 9 dB) when using OPC. We also show,
in the numerical simulations, a Q2 factor improvement of approximately 8 dB in the long-
haul transmission systems (2000 km) using the optimized EDF-assisted Raman amplified
spans in the link.

2. Optimized Distributed Raman Amplification Design over Single Fiber Span

As the stimulated Raman scattering allows a Stokes shift (13 THz) from the pump to the
signal which gives more flexibility for the choice of the pump wavelengths and the Raman
gain fiber, Raman amplification is highly configurable. For example, in Reference [30], a
cascaded third-order Raman pump was used in an unrepeatered transmission experiment.
In Reference [34], the authors presented a sixth-order Raman pump configuration. However,
the commonly used Raman schemes are based on first-order and second-order Raman
amplifiers which have relatively configurations, higher pump-signal conversion efficiency
and consequently lower cost [35–43]. Using only forward Raman pumping is generally
not feasible for transmission systems because firstly, it introduces significant RIN-related
penalty to the transmitted signal from the pump, and secondly the signal suffers high
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fiber nonlinearity due to high signal power near the input sections of the transmission
span [35–43]. Therefore, in this paper, we mainly focus on the designs of first-order and
second-order distributed Raman amplification schemes using backward or bidirectional
pumping which requires the RIN penalty mitigation technique.

2.1. Distributed Raman Amplification with Backward Pumping Only

Figure 1a shows the schematic diagram of the conventional first-order backward-
pumped DRA, including the 50.4 km SSMF pumped by a fully depolarized fiber laser at
1455 nm. Because the fiber length is only ~50.4 km mainly for short reach or multiple spans
in long-haul transmission systems, the span loss was fully compensated which means that
the pump power was commonly set to achieve zero dB net gain [43–48]. Figure 1b shows
both experimentally measured and numerically simulated signal power profiles along the
fiber using the modified optical time domain reflectometer (OTDR) technique [44]. The
symmetry/asymmetry level of the signal power profile is based on the calculation method
in [12,13], which gave 89% symmetry (11% asymmetry) for this Raman scheme.

Figure 1. (a) First-order backward pumping; (b) signal power profiles along the fiber.

Figure 2a shows a dual-order backward-pumping DRA scheme including both a
1365 nm Raman fiber laser and a 1455 nm pump seed [49,50]. Figure 2b shows the simulated
and experimentally measured signal power profiles along the fiber. The use of the dual-
order BW-pumping scheme can improve the symmetry of signal power profile, but it
requires the optimization of the first- and second-order pump power [23]. As shown in
Figure 2b, to achieve 97% symmetry, the first- and second-order pump power was set to
~100 and ~330 mW respectively. When the second-order pump power is increased beyond
this optimum, the signal power symmetry degrades to 92% with ~33 and ~600 mW first-
and second-order pump powers, respectively. This asymmetry accumulation was mainly
because the signal power was increased near the signal output, as the signal gain was
pushed into the middle of the fiber span using higher second-order pump power [23], whilst
for lower second-order pump powers, the asymmetry approaches that of the first-order
pumped configuration.

As the alternative to the dual-order Raman scheme, the pump seed at 1455 nm can be
replaced by a highly reflective fiber Bragg grating (FBG) as shown in Figure 3a [35]. In this
case, a random distributed feedback (DFB) fiber laser at 1455 nm was generated due to the
distributed Rayleigh backscattering (originating from the SSMF) and the fixed reflection
of the FBG [35–37]. This scheme is more cost-effective in comparison with the dual-order
scheme, as no active pump at 1455 nm is required. However, in terms of flexibility when
optimizing the signal power symmetry, a random DFB fiber laser is not flexible compared
to independent separate pumps as a minimum second-order pump power is determined by
the grating reflectivity and the stimulated Brillouin scattering (SBS) coefficient. The same
parameters also determine the ratio of first to second-order pump power. For a typical
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grating reflectivity of 99%, the power symmetry was simulated to be only 75% for the
50.4 km SSMF span.

Figure 2. (a) Dual-order backward pumping; (b) signal power profiles along the fiber.

Figure 3. (a) Raman-fiber-laser-based amplification with second-order pumping; (b) simulated signal
power profiles.

We have theoretically predicted the power of the nonlinear Kerr product generated
by two co-polarized CW lasers (3 dBm each) along a 50.4 km backward-pumped DRA
system with and without mid-link OPC. Figure 4 shows the configuration used to predict
the power of the Kerr nonlinear product as a function of frequency separation of the two
lasers [23]. Figure 5 demonstrates the nonlinear product power versus laser frequency
separation using the three different Raman schemes described above without and with
mid-link OPC. For the conventional first-order DRA, the nonlinear product power without
OPC was up to −11.5 dBm at low frequency ranges. With OPC, the peak Kerr product
power was suppressed by 27 dB. Using an optimized dual-order Raman scheme would
improve the symmetry of signal power distributions and therefore further decrease the
nonlinear Kerr product using the mid-link OPC. In Figure 5b, using the non-optimized
pump power configuration (600 mW second-order pump power), the peak Kerr product
power reduction was improved to ~30 dB, but once the pump power was optimized to
maximize the symmetry (330 mW second-order pump power), the Kerr product reduction
was increased to 39 dB. The random-fiber-laser-based scheme gave the lowest symmetry,
and therefore the reduction in Kerr product power with OPC was limited to ~20 dB, as
illustrated in Figure 5c.
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Figure 4. Schematic diagram of nonlinear product measurement using dual-order DRA in mid-link
OPC systems.

Figure 5. Theoretical predication of nonlinear Kerr product power as a function of frequency separa-
tion between the two CW lasers over 50 km SSMF. (a) First-order Raman amplification. (b) Dual-order
Raman amplification with optimized pump power and non-optimized pump power). (c) Random
Raman-fiber-laser-based amplification.

An inline coherent transmission experiment was conducted by replacing the two
CW lasers shown in Figure 4 with a 256 Gb/s DP-16QAM (32 GBaud) signal (centered at
194.8 THz). After the transmission, the signal or its conjugate (centered at 194.65 THz) was
amplified with an EDFA as the receiver amplifier before being detected by a polarization-
diverse coherent receiver (100 GSa/s, analog bandwidth of 33 GHz). Commercial digital
signal processing (DSP) software was used to process the captured data from the scope
with Q2 factors calculated from the bit-error-rate of 500,000 bits.

As shown in Figure 6, ~5 dB improvement in the nonlinear threshold and ~7 dB
increases in launch power for a fixed Q2 in the nonlinear region are achieved when using
the nearly perfect (~97%) signal power symmetry provided by dual-order BW-pumping
DRA. The optimum Q2 factor was reduced because of the short transmission distance
(100 km) and the additional ASE noise added by the inclusion of the OPC. However, using
the optimized OPC in a long-haul transmission system has been proven to significantly
improve the system performance, since the transceiver and OPC noise are negligible
compared with the accumulated link noise which is the majority of the linear noise [23].
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Figure 6. Experimentally measured Q2 factors versus signal launch power in inline transmission
systems without/with OPC using the optimized dual-order DRA scheme over 2 × 50 km SSMF.

2.2. Distributed Raman Amplification with Bidirectional Pumping

In our optimization of signal power profiles for mid-link OPC we consider three different
distributed Raman amplification schemes, all of them bidirectionally pumped. Simulations
are performed for each configuration, obtaining signal power excursion for different pump
power ratios and span lengths using the tried and tested model fully described in [38] with the
boundary conditions corresponding to each of the cases under consideration and assuming
fully depolarized pumps as well as room temperature operation. Noise calculations are based
on a 0.1 nm bandwidth. The coefficients for Raman gain and attenuation at the different
wavelengths involved were extracted from measurements for SSMF [38], whereas the Rayleigh
backscattering coefficients at 1366 and 1455 nm and the frequency of the signal are assumed
to be 1.0 × 10−4, 6.5 × 10−5 and 4.5 × 10−5 km−1, respectively.

The first case considered (Figure 7a) corresponds to a conventional bidirectionally
pumped first-order Raman amplifier, with pumps at 1455 nm that amplify the signal
through the first Stokes shift.

The second case corresponds to an ultra-long Raman fiber laser (URFL) amplifier
(Figure 7b), that provides second-order pumping from single-wavelength pumps. In such
an amplifier, the initial Raman fiber laser pumps operate at 1366 nm, that is, downshifted
by two Stokes shift with respect to the frequency of the signal. Highly reflective (99%) fiber
Bragg gratings (FBGs) centered at 1455 nm with a bandwidth of 200 GHz are located at both
ends of the transmission line to back-reflect the first Stokes-shifted radiation at 1455 nm
into the long cavity. Once a threshold of ~0.8 W pump power is reached, the cavity forms
a stable ultra-long laser that at that amplifies the signal around 1550 nm. This approach
presents the advantage of having modifiable gain bandwidth and profiles by selecting
appropriate FBGs, instead of requiring an active seed at the intermediate Stokes. In this
case the reflectivity of the FBGs was chosen to be high to maximize pump-to-signal power
conversion efficiency [38–41].
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Figure 7. Schematic design of (a) first-order Raman, (b) second-order ultra-long fiber laser and (c)
second-order random DFB Raman laser amplifiers.

The third and final approach uses a random distributed feedback Raman laser ampli-
fier (Figure 7c). This is another fiber laser amplifier similar in part to the scheme shown in
Figure 3. This is significantly different from a closed cavity with two FBGs. The scheme
is essentially bidirectional Raman pumping using a half-open-cavity design with a single
high-reflectivity FBG at 1455 nm located at the end of the span that reflects the 1455 nm
Stokes in the backward direction. The second-order pump in front of the span, does not
create a seed traveling in forward direction (either by inserting an FBG or an active seed)
but rather amplifies the seed created at the end of the span. The lack of an FBG on the side
of the forward pump reduces the RIN transfer to the 1455 nm Stokes in exchange for a
reduction in conversion efficiency in comparison to the other two proposed setups [35].
This reduced interaction between the signal and the forward pumping is particularly im-
portant, as the RIN transfer from high-power forward pumps can be a limiting factor in
data transmission [42,43].

In order to perform a comparison of signal power asymmetry between the three
proposed configurations, we simulated power profiles of a single channel at 1545 nm with
a fixed launch power of 0 dBm. For each value of the forward pump power (FPP) and
span lengths ranging from 40 to 100 km, the backward pump was adjusted to provide
0 dB net gain. Signal power asymmetry was calculated as in [12,13]. Full results using
random DFB laser amplification (Figure 7c) are shown in Figure 8. Data provide a broader
picture of the asymmetry evolution in transmission over a broad range of forward pump
powers up to 2.5 W and lengths with the optimal backward pumping (0 dB net gain). The
lowest asymmetry point is found to be at 62 km, with signal power asymmetry just below
3% (97% symmetry). Further optimization is possible based on simultaneous ASE noise
minimization and nonlinearity compensation [29].

In order to confirm the simulation results, in Figure 9 we compare the simulated
prediction and experimentally measured asymmetry vs. forward pump power split for a
signal at 1545 nm in a 60 km span (the particular length was chosen due to availability of a
SSMF fiber reels). The discrepancies between measurement and simulation are attributable
mainly to the noisy experimental power profiles, as well as the mismatch of Raman gain and
attenuation coefficients, since for consistency with previous simulations we used standard
values for SSMF instead of measured coefficients.
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Figure 8. Signal power asymmetry (%) as a function of different span lengths and pump powers
(backward pump power was adjusted to give 0 dB net gain).

Figure 9. Asymmetry dependence on the forward pump power split measured at the central wave-
length at 1545 nm in a 60 km span.

Finally we numerically compare three amplification schemes shown in Figure 7 using
the same method as described in Figure 8: In each case we simulate all possible FPPs
adjusting backward pump to give 0 dB net gain and choose the point with the best asym-
metry level (with the favor of a lower forward pump power in case if the same asymmetry
is achieved for two different FPP). The results are summarized in Figure 10 below. The
random DFB Raman laser amplification setup (red) achieved the lowest asymmetry levels
for span lengths above 58 km. The URFL amplification option displayed better symmetry
for lengths between 40 and 58 km, with optimal forward/backward pumping power ratios
close to 1 in spans of up to 50 km but requiring higher contribution from the backward
pump as span length grows. The random DFB configuration requires a higher contribu-
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tion of the backward pump for lengths of up to 30 km, but forward/backward pump
power ratio achieves close to 1 for longer spans. Optimal symmetry in first-order Raman
amplification is found for backward pumping only.

Figure 10. Lowest signal power asymmetry for a given length with pump powers adjusted to
give zero net gain (top) and the accumulated residual phase shift (bottom) for a given amplifica-
tion scheme.

The bottom of Figure 10 shows the potential accumulated residual phase shift after
optimal OPC, defined as the product of the optimal asymmetry at a given distance and the
corresponding nonlinear phase shift.

The combined results for high symmetry and residual phase shift results, together with
resiliency to forward- pumping RIN in coherent transmission applications [29], suggest
that a bidirectionally pumped random DFB laser with a single grating seems to be the best
option, performance-wise, for amplification in long spans with OPC. Thus, we chose this
as the option for further study.

Figure 11 shows the Kerr product reduction versus frequency separation using almost
symmetrical signal power profile (bidirectional pumping with random distributed feedback
fiber laser). In Figure 11, without OPC, the nonlinear product power was up to −6.8 dBm
near the low frequency range, but with OPC, the nonlinear product power was decreased
to −44.4 dBm at 18 GHz. There was 37.6 dB nonlinear product degradation with the 97%
symmetrical signal power profiles over 62 km SSMF, which was comparable with the
optimized dual-order backward pumping Raman amplification over 50 km SSMF.
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Figure 11. Theoretical predication of nonlinear Kerr product power as a function of frequency
separation between the two CW lasers using rDFB bidirectional-pumping Raman amplification over
62 km SSMF span.

3. Optimized Distributed Raman Amplification Design over Multiple Fiber Spans

We have studied the optimization of Raman amplification schemes with backward
pumping only over multiple fiber spans in [2], and this has been the only study so far
regarding multiple fiber span links.

In order to investigate the impact of multi-span DRA schemes on the nonlinearity
compensation, we demonstrated the signal profiles of three dual-order DRA schemes over
2 × 50.4 km SSMF spans and illustrated four-wave mixing (FWM) conversion efficiencies
and inline/long-haul transmission performances.

Scheme 1 was the dual-order DRA with backward pumping which was the same as
Figure 2 in each individual span that included both the first-order pump seed at 1455 nm
and the second-order pump at 1366 nm [49,50]. The gain of the dual-order DRA compen-
sated only the loss from the SSMF, and the losses of the passive components (e.g., signal
pump combiners, isolators) was not compensated. In scheme 2, the experimental setup
was the same as scheme 1, and the pump power for the second span also remained the
same, but the 1.5 dB loss due to fiber attenuation and passive components between the
two spans was compensated by more Raman power from the first span. This means that
the signal output power from the first SSMF was overpowered by ~1.5 dB. In scheme 3,
to compensate the loss from passive components without sacrificing the symmetry of the
two-span link, a 25 cm EDF (Fibrecore M-12(980/125)) was used between the SSMF and
the WDM coupler at the end of the first span as illustrated in Figure 12b, which enabled
1.5 dB amplification within this 25 cm erbium-doped fiber.

Figure 13 shows the experimentally measured and numerically simulated signal power
profiles along the fiber for all three DRA schemes using the modified OTDR setup [44].
In scheme 1, the pump power was 330 mW at 1366 nm and 100 mW at 1455 nm. In the
two-span link, ~1.5 dB signal power difference between two spans existed which reduced
the overall signal power profile symmetry across the two spans to 65.8%, a drop dominated
by the launch power difference.
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Figure 12. (a) Schemes 1 and 2: Dual-order BW-propagated pumping DRA over 2 × 50.4 km SSMF
(including two pump power settings). (b) Scheme 3: EDF-assisted dual-order BW-propagated
pumping DRA over 2 × 50.4 km SSMF.

Figure 13. Experimentally measured and simulated signal power profiles along the fiber with three
Raman amplification schemes; (a) DRA compensating only the fiber loss. (b) DRA compensating the
fiber and the passive components loss between the two spans. (c) EDF-assisted DRA compensating
fiber and the passive components loss between the two spans.
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In scheme 2, the pump power in the first span was 330 mW at 1366 nm and 115 mW
at 1455 nm, higher than in scheme 1 to compensate the 1.5 dB loss between the spans.
Matching launch powers thus improved the symmetry to 80.9%.

In scheme 3, the pump power before passing through the EDF in the first span was
330 mW at 1366 nm and 108 mW at 1455 nm. The 1.5 dB EDF amplification was powered
by both Raman pumps (primarily by 1455 nm; however, the power from 1366 nm pump
would be transferred to 1455 nm and contribute to the gain at low C band simultaneously)
and therefore compensated the loss of passive components between spans [35]. This is
different from the conventional hybrid Raman/EDFA: Instead of using 980/1480 nm laser
pumps to invert the EDF fiber [51] we relied on the Raman pumps at 1366 and 1455 nm.
By matching both launch power and signal evolution in the two-span Scheme enables the
signal power symmetry level of 93.4% over 2 × 50.4 km spans. The symmetry level of
93.4% over two spans is also comparable to the best symmetry level of 97% over a single
50 km span using an optimized dual-order Raman amplification shown in [2].

The theoretically predicted nonlinear product power is shown in Figure 14 as a function
of frequency separation of the two lasers using the three DRA schemes. With no OPC, the
nonlinear Kerr product power for all the three DRA schemes was up to −16 dBm in the
low frequency region. However, because of the poor link symmetry caused by the signal
power degradation between spans, scheme 1 showed the least Kerr power reduction of
only ~17 dB with a mid-link OPC. Higher Kerr product power compensation (~25 dB) was
achieved using the first over-pumped span. The EDF-assisted scheme generated ~1.5 dB
gain to compensate the loss between spans and therefore achieved excellent signal power
symmetry simultaneously for both single-span and two-span links, which showed the
highest compensation (up to 32 dB) in nonlinear Kerr product power.

Figure 14. Theoretically predicated nonlinear product frequency separation without/with a mid-
link OPC using different DRA schemes over 2 × 50 km spans. Dotted lines—no OPC, solid-with
OPC. (a) No account of loss, (b) accounting for loss with excess Raman gain, (c) accounting for loss
with EDF.

120



Sensors 2022, 22, 758

A numerical simulation was performed based on 2 × 2 spans (50.4 km per span, which
makes ~200 km in total) using a 200 Gb/s DP-16QAM (32 GBaud, 256 Gbit/s line rate,
216 PRBS length, 0.1 roll-off factor) signal centered at 194.8 THz with the three different DRA
schemes (DP-16QAM signal). The nonlinear Schrödinger equations (Manakov equations)
were solved using the well-known split-step Fourier method [52–54] with a step size of
0.1 km, in which the signal power profiles shown in Figure 13 were used. The noise from
each amplifier was modeled as Gaussian noise and added to the signal after each step
(0.1 km) [2] to ensure that parametric noise amplification was correctly captured. The
ASE noise of EDFAs at the transmitter, the OPC and the receiver were considered in the
simulations (−140 dBm/Hz noise power density). More details about the simulation
parameters can be found in [2].

In Figure 15, the EDF-assisted scheme 3 shows a maximum launch power improvement
of 9 dB at a fixed Q2 factor in the nonlinear regime, exceeding the improvement observed
for the conventional DRA schemes 1 and 2 (by 4 and 2 dB), respectively. This is due
to the nearly perfect signal power symmetry (>93% symmetry) from the EDF-generated
gain compensating the loss between spans. However, as the overall transmission distance
was ~200 km, the noise from the Raman-amplified link was limited, and therefore the
results were dominated by optical noise from EDFAs in the transmitter, OPC and receiver,
which obscured the Q2 factor benefit introduced by the nonlinearity compensation from the
mid-link OPC and contributed to the small reduction in optimum Q2 factor with mid-link
OPC [2].

Figure 15. Q2 factors versus signal launch power in inline transmission systems without/with
OPC using the optimized dual-order DRA scheme at 200 km. Dotted lines—no OPC, solid—with
OPC. (a) No account of loss, (b) accounting for loss with excess Raman gain, (c) accounting for loss
with EDF.
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Figure 16 shows simulated transmission performances at 2000 km using the EDF-assisted
Raman Scheme. As expected, the most symmetrical Raman scheme (Figures 13c and 15c)
gives ~8dB Q2 factor improvement (Q2 factor is defined as 20log10(sqrt(2).*erfcinv(2.*(BER)).
In addition, the EDFA noise at the transmitter and receivers was deliberately removed for
the EDF-assisted Raman scheme to evaluate the impact of such noise. In this case over
2000 km, the impact of the noise from EDFAs at the transmitter and receiver becomes
negligible as the Q2 factor differences are very small. Thus, the accumulated noise from the
Raman amplified link is more dominant compared with transceiver noise (fundamentally
limited by higher-order parametric noise), and therefore the benefit of the Q2 factor im-
provement can be revealed for long-haul transmission systems with an optimized mid-link
OPC [21,55]. Therefore, using the symmetrical EDF-assisted Raman link in long-haul
transmission systems can improve the fiber nonlinearity compensation efficiency and the
transmission performance in a mid-link OPC system.

Figure 16. Q2 factors versus signal launch power in inline transmission systems without/with OPC
using the optimized dual-order DRA scheme.

4. Discussion

From our analysis in Sections 2 and 3, to achieve the best symmetry and higher
efficiency of combating fiber nonlinearity, different Raman schemes have to be considered
for different span lengths. A table (Table 1) summarizing the span symmetry with Raman
pumping schemes at different span lengths is demonstrated below. It is shown that for the
short span length of 25 km, the first-order bidirectional Raman pumping was sufficient to
achieve 97% signal power symmetry, but the length of 25 km was very short for OPC-based
application (e.g., long-haul transmission systems). In addition, for this short length, the
symmetry changes will be relatively small when using different Raman schemes, and
bidirectional Raman pumping will introduce significant RIN-replated penalty. For the span
length of around 50 km, optimized dual-order Raman pumping is required to achieve
97% span symmetry. However, for longer span length, bidirectional second-order Raman
pumping would be needed as the signal gain can be generated from the start of the span.
Thus, the scheme based on a random fiber laser with bidirectional second-order pumping
without introducing RIN penalty was demonstrated to achieve 97% span symmetry at
62 km. Further extending the span length to 100 km, higher order bidirectional pumping
would be required, but given the RIN penalty introduced from conventional Raman pumps,
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we had to stick to RIN-penalty-free bidirectional pumping based on a random fiber laser. In
this case, the optimum span symmetry dropped to 72% at 100 km. Alternatively, we could
break the 100 km into two 50 km spans, and then the problem became how to leverage
the loss between the two spans. We used the EDF with Raman pumps to account for
the loss between spans and improved the span symmetry from 72% (single span) to 93%
(two spans).

Table 1. Summary of the best span symmetry with corresponding Raman schemes at different
span lengths.

Span Lengths Raman Pumping Schemes Optimum Signal Power Profile Symmetry

25 km First-order bidirectional pumping 97% [12]
50 km Dual-order backward pumping 97% [23]
62 km Second-order bidirectional pumping with random fiber laser 97% [29]

100 km Second-order bidirectional pumping with random fiber laser 72% [29]

2 × 50 km Dual-order backward pumping with EDF in the first span, no
EDF in the second span 93% [2]

5. Conclusions

We review the application of distributed Raman amplifiers with different designs
for nonlinearity compensation in mid-link OPC systems. We demonstrate for single-
span system with mid-link OPC that a dual-order backward-pumped Raman scheme
can efficiently compensate the nonlinearity given that the pump powers are optimized
to maximize the signal power profile symmetry. We show that using optimized pump
powers can achieve up to 97% symmetry and 39 dB nonlinear product power reduction
using a mid-link OPC. For longer span length, bidirectional Raman pumping is required to
maintain a similar level of symmetry. We demonstrate that a random fiber laser amplifier is
the most suitable solution for mid-link OPC WDM systems using span lengths between 60
and 100 km with the best performance at the distance of 62 km, demonstrating the Kerr
product reduction up to 37.6 dB.

For multiple span systems, the optimized configurations (utilizing a 25 cm EDF)
improve signal power profile symmetry and consequently enhance fiber nonlinearity
compensation efficiency. This technique can compensate the loss of passive components
between the spans and therefore maximize the overall signal power symmetry up to 93%
in realistic multi-fiber-span link in a cost-effective manner. We demonstrate that, in the
multi-span link with a mid-link OPC, using this scheme shows ~32 dB nonlinear product
compensation that is at least 7 dB higher than conventional dual-order Raman schemes. We
also show that, for nearly symmetrical signal power profiles, the Raman schemes in both
the single-span and two-span systems give a 9 dB enhancement of the nonlinear threshold
in the 200 Gb/s DP-16QAM transmission system using a mid-link OPC.
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Abstract: Joint estimation of the human body is suitable for many fields such as human–computer
interaction, autonomous driving, video analysis and virtual reality. Although many depth-based
researches have been classified and generalized in previous review or survey papers, the point cloud-
based pose estimation of human body is still difficult due to the disorder and rotation invariance
of the point cloud. In this review, we summarize the recent development on the point cloud-based
pose estimation of the human body. The existing works are divided into three categories based on
their working principles, including template-based method, feature-based method and machine
learning-based method. Especially, the significant works are highlighted with a detailed introduction
to analyze their characteristics and limitations. The widely used datasets in the field are summarized,
and quantitative comparisons are provided for the representative methods. Moreover, this review
helps further understand the pertinent applications in many frontier research directions. Finally, we
conclude the challenges involved and problems to be solved in future researches.

Keywords: point cloud; joint estimation; skeleton extraction; depth sensor; skeleton tracking; com-
puter vision; human representation; convolutional neural network; random tree walk; random forest;
geodesic features; global features; deformation model; hand pose tracking; action recognition

1. Introduction

The depth camera can provide the ranging information from a single depth image
or a point cloud for a variety of applications, such as gaming, three-dimensional (3D)
reconstruction and object recognition. Many human-centered tasks based on depth camera
had been investigated in the last few years, as shown in Figure 1. For example, 3D
human reconstruction is the process of recovering a 3D human surface model by finding
the accurate correspondence between frames [1,2]. The 3D segmentation technology of
human body is the most critical technology in applications such as digital clothing and
computer animation [3]. The health monitoring system using the depth information can
check the diseased parts of the human body to facilitate the guidance of rehabilitation
training [4]. The size measurement of human body based on the depth camera is a safe
and non-contact fast measurement method, which overcome the challenges of high cost
and bulky electronic scanners [5]. Human behavior recognition, as a fundamental research
problem, is an extremely significant component and extensively studied research subject
in computer vision [6]. The ultimate objective of encoding human body is to extract the
various joints of a predefined skeleton in a simplified manner.

Conventional methods for detecting joints of human body utilize two-dimensional
(2D) images or video, taken by traditional cameras. Significant progress has been made
for these methods in recent years, by leveraging the powerful deep learning. However,
there are still some limitations on human pose estimation using only 2D images, due to the
coexisting complex backgrounds, variable viewpoints, highly flexible poses, etc. Additional
depth information can provide enriched 3D data to overcome the limitation of 2D data.

Sensors 2021, 21, 1684. https://doi.org/10.3390/s21051684 https://www.mdpi.com/journal/sensors127
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Figure 1. Human-centered applications of depth sensor.

The purpose of depth camera-based 3D human pose estimation is to locate the (x, y, z)
coordinates of joints in 3D space. Ideally, once the captured human pose changes, the
joints can still be reliably estimated. Figure 2 describes the specific overview of the 3D
joints extraction. The first step of this process is to capture the human poses by a depth
sensor. Since the obtained poses of human body contain redundant information, it is
necessary to process the data in advance. Next, the pre-processed data is used to calculate
the 3D coordinates of the joints using special methods, such as template-based method,
feature-based method, and machine learning-based method. Finally, the error analysis
is performed.

Usually 3D data formats include depth map, point cloud, mesh, and voxel grid, etc.
Here a point cloud is a collection of points in the 3D space. In addition to the commonly
used 3D coordinate information, point cloud can also carry other dimensional information
such as color and normal vector. The point cloud can be obtained directly through the depth
sensors. Compared with the voxel grid, the storage space of the point cloud is smaller,
and the geometric information can still be expressed well after the rotation. Compared
with the mesh method, the point cloud is easily obtained, while there is not direct method
to acquire the mesh data. Compared with the depth map, the point cloud represents the
3D object in a more intuitive way. Moreover, the conversion between the point cloud and
the other 3D formats is quite straight forward. The widely used open source libraries
for 3D point cloud processing are mainly Point Cloud Library (PCL) [7] and Open3D [8].
PCL is a cross-platform C++ library, which implements a large number of point cloud-
related general algorithms and efficient data structures, involving point cloud acquisition,
filtering, segmentation, registration, retrieval, feature extraction, recognition, tracking,
surface reconstruction, visualization, etc. It can support multiple operating systems such as
Windows, Linux, Android, Mac OS X, and some embedded real-time systems. Open3D is a
modern library that can support the rapid software development for 3D data processing.
A set of data structures and algorithms are exposed in C++ and Python, its core features
include 3D data structure, 3D data processing algorithms, scene reconstruction, and 3D
visualization. PCL is more mature with a large number of data structures and algorithms
for 3D data processing. In contrast, Open3D can be installed and used in the python
environment, and the programming is faster and simpler.
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Figure 2. The flow diagram of point cloud-based 3D joints extraction.

The aim of this survey is to provide a comprehensive overview of 3D human joints
extraction based on point cloud. The survey mainly focuses on publication of point cloud-
based joint estimation for human body in computer vision. Here, the point cloud of
human body is directly captured from 3D ranging devices. The involved content mainly
includes the datasets of relevant pose, the methods of point cloud-based joint extraction,
and the applications of point cloud-based joint extraction. The summarized methods are
shown in Figure 3, including template-based methods, feature-based methods and machine
learning-based methods. Compared with the existing surveys, the main contributions of
this review include:

1. To the best of our knowledge, this is the first review to summarize the point cloud-
based 3D joints estimation of human body, thereby providing readers with a complete
overview of the latest researches and developments in the field.

2. The review categorizes the advanced methods based on their working principles in a
comprehensive way, and we enumerate some milestone works in recent years.

3. The datasets and applications of point cloud-based 3D joint extraction are analyzed.
In addition, the results from different literatures are summarized and compared.
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Figure 3. Categorization of the methods for the 3D joints extraction based on point cloud. SoG
is sums of spatial gaussians; SMPL is skinned multi-person linear; CNN is convolutional neural
network; RF is random forest; RTW is random tree walk.

The remainder of this review is organized as following: Section 2 introduces sets of
devices for range detection; Section 3 reviews the existing point cloud-based methods of
human joints extraction; Section 4 enumerates the 3D human dataset; Section 5 discusses
various applications of point cloud-based joint extraction; Section 6 concludes this survey
with potential research directions in the future.

2. Depth Sensors for 3D Data Acquisition

According to the ranging principle, we divide the depth sensors into three categories
as shown in Figure 4, binocular stereo vision, time-of-flight (ToF) and structured light
technologies. Early research focused on the passive method, such as binocular stereo vision,
to calculate the depth information. Typically, two cameras were used to take pictures
of the object from different perspectives. This mechanism is similar to imaging by two
eyes of human. However, the result can be easily affected by the texture of object, and it
is also time-consuming in the registration process. Compared with the passive ranging
method, rapid active ranging shows obvious advantages. On one hand, radar and Lidar are
commonly used in military to reconnoiter and detect battlefields in various environments,
and it is also manipulated for obstacle detection in automatic driving technology. On
the other hand, with the commercial application of low-cost depth cameras, the related
research based on depth cameras has gradually unlocked new applications in the mobile
and intelligent terminal devices.

Figure 4. Classification of depth sensors for 3D data acquisition.
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The ToF depth camera first continuously sends light pulses to the detected object, and
then the sensor is used to receive the light returned from the object. The final distance
is calculated when the flight (round trip) time of the detected light pulse is obtained.
ToF sensors are divided into two types: direct time-of-flight (dToF) and indirect time-of-
flight (iToF) sensors according to different modulation methods. Lighting units of dToF
generally use LEDs or lasers, including laser diodes and vertical cavity surface emitting
lasers (VCSELs), to emit high-performance pulsed light, which directly measures the time
difference from the emitter to the receiver and multiplies it by the speed of light to measure
the relative distance of the object. The receiver must be a special sensor with very high
accuracy, so it is difficult to reduce the cost and miniaturization. The light emitted by
the iToF sensor is modulated by a continuous wave, whose intensity changes regularly.
According to the selection of detected distance, it can be divided into pulsed light and
continuous light. Next, the iToF depth cameras compare the signal difference between the
emitted signal and the reflected signal, and then multiply it by the speed of light to get the
relative distance. In addition, the response speed of the iToF receiver is not as fast as dToF,
and it cannot accurately sense for the sub-nanosecond time difference. Fundamentally,
radar and Lidar are also a kind of ToF sensor. The former uses millimeter waves, and has
stronger anti-interference ability, the latter emits laser signals, and has higher detection
accuracy. Structured light cameras project the invisible pseudo-random light spots to the
detected object through the infrared (IR) emitter. According to the produced different
light spots, they can be divided into speckle structured light, fringe structured light, and
coded structured light cameras. The projected light spot is unique and known in the spatial
distribution, and have been pre-stored in the structured light memory. The size and shape
of these speckles projected on the observed object vary according to the distance and
direction of the object and the camera. The captured spots are compared with the known
spots, and then the depth information is obtained. Different depth cameras can be selected
according to specific parameters, and the detailed comparison is shown in Table 1.

Table 1. Comparison of different depth cameras.

Depth Cameras Binocular Stereo Vision ToF Structured Light

Advantages

low hardware requirements long detection distance convenience for
miniaturization

low cost large tolerance to ambient
range low resource consumption

high robustness to light
disturbance high frame rate high resolution

Disadvantages

large calculation complexity high equipment requirements small tolerance to ambient
light

strong object texture
dependence high resource consumption short detection range

limited measurement range low edge accuracy high noise

Representative ZED 2K Stereo Camera Kinect v2 Kinect v1

BumbleBee Intel RealSense L515 XTion

3. Methods of Point Cloud-Based Joint Estimation

This section mainly describes several methods to achieve human joint extraction.
Existing surveys have made qualitative comparisons of the joint extraction techniques from
the perspective of RGB or depth map. We limit our attention to point cloud-based meth-
ods, which are mainly divided into feature-based methods, template-based methods and
machine learning-based methods. Each method is discussed in each section, respectively.
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3.1. Template-Based Methods

The human body is a flexible and complex object with many specific features, such as
movement structure, body shape, surface texture, body parts or joint positions. A mature
human model is not necessary to contain all the human attributes. Otherwise, it should
meet the specific task of combining and describing human poses. The template-based
method is intuitive and simple. It judges the motion category by comparing the similarity
between the detected object and the constructed template. The existing template-based
algorithms can be roughly divided into three categories according to their principles,
including geometric model, mathematical model, and mesh model. When the model is
selected to match with the observed point cloud of the human body, the joints are regarded
as the connection of the rigid part to achieve pose estimation. A complex model usually
features more characteristic parameters; it can provide a better approximation for the
human body to achieve improved reality and accuracy.

3.1.1. Geometric Model

In general, a geometric model roughly divides the human body into several parts.
Each part can be regarded as rigid and then fitted by the 3D geometric shapes, including
general cylinder, ellipse, and rectangle. Knoop et al. [9] proposed a new method of fusing
different input signals for human tracking. The algorithm can process 2D and 3D input
data from different sensors (such as ToF camera, stereo or single-ocular images). For the
tracking system, a 3D human model was built with several parts, in which each part was
represented by a degenerate cylinder. The top view and bottom view of each cylinder can
be regarded as an ellipse structure. Moreover, the two ellipses cannot rotate with each
other and their planes were parallel. Therefore, a cylinder model needed to be described
by five parameters: the major axes and minor axes of these two ellipses, together with the
length of the cylinder. The entire 3D human model was composed of 10 cylinders, of which
the torso started to extend as the root node. Each child node was described by a degenerate
cylinder and the corresponding transformation of its parent node.

The Head–Neck–Trunk (HNT) deformable template, represented by circles, trapezoids,
rectangles, and trapezoids, was proposed in 2011 [10]. Once the HNT template works,
the limbs (i.e., two arms and two legs) would be detected and fitted with rectangles. The
end points of the rectangle were regarded as the joints of the human body, and its depth
information was used to determine whether the human body was in a self-occlusion state.
When self-occlusion occurred, the part segmentation of the human body was triggered, and
then the segmented limbs were fitted separately. Inversely, the joints of the human body
were directly obtained containing the contact points between the geometric shapes and the
end points. Suau et al. [11] proposed a fast method to localize five joints of human body on
the point cloud. In this method, the geometric deformation model established by the basic
curve evolution theory and the level set method [12] was adopted to spread the topological
structure of the human body. Additionally, the Narrow Band Level Set (NBLS) method [13]
was also expanded to filter the 2.5D data according to its physical area. With the purpose of
maintaining the connectivity on the depth surface to facilitate the extraction of topological
features, the calculated NBLS map was filled, and finally the geodesic distance was used to
quickly locate the five end points corresponding the five extreme joints. Lehment et al. [14]
used an ellipsoid model for the upper-body with nine basic body modules, including
left/right upper arms, lower arms, hands, head, torso and neck. Since the ellipsoid is a 3D
equivalent ellipse, it is easy to be generated and controlled. Even in the case of having no
clue about the color or texture, it can also find the nearest neighbor points with the input
point cloud to calculate the similarity of the likelihood function.

Unlike the above method, Sigalas et al. [15] used 2D information to estimate the pose
of the 3D torso. The initial face identification of the human in 2D image was used to
segment the area of human body from the background. Based on the illumination, scale
and pose invariant features on the 2D silhouette, the 2D silhouette was extracted from a 2D
body, and then the curve analysis was performed to initially assume the area of the human
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shoulder. Meanwhile, the 3D information of the point cloud was meshed to estimate the
3D shoulder coordinates. The ellipsoid model was finally fitted with the torso area of the
human body by least-squares optimization; a set of anthropometric standards were also
applied to further refine the 3D torso pose.

In order to increase the robustness of the algorithm, Sigalas et al. [16] further demon-
strated a multi-person tracking system, as shown in Figure 5, in which human segmentation
and pose tracking were contained. Human segmentation detected multiple human bodies
by face detection in the depth map, and each human body was segmented individually.
In the meantime, the length information of each part was calculated. Pose tracking first
defined a body model with a head, upper and lower torsos, arms, and legs. Ellipse and
circular were used to represent the upper and lower torsos, while cylinder could be imple-
mented to fit for the remaining parts. Additionally, each part had a length limit. The point
cloud of the human body obtained by the depth camera was rotated to the top view, and
the reprojection ratio freproj in Equation (1) was introduced as a matching index.

freproj =
NPr
N3D

(1)

Figure 5. A geometric model can be applied to human joint estimation. (a) includes the human body
segmentation and depth-based ordering and (b) includes the pose recovery and tracking. Figure
from [16].

Multiple views by rotating the cylinder model around the x-axis can be generated,
including occluded and non-occluded. For each view of the cylinder, the corresponding
reprojection ratio visible points NPr to the total number of 3D points N3D in the point cloud
was calculated. Its value varied with the view, and it reached the minimum in the top
view of the cylinder when the view-axis of the camera was aligned with the long axis of
the cylinder.

Based on T-pose, Wu et al. [17] created a simplified human skeleton model with
customized parameters to adapt to different body types. The depth image and the corre-
sponding 3D point cloud, as a pair of inputs, were first pre-processed and initialized to
obtain personalized parameters. The torso part could be detected on the binarized image,
the centroid of this part was calculated as the root node afterwards, and then using the root
node as the parent node to iteratively find other child nodes. After obtaining the length
between nodes, the human skeleton information was obtained by matching with skeleton
model and further optimizing the joint angle. Besides, this method used the threshold
segment to solve the self-occlusion problem.
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3.1.2. Mathematical Model

Mathematical model mainly transfers conceptual knowledge commonly used in math-
ematics to model construction. The basic idea is to build a model with the representation
method of probability distribution to list each possible result and give their probabilities.
Significant amount of work has been accomplished using Gaussian Mixture Model (GMM)
in recent years. GMM is to establish a mixed model based on multiple Gaussian distribu-
tions for each pixel in the image. The parameters in the model are continuously updated
according to the observed image, and background estimation is performed at the same
time. Based on GMM, an algorithm [18] was proposed based on a single depth camera
to estimate the pose and shape of the human body in real time. Due to the probabilistic
measurement, it did not require explicit point correspondences. The articulated deforma-
tion model, which is based on exponential-maps, can direct embed into the GMM model.
However, this algorithm simply used the first few frames to acquire human pose in the
dynamic scenes, which usually did not provide the complete information. To cope with
the time-varying articulated human body shape, Xu et al. [19] applied a GMM model to
establish the pose and shape of the observed user. This method obtained the correspon-
dence between the model and the user, and realized the shape estimation of human body
based on multiple RGB-D sensors without any priori information. Compared with a single
view case, depth data from multiple RGB-D sensors can not only handle more complex
poses, especially occlusion situations, but also can be used to achieved different types of
shape estimation by changing body attributes such as height, weight or other physical
characteristics. Ge et al. [20] constructed a new non-rigid joints registration framework
for human pose estimation by improving the two latest registration techniques. One is
Coherent Point Drift (CPD), and the other is Articulated Iterative Closest Point (AICP). The
GMM model was applied to initialize the standard pose of the human body through the
CPD, and then AICP was employed with other pose point clouds to complete the pose
estimation task. In the follow-up work, for incomplete data caused by self-occlusion and
view changes, an effective pose tracking strategy was introduced to process continuous
depth data [21,22]. Each new frame initialized a new template, which effectively reduced
the ambiguity and uncertainty in the process of visible point extraction.

Stoll et al. [23] proposed Sums of spatial Gaussians (SoG) in 2015, which used a quad-
tree to gather image pixels with similar color values into a larger square. It demonstrated
remarkable performance for 2D data. Each square was represented by a Gaussian function,
and then a set of isotropic Gaussian components constituted the SoG. Inspired by SoG,
Ding et al. [24] presented Generalized SoG (G-SoG), which used an anisotropic Gaussian
function with less calculation to represent the entire human body. On this basis, they
expanded the 3D express form of SoG by grouping 3D parts of the point cloud with similar
depth into voxels. The 3D Gaussian model only contained spatial statistical data, but not
color information.

Both SoG and G-SoG involve pose tracking of different characters. The former rep-
resents observed point cloud through effective octree division, and the latter embeds a
quaternion-based articulated skeleton to create a standard human template model. A single
un-normalized 3D Gaussian G can be expressed as Equation (2):

G(x) = exp
(
−‖x − μ2‖

2σ2

)
, (2)

where x is 3D coordinates, μ and σ2 are the mean and the variance, respectively. SoG has
the form as Equation (3),

K(x) =
n

∑
i=1

Gi(x) (3)
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A 3 × 3 covariance matrix is introduced into Equation (2) to replace the variance σ2,
an anisotropic Gaussian in Equation (4) is obtained as,

G(x) = exp(−1
2
(x − μ)T

⎡⎣ C11 C12 C13
C12 C22 C23
C13 C23 C33

⎤⎦(x − μ)) (4)

SoG was used to represent the point cloud of the human body, and then registered it
with the G-SoG body template for human tracking. An Energy function in Equation (5),
including similarity term, continuity term and visibility term, to describe the similarity
between G-SoG and SoG [25],

θ̂ = argmin
θ

∑
iεKm

−E(i)
sim(θ)·Vis(i) + λconEcon(θ), (5)

the first term emphasizes the similarity of the two models, Vis gives the visible state of
each Gaussian function, and the second term is added to smooth the pose estimation. In
addition, the overlaps on the 2D projection plane of the Gaussian functions were used to
judge whether there is occlusion.

Based on the previous work, the author expanded the previous framework and pro-
posed an articulated and generalized Gaussian kernel correlation (GKC)-based system [26],
as shown in Figure 6, which supported subject-specific shape modeling and articulated
pose estimation for the whole body and hands.

Figure 6. A conceptual scheme of mathematical model-based human joint estimation. Articulated
pose estimation for the full body (a) and hand (b). The 1st row shows the Sums of spatial Gaussians
(SoG) -based template models and an observed point cloud. Their corresponding Gaussian kernel
density maps are depicted in the 2nd row, followed by the pose estimation results in the 3rd row.
Figure from [26].

Apart from the method based on Gaussian distribution, Ganapathi et al. advanced
a real-time tracking algorithm based on Maximum A Posteriori (MAP) inference in a
probabilistic temporal model, and the human pose of each part was updated with Iterative
Closest Point (ICP) algorithm. A two-stage method was proposed to solve the problem
of recovering the human pose from a single depth map [27]. In the first stage, course
template found in a large model dataset was used to make skeleton deformation, and then
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in the second stage, the detailed part of the human shape was restored by Stitched Puppet
model [28] to fit the deformed model.

3.1.3. Mesh Model

The mesh model is composed of many small polygonal patches in the computer
to form the surface in the real world. Through the parameterized human body model,
the structure has specific outer surfaces in addition to the skeleton, which reflects 3D
appearance of the human body. Specific details such as characteristics are convenient to
judge whether self-occlusion behavior occurs.

Ye et al. [29] built a fast pose detection system. After segmenting and denoising, the
human point cloud was aligned with a series of mesh model, and the invisible parts were
filled in the alignment process. Next, the shape and pose were deformed to perform fine-
tuning. For the point cloud that failed to be registered, they searched the best alignment
model again to complete the joint extraction process. Grest et al. [30] used the ICP algorithm
with nonlinear optimization technology to achieve the purpose of aligning the mesh model
and the human point cloud. By using the ICP algorithm, Park et al. [31] also recorded
and processed multiple depth point clouds of single person from different perspectives to
capture the shape of the entire body. Using template matching and Principal Component
Analysis (PCA), a statistical body model representing a variety of human shapes and
poses can be generated. PCA shortened the searching time by projecting the data into a
low-dimensional Principal Component (PC) space. The ICP algorithm was adopted to
fit the subject-specific human body model and depth data frame by frame, so that the
accuracy of the original joint positions estimated by the Software Development Kit (SDK)
was improved.

Hesse et al. [32] exerted a combination of texture model and random forest to classify
body parts. According to the parts of human body, the position of the human joint was
estimated. Vasileiadis et al. [33] used 3D Signed Distance Functions (SDF) data to represent
the model, which was extended by a supplementary mechanism to track the pose of the
human body in the depth sequence. In the actual multi-person interaction scene, the depth
data of the human body in different perspectives was collected [34], and the mesh model
was used for fitting to eliminate contact joint error. A new unsupervised framework was
proposed to eliminate the influence of noise [35]. The method consisted of three steps:
the deformed model and the human point cloud were registered with non-rigid point
method to establish point correspondence, and the skeleton structure was extracted from
the new point set sequence based on the cluster. Finally, Linear Blend Skinning (LBS)-
based joint learning refine the positions. Huang et al. [36] estimated the joint positions by
fitting a reference surface model, which included a reference triangle mesh surface and
an inherent tree-shaped skeleton. Walsman et al. [37] utilized mesh templates to track
human pose in real time and reconstructed high-resolution surface silhouette, so that it can
facilitate gesture recognition and motion prediction using commercial depth sensors and
GPU hardware.

Among all the mesh models, as a prominent and parametric human body model,
Skinned Multi-Person Linear (SMPL) model can carry out arbitrary shape model and
animation drive. This method can simulate the bulges and depressions of human muscles
during limb movement. Therefore, the surface distortion of the human body during
exercise can be avoided, and the appearance of human muscle stretching, and contraction
can be accurately described. Zhou et al. [38] employed MobileNet to build a 2D human
skeleton model, which facilitated the initialization of the point cloud. And then the
customized SMPL model was fitted to the observed point cloud. The error was gradually
reduced between the SMPL model and the actual observed point cloud by minimizing the
loss function.

In order to enhance the generalization ability of the model, Joo et al. [39] designed a
unified deformable model “Frank” to capture human motion at multiple scales without
markers, including facial expressions, body motions and gestures. Figure 7 illustrates the
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main components of Frank. Each part is fitted with FaceWarehouse [40], SMPL model and
artist-defined hand, respectively. Finally, the three models are partially spliced to capture
human body motion and subtle facial expressions. The seamless mesh VU in Equation (6)
was denoted as the motion and shape of the target subject. The main components of the
Frank model MU include motion factor θU, shape factor ϕU, and global transformation
factor tU.

VU = MU
(

θU + ϕU + tU
)

(6)

Figure 7. A mesh model is used to fit with point cloud of human body. (a) SMPL model; (b) Face-
Warehouse model; and (c) artist-defined hand model. In (a–c), the red dots represent 3D positions of
the corresponding keypoints reconstructed by detectors; (d) Body model; (e) Face and hand models
are aligned with the corresponding parts of the body model; and (f) The whole Frank model. Figure
from [39].

The motion parameters θU in Equation (7) and shape parameters ϕU in Equation (8)
of the Frank model are the combination of each sub-model parameters,

θU =
{

θB, θF, θLH , θRH
}

, (7)

ϕU =
{

ϕB, ϕF, ϕLH , ϕRH
}

, (8)

where B represents SMPL model, F belongs to face model, LH and RH are abbreviations of
the left- and right-hand models, respectively. The motion parameter θU mainly expresses
the overall motion pose of the human body, including the relative angle information of the
joints, and the shape parameter ϕU is defined as the ratio of length, width and height.

The next step is to merge the model with the point cloud. There are two cases: one is
when the corresponding point can be found between the model and the point cloud, the
other is when the corresponding point is not obvious. In the first case, 2D detection first
was operated to find the corresponding keypoints in each sub-region, and then converted
them to 3D space. In the second case, the ICP algorithm was exerted to register the point
cloud with model. The final objective function can be written as Equation (9):

E
(

θU , ϕU , tU
)

= Ekeypoints + Eicp + Eseam + Eprior (9)

Ekeypoints means 3D keypoints detections, the term Eicp expresses the cost of ICP algo-
rithm. The skeleton hierarchy of the Frank model was closely connected. However, the
independent surface parameterizations of some sub-model may lead to the introduction
of discontinuities at the boundary. To avoid this artifact, the difference Eseam between the
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vertices of the last two circles around the seam was minimize. Because the SMPL and Face-
Warehouse model did not capture hair and clothes, the full body could not be explained
well by the model. This resulted in incorrect registration during ICP. Hence, Eprior was set
on the model parameters to avoid overfitting the model to these noise sources. Furthermore,
a new model, Adam, was derived to better capture the rough geometry of the human body
with clothes and hair to match the geometry of the source data more accurately.

This method above showed the potential that the unmarked motion being captured
can eventually surpass the mark-based one. The marker-based method is very susceptible
to occlusion, which makes it difficult to capture the details of the body and hands at the
same time. This work can not only solve the occlusion problem, but also achieve higher
precision model fitting results.

3.2. Feature-Based Methods

Global feature is a common feature-based method, which refers to the overall at-
tributes. Common features include color, texture, and shape features. Because it is a
low-level visual feature at the pixel level, the global feature possesses low variance, simple
calculation, intuitive representation, etc. Among the global features, geodesic distance and
geometric feature are commonly used in the point cloud-based applications.

3.2.1. Geodesic Distance

Geodesic distance is literally inferred to be the shortest path distance between two
points, which is different from the Euclidean distance that usually being used in the
geometrical space. Euclidean distance is the shortest distance between two points in space,
and geodetic distance is the shortest path of two points along the surface of the object.
To solve the shortest path problem, Dijkstra’s algorithm [41] was commonly used, which
was a greedy algorithm. This was because after specifying the starting point and ending
point, the algorithm always tried to access the next node that is closest to the starting point
in each step of the loop, thereby gradually obtaining the shortest distance between the
two points.

Krejov et al. [42] located and separated the left and right hands according to the image
domain, and then processed each hand in parallel to build a weighted graph on the surface.
An effective Dijkstra’s algorithm is utilized to traverse the entire graph to find N candidate
fingertips. With the shortest path algorithm, multi-touch interaction among multiple users
is realized. Phan et al. [43] proposed an online multi-view voting scheme (MVS) running
at an interactive rate. It combined the measurement results from multiple sources to
generate a fine geodesic distance graph (GDG), and then five geodesic extremes in the
GDG were marked as the head, hands, and feet. Assuming that the length of each bone is
determined in advance, so additional landmarks are obtained by calculating the centroid
of each region, corresponding to the secondary joints of the wrist, elbow, knee, ankle,
and neck. To overcome the errors caused by misdetection and occlusion, an improved
method using feature point trajectories to correct the error detection was designed [44].
Five extreme points were detected by geodesic distance method. A shoulders template was
applied to search for the position of the shoulders. Once the shoulder joint is determined,
the geometric midpoint was regarded as the position of the elbow joints. An iterative
search method was used to find the elbow point by minimizing the total geodesic distance
from the shoulder point to the hand point through the elbow point. Besides, a minimum
distance constraint was imposed afterward in the corresponding recognition to predict its
most likely spatial position in the next frame for tracking the trajectory of each joint. To
solve the problem of detecting and identifying body parts in the depth data at the video
frame rate, a solution was proposed to obtain a new interest point detector on the point
cloud data [45]. First, the extreme points were detected by using the geodesic distance,
and were further divided into hands, feet, or head using local shape descriptors, and 3D
direction vector of each point is given. To speed up the search process of candidate points
in the human body, a quadtree-based method was utilized to effectively group adjacent
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data, and then Dijkstra’s algorithm was applied on this basis to obtain the feature points.
In the tracking process, a noise removal and restoration method based on Kalman filter
was used to correct and predict the extreme positions [46].

Combining multiple methods can also provide better accuracy in estimating the
position and direction of the joints. Handrich et al. [47] replaced depth information with
more complex features describing local geodesic neighborhoods, and then a random forest
classifier was used to learn the correct body part from these descriptors. Baak et al. [48]
employed the geodesic distance, which was extracted from the input data as a sparse
feature to retrieve the pose from a large 3D pose dataset, and merged it with the previous
pose to achieve pose tracking. Mohsin et al. [49] described a system for successfully locating
specific body parts. Multiple depth sensors were used to collect point clouds from different
perspectives to help solve the occlusion problem. In order to locate prominent human
limbs, a triangular mesh model was applied to the 3D point cloud, and the ends of the
limbs were marked with geodesic distance.

In general, the geodesic distance can only be used to detect the five extreme points
of the human body, namely, the head, hands, and feet. A hybrid framework using depth
camera to automatically detect joints was proposed [50]. This method divided the joints
into two types: implicit joints and dominant joints. Dominant joints include extreme
points, elbows, and knees. Implicit joints are points on the trunk, such as the neck and
shoulders. The specific extraction process is shown in Figure 8a. Due to the rigidity of the
human limbs, the dominant joints are easier to be detected than the implicit ones. First, the
geodesic features of the human body are used to establish extreme points.

Dg
(

p0, P
(
xp, yp

))
= ∑ Dg

(
P
(
xp, yp

)
, P
(

xq, yq
))

(10)

Figure 8. Geodesic distance is used to locate the positions of extreme points. (a) describes the
overview of the workflow of the proposed method. (b) shows the skeleton model used in our
method. The green dots represent the extreme points. Blue dots represent implicit joints (neck, waist,
shoulders, and hips). Red dots represent dominant joints (elbows and knees). Figure from [50].

In Equation (10), P denotes the point cloud, p0 is starting point, and Dg (·) represents
the geodesic distance between two random points. If the corresponding relationship
between the extreme points and the skeleton model is not given, it is difficult to detect the
position of the joints. Therefore, starting from mapping an extreme point to the head, the
feature of the area around each extreme point is used to compare with the head model.
Each extreme point is gradually mapped to the corresponding part of the human body
model. In the skeletal model as described in Figure 8b, the geodesic distance between the
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head and the hand is smaller than the geodesic distance between the head and the foot,
which is the criterion used to separate the hand and the foot joints.

With the above restrictions, the extreme points are found. The human skeleton model
is then used to define implicit joints. Assuming that the geodesic distance between the
left hand and the left shoulder is shorter than the geodesic distance between the left hand
and the right shoulder. The relationship between the left hand and the right hand can be
described as Equations (11) and (12):

Dg(pLh, jLs) < Dg(pLh, jRs), (11)

Dg(pRh, jRs) < Dg(pRh, jLs) (12)

By adding constraints such as Euler angle and geodesic distance ratio, the joint
candidates were ensured to show the degree of curvature of the path. The strategy based
on the global shortest path was adopted to detect the dominant joint candidates, such
as elbow and knee joint, and then the shortest paths for specific detection were further
used to locate these joint. Furthermore, to deal with self-occlusion, when the distance map
is updated, the difference in depth values is calculated between adjacent points. If the
difference is less than the threshold, the two points are on the same surface of the human
body. Otherwise, they are in different parts of the human body.

3.2.2. Geometric Feature

Geometric features refer to the overall attributes, common ones include texture and
shape features of the human body. To eliminate the influence of complex poses by construct-
ing and merging 3D point clouds of multiple views. The part detector was used to detect
the body parts [51], and then the centroid of each part was obtained as the joint position.
Based on the shape segmentation and skeleton sequence, Zhang et al. [52] designed an
extraction method of human skeleton. In the preliminary step, the centroid of every part
was also used to generate a pseudo skeleton. Multiple depth sensors were also utilized
to achieve the purpose of motion capture [53]. First, multi-frame depth data from the
depth sensor was converted into multiple point clouds, and then, these point clouds were
combined into a merged point cloud, on which the skeleton line was acquired by the Reeb
graph. Finally, the joint position was calculated from the skeleton line according to the joint
structure of the human body. A curve skeleton expression based on the set of cross-section
centroids was presented [54]. Patil et al. [55] applied multiple inertial measurement unit
(IMU) sensors, which were placed at the human joints to estimate the 3D position of the
joints, the Lidar data compensate for displacement drift during the initial calibration of the
skeleton structure. A 2.5D thinning algorithm was exerted [56], including segmentation of
the occlusion region and thinning line extraction. The thinning line bone obtained cannot
determine the exact position of all body joints, but the end-joints of the body part can be
detected. Finally, it was registered with the constructed human model containing 16 bone
joints, and the human joints were extracted.

Xu et al. [57] detected the human joints in a single-frame point cloud using the TOF
depth camera. The process was distributed into three stages as shown in Figure 9. An in-
house captured 3D dataset containing 1200-frame depth images was first collected, which
can be categorized into four different poses (upright, raising hands, parallel arms, and
akimbo). To eliminate the influence of the background and noise points on the algorithm,
the point cloud was separated from the background by the conditional filtering in the data
pre-processing stage. To avoid self-occlusion, the point cloud was projected to the 2D top
view, and then the point cloud was easily rotated by the angle, which was formed by the
farthest points on the x-axis and the horizontal axis, to make the viewpoint of the camera
parallel with the direction of the human body being facing. Finally, the 3D silhouette of
the human body was extracted by adopting the public algorithm in the PCL [7] as a global
feature in the point cloud.
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Figure 9. Geometric feature is used for human joint estimation. The approach consists of three stages: data acquisition,
data pre-processing and joint estimation. (a) The point clouds are directly obtained from the depth camera. (b) Data
pre-proposing mainly involves three parts: firstly, the irrelevant points are filtered, then the orientation of the human point
cloud is adjusted, and finally the 3D silhouette is extracted. (c) Fourteen joints of human body are extracted by using the
geometric feature of human silhouette. Figure from [57].

Before extracting the joints of human body, different poses were classified according
to the angle and aspect ratio of the silhouette point cloud. First, the four poses are divided
into two categories, according to the angle formed by the farthest point on the x-axis and
the point with minimum value on the y-axis, one includes upright and akimbo poses, and
the other contains the remaining poses. Then, the two poses in each category are further
distinguished according to the aspect ratio of the silhouette. There was slight difference in
the extraction method of the 14 joints for different poses. The approximate flow was that
the head and foot joints were regarded as the centroids of each segmented part according
to body proportion. As the base point, the waist joint was obtained in the next step using
the prior information, while the shoulder and hand joints can be acquired afterwards. The
elbow and knee joints were calculated by judging whether bending was present. In an
upright state, the elbow joint was determined to be the midpoint between the hand joint
and the shoulder joint, while the knee joint was also located on the line between the foot
point and the midpoint of the left and right shoulders. When in the bent state, the elbow
joint was defined the farthest point in the arm point cloud from the straight line formed
the hand and shoulder joints, and the knee joint was the minimum value in the z direction.

Compared with the other methods, the accuracy of the joints was greatly improved.
The average joint error was less than 5.8 cm by using both the in-house and public datasets,
but it was also affected by the clothes, which led to more error in the waist joint.

3.3. Machine Learning-Based Methods

Given the rapid development of machine learning technology in computer vision, some
of the latest deep learning networks, such as PointNet [58], VoxelNet [59], PointCNN [60]
and PointConv [61], are also implemented in the 3D point clouds. These algorithms have
further pushed the development of deep learning on 3D point clouds to address various
problems [62,63]. This review attempts to track and summarize the progress of point cloud-
based networks for human tracking in recent years, so as to provide a clear prospect for the
current point cloud-based joint extraction of the human body. We mainly summarize from
two categories of neural network and classification tree.

3.3.1. Neural Network

One very important field of machine learning is the neural networks. Especially,
convolutional neural network (CNN) is a fascinating and powerful tool that can achieve
great analysis results in many tasks of computer vision. A 2D CNN is used to locate 2D
human joints, which are then extended to 3D through a depth transformation to reduce
the computational cost. Biswas et al. [64] designed an end-to-end system that combines
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RGB images and point cloud information to recover 3D human pose. Özbay et al. [65]
used a simplified extraction method “Conditional Random Field” to classify 3D human
point clouds, and the corresponding images and poses as input of CNN transmitted similar
spaces. When the image-pose pair is matched, the value of dot product is high, otherwise
the value is low. Without making any assumption about the appearance and initial pose of
the human, the proposed system could be applied to multi-human interaction scenarios [66].
Schnürer et al. [67] utilized networks to generate 2D belief maps, combined with depth
information for pose detection of the upper body, which required fewer resources while
achieving a high frame rate. However, the depth mapping of a 2D single-channel image
did not represent an actual 3D representation. To overcome this limitation, a 3D CNN
architecture was proposed to provide a likelihood map for each joint [68], and the detection
structure was extended to make it suitable for multi-person pose estimation. Millimeter
wave (mmWave) has the advantages of high bandwidth and fast speed, which is the reason
why it is used as the carrier of 5G technology. A new method of real-time detection and
tracking of human joints using mmWave radar was proposed [69], named mmPose. This is
the first method to detect different joints using mmWave radar reflected signals, and the
emission wave at 77 GHz allowed it to capture small differences from the reflective surface.
The algorithm structure is shown in Figure 10.

Figure 10. In automatic/semi-autonomous vehicles and traffic monitoring systems, mm-Pose can be
used to perform robust skeleton pose estimation of pedestrians. Figure from [69].

The objects reflected the radar signal within a coherent processing interval (CPI), and
a 3D radar cube was obtained with fast-time, slow-time and channel. In order to overcome
the sparseness of the voxel grids. and significantly reduce the subsequent machine learning
structure, the depth, the ratio between elevation and azimuth, and normalized power
values of the reflected signal were assigned to the RGB channels to generate a 3D heat map,
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which can be used as the input to CNN, and the output of CNN were different human
joints in 3D space.

In addition to CNN, other neural networks are also commonly used in point cloud-
based pose recognition. Fully connected network (FCN) was introduced to accurately
simulate the restriction of the human joint [70], which can effectively implement the realistic
restriction by transforming the constraint force in the physics engine into an optimization
problem. Li et al. [71] proposed multi-layer residual network to obtain hand features for
tracking and segmenting. Zhang et al. [63] adopted an adversarial learning method to
ensure the effectiveness of the restored human pose to alleviate the ambiguity of the human
pose caused by weak supervision. A deep learning-based weakly supervised network, as
shown in Figure 11, not only used the weakly-supervised annotations of 2D joints, but also
applied the fully supervised annotations of 3D joints. It is worth noting that 2D joints of
human body can help select effective sampling points to reduce the computational cost of
the point cloud-based network.

Figure 11. A schematic diagram of human joint estimation using Neural Network. The network
consists of two modules, the point clouds proposal module and the 3D pose regression module.
Using the input depth map, we first estimate the 2D human pose, and use it to sample and normalize
the extracted point clouds from depth. Then we use the initial 3D pose converted from the estimated
2D pose and the normalized point clouds to predict the final 3D human pose. Figure from [63].

In this paper, a point cloud-based network is involved. Initially, Qi et al. [58] proposed
the PointNet network, which can extract features of point from unordered point clouds.
PointNet used traditional multilayer perceptrons (MLPs) as the core learning layer. It
is commonly used to deal with 3D object classification and point-level semantic tasks.
In the subsequent research work, PointNet++ [72] added local structures at different
scales to enhance PointNet. Because of the effectiveness of this method, the author used the
PointNet++ network to deal with point segmentation. Compared with the existing methods
about pose estimation of the human body that require human foreground detection, this
method can perform accurate pose estimation without clear requirements.

Joint extraction of part structures from human body attracted much attention for
further research. The proposed self-organizing network aims to use unannotated data
to obtain accurate 3D hand pose estimation [73]. The heat map, as the output of 3D
CNN, reflected the probability distribution of the joints. In [74], heat map was used as
the intermediate supervision of the 3D hourglass network to participate in the skeletal
constraints for the hand tracking. In addition to the heat map representing the distance, the
unit vector field was introduced, and joint position was inferred by weighted fusion [75].
In order to further improve the accuracy of the fingertips, a fingertip refinement network
was designed to model the visible surface of the hand and perform pose regression [76].
Different from the original PointNet, Local Continuous PointNet (LCPN) [77] was proposed
to extract the local features of the neighbor index in the unorganized point cloud to estimate
the facial joints. The input of the 3D CNN was encoded through the projection of the point
cloud [78]. After the convolution and pooling layer, 3D features can be extracted from the
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volume representation, which can be used to return the relative position of the hand joints
in the 3D volume. An end-to-end multi-person 3D network Point R-CNN for the pose
estimation was proposed [79], which used panoramic point clouds of multiple cameras to
solve the occlusion problem. The whole network can be regarded as a combination of two
parts. The first segment is for the instance detection using VoxelNet and the other segment
is for instance processing by the PointNet to acquire the joint information.

3.3.2. Classification Tree

The classification tree is one of the prevailing methods for human body segmentation.
As a newly emerging and highly flexible machine learning algorithm, random forest (RF)
refers to a classifier that uses multiple trees to train and predict samples, has a wide range
of applications.

Inspired by the decision forest, each point in the point cloud of the human body is
voted to evaluate the contribution of each part of the human body, so that collaborative
method was proposed to learn the 3D features of the human body [80]. Xia et al. [81]
trained the cascade regression network from the pre-recorded human motion dataset. In
addition, the hierarchical kinematics model of the human pose was introduced into the
learning process, it can directly estimate the accurate angles of the 3D joints.

Random forest is often used to segment different parts of the human body in the
following literatures. Different regions of the upper body were first detected, and then the
probability map for each region were calculated [82]. The highest part in the probability
map was defined as the external joints. The internal joints, such as the elbow, were fitted
with an ellipse model to obtain. In the 3D point cloud, the Principal Direction Analysis
(PDA) was used to estimate the main direction of the body part, and then the main direction
was mapped to each part of the 3D model to estimate the human pose [83]. In the prescribed
action set, a pose estimation using multiple random forests was proposed to enhance the
results of motion analysis [84]. A group of random verification forests were set to verify
classification results of the initial random regression forest for precise joints positioning.
The geodesic-based feature descriptors played a significant role in the random forest
classifier to produce more exact spatial predictions for body parts and bone joints [85].
Random forest was also applied to infer the consistency between the input data and the
construction template [86]. The method successfully restores the shape of the human body
and extracts joints.

The method of pixel inference using random decision tree usually requires more heavy
calculation. Especially when the number of trees is increased to improve generalization
and accuracy, the computational burden of multiple trees may force a trade-off between
speed and accuracy, and the random tree walk (RTW) method can obtain greater gain. The
method combined RTW with optimization methods such as ICP and random search, which
raised the ability to extend of the classification tree [87]. RTW was used to initialize various
assumptions in different ways and then passed them to the optimization stage.

Yub et al. [88] no longer trained the tree for pixel-level classification, and used the
regression tree to estimate the probability distribution towards a specific joint direction
relative to the current position. In the test process, the direction of random walking was
randomly selected from a set of representative directions. A new position by a constant
step was found in that direction.

For all positioning problems, as long as we know the direction of any point on the
object towards that position, we can find the correct position. Ideally, the orientation of
all parts should be trained from all possible positions of the whole body, because random
tree walking could reach the joint position faster, so a starting point close to the target joint
position was required. In the case of using the skeleton topology, one needed to provide a
nearby initial point for the RTW, as shown in Figure 12.
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Figure 12. Example of classification tree for human joint estimation. (a) illustrates the kinematic tree
implemented along with random tree walk (RTW). First, the random walk toward belly positions
starts from body center. The belly positions (red dot in (a)) become starting point for hips and chest,
and so forth. (b) shows the RTW path examples. (c) illustrates offset sample range spheres in green.
In (d), the green dots represent offset samples. Figure from [88].

RTW can be described as training regression trees for each joint in the human skeleton.
Here, the direction from the point to that specific joint is obtained by training a regression
tree. Therefore, a training set is first constructed with the position of each joint point and
the depth value of the input point.

The unit direction vector û from the offset point to the joint was defined as Equation (13):

û =
(

pj − q
)
/‖pj − q‖, (13)

where pj is the coordinate of a random point, q is the position of the specific joint. The
training sample S is expressed as Equation (14):

S = (I, q, û), (14)

I represents the depth value. The goal is to find a partitioned binary tree that minimizes
the sum of squared differences. At the same time, the directions are stored on each leaf
node in the form of clusters, so that several representative directions and corresponding
probability weights form the output of the tree. When estimating the pose, the path starts
walking randomly from some initial points. In each step of the traversal, the regression tree
is traversed to a leaf node, where a set of directions corresponding to the current point can
be obtained. However, the step direction is randomly selected from the k-means cluster
unit vector at the leaf node.

3.4. Summary

The template-based method first needs to establish a template library or a parame-
terized template, and then the similarity between the point cloud of human body and the
sample in the template library or the target model is compared. This method is relatively
rough and time-consuming. Given diversity and multi-scale structure of the sample data,
the same pose of human body may be very different in space. Therefore, the accuracy of
template-based methods is very limited.

Feature-based method needs to extract the global or local features of the point cloud,
which combine with some prior knowledge to obtain the 3D joints of the human body. This
method relies on the selection of feature points such that it is not suitable for self-occlusion
and changing poses. Therefore, it is necessary to further optimize the robustness of the
algorithm for covering the poses of the human body as much as possible.
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The machine learning-based method mainly uses the network to automatically learn
the required features from the point cloud, and then the learned features can be regarded
as the judgment condition to extract the human joints. Compared with the above two
methods, it has been greatly improved. On one hand, the obtained joints can achieve higher
accuracy by learning sample features in a large training set, and on the other hand, it is
also very robust to scale processing. The machine learning-based method can make up for
the shortcomings of the above two methods, but it is restricted by the sample richness of
the training set, so the construction of the training set is very important to the machine
learning-based method.

Moreover, we summarize some works of point cloud-based joint estimation for human
body in Table 2. For 3D pose estimation, two different error metrics can estimate the
accuracy of the method. One is direct measurement of the Euclidean distance between
the estimated and ground truth joints, another is the average precision (AP), which is
defined as the ratio of correctly estimated joints within a specific threshold. Some works
have adopted the AP error metrics, and Table 2 reports datasets together with some key
parameters, especially, the threshold values δ. When δ changes, the AP of each joint would
be different. The 3D coordinate of each classified joints, which are obtained by proposing
algorithm in the literature, is compared with the corresponding ground truths of the joints
within the same dataset. When the difference between the two values above is less than the
given threshold δ in Table 2, the joint coordinate is considered to be a correct position. For
acquiring the tracking accuracy of each classified joint in the referenced works, the ratio AP
in Table 3 is finally calculated between the sum of the correct locating joints and all joints.

Table 2. Summary of the referenced works for human pose estimation with depth inputs.

Methods Dataset δ (/cm) FPS GPU

[11] SMMC-10 9 25 N
[18] EVAL 10 30 Y
[24] SMMC-10 10 20 N
[89] SMMC-10 10 125 N
[44] SMMC-10 6 25 N
[45] Self-built dataset - - -
[50] Self-built dataset 6 - -
[56] SMMC-10 15 25 N
[57] Self-built dataset 6 - N
[68] EVAL 10 - Y
[82] CMU Mocap - - Y
[87] Self-built dataset 10 35 N

“-” represents that the value is not given; δ represents threshold value; “Y” means running on a desktop with
GPU; and “N” means running on a desktop without GPU.

Table 3. Tracking accuracy of the human body joints in the referenced works.

Head Neck Shoulders Elbows Wrists Hand Ankles Knees Foot

[11] 0.97 - - - - 0.85 - - -
[18] 0.91 - 0.94 0.905 0.818 - 0.93 0.955 -
[24] 0.99 - 0.965 0.965 0.965 - 0.97 0.958 -
[89] 0.975 0.965 0.985 0.96 0.95 - 0.965 0.963 -
[44] 0.96 - 0.995 0.774 - 0.933 - - 0.99
[45] 0.92 - - - - 0.852 - - 0.869
[50] - 0.813 0.882 0.867 - - - 0.85
[56] 0.97 - 0.935 0.86 - 0.885 - 0.935 0.935
[57] 0.979 0.701 0.947 0.926 - 0.754 - 0.463 0.855
[68] 0.917 0.955 0.919 0.763 - 0.839 - 0.852 0.927
[82] 0.97 - 0.955 0.915 0.867 - 0.930 0.925 -
[87] 0.99 - 0.975 0.96 0.95 - 0.965 0.98 -

“-” represents that the value is not given.
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4. Public Depth Dataset of the Human Body

Public datasets play an important role in testing the robustness of the algorithm and
provide a platform to compare different algorithms in a fair manner. In the past few years,
many 3D benchmark datasets for different applications have been collected and made
publicly available to the research community. The structure of the dataset mainly includes
RGB, depth map or point cloud acquired from structured light or ToF depth camera. In this
paper, we only focus on the point cloud-based dataset. This section provides a detailed
review of the datasets listed in Table 4. Since point cloud occupies fairly large storage space,
most datasets usually provide depth maps together with the internal parameters of the
camera, which can be easily converted to the point cloud-based datasets.

Table 4. Previously developed depth datasets for human bodies.

Dataset Name
Acquisition

Device
Year Joints Subjects Classes FPS

SMMC-10 [90] MoCap+ToF 2010 15 S - 25
MSR-Action3D [91] Kinect v1 2010 20 S 20 15
NTU RGB+D [92] Kinect v2 2016 25 M 60 30
Walking gait [93] Kinect v2 2018 25 S 9 30

MHAD [94] MoCap+Kinect v1 2013 21 S 11 30
G3D [95] Kinect v1 2012 20 S 20 30
G3Di [96] Kinect v1 2014 20 M 18 30

SBU-Kinect-Interaction [97] Kinect v1 2012 15 M 8 15
CDC4CNV [98] Kinect v1 2011 9 S - -

EVAL [89] Vicon motion 2012 12 S 24 30
CMU MoCap [99] MoCap - 41 M 23 -

S denotes single person, M denotes multi-person interaction. “-” represents that the value is not given.

A set of widely availed depth dataset, named SMMC-10, was constructed as a bench-
mark for the algorithm testing [90]. To generate this dataset, a probability model containing
15 rigid parts of the human body was first defined. These rigid parts were spatially
constrained by the joints with 48 degrees of freedom. This dataset was recorded by the
Motion Capture (MoCap) system and the ToF camera (Swissranger SR4000) at 100–250 ms
per frame. It included 28 real actions, such as fast kicking, swinging, self-focusing, and
whole-body rotation.

Another constructed dataset by Li et al. [91], named MSR-Action3D (https://documents.
uow.edu.au/~wanqing/#MSRAction3DDatasets (accessed on 12 June 2020)), was 20 game
action for seven subjects facing the depth camera, including: high arm wave, horizontal
arm wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw circle,
hand clap, two hand wave, side-boxing, bend, forward kick, side kick, jogging, tennis
swing, tennis serve, golf swing, and pickup and throw. Each action was captured three
times by Kinect v1 (Microsoft Corp., Redmond, WA, USA) at 15 frames per second. In total,
the dataset reasonably covered various movements of arms, legs, and torso, which stored
4020 motion samples with 23,797 depth maps. Notes that, if an action was done with only
one arm or one leg, subjects were advised to use their right arms or right legs.

A large-scale RGB+D human action recognition dataset, named NTU RGB+D dataset
(http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp (accessed on 12 December 2020)),
used a recurrent neural network (RNN) to simulate the long-term time correlation of various
parts in the human body, and to better classify the human body poses [92]. The dataset
collected more than 56,000 video samples with a total of four million frames from 40 different
subjects and 60 different operation classes, including daily operations, interoperations, and
health-related operations.

Nguyen et al. [93] explored the extraction of skeleton during human walking. The
content of the walking gait dataset was about 18.6 GB, and it was divided into a test set
and a training set. The test set included samples of five subjects, and the training set was
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walking gait data of four individuals. The data collected for each person includes the
information of skeleton and silhouette together with the point cloud.

Berkeley Multimodal Human Action Database (MHAD) took seven males and five
females aged between 23 to 30 years old as subjects (http://tele-immersion.citris-uc.org/
berkeley_mhad (accessed on 2 November 2020)) [94]. Each subject performed 11 actions
in succession, such as jumping, throwing, waving, sitting down and so on. To ensure the
accuracy of action acquisition, all subjects repeated 5 times for each action, resulting in a
total of approximately 660 action sequences. In addition, a T-pose model was created for
each subject to extract its corresponding skeleton.

The G3D dataset (http://dipersec.king.ac.uk/G3D/G3D.html (accessed on 29 June
2020)) mainly includes different game actions [95]. Given the internal parameters of the
depth camera, the captured depth map can be converted into a point cloud. The dataset
contains 10 subjects. Each subject was required to complete 7 action sequences consisting
of 20 game actions: punch right, punch left, kick right, kick left, defend, golf swing,
tennis swing forehand, tennis swing backhand, tennis serve, throw bowling ball, aim and
fire gun, walk, run, jump, climb, crouch, steer a car, wave, flap and clap. On this basis,
G3Di (http://dipersec.king.ac.uk/G3D/G3Di.html (accessed on 29 June 2020)) [96] was
constructed to process a human interaction for multiplayer games. The dataset contained
six pairs of subjects’ motion interaction behaviors, such as boxing, volleyball, football,
table tennis, sprinting and hurdles. Each action was separately stored as RGB, depth and
skeleton data.

A complex human activity dataset, called SBU-Kinect-Interaction (https://www3.cs.
stonybrook.edu/~kyun/research/kinect_interaction/index.html (accessed on 19 December
2020)), was created to describe the interaction between two people [97], including syn-
chronized video, depth and motion capture data. All videos were recorded in the same
laboratory environment. Seven participants performed the activity consisting of 21 groups,
where each group contained a pair of different people performing all eight interactions.
Note that in most interactions, one person was acting and the other was reacting. Each
action category contained one or two sequences. There were approximately 300 interactions
in the entire dataset.

The CDC4CV pose dataset [98] was acquired with the depth information of the upper
body for comparison of static pose estimation techniques by the Kinect v1, including
9 joints of three subjects. During the acquirement of the depth pose of human body, the
upper body of each subject was ensured to stay within the 640 × 480 window. Nearly
700 depth data including three subjects were collected and labelled, of which 345 depth
data were chosen as the training set and the rest data were used as the test set.

The EVAL dataset was built in 2012 (http://ai.stanford.edu/~varung/eccv12 (ac-
cessed on 16 September 2020)) [89], which included 24 action sequences of three different
subjects. Each subject performed actions of gradually increasing complexity at the place
where is approximately 3 m away from a Kinect camera. The ground truth of the 12 joints
was captured using the Vicon motion capture system, and stored in the EVAL dataset
together with the corresponding 3D point clouds.

CMU MoCap (http://mocap.cs.cmu.edu (accessed on 14 October 2020)) [99] used
12 Vicon infrared MX-40 cameras to collect the motions of the human body wearing black
jumpsuits, including six major categories, such as human interaction, interaction with
environment, locomotion, physical activities and sports, situations and scenarios, and test
motions. And each category was further divided into 23 sub-categories. 41 marks were
posted on the human body for the cameras to collect the ground truth of the joints during
the motion. The images captured by various cameras were then triangulated to obtain
3D data.

In summary, MoCap is a motion capture system by posting marks on the joints of
the human body with multiple cameras to track the human joints from different views.
Accurate 3D skeleton information at a very high frame rate is acquired in the system.
However, the system is usually expensive, and only available in an indoor environment. At
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present, many methods also use a single depth camera for data acquiring and processing.
The subjects do not need to wear any equipment with constraints. For the single person
datasets, MSR-Action3D and G3D used gaming action as the main application. Both of
them were single view and in the similar action sequence. In addition to depth data, MSR-
Action3D also collected the video data, and G3D provided the corresponding RGB images
at the relatively high frame rate. SMMC-10, Walking gait, MHAD, CDC4CNV and EVAL
are mainly included basic behaviors of the human body. Only single individual was used to
complete a series of complex actions in SMMC-10. MHAD contained the depth information
of 12 subjects from four different views; the gender and age of the subjects were also given.
EVAL provided the ground truth of 12 joints and the corresponding information of the 3D
point cloud. CDC4CNV tracked the nine joints of the upper body, and Walking gait was
used to analyze human gait, both of their application scenarios have certain limitations.
For the multi-person datasets, the MoCap system can be used to obtain the ground truths
of 41 joints in CMU MoCap dataset, it covered multi-person gaming, sport and other
behaviors. SBU-Kinect-Interaction provided eight classes of interaction sequences. After
that, G3Di provided common interaction activities for multi-person gaming, 20 joints of
the human body were given for detailed analysis. NTU RGB+D used Kinect v2 to acquire
the ground truths of 25 joints with more human interaction activities. In addition to the
depth information, the dataset also included RGB images and IR videos.

5. Application of Point Cloud-Based Joint Estimation

Human joint recognition is one of the important directions of artificial intelligence
applications. With the maturity of technology, human-related research can use joint in-
formation to solve some problems. According to different application scenarios, the
approaches can be divided into the following categories, including virtual try-on tech-
nology, 3D human reconstruction, action recognition, human–computer interaction, and
many others, some examples of the above application are shown in Figure 13. The related
literatures are summarized according to the above application scenarios.

Figure 13. Applications of point cloud-based joint estimation.

149



Sensors 2021, 21, 1684

Human body shape estimation is essential for virtual try-on technology. Estimating the
3D human shape in motion from a set of unstructured 3D point clouds is a very challenging
task. Human joints can play an important role as a priori in 3D shape estimation of human
body. Yang et al. [100] proposed an automatic method to solve the estimation of the
human body shape in motion. Under the premise of wearing loose clothes, the model
reconstruction problem is expressed as an optimization problem by controlling the body
shape. Based on the automatic detection of human joints, the pose fitting scheme was
optimized [101]. The results of 3D scanning from multiple viewpoints were projected onto
2D images, and then deep learning algorithms were utilized to mark the joints, which
were helpful to find the best pose parameters. With the help of the joints in the SMPL
model and manually marked the joints in the point cloud for registration, the result of
coarse registration was obtained, and the hot core feature was extracted between the two
frames during the changing pose for non-rigid registration. Both the result of non-rigid
registration and coarse registration was fitted each other to get the final 3D human body
model [102]. The joints of the frontal point cloud of the human body, which was generated
directly with Kinect device, helped initialize the personalized SMPL model, and the model
was registered with the input point cloud to find the corresponding points for obtaining a
3D human body model [103]. Yao et al. [104] further projected the obtained model onto the
corresponding RGB image.

The joints can also assist the 3D reconstruction of the human body. Matteo et al. [1]
utilized the information provided by the skeletal tracking algorithm to transform each point
cloud into a standard pose in real time, and then registered each transformed point cloud
to achieve 3D human body reconstruction. In order to extract more point features, a graph
aggregation module was used to enhance PointNet++ [2], an attention module was used
to better map disordered point features into ordered skeleton joint, and a skeleton graph
module aimed to regress the skeleton joints by SMPL parameters. A dataset containing 2D
scenes and 3D human body models was constructed. After marking the joints of human
body on 2D image, they were converted to 3D coordinate system generated by the radar,
and the SMPL model was used to fit the pose of the human body [105].

To improve the accuracy and real-time performance of action recognition, the skeleton-
based method is studied in various research fields as an effective technology. Instead of
using the entire skeleton as the input to Hierarchical RNN, the human skeleton was divided
into five parts according to the physical structure of the human body, and then they were
fed into five subnets, respectively. As the number of layers increases, the representation
extracted by the subnet merges as higher layer output [106]. Through the distance of the
joints and occupancy information of the skeleton, the time information was also extracted
using the time pyramid to form the dataset of each action [107,108]. To recognize human
actions, the difference in values between consecutive frames was used to calculate the new
positions and angles of all joints. The input of the structure tree neural network was the
human joints, and the output was the action classification [109]. Zhang et al. [110] extracted
the local surface geometric feature (LSGF) of each joint in the point cloud, and introduced
the global feature of the vector encoding video sequence. Finally, the SVM classifier was
applied to reach the result of the action classification. Khokhova et al. [111] utilized a
regular grid to divide the 3D space, and then used descriptors based on space occupancy
information to identify the pose of the static frame. An enhanced skeleton visualization
method was present [112], in which a CNN was implemented as the main structure to
recognize the view-invariant human action.

Human–robot motion retargeting is one of interesting research in human–computer
interaction technology. The goal of human–robot motion retargeting is to make the robot
follow the movement of the human body. Wang et al. [113,114] established a model as a
bridge between the input point cloud of the human body and the robot, so as to achieve the
purpose of human–robot motion retargeting. The activity was decomposed into multiple
unit sequences, each unit was related to an important factor of behavior [115], and then
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was inputted into a dynamic Bayesian network to analyze human behavior intentions and
realize human–computer interaction.

In addition to some of the above applications, Kim et al. [116] used high-speed RGB
and depth sensors to generate movement data of an expert dancer; all skeletons could
be reorganized to generate desired dance movements. Given the visual input, let the
robot ratiocinate and choose the best container and human pose to perform a transfer
task [117]. Soft biometrics can solve the problem of people re-identification. For each
measured subject, the 3D skeleton information was applied to adjust the human pose
and create the standard pose (SSP) of the skeleton. The SSP was divided into grids to
obtain individual characteristics for identification [118]. In archaeology, skeleton joints
are helpful to generate a model that can represent any biological shape [119]. The length
and position of joints were also beneficial to judge whether the age of the human body is
a child or an adult [120]. Desai et al. [121] used the direction of the foot or torso to judge
the orientation of the human, and then combined and optimized the skeletons collected
by multiple cameras to obtain the final skeleton, even in the case of occlusion. In terms of
rehabilitation treatment, a method was advanced to improve the evaluation of upper-limb
rehabilitation [122]. The skeleton of the point cloud was taken by Microsoft Kinect, which
was registered with the SMPL template to obtain the position and length of the joint.

6. Conclusions

In this paper, we review recent researches on the point cloud-based joint extraction
of human body. The superiority of point cloud data as well as the applications of joint
estimation are all discussed in details. Different works are introduced based on three
mainstream methods: (1) template-based methods; (2) feature-based methods; (3) machine
learning-based methods. On this basis, we analyze and summarize the current human pose
dataset with point cloud. Although a lot of research devotes to the construct the practical
pose dataset of human body, there is still a lack of comprehensive ground truth datasets
for human varied pose, especially the marking of human joints with different clothes. The
relevant applications of point cloud-based joint estimation of human body are discussed
in this paper, we found that point cloud-based method plays an important role in some
emerging technologies, such as 3D reconstruction, human–computer interaction, action
recognition, etc.

From the analysis above, we know that many existing methods have already accurately
tracked the human body joints in real time under the indoor environment. However, joint
estimation of human body yet still faces many challenges. In our opinion, feature-based
method cannot further improve the accuracy of joint detection, if it relies only on the depth
features and length constraints of the joints. Therefore, combining with other data from
multiple sensors has become a new breakthrough, such as RGB cameras, infrared cameras
and IMU sensors. The template-based method and the machine learning-based method are
currently unable to recognize the joints of any pose, because neither the template dataset
nor the training set can cover all the poses. The 3D template of the human body can be
constructed by some software, but there are some limitations on the fixed pose of the
template, and the matching process takes a long time. At present, additional information
can be leveraged to shorten the search time, it is also possible to build models with better
resolution. They will still be interesting research directions in the coming future. In order
to improve the detection accuracy, the machine learning-based network should output the
local and global features between the points in real time when the input is an orderless
point cloud. In addition, there are still some unresolved challenges and gaps between
research and practical applications in the entire research field, such as self-occlusion and
multi-person detection. However, with the deeper research of machine learning technology,
pose estimation of the human body will also be faster and more accurate. Effective networks
and sufficient train data are key elements in machine learning-based methods; it is believed
that there will be more room for improvement by many scientific researchers investing
time in the future.
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