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A Fair Channel Hopping Scheme for LoRa Networks with Multiple Single-Channel Gateways
Reprinted from: Sensors 2022, 22, 5260, doi:10.3390/s22145260 . . . . . . . . . . . . . . . . . . . . 129

Shahram Mollahasani, Turgay Pamuklu, Rodney Wilson and Melike Erol-Kantarci

Energy-Aware Dynamic DU Selection and NF Relocation in O-RAN Using Actor–Critic
Learning
Reprinted from: Sensors 2022, 22, 5029, doi:10.3390/s22135029 . . . . . . . . . . . . . . . . . . . . 149

Zakaria Zouhdi, Badreddine Ratni and Shah Nawaz Burokur

Electronic Beam-Scanning Antenna Based on a Reconfigurable Phase-Modulated Metasurface
Reprinted from: Sensors 2022, 22, 4990, doi:10.3390/s22134990 . . . . . . . . . . . . . . . . . . . . 167

Abdil Kaya, Brecht De Beelde, Wout Joseph, Maarten Weyn and Rafael Berkvens

Geodesic Path Model for Indoor Propagation Loss Prediction of Narrowband Channels
Reprinted from: Sensors 2022, 22, 4903, doi:10.3390/s22134903 . . . . . . . . . . . . . . . . . . . . 183

v



Man Chun Chow and Maode Ma

A Secure Blockchain-Based Authentication and Key Agreement Scheme for 3GPP 5G Networks
Reprinted from: Sensors 2022, 22, 4525, doi:10.3390/s22124525 . . . . . . . . . . . . . . . . . . . . 201

Mohamed Abdel-Basset, Abduallah Gamal, Karam M. Sallam, Ibrahim Elgendi, 
Kumudu Munasinghe and Abbas Jamalipour

An Optimization Model for Appraising Intrusion-Detection Systems for Network Security 
Communications: Applications, Challenges, and Solutions
Reprinted from: Sensors 2022, 22, 4123, doi:10.3390/s22114123 . . . . . . . . . . . . . . . . . . . . 227

Giancarlo Iannizzotto, Miryam Milici, Andrea Nucita and Lucia Lo Bello

A Perspective on Passive Human Sensing with Bluetooth
Reprinted from: Sensors 2022, 22, 3523, doi:10.3390/s22093523 . . . . . . . . . . . . . . . . . . . . 253

Wisnu Murti and Ji-Hoon Yun

Multilink Operation in IEEE 802.11be Wireless LANs: Backoff Overflow Problem and Solutions
Reprinted from: Sensors 2022, 22, 3501, doi:10.3390/s22093501 . . . . . . . . . . . . . . . . . . . . 273

Marica Amadeo, Claudia Campolo, Giuseppe Ruggeri and Antonella Molinaro

Popularity-Aware Closeness Based Caching in NDN Edge Networks
Reprinted from: Sensors 2022, 22, 3460, doi:10.3390/s22093460 . . . . . . . . . . . . . . . . . . . . 289

Kostas Peppas, Spyridon K. Chronopoulos, Dimitrios Loukatos and Konstantinos Arvanitis

New Results for the Error Rate Performance of LoRa Systems over Fading Channels
Reprinted from: Sensors 2022, 22, 3350, doi:10.3390/s22093350 . . . . . . . . . . . . . . . . . . . . 305

Yunmin Wang, Abla Smahi, Huayu Zhang and Hui Li

Towards Double Defense Network Security Based on Multi-Identifier Network Architecture
Reprinted from: Sensors 2022, 22, 747, doi:10.3390/s22030747 . . . . . . . . . . . . . . . . . . . . . 325

Yanming Zhu, Min Wang, Xuefei Yin, Jue Zhang, Erik Meijering and Jiankun Hu

Deep Learning in Diverse Intelligent Sensor Based Systems
Reprinted from: Sensors 2023, 23, 62, doi:10.3390/s23010062 . . . . . . . . . . . . . . . . . . . . . 343

Andrey Sesyuk, Stelios Ioannou and Marios Raspopoulos

A Survey of 3D Indoor Localization Systems and Technologies
Reprinted from: Sensors 2022, 22, 9380, doi:10.3390/s22239380 . . . . . . . . . . . . . . . . . . . . 429

Tommaso Fedullo, Alberto Morato, Federico Tramarin, Luigi Rovati and Stefano Vitturi

A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability
to Industrial Smart and Distributed Measurement Systems
Reprinted from: Sensors 2022, 22, 1638, doi:10.3390/s22041638 . . . . . . . . . . . . . . . . . . . . 463

Florin-Lucian Chiper, Alexandru Martian, Calin Vladeanu, Ion Marghescu, 
Razvan Craciunescu and Octavian Fratu

Drone Detection and Defense Systems: Survey and a Software-Defined Radio-Based Solution
Reprinted from: Sensors 2022, 22, 1453, doi:10.3390/s22041453 . . . . . . . . . . . . . . . . . . . . 493

Anand Kumar, Sudhan Majhi, Guan Gui, Hsiao-Chun Wu and Chau Yuen

A Survey of Blind Modulation Classification Techniques for OFDM Signals
Reprinted from: Sensors 2022, 22, 1020, doi:10.3390/s22031020 . . . . . . . . . . . . . . . . . . . . 521

vi



About the Editor

Peter Chong

Professor Peter Chong is the Associate Head of School (Research) at the School of Engineering,

Computer and Mathematical Sciences, Auckland University of Technology, New Zealand. Between

2016 and 2021, he was the Head of Department of Electrical and Electronic Engineering at AUT.

He received his Ph.D. degree in Electrical and Computer Engineering from the University of British

Columbia, Canada, in 2000. He is currently an Adjunct Professor at the Department of Information

Engineering, Chinese University of Hong Kong, Hong Kong. He is an Honorary Professor at Amity

University, India. He is a Fellow of the Institution of Engineering and Technology (FIET), UK. Prof.

Chong is listed in the World’s Top 2% Scientists published by Stanford University in 2022. Before

joining AUT in 2016, Professor Chong was an Associate Professor (tenured) from July 2009 to April

2016 and Assistant Professor from May 2002 to June 2009 at the School of Electrical and Electronic

Engineering, Nanyang Technological University (NTU), Singapore. Between 2013 and 2016, he was

the Director of Infinitus, Centre for Infocomm Technology. He was the recipient of the ‘EEE Teaching

Excellence Award’ and ‘Nanyang Award Excellence in Teaching’ in 2010, and ‘Nanyang Education

Award (College)’ in 2015. From February 2001 to May 2002, he was with the Radio Communications

Laboratory at the Nokia Research Center, Finland. Between July 2000 and January 2001, he worked

in the Advanced Networks Division at Agilent Technologies Canada Inc., Canada. He co-founded P2

Wireless Technology in Hong Kong in 2009 and Zyetric Technologies in Hong Kong, New Zealand,

and the US in 2017. His current research projects focus on machine learning techniques applied to

software-defined vehicular networks. He has been developing techniques of deep reinforcement

learning (DRL)-based resource management for future 5G-V2X networks. His research interests

are in the areas of wireless/mobile communications systems, including radio resource management,

multiple access, MANETs/VANETs, green radio networks, and 5G-V2X networks. He has published

over 300 journal and conference papers, 1 edited book,13 book chapters, and 4 US patents in the

relevant areas.

vii
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Abstract: Monitoring the presence and movements of individuals or crowds in a given area can
provide valuable insight into actual behavior patterns and hidden trends. Therefore, it is crucial in
areas such as public safety, transportation, urban planning, disaster and crisis management, and
mass events organization, both for the adoption of appropriate policies and measures and for the
development of advanced services and applications. In this paper, we propose a non-intrusive
privacy-preserving detection of people’s presence and movement patterns by tracking their carried
WiFi-enabled personal devices, using the network management messages transmitted by these
devices for their association with the available networks. However, due to privacy regulations,
various randomization schemes have been implemented in network management messages to prevent
easy discrimination between devices based on their addresses, sequence numbers of messages, data
fields, and the amount of data contained in the messages. To this end, we proposed a novel de-
randomization method that detects individual devices by grouping similar network management
messages and corresponding radio channel characteristics using a novel clustering and matching
procedure. The proposed method was first calibrated using a labeled publicly available dataset, which
was validated by measurements in a controlled rural and a semi-controlled indoor environment, and
finally tested in terms of scalability and accuracy in an uncontrolled crowded urban environment.
The results show that the proposed de-randomization method is able to correctly detect more than
96% of the devices from the rural and indoor datasets when validated separately for each device.
When the devices are grouped, the accuracy of the method decreases but is still above 70% for
rural environments and 80% for indoor environments. The final verification of the non-intrusive,
low-cost solution for analyzing the presence and movement patterns of people, which also provides
information on clustered data that can be used to analyze the movements of individuals, in an urban
environment confirmed the accuracy, scalability and robustness of the method. However, it also
revealed some drawbacks in terms of exponential computational complexity and determination and
fine-tuning of method parameters, which require further optimization and automation.

Keywords: clustering; information element; MAC de-randomization; OPTICS; probe request; WiFi-
enabled device detection; wireless sensing device

1. Introduction

Although presence and movement monitoring can have a negative connotation when
applied to an individual, it also has the potential to improve and even save lives, but
it must be conducted in accordance with some social consensus on preserving privacy.
This challenge is being addressed with an increasing number of existing and emerging
services and applications, for instance in the fields of public safety, transportation, urban
planning, disaster and crisis management, mass events organization, etc. that depend
on the information about people’s presence, proximity, occupancy, crowdedness, crowd
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dynamics, and movement patterns. Many of these services and applications relied on
vision-based solutions until recently, when many camera-based monitoring systems have
been shut down because they violated the new General Data Protection Regulation laws [1].
These systems are now being replaced by the development of new, less intrusive methods
based on the indirect monitoring of devices equipped with various sensors and radio
interfaces, e.g., WiFi, Bluetooth, 3G/4G/5G, etc.

As per development indicators collected by the World Bank, the number of cellular
subscriptions in the world per 100 people grew from 87 in 2012 to 110 in 2021, reaching
more than 100 in most developed countries, indicating that the mobile phone is the most
omni-present personal device. In recent years, practically all smart mobile phones come
with a number of wireless technologies including WiFi and Bluetooth in addition to sup-
porting present and past generations of mobile network technologies (i.e., 2G–5G). For the
association with available networks and provision of connectivity, all these technologies
rely on exchanging some network management messages with network devices such as
base stations and access points. Data in these messages can be used for non-intrusive detec-
tion of presence and movement patterns of individuals by way of tracking their carry-on
devices. While there are strict legally enforced rules in place regarding the access to such
data collected by mobile operators from mobile network technologies, wireless technologies
have been more prone for potential misuse for instance due to the use of globally unique
medium access control (MAC) addresses. Bluetooth relies on the short-range and point-
to-point nature of its protocols to avoid tracking. Personal Bluetooth devices (e.g., mobile
phones) also by default do not publicly advertise their presence. Wi-FI devices constantly
scan and advertise their capabilities for better power management and quicker connection;
therefore, they can be easily detected, recognized and tracked. This potential privacy breach
led to the introduction of WiFi MAC address randomization, making the MAC address
time-varying and random rather than globally unique. Recent randomization procedures
in WiFi make it even more difficult to identify individual devices, as the sequence numbers
of messages can also be randomized and the amount of data contained in messages can be
reduced to only a few mandatory fields.

The recent COVID-19 pandemic with the introduction of preventive measures such as
social distancing intensified investigations in non-intrusive privacy-preserving monitoring
of individual’s social interactions largely by means of smart phones and various mobile
apps (e.g., [2–4]). On the other hand, many applications still require only data on monitoring
the presence and movement of anonymous individuals or crowds to provide an insight
into actual patterns of behavior and enable the identification of hidden trends. In our study
as part of the RESILOC project (https://www.resilocproject.eu/ (accessed on 22 February
2023)), we were focusing on the public safety domain, where knowing crowd densities,
their dynamics and patterns in specific locations or strategic areas enables the planning
and implementation of appropriate preventive measures and management strategies to
improve the resilience of local communities. In particular, our goal was to develop a
reliable system for the non-intrusive collection of anonymized information about the
presence or movement patterns in terms of statistical counts without identifying and saving
any privacy-sensitive information that would enable backtracking a device or an individual
person, while efficiently avoiding possible double or multiple counts.

In this paper, we address the MAC address randomization problem for non-intrusive
and privacy-preserving detection of WiFi-enabled devices. We propose a new MAC de-
randomization method, which is able to recognize unique devices with high accuracy by
grouping similar network management messages (called Probe Requests, PRs) based on the
data in the message and the corresponding radio channel characteristics. The method uses
a novel clustering and matching procedure that was calibrated with a publicly available
labeled dataset. It was validated by the measurements performed using a custom-designed,
low-cost system for capturing, transferring and storing WiFi PRs. The validation mea-
surements took place in a fully controlled rural environment and a semi-controlled indoor
environment at the Jozef Stefan Institute (JSI). An additional verification of the method in
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terms of scalability and accuracy was performed in a real, crowded urban environment in
the city of Catania with high-density pedestrian traffic and consequently a high number of
devices transmitting a large number of PRs. The main contributions of this work are:

1. The design and implementation of a low-cost system for capturing, transferring and
storing WiFi PRs and corresponding radio channel characteristics.

2. Open datasets of the captured WiFi PRs and corresponding radio channel character-
istics in a controlled rural outdoor, semi-controlled indoor and uncontrolled urban
outdoor environments.

3. A novel MAC de-randomization method for distinguishing individual WiFi-capable
devices including new clustering and matching procedures based on PRs and corre-
sponding radio channel characteristics.

4. Validation of the proposed method by the measurements in controlled, semi-controlled
and completely uncontrolled environments.

The rest of the paper is organized as follows. Section 2 provides the necessary back-
ground on the structure of WiFi PRs and randomization of MAC addresses, and it outlines
the related work on WiFi based monitoring of population behavior. Section 3 describes
the proposed system architecture and its implementation using wireless sensing devices
(WSDs) and a remote server with database for storing raw data. Section 4 gives a detailed
description of the proposed MAC de-randomization method including the procedures for
the collection and pre-processing of data as well as for the clustering and matching of PRs
for identifying unique WiFi-enabled devices. Section 5 defines the validation scenarios con-
sidering different numbers and groupings of devices and different operating environments
before it provides performance evaluation results. Finally, Section 6 concludes the paper
and outlines some ideas for future work.

2. Background and Related Work

Exploiting the information acquired from the WiFi network management messages
has been a widely used approach for user tracking, crowd monitoring, presence detection,
etc. This approach has become quite challenging in recent years, which is mainly due to
the privacy guarantees that manufacturers achieve by randomizing the MAC addresses of
WiFi interfaces. Therefore, device-based passive tracking approaches that detect a device
carried by a user had to address the issue by new methods that consider several additional
parameters/data extracted from the WiFi management frames. In the following, we briefly
present the basic types of WiFi management frames that contain data useful for methods
to determine the number of devices or to distinguish between individual detected WiFi-
enabled devices and MAC addressing randomization followed by a brief overview of
related research and applications.

2.1. Probe Requests and MAC Randomization

The basic idea of non-intrusive presence monitoring is to exploit the standard operation
of WiFi-enabled devices, i.e., their activity when not connected to an operational WiFi
network. In general, WiFi technology is based on the 802.11 standard that defines several
frame types which are categorized in three major groups, namely, (i) data frames for data
transmission, (ii) control frames for controlling the access to the wireless medium and for
validation of received frames, and (iii) management frames used by supervisory functions
(e.g., associating the device with the network, roaming between access points, etc.). When
a device with an enabled WiFi interface is in an unassociated state, i.e., not connected
to a network, it carries out passive and/or active scanning for available WiFi networks
that it could connect to. Both approaches rely on WiFi management frames which are not
encrypted as they do not contain any user data. Passive scanning refers to devices that
are waiting and listening for announcements from access points sent in beacon frames,
successively moving through the entire set of channels. Active scanning relies on WiFi-
enabled devices sending PR frames on a selected channel and waiting for a probe response
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from nearby access points, and if no response is received for a certain time, repeating the
procedure on the next channel.

Figure 1 shows a generic WiFi management frame. Management frames are denoted
by the Subtype field of the Frame Control field. Frame body of management frames uses
fixed-length fields called fixed fields and variable-length fields called Information Elements
(IE). While fixed fields do not have a header as their length and order are predefined, the
first octet in IE fields defines the element ID and the second octet defines its length. The
mandatory IEs in the PRs’ body frame are Service Set Identifiers (SSIDs), i.e., the unique
names of WiFi networks that the device was already associated with in the past, and
supported data rates. Based on IE data in the received PR, the access point determines
whether the device fulfills the conditions to join the network or not.

Figure 1. Generic 802.11 management frame with IE fields in the frame body.

By actively scanning for available WiFi networks, a WiFi-enabled device becomes
discoverable to nearby listeners since it needs to include its MAC address in the source
address field of PR. In case of having a globally unique MAC address, this makes it
distinguishable from other devices in the network. MAC addresses have a standardized
length of six octets. In a globally unique MAC address, the first three octets, called an
Organization Unique Identifier (OUI), are unique to a manufacturer and are defined by
IEEE. The last three octets, called the Network Interface Controller (NIC), are assigned by a
device manufacturer to make each device uniquely distinguishable.

Since the MAC address is tied to a device and consequently to the person carrying it,
manufacturers started to implement different schemes to randomize MAC adressess and
thus protect user privacy. The seventh bit in the first octet of the MAC address indicates
whether a device is using a globally unique address that is constant over time (bit set
to ‘0’) or a randomized address (bit set to ‘1’). Apple with iOS version 8.0 was the first
to release its devices with MAC randomization for mass sale in 2014. Although MAC
randomization is now implemented by almost every device for pre-association state and
for post-association state with an access point [5], the process of randomization is not
standardized. Some manufacturers randomize the entire MAC address, while others use a
fixed Company Identifier (CID) for first three octets and randomize the remaining three
octets. To prevent tracking a particular MAC address, devices are changing their MAC
address over time. The frequency or specific time events of generating new MAC addresses
are also not standardized. Some devices change their MAC address for each burst that
PRs are sent, while others change it less frequently. The entire process of generating and
changing MAC addresses is managed by the operating system.

Undocumented and proprietary source codes make it difficult to analyze vulner-
abilities in the randomization process. However, previous works show that tracking
WiFi-enabled devices is possible using various techniques that differ in terms of the frame
type, state of communication, physical characteristics of the radio waves, radio channel
and transceiver characteristics of the particular device [5]. Some techniques, such as using
the WPS field in PR to infer the actual MAC address of the device or using the sequence
number to distinguish mobile devices, are already outdated, which shows the efforts of
manufacturers to quickly fix the potential privacy vulnerabilities. To make it even more
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challenging to identify a unique WiFi device, some manufacturers have introduced sending
subsequent PRs that contain different data, which makes it difficult for the observer to
associate them to a single device, or they send PRs that contain only the mandatory IEs. In
this way, the data from different mobile devices look very similar and are therefore harder
to distinguish.

2.2. Related Work

Numerous solutions have been proposed in the literature for monitoring population
behavior in terms of crowdedness, density, presence, proximity, etc., based on WiFi traffic
analysis. Early solutions were based on simply tracking MAC addresses, assuming that
MAC addresses are unique for each WiFi-enabled device [6]. These solutions are now
outdated due to MAC address randomization. The privacy became important in any
system that collects data and in particular if it processes user-related information, as
data protection rights under the GDPR (e.g., Regulation EU 2016/679) must be fully
met. In recent years, MAC address randomization has attracted a lot of attention from
vendors, who have developed and implemented various solutions [7]. An extensive test of
different solutions was carried out [5] to determine the usage of randomization, under what
conditions MAC address randomization is performed, and if the tracking vulnerabilities
are suitably mitigated.

To distinguish between different WiFi-enabled devices while protecting user privacy,
different approaches and techniques have been applied. Initially, differentiating between
unique devices was based on the timing analysis of PR frames. In [8], the authors measured
the time between received PRs on different channels. Since the time delay is not specified
by the standard and depends on the configuration of a device, it is a suitable feature for
fingerprinting. A similar approach based on timing analyses of the PR frames is reported
in [9]. The de-randomization of MAC addresses can be based on timing attacks, where the
inter-frame arrival times of PRs are used to group frames coming from the same device,
although they use distinct MAC addresses as proposed in [10]. Frames are grouped by
several distance metrics based on the timing and incremental learning algorithm.

Timing as a distinction feature is unreliable in real-world environments due to scat-
tering and multi-path phenomena which introduce some random delays between probes
and bursts [11]. Thus, more reliable solutions to fingerprint the devices based on IEs in PR
have been widely addressed in the literature. In [12], a study of IEs is presented, and new
fields and techniques to track users are identified. It was demonstrated that scrambler seeds
of commodity WiFi radios are predictable and can be used for device identification. In
addition, two attacks that reveal the real MAC address of devices were presented.

Many applications for counting people at a specific location based on PRs were
developed as in [13], where the goal was to count the passengers in public transport. It is
worth noting that the majority of Android handsets did not use randomized techniques in
that study. A solution for counting participants in public demonstrations proposed in [14]
was based on a WiFi PR broadcast by the phones. The basic signal behavior was investigated
by applying a distance filter based on RSSI, which is impractical due to applying a common
threshold, and time-based filters, which have extra requirements regarding the scanner
setup and increase the likelihood that counted devices actually belong to participants.
Results showed that the count from analyzing PRs represented only a small fraction of
the actual attendance. A method for pedestrian counting, classifying them as moving or
static and locating them in a road intersection, is exploited in [15] and compared with
machine learning (ML) techniques in [16]. It is based on power measurements and PRs;
however, it does not provide a description of the MAC randomization procedure used.
The solution for understanding the behavior of visitors in [17] addresses the issue of the device
randomization by using more than 1.7 million PR frames, historical transition probability and
a Hidden Markov Model (HMM)-based trajectory inference algorithm. The group behavior
detection system introduced in [18] is also based on capturing PRs and tackling MAC address
randomization by the method described in [7] based on collective matrix factorization, which
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reveals the hidden associations by factorizing mobility information and usage patterns
simultaneously.

In [19], an approach for estimating the presence of mobile devices at a certain place
in time is proposed, which is immune to MAC address randomization. The approach is
based on the state machine to detect the arrival, presence and departure of devices in the
sensor proximity. A novel architecture for people mobility monitoring and analyzing a
solution based on PRs is presented in [20]. The main features include the preservation of
user privacy, extraction of key metrics on user return and permanence, and computation
of mobility heat maps. Another solution for studying the mobility patterns proposed in [21]
is based on PRs which correlate the multi-dimensional statistical properties of the captured
PRs split by brands with the actual ground truth, which is manually labeled for creating
a regression model. A low-cost, high-reliability and low-complexity real-time passenger
counting system is reported in [22] with a highly accurate mathematical model in conjunction
with the MAC data provided by the developed system and applied Kalman filter. The authors
in [23] have developed a crowd estimation scheme that addresses MAC randomization by
exploiting the fact that the number of PRs in a defined time interval changes proportionally
to the number of devices present. The conversion factor between the number of devices
and the number of PRs was determined by measuring the bursts per minute of PRs from
75 devices, whereas the authors in [24] used a statistical approach to estimate the client
population from PR counts without requiring an additional ground truth technique.

Vision and TrueSight crowd monitoring algorithms that estimate the number of devices
were exploited in [25] to prove that despite MAC address randomization, MAC address-
based crowd monitoring is still a viable solution. Both approaches mitigate the influence
of the randomization by PRs. While Vision uses data and beacon packets, TrueSight uses PR
sequence numbers and hierarchical clustering. A similar approach of tracking the sequence
number of the PR, assuming that the number increases with newly received PR, is given in [26],
which also incorporates the timestamp of the received PR. Based on these parameters, a
de-randomization algorithm calculates the score for each couple of random MAC addresses
and identifies which MAC addresses belong to the same device based on the defined
threshold. An algorithm incorporated in the system for analyzing urban mobility is applied
in [27] for the privacy-preserving detection of people’s flow by an ML approach [27] and
in [28] where two methodologies for people counting and mobility detection are proposed.
However, new privacy-preserving approaches tend to completely randomize the sequence
number of PR which makes the previously mentioned methods unreliable [5]. Despite the
enhanced randomization, the authors in [29] developed an efficient crowd monitoring
system based on the passive detection of PRs. The algorithm counts the devices from a
measured rate of PR burst (PRs received in 10 ms) transmissions using a statistical estimator.
Another solution for crowd monitoring based on the information in PR is proposed in [30],
where the SSID information of the preferred WiFi access points included in PR is exploited
in post-processing together with the information of the existing WiFi access points to
determine the daily number of visitors at different locations.

A solution for estimating the number of people proposed in [31] is based on a footprint
mechanism to overcome MAC address randomization, generating an identifier for probes
based on MAC addresses and other IE data. The test in real scenarios showed that the solution
can achieve the accuracy close to 95%. Based on the analyses of the influence that different
MAC address randomization schemes have on statistical counts of the WiFi-based monitoring
systems, another approach was proposed and verified in [1], which is based on the DBSCAN
clustering algorithm and two fingerprinting features. The first feature consists of an ordered
list of IEs and certain bitmasks available in PR, while the second feature is based on the burst
length and the arrival time difference between PRs within that burst, or the Inter-Frame
Arrival Time (IFAT).

To estimate the number of WiFi-enabled devices in a given area, the authors in [11]
also used clustering algorithms, namely DBSCAN and OPTICS. They extracted the most
relevant IEs from PRs and used their data lengths as features to distinguish between
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different devices. Additionally, they wrote an algorithm to dynamically detect which IEs
are changing between different PRs and use only the most relevant ones. In laboratory
testing, they achieved 91.3% accuracy with the OPTICS algorithm. The authors extended
their work in [32], where they also considered pseudo-random MAC address detection,
HDBSCAN as a clustering algorithm, and additional features for burst identification:
namely, sequence number, RSSI, and time of arrival. In a controlled environment, they
achieved 96% accuracy, while in the real scenario, they achieved an average accuracy of
75%. Since PRs from two different devices can contain IEs of the same lengths, this method
is prone to undercounting the number of unique WiFi devices. The authors in [33] also
used the DBSCAN algorithm and a publicly available dataset [34] for clustering PRs. They
determined the impact of IE as features for the clustering algorithm by computing Gini
importance with Random Forests, and by using the most important features, they achieved
a clustering accuracy of 92%. Since the approaches applying the DBSCAN and OPTICS
algorithms gave the most promising results in the related literature, they were also used as
the basis for developing the algorithm described in this paper.

3. System Design, Implementation and Deployment

Leveraging the existing off-the-shelf technologies, a low-cost system shown in Figure 2
was designed and built to monitor and capture WiFi network management messages. These
messages are captured passively (without user or device interaction) by listening for PR
packets on a single channel of the 2.4 GHz WiFi band.

Figure 2. Schematic of system design and flow of data.

3.1. System Architecture

The system shown in Figure 2 is composed of a WSD for capturing WiFi network
management traffic which is connected either via the wireless access point or with an
Ethernet cable through a secure VPN connection to the remote database. The database stores
raw data for further processing, together with additional metadata about the deployment
and optional pre-processed data. Once the data are stored in the remote database, it can
be further analyzed either in real time or by using more complex algorithms for post-
processing the collected data.

3.2. Capturing the WiFi Network Management Traffic

Passive monitoring of the network management traffic is performed by a WSD listen-
ing to the WiFi traffic in a 2.4 GHz band and filtering out the PR packets. On a WSD, certain
minimum computing power is required for filtering, pre-processing, and transmitting the
collected data. This dictates the minimum capabilities of CPU and connectivity options
and limits the software stack used.

Due to its relatively low cost, good support and known capabilities, the Raspberry Pi
(rPi) device (version 4 with 2 GB of internal memory) was selected to be used as the WSD.
The rPi’s built-in WiFi adapter and drivers do not support the operation in a so-called
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monitor mode required for capturing the WiFi traffic. Therefore, the built-in adapter is
used as a default connection to the Internet for the transfer of captured data to the database,
whereas an additional USB dongle using a Realtek RTL88212au chipset with open-source
drivers was used to enable the monitor mode of operation. In addition to capturing WiFi
PR packets, the USB dongle on the WSD is also capable of capturing Bluetooth beacon
advertisements from Bluetoth tags or devices if enabled.

The operating system used for the WSD is a minimal installation of 64 bit Raspberry Pi
OS. A custom service is run upon the device startup to automatically start wireless data col-
lection. The traffic monitoring data are collected using the Tshark packet capture program,
filtered and parsed in Python using the PyShark package. The collected data are transferred
in a JSON format to the PostgreSQL database via HTTPS REST (Representational State
Transfer) protocol calls to the remote server through a secure VPN connection, ensuring
that the sensitive data are not exposed at any point in the communication pipeline. The
described data flow is depicted in Figure 2.

The database used to store raw data collected from WSDs is an instance of the Post-
greSQL database running on remote infrastructure. The collected raw data are stored
together with the corresponding metadata. Periodically, every ten seconds, the WSD
transmits collected data to the database. Each PR contains all of the information from the
captured packet in a verbose, human readable JSON format.

3.3. System Deployment

Before the system is deployed in the targeted operating environment, WSDs are pre-
programmed, pre-installed and tested in a controlled laboratory environment. When a
device is set up and turned on in the field, it automatically creates an access point for the
user who connects to the access point and sets the metadata (e.g., location and ID of the
device). The connection to the Internet can be established either via another access point
or via the Ethernet cable. The system was deployed at multiple locations as described in
Section 5.1, each with specific observable variations in WiFi traffic.

4. Detecting Unique WiFi Interfaces

To determine the actual number of WiFi-enabled devices at a certain location covered
by WSD in a completely anonymous and unobtrusive way, we developed and implemented
a method for the de-randomization of MAC addresses of the WiFi interfaces integrated
in devices. In this respect, we exploit the data collected by WSDs which can be, after the
processing phase, further used for different use cases, namely (i) defining the number of
people at a location of interest in given time or in different time frames; (ii) analyzing
population movement patterns in streets, shopping malls, etc. in different timeframes;
(iii) counting crossings or passages over bridges, entrances, streets, etc.; (iv) real-time
adaptations of emergency exits/directions; etc.

4.1. Data Collection

The authors in [11,32] used only the length of the data from the IE fields in PR to
de-randomize MAC addresses of WiFi-enabled devices and identify their number in a given
area. In this study, we adopted a similar approach as in [34] and also considered the data
itself, along with time of arrival (ToA) and RSSI, to reduce the problem of undercounting.
With the collected information, two different WiFi-enabled devices can be distinguished,
or a WiFi-enabled device sending PRs with different MAC addresses can be detected.
The proposed procedure takes into account that data in PRs are strongly influenced by the
chipset, the device driver and the WiFi software stack.

The first step in collecting the information regarding PRs was to identify which IEs
and other PR information are more specifically characterizing a given device. In [12,35],
the authors calculated the entropy and stability of IEs in datasets and investigated which
IEs are changing between devices and which IEs are stable for a particular device. The goal
was to choose IEs with high entropy, meaning that the data from IEs for different devices
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are considerably different, and at the same time highly stable, so that the data from IEs for a
particular device are stable over time and do not estimate a single device as multiple devices.

Based on this, we decided to collect from each received PR the information about
MAC address, Supported Data Rates, Extended Supported Rates, HT Capabilities, Extended
Capabilities, Interworking, VHT Capabilities, data under Extended Tag and Vendor-Specific Tag,
RSSI, SSID and the timestamp when PR was received. Note that not every PR includes all
the parameters specified above, as all IE fields except Supported Data Rates and SSID are
optional, so the information about which IEs a given WiFi-enabled device is transmitting
is also relevant in device characterization. Selected IEs with information about the stored
data type and data length are listed in Table 1. Supported Data Rates and Extended Supported
Rates are represented as arrays of values that encode information about the rates supported
by a mobile device. The rest of the data from IEs is represented in hexadecimal format.
The Vendor-Specific Tag is structured differently than the other IEs. This field can contain
multiple vendor IDs with multiple data IDs and corresponding data. Similarly, the Extended
Tag can contain multiple data IDs with corresponding data.

Table 1. Selected IEs, their data type and data length.

IE Name Data Type Data Length in Octets

SSID UTF-8 encoded Variable (max 32)
Supported Data Rates Each data rateencoded as one octet Variable (max 8)
Extended Supported Rates Each data rateencoded as one octet Variable (max 255)
HT Capabilities Hex 26
Extended Capabilities Hex Variable
Interworking Hex 1–9
VHT Capabilities Hex 12
Vendor Specific Tag Hex Variable
Extended Tag Hex Variable

4.2. Data Pre-Processing and Storing

WSDs scan for PRs for a predefined scan time, and during this time, the data from IE
fields are pre-processed and saved in a predefined JSON structure before being transferred
to the database. For more information about the structure of saved data, see Appendix A.
The pre-processing procedure is depicted graphically in Figure 3.

For each new PR, the procedure first checks if its MAC address has already been
detected and saved in the current scan time. If not, a new data structure is created under
the new MAC address for storing PR’s IE data and SSIDs. If the new PR contains one of the
already existing MAC addresses from the current scan time, the procedure compares new
IE data with already recorded IE data for the same MAC address. If identical PR’s IE data
from the same MAC address are already stored, then only data for ToA, RSSI and SSID
are appended to the existing data structure. Thus, the database is reduced and PRs can be
compared more efficiently. However, if no identical PR’s IE data have yet been recorded
with the same MAC address, then a new data structure under the same MAC address with
new PR’s IE data and possible new SSIDs is appended.

At the end of each scan time, all processed data are sent to the database along with
additional metadata about the collected data such as WSD serial number and scan start
time and stop time.
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Figure 3. Algorithm for saving data from received new PRs.

4.3. De-Randomization Method

To estimate the number of unique WiFi devices during a selected time interval in the
area covered by a specific WSD, the de-randomization method of gathered PRs has to be
performed. This can be accomplished by clustering PRs with respect to their similarity. The
data from different MAC addresses are compared by calculating their distance whereby
MAC addresses with very similar data have small distance and vice versa.

The proposed method for matching MAC addresses comprises the following steps:

1. MAC addresses are first divided into two groups: global and random addresses.
Additionally, random MAC addresses are also subgrouped with respect to the CID
part of the MAC address.

2. The clustering of random MAC addresses is applied to all groups with random MAC
addresses to obtain clusters from individual WiFi-enabled devices.

3. The clustering of global addresses with clusters of random addresses is applied to
match global MAC addresses with clusters of random MAC addresses obtained in
the previous step.

4. The number of individual WiFi-enabled devices is estimated by counting the number
of clusters.

4.3.1. Initial Grouping of MAC Addresses

Since the data for each scan interval are sent to the database in packets, these packets
are merged to match the desired time interval in which the de-randomization method is
performed. In addition, the packets are filtered based on the serial number of the WSD
that sent data to the database so that only data from one WSD is processed at any given
time. Next, the algorithm for merging PRs from the same MAC address is applied, similar
as used in the first pre-processing phase. In addition, each MAC address and its data are
placed into a global or random group based on the local bit in the MAC address.

Furthermore, random MAC addresses are mapped according to their CID value. If
no CID group is found for a particular MAC address, it is assigned to a Random group
which corresponds to devices with random MAC address and no manufacturer identifier.
This additional subgrouping allows for the finer matching of similar MAC addresses, as
it is assumed that a WiFi-enabled device that sends PRs with a completely random MAC
address will not send subsequent PRs with a known CID as part of its MAC address. The
described initial grouping procedure is shown in Figure 4.
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Figure 4. Algorithm for the initial grouping of MAC addresses and corresponding data.

4.3.2. Clustering of Random MAC Addresses

The clustering of random MAC addresses starts with the calculation of the distance
matrix for each CID group and for the Random group. In particular, the distance between all
pairs of MAC addresses is calculated and stored in a 2D array. The distance depends on the
similarity of the PR’s IE fields. Each IE is assigned one or more coefficients that reflect its
weight. IEs that vary considerably between different WiFi-enabled devices and also have
high stability for the same WiFi-enabled device have a higher weight and vice versa. For
example, the distance decreases for each SSID that the two PRs have in common, while it
increases for each supported data rate that they do not have in common. The distance is
also affected by RSSI (increased when the absolute difference exists) and ToA (decreased
when the absolute difference is less than a certain threshold). For other fields considered
(i.e., HT Capabilities, Extended Capabilities, Extended Tag, Vendor-Specific Tag, Interworking and
VHT Capabilities), the distance is increased proportionally to the number of different bits.
The pseudocode for calculating the distance between two PRs can be found in Appendix B
as Algorithm A1.

The distance for each PR from one MAC address (N) to each PR of another MAC
address (M) is calculated. Then, the distance for these two MAC addresses is defined as an
average of one-third of the shortest distances, which is inserted in an NxM distance matrix.

The distance matrix of random MAC addresses represents an input to a density-based
clustering OPTICS (Ordering Points to Identify the Clustering Structure) algorithm [36].
In the proposed approach, we used a specific implementation of the OPTICS algorithm
from the scikit-learn library (https://scikit-learn.org/stable/ (accessed on 22 February
2023)). The algorithm orders the data points so that the spatially closest points become
neighbors. A point is classified as a core point if at least MinPts points are found within
its neighborhood with a predefined radius. To detect a change in the density of points,
the OPTICS algorithm defines two additional parameters for each point: the core distance
and the reachability distance. The core distance is undefined if a point is not a core point;
otherwise, it is equal to the minimum value of the neighborhood radius required to classify
a given point as a core point. The reachability distance is defined for a selected point in
relation to another point. It is the maximum value of the distance between these two points
or the core distance of a point. If the selected point is not a core point, the reachability
distance is set to undefined.

The OPTICS algorithm does not explicitly cluster the data into groups. Its output is
a visualization of the reachability distances of points in the same order as processed by
the algorithm. The order in which the algorithm selects points is based on the reachability
distances. The point with the smallest reachability distance is selected first. The resulting 2D
representation is called a reachability graph and is shown in Figure 5. The points belonging to
the same cluster have low reachability distance, so they appear as valleys on the reachability
diagram. The valleys are separated by spikes corresponding to the distances between clusters
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or between a cluster and a noise point. In other words, the peaks on the reachability plot
indicate the beginning of a new cluster, as also indicated in Figure 5 by different colors.

Figure 5. Reachability plot for data collected at the city square Piazza Università in Catania in an
early morning 15-min interval. Points of the same cluster have the same color.

In the last step, the reachability distances obtained by the OPTICS algorithm are
used in a new optimized algorithm for clustering random MAC addresses, as provided in
Appendix B as Algorithm A2. The main principle of the algorithm is to detect the point in
the reachability distances at which the curve starts to drop. If the drop is larger than the
predefined threshold, the subsequent points are grouped in a new cluster until the values
start to increase and exceed the predefined threshold, indicating the end of the cluster.

The described algorithms are applied to each CID group and to the Random group. As a
result, clusters of MAC addresses that likely correspond to the same WiFi-enabled device
within each CID group and the Random group are obtained. The data from MAC addresses
clustered together are merged and used later for matching with global MAC addresses.

4.3.3. Matching of Global MAC Addresses with Clusters of Random MAC Addresses

The next step of the de-randomization method matches the global MAC addresses
with already clustered random MAC addresses. The distance matrix is first calculated
between the data of each global MAC address and the data of each cluster of random MAC
addresses, whereby the distances between the global MAC addresses and the distances
between the clusters of random MAC addresses are set to infinity to prevent matching.

Then, the matching algorithm iterates through the global MAC addresses and checks
the distances to the clusters of random MAC addresses. If the smallest distance is less
than the specified threshold and the next smallest distance is larger for a predefined factor,
then the cluster of random MAC addresses with the smallest distance is a good candidate
for matching with the global MAC address. In addition, all the distances for the selected
cluster of random MAC addresses are checked. If the smallest distance corresponds to the
same global MAC address and the next smallest distance to other global MAC address is
larger by a certain factor, the global MAC address is matched to the cluster with random
addresses, and their data are merged.
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The code for the data pre-processing and the de-randomization method was written
in the Pyhton programming language and is freely available to allow replication and con-
tinuation of the work (https://gitlab.com/e62Lab/resiloc_project/wireless-data-analysis
(accessed on 22 February 2023)).

5. Performance Evaluation and Discussion

The proposed MAC de-randomization method has been tested and validated on
datasets collected in different operating environments with different WiFi-enabled devices
and with different test scenarios, including labeled datasets, datasets from a controlled and
a semi-controlled environment, and a dataset from a challenging, completely uncontrolled
environment to test robustness and scalability.

5.1. Testing Scenarios and Methodology

The datasets for performance evaluation of the proposed MAC de-randomization
approach include the publicly available labeled dataset [34] as well as datasets from the
measurements in three different environments, namely (i) a controlled rural environment,
(ii) a semi-controlled indoor environment, and (iii) an uncontrolled urban environment, as
described in the following. Measurements in rural and indoor environments were carried
out under different testing scenarios, while no specific scenarios could be implemented
in the uncontrolled urban environment, where only the robustness and scalability of the
proposed approach could be tested under high density of WiFi-enabled devices.

For the initial testing and setting the parameters of the MAC de-randomization method,
we used the publicly available labeled dataset [34] obtained with 22 devices among which
18 used MAC randomization. It contains 20-min captures of PRs in three non-overlapping
WiFi channels (1, 6, and 11) for each individual device in six different operating modes (i.e.,
combinations of settings based on display status, Wi-Fi connectivity, and power saving)
saved in 315 .pcap files. Data collection was performed in an anechoic chamber and in
pseudo-isolated environments. In pseudo-isolated environments, additional filtering was
performed based on the MAC address of known nearby devices and based on the power
threshold of unknown nearby devices.

For validation in a controlled rural environment, we deployed three WSDs for the
acquisition of PRs, which were sending data to the remote database using a cellular network.
As shown in Figure 6a, they were placed in three different locations with non-overlapping
WiFi coverage. The three WSDs recorded no PRs when test devices were turned off; thus,
the deployment can be characterized as completely controlled without external interference.
Data gathered at this location are taken as a ground truth for each device individually and
as group behavior when multiple devices were active near WSD.

A dataset for validation in a semi-controlled indoor environment was also obtained
with three WSDs placed in the corridors of the Jozef Stefan Insitute, as depicted in Figure 6b.
The WiFi coverage areas of the devices at locations 2 and 3 were partly overlapped, while
the device at location 1 had no overlapping with other devices. In this case, data were
sent to the collocated database via WiFi with a known global MAC address, which was
subsequently filtered out of the dataset.

The last dataset was captured in an uncontrolled real-world environment with high-
density pedestrian traffic in the city center of Catania, Italy. In this case, we deployed four
WSDs on two main squares, Piazza del Duomo (locations 1 and 2) and Piazza Università
(locations 3 and 4), which were connected with a busy pedestrian street Via Etnea, as shown
in Figure 6c, and were collecting data over a period of several months. For sending data to
the remote database, WSDs were connected to the Internet via ethernet or via WiFi access
points with known global MAC addresses.
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Figure 6. Locations of probe requests acquisitions.

During the development and initial testing, the parameters of Algorithms A1 and A2
were first determined by observing PRs collected in an office environment and then fine-
tuned using a publicly available labeled dataset [34]. Subsequently, the algorithms and
the entire MAC de-randomization method were further validated in a controlled rural
environment, where the results of the method were compared with ground truth, and in
a semi-controlled indoor environment. Before starting the measurement campaign, we
turned off all measurement devices and checked the environments for any remaining active
WiFi devices. In the rural outdoor environment, we did not detect any unknown active
device sending WiFi packets within the coverage areas of the deployed WSDs. In the indoor
environment, the deployed WSDs detected several devices with active WiFi interfaces.
These devices were excluded from the database used for validating the de-randomization
method. In addition, to minimize the potential impact of uncontrolled WiFi-enabled devices
carried by random people passing by, the measurement campaign was performed during
the weekend.

After the verification of the environment, we started with data collection for individual
devices. A brief summary of the devices used in measurement campaigns is given in
Table 2. For each device, PRs generated within one minute were collected with the screen
on, which was followed by PRs collected for one minute with the screen off. During
these measurements, the other devices involved in the campaign were turned off in rural
environment and had disabled WiFi interfaces in an indoor environment, so the recorded
data for each device could later be used to determine the ground truth.
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Table 2. Summary of devices used for the acquisition of PRs.

Device Name OS MAC Type Assigned Group

Apple iPhone 12 Pro iOS 16 Random MAC only 1
Nokia 7 Plus Android 10 Random MAC only(CID: da:a1:19) 1
Samsung S10E Android 12 Random MAC only 1
Samsung J3 2016 Android 5.1.1 Global MAC only (d0:b1:28:d2:de:e5) 2
Samsung S3 Android 4.4.4 Global MAC only (34:23:ba:d5:34:1b) 2
Samung Galaxy Nexus Android 4.3 Global MAC only (a0:0b:ba:da:64:7e) 2
Samsung S10E Android 12 Random MAC only 2
Samsung S7 Edge Android 8 Random MAC only 2
Samsung J5 Android 6 Global MAC only (20:55:31:fc:4c:86) 2
Samsung S7 Android 8 Random MAC only 2
Samsung S7 Android 8 Random MAC only 3
Samsung Tab S8 Android 12 Random MAC only 2
Huawei Nexus 6P Android 8.1.0 Global MAC (dc:ee:06:fd:8c:9a) + Random MAC (CID: da:a1:19) 3
Huawei P20 Android 10 Global MAC (e4:34:93:b5:f0:74) + Random MAC (CID: da:a1:19) 3
Huawei P20 Android 10 Global MAC (e4:0e:ee:3e:3e:44) + Random MAC (CID: da:a1:19) 3
Huawei P30 Lite Android 10 Random MAC only (CID: da:a1:19) 1
Huawei P20 Lite Android 9 Random MAC only (CID: da:a1:19) 3
Asus Tab 8” Android 5.0 Global MAC only (54:a0:50:0e:8f:ee) 1
Asus Tab 7” Android 4.2.2 Global MAC only (08:62:66:72:ac:1f) 3
OnePlus 3 Android 9 Random MAC only (CID: da:a1:19) 3
OnePlus 6 Android 11 Global MAC only (64:a2:f9:28:98:6c) 1
Lenovo VIBE A7020 Android 6 Global MAC only (54:27:58:30:ac:5a) 1
Xiaomi Poco F1 Android 10 Random MAC only 1

To test the MAC de-randomization method with three different levels of difficulty,
the devices were divided into three groups. The first group comprised only devices from
different manufacturers, so larger differences were expected between the PRs received from
different devices. The second group contained only devices from one manufacturer (Sam-
sung), which may aggravate the de-randomization process and thus distinguish unique
devices. For the third group, a medium degree of difficulty in MAC de-randomization was
expected, since half of the devices were from one manufacturer (Huawei) and the other half
were from other different manufacturers. The distribution of devices among the groups is
denoted in the last column in Table 2.

The same data collection procedure was applied for all three groups of devices in the
rural and indoor environments at three different locations of WSDs indicated in Figure 6a,b.
At each WSD location, PRs were collected from each group of devices for 10 min. Then, all
three groups switched locations between WSDs, and the process was repeated. Thus, the
database contains PR measurements from all three WSD locations at both measurement
sites for all three groups of devices.

In the last testing scenario, all devices listed in Table 2 were grouped together. In the
rural environment, data from received PRs were collected at one location for 10 min with
screens on and for 10 min with screens off, whereas in the indoor environment, screens
were on for 10 min. In the next step, all devices were moved to the location of the next
WSD and PRs were measured for 10 min with screens off. In the rural outdoor scenario, the
final step was to move the devices to location 2, where PRs were recorded for 10 min with
the screens off.

The final testing and validation of the proposed MAC de-randomization method
was conducted in a completely uncontrolled environment characterized by a much larger
amount of PRs collected than the rural environment and indoor environments but with no
ground truth. Thus, these tests did not focus on the accuracy of the proposed approach
but rather on the robustness and scalability of the WSDs used to capture WiFi network
management traffic, the remote database used to store the data, the PR pre-processing
procedures and the MAC de-randomization method. Due to the large number of PRs
collected, the statistical behavior of the proposed method can be better observed. In
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addition, such long-term data can also be exploited to identify daily/weekly/monthly
patterns in user behavior, and combinations of WSDs can also be used to identify movement
directions of identified WiFi-enabled devices.

The datasets used in this paper and the corresponding description are freely available
to allow replication and continuation of the work. The dataset for a rural indoor environ-
ment is published in [37], while the dataset with all PRs collected by four WSDs for one
week in the uncontrolled urban environment is published in [38].

5.2. MAC De-Randomization and Results Analysis

The results of the MAC de-randomization method for the labeled dataset are provided
along with the list of devices in Table 3. In the first step, the proposed method was applied
to the PRs of each device separately to determine the maximum differences between the
PRs transmitted by the same device. In most cases, the method correctly identified a device.
There were only a few cases where two devices were identified instead of one because
(i) the PRs sent by the device were very different, (ii) the algorithm for matching global
addresses with clusters of random addresses could not match a random MAC address
with a global MAC address, and (iii) the device used two different types of addresses
in PRs: one completely random and another with a fixed CID part. Since the devices
sending two different addresses (random and with CID part) are rare (only one device in
the labeled dataset used), this type of clustering is not considered as a separate case by the
proposed method.

Table 3. MAC de-randomization results for individual devices from the labeled dataset.

Device Global Addresses Detected Random Addresses Detected Devices Identified

Samsung Galaxy M31 0 15 1
Xiaomi Redmi 4 0 531 2
Samsung Galaxy S4 1 0 1
Huawei ALE-L21 1 0 1
Xiaomi Mi A2 Lite 0 435 2
Huawei CLT-L09 (P20) 1 0 1
Samsung Galaxy S6 edge (SM-G928F) 1 0 1
Samsung Galaxy S7 0 38 1
Xiaomi Redmi 5 Plus 0 253 2
Samsung Galaxy J6 1 26 2
Google Pixel 3A 0 46 2
Apple XS max 0 103 1
Apple iPhone 6 0 57 1
One Plus Nord 0 35 1
Huawei VTR-L09 (P10) 1 0 1
Huawei STF-L09 (Honor 9) 1 88 1
Xiaomi Redmi Note 7 1 153 1
Xiaomi Redmi Note 9S 0 138 1
Apple iPhone XR 0 36 1
Google Pixel 3A 0 23 1
Apple iPhone 12 0 1206 1
Apple iPhone 7 0 19 1
All devices combined 8 3201 21/22 (95.5%)

To further analyze the performance of the proposed method, the PRs of all 22 devices
were aggregated. In this case, the proposed method correctly identified 21 devices (95.5%).
This estimate of the total number of devices is a good approximation of the actual value,
but we made a more detailed analysis of the clustered devices as allowed by the labeled
dataset. It turned out that some of the 21 clusters formed by the MAC de-randomization
contained PRs from more than one device. The method uniquely identified 11 devices (i.e.,
11 clusters contained only one device with all its PRs). Two devices were fully identified by
the random MAC addresses clustering algorithm, but they did not match or could not be
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matched with a global MAC address. The remaining clusters contained combinations of
PRs from other devices due to some very similar PR’s IE data. Since the core of the MAC
de-randomization method is the clustering of PRs with random MAC addresses, analyzing
the clustering of only random addresses gives us a deeper insight into how the method
works. When only random addresses were considered, the proposed method uniquely
identified 10 out of 17 devices.

The final estimate of the total number of devices is still a good approximation of
the actual value. If multiple devices send two different PRs, one of which contains only
mandatory data that is very similar among the devices, then a cluster of multiple devices
is formed based on these PRs, resulting only in one overcount. An undercount is caused
by the similarity of PRs sent by similar devices (considering manufacturer and OS), so the
proposed method has difficulty distinguishing between them. If the method is not able to
match a global and a random MAC address of the same device, an undercount could be
sometimes compensated by an overcount.

The validation results for the MAC de-randomization method in the rural and indoor
environments are presented in Tables 4–7. Similar as with the labeled dataset, the proposed
method was first validated for data from each individual device separately for time intervals
when the screen was on and off, which also revealed the differences in the behavior of the
devices. In the rural environment, where no interfering devices were present, the proposed
method successfully identified only one device for each of the devices tested. In the indoor
semi-controlled environment, additional devices with global and random MAC addresses
were also present during the data collection of individual tested devices. As explained in
Section 5.1, these devices were identified and considered in the de-randomization. Thus, the
final estimate of the de-randomization method includes the tested device and the additional
uncontrolled devices whose PRs were detected during the corresponding time interval. The
average ratio between the number of estimated devices and the actual number of devices
was 96.7% . The main identified cause of errors was a mismatch between clustered devices
with random MAC addresses and devices with global MAC addresses, while clustering
only devices with random MAC addresses was error-free.

For further validation of the proposed method, three groups were formed according
to Table 2. Table 5 shows the estimated values in the rural environment for each group
for 10-min intervals at three different locations with the devices’ screen on. The mean
values for identified devices in all scenarios were 91.7%, 87.5%, and 100% of the actual
number of devices for the groups 1, 2, and 3, respectively, confirming the expectation
that the distinction between devices of the same manufacturer is the most challenging. If
considering only PRs with random MAC addresses detected during the data collection in
the corresponding time interval, the proposed method detected 100%, 75%, and 100% of the
actual devices. The source of error for the group 1 devices was an incorrect match between
the device with the global MAC address and the cluster of devices with random MAC
addresses. Since the group 2 devices consisted only of devices from the same manufacturer,
the main error was due to the similar PRs of the devices, which caused the method to
undercount the devices by one.

The results for the last scenario, where all devices are grouped together at three
different time intervals, are summarized in Table 6. The proposed method detected on
average 71.2% of actual devices. The percentage of the correctly identified devices decreases
when the devices’ screens were turned off, since some devices did not send any PRs in
this measurement period. If considering only PRs with random MAC addresses detected
during the corresponding time interval, the method identified on average 67.5% of devices.
This performance deterioration was caused by two sources of error, namely (i) false matches
between a device with a global MAC address and a cluster of devices with random MAC
addresses, and (ii) the similarity of PRs received from the same or similar devices that the
proposed method could not distinguish.
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Table 4. MAC de-randomization results for individual devices for the rural and indoor environments.

Global Addresses Detected Random Addresses Detected Devices Identified/Devices Present

Device
Location

Rural Indoor Rural Indoor Rural Indoor

Apple iPhone 12 Pro 0 6 31 19 1/1 8/8
Nokia 7 Plus 0 6 6 20 1/1 8/8
Samsung S10e 0 5 6 15 1/1 8/9
Samsung J3 2016 1 7 0 7 1/1 8/8
Samsung S3 1 7 0 6 1/1 9/9
Samsung Galaxy Nexus 1 6 0 10 1/1 8/9
Samsung S7 0 5 4 22 1/1 9/9
Huawei Nexus 6P 1 6 2 14 1/1 8/8
Asus Tab 8” 1 6 0 10 1/1 7/7
Asus Tab 7” 1 6 0 11 1/1 7/7
OnePlus 3 0 5 1 16 1/1 7/9
Samsung S10e 0 8 4 4 1/1 9/9
Samsung S7 Edge 0 8 4 4 1/1 9/9
Samsung J5 1 8 0 0 1/1 8/8
Samsung S7 0 8 3 1 1/1 9/9
Samsung Tab S8 0 9 4 12 1/1 12/12
Huawei P20 1 8 3 0 1/1 8/8
Huawei P20 8 3 8/8
Huawei P30 Lite 0 8 1 1 1/1 8/9
Huawei P20 Lite 0 8 1 1 1/1 8/9
OnePlus 6 1 10 0 0 1/1 10/10
Lenovo VIBE A7020 1 8 0 7 1/1 9/10
Xiaomi Poco F1 0 7 2-5 16 1/1 10/10

Mean 100% 96.7 %

Table 5. MAC de-randomization results for groups of devices for the rural environment.

Global Addresses Detected Random Addresses Detected Devices Identified
Devices Identified

(Only Random MACs)

Loc.
Group Group Group Group

1 2 3 1 2 3 1 2 3 1 2 3

Rural 1 3 4 3 50 16 6 7/8 7/8 6/6 5/5 3/4 4/4
Rural 3 3 4 3 92 17 7 8/8 7/8 6/6 5/5 3/4 3/3
Rural 2 3 4 3 54 25 5 7/8 7/8 6/6 5/5 3/4 3/3

Mean 91.7% 87.5% 100% 100% 75% 100%

Table 6. MAC de-randomization results for all devices in a single group for the rural environment.

Loc./Scenario
Global Addresses

Detected
Random Addresses

Detected
Devices Identified

Devices Identified
(Only Random MACs)

Rural 2/screen on 10 92 17/22 8/12
Rural 2/screen off 8 97 14/22 8/12

Rural 2/screen on +
screen off

10 188 16/22 9/13

Mean 71.2 % 67.5 %

In the indoor environment, the coverage areas of two WSDs were overlapping. There-
fore, the proposed method was tested by each group of devices at the non-overlapping
location and with the combinations of the two groups at the overlapping locations. Finally,
the proposed method was validated with PRs sent by all devices merged into a single
group. The results in Table 7 show that on average, the proposed algorithm identified
91.3% of the actual present devices. When only PRs with random MAC addresses were
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clustered, it recognized 83% of the devices. A more in-depth analysis of the results showed
that the sources of errors were the same as in the rural environment.

Table 7. MAC de-randomization results for groups of devices for the indoor environment.

Group/Loc
Global Addresses

Detected
Random Addresses

Detected
Devices Identified

Devices Identified
(Only Random MACs)

Group 1/1 8 63 13/13 6/6
Group 2/1 9 11 12/13 3/4
Group 3/1 9 10 12/12 4/5
Groups 1,3/2,3 18 54 24/26 7/8
Groups 2,3/2,3 19 47 25/26 6/7
Groups 1,2/2,3 16 57 22/25 7/9
All devices/3 20 105 27/32 9/12

Mean 91.3 % 83 %

The robustness and scalability of the proposed method was tested with the dataset
collected by the WSD installed at Piazza del Duomo in Catania (location 1 in Figure 6c).
The numbers of received PRs and identified WiFi-enabled devices are listed in Table 8. The
proposed method was executed at hourly intervals over a 24 h period from midnight to
midnight on 23 September 2022. The starting hour in the table corresponds to the local time
of the beginning of the hourly interval. The number of PRs recorded in an hour and the PRs
with actual unique data are shown to illustrate the amount of computation required by the
proposed method. It should be noted that the number of PRs in such urban environment
increases significantly compared to less populated environments, up to several hundreds
per minute.

Table 8. MAC de-randomization results for one day at Piazza del Duomo, Catania.

Start of All PRs/ Global Random Devices
Hourly Unique PRs Addresses Addresses Identified
Interval Detected Detected

00:00:00 18,980 /5637 82 3112 124
01:00:00 16,531/4448 59 2055 91
02:00:00 14,895/3985 37 1657 61
03:00:00 13,973/3115 28 802 50
04:00:00 13,174/2655 24 598 50
05:00:00 13,700/2716 32 609 57
06:00:00 17,736/3902 50 1688 86
07:00:00 21,342/6141 124 3044 181
08:00:00 29,980/10,918 166 8121 232
09:00:00 48,273/21,079 237 17,606 385
10:00:00 46,029/21,150 347 17,225 485
11:00:00 76,586/38,601 520 32,869 793
12:00:00 58,161/26,319 401 22,234 572
13:00:00 72,632/35,171 305 30,214 544
14:00:00 42,608/20,848 257 17,938 370
15:00:00 33,156/14,899 160 12,673 231
16:00:00 54,233/25,086 405 20,621 556
17:00:00 59,599/28,587 356 23,853 547
18:00:00 74,070/33,673 508 27,763 745
19:00:00 67,298/31,440 592 25,821 777
20:00:00 43,776/20,274 254 16,735 366
21:00:00 50,731/23,810 409 19,629 518
22:00:00 32,345/15,197 228 12,855 325
23:00:00 44,087/21,058 259 17,792 372
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The number of PRs and the number of devices identified by the proposed method in
an hourly time slot for the 24 h period are also shown in Figure 7. It can be observed that
the number of PRs coincides very well with the number of identified devices. During night-
time hours, a higher number of devices than expected are identified due to nearby static
devices not being filtered out. Since the method compares each PR with all the remaining
PRs, the computational complexity of the method increases exponentially with the number
of recorded PRs. Therefore, in busy urban environments with a high volume of pedestrians
and consequently a huge number of recorded PRs, the identification of unique devices may
not be possible in real time, indicating one possible direction for further optimization of
the algorithm.

Figure 7. Hourly number of collected PRs and identified devices for one day at Piazza del Duomo, Catania.

5.3. Discussion

Extensive validation of the proposed method using datasets from controlled rural,
semi-controlled indoor, and uncontrolled urban environments confirms its ability to accu-
rately detect unique active WiFi interfaces.

Comparison of the results with existing work applying similar approaches is difficult
since their validation was performed in public places by counting the number of people and
without the information about the number of WiFi-enabled devices carried by the individual
(e.g., tickets sold [31]), so no ground truth can be determined. An approximate comparison
can be made with the solutions where validations were performed with measurements
that includes the information on the number of WiFi-enabled devices as a ground truth.
In [11], the accuracy of 91.3% was achieved in the laboratory environment, while in [32],
96% accuracy in the laboratory environment and 75% in a real-world scenario is reported.
With the publicly available dataset [34], we obtained similar results of 95.5%, while in
the controlled environment, we achieved accuracy of at least 87.5% for smaller groups
of devices. In rural environments the achieved accuracy was over 70%, and in indoor
environments for larger groups, it was 84%.

A more accurate comparison can be made with the findings reported in [32,33], where
the authors used the same labeled, publicly available dataset as in this work [34]. Although
the results in [32] are not explicit, since only the behavior of the proposed method was
tested under different parameters, they claim to achieve an accuracy of up to 95%, which is
similar to the accuracy achieved with our proposed method. In [33], the authors achieved
an accuracy of 92% and also performed a more thorough analysis of the homogeneity of the
formed clusters, achieving values of up to 0.97. High homogeneity values can be obtained
in the case where devices grouped in clusters send different number of PRs. From the
paper, it is not clear whether they filtered PRs with the same data and thus considered only
unique PRs of devices. Related works focused only on the de-randomization of random
MAC addresses, while we considered the real-world scenario that includes some special
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cases, such as devices transmitting both random and global MAC addresses that need to be
matched to avoid overcounting the devices.

In general, the results show that the proposed method tends to undercount the devices,
which is mainly due to the similarity of PRs of the same or similar devices. The method
performs well for small groups of devices, while for larger groups, the differences between
PRs become less significant, resulting in an underestimate of the number of identified
devices. This effect could be reduced by fine-tuning the model parameters depending on
the scenario. In addition, the scaling test with an extremely large urban dataset revealed
some drawbacks in terms of exponential computational complexity. Thus, the two main
drawbacks of the proposed de-randomization method based on PR’s IE values are (i) the
need to configure multiple parameters, which also can be seen as an advantage, as it allows
adapting the method to the specificites of the environment or application, and (ii) the
computational effort required to compare the PRs of a single device with all the PRs of
other devices. On the other hand, the proposed approach has several advantages. It is a
low-cost solution that requires only WSDs operating in the monitor mode and remote data
storage capabilities, the system is easy to set up, and it is completely unobtrusive to people,
since no particular actions are required from the owners of the WiFi-enabled devices. The
system not only estimates the number of people in close proximity to the WSD but can also
provide information on clustered data that can be used to analyze the movements of the
crowd and individuals.

Validation of the proposed method showed that many of the tested devices which use
random MAC addresses are changing them very rarely. Therefore, the approach could be
further improved by identifying these devices based on the number of PRs detected. When
comparing PRs sent by devices that change the MAC address at every burst and PRs sent
by devices that change it infrequently, a large difference in the number of PRs per address
was observed, which can be used to set a higher threshold for matching these two types of
devices. This would also reduce the errors caused by incorrectly matching a global MAC
address with a clusters of random MAC addresses.

Similarly, the observation of a high correlation between the number of collected PRs
and the number of identified devices, as seen in Figure 7, could lead to a substantial
simplification of the method in which the number of devices could be estimated from the
number of PRs recorded. Further data collection would be required to determine whether
the correlation is indeed strong enough. Such a simplification would only be applicable in
areas where there is a large number of devices so that the statistics becomes sufficiently
robust. As manufacturers change the frequency of sending PRs, the simplified approach
would also need to be re-evaluated over time. However, simplifying the method in this
way would also preclude the ability to use the same data obtained from PRs for monitoring
the movement between the coverage areas of neighboring WSDs.

Fine-tuning the parameters of the proposed method proved to be time-consuming
and not optimized. Therefore, a procedure to automatically determine and optimize the
coefficients would have to be implemented. A more detailed analysis of the importance of
each bit of the IE fields could also be performed to include only the most important bits to
distinguish between devices. In addition, other features could be extracted from ToA, such
as the inter-frame and inter-burst times.

The exponential complexity of the proposed method is another challenge for future
optimization if it is expected to run for longer periods of time or for multiple locations. The
results presented in this work were calculated on a consumer-level hardware, but further
method optimization should be considered if more data are to be processed or it should be
adapted for the use on high-performance computing infrastructure.

6. Conclusions

This paper presented an approach for monitoring the presence of individuals at
specific locations based on collected PRs, taking into account the increasing adoption of
MAC address randomization due to privacy concerns. The main contribution of this work
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is the development of a method for MAC de-randomization based on the similarity of PRs,
more specifically IE data. We described the designed system and deployment for capturing
PRs sent by WiFi-enabled devices. The detection of unique WiFi interfaces is implemented
in two stages. After grouping PRs based on random or global MAC addresses, clustering is
performed on PRs from devices with random MAC addresses. The generated clusters are
then matched with PRs of devices with global MAC addresses.

The proposed approach was validated in a controlled rural, semi-controlled indoor,
and uncontrolled urban environment, first with PRs from only individual WiFi-enabled
devices and later with all devices and three formed groups of devices to account for three
different levels of difficulty for de-randomization. Validation on individual devices showed
that in some cases, the de-randomization method detected two devices instead of one.
For the formed groups, the results show the disadvantage of the proposed method when
multiple devices of the same manufacturer and version of OS were present. Although the
performance of the proposed method decreases in this case, it is still above 70% for rural
and 80% for indoor environments.

In the paper, we identified some potential improvements and shortcomings of the
proposed methods that could be addressed as part of future work such as the automatic fine-
tuning of parameters, reduction of computational complexity, optimization of the threshold
for matching devices with large differences in the number of detected PRs, and extraction of
additional features from ToA. Another challenge for future work is to extend the proposed
approach of detecting unique WiFi-enabled devices to a system that analyzes the collected
data from multiple locations in the urban area to determine the movement patterns of users
and use these data for traffic management, route optimization, resilience planning, etc.
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review and editing, M.M. (Mihael Mohorčič); visualization, A.S.; supervision, A.H.; funding acqui-
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The following abbreviations are used in this manuscript:

CID Company Identifier
GDPR General Data Protection Regulation
HMM Hidden Markov Models
HT High Throughput
IE Information Element
IFAT Inter-Frame Arrival Time
IoT Internet-of-Things
JSI Jozef Stefan Institute
JSON JavaScript Object Notation
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MAC medium access control
ML Machine learning
NIC Network Interface Controller
OPTICS Ordering Points to Identify the Clustering Structure
OS Operating system
OUI Organization Unique Identifier
PR Probe Request
REST Representational State Transfer
rPi Raspberry Pi
RSSI Received Signal Strength Indicator
SSID Service Set Identifier
ToA Time of Arrival
VHT Very High Throughput

WSD
Wireless Sensor Device

Appendix A. Structure of Stored Data from PR

Data from PRs of each MAC address are stored in the following JSON format:
1 {’MAC’: MAC_address , ’SSIDs ’: [ SSID ], ’PROBE_REQs ’: [PR_data] },

where PR_data is structured as:
1 PR_data =

2 {

3 ’TIME’: [ DATA_time ],

4 ’RSSI’: [ DATA_rssi ],

5 ’DATA’: pr_IE_data

6 }

and PR_IE_data as:
1 PR_IE_data =

2 {

3 ’DATA_RTS ’: {’SUPP’: DATA_supp , ’EXT’: DATA_ext},

4 ’HT_CAP ’: DATA_htcap ,

5 ’EXT_CAP ’: {’length ’: DATA_len , ’data’: DATA_extcap},

6 ’VHT_CAP ’: DATA_vhtcap ,

7 ’INTERWORKING ’: DATA_inter ,

8 ’EXT_TAG ’: {’ID_1’: DATA_1_ext , ’ID_2’: DATA_2_ext ...},

9 ’VENDOR_SPEC ’: {VENDOR_1 :{

10 ’ID_1’: DATA_1_vendor1 ,

11 ’ID_2’: DATA_2_vendor1

12 ...},

13 VENDOR_2 :{

14 ’ID_1’: DATA_1_vendor2 ,

15 ’ID_2’: DATA_2_vendor2

16 ...}

17 ...}

18 }

Appendix B. Algorithms

Algorithm A1 Algorithm for calculating distance between two probe requests

procedure DIST_BTWN_TWO_PROBE_REQ(PR_IE_data1, SSIDs1PR_IE_data2, SSIDs2)

distance ← STARTING_DISTANCE

for each IE_key PR_IE_data1 and PR_IE_data2 have in common do
if IE_key equal DATA_RTS then

merge Supported Data Rates and Extended Data Rates for
both PRs

increase distance for each data rate of symetric difference
multiplied by IE’s specific scale

23



Sensors 2023, 23, 2588

Algorithm A1 Cont.

if IE_key equal HT_CAP Or VHT_CAP then

distance ← distance + number_o f _distinguishing_bits
number_o f _all_bits ∗ speci f ic_IE_scale

if IE_key equal EXT_CAP Or INTERWORKING then
if length(probe_req_data1[IE_key] ! = length(probe_req_data2[IE_key] then

distance ← distance + speci f ic_IE_value
else

distance ← distance + number_o f _distinguishing_bits
number_o f _all_bits ∗ speci f ic_IE_scale

if IE_key equal VENDOR_SPEC then
distance ← distance− special_IE_koe f
increase distance for vendor ID of symetric difference

multiplied by IE’s specific scale
decrease distance for each intersecting vendor ID

multiplied by IE’s specific scale
for each intersecting vendor ID do

decrease distance for each intersecting data ID
multiplied by IE’s specific scale

for each intersecting data ID do

distance ← distance + number_o f _distinguishing_bits
number_o f _all_bits ∗ speci f ic_IE_scale

if IE_key equal EXT_TAG then
distance ← distance− special_IE_koe f
increase distance for each data ID of symetric difference

multiplied by IE’s specific scale
decrease distance for each intersecting data ID

multiplied by IE’s specific scale
for each intersecting data ID do

distance ← distance + number_o f _distinguishing_bits
number_o f _all_bits ∗ speci f ic_IE_scale

decrease distance for intersecting SSID multiplied by IE’s specific scale

increase distance by number of IEs of symetric difference relative to
number of intersecting IEs multiplied by specific scale

tmp_dst ← In f
for each RSSI1, TOA1 in probe_req_data1 do

for each RSSI2, TOA2 in probe_req_data2 do

dst_RSSI ← RSSI_KOEF|RSSI2−RSSI1| − 1
dst_TOA ← 0
if |TOA2 − TOA1| < TIMING_THRESHOLD then

dst_TOA ← TIMING_KOEF
if (dst_RSSI + dst_TOA) < tmp_dst then

tmp_dst ← dst_RSSI + dst_TOA
distance ← distance + tmp_dst

if distance < MINIMUM_DISTANCE then
distance ← MINIMUM_DISTANCE

return distance
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Algorithm A2 Reachability distance-based clustering

procedure CLUSTERING(reach_dists, xi_up, xi_down, epsMax)
in_cluster ← False
labels[:]← −1
current_label ← 0
climbing ← False
f alling ← False
for i ← 1 to length(reach_distss)− 1 do

if in_cluster then
if reach_dists[i + 1] > reach_dists[i] then

if not climbing then
climbing ← True
value_start_climbing ← reach_dists[i]

if
reach_dists[i+1]

value_start_climbing > xi_up Or reach_dists[i + 1] > epsMax then

in_cluster ← False
current_label ← current_label + 1
climbing ← False

else
labels[i + 1]← current_label

else
climbing ← False
labels[i + 1]← curr_label

else if reach_dists[i + 1] < reach_dists[i] then
if not f alling then

value_start_ f alling ← reach_dists[i]
index_start_ f alling ← i
f alling ← True

if reach_dists[i + 1] < epsMax And reach_dists[i+1]
value_start_ f alling < xi_down then

labels[index_start_ f alling− 1 : i + 1]← curr_label
in_cluster ← True
f alling ← False

else
f alling ← False

i ← i + 1
return labels
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Abstract: Globally, the increases in vehicle numbers, traffic congestion, and road accidents are serious
issues. Autonomous vehicles (AVs) traveling in platoons provide innovative solutions for efficient
traffic flow management, especially for congestion mitigation, thus reducing accidents. In recent
years, platoon-based driving, also known as vehicle platoon, has emerged as an extensive research
area. Vehicle platooning reduces travel time and increases road capacity by reducing the safety
distance between vehicles. For connected and automated vehicles, cooperative adaptive cruise
control (CACC) systems and platoon management systems play a significant role. Platoon vehicles
can maintain a closer safety distance due to CACC systems, which are based on vehicle status
data obtained through vehicular communications. This paper proposes an adaptive traffic flow
and collision avoidance approach for vehicular platoons based on CACC. The proposed approach
considers the creation and evolution of platoons to govern the traffic flow during congestion and avoid
collisions in uncertain situations. Different obstructing scenarios are identified during travel, and
solutions to these challenging situations are proposed. The merge and join maneuvers are performed
to help the platoon’s steady movement. The simulation results show a significant improvement in traffic
flow due to the mitigation of congestion using platooning, minimizing travel time, and avoiding collisions.

Keywords: platoon; traffic congestion; collision avoidance; CACC; merge maneuver; join maneuver;
lane change

1. Introduction

The explosive growth in the number of vehicles has resulted in many critical so-
cial problems worldwide, such as road safety, traffic congestion, and fuel consumption.
The high cost of construction and the lack of available land make road development un-
sustainable; even though it can somewhat decrease traffic congestion, it is not an efficient
strategy. To deal with these issues, a platoon-based driving pattern, also known as a vehicle
platoon, has received much attention in the past few years. A platoon consists of a vehi-
cle which follows another vehicle and keeps a close and relatively constant safe distance
from the one in front of it, termed cooperative driving [1]. Vehicle platooning is a technique
where highway traffic is organized into groups of close-following vehicles called platoons [2].
Platooning enables vehicles to drive closer to others than regular vehicles at the same speed,
which improves traffic throughput [3]. The communication can be V2V, i.e., inter-platoon,
intra-platoon, and platoon to the non-platoon vehicle, and V2I, via RSU and base stations. Dedi-
cated short range communication (DSRC) is an effective mode for short-range communication,
whereas LTE/5G is found to be more efficient and reliable for long-range communication. Vehi-
cle platooning is primarily used to alleviate traffic congestion and increase traffic flow in even
dense scenarios. Figure 1 depicts a generalized platoon architecture consisting of the platoon
and non-platoon vehicles with V2V and V2I communication.
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Figure 1. Platoon architecture.

The vehicles in the platoon coordinate among themselves by frequently exchanging
periodic broadcast cooperative awareness messages (CAMs). The ETSI EN 302 637-2 stan-
dard specifies CAM-triggering conditions which depend on the dynamics of an originating
vehicle [4]. The CAM is broadcast with a multi-channel access mechanism with a conges-
tion control approach. The use of IEEE 802.11p in platooning is the subject of numerous
studies and proposals, including message prioritization based on their type, dissemination,
rate adaptation, and re-transmission [5]. An analysis of connectivity probability within
a platoon is presented in [6]. Still, there is a scope for the design of protocols for the
delay-tolerant delivery of CAM in a platoon scenario and decentralized congestion control
to avoid collision of CAM.

Cooperative driving can improve fuel economy, enhance infrastructure efficiency,
and improve road safety [7,8]. Platooning implements the mutual assistance driving
mechanism that aims to achieve semi-autonomous platooning by having a leader vehicle
handled by either humans or an automation that drives a group of vehicles as followers.
The onboard system uses the data from the leader and nearby vehicles via inter-vehicular
communication (IVC) to manage the engine, brakes, and steering of followers, eliminating
the need for the driver to steer manually, accelerate, or brake. Platooning involves lateral
steering, coordinated acceleration, and braking via longitudinal collision mitigation [9],
management protocols that monitor the creation of the platoon, driving maneuvers, and
lane changing, thereby confirming that vehicle control is not the sole responsibility of either
the human driver or automation to provide safety measures [10].

For performing basic maneuvers in the platoon, a lane is reserved for the vehicles
traveling in the platoon. Each can perform several maneuvers to maintain the optimal
size of the platoon and increase its efficiency. It becomes essential to differentiate between
the platoon and non-platoon vehicles. Platoons in vehicular ad-hoc networks (VANet)
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depend very highly on effective communication between platoon members to carry out
the basic platoon maneuvers such as platoon merge and join maneuvers. Failing to acquire
efficient communication among the vehicles lead to the failure of the platoon. A platoon-
enabled vehicle meets all of the functional requirements implemented for platoons. A
non-platooned vehicle is driven manually or with the assistance of an automated cruise
control (ACC) system [11]. In contrast, a platooned vehicle is a platoon member and can be
either a leader or a follower.

Platooning is a viable solution as it eliminates frequent stopping and starting, which
wastes time and fuel. Globally, the paradigm is shifting toward AVs, and the necessity
arises to look for advanced long-term solutions to reduce congestion, travel time, and
fuel consumption. The AVs’ penetration rate, defined as the ratio of AVs to total vehicles
in a specified network, is predicted to increase from 24% to 87% by 2045 [12]. The massive
increment of AVs in the future is the reason for platooning receiving serious attention
in the past years. Because AVs are free of restrictions connected to driver behavior, such
as reaction time and coordination, they could be one of the best possible platoon imple-
mentations. AVs with inter-vehicle communication (IVC) avoid traffic congestion, provide
efficient coordination, and require a minimum response time by drivers, thereby avoiding
accidents. Furthermore, analyzing safety features in scenarios such as crashes or acci-
dents [13] is a critical consideration for AVs and human-driven vehicles. Current collision
avoidance systems [14], such as ACC, adapt themselves using radar and lidar data, or com-
municate via breaking signals when delays or system failures could result in catastrophic
damage. The proper routing of vehicles in the platoon is necessary to reduce traffic conges-
tion. Therefore, the proposed approach’s primary objective is to minimize vehicle collision
and travel time, leading to effective and reliable traffic-flow management.

1.1. Motivation

Traffic congestion and road safety are important issues of public safety worldwide.
Annually, on average, approximately 150,000 people are killed, and 500,000 are injured
in road accidents in India due to human errors such as distracted driving, over-speeding,
and not complying with safety rules.Global statistics state that approximately 1.3 million
people die yearly due to road traffic crashes. AVs moving in platoons are one of the best
ways to reduce the accidents caused by human error and save passengers’ time by reducing
traffic congestion. The World Health Organization (WHO), in November 2018, stated
that the number of road traffic collisions has outreached the mark of 1.5 million per year.
According to the 2008 World Health Statistics, road accidents were the 9th most significant
cause of death, and at current rates, they will be the 5th leading cause of death by 2030 [15].

1.2. Contribution

The contributions of the proposed work are as follows:

1. This work proposes a mechanism to efficiently manage traffic during high congestion,
thus reducing road fatalities.

2. The proposed work focuses on merging platoons into one platoon, improvising
the traffic flow and reducing travel time.

3. Finally, traffic performance is enhanced by joining a single non-platooned vehicle into
a vehicle platoon, and collision is reduced by lane-changing mechanisms.

The novelty of the proposed methodology lies in enhancing the overall management
of traffic flow for AVs in a platoon. A structured traffic flow is achieved by configuring
various algorithms such as maneuvering, re-routing, and lane-changing. In a real-time
scenario, the platooning approach reduces the time to reach the destination and reduces
the number of accidents as vehicles move synchronously.
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1.3. Paper Organisation

The rest of the paper is organised as follows. Section 2 presents the related work,
the proposed approach is demonstrated in Section 3, followed by simulations and results
in Section 4. Finally, the conclusion and future work are presented in Section 5.

2. Related Works

Numerous research studies have been conducted to maintain traffic flow for vehi-
cles in platoons in various aspects, such as leader vehicle failure [16], obstructions within
the platoon, etc. [12]. Many researchers and automobile companies have proposed various
techniques to increase AVs’ safety and road capacity. ACC, including no-communication
functions, and CACC [17], including communication functions, are basic controller strate-
gies followed for platoons. Platoons using CACC are fascinating because of their ability
to increase road capacity in a very precise way [18].

A platoon-management protocol based on VANET and CACC vehicles which incor-
porate basic platooning maneuvers, such as platoon split, merge, and join maneuvers, is
presented in [2]. However, this method has several disadvantages, such as a high delay
during the merging of the platoon. An integrated ACC and CACC model with string
stability in various traffic scenarios is implemented in [19]. Ploeg et al. [20] developed
a hybrid controller for platoon merge and join maneuvers. The longitudinal control is
handled by a continuous time system, while a discrete event supervisor decides the pla-
toon merge-and-join maneuvers. However, where vehicle density is high, this technique
suffers from frequent connection loss, resulting in a high packet-loss ratio. Huang et al. [21]
demonstrated a cooperative platoon maneuver switching paradigm for merging and split
maneuvers. However, this protocol causes significant latency and frequent connection
loss. The authors in [22] proposed a distributed coordinated brake-control mechanism
for longitudinal collision avoidance for multiple connected AVs in realistic scenarios. A
brief statistical comparative study is conducted considering the initial velocity of the ve-
hicle, inter-vehicular distance, communication topology, braking process, and different
control mechanisms such as direct brake control, coordinated brake control, and driver
reaction-based brake control.

The authors in [23] proposed an algorithm for platoon merge in cooperate driving
that ensures effective platoon merging in all possible conditions. Wu et al. [24] proposed
an adaptive velocity-based V2I fair access scheme based on IEEE 802.11, a distributive coor-
dinate function for platoon vehicles. Roy et al. [25] proposed a model based on headway
distribution of two-lane roads under different traffic situations with varying distributions
such as Poisson, log-logistic and Pearson. In [26], authors investigated an event-based
control and scheduling co-design technique for a platoon with packet disorder and com-
munication delay, reducing congestion and stabilizing the system. Nevigato et al. [27]
provide a collision-avoidance solution in a mobile edge computing-based environment to
avoid accidents.

Hu et al. [28] proposed a reliable, trustworthy platoon-based service recommenda-
tion technique to help the user eliminate malicious platoons using V2V communication.
Zhang et al. [29] present a trust-based and privacy-preserving platoon approach to en-
able the user vehicle to avoid the malicious leader vehicle. However, the method suffers
from a problem in accurately identifying the trust value. The author in [30] proposed
a method to distribute urban platooning towards high flexibility, adaptability and stability
to solve the problem of vehicle density in urban areas, traffic lights etc. This method suffers
from communication failure in dense vehicle scenarios.

The authors in [31] have argued that platoon-based driving offers a plethora of benefits.
Firstly, since vehicles in the same platoon are substantially closer to one another, the traffic
congestion may be reduced, and the road capacity is increased appropriately. Secondly,
the platoon structure can significantly decrease energy use and exhaust emissions, as a pla-
toon’s vehicles can be streamlined to reduce air resistance. Third, driving has become safer
due to contemporary technologies; it becomes more secure and comfortable in a platoon.
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Lastly, platoon-based data dissemination mechanisms are efficient due to their position
and synchronization, significantly enhancing vehicular network performance.

Segata et al. [32] developed an integrated simulator as a novel contribution towards
research in platooning techniques. This is the first attempt to describe a high-level platoon
management protocol in VANET-enabled vehicles that employ wireless V2V and V2I com-
munication with IEEE 802.11p. Moreover, there is scope to explore the topic in-depth, and
more simulation situations can be tested utilizing this simulator for vehicular platooning.

In this paper, three scenarios (join maneuver, merge maneuver, and lane change) are
implemented, and the behavior of their speed, acceleration, and distance are analyzed.
Taking different aspects from the literature, a meticulous solution is designed for AVs
moving in platoons. Further, the total time to reach the destination for a platoon, non-
platoon, or obstruction within the platoon (i.e., lane change or failure of leader vehicle) and
multiple platoon scenarios (i.e., merge maneuvers) are explored.

3. Proposed Work

This section describes the system model, assumptions, and the methodology used
for the proposed work to manage traffic flow using platooning.

3.1. System Model

Each vehicle is equipped with sensors and a GPS, and uses wireless access in vehic-
ular environment (WAVE) as the inter-vehicle communication protocol based on DSRC.
The onboard unit is capable of localization and time synchronization due to the equipped
GPS. To exchange information about vehicle dynamics and emergency data, each vehicle
in the platoon periodically transmits beacons. The vehicle movement is based on CACC,
and thus, the cooperative movement considerably reduces the inter-vehicle spacing within
a platoon. The intra-platoon communication must be relayed when the platoon is too large.
To ensure safety, the inter-platoon separation is greater than the intra-platoon spacing.
The size of the platoon is constrained to allow direct communication between platoon
members inside the same platoon via one-hop communication. During the evaluation,
the platoon’s topology is considered to be static. This leads to proper channel utilization
with a reduced synchronization overhead. In a real-world situation, there is a possibility
of more than one platoon driving in the same lane, here, we have considered N-platoon.
The jth platoon is designated as Pj. The ith vehicle within jth platoon is denoted as Vj,i,
where i = 1. . . N and j = 1. . . M. The communication only takes place between the last vehicle
of leading platoon and first vehicle of the following platoon. This reduces the interference
between non-neighboring platoons.

3.2. Assumptions

1. All vehicles on the road are AVs to make communication reliable and compatible;
there are no human-driven vehicles .

2. Let d1, d2, d3 be the current density, threshold density, and normal density, respectively.
The density of the AV represents the number of AVs per unit length-segment of the lane.
AVs are generated by Poisson distribution with arrival rate λ as Vi, where i = 1, 2, 3, . . . , N.

3. The initial route and alternate routes are generated against each source destina-
tion.The source and destination of each AV are assumed to be known, creating pla-
toons P having a minimum of four AVs, where P = V1, V2, V3, . . . , VN . The set of AVs
fetched in each platoon can be stated as PjVi where j = 1, 2, 3, . . . , M, for example,
P1V4, P1V5, P2V6, P2V4, P3V4, P3V8, and so on.

4. The speed of the AV, acceleration, minimum gap, and distance to the leader are as-
sumed to be known. The AVs in the platoons are induced to proceed from the source
towards the destination, following the leader AV. The platoon vehicles move in a ded-
icated lane of the four-way highway. This mechanism minimizes the hindrance
of human-driven vehicles in the other lanes.
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5. The AVs broadcast CAM via a dedicated channel (CCH) at a frequency of 10 Hz, as per
802.11p specification. As an example, standard single-radio transceivers for platooned
AVs are considered which are continually modulated to the CCH to broadcast and
receive CAM [33]. The information about the density of AVs, speed, acceleration, and
flow of AVs individually and in the platoon are utilized for congestion detection and
avoidance during rerouting.

6. The car-following mobility model is similar to the one used in the PLEXE simulator i.e.,
the CACC approach. The CACC approach exploits the communication among vehicles
via IVC. The control law for the CACC model considered for our implementation is
based on the theory of consensus [32].

3.3. Proposed Methodology

The proposed algorithm (Algorithm 1) assumes that all the vehicles on the lanes
are autonomous, and that there are no cooperation or communications glitches among
the AVs. The AVs are assumed to know each other’s location and speed details. Platoons
of different sizes are considered to travel in highway lanes. Initially, the source and
destination of the AVs and the current and alternate routes are assumed to be known.
The AVs with the same destination are in one platoon according to the proposed algorithm.
After the formation of all the platoons, the densities of the platoons are analyzed. Based
on the platoon density, it is decided whether to keep the platoon on the same route
or reroute. Let d be the total density of AVs in a road length stated as AVs per unit
road length. The current density d1, which is the maximum density for free flow traffic
in the platoon at a particular instance of time, and the threshold density d2, which is
the maximum density for a road length, are the two basic types of densities considered
in traffic-flow management. The total number of AVs generated by the free flow mobility
model per unit length of the road is denoted by d3. The distance between two AVs is
inversely proportional to the density of the AVs in that particular lane. The free-flow model
is designed with reference to [34], taking d1 to be 20 and d2 to be 50 for a single lane.

Apart from density, the time delay of platoons is checked and compared with the thresh-
old value. If the delay time is greater than the threshold value, then the route of the platoon
is changed (re-routing). If the delay is less than or equal to the threshold value, the same
path is followed. Sometimes, it may be possible that the platoon is not at its best efficiency
due to the presence of many smaller platoons on the road, which leads to many leaders.
Therefore, to improve the algorithm’s efficiency, two smaller platoons are merged into
one larger platoon, resulting in one leader. In addition, it may be possible that instead
of merging platoons, a single AV is added to the platoon. Therefore, the joining maneuver
is performed. During this maneuver, the AVs in a platoon increase or decrease their speed
synchronously. When an obstruction occurs between the platoon to eliminate these situa-
tions, a collision-avoidance mechanism is also implemented. The mechanism will reroute
the platoons in the lane to another lane if it is blocked/obstructed. At the end of the journey,
if all platoon AVs reach the destination safely, the platoon is marked as “Successfully
Reached”. Figure 2 presents the gist of the approach for analyzing platooning maneuvers.
Table 1 shows the summary of the notation used in the algorithm.
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Figure 2. Flow diagram of proposed model.

Table 1. Summary of notations.

Notations Description

d1 Current Density of AVs

d2 Threshold Density of AVs

d3 Normal Density of As

Td Time Delay

Thd Threshold Value of Delay

Thden Threshold Density of Platoon

Pj Identity of the jth platoon

Vi Identity of the ith AV

L Lane number
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Algorithm 1 An algorithm for traffic management using platooning

1: Start
2: Set d1, d2, d3 ;
3: for each Pj do
4: if (d1 >= d2) then
5: Platoon Rerouting
6: else if (d1 <= d3) then
7: No Rerouting
8: end if
9: for each Pj following P1 do

10: if ( Td > Thd) then
11: Platoon Rerouting
12: else if (Td < Thd) then
13: No Rerouting
14: end if
15: if (P1 receives merge request from P2) then
16: if (P1 , P2 ε Same Lane) then
17: if ((size of P1 + size of P2) <= Thden) then
18: Merge P1 and P2
19: end if
20: end if
21: end if
22: if ( Pj receives join request from Vi) then
23: if (Pj , Vi ε Same Lane) then
24: if ((size of Pj) < Thden) then
25: Join Vi into Pj
26: end if
27: end if
28: end if
29: if (PjL==inactive) then
30: Assign new Leader to Pj
31: end if
32: if (Obstruction between Pj) then

33: Split Pj in Pj and Pj
′ and assign L′ to Pj

′

34: end if
35: for each Pj do
36: if (collision) then
37: lane change
38: end if
39: End

4. Simulation and Results

This section presents the various scenarios and an analysis of results in detail.

4.1. Simulation Tool

This section describes the simulation tool used for the proposed approach. Simulation
is performed on PLEXE, which supports vehicle platooning, based on network simulation
platforms OMNeT++, VEINs, and simulation of urban mobility (SUMO). SUMO is an open-
source traffic simulator used to optimize traffic signals, investigate route choice and forecast
traffic. VEINS and OMNeT++ handle V2V and V2I communications. VEINs are used
as a vehicle communication technology. Its broad class of libraries improve the realism and
efficiency of traffic simulations. VEINs and OMNeT++ provide several capabilities that
allow vehicles to communicate with one another. The VEINs framework communicates
vehicles via the IEEE 802.11p and 1609.4 DSRC/wireless access.
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4.2. Simulation Parameters

This section presents the simulation parameters. Table 2 shows the different parame-
ters used in the simulation.

Table 2. Simulation Parameters.

Parameter Values

AV’s length 4 m

Optimal platoon size 8

Controller ACC, CACC

Leader headway 1.2 s

Maximum speed (leader) 33.34 m/s

Maximum acceleration 3 m/s2

Maximum deceleration 3 m/s2

Lanes 4

Platoon size 4,6,8

Simulation rime Merge-and-join maneuver (120 s), lane change (300 s)

PHY/MAC Model IEEE 802.11p

MAC Model 1609.4

4.3. Merge Maneuver (Scenario 1)

Several maneuvers are performed for merging, joining, and collision avoidance.
This section presents the results and discussions. In this section, the AVs are represented
as cars in the figures.

The scenario taken for merging platoons is depicted in Figure 3. Two or more platoons
moving in the same lane and joining to form a single large platoon is a merging maneu-
ver [35]. Whenever the platoon size is smaller than the optimal size, a merge maneuver is
initiated. We assume two platoons Y and X, where Y is the rear and X is the front platoon,
with one platoon leader and three followers. The optimal size of the platoon is taken to be 8.
Initially, the leader of platoon X receives the merge request from the leader of platoon
Y. The X-platoon leader can either accept or decline the merge request based on several
factors, such as the capacity of the platoon.

Figure 3. Merging of platoons.

On receiving approval for merging from the leader of X, the leader of Y reduces
its intra-platoon-spacing [36] by increasing its speed to catch up with the front platoon.
After the leader of platoon Y is in tune with the front platoon X, Y’s leader sends a request
to all of the platoon’s members for leader change. After changing the leader, all the follower
AVs start communicating with the platoon leader, and finally, the rear platoon leader
becomes a follower of platoon X.

Figure 4 represents the speed versus time of merge maneuver of the platoon. The P1
(including Car1–Car4) and the P2 (including Car5–Car8) line shows the speed of the front
and rear platoons, respectively. Initially, both the platoons are moving at the same speed,
and after approximately 12 s, the rear platoon increases its speed and then moves constantly
for a few seconds. After reaching a time period of nearly 45 s, the rear platoon starts
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reducing its speed to merge into the first platoon. After merging, the platoon’s AVs move
at a constant speed agaiuntil the destination.

Figure 4. Speed versus time graph of merge maneuver.

Figure 5 represents the distance versus time of the merge maneuver of the platoon.
The graph shows the distance between both the platoons. Initially, both the platoons have
an inter-platoon distance of approximately 330 m. After approximately 12 s, as the rear
platoon leader increases its speed, and the distance between the platoon starts decreasing.
After nearly 80 s, all the AVs have a constant distance between them as both platoons merge
to form one platoon.

Figure 5. Distance versus time graph of merge maneuver.

Figure 6 represents the acceleration versus the time of the merge maneuver of the pla-
toon. The P1 (including Car1–Car4) line shows the acceleration of the front platoon, whereas
the P2 (including Car5–Car8) shows the acceleration of the rear platoon. Initially, both
platoons are moving with the same acceleration. After approximately 12 s, as the rear
platoon increases its speed, its acceleration changes from 0 to 1.5 m/s2. After nearly 43 s,
acceleration starts reducing as the rear leader AV decreases its speed to match the speed
of the front platoon AV.

Figure 6. Acceleration versus time graph of merge maneuver.

4.4. Join Maneuver (Scenario 2)

The scenario of joining platoons is depicted in Figure 7.
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Figure 7. Joining maneuver.

In the joining maneuver scenario, a single platoon of four AVs traveling on the freeway
is taken, while a fifth AV requests the platoon leader to join at the tail of the platoon.
The non-platooned AV asks the platoon’s leader to join the platoon and waits for a response.
The leader accepts the request of the fifth AV (Car5) and responds with a message that
includes essential information about the platoon, such as lane number and joining position,
and waits for the joiner to become closer. The joiner AV uses that information to come close
to the platoon’s last AV, increasing its speed and managing the distance. When a joiner AV
reaches a predetermined distance from the platoon’s last AV, it signals to the leader that
it is ready to join.

Figure 8 represents the speed versus time of the joining maneuver of the platoon and
AV. P1 (including Car1–Car4) shows the speed of the front platoon, whereas the Car5 line
indicates the speed of the non-platooned AV. Initially, both are moving at the same speed.
At 17 s, the non-platooned AV increases speed and constantly moves until the time reaches
23 s. After reaching 32 s, the AV starts reducing its speed to merge into the platoon. After
joining, the AV becomes part of the platoon and starts moving at a constant speed.

Figure 8. Speed versus time graph of joining maneuver.

Figure 9 represents the distance versus time of the joining maneuver of the platoon and
AV. The graph shows the distance between the platoon and the AV. After approximately
16 s, the distance between the platoon and the AVs decreases as the AV increases its speed.
After reaching a time of nearly 50 s, all the AVs have a constant distance between them
as AVs merge into the platoon merge to form one platoon.

Figure 9. Distance versus time graph of joining maneuver.

Figure 10 represents the acceleration versus time of joining maneuver of the platoon
and AV. The P1 shows the speed of the front platoon, whereas the Car5 line shows the AV’s
speed. Initially, both are moving at the same speed. After approximately 16 s, the AV
increases speed and then reduces at 22 s. After reaching a time of nearly 32 s, the AV
begins reducing its speed to match the speed of the first platoon. As the AV is entirely
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ready to merge into the platoon, it needs to adjust its speed, so at approximately 45 s,
its acceleration shows some fluctuations. After merging, the AVs of the platoon move
at a constant speed.

Figure 10. Acceleration versus time graph of joining maneuver.

4.5. Collision-Avoidance (Scenario 3)

This section focuses on avoiding collision by changing the lane of the whole platoon
whenever any obstruction occurs during the journey. Figure 11 shows two platoons with 6
and 8 AVs moving in different lanes. The figure depicts collision avoidance due to obstruction
by lane change, where the platoon of AVs with 6 AVs moves to the alternate lane.

Figure 11. Collision avoidance by lane change.

Figure 12 represents the speed versus the time of lane change of the platoon lead-
ers. Initially, both the platoons are moving at the same speed. After approximately 50 s
and 90 s, the second platoon needs to change the lane to avoid the collision, decreas-
ing its speed to move to another lane and then moving with the same speed as earlier.
After approximately 90 s, as the first platoon also needs to change lanes to avoid the col-
lision, it also decreases its speed to move to another lane and then moves with the same
speed as earlier.

Figure 12. Speed versus time graph of lane change.

Figure 13 represents the platoon leaders’ acceleration versus the time of lane change.
Initially, both the platoons are moving with the same acceleration. After approximately
50 s and 90 s, as the second platoon reduces its speed for a lane change, its acceleration
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varies from 0 to −1.5 m/s2 every time. The first platoon also needs to change lane to avoid
a collision; it adjusts its speed to approximately 90 s, and its acceleration shows some
fluctuations due to the lane change.

Figure 13. Acceleration versus time graph of lane change.

Figure 14 represents the distance versus the time of inter-platoon lane change, specif-
ically between the leader of both platoons. Initially, the distance between the platoon
leaders is constant. As the lane change is about to occur, the inter-platoon distance deviates,
with the first deviation occurring at around 30 s. The graph predicts that it is challeng-
ing to maintain a constant distance between platoons during the lane change, but a safe
distance is still maintained. This provides a research scope to formulate a critical safe
distance model during the lane change, thus avoiding crashes. The proposed algorithm
has focused on the safe distance between inter and intra-platoon to some extent which can
be considered in future work.

Figure 14. Distance versus time graph of lane change.

4.6. Comparison of All Scenarios

This section describes a comparative analysis of the number of AVs versus the total
time to reach the destination in different scenarios with and without platoons, lane change,
leader failure, and merge maneuver. For a comparative analysis of the total time taken
to reach the destination for 500 AVs, these AVs were randomly generated by the free flow
model in veh/hr, and their travelling time is computed.

The time an AV takes to get from its starting point to its destination is known as the
travel time. AVs on highways move at a reasonable speed (90 to 140 km/h) to consume
the least amount of fuel. A successful platooning mechanism also reduces fuel consumption
due to the reduced travel time. In our simulation environment, the traveling time is defined
as the interval between the AV’s generation (entry of lane) and the moment it reaches
its destination point. Each AV keeps track of its generation time. When it reaches its
destination, it uses the time difference to calculate the distance traveled and time taken,
based on relative speed.

Every AV predicts the time it will take to reach its destination when it merges onto
the freeway, assuming a constant relative speed with the leader. AVs calculate the journey
time by recording their actual travel time after arriving. This statistic allows us to demon-
strate how platooning affects travel time. In this study, the platoon leader determines
the speed of platoon members. The platoon maneuvers reduce the travel time to a great
extent, contributing towards fuel-consumption minimization.
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Figure 15 compares AV’s movements with and without platooning, computing their
travel time. The simulated results show that the traveling time of 500 AVs is 1360 s (nearly
23 min) without platooning. For a platoon scenario where the AVs moved in a platoon with
cooperative speed and time-headway and rerouted to an alternate path in case of collision,
the traveling time is 396 s (nearly 7 min). Therefore, we can conclude that the travel time is
minimized by approximately 69% in a platoon scenario.

Figure 15. Comparison of platoon and non-platoon scenarios in terms of total time taken to reach destination.

In Figure 16, three scenarios are analyzed. The graph depicts the total traveling time
taken by 500 AVs to reach their destinations. The three analyses include the scenario of lane
change due to obstruction or chance of collision, the scenario when the leader AV fails,
and the scenario with multiple platoons, i.e., merge maneuver. The results show that
it takes 1008s (nearly 16 min) for 500 AVs to reach their destination when the lane change
is performed. Identifying and choosing a new leader if the leader fails is time-consuming
in case of any platoon interruptions. When the leader fails, it takes almost 1040 s (nearly
17 min) for 500 AVs to reach their destination. The travel time in case of leader AV failure is
more than the travel time in a lane change. Finally, when small platoons merge into one
large platoon, as in the merging maneuver, it significantly improves the AV platooning
performance. It takes almost 365 s (nearly 6 min) for 500 AVs to arrive at the destinations.
Thus, based on these results, it can be observed that merging platoons into one platoon
could improve the traffic flow by reducing the travel time by 64%. However, in a real-time
scenario, there will be a trade-off between travel time and platoon size, as a very long
platoon can tend to congestion of road traffic. This analysis provides scope for designing
an optimized algorithm considering the number of AVs, platoon size, and travel time,
thereby monitoring fuel consumption.
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Figure 16. Number of AVs vs travel time to reach destination in different scenarios.

5. Conclusions and Future Works

This paper has presented an adaptive traffic-flow management mechanism with
collision avoidance for vehicular platoons. The proposed model has contributed toward
traffic-flow management of AVs using platooning by rerouting platoons in a collision
situation, thereby avoiding traffic congestion. The merge and join maneuvers are performed
to reduce the total travel time and road overhead by merging two small platoons into
a single platoon. The lane-change mechanism of the platoon has been implemented to avoid
vehicular collisions, thereby reducing the time to reach the destination. The comparative
study shows that merging small platoons can minimize traveling time in a platoon scenario.
Thus, this study focuses on optimizing and analyzing travelling delay for platoon scenarios.

In future, leaving and splitting maneuvers will be implemented for different sections
of the platoon. A headway control will be designed for platoon modeling to minimize
rear-end and side crashes.
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Abstract: A wearable antenna functioning in the 2.4 GHz band for health monitoring and sensing
is proposed. It is a circularly polarized (CP) patch antenna made from textiles. Despite its low
profile (3.34 mm thickness, 0.027 λ0), an enhanced 3-dB axial ratio (AR) bandwidth is achieved by
introducing slit-loaded parasitic elements on top of analysis and observations within the framework
of Characteristic Mode Analysis (CMA). In detail, the parasitic elements introduce higher-order
modes at high frequencies that may contribute to the 3-dB AR bandwidth enhancement. More
importantly, additional slit loading is investigated to preserve the higher-order modes while relaxing
strong capacitive coupling invoked by the low-profile structure and the parasitic elements. As a
result, unlike conventional multilayer designs, a simple single-substrate, low-profile, and low-cost
structure is achieved. While compared to traditional low-profile antennas, a significantly widened CP
bandwidth is realized. These merits are important for the future massive application. The realized
CP bandwidth is 2.2–2.54 GHz (14.3%), which is 3–5 times that of traditional low-profile designs
(thickness < 4 mm, 0.04 λ0). A prototype was fabricated and measured with good results.

Keywords: characteristic mode; parasitic loading; slit loading; low-profile; wearable antenna

1. Introduction

Due to the restrictions on cost, reliability, productivity, safety, and robustness, as well as
the requirement for a good user experience in advanced communications and wireless body
area networks (WBAN) for health care, health monitoring, sensing, and athlete training,
etc., a tremendous effort has been devoted to minimizing traditional rigid antennas [1,2].
However, as a compromise, the miniaturization sacrifices the antenna performance since
the antenna gain is essentially related to its dimensions [3]. Alternatively, flexible wearable
antennas based on textiles [4–6], polyimide [7], PDMS [8–10], etc., are supposed to be good
candidates for maintaining good performance and user experience while relieving the
dimension restriction. For instance, [6] reports a wearable antenna for energy harvesting
applications; however, the reported antenna has a low front-to-back ratio (FBR) without
ground shielding. It is well known that the unshielded design results in a significant gain
decrease (e.g., it decreases by a factor of 2 or more in [6]) due to the coupling and power
absorption caused by the vicinity loading of the lossy human body. In contrast, patch
antennas are reported to be insensitive to the human body and can obtain high FBR due to
their shielding ground, which can benefit wearable applications. Their merits of low profile
and low cost are also favorable for massive usage. Additionally, one needs to address the
issue of polarization mismatch, which inevitably happens due to unpredictable movements
in realistic circumstances when linearly polarized (LP) antennas are used. Hence, CP
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antennas are a more appropriate choice [11–16]. Ref. [11] reports an S-shape slot CP
antenna with a narrow 3-dB AR bandwidth (1.23%) for Iridium and GPS communications.
Ref. [12] presents an omnidirectional button antenna using conceptual magnetic dipoles
for 5 GHz applications. There are some other wearable CP antennas designed using a low-
profile approach since clothes mostly have a thin thickness [17–22]. However, according
to the above-mentioned literature, most of these wearable antennas have a limited CP
bandwidth and a degraded performance in harsh environments. There are some antennas
with bandwidth-enhancing techniques reported for traditional rigid antenna designs, for
example, using aperture coupling [23], metamaterials/metasurfaces [24–28], parasitic
elements [14,23], thick-air substrates [14,24], multilayer stacking [13], pin-loading [29],
reflectors (e.g., AMC, PRS) [30,31], AI-based approaches [25,32], etc. However, most
of these popular techniques are not suitable for wearable applications because of the
thickness restrictions.

In this paper, we present a low-profile slit-loaded CP antenna with enhanced 3-dB AR
bandwidth using Characteristic Mode Analysis (CMA). Its CP bandwidth is 2.2–2.54 GHz
(14.3%). This design features two essential merits over the literature: (1) a superior CP
bandwidth and high gain are achieved for low-profile wearable CP antennas in the 2.4 GHz
band; (2) increased bandwidth with only single layer substrate, which is easy to fabricate
and low-cost. It is worth mentioning that not many designs are capable of obtaining a
decent 3-dB AR bandwidth for low-profile CP antennas (LPCPA), as depicted in Table 1,
whereas our work draws a clear distinction. In detail, a multilayer structure with stacked
patches and parasitic elements is reported in [13], which leads to 20.7% CP bandwidth at
6 GHz. Ref. [14] reports a strip-loaded antenna with 24% CP bandwidth. However, they are
only suitable for traditional rigid substrates. Ref. [17] presents a wearable antenna array fed
by a sequential feeding network. The feeding is embedded in the inner layer of the antenna,
which makes the fabrication complicated. A modified metasurface is also applied to the
antenna design in [18], which results in a wideband property with a peak gain of 8.5 dBic.
In [12,19], shorting pins are used to design flexible antennas for off-body or on-body
communication. However, these antennas work in the 5 GHz band [12,13,17–19]. If such
antennas are scaled to the 2.4 GHz band, the physical thickness of the antennas increases.
The scaled designs may be too bulky for wearable applications. As for the 2.4 GHz band
low-profile wearable designs [16,20–22], they all have a limited CP bandwidth. This is due
to the fact that with a physically similar low-profile thickness, their electrical thickness
in the 2.4 GHz band is smaller than that one in the 5 GHz band, and thus, leads to a
high Q, in other words, a narrow bandwidth in the 2.4 GHz band. Comparing to these
reported wearable designs with a low profile, the proposed antenna achieves the highest
CP bandwidth of 14.3%, around 3–5 times that of the counterparts. This is accomplished
by adopting parasitic elements, as in [14], and a novel slit-loading technique. Notably,
except for the parasitic loadings, Ref. [14] also utilizes a widely used bandwidth boosting
method, i.e., air gap loading [14,23], and two blind disk-loaded pins to realize a single-feed
design. However, the approach in [14] is unfavorable for wearables because of the thick
air gap, and the blind disk and pins make the antenna fabrication complicated and costly
(which are not easy to be addressed for wearables). Moreover, it is worth emphasizing
that unlike traditional parasitic loadings [14,29], the bandwidth enhancement in this work
is also attributed to the slit-loading approach, which introduces higher-order modes and
also unblocks the requirement of inductive matching compensation in traditional designs.
Overall, both the parasitic elements and the slit-loading lead to a decent CP bandwidth
with a low-profile single-layer substrate.

This work is organized as follows. Section 2 illustrates the antenna configuration.
Section 3 introduces the CP bandwidth-enhancing procedure from the perspective of CMA.
Further, under the guidance of the obtained CMA results, CST microwave studio 2020 is
employed to validate the antenna design with full-wave simulations. Then the antenna is
fabricated, and the measurement results are discussed in Section 4. Finally, conclusions are
given in Section 5.
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Table 1. Comparison with counterpart CP antennas in the literature.

Ref.
f 0

(GHz)
Size (mm3,
λ0×λ0×λ0

Impedance
BW (GHz)

3-dB AR
BW(GHz)

Peak Gain Efficiency
FBR
(dB)

Wearable
Material

[12] 5.8 14.1 × 14.1 × 10.29,
0.273 × 0.273 × 0.199

5.68–5.91
3.97%

5.72–5.89
2.93% 2.1 dBic 72.6% NA Yes

[13] 6
40 × 40 × 4.5,

0.8 × 0.8 × 0.09
5.0–7.0

33%
5.38–6.62

20.7% 8.6 dBic NA 20 * No, rigid

[14] 2.49 130 × 130 × 15,
1.079 × 1.079 × 0.125

1.87–3.11
49.8%

2.32–2.95
24%

8.7 dBic NA 25 * No, rigid

[17] 5.44 40 × 40 × 4,
0.725 × 0.725 × 0.072

4.25–6.63
43%

4.71–6.67
34% 7.5 dBic NA 30 * Yes

[18] 5.47 54 × 54 × 4.4,
0.985 × 0.985 × 0.080

4.51–6.43
35.1%

5.02–5.98
17.5% 8.5 dBic 77% 35 * Yes

[19] 5.86 35 × 35 × 2.24,
0.684 × 0.684 × 0.044

5.67–6.05
6.6%

5.73–5.955
3.85% 7.2 dBic NA 28 * Yes

[20] 2.43 65.6 × 58.9 × 3.94,
0.531 × 0.477 × 0.032

2.26–2.6 *
14.0%

2.365–2.499
5.5%

6.5 dBic 73% 25 * Yes

[21] 2.45 100 × 100 × 3.94,
0.818 × 0.818 × 0.032

2.34–2.57
9.4%

2.4–2.45 *
2.1%

6 dBic 62% 30 * Yes

[22] 2.5 60 × 60 × 3,
0.5 × 0.5 × 0.025

2.36–2.64
11%

2.42–2.49
2.86%

1.8 dBic 30.7% 18 * Yes

[16] 2.45 60 × 60 × 3.4,
0.48 × 0.48 × 0.027

2.26–2.64 *
15.5%

2.3–2.4
4.08%

2.5 dBic 42.26% 25 * Yes

This work 2.4
130 × 130 × 3.34,

1.04 × 1.04 × 0.027
2.18–2.61

18%
2.2–2.54
14.3%

8.9 dBic 52.96% 35 Yes

NA: not available. *: evaluated from figures.

2. Antenna Configuration

The geometry of the antenna is depicted in Figure 1. The antenna is composed of a
corner-truncated patch surrounded by parasitic elements. The patch is with a cross-slot at
the center. The antenna is deposited on top of a grounded single substrate layer made of
felt (εr = 1.35, tan δ = 0.03). Both the patch and the ground are made of conductive textiles
with a conductivity of σ = 1.18 × 105 S/m (Shieldit Super from LessEMF Inc, Latham NY,
USA.). The materials are flexible so that the antenna is friendly to be worn on the body.
A ground shielding topology rather than unshielded ones [6,33] is adopted to reduce the
human body loading effect on the antenna performance. Since a large area is available
on the body, the antenna ground can be kept large to have higher gain and less radiation
exposure issues. The thickness of the felt substrate and the conductive textiles are 3 mm
and 0.17 mm, respectively. This results in a low-profile structure whose thickness is only
0.027 λ0. An antenna prototype is fabricated, as shown in Figure 9a. All the materials were
cut manually. The textile radiator, the ground layer, and the felt substrate were ironed
together with thermal melting glue. An SMA connector was soldered to the ground and
to the patch to feed the antenna for measurements using a temperature-tunable soldering
iron to avoid burning the textile.

Figure 1. Structure of the antenna. (a) Front view. (b) 3D view.
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3. Working Mechanism

3.1. Characteristic Mode (CM) Theory

To ease the illustration of the working mechanism of the CP bandwidth enhancement,
here we review the main theoretical elements of CMA first.

According to the CM theory [34], an impedance matrix Z can be written as

Z = R + jX,

where R and X are the real and imaginary parts of the impedance matrix, respectively.
Accordingly, a generalized eigenvalue problem is defined as:

XJn = λnRJn,

where Jn is the nth characteristic current mode of a conductive structure and λn is the
corresponding eigenvalue of the nth mode. For each mode, modal significance MS is
defined as [35]:

MS = |1/(1 + jλn)|.
It is an intrinsic property of the structure and is independent of external excitations.

Thus, by investigating the MSs of a certain structure, the properties of the structure can be
envisioned and modified. Especially for λn = 0, i.e., MS = 1, the nth mode is in resonance.
If we take an antenna as an example, with proper feeding excitation, the antenna may
effectively radiate.

Another important factor for antennas design in CM theory is the characteristic angle
(CA), which is defined as [35]:

αn = 180o − tan−1 λn.

It presents the constant phase lag between the current Jn and the tangential component
of characteristic fields En, where En is the field produced by current Jn.

To design a CP antenna, in practice, it is required that two orthogonal modes be
effectively excited, and their MSs be close. Meanwhile, the characteristic angles should
have a phase difference of nearly 90◦ (70◦–110◦).

3.2. Characteristic Mode Analysis (CMA) of the Low-Profile CP Antenna

CMA Multilayer Solver in CST studio 2020 is applied to carry out the predesign and
analysis of the proposed antenna. Figure 2 shows the design in 3 steps. The design starts
from a traditional corner-truncated patch, and then a cross-slot and four parasitic elements
are adopted to introduce extra resonant modes in the frequency band of interest. Afterward,
slits are cut on the parasitic elements to further broaden the bandwidth. Figure 3 illustrates
the MSs and CAs of the first six modes of the three-step design, and Figures 4–6 illustrate
the corresponding modal current distributions. As we can see in Figure 3a, mode 1 and
mode 2 have large MSs in the 2.5–2.8 GHz band, while the MSs of mode 3–6 are almost 0,
which means mode 1 and mode 2 could be excited. However, the MS and CA conditions to
generate CP waves are effective in a limited bandwidth, i.e., 2.62–2.72 GHz, indicated in
the colored zone 1 in Figure 3b. This also explains the natural narrow CP bandwidth of
traditional corner-truncated patch antennas [21,22,36].

To increase the bandwidth, four parasitic elements are utilized to introduce extra
modes in the interested band in the second step. The MSs and CAs for the interested mode
1–6 are shown in Figure 3c,d. It can be seen that mode 1 and mode 2 are the dominant ones
and satisfy the CA requirements for generating CP waves around 2.34 GHz (colored zone
1, 2.3–2.39 GHz), while other modes around 2.34 GHZ have low MSs so that they can be
ignored. Similarly, mode 2 and mode 3/4 contribute to a potential CP around 2.45 GHz
(colored zone 2), mode 3/4 and mode 5 contribute to the frequency band of 2.47–2.51 GHz
(colored zone 3), and mode 5 and mode 6 contribute to 2.51–2.55 GHz (colored zone 4).
To sum up, the antenna may theoretically have a CP bandwidth in the frequency band
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of 2.3–2.55 GHz as long as all the modes can be effectively excited. Notably, the resonant
frequencies of mode 1 and mode 2 are lower than the ones in step 1. This is due to the
introduction of the cross-slot at the patch center and due to the coupling between the
parasitic elements and the patch. This can be seen from the modal current distributions of
mode 1 and mode 2, as shown in Figure 4a,b and Figure 5a,b. Such coupling can be modeled
using LC model methods [5,28]. Moreover, it is worth mentioning that the parasitic patches
and the traditional center patch without slot-loading in step 1 induce a strong capacitive
effect with the antenna ground. This makes a traditional high-profile design preferable
since a long feed probe can be used to compensate for the capacitive effect by its intrinsic
inductance. However, for a wearable design with low-profile restrictions, the feed probe is
too short to fulfill this requirement. Hence, a cross-slot is cut at the center patch to reduce
the capacitive effect and to release the need for a long probe.

Figure 2. Evolution of the LPCPA design. (a) Step 1, a traditional corner truncated patch antenna.
(b) Step 2, a corner truncated patch with cross-slot and parasitic elements. (c) Step 3, the proposed
LPCPA with slit-loading.

Figure 3. MSs and CAs evolution of the LPCPA. (a,b) MSs and CAs of Step 1. (c,d) MSs and CAs of
Step 2. (e,f) MSs and CAs of Step 3. Colored zones present where the CA phase differences are in the
range of 70◦–110◦.
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Figure 4. Modal current distributions of basic corner-truncated structure. (a) Mode 1. (b) Mode 2.

Figure 5. Modal current distributions of the structure without slit-loading. (a–f) are Mode 1–6.

Figure 6. Modal current distributions of the structure with slit-loading. (a)–(f) are Mode 1–6.
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Last, we find that the topology with slit-loadings on the parasitic elements proposed in
step 3 has similar MSs, CAs, and modal currents as in step 2 (see Figure 3e,f and Figure 6).
The potential CP bandwidth is 2.26–2.52 GHz. This is due to the fact that all the modal
currents of modes 1–6 on the parasitic elements flow along the x or y direction so that slits
along x or y directions have limited impact on the modal currents and the characteristic
properties. Thanks to this, narrowing down the size of parasitic patches in step 2 by means
of additional slits increases the parasitic inductance and decreases the capacitance while
keeping the characteristic properties, meaning that a short, less inductive feeding structure
may be sufficient to feed and excite the antenna. Overall, this approach with slits and the
cross-slot is significantly different from the thick multilayer designs in [14,29], which need
extra disks and pins for impedance matching.

3.3. Full-Wave Simulation

Summarized, topology 3 has the potential to obtain a wide CP bandwidth if the
desired modes 1–6 are effectively excited with proper feeding. In the following, a coaxial
probe (inner-pin diameter is 1 mm, outer-shell diameter is 4.1 mm) is used as feeding, and
full-wave simulations are carried out to validate the proposed design. The final optimized
parameters are given in Figure 1. The simulated reflection coefficient and AR results of the
three topologies are shown in Figure 7. The full-wave simulation results agree with the
above-analyzed results very well. It is clear that the proposed LPCPA with slit-loadings
has significantly improved the performance of the low-profile antennas of topology 1 and
topology 2. Its impedance bandwidth (S11 < −10 dB) and CP bandwidth (AR < 3 dB) are
2.2–2.64 GHz and 2.29–2.53 GHz, respectively.

Figure 7. Simulated (a) S11 and (b) AR evaluation of the antennas.

The Specific Absorption Rate (SAR) over 10 g of tissue is simulated by CST Studio
2020 according to the IEEE C95.3 standard. For realistic wearing applications, the antenna
is placed about 5 mm above the body most of the time due to the insertion of air gaps
and mid-layers to prevent scratching, potential allergic reactions, etc. Figure 8 shows the
simulation model, which has been validated in [37,38]. The permittivity of the fat, skin, and
muscle is 5.28, 38.01, and 52.73, respectively [39]. The simulated SAR result is 0.0159 W/kg
at 2.4 GHz. The simulated SAR value is significantly lower than the European standard
threshold of 2 W/kg. This is a benefit of the ground shielding of the proposed design.
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Figure 8. SAR simulation result at 2.4 GHz.

4. Measurement and Discussion

The fabricated antenna was measured in an anechoic chamber with a Vector Network
Analyzer 8510 system. Three scenarios were considered: free-space, on-body, and on-
phantom. The measurement setups are shown in Figure 9. Since a wearable antenna is
inevitably bent when being worn on the body in practice, bent antennas with curvature radii
of 5 cm and 8.5 cm (i.e., conformal situations) were measured for the free space scenario.
Further, the reflection coefficient of on-body scenarios, for example, on-arm and on-chest,
was measured. As for the AR measurements, body tissue simulating liquid MSL2450v2 [40]
was used to mimic the body loading due to the fact that a human may move during the
measurement and cause unstable transmissions and reflections. A cylinder with a 10 cm
diameter and a liquid bag packed with a 10-mm-thick foam were used as phantoms to
mimic the on-arm and on-chest situations, respectively.

 

Figure 9. Measurement setups. (a,b) Free space. (c,d) On-body. (e,f) On-phantom.

4.1. Reflection Coefficient

As shown in Figure 10a, in free space, the impedance bandwidth (S11 < −10 dB)
is 2.2–2.64 GHz in simulation and 2.18–2.61 GHz in measurement when the antenna is
flat. The slight discrepancy between simulation and measurement may be caused by
manual fabrication errors. For the conformal cases, a slight frequency shift is observed.
Nevertheless, the antenna still shows a good performance. Further, the on-body results
are shown in Figure 10b. The simulated impedance bandwidth is 2.21–2.64 GHz, and the
measured bandwidth of on-arm and on-chest is 2.18–2.59 GHz. It is evident that, due to
the benefit of ground shielding, the proximity of the body results in a limited influence
when the antenna is worn on the arm and on the chest. Overall, we can conclude that
the simulation and the measurement results match well. The antenna shows a robust
impedance performance in free space and on-body scenarios.

4.2. Axial Ratio

The simulated and measured AR results of the antenna in free-space and on-phantom
scenarios are shown in Figure 11. They are evaluated on the normal axis (θ = 0◦) of the
antenna. For the free-space scenario (see Figure 11a), the simulated flat antenna has a
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CP bandwidth (AR < 3 dB) of 2.29–2.53 GHz, and, accordingly, the measurement result
is 2.2–2.54 GHz. The measurement bandwidth is wider than that of the simulation. This
may be caused by fabrication errors during the manual fabrication process. The measured
results when the antenna is bent show a frequency shift (depression) compared to the
flat scenario. This is due to the symmetry of the structure that is broken. In detail, the
modal currents of the dominant modes at high frequencies, i.e., modes 3–6 in Figure 6c–f,
mainly flow on the rotationally symmetric parasitic elements. So, when the symmetric is
broken, the CP waves cannot be effectively generated at high frequencies, and a frequency
shift (depression) is observed. As for the on-phantom scenarios (see Figure 11b), a similar
phenomenon can be observed.

Figure 10. Simulated and measured reflection coefficient in (a) free-space and (b) on-body scenarios.

Figure 11. Simulated and measured AR in (a) free-space and (b) on-phantom scenarios.

4.3. Radiation Pattern and FBR

Figure 12 shows the LHCP and RHCP realized the gain pattern of the LPCPA at
2.3 GHz and 2.4 GHz for both the free space and the on-phantom scenarios. The LHCPs
are 10 dB larger than the RHCPs, which means the main polarization of the antenna
is left-handed circular polarization. In free space (Figure 12a,b), the flat antenna has a
measured realized gain of 8.9 dBic and 7.1 dBic at 2.3 GHz and 2.4 GHz, respectively.
Correspondingly, the estimated proximate efficiencies are 52.96% and 44.12% based on the
half-power beamwidth [41]. Compared to the literature in Table 1, the designed low-profile
antenna has achieved the highest peak gain even with lossy textile materials rather than
the less-lossy PCB substrates that are used in [13,14]. Due to the bending, a decrease in
the LHCP gain is observed. The measured realized gain is 8.7 dBic (2.3 GHz) and 5.4 dBic
(2.4 GHz) when the antenna is bent with a curvature radius of 5 cm. As for the on-phantom
scenario, see Figure 12c,d, the measured realized gains at 2.3 GHz are 8.6 dBic for on-chest
and 8.4 dBic for on-arm, respectively, and at 2.4 GHz the corresponding ones are 7.1 dBic
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and 5.9 dBic. According to the patterns, we can also obtain the FBR values. The evaluated
FBR values are all larger than 18 dB, and the peak one is 35 dB for the flat antenna in
free space, which shows good radiation shielding due to the presence of the ground. As
for positions having limited space or with drastic bending, for example, the wrist, the
ground should be decreased accordingly for good wearing comfortability. Alternatively,
the materials could be changed to more flexible and stretchable ones.

Figure 12. Simulated and measured realized gain pattern in (a,b) free-space and (c,d) on-phantom
scenarios at 2.3 GHz and 2.4 GHz.

5. Conclusions

A wearable low-profile antenna with circular polarization is designed. Slit-loaded
parasitic elements are used to improve the CP bandwidth in the 2.4 GHz band. CM
theory is used to reveal the modal current distributions of the antenna. According to
these current distributions, we find that the antenna can achieve a wide CP bandwidth by
loading slits on the parasitic elements whilst the antenna profile remains low. Full wave
simulations and measurements validate our design. The size of the prototype antenna is
1.04 × 1.04 λ0

2 while the profile is only 0.027 λ0. The antenna has an impedance bandwidth
of 2.18–2.61 GHz (18%) and a CP bandwidth of 2.2–2.54 GHz (14.3%) and realized a peak
gain of 8.9 dBic. Compared to other low-profile wearable designs in the 2.4 GHz band, this
design achieves a bandwidth that is 3–5 times larger.
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Non-Data-Aided SNR Estimation for Bandlimited Optical
Intensity Channels

Wilfried Gappmair

Institute of Communication Networks and Satellite Communications, Graz University of Technology,
Inffeldgasse 12, 8010 Graz, Austria; gappmair@tugraz.at

Abstract: Powerful and reliable estimation of transmission parameters is an indispensable task in
each receiver unit—not only for radio frequency, but also for optical wireless communication systems.
In this context, the signal-to-noise ratio (SNR) plays an eminent role, especially for adaptive scenarios.
Assuming a bandlimited optical intensity channel, which requires a unipolar waveform design,
an algorithm for SNR estimation is developed in this paper, which requires no knowledge of the
transmitted data. This non-data-aided approach benefits to a great extent from the fact that very long
observation windows of payload symbols might be used for the estimation process to increase the
accuracy of the result; this is in striking contrast to a data-aided approach based on pilot symbols
reducing the spectral efficiency of a communication link. Since maximum likelihood, moment-based
or decision-directed algorithms are not considered for complexity and performance reasons, an
expectation-maximization solution is introduced whose error performance is close to the Cramer-Rao
lower bound as the theoretical limit, which has been derived as well.

Keywords: SNR estimation; optical wireless communications; intensity modulation

1. Introduction

When comparing radio frequency (RF) to optical wireless communication (OWC)
techniques, the advantages of the latter are well known: there are no regulatory and license
issues, they are rather inexpensive and easy to deploy, have extremely high throughput
and cause no problems with data security, just to mention the most significant aspects in
this context [1–4].

However, not only for RF but also for OWC solutions, the relevant transmission
parameters have to be recovered by powerful algorithms, because otherwise subsequent re-
ceiver stages, e.g., detectors or error correction algorithms cannot be reliably operated [5,6].
Of course, in case that bandlimited optical intensity solutions are envisaged, a unipolar
waveform design is indispensable with respect to pulse shaping and symbol constellation.
Investigated in [7,8] for a PAM scheme and root-raised cosines as typical pulse shapes
used for RF solutions, this is simply achieved by a suitably selected bias or offset signal.
Unfortunately, such concepts are not very efficient in terms of power and energy if no
harvesting is implemented. Hence, squared raised cosine and double jump functions have
been suggested in [9] as viable alternatives.

Nevertheless, focusing on the pulse shapes proposed in [9] also means that recovery
methods developed in the RF context are not automatically applicable. Of course, syn-
chronization of carrier frequency and phase need not be considered in case of intensity
modulation, whereas the recovery of the symbol timing is still of paramount importance
since this is a pre-requisite for many other estimation and detection procedures. This
problem has been tackled in a couple of papers recently published by the author in [10–12].

Apart from symbol timing and clock recovery, some knowledge about the signal-to-
noise ratio (SNR) is equally important for the reliable transmission of data, e.g., for adaptive
communication systems to select modulation and coding schemes according to the given
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channel conditions so that the link might be operated close to the Shannon bound [13], but
also powerful error correction methods—like turbo or LDPC algorithms—need this sort of
information [14]. Scanning the open literature, numerous papers are available about SNR
estimation in RF channels, e.g., the frequently cited overview by Pauluzzi and Beaulieu [15],
but little or no information is published for OWC systems. One of the rare examples is
the paper in [16], but the authors discuss on-off keying (OOK), i.e., a binary concept with
rectangular pulse shapes and no bandwidth limitation.

This background was the incentive for the author to study in [17] data-aided SNR
estimation for a bandlimited optical intensity channel, i.e., data are known to the receiver
unit in form of pilot symbols. However, it could be shown that the accuracy of SNR
estimates depends on the length of the pilot sequence used for this purpose, although
this reduces the spectral efficiency of the communication link as such. Therefore, if SNR
estimation could be organized in a non-data-aided (NDA) way by employing payload or
user symbols, the error performance of the estimates might be increased by much longer
observation windows with no impact on the spectral efficiency. This is the main motivation
of the current paper, which is structured as follows:

The signal and channel models used for analytical and simulation work are introduced
in Section 2. In Section 3, the Cramer-Rao lower bound (CRLB) is derived as the theoretical
limit of the jitter variance for an SNR estimator developed in this respect. Based on the
expectation-maximization (EM) principle, an estimator algorithm is introduced in Section 4
and verified in Section 5 by numerical means. Finally, Section 6 concludes the paper.

2. Signal and Channel Model

Of course, for the NDA scenario to be investigated in this contribution, we are working
with the same signal and channel model used in the companion paper addressing a DA
situation [17]. For clarity and readability reasons, this model is briefly recapitulated in
the sequel.

Due to the unipolar waveform design mentioned previously, it is assumed that the
data symbols ak, k ∈ Z, are independent and identically distributed (i.i.d.) elements of an
M-ary PAM alphabet A. In this context, it makes sense to normalize them to unit energy,
i.e., E[a2

k ] = 1, where E[·] denotes the expectation operator. Therefore, by definition of
ηM = 1

6 (M− 1)(2M− 1), we obtain ak ∈ A = 1√
ηM
{0, 1, . . . , M− 1}. As a consequence,

the average value is given by

μa = E[ak] =
1√
ηM

M− 1
2

=

√
3 (M− 1)

2 (2M− 1)
. (1)

If h(t) describes the pulse shape satisfying the non-negativity as well as the Nyquist
constraint, the signal at the output of the opto-electrical receiver unit can be expressed by

r(t) = A ∑
k

ak h(t− kT − τ) + w(t), (2)

where T is the symbol period and τ indicates the propagation delay between transmitter
and receiver. The channel gain A > 0 is assumed to be a constant, which is justified by the
fact that the coherence time of fading events is usually much larger than the observation
window needed for estimation purposes. In line with the previous publication about this
topic in [17], the noise component in (2) is assumed to be a zero-mean white Gaussian
process with variance σ2

w.
In addition, if we introduce the average optical power as P0 = μa h, where

h =
1√
T

∞∫
−∞

h(t) dt, (3)
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the average electrical SNR at the receiver can be defined as

γs =
A2P2

0
σ2

w
. (4)

Nevertheless, before r(t) is processed in further receiver stages, e.g., in the SNR
estimator to be developed in the sequel, it must be filtered appropriately. Assuming an
impulse response q(t), the filter output is determined by z(t) = q(t) ⊗ r(t), where ⊗
denotes the convolutional operator. For convenient reasons, the signal model used for SNR
estimation is illustrated in Figure 1.

r t q t

z t zk

γs

Figure 1. Signal model for SNR estimation.

It has been proved in [9] that there exists no simple solution for a matched receiver
filter in case of a bandlimited optical intensity link. Hence, it is suggested to focus on
a solution performing a rectangular shape over the complete spectrum occupied by
the user component in (2). By application of the Fourier-transform [18], we have that
Q( f ) = F [q(t)] =

√
T for | f | ≤ (1 + α)/T and Q( f ) = 0 elsewhere, with α as the roll-off

factor (excess bandwidth) of the selected pulse shape. In this case, the signal parts of r(t)
and z(t) are the same, whereas the noise component is determined by n(t) = w(t) ⊗ q(t)
representing a zero-mean non-white Gaussian process. Under the assumption that the
symbol timing has been reliably recovered and corrected, e.g., by one of the algorithms
proposed in [10–12], the T-spaced samples at the output of the receiver filter are obtained as

zk = z(kT) = A · ak + nk , (5)

where E[nk] = 0, E[ni nk] = 2(1 + α) σ2
w sinc[2(1 + α)(i− k)], and sinc(x) = sin(πx)/(πx).

3. Cramer-Rao Lower Bound

3.1. Log-Likelihood Function and Fisher Information Matrix

For parameter estimation, in general, the Cramer-Rao lower bound (CRLB) is a major
figure of merit [19]. It turns out to be most helpful for comparison purposes, since the
bound represents the theoretical limit of the error performance of any algorithm developed
in this context.

By detailed inspection of (4), it is obvious that the average electrical SNR is a function
of the channel gain and the standard deviation of the noise component in (2), A and σw,
respectively, whereas P0 might be considered as a constant factor depending on the PAM
scheme and the selected pulse shape. Therefore, it makes sense to focus on the SNR
normalized by P2

0 , henceforth denoted by ρs = γs/P2
0 , and to employ ρs and Pn = σ2

w,
instead of A and σw, as elements constituting the parameter vector u to be estimated in the
sequel, i.e., u = (u1, u2) = (ρs, Pn). On top of that, it is assumed that L observables given
by (5) are available for the estimation procedure, which might be elegantly expressed in
vector form:

z = A · a + n. (6)

It is to be recalled that the noise samples in n are not independent. The related
covariance matrix is given by E[n · nT ] = 2(1 + α) σ2

w Ω, where Ω describes a symmetric
Toeplitz matrix [20] with entries ωik = sinc[2(1 + α)(i− k)] for line i and column k.
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Conditioned on the knowledge of the data sequence a and the unknown but determin-
istic parameter vector u, the log-likelihood function (LLF) characterizing the estimation
problem has been derived in [17] as

Λ(z|a; u) = − L
2

log Pn −
zTΨ z− 2

√
ρsPn zTΨ a + ρsPn aTΨ a

4(1 + α)Pn
, (7)

where Ψ = Ω−1. However, the computation of the CRLB for NDA estimation requires
that the LLF does not depend on a, which is achieved by averaging the related likeli-
hood function, i.e., Pr(z|a; u) = eΛ(z|a;u), with respect to a ∈ AL, where AL denotes the
L-dimensional symbol space spanned by L i.i.d. elements of A. Therefore, we have that

Λ(z; u) = log Pr(z; u) = log

(
1

ML ∑
a∈AL

eΛ(z|a;u)

)
. (8)

As a consequence, the entries of the Fisher information matrix (FIM) are obtained as

Ji,k = Ez

[
∂Λ(z; u)

∂ui

∂Λ(z; u)

∂uk

]
, (9)

where Ez[·] denotes expectation with respect to z, i.e., an averaging procedure with respect
to a and n, which is only possible by numerical means.

According to theory, the CRLB for parameter ui is formally given by the i-th diagonal
entry of the inverted FIM. Since we are only interested in the estimation of ρs, represent-
ing the first element of u in our definition introduced before, the corresponding CRLB
develops as

CRLB(ρs) =
J22

J11 J22 − J12 J21
=

J22

J11 J22 − J2
12

. (10)

3.2. Low-Complexity Solution

From the complexity point of view, it is clear that the LLF in (8) is the most demanding
ingredient for the computation of the CRLB in (10). This is mainly due to the averaging
procedure, which is in the order of ML operations. Even smaller values of M and L are
challenging in this respect, but for values of L between 100 and 1000, which are typical for
an NDA scenario, the computational load would be intractable. Luckily, for some values of
the excess bandwidth, in particular for α ∈

{
0, 1

2 , 1
}

, it turns out that Ω boils down to an

L-dimensional identity matrix IL, which means that Ψ = Ω−1 = IL. In consequence, the
likelihood function in (8) can be re-organized as

Pr(z; u) =
P−L/2

n

ML ∑
a∈AL

exp

(
−zTz− 2

√
ρsPn zTa + ρsPn aTa

4(1 + α)Pn

)
. (11)

Because of Ψ = IL the elements of z might be considered as statistically independent
entries. By taking into account that the symbols ai ∈ A are i.i.d., we just obtain

Pr(z; u) =
P−L/2

n

ML ∑
a∈AL

L−1

∏
k=0

eΛ(zk | ai ;u), (12)

where

Λ(zk|ai; u) = − (zk −
√

ρsPn ai)
2

4(1 + α)Pn
. (13)
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Finally, the averaging of Pr(z|a; u) with respect to a ∈ AL is simply achieved, if we
exchange in (12) the order of sum and product, i.e.,

Pr(z; u) =
P−L/2

n

ML

L−1

∏
k=0

∑
ai∈A

eΛ(zk |ai ;u), (14)

resulting in a computational complexity in the order of M× L, which is much less compared
to ML.

In the next step, with Λ(z; u) = log Pr(z; u), the first-order derivatives in (9) are
expressed by

∂Λ(z; u)

∂ρs
=

L−1

∑
k=0

∑
ai∈A

Λs(zk|ai; u) eΛ(zk |ai ;u)

∑
ai∈A

eΛ(zk |ai ;u)
(15)

and

∂Λ(z; u)

∂Pn
= − L

2Pn
+

L−1

∑
k=0

∑
ai∈A

Λn(zk|ai; u) eΛ(zk |ai ;u)

∑
ai∈A

eΛ(zk |ai ;u)
, (16)

where

Λs(zk|ai; u) =
∂Λ(zk|ai; u)

∂ρs
=

1
4(1 + α)

(
ai zk√
ρs Pn

− a2
i

)
(17)

and

Λn(zk|ai; u) =
∂Λ(zk|ai; u)

∂Pn
=

1
4(1 + α)

(
z2

k
P2

n
−
√

ρs

P3
n

ai zk

)
. (18)

For the simplified scenario, the computation of FIM entries and CRLB does not differ
from the general case such that the relationships in (9) and (10) might be used in the
same way.

3.3. Asymptotic Scenario

For increasing values of M, the density of the PAM symbols ai will increase accordingly,
when we assume that their average energy is normalized to unity, i.e., E[a2

k ] = 1. Hence,
in case that M → ∞, the symbol alphabet A turns out to be equally distributed between 0
and

√
3. Applying the framework developed previously to compute the CRLB for such a

scenario, it is clear that the sums over ai ∈ A in (15) and (16) have to be replaced by the
related integrals, i.e.,

∑
ai∈A

am
i eΛ(zk |ai ;u) → Im(zk; u) =

√
3∫

ai=0

am
i eΛ(zk |ai ;u)dai, (19)

where m ∈ {0, 1, 2}. By taking into account the solutions for (19) computed in Appendix A,
the first-order derivatives for the FIM entries in (9) are after some lengthy but straightfor-
ward manipulations given by

∂Λ(z; u)

∂ρs
=

1
4(1 + α)

√
ρs Pn

L−1

∑
k=0

zkI1(zk; u)−
√

ρs Pn I2(zk; u)

I0(zk; u)
(20)
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and
∂Λ(z; u)

∂Pn
= − L

2Pn
+

1
4(1 + α)P2

n

L−1

∑
k=0

z2
k −

1
4(1 + α)

√
ρs

P3
n

L−1

∑
k=0

zkI1(zk; u)

I0(zk; u)
. (21)

It is to be recalled that the simplified computation of the CRLB applies in the strict
sense only to values of α ∈

{
0, 1

2 , 1
}

, where Ψ = Ω−1 = IL. However, since the entries
of Ω are given by ωik = sinc[2(1 + α)(i− k)], it is clear that the off-diagonal elements of
the matrix are rapidly decaying for α /∈

{
0, 1

2 , 1
}

, which means that Ω and Ψ might be
approximated by an identity matrix of the same dimension such that the simplification
would be applicable. This results in a tight approximation of the true bound confirmed by
numerical results in Section 5.

4. Expectation-Maximization Estimator

Since the normalized SNR value is given by ρs = A2/Pn, it is clear that any estimator
algorithm must provide the estimates of channel gain as well as noise power, which means
that we are focusing in the sequel on a parameter vector u = (A, Pn). Formally, a maximum

likelihood solution for u is easily obtained by using the LLF in (8), i.e.,
^
u = argmax~

u
Λ(z;

~
u).

However, this problem cannot be solved in closed form so that we must resort to numerical
methods, e.g., the iterative Newton-Raphson procedure [21]. Apart from troubles in
terms of initialization, convergence and stability, it is the computational complexity which
prohibits this approach, even if the simplified variant with Ψ = IL would be envisaged.

Alternatively, a rather simple solution based on first- and second-order moments given
by E[zk] and E[z2

k ], respectively, delivered reliable estimates only in the very low SNR range.
On the other hand, for an algorithm based on symbol decisions [15], useful results were
solely achievable for very large SNRs. As a consequence, an expectation-maximization
(EM) estimator [22–24] is proposed, whose error variance turned out to be close to the
CRLB over a wide SNR range as will be demonstrated in Section 5.

The EM algorithm is an iterative procedure using in step l the parameter estimates
calculated in step l – 1. The conditional LLF for this approach is for Ψ = IL expressed by

Λ(z|^u
(l−1)

;
~
u) = − L

2
log P̃n −

zTz− 2Ã zT .
a
(l−1)

+ Ã2 ..
a(l−1)

4(1 + α)P̃n
. (22)

This is very similar to (7), but u is replaced by the trial value
~
u used for optimization

purposes; a as well as aT a are substituted by the corresponding soft decisions in step l – 1,

henceforth denoted by
.
a
(l−1) and

..
a(l−1). The k-th element of vector

.
a
(l−1) develops as

.
a(l−1)

k = ∑
ai∈A

aiP
(l−1)
i,k , (23)

whereas
..
a(l−1), representing a scalar, is a finite double sum given by

..
a(l−1)

=
L−1

∑
k=0

∑
ai∈A

a2
i P(l−1)

i,k . (24)

By inspection of (23) and (24), we observe that the soft decisions are characterized by
an averaging of the symbols ai ∈ A via the a posteriori probabilities [25]:

P(l−1)
i,k = Pr(ai ∈ A|zk,

^
u
(l−1)

) =
Pr[zk|ai ∈ A,

^
u
(l−1)

]Pr[ai ∈ A|
^
u
(l−1)

]

Pr[zk|
^
u
(l−1)

]

. (25)
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Because the symbols ai are i.i.d., we have that Pr[ai ∈ A|^u
(l−1)

] = Pr[ai ∈ A] = 1
M .

Furthermore, by considering the relationship in (13), the probability Pr[zk|ai ∈ A,
^
u
(l−1)

]
develops as

Pr[zk|ai ∈ A,
^
u
(l−1)

] =
1√

4π(1 + α)P̂(l−1)
n

exp

(
− (zk − Â(l−1)ai)

2

4(1 + α)P̂(l−1)
n

)
. (26)

Since the denominator in (25) does not depend on ai, it might be replaced by a constant

including also the a priori probability Pr[ai ∈ A|
^
u
(l−1)

] = 1
M , which is determined by the

fact that ∑M−1
i=0 P(l−1)

i,k = 1.

Finally, computing the first-order derivatives of (22) with respect to Ã as well as P̃n

and equating them to zero for Ã = Â(l) and P̃n = P̂(l)
n , the parameter estimates for step l

are achieved in closed form by

Â(l) =
zT .

a
(l−1)

..
a(l−1)

(27)

and

P̂(l)
n =

zTz− 2Â(l) zT .
a
(l−1)

+ (Â(l))
2 ..
a(l−1)

2L(1 + α)
. (28)

Nevertheless, the algorithm has to be initialized by appropriately selected values for
the probabilities in (25). Since the symbols ai are assumed to be i.i.d., it makes sense to
start the EM algorithm with P(0)

i,k = 1
M for all values of i and k. For convenient reasons, the

iterative procedure is summarized as follows:

1. Initialization

i = 0 . . . M− 1, k = 0 . . . L− 1 : P(0)
i,k = 1

M

2. Iteration: l = 1 . . . lmax

• Compute
.
a
(l−1),

..
a(l−1)

• Compute Â(l), P̂(l)
n

• Compute P(l)
i,k

3. Final estimate

ρ̂s =
(Â(lmax))

2

P(lmax)
n

It is not difficult to see that the iterative step of the EM algorithm has a computational
complexity in the order of M × L additive and multiplicative operations, only relationship
(26) requires the evaluation of square root and exponential functions, which might be
elegantly handled via look-up tables. For the numerical results in Section 5, the iterative
procedure is organized such that it stops as soon as the relative error between two successive
estimates achieves a predefined value of 10−3 or when a maximum number of 103 iterations
is achieved; by extensive tests it turned out that this would be a good compromise between
complexity and accuracy. Furthermore, it is to be remembered that the algorithm applies
in the strict sense only to Ψ = IL, i.e., α ∈

{
0, 1

2 , 1
}

. However, since good results are
obtained for other values of α as well, it makes sense to employ the EM algorithm in these
cases as well.
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5. Numerical Results

In the following, the EM algorithm developed previously will be verified by numerical
means in terms of jitter (error) performance and bias. For comparison purposes, the CRLB is
included to the related diagrams, which show also the modified Cramer-Rao lower bound
(MCRLB). Derived in closed form in [17], the MCRLB is much simpler than the CRLB, but
it is in general less tight [26–29], i.e., MCRLB(ρs) ≤ CRLB(ρs), in particular at lower SNRs
as demonstrated subsequently.

For 2-PAM and 4-PAM signals operated with α = 0 and two different observation
lengths, L = 100 and 1000, Figure 3 illustrates the evolution of the error performance as a
function of the SNR value; for convenient reasons, error performance and theoretical limits
are normalized by ρ2

s . By detailed inspection, we observe that

• For larger SNRs, the CRLB (dashed line) approaches the corresponding MCRLB (solid
line) irrespective of the selected modulation scheme and the value of L.

• For very low SNRs, the ratio between CRLB and MCRLB seems to approach a small
but non-negligible constant, which decreases somewhat by increasing values of M.

• In the medium SNR range, we see a significant difference between MCRLB and CRLB
whose maximum grows with increasing values of M and which moves to larger
SNR values.

• For medium-to-low SNRs and L = 100, the error performance of the EM estimator,
indicated by markers in different style, is characterized by a considerable difference
to the CRLB, which shrinks more and more with increasing values of the SNR. This
degradation is basically explained by the fact that the algorithm performs a bias effect
evolving in the same way, which is depicted in Figure 2 (in this case, the dashed
lines do not correspond to an analytical relationship; they are due to an interpolation
procedure in order to achieve a better readability of these numerical results). This
drawback might be circumvented with larger observation windows, in Figures 2 and 3
exemplified by L = 1000.

-5 0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

ρs

M L
M L
M L
M L

Figure 2. Evolution of the normalized bias (2/4-PAM, α = 0).
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Figure 3. Evolution of the normalized error performance (2/4-PAM, α = 0).

The observations made with M = 2 and 4 hold also true for higher orders of M, in
Figures 4 and 5 verified by a 16-PAM scheme operated with α = 0 and L = 100 or 1000.
However, Figure 4 includes also the evolution of the CRLB for M→∞ as it has been derived
in Section 4. One can see that the theoretical limit for M → ∞ is close to that computed for
M = 16 as long as the latter does not start to approach the MCRLB, whereas for M → ∞ it
continues to increase with increasing SNRs. This property suggests that NDA estimation of
the SNR becomes more and more problematic in case we increase the order of the selected
PAM scheme.
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L

Figure 4. Evolution of the normalized error performance (16-PAM, α = 0).
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The diagrams above visualize the error and bias performance for different PAM
constellations operated with α = 0.0, which is perhaps most interesting in practice, since it
represents the scenario with minimum bandwidth. Nevertheless, in order to complete the
portrait, Figure 6 shows the normalized error performance for a 4-PAM signal operated
with L = 1000 and α ∈ {0.0, 0.3, 1.0}. According to the exact relationship derived in [17], the
MCRLB is proportional to 2(1 + α)/L for very low SNRs, whereas for ρs → ∞ it approaches
2/L regardless of the selected α, or in other words: with respect to α = 0, the MCRLB for
α > 0 appears as shifted to the right depending on the chosen value.

Exactly the same behavior is reflected by the CRLB, although the results are in the
very low SNR range somewhat higher than those achieved with the MCRLB, but for rather
large values, say ρs > 25 dB, the CRLB approaches more and more the horizontal floor
characterizing the MCRLB performance. Of course, in the medium SNR range, the CRLB
deviates significantly from the MCRLB, which applies also to the simplified computation
for α = 0.3.
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Figure 6. Evolution of the normalized error performance (4-PAM, L = 1000).
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Figure 6 includes also the normalized jitter variance of the EM algorithm developed
in the previous section. By detailed inspection, we observe that the performance differs
for α = 0 in the lower SNR domain somewhat from the CRLB, which is mainly due to a
residual bias effect, whereas for medium-to-high SNR values the jitter variances are very
close to the corresponding CRLBs regardless of the selected excess bandwidth.

6. Concluding Remarks

The availability of reliable SNR estimates is most helpful in many communication
systems, particularly when adaptive solutions have to be considered in terms of modulation
and coding schemes. This is not only true for radio frequency, but also for optical wireless
links. Assuming a bandlimited optical intensity channel, an algorithm for SNR estimation
has been developed, which does not require any knowledge about the transmitted data
symbols. Such an NDA approach is very appreciated, because the larger observation
lengths do not adversely affect the spectral efficiency as it would happen with a DA
solution. Maximum likelihood, moment-based and decision-directed methods were out
of scope because of complexity and/or performance reasons, but it turned out that the
developed expectation-maximization algorithm exhibits an error performance close to the
CRLB as the theoretical limit, which is mainly true for longer observation windows where
bias effects are negligible.
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Appendix A

In the following, a closed form solution is provided for the integrals specified in (19).
Regarding that Λ(zk|ai; u) is expressed by (13), it is obvious that the integral for m = 0
is given by an instance of the error function [30] (3.321/2). Applying the basic rules of
integration, we simply obtain

I0(zk; u) =

√
3∫

ai=0
eΛ(zk |ai ;u)dai

=
√

π(1+α)
ρs

[
erf
(

zk
2
√

(1+α)Pn

)
− erf

(
zk−
√

3 ρsPn

2
√

(1+α)Pn

)]
.

(A1)

Doing the same for m = 1 by taking into account the result in (A1), the corresponding
integral is solved as

I1(zk; u) =

√
3∫

ai=0
ai eΛ(zk |ai ;u)dai

= zk I0(zk ;u)√
ρsPn

+ 2(1+α)
ρs

[
exp

(
− z2

k
4(1+α)Pn

)
− exp

(
− (zk−

√
3ρsPn)

2

4(1+α)Pn

)]
.

(A2)

Finally, for m = 2 and considering (A1) as well as (A2) together with [30] (3.361/1), we
get after some algebra
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I2(zk; u) =
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Abstract: The capacity of highways has been an ever-present constraint in the 21st century, bringing
about the issue of safety with greater likelihoods of traffic accidents occurring. Furthermore, recent
global oil prices have inflated to record levels. A potential solution lies in vehicular platooning, which
has been garnering attention, but its deployment is uncommon due to cyber security concerns. One
particular concern is a Sybil attack, by which the admission of fake virtual vehicles into the platoon
allows malicious actors to wreak havoc on the platoon itself. In this paper, we propose a secure
management scheme for platoons that can protect major events that occur in the platoon operations
against Sybil attacks. Both vehicle identity and message exchanged are authenticated by adopting
key exchange, digital signature and encryption schemes based on elliptic curve cryptography (ECC).
Noteworthy features of the scheme include providing perfect forward secrecy and both group forward
and backward secrecy to preserve the privacy of vehicles and platoons. Typical malicious attacks
such as replay and man-in-the-middle attacks for example can also be resisted. A formal evaluation
of the security functionality of the scheme by the Canetti–Krawczyk (CK) adversary and the random
oracle model as well as a brief computational verification by CryptoVerif were conducted. Finally,
the performance of the proposed scheme was evaluated to show its time and space efficiency.

Keywords: authentication; digital signature; elliptic curve cryptography; key exchange; platoons;
Sybil attack

1. Introduction

The spontaneous formation of a network of mobile devices interconnected wirelessly
has introduced the concept of mobile ad hoc networks (MANETs). In recent years, the
iteration of MANETs utilizing vehicles as mobile devices has evolved the research field
to what it is known as today: vehicular ad hoc networks (VANETs). Throughout their
evolution, VANETs have seen much progress in terms of different applications. One notable
application that has been gaining much interest is vehicle platooning. Platooning, in brief,
involves having a manually driven vehicle, known as a platoon leader, spearheading a
convoy of semi-automated vehicles in a single lane on the road. These vehicles can be
referred to as platoon members, and among this train of vehicles, they are all spaced closely
and uniformly apart from each other [1].

The benefits of platooning include decreasing the headway time (gap) between platoon
members, thereby providing better traffic management. A platoon can also help to increase
the capacity on highways as vehicles in the platoon take up less space than when vehicles
are independently and individually controlled [2]. Other known benefits of platooning
include cutting down on fuel consumption due to the reduced aerodynamic drag from the
slipstream effect of travelling in a close convoy [3], increased driving comfort and the re-
moval of human errors in traffic accidents since trailing vehicles can be semi-autonomously
driven. The smoother cruise also reduces engine wear [4].

Due to the automated nature of platooning, vehicles need to periodically broadcast
messages containing crucial information such as vehicle identity, position and speed [2].
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Hence, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications are
needed to facilitate the broadcast of such messages among the vehicles as well as to base
stations. These base stations are situated along the sides of roads and are known as
roadside units (RSUs). Interactions with RSUs and other platoon members provide crucial
information such as knowing whom to interact with and how to behave while inside the
platoon, thereby allowing the vehicles to move in tandem smoothly [5]. However, if this
network and its supporting actors are compromised, it could potentially cause the platoon
to be unsafe.

Such a scenario could occur if the communication channel of the network is disrupted.
For instance, vehicle nodes could experience a loss of signal for technical reasons when
multiple simultaneous transmissions among vehicles interfere with one another. Vehicles
would share the same channel and transmit at the same time, causing transmission packets
to collide and subsequently be dropped. Researchers such as in [6] have addressed this issue
in the platoon context by devising a channel allocation algorithm based on the orientation
of vehicles in a platoon. Since platoon vehicles are ordered in a single file and separated
uniformly from one another, vehicles can be allocated specific channels depending on
their distances from the platoon leader. In short, only platoon vehicles that are out of the
interference range can use the same channel. Their real-world experiment using Android-
based mobile devices showed that their scheme outperformed typical platooning systems
with regards to packet drop rates and delays.

On the other hand, an alternative hazardous scenario could arise whereby nodes that
are intentionally malicious worm their way into the network to influence the behaviors of
the vehicles in the platoon. One case where these malicious nodes can inhibit the operation
of platoons is through a Sybil attack. The definition of such an attack is when a malicious
actor forges fake virtual vehicles via pseudonyms [1] so that it can mask itself as multiple
simultaneous vehicles that seem to be physically present on the roads [1,2,7–11]. These
illegitimate vehicles, known as Sybil vehicles, can be preloaded with any number of false
credentials that are not of the original malicious node [7]. They can also steal the credentials
of legitimate vehicles and use the stolen information to impersonate them. If these Sybil
vehicles are admitted into platoons, the malicious node can send false messages to the
other platoon members through these virtual vehicles. These false messages are shared
within the platoon to fabricate fake traffic scenarios. The platoon and its members would
then have to consider the given traffic scenario and act accordingly, altering the platoon’s
original intentions and affecting its overall performance as a result. Furthermore, within the
platoon itself, the sheer presence of these Sybil vehicles causes undesirable gaps to appear
between the platoon members as they have to accommodate for the “physical presence”
of these virtual Sybil vehicles. In turn, it directly impedes the platooning benefits such as
fuel economy and road capacity [8]. Thus, it is imperative that only honest vehicles be
authenticated and admitted into platoons.

Motivation and Contributions

We have reviewed existing research work utilizing technologies of our interest. We
then focused on cryptographic-based works and discovered that they exhibited incomplete
authentication of vehicle identity and messages. Those that achieve complete authentication
only do so at high computational costs.

To overcome the shortcomings of these existing solutions, we designed a hybrid
security scheme that authenticated both vehicle identity and messages exchanged into a
platoon management scheme to prevent threats by Sybil vehicles. The proposed solution is
called secure platoon management against Sybil attacks (SPMSA) and employs the ECC
to provide a secure yet lightweight solution against the Sybil attacks hampering platoon
operations. Other typical attacks that SPMSA resists include replay, man-in-the-middle
and distributed denial-of-service attacks. Lastly, to preserve the privacy of the vehicles
and the platoon, our scheme offers perfect forward secrecy as well as group forward and
backward secrecy.
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The remainder of the paper is as follows: Section 2 discusses existing research work
related to platoon management against Sybil attacks. Section 3 discloses the system model
and preliminaries. Section 4 describes the SPMSA scheme in detail. The security and
performance of SPMSA are evaluated in Sections 5 and 6, respectively. Section 7 concludes
the paper.

2. Related Works

In this section, we provide a holistic overview of existing research work that has ad-
dressed the problem of Sybil attacks on vehicular platoons. Although various technologies
have been used to address this research problem, we only focus on three main technologies:
blockchain, machine learning and cryptography. However, investigators found that there is
a scarcity of work that explicitly addressed securing against Sybil attacks in the context of
vehicle platoons [2]. To the best of our knowledge, a general approach was taken by most
researchers, who addressed the problem of Sybil attacks in VANETs instead. Nevertheless,
we review those works that we believe can be adapted for platooning.

2.1. Blockchain

Bochem et al. [12] proposed a fully decentralized blockchain that monetarily disin-
centivizes the creation of Sybil identities in MANETs. It works with any proof-of-work
(PoW)-based blockchains (e.g., Ethereum) and binds vehicular node identities to cryp-
tographic public–private key pairs known as blockchain wallet addresses. Whenever a
vehicle wants to join the network, an identity proof is created for it. In this process, the
vehicle sends a cryptocurrency deposit to the deposit wallet, where this transaction is
subsequently mined into a block in the blockchain. Through the mined block, an identity
proof is created for the joining vehicle that contains the details of the transaction and
the wallet address (i.e., vehicle’s identity in the form of its public key) responsible for it.
Before the vehicle nodes can start to communicate, they exchange their uniquely generated
identity proofs as part of a two-way handshake to verify their peers’ identities and prevent
Sybil nodes from entering the network for free. The vehicle it exchanges its identity proof
with (i.e., identifier) is selected at random to prevent a scenario where a malicious vehicle
colludes with one of its Sybil vehicles to disingenuously validate itself. The scheme was
initially used for the offline verification of identity proofs, but Bochem and Leiding [13]
later adapted the scheme for Internet-of-Things (IoT) environments as well and included
the functionality of revoking false identities: If the identity proof of a vehicle is rejected,
the identity is revoked. The identifier deems the vehicle a possible Sybil vehicle, and no
further communication takes place between the vehicles. Moreover, since generating new
identities is expensive and there are likely to be a considerable number of honest nodes in
the network, it is infeasible for a malicious entity to perform attacks utilizing Sybil vehicles.
However, disregarding the costs for malicious users, the costs to honest users in this scheme
could be cause for concern. As the scheme leverages PoW, the costs of transactions are
higher since more blocks are mined, and hence, more energy is consumed. As we stated,
the cost of a revocation transaction increased by more than tenfold in just one year.

On the other hand, Liu et al. [14] proposed a dual cyber-physical blockchain instead for
building a secure and trusted communication for connected vehicle (CV) applications. Their
approach involved using the proof-of-stake (PoS) as its consensus mechanism and adopting
sharding to partition vehicles into regions and decrease computation, communication, and
storage costs. Two blockchains were used in their scheme: the trust points blockchain
and the proof-of-travel blockchain. The former quickly identifies and records malicious
misbehavior and can be regarded as a misbehavior detector. Intuitively, telling the truth
and being acknowledged by most neighbor vehicles earn trust points, while telling a lie
loses trust points. Meanwhile, the second blockchain records each vehicle’s historical
contribution to the CV community and can be regarded as a reputation management
system. This contribution comes in the form of a vehicle’s travel activities. The more traffic
information a vehicle shares with other vehicles around it, the greater its contribution to
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the CV community, and the more proof-of-travel credits it receives. The outputs of the
two blockchains are then added up to form the stake of a vehicle. The higher the vehicle
stake, the more trustworthy it is within the network. Hence, Sybil vehicles in the network
are detected if they have a small stake from the two blockchains. However, breaking
the area into multiple regions does intuitively mean more transfers of records between
blockchains in different regions when a vehicle travels frequently between regions. This
could accumulate considerable latency as more blockchain mining should occur.

Didouh et al. [15] proposed a novel cyber-physical blockchain architecture to prevent
position spoofing attackers such as Sybil nodes from becoming validated nodes for the
highway ETC application. The scheme is a witness-based approach using proof-of-location
(PoL) as its consensus mechanism. Smart contracts were used as an authentication method
to determine the legitimacy of a node. A consortium blockchain was maintained by the
RSUs in the network, granting these RSUs access and authority over the network. Thus,
only RSUs can mine new blocks and permit nodes into the blockchain. When a vehicle
(prover) enters the network, RSUs collect the prover’s PoLs provided by other vehicles
(witnesses) and calculate its overall score. Since the witnesses are likely to be honest, the
prover’s PoL should prove that the prover is in the position where it claims to be. If the
prover’s PoL score is below a specified threshold, it is determined to be a Sybil vehicle and
denied entry into the network. To ensure that the PoL scores are transparent for any node
to view and verify the information without the need for an external party, smart contracts
were published in the blockchain as their nonrepudiation nature guarantees that no vehicle
can deny the authenticity of its information on the blockchain.

2.2. Machine Learning

A form of machine learning is the support vector machine (SVM), which Gu et al. [16]
used to detect Sybil attacks in VANETs. The SVM was used to classify the driving patterns
of vehicles such that Sybil vehicles could be distinguished from legitimate ones. The flexible
nature and good generalization performance of the SVM allow it to reduce overfitting of
the data and solve various problems without requiring major tuning. This makes SVM a
suitable learning algorithm for the dynamic environment of VANETs. The driving patterns
of vehicles are thus defined as aggregations of the quantifiable vehicle data, which include
time, location, velocity, acceleration and acceleration variation. Crucially, the scheme works
on the hypothesis that when traffic is dense, vehicles drive in a similar manner, and hence,
any obvious outliers with relatively high variance in their driving patterns can be detected
as Sybil vehicles.

Similarly, the authors in [17] used the mobility information of vehicles sent to the RSUs
to form the input matrix that represents the driving patterns of the vehicles. Rather than
use an SVM, their scheme used extreme learning machine (ELM) to determine the similarity
of the mobility patterns and detect the Sybil nodes. ELM was used over traditional artificial
neural networks due to its greater advantage with regards to stopping criteria, learning
rate and minimum local and over-tuning, contributing to a faster and lower complexity
feed-forward learning algorithm. In both schemes [16,17], however, there are doubts as to
how effective they are when traffic density is low because then there is greater variation in
the benign vehicles’ driving patterns.

The concept of radio frequency (RF) fingerprinting was explored by [18], who inserted
signatures into transmitted I (in-phase) and Q (quadrature) samples so that a transmitter
could be passively identified as a friendly or authorized party. This was carried out by the
detection of these signatures through a deep convolutional neural network (CNN) at the
physical layer. Reus-Muns et al. [19] adapted this concept for use in 5G and open radio
access networks (open RANs) to identify trustworthy base stations instead. Doing so could
prevent Sybil attacks whereby base stations attempt to spoof as other base stations. Using
real-world datasets, they were able to demonstrate an accuracy of 99.86% irrespective of
the training and testing time gap. This outlines the potential benefit of building trust for
future open RAN networks and then for use in platoon networks to identify spoofing-
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based attacks such as Sybil attacks. Similarly, Comert et al. [20] used deep learning-
based RF fingerprinting methods to identify the malicious transmitters in cyber-physical
systems. However, the authors found that using real-world datasets that considered all
environmental scenarios was impractical. Hence, they used unobserved data instead and
obtained a peak accuracy of 87.94%, a modest drop from the results obtained by [19].

2.3. Cryptography

The work in [8] is one such cryptography-based work that has explicitly addressed
securing platoons against Sybil attacks. The authors did so by integrating a hybrid key
management with a witness-based mechanism as a defense protocol. Evaluations per-
formed using OMNeT++, SUMO and Veins framework showed that Sybil attacks could be
significantly deterred with minimal overhead effect on network throughput and delay. The
minimal overhead is realized by bootstrapping the credentials of the public key infrastruc-
ture to establish pairwise symmetric keys, making the proposed protocol lightweight as
a result. The identities of the vehicles are encrypted during transmission and decrypted
upon reception with this symmetric key, ensuring the safe transfer of vehicle identities
from one vehicle to another. A vehicle in the network is then able to verify whether a
neighboring vehicle is a Sybil node or not by inspecting its witness table. The witness table
holds the information of the other vehicles (witnesses) it passed along the way to reach the
verifier node, i.e., the route to the verifier vehicle. If there are missing witnesses, the verifier
deems the route invalid, and the node is detected as a Sybil vehicle. Hence, by symmetric
key cryptography and the witness-based algorithm, vehicle identities are authenticated.
However, the scheme is unable to verify the authenticity of messages exchanged among
the vehicles, which brings about the possibility of supposed trustworthy vehicles sending
false messages.

Authors in [9] proposed privacy-aware Sybil attack detection (PASAD) that aimed to
detect Sybil attacks in both V2V and V2I communications while preserving vehicle privacy.
The proposed scheme adopted the Boneh–Shacham (BS) short group signature and safe
physical authentication to set up a secure and privacy-aware communication channel for
the vehicles. The PASAD scheme is able to detect Sybil attacks on two levels. The first
level detects Sybil attacks from an outsider attacker by checking unique registrations of
vehicles for any double registrations. This level of detection utilizes the safe physical
authentication in trusted RSUs (TRSU) and the BS group signature in RSUs. Meanwhile, the
second level prevents insider Sybil attacks by checking for the retransmission of warning
messages in V2V communication and double-registrations of vehicles. At this level, the BS
group signature is used to ensure the uniqueness of warning messages and the vehicles
that sent them. In short, PASAD is able to prevent both outsider and insider attacks in a
decentralized manner, even when vehicles are out of range of the RSUs. Thus, the scheme
can achieve authentication by verifying both a vehicle’s physical presence and the short
group signatures attached to the broadcasted warning messages. Although additional
overhead is not imposed by the scheme, its increase in computational delay when there are
many invalid signatures is a cause for concern when VANETs have to be time efficient.

An alternative approach to detecting Sybil vehicles is seen in [10], who used times-
tamps in conjunction with a hybrid public key infrastructure. Specifically, a chain timestamp
was utilized to provide secure communication in the public channel. The proposed scheme
concatenated an encrypted message with a timestamp before it was transmitted to the
receiver. Another timestamp was generated upon the receipt of the message, and each
timestamp was subsequently recorded by the RSU. Under the chain timestamp concept, if
the RSU records consecutive timestamps that are the same, then a Sybil attack has been
detected and the session concludes. Otherwise, the message will be sent to the receiver as
normal. However, it is not shown how the identities of the vehicles are secured and hence
validated. Although a public key architecture is in place to ensure that a trusted authority
is in control of the private–public key pairs of the vehicles, the message exchange between
a sender and receiver only requires the receiver’s set of private and public keys. As it is
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a one-way communication system, the receiver is unaware of the identity of the sender,
who could very well be a malicious node. In such a scenario, the message received might
also not be safe. Thus, expanding the proposed scheme to authenticate the identity of the
sender and the messages received could help to provide greater security.

One work that adopted message authentication is [11], where elliptic curve cryptogra-
phy (ECC)-based digital signatures were attached to messages to verify their origin and
authenticity, thereby strengthening the vehicle’s privacy against Sybil attacks. The elliptic
curve digital signature algorithm (ECDSA) is a secure hash algorithm that generates and
verifies these signatures. When a vehicle sends a message, it signs the message using its
private key. The receiver is then able to verify the digital signature attached to the message
by using the sender’s public key. If the verification fails, the signature is rejected, and the
message is suspected of coming from a Sybil vehicle instead. Moreover, even if an attacker
were to steal this signature and use it as its own when communicating with other vehicles,
the verification process would still fail because the signature had been generated using the
private key and message of the original vehicle. The minimal delay in signature generation
and verification implies that the efficiency of the proposed scheme is dependent on the
traffic and message size instead. The proposed ECDSA can provide greater security and
safety for the vehicles during message transmission while being more time and memory
space efficient than other key cryptographic algorithms. In a future plan, one suggestion
was to extend the proposed scheme by assigning and registering unique identification
numbers (IDs) for vehicles to authenticate their identities. Although this would ensure
greater message security, it would also inherently increase the processing time.

3. System Model and Preliminaries

3.1. System Model

A typical highway scenario is considered wherein only vehicles equipped with the ap-
propriate on-board unit (OBU) can communicate wirelessly with other similarly equipped
vehicles and trusted RSUs within the VANET. Hence, these OBUs facilitate the vehicles’
communications. The fifth-generation cellular technology (5G), which is protected by
the security scheme specified as part of the Third Generation Partnership Project (3GPP)
standard, is used as the means for the V2I communication between the vehicles and the
RSU. Meanwhile, V2V communication that allowed vehicles to talk to one another utilized
dedicated short-range communication (DSRC). Each vehicle’s OBU was equipped with two
separate interfaces to allow for parallel V2I and V2V communications via 5G and DSRC,
respectively. A 5G core network database that was used to securely store the vehicles’
confidential data has a wired connection to each RSU. At least one platoon led by a platoon
leader is assumed to be present in the VANET at all times of the platoon operation. The
role of the platoon leader is assumed to remain with the same vehicle while the proposed
scheme is being run. In addition, no platoon members can communicate with any entities
outside of the platoon except for the platoon leader. A simple illustration of the architecture
of the system under the study can be found in Figure 1. In this paper, we focus on the
management of a platoon when a vehicle intends to join the platoon to the moment it
eventually leaves the same platoon.

3.2. Threat Model

The threat model we consider is the Canetti–Krawczyk (CK) adversary model [21–23],
which is defined as follows:

1. Participants: Let JV be the vehicle attempting to join a platoon, PL be the leader of
the specific platoon, RSU be a trusted RSU and P be any of the participants. All the
participants are considered oracles.

2. Partners: If two oracles. e.g., JV and PL, share the same session key, then they are
known as partners.

3. Adversary: A represents a Sybil vehicle adversary running in polynomial bounded
time that can attack by eavesdropping, modifying, injecting messages, etc.
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4. Queries: Various actions A can make are defined in the following queries:

a. Send(P, m): Amodifies and sends the message m to P, then receiving a response
from P.

b. Execute(JV, PL): A passively eavesdrops on the communication between JV and
PL, returning a copy of the information exchanged between the two participants.

c. Corrupt(P): A obtains a long-term private key of P.
d. ESReveal(P): A obtains the ephemeral private key of P.
e. SKReveal(P): A obtains the session key of P.
f. Expire(P): A deletes a completed session key of P.
g. Hash(m): A obtains random hash r due to the hashing of message m, i.e.,

Hash(m) = r. Any subsequent Hash(m) of the same m produces the same r.
h. Test(P): Used to test a session key’s semantic security. An unbiased coin c is

flipped. If c = 1, session key of P is sent to A. Otherwise, a random value is
sent to A.

5. Semantic Security: A semantically secure system is one in which within a reason-
able amount of time, it is infeasible for A to obtain significant information about a
plaintext message given only its ciphertext. Given that A’s objective is to predict the
result of a test query correctly, let Pr[S] denote the probability that A succeeds in its
prediction. Subsequently, the advantage of A in breaking the semantic security is
generally defined as Adv(A) = |2Pr[S]− 1|. Hence, if Adv(A) ≤ ε is satisfied for any
sufficiently small value ε > 0, the scheme is safe by the CK adversary model.

 
Figure 1. System architecture.

3.3. Elliptic Curve Cryptography

ECC is a type of public key cryptography that offers security equivalent to more
widely used cryptosystems such as the Rivest–Shamir–Adleman (RSA) algorithm while
requiring fewer bits for computation [11,22]. Hence, the ECC is ideal for systems that are
limited in terms of storage, bandwidth and power [11].

An elliptic curve in its simplest form satisfies the equation y2 = x3 + Ax + B, where
A, B ∈ FP are constants with 4A3 + 27B2 �= 0 mod p and p ≥ 5 is a prime number. Hence,
the constants A and B control the elliptic curve that is produced. The set of (x, y) 2-tuple
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that satisfies the elliptic curve equation lies on the curve itself and is referred to as E(FP).
One pair that fundamentally exists for an elliptic curve used in a system deploying ECC
is the generator point G, i.e., G is a point on the curve satisfying the equation and has
the coordinates of (x, y). Let d represent the private key, which is chosen randomly in the
interval [1, n− 1], where n is the order of G greater than 2Bit Size. This scalar multiplication
of d and G would then produce the public key D i.e., D = dG. It forms the basis of the ECC,
which works on the elliptic curve private–public key pair (d, D). Lastly, the security of the
ECC is guaranteed if the following computations hold [22]:

1. Elliptic curve discrete logarithm problem (ECDLP): Given two points G ∈ E(FP) and
aG ∈ E(FP), it is computationally hard for a polynomial time bound algorithm to
compute a ∈ FP.

2. Elliptic curve computational Diffie-Hellman (ECCDH) problem: Given three points
G ∈ E(FP), aG ∈ E(FP) and bG ∈ E(FP), it is computationally hard for a polynomial
time-bound algorithm to calculate abG where a, b ∈ FP are unknown parameters.

3. Elliptic curve decisional Diffie–Hellman (ECDDH) problem: Given four points G,
A = aG, B = bG and C = cG in E(FP), where a, b and c are unknown parameters and
a, b ∈ FP, it is difficult to determine if C = abG.

4. Proposed SPMSA

We proposed the SPMSA with the main motivation of establishing a platoon man-
agement scheme that would be secure against Sybil attacks. As mentioned, Sybil attacks
against platoons are defined as instances where fake virtual vehicles use forged identities
to admit themselves legitimately into platoons so as to disrupt the platoons’ operation. The
proposed scheme was designed with the intention of addressing most of the drawbacks of
current cryptographic implementations discussed in Section 2.3. These drawbacks include
incomplete identity and message authentication as well as high computation costs.

As it concerns platoon management, the proposed scheme operated over three main
events: platoon entry, platoon communication and platoon exit. In short, a vehicle’s entire
journey from joining the platoon to when it eventually leaves the platoon was covered.

4.1. Platoon Entry Event

Platoon entry is defined as when a vehicle is attempting to join a platoon by interacting
with its leader who has the authorization of admitting vehicles into its platoon. The major
security issue in this event is ascertaining the identity of the joining vehicle. The legitimacy
of this identity should be ensured by verifying that it truly is a registered vehicle. Another
security issue is verifying that the messages exchanged in the platoon were not altered.
Messages could be intercepted, altered and/or repeated by the Sybil vehicles to falsely
admit them into the platoon or deny entry to legitimate vehicles. Hence, the hybrid
authentication of both identity and message for this event is required and subsequently
provided by the SPMSA.

This event is further broken into four individual phases: initialization, identity authen-
tication, message authentication and platoon key update.

4.1.1. Initialization Phase

In the initialization phase, vehicles equipped with OBUs in the VANET first register
their unique vehicle IDs to the 5G core network database through an RSU to obtain the
common generator point G used throughout the network. The vehicles also obtain their
respective unique long-term private–public key pair (d, D) in return, which is used as
a pseudonym to preserve identity privacy [1]. Since a malicious node holds multiple
identities when carrying out a Sybil attack, each vehicle is only allowed one identity and
as such, can only possess one key pair (d, D) at one time. The initial platoon key qG is
generated so that all platoon members can use it to communicate with each other. Thus,
this platoon key is only shared among the platoon members. Timestamps were added to
each message throughout the operation of the platoon to ensure the freshness of messages,
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where T is the timestamp when a message is sent, while T′ is the timestamp when the
same message is received. Whenever a message is intercepted and relayed to the intended
recipient, additional time is taken up for the message transmission. Should the time delta
between reception and transmission exceed a specified threshold, that is, the estimated
time taken for the message to be in transit, i.e., if T′ − T > σ, the message might have
been intercepted, so the message and the associated session are discarded. Note that
the threshold adjusts independently for each message transmission to accommodate any
additional computational operations that could take place before a message is sent out as
well as after a message is received. Finally, it is assumed that the ECDLP, ECCDH and
ECDDH problems are hard to solve. The initialization phase happens before the start of
platoon operation.

4.1.2. Identity Authentication Phase

The identity authentication phase is visualized in Figure 2, where a Sybil vehicle is
detected whenever an if’ statement is not fulfilled. It is important to note that a Sybil
vehicle is detected in this manner throughout the entire operation of the platoon and not
just in this specific phase. The main objective of this phase is for the joining vehicle and
platoon leader to generate and agree upon a secret key that only they will share. This secret
key is commonly referred to as a session key and is used to encrypt and decrypt messages
so that unintended vehicles cannot decipher and read them. It can be seen as an attempt to
prevent external attacks, namely Sybil vehicles spoofing as authentic identities.

Figure 2. Identity Authentication Phase of the SPMSA.

The ECDSA is used to secure the message. It is an elliptic curve variant of the DSA and
boasts a shorter key length than the RSA. The ECDSA allows a sender to sign a message
with its own private key and attach the generated digital signature to the message. By
verifying the attached signature with the sender’s public key, the recipient can check
whether the signature and hence the message it is attached to are authentic and came from
the sender instead of an adversary. The ECDSA works as follows [11]:

Key Generation:

1. Elliptic Curve Parameters: A, B ∈ FP: Domain Parameters; G ∈ E(FP): Generator
Point; n: Order of G greater than 2256; d ∈ [1, n− 1]: Randomly selected Private Key
of Sender; D = d·G: Generated Public Key of Sender

Signature Generation [Input: message m, d]:

2. t·G = (A1, B1): A point on elliptic curve of randomly selected number t ∈ [1, n− 1]
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3. r = A1 mod n: Go back to Step 1 if r = 0
4. s = (t−1(SHA(m) + d ∗ r) mod n: Go back to Step 1 if s = 0, where SHA is the hash

function
3. (r, s): Output ECDSA Signature

Signature Verification [Input: message m, (r,s), D]:

6. r, s /∈ [1, n− 1]: Signature is invalid if this condition occurs
7. w = s−1(mod n): Compute w
8. u1 = [(SHA(m)·w mod n]: Compute u1
9. u2 = (r·w) mod n: Compute u2
10. V = (u1·G + u2·D) mod n: Signature is valid if V = r

As a result of the initialization phase, the joining vehicle JV and platoon leader PL own
the private–public key pairs (a, A) and (b, B), respectively. To realize this exchange, the
existing elliptic curve Diffie–Hellman (ECDH) key exchange protocol is modified, which
itself is an ECC-based variant of the original Diffie–Hellman protocol [21]. The identity
authentication phase starts with the standard ECDH, where JV and PL exchange their
public keys A and B so that they can each compute the same session key thereafter. Upon
receiving A, PL can then compute bA = baG. Similarly, after receiving B, JV computes
aB = abG, which is equivalent, and thus, a common key is set up between the two vehicles.

However, to secure this secret key further, another round of key exchange between the
two vehicles occurs. In this round, both vehicles first generate a random temporary private
key known as an ephemeral private key, which expires and is updated to a new random
value once the identity authentication phase ends. A corresponding ephemeral public key
is then generated such that JV, for example, would have an ephemeral private–public key
pair (x, A′ ) = (x, xA) where x ∈ [1, n− 1]. JV would send to PL its ephemeral public
key A′ = xA with an ECDSA signature SIGA−3 attached to it that has been signed using
its initial private key a. Upon reception, PL first verifies the signature SIGA−3 and then
the timestamp T3. If either fails to be validated, the message and session are discarded as
a potential Sybil vehicle has been detected. Otherwise, PL carries out similar actions as
JV and sends back its own signed ephemeral public key as acknowledgment. If all the
timestamps and signatures are valid, a session key axB′ = byA′ = axybG can be derived
and secretly agreed upon on both sides. Finally, the ephemeral private keys of both vehicles
are refreshed.

4.1.3. Message Authentication Phase

Figure 3 demonstrates the procedure of the message authentication phase. The main
purpose of this phase is to hand the platoon key over to the joining vehicle in a secure
manner. Hence, to establish a secure handover of the platoon key, message authentication is
used to ensure the data integrity, origin and authenticity of the messages being transmitted.
In contrast to identity authentication, message authentication can prevent internal attacks,
particularly, which is an attack by a Sybil vehicle that has been authenticated as a legal user
within the VANET. A modified version of the elliptic curve variant of integrated encryption
scheme (ECIES) is used to provide semantic security in this phase. Briefly, the standard
ECIES encrypts a plaintext message and attaches a message authentication code (MAC) to
this encrypted message [24]. The MAC is also known as a keyed hash function as it takes as
input a secret key (i.e., MAC key) and the encrypted message to produce a hash i.e., MAC
as the output. The MAC guarantees the message’s integrity and authenticity because only
an actor who has the knowledge of the secret key can generate the MAC [25]. Thus, the
receiver can check the MAC for authenticity of the message. Since the receiver shares the
same secret key with the sender, if the MAC is deemed invalid by the receiver, then the
message might have been tampered and is not safe to be decrypted. The modified ECIES
works as follows:
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Figure 3. Message Authentication Phase of the SPMSA Scheme.

Encryption of message m [Input: axybG]:

1. KDF(axybG) = KE||KM : A Key Derivation Function (KDF) is used to derive Sym-
metric Encryption Key KE and MAC Key KM from the shared Session Key axybG

2. ENC(KE; m) = c: Encrypt message m using Symmetric Encryption Key KE
3. MAC(KM; c) = dA: Generate the MAC tag dA of encrypted message c using MAC

Key KM
4. c||dA : Ciphertext output of joining vehicle JV

Decryption of ciphertext c||dA [Input: c||dA, axybG]:

5. KDF(axybG) = KE||KM : Symmetric Encryption Key KE and MAC Key KM is de-
rived by PL in the same manner as JV did

6. MAC(KM; c) = dB: MAC is Valid’ and encrypted message c has not been tampered
with in transit if dB = dA

7. ENC−1(KE; c) = m: Decrypt c using Symmetric Encryption Key KM to obtain mes-
sage m

This phase is initiated by JV sending PL a request to join PL’s platoon with a hash
of its ID, and the accompanying ECDSA signature SIGA−5 belonging to JV. The session
key axybG computed at the end of the identity authentication phase is used as the input
to the KDF to derive the symmetric encryption key KE and MAC key KM. The benefit
of generating the two keys from the KDF is that key diversification can be achieved. The
session key is essentially hashed because a master key (i.e., session key) is being separated
into two children keys (i.e., KE and KM). Thus, even if an attacker wants to obtain one of
the derived keys, it is unable to reverse engineer the stolen key to get the entire session key
or the other derived keys. Thus, JV uses KE to encrypt the concatenated message M5, and
KM to generate and attach a MAC to the encrypted form of M5 before sending them over
to PL. It ensures that any tamper attempt on the encrypted message (i.e., joining request,
ID, timestamp, and signature) can be checked and detected by the PL through this MAC
upon message reception.

Only if the following conditions occur in order is a new partial platoon key p
generated and JV’s identity added into the platoon members list PMList as a 2-tuple
(A, H(pG, H(IDA))):
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1. MAC from JV is valid
2. JV’s digital signature SIGA−5 is valid
3. Timestamp delta is within threshold range σ5
4. Hashed IDA tallies with the ID records in the 5G core network database after the PL

sends a database check query through the RSU

If the above conditions are satisfied, a new partial platoon key p is generated and sent
to JV using the same message composition procedures conducted by JV at the start of
the message authentication phase. It allows JV to compute the updated platoon key pG,
thereby authenticating it as an official platoon member PM that can communicate with
others from now on. At the same time, PL shares this new partial platoon key p with other
current PMs, who will update their platoon key according to the new key pG to preserve
the privacy of the previous platoon key qG from the new platoon member, JV. This can
ensure group backward secrecy on the old platoon key qG achieved.

Platoon-wide symmetric encryption and MAC key are then generated by a KDF of the
common platoon key pG upon JV entering the platoon, and these keys are referred to as
PKE and PKM, respectively. Consequently, all authenticated platoon members PMs share
the same set of PKE and PKM keys. As can be seen, the use of digital signatures and MACs
ensures the origin, data integrity and authenticity of messages exchanged in this phase.

4.1.4. Platoon Key Update Phase (Entry)

This phase occurs whenever a vehicle is authenticated to enter the platoon. As
mentioned in the message authentication phase, all existing platoon members will have the
new platoon key pG shared with them by the PL. Hence, the primary objective is to allow
the PL to distribute the new partial platoon key p to the existing members in its platoon. In
this phase, the PL will send out an update request UpdateREQ and the partial platoon key
p it generated to all current platoon members by attaching a timestamp and old platoon
signature SIGqG−7 to it. The platoon signature is similarly signed using the old partial
platoon key q.

Subsequently, the message is encrypted with a MAC attached to it. Once again, the
previous set of platoon encryption and MAC keys PKE′ and PKM′ are used to carry these
actions out. When the validity of the MAC, platoon signature and timestamp attached to
the message sent are verified by the PM, the PM is able to derive the new platoon key
pG and thereby generate a new set of platoon encryption and MAC keys PKE and PKM.
A platoon key sends acknowledgment UpdateACK back to the PL to indicate the correct
reception of the new platoon keys. This acknowledgment is accompanied by a timestamp
and new platoon signature SIGpG−8 before being encrypted and tagged with a MAC using
the new keys PKE and PKM instead of the previous keys PKE′ and PKM′. The algorithm
works as shown in Figure 4.

4.2. Platoon Communication Event

The platoon communication event refers to a scenario where successfully authenticated
platoon members PMs intend to transmit payload information to other members during
platooning. Message authentication is once again used, but this time its purpose is to
conduct payload communication rather than transfer a platoon key. Let JV be the vehicle
that has just joined the platoon and is the latest authenticated PM. Additionally, let an
example scenario for this event be a PM informing JV to close the physical distance between
them. The message exchange algorithm for this event is similar to that of the message
authentication phase found in Section 4.1.3.

However, to protect the privacy of the vehicles in the platoon, the only information
being sent over the communication channel of the platoon in this event is action requests
and acknowledgements. In this instance, only CloseUpREQ and CloseUpACK messages
are exchanged between the two vehicles. Each message is assigned with a timestamp and
signed afterward using the partial platoon key p. The messages are then encrypted using
the PKE key, and a MAC generated by the PKM key is attached to the resulting ciphertext.
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The receiving party of the request message, i.e., JV, then verifies the attached MAC and
decrypts the ciphertext using the same set of PKE and PKM keys used by PM. If the
platoon signature can be verified as valid using platoon key pG and the timestamp delta is
less than the threshold σ9, JV is able to acknowledge PM’s request and execute it. JV then
replies to PM in an equivalent manner by attaching a timestamp and platoon signature to
the message before encrypting it and tagging it with a MAC using the same PKE and PKM
keys. At the end of the message exchange, PM receives an acknowledgement CloseUpACK
informing it that JV is executing the CloseUp action. Figure 5 details the algorithm for
this event.

Figure 4. Platoon Key Update Phase of the SPMSA Scheme when a Vehicle Enters the Platoon.

Figure 5. Platoon Communication Event of the SPMSA Scheme.

4.3. Platoon Exit Event

A platoon exit occurs when a current platoon member informs its platoon leader that
it wishes to leave the platoon. Once again, since it is an interaction between authenticated
platoon members, the message comes from the leaving vehicle, and it should be confirmed
that the message has not been tampered with by a malicious platoon member. Hence, only
message authentication is used throughout the two phases of this event.
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4.3.1. Exit Request Phase

The aim of this phase is to allow a vehicle to leave the platoon without compromising
the privacy of the platoon afterwards. For simplicity’s sake, it is assumed that the leaving
vehicle is JV, which holds the same set of keys and maintains information after the platoon
entry and communication events. The JV is denoted as LV to indicate it is a leaving vehicle.
Once again, the algorithm for this phase is similar to that in Section 4.1.3 as it ultimately is
the inverse operation of the message authentication phase. The contents of the message sent
by LV contains a platoon leaving request LeaveREQ and a hashed 2-tuple of the current
platoon key pG and LV’s hashed identity H(IDA) i.e., H(pG, H(IDA)). The composition
of the message is the same as that of Section 4.2, where a timestamp and platoon signature
are attached to the message before PKE and PKM keys are used to encrypt the message
and tag it with a MAC.

On the reception of the encrypted message, the PL first checks the validity of the MAC,
platoon signature and timestamp. If they are all valid, the PL then verifies if LV’s double
identity is in the platoon members list PMList, i.e., if LV is an authenticated member of the
platoon. If LV’s record is in the PMList, its entry is removed from the list and a platoon exit
acknowledgment LeaveACK is sent back to the LV. Similar to the first message sent by LV
in this phase, the same procedure is used by PL to prepare the message for transmission to
the LV. At the same time, a partial platoon key r is generated by PL so that it can update
its current platoon key pG to the latest key rG. This updated partial platoon key is then
shared only with the other platoon members PMs that will be staying in the platoon.

Upon receipt of LeaveACK, the LV can leave the platoon as it has been deemed safe to
exit. This is because the LV does not retain any significant information pertaining to the
platoon and its members. For example, to ensure group forward secrecy, the platoon key rG
being used by the platoon after LV′s exit is different from the one that LV still possesses, i.e.,
pG. The only information that LV retains with regards to the platoon is the PL’s long-term
public key B. The algorithm for this phase can be found in Figure 6.

Figure 6. Exit Request Phase of the SPMSA Scheme.

4.3.2. Platoon Key Update Phase (Exit)

This phase is initiated when a vehicle is allowed to exit the platoon, and its primary
goal is to allow the PL to distribute a new platoon key r to the PMs that remain in the
platoon. Its operation is similar to that in the platoon key update phase in Section 4.1.4. The
differences merely lie in the keys being used. From the exit request phase in Section 4.3.2, it
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is clear that the new platoon key to be used in the platoon is now rG instead of pG. Hence,
the partial platoon key r needs to be shared with all PMs so that they can derive the new
platoon key rG and preserve the privacy of the platoon from outgoing vehicle LV. The old
platoon signature SIGpG is attached to the update request and new partial platoon key r
before being sent over by using the old platoon encryption and MAC keys PKE and PKM.
The usual verification of the received message is performed by the PM before it can safely
generate the new set of platoon keys: rG, PKE′′ , PKM′′ . The new platoon signature SIGrG
and timestamp are attached to the update acknowledgment UpdateACK and encapsulated
as an encrypted message using the new PKE′′ key. The new MAC key PKM′′ is duly used
to tag the encrypted message where the PL is able to verify its validity. The algorithm can
be found in Figure 7 and concludes the SPMSA scheme.

Figure 7. Platoon Key Update Phase of the SPMSA Scheme when a Vehicle Leaves the Platoon.

5. Security Evaluation

5.1. Formal Proof of Security by Random Oracle Model

We first evaluate the SPMSA scheme formally by proving its semantic security under
the CK adversary with random oracle model. With the CK adversary model, a probabilistic
polynomial–time adversary A can eavesdrop, modify and inject information into the
message exchange process by interacting with the participants involved. In the random
oracle model [23], there exists a random oracle that models cryptographic hash functions
as ideally random functions. With this model, all participants can interact with one another
including A. The queries covered in Section 3.2 that detail the various actions A can take
are assumed to be sent to this random oracle for execution [22].

5.1.1. Formal Proof of Platoon Entry Event

Ultimately, the goal of adversary A is to determine the real platoon key pG from a
random number that occurs in the test query. It requires A to break the semantic security of
the SPMSA for the entry event. To evaluate whether the SPMSA can withstand A’s attempt,
it is run through a series of games outlined by the random oracle model. In this section,
we omit the initialization phase as it involves the preparation of the keying materials for
the system rather than the running of the SPMSA. Meanwhile, the platoon key update
phase will be verified in Section 5.2.1. Thus, the proof will only cover the identity and
message authentication phases of the platoon entry event. Let Pr[Si] be the probability that
A succeeds in predicting the results of the test query for Game i. Let the joining vehicle
and platoon leader be denoted by JV and PL. qh, qs, qe and q represent the number of hash,
send, execute and total random oracle queries sent by A, respectively, while H denotes the
hash space size such that H = 2Hash Length (in Bits). As mentioned in Section 3.2, the entry
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event of the SPMSA offers semantic security under the CK adversary with random oracle
model if the advantage for A winning all the games is AdvEntry(A) ≤ ε for any sufficiently
small value ε > 0.

Lemma 1 (Difference Lemma). Let E1, E2, F denote events in a certain probability distribution
where F is known as the failure event. The two events E1 and E2 will execute in a similar manner as
long as the failure event F does not happen, i.e., E1 ∧ ¬F ⇔ E2 ∧ ¬F . As both Pr[E1] and Pr[E2]
are between 0 and Pr[F]. The subsequent difference between the probabilities of the two events is
|Pr[E1]− Pr[E2]| ≤ Pr[F].

Game 0: This game is the initial attacking game set out in Section 3.2. It is a real attack
by A in the semantic security framework under a random model. Hence, the advantage to
A is:

AdvEntry(A) = |2Pr[S0]− 1| (1)

Game 1: A launches a passive attack on both parties in the authentication agree-
ment in this game. A sends an Execute(JV, PL) query to acquire the information ex-
changed between both parties, which includes {A, B, A′, B′, SIGA−3, SIGB−4, ENCKE(M5),
ENCKE(M6), MACKM(ENCKE(M5)), MACKM(ENCKE(M6)), T1, T2, T3, T4 }. A is then un-
able to compute session key axybG and thus is unable to derive the symmetric decryption
key KE. As such,A cannot acquire partial platoon key p, which is encrypted in ENCKE(M6).
Thus, the probability that A succeeds is:

Pr[S1] = Pr[S0] (2)

Game 2: This game follows Game 1, with A now using send queries to initiate active
attacks. The following events are omitted, however, as either event would cause the game
to be over instantly:

Event E1: The collision of the hash query outputs in different sessions. The birthday

paradox states that E1 happens with probability |Pr[E1]| ≤ q2
h

2H .
Event E2: The collision of the random numbers generated in different sessions. As the

random numbers are only generated in send and execute queries, |Pr[E2]| ≤ (qs+qe)
2

2q .
As long as the ECDLP and ECCDH assumptions hold, A does not have sufficient

information to reconstruct the previous session key axybG to decrypt ENCKE(M2) and
obtain partial platoon key p. A is also unable to establish a new ephemeral key x (or y)
using a send query as it needs either JV’s or PL’s long-term private key to sign the message
so that its identity can be verified by the other party. Therefore, according to the difference
lemma, (3) is obtained as follows:

|Pr[S2]− Pr[S1]| ≤
q2

h
2H

+
(qs + qe)

2

2q
+ qh·max{AdvECDLP(A), AdvECCDH(A)} (3)

Game 3: Game 3 involves running Game 2 while A then tries to guess the hash values
KDF(axybG) = KE||KM and H(IDA) without querying the random oracle. If the guess is
correct, the game is over. Thus, the resulting polynomial is:

|Pr[S3]− Pr[S2]| ≤
q2

s
2H

(4)

Game 4: This game continues from Game 3 but with the consideration of semantic
security. A obtains any two of {a, b, x, y} by making ESReveal and corrupt queries to the
random oracle. However, according to the CK adversary model, A is unable to obtain
both the long-term and ephemeral private keys of the same vehicle at the same time (e.g.,
acquiring JV’s a and x). As a result, A is unable to recompute the session key axybG and
subsequently obtain platoon key pG because it needs both private keys of the same vehicle.
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The only way it can do so is to solve the ECDLP and find a or x from A and A′, respectively,
or to solve the ECCDH problem. Thus, since Game 4 is similar to Game 3,

Pr[S4] = Pr[S3] (5)

Subsequently, A initiates a test query where an unbiased coin c is flipped. Since the
probability of such an event is 1

2 ,

Pr[S4] =
1
2

(6)

Combining all the advantages from Game 0 to Game 4 i.e., Equations (1) to (6) through
back substitution, we can obtain (7):

AdvEntry(A) ≤ q2
h

H
+

(qs + qe)
2

q
+

q2
s

H
+ 2qh·max{AdvECDLP(A), AdvECCDH(A)} (7)

Since AdvEntry(A) ≤ ε, where ε > 0, the entry event of the SPMSA is safe under the
CK adversary with random oracle model.

5.1.2. Formal Proof of Platoon Exit Event

For the formal proof of platoon exit, the platoon key update phase will also be verified
in Section 5.2.1. Thus, we only evaluate Section 4.3.1 of the SPMSA, i.e., the exit request
phase. We evaluate a scenario where JV in the platoon is now looking to exit the platoon.
Following the notation in Figure 6, JV is synonymous with LV. It is assumed that no
vehicle has joined or left the platoon since LV’s entry into the platoon. In other words, the
platoon key that is established throughout all platoon members is pG.

A goal of adversary A is to determine the current platoon key pG from a random
number that occurs in the test query. Since a vehicle leaving the platoon causes the platoon
key to be updated, A must intercept the LeaveREQ from LV to prevent it from reaching PL.
It ensures that the platoon key A obtained will remain valid for use in the platoon and not
be outdated. The notations used for the formal proof of the platoon entry phase are reused
here. There is no change to the lemma difference or the games conducted. Similarly, we can
say that the exit phase of our scheme offers semantic security under the CK adversary with
the random oracle model if the advantage for A winning all of the games is AdvExit(A) ≤ ε
for any sufficiently small ε > 0.

Game 0: This is the initial attacking game set out in Section 3.2, which outlines a
real attack by A in the semantic security framework under a random model. Hence, the
advantage of A is the same as that of (1).

Game 1: A passive attack on both parties is first launched by A in this game. A sends
an Execute(LV, PL) query to steal the information exchanged between the parties, which inclu-
des {ENCPKE(M11), ENCPKE(M12), MACPKM(ENCPKE(M11)), MACPKM(ENCPKE(M12))}.
Since A does not hold platoon key pG, it is unable to decrypt the information it has stolen
as it cannot generate the necessary platoon encryption and MAC keys PKE and PKM.
Hence, A cannot obtain partial platoon key r, and the probability that A succeeds is found
in (2).

Game 2: Once again, this game follows Game 1 with A using send queries thereafter
to initiate active attacks. Similarly, the following events are omitted:

Event E1: The collision of the hash query outputs in different sessions. The birthday

paradox states that E1 happens with probability |Pr[E1]| ≤ q2
h

2H
Event E2: The collision of the random numbers generated in different sessions. As the

random numbers are only generated in send and execute queries, |Pr[E2]| ≤ (qs+qe)
2

2q
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Only if the two events above occur will A have a plausible amount of information to
potentially forge a legitimate message to intercept the communication between LV and PL.
Therefore, according to the Difference Lemma, (8) is obtained as follows:

|Pr[S2]− Pr[S1]| ≤
q2

h
2H

+
(qs + qe)

2

2q
(8)

Game 3: After the conclusion of Game 2, A tries to guess the hash values KDF(pG) =
PKE||PKM and H(pG, H(IDA)) without querying the random oracle. Recall that the
platoon encryption and MAC keys PKE and PKM are generated from KDF(pG). If the
guess is correct, the game is over, and the resulting polynomial is (4).

Game 4: Following Game 3, semantic security is taken into consideration. A obtains
any two of {a, b, x′, y′} by making ESReveal and corrupt queries to the random oracle.
However, obtaining any of them will not enable A to procure platoon key pG. This is
because the queries only uncover the components of session key axybG. As shown in
Figure 6, this key is not involved in this phase. Hence, with no additional advantage for A
to obtain platoon key pG, Game 4 is no different from Game 3 which can be seen in (5).

A then initiates a test query in which an unbiased coin c is flipped and the probability
of such an event is 1

2 , as shown in (6).
Finally, we combine the advantages from Game 0 to Game 4, i.e., Equations (1), (2), (4),

(5), (6) and (8) through back substitution to get the advantage of A, as seen in (9).

AdvExit(A) ≤ q2
h

H
+

(qs + qe)
2

q
+

q2
s

H
(9)

Since AdvExit(A) ≤ ε, where ε > 0, the platoon exit event of the SPMSA is also safe
under the CK adversary with random oracle model.

5.2. Formal Verification of Security Functionality by CryptoVerif

In this section, we verify the security functionality of the platoon key update phases
of the SPMSA that we covered in Sections 4.1.4 and 4.3.2. Although these phases occur in
two different events, the algorithms are the same, with the only difference the names of the
keys. Hence, verifying the security of one of the platoon key update phases could verify
the security of another.

First, we briefly review CryptoVerif. CryptoVerif is an automatic protocol verifier on
security that is sound in the computational model. It can verify secrecy and correspondences
such as authentication. It provides formal verifications as a sequence of games, similar to
the CK adversary model that we used to prove the other parts of the SPMSA. However,
instead of being manually implemented, CryptoVerif can be automatically executed via a
programming model. The generated verifications are valid for any number of sessions of
the protocol. Hence, it can provide an upper bound on the probability of the success of an
adversary against the protocol as a function of the likelihood of breaking each cryptographic
primitive and of the number of sessions it takes to do so [25].

The input script for CryptoVerif to run contains the cryptographic assumptions and
properties to verify. CryptoVerif uses the technique of game hopping where the first game
models the actual protocol that we wrote in the input script to verify. From the second game
onwards, CryptoVerif applies syntactic transformations on the game until the game satisfies
the security properties realized. Note that an adversary is unable to distinguish one game
from another after transformation as the difference of probability between consecutive
games is negligible, i.e., |Pr[Si]− Pr[Sj]| ≈ 0, where j = i + 1. Consequently, the advantage
of the adversary for the final game is Adv(A) = 0. Figure 8 shows the game-hopping
procedure of the CryptoVerif. After CryptoVerif finishes execution, it will output the
sequence of games that occurred, a brief explanation of the transformations that took place
between the games and finally, the upper bound of probability of an adversary being
successful against the protocol [26]. For our formal verification results, we show the first
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and last games and the upper bound probability of the adversary of breaking the security
properties of the SPMSA.

 

Is ( ) = 
0? 

Scheme 
verified 
secure

Scheme 
to be 

verified = 
Game 1

Game 

Game 
Yes

No, transform Game

Figure 8. Security Verification by the Game-Hopping Process of CryptoVerif.

5.2.1. Formal Verification of Platoon Key Update Phases

As mentioned beforehand, the platoon key update phases for entry and exit events
have the same algorithm, with the name of the keys being the only difference. The actors in-
volved in both phases are the same, i.e., a platoon leader and its members, and the messages
exchanged are of the same structure. Specifically, the messages being exchanged exist in
the structure of an encrypted message ENCPKE(M), and a MAC MACPKM(ENCPKE(M)),
where M is the plaintext encapsulated message, while PKE and PKM are the platoon
encryption and MAC keys, respectively. Since the algorithm encrypts the plaintext mes-
sage before attaching a MAC of the encrypted message, we can therefore deem it an
Encrypt-then-MAC cryptographic scheme.

CryptoVerif has a library of predefined cryptographic primitives that can be used to
model the SPMSA scheme. For the platoon key update phases of the SPMSA scheme, the
core principle is Encrypt-then-MAC. We use the following primitives that have already
been specified in CryptoVerif’s library [26]:

• Expand IND_CPA_sym_enc(key, cleartext, ciphertext, enc, dec, injbot, Z, Penc). This
primitive defines an indistinguishable under a chosen plaintext attack (IND-CPA)
probabilistic symmetric encryption scheme. In other words, given the encryption of
two messages of the same length, an adversary has a negligible probability of telling
the two encryptions apart. We denote this probability as Penc.

• Expand SUF_CMA_det_mac(mkey, macinput, macres, mac, check, Pmac). This primi-
tive defines a strongly unforgeable under chosen message attacks (SUF-CMA) deter-
ministic MAC. This means that for an adversary that is given access to the MAC and
verification oracles, it has a negligible probability of forging a MAC. This probability
is denoted as Pmac.

We use the oracle front-end of CryptoVerif, which is more suitable in our case because
its syntax of games resembles manual cryptographic verification better. This falls in line
with the previous proofs of the SPMSA scheme in Section 5.1 that were performed manually.
We adopt the input scripts written by the author in [25] to verify two security properties
of the platoon key update phases of the SPMSA scheme: that the encryption of plaintext
message is indistinguishable (IND-CPA) and that the integrity of the ciphertext generated
by the encryption is hard to break (INT_CTXT). By verifying these two properties, we
can safely say that the partial platoon key, update request and timestamp are transferred
securely to the PMs with the SPMSA.

For the IND-CPA property verification, two oracles called L and R are required. Cryp-
toVerif uses equivalences to transform the processes that call the L oracles into processes
that call the R oracles. If the oracles on the two sides return different results, the event is
deemed unreachable, and CryptoVerif declares that the two sides, i.e., the encryption of
messages, are indistinguishable.
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To verify the IND-CPA property in a discernible manner, a query secret Boolean b is
used where if b = 1, then message = m1, while if b = 0, message = m2. After a specific game
transformation, if b has no influence on which message is encrypted, then we can confirm
the IND-CPA property [26]. Figure 9 shows the process of this verification.

 

Is ( ) = 
0? 

SPMSA 
verified 
IND-CPA 
secure

SPMSA 
scheme = 
Game 1

Game 

Game 

No, transform Game

Is ‘b’  
removed 
from the 
Game ? 

No, transform Game

Yes Yes

Figure 9. Game-Hopping to Verify IND-CPA Property of Platoon Key Update Phases.

Figure 10 shows the initial game of the verification, while Figure 11 shows it takes
eight games (seven game transformations) for the query secret b to not be used in the
games anymore because the line of code containing b is missing and the game goes straight
into encrypting the message. This is because CryptoVerif merges the two “if” branches
of the test “m0: bitstring <- (if b then m1 else m2);” as the same code to be executed in
either branch. In short, m1 and m2 are indistinguishable because the two use the same
code. Finally, the RESULT header shows the upper bound probability of the adversary to
be successful in telling the encryption of messages apart. This upper bound is shown to
be double that of Penc, which is the probability of breaking the IND-CPA property of the
underlying encryption scheme, as previously discussed.

 

Figure 10. First Game of Verifying the IND-CPA Property of Platoon Key Update Phases.

 

Figure 11. Final Output of IND-CPA Verification of Platoon Key Update Phases.
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For the INT_CTXT property verification, encryption and decryption test oracles are
required. A query event “bad” is used to show whether the adversary has successfully
broken the INT_CTXT property. If event bad occurs, the adversary has managed to produce
a ciphertext that decrypted successfully and has not been produced by the encryption
oracles. Hence, the verification is only successful when event bad does not happen, i.e.,
when the occurrence of event bad is false [26]. Figure 12 shows the process of the INT_CTXT
property verification.

 

Is ( ) = 
0? 

SPMSA 
verified 

INT_CTXT 
secure

SPMSA 
scheme = 
Game 1

Game 

Game 

No, transform Game

Yes
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Figure 12. Game-Hopping to Verify INT_CTXT Property of Platoon Key Update Phases.

Figure 13 portrays the initial game of the INT_CTXT verification where event bad can
be seen in the fifth and last line. The final result of the INT_CTXT security verification in
Figure 14 shows that nine games (eight game transformations) are required for event bad
to no longer occur in the game. Hence, CryptoVerif has verified that the adversary will not
be able to forge a ciphertext that can be decrypted successfully and has not been produced
by the encryption oracles. Finally, the RESULT header shows the upper bound probability
that the adversary will be successful in breaking the ciphertext integrity to be equivalent to
Pmac, which is the probability of breaking the SUF-CMA property of the MAC.

To conclude, through the use of a computational verifier tool CryptoVerif, we showed
that the platoon key update phases of the SPMSA resist an adversary A distinguishing
between encrypted messages. It is also resistant to A forging ciphertexts that can be
decrypted to obtain the original plaintext message, which in our case crucially includes the
partial platoon key p for the entry event and r for the exit event.

 

Figure 13. First Game of Verifying the INT_CTXT Property of Platoon Key Update Phases.
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Figure 14. Output of INT_CTXT Verification of Platoon Key Update Phases.

5.2.2. Formal Verification of Security Functionality for Communication Event

In fact, by nature, the communication event is a much more simplified version of
the key update phases. They both have a pair of request and acknowledgment messages
exchanged using Encrypt-then-MAC. However, the platoon communication event involves
purely payload communication. In comparison, the key update phases require an addi-
tional partial platoon key to be transmitted over the channel to generate the platoon key.
Transferring these additional data does not make the algorithms more complex; rather, it
introduces additional potential vulnerability.

Thus, since we have verified that the key update phases are secure by CryptoVerif,
we can then deduce that the algorithm of the platoon communication event that has fewer
potential data vulnerabilities is secure as a result. To conclude, the platoon communication
event resists an adversary A distinguishing between its encrypted messages as well as A
forging ciphertexts of valid plaintext messages. To reiterate, these messages only include
platoon requests/acknowledgments and the accompanying timestamps.

5.3. Security Analysis

In this section, a qualitative analysis of the security properties and the abilities against
some of the typical malicious attacks of the SPMSA scheme is presented.

Mutual authentication: Mutual authentication can be achieved by both identity and
message authentication as discussed in Sections 4.1.2 and 4.1.3. Digital signatures are used
to ensure the identity of the vehicle, while MACs are used to confirm the message’s origin
and integrity.

As stated in Section 3.2, the Canetti–Krawczyk (CK) adversary model was used against
the SPMSA to test it for any vulnerabilities. Participants, partners and the adversary are
the parties involved based on the model. The adversary represents a Sybil vehicle that
can make queries to disrupt and obtain information to authorize itself as a legitimate
platoon member. The adversary’s main goal is to obtain a valid and working platoon key
by tethering the communication between any pair of partners, including JV/LV, PL and
RSU. With the help of the CK threat model, the SPMSA is secure against Sybil attackers.
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Key agreement: The session key axybG and platoon key pG can be computed by
both JV and PL after the mutual authentication. As long as the long-term private key is
inaccessible and the ECDLP and the ECCDH assumptions hold, an attacker cannot compute
the session key.

Perfect forward secrecy: The previously established session key axybG will still be
secure even if the long-term private keys a and b are compromised. This is due to an
attacker’s inability to obtain the previous ephemeral private keys x or y, which have
expired and have been erased from the OBU’s memory.

Group backward secrecy: Whenever a vehicle joins a platoon, even if the platoon is
one it has joined before, it cannot compute or possess the previously used platoon key qG.

Group forward secrecy: Whenever a vehicle leaves a platoon, it is unable to compute
or possess the new platoon key rG.

Ability against replay attacks: A replay attack is launched so that A can spoof a
legitimate vehicle by sending previous data to the vehicles. Adding short-term keys
generated by random numbers and timestamps can ensure the freshness of messages.

Ability against man-in-the-middle (MitM) Attacks: With a MitM attack, A tries to
establish connections with vehicles individually to make them mistakenly believe that they
are connected to each other. In the entry event of the SPMSA, where JV and PL try to set
up a session key and new platoon key, we mentioned in Game 4 of Section 5.1.1 that an
attacker cannot acquire both the long-term and the ephemeral private keys of the same
vehicle at the same time. Hence, even if the messages are intercepted and modified by A, it
cannot have the generator point G forge a signature that will be validated by JV and PL.
The other phases of the scheme involve authenticated communication between platoon
members PMs, so A can only establish a connection with vehicles individually if it has the
platoon key. Otherwise, a MitM attack will fail.

Ability against distributed denial-of-service (DDoS) attacks: A DDoS attack is an
attack in which multiple malicious attackers overwhelm a single server/node to deny other
nodes access to it. Identity authentication should be able to detect and disregard these
malicious vehicles in time before the platoon leader is overwhelmed.

Ability against Sybil attacks: We discussed in Section 4 that Sybil vehicles can be
detected by the SPMSA with a combination of identity and message authentications. This
detection can be achieved by invalidating timestamps, digital signatures, MACs and hashed
vehicle identities that accompany transmitted messages. When detected, the message and
session pertaining to that Sybil vehicle are discarded afterwards, and the vehicle is denied
entry into the platoon.

6. Performance Evaluation

The performance of the SPMSA was evaluated by estimating computation and com-
munication overheads as well as simulation experiments to determine the average elapsed
time. We primarily contrasted the performance of the SPMSA with that of PASAD in [9].
We deem it a comparable and appropriate scheme to use for platooning purposes, in large
part due to its group membership phase.

Since the platoon entry event is where the major performance issues lie, only Section 4.1
of the SPMSA is considered for the entirety of the performance evaluation. For a fair
comparison of the two schemes, we only apply PASAD when a vehicle joins a new RSU
group. This is because this event can plausibly resemble a platoon entry event where a
vehicle tries to join a platoon. Hence, only Algorithms 4–7 of PASAD are considered. Since
this instance of PASAD only involves the initial authentication of vehicles for entry into
the new RSU group, we also exclude the platoon key update phase in Section 4.1.4 of the
SPMSA from this point onwards.

For reference, the PASAD scheme in [9] is executed through seven algorithms. We
shall provide a brief description of each algorithm as follows:

Algorithm 1: System initialization that is conducted by the Center of Authority (CA)
to generate the common parameters for the TRSUs and RSUs to register the vehicles.
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Algorithm 2: Generation of the first private key for a vehicle by a TRSU.
Algorithm 3: Generation of a signature by a vehicle to prove its unique existence.
Algorithm 4: RSU ensures no double-registrations of vehicles entering its group by

verifying the signature provided by the entering vehicle.
Algorithm 5: Group initialization by TRSU or RSU to generate the local group param-

eters as well as the vehicles’ secondary private key.
Algorithm 6: A vehicle that has joined a group generates a signature for issuing

event-reporting messages.
Algorithm 7: Verification of signatures by the vehicles which have received a specific

event from another vehicle within the group.

6.1. Computational Overheads

The various cryptographic operations that comprise the SPMSA and PASAD are
estimated to find the computational delay of these schemes. We adopt the evaluation
method in [27] using the following parameters in our experiments including an Intel
Core i3 2.4-GHz processor with MIRACL and Crypto++ libraries. Table 1 summarizes the
execution times of the cryptographic operations.

Table 1. Execution Time of Cryptographic Operations.

Notation Description Execution Time (ms)

Pair Bilinear Pairing Operation 23.625
Exp Exponentiation Operation 3.3421
Mul Scalar Multiplication 1.258
Hash SHA256 Hash Function 0.005

ECIES Operation of ECIES 4.35
ECDSA− S Signing Operation of ECDSA 3.01
ECDSA−V Verifying Operation of ECDSA 8.89

To calculate the computational delay of the two schemes, we only consider time-
consuming operations that are not involved in the initialization stages. Hence, Section 4.1.1
of the SPMSA and Algorithm 5 of PASAD were excluded. Low computational modular
arithmetic operations such as addition and subtraction were also excluded. The computa-
tional delay for the SPMSA scheme is calculated in (10):

TSPMSA = 4TECIES + 4TECDSA−S + 4TECDSA−V + 6TMul + 2THash = 72.558 ms (10)

We assume a best-case scenario where there are no invalid signatures i.e., no Sybil
nodes. The computational costs for Algorithms 4, 6 and 7 of PASAD are as follows:

TPASAD−Alg4 = 2TMul + 4TPair (11)

TPASAD−Alg6 = 8TExp + 7TMul + TPair + THash (12)

TPASAD−Alg7−Best = 9nTExp + (9n + 2)TMul + (2n + 4)TPair (13)

To create a similar environment to compare with the SPMSA, we assume a minimalist
VANET system for PASAD where two vehicles communicate in isolation as in the SPMSA.
Hence, n = 1, and the total computation overhead of PASAD is

TPASAD = TPASAD−Alg4 + TPASAD−Alg6 + TPASAD−Alg7−Best = 323.1189 ms (14)

Comparing (10) and (14) shows that the SPMSA has an estimated lower time complex-
ity than that of PASAD.
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6.2. Communication Overheads

We estimate the communication delay of the two schemes by calculating the total sum
of transmission and propagation delays of each. The transmission delay is the amount of
time to transmit the packets of data onto the transmission medium. It can be determined
by L/R, where L is the size of a data packet in bits and R is the data transmission rate in
bits per second (bps). We can assume that the data rates of V2V and V2I communication,
i.e., DSRC and 5G, to be 6 and 50 Mbps, respectively.

To determine the transmission delay, we first approximate the amount of memory
required to run the two schemes. The keys and hashes used in the SPMSA scheme require
256 bits of data each as the secp256r1 and SHA256 protocols have been used as the initial
parameters of the elliptic curve and hash function, respectively. In addition, the MACs
attached to the encrypted messages also take up 256 bits each. Meanwhile, plaintext
messages and timestamps require 32 bits each, while each ECDSA signature uses up
512 bits. Lastly, an additional parity bit is needed for each key and signature. It culminates
in a data size of 5642 bits being transmitted by the SPMSA scheme. Meanwhile, assuming
that PASAD also uses the ECIES for its symmetric encryption, it requires an estimated
5324 bits to be transmitted [9].

On the other hand, propagation delay is the amount of time for the packets of data
to reach the destination over the physical medium. The formula for the propagation
delay is thus D/S, where D is the physical distance between the two vehicles and S is
the propagation speed of the communication link. On average, we assume that a single
V2V link covers a distance of 50 m while a V2I link covers about 200 m. In both cases,
the communication is wireless, so a common propagation speed of the speed of light
(3× 108 m/s) can be assumed. For each scheme, the number of transmissions that occur
using DRSC and 5G technology are summed up to determine their respective propagation
delays. We ignore queuing and processing delays as they are dependent on several factors
that we cannot predict well. The communication delays of the two schemes as well as that
of another relevant scheme by Santhosh et al. [8] can be found in Table 2.

Table 2. Comparison of the Communication Delays of Schemes.

PASAD SPMSA Santhosh [8]

Transmitted Data (bits) 5324 (DSRC) 5354 (DSRC)
288 (5G) 8192 (DSRC)

Transmission Delay (ms) 0.88733 0.89809 1.36533

Number of Transmissions 3 V2I (DSRC) 6 V2V (DSRC)
2 V2I (5G)

6 V2V (DSRC)
2 V2I (DSRC)

Propagation Delay (ms) 0.00200 0.00233 0.00233
Total Communication Delay (ms) 0.88933 0.90042 1.36767

It can be seen that the propagation delay makes a tiny contribution to the overall
communication delay for all schemes. Instead, the communication overhead is predom-
inantly determined by the transmission delay. Both PASAD and the SPMSA performed
considerably better than the scheme by Santhosh et al.

Focusing only on PASAD and the SPMSA, they portrayed comparable communication
delays despite the SPMSA requiring a couple hundred more bits to be transmitted than
PASAD. However, since their respective communication delays are relatively insignificant
when compared with the computational overheads for both schemes, the computational
overhead will be the dominant factor in the execution times of the schemes.

6.3. Performance Comparison by Simulations

In this section, we evaluate the performance of the SPMSA using simulations. First,
we observe its performance under some unknown attacks and compare it with that of
PASAD. The simulation is built on MATLAB software. A known attack is an attack that
should have been picked up by the SPMSA or by PASAD. In contrast, an unknown attack
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is one that was not analyzed or claimed previously. Intuitively, numerous unknown attacks
could be launched at any time. They could break the execution of a protocol, and if they
did so, they would likely break it at different points of execution. The probability that
they will do either is difficult to predict with full certainty. Thus, we model these two
processes as independent random processes with uniform probability. In turn, the objective
of this simulation is to predict the negative effects to the performance of the system of
unknown attacks.

In the simulation, one million attacks were launched for each specified ratio of the
unknown attacks to the total attacks, with ratio ranging from 0 to 0.8 in increments of 0.1.
An unknown attack has a uniform probability of breaking the scheme at a random step in
the execution of the protocol. Note that the execution time of a protocol is defined as the
sum of the computational overhead and communication delay that has been calculated
beforehand in Sections 6.1 and 6.2. If a protocol can resist an attack, we consider the scheme
successful. However, when an unknown attack breaks the scheme, only the execution time
up till the point the scheme stops running is recorded. Subsequently, it is not deemed a
successful run. For a given ratio of unknown attack:

Average Execution Time =
Total Execution Time A f ter 1 Million Attacks

Number o f Success f ul Runs o f Scheme
(15)

The average execution times of the SPMSA and PASAD at each ratio of unknown
attacks is plotted in Figure 15. When the ratio of unknown attacks is 0, it represents both
the execution time as well as the communication reconnection time of the schemes in the
event of disturbances such as channel interference that was discussed in Section 1. There is
an exponential increase in the execution/reconnection times of both schemes that is to be
expected when there are more unknown attacks obstructing the schemes from completion.
More importantly, our SPMSA is less time-consuming than PASAD regardless of the ratio
of the unknown attacks that appear, peaking at 155.4 ms while achieving a similar major
goal of preventing Sybil attacks.

Figure 15. Performance of the Two Schemes against Unknown Attacks.

We conducted a second simulation experiment to evaluate the performance of the
SPMSA when Sybil nodes were present in the VANETs. We compared the performance
with regards to the time it takes to authenticate all honest vehicles with that of PASAD.
Let n represent the number of vehicles intending to join the platoon, while x represents
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the number of Sybil vehicles among these n vehicles. We assume an average-case scenario
of PASAD this time around. Hence, the equation in (13) becomes (16), and the total
computation cost of PASAD is seen in (17):

TPASAD−Alg7−Avg = 9nTExp +
(

3n log x + x log
( n

x
)
+ 11n− x + n(n+1)

2

)
TMul

+
(
2x log

( n
x
)
+ 4x + n(n + 1)

)
TPair

(16)

TPASAD−Avg = TPASAD−Alg4 + TPASAD−Alg6 + TPASAD−Alg7−Avg (17)

Since the SPMSA discards the message and session of a detected Sybil vehicle, only the
time taken to reach such an occurrence was recorded by the scheme as the authentication
time of a Sybil vehicle. In contrast, in the case of the authentication of an honest vehicle,
the time taken for a full run of the SPMSA was recorded. For both schemes, we assume that
at least one honest node is present in the VANET such that n− x ≥ 1. In this simulation,
we set n to be 9 throughout and vary the number of Sybil vehicles x from 1 to 8. Thus, there
will be eight independent runs of the simulation to outline the authentication time cost of
each scheme when the number of Sybil vehicles varies. For example, in the first run, there
is x = 1 Sybil vehicle among the n = 9 vehicles that would like to join the platoon. The
total time taken to authenticate all 9 vehicles is cumulatively summed up and denoted by
TAuth. To calculate the average authentication time TAuth, the cumulative authentication
time is divided by the number of honest vehicles, as seen in (18). This process will then be
repeated for x = 2, 3, . . . , 8 for both schemes.

TAuth =
TAuth
n− x

(18)

The average authentication times for the two schemes for a varying number of Sybil
vehicles is plotted in Figure 16. As more Sybil vehicles are added, the difference in per-
formance of the two schemes in terms of authentication time cost grows greater. The
performance achieved by PASAD is not a surprise as its computational delay increases
considerably when there are many invalid signatures, as mentioned in Section 2.3. More
notably, the number of Sybil vehicles in the VANET is not a factor in determining which
scheme is faster in authenticating honest vehicles as our scheme has been shown to be
consistently faster. At its peak, PASAD takes roughly 3.6 s. In comparison, the SPMSA only
consumes approximately 0.34 s.

Figure 16. Performance of the Two Schemes in the Presence of Sybil Nodes.
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7. Conclusions

In this paper, we have proposed a secure management scheme for platoon access that
is resistant to Sybil attacks using elliptic curves. The SPMSA can achieve both identity and
message authentication between a platoon leader and a vehicle intending to join the platoon
and maintain message authentication throughout the vehicle’s tenure in the platoon. The
security functionality of the proposed SPMSA was then proven in the CK adversarial
model with the random oracle model as well as with the CryptoVerif protocol verifier.
We also conducted a qualitative analysis of the scheme’s security to show its security
features including perfect forward secrecy and both group forward and backward secrecy.
Finally, we evaluated the performance of the proposed scheme with numerical analysis
and simulation experiments to show its time efficiency in the face of unknown attacks and
the minimal resource costs when Sybil vehicles are present. Future work is expected to
explore the authentication of a new platoon leader when the existing leader intends to leave
the platoon. As evidenced by the proposed scheme, the platoon leader carries important
information that needs to be handed over to the right vehicle in a secure manner.

Author Contributions: Conceptualization, D.R.J. and M.M.; methodology, D.R.J.; software, D.R.J.;
validation, M.M.; formal analysis, D.R.J.; investigation, D.R.J.; resources, M.M.; data curation, D.R.J.;
writing—original draft preparation, D.R.J.; writing—review and editing, D.R.J. and M.M.; visualiza-
tion, D.R.J.; supervision, M.M.; project administration, R.S.; funding acquisition, M.M. and R.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by A*STAR under its RIE2020 Advanced Manufacturing and
Engineering (AME) Industry Alignment Fund–Pre Positioning (IAF-PP) (Award A19D6a0053). Any
opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not reflect the views of A*STAR. The APC is funded by the Guest Editor,
Peter Chong.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boeira, F.; Barcellos, M.P.; de Freitas, E.P.; Vinel, A.; Asplund, M. On the Impact of Sybil Attacks in Cooperative Driving Scenarios.
In Proceedings of the 2017 IFIP Networking Conference and Workshops, Stockholm, Sweden, 12–16 June 2017. [CrossRef]

2. Boeira, F.; Barcellos, M.P.; de Freitas, E.P.; Vinel, A.; Asplund, M. Effects of colluding Sybil nodes in message falsification attacks
for vehicular platooning. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November
2017. [CrossRef]

3. Solyom, S.; Coelingh, E. Performance Limitations in Vehicle Platoon Control. IEEE Intell. Transp. Syst. Mag. 2013, 5, 112–120.
[CrossRef]

4. Vahidi, A.; Eskandarian, A. Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans. Intell.
Transp. Syst. 2003, 4, 143–153. [CrossRef]

5. Samara, G.; Al-Raba’nah, Y. Security Issues in Vehicular Ad Hoc Networks (VANET): A survey. Int. J. Sci. Appl. Res. 2015, 2, 50–55.
[CrossRef]

6. Sarker, A.; Qiu, C.; Shen, H. Connectivity Maintenance for Next-Generation Decentralized Vehicle Platoon Networks. IEEE ACM
Trans. Netw. 2020, 28, 1449–1462. [CrossRef]

7. Rabieh, K.; Mahmoud, M.M.; Guo, T.N.; Younis, M. Cross-Layer Scheme for Detecting Large-scale Colluding Sybil attack in
VANETs. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015.
[CrossRef]

8. Santhosh, J.; Sankaran, S. Defending against Sybil Attacks in Vehicular Platoons. In Proceedings of the 2019 IEEE International
Conference on Advanced Networks and Telecommunications Systems (ANTS), Goa, India, 16–19 December 2019. [CrossRef]

9. Parham, M.; Pouyan, A.A. An Effective Privacy-Aware Sybil Attack Detection Scheme for Secure Communication in Vehicular
Ad Hoc Network. Wirel. Pers. Commun. 2020, 113, 1149–1182. [CrossRef]

10. Soni, M.; Jain, A. Secure Communication and Implementation Technique for Sybil Attack in Vehicular Ad-Hoc Networks. In
Proceedings of the 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), Erode,
India, 15–16 February 2018. [CrossRef]

100



Sensors 2022, 22, 9000

11. Kushwah, R.; Kulshreshtha, A.; Singh, K.; Sharma, S. ECDSA for Data Origin Authentication and Vehicle Security in VANET. In
Proceedings of the 2019 Twelfth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2019.
[CrossRef]

12. Bochem, A.; Leiding, B.; Hogrefe, D. Unchained identities: Putting a price on sybil nodes in mobile ad hoc networks. In
Proceedings of the International Conference on Security and Privacy in Communication Systems, Singapore, 8–10 August 2018;
pp. 358–374. [CrossRef]

13. Bochem, A.; Leiding, B. Rechained: Sybil-resistant distributed identities for the Internet of Things and mobile ad hoc networks.
Sensors 2021, 21, 3257. [CrossRef] [PubMed]

14. Liu, X.; Luo, B.; Abdo, A.; Abu-Ghazaleh, N.; Zhu, Q. Securing Connected Vehicle Applications with an Efficient Dual Cyber-
Physical Blockchain Framework. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July
2021. [CrossRef]

15. Didouh, A.; Lopez, A.B.; Hillali, Y.E.; Rivenq, A.; Faruque, M.A.A. Eve, You Shall Not Get Access! A Cyber-Physical Blockchain
Architecture for Electronic Toll Collection Security. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020. [CrossRef]

16. Gu, P.; Khatoun, R.; Begriche, Y.; Serhrouchni, A. Support Vector Machine (SVM) Based Sybil Attack Detection in Vehicular
Networks. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA,
USA, 19–22 March 2017. [CrossRef]

17. Quevedo, C.H.O.O.; Quevedo, A.M.B.C.; Campos, G.A.; Gomes, R.L.; Celestino, J.; Serhrouchni, A. An Intelligent Mechanism for
Sybil Attacks Detection in VANETs. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications
(ICC), Dublin, Ireland, 7–11 June 2020. [CrossRef]

18. Mohanti, S.; Soltani, N.; Sankhe, K.; Jaisinghani, D.; Di Felice, M.; Chowdhury, K. AirID: Injecting a custom RF fingerprint for
enhanced UAV identification using deep learning. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications
Conference, Taipei, Taiwan, 7–11 December 2020. [CrossRef]

19. Reus-Muns, G.; Jaisinghani, D.; Sankhe, K.; Chowdhury, K.R. Trust in 5G Open RANs through Machine Learning: RF Fingerprint-
ing on the POWDER PAWR Platform. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference,
Taipei, Taiwan, 7–11 December 2020. [CrossRef]

20. Comert, C.; Kulhandjian, M.; Gul, O.M.; Touazi, A.; Ellement, C.; Kantarci, B.; D’Amours, C. Analysis of Augmentation Methods
for RF Fingerprinting under Impaired Channels. In Proceedings of the 2022 ACM Workshop on Wireless Security and Machine
Learning (WiseML’22), San Antonio, TX, USA, 19 May 2022; Association for Computing Machinery: New York, NY, USA, 2022;
pp. 3–8. [CrossRef]

21. Canetti, R.; Krawczyk, H. Analysis of Key-Exchange Schemes and Their Use for Building Secure Channels. In Proceedings of
the International Conference on the Theory & Application of Cryptographic Techniques, Innsbruck, Austria, 6–10 May 2001;
Pfitzmann, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 2045, pp. 453–474. [CrossRef]

22. Chen, W.-C.; Huang, Y.-T.; Wang, S.-D. Provable Secure Group Key Establishment Scheme for Fog Computing. IEEE Access. 2021,
9, 158682–158694. [CrossRef]

23. Bellare, M.; Pointcheval, D.; Rogaway, P. Authenticated Key Exchange Secure against Dictionary Attacks. In Proceedings of
the International Conference on the Theory and Applications of Cryptographic Techniques, Bruges, Belgium, 14–18 May 2000;
Preneel, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1807, pp. 139–155. [CrossRef]

24. Martínez, V.G.; Encinas, L.H.; Dios, A.Q. Security and Practical Considerations When Implementing the Elliptic Curve Integrated
Encryption Scheme. Cryptologia 2015, 39, 244–269. [CrossRef]

25. Blanchet, B. CryptoVerif: A Computationally-Sound Security Protocol Verifier; Techical Report; Centre Inria de Paris: Paris,
France, 2017.

26. Blanchet, B.; Cadé, D. CryptoVerif Computationally Sound, Automatic Cryptographic Protocol Verifier User Manual; User Manual;
Centre Inria de Paris: Paris, France, 2021.

27. Pan, J.; Cui, J.; Wei, L.; Xu, Y.; Zhong, H. Secure data sharing scheme for VANETs based on edge computing. J. Wirel. Com. Netw.
2019, 2019, 169. [CrossRef]

101





Citation: Gappmair, W. Data-Aided

SNR Estimation for Bandlimited

Optical Intensity Channels. Sensors

2022, 22, 8660. https://doi.org/

10.3390/s22228660

Academic Editor: Peter Han

Joo Chong

Received: 20 September 2022

Accepted: 4 November 2022

Published: 9 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Data-Aided SNR Estimation for Bandlimited Optical Intensity
Channels
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Abstract: Not only for radio frequency but also for optical communication systems, knowledge of
the signal-to-noise ratio (SNR) is essential, e.g., for an adaptive network, where modulation schemes
and/or error correction methods should be selected according to the varying channel states. In the
current paper, this topic is discussed for a bandlimited optical intensity link under the assumption that
the data symbols are known to the receiver unit in form of pilot sequences. This requires a unipolar
signal design regarding the symbol constellation, but also a non-negative pulse shape satisfying
the Nyquist criterion is necessary. Focusing on this kind of scenario, the modified Cramer–Rao
lower bound is derived, representing the theoretical limit of the error performance of the data-
aided SNR estimator developed in this context. Furthermore, we derive and analyze a maximum
likelihood algorithm for SNR estimation, which turns out to be particularly simple for specific values
of the excess bandwidth, among them the most attractive case of minimum bandwidth occupation.
Numerical results confirming the analytical work conclude the paper.

Keywords: SNR estimation; optical wireless communications; intensity modulation

1. Introduction

In a series of papers recently published by the author [1–3], parameter estimation
and synchronization for a bandlimited optical intensity link have been discussed. In this
context, a unipolar waveform design is indispensable with respect to pulse shaping and
symbol constellation [4,5]. Furthermore, it is most helpful that pulse shapes satisfy the
Nyquist criterion, which allows for a simple detection process in the receiver unit [6].

However, not only for radio frequency (RF) but also for optical wireless communication
(OWC) solutions [7–10], the relevant transmission parameters have to be recovered reliably,
because otherwise subsequent receiver stages, such as error correction algorithms, cannot
be operated in an efficient way [11,12]. In particular, recovery of the symbol timing is of
paramount importance in this respect, since this is a prerequisite for many other estimation
and detection procedures. In [1–3], it has been shown how this might be achieved for a
bandlimited optical intensity link under different conditions, e.g., whether data are known
to the receiver unit or not in the form of pilot sequences, or if the estimator or synchronizer
module is to be implemented in a feedforward or feedback manner.

Usually, the estimation of the signal-to-noise ratio (SNR) requires that the symbol
timing has been established before by a properly selected algorithm. It is to be recalled
that knowledge of the SNR is normally needed for adaptive communication systems to
select modulation and coding schemes according to the given channel conditions [13],
but also powerful error correction methods—such as turbo or LDPC algorithms—need
this sort of information [14]. Scanning the open literature, numerous papers are available
about SNR estimation in RF channels, e.g., the frequently cited overview by Pauluzzi and
Beaulieu [15], but little or no information is published for OWC systems. This has been
the main motivation of the current contribution addressing data-aided SNR estimation
for a bandlimited optical intensity channel. Finally, it is to be noticed that the article was
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prepared for a Special Issue of Feature Papers 2022 in the Communications Section of
MDPI Sensors.

The rest of the paper is organized as follows: the signal and channel model for
analytical and simulation work is introduced in Section 2, whereas Section 3 focuses on
the derivation of the Cramer–Rao lower bound (CRLB) as the theoretical limit of the jitter
performance for any algorithm discussed in the context of SNR estimation. In Section 4, we
derive a maximum likelihood (ML) algorithm and analyze it in terms of mean value and
variance. Numerical results are shown in Section 5, and Section 6 concludes the paper.

2. Signal and Channel Model

As already mentioned in the introductory section, properly selected pulse shapes and
modulation schemes are necessary to satisfy the non-negativity as well as the Nyquist
constraints required for a bandlimited optical intensity channel. In this respect, it is
assumed that the real-valued data symbols ak, k ∈ Z, are independent and identically
distributed (i.i.d.) elements of an M-ary PAM alphabet A. It makes sense to organize
the alphabet such that the symbols are normalized to unit energy, i.e., E[a2

k ] = 1, where
E[·] denotes the expectation operator. Then, with ηM = 1

6 (M − 1)(2M − 1), we have
ak ∈ A = 1√

ηM
{0, 1, . . . , M− 1}. This means that the average value is given by

μa = E[ak] =
1√
ηM

M− 1
2

=

√
3 (M− 1)
2 (2M− 1)

(1)

On the other hand, the signal at the output of the opto-electrical receiver module is
obtained as

r(t) = A ∑
k

ak h(t− kT − τ) + w(t) (2)

where A > 0 is the channel gain, h(t) describes the pulse shape, T and τ symbolize the symbol
period and the propagation delay between receiver and transmitter station, respectively.
We assume that A is a constant regarding the observation interval used for estimation
purposes, because variations of the channel state are normally slow enough so that fading
effects need not be taken into account. As already required previously, h(t) must satisfy the
non-negativity as well as the Nyquist criterion, e.g., achieved by a squared raised cosine
function [1,6]. In line with the investigations carried out in [1–6], the receiver signal in (2) is
also assumed to be distorted by additive white Gaussian noise (AWGN), in the following
expressed by w(t), with zero mean and variance σ2

w.
In addition, we introduce the average optical power as P0 = μa h, where

h =
1√
T

∞∫
−∞

h(t) dt (3)

so that the average electrical SNR at the receiver can be defined as

γs =
A2P2

0
σ2

w
(4)

However, before being treated in further stages of operation, the signal in (2) has to
pass the receiver filter q(t), whose output is given by z(t) = q(t)⊗ r(t), where ⊗ denotes
the convolutional operator. For convenient reasons, this is summarized in Figure 1.

Figure 1. Signal model for SNR estimation.

104



Sensors 2022, 22, 8660

Since there exists no simple solution for a matched filter structure in the context of
a bandlimited optical intensity link [6], it is suggested that q(t) exhibits a flat behavior
over the spectrum occupied by the user component in (2). This straightforward approach
guarantees that the waveform will not be distorted, but the price to be paid is an increased
amount of noise the subsequent receiver stages have to cope with. In particular, this means
that the transfer function of the filter performs a rectangular shape in the frequency domain,
i.e., Q( f ) = F [q(t)] =

√
T for | f | ≤ (1 + α)/T and Q( f ) = 0 elsewhere, with α as the

roll-off factor (excess bandwidth) of the selected pulse shape; recall that α = 0 indicates
the minimum bandwidth scenario. The related impulse response is then furnished by
application of the inverse Fourier transform [16], i.e.,

q(t) = F−1[Q( f )] =
2(1 + α)√

T
sinc[2(1 + α)t/T] (5)

with sinc(x) = sin(πx)/(πx). Of course, the noise signal at this flat filter output develops
as n(t) = w(t) ⊗ q(t) representing a zero-mean non-white Gaussian process. Assuming in
the next step that the symbol timing has been reliably recovered and corrected, e.g., by
the algorithm proposed in [1], the T-spaced samples at the output of the receiver filter are
obtained as

zk = z(kT) = A · ak + nk (6)

where E[nk] = 0 and E[ni nk] = 2(1 + α) σ2
w sinc[2(1 + α)(i− k)].

3. Cramer–Rao Lower Bound

3.1. Derivation of the Log-Likelihood Function

The Cramer–Rao lower bound (CRLB) is a major figure of merit when it comes to the
estimation of a parameter [17]. The reason behind this is the fact that the bound represents
the theoretical limit of the jitter (error) variance of any estimator developed in this context.

According to the signal model specified previously, we have to consider the parameter
vector u = (u1, u2) = (A, σw). The CRLB for ui is determined by

CRLB(ui) = [J−1(u)]i (7)

where [·]i indicates the i-th diagonal entry of the inverted Fisher information matrix (FIM)
expressed by J(u). In the case that no nuisance parameter needs to be taken into account,
the FIM entries are computed as

Ji,k ≡ [J(u)]i,k = −E
[

∂2Λ(z; u)

∂ui ∂uk

]
(8)

with z as the given vector of observables, Λ(z;u) denotes the log-likelihood function (LLF)
characterizing the communication link, and E[·] symbolizes expectation with respect to the
noise model.

By inspection of (8), it is clear that the computation of the CRLB requires the knowledge
of the LLF describing the subject of investigation. To this end, we assume that a sequence
of L receiver samples (6) forms the vector z expressed by

z = A · a + n (9)

The vector a of known data symbols specifies the pilot sequence, which is to be used for
estimation purposes in the sequel, and n denotes the noise vector with covariance matrix

R = E[n · nT ] = 2(1 + α) σ2
w Ω (10)
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where the entries for line i and column k of Ω are given by ωik = sinc[2(1+ α)(i− k)] = ωki
forming this way a symmetric Toeplitz matrix [18]. As a result, the likelihood function for
our estimation problem can be written as [19,20],

Pr(z; u) =
1√

(2π)Ldet(R)
e−

1
2 (z−A a)TR−1(z−A a) (11)

However, instead of using u = (A, σw), it is easier to concentrate in the following on the
average electrical SNR normalized by P2

0 , i.e., ρs = γs/P2
0 = A2/σ2

w. Then, by introduction
of Pn = σ2

w, we have that u = (ρs, Pn) and the related LLF is furnished by

Λ(z; u) = log Pr(z; u) ∼ − L
2

log Pn −
zTΨ z− 2

√
ρsPn zTΨ a + ρsPn aTΨ a

4(1 + α)Pn
(12)

which has been achieved by Ψ = Ω−1 as well as omitting all immaterial constants and
factors not depending on u.

3.2. Modified Cramer–Rao Lower Bound

In the next step, the FIM entries are obtained by computing the second-order deriva-
tives according to (8), the results of which have then to be averaged with respect to the
noise vector n. However, this approach means that the CRLB will be a function of the
selected pilot sequence a. Therefore, it is suggested to extend the averaging procedure to a

as well, which creates the so-called modified Cramer–Rao lower bound (MCRLB) [21–23].
Doing so, we get after some algebra:

J11 = −E
[

∂2Λ(z; u)

∂ρ2
s

]
=

1
8(1 + α)ρs

Ea[a
TΨ a] (13)

J22 = −E
[

∂2Λ(z; u)

∂P2
n

]
= − L

2P2
n
+

ρs

8(1 + α)P2
n
Ea[a

TΨ a] +
1

2(1 + α)P3
n
En[n

TΨ n] (14)

J12 = J21 = −E
[

∂2Λ(z; u)

∂ρs∂Pn

]
=

1
8(1 + α)Pn

Ea[a
TΨ a] (15)

Evaluating (7) for u1 = ρs, the corresponding MCRLB is given by

MCRLB(ρs) =
J22

J11 J22 − J2
12

(16)

Substituting (13)–(15) into (16) and scaling the result with respect to ρ2
s , we obtain the

normalized MCRLB expressed as

NMCRLB(ρs) = MCRLB(ρs)

ρ2
s

= 2(1 + α)
(

Pn
En[nTΨ n]−L(1+α)Pn

+ 4
ρs Ea[aTΨ a]

) (17)

Introducing the auxiliary terms

Ψ0 =
1
L

L−1

∑
i=0

ψii, Ψ1 =
1
L

L−1

∑
i=0

L−1

∑
k=i+1

ψik, Ψ2 =
1
L

L−1

∑
i=0

L−1

∑
k=0

ωik ψik (18)
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where ψik is the entry of Ψ indicating line i and column k, the expected operations in (17)
can be written as

Ea[aTΨ a] =
L−1
∑

i=0

L−1
∑

k=0
E[ai ak] ψik

=
L−1
∑

i=0
E[a2

i ] ψii +
L−1
∑

i=0

L−1
∑

k=0,k �=i
E[aiak] ψik

= ηa
L−1
∑

i=0
ψii + 2μ2

a
L−1
∑

i=0

L−1
∑

k=i+1
ψik = L(Ψ0 + 2μ2

aΨ1)

(19)

and

En[nTΨ n] =
L−1
∑

i=0

L−1
∑

k=0
E[nink] ψik

= σ2
n

L−1
∑

i=0

L−1
∑

k=0
ωik ψik = 2L(1 + α)Pn Ψ2

(20)

Finally, by plugging (19) and (20) into (17), we have that

NMCRLB(ρs) =
2
L

(
1

2Ψ2 − 1
+

4(1 + α)

ρs(Ψ0 + 2μ2
aΨ1)

)
(21)

Nevertheless, the relationship might be simplified for α ∈
{

0, 1
2 , 1

}
, because in

this case ωik = sin c[2(1 + α)(i − k)] = 1 for i = k and zero elsewhere. This means that
Ω = Ω−1 = Ψ = IL, with IL as the L-dimensional identity matrix, which means also that
Ψ0 = Ψ2 = 1 and Ψ1 = 0. Hence, the normalized bound boils down to

NMCRLB(ρs) =
2
L

(
1 +

4 (1 + α)

ρs

)
(22)

4. Maximum Likelihood Estimation

4.1. Derivation of the Estimator Algorithm

By means of the LLF in (12), we are basically in the position to derive a maximum
likelihood (ML) algorithm for SNR estimation. However, the SNR parameter is composed
of two ingredients—channel gain A and the noise power Pn—the estimates of which are
needed to compute the SNR estimate. This is simply achieved by substituting ρs = A2/Pn
into (12), deriving the resulting LLF with respect to A and Pn, equating both relationships
to zero and solving them analytically. Doing this, we obtain for u = (A, Pn)

∂Λ(z; u)

∂A

∣∣∣∣
u=

^
u

=
zTΨ a− Â aTΨ a

2(1 + α)P̂n
= 0 (23)

and
∂Λ(z; u)

∂Pn

∣∣∣∣
u=

^
u

= − L
2P̂n

+
zTΨ z− 2Â zTΨ a + Â2aTΨ a

4(1 + α)P̂2
n

= 0 (24)

Then, by introduction of Maa = aTΨ a, Maz = zTΨ a, and Mzz = zTΨ z, we find the
estimates for channel gain and noise power in closed form:

Â =
zTΨ a

aTΨ a
=

Maz

Maa
(25)

P̂n =
zTΨ z− 2Â zTΨ a + Â2aTΨ a

2(1 + α)L
=

1
2(1 + α)L

(
Mzz −

M2
az

Maa

)
(26)
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By inspection of (25) and (26), it is clear that a viable solution is only achievable for
Maa > 0, i.e., a pilot sequence consisting of zero symbols only would not work. Finally,
according to the invariance principle for ML estimates [24], the SNR solution is given by

ρ̂s =
Â2

P̂n
(27)

4.2. Probability Analysis

In this subsection, we want to derive the probability density function (PDF) of the
SNR estimate in (27) and analyze it in terms of bias and variance. It turns out that this is
possible in closed form for Ψ = IL, i.e., α ∈

{
0, 1

2 , 1
}

, whereas for other values of α, it is
verified in Section 5 that the analytical results achieved with Ψ = IL are very close to the
true ones obtained by numerical means.

By plugging Ψ = IL into (25), the estimate for the channel gain develops as

Â =
zTa

aTa
=

(A a + n)Ta

aTa
= A +

nTa

aTa
= A +

1
Maa

L−1

∑
k=0

aknk (28)

which means that Â is a zero-mean Gaussian variate. Computing the variance of the
latter, we have to consider that the noise samples nk are zero-mean and i.i.d. in case that
Ψ = IL. Therefore,

σ2
A = E[(Â− A)

2
] =

1
M2

aa
E

⎡⎣(L−1

∑
k=0

aknk

)2
⎤⎦ =

1
M2

aa
E

[
L−1

∑
k=0

a2
kn2

k

]
=

σ2
n

Maa
(29)

where σ2
n = E[n2

k ] = 2(1 + α) σ2
w. The related PDF is then straightforwardly given by

fA(Â) =
1√

2πσA
e−(Â−A)

2/2σ2
A (30)

On the other hand, Y = Â2 corresponds to a non-central Gamma variate [19] charac-
terized by the distribution

fY(y) =
1√

2πy σA
e−(y+A2)/2σ2

A cosh

(
A
√

y
σ2

A

)
, y > 0 (31)

If we consider in the next step the estimate of the noise power for Ψ = IL, we have

P̂n =
zTz− 2Â zTa + Â2aTa

2(1 + α)L
(32)

With z = A · a + n and Â determined by (28), the numerator in (32) simplifies to

(A a + n)T(A a + n)− 2Â (A a + n)Ta + Â2aTa = nTn− (nTa)
2

aTa
(33)

which represents a central Gamma variate with variance σ2
n and L—1 degrees of free-

dom [20,25]. Hence, by introduction of X = P̂n, the PDF of (32) can be written as

fX(x) =
1

(2σ2
x)

L−1
2 Γ( L−1

2 )
x

L−1
2 −1e−x/2σ2

x , x ≥ 0 (34)
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where σ2
x = σ2

n
2(1+α)L = σ2

w
L . Employing in the following the PDFs in (31) and (34), the

distribution of the SNR estimate is determined by (A2) derived in the Appendix A, i.e.,

f (ρ̂s) =
K0√

ρ̂s(ρ̂s + β)L
e−λ

1F1

(
L
2

,
1
2

;
λ ρ̂s

ρ̂s + β

)
, ρ̂s > 0 (35)

Regarding (A3) and (A4), the parameters β, λ, and K0 are functions of the true SNR
value denoted by ρs, the roll-off factor α, the observation length L, as well as the selected
pilot sequence a.

By means of the relationships (A9) and (A10) detailed in the Appendix A, we can
specify the first- and second-order moments of (35) as follows:

E[ρ̂s] =

∞∫
0

ρ̂s f (ρ̂s) dρ̂s =
L

L− 3

(
ρs +

2(1 + α)

Maa

)
(36)

E[ρ̂2
s ] =

∞∫
0

ρ̂2
s f (ρ̂s) dρs =

L2

(L− 3)(L− 5)

(
ρ2

s +
12(1 + α)ρs

Maa
+

12(1 + α)2

M2
aa

)
(37)

Therefore, bias and variance of ρ̂s, normalized by ρs and ρ2
s , respectively, are given by

NBias(ρ̂s) =
E[ρ̂s]− ρs

ρs
=

L
L− 3

(
1 +

2(1 + α)

Maaρs

)
− 1 (38)

and
NVar(ρ̂s) = E[ρ̂2

s ]−E2[ρ̂s ]

ρ2
s

= 2L2

(L−3)2(L−5)

(
1 + 4(1+α)(L−2)

Maaρs
+ 4(1+α)2(L−2)

M2
aaρ2

s

) (39)

Via Maa, it is obvious that (38) and (39) depend on the selected pilot sequence. In order
to avoid this drawback, we could average the relationships with respect to a. The problem
in this context is that there exists no closed form solution. A way out of this dilemma is
Jensen’s inequality [26] (Appendix 1B), which provides us with

E[
1

Maa
] ≥ 1

E[Maa]
=

1
LE[a2

k ]
=

1
L

(40)

and
E[

1
M2

aa
] ≥ 1

E[M2
aa]

=
1

LE[a4
k ] + L(L− 1)E2[a2

k ]
=

1
Lκa + L(L− 1)

(41)

where κa denotes the symbol kurtosis of the PAM alphabet, which is given by

κa = E[a4
k ] =

6
5
· 3M(M− 1)− 1
(2M− 1)(M− 1)

(42)

By taking into account the auxiliary results in (40) and (41), we finally obtain

NBias(ρ̂s) =
L

L− 3

(
1 +

2(1 + α)

Lρs

)
− 1 (43)

and

NVar(ρ̂s) =
2L2

(L− 3)2(L− 5)

(
1 +

4(1 + α)(L− 2)
Lρs

+
4(1 + α)2(L− 2)

[L κa + L(L− 1)] ρ2
s

)
(44)

as lower bounds for the relationships in (38) and (39), respectively.
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5. Numerical Results

The analytical results achieved for SNR estimation in Sections 3 and 4 will be verified
by Monte Carlo (MC) simulations. In the following, the former are indicated by lines,
whereas the latter are shown by markers. Each point in the diagrams below has been
obtained by averaging a number of 105 estimates, which turned out to be large enough to
verify the analytical results with sufficient accuracy.

Assuming a 4-PAM constellation operated with ρs = 0 dB and a roll-off factor α ∈ {0.0, 1.0},
Figure 2 illustrates the evolution of the normalized bias as a function of the observation
length L. It is to be noticed that the lines in different colors represent the lower bound given
by (43); verified by simulation results, we observe that the lower limit is very tight over
the full range of L. We observe that the bias decreases rapidly with increasing values of L,
which is also confirmed by (43). In addition, the diagram depicts the results obtained for
16-PAM, ρs = 10 dB, and α ∈ {0.2, 0.8}. In the strict sense, the relationship in (43) applies
only to values of α ∈ {0.0, 0.5, 1.0}, but the 16-PAM scenario in Figure 2 demonstrates that it
represents also a very good approximation for other values of the excess bandwidth.

20 40 60 80 100

0.2

0.4

0.6

0.8

1

L

α
α
α
α

ρs

ρs

Figure 2. Evolution of the normalized bias.

The evolution of the normalized bias has been simulated and verified for modulation
schemes other than 4-PAM and 16-PAM, e.g., 2-PAM and 8-PAM, as well as for roll-off
factors different to those exemplified in Figure 2. It turned out that the bias of the estimator
algorithm is reflected accurately enough by the formula in (43), disappearing for very large
values of L irrespective of the selected values of M or α.

Using a 4-PAM scheme with L = 10 and the same roll-off factors as before, Figure 3
illustrates the evolution of the normalized variance as a function of the true SNR value
in dB. For comparison purposes, the normalized MCRLB expressed by (22) is shown in
dashed style. We observe that the latter is fairly loose for such small observation windows,
whereas the lower bound of the variance in (44) appears to be very tight as confirmed by
simulation results, in particular at larger SNR values. However, the diagram illustrates
also that the MCRLB is more and more approximated by the jitter variance of the related
estimator algorithm, when we increase the observation length in Figure 3, verified for 16-
PAM, L = 100, and α ∈ {0.2, 0.8}; it is to be recalled that for α /∈ {0.0, 0.5, 1.0}, the NMCRLB
is furnished by (21). Finally, we see that the MC output is very close to (44) over the full
SNR range, although the relationship is, in a strict sense, only applicable to roll-off factors
α ∈ {0.0, 0.5, 1.0}. These observations also hold true for modulation schemes and roll-off
factors other than those used in Figure 3; especially, one can see that for L � 1 and ρs � 1,
the normalized variance is simply given by 2/L.
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Figure 3. Evolution of the normalized MCRLB and variance.

6. Concluding Remarks

Assuming a data-aided situation, i.e., data symbols are known to the receiver in the
form of a pilot sequence, SNR estimation for a bandlimited optical intensity link has been
investigated in the current paper. This requires a signal design achieved by an M-ary PAM
scheme and a non-negative pulse shape also satisfying the Nyquist criterion. By means of a
flat receiver filter, it is avoided that the waveforms of the user signal are distorted, but the
price to be paid is an additional amount of noise which the subsequent receiver stages are
suffering from.

Conditioned on reliable recovery and correction of the symbol timing, the modified
CRLB could be derived as the theoretical limit of the jitter variance produced by the SNR
estimator developed in the context of this paper. With respect to the latter, an ML solution
has been obtained in closed form, which turned out to be particularly simple from a
computational point of view for specific values of excess bandwidth, among them being
the minimum bandwidth scenario. For these values, the analytical relationships for bias
and jitter variance have been obtained in closed form as well.

Verified by simulation results, it could be shown that—irrespective of the chosen PAM
constellation and the value of the excess bandwidth—the bias effect vanishes more and
more with increasing values of the true SNR value and the observation length L the link is
operated with. This is also confirmed in view of jitter performance insofar as the CRLB is
successively approached by increasing values of L.
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Programme (ASAP), funded by the Austrian Research Promotion Agency (FFG), for a project on
“Optical Pulse Shaping for Power Efficient Transmission”, Contract No. 885376.
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Appendix A

Using the identities introduced in Section 4, i.e., X = P̂n as well as Y = Â2, together
with Z = ρ̂s = Y/X, the PDF of the SNR estimate can be expressed as [27]

fZ(z) =
∞∫

0

fZ|X(z
∣∣∣x) fX(x) dx =

∞∫
0

x fY(x z) fX(x) dx (A1)
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Substituting in the sequel the PDFs given by (31) and (34), we obtain by means of [28]
(3.462/1) and (9.240) after some lengthy but straightforward manipulations,

fZ(z) =
K0√

z(z + β)L
e−λ

1F1

(
L
2

,
1
2

;
λz

z + β

)
(A2)

where 1F1(·) denotes the confluent hypergeometric (Kummer) function [29] and the param-
eters β, λ, and K0 are specified as follows:

λ =
A2

2σ2
A
=

Maaρs

4(1 + α)
, β =

σ2
A

σ2
x
=

2(1 + α)L
Maa

(A3)

K0 =
Γ( L

2 )√
π Γ( L−1

2 )

(
σ2

A
σ2

x

)(L−1)/2

=
Γ( L

2 )√
π Γ( L−1

2 )
β(L−1)/2 (A4)

Deriving the m-th order moment of (A2), we first express the confluent hypergeometric
function by its Meijer G-equivalent [30] (8.4.45/2), i.e.,

1F1(a, b; z) =
Γ(b)
Γ(a)

G1,1
2,1

(
− 1

z

∣∣∣∣ 1, b
a

)
(A5)

Applying then the integration rules for Meijer G-functions [30] (2.24.2/6), we get

Mm =
∞∫
0

zm fZ(z) dz , m ∈ N0

=
K0 Γ( 1

2 )

Γ( L
2 )

e−λ
∞∫
0

zm−1/2

(z+β)L/2 G1,1
2,1

(
− z+β

λz

∣∣∣ 1, 1
2

L
2

)
dz

= K0
Γ( 1

2 ) Γ( L−2m−1
2 )

Γ( L
2 )

β(2m+1−L)/2e−λG2,1
3,2

(
− 1

λ

∣∣∣ 1, 1
2 , L

2
m + 1

2 , L
2

) (A6)

Employing the integral definition for Meijer G-functions [30] (8.2.1/1) as well as the
identity in (A5), which means that

G2,1
3,2

(
− 1

λ

∣∣∣∣ 1, 1
2 , L

2
m + 1

2 , L
2

)
= G1,1

2,1

(
− 1

λ

∣∣∣∣ 1, 1
2

m + 1
2

)
=

Γ(m + 1
2 )

Γ( 1
2 )

1F1

(
m +

1
2

,
1
2

; λ

)
(A7)

the relationship in (A6) might be simplified to

Mm = K0
Γ(m + 1

2 ) Γ( L−2m−1
2 )

Γ( L
2 )

β(2m+1−L)/2e−λ
1F1

(
m +

1
2

,
1
2

; λ

)
(A8)

Finally, by taking into account the properties of confluent hypergeometric functions,
the first- and second-order moments are provided as

M1 =

√
πK0

2
Γ( L−3

2 )

Γ( L
2 )

β−(L−3)/2(2λ + 1) (A9)

and

M2 =

√
πK0

4
Γ( L−5

2 )

Γ( L
2 )

β−(L−5)/2(4λ2 + 12λ + 3) (A10)
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Abstract: Sixth-generation wireless (6G) technology has been focused on in the wireless research com-
munity. Global coverage, massive spectrum usage, complex new applications, and strong security are
among the new paradigms introduced by 6G. However, realizing such features may require computa-
tion capabilities transcending those of present (classical) computers. Large technology companies are
already exploring quantum computers, which could be adopted as potential technological enablers
for 6G. This is a promising avenue to explore because quantum computers exploit the properties
of quantum states to perform certain computations significantly faster than classical computers.
This paper focuses on routing optimization in wireless mesh networks using quantum computers,
explicitly applying the quantum approximate optimization algorithm (QAOA). Single-objective and
multi-objective examples are presented as robust candidates for the application of quantum machine
learning. Moreover, a discussion about quantum supremacy estimation for this problem is provided.

Keywords: multi-objective; quantum computing; quantum optimization algorithms; quantum rout-
ing optimization; 6G communication networks

1. Introduction

Quantum computing has boosted worldwide interest in different research areas, in-
cluding telecommunications. The advent of complex sixth-generation (6G) technologies
suggests that a quantum computing approach may better serve some use cases for high-
performance computing in wireless communications. Optimization in communication
networks has been a hot research topic throughout the years. The evolution of telecommu-
nications has led to thousands of devices being connected, including nodes of the Internet
of Things (IoT), autonomous vehicles, user devices, sensors, etc. Routing optimization
plays an important role in guiding data packets between network nodes to follow the
best end-to-end paths (from the source to the destination) according to certain network
conditions. Regardless of the type of network, a poor routing strategy may prove harmful
to the overall performance of the network. Routing strategies involve the definition of a set
of one or more paths over which communication between end devices takes place over a
network.

Typically, in conventional multi-hop networks, only one of the desired objectives is
optimized, whereas other objectives are assumed to be constraints of the problem. Multi-
objective algorithms have been previously explored in the literature, with the discussion
focused on comparing complexities and rates of convergence with respect to the number
of network nodes. An example is [1], where the authors proposed two approaches: (i)
an algorithm based on the non-dominated sorting-based genetic algorithm-II (NSGA-II),
and (ii) a multi-objective differential evolution (MODE) algorithm. Many single-objective
optimization techniques have also been proposed; even though they are in their majority
(based on classical solutions), some remarkable examples of quantum approaches exist.
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In [2], the authors proposed the non-dominated quantum iterative optimization (NDQIO)
algorithm, which exploits the parallelism property in quantum mechanics for finding the
optimum of a multi-objective routing problem in wireless multi-hop networks. Another
algorithm, the tree-based quantum algorithm (TQA) in [3], solves the delay-constraint multi-
cast tree problem. The most significant advantage of TQA is that the solving speed is much
faster and more noticeable when the network topology scale becomes more considerable.

Furthermore, inspired by the IoT concept, with millions of interconnected wireless
devices acquiring data ubiquitously, ref. [4] presented a novel quantum computing-inspired
(IoT-QciO) optimization technique for wireless networks. The approach is based on the
maximization of data accuracy (DA) in a real-time environment of IoT applications. In
another recent paper [5], a quantum particle swarm optimization (PSO) algorithm is
proposed, which outperformed existing optimization algorithms in terms of precision
and convergence speed for smart IoT parking applications. The same authors applied an
enhanced version of the PSO to routing in an industrial IoT (IIoT) scenario [6]. Formulations
of routing problems on quantum computers appear in [7], where the authors focused on
vehicle routing problems with time window(s) (VRPTW) and investigated and compared
the VRPTW from a quantum computing perspective. Additionally, in [8,9], the quantum
approximate optimization algorithm (QAOA) was tested with good results for the vehicle
routing problem (VHP), a generalization of the traveling salesman problem (TSP). Finally,
quantum optimization for 6G wireless communication is addressed through two use cases,
MIMO detection and LDPC decoding in [10]. The case studies focus on quantum annealing
(QA) technology, but the gate model processors are also described as potential quantum
computations for communication networks.

Motivated by 6G connectivity requirements, the possibilities offered by the quantum
computation, and the crucial role of routing strategies in wireless communications, we
present a multi-objective routing optimization use case using QAOA and quantum systems.
We integrated the parameterized lexicographic heuristic method to solve routing problems
with quantum computing as a novel approach in the literature, and the results are provided
to argue quantum supremacy.

In this context, the contributions of the present paper are as follows:

• We solved single and multi-objective network routing problems in a 6G network sce-
nario, formulating the first QAOA [11] generalization to multi-objective optimization
problems applied to vehicular ad hoc networks (VANETs) to the best of the authors’
knowledge. As these problems are known to be Non-deterministic polynomial-time
hardness (NP-hard) [12], quantum algorithms may help speed up the problem-solving
process when the problem’s size makes classical algorithms struggle to find optimal
solutions in a reasonable time.

• We presented a single-objective routing optimization, providing the steps for the
problem solution through quadratic unconstrained binary optimization (QUBO) and
the Ising model to create the Hamiltonian problem;

• We discuss the performance of QAOA concerning the number of layers.
• We proposed a multi-objective routing optimization based on the parameterized

lexicographic heuristic method and QAOA;
• We conclude quantum supremacy expectations from insights on estimations collected

from the literature review.

The rest of the paper is structured as follows: Section 2 exposes firstly a brief overview
of Quantum Optimization Algorithms, focused on QAOA. In Section 2.2, an example of a
single-objective routing problem executed on IBM quantum experience is presented. After
that, Section 2.3 provides a multi-objective routing problem using QAOA and parameter-
ized lexicographic method. Finally, in Section 3, a discussion about supremacy expectations
is presented. The main conclusions are drawn in Section 4.
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2. Quantum Routing Optimization

In most cases, when network operators or service providers design and control their
networks in real-world settings, they first formulate an optimization problem correspond-
ing to the desired communication network with the required parameters and then solve
the problem using a computer. These problems are mainly integer optimization problems
whose complexities require high computational resources. To solve these problems on
classic computers, the GNU linear programming kit (GLPK) package can be used (as was
the approach of [13]). This kit is intended to solve linear programming (LP), integer LP,
and mixed-integer LP programming. Since the main result of the decision-making logic
of a routing process is the recommended path to be followed, an integer variable may be
assigned to each connection between each connected node. If the variable takes the value
of 1, which means the path is taken. In other cases, the variable will be 0 if that way is not
optimal to reach the desired objective. Primary objectives could involve minimizing battery
costs for remote nodes, maximizing the throughput for each involved node, or minimizing
the number of jumps (which have advantageous impacts on latency). When the number of
nodes increases, the LP problem can become so big that classic computers struggle to find
the optimal route. This happens because the number of combinations between nodes is
so significant that the variable numbers scale rapidly, meaning that high computational
resources are needed to land on a solution. This will be true for future 6G communication
networks, which are expected to provide global coverage and space–air–ground–sea [14].
Considering the multiple requirements that 6G will need to address simultaneously, quan-
tum computers and quantum algorithms could play even more significant roles in such
optimization problems.

2.1. Quantum Optimization Algorithms

Quantum computation takes advantage of the properties of quantum mechanics to
tackle optimization problems radically differently. Ideally, due to the superposition of
quantum states, quantum computers can process all the data simultaneously to find the so-
lution that optimizes the objective function. In contrast, present-day “near-term” quantum
computing or “noisy intermediate-scale quantum” (NISQ) technology implement at most
50–100 qubits, and while they might be able to perform tasks that exceed the capabilities
of classical computers, they also exhibit noise-related inaccuracies that complicate the
demonstration of the advantages of practical quantum computers and limit the sizes of
quantum circuits [15]. One of the goals in the NISQ era is to extract the maximum quantum
computational power from current devices while developing techniques that will suit
the “long-term” goal of fault-tolerant quantum computations. Consequently, new classes
of algorithms have been developed for this kind of system. Most of the current NISQ
algorithms are based on a hybrid quantum-classic arrangement, such as the variational
quantum eigensolver (VQE) and QAOA [16].

VQE was introduced in 2014 [17] for chemistry applications and quantum mechanics
to estimate the ground state energy of a molecule using shallow depth circuits. The ground
state of energy is equivalent to finding the minimum eigenvalue and/or eigenvector of
a matrix (Hamiltonian), which characterizes the molecule. Apart from being applicable
in these fields, it has spread up its functionality to optimization problems; one can also
use the VQE for optimizing a cost function by encoding it as a matrix whose ground state
(minimum eigenvector) corresponds to the optimal solution of the problem. This idea also
lies at the heart of QAOA.

Since these algorithms require a smaller circuit (a few quantum gates), it better pre-
serves the coherent evolution of the system, allowing a higher probability of successful
results, also beneficial for the available systems with just a few noisy qubits.

QAOA is a variational quantum algorithm (quantum–classical hybrid algorithm)
due to its implementation through quantum circuits that depend on a set of variational
parameters (β, γ). It was introduced by Farhi and Goldstone in 2014 [11] to solve the
problem of finding out a cut whose size was at least the size of any other cut (MaxCut) on

117



Sensors 2022, 22, 7570

a regular graph. This algorithm is characterized by a lower bound for the ratio between
the result obtained by the algorithm and the optimal cost (the “approximation ratio”) and
depends on an integer p(layers) ≥ 1. The quality of the approximation improves as p
is increased, and the depth of the quantum circuit grows linearly p times the number of
constraints. In fact, in [11], QAOA always found a cut that was at least 0.6924 times the
size of the optimal cut.

QAOA uses a unitary U(β, γ) characterized by the parameters (β, γ) to prepare a
quantum state |ψ(β, γ)〉. The goal of the algorithm is to find optimal parameters (βopt, γopt),
such that the quantum state |ψ(βopt, γopt)〉 encodes the optimal solution to the problem [18].

To summarize, QAOA’s principle is to extract (measure) the quantum solution pre-
pared by a quantum state in a variational quantum circuit. Then, a classical optimizer is
used to tune the circuit parameters and minimize the measured expectation value. Figure 1
graphically represents this principle of operation.

Figure 1. Graphical representation of the operation principle of a QAOA scheme.

2.2. Single-Objective Quantum Routing Optimization

Since communication networks consist of nodes and links; one of the main objectives
is to find the minimum cost (in terms of battery consumption) to transmit the traffic from an
origin node to a destination node. A network is represented by a graph G(V, E), where V is
the set of vertices (nodes), E is the set of links (weights), and the link from node i to node j is
expressed as (i, j) ∈ E. Figure 2 shows an example of a network. If node 1 is the source node
and node 4 is the destination node, then the problem consists of finding the shortest path from
node 1 to node 4 depending on the requirements, constraints, and/or objectives.

Figure 2. Scheme of an example network with four nodes.
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Generally, this kind of problem can be formulated as a cost (objective) function (1),
which is minimized or maximized according to constraints (2) and (3) and variables’
bound (4) since they involve seeking the best configuration among a set of parameters to
achieve the desired objectives. In this example, the cost values are not representative of a
real scenario and take values from 1 to 10, implying a higher value and bigger battery cost.
This simplification is made because the goal is not to accurately define a cost function but
to test QAOA and elaborate supremacy predictions on routing problems. The following
equations can be found in [13].

Objective:

min / max

⎛⎝ ∑
(i,j)∈E

CijXij

⎞⎠ (1)

Subject to:

∑
j:(i,j)∈E

Xij − ∑
j:(i,j)∈E

Xji = 1, i f i = p, (2)

∑
j:(i,j)∈E

Xij − ∑
j:(i,j)∈E

Xji = 0, ∀i �= p, q ∈ V, (3)

0 ≤ Xij ≤ 1, ∀(i,j) ∈ E. (4)

For this example, the problem formulation is presented below:

min (5X12 + 8X13 + 2X23 + 7X24 + 4X34) (5)

Subject to:

X12 + X13 = 1, (6)

X12 − X23 − X24 = 0, (7)

X13 + X23 − X34 = 0, (8)

One common model that is suitable for solving combinatorial optimization problems
in quantum computers is the quadratic unconstrained binary optimization, or QUBO for
short. QUBO can embrace many models in combinatorial optimization; QUBO models
were shown to be equivalent to the Ising model, which plays a crucial role in physics and
particle interactions [19].

A formal definition of the QUBO model is given by:

min / max (XTQX + CTX + c) (9)

where X is a vector of binary decision variables, Q is a square matrix of quadratic coefficients,
and C is a vector of linear coefficients.

Before solving our problem with QAOA, it should be cast in QUBO form. Although
our problem includes additional constraints, it can be effectively reformulated as a QUBO
model by introducing quadratic penalties (P) into the objective function (10).

min (5X12 + 8X13 + 2X23 + 7X24 + 4X34

+P(X12 + X13 − 1)2

+P(X12 − X23 − X24)
2

+P(X13 + X23 − X34)
2) (10)
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Arbitrarily choosing P to be equal to 27, the Q matrix and C vector are given by:

Q =

⎡⎢⎢⎢⎢⎣
54 27 −27 −27 0
27 54 27 0 −27
−27 27 54 27 −27
−27 0 27 27 0

0 −27 −27 0 27

⎤⎥⎥⎥⎥⎦ (11)

CT =
[
−49 −46 2 7 4

]
(12)

As mentioned before, the cost function can be mapped to a Hamiltonian in order to
find the ground state energy of the system that is equivalent to the optimal solution. QAOA
is defined by the problem Hamiltonian (HP) (13), which contains the cost function, and
the mixer Hamiltonian (HM) [18], defined as the sum of single Pauli X-operators on all
qubits (14).

HP|x〉 =
(

xTQx + cTx
)
|x〉 =

(
n

∑
i,j=1

xiQijxj +
n

∑
i=1

cixi

)
|x〉 (13)

HM =
n

∑
i=1

Xi (14)

To define the HP by Pauli Z-operators, the objective function should be formulated as
the Ising spin model: xi =

1−Zi
2

HP = 11(I I I IZ0)− 17.5(I I IZ1 I)− 28(I IZ2 I I)− 17(IZ3 I I I) + 11.5(Z4 I I I I)

+13.5(I I IZ1Z0 − I IZ2 IZ0 − IZ3 I IZ0 + I IZ2Z1 I − Z4 I IZ1 I + IZ3Z2 I I − Z4 IZ2 I I) (15)

The small, single-objective, four-node example (Figure 2) is represented by its cor-
responding variational quantum circuit based on HP and HM (HP + HM) in Figure 3.
The initial prepared state is the equal superposition state through Hadamard (H) gates.
The iterations required to reach the optimal results depend on the quantum system used.
It was tested on “ibm_perth”, a seven-qubit IBM Quantum System, and 59 iterations
were necessary using COBYLA as a classical optimizer to find βopt = 0.28517317, and
γopt = −5.05969577.

Figure 3. Representation of the single-objective, four-node example QAOA circuit.

It is quite simple to note that the optimum path for minimizing costs would be 1–2–3–4,
resulting in 11 (5 + 2 + 4). Figure 4 shows the probabilities results according to the possible
paths and β and γ values. As expected, the |10101〉 state has the higher probability that
corresponds with the X12, X13, X23, X24, X34 where X12 = 1, X23 = 1, X34 = 1.

120



Sensors 2022, 22, 7570

Figure 4. Probability results for the example network.

While this small example may seem simple (this specific case took five qubits) when
the number of nodes increases, the problem becomes classically intractable. Note that while
a bigger network could not be solved on available quantum computer hardware because of
the number of qubits required; this does not mean that larger problems cannot be solved. It
depends on the number of available qubits. Furthermore, it must be mentioned that despite
the QAOA result being 11, identical to the classical solution, in more complex problems by
its nature, QAOA might provide only a good approximate near-optimum solution.

Additionally, to test how the algorithm performs according to the number of QAOA
layers, simulations with 500 shots were executed and p = 1, 2, 3. The theoretical accuracy
provided by QAOA improves with higher values of p as was already anticipated in Section
2.1. Figure 5 illustrates how the probability of obtaining the right solution increases with
higher values of p. However, it turns out that for implementation on a real device, this
improvement is not remarkable because the depth of the quantum circuit has a negative
impact on the noise level.

Figure 5. QAOA performance comparison according to p values.
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Furthermore, Algorithm 1 below, shows the pseudocode of the algorithm proposed
for the routing when following the steps to programming the single target routing problem.

Algorithm 1 Routing Optimization using QAOA.

1: from pyqubo import Array, Constraint, Placeholder

Design the network graph:
2: edges = [(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)], weights = [5, 8, 2, 7, 4]
3: x = Array.create(shape =len(edges))
4: for iteration = 1, 2, . . . in range(len(edges)) do
5: fcost +=Constraint(weights[i] ∗ x[i])
6: end for
7: fcost += p∗Constraint((x[0] + x[1]− 1)2)
8: fcost += p∗Constraint((x[0]− x[2]− x[3])2)
9: fcost += p∗Constraint((x[1] + x[2]− x[4])2)

Create the problem Hamiltonian and mixer Hamiltonian: xi =
1−Zi

2

HP + HM (16)

Create the QAOA circuit according to the linear and quadratic coefficients of HP:
10: linear_coe f f icients(lc) = [11.0,−17.5,−28.0,−17.0, 11.5]
11: quadratic_coe f f icients(qc) = {(0, 1) : 13.5, (0, 2) : −13.5, (0, 3) : −13.5, (1, 2) : 13.5, (1, 4) :

−13.5, (2, 3) : 13.5, (2, 4) : −13.5}
12: Circuit (num_qubits, param, n_layers, lc, jc):
13: circ = QuantumCircuit(num_qubits)

Initial state (H gates):
14: for qubit in range(circ.num_qubits) do
15: circ.h(qubit)
16: end for

Problem Hamiltonian:
17: for qubit in range(circ.num_qubits)) do
18: circ.rz(lc[qubit] ∗ param, qubit)
19: end for
20: for key in qc.keys()) do
21: circ.rzz(qc[key] ∗ param, key[0], key[1])
22: end for

Mixer Hamiltonian:
23: for qubit in range(circ.num_qubits) do
24: circ.rx(param, qubit)
25: end for
26: circ.measure(range(num_qubits), range(num_qubits))

27: Compute the expectation values according to the measurement results.

28: Optimize classically to find β and γ, with scipy.optimize.

29: Repeat the process until βopt and γopt optimum are found.

2.3. Multi-Objective Quantum Routing Optimization

When different performance metrics need to be considered in communication net-
works, the optimization problem becomes multi-objective. In this regard, those metrics
could be to reduce the cost to provide a better quality of service, improve the throughput,
or minimize the number of hops taking care of the network’s latency. If only one parameter
is considered in the link, the other parameters will probably not follow the requirements
for a determined service. As a result, multi-objective problems are purposed to obtain
solutions satisfying the multiple criteria for each scenario.
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Solving multi-objective problems does require more computation power than single-
objective problems. In addition, multi-objective problems do not have global optima. If
one objective is optimized, it is likely that the others will not be. Equilibrium needs to be
found to cover all the requirements desired; each equilibrium point is known as a Pareto
optimal point.

From heuristics, there are multiple ways to find Pareto’s solutions. The parameterized
lexicographic method is presented in this paper. This method needs to order objectives
by importance. The optimization will have as many stages as objectives formulated. The
first stage will solve the first objective without including any other one. The second stage
will solve the second objective, including a margin constraint inherited from the first stage.
The third stage will include inherited constraints from the first and second and so on. For
example, if minimizing the battery cost is the most important objective, the cost result
obtained from the first stage will have a deviation from the optimum allowed in the second
stage. This deviation is parameterized using slack parameters α. If an objective wants
to be minimized, the slack parameter of the inherited constraint, αn will be higher than
1 (allowing its increase from the optimal) and if maximized lower than 1, (allowing its
decrease from the optimal).

This subsection presents a practical case of multi-objective routing optimization using
QAOA and the lexicographic method. Note that before solving our problem with QAOA, it
should be cast in QUBO form as outlined previously in Section 2.2; the same steps presented
in the pseudocode were followed, not included here for brevity. This case included six
nodes following the scheme shown in Figure 6. Three parameters were optimized: i) the
battery cost, ii) the available throughput for the served nodes, and iii) the number of hops
from the origin to the destiny. The battery cost and the number of hops were minimized,
and the throughput maximized. Since the number of qubits available was not enough, the
problem was simulated on IBM Quantum first. In addition, it was executed on IBM Cloud
through Qiskit Runtime [20] available on IBM Quantum systems and IBM Cloud. Qiskit
Runtime is an architecture and programming service offered by IBM that allows users to
optimize workloads and efficiently execute them on quantum systems. Runtime works
based on programming via primitives such as Sampler, Estimator, and in our case, QAOA.
The system used was imb_algiers, which has 27 qubits.

Figure 6. Scheme of an example network with six nodes.

The first objective of the lexicographic approach was to minimize the battery cost,
according to (1). All the constraints (2), (3), and (4), shown in Section 2.2 were added to the
model. Following the same procedure, the solution gave the path 1–3–5–6, offering services
to four nodes, which meant three hops. The total battery cost was 4, and the throughput
obtained was 4.

Once the battery cost was optimized, the solution found was added as an inequity
constraint with the alpha parameter, giving some clearance to the cost while optimizing

123



Sensors 2022, 22, 7570

the throughput. This parameter in this example was set to αc = 2. Equation (17) was the
added constraint to the model in this second step

CijXij ≤ (CijX∗
ij)αc. (17)

The next objective was the throughput, calculated as the sum of the throughput values
for all of the nodes served. The objective is shown in Equation (18). As was done with cost,
a simplification was also made to the calculus of the throughput values for each path, not
being the ones used representative of a real scenario. In this case, higher values are better
since this objective wants to be maximized.

max ∑
(i,j)∈E

ThrijXij. (18)

The results changed, increasing the throughput to 10 and the cost to 7. In addition, the
number of hops increased to 4. The path taken was 1–3–4–5–6. This means a sacrifice for
both cost and hops to increase the throughput. Since multi-objective optimization does not
have a correct result, this result is as valid as the one obtained in the first stage, and the
final decision is made by the decision-maker.

As was done with the cost, an alpha parameter was added to the model, giving
clearance to the throughput in the minimization of the last objective, the hops. This
parameter was fixed to αthr = 0.4. The reason for this parameter being that small was
due to the tiny size of the problem, which required big clearances to change from one
solution to another. This means that Equation (19) needed to be included in the model.
Equation (17) was also added to the constraints for the last step of the multi-objective
optimization process, the minimization of the number of hops.

ThrijXij ≥ (ThrijX∗
ij)αThr. (19)

The last objective, the number of hops, was minimized. The objective is shown in
Equation (20).

min ∑
(i,j)∈E

HijXij. (20)

All constraints in (2), (3), (4), (17), and (19) were added to the model.
The result obtained for the hops was 3, the cost was also reduced to 4, but throughput

decreased to 4. This gave the same result as the one obtained in the first stage of the
optimization, following the path 1–3–5–6.

The first step of the lexicographic method only considered minimizing the cost. As
a result, even though only three hops were performed, throughput was not really good.
When maximizing throughput, the cost was slightly increased and so were the hops. Finally,
for this particular case, the solution taking into account the three objectives was equivalent
to the solution that we would obtain from only considering the cost objective. The result-
deriving process was forced to showcase the operation of the method. However, other
combinations of alpha parameters or a change in the order of the objectives would change
the results. Problems of a bigger size, which unfortunately could neither be run on a QC
nor simulated, will be more dependent on changes of alpha, altering the final result upon
small variations of alpha. The final results obtained from this method can be summarized
in Table 1.
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Table 1. Results obtained for the six-node lexicon optimization.

Objectives Min Cost Max Thr st Cost
Min Hops st

Cost+Thr

Cost 4 7 4
Throughput 4 10 4

Hops 3 4 3

3. QAOA Supremacy Expectations

QAOA is one of the most promising candidates for achieving quantum supremacy in
optimization problems, which means outperforming the best-known classical algorithms on
a given problem. This algorithm can solve scheduling, data analysis, and machine learning
optimization problems. This paper used it to solve a hard integer routing optimization
problem with good results. However, a higher number of qubits with relatively low noise
is necessary to outperform the classic computation solution.

In the last few years, quantum computers have entered a new phase, where qubit
noise was more considered and could benefit from error correction techniques. Quantum
volume (QV) has turned into an important parameter apart from the qubit number since
quantum computer developers considered that it was also important to have well-calibrated
controlled noise qubits rather than ti have a huge number of noisy qubits. QV measures
the performance of gate-based quantum computers [21]. Therefore, to achieve supremacy,
it is necessary to have a higher number of qubits that are well-calibrated. Another crucial
metric to measure quantum device performances were introduced by IBM recently. CLOPS
(circuit layer operations per second) corresponds to the number of quantum circuits a
quantum processing unit (QPU) can execute per unit of time. In this regard, and according
to the available systems (ibm_perth, ibm_lagos, ibm_jakarta with seven qubits; ibm_manila,
ibm_bogota, ibm_quito, ibm_belem, and ibm_lima with five qubits), a representation of
CLOPS vs time is presented in Figure 7.

Figure 7. Time for solving the four-node problem depending on QC CLOPS.

The trend is that a system with higher CLOPS solves the problem faster; however,
this statement is not always true. This is due to the internal architecture of each quantum
computer and how the connections between the qubits are done. A low CLOPS QC can be
fast for a determined problem but slow for another one. For each problem, the performance
can vary since CLOPS is determined using a general purpose test created by IBM. As a
result, for this particular routing problem, the Belem and Quito architectures and qubit
connections seem to perform better than the Lima or Manilla ones, even though their
CLOPS systems in the IBM tests were higher.
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The results correspond to the single objective problem. The same examination could
be applied to different problems, depending on the qubits available. The outcomes reveal
that CLOPS also play a role, as higher CLOPS systems tend to solve the problem faster on
average, even though more qubits can affect the system coherence. With 7 qubits and 2.9K
as CLOPS, the time decreases as Figure 6 reveals.

Moreover, simulations performed in [22] conclude that QAOA will achieve a quantum
speedup with hundreds of qubits since classic computers have begun to struggle with
the size of the problem. [23] also discusses an approach to supremacy for optimization
problems making use of QAOA. This algorithm is designed to run purely on a gate model
quantum computer, and it is hard to simulate by any simulator when a high number of
qubits are involved. Although there exist classical natural algorithms that have better
success chances, QAOA has a performance guarantee. As a result, it is argued if QAOA
can exhibit any form of “quantum supremacy”, with the conclusion being positive due
to the theoretical complexity assumptions. The paper postulates QAOA as an excellent
candidate to run on near-term quantum computers, not only because of the potential
use in optimization for some particular problems but for the very probable supremacy
demonstration once the hardware has small hundreds of intermediate-noise qubits. Since
the device availability only allows tests on IBM quantum systems with few qubits and
good noise levels, theoretical estimations need to be performed.

Figure 8 shows supremacy expectations on node routing problems considering IBM
quantum computers, which are the ones used in this research.

Figure 8. QAOA Supremacy estimations for network routing problems.

The red bar indicates the executions done in this paper on open-for-research IBM QC,
where the time taken to find the solution is relatively low but still much higher compared to
the classic solution. The yellow space indicates where IBM is working now, testing systems
up to 65 qubits (Hummingbird quantum processor) and acceptable levels of noise to allow
accurate calculus. The green space indicates the estimations of supremacy, making use of
QAOA to solve the routing problem. The plot in Figure 8 providing estimates was calcu-
lated based on the complexity analysis performed on [23]. The mathematical and quantum
physics principles behind the QAOA algorithm make such low complexities possible for the
application to this kind of problem, where the main handicap is the difficulty in simulating
it on a classical computer. However, the tests performed so far on IBM hardware proved
the small complexity of the problem; to perform the supremacy estimations, the trend was
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extrapolated to bigger problems using regression techniques. This was compared with a
classical implementation of the problem on a Python general purpose linear programming
kit (GPLK) to check the computational cost of this implementation compared with the
quantum solution. Afterward, supremacy expectations were achieved by comparing costs
and positioning the quantum implementation in the IBM real hardware road map. As
a result, the research determines that a few hundred qubits (well-calibrated) are enough
to reach supremacy for this kind of problem, where classic algorithms really struggle to
reach optimal solutions. This is expected to be reached when an Eagle 127 qubits processor
achieves stability in a 2–3 year vista. Some factors that may move the exact supremacy
point are the CLOPS and the volume achieved in the Eagle 127 qubits processor. Higher
CLOPS will decrease the time used to calculate the solution, and a higher quantum volume
will increase the performance of the algorithm by obtaining better solutions with fewer
iterations.

4. Conclusions

Optimization problems have always been challenging for computers due to the in-
herent difficulty involved. Quantum computers have already shown their potential in
many application fields, with optimization tools being an advanced area. The next genera-
tion of computers will be able to use other methods to solve hard optimization problems.
Quantum computers have shown their potential for these purposes, making use of new
algorithms designed to take profit from quantum properties. QAOA is an example of those
algorithms and has shown strong potential since its release. This results in fast, powerful
algorithms for quantum computers (that nowadays lack the hardware to reach their true
potential). In this case, QAOA has been used to solve some routing problems applicable to
the next generation of wireless communication systems. Since 6G will include the massive
interconnections between multiple nodes, optimal routing will have a large importance
in resource optimization. This paper has shown that it is already feasible to solve routing
problems with QAOA. The first example introduced the entire procedure followed by solv-
ing the single-target routing problem; the second case involved a higher number of nodes
and multi-objectives to test QAOA and provide conclusions. Moreover, as better devices
are available, fewer iterations of the algorithm will be needed. Routing problems have
additional difficulty since integer programming is harder to solve than linear programming,
but QAOA still managed to find optimal routes for the problems proposed. These examples
were small demos of what a bigger problem would look like, but the actual quantum
computers can only solve limited-size problems. The scalability of the problems solved
using QAOA rely on the new quantum hardware available. A higher number of qubits
will allow bigger problem resolutions, and soon a quantum computer could reach the size
where it outperforms classical computations in terms of solving time. The higher quantum
volume will enhance accuracy and, as a result, will decrease the number of iterations of
QAOA needed to solve the problem. Higher CLOPS will speed up any process in the
quantum computer and, as a result, will enable real-time calculations. The research topic is
still open. In this paper, the results were obtained from the lexicographic method to find the
Pareto point in the multi-objective problem. Another method, such as goal programming,
could also be used in this framework. The number of qubits required for a 6-node example
was 50 for this method. It could not be run on a quantum computer, but its implementation
will be under consideration for further study.
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Abstract: LoRa is one of the most prominent LPWAN technologies due to its suitable characteristics
for supporting large-scale IoT networks, as it offers long-range communications at low power con-
sumption. The latter is granted mainly because end-nodes transmit directly to the gateways and no
energy is spent in multi-hop transmissions. LoRaWAN gateways can successfully receive simulta-
neous transmissions on multiple channels. However, such gateways can be costly when compared
to simpler single-channel LoRa transceivers, and at the same time they are configured to operate
with pure-ALOHA, the well-known and fragile channel access scheme used in LoRaWAN. This work
presents a fair, control-based channel hopping-based medium access scheme for LoRa networks with
multiple single-channel gateways. Compared with the pure-ALOHA used in LoRaWAN, the protocol
proposed here achieves higher goodput and fairness levels because each device can choose its most
appropriate channel to transmit at a higher rate and spending less energy. Several simulation results
considering different network densities and different numbers of single-channel LoRa gateways show
that our proposal is able to achieve a packet delivery ratio (PDR) of around 18% for a network size of
2000 end-nodes and one gateway, and a PDR of almost 50% when four LoRa gateways are considered,
compared to 2% and 6%, respectively, achieved by the pure-ALOHA approach.

Keywords: low power wide-area networks; large-scale LoRa networks; single-channel LoRa gateways

1. Introduction

The emergence of the Internet of Things (IoT) [1,2], potentiated by its ability to connect
every device to the Internet, increased the demand for low power wide-area networks
(LPWANs). LPWANs are a category of wireless communication technologies with unique
characteristics, such as long-range communications, low power consumption, and low
deployment costs, making them suitable for IoT applications. Therefore, to satisfy the wide
range of IoT applications, several communication technologies were developed, such as
LoRa, Sigfox [3], Ingenu [4], and NB-IoT [5].

Long-range (LoRa) [6] has been one of the most popular and exciting LPWAN tech-
nologies thanks to its robustness to noise, which allows long-range transmissions, the
non-destructive property of colliding packets, and its power efficiency. LoRa, initially
only a physical layer, was extended by adding a medium access control (MAC) layer,
LoRaWAN, standardized and open-sourced by the LoRa Alliance. This MAC layer defines
the network architecture, along with a channel access scheme and the adaptive data rate
(ADR) mechanism. This mechanism aims to optimize the transmissions by dynamically
changing the transmission parameters according to the signal quality with the receivers.

LoRa operates on the sub-GHz Industrial, Scientific and Medical (ISM) unlicensed
bands, the 433 and 868 MHz bands in Europe. These bands are free to use and have less
retention than other bands, such as the 2.4 and 5 GHz bands. However, in most situations,
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the transmissions are limited to 1% of the duty cycle. LoRa signals are modulated using
chirp spread spectrum (CSS) modulation, which provides excellent resistance to noise.
LoRa allows the customization of several transmission parameters, such as spreading
factor (SF), coding rate (CR), bandwidth (BW), and transmission power (TP), resulting
in different and orthogonal LoRa communication channels, with specific communication
ranges, robustness, and data rates. For example, a larger SF improves the communication
range but also increases the time on air (ToA), which increases the energy consumption
and reduces the data rate.

Multiple-channel LoRaWAN GWs can simultaneously receive multiple packets with
different spreading factors; however, they can be expensive and operate according to the
pure-ALOHA channel access scheme, which presents poor network performance, especially
in high-density networks. Additionally, it is also known that when two or more concurrent
LoRa transmissions occur, the one with the highest signal quality is the one to be decoded by
the GW, which makes the network unfair [7]. For these reasons, in this work we explore the
use of single-channel LoRa gateways operating in a channel hopping scheme. We propose
a cycle-based medium access strategy for large-scale LoRa networks with multiple single-
channel GWs. To increase the network fairness, each GW switches between the different
channels, i.e., different combinations of transmission parameters, guaranteeing different
ranges and rates of transmission so that every end-device can have its best transmission
opportunity. These different channels are assigned to the end devices (ED) according to
their quality of signal towards the GWs. A study on the channel allocation time was also
performed to analyze its impact in the network fairness. Extensive simulation results
considering different network densities, different numbers of LoRa GWs, and different
channel allocation times showed that our proposal clearly outperforms the channel access
scheme used by the LoRaWAN standard with respect to network goodput, packet delivery
ratio, number of collisions, and access fairness.

The remainder of this paper is organized as follows. Section 2 addresses the re-
lated work regarding network management and medium access control in LoRa networks.
Section 3 presents the channel hopping protocol for single-channel LoRa networks, along
with the pure-ALOHA behavior for comparison purposes. Section 4 describes the simula-
tion environment and presents preliminary results about the performance of the proposed
protocol, and in Section 5 we relate an extensive study on the impact of the channel al-
location time in the network performance, using goodput and fairness as performance
metrics. Finally, Section 6 enumerates the main conclusions and points out directions for
future work.

2. Related Work

Some experiments have already been executed regarding the performance of single-
channel LoRa GWs in real-life environments, such as the study by Hanaffi et al. [8], in
which a network with a low-cost single-channel LoRaWAN GW was tested. They analyzed
the packet loss and the received signal strength of packets transmitted by sensor devices
connected to the referred GW from different floors of a building. Despite the performance
analysis, no strategy was presented to select the LoRa channel in use by the LoRa GW.

With the goal of improving LoRaWAN network performance, Cuomo et al. [9] pro-
posed two different algorithms to outperform the ADR strategy. First, they proposed
EXPLoRa-SF, which uses, in addition to the distance and received signal strength indicator
(RSSI) values, the density of the network, i.e., the number of EDs that are in it, to assign
the SFs. Next, they proposed and tested EXPLoRa-AT, a more complex algorithm than
the previous one, whose goal is to assign the SFs providing a balanced distribution of the
channel load among the network EDs through the equalization of the ToA. According to
the tests performed, EXPLoRa-AT outperformed both ADR and EXPLoRa-SF, not only in
goodput but also in data extraction rate (DER).

The work in [10] explores the idea of EXPLoRa-AT, but extends it to a multiple GW
scenario. This scenario raises a situation that must be taken into account in comparison
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to the single GW scenario: a data packet can be received simultaneously by more than
one GW. To prevent a channel being overused, giving rise to a large number of collisions,
this work proposes adaptive mitigation of the air-time pressure in LoRa (AD MAIORA).
This method allocates the SFs, distributing the network load by the channels and the GWs.
Performance tests have shown that AD MAIORA presents a substantial improvement over
the basic ADR approach.

Additionally, considering a multi-GW LoRa network, Liao et al. [11] proposed a
dynamic method that selects the serving GW and allocates the most appropriate channel,
considering the packet error rate (PER) for each network node. The PER value is calculated
for each node using ACK/NAK signaling after every up-link transmission. Thus, the
proposed method re-selects the serving GW of a node when there is a GW with better
transmission conditions, and re-allocates a new SF value to the ED when the number of
recent NAK signals surpasses a certain threshold. The method is based on the RSSI value
between each GW and node pair to proceed to the GW re-selection, and to do the SF
re-allocation, to minimize the probability of data packet collisions, the nodes are distributed
in a balanced way by the several SF values. Performance tests regarding the BER and
PER showed improvements of 35% and 29%, respectively, compared to the traditional SF
allocation, based only on the RSSI values.

Kim et al. [12] proposed a scheme in which the LoRa gateway changes its operation
channel to avoid congestion. Thus, nodes sending data marked as urgent follow the gate-
way as it changes its channel. However, the other nodes sending non-critical information
do not change; instead, they wait until the gateway returns to the original channel to
transmit again. According to the performed tests, the proposed scheme avoids congestion
and improves transmission efficiency by reducing the accumulated transmission delays
caused by channel congestion.

Iglesias-Rivera et al. [13] proposed a time-slotted spreading factor hopping (TSSFH)
mechanism to tackle blind spots and performance issues in traditional LoRaWAN solutions.
In this mechanism, nodes in a blind spot need to find a relay node connected to the gateway,
resulting in a two-hop LoRa-based network that uses all available SFs, taking advantage of
the orthogonality of LoRa transmissions. The communication opportunity for blind nodes
increases with the listening windows opened by the relay nodes. Some performance tests
of the proposed mechanism were conducted using the OMNeT++ simulator, concluding
that nodes in a blind spot might reach moderate packet delivery rate values when using
TSSFH in very high-density LoRa-based WANs.

TSCH-over-LoRa et al. [14] is a layer that connects the implementation of time-slotted
channel hopping in Contiki-NG to a LoRa radio driver. Originally, TSCH is a synchronous
MAC protocol in which all node transmissions are scheduled. The scheduling defines the
timeslots each node can operate in and the channel to enable orthogonal communications.
Furthermore, using a pseudo-random channel hopping sequence, TSCH is resilient to
external interference and multi-path fading.

Kim et al. [15] proposed a contention-aware ADR to obtain optimal throughput. Thus,
it optimizes the pure ALOHA with the gradient projection method for an ideal distribution
of SFs in the network, using LoRaWAN with FHSS (frequency-hopping spread spectrum).
Hence, it adjusts the SFs to increase the number of nodes using smaller values, which
guarantees higher data rates.

Adelantado et al. [16] used the pseudo-random channel hopping method in LoRaWAN
to tackle reliability constraints. This method allocates the transmissions for the differ-
ent available channels, decreasing the number of collisions in the network. Addition-
ally, to minimize the collision probability even further, new adaptive hopping methods
were introduced.

Benkhla et al. [17] developed a mechanism called Enhanced-ADR to enhance the ADR
mechanism by taking into account the position and trajectory of the EDs to reconfigure the
several communication channels. The allocation model is driven by the network server,
which calculates the corresponding RSSI and searches for the best RSSI interval in which it
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can be located to determine the most suitable channel. According to the performed tests,
Enhanced-ADR improves the quality of service of the overall networks, solving the issues
of ADR, such as low adaptation speed, low performance, and power consumption.

The work presented here is differentiated from the previous work for several reasons.
First, instead of considering multi-channel LoRa GWs, it admits that a LoRa GW is only
capable of decoding one LoRa channel at a time. This assumption is important, since it
allows the possibility of a simple LoRa transceiver being used as LoRa GW. Then, the LoRa
protocol here presented does not follow the channel access behavior of the LoRaWAN
standard (the pure-ALOHA scheme), which is known to perform poorly in high-density
scenarios. Instead, and following previous works that have shown that control packets can
still be used in LoRa networks without harming the energy consumption of the EDs [18]
(lower energy spent per packet delivered), we present a fair and efficient channel hopping
scheme for multiple LoRa GW networks. GWs switch between different communication
channels, as they can only operate one at a time, to allow all EDs in their range to suc-
cessfully transmit data packets, regardless of the signal strength. Finally, the performance
results achieved through simulation consider a more realistic LoRa packet capture effect [7],
instead of the outdated 6 dB collision model that is still used in the literature.

3. A Fair MAC Channel Hopping Scheme for LoRa Networks

This work presents a MAC protocol for LoRa networks based on channel hopping,
which was tested through simulation. It uses a reservation strategy, where EDs use a control
packet for advertising their neighboring EDs about their intent to transmit a data packet.
Moreover, each ED uses the most favorable channel available to send their data packets.

Therefore, to address every communication situation and keep a low level of complex-
ity, +three channels were chosen, i.e., three combinations of transmission parameters, each
one with a different transmission range and rate. They are:

• Fast-Rate Channel: Due to its short communication range capability, this channel is
for EDs closer to a GW, and has excellent signal quality. It is the fastest of the three, so
the EDs that use it take less time to transmit a packet. Consequently, the duty-cycle
restriction time is shorter, increasing the number of transmissions allowed per ED;

• Slow-Rate or Standard Channel: This channel is for EDs within reach of a GW but
has poor signal quality. The ToA of the data packets is the longest. The GWs use it to
send synchronization packets, which will be introduced later in this chapter, as it is
the one with the longest range;

• Mid-Rate Channel: Used by EDs with intermediate signal strength with a GW, i.e.,
worse than those using fast-rate but better than those using slow-rate. The ToA of the
data packets is longer than in the fast-rate channel due to the more extended range,
but shorter than in the slow-rate channel.

An ED only transmits data packets in its ideal channel. This is the one that guarantees
the highest data rate and lowest ToA, based on the RSSI to the GWs. Before each transmis-
sion, it transmits a ready-to-send (RTS) control packet to advertise to neighboring EDs its
intent. An RTS is also transmitted using the ideal channel; therefore, only the EDs in its
reach that are using the same channel can decode it.

The RTS packet structure, depicted in Figure 1, is based on the one defined by the
SX1272 LoRa module support library and used in [18]. In this structure, 5 bytes are the
minimum packet header, and the remaining 4 bytes are for data payload, used directly by
the EDs. Of these, 2 bytes are reserved for the address of the GWs that might receive the
advertised packet, 1 byte for the type of packet transmitted (control, in this case), and 1 byte
for the size of the advertised packet.
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Figure 1. RTS packet structure.

The EDs can discard RTS packets based on the information regarding the targeted GWs.
If none of the targeted GWs reach the ED or do not provide it with the ideal transmission
rate available, the RTS is discarded. Otherwise, the ED calculates the backoff time to take,
being prevented from transmitting during it. The backoff time is calculated using the data
packet size described by the RTS, plus an additional time, given by a random amount of
backoff slots, to reduce collisions upon backoff periods. The duration of each backoff slot
is equal to the ToA of an RTS packet. After each transmission, an ED must calculate the
mandatory self-restriction period, as LoRa transmissions are restricted to 1% of duty cycle.
This period also includes a random number of backoff slots to desynchronize EDs that
might have transmitted simultaneously the same amount of data.

As we are dealing with networks with multiple single-channel GWs, an ED can be
located in an overlap zone of the GWs’ coverage. In those areas, an ED can have different
ideal channels for each GW. However, it will use exclusively one of those channels, namely,
the fastest one.

The GWs change their communication parameters over time to give equal chances
to all EDs in their reach to transmit. When the operation channel hops from the Standard
to a non-Standard, a GW sends a synchronization packet, the change mode (CM) packet,
which advertises to the EDs in its reach about the non-Standard channel to which it will
change and for how long it will use it. This packet is always transmitted using the Standard
channel, as it has the most significant reach. The execution flow of each GW using our
channel hopping protocol is shown in Algorithm 1.

Algorithm 1: LoRa channel hopping protocol: GW execution flow.
// End_CT: The time in the actual channel comes to an end;
// Using_Standard: The GW is using Standard channel;

// End_BT: The mandatory backoff time comes to an end;
// CM_BT: CM packet backoff time;
// Overheard_DP: Overhears a Data packet;

1 if End_CT then
2 if Using_Standard then
3 if End_BT then
4 Send a CM packet ;
5 Calculate CM_BT ;
6 Change to the advertised channel ;

7 else
8 Change to Standard channel ;

9 else
10 if Overheard_DP then
11 Decode Data Packet ;
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The structure of CM packets is similar to the one used in RTS packets, but with a
payload of 6 bytes. Of these, 2 bytes are for the address of the transmitting GW, 1 byte for
the packet type identification, 1 byte for identifying the non-Standard channel to which the
GW will hop to, and 2 bytes for the period that the GW will remain in that channel.

As in the LoRa networks all the devices have to respect the duty-cycle restriction, the
GWs have to change their operation channels accordingly. Hence, they have to wait for
ninety-nine times the ToA of a CM packet between transitions to non-Standard channels.
During that period, the GWs hop back to the Standard channel without further advertise-
ment, upon the end of the non-Standard time advertised by a CM packet. As soon as the
duty-cycle restriction ceases, a GW can change again to a non-Standard channel. GWs
do not change to the same non-Standard channel consecutively; they alternate between
Mid-Rate and Fast-Rate. Therefore, if a GW hops from the Standard to Mid-Rate channel
in a first instance, in the next hop to a non-Standard channel it will chose the Fast-Rate
channel, and vice versa. The GW channel hopping cycle is shown in Figure 2.

Figure 2. LoRa channel hopping protocol: GW hopping cycle.

Algorithm 2 shows the complete behavior of the EDs with our channel hopping
protocol. As we can see, control packets (RTS and CM) are filtered by EDs according to the
targeted GWs and the used channel. Thus, EDs only consider RTS packets that advertise a
transmission in their ideal channel and to the same GW, or GWs, that they use. With this,
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as soon as a GW in their reach changes to their ideal channel, they can transmit right away,
without having to wait for the conclusion of transmissions with which they do not interfere.

Algorithm 2: LoRa channel hopping protocol: ED idle state execution flow.
// Scheduled_CM: CM packet about to be received;
// CM_RecBT: Backoff time until receiving a CM packet;
// Overheard_RTS: Overhears an RTS packet;
// GW_inUse: Advertised destination is GW in reach;
// RTS_BT: RTS packet backoff time;
// Overheard_CM: Overhears a CM packet;
// CM_BT: CM packet backoff time;
// Ideal_Channel_GW: GW, or GWs, using the ED Ideal Channel at the moment;
// Random_BT: Random backoff time;
// DC_Restriction: Duty-cycle restriction left to be respected;
// Data_isReady: Data packets ready to be transmitted.

// Mandatory_BT: Mandatory backoff time;

1 if any Scheduled_CM then
2 if using Standard_Channel then
3 Calculates CM_RecBT ;
4 else
5 Change to Standard_Channel ;
6 Calculate CM_RecBT ;
7 Enter Backoff State ;
8 else
9 if Overheard_RTS then

10 if GW_inUse then
11 Calculate RTS_BT ;
12 Enter Backoff State ;

13 if Overheard_CM then
14 if advertised Ideal_Channel then
15 Change to Ideal_Channel ;
16 Calculate CM_BT ;
17 Enter Backoff State ;
18 else
19 if any Ideal_Channel_GW then
20 Change to Ideal_Channel ;
21 Calculate Random_BT ;
22 Enter Backoff State ;
23 else
24 Enter Backoff State ;

25 else
26 if any DC_Restriction then
27 Enter Idle State ;
28 else
29 if Data_isReady then
30 if using Ideal_Channel then
31 if any Ideal_Channel_GW then
32 Send RTS packet ;
33 Send Data packet ;
34 Calculate Mandatory_BT ;
35 Enter Backoff State ;
36 else
37 Enter Idle State ;

38 else
39 Enter Idle State ;

40 else
41 Enter Idle State ;

4. Performance Evaluation

4.1. Setup and Methodology

The results presented here were obtained using MATLAB simulators developed specif-
ically to represent the behavior of each LoRa protocol: the pure-ALOHA, in which all
devices use the same transmission parameters; and the channel hopping, where the EDs
transmit using their most appropriate transmission channels.

The simulation time was chosen to guarantee that every ED has the opportunity to
transmit, regardless of the network size. Therefore, the chosen value was 3× 108 ms,
approximately 83.33 h. Data packets are generated periodically so that every ED has
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always a packet ready to be transmitted. Regarding packet sizes, data packets have always
100 bytes, RTS packets 9 bytes, and CM packets 11 bytes, whose ToA are detailed in Table 1
(given the channel details in Table 2). The non-destructive property of LoRa was modeled
following the work in [7].

Table 1. ToA of each control packet.

Standard Channel Mid-Rate Channel Fast-Rate Channel

RTS Packet 286.55 ms 75.52 ms 12.39 ms
CM Packet 307.05 ms - -

Table 2. Radio parameters characterizing the different LoRa channels used in this work.

BW (kHz) CR SF Sensitivity (dBm)

Standard Channel 125 4/5 10 −129
Mid-Rate Channel 250 4/5 9 −123
Fast-Rate Channel 500 4/5 7 −114

For the pure-ALOHA protocol, as every device uses the same channel, the radio
parameters never change, corresponding to the Standard channel ones in Table 2, as they
are the ones that enable longer-range communications. The radio parameters used were
based on the SX1272 LoRa module operation modes [19], and the selected frequency of
operation was 868 MHz.

For each performance test, the number of EDs varied between 100 and 2000. The
circumferences centered in each one of the GWs represent the maximum communication
reach of each available channel. Moreover, the times allocated for the Fast-Rate and Mid-
rate channels, per cycle, were 7.5 and 10 s, respectively.

Figure 3 shows the positioning of the GWs in the different tested scenarios. GW1,
represented as a red cross, is the only one considered in all tested scenarios. Its maximum
reached using the Standard channel is represented as a red circumference; all the EDs were
located in the circle limited by this circumference. Regarding the remaining GWs, 2 through
5, they were considered only for multiple GW scenarios.

Figure 3. LoRa network with 5 gateways, GW1, GW2, GW3, GW4, and GW5, represented by red,
black, blue, green, and purple crosses, respectively, and 100 EDs, represented as blue circles.

Regarding the quality of each ED transmission, we decided to resort to measurements
obtained by Oliveira et al. [20]. Thus, the maximum communication and signal strength
ranges, for each channel, are presented in Table 3.
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Table 3. Maximum communication and RSSI range for each LoRa channel.

Range (m) RSSI Range (dBm)

Fast-Rate 1210 [−100, −90]
Mid-Rate 2890 [−110, −101]
Standard 4030 [−125, −111]

4.2. Performance Results

Figure 4 shows the network goodput for both access protocols, for different network
sizes and scenarios. With the addition of more GWs, the goodput of pure-ALOHA improves,
as a higher number of EDs have a better chance to transmit their packets successfully,
namely, those which are furthest from GW1. However, our scheme, when compared with
the pure-ALOHA access scheme in a network of 2000 EDs, further improved the goodput
by 157.07% with the installation of a second gateway (GW2), 62.01% upon including a third
one (GW3), and 76.33% when five GWs were considered.

The packet delivery ratio (PDR), illustrated in Figure 5, also increased with the number
of GWs; this increase was more significant for smaller networks. For the same network
configuration, our scheme always outperformed the pure-ALOHA one.

Regarding the collision percentage, illustrated in Figure 6, we can see that for pure-
ALOHA this value is close to 100% no matter the number of gateways in the network; this
is justified by the high number of EDs in the experiments, leading to a network saturation
scenario. With our scheme, the percentage of collision increases with the network size. For
2000 EDs, it ranges from 72% with five GWs up to 97% with only one GW. Nevertheless, in
spite of the high percentage values observed in both schemes, the network goodput is not
equal to zero, thanks to the non-destructive property of LoRa.

The percentage of duplicate packets, i.e., packets received simultaneously by more than
a single GW, increases with the number of GWs, for networks with less than approximately
1000 EDs, as seen in Figure 7. From this density up, the percentages are very similar for the
networks with different sizes.

As shown in Figure 8, the Jain’s network fairness of pure-ALOHA improves with the
introduction of new GWs, as there is a better chance for the EDs, namely, those further from
GW1, to have a better signal strength to a given GW. As the network increases, the number
of collisions also increases, and the EDs with better signal quality have higher chances to
deliver their packets. Therefore, the fairness decreases, regardless of the introduction of
GWs to the network.

Figure 4. Network goodput.
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Figure 5. Network packet delivery ratio (PDR).

Figure 6. Percentage of collisions.

Figure 7. Percentage of duplicated packets among all packets received.

Figure 8. Jain’s network fairness.
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As for the channel hopping protocol, the network goodput also increases with the
number of GWs. This time, the increase is more pronounced than with pure-ALOHA, as
the EDs can use faster channels to transmit, and thus have more opportunities to access the
medium. Moreover, as the competition to access the medium of each GW is lower, there is
a better chance for the transmissions to be successful, which leads to an increase in the PDR,
as shown in Figure 5. For a network size of 2000 EDs, the goodput of channel hopping
increases by 68.12%, 39.14%, or 37.11%, with two, three, and five GWs, respectively, when
adding GWs to the network.

The percentage of duplicated packets per medium access is not as high as that obtained
in pure-ALOHA for small networks; however, as the network scales up, the percentage be-
comes higher than pure-ALOHA’s because each transmission is more likely to be delivered,
as shown in Figure 5. Moreover, with this protocol, the percentage registered for 5 GWs
is the lowest of the three scenarios. The network EDs further from GW1 do not transmit
duplicated packets so often, as they have closer GWs and can transmit their packets using
a faster channel. This behavior is shown in Figure 9.

Figure 9. Number of duplicated packets per ED for a network with 2000 EDs using channel
hopping protocol.

Regarding the network fairness of the channel hopping protocol, shown in Figure 8,
for small networks, the scenario with one GW started to be the unfairer. However, for
larger-scale networks, the same one became fairer and surpassed those with two and
three GWs from 1313 EDs and 1800 EDs, respectively. This was due to the better transmis-
sion conditions that are guaranteed to some EDs with the addition of GWs, to the detriment
of others, causing the performance differences to increase in the network. In the scenario
with fiver GWs, as the GWs are distributed more equally around GW1, the network is fairer
than in the others where the network is unbalanced. The EDs which use the channels with
the fastest data rates can transmit packets more often than the ones that use the slowest
channel. Thus, the time allocation for the channels, by the GWs, must be according to the
transmission rate and density of EDs using each one of them, giving similar chances to
each ED to transmit a data packet, regardless of the channel they use.

5. Channel Time Analysis

Up to this point, the performance analysis of both pure-ALOHA and channel hopping
protocols has been focused on the number of GWs on the network. In this section, we will
focus our attention on the impact of the channel time allocation on the network performance.
In the previous section, the time allocated by the GWs, per cycle, to each channel was static.
Thus, despite the varying number of EDs and the number of GWs covering the network,
the amount of time set to each channel remained unchanged, distributing the time unfairly.

5.1. Channel Time Allocation for a Single GW Network

To obtain the time allocation that grants the best network fairness, we first considered
a single GW network with a variable number of EDs. For each network size, several channel
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time distributions were evaluated in order to find the ones that grant similar chances of
channel access opportunities. Table 4 presents the channel time allocations for each network
size which yield the best fairness indicator. As expected, the channel time allocated to the
Fast-Rate must be lower than for the other channels, regardless the network size, as the
data rate is faster, and thus the EDs have more chances to access the medium.

Table 4. Channel times for a single GW scenario, per cycle.

Number of EDs Mid-Rate Channel (ms) Fast-Rate Channel (ms)

100 9205 4336
250 9133 2805
500 8774 2211

1000 7957 1820
1500 7568 1663
2000 7483 1628

Figure 10 illustrates the Jain’s network fairness according to the channel allocation
times presented in Table 4, where we can see that by using a customized time channel
allocation time, according to the number of EDs in the network, the protocol is considerably
fair when compared to a blindsided version of it, with a fixed allocation time. In particular,
for a network of 2000 EDs, the network fairness index increased from 0.48 to 0.76. As
explained before, by using a fair channel allocation time we are reducing the channel time
allocated to the fastest channel because the data rate is higher, thereby granting the same
channel access opportunities to EDs in other zones. Naturally, such a reduction has an
impact on the network goodput, as illustrated in Figure 11, because EDs in faster zones are
the ones that contribute more to the network goodput.

Figure 10. Network fairness for one GW and fair channel allocation times.

Figure 11. Network goodput for 1 GW and fair channel allocation times.
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5.2. Channel Time Variation for Multiple GW Networks

By increasing the number of GWs, the number of EDs optimally using the Standard
channel decreases. Therefore, in order to keep the network fair, the time allocated to the
Standard channel must be reduced. To analyze the impact of the channel time variation
in the scenario of multiple GWs, we decreased the amount of time initially given to the
Standard channel and distributed to the non-Standard channels following the proportion
of non-Standard times obtained for a single GW (hereafter simply denoted as percent-
age of decrease, or simply PoD). Therefore, the Standard channel time was decreased
from 2.5% to 50%.

Let us start by analyzing a network with 2 GWs. As shown in Figure 12, for large
networks, the fairness index increases with the PoD until a maximum value is observed.
For example, for a network size of 1500 EDs, this maximum is achieved when the PoD is
around 15%, and for a network size of 100 EDs, the fairness peak is registered when the PoD
is around 2.5%. When we remove more time from the Standard channel and give it to the
non-Standard channels, i.e., when we increase the PoD, the fairness drops due to the lack
of channel access opportunities of the EDs using the Standard channel as the optimal one.

Figure 12. Network fairness for 2 GWs, different network sizes and different PoD.

As the EDs can transmit their packets at a higher data rate, competing for the medium
more often, the network goodput improves with an increase in the PoD, as shown in
Figure 13. However, as the EDs that use channels with slower data rates have fewer
transmission opportunities, network fairness is negatively affected.

Figure 13. Network goodput for 2 GWs, different network sizes and different PoD.
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When we install a third GW, the behavior of the network fairness, as shown in
Figure 14, is identical to the prior behavior. The PoD from which the network fairness starts
to decrease is about 15% when the network has 1500 EDs, the same value registered for the
2 GWs scenario. However, the peak occurrence with the network growth does not always
have increasing behavior. The network with 100 EDs, regardless of initially being the fairest
scenario, was surpassed when the decrease surpassed 38%. This new threshold occurred
later than in the 2 GWs network (34%).

Similarly to what happened in the scenario with 2 GWs, the network goodput for a
3 GWs scenario, illustrated in Figure 15, increased with the time allocated to the faster
channels, namely, the Fast-Rate channel, which allowed the EDs to access the medium
more often.

Figure 14. Network fairness for 3 GWs, different network sizes and different PoD.

Figure 15. Network goodput for 3 GWs, different network sizes and different PoD.

At last, we present the results regarding the time allocation in a 5-GWs scenario. As
shown in Figure 16, we can see an increase in the network fairness until the PoD of the
Standard channel time surpasses 25%, for a network with 1500 EDs. This time, the fairness
in less populated networks, namely, 100 EDs, increases for a PoD below 25%.

The interception between the curves of 100 EDs and 250 EDs happened for a higher
PoD, approximately 44%, as shown in Figure 16. Furthermore, PoD above 40% had a more
negligible influence on the fairness of networks with 1500 EDs. Like the networks with
three GWs, the fairness peak does not always increase with the network growth; it starts to
decrease above about 500 EDs.

Regarding the network goodput, the behavior is very similar to that registered for
scenarios with two and three GWs: increasing with the time allocated to faster channels, as
shown in Figure 17.
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Figure 16. Network fairness for 5 GWs, different network sizes and different PoD.

Figure 17. Network goodput for 5 GWs, different network sizes and different PoD.

To easily compare the network fairness, Figure 18 presents the fairness behavior for
each tested scenario and the different PoD of the Standard channel time. Due to the fairer
distribution of GWs by the network, the scenario with five GWs was only outperformed
for percentages below 15% and in networks with under 500 EDs.

The results also show an overlap between the three tested scenarios. First, the scenario
with two GWs achieved better fairness than the others, followed by the network with
three GWs. and last, the one with five GWs. This behavior is supported by Figure 19, in
which the curve representing the 0.95 fairness index moves towards higher PoD as the
number of GWs increases. As seen, for a network with 100 EDs, the higher fairness achieved
with the original time allocation occurred with a scenario with two GWs. However, as the
number of EDs increased, better fairness was guaranteed by the scenario with three GWs
when the PoD was around 5%. Then, above a PoD of about 13.4%, as the 0.95 fairness lines
of three and five GWs intersect, the fairness of the latter scenario became the best.

When the scenario with five GWs had 1500 EDs, the fairness peak was at 0.7745, as
the PoD was equal to 25%. For the same PoD and network size, the fairness values verified
for the other scenarios were 0.6662 and 0.7153, for two GWs and three GWs, respectively.
This is a clear difference, which is as marked as the time allocated to faster rate channels,
per GW cycle.
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Figure 18. Network fairness comparison for different numbers of GWs, network sizes, and PoD.

Figure 19. Detailed analysis of the fairness behavior regarding Figure 18.

As shown in Figure 20, by comparing the goodput for all the tested scenarios, an
increase was noticeable with the number of GWs, which became more accentuated with
increases in the PoD and the network size, due to the decrease in the channel access
competition of each GW. Along with this, the number of EDs in the ideal channel increases
in the Fast-Rate channel, which results in an increase in the number of channel accesses for
the same period of time. The transmissions are faster than in slower channels, leading to
smaller restriction periods.
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Figure 20. Network goodput comparison for different numbers of GWs, network sizes, and PoD.

Figure 21 illustrates the percentage of collision for every tested scenario. The network
with five GWs had the lowest number of channel access collisions when considering
every medium access performed by the EDs. As referred to before, the main reason for
this behavior is the reduction in the number of EDs sharing the channel and the lower
probability of two or more EDs choosing the same time slot to transmit. Another reason is
the decreasing possibility of the hidden-terminal problem. As the number of GWs increases,
the EDs transmitting to a given GW, with a specific channel, are more within reach of the
other EDs that also transmit to the same GW. Thus, the control packets are more likely to be
received by the generality of the EDs, decreasing the number of situations where two EDs
transmit at the same time because none of them receive the control packet sent by the other.

Figure 21. Percentage of collisions comparison for different numbers of GWs, network sizes, and PoD.
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6. Conclusions

This study presented a new scheme for large-scale LoRa networks with multiple,
low-cost single-channel GWs. The GWs switch between different operation parameters,
so-called channels, to serve the EDs in their communication range, regardless of their signal
strength. When comparing the developed scheme with pure-ALOHA, where every ED
transmits using the same channel, the LoRa network improved regarding goodput and
fairness in all tested scenarios for an arbitrary channel time allocation. The fairness for a
scenario with five GWs and 2000 EDs improved from 0.2644 to 0.5245. The primary goal
was to use low-cost gateways and keep the network fair, giving the same medium access
opportunity to all EDs. Therefore, this paper also presented a study regarding the time allo-
cation, per GW cycle, for the different channels, first only addressing single GW scenarios
and then scenarios with multiple GWs. We concluded that the time allocation to the channel
that can transmit faster must be lower to prevent an increase in the disparity of performance
(goodput) between EDs using different channels. Otherwise, the network becomes unfair,
giving more transmission opportunities to some EDs to the detriment of others.

In the future, to increase the performance levels of the developed protocol, we aim to
add new features, such as a dynamic maximum number of backoff slots according to the
number of EDs and the channels in use. We will also target the introduction of mobility
in the scenario to simulate real-life scenarios more accurately and add adaptive channel
periods calculated based on the number of EDs using each channel at the moment. At last,
a comparison between simulated and real-life tests is planned to verify the applicability of
the developed protocol.
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Abstract: Open radio access network (O-RAN) is one of the promising candidates for fulfilling flexible
and cost-effective goals by considering openness and intelligence in its architecture. In the O-RAN
architecture, a central unit (O-CU) and a distributed unit (O-DU) are virtualized and executed on
processing pools of general-purpose processors that can be placed at different locations. Therefore, it
is challenging to choose a proper location for executing network functions (NFs) over these entities
by considering propagation delay and computational capacity. In this paper, we propose a Soft Actor–
Critic Energy-Aware Dynamic DU Selection algorithm (SA2C-EADDUS) by integrating two nested
actor–critic agents in the O-RAN architecture. In addition, we formulate an optimization model that
minimizes delay and energy consumption. Then, we solve that problem with an MILP solver and use
that solution as a lower bound comparison for our SA2C-EADDUS algorithm. Moreover, we compare
that algorithm with recent works, including RL- and DRL-based resource allocation algorithms and
a heuristic method. We show that by collaborating A2C agents in different layers and by dynamic
relocation of NFs, based on service requirements, our schemes improve the energy efficiency by 50%
with respect to other schemes. Moreover, we reduce the mean delay by a significant amount with our
novel SA2C-EADDUS approach.

Keywords: actor–critic learning; energy-efficiency; O-RAN; RAN optimization

1. Introduction

The next generation wireless networks include a fundamental transformation which is
the next generation radio access networks (NG-RAN) [1]. The NG-RAN protocol stack can
be split into eight different disaggregated options which are combined within three network
units: radio unit (RU), distributed unit (DU), and centralized unit (CU). Furthermore, un-
like the traditional RAN, NG-RAN functions can be virtualized on top of general-purpose
hardware. In Open RAN (O-RAN), the concept of virtualized RAN (vRAN) and the disag-
gregation of network units reaches its full interoperability by using open interfaces among
multiple vendors [2,3]. However, the placement of the virtual network functions can be
challenging due to multiple constraints, such as routing path, RAN protocol splits, band-
width limitations, maximum latency tolerance requirements, heterogeneous computational
resources, and so on. The main objective of this work is to develop an RL-based network
function placement scheme in a way that the energy consumption is minimized while
the expected quality of service (QoS) for that network function is satisfied. In this work,
resource block (RB) scheduling is considered as a network function (NF). The proposed
scheme dynamically relocates this NF among DUs based on their location and processing
power by targeting minimum energy consumption and satisfying the QoS requirements
of users.

The idea of disaggregation in O-RAN is allowing RAN functions to be placed at
different computing devices in a distributed manner [4]. Therefore, it is vital to identify
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how this disaggregationcan be executed and what metrics need to be satisfied to run these
disaggregated components correctly. By considering the concept of function splits in O-
RAN, the requirements for network functions such as minimum bit rate and the maximum
latency for communication among O-RAN components (RU, DU, and CU) need to be
satisfied. This work is developed based on the O-RAN architecture and split option 7.2
where the functional split is between RU and DU [1,5].

Since the amount of energy consumption in DUs is proportional to the time they are
active, i.e., processing tasks, mobile network operators (MNO) are seeking an intelligent
assignment model where RUs use minimum required resources at DUs, while QoS require-
ments such as packet delivery ratio and latency are satisfied [6]. Note that a part of DU
energy consumption is fixed due to the cooling system, idle power, etc. Therefore, reducing
the active time of DUs can decrease the overall energy consumption in the network. This
can be achieved by optimizing load distribution among DUs with respect to their process-
ing power and their location and setting redundant DUs to sleep mode. The main focus of
this paper is to highlight the effect of deploying an AI-enabled network function relocation
in a dynamic environment on energy consumption and network performance. To this end,
we examined our model by considering resource block scheduling as a network function
and applied our AI-based framework on it. We evaluate this model by generating User
Datagram Protocol (UDP) and Transmission Control Protocol (TCP) packets (video and
ITS) with different delay budgets and QoS requirements.

In this paper, we propose an RL-based resource block allocation in 5G and DU selection
in O-RAN architecture. In the proposed model, we employed energy awareness as a key
performance indicator and provide a multi-agent actor–critic (A2C) method as the primary
novelty of this study. In this work, we employed two agents; one is responsible for
allocating RB to UEs by considering the type and priority of packets, while the other
agent is integrated for reducing the energy consumption by considering processing power,
capacity, and propagation delay among DUs in the network. Furthermore, performance
evaluation includes a mixed-integer linear programming (MILP) solver comparison to
determine the gap between this novel approach and the lower bound of that multi-objective
minimization problem. Thus, we demonstrate the feasibility of this advanced machine
learning implementation in a disaggregated RAN scheme.

In our prior work [7], we developed an A2C-based algorithm for invoking NFs at
the CU or DU by considering traffic requirements. This work extends [7] by considering
the propagation delay between O-RAN components and the energy consumption, and in
addition, we consider DUs with different processing capacities. The proposed model is ex-
amined for a different number of UEs, and it is compared with a heuristic model developed
in our previous works and two other recent works. Our results show that the proposed
model can reduce energy consumption by 50% with respect to models where network
functions are executed locally under the given settings. Apart from energy conservation,
the proposed model can reduce the overall mean delay for an intelligent transport system
(ITS) and video traffic down to 7 ms and 12 ms, respectively. In contrast, the packet delivery
ratio for ITS and video traffics will be increased up to 80% and 30%, respectively.

The rest of this paper is organized as follows: In Section 2, we discuss the recent works
in this area. In Section 3, we formulate the problem and propose an MILP solution. The A2C-
based algorithm is comprehensively explained in Section 4. In Section 5, the proposed
scheme is compared with four baseline algorithms, and in Section 6, we conclude the paper.

2. Related Work

Energy-efficiency algorithms for traditional RANs have been comprehensively pre-
sented in [8]. Most of the works covered in [8] are based on on-off techniques for BSs. Some
of these models rely on traffic prediction to estimate low traffic intervals, while others use
cell zooming techniques to expand the BSs’ coverage with respect to their neighbors [9–11].
These studies consider RAN equipment as a monolithic equipment.
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Energy efficiency is also considered in centralized RAN (C-RAN), where just the radio
unit of BSs is disaggregated at remote radio heads (RRHs), and the rest is implemented at
the baseband unit (BBU). For instance, in [12], BBU placement across physical machines in
a cloud site is formulated as a bin-packing problem, and the authors tackle this problem
by proposing a heuristic algorithm. Additionally, in [13,14], the authors improve the work
in [12] by proposing a BBUs virtualization technique with a linear computational complexity
order that reduces the power consumption in the network. Furthermore, in [15], the authors
show how traffic forecasting at each BS can be used in dynamically switching (on/off)
RRHs. Moreover, ref. [16] shows an end-to-end energy-efficient model by activating and
placing virtual network functions (VNFs) on physical machines and distributing the traffic
among them.

The aforementioned C-RAN scenarios mainly reflect the fixed functional split, and they
require high fronthaul bitrate and consequently incur high deployment cost. To this
end, the impact of the flexible function split is examined in several recent studies [17].
For instance, in [18], savings in power and computational resources with respect to different
function splits are analytically modeled. In [19], the authors aim to optimize the energy
efficiency and the midhaul bandwidth in C-RAN.

Different from these works, in this paper we evaluate the energy consumption for
dynamic NF migration among edge clouds, i.e., not only CU allocation as in C-RAN but
also DU allocation in O-RAN is considered. Finally, refs. [20,21] show that the migration of
NFs has a non-negligible impact on energy consumption, which has not been addressed
in previous works. Since we aim to address the placement of resource allocation function
using machine learning, it is important to give a brief overview on the existing studies
on RL-based resource allocation [22]. For instance, an RL-based resource block allocation
technique is employed in a vehicle-to-vehicle network in [23].

In [24], an RL-based algorithm is proposed for optimizing the energy consumption
and cost in a disaggregated RAN. Moreover, in [25], the authors develop an RL-based
user-beam association and resource allocation scheme using transfer reinforcement learn-
ing. In [26], a deep RL-based resource block allocation is introduced in which RBs are
allocated in a way that the mean delay is reduced. Another Deep RL approach is proposed
in [27] to solve a two-tier resource allocation problem in a standalone base station. In our
previous work [28], we developed an RL-based NF to schedule URLLC and eMBB pack-
ets with respect to the delay budget and channel conditions of UEs in the network. We
also developed an RL-based algorithm for invoking NFs at the CU or DU by considering
traffic requirements [7]. However, unlike [7], in this paper we develop a comprehensive
scheme that considers the propagation delay between O-RAN components and the en-
ergy consumption, and in addition we consider DUs with different processing capacities.
Furthermore, in [29], we introduced an optimization-based solution for the DU selection
problem under delay constraints. This paper extends [29] by modeling the problem as a
multi-objective minimization problem for jointly addressing energy-efficiency and delay.

Unlike previous works, in this paper we develop an actor–critic based DU selection
scheme for a RAN with disaggregated layers (such as O-RAN) to dynamically relocate
network functions among available DUs (edge servers) by considering their processing
power and propagation delay in a way that the overall energy consumption in the network
is reduced, while packet delivery ratio and delay budget of user traffic are satisfied.

3. System Model

Figure 1 shows the overall architecture that is structured as a time-interval-based
model. In each time interval (t ∈ T ), I numbers of user equipment (UEs, i ∈ I) request
demands which are defined as a tuple 〈i, t〉. These demands may belong to one of two
(K = 2) different types of traffic (k ∈ K), such as video and ITS. These traffic types have
different demand sizes (U〈i,t〉k) and delay budgets (Δ〈i,t〉k). On the infrastructure side, we
consider L low processing power DUs (DULP, l ∈ L) that service these UEs. These DUs can
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house network protocols from the lowest level to the packet data convergence protocol [30].
Moreover, each one has a dedicated RU to perform lower layer RF functions.

Figure 1. The overall architecture of the proposed model. Agents are located at DUs and interact
with the DU selection algorithm by sending some feedback during each time interval (the red arrow).
Then the DU selection scheme informs agents (the green arrow) regarding the location of NF during
the next time interval based on the types of packets (URLLC or eMBB), available processing capacity,
scheduling delay, and propagation delay among DUs to minimize the overall energy consumption in
the network.

Moreover, in our architecture, DUs have an option to migrate NFs to a DU with
higher processing power (DUHP). This migration option has two essential benefits in our
system. First, we can switch off the digital units in the local DUs and save energy. Second,
aggregation of NFs from multiple DUs in a common DUHP allows the resource allocation
function to observe multiple RB maps in the same DU and mitigate inter-cell interference.
This can lead to a lower scheduling delay and reduce the number of retransmissions in
the network. However, it should be noted that DUHP has a limited processing capacity
(ξ), and due to its location, migrating NFs to it may face higher propagation delay (DP

l )
with respect to other DUs, which can negatively affect packets with a lower latency delay
budget. The details of the notations are given in Notations .

3.1. Energy Consumption and Delay Models

Equation (1) calculates the energy consumption in DULP l in time interval t′. That
value equals zero when NFs are migrated to DUHP in this time interval (blt′ = 1) (Note that
a DU may need to consume energy for other reasons in that time interval. However, these
energy consumptions do not change with the decision variables; thus, we do not include
them in the energy consumption model. Meanwhile, they can be easily added as constant
energy consumption.). The equation provides that case by the rightmost multiplicand
(1− blt′ ). Processing NFs has two energy consumption terms; the first one is the fixed
energy consumption (EF

l ), which does not change by the activity of the processing unit in
this DU. The second one is the dynamic energy consumption which is considered when the
processing unit is active for user traffic demand. Thus, it depends on the processing unit
energy consumption per RB (ED

l ) and the DU utilization that is calculated by the number
of allocated RBs r in the time interval t′. Here a〈i,t〉rt′ equals one if the traffic demand 〈i, t〉
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is processed in RB r in the time interval t′. Lastly, Equation (2) calculates the total energy
consumption in DUs.

Elt′ =

⎛⎜⎜⎝EF
l + ED

l ∗ ∑
〈i,t〉∈〈I ,T 〉

r∈R

a〈i,t〉rt′

⎞⎟⎟⎠ ∗ (1− blt′) (1)

ETOT = ∑
t′∈T

(
EHP + ∑

l∈L
Elt′

)
(2)

The delay of each traffic demand (〈i, t〉) is the summation of two terms in which the
first one is the scheduling delay (δS

〈i,t〉), and the second one is the propagation delay (δP
〈i,t〉).

Equation (3) calculates the scheduling delay in which y〈i,t〉t′ is a binary decision variable
equaling ‘1’, if the traffic demand 〈i, t〉 scheduled/assigned to process in an RB in time
interval t′. However, for a large traffic demand, RBs in a single time interval may not be
enough to finish that demand; thus, multiple time intervals might be assigned to demand
〈i, t〉. For that reason, we find the most recent assigned time interval (max

t′∈T
(y〈i,t〉t′ ∗ t′)) for

that demand (〈i, t〉). Then, we subtract the demand time interval (t) from that value to find
the number of time intervals waited for that demand (〈i, t〉). Finally, we multiply that value
with the length of transmission time interval (TTI) to find the scheduling delay.

δS
〈i,t〉 =

(
max
t′∈T

(y〈i,t〉t′ ∗ t′)− t
)
∗ TTI (3)

δP
〈i,t〉 =

DP
M(i)

∑
t′∈T

y〈i,t〉t′
∑

t′∈T
y〈i,t〉t′ ∗ bM(i)t′ (4)

δM =

∑
k∈K

〈i,t〉∈〈I ,T 〉

(δS
〈i,t〉 + δP

〈i,t〉) ∗ u〈i,t〉k

∑
k∈K

〈i,t〉∈〈I ,T 〉

u〈i,t〉k
(5)

Equation (4) defines the propagation delay for demand 〈i, t〉. As explained, a user
demand may be scheduled for more than one time interval (y〈i,t〉t′ > 1). Some of these
time intervals may belong to the times that NFs processed in DULP (bM(i)t′ = 0) (M(i) is
a given value that maps the user i with its DULP, (l = M(i)).). In those time intervals,
propagation delay equals zero due to negligible distance between UEs and DULP. On the
other hand, in some intervals, NFs may be processed in DUHP (bM(i)t′ = 1). To calculate the
number of time intervals in the latter case, we first multiply the scheduled time intervals
with the NF migration decision variable (y〈i,t〉t′ ∗ bM(i)t′ ). That value will equal one if and
only if NFs are migrated to DUHP in time interval t′. Second, we divide that value by
the total time intervals needed to process that demand ( ∑

t′∈T
y〈i,t〉t′ ). That value gives us

the percentage of time we process that demand in DUHP. Finally, we multiply that value
with the propagation delay between DULP

l and DUHP (DP
M(i)) to find the total propagation

delay to finish that user demand.
Equation (5) shows the mean delay in the network. Here, the dividend is the total

delay, and the divisor is the number of total demand in the network. In addition, u〈i,t〉k
is the traffic demand indicator, which equals one if there is a demand (〈i, t〉) in type k;
otherwise, it equals zero.

3.2. System Constraints

Equation (6) guarantees that each UE gets its service demand from the system.
Equation (7) prevents the allocation of the same RB (rt′) to multiple user traffic demands
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(〈i, t〉). Equation (8) correlates the y〈i,t〉t′ decision variable with a〈i,t〉rt′ , indicating that at
least one resource block r ∈ R in time interval t′ is allocated to the user demand 〈i, t〉.
Thus, we can simplify our delay calculation by using y〈i,t〉t′ instead of a more complex deci-
sion variable a〈i,t〉rt′ . Equation (9) generates the user traffic indicator u〈i,t〉k from demand
size U〈i,t〉k. A UE may demand only one type of traffic in a specific time interval which
Equation (10) ensures. In addition, the total number of DULP

l that can migrate their NFs to
DUHP is limited by ξ in Equation (11). Lastly, the delay of each demand is limited by Δ〈i,t〉k
according to their traffic type k in Equation (12).

T
∑
t′=t

∑
r∈R

Sirt′ ∗ a〈i,t〉rt′ ≥ ∑
k∈K

(U〈i,t〉k ∗ u〈i,t〉k), ∀〈i, t〉 ∈ 〈I , T 〉 (6)

∑
〈i,t〉∈〈I ,T 〉

a〈i,t〉rt′ ≤ 1, ∀l ∈ L, ∀r ∈ R, ∀t′ ∈ T (7)

M∗ y〈i,t〉t′ − ∑
r∈R

a〈i,t〉rt′ ≥ 0, ∀〈i, t〉 ∈ 〈I , T 〉, ∀t′ ∈ T (8)

M∗ u〈i,t〉k −U〈i,t〉k ≥ 0, ∀〈i, t〉 ∈ 〈I , T 〉, ∀k ∈ K (9)

∑
k∈K

u〈i,t〉k ≤ 1, ∀〈i, t〉 ∈ 〈I , T 〉 (10)

∑
l∈L

blt ≤ ξ, ∀t ∈ T (11)

δS
〈i,t〉 + δP

〈i,t〉 ≤ ∑
k∈K

u〈i,t〉k ∗ Δ〈i,t〉k, ∀〈i, t〉 ∈ 〈I , T 〉 (12)

3.3. Problem Definition

We have a multi-objective minimization (P1) problem in which we aim for a balance
between the energy consumption in DUs and the mean delay with the objective function
(Equation (13)). W is a weighting factor between these key performance indicators (KPIs)
in this equation, and Ω is a scaling factor to normalize the ranges.

(P1) Minimize: W ∗ ETOT + Ω ∗ (1−W) ∗ δM (13)

Subject to: Equations (6)–(12)

Let us consider a special case of the problem (P1) in which the propagation delay,
DP

l , between any DULP and DUHP is remarkably huge and makes the network choose
only DULP for NFs. Thus, P1 reduces to an RB allocation problem, which is proved as an
NP-hard problem by Yu et al. [31]. Therefore, we propose an actor–critic solution for this
problem which is explained in the next section.

4. Actor–Critic Solution

4.1. RL Model

In this work, we employ two nested A2C agents which are developed based on O-
RAN architecture. While one agent is responsible for scheduling resource blocks during
each time interval, the other is designed to dynamically choose a proper DU for executing
the scheduler agent by considering energy consumption, processing power, scheduling,
and propagation delay with respect to each DU’s traffic load and location. Processing
resource block allocation decisions of multiple RUs on a single DU (DUHP) can expand
the observation level of decision agents, which can lead to applying more accurate actions.
More precisely, when an A2C-based scheduler agent can access other RUs’ resource block
map, subcarriers can be allocated to edge UEs in a way that the inter-cell interference
among RUs are minimized as shown in [28]. The goal of the proposed actor–critic agent is
improving the performance of the A2C-based scheduler and reducing the overall energy
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consumption by dynamically selecting DUs by considering their processing power and
propagation delay in the network.

Since, in the O-RAN architecture, intelligence is integrated at multiple layers of O-
RAN, it is natural to split the intelligence into different layers to take advantage of higher
processing power or to be able to apply real-time actions for delay-sensitive applications.
Accordingly, each O-RAN component should abide by a specific delay bound based on
the tolerable delay within its control loop. To this end, in this work, we deploy the DU
selection agent at CU to access a higher perspective with respect to DUs, accessing higher
processing power to optimize the more complex problem and its higher tolerable delay
bound (10 ms to 1 s) which provides adequate time for processing the model. Additionally,
the RL-based scheduler agents are located at DUs to schedule UEs close to real-time time
intervals (less than 10 ms) [32]. The tolerable delay bound at each layer closely depends on
the midhaul/fronthaul bandwidth and the range. In this work, this delay is assumed as
the AI feedback’s round trip time (RTT), and as shown in Figure 2, it includes processing,
propagation, and switching delay over the XHaul. As it is discussed in [33], the maximum
tolerable delay for an XHaul with a 3 Gbps bandwidth and 400 km range is at most 10 ms;
therefore, in the system model, we considered the propagation delay in this range (2 ms to
5 ms) and left some room for switching delay to make it close to the real-life condition. It
should be noted that the main focus of this work is on propagation delay, and we assumed
the switching delay and processing delay constant by considering the constant bitrate for
all DUs and defining the processing power of DUHP proportional to DULP (the processing
power of DUHP is considered two to four times higher than DULP which makes it capable
of processing up to four DUs’ load at the same time).

Figure 2. The overall delay in the network.

4.2. Soft Actor–Critic Energy Aware Dynamic DU Selection/NF Placement
Scheme (SA2C-EADDUS)

In this work, a soft actor–critic approach is employed since it provides hierarchical
control during the learning procedure. In actor–critic models, to reduce the gradient,
the corresponding value function needs to be learned to update and assist the system
policy. In the proposed scheme, based on the amount of energy consumed at each DU,
the DU’s processing power, priority of traffic, and its delay tolerance level, the DU for
executing the RL-based scheduling agent will be selected. This selection is also performed
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by an A2C agent. To this end, a neural network (NN) with three layers of neurons is
employed. Furthermore, every TTI neurons’ weights are updated by interactions occurring
between the actor and the critic. In the exploitation stage, the NN works as a non-linear
function, and it will be tuned by updating the weights. During each state s, the main
goal of SA2C agents is to maximize their received reward r, by applying more accurate
actions, a, which can be obtained by action–value (Q(s,a)) and state–value (V(s)) functions.
The action–value function is used to estimate the effect of applying actions during states.
Consequently, estimation of the outcome is obtained by the state–value function. In this
work, for improving the convergence and increasing the stability of the model (by reducing
the overestimation bias), the soft actor–critic model (SA2C) is used. The overall architecture
of SA2C is depicted in Figure 1. In the SA2C model, instead of evaluating action or state
value functions, we just need to estimate V(s). Moreover, the error parameter in SA2C is
a metric for examining the effect of performed action by considering the expected value
V(s), which can be demonstrated by A(st, at) = Q(st, at)−V(st). In addition, the SA2C
model is a synchronous model (unlike asynchronous actor–critic models) which makes it
more consistent and suitable for disaggregated implementations. In the proposed scheme,
each of the actors and critics contain independent neural networks which are demonstrated
as follows:

• The critic’s neural network is used to estimate the corresponding value function for
aligning the actor’s actions. In the proposed scheme we used two critics to minimize
the overestimation bias.

• The actor’s neural network is used to estimate proper action (choosing the best DU
for executing NF) during each time interval.

The states of the proposed DU selection scheme are extracted from the environment
through a tuple, St = {DUtype, QCI, CQI, HOLdelay}, by which DUs’ location and their
amount of available processing power can be identified by the DU’s type, traffic type and
its priorities with a QoS class identifier (QCI) channel quality indicator (CQI) for examining
signal strength, and the amount of time packets stay in the scheduler queue or head-of-the-
line delay (HOLdelay), respectively. Meanwhile there are two independent actions which are
generated by agents during each time interval. The action space of the A2C-based scheduler
is the location of the assigned resource block in the RB map. Additionally, the action space
of the DU selection agent is the DU type which should be capable to handle NFs (in our case,
we only consider the placement of the A2C-based scheduler[] however, our scheme can be
extended to other NFs in the 5G stack [26,28]). The DU selection agent needs to collaborate
with the A2C-based RB allocation agent in a way that the overall energy consumption in
the network is reduced, while the expected QoS metrics (delay and packet delivery ratio)
of the A2C-based RB allocation agent can be met.

We consider two separate reward functions for our agents since their objectives and
their action spaces are different. In this work, the reward function for the A2C-based
scheduler is defined as follows as in [28]:

Rewardscheduler = βR1 + γR2 + ΦR3, (14)

R1 = max

(
sgn

(
cqik −

∑I
i=0 cqij

K

)
, 0

)
(15)

R3 = sinc(π

⌊
PacketDelay

Tra f f icBudget

⌋
) (16)

Here, UEi feedback is considered as cqii, R2 is an extra reward of 1 which is given for
URLLC traffic to prioritize, the traffic delay budget and packet HOL delay are presented
as Tra f f icBudget and PacketDelay, respectively. β, γ, and Φ are weighting/scaling factors.
The scheduling agent consists of an actor and a critic. The actor is located at the BSs and is
responsible for allocating resource blocks to UEs, and the critic is integrated into the DUs
to inspect actors and improve their decisions. In this model, the reward function is defined
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based on the CQI feedback, the amount of time the packet stays in the scheduling queue,
and the UEs’ satisfaction. To this end, the reward function is defined in a way that actors
can receive the reward when the received SINR becomes higher (higher CQI), scheduling
delay is reduced, and UEs’ satisfaction ratio is increased (mean delay should be less than
the delay budget). Therefore, when the RB map filled by an actor causes an inter-cell
interference, the received SINR will be reduced, and the mean delay will be increased,
leading to the reduction of the reward and punishment for the agent, which can improve
the learning process in agents.

We define the reward for the DU selection agent as follows:

RewardDUselector = τ(R1
′ + R2

′)−ωETOT , (17)

R1
′ = sinc(π

⌊
δS
〈i,t〉 + δP

〈i,t〉
Δ〈i,t〉k

⌋
) (18)

R2
′ =

nURLLC
ntot

sinc(π

⌊
α× (δS

〈i,t〉 + δP
〈i,t〉)

Δ〈i,t〉k
)

⌋
) (19)

Here, nURLLC shows the number of UEs which generate URLLC traffic. This can be
obtained through the QCI value which is assigned by the EPS bearer, and it shows packet
priorities, types and their delay budget [34]. In this reward function, sinc(π��) output
is a binary value which is used to produce discrete actions in each time interval (0 or
1). As it was explained previously, RUs select their local DUs to perform higher layer
processing. Our system model includes one DU with higher processing power than the
others. For energy efficiency, one would consider offloading NFs of local DUs to the high-
processing power DU and switching the local DUs off. This may also allow expanding
the inter-cell interference observation capability of agents. However, it is important to
note that this approach would have an adverse impact on delay since local DUs can
provide access with less propagation delay than the distant high-power DU site. This
is in addition to scheduling delay. Moreover, DUHP has a limited processing capacity,
and we cannot transfer all of DUs’ load to it. Therefore, in our reward function, we want
to make sure during each time interval that we choose a proper DU (priority of its packet
and propagation delay with respect to DUHP) in a way that the overall delay which each
packet experiences (scheduling delay (δS

it) + propagation delay (δP
it)) always remains below

the predefined delay budget (Δitk) (Equation (18)). Moreover, since URLLC UEs are delay
sensitive, we need to make sure that the mean delay of URLLC traffic is kept as low as
possible with respect to other UEs (Equation (19)). To this end, by increasing the α the
overall delay (δS

it + δP
it) can be proportionally reduced with respect to the predefined delay

budget. In addition, we want to ensure the total energy consumption (ETOT) is reduced
by a third term which is calculated by Equation (2). τ and ω are scalar weights which
are defined based on the priority for enhancing the packet delivery ratio (R1

′), reducing
the overall delay (R2

′), and reducing energy consumption in the network (ETOT). As a
final remark, in this algorithm, unlike our previous work [7], we improve our reward
function by considering the propagation delay between O-RAN components, fixed energy
consumption, and dynamic energy consumption with respect to DUs processing capacity.

5. Performance Evaluation

The SA2C-EADDUS scheme is implemented in ns3-gym, which is a framework where
OpenAI Gym (a tool for using machine learning libraries) is integrated into ns3 [35,36].
The neural network of the proposed scheme is developed by Pytorch. In simulations, we
assume the number of UEs is between 40 to 80, the UEs are randomly distributed, and they
are associated to closets DU among 4 DULPs. The URLLC UE ratio is 10%, and we employ
numerology zero with 12 subcarriers, which has 14 symbols per subframe and 15 KHz
subcarrier spacing. Furthermore, scheduling decisions are applied every TTI.
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The SA2C-EADDUS performance is evaluated by considering different processing
capacities of DUs and two different traffic types. We assume local DUs processing capacity
cannot handle more than one RU’s functions. Additionally, we assume there is a DU with
higher processing capacity (DUHP) which is located far from the other RUs. DULP can
reduce its energy consumption by offloading its tasks to a DU with higher processing power.
However, based on its location with respect to DUHP, the propagation delay would vary.

We examine two processing capacity levels for DUHP to evaluate the effect of increas-
ing the observation level of agents over network performance. We also consider two traffic
types (live stream video as eMBB traffic and intelligent transport system (ITS) as URLLC
traffic) with different delay budgets. It should be noted that when the overall delay of a
packet (scheduling and propagation delay) is higher than the predefined delay budget, we
assume the packet is dropped. In Table 1, QoS metrics of each traffic type is depicted.

Table 1. Traffic properties [34].

QCI Resource Type Priority Packet Delay Budget Service Example

2 GBR 40 150 ms Live stream Video
84 GBR 24 30 ms ITS

We use the proposed MILP solution as a benchmark for SA2C-EADDUS. Furthermore,
we compare SA2C-EADDUS with three baselines. The first baseline was proposed in
our prior work [28]. The second baseline is based on a deep reinforcement learning
(DRL) scheduler as in [26], and the last baseline is a heuristic method. We integrated
these approaches to our energy-aware dynamic DU selection scheme to evaluate their
performance with respect to the proposed scheme. In the following, we briefly present
our baselines.

5.1. Delay and Priority Aware Actor–Critic RB Allocation Algorithm (A2C-RBA)

In our previous work [28], we implemented an actor–critic learning-based resource
block scheduler where RBs are allocated to UEs by considering the delay budget and the
priority of the user traffic. The following algorithm is developed for reconfigurable wireless
networks where actions can be autonomously applied over the network. The A2C-RBA
can adapt itself to the dynamicity of the environment to increase the utility of the available
resources. However, the A2C-RBA algorithm is solely running at DULP, and it cannot take
advantage of DUHP.

5.2. Deep-Reinforcement Learning-Based Energy-Aware Dynamic DU Selection
Scheme (DRL-EADDUS)

In [26], the main objective of DRL agents is allocating RBs in a way that the mean delay
of packets be minimized. The authors in this work considered UEs with different packet
request patterns, and they developed a deep-reinforcement learning algorithm to schedule
RBs during each time interval. This work is integrated with the proposed framework to
reduce the energy alongside the RB allocation in the network. We integrate this work into
our framework to have a fair comparison with the proposed scheme.

5.3. Heuristic DU Selection Method (Heuristic-DUS)

In the heuristic method, decisions are made based on the propagation delay between
local DUs and DUHP with respect to a predefined threshold value and type of packets.
In this algorithm, traffic in local DUs will be transferred to DUHP when the propagation
delay is below the predefined threshold and packets are not URLLC. Therefore, to reduce
the packet drop ratio, if a packet’s scheduling delay is higher than the threshold or URLLC
traffic is scheduled for the next TTI, RBs will be assigned locally. Additionally, when
the packets are scheduled at DUHP, RBs will be assigned by considering other DUs RB
maps to reduce the interference in the network. It should be noted that assigning a proper

158



Sensors 2022, 22, 5029

threshold value can be challenging due to the high dynamicity of the network parameters.
The proposed heuristic algorithm is illustrated in Algorithm 1.

Algorithm 1: Heuristic RB Allocation Algorithm.

nDU ← Number of DUs;
nRB ← Number of RBs;
PDi ← Propagation delay between DULP

i and DUHP;
while nRB >0 do

for i = 0; i < nDU; i++ do

if PDi < Threshold && Traffic! = URLLC then

Transfer the load to DUHP

Examine other DUs RB maps
Select RBs which are not interfere with other cells
Add the predefined propagation delay to the packets

else
Apply RB allocation locally

end

end

end

5.4. Simulation Results

In Table 2. the corresponding simulation and NNs parameters are illustrated in detail.

Table 2. Simulation parameters.

Parameters Value

Number of neurons 1024 × 512 layers (Actor + Critic)

DU selec./scheduler algorithms SA2C-EADDUS, DRL-EADDUS,
A2C-RBA

Number of BSs 4

Number of UEs 40, 60, 80

Maximum Traffic load per UE
(Downlink)

512 kbps

Traffic types Video, ITS

Propagation delay 2–5 ms

Reward’s weights τ = 0.5 and ω = 0.5

Number of RBs 12, 100

Discount factor 0.9

Actor learning-rate 0.01

Critic learning-rate 0.05

5.4.1. Convergence

Before discussing the obtained results, in Figure 3a we present the convergence of
the reward function for SA2C-EADDUS. In this figure, the number of UEs is equal to
70, of which 10% is assigned with URLLC traffic load. Additionally, we employed the
epsilon-greedy policy, forcing actors to assign RBs with the highest weight or randomly
choosing actions during the exploration phase. As it is shown, the algorithm will converge
after almost 100 episodes where each episode contains 500 iterations.
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(a) (b)
Figure 3. The convergence of the reward function and the overall energy conservation in the network
when the SA2C-EADDUS with different processing capacity level is employed: (a) the convergence
of the reward function; (b) impact of changing ξ in SA2C-EADDUS.

5.4.2. Energy Efficiency

As mentioned previously, in this work, the energy consumption is reduced by migrat-
ing a NF dynamically to a DU with a higher processing power by considering its available
capacity, priority of packets, and propagation delay during each time interval. We assume
that when a DU transfer its load to DUHP, it can be deactivated, and its overall power
consumption (dynamic + fix) will be zero during that time interval. We set the amount of
fixed energy consumption at DULP and DUHP as 5 KWh and 10 KWh, respectively [24]. We
examine our model by considering three processing capacity levels for DUHP. In the first
one, we can transfer the processing load of all DUs (DULP) to DUHP (100%DRL-EADDUS),
while in the second and third ones, DUHP has a limited processing power and the load of
only 75% (75%-DRL-EADDUS) or 50% (50%-DRL-EADDUS) of DULP can be transferred
to DUHP. As we can see in Figure 3b, based on the available processing power in DUHP,
by dynamically transferring local DUs’ load, the SA2C-EADDUS scheme can increase
energy conservation up to 50%. Therefore, by dynamically transferring the load among
DUs, we can reduce the energy consumption dramatically in the network.

As shown previously, the formulated problem is NP-hard. To this end, we first
compare our approach with an optimization model in a smaller scale network, then in
the following, we increase the size of the network and evaluate the proposed scheme in
comparison to our baselines.

5.4.3. Comparison with the MILP Solution

In this subsection, we compare the performance of our SA2C-EADDUS scheme with
the MILP solution presented in Section 3.1. Due to the NP-hard property of our problem,
we use only 12 RBs in this comparison. Therefore, we can obtain the optimum solutions
with MILP solver in a reasonable run time.

Figure 4a shows the change of energy consumption and mean delay with the weighting
factor of the energy consumption. As seen, W = 0.7 and W = 0.6 are the breaking points
for 8 UEs and 16 UEs, respectively, in this multi-objective minimization problem. We
observe that choosing a lower weight is crucial to prevent a drastically higher mean delay.
In Figure 4b, we detail the impact of the increasing number of UEs when weight W1 is set to
=0.5. The mean delay remains in a reasonable range with the higher number of UEs, while
the energy consumption increases due to the decentralization of the NFs. One of the main
reasons for this decentralization comes from balancing the increase of scheduling delays
due to increasing competition for RBs. Thus, NFs prefer to stay in local DUs to reduce the
propagation delay, which also reduces the overall mean delay.
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(a) (b)
Figure 4. Energy consumption and mean delay performance with MILP solver: (a) the tradeoff
between these two KPIs; (b) impact of increasing number of UEs.

Figure 5a compares the mean delay results of the SA2C-EADDUS scheme and the
MILP solution. The SA2C-EADDUS scheme provides a reasonable mean delay for the UEs
lower than 14. However, due to the high contention, a higher number of UEs causes package
drops, and then they cause the increase of mean delay. On the other hand, the MILP solver
is not affected by this due to the ideal conditions and predefined given data. Figure 5b
compares the energy consumption of two solutions.The SA2C-EADDUS scheme performs
very close to the MILP solution.

(a) (b)
Figure 5. Lower bound comparisons of the proposed method SA2C-EADDUS: (a) mean delay com-
parison; (b) energy consumption comparison.

5.4.4. Delay

Hereafter, we examine the performance of the SA2C-EADDUS scheme with respect
to three baselines and use a larger network where the number of UEs are varied between
40 to 80. As shown in Table 1, we evaluated the proposed model by generating User
Datagram Protocol (UDP) and Transmission Control Protocol (TCP) packets (video and
ITS) with different delay budgets (150 ms and 30 ms, respectively) and QoS requirements.
In Figure 6a,b we presented the mean delay of video packets and ITS packets independently
to illustrate how the proposed model managed to keep the mean delay of each traffic type
below its delay budget threshold. The proposed SA2C-EADDUS scheme is compared with
an A2C-based scheduler (A2C-RBA) [28], a DRL-based scheduler with different processing
capacity levels [26], and a heuristic scheme (Heuristic-DUS). Here, to examine the effect of
the processing capacity of DUHP over the network performance, we assume that DUHP

has two processing capacity levels. In the first one, we can transfer the processing load of
all DUs (DULP) to DUHP (100%DRL-EADDUS), while in the second one, the load of only
50% of DULP can be transferred to DUHP (50%-DRL-EADDUS). The energy consumption
corresponding to the delay results in Figure 6 is depicted in Figure 3b. In Figure 3b,
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we presented the overall energy conversation when employing the SA2C-EADDUS with
different capacity levels. The maximum energy will be consumed (20 KWh) when UEs
are scheduled locally, and we can conserve energy consumption by up to 50% when the
processing power increases.

(a) (b)
Figure 6. The overall mean delay by considering different processing capacity levels and algorithms:
(a) the video packets’ mean delay; (b) the ITS packets’ mean delay.

As observed in Figure 6, the proposed algorithm reduces the mean delay in both
ITS and video traffic with respect to baselines. Additionally, by increasing the processing
power, the observation level of agents will be increased, and actions become more accurate;
therefore, the 100%DRL-EADDUS agent performs better by reducing the mean delay in the
network in comparison with the 50%-DRL-EADDUS agent. Finally, the SA2C-EADDUS can
reduce the mean delay dramatically with respect to the A2C-RBA and the Heuristic-DUS
algorithm, since the SA2C-EADDUS can allocate RBs in a way that the inter-cell interference
in the network is reduced. Additionally, the SA2C-EADDUS approach performs better with
respect to the DRL-EADDUS algorithm because, unlike DRL-EADDUS, the RB allocation
agent in the SA2C-EADDUS scheme, in addition to packet delay, also considers the mean
CQI level of UEs and the priority of URLLC packets in its algorithm.

5.4.5. Packet Delivery Ratio

As explained previously, the proposed scheme reduces the inter-cell interference in
the network by expanding agents’ observation level and applying actions with respect
to other RUs’ RB maps when the NFs are transferred to DUHP. Therefore, as shown in
Figure 7, the SA2C-EADDUS scheme can improve the packet delivery ratio significantly
with respect to the A2C-RBA and Heuristic-DUS algorithms when the number of UEs are
high. Similarly, by increasing the processing level of DUHP, actions become more accurate,
and the number of packets which are successfully delivered will increase.

(a) (b)
Figure 7. The overall packet delivery ratio by considering different processing capacity levels
and algorithms: (a) the video packets’ delivery ratio; (b) the ITS packets’ delivery ratio.
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6. Conclusions

As future mobile networks become more complex, the need for intelligence and
participation of more players is emerging, eventually leading to the need for openness.
As these goals are defining the initiatives such as O-RAN and several others, there is a dire
need to explore intelligence capabilities. In this paper, we evaluated the significance of
expanding the observation level in O-RAN architecture for NFs. To this end, we consider
resource allocation function as an example NF and propose a two nested A2C-based
algorithms, which contain two A2C techniques that are working together. The first layer
dynamically transfers NFs to a DU with higher processing power to hit the balance between
saving energy and improving actions’ accuracy. Meanwhile, the second layer contains an
A2C-based scheduler algorithm, which allocates RB by considering user traffic type and
their delay budget. The simulation results show that the proposed scheme can significantly
increase energy efficiency and reduce the overall mean delay and packet drop ratio with
respect to the case where the NF is solely executed at local DUs with limited processing
power. In future works, we will employ the delay and energy consumption in the fronthaul
links and the switching networks.
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Notations

The following notations are used in this manuscript:

Sets Explanation
r ∈ R set of RBs in one time interval
t ∈ T set of time intervals
i ∈ I set of UEs
〈i, t〉 ∈ 〈I , T 〉 tuple of demands
l ∈ L set of DULP

k ∈ K type of traffic
Variables Explanation
a〈i,t〉rt′ indicates rt′ is assigned for 〈i, t〉
blt indicates NFs of DULP l migrates to DUHP in t
y〈i,t〉t′ indicates any r in t′ is assigned for 〈i, t〉
u〈i,t〉k user traffic indicator
Given Data Explanation
DP

lt propagation delay
EF

l fixed energy consumption at l
ED

l dynamic energy consumption coefficient at l
EHP total energy consumption at DUHP

Sirt′ max service rate
U〈i,t〉k user traffic demand size
Δ〈i,t〉k delay budget
ξ max. number of DULP that can migrate their NFs
M(i) user & DULP map
TTI length of transmission time interval
W energy consumption weight in objective function
Ω scaling factor between en. cons. and mean delay
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Abstract: Metasurfaces (MSs) have enabled the emergence of new ideas and solutions in the design of
antennas and for the control of electromagnetic waves. In this work, we propose to design a directional
high-gain reconfigurable planar antenna based on a phase-modulated metasurface. Reconfigurability
is achieved by integrating varactor diodes into the elementary meta-atoms composing the metasurface.
As a proof of concept, a metasurface prototype that operates around 5 GHz is designed and fabricated
to be tested in an antenna configuration. The metasurface is flexibly controlled by different bias
voltages applied to the varactor diodes, thus allowing the user to control its phase characteristics. By
assigning judiciously calculated phase profiles to the metasurface illuminated by a feeding primary
source, different scenarios of far-field patterns can be considered. Different phase profiles are tested,
allowing us to, firstly, achieve a highly directive boresight radiation and, secondly, to steer the main
radiated beam towards an off-normal direction. The whole design process is verified by numerical
simulations and is validated experimentally by far-field antenna measurements. The proposed
metasurface enables the design of directive flat antennas with beam-scanning characteristics without
complex feeding systems and power-consuming phase shifters, and thus provides potential interests
for next generation antenna hardware.

Keywords: reconfigurable antenna; metasurface; varactor diode; beam-scanning; high gain

1. Introduction

Connectivity technologies continue to evolve year after year to meet growing global
demand for increasing data rates and number of connected devices. Indeed, today, not
only are humans connected to the global network but objects, sensors, industrial machines,
drones and even satellites are all connected to the same network, which is pushing further
the development of new technologies that allow all these needs to be met. As such, the
development of a new generation of reconfigurable antennas enabling real-time monitoring
of users is necessary.

The emergence of artificially structured materials, called metamaterials, has revolu-
tionized the domain of electromagnetism. These engineered structures were first used
in their three-dimensional (3D) configuration and demonstrated several phenomena and
concepts [1–5]. Over the years, the community has become more and more interested in
the development of two-dimensional (2D) versions of metamaterials, commonly known
as metasurfaces. Such planar versions reduce the volume and complexity of realization
and losses in comparison to the bulky 3D counterparts [6]. Thanks to these structures, new
properties, such as anomalous reflection and refraction, have been proposed and demon-
strated [7–9]. Metasurfaces also facilitated the generation of complex wavefronts, such
as Airy beams [10,11], vortex beams carrying orbital angular momentum (OAM) [12,13],
Bessel beams [14–16] and image holograms [17–21]. In the field of antennas, metasurfaces
have aided in developing different topologies of structures. For instance, the dimensions of
antennas can be drastically reduced, particularly when they are used as partially reflective
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surfaces (PRS) in reflex-type Fabry–Perot (FP) cavity antennas to achieve high directivity
from a single radiating element [22,23]. Flat lenses [24,25], leaky-wave antennas [26] and
polarizers [27,28] have also been designed based on the use of metasurfaces. In order to
reach real-time control of the electromagnetic properties, as required in reconfigurable
antennas, lumped electronic components are loaded in meta-atoms composing the meta-
surfaces [29]. Several types of components have been considered for reconfigurability
mechanism, such as liquid crystals [30,31], PIN diodes [32,33], varactor diodes [15,34],
MEMS [35] and graphene [36]. The electronic elements are used to tune the resonant
properties of the meta-atom, thereby helping to dynamically tailor electromagnetic wave-
fronts. In the field of antennas, one of the applications that necessitates reconfigurable
metasurfaces is beam scanning, in which the main beam is electronically steered through
tailoring the phase profile implemented in the metasurface [37–39].

In this work, we propose a dynamic metasurface loaded with varactor diodes for an
operation around 5 GHz frequency. The metasurface controlled by a direct current (DC)
bias voltage is exploited as a reconfigurable planar reflector with a parabolic phase profile
in order to design a highly directive antenna. Such antenna allows reconfigurability in
frequency, thus making it possible to cover a non-negligible operating frequency band. It
further allows control of the direction of the radiated main beam in order to achieve beam
steering. A prototype of the reconfigurable metasurface is fabricated and experimentally
tested in a reflect-array antenna configuration in a microwave anechoic chamber in order
to validate its performances and functionality. Such a dynamic metasurface-based antenna
platform is an interesting alternative to transmit highly directive but also continuously
steerable beams at large angles, thus showing great potential in wireless communications
and smart antennas where real-time control is desired.

2. Design Principle

The main goal of this work is to design a flat metasurface reflector (or meta-reflector)
antenna. The meta-reflector is intended to have a parabolic phase profile and to be il-
luminated by a radiating element used as primary feed, as schematically illustrated in
Figure 1. In order to emulate the response of a parabolic reflector, the reflection caused by
the metasurface must be identical to that of a parabola. For this, we start by calculating
the necessary phase profile that allows to mimic a parabolic reflector. The parabolic phase
profile ϕ(x, y) for a given operating wavelength λ and focal distance F is given as [40]:

ϕ(x, y) =
2π

λ

(
(x− x0)

2 + (y− y0)
2

4F

)
+ ϕ0 (1)

where (x0, y0) is the focal point position and ϕ0 is the reflection phase at (x = 0, y = 0).
Equation (1), therefore, describes a parabolic phase profile, as illustrated in Figure 1.

Considering the reconfigurability mechanism of the metasurface, the phase profile can be
tuned according to the wavelength, focal distance and focal point position. Consequently,
the meta-reflector antenna would cover a non-negligible frequency band of operation, as
well as steer the reflected beam. For smart systems, it is preferable that the antenna should
be as compact as possible with a small focal distance. In the case of parabolic antennas,
in order to maximize the gain, it is further desirable to maximize the illumination on the
reflector by the primary feed source.
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Figure 1. Schematic illustration of the operating principle of the flat meta-reflector antenna. The
meta-reflector presents a parabolic phase profile and is illuminated by a radiating element used
as primary feed. The resulting far-field radiation pattern of such an antenna configuration is a
directive beam.

3. Design of the Metasurface Reflector

For the design of the metasurface that will serve as a reconfigurable reflector, we start
by designing the elementary meta-atom. The main requirement is that the meta-atom
presents an inductive-capacitive (LC) resonance that allows achieving a quasi-360◦ phase
shift together with a high reflectivity. The considered unit cell structure has a periodicity
p = 13 mm and is composed of two metal layers printed on the faces of a F4BM dielectric
substrate with a relative permittivity εr = 2.2 and thickness t = 3 mm. The top layer is
composed of two parallel copper strips of width wp = 3 mm, which are separated by a
gap g = 5 mm, while the bottom layer is composed of a continuous ground plane, as
shown in the schematic view presented in Figure 2a. The separation gap g between the
parallel strips of the top layer allows for a capacitive response when the electric field is
oriented perpendicular to the strips. Additionally, the continuous ground plane contributes
to produce an inductive response and to fully reflect the incident electromagnetic wave.
The combination of the capacitive and inductive layers therefore achieves the desired
LC-resonant circuit.

In order to electronically control the response of such a LC-resonant meta-atom, a
varactor diode that serves to modify the capacitance is loaded in the elementary meta-atom.
A DC bias voltage is applied to the varactor diode through the two parallel copper strips of
the capacitive layer. A MAVR-000120-1411 varactor diode model [41] is considered due to
its low losses and high tuning factor. In order to simulate the behavior of the elementary
controllable meta-atom, the varactor diode is modelled as a RLC series circuit, where
R = 3.5 Ω represents the ohmic losses, L = 0.9 nH is the inductance due to the packaging and
C is the overall capacitance of the structure. The meta-atom structure is simulated using the
finite element method (FEM) of Maxwell’s equations from the commercially available high-
frequency structure simulator (HFSS) code by Ansys [42]. Periodic boundary conditions
and Floquet ports are utilized in the simulation setup in order to consider an infinite array
of meta-atoms, as presented in Figure 2b. The influence of the variable capacitance on the
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meta-atom is illustrated in Figure 2c, where the frequency response for different capacitance
values, are presented. The simulation results show that the varactor diode allows a shift
of the resonance frequency from 4.2 GHz to 5.5 GHz, when the capacitance varies from
0.6 pF to 0.2 pF. The LC resonance feature can also be clearly observed with a reflection
phase varying from +180◦ to −180◦ and passing through 0◦ at the resonance frequency.

 

Figure 2. Design of the reconfigurable metasurface reflector. (a) Schematic view of the elementary
meta-atom incorporating a voltage-controlled varactor diode and (b) schematic view of the simulation
environment. The substrate used has a relative permittivity εr = 2.2 and a thickness t = 3 mm. The
geometrical dimensions are: p = 13 mm, wp = 3 mm and g = 5 mm. Simulated and measured reflection
responses for different applied stimuli signals (capacitance values in simulations and bias voltages in
experiments): (c) phase and (d) magnitude. Photograph of the fabricated metasurface (e) and the
experimental characterization setup (f).
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A prototype of the reconfigurable metasurface is realized using a conventional printed
circuit board (PCB) manufacturing process. A photograph of the fabricated prototype is
shown in Figure 2e, together with the experimental characterization setup (Figure 2f). The
metasurface is composed of 30 columns, each containing 30 resonant unit cells (30 × 30 cells),
and has lateral dimensions 390 mm × 390 mm (6.5λ0 × 6.5λ0 at 5 GHz). In this voltage
bias configuration, where a similar voltage will be applied to all the meta-atoms in a col-
umn, only a one-dimensional phase profile can be tailored. As such, we are restricted to
cylindrical parabolic phase profile instead of a full parabolic phase profile. However, such
cylindrical parabolic phase distribution is considered enough to meet the requirements of a
proof-of-concept prototype.

The metasurface is characterized in a microwave anechoic chamber, where two broad-
band FLANN DP240 horn antennas [43] operating in the 2–18 GHz frequency band are
connected to the vector network analyzer (VNA) and positioned side by side in front of
the metasurface in order to measure its reflection coefficient, as shown in Figure 2f. The
reflection coefficient is obtained by measuring the amplitude of the transmitted wave
between the two horn antennas after being reflected by the metasurface. The reflection
measurements performed on the metasurface are referenced with respect to that on a metal
plate with similar lateral dimensions. The simulation and measurement results are pre-
sented in Figure 2c, where the correspondence between bias voltage and capacitance value
is shown. It is important to note that in such a characterization procedure, all bias voltages
are set at the same value throughout the metasurface. As illustrated for a different set of
values, 1 V (C = 0.6 pF), 4 V (C = 0.28 pF) and 8 V (C = 0.2 pF), a good qualitative agreement
is obtained, thus validating the concept of the reconfigurability mechanism implemented
in the metasurface. A decrease in the capacitance value of the varactor diode induced by
an increase in bias voltage leads to a resonance shift toward higher frequencies, which
enables a shift in the phase response of the metasurface. This phase shift is very important
since it will allow the tailoring of the phase distribution required to mimic the profile of
a parabola. A high phase shift Δϕ (above 280◦) is achieved within the 4.4–5 GHz due to
the intrinsic design of the meta-atom. With such phase-tuning capability, it is therefore
possible to generate a cylindrical parabolic phase profile from the metasurface.

4. Primary Feed Design

A primary feed is required to illuminate the metasurface reflector. This radiating
element positioned at a certain distance in front of the metasurface will launch electromag-
netic waves, which will be reflected by the meta-reflector. It is therefore necessary that the
feeding source does not mask the reflected waves. Here, we therefore propose to use a
Vivaldi radiating element as primary source. The choice of such a type of source is made for
two reasons; the first one is due to its end-fire radiation characteristics, i.e., the maximum
radiation lies in the plane of the radiating element, which considerably reduces the masking
effect mentioned above, while the second reason is that such antennas present broadband
features and, therefore, allow covering a wide frequency band of operation. A schematic
view of the proposed Vivaldi radiating element printed on a F4BM dielectric substrate with
relative permittivity εr = 2.2 and thickness h = 1 mm is shown in Figure 3a. The antenna
is optimized in numerical simulations for an operation around 5 GHz. The geometry of
the source is based on the coplanar Vivaldi antennas with the Vivaldi design on the upper
layer of the substrate composed of an exponentially tapered slot [44,45]. The feed of the
Vivaldi antenna is composed of a microstrip line transition to a radial slot of diameter D1
with a circular stub of diameter D2. The optimized geometrical dimensions of the radiating
element on the top layer are D1 = 17 mm, L = 83 mm and W = 72 mm for the top layer. The
bottom layer is composed of the transmission-line excitation system, which is composed
of a 50 Ω line with length l1 = 6 mm and width w1 = 3 mm. In order to match the input
impedance of the excitation line, a quarter-wavelength transformer of length l2 = 11 mm
and width w2 = 1.8 mm is added. The last part of the line, with l3 = 7 mm, l4 = 21 mm and
w3 = 0.9 mm, is connected to an offset feed of diameter D2 = 9.2 mm.
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Figure 3. Feeding source used to illuminate the meta-reflector. (a) Schematic view of the Vivaldi
antenna structure (top and bottom layers). The geometrical dimensions are: L = 83 mm, W = 72 mm,
l1 = 6 mm, l2 = 11 mm, l3 = 7 mm, l4 = 21 mm, w1 = 3 mm, w2 = 1.8 mm, w3 = 0.9 mm, D1 = 17 mm
and D2 = 9.2 mm. (b) Simulated (blue trace) and measured (red trace) reflection responses (S11

coefficients) of the proposed primary source. (c) Schematic view of the Vivaldi antenna along with its
3D radiation pattern.

It should also be noted that in the reflector antenna scenario, the Vivaldi radiating
element will be in close proximity to the metasurface. Therefore, it has to be designed
and optimized by taking into account the coupling with the metasurface. The antenna is
fabricated using PCB technique and measured in an anechoic chamber. The experimental
reflection coefficient is compared to the simulated one in Figure 3b. A good agreement
is observed between the two results and a good impedance matching (S11 < −10 dB) is
observed over a wide frequency, ranging from 3.9 GHz to 5.2 GHz in simulation, while the
measured result shows a good impedance matching from 3.9 GHz to above 5.5 GHz. This
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result is excellent in our case since the desired frequency band of operation of our meta-
reflector antenna is from 4.4 GHz to 5 GHz. It will be shown in the next section that when
placed in front of the metasurface, the reflection coefficient of the reflector antenna system
remains quasi-similar to the feeding Vivaldi element alone. The simulated 3D radiation
pattern of the Vivaldi radiating element is shown in Figure 3c, where a unidirectional beam
can be observed.

In Figure 4, the 2D far-field radiation patterns are shown at 4.4, 4.7 and 5 GHz, where
the blue solid line and red dotted line are the simulated and measured co-polarized gain
(E-plane patterns), respectively. The simulation shows good agreement with the experiment
as the maximum gain is measured to be 7 dBi at 4.4 GHz, 9.8 dBi at 4.7 GHz and 5.7 dBi at
5 GHz. The half-power beamwidth is measured to be approximately 60◦ at the three tested
frequencies. The cross-polarized gains (H-plane patterns), represented by the cyan and
green traces, show relatively low level.

Figure 4. Simulated and measured E-plane and H-plane radiation patterns of the Vivaldi radiating
element at 4.4 GHz, 4.7 GHz and 5 GHz.

The difference in side-lobes between simulated and experimental results in the E-plane
is caused by the coaxial cable feeding the Vivaldi antenna. The end-fire configuration of
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such a Vivaldi antenna seems to be the reason for such a phenomenon, which then has
some influence on the side lobes of the metasurface antenna.

5. Design of the Flat Meta-Reflector Antenna

Once the primary source and the metasurface have been designed and experimentally
characterized separately, the meta-reflector antenna is assembled, as illustrated in Figure 5a.
For an experimental proof-of-concept prototype of the reconfigurable meta-reflector, we
limit the parabolic phase profile to only a one-dimensional (1D) plane, as restricted by the
design of the metasurface, which can be controlled in a single plane. Therefore, the phase
profile is applied only along the x-axis. The full parabolic phase distribution of Equation (1)
is then simplified to a cylindrical parabolic one as:

ϕ(x) =
2π

λ

(x− x0)
2

4F
+ ϕ0 (2)

In our case, as the metasurface has lateral dimensions of 390 mm × 390 mm, and
with the HPBW (half-power beamwidth) of the antenna being 60◦, a focal distance should
be considered such that the metasurface is correctly illuminated by the main beam. The
antenna system is simulated using Ansys HFSS and after several optimization simulations,
the focal distance F is set to 120 mm. Imposing 120 mm as a focal distance is mainly
motivated by a trade-off between two opposing factors. A higher F/D ratio (D being the
metasurface dimension) would lead to an improvement in gain, whereas a lower one would
reduce the antenna’s profile but with a reduced gain. It is important to note that while a
large focal distance would yield an increase in aperture efficiency, the structure is being
designed for a low-profile perspective in the present study.

The reflection coefficient of the meta-reflector antenna system is measured and com-
pared to the simulation results, as presented in Figure 5b. A good agreement between
measurements and simulations is obtained and a good impedance matching is observed in
our frequency band of interest between 4.4 GHz and 5 GHz, where the reflection coefficient
shows amplitude values lower than −10 dB.

Figure 5. (a) Schematic view the reconfigurable flat meta-reflector antenna. (b) Measured reflec-
tion coefficient.

In order to validate the proposed flat meta-reflector antenna, measurements of the radi-
ation patterns are performed in an anechoic chamber. A schematic view of the measurement
setup is presented in Figure 6a and a photograph of the antenna in the test environment is
shown in Figure 6b. The antenna under test is placed on a turntable and is connected to one
port (port 1) of the VNA, while the (2–18 GHz) FLANN broadband horn antenna connected
to the other port (port 2) of the VNA is used as a receiving antenna at a distance of 6 m. The
antenna system under test on the turntable is rotated between from −180◦ to +180◦ in order
to measure the transmitted power between the two antennas and therefore the antenna
far-field radiation patterns. Several antenna configurations are tested. The cylindrical
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parabolic phase profiles allowing a boresight radiation to be obtained at 4.4 GHz, 4.7 GHz
and 5 GHz are calculated from Equation (2) by fixing ϕ0 = 0◦ and are plotted in Figure 7a.
These phase profiles are applied to the metasurface by judiciously applying the correct bias
voltage corresponding to the required capacitance value to each column of meta-atoms. For
large antennas, typical full-wave solvers require significantly large simulation time and
memory constraints. As a way to deal with this limitation, the metasurface is approximated
by its ideal case, i.e., a metallic cylindrical parabolic reflector antenna. In order to verify the
accurateness of this approximation, the phase-modulated metasurface is fully simulated
at 4.7 GHz and compared to the subsequent metallic cylindrical parabolic case, as well
as the experimental measurements. The results, as shown in Figure 7b, display a clear
correlation between the cylindrical parabolic reflector antenna, the fully simulated gradient
metasurface and experimental results, thus validating the approximation, which will be
used henceforward.

 

Figure 6. Antenna radiation patterns measurement. (a) Schematic illustration of the experimental
measurement setup. The meta-reflector is illuminated by the Vivaldi radiating element and a receiving
horn antenna allows measurement of the antenna radiation patterns. (b) Photograph of the far-field
measurement setup in an anechoic chamber.

Figure 7. (a) Calculated phase profiles and applied bias voltages at 4.4 GHz, 4.7 GHz and 5 GHz.
(b) Radiation patterns of the fully simulated gradient metasurface structure at 4.7 GHz, the metal-
lic cylindrical reflector antenna simulation and the experimental measurements of the gradient
meta-reflector.
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The measured radiation patterns are presented in Figure 8 and show a highly directive
beam in the E-plane (xOz plane), where the phase profile is applied. The maximum gain
reaches 16 dBi at the central frequency of 4.7 GHz. The half-power beamwidth of the
antenna is found to be around 32◦. In the H-plane (yOz plane), the patterns are similar
to those of the Vivaldi feeding source since no parabolic phase profile is applied in this
plane. A difference of minimum 12 dB can be observed between the co- and cross-polarized
gains, indicating a sufficient decoupling. The presented results allow the validation of
the proposed flat parabolic reflector antenna concept by comparing the experimental
measurements with a simulated metallic cylindrical parabolic reflector antenna.

 
Figure 8. Simulated and measured E-plane radiation patterns of the meta-reflector antenna at 4.4 GHz,
4.7 GHz and 5 GHz.
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Moreover, the gain at boresight is measured and is presented in Figure 9. At 4.7 GHz,
the gain reaches 16 dBi. The aperture efficiency η can be calculated as [44]:

η =
Ae

A
=

Gλ2

4πA
(3)

with Ae being the effective aperture, A the physical aperture (390 mm × 390 mm) and G
the experimentally measured gain at wavelength λ. The calculated aperture efficiency at
4.4 GHz, 4.7 GHz and 5 GHz are, respectively, 6%, 7% and 8%. Comparatively, the aperture
efficiency of a parabolic reflector is typically around 50% to 70%. The reason for this big
difference is explained by different factors. Firstly, the proposed metasurface antenna
presents gain values ranging from 14 dBi to 16 dBi. These low gains are mostly due to the
fact that the meta-reflector has been engineered to produce a cylindrical parabolic phase
profile (i.e., a parabolic phase profile in only one plane) instead of a full parabolic phase
profile, where the gain would be above 20 dBi. Another important issue is that we use
electronic components, namely varactor diodes, in the meta-reflector. These varactor diodes
have a certain parasitic resistance that will partly absorb electromagnetic waves. Thus, the
gain is lower with the reconfigurable meta-reflector. The second factor is justified by our
choice of focal distance F = 120 mm so as to achieve a low-profile antenna. Consequently,
the best trade-off that allows the gain to be maximized while reducing the profile of the
antenna as much as possible is to place the illuminating source at a focal distance of 120 mm
from the reflector.

Figure 9. Experimental gain at boresight versus frequency of the meta-reflector antenna.

The illumination efficiency ηi and spillover efficiency ηs have also been calculated
using [46]:

ηi =

(
1+cosq+1 θ

q+1 + 1+cosq θ
q

)2

2 tan2 θ
(

1−cos2q+1 θ
2q+1

) (4)

ηs = 1− cos2q+1 θ (5)

where q is the exponent of a cos qθ (with q = 3) radiation pattern that approximates the
experimentally measured pattern of the Vivaldi source and θ is half of the subtend angle
from the feed to the reflectarray aperture for a 120 mm focal distance (θ = 57◦ in our case).

At 4.7 GHz, it is found that ηi = 45% and ηs = 98%. This is consistent with the fact
that the focal distance is at a sub-optimal configuration and is, therefore, unable to fully
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illuminate the structure (low illumination efficiency). Meanwhile such a small focal distance
leads to a high spillover efficiency.

The possibility of controlling the direction of the main radiated beam is also proposed.
In the conventional case, it is possible to perform beam steering by physically shifting
the feeding source away from the focal point or by turning the parabolic reflector toward
the desired direction. However, given that the metasurface allows an electronic control
of the phase profile, we are able to introduce an offset x0 in order to virtually move the
parabola with respect to the source and, therefore, achieve beam steering. In order to
validate the beam-steering capabilities, the phase profile is shifted progressively. Three
different beam-steering angles (30◦, 45◦ and 60◦) are tested at 4.7 GHz. The corresponding
phase and bias voltage profiles that need to be implemented on the metasurface are shown
in Figure 10a. Simulation and experimental results presented in Figure 10b show high
beam-steering capabilities up to 60◦ with side-lobe levels (SLL) lower than 10 dB. The high
beam-steering range of the proposed antenna is an improvement over the capabilities of
previous gradient metasurfaces presented in literature, where beam steering was achieved
up to 50◦ [8,37]. The parabolic phase profile also enables a significant increase in gain
compared to classic beam-steering gradient metasurfaces. Though the radiated beam is
steered, it can be clearly observed that a high maximum gain is maintained. However,
due to the 1-D property of the phase profile, the half-power beamwidth remains large in
the H-plane.

Figure 10. (a) Calculated phase profiles and applied bias voltage allowing beam steering at 30◦, 45◦,
60◦. (b) Measured radiation patterns along the E-plane showing beam steering at 30◦, 45◦, 60◦.

In order to improve the half-power beam width in the H-plane and acquire higher
gain suitable for 5G applications, a 1 × 4 Vivaldi array of identical antenna elements is
proposed to be aligned in the H-plane of the antenna platform, as shown in Figure 11a,b.
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Figure 11. (a) Schematic illustration of the experimental measurement setup. (b) Photograph of the
metasurface with its Vivaldi array feed. (c) Simulated and measured far-field radiation patterns at
4.7 GHz in the E- and H-planes for the meta-reflector fed by the Vivaldi antenna array.

Experimental results presented in Figure 11c show a high directivity in both E- and
H-planes in the case of boresight radiation configuration. The measured maximum half-
power beam width is around 20◦ in both planes, showing a 65% decrease of the HPBW in
the H-plane as well as a 38% decrease in the E-plane. Consequently, this solution allows the
design of a highly directive antenna where only a single beam-scanning plane is desired.
Furthermore, the antenna can possibly show beam-steering capabilities in both planes by
using the reconfigurable meta-reflector in the E-plane and phase shifters in the H-plane or
designing a metasurface where control of the phase can be achieved in the two planes.
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6. Conclusions

In summary, a reconfigurable meta-reflector including varactor diodes is proposed.
The use of varactor diodes allows continuous control of the phase response of the meta-
reflector. The proposed reflector structure is associated with a Vivaldi antenna used as
a primary source in order to realize a highly directive reconfigurable antenna. The pri-
mary source is designed specifically to take into account the metasurface/feed coupling.
A prototype of the meta-reflector antenna has been fabricated and characterized. Far-
field measurements have been performed in an anechoic chamber, where several different
desired configurations were tested with judiciously calculated phase profiles. Firstly, bore-
sight radiation at different frequencies (4.4 GHz, 4.7 GHz and 5 GHz) were tested, and the
experimental results show a highly directive beam with a gain of around 16 dBi. Then,
beam-steering functionality was also verified in one radiation plane through the introduc-
tion of a lateral shift in the parabolic phase profile. Different phase profiles for different
beam-steering capabilities were tested and the results show that remarkably high beam
steering can be achieved, with up to 60◦ in steering while maintaining side-lobe levels
under 10 dB. The obtained results for these different tested configurations allowed the
validation of the proposed concept. Finally, due to the use of a Vivaldi radiating element as
feed to illuminate the reflector, the radiated beam in the H-plane shows a large half-power
beamwidth. As such, a solution of using a 1 × 4 Vivaldi array of identical antenna elements
to reach high directivity also in H-plane is proposed.

The resulting performances, particularly the directive nature of the antenna’s radiated
beam, pave the way for several applications in the field of 5G, satellite and naval communi-
cations. The high beam-steering capabilities allow a hemispheric coverage using a reduced
number of antennas. Furthermore, owing to its relatively low profile and simple design,
the proposed antenna is a good candidate for integration on planar surfaces, such as walls
and ship topside hulls.

Future works will be dedicated to electronic beam-scanning in both E- and H-planes.
Two different solutions can be considered. The first one consists of using a phase shifter
on the 1 × 4 array of feeding elements. The second solution consists of developing a
meta-reflector platform where the meta-atoms can be controlled individually in such a
way that a full parabolic phase profile can be achieved, as well as beam-scanning in both
radiation planes.
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Abstract: Indoor path loss models characterize the attenuation of signals between a transmitting
and receiving antenna for a certain frequency and type of environment. Their use ranges from
network coverage planning to joint communication and sensing applications such as localization and
crowd counting. The need for this proposed geodesic path model comes forth from attempts at path
loss-based localization on ships, for which the traditional models do not yield satisfactory path loss
predictions. In this work, we present a novel pathfinding-based path loss model, requiring only a
simple binary floor map and transmitter locations as input. The approximated propagation path is
determined using geodesics, which are constrained shortest distances within path-connected spaces.
However, finding geodesic paths from one distinct path-connected space to another is done through
a systematic process of choosing space connector points and concatenating parts of the geodesic
path. We developed an accompanying tool and present its algorithm which automatically extracts
model parameters such as the number of wall crossings on the direct path as well as on the geodesic
path, path distance, and direction changes on the corners along the propagation path. Moreover, we
validate our model against path loss measurements conducted in two distinct indoor environments
using DASH-7 sensor networks operating at 868 MHz. The results are then compared to traditional
floor-map-based models. Mean absolute errors as low as 4.79 dB and a standard deviation of the
model error of 3.63 dB is achieved in a ship environment, almost half the values of the next best
traditional model. Improvements in an office environment are more modest with a mean absolute
error of 6.16 dB and a standard deviation of 4.55 dB.

Keywords: radio channel; path loss; signal strength; receivers; transmitters; wireless communication;
computational modeling; path planning; electromagnetic propagation; loss measurement; propagation loss

1. Introduction

Radio channel models characterize radio propagation for a certain frequency and type of
environment and are valuable for the design of wireless communication systems. Path loss
(PL) models characterize signal attenuation between a transmitting (TX) and receiving (RX)
antenna and allow signal strength prediction and coverage calculations during the network
planning phase [1], but can also be used for sensing [2] and localization [3] applications.

1.1. Related Work

In the past decade, a lot of research has focused on creating path loss models for
indoor environments.

A recent and comprehensive survey on specifically indoor propagation models channel
models is provided in [4]. The distance losses of the empirical or site-specific models
discussed in this survey paper either use the direct path [5,6]. Geometric information about
the environment is used in [6,7], but not without the use of explicit knowledge on the type
of walls.
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In [8], propagation measurements are presented in a corridor and office environment
for frequencies ranging from 8 GHz to 11 GHz. In [9], models are created based on
measurements up to 22 GHz in a corridor environment, for different angles of arrival and
different antenna heights. Parameters are added to the close-in free space reference distance
model and the floating-intercept model to better serve the ability to tune parameters.
At such high frequencies, wall penetrations are not often taken into consideration. In [10],
the linearity of attenuation due to obstructions or lossy media is discussed, based on
measurements at 858 MHz and 1.935 GHz. The authors implicitly account for wall losses,
under the assumption that the average wall loss in a particular environment is known,
but instead of explicitly incorporating the number of walls crossing between transmitting
(TX) and receiving (RX) antennas, an additional parameter is used, defined based on general
information about the environment. An indoor path loss model for wireless local area
networks accounting for wall attenuation is presented in [11]. The authors derive their
model from the Average Wall Model. Instead of using the average wall attenuation within
the environment, however, their model considers the different types of walls on the direct
path between TX and RX and then averages the attenuation based on the wall crossed.
This approach requires the wall types on a floor map and does not estimate non-direct
propagation paths.

In [12], indoor path loss measurements in a residential living room at 60 GHz are
presented. Radio propagation in office environments is well studied [8,13–20]. On the
other hand, only limited literature is available for path loss models on board of naval
vessels [21–23]. Previously, geodesic paths were used for ear-to-ear propagation in the
2.4 GHz frequency band by the authors of [24]. The distances considered in this work are
at least two orders of magnitude smaller and are intended to consider geodesics without
interruptions in path-connected space.

Aforementioned models and methods make no distinction in path-connectedness
of the TX and RX antennas. Models and algorithms that are based on path finding are
presented in [25–27]. The methodologies herein are based on finding the dominant path
between a transmitter and a receiver. This dominant path is defined as the least attenuation
accumulating path from transmitter to receiver. In order to do this, every possible path
must be considered. The paths are considered consecutive connections between concave
corners and center points of walls on a floor map. The connector points are used in a tree
to search for a single path.

In this research, we present a novel path loss model for predicting signal strength
based on a 2-dimensional binary floor map (representing walls and empty space, but not
their types). The PL modeling approach is validated using experimental PL measurements
in the cabin environment of a freight ship and in an office environment.

1.2. Background

In this section, we provide an overview of the different PL modeling approaches that
are typically used and in terms of the required input, i.e., a floor map, best compared to our
proposed model. We provide an implementation of the floor-map-based models under the
constraint that floor maps do not make a distinction between wall types. It is often the case
in real environments that a binary floor map is readily available, but wall types are not.

1.2.1. One-Slope PL Model

The one-slope floating-intercept (FI) model from (1) describes a linear relation between
the logarithmic distance and PL, with PL0 the PL in dB at reference distance d0 = 1 m, n the
PL exponent and dd the Euclidean distance in meter between the TX and RX antennas.

PLFI(dd) = PL0 + n · 10 log10

(
dd
d0

)
(1)

The model parameters PL0 and n depend on the frequency and environment, and are
fitted based on measurement data.
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1.2.2. Floor-map-based Path Loss Prediction

Several approaches exist to predict PL based on the floor map of the environment,
taking into account attenuation due to objects obstructing the Line-of-Sight path, as well as
floor and wall penetration.

The average wall model (AWM) from (2), also known as the Keenan-Motley model is
a simplified model that only adds floor and wall attenuation to the free space PL model
without distinguishing between different wall types, and without accounting for non-
linearity of floor losses. In (2), Lw represents the average value for attenuation due to a
wall crossing, and kw is the number of walls crossed on the direct line between TX and RX.

PLAWM = PL0 + n 10 log10
dd
d0

+ Lw kw (2)

The COST 231 multi-wall model from (3) uses a free space PL model to which losses
due to wall and floor intersections are added [28]. In this equation, dd is the Euclidean
distance between the antennas, f is the frequency in Hz, c = 3× 108 m/s is the speed of
light, Lc is a regression parameter representing a constant loss, typically close to zero, kwi
is the number of walls of type i that are penetrated, Lwi is the loss coefficient for wall
type i, and I is the number of wall types, kf is the number of penetrated floors with floor
attenuation Lf, and b is an empirical parameter to adapt to the non-linearity of floor losses.

PLCOST = 20 log10

(
4πdd

f
c

)
+ Lc +

I

∑
i=1

kwiLwi + k

[
kf+2
k f +1−b

]
f Lf (3)

The recommendation P.1238-11 from the International Telecommunication Union (ITU)
presents both a site-general and ray-tracing-based site-specific model [29]. We will consider
the site-general model from (4), because it best compares to the model we propose in this
paper in terms of the input requirements. While this site-general model does not consider
wall crossings, it implies the wall losses by making a distinction between coefficients for
Line-of-Sight (LOS) and non-Line-of-Sight (NLOS) scenarios. This means that the model
also requires a floor map. In this equation, dd is the Euclidean distance between the
antennas, f is the operating frequency in GHz, α is the path loss exponent, β is an offset
value, similar to PL0 in the one-slope PL model, γ is a coefficient related to the increasing
transmission loss with frequency f.

PLITU = 10 α log10(dd) + β + 10 γ log10(f) (4)

1.2.3. Ray Tracing Based Models

In ray tracing algorithms, rays are launched for different azimuth and elevation
angles, and interactions with the environment are determined. The drawback is the high
computational complexity, as well as the requirement of having an accurate description of
the environment [30,31].

1.2.4. Pathfinding Based Models

The indoor dominant path prediction (IDP) model provides ray tracing accuracy at
a significantly lower complexity. IDP searches for only a single path, i.e., the dominant
path, which contributes to the most received power at the receiver antenna RX. The IDP
model justifies the use of a single path between TX and RX because more than 95% of the
contributed power is contained in 2–3 rays [25,26]. To find the dominant path, without the
computational intensity of ray tracing, IDP initially limits the number of ‘passages’ that a
radio wave can supposedly go through when TX and RX are not in LOS. It does so by relying
on a graph that connects distinct rooms by connector points in the center of shared walls.
We refer to rooms as path-connected spaces in the remainder of this paper. Non-convex
path-connected spaces are connected similarly by placing connector points in the concave
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corners. In doing so, the model considers an exhaustive list of all possible paths from TX
to RX. A pre-defined heuristic then decides on the least loss-inducing path. Parameters
along this path are then used to determine wall losses, diffraction losses, reflection loss,
waveguiding, and distance losses. While the original IDP model used a neural network
to find the path losses, the authors of [27] provide a thoroughly documented version of
IDP with an intuitive model equation instead of a neural network. Even though IDP is
conceptually similar to our proposed model, it requires detailed information such as the
type of walls on the floor map to populate crucial reflection, diffraction, and waveguiding
parameters. For this reason, we will not include IDP in the comparison and limit the
comparison to floor-map-based models which can be used without wall type information.

1.3. Contributions

In this paper, we propose a path loss model and parameter estimation algorithm for
path loss predictions. The proposed model only requires the input of a binary floor map,
without the need for detailed wall type information. As opposed to the models in the
previous sections, the proposed model is based on the combination of the direct path and
the shortest geodesic path [32] between a transmitter and receiver. Instead of the euclidean
distance, the distance along the points of the geodesic path is used. While the Euclidean
distance of the direct link is not used as the distance metric, the number of wall crossings on
the direct link is still used as a parameter. We find that in the proposed model, the impact of
walls crossed on the direct link has a logarithmic relationship with the path loss, while the
walls crossed on the geodesic paths (thus between distinct path-connected spaces) show
a linear relationship with path loss. Using only the geodesic path, without performing
ray-tracing, interaction losses are represented by the direction changes along the path.
The model is implemented in a tool that automatically extracts the parameters of the
model to estimate path loss based on a 2-dimensional floor map and predefined transmitter
locations. The implementation is validated against path loss measurements using DASH-
7 transceivers operating at 868 MHz in two different environments, i.e., the metallic
environment of a ship and an office environment. This validation is then compared to three
conventional floor-map-based path loss models. We evaluate the most commonly used
floor-map-based models by tuning the coefficients to our measurement environments in
our PL model tool. Given that the models compared range from site-general to site-specific
and from zero to three tunable coefficients, the goal of the evaluation comparison is not
to gauge a head-to-head performance difference, but rather to provide a set of broad, yet
commonly used model performances in conjunction with our PL model tool. The compared
results are however intended to contribute to an informed trade-off decision when selecting
a PL model.

2. Methods

2.1. Path Loss Model

The proposed model in this paper is based on the approximated propagation paths of
the radio signal. Many floor-map-based path loss prediction models either consider the
direct path (AWM, COST 231, ITU-R P.1238) or choose a single most likely propagation path
of the signal, discarding the direct path altogether (IDP). In the latter case, all the attenuation
is implied to be a result of the approximated propagation path and the losses incurred
along it. From our measurements, we find that even when considering an approximated
propagation path, it is still useful to consider wall losses on the direct path with regard to the
prediction of path losses. In our model, we make a distinction between walls crossed on the
direct path and walls crossed on the propagation path. The former has a logarithmic relation
to the path loss and the latter a linear one. We find and report on the importance of making a
distinction between propagation paths crossing walls that divide path-disconnected spaces
and those that cross walls that merely reside in the same path-connected space. We propose
the geodesic path loss model (GPM) from (5). In this model, we use geodesics or shortest
distances constrained by walls to determine the shortest paths within path-connected
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spaces. In the remainder of the paper, we specify the approximated propagation path as
the geodesic paths. Finding geodesic paths can only be done in path-connected spaces,
as such, we apply a systematic methodology to cross distinct path-connected spaces and
concatenate multiple geodesic paths into one resulting propagation path. The extraction
of GPM parameters is detailed in Algorithm 1. The coefficients and parameters of the
model are as follows. PL0 is the reference path loss in dB at distance d0, n the path loss
exponent, dP the path distance in meter of the (concatenated) geodesic path. Lwd and
Lwp are the coefficients for the average wall losses on the direct path and geodesic path
respectively. kwd and kwp are the number of walls crossed on the direct path and geodesic
path respectively. Lα is the coefficient for the interaction loss expressed as the sum of
direction changes αi along the path.

PLGPM = PL0

︸ ︷︷ ︸
Loss at 1 m

+

⎧⎪⎨⎪⎩
10 n log10

(
dP
d0

)
if LOS,

10 n log10

(
dP
d0

)
︸ ︷︷ ︸

Distance loss

+Lwd10 log10
(
kwd − kwp

)
+ Lwpkwp︸ ︷︷ ︸

Wall losses

+Lα ∑
i

sin2
(αi

2

)
︸ ︷︷ ︸
Interaction losses

otherwise.
(5)

The subtraction kwd − kwp in the logarithmic term serves to avoid the double counting
of path-disconnected wall crossings kwp. If kwd = kwp, then the logarithmic term is removed.

A visual representation of the parameters described is shown in Figure 1.

TX

RX

α1
P

L
kwd = 3
kwp = 1

C1

C3

C2

C4

Figure 1. The blue line is the concatenated geodesic path P from TX to RX. Along it, the blue and red
diamonds represent the points at which walls are crossed along the geodesic path and direct path L
respectively. The number of walls crossings are enumerated by kwd and kwp. The direction changes
along the path P are indicated by αi, i ∈ {0, . . . , corner count}. The distinct path-connected spaces
are indicated by Cj, j ∈ {1, . . . , J}.
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Algorithm 1: Tool to determine geodesic paths and other PL model parameters

Data: Floor map F ⊂ Z2, as a set of couples (2-tuple coordinates) pi ← (xi, yi). f is a binary mapping of F
into {0, 1} such that f (p) is either 0 (open space) or 1 (walls). The set of wall coordinates
W ← {p ∈ F| f (p) = 1}, antenna locations pTX and pRX ∈ (F−W).

Result: Shortest (concatenated) geodesic path P , path distance dP , direct distance dd, the number of walls on
the direct link kwd, the number of walls on the geodesic path kwp, an ordered list of direction changes
across the geodesic path ∀iαi (rad).

Functions:

[Dp,C]←− GeoTrans f orm(p, C) : Returns the geodesic transform Dp,C with seed point p in connected
space (mask) C, using a quasi-euclidean 8-connected kernel, for which each element of Dp,C represents
a coordinate in C and its distance to p.
[Pp,q,C, dP ]←− GeoPath(p, q, C) : Returns the geodesic shortest path from p to q in C by considering
the thinned, minimal distance coordinates between p and q, resulting from the sum of the two geodesic
transforms. Pp,q,C ←− D{D = min (Dp,C +Dq,C)}. The shortest path distance is then equal to the
value of any coordinate element in P . dP ←− P{1}
P ←− DouglasPeucker(P , ε) : Returns the coordinate couples sequence of path P , by recursively
decimating points which do not deviate more than tolerance ε from the current line segment under
evaluation. This tolerance value is set to the max radius of the first Fresnel zone.

1 begin

2 Let ∀jCj ⊆ (F−W) be the ordered set of unique subsets, each containing the coordinates of
path-connected spaces in F, labeled as j ∈ {1, 2, 3, ..., J}. For any given point p ∈ (F−W), its
corresponding connected space label is denoted as jp and its connected space subset as Cjp .

3 Let LTR ⊆ F denote the set points on the direct link line L ←− |pTX, pRX|.
4 dd ←− ||pTX, pRX||.
5 if LTR ∩W = ∅ then

6 |pTX, pRX| in LOS.
7 dP = dd

8 else

9 kwd ←− |label(LTR ∩W)|. Assigning set cardinality after labeling connected components avoids
overestimating the number of walls crossed due to stretches of connected wall components.

10 if jpTX = jpRX then

11 L is not a LOS link, but both transceivers are in the same connected space, thus the link is
considered as a path-connected NLOS link (NLOSPC).

12 pTX and pRX are not in LOS, but they are objects in the same path-connected space Cj such that
CpTX = CpRX .

13 [P , dP ]←− GeoPath(pTX, pRX, Cj).

14 else

15 L is not a LOS link and both transceivers are in a different distinct connected space, thus the link is
considered as a path-disconnected NLOS link (NLOSPD).

16 The shortest geodesic paths through the least number of neighboring spaces N ⊆ J are searched.
In case of multiple possible sets of neighboring spaces, the subset of CN is chosen according to
min(|centroid(CN),L|). Within these CN , the connector points pc ∈ N are then used to find
intermediate geodesic paths PN , which are then concatenated to result in the final P and dP .

17 P ←− concat(PN)

18 dP ←− ∑
|N|
n=1 dn

19 kw p ←− |PN | − 1

20 P ←− DouglasPeucker(P , ε)
21 αi ←− di f f (atan2(∇Pi,y,∇Pi,x)), ∀i ∈ {1, ..., |∇P|}
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2.2. Model Implementation

Algorithm 1 presents the algorithm for our tool, used to determine PL parameters.

2.3. Experiment Sites and Setup

The proposed GPM is a site-specific model, just like the AWM and the COST 231
model. For these three models, the coefficients and terms need to be tuned or chosen on a
per-environment basis. The ITU-R model is the only site-general model in the comparison
and requires no tuning of coefficients. The coefficients are chosen based on the type of
environment the path loss prediction is performed for.

The path loss measurements from two measurement campaigns are independently used
to validate the different PL models. The first measurement environment, shown in Figure 2a,
is the superstructure main cabin floor of a freight ship. The walls of this environment are all
made of either steel for the superstructure’s load-bearing walls or aluminum for doors and
thin compartmentalization walls. A second measurement environment, shown in Figure 2b,
is a regular office floor in a 10-story building. The building materials of this environment
range vastly from windowed walls to reinforced concrete. Typical materials such as timber
and plasterboard for compartment walls, different types of metal alloys for the elevator
shafts (near transceiver 17), and glass can be found in the environment. However, we
explicitly do not take this information into account for any of the implemented models,
as the assumption is that wall-type information is not available. Open doors are indicated
on these two-floor maps by an actual opening, while closed doors are indicated as wall
lines. Furthermore, we have not taken the thickness of the walls on the floor map into
account. Any wall crossing is counted as such, a single wall crossing, with no distinction in
wall types, even if the floor maps suggest differences in wall thickness.
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Figure 2. Floor map of the measurement environments and wireless sensor network deployment.
The ship environment is show in (a) and the office environment in (b).

To acquire the training and validation data from these environments, we held multiple
measurement campaigns. The transceiver locations are shown in Figure 2. The specific link
distinction between training and validation links are shown in Figure A2 of Appendix A
and the number of links per environment are provided in Table 1. The deployed wireless
sensor network (WSN) shown in Figure 2 is a highly connected DASH-7 WSN, operating at
868 MHz. The communication model, hardware, and network setup from the communication
perspective are detailed in a previous work in [33]. The deployed transceivers on tripods,
as well as the environment, are shown in Figure 3.

2.4. Model Parameter Algorithm Output

A small and random set of the resulting paths and parameters are shown in Figure 4.
This shows the geodesic paths through path-connected spaces (NLOSPC links), path-
disconnected spaces (NLOSPD links) as well as the corners and direction changes expressed
in degrees (for illustration). Corners are determined using the Douglas-Peucker algorithm [34].
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This algorithm requires a tolerance value, which we set at the maximum radius of the first
Fresnel zone. In Appendix A, Figure A1, we provide a floor map with all measurement
links drawn and represented as direct links. The algorithmically found geodesic paths are
overlaid on this map.

(a) (b) (c) (d)

Figure 3. This figure shows the measurement environments. The office environment is a typical
looking office, with a mix of unknown wall types of all sorts in (a), of which the location corresponds
to that of transceiver 22 in Figure 2b. The ship environment is highly metallic one. The air conditioning
room in (b) corresponds to the location of the transceivers 6 and 12 in Figure 2a. The location of
transceivers 3 and 9 in (c,d) can also be referred to in Figure 2a.

Table 1. Collected number of PL samples per link per measurements environment. A split is made
between distinct links used for training and evaluation.

Training Measurements Validation Measurements

Link Count Samples per Link Link Count Samples per Link

Ship 45 463 90 248

Office 63 121 210 89
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−79°  34°

−30°

−34°
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 90°

 34° −37°
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Transceivers
LOS link (2)
NLOSPC (1)
NLOSPD (4)
Direct path links (7)

Figure 4. A visualization of the parameters produced by the algorithm, showing direction changes
along the geodesic paths expressed in degrees, wall crossings by the direct paths and wall crossings
by the geodesic paths. A randomly selected subset (approximately 3% of all links) is generated
for visualization.

2.5. Model Coefficients and Terms

Usually the path loss exponent n is either fitted to LOS measurements at a range
of distances or set to the free space path loss (FSPL) exponent of 2. We prefer the latter,
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but because certain environments have a lower PL exponent than 2, such as highly metallic
industrial environments or in this case a ship, both our own measurements as well as
findings in literature indicate a PL exponent lower than 2 [1,35–37]. As such, in our case,
we will use a PL exponent of n = 2 for the office environment and n = 1.15 for the
ship environment. The reference path loss PL0 is set as 31.2 dB, which is the FSPL at an
operating frequency of 868 MHz and 1 m distance from the TX antenna. The frequency
dependent reference path loss term can be translated to other sub-6 GHz frequency bands.
The frequency dependency thus stems from (6), but also from the corner selection process
in which the maximum radius of the first Fresnel zone is used as the tolerance value in the
iterative-end-point-fit algorithm.

PL0 = 20 log10(d0) + 20 log10(f) + 20 log10

(
4π

c

)
(6)

All other model-specific parameters, unless prescribed by the model itself, were
attained using multivariate nonlinear least squares. The GPM uses three coefficients to be
fitted and both the AWM and the COST 231 models only one. The ITU-R model is not a
site-specific model, but instead a site-general model, with predetermined coefficients and
terms based on the type of environment, making it the only model that doesn’t need any
coefficient fitting.

The number of unique measurement links between TX and RX is 117 for the ship
environment and 273 for the office environment, with a total number of respectively
39,012 and 17,046 path loss measurements across those links. A third is used for coefficient
tuning, presented in Table 2, while the remainder is used for model validation and error
analysis. Table 2 does not include the coefficients for ITU-R P.1238, because those are
pre-determined based on the type of environment and whether or not the current link
between TX and RX is in LOS [29].

Table 2. GPM, AWM and COST231 model coefficients for 868 MHz in a ship and office room
environment, fitted using a multivariate non-linear least squares algorithm. The bold values indicate
the coefficient estimates, accompanied by the lower limits (LL) and upper limits (UL) for the 95%
confidence intervals (CI).

GPM AWM COST231

Lwd Lwp Lα Lwd Lwd

Ship Estimate 0.5588 17.79 9.6895 4.8137 2.9484
95% CI [LL] 0.5357 17.5993 9.5737 3.9177 2.071
95% CI [UL] 0.5819 17.9806 9.8053 5.7096 3.8258

Office Estimate 2.2929 3.6716 4.5151 3.09 3.09
95% CI [LL] 2.2628 3.2456 4.3487 2.7307 2.7307
95% CI [UL] 2.323 4.0977 4.6814 3.4472 3.4472

3. Results

After obtaining the various model coefficients, tuned against a training sample set of
PL measurements, we evaluate the resulting predictions per model, per environment. First,
we present the statistical error analysis. Paired with the PL prediction on every point of
the maps, we can interpret and discuss the model behavior in conjunction with the error
results with respect to the measured validation links.

3.1. Prediction Errors

Figure 5 shows different perspectives on how well the predictions from the different
models fit. In Figure 5a,c, the PL is shown as a function of the direct distances.

For the model prediction comparisons for the ship environment in Figure 5a, we
can see that the GPM predictions follow the measurements fairly well irrespective of the
distance between TX and RX antenna, whereas the traditional floor-map-based models tend
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to have larger prediction errors for larger distances. The model prediction comparisons
of the office environment in Figure 5c on the other hand show that predictions across all
models tend to follow the measurements in a similar manner.

In Figure 5b,d, a scatter plot is shown. The x-axis corresponds to the measured PL on a
communication link, with its respective PL prediction on the y-axis. This is done for two PL
models, the GPM and AWM. The first bisector line represents a perfect prediction relation
between the measured PL (dB) on the x-axis and the predicted PL (dB) on the y-axis.

In the office environment, AWM and COST231 are essentially the same model, given
that, in this environment, the AWM uses FSPL PL0 and PL exponent n = 2. The ITU-R P.1238
model (site-general version), which uses predetermined coefficients, makes predictions
with very large errors of up to 41.72 dB as reported in Table 3.
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Figure 5. PL is outlined with respect to the direct path distance between TX and RX for all the
considered models in (a) for the ship environment and in (c) for the office environment. A comparison
between measured and predicted PL is made visible more explicitly in (b) for the ship environment
and in (d) for the office environment.

Table 3. Statistical error analysis summary for the GPM, AWM, COST 231 and ITU-R P.1238.

Model MAE (dB) σ|ε| (dB) |εmax| (dB) RMSE (dB) R2

Sh
ip

GPM 4.79 3.63 16.38 6.0 0.83
AWM 8.88 7.80 29.37 11.79 0.43
COST 231 9.19 7.17 27.07 11.64 0.41
ITU-R P.1238 8.79 7.83 33.65 11.75 0.38

O
ffi

ce

GPM 6.1637 4.55 20.783 7.66 0.77
AWM 7.93 5.61 28.19 9.69 0.74
COST 231 7.93 5.60 27.33 9.7 0.74
ITU-R P.1238 18.73 9.92 41.72 21.19 0.67
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Figure 6a,c show the empirical cumulative distribution functions (CDFs) for the
absolute errors of the path loss predictions of all considered models. Similarly, Figure 6b,d
show the CDFs, only now with the signed Errors, (PLPREDICTION − PLMEASUREMENT), such
that the negative side of the x-axis represent the underestimations from the models and the
positive side of the x-axis represents overestimations from the models.
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Figure 6. CDF plots of the PL estimation errors. The CDF of the absolute errors is shown in (a) for
the ship environment and in (c) for the office environment.The CDF of the signed errors is shown in
(b) for the ship environment and in (d) for the office environment.

Lastly, a summary of the statistical error analysis is provided in Table 3. A large
disparity between GPM and other floor-map-based models is apparent in the results from
the ship environment. The mean absolute error (MAE) is 4.79 dB for GPM, whereas that of
the next best prediction model for the ship environment (ITU-R P.1238) is almost double at
8.79 dB. The standard deviation of the error is only 3.63 dB for the GPM. Standard deviations
between 3 and 6 dB are excellent according to [38], and referred to in the works of [27].
Moreover, the coefficient of determination (R2) of the GPM is much better than that of the
others. While the GPM outperforms other models in the office environment, the observed
results are more comparable to each other. One exception is the ITU-R model, which
under-performs in comparison to the site-general models in this specific office environment.
While it is interesting to assess the performance of the ITU-R model, it remains a site-
general model in which the coefficients are not tuned to the specific environment, unlike
the other models. The GPM, AWM, and COST 231 models are trained, and their respective
coefficients are tuned from the same training set. Since these three are site-specific models,
the tuning is done separately for the ship and office environment, but equally within
each environment.

193



Sensors 2022, 22, 4903

3.2. PL Prediction Results

From the environment parameters and model coefficients, we predict the PL at every
location on the floor map from a given TX antenna for both the ship and office environment.
The presented prediction is limited to the GPM and AWM. The apparent differences
between these two models are instructive and relay the shortcomings of traditional floor-
map-based PL models, which we discuss in Section 4. Figure 7 provides an overview of
the simulations.
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Figure 7. Predicted GPM PL is presented in (a) for the ship environment and in (b) for the office
environment. For the purpose of comparison, the same is provided for the next best performing
traditional model, AWM, in (c) for the ship environment and (d) for the office environment. We can
see larger differences between GPM and AWM in the ship environment than in the office environment.
The AWM considers walls and distance as the only path loss causes, while the GPM takes diffraction
and differences in path-connectedness of wall crossings into account as well.

4. Discussion

Originating from the need for a more representative PL model for the localization
of transceivers in an indoor ship environment, we set out to find a pathfinding-based PL
model. The goal of this model is to alleviate the systematic errors induced by map-based
models that ignore propagation paths beyond the direct path, without requiring additional
information such as wall types or predetermined connector points between rooms and
around concave corners. The only input required for the model is a simple binary floor map,
without any additional details about wall types. Such detailed information is seldom readily
available, even when computer-aided design files are present. The model algorithm to find
the parameters is part of the model. The algorithm is based on finding shortest paths using
geodesics with a quasi-Euclidean kernel, the crossing between path-disconnected spaces
using heuristics, and lastly, the finding of angles on corners, which are first determined by
path point reduction using the Douglas–Peucker algorithm.

4.1. Experimental Validation

In Table 2, the GPM coefficients are presented along with the 95% confidence interval
bounds for both the ship and office environment. Unsurprisingly, we see that for the
ship environment, the impact of wall crossings between path-disconnected spaces has
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a very large impact, as indicated by Lwp|GPM. Conversely, the impact of wall crossings
across the direct path has a significantly lower impact, as indicated by Lwd. However,
the accumulated impact thereof is still sizable, because the number of walls crossed on the
direct path is approximately ten times the number of walls crossed on the geodesic path,
both for the ship and office environments. From that aspect, we can see that for the average
link with average parameter values, the impact of walls crossed on the direct path in the
office environment have a significantly larger impact on PL than the walls crossed on the
geodesic path.

4.2. Errors

The traditional floor-map-based models have difficulty predicting PL in the ship
environment as the distance between TX and RX antennas grows larger. This is again
due to improper valuation of the wall crossings. Surprising however is the comparable
performance of the ITU-R P.1238 model to the other traditional multi-wall models in this
environment. It does not consider walls, but rather only whether or not links are in LOS or
NLOS and uses model coefficients prescribed by the model itself. For the ship environment,
it is clear that a pathfinding model is a must. The GPM prediction errors show an MAE
of 4.79 dB, with a high coefficient of determination (R2) of 0.83, whereas the traditional
floor-map-based models perform comparably among each other with an average MAE of
8.95 dB and an R2 value of 0.41.

The large under- and over-estimations in the ship environment from models such
as AWM and COST231 stem directly from not being able to find a path. Especially in an
environment with such a low PL exponent and at the same time, metal walls that attenuate
significantly if TX and RX are not in the same path-connected space and a wall that divides
path-disconnected spaces must be crossed. The significance of path-connectedness becomes
apparent in the differences in wall loss coefficients from the GPM. This is however not
something the AWM, COST231, or ITU-R P.1238 (site-general version) models can account
for. For these traditional floor-map-based models, it’s near impossible to deal with the more
prominent interaction losses as opposed to the very small distance losses. We would like
to note that the availability of wall types would not solve this problem for the traditional
floor-map-based models, because the wall types in the ship environment are all similar to
each other. The important consideration of path-connectedness upon wall crossings is a
necessary one, given an environment characterized by a low PL exponent.

However, in the office environment, we see that the average wall models perform
significantly better than in the ship environment, although not better than the GPM.
The GPM predictions show an MAE of 6.16 dB and an R2 value of 0.77. AWM and
COST231 predictions have an MAE of 7.93 dB and an R2 value of 0.74. The ITU-R P.1238
(site-general version) model has the largest prediction errors and the model would need a
PL prediction offset value far from zero. We would like to note however that the ITU-R
P.1238 (site-general version) model does not consider walls, but rather applies different
terms and coefficients based on environment type and whether or not the TX and RX
antenna are in LOS.

5. Conclusions

In this research, we presented a novel path loss model and tool for predicting path
loss. The model only requires the input of a simple binary 2-dimensional floor map,
without the need for additional wall type information. The model is based on the use of
shortest constrained distance, or geodesics, to find paths within path-connected spaces.
Crossing walls to path-disconnected spaces is done systematically based on a heuristic.
We presented an algorithm that automatically determines the parameters used in the
model. Furthermore, the model was validated using path loss data from a considerably
large measurement campaign in two vastly different environments, one being the main
cabin floor in the superstructure of a ship and the other in an ordinary office environment.
The path loss prediction results of the proposed Geodesic Path Model are mean absolute
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errors as low as 4.79 dB and a standard deviation of the error of 3.63 dB in the ship
environment and a mean absolute error of 6.16 dB and standard deviation of 4.55 dB
in the office environment. The most significant improvements are observed in the ship
environment, an environment characterized by its low path loss exponent (1.15, as opposed
to 2 for free space). We also find the importance of making a distinction between the
crossing of walls that divide path-disconnected spaces as opposed to the crossing of walls
that reside in the same path-connected space.

Future Work

Validating our Geodesic Path Model with in-field measurements, not only allows
us to have a better input for our active device-based localization efforts, but it opens the
gate to other sensing objectives such as our device-free crowd or people sensing efforts.
If determined propagation paths are reliable to a certain degree, then time-variable PL
changes along those paths can facilitate the detection of people counts and presence
in complex environments, whereas radio-frequency based device-free people counting
traditionally requires a mostly unobstructed line-of-sight between TX and RX antennas.

We are interested in the reliability of the model in higher frequencies such as the
millimeter-wave bands. At higher frequencies, the reflected signals become more diffuse
and diffraction losses increase as well. In order to compensate for the incurred losses,
directional antennas are used. This specific working of antenna directionality will need to
be implemented in the path loss parameter determination tool.
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The following abbreviations are used in this manuscript:

AWM Average Wall Model
CDF Cumulative Distribution Function
CI Confidence Interval
eCDF Empirical Cumulative Distribution Function
FI Floating-intercept
FSPL Free-Space Path Loss
GPM Geodesic Path Model
IDP Indoor Dominant Path Model
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LL Lower Limit
LOS Line-of-Sight
MAE Mean Absolute Error
MDPI Multidisciplinary Digital Publishing Institute
NLOS Non-Line-of-Sight
PL Path loss
R2 Coefficient of Determination
RMSE Root Mean Square Error
RX Receiver antenna
TX Transmitter antenna
UL Upper Limit
WSN Wireless Sensor Network

Appendix A
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Figure A1. The resulting estimated propagation paths are presented in this figure. The resulting
(concatenated) geodesics indicated as paths in green, yellow or red are a result of applying the
algorithm in Algorithm 1 to the direct paths indicated as the gray lines.
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Figure A2. The training links for the ship environment and office environment is shown in
(a,b) respectively. Floor map of the measurement environments and wireless sensor network
deployment. The evaluation links for the ship environment and office environment is shown in
(c,d) respectively.
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Abstract: The futuristic fifth-generation cellular network (5G) not only supports high-speed inter-
net, but must also connect a multitude of devices simultaneously without compromising network
security. To ensure the security of the network, the Third Generation Partnership Project (3GPP)
has standardized the 5G Authentication and Key Agreement (AKA) protocol for mutually authenti-
cating user equipment (UE), base stations, and the core network. However, it has been found that
5G-AKA is vulnerable to many attacks, including linkability attacks, denial-of-service (DoS) attacks,
and distributed denial-of-service (DDoS) attacks. To address these security issues and improve the
robustness of the 5G network, in this paper, we introduce the Secure Blockchain-based Authentication
and Key Agreement for 5G Networks (5GSBA). Using blockchain as a distributed database, our
5GSBA decentralizes authentication functions from a centralized server to all base stations. It can
prevent single-point-of-failure and increase the difficulty of DDoS attacks. Moreover, to ensure the
data in the blockchain cannot be used for device impersonation, our scheme employs the one-time
secret hash function as the device secret key. Furthermore, our 5GSBA can protect device anonymity
by mandating the encryption of device identities with Subscription Concealed Identifiers (SUCI).
Linkability attacks are also prevented by deprecating the sequence number with Elliptic Curve
Diffie–Hellman (ECDH). We use Burrows–Abadi–Needham (BAN) logic and the Scyther tool to
formally verify our protocol. The security analysis shows that 5GSBA is superior to 5G-AKA in terms
of perfect forward secrecy, device anonymity, and mutual Authentication and Key Agreement (AKA).
Additionally, it effectively deters linkability attacks, replay attacks, and most importantly, DoS and
DDoS attacks. Finally, the performance evaluation shows that 5GSBA is efficient for both UEs and
base stations with reasonably low computational costs and energy consumption.

Keywords: 5G; 5G-AKA; authentication; blockchain; BAN logic; Scyther

1. Introduction

In recent years, the exponential growth of mobile subscribers and smart devices
has fostered the rapid development of the fifth-generation cellular network (5G). Unlike
the conventional 4G networks that only support limited numbers and types of devices,
the 5G network is designed to connect as many devices as possible within one network.
All devices such as mobile phones, autonomous vehicles, and Internet of Things (IoT)
can now connect to the same 5G network with optimal speed and latency. To cater to
these stringent requirements, the 5G network is constructed by many tiny femtocells to
serve many users [1]. In this way, limited spectrum resources can be reused effectively to
provide services to more devices simultaneously. Additionally, having more base stations
installed, 5G wireless networks can alleviate traffic congestion in wireless channels. Hence,
the futuristic 5G networks improve wireless connections with faster speed, lower latency,
and greater capacity.

Although the 5G network is said to provide numerous benefits, there are also many
new security challenges. In view of these potential security issues, the Third Generation
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Partnership Project (3GPP) has standardized a new Authentication and Key Agreement
(AKA) protocol known as 5G-AKA in TS 33.501 [2]. 5G-AKA can mutually authenticate
base stations, 5G core networks, and user equipment (UE). It has resolved some pre-existing
security issues found in the 4G Long-Term Evolution (LTE) networks. For example, by en-
crypting the permanent identity of the UE using the Subscription Concealed Identifier
(SUCI), 5G-AKA can prevent International Mobile Subscriber Identification (IMSI), catching
attacks and rogue base station attacks [3]. However, as some of the authentication methods
in 5G-AKA are inherited from the 4G EPS-AKA [4], security issues in 4G networks remain
unsolved in 5G-AKA. For example, 5G-AKA suffers from linkability attacks, in which
malicious users can track a specific device by using synchronization error messages [5]. Ad-
ditionally, it lacks perfect session key forward secrecy that guarantees data confidentiality,
even if the long-term key is stolen in the future [3]. Furthermore, 5G-AKA is a centralized
protocol that relies heavily on two functional entities, namely the Authentication Server
Function (AUSF), and the Authentication credential Repository and Processing Function
(ARPF) located inside the Unified Data Management (UDM) server. As there will be a
tremendous number of devices connecting to the same 5G core network, 5G-AKA would
be highly vulnerable to Denial of Service (DoS) attacks and Distributed Denial of Service
(DDoS) attacks which aim to paralyze functional entities in the core network. Consequently,
the existing 5G-AKA protocol is subject to many security threats that affect the robustness
and reliability of the 5G network.

On the other hand, blockchain is a new technology for decentralized applications.
Initially proposed by the creator of Bitcoin cryptocurrency, blockchain is a practical way
to construct and manage a trustworthy decentralized ledger database across the network.
By storing transactions into data blocks and linking them together using cryptographic
hash functions, blockchain ensures all blocks in the chain reach the consensus effectively.
Additionally, blockchain ensures the data in the database becomes computationally infeasi-
ble to mutate. In recent years, researchers have envisioned that blockchain can be used in a
distributed way to solve many challenging problems in the 5G network [6]. As the number
of 5G network infrastructures and mobile devices is growing exponentially, the benefits of
blockchain would become more prominent in the future.

In this paper, we propose a Secure Blockchain-based Authentication and Key Agree-
ment scheme for the 3GPP 5G network (5GSBA). Our 5GSBA protocol offers these benefits:
first, it provides a distributed way to store all subscribers’ information safely. By em-
ploying the one-time hash secret, authentication-related entries are the hashed digests
that work similarly as public keys. Hence, even if the database is disclosed in the future,
adversaries cannot use it to impersonate any UEs. Moreover, 5GSBA prevents not only
typical network attacks such as eavesdropping, man-in-the-middle attacks, replay attacks,
and IMSI-catching attacks, but also prevents DoS and DDoS attacks effectively and provides
perfect session key forward/backward secrecy. The main contributions of this paper are
as follows:

1. We design a novel Authentication and Key Agreement protocol for the 3GPP 5G
network. 5GSBA works based on the improvement of the existing system architecture
of the 5G core network. It can be easily adopted to the 3GPP access scenario, in which
all UEs are connected to the home network via nearby gNBs;

2. Our proposed 5GSBA protocol is secure and efficient. Using blockchains and other
state-of-the-art cryptographic functions, 5GSBA can guarantee device unlinkability,
mutual authentication, and data confidentiality with low computational and energy
costs. Most importantly, not only can all typical network attacks be prevented, but DoS
and DDoS attacks can be deterred;

3. The security of the protocol is verified with BAN logic and the formal verification tool
Scyther. The performance evaluation and simulations also demonstrate its resistivity
to DoS and DDoS attacks.

The rest of the paper is organized as follows. Section 2 reviews the existing works
on 5G authentication and some blockchain-based 5G applications. Section 3 introduces
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the system and security model of 5GSBA. Section 4 discusses the motivations for and the
details of 5GSBA. Section 5 presents the work of security evaluation and Section 6 presents
the work of performance evaluation with some simulation results under different attacks.
Finally, a conclusion is drawn in Section 7.

2. Related Work

Recently, various solutions have been proposed to improve security in the Authentica-
tion and Key Agreement (AKA) process in the 5G network. In this section, we first discuss
the security vulnerabilities in the existing 5G-AKA protocol. Then, we briefly review the
major research work related to our work, including blockchain-related 5G authentication
schemes and AKA schemes against DoS attacks.

2.1. Security Vulnerabilities in 5G-AKA

5G-AKA is the standardized Authentication and Key Agreement protocol in the latest
3GPP 5G security architecture TS 33.501 [2]. Evolved from the architecture of EPS-AKA
in the LTE security architecture, 5G-AKA aims to ensure the authenticity between UE,
the serving network, and the home network. However, some security vulnerabilities in
the 5G-AKA have recently been disclosed, making it less secure than has been claimed.
For example, Ref. [3,5] found that 5G-AKA suffers from linkability attacks, by which
adversaries can use synchronization error messages (MAC_FAIL and SYNC_FAIL) to
detect if the UE is currently located in a certain area. Additionally, 3GPP TR 33.846 [7]
found that 5G-AKA fails to prevent denial-of-service (DoS) attacks because the 5GC has
no way to justify if the SUCI is a replayed message. The 5G-AKA is a centralized protocol
that heavily relies on the authentication functional entities of AUSF/UDM, so it could
be vulnerable to Distributed DoS (DDoS) attacks and single-point-of-failure issues in the
AUSF/UDM. Moreover, [4] found that 5G-AKA fails to provide perfect forward secrecy
and post-compromise secrecy due to the use of the long-term symmetric keys and sequence
numbers. In fact, according to the 3GPP TS 33.501 [2], the device anonymity protection
of UE in 5G-AKA is also vulnerable. For example, network operators can opt out of the
encryption in the Subscription Concealed Identifier (SUCI) that encrypts the Subscription
Permanent Identifier (SUPI) of UE. It is also known as a “null-scheme”. Thus, the UE will
send the cleartext of its SUPI through wireless channels, which could be dangerous for
IMSI-catching attacks. In some emergent situations, UE also sends its SUPI directly to
initiate authentication procedures. To conclude, 5G-AKA is vulnerable to many network
attacks, including but not limited to linkability attacks, DoS attacks, and IMSI-catching
attacks. The lack of perfect forward secrecy also makes 5G-AKA vulnerable to session data
recovery if the long-term key (LTK) is compromised at any time.

2.2. Blockchain in 5G Authentication

Linking data blocks into a chain, blockchain technology is essentially a secure de-
centralized database solution that guarantees data immutability and practical consensus
across multiple network nodes. There are three different types of blockchain platforms [8]:
permission-less, permissioned, and consortium blockchains. Among all three types of
blockchains, it is envisioned that private and consortium blockchains are the most suit-
able distributed solutions to solve the security challenges in 5G because of their high
efficiency [6].

In recent years, some proposals combining blockchains with 5G authentication have
surfaced. For example, Yang et al. [9] introduced the idea of a blockchain-based anonymous
access (BAA) scheme that allows equipment manufacturers, network operators, and users
to access the blockchain-based database and perform mutual authentication. However,
there is no formally proved protocol presented in the proposal. Haddad et al. proposed
a blockchain-based 5G authentication protocol based on a public blockchain in [10,11].
They suggested that all 5G access points (APs) can use the UE public keys listed in the
blockchain to perform mutual authentication between the AP and the UE. However, this
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misses a mechanism for UE to retrieve the public keys of the surrounding APs. Xu et al. [12]
proposed the use of redactable blockchains to store all subscriber’s information. The redactable
blockchain provides key deletion and revocation functions. It is beneficial for network op-
erators to protect the privacy of their users. However, the proposal lacks an authentication
protocol for UEs and core networks to secure user data using the keys in the blockchain.
Jia et al. [13] proposed a decentralized authentication scheme for 5G IoT devices. This proto-
col suggests that authentication entities in all domains can upload their device registration
records to the same alliance blockchain. However, the protocol uses an identity-based
cryptosystem. It introduces high computational overhead to mobile devices and edge
servers, making them energy inefficient and prone to request flooding. Liu et al. [14] pro-
posed an efficient authentication protocol based on 5G extensible authentication protocol
(5G EAP-AKA’) and a private blockchain. However, the security functionality of the pro-
posed scheme has not been formally analyzed. Moreover, the EAP framework could also
introduce more signaling overhead than the existing 5G-AKA scheme.

Some recent solutions have been designed to accelerate handover authentication in 5G
wireless networks by using blockchains [15–19]. While all of them are providing a fast way
to share the secret keys among base stations, most of them did not discuss how to prevent
DoS and DDoS attacks during the UE authentication phase in a fast and efficient way. As a
result, this shows that most of the existing blockchain authentication works are incomplete,
and almost all of them could not alleviate the threats of DoS and DDoS attacks effectively
during the UE authentication. In other words, designing a blockchain-based authentication
protocol that provides adequate attack prevention, is energy-efficient, and computationally
fast at the same time is a challenging research work. Overall, Table 1 summarizes all recent
blockchain-based 5G authentication schemes and their challenges.

Table 1. Recent works on blockchain-based 5G authentication protocols.

Type Highlights
Security Features

FV DA PFS LA DoS DDoS

Our Work 5G Initial
Authentication Decentralized authentications with low overhead � � � � � �

[9] No single trust authority � �
[10,11] Decentralized authentication to nearby gNBs � � � �

[12] Removal of obsolete data in blockchains � � � �
[13] Inter-domain authentication � �
[14] Improving 5G EAP-AKA′ protocol security � � �

[19] Formally verified protocol using
chameleon signature � � � � �

[15]

5G Handover
Authentication

Efficient handover authentication � � � � �
[16] Optimized for frequent handover �
[17] Lightweight handover authentication �

[18] Traceability for base stations to record
malicious devices � � � �

FV = formally verified protocol; DA = device anonymity; PFS = perfect forward secrecy; LA = lightweight
authentication; DoS = DoS attack prevention; DDoS = DDoS attack prevention.

2.3. AKA Schemes against DoS and DDoS Attacks

On the other hand, many solutions have been designed to alleviate DoS and DDoS at-
tacks during the UE authentication. Some recent 5G AKA schemes aimed at preventing DoS
and DDoS are presented in Table 2. For example, by allowing multiple devices to choose
a group leader as an agent, many group-based authentication protocols such as [20,21]
aim to relieve computational burden and signaling overheads while authenticating a mass
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of devices. Although they can alleviate DoS attacks by including secret keys and short
delays in the authentication requests, adversaries can bypass the security mechanism by
launching the attacks individually. Leu et al. [22] have proposed to construct an AUSF pool
and add a mediator to monitor all AUSFs. Although this provides disruption-free 5G-AKA
authentication, it cannot prevent DoS attacks effectively because it is uses 5G-AKA, which
is the protocol vulnerable to DoS attacks. Additionally, the bandwidth in the AUSF pool is
still finite and expensive, and thus needs more investment. Yan et al. [23] have proposed a
lightweight and secure handover authentication scheme based on a prediction of the poten-
tial target gNB from all neighbor gNBs in the 5G wireless network. The proposal facilitates
fast 5G handover authentication by using time-to-live (TTL) attributes and encrypting the
next hop chaining counter (NCC) with the Chinese remainder theorem. There are also
some other schemes, including [24–28], proposed recently to fix other security issues in
EPS-AKA and 5G-AKA. However, all of them suffer from single-point-of-failure due to the
centralized protocol designs. Thus, all the existing DoS attack prevention schemes cannot
provide adequate DoS and DDoS attack prevention.

Table 2. Recent works of AKA schemes with DoS and DDoS prevention.

Method Advantages Drawbacks

[20] Group
Authentication

Prevention of DoS using timestamp
Weak DDoS prevention for individual authentication

[21] Efficient group-based authentication

[22] Computation Pool Fault-tolerant 5G-AKA authentication 5G-AKA is inherently vulnerable to DoS attacks

[23]

One-to-One
Authentication

Lightweight and formally verified
handover authentication

Vulnerable to DDoS due to centralized design
[24] Formally verified protocol

[25] Lightweight symmetric key-based protocol

[26] Formally verified protocol

[27] Backward compatibility with 5G-AKA

[28] DDoS prevention using
zero-knowledge proof Centralized design, lack of formally verified protocol

3. System and Security Model

3.1. System Model

Our system model follows the 3GPP 5G system architecture listed in TS 23.501 [29]
and the security architecture listed in TS 33.501 [2]. We are adding some new features to
the existing functional entities. Figure 1 shows the 3GPP 5G core network (5GC) consisting
of many functional entities.

In the existing 3GPP 5GC system model, the Next Generation Node B (gNB) is the
base station that directly communicates with the UE. All gNBs in the 5G network are
connected to the nearby Access and Mobility Function (AMF) servers. During conventional
5G-AKA authentication, when UE is under the coverage of 3GPP access (i.e., under the
signal coverage of gNBs), it should send an authentication request to gNBs. Then, the gNB
forwards it to the AMF, and the AMF forwards it to the Authentication Server Function
(AUSF) server. After that, AUSF fetches the device secret keys from the Unified Data
Management (UDM) server to continue the subsequent authentication steps. Normally,
one AUSF serves many AMFs across the 5G core network, and each AMF serves many
gNBs nearby.

In our proposal, we follow the same system model with a decentralization of the
authentication entities as follows. All gNBs in the 5G core network become the members of
a private blockchain that stores subscribers’ information. AMF and AUSF should no longer
need to forward authentication requests, but they can optionally be one of the members in
the blockchain. UDM is the protected repository that stores private keys of the blockchain
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and other important secrets. For each authentication request, UE uses the one-time hash
secret stored in the Universal Subscriber Identity Module (USIM, or commonly known as a
SIM card) to initiate an authentication request. Then, the gNB hashes the received secret
and compares it with the entries in the blockchain. Since only legitimate UE would have
the original secret, the gNB can immediately grant or deny the UE’s authentication request
without forwarding the request to AMF, AUSF, or UDM.

Figure 1. System and security model.

Considering that 5G devices can connect to the 5GC by many different approaches
such as non-3GPP access, 3GPP access in the home network, and 3GPP access in a visiting
network, designing a universal authentication protocol could be very complicated. In this
work, we focus on the most common scenarios to simplify the designed authentication
protocol. It is assumed that all UE uses 3GPP access to connect to the gNBs in the home
network. These gNBs are connected to the 5GC. Additionally, the connections between
gNBs and 5GC are secured by wired connections protected by IPSec tunnels. Thus, if a
gNB can mutually authenticate with UE using the private key of the home network and
information stored in the blockchain, it can be regarded that the UE has joined a legitimate
5GC network.

3.2. Security Model

Our security model is also displayed in Figure 1. It is assumed that the 5G wire-
less channels follow the Dolev-Yao model [30], which assumes that there could be some
neighboring active and passive attackers. Passive attackers eavesdrop and interpret the
messages sent from both UEs and gNBs. Then, they can analyze the intercepted data to
figure out the messages sent from both parties. Active attackers not only eavesdrop on
the wireless channels, but also modify the intercepted messages, replay them, or even
fabricate new messages to impersonate legal UEs or gNBs to disrupt the network. All these
attackers are labeled as “Dolev-Yao (DY) Attackers” in Figure 1. Moreover, although it is
assumed that the communication channels within 5GC are trustworthy, some accidents or
misconfiguration could happen to the functional entities. For example, information in the
data repositories of the 5GC functional entities could be leaked in some rare cases. In this
scenario, these passive attackers would try to use the exposed permanent keys to decrypt
previous communication data. Additionally, it is possible that there is compromised botnet
UE in the wireless network. UE could launch DoS and DDoS attacks at any scheduled time,
attempting to flood or paralyze the authentication-related functional entities in the 5GC.
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Due to all the assumptions above, a desired 5G authentication protocol should pro-
vide security functionalities including device anonymity, mutual authentication, secure
data transmission, and session key perfect forward secrecy. Moreover, it should be able
to prevent active attacks such as impersonation, linkability attacks [5], replay attacks,
man-in-the-middle (MITM) attacks, and DoS attacks. For passive attacks, there could be
eavesdropping and location tracking attacks. These attacks must also be deterred.

4. The Proposed 5GSBA Scheme

4.1. Motivation

The existing 5G authentication protocol, 5G-AKA, is a vulnerable protocol that creates
a vast burden to the AUSF. Since there will be more connected devices in the future,
attackers are likely to launch DoS and DDoS attacks to flood the AUSF and other 5G
authentication entities. However, as there could also be some essential utilities using
5G, the 5G network has to be stable at all times. Therefore, to prevent DoS and DDoS
attacks from paralyzing the 5G network, there is an urgent and critical need to design an
authentication protocol that ensures no DoS and DDoS attacks can be successful. This
protocol should work in a decentralized manner, such that it will not suffer from a single
point of failure due to request flooding. Given all these constraints, we believe that an
authentication protocol combined with a blockchain would be an ideal solution. Although
a blockchain could introduce more overhead during database synchronizations, it helps
reduce the opportunity of system overloading by decentralizing authentication tasks. In this
paper, we propose a 5GSBA scheme that uses a blockchain to decentralize the subscription
repository from UDM to all gNBs, such that authentication tasks can be decentralized to
the gNBs. By doing so, we can prevent DoS and DDoS attacks from impacting the quality
of service (QoS) of the entire 5G network.

4.2. Details of the 5GSBA

This section presents the Secure Blockchain-based Authentication and Key Agreement
Protocol (5GSBA) in detail, which is a two-step protocol designed to mutually authenticate
between UEs and gNBs in the 5G network. To satisfy all aforementioned security require-
ments, the 5GSBA combines the one-time hash function, Elliptic Curve Diffie–Hellman
(ECDH), the Elliptic Curve Integrated Encryption Scheme (ECIES), and the keyed-hash
message authentication code (HMAC) at different steps of the protocol. The 5GSBA uses
a private blockchain network across all gNBs as a distributed subscriber data repository.
Therefore, all gNBs connected to the 5GC may approve authentication requests from UE
autonomously without taxing the AUSF and UDM. The 5GSBA has four phases: the system
initialization phase, the USIM registration phase, the gNB broadcast phase, and the mutual
authentication phase. All notations used in this paper are listed in Table 3, and Figure 2
shows a sequence diagram explaining different phases in 5GSBA.

Table 3. Notations.

Notation Description

SUPI Subscription Permanent Identifier of the UE

IDgNB Permanent Identifier of gNB

P Generator of the Elliptic Curve

Y/Y2 One-Time Hash Secret

H (msg) Cryptographic Hash Function

HMAC (msg, K) Keyed-hash Message Authentication Code

σ Generated HMAC code

PKcore Public Key of 5G Core

SKcore Private Key of 5G Core
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Table 3. Cont.

Notation Description

TS Timestamp

Khmac Symmetric Key for HMAC Generation

EPKCore (msg) Encrypt Message with the Public Key of 5GC

Figure 2. Sequence Diagram of 5GSBA.

Phase 1—System Initialization: Let p be the modulus, E
(
Fp
)

be the elliptic curve
over a finite field Fp, P be the generator point on E

(
Fp
)

with an order n, and G be the
generated subgroup which multiplies the generator point P. Additionally, we let the
cryptographic hash function be H ⊆ Z∗n. Having the assumptions above, gNBs and AUSF
run the following procedures:

1. AUSF generates a new ECIES private key SKcore representing the 5GC by choosing a
random input k. Then, the ECIES public key PKcore = k·P is stored at UDM.

2. When there is a new gNB joining the 5GC, they should mutually authenticate with
any existing approach such as IPSec tunnels. After that, AUSF installs the ECIES
private key SKcore from UDM into the secure enclave of the newly joined gNB.

3. Finally, the authenticated gNB downloads the latest private blockchain from the 5GC.
gNB may also index the transactions in the blockchain locally for faster access.

4. Whenever the blockchain has any updates, the gNB will download and index the new
blocks accordingly.

Regarding the private blockchain administered by AUSF, Figure 3 illustrates the struc-
ture of a block in the whole blockchain. Every block should contain the following elements:

• Block Header: It contains the block version for future maintenance and upgrades.
• Previous Block Hash: It is the hash of the previous block. It guarantees the immutabil-

ity of the blockchain.
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• Timestamp: It is the block creation time for tracking purposes. All transaction times-
tamps within the block should never be larger than this timestamp.

• Transactions: Each transaction is a subscription record for one device. To reduce the
storage overhead of the blockchain, each block contains multiple transaction records.
This size should be adjustable according to the preference of network operators.
By default, we follow the block size of bitcoin as 1 MB.

Figure 3. Structure of a block and a transaction.

Since it is a private blockchain, any efficient algorithm can be used, such as Practical
Byzantine Fault Tolerance (PBFT) [31], to reach a consensus for all gNBs. The details about
blockchain consensus implementation are omitted in this paper.

Phase 2—USIM Production: Network operators should install a one-time hash secret
Y and the ECIES public key of the 5GC PKcore to the USIM during USIM production. Addi-
tionally, the one-time secret hash digest H(Y) should be posted to the private blockchain.
In this way, when the UE sends the collision of the hash function (i.e., the secret Y) to the
gNB, it can prove to the gNB that it is the legitimate UE. These are the detailed procedures:

1. The operator generates a one-time hash secret Y and the digest of the one-time hash
secret H(Y);

2. USIM stores its permanent identity (i.e., SUPI), elliptic curve parameters, one-time
hash secret Y, and the ECIES public key of 5GC PKcore into its non-volatile storage;

3. AUSF creates a new blockchain transaction including the SUPI, H(Y), timestamp,
and a status code. The status code is the activation status of the SUPI. For example,
“activated” can be 1, “suspended” can be 2, “revoked” can be 3, and so on. The format
of one transaction in the blockchain is also shown in Figure 3.

4. If we need to revoke the access of a specific USIM, AUSF can post a new transaction
with a “revoked” activation status code and a timestamp to the blockchain. Therefore,
when gNBs retrieve the latest transactions from the blockchain, they will follow the
last record to deny access from that USIM.

Phase 3—gNB Broadcast: after initialization, gNBs broadcast their identities IDgNB
through the air. Since 5GSBA makes SUCI mandatory during UE authentication, the
identity request procedures in 3GPP TS 33.501 [2] are no longer needed. Hence, UE can
freely choose when to start authentication and when to prepare SUCI without having to
respond to possibly forged identity requests from gNBs.

Phase 4—Mutual Authentication: whenever UE is powered up to start authentication
with the 5G network, the following two-step protocol will be executed:
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1. UE → gNB: UE sends an authentication request to the gNB with these steps:

a. Generate a new random HMAC key Khmac, random ECDH public key a · P,
and timestamp TS;

b. Generate SUCI by encrypting {SUPI, Y, Khmac} with PKcore;
c. Generate the next one-time hash secret Y2, and calculate its hash H(Y2);
d. Update the Y in the local storage as Y2, as it will become the Y for the next

authentication;
e. Calculate σ1 = HMAC ({IDgNB, SUPI, Y, H(Y2), TS, a · P} Khmac);
f. Send the authentication request = {SUCI, H(Y2), TS, a · P, σ1} to gNB.

2. gNB checks the incoming authentication request with these steps:

a. Check the validity of the timestamp TS, and then decrypt the SUCI into {SUPI,
Y, Khmac} using the private key SKcore;

b. Verify the HMAC of the message σ1 = HMAC ({IDgNB, SUPI, Y, H(Y2), TS,
a · P} Khmac);

c. Fetch the latest transaction of the SUPI from the private blockchain locally;
d. Compare the hash of the received Y with the H(Y) value stored in the blockchain.

If there is a collision (i.e., two values are equal), send an authentication response.
Otherwise, gNB should stop the protocol;

e. Create a new blockchain transaction containing the value of H(Y2), and upload
the block containing this transaction when the gNB is idle.

3. gNB → UE: gNB issues an authentication response to the UE with these steps:

a. Generate a new random ECDH public key b · P;
b. Calculate σ2 = HMAC ({SUPI, TS, b · P}, Khmac), where TS is the received

timestamp;
c. Send the authentication response = {TS, b · P, σ}.

4. UE checks the incoming authentication response with these steps:

a. Calculate σ’ = HMAC ({SUPI, TS, b · P}, Khmac). If σ equals to σ’, the UE contin-
ues to calculate the common ECDH session key using formula a · b · P;

b. Similarly, gNB calculates the common ECDH session key using formula b · a · P.
Since a · b · P = b · a · P, a common session key is derived. Both parties are now
mutually authenticated.

5. Security Evaluation

In this section, we firstly justify the logical correctness of the 5GSBA using Burrows–
Abadi–Needham (BAN) logic. Then, we provide formal verification on the security of
the 5GSBA using the Scyther formal verification tool. Moreover, we present an extensive
qualitative security analysis based on the discussion in Section 3.2 to show that the 5GSBA
is secure to fight against various malicious attacks.

5.1. Burrows–Abadi–Needham (BAN) Logic

Burrows–Abadi–Needham (BAN) logic is a set of logic rules to verify the logical
correctness of an authentication protocol [32]. Assuming that the cryptographic functions
in the protocol are perfect, BAN logic can systematically find out all incorrect designs in
an authentication protocol. To apply BAN logic to our 5GSBA protocol, we formalize our
protocol into the idealized form. Then, we use BAN logic symbols and rules [32] such as the
message meaning rule, belief rule, nonce verification rule, jurisdiction rule, etc., to validate
if our 5GSBA protocol fulfills the targeted security goals.

5.1.1. Formalized 5GSBA Protocol

In our idealized protocol, U refers to UE and C refers to one of the gNBs in the 5G
cellular network (CN). All cleartext and identities in the protocol are omitted as they can
be easily forged. For the notations, SUCI can be regarded as a message encrypted by the
public key of 5GC (i.e., the PKcore). The timestamp token is represented by TS, and the
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one-time hash token is represented by Y. In addition, all message content protected by the
HMAC can be viewed as a message encrypted by the HMAC key (i.e., Khmac). Therefore,
the idealized 5GSBA protocol is shown below:

Message 1: U → C : C �
{

U
Khmac↔ C, YY

}
PKcore

, { TS, a·G }Khmac

Message 2: C → U : U � { TS, b·P }Khmac

5.1.2. Logical Assumptions

We made the following assumptions according to the nature of the protocol. First, the
CN believes that the UE should control the HMAC key issued by themselves:

C |≡ U |⇒ U
Khmac↔ C (1)

Second, since both the CN and the UE check the timestamp in the protocol, they
should believe that the timestamps are fresh:

C|≡#(TS) (2)

U|≡#(TS) (3)

Third, the CN and the UE should also believe that their locally generated keys are
trustworthy to themselves:

U |≡ U
Khmac↔ C (4)

U |≡ a (5)

U |≡ a·P (6)

C |≡ b (7)

C |≡ b·P (8)

Fourth, the UE should believe that the key generated by the CN is controlled and
trusted by himself. Similarly, the CN should also believe that the keys generated by UE are
controlled by himself:

U |≡ C |⇒ b·P (9)

C |≡ U |⇒ a·P (10)

U |≡ C |≡ b (11)

C |≡ U |≡ a (12)

Fifth, the CN should believe the secret of the one-time hash sent from the UE by
validating it with the records in the blockchain. Additionally, since it is only valid once, it
can be viewed as a fresh nonce:

C |≡ U
Y� C (13)

C |≡ #(Y) (14)

Finally, since ECDH is used, it can be assumed that for the UE (U), the session key

U
KUC↔ C = a·b·P can be calculated with the received b·P and the locally generated a.

Similarly, for the CN (C), the session key U
KUC↔ C = b·a·P can be calculated with the

received a·P and the locally generated b.
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5.1.3. Protocol Goal

The goal of the 5GSBA is to achieve mutual authentication between two sides (UE and
CN). Hence, we need to create a mutually trusted common session key after the execution
of the protocol. We can express the goal with these four equations:

U |≡ U
KUC↔ C (15)

C |≡ U
KUC↔ C (16)

U |≡ C |≡ U
KUC↔ C (17)

C |≡ U |≡ U
KUC↔ C (18)

5.1.4. Protocol Verification

The detailed verification steps are listed below. Using the rule with Message 1, we
have Equation (19):

C |≡ PKcore�→ U, C �
{
〈U Khmac↔ C, Y〉Y

}
PKcore

C � 〈U Khmac↔ C, Y〉Y
(19)

Using the message meaning rule with Equations (13) and (19), we have Equation (20):

C|≡ U
Y� C, C � 〈U Khmac↔ C, Y〉Y

C|≡ U | ∼
(

U
Khmac↔ C, Y

) (20)

Using the freshness rule with Equations (14) and (19), we have Equation (21):

C|≡#(Y)

C |≡ #
(

U
Khmac↔ C, Y

) (21)

Using the nonce verification rule with Equations (20) and (21), we have Equation (22):

C|≡#
(

U
Khmac↔ C, Y

)
, C|≡ U

∣∣∣∣ ∼ #(Khmac, Y)

C |≡ U |≡
(

U
Khmac↔ C, Y

) (22)

Using the belief rule with Equation (22), we have Equation (23):

C |≡ U |≡
(

U
Khmac↔ C, Y

)
C |≡ U |≡ U

Khmac↔ C
= C |≡ U |≡ U

Khmac↔ C (23)

Using the jurisdiction rule with Equations (1) and (23), we have Equation (24):

C |≡ U |⇒ U
Khmac↔ C, C |≡ U |≡ U

Khmac↔ C

C |≡ U
Khmac↔ C

= C |≡ U
Khmac↔ C (24)

212



Sensors 2022, 22, 4525

As a result, the CN believes the received HMAC key, so the CN continues to process
Message 1. Using the message meaning rule with Equation (24) and Message 1, we have
Equation (25):

C |≡ U
Khmac↔ C, C � { TS, a·P }Khmac

C |≡ U | ∼ (TS, a·P) = C |≡ U | ∼ (TS, a·P) (25)

Using the freshness rule with Equations (2) and (25), we have Equation (26):

C |≡ #(TS)
C |≡ #(TS, a·P) = C |≡ #(TS, a·P) (26)

Using the nonce verification rule with Equations (25) and (26), we have Equation (27):

C |≡ #(TS, a·P) , C |≡ U |∼ (TS, a·P)
C |≡ U |≡ (TS, a·P) (27)

Using the belief rule with Equation (27), we have Equation (28):

C |≡ U |≡ (TS, a·P)
C |≡ U |≡ a·P = C |≡ U |≡ a·P (28)

Using the jurisdiction rule with Equations (10) and (28), we have Equation (29):

C |≡ U |⇒ a·P, C |≡ U |≡ a·P
C |≡ a·P = C |≡ a·P (29)

As a result, the CN believes the received ECDH public key from UE, and the protocol
continues with Message 2. Using the message meaning rule with Equation (4) and Message
2, we have Equation (30):

U |≡ U
Khmac↔ , P � {TS, b·P}Khmac

U |≡ C | ∼ (TS, b·P) = U |≡ C | ∼ (TS, b·P) (30)

Using the freshness rule with Equations (3) and (30), we have Equation (31):

U |≡ #(TS)
U |≡ #(TS, b·P) = U |≡ #(TS, b·P) (31)

Using the nonce verification rule with Equations (30) and (31), we have Equation (32):

U |≡ #(TS, b·P), U |≡ C | ∼ (TS, b·P)
U |≡ C |≡ (TS, b·P) (32)

Using the belief rule with Equation (32), we have Equation (33):

U |≡ C |≡ (TS, b·P)
U |≡ C |≡ b·P = U |≡ C |≡ b·P (33)

Using jurisdiction rule with Equations (9) and (33), we have Equation (34):

U |≡ C |⇒ b·P, U |≡ C |≡ b·P
U |≡ b·P = U |≡ b·P (34)

As a result, the UE also believes the received ECDH public key from the gNB.
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For the UE, since we know U |≡ a in Equation (5) and U |≡ b·P in Equation (34),

the common key U
KUC↔ C can be derived in Equation (35):

U |≡ a·(b·P) = U |≡ a·b·P = U |≡ U
KUC↔ C (35)

For the CN, since we know C |≡ b in Equation (7) and C |≡ a·P in Equation (29),

the common key U
KUC↔ C can be derived in Equation (36):

U |≡ a·(b·P) = U |≡ a·b·P = U |≡ U
KUC↔ C (36)

Moreover, to finish the protocol, the CN has to believe Message 1 to continue the
protocol and send Message 2. Hence, we can say that if the UE has received Message 2,
the UE can be sure that the CN has believed Message 1, and therefore U |≡ C |≡ a·P.
Combining this with Equation (11), we can conclude that:

U |≡ C |≡ b·(a·P) = U |≡ C |≡ a·b·P = U |≡ C |≡ U
KUC↔ C (37)

Similarly, the UE has to believe Message 2 to start the subsequent data transmission.
Hence, we can say that if the CN receives the subsequent data correctly, CN can be sure
that the UE has believed Message 2, and therefore C |≡ U |≡ b·P. Combining this with
Equation (12), we can conclude that:

C |≡ U |≡ a·(b·P) = C |≡ U |≡ a·b·P = C |≡ U |≡ U
KUC↔ C (38)

Consequently, all the security goals are satisfied. Hence, the security of 5GSBA is
logically verified.

5.2. Scyther Tool

The Scyther tool [33] is an automated formal verification tool for analyzing authentica-
tion protocols. Under the perfect cryptography assumption and the Dolev–Yao adversary
model [30], Scyther searches for all potential security vulnerabilities of a protocol efficiently.
Perfect cryptography assumption refers that the cryptographic functions used in the pro-
tocol are assumed to be secure. Adversaries should know nothing about the encrypted
content unless they hold the decryption key. The Dolev–Yao adversary model, as men-
tioned in Section 3.2, assumes that there are neighboring attackers in the network. In this
section, we model the 5GSBA with the Security Protocol Description Language (SPDL) and
let Scyther find all security issues automatically.

The Scyther tool has six different security claims: Aliveness or Alive ensure the
protocol instances complete their steps with any active responders. That is, all replies
should be active replies from living partners, not replayed messages. Niagree ensures a
protocol instance receives the expected variables without consideration of a one-to-one
relationship (i.e., non-injective agreement). Nisynch ensures the protocol can complete
a run as expected without a one-to-one relationship (i.e., non-injective synchronization).
Weakagree ensures all protocol instances communicate with their same set of initiators or
responders (i.e., injective). Reachable is the checkpoint claim indicating that the protocol
can reach the specific line, which can be used for code debugging. Secrecy or SKR check
if the specified variables or session keys remain secret to adversaries throughout the
execution of the protocol. By combining all these security claims, Scyther ensures the
injective agreement of the protocol and detects most of the network protocol attacks
including message fabrication, message replay, and MITM attacks.

Our formal verification result with Scyther is shown in Figure 4. Specifically, we
created a SPDL model that has two roles: the gNB and the UE. First, the 5GSBA can achieve
a mutual key agreement using ECDH. To emulate ECDH key exchange between two parties,
we define functions g1 and g2, and then set alpha to be g1(a) and beta to be g1(b). We firstly
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use the claims of Secret a and Secret b to check the secrecy of the ECDH private keys. Then,
we emulate the derivation of the ECDH common key with g2(beta, a) (i.e., a · b · G) and
g2(alpha, b) (i.e., b · a · G). We also verify the secrecy of this ECDH common key with SKR
claims. Second, the 5GSBA uses HMAC to ensure the integrity of all messages. To make
sure adversaries cannot obtain the HMAC key Khmac (i.e., only gNBs can receive the key
from the UE), we check it with Secret Khmac claims for both the gNB and the UE. Third, the
5GSBA can guarantee device anonymity by encrypting the SUPI into SUCI. To ensure the
adversaries have no way to retrieve the SUPI of the UE through the air, we check the secrecy
of the SUPI using the Secret MSIN claim. In this scenario, Mobile Subscriber Identification
Number (MSIN) is equivalent to SUPI, because SUPI should contain mobile country code
(MCC), mobile network code (MNC), and MSIN. While MCC and MNC are not the unique
identifiers of a device, we only mandate MSIN to be secret. Fourth, our protocol assumes
that the UE needs to use its one-time hash secret Y to prove its identity to gNB. To ensure
that the adversaries cannot obtain the secret Y with any means, we checked its secrecy
using Secret Y claims. Additionally, the secrecy of Y2 was checked to ensure that the UE
could not reveal the next one-time hash secret by any means. Fifth, to further ensure the
correctness of our SPDL model, a Reachable claim was put at the end of every role. This
made sure that every line of our code had been executed. Finally, by testing all security
claims including Aliveness, Niagree, Nisynch, and Weakagree in both parties, this showed that
the 5GSBA guarantees injective agreement with active initiator and responders. In other
words, we conclude that no network attacks were found in the 5GSBA.

Figure 4. Formal verification with Scyther.

5.3. Security Analysis

We qualitatively justify that our 5GSBA provides the following security features.
Mutual Authentication and Key Agreement: By the 5GSBA, UE uses a one-way hash

secret Y stored in the USIM to prove that it is the legitimate party. A gNB verifies it by
comparing it to the one-way hash value H(Y) stored in the private blockchain. Since
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finding the original secret of a hash is a computationally infeasible problem, the UE can
effectively prove to the gNB that its authentication request message is legitimate. Besides,
the UE encrypts the one-way hash secret Y and a randomly generated HMAC key Khmac
using the public key PKcore. Since only legitimate gNBs possessing the private key SKcore
can read the one-way hash secret and the HMAC key, by issuing a correct HMAC code
σ2, the gNB effectively prove to the UE that the authentication response is also legitimate.
Thus, both gNB and UE can be mutually authenticated to derive a common key using
ECDH parameters in the authentication messages.

Secure Data Transmission: The 5GSBA assumes that all subsequent user data will be
encrypted with the session key generated in the authentication procedure. For the session
key generation, a UE sends an ECDH public key a · P to a gNB, and the gNB replies to
another ECDH public key b · P to the UE. Hence, the actual session key a · b · P is never
transmitted anywhere. In fact, the ECDH relies on the Computational Diffie–Hellman
(CDH) problem, which means it is difficult to find the a from a · P. Even if an adversary
captures all the authentication messages, it is computationally infeasible for him to recover
the session key by finding either a or b to calculate the a · b · P. Consequently, the 5GSBA
can ensure only legitimate parties (i.e., UE and gNB) can read the user data.

Session Key Perfect Forward/Backward Secrecy: The 5GSBA uses the public key
PKcore of the 5GC, the randomly generated HMAC key Khmac, and the one-way hash secret
Y for authentication purposes only. The session key generation relies on the randomly
generated ECDH parameters. Hence, when the permanent keys are stolen in the future,
attackers still could not derive the session key to recover the content of a specific session.
Additionally, since the newly generated ECDH parameters for each session are irrelevant
to the previous or future sessions, compromising the current session key will only affect
the current session. The secrecy of the previous or future sessions will remain unaffected.

Device Anonymity: Since the SUCI is mandatory by the 5GSBA, the SUPIs of re-
questing UE devices are always concealed with ECIES. Hence, eavesdroppers cannot use
authentication request messages to identify or trace any devices.

Protocol Attack Resistance: The 5GSBA outperforms most proposals, including the
standardized 5G-AKA with the stronger resistibility to many attacks. For example, thanks
to the aforementioned security properties, the 5GSBA prevents common attacks such
as eavesdropping, location tracking, and man-in-the-middle (MITM) attacks. Moreover,
it is highlighted that some critical attacks can be prevented including DoS/DDoS attacks,
linkability attacks, UE impersonation attacks, rogue base station attacks, and replay attacks:

• DoS Semantic Attack Prevention: With the 5GSBA, semantic attacks exploiting the
weaknesses of the protocol are impracticable, because the authentication request
contains a timestamp and a one-time hash secret Y. Specifically, when the gNB receives
an authentication request, it first checks if the timestamp is fresh. Then, it decrypts
the SUCI and compares the Y with the records stored in the private blockchain. If the
calculated hash value does not match, it will reject the session immediately. In this
way, adversaries cannot hoard multiple sessions in the gNB by replaying the same
authentication messages (i.e., the original SUCI in 5G-AKA). Additionally, since the
authentication request involves only the computationally inexpensive ECIES and hash
functions, adversaries cannot exhaust the computational resources of gNBs easily;

• DDoS Flooding Attack Prevention: By decentralizing the authentication tasks from
the AUSF/UDM to all gNBs, the 5GSBA lessens the effects of flooding attacks that
paralyze the network with authentic requests. In the 5G era, the inter-site distance (ISD)
of gNBs is getting smaller, and the number of gNBs deployed keeps growing. Hence,
the total computational power of gNBs is growing steadily, making it increasingly
difficult to flood or even paralyze the entire 5G network. Furthermore, since the
5GSBA shifts the authentication tasks from AUSF/UDM to gNBs, it can also prevent
the single-point-of-failure. One gNB failure or one AUSF failure will not affect the
entire 5G network. Thus, DDoS attacks in the 5G authentication can be prevented, and
the quality of service (QoS) across the 5G network can be maintained. The performance
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analysis will show that the 5GSBA can serve much more incoming authentication
requests than the existing centralized schemes;

• Linkability Attack Prevention: Unlike conventional symmetric key-based protocols
such as 5G-AKA, the 5GSBA generates session keys using ECDH instead of the se-
quence number. Hence, the 5GSBA does not have the MAC failure or synchronization
failure commonly found in symmetric key-based AKA protocols. Adversaries can no
longer use these error messages as a loophole to trace a specific device;

• UE Impersonation Attack Prevention: By the conventional 5G-AKA protocol, users
have to trust the network operator implicitly. Since the network operator owns a copy
of users’ symmetric keys and sequence numbers, insider attackers in the network can
impersonate the UE by abusing these keys. By the 5GSBA, since the one-time hash
secret is only stored at the USIM, there is no way for network operators to impersonate
the UE using the data stored in the private blockchain. Hence, if the network operators
cannot provide the one-time hash secret used in the authentication, users can simply
deny all malicious behavior for that session;

• Rogue Base Station Attack Prevention: By the 5GSBA, since only the legitimate gNBs
can decrypt the SUCI, rogue base stations cannot produce genuine authentication
responses by generating the correct HMAC code σ. Thus, it can prevent UE from
establishing connections with rogue base stations;

• Replay Attack Prevention: The authentication requests and responses by the 5GSBA
are all tagged with a timestamp TS, and the HMAC key Khmac should also work once
only. Therefore, by checking the timestamp in both UEs and gNBs, replayed messages
can be easily identified and discarded;

• Battery Depletion Attack Prevention: With the 5G-AKA, UE must respond to identity
requests from the serving network by generating a fresh SUCI. If some rogue base
stations frequently send the identity requests, the batteries of UE devices could deplete
faster. In the 5GSBA, only UE can take the initiative to generate a fresh SUCI for
authentication. Hence, the serving network cannot force the UE to create a fresh SUCI,
and it prevents the battery depletion attacks effectively.

6. Performance Evaluation

Most UE has limited computational resources and battery life. Additionally, the net-
work resources in the 5G network are always finite. Hence, a good authentication scheme
should have low computational overhead, communication overhead, and energy consump-
tion. In this section, we analyze the performance of the 5GSBA from these three aspects.
Additionally, we evaluate its effectiveness against DoS/DDoS attacks using two simulation
experiments. For the comparison, 5G-AKA [4] is selected because it is the 3GPP standard-
ized protocol. SE-AKA [20] is chosen because it supports perfect forward secrecy with
the similar security functions as the 5GSBA. Another blockchain-based 5G authentication
protocol, BB-AKA 5G [10] is also included to show that the 5GSBA can achieve a better
performance than the existing blockchain-based scheme.

6.1. Computational Overheads
6.1.1. Theoretical and Experimental Delays

A smaller computational delay means the protocol can run faster, so it is always
preferred. In this subsection, computation overheads are evaluated through simulation
experiments. All simulations are conducted on a computer with Intel® Core™ i5-3210M
CPU @ 2.5 GHz CPU and 16 GB of RAMs. The Charm Crypto v0.5 with Python 3.7.5 is
used to create and run the simulation. Charm Crypto [34] is a Python wrapper of Pairing-
Based Cryptography (PBC) libraries. It allows the easy prototyping of cryptographic
functions based on elliptic curve cryptosystems. Among all the selected protocols, each
of them uses various cryptographic functions, and each of them has a unique key size
requirement. To holistically and equally evaluate their performance at the same security
level, we conformed to the recommendation from NIST [35] to use 256-bit equivalent key
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strength throughout the simulations. Hence, for all elliptic curve cryptography (ECC)-based
operations, secp256k1 was chosen as the default elliptic curve. For HMAC operations,
HMACSHA256 was selected. We ran each cryptographic function 2000 times to measure
its average time. Moreover, to evaluate the data access delays incurred in blockchains, we
followed the specifications in Section 4.2 to create a blockchain prototype. This blockchain
had many 1-megabyte-sized blocks. Every block was stored as one file, and all transactions
in the blockchain were indexed using Python Dictionary. To compare the performance
difference between blockchain and traditional database, we also built another centralized
database with MariaDB v10.4.14. Finally, Table 4 shows the experimental time of execution
for the different functions. Then, all this information is combined with the theoretical
computational times in Table 5 to find the experimental computational overheads shown
in Figure 5.

Table 4. Experimental time for different functions.

Notation Description Time (ms)

TECDSA.sign ECDSA Sign 0.7286

TECDSA.ver ECDSA Verify 1.3442

TECIES.enc ECIES Encryption 2.0572

TECIES.dec ECIES Decryption 0.7851

THMAC KDF/HMAC Calculation 0.0495

THMAC.ver HMAC Verification 0.0281

TECDH.gen ECDH Key Generation (1 Exp) 0.6945

TECDH.CK ECDH Common Key 0.7099

Thash
SHA256 Calculation Time

(Hash Time) 0.0206

Tsym.enc Symmetric Encryption 0.0925

Txor XOR Operation 0.0084

TBC.read Blockchain Transaction Read 0.2914

TBC.write Blockchain Transaction Write 0.0434

TDB.read Centralized Database Read 0.4956

Table 5. Theoretical computational overheads.

Protocol Entity Authentication Computational Overhead Execution Time (ms)

5GSBA

UE TECIES.enc + TECDH.gen + Thash + THMAC + THMAC.ver 2.8499

CN TECIES.dec + TECDH.gen + Thash + THMAC + THMAC.ver + TBC.read + TBC.write 1.9126

Both TECDH.CK 0.7099

5G-AKA
UE TECIES.enc + 2Tsym.enc + Txor + 2THMAC 2.3496

CN TECIES.dec + 2Tsym.enc + Txor + 2THMAC + 2Thash + TDB.read 1.6143

SE-AKA
UE TECIES.enc + 4THMAC + THMAC.ver + TECDH.gen + TECDH.CK 3.6877

CN TECIES.dec + 2THMAC.ver + 3THMAC + TECDH.gen + TECDH.CK + TDB.read 2.8898

BB-AKA 5G

UE TECDSA.sign + 2TECDSA.ver + TECDH.gen 4.1115

CN 3TECDSA.sign + 2TECDSA.ver + TECDH.gen + TBC.read + TBC.write 5.9035

Both TECDH.CK + Thash 0.7305
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Figure 5. Experimental total computational delays.

It is noteworthy that, for all blockchain-based schemes, we omitted the blockchain
indexing time in the computational overhead calculation. Blockchain indexing is a process
for gNBs to categorize recently downloaded blocks. It can improve the blockchain random
access speed to a constant time. Since indexing can be performed in the background
parallelly at any time, it does not impose a significant negative effect on authentication.
Hence, only the average blockchain transaction read time TBC.read and write time TBC.write
were included in the calculation.

For the experimental computational delays shown in Figure 5, the 5GSBA was slower
than the standardized 5G-AKA by 5.1377 − 3.4683 = 1.6694 milliseconds. This is because
the 5GSBA employs asymmetric ECDH to replace the less secure symmetric key-based
key derivation function (KDF) in the 5G-AKA [4]. By introducing this tiny computational
overhead, the 5GSBA can ensure session key perfect forward secrecy (PFS), backward
secrecy, and linkability attack prevention. On the other hand, the computational time of the
5GSBA and the SE-AKA [20] are comparable because both schemes employ ECDH, but the
5GSBA offers an enhanced security function in terms of DoS attack prevention and DDoS
alleviation. The BB-AKA 5G [10] consumes much more time than the 5GSBA because the
BB-AKA 5G needs two ECDSA signatures and verifications at the gNB and the AMF, while
in contrast, the 5GSBA only requires one lightweight one-way hash secret verification in
the gNB. Thus, the 5GSBA saves (10.4107 − 5.1377)/10.4107 = 50.6% of computational
overhead compared to the BB-AKA 5G. Consequently, although the 5GSBA protocol has
unavoidably introduced tiny computational overhead, it is still the most efficient protocol
in terms of balancing between security and performance.

6.1.2. Average Delays under Unknown Attacks

Although the 5GSBA could resist several malicious attacks, as shown in the security
analysis, it is possible that new unknown attacks in the 5G network could interrupt the
authentication process. To evaluate the performance under unknown attacks, it was as-
sumed that, for each step of the protocol, the network faced either known or unknown
attacks. Specifically, there will be a probability that the protocol will encounter an unknown
attack. If the incoming attack is known, the protocol should continue smoothly until com-
pletion. However, if the incoming attack is unknown, the protocol would be unavoidably
interrupted. In this case, it must restart from the first step until it completes the last step.
Based on the assumptions above, we created a simulation model on MATLAB 2020b. Using
1 million threads to run the protocol, we found the average execution time to complete
the protocol under different unknown attacks, as shown in Figure 6. The results showed
that although the 5GSBA had slightly higher delays (from 1.67 to 4.17 milliseconds) than
those of the 5G-AKA [4] in all scenarios, its performance was still much better than another
blockchain-based protocol of the BB-AKA 5G [10]. Considering that the 5GSBA ensured
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the best security among all protocols, we can still conclude that it can achieve a reasonable
balance between high security and reasonable delays.

Figure 6. Average delays under unknown attacks.

6.2. Communication Overhead

As bandwidth resources in the 5G network are invaluable, smaller communication
overhead is always preferred. Thus, we further evaluated the communication overhead in
terms of bandwidth consumption and transmission overhead.

For the bandwidth consumption based on five different security levels suggested by
NIST [35], the total message sizes of the related protocols are derived in Figure 7. It shows
that our 5GSBA outperformed all other schemes by achieving the lowest bandwidth
consumption. This is because the 5GSBA authenticates the incoming UE locally using the
two-step protocol, which can save redundant forwarding messages.

Figure 7. Total bandwidth consumption.

For communication delays there are two components: propagation delays and trans-
mission delays. Propagation delay calculations consist of both wired and wireless connec-
tions. For the wired connections, we referred to the link between the gNB and the nearest
5GC functional entities. It is assumed that optical fiber is deployed for all wired connections,
and the 5GC functional entities are geographically distant to the gNB. To simulate a real-
life situation, we assumed the distance between the gNB and the nearest 5GC functional
entity to be 1 km, and the distance between two functional entities within the 5GC to be
less than 0.5 km. For the wireless connection, according to the dense urban 5G service
requirement in TS 22.261 [36], we assumed that the inter-site distance (ISD) between two
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gNBs was 200 m, and the requesting UE was located to the edge of the coverage of the gNB.
Therefore, the distance between the gNB and UE was about 100 m. The transmission delay
calculation also consisted of wired and wireless connections. For the wired connections,
due to the link of optical fiber, it was assumed that the uplink and downlink speed were
both 1 Gbit/s. For the wireless connections, similarly, by following TS 22.261 [36], it was
assumed that the uplink speed for UE was 50 Mbit/s and the downlink speed for UE was
300 Mbit/s. For the blockchain-based schemes, it was assumed that blockchain nodes could
synchronize new blocks parallelly during the idle time of gNBs. To better reflect the extra
communication overhead introduced by blockchains, we included the average delay of
downloading one old transaction and uploading one new transaction into the calculation.
Finally, by combining all the assumptions above, the sums of propagation and transmission
delays are derived in Figure 8.

Figure 8. Total communication delays.

Figure 8 shows that the 5GSBA achieves similar total communication delays from
160-bit to 256-bit key length. Although the total communication delay of the 5GSBA was
marginally higher than that of the 5G-AKA [4] from 384 bit to 512 bit, the 5GSBA still con-
sumed much less time than that of the BB-AKA 5G [10]. This is because the 5GSBA saved
some propagation delays by consuming the lengthy authentication requests locally in gNBs.
Considering that the 256-bit ECC key was accepted in the NIST recommendation [35],
the communication delays of the 5GSBA were very close to that of the 5G-AKA. Over-
all, the 5GSBA achieved the right balance between strong security and relatively low
communication overhead.

6.3. Energy Consumption for UE

Since mobile devices have limited battery life, a security protocol with the strongest
security and the least energy consumption is always preferable. To evaluate the energy
consumption for UE two factors should be considered: data transmission energy and the
energy for the execution of the cryptographic functions. For the data transmission energy,
the data transfer power model in [37] is adopted to estimate the energy consumption. Thus,
the energy cost for uplink transmission of the UE is in Equation (39) and the energy cost
for the downlink is in Equation (40), where αu= 438.39 mW/Mbps, αd = 51.97 mW/Mbps,
β = 1288.04 mW, tudr is the uplink throughput, tddr is the downlink throughput, tul is
the transmission time spent on the uplink, and tdl is the transmission time spent on the
downlink. We further assume that the uplink and downlink throughput follow the dense
urban 5G service requirement in TS 22.261 [36], so that tudr = 50 Mbps and tddr = 300 Mbps.

Eul = (αutudr + β) · tul (39)
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Edl = (αdtddr + β) · tdl (40)

On the other hand, for the energy consumption for the execution of cryptographic
functions, the measure of energy cost approximation in [38] is taken. In [38], all experiments
were conducted using a battery-powered Compaq iPAQ H3670 PDA. It was equipped with
an Intel SA-1110 StrongARM processor clocked at 206 MHz, 64 MB of RAM, and 16 MB
of FlashROM. Moreover, the energy cost of ECDH public key generation EECDH.gen was
276.7 mJ, the ECDH common key derivation EECDH.ck was 163.5 mJ, the ECDSA signature
generation EECDSA.sign was 134.2 mJ, and the ECDSA signature validation EECDSA.ver was
196.23 mJ. For the energy cost of symmetric key-based operations, the symmetric key-based
encryption Esym. was 9.92 + 2.29l uJ, where l was the number of bytes of the cleartext.
The HMAC operation EHMAC was 1.16 mJ, and hash operation Ehash was 0.76 mJ. For the
ECIES operations, since it was a hybrid encryption combining both CDH problems and a
key encapsulation mechanism (KEM), the cost of the ECIES encryption was estimated as
EECDH.gen + EECDH.ck + Esym = 440.20992 + 0.00229l mJ.

Finally, by combining all parameters above with the unknown attack model stated in
Section 6.1.2, the average UE energy consumption for different protocols is simulated in
Figure 9. It shows that all the schemes providing perfect forward and backward secrecy,
including the 5GSBA [4], SE-AKA [20], and BB-AKA 5G [10], consume a similar amount of
energy in a situation without any unknown attacks. When the unknown attack probability
increases, the 5GSBA unavoidably uses more energy because of the increased SUCI genera-
tion. However, the 5GSBA still consumes less energy than the BB-AKA 5G. On the other
hand, although the 5G-AKA uses the least energy, its power-saving symmetric key-based
cryptosystem makes it vulnerable to many other known attacks.

Figure 9. Energy consumption for UE.

6.4. Resistivity to DoS and DDoS Attacks

To show that our 5GSBA can fight against DoS and DDoS attacks, we further design
two simulations to compare all related protocols. All simulation results show that the
5GSBA can achieve a high level of security functionality with reasonable delays.

6.4.1. Average Delays under DDoS Flooding Attacks

One of the outstanding features of the 5GSBA is the alleviation of the flooding of DDoS
attacks. The 5GSBA, since all authentication tasks are distributed at various gNBs, avoids
congestion and processing at the single authentication entity AUSF. Hence, to illustrate the
performance of the protocols under the flooding of many authentication requests, we can
model all centralized protocols, such as 5G-AKA [4] and SE-AKA [20], as M/M/1 queuing
models, while the blockchain-based protocol of the 5GSBA can be modeled as a M/M/c
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queuing model (c is the number of gNBs). For simplicity, it is assumed that the arrival and
location of UE devices follow Poisson distribution, such that all devices within 1 km2 are
located uniformly and can initiate authentication requests randomly. For the centralized
protocols, since the AUSF in the 5GC should be a computationally powerful server, it is
assumed that they run on the server 80% faster than the performance listed in Table 2.
For blockchain-based protocols, as the computational resources for each gNB are limited,
it is assumed that its computational time is the same as that in Table 2. Furthermore, one
AUSF only serves the gNBs within the 1km2 area, and the ISD of every gNB is 200 m
according to the TS 22.261 5G dense urban service requirement [36]. Consequently, each
server needs to process the requests from 1 km2/π0.12 = 31.8 ≈ 32 gNBs (i.e., c = 32).

Finally, the average time to complete the execution of the protocol is shown in Figure 10.
It shows that although the decentralized 5GSBA takes slightly longer time than the other
centralized schemes when the network traffic is low, as the number of requests increases,
the 5GSBA outperforms the others by maintaining an almost constant delay. In other
words, the 5GSBA can serve more authentication requests with the same amount of delay
than the centralized schemes. In future, as the number of gNBs keeps increasing, it is
expected that the 5GSBA will be able to perform even better by accommodating more
users. Therefore, this shows that the 5GSBA is more robust in terms of serving more users,
and thus is more effective in lessening the effects of flooding attacks. Moreover, since the
5GSBA can accommodate more requests, this also gives network operators more time to
detect DDoS attacks and deploy countermeasures. For example, network operators can use
the time to analyze network traffic and block potential DDoS attackers without impacting
overall service quality. By doing so, attackers would find it more challenging to perform a
successful DDoS attack in the 5G network.

Figure 10. Average delay under many attacks.

6.4.2. Average Successful Authentications under DoS Attacks

The 5GSBA can alleviate the effect of DoS attacks by verifying the timestamp and the
HMAC code in the authentication request. To prove that the 5GSBA can provide the best
DoS attack resistivity among all related schemes, a simulation model was built in MATLAB
2020b with the following assumptions. There are 1000 mobile devices sending authentica-
tion requests to a server at every one millisecond, which can hold—at most—1000 sessions
simultaneously without any performance degradation. Then, for each authentication re-
quest, there could be a percentage chance that it is a fabricated DoS request. In case the
request is legitimate, the server will complete the protocol operation normally following
the protocol specifications. However, if the request is a DoS attack, either of the following
results could happen. If the server can identify it as a DoS request, it will terminate the
session immediately to accept another new request. If the server cannot identify it, the ses-
sion will hold until it reaches the protocol expiry time at 3 s, which is a common default
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value for RADIUS server timeout. This simulation is run for 60 s. The number of successful
authentications of different schemes is recorded in Figure 11.

Figure 11. Successful authentications under DoS attacks.

Figure 11 shows that when there is no DoS attack in the network, the 5G-AKA performs
the best among all schemes with the highest number of successful authentications. However,
when the percentage of DoS attacks increases, the performance of the 5G-AKA [4] drops
drastically, while the 5GSBA maintains the highest number of successful authentications.
This is because the 5G-AKA has no way to identify if the authentication requests are
fabricated, so the server wastes some sessions for holding until their expiry. On the other
hand, the SE-AKA [20] can also provide DoS attack prevention, similar to our 5GSBA.
However, the 5GSBA runs faster, so it has a higher number of successful authentications.

6.5. Discussion of the Results

The performance evaluation shows that when there are DoS or DDoS attacks in the 5G
networks, the 5GSBA is the better protocol with a higher performance in terms of a stable
authentication delay and a high authentication success rate. The only limitation of the
5GSBA would be the slightly added overhead in computational overhead, communication
overhead, and energy consumption compared with the 3GPP 5G-AKA [4]. However, given
that there will be an exponential growth of 5G mobile devices in the future, the risk of DoS
and DDoS attacks will become more prominent. Thus, we believe that these imperceptible
overheads are justifiable to safeguard future 5G networks.

7. Conclusions

In 5G networks, DoS and DDoS attacks have become a critical issue due to the increas-
ing number of mobile devices. To ensure the robustness and security of the 5G network,
we have proposed a Secure Blockchain-based 5G Authentication and Key Agreement
(5GSBA) protocol in this paper. The 5GSBA protocol holds many security features that the
existing 3GPP 5G-AKA scheme fails to achieve, including perfect forward secrecy, device
anonymity, and most importantly, the resistivity to DoS and DDoS attacks. By the decen-
tralization of authentication functions with blockchain technology, the 5GSBA delivers
the best quality of service (QoS) among all schemes in relation to DoS and DDoS attacks.
Our performance evaluation also demonstrates that the overhead added by 5GSBA is
imperceptible compared to other existing solutions. Therefore, we believe that the 5GSBA
protocol is ideal for balancing strong security functionality and high performance.
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Abstract: Cyber-attacks are getting increasingly complex, and as a result, the functional concerns of
intrusion-detection systems (IDSs) are becoming increasingly difficult to resolve. The credibility of
security services, such as privacy preservation, authenticity, and accessibility, may be jeopardized
if breaches are not detected. Different organizations currently utilize a variety of tactics, strategies,
and technology to protect the systems’ credibility in order to combat these dangers. Safeguarding
approaches include establishing rules and procedures, developing user awareness, deploying firewall
and verification systems, regulating system access, and forming computer-issue management groups.
The effectiveness of intrusion-detection systems is not sufficiently recognized. IDS is used in busi-
nesses to examine possibly harmful tendencies occurring in technological environments. Determining
an effective IDS is a complex task for organizations that require consideration of many key criteria
and their sub-aspects. To deal with these multiple and interrelated criteria and their sub-aspects, a
multi-criteria decision-making (MCMD) approach was applied. These criteria and their sub-aspects
can also include some ambiguity and uncertainty, and thus they were treated using q-rung orthopair
fuzzy sets (q-ROFS) and q-rung orthopair fuzzy numbers (q-ROFNs). Additionally, the problem of
combining expert and specialist opinions was dealt with using the q-rung orthopair fuzzy weighted
geometric (q-ROFWG). Initially, the entropy method was applied to assess the priorities of the key
criteria and their sub-aspects. Then, the combined compromised solution (CoCoSo) method was
applied to evaluate six IDSs according to their effectiveness and reliability. Afterward, comparative
and sensitivity analyses were performed to confirm the stability, reliability, and performance of the
proposed approach. The findings indicate that most of the IDSs appear to be systems with high
potential. According to the results, Suricata is the best IDS that relies on multi-threading performance.

Keywords: cyber-attacks; intrusion-detection system; MCDM; q-rung orthopair fuzzy sets; q-ROFWG

1. Introduction

The continuous development of computer systems has led to the increasing depen-
dence of companies, organizations, and people on computer networks in performing their
functions and offering their services in modern ways [1]. However, at the same time, it
has become vulnerable to penetration by attackers with the aim of making illegal gains by
exploiting some security vulnerabilities, which led to an increase in interest in issues of pro-
tection and security of these systems. Today there are many methods used within this field,
and there are many intrusion-detection systems (IDSs) available [2]. IDSs are a necessity
for the stability of an organization’s normal system performance. In this regard, traditional
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intrusion-detection techniques are highly unrewarding and ineffective due to the multi-
plicity of attack methods and their different forms. Among the traditional methods used
previously are obfuscation, transformation, and polymorphism techniques, which lead to
malware resistance [3]. Despite the prominent role it plays, it still has some shortcomings.
Therefore, there was a need to continue conducting research on intrusion-detection systems
in order to reach an optimal structure that achieves a high protection rate.

The internet changed the concept of computing as we know it. The possibilities and
opportunities available became unlimited, and with it, the risks and opportunities for
breakthroughs increased. Computer security primarily focuses on protecting a specific
source or valuable data and information within a single computer device. Security is
defined as the reaction taken to security threats resulting from a harmful act by some people.
The value of the data can be violated in three ways: privacy, integrity, and availability of
information [4]. Computer protection is generally referred to by the term CIA, which is
represented by the following three concepts:

• Confidentiality: Preventing unauthorized persons from disclosing or accessing infor-
mation; i.e., accessing information only by authorized persons.

• Integrity: Maintaining information integrity by preventing unauthorized modification.
• Availability: It is the ability of a computer to work and provide the resources and

services expected of it to legitimate people upon request.

Network security includes all actions or activities taken by organizations and com-
panies in order to protect resources and ensure the integrity and continuity of operations
across networks [5]. Security policies also define the permissions available to users in the
way they use network components and resources. In order to build an effective network-
protection strategy, all potential security threats must be identified, and then the most
effective set of tools to combat them must be selected [6]. Preventing all exploits for vul-
nerabilities in networks and systems is not possible [7]. Network protection is achieved
through the use of a set of components at several levels, with the aim of protecting orga-
nizations from internal attacks and external attacks as much as possible. A firewall is a
component that achieves the most basic level of protection but is not sufficient on its own.
Designing and implementing a completely secure system is very difficult in practice, but
it is possible to detect intrusions and take appropriate measures to protect against them.
This is what the IDS basically does, as it is used as an alert system, within the security and
protection system, that gives an alert when it detects an attempt by someone to penetrate
the computer system or network [8]. As a result, IDSs are important in a network security
solution. The primary goal of IDSs is to detect an intrusion while it is occurring rather
than after it has ended, and then alert the person responsible for the problem by sending
an email or setting off an alert. It must be able to take any action to minimize harm to
the system due to the hack. The second goal is to collect data from the system, record all
important events, and determine the source of the attack, and these data are used for legal
purposes as evidence or proof against the attacker.

IDSs must be placed in strategic places so that they are able to see network traffic in
order to analyze it and thus achieve the maximum benefit from it [9]. In this regard, several
ways to classify IDSs are described using different analysis and control methods. The most
common way to classify intrusion-detection systems is to group them according to the
location of the information source. Basic information sources are network packets captured
from a network backbone or local network segments, operating systems, and critical files.
Intrusion-detection systems can be classified into host-based detection-intrusion systems,
network-based intrusion-detection systems, and hybrid systems. On the user’s computer, a
host-based intrusion-detection system (HIDS) is installed. HIDSs operate on information
collected from within a single computer system [10]. HIDSs employ monitoring sensors,
also called clients, on each host to be monitored. In general, the most common forms of
information sources for HIDSs are operating system audit logs, system logs, and critical
system files [10]. The customer checks these sources for unauthorized changes or patterns of
suspicious activity. This allows HIDSs to reliably analyze activities, accurately identifying
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which users and which processes are participating in a specific attack on the operating
system. The most common form of IDSs is network-based intrusion-detection systems
(NIDSs) [11]; also, most companies and organizations are often supported by NIDSs along
with firewalls. These systems detect attacks by capturing and analyzing network packets
by listening to network segments or switches [11]. In this case, the system is placed on
an entire network segment and not on a single device within the network, or it is placed
to monitor a gateway on the switch. Thus, it can monitor all mobile packets between
groups of computers connected to the network, by matching one or more packets with the
database of signatures of attacks, or by analyzing the traffic to detect anomalies. NIDSs
can be taken advantage of by placing it outside of firewalls, thus alerting the responsible
person to incoming packets that might circumvent the firewall. Both HIDSs and NIDSs
have strengths and benefits that complement each other [12]. Figure 1 introduces the
general architecture of an HIDS and NIDS. The next generation of IDSs must combine the
two technologies in order to improve the network’s resistance to attacks and abuse. In
addition, they should enhance security policy and provide greater flexibility in application
and deployment options. A hybrid IDS is a mixture of an HIDS and NIDS. It provides
a combination of the strengths of the two methods. Their modus operandi varies from
product to product, making it difficult to define and determine hybrid intrusion systems in
a more accurate manner.

Afterward, detection methods are the basis of intrusion-detection techniques, which
are the engine in detecting the malicious activities of the information source. Detection
methods analyze the information they monitor and trigger alerts if malicious traffic is de-
tected. Accordingly, IDSs can be categorized, according to the detection methods used, into
anomaly-based intrusion-detection systems (AIDSs) [13] and signature-based intrusion-
detection systems (SIDSs) [14]. In this regard, AIDSs operate on the assumption that
malicious events are different from normal actions, and thus the differences are sought
to detect the attack. These systems constitute profiles of historical data collected during
a period of normal operation. It then collects event data to determine when the moni-
tored activity deviates from normal behavior and triggers an alarm. SIDSs also are called
signature-based detection because alerts are generated based on the signatures of specific
attacks. This type of signature attack involves specific traffic or activity based on known
hacking activity. It is also called misuse-based detection. The basic premise is the model that
has been written to describe bad behavior, after which the system compares the sequence
of information with this model to decide what is normal and what is malicious. These
systems are accurate and emit fewer false alarms, but they do not detect a hack unless there
is a predetermined model for it.

Nowadays, Internet networks are vulnerable to a wide range of threats and attacks,
such as impersonation, privilege breaches, data loss, altered and fraudulent data units, and
denial of connections [15]. Therefore, IDSs have an essential task to protect the normal
system performance of an organization. It is, therefore, necessary to add new security re-
quirements and additional networking measures to the network security requirements [16].
IDSs must constantly change and adapt to all these new threats and assault technologies.
Therefore, the process of determining the best IDS for network protection, threat warning,
and cyber-attacks is a very difficult task in light of the various criteria on which an IDS
is developed. Thus, IDSs should not be chosen to quickly secure the network without a
thorough understanding of the technology, solutions, and potential consequences.

In this study, a set of criteria were adopted to evaluate IDSs according to previous
studies and expert opinions. The criteria that have been adopted were divided into four
basic criteria—protected system, audit source location, alerts, and types—and each main
criterion includes several sub-aspects. The set of sub-aspects are as follows: HIDS, NIDS,
hybrids, host log files, network packets, application log files, IDS sensor application,
network, host, open-source, closed source, and freeware. In order to solve such complex
problems related to the evaluation of IDSs, multi-criteria decision-making (MCDM) has
been proven to be one of the best tools for the effective evaluation of IDS [16]. MCDM is
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popular in complex problems because it enables the decision-maker to take care of all the
available criteria and take an appropriate decision as per the priority [17]. Since the ideal
choice is governed by multiple criteria, a good decision-maker, in certain situations, may
look for criteria of high impact on which to focus.

Consequently, due to the assessment of IDSs under multiple criteria and a pluralistic
viewpoint, the assessment process is tainted by ambiguity and uncertainty, which is difficult
to deal with in real numbers. Hence, the q-rung orthopair fuzzy sets (q-ROFSs) theory
has been applied to deal with such complex problems [18]. The q-ROFS proved to be
effective in solving ambiguous and uncertain problems as it came as a generalization of the
intuitionistic fuzzy sets (IFSs) [19] and Pythagorean fuzzy sets (PFSs) theories [20].

Finally, to deal with the problem of evaluating the effectiveness of IDSs, a hybrid ap-
proach consisting of two multi-criteria decision-making methods, the entropy method [21]
and the combined compromised solution (CoCoSo) method [22], was adopted. The pro-
posed hybrid approach is presented under the q-rung orthopair fuzzy environment and
by utilizing the q-rung orthopair fuzzy numbers (q-ROFNs) numbers. Firstly, the entropy
method was adopted to evaluate the main and sub-aspects and to determine the final
weights. Secondly, the CoCoSo method was applied to evaluate the available alternatives
and determine the best alternative.

Figure 1. Comparison of the HIDS and NIDS structure [23].
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The main contributions of this study can be listed as follows: (i) a novel hybrid MCDM
approach is proposed for the evaluation of the IDS; (ii) this hybrid MCDM approach
is named q-ROF entropy-CoCoSo, which give assessments of subjective and impartial
expert insights; (iii) the q-ROFSs method is conducted to handle the uncertainty in experts’
evaluations; (iv) a q-ROF entropy is utilized to compute the criteria weights; and (v) a
q-ROF CoCoSo is suggested to evaluate the selected IDSs.

The article is organized as follows: Section 2 highlights the IDS and insights into
MCDM; Section 3 introduces some preliminaries of q-ROFS and the proposed research
approach; Section 4 illustrates the application of the MCDM approach in evaluating the
IDS and discussion; and Section 5 contains the conclusions.

2. Background Information

This section provides basic knowledge about IDSs to enable a deeper understanding
of this topic; also, some basic information related to MCDM is presented. Afterward, some
studies related to q-ROF theory are introduced. Alyami et al. presented a study based
on a hybrid MCDM approach consisting of the fuzzy analytical hierarchy process (AHP)
and the fuzzy technique for order performance by similarity to ideal solution (TOPSIS) to
evaluate the effectiveness of the IDSs [16]. In their study, they used four main criteria and
thirteen sub-aspects to evaluate five IDSs. Their results indicate that Suricata is the most
effective IDS. Their results also indicate that most of the IDSs that were evaluated in the
study are effective and close in their results. Abushark et al. developed a study to evaluate
the optimization of machine learning-based IDSs using a hybrid MCDM approach that
comprises the AHP and TOPSIS in a fuzzy environment [24]. Their findings aim to identify
attributes related to cyber security, allowing the design of more effective and efficient IDSs.
Al-Harbi et al. presented a study for an optimal evaluation of machine learning-based
IDSs using a hybrid MCDM model that includes AHP and TOPSIS under hesitant fuzzy
conditions [8]. Their findings aim to identify features related to cyber security, allowing
the design of more effective and IDSs. Almotiri presented an evaluation system to detect
malicious traffic based on system performance [25]. They adopted an MCDM approach
consisting of AHP–TOPSIS methods to rank the impact of alternatives according to their
overall performance. Their study aims to be a reference for practitioners working in the
field of evaluating and selecting the most effective traffic detection approach.

Afterward, some studies related to MCDM approaches and their applications in
different fields were presented. Sharma and Kaul presented a study to deal with network
performance delays and disruptions due to cluster-based communications that place a
significant burden on the cluster head (CH) [26]. They used an MCDM approach including
two AHP–TOPSIS methods to reduce the overburden on a single CH through a multi-
CH scheme. Ogundoyin and Kamil presented a study to address security and privacy
issues where fog servers can be used to process private and respond to time-sensitive
information [27]. They applied the fuzzy AHP MCDM approach to determine and prioritize
confidence parameters in fog computing. Their results indicate that quality of service is the
best priority parameter that a service requester can use to evaluate the trusted standard
of a service provider. Kumar et al. introduced a study to evaluate the impact of various
malware analysis methods on the perspective of web applications [28]. They applied an
MCDM approach that comprises AHP and TOPSIS methods under a fuzzy environment.
Their results indicate that reverse engineering is the most effective method for analyzing
complex malware.

There are many theories dealing with uncertainty, including the q-ROFS theory. Thus,
we present some related studies as follows. Duane et al. introduced a study to deal with
risks in information sharing and software piracy, which poses a threat to any system [29].
They applied the q-rung orthopair double hierarchy linguistic term set (q-RODHLTS) in
the MCDM process. To prove the validity of their results, they applied the proposed
approach to many information security systems. Panetikul et al. presented a study to
analyze computer security threat analysis and control under a q-ROF environment [30].
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They applied an approach based on the combination of the Heronian mean (HM) operator
with complex q-ROFS is to initiate the complex q-rung orthopair fuzzy HM (Cq-ROFHM)
operator. To prove the reliability and efficiency of the techniques used, some illustrative
examples are introduced. Cheng et al. presented a study for evaluating sustainable
enterprise risk management in manufacturing small and medium-sized enterprises [31].
They adopted a new extended Vlse Kriterijumska Optimizacija Kompromisno Resenje
(VIKOR) approach using q-ROFSs. Peng et al. introduced a study for presenting a new
score function of q-ROFN for solving the failure issues when comparing two q-ROFNs [32].

Finally, given the importance of IDSs and the importance of implementing them in a
manner appropriate to their specific situation, choosing the most effective and appropriate
one is a great challenge. Hence, there is an urgent and great need to evaluate IDSs. In this
regard, a set of main and sub-criteria affecting the selection of the most effective IDS is
identified; also, a set of alternatives are identified to be evaluated according to these criteria,
using an MCDM approach and under a q-ROF environment.

3. Proposed Research Approach

3.1. Prelimianries

In this section, we list some concepts, procedures, and fundamental definitions related
to IFSs, PFSs, and q-ROFSs.

3.1.1. Intuitionistic Fuzzy Sets

Atanassov developed IFSs as an extension of fuzzy set theory in 1986. IFSs are
distinguished by the grade of membership and the grade of non-membership when their
total is 1 or less than 1. It is explained as stated in Definition 1 [19].

Definition 1. Let be Ҳ a fixed set. An IFS Ĩ in Ҳ is an entity having the form given by

Ĩ= {(ҳ, μ Ĩ(ҳ), Ĩ(ҳ))| ҳ ∈ Ҳ} (1)

where the function μ Ĩ : Ҳ → [0, 1] describes the grade of membership of an element to the sets Ĩ
and Ĩ : Ҳ → [0, 1] describes the grade of non-membership of an element to the sets Ĩ, with the
condition that

0 ≤ μ Ĩ(ҳ) + Ĩ(ҳ) ≤ 1, for  ҳ ∈ Ҳ (2)

The grade of hesitancy is computed as follows:

Ĩ(ҳ)= 1− μ Ĩ(ҳ)− Ĩ(ҳ) (3)

Definition 2. Let ˜ = (μ˜, ˜) and ˜ = (μ˜, ˜) be two intuitionistic fuzzy numbers (IFNs), then
the addition and multiplication operations on these two IFNs as follows:

˜ ⊕ ˜= (μ˜+ μ˜− μ˜μ˜, ˜ ˜) (4)

˜⊗ ˜= (μ˜μ˜, ˜ + ˜ − ˜ ˜) (5)

3.1.2. Pythagorean Fuzzy Sets

Yager developed PFSs as an extension of the IFSs [20]. They are distinguished by two
membership grades termed as membership and non-membership. The total membership
and non-membership grades in PFSs are unlike in IFSs. In PFSs, the membership and
non-membership grade may be more than 1, but the total of their squares has to be at most
1. It is explained as stated in Definition 3.
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Definition 3. Let be Ҳ a fixed set. A PFS P̃ in Ҳ is an entity having the form given by

˜= {(ҳ, μ˜(ҳ), ˜(ҳ)) | ҳ ∈ Ҳ} (6)

where the function μ˜: Ҳ → [0, 1] describes the grade of membership of an element ҳ ∈ Ҳ to the
sets ˜ and ˜: Ҳ → [0, 1] describes the grade of non-membership of an element ҳ ∈ Ҳ to the sets ˜,
with the condition that

0 ≤ (μ˜(ҳ))2 + ( ˜(ҳ))2 ≤ 1, for  ҳ ∈ Ҳ (7)

The grade of uncertainty is computed as follows:

˜(ҳ)=
√

1− μ˜(ҳ)2 − ˜(ҳ)2 (8)

Definition 4. Let ˜1 = (μ
1̃
,

1̃
) and ˜2 = (μ

2̃
,

2̃
) be two Pythagorean fuzzy numbers (PFNs),

then the addition and multiplication operations on these two PFNs as follows:

˜1 ⊕ ˜2=
(√

μ
1̃

2 + μ
2̃

2 − μ
1̃

2μ
2̃

2 ,
1̃ 2̃

)
(9)

˜1 ⊗ ˜2=
(
μ

1̃
μ

2̃
,
√

1̃
2 +

2̃
2 −

1̃
2 ˜

2

2
)

(10)

3.1.3. Q-Rung Orthopair Fuzzy Sets

Yager presented q-ROFSs in 2018 with the grade of membership and non-membership.
In q-ROFSs, the total of the qth power of the membership and non-membership grades
should be at most equal to 1 [18]. In Figure 2, it is readily noted that q-ROFSs have a
reasonable membership degree extent greater than that of the IFSs and PFSs. q-ROFSs are
explained as stated in Definition 5.

Figure 2. Comparison of the geometric area of various fuzzy membership degrees: IFNs, PFNs, and
q-ROFNs.

Definition 5. A q-ROFS ˘  in a finite universe of discourse Ҳ = x1, x2, . . . , xn is defined by Yager
as follows [18]:

˘  = {(ҳ, μ˘  (ҳ), ˘  (ҳ)) | ҳ ∈ Ҳ} (11)
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where the function μ˜ : Ҳ → [0, 1] defines the grade of membership of an element ҳ ∈ Ҳ to the sets˜ and ˜ : Ҳ → [0, 1] defines the grade of non-membership of an element ҳ ∈ Ҳ to the sets ˜ , with
the condition that

0 ≤ μ˜ (ҳ)
q + ˜ (ҳ)

q ≤ 1, for  ҳ ∈ Ҳ (12)

The grade of uncertainty is computed as follows

˜ (ҳ)=
q
√

1− μ˜ (ҳ)q − ˜ (ҳ)q (13)

Definition 6. Let ˘  = (μ˜ , ˜ ), ˘  1 = (μ˜ 1
, ˜ 1

), ˘  2 = (μ˜ 2
, ˜ 2

), be three q-ROFNs, then their
procedures can be well-defined as follows [18]:

˘  1 ∩ ˘  2= (min{μ˜ 1
, μ˜ 2

}, max{ ˜ 1
, ˜ 2

}) (14)

˘  1 ∪ ˘  2= (max{μ˜ 1
, μ˜ 2

}, min{ ˜ 1
, ˜ 2

}) (15)

˘  1 ⊕ ˘  2=
((

μ˜ 1
q + μ˜ 2

q − μ˜ 1
qμ˜ 2

q
) 1

q , ˜ 1 ˜ 2

)
(16)

˘  1 ⊗ ˘  2=
(
μ˜ 1

μ˜ 2
,
( ˜ 1

q + ˜ 2
q − ˜ 1

q ˜ 2
q
) 1

q
)

(17)

λ ˘  =
(
(1− (1− μ˘  

q)λ)
1
q , ˘  

λ

)
, λ > 0 (18)

˘  λ= (μ˘  
λ, (1− (1− ˘  

q)λ
) 1

q
), λ > 0 (19)

Definition 7. Let ˘  = (μ˜ , ˜ ) be a q-ROFN; the score function S( ˘  ) of ˘  can be expressed
as in [33], and the accuracy function A( ˘  ) of ˘  can be well defined, as in [34], shown by
Equations (20) and (21), respectively.

S( ˘  ) =
1
2
(1 + μ˘  

q − ˘  
q) (20)

A( ˘  ) = μ˘  
q+  ̆  

q (21)

Definition 8. Let ˘  i = (μ˜ i
, ˜ i

) (i = 1, 2, . . . n) be set of q-ROFNs and  = (  1,  2, . . . ,  n )T

be weight vector of ˘  i with ∑n
i=1  i = 1 and  i ∈ [0, 1]. Q-rung orthopair fuzzy weighted average

(q-ROFWA) and q-rung orthopair fuzzy weighted geometric (q-ROFWG) operators can be expressed
as in [34], shown by Equations (22) and (23), respectively.

q-ROFWA
(

˘  1, ˘  2, . . . , ˘  n
)
=

((
1−∏n

i=1

(
1− μ˜ i

q
)  i

) 1
q
, ∏n

i=1 ˜ i
 i

)
(22)

q-ROFWA
(

˘  1, ˘  2, . . . , ˘  n
)
=

⎛⎝∏n
i=1 μ˜ i

 i ,

(
1−∏n

i=1

(
1− ˜ i

q
)  i

) 1
q
⎞⎠ (23)

Definition 9. Darko and Liang developed an operator named the weighted q-rung orthopair fuzzy
Hamacher average (Wq-ROFHA) [35] as in Equations (24) and (25). Let ˘  i = (μ˜ i

, ˜ i
) (i = 1, 2,
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. . . n) be set of q-ROFNs and  = (  1,  2, . . . ,  n )T be a weight vector of ˘  i with ∑n
i=1  i = 1

and  i ∈ [0, 1].

Wq-ROFHA( ˘  1, ˘  2, . . . , ˘  n)=  1( ˘  1)⊕  2( ˘  2)⊕ . . . ⊕  n( ˘  n)=
n
⊕

i = 1
 i( ˘  i) (24)

Wq-ROFHA( ˘  1, ˘  2, . . . , ˘  n) =⎛⎝ q

√√√√ ∏n
i=1

(
1+(γ−1)

(
μ ˘  i

)q)  i−∏n
i=1

(
1−

(
μ ˘  i

)q)  i

∏n
i=1

(
1+(γ−1)

(
μ ˘  i

)q)  i
+(γ−1)∏n

i=1

(
1−

(
μ ˘  i

)q)  i

q√γ ∏n
i=1

( ˜ i

)  i

q
√

∏n
i=1

(
1+(γ−1)

(
1−

( ˜ i

)q))  i
+(γ−1)∏n

i=1

( ˜ i

)q  i

⎞⎠ (25)

where γ > 0, q ≥ 0.

Definition 10. Darko and Liang presented an operator named the weighted q-rung orthopair
fuzzy Hamacher geometric mean (Wq-ROFHGM) [35], as in Equations (26) and (27). Let
˘  i = (μ˜ i

, ˜ i
) (i = 1, 2, . . . n) be set of q-ROFNs and  = (  1,  2, . . . ,  n )T be the weight

vector of ˘  i with ∑n
i=1  i = 1 and  i ∈ [0, 1].

Wq-ROFHGM( ˘  1, ˘  2, . . . , ˘  n)=  1( ˘  1)⊕  2( ˘  2)⊕ . . . ⊕  n( ˘  n)=
n
⊕

i = 1
 i( ˘  i) (26)

Wq-ROFHGM( ˘  1, ˘  2, . . . , ˘  n) =⎛⎝ q√γ ∏n
i=1

(
μ˜ i

)  i

q
√

∏n
i=1

(
1+(γ−1)

(
1−

(
μ˜ i

)q))  i
+(γ−1)∏n

i=1

(
μ˜ i

)q  i

q

√√√√ ∏n
i=1

(
1+(γ−1)

(
˘  i

)q)  i−∏n
i=1

(
1−

(
˘  i

)q)  i

∏n
i=1

(
1+(γ−1)

(
˘  i

)q)  i
+(γ−1)∏n

i=1

(
1−

(
˘  i

)q)  i

⎞⎠ (27)

where γ > 0, q ≥ 0.

3.2. Suggested Approach

In this part, a sequential multi-step approach is presented to evaluate several intrusion-
detection systems by combining two MCDM methods, namely, Entropy-CoCoSo. The
proposed approach was performed under the q-rung orthopair fuzzy environment and
by using q-ROFNs. The proposed approach was divided into three main parts. The data
aggregation part includes identifying experts, selecting the criteria used, and determining
the IDSs alternatives available. Then, the criteria evaluation part assesses the selected
criteria using the q-ROF Entropy method. After that, the alternatives evaluation part
assesses the available IDSs using the q-ROF CoCoSo method. The steps of the proposed
approach are shown in Figure 3. Consequently, the steps of the suggested approach used
are presented in detail as follows:

Step 1. The problem was studied and its main and sub-aspects were identified. The
basic criteria for selecting the participating experts also were established. The criteria
for selecting experts were determined as follows: the participants should have sufficient
experience in the field of cyber security and the field of information security in general;
also, their experience in the field of information security should not be less than 10 years.
In addition, the participants should have practical experience in the field of information
security technology and in the academic field. Next, the number of experts (EXs) participat-
ing in the study was considered. After that, the participating experts were divided into
several groups and the appropriate weight for each group was determined according to
the measure of experience. Finally, the most appropriate means of communication with the
participating experts were determined.
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Figure 3. Decision framework for IDS evaluation.

Step 2. The main criteria and their sub-aspects used in the study were determined
based on an analysis of the relevant literature, as well as insight from the participating
experts. Cj = {C1, C2, . . . , Cn}, with j = 1, 2 . . . n. Let  = (  1,  2, . . . ,  n ) be the vector
set utilized for determining the criteria weights, where  j > 0 and ∑n

j=1  j = 1.
Step 3. After studying the problem and its details and identifying the most important

criteria, the available alternatives were determined to be used in the study. After that,
experts’ opinions were taken on the selected alternatives and a final list of alternatives to
be used in the evaluation process was prepared. The set Ai = {A1, A2, . . . , Am}, having
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i = 1, 2,..,m alternatives, was evaluated by n decision criteria of set Cj = {C1, C2, . . . , Cn},
with j = 1, 2, . . . , n.

Step 4. After defining the main criteria and their sub-aspects and adopting a set
of final alternatives, all these aspects were organized in the form of a hierarchical struc-
ture. This hierarchy shows the main objective of the problem, the criteria used, and the
alternatives determined.

Step 5.Verbal variants and their equivalent q-ROFNs were identified. These variables
were used in the evaluation process to assist the participating experts. These variants were
divided into two parts in the same table. The first part refers to the variables that are used
in evaluating the main criteria and their sub-aspects. The second part refers to the variables
that are used in evaluating the available alternatives, as shown in Table 1.

Table 1. Verbal variables and their corresponding q-ROFNs for the weighting criteria and
ranking alternatives.

Verbal Variables
for Criteria

Abbreviations for
Criteria

Verbal Variables
for Alternatives

Abbreviations for
Alternatives

q-ROFNs

μ

Extremely poor ELP Extremely low EXO 0.11 0.99
Very poor VPO Very low VLO 0.22 0.88

Poor POO Low LLO 0.33 0.77
Medium poor MDP Medium low MEL 0.44 0.66

Fair FAR Medium MED 0.55 0.55
Medium good MDG Medium high MEH 0.66 0.44

Good GOO High HGH 0.77 0.33
Very good VGO Very high VEH 0.88 0.22

Extremely good EXG Extremely high EXH 0.99 0.11

Step 6. Build the q-ROF decision matrices, GEXs, according to experts’ preferences
(EXs) to evaluate the criteria by each expert using verbal variables in Table 1, and then by
using q-rung orthopair fuzzy scale q-ROFNs, as shown in Table 2.

Table 2. The evaluation matrix for criteria based on q-ROFN with respect to experts.

Criteria
Experts

Ex1 Ex2 Ex3 Ex4

C1
[
μ1Ex1

, 1Ex1

] [
μ1Ex2

, 1Ex2

] [
μ1Ex3

, 1Ex3

] [
μ1Ex4

, 1Ex4

]
C2

[
μ2Ex1

, 2Ex1

] [
μ2Ex2

, 2Ex2

] [
μ2Ex3

, 2Ex3

] [
μ2Ex4

, 2Ex4

]
...

...
...

...
...

Cn
[
μnEx1

, nEx1

] [
μnEx2

, nEx2

] [
μnEx3

, nEx3

] [
μnEx4

, nEx4

]
Step 7. Aggregate the evaluations on criteria weights. The individual expert evalua-

tions are collected by using q−ROFWG given in Equation (23). Here
(

 j
)

1×n, presents the
q-ROF weight of the jth criterion.

Step 8. The steps of the entropy method based on q-ROFSs are applied to evaluate
and weight the main criteria and their sub-aspects [36]. Compute the entropy values of
each q-ROFN of the aggregated experts’ evaluations by applying Equations (28) and (29).

KEq,ij(x)=
1√
2

√(
(μ(x))q)2

+
(
( (x))q)2

+
(
(μ(x))q + ( (x))q)2 (28)

ENq,ij(x)= 1−KEq,ij(x) = 1−
1√
2

√(
(μ(x))q)2

+
(
( (x))q)2

+
(
(μ(x))q + ( (x))q)2 (29)
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Step 9. The main criteria weights are calculated based on the entropy values using
Equation (30).

 j=
1−  j

∑n
j=1
(
1−  j

) ; j = 1, 2, . . . n (30)

where  j = ∑m
i=1 ENq,ij

∑m
i=1 ∑n

j=1 .ENq,ij
refers to the q-ROF entropy value.

Step 10. In the same way, the weights of the sub-aspects of the main criteria are
calculated as in Steps 6–9.

Step 11. A q-ROF evaluation decision matrix (TEX) is generated by each expert (EX) in-
dividually among the selected sub-aspects and alternatives to determine the best intrusion-
detection system through the use of verbal variables, as shown in Table 1, and then by
using the q-ROFNs in Table 1, as shown in Table 3. Here, T̆EX =

(
t̆ijEX

)
n×m, in which

t̆ijEX =
[
μijEX , ijEX

]
is created by applying the verbal variables in Table 1. Consequently,

t̆ijEX refers the performance of intrusion-detection systems (alternatives) Ai according to
criteria Cj of the EXth expert.

Table 3. Decision evaluation matrix for alternatives in terms of criteria based on q-ROFN.

Criteria
Alternatives (Intrusion-Detection Systems)

A1 A2 . . . Am

C1 [μ11Ex , 11Ex] [μ12Ex , 12Ex] . . . [μ1mEx , 1mEx]
C2 [μ21Ex , 21Ex] [μ22Ex , 22Ex] . . . [μ2mEx , 2mEx]
...

...
...

. . .
...

Cn [μn1Ex , n1Ex] [μn2Ex , n2Ex] . . . [μnmEx , nmEx]

Step 12. After the q-ROF evaluation decision matrix (TEX) is generated by each
expert (EX) between the sub-aspects and the available alternatives by all experts, the
q-ROF evaluation decision matrices (TEXs) were aggregated into one matrix by utilizing
q−ROFWG, as presented in Equation (23). A combined q-ROF evaluation decision matrix
(T̆) was created as in Table 4. Accordingly, T̆ =

(
t̆ij
)

n×m in which t̆ij =
[
μij , ij

]
is utilized

to refer to the combined q-ROFN of the ith substitute with regard to the jth criteria.

Table 4. Combined evaluation matrix for alternatives in terms of the criteria based on q-ROFN.

Criteria
Alternatives (Intrusion-Detection Systems)

A1 A2 . . . Am

C1 [μ11 , 11] [μ12 , 12] . . . [μ1m , 1m]
C2 [μ21 , 21] [μ22 , 22] . . . [μ2m , 2m]
...

...
...

. . .
...

Cn [μn1 , n1] [μn2 , n2] . . . [μnm , nm]

Step 13. Compute the normalized aggregated q-ROF evaluation decision matrix (H̆)
by applying Equation (31).

H̆=
(

h̆ij

)
m×n

=
[
μ̆ij , ˘ ij

]
=

⎧⎨⎩
(
μ̆ij , ˘ ij

)(
˘ ij , μ̆ij

) i f i ∈
i f i ∈ (31)

where refers to the set of benefit criteria and refers to the set of cost criteria.
Step 14. Calculate the total of the weighted comparability arrangement (  ) for all

substitutes by applying the Wq-ROFHA operator as presented in Equations (24) and (25).
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Step 15. Calculate the full of the power weight ( ) of comparability arrangements for all
substitutes by applying the Wq-ROFHGM operator as exhibited in Equations (26) and (27).

Step 16. Determine the score values of the substitutes by applying the values of
values of the Wq-ROFHA and Wq-ROFHGM operators for each substitute by applying
Equation (20).

Step 17. Calculate the proportional weight of the substitutes with the assistance of
Equations (32)–(34).

ja =
 j + j

∑n
j=1
(

 j + j
) (32)

jb =
 j

min
(

 j
)+ j

min
(

j
) (33)

jc=
Ψ  j + (1−Ψ) j

Ψmax
(

 j
)
+ (1−Ψ)max

(
j
) ; 0 ≤ Ψ ≤ 1 (34)

where ja refers to the arithmetic mean of sums of the weighted sum method (WSM)
and weighted product model (WPM) scores. Then, jb indicates the sum of proportional
scores of WSM and WPM. jc also refers to the stable adjustment of the WSM and WPM
models scores.

Step 18. Determine the evaluation values ( j) of the substitutes by applying Equation (35).
Then, rank the available intrusion-detection systems according to the most possible value of the
evaluation values ( j).

j=
3
√

ja jb jc+
ja + jb + jc

3
(35)

4. Empirical Results and Interpretation

In this section, the steps of the proposed multistep hybrid MCDM approach consisting
of Entropy-CoCoSo methods are applied to evaluate the efficiency and reliability of some
IDSs. The proposed approach was applied under the q-rung orthopair fuzzy environment
and by using q-ROFNs. In this regard, the process of evaluating intrusion-detection systems
and selecting the most effective and reliable one is necessary and inevitable in light of the
recent cyber-attacks and intrusion methods. In this regard, the intrusion-detection systems
are revealed in the next sub-section.

4.1. Description of Intrusion-Detection Systems

In this subsection, a brief description of the intrusion-detection systems are considered;
also, Figure 4 demonstrates the general structure of the network and IDS.

• Suricata (IDS1): Suricata was developed by the Open Information Security Founda-
tion in 2010. Suricata is the main alternative to Snort because the design of Suricata is
very close to that of Snort [37]. Suricata has an advantage over Snort, which is that
it collects data at the application layer. Suricata consists of so-called threads, thread
units, and queues. Suricata is a multi-threaded program, so there will be multiple
threads running at the same time [37]. Thread units are divided according to functions;
for example, one unit is used to analyze data packets, and the other unit is used to
discover data packets. Each data packet can be processed by several different threads,
and the queue is used to transfer the data packet from one thread to another. At
the same time, a thread can contain several thread units, but only one unit runs at a
given time.
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Figure 4. The general structure of the network and IDS.

• Zeek (IDS2): Zeek (previously known as Bro until 2019) is a network intrusion-
detection system that is compatible with Linux, Unix, and Mac OS [38]. Zeek uses
network-based intrusion-detection methods by tracking the network and searching
for malicious activities. The Zeek intrusion detection function is realized in two stages:
traffic logging, and analysis. As with Suricata, Zeek has a significant advantage over
Snort in that its analysis runs at the application layer, resulting in a broader analysis of
network protocol activity.

• Security onion (IDS3): Security Onion is a Linux-based IDS that is a mixture of several
IDS that are both HIDS and NIDS solutions [16]. Although Security Onion is classified
as NIDS, it includes HIDS functionality as well. It monitors log and configuration
files for suspicious activity and checks those files for any unexpected changes. One of
the downsides to Security Onion’s comprehensive network monitoring system is its
complexity. Thus, the Security Onion analysis engine is where things get complicated
because there are so many different tools with different operating procedures that
most of them may end up being overlooked.

• Snort (IDS4): Snort is a Linux-based lightweight cross-platform network intrusion-
detection system that can be used to monitor TCP/IP networks [39]. Snort is easy to
deploy and can be configured to monitor network traffic for intrusion attempts, log
intrusion behavior, and perform specific actions when intrusion attempts are detected.
It is one of the most widely deployed IDS tools and can also be used as an intrusion-
prevention system. Snort can be traced back to 1998, and there are still no signs of
disappearing. There are some active communities that offer good help and support.
The high level of personalization that Snort provides makes it a good choice for many
different organizations.

• Wazuh (IDS5): Wazuh is an IDS used to detect security and monitor compliance with
security rules. Wazuh is an open-source intrusion-detection system project. It was
developed as a fork part of OSSEC HIDS and was later integrated with Elastic Stack
and Opens CAP. It relies on a cross-platform approach that redirects system data such
as log messages, file tables, and detected anomalies to a central manager, where it is
further analyzed and processed, resulting in security alerts. It monitors the file system
and identifies changes in content, permissions, ownership, and file properties that
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need to be monitored. It monitors configuration files to ensure that they comply with
security policies, standards, or hardening guides.

• OSSEC (IDS6): OSSEC is an open source IDS developed by Daniel B. Cid, who had
sold the system to Trend Micro in 2008 [39]. Its detection methods are based on
checking log files, making it a host-based IDS. OSSEC works on Unix, Linux, Mac OS,
and Windows. There is no front end for this tool, but you can connect with Kibana or
Graylog. OSSEC disclosure rules are called ‘Policies’. You can write your own policies
or get packages of them for free from the user community. It is also possible to define
actions that should be performed automatically when specific warnings appear.

4.2. Application of the Proposed Approach

In this sub-section, the steps for evaluating the selected intrusion-detection systems
through the Entropy-CoCoSo approach are presented as follows:

Step 1. Initially, a set of standards was identified to select the experts involved with the
researchers in the study to evaluate the IDSs. The standards were as follows: the number
of years of experience should not be less than 10 years in the field of cyber security and the
field of information security in general; also, the scientific degree of the participating experts
must not be lower than M.Sc. Accordingly, 60 experts were selected to participate in the
IDSs evaluation process. After that, the participating experts were divided into four groups.
Each group included a certain number of experts. The first and fourth groups included
12 experts. Whereas, the second and third groups included 18 experts. Accordingly, the
appropriate weight was assigned to each group according to the years of experience and
the number of experts. So, the first, second, third, and fourth groups had weights of 0.20,
0.30, 0.30, and 0.20, respectively. In addition, a leader was assigned to each group to express
the final opinion in the evaluation process. Finally, the experts were contacted online.

Step 2. Based on the literature analysis and expert review, a set of main and sub-
criteria were defined to evaluate the effectiveness and reliability of the IDSs. Initially, four
main criteria were defined, which are as follows: protected system, PSC1; audit source
location, ASC2; targets, TGC3; and types, TPC4. The main criteria also contained several
sub-criteria, as follows: HIDS (HIC1_1), NIDS (NIC1_2), hybrids (HYC1_3), host log files
(HLC2_1), network packets (NPC2_2), application log files (ALC2_3), IDS sensors alerts
(ISC2_4), applications (APC3_1), network (NEC3_2), host (HOC3_3), open source (OSC4_1),
closed source (CSC4_2), and freeware (CSC4_2).

Step 3. A definitive list of available IDSs for use was prepared, as follows: Suricata
(IDS1), Zeek (IDS2), Security onion (IDS3), Snort (IDS4), Wazuh (IDS5), and OSSEC (IDS6).

Step 4. A final hierarchical form of the problem was prepared, defining the main
objective of the study, which was to evaluate the effectiveness of several IDSs, as shown in
Figure 5; this in addition to regulating the relationship between the basic criteria and their
sub-aspects, with the IDSs used as alternatives.

Step 5. A set of verbal variants and their equivalent q-ROFNs were prepared by
reviewing the previous literature and expert opinions. Verbal variants were divided into
two parts. The first part of the verbal variants is presented in Table 1, to assess the main
criteria and their sub-aspects. The second part of the verbal variants is presented in Table 1,
to evaluate the alternatives used.

Step 6. The decision matrix was built with the help of Table 2 by the four experts to
assess the main criteria using the verbal variables as shown in Table 5.
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Figure 5. The hierarchy structure of the problem.

Table 5. Verbal evaluations of the main criteria by each expert and the aggregated main criteria weights.

Main Criteria Ex1 Ex2 Ex3 Ex4 Aggregated Results KEq,ij (x) ENq,ij (x)  j  j

PSC1 GOO VGO EXG VGO [0.887, 0.253] 0.549576 0.450424 0.166067 0.278
ASC2 FAR MDG MDG GOO [0.656, 0.461] 0.133121 0.866879 0.319610 0.226
TGC3 GOO VGO VGO VGO [0.856, 0.260] 0.460183 0.539817 0.199025 0.266
TPC4 MDG POO VGO MDP [0.538, 0.651] 0.144820 0.855180 0.315296 0.230

Step 7. Individual expert evaluations of the main criteria were compiled using a
q-ROFWG operator in Equation (23), and using the weights assigned to the four experts,
namely, 0.2, 0.3, 0.3, and 0.2, respectively, as exhibited in Table 5. The parameter was
determined in a discretionary manner to reflect the position of the experts in terms of
optimism and pessimism. In this case, q = 5 was introduced for a stronger illustration of
the uncertainty.

Step 8. The entropy method was applied to calculate the entropy values for each
q-ROFN from the aggregated experts’ evaluations by applying Equations (28) and (29), as
shown in Table 5.

Step 9. The weights of the main criteria were calculated based on the entropy values
using Equation (30), as presented in Table 5.

Step 10. Likewise, the weights of the sub-aspects of the main criteria were calculated, as
presented in Tables 6–9. Accordingly, the global weights of the sub-aspects were calculated,
as in Table 10.

Table 6. Verbal evaluations of the protected system’s criteria and aggregated main criteria weights.

Sub-Criteria Ex1 Ex2 Ex3 Ex4 Aggregated Results KEq,ij (x) ENq,ij (x)  j  j

HIC1_1 MDP FAR VPO EXG [0.449, 0.748] 0.243794 0.756206 0.360331 0.319
NIC1_2 ELP VGO MDP MDG [0.445, 0.862] 0.484883 0.515117 0.245452 0.377
HYC1_3 VGO GOO GOO POO [0.667, 0.576] 0.172681 0.827319 0.394216 0.304
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Table 7. Verbal evaluations of the audit source location’s criteria and aggregated main criteria weights.

Sub-Criteria Ex1 Ex2 Ex3 Ex4 Aggregated Results KEq,ij (x) ENq,ij (x)  j  j

HLC2_1 VPO EXG MDP FAR [0.510, 0.922] 0.684180 0.315820 0.151557 0.282
NPC2_2 ELP VGO MDP MDG [0.445, 0.862] 0.484883 0.515117 0.247197 0.251
ALC2_3 VGO MDG MDG POO [0.609, 0.588] 0.133588 0.866412 0.415779 0.196
ISC2_4 VGO MDP ELP MDG [0.361, 0.906] 0.613525 0.386475 0.185464 0.271

Table 8. Verbal evaluations of the targets’ criteria and aggregated main criteria weights.

Sub-Criteria Ex1 Ex2 Ex3 Ex4 Aggregated Results KEq,ij (x) ENq,ij (x)  j  j

APC3_1 FAR MDG MDG GOO [0.656, 0.461] 0.133121 0.866879 0.431377 0.284
NEC3_2 VGO MDP ELP MDG [0.361, 0.906] 0.613525 0.386475 0.192318 0.404
HOC3_3 MDP FAR VPO EXG [0.449, 0.748] 0.243794 0.756206 0.376304 0.312

Table 9. Verbal evaluations of the types’ criteria and aggregated main criteria weights.

Sub-Criteria Ex1 Ex2 Ex3 Ex4 Aggregated Results KEq,ij (x) ENq,ij (x)  j  j

OSC4_1 MDP FAR VPO GOO [0.427, 0.748] 0.241568 0.758432 0.356283 0.322
CSC4_2 MDG POO VGO MDP [0.538, 0.651] 0.144820 0.855180 0.401732 0.299
FRC4_3 ELP VGO MDP MDG [0.445, 0.862] 0.484883 0.515117 0.241983 0.379

Table 10. The global weights of the sub criteria for evaluating intrusion-detection systems.

Main Criteria PSC1 (0.278) ASC2 (0.226)

Sub-criteria HIC1_1 NIC1_2 HYC1_3 HLC2_1 NPC2_2 ALC2_3 ISC2_4

Local weights 0.319 0.377 0.304 0.282 0.251 0.196 0.271

Global weights 0.089 0.105 0.085 0.064 0.056 0.045 0.061

Main Criteria TGC3 (0.266) TPC4 (0.230)

Sub-criteria APC3_1 NEC3_2 HOC3_3 OSC4_1 CSC4_2 FRC4_3

Local weights 0.284 0.404 0.312 0.322 0.299 0.379

Global weights 0.075 0.107 0.083 0.074 0.069 0.087

Step 11. An evaluation decision matrix was established to evaluate the IDSs according
to the sub-aspects by the four experts and with the assistance of Table 3, as presented in
Table 11.

Step 12. Individual expert evaluations of the alternatives between the sub-aspects and
the available alternatives were compiled using the q-ROFWG operator in Equation (23), and
using the weights assigned to the four experts, namely, 0.2, 0.3, 0.3, and 0.2, respectively,
as exhibited in Table 12. The parameter also was determined in a discretionary manner to
reflect the position of the experts in terms of optimism and pessimism. In this case, q = 5
and γ =1 were introduced for a stronger illustration of the uncertainty.
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Table 11. Evaluations of the IDSs in terms of criteria.

IDS Exs HIC1_1 NIC1_2 HYC1_3 HLC2_1 NPC2_2 ALC2_3 ISC2_4 APC3_1 NEC3_2 HOC3_3 OSC4_1 CSC4_2 FRC4_3

ID
S 1

Ex1 VEH VEH VEH VEH MEH MEH HGH HGH HGH VLO VLO VLO HGH
Ex2 VEH VEH VEH HGH VEH HGH HGH VEH VEH MEL HGH HGH MED
Ex3 HGH HGH HGH HGH HGH HGH HGH VEH VEH MED MEL MEL MED
Ex4 HGH HGH HGH VEH EXH HGH HGH EXH VEH HGH VLO HGH MED

Exs HIC1_1 NIC1_2 HYC1_3 HLC2_1 NPC2_2 ALC2_3 ISC2_4 APC3_1 NEC3_2 HOC3_3 OSC4_1 CSC4_2 FRC4_3

ID
S 2

Ex1 HGH LLO EXO VEH LLO MEL HGH VEH VEH VLO VLO VLO VEH
Ex2 VEH LLO EXO HGH HGH MEH VEH VEH VEH MEL HGH HGH VLO
Ex3 HGH LLO EXO HGH MEL MED HGH VEH VEH MED MEL MEL MED
Ex4 HGH LLO EXO EXH VEH MED HGH EXH VEH HGH VLO HGH LLO

Exs HIC1_1 NIC1_2 HYC1_3 HLC2_1 NPC2_2 ALC2_3 ISC2_4 APC3_1 NEC3_2 HOC3_3 OSC4_1 CSC4_2 FRC4_3

ID
S 3

Ex1 HGH VEH VEH VEH HGH MED HGH VEH MEL VLO VLO VLO EXO
Ex2 VEH VEH VEH HGH EXH VEH VEH VEH MEL MEL HGH HGH EXO
Ex3 HGH HGH HGH HGH VEH MEH HGH VEH MEL MED MEL MEL EXO
Ex4 HGH HGH HGH VEH EXH HGH HGH VEH MEL HGH VLO HGH EXO

Exs HIC1_1 NIC1_2 HYC1_3 HLC2_1 NPC2_2 ALC2_3 ISC2_4 APC3_1 NEC3_2 HOC3_3 OSC4_1 CSC4_2 FRC4_3

ID
S 4

Ex1 VEH VEH VEH VEH LLO MEL HGH HGH MED VLO VLO VLO MEL
Ex2 VEH VEH VEH HGH HGH MEH VEH HGH MED MEL HGH HGH MEL
Ex3 HGH HGH HGH HGH MEL MED HGH HGH MED MED MEL MEL MEL
Ex4 HGH HGH HGH EXH VEH MED HGH HGH MED HGH VLO HGH MEL

Exs HIC1_1 NIC1_2 HYC1_3 HLC2_1 NPC2_2 ALC2_3 ISC2_4 APC3_1 NEC3_2 HOC3_3 OSC4_1 CSC4_2 FRC4_3

ID
S 5

Ex1 HGH VEH VLO VEH HGH MED HGH VLO VEH VLO VLO VLO HGH
Ex2 VEH VEH HGH HGH EXH VEH VEH VLO VEH MEL HGH HGH MED
Ex3 HGH HGH MEL HGH VEH MEH HGH VLO VEH MED MEL MEL MED
Ex4 HGH HGH VLO VEH EXH HGH HGH VLO VEH HGH VLO HGH MED

Exs HIC1_1 NIC1_2 HYC1_3 HLC2_1 NPC2_2 ALC2_3 ISC2_4 APC3_1 NEC3_2 HOC3_3 OSC4_1 CSC4_2 FRC4_3

ID
S 6

Ex1 HGH VEH VEH VEH HGH MED HGH VEH MEH VLO VLO VLO VLO
Ex2 VEH VEH VEH HGH EXH VEH VEH VEH MEH MEL HGH HGH VLO
Ex3 HGH HGH HGH HGH VEH MEH HGH VEH MEH MED MEL MEL VLO
Ex4 HGH HGH HGH VEH EXH HGH HGH VEH MEH HGH VLO HGH VLO

Table 12. The aggregated evaluations matrix of the IDSs.

IDS HIC1_1 NIC1_2 HYC1_3 HLC2_1 NPC2_2 ALC2_3 ISC2_4

IDS1 [0.823, 0.295] [0.823, 0.295] [0.823, 0.295] [0.823, 0.295] [0.817, 0.342] [0.747, 0.365] [0.770, 0.330]
IDS2 [0.801, 0.318] [0.330, 0.770] [0.110, 0.990] [0.832, 0.301] [0.564, 0.630] [0.555, 0.562] [0.801, 0.311]
IDS3 [0.801, 0.318] [0.823, 0.295] [0.823, 0.295] [0.832, 0.301] [0.909, 0.248] [0.715, 0.438] [0.801, 0.311]
IDS4 [0.823, 0.295] [0.823, 0.295] [0.823, 0.295] [0.832, 0.301] [0.817, 0.342] [0.555, 0.562] [0.801, 0.311]
IDS5 [0.801, 0.318] [0.823, 0.295] [0.394, 0.780] [0.812, 0.303] [0.909, 0.284] [0.715, 0.438] [0.801, 0.318]
IDS6 [0.801, 0.318] [0.823, 0.295] [0.823, 0.295] [0.812, 0.303] [0.909, 0.284] [0.715, 0.438] [0.801, 0.318]

IDS APC3_1 NEC3_2 HOC3_3 OSC4_1 CSC4_2 FRC4_3

IDS1 [0.877, 0.259] [0.857, 0.260] [0.458, 0.713] [0.394, 0.780] [0.507, 0.704] [0.588, 0.528]
IDS2 [0.901, 0.211] [0.880, 0.220] [0.458, 0.715] [0.441, 0.661] [0.507, 0.706] [0.414, 0.765]
IDS3 [0.880, 0.220] [0.440, 0.660] [0.458, 0.714] [0.394, 0.780] [0.507, 0.705] [0.110, 0.990]
IDS4 [0.770, 0.330] [0.550, 0.550] [0.458, 0.714] [0.394, 0.780] [0.507, 0.705] [0.440, 0.432]
IDS5 [0.220, 0.880] [0.880, 0.220] [0.458, 0.714] [0.394, 0.780] [0.507, 0.705] [0.588, 0.528]
IDS6 [0.880, 0.220] [0.660, 0.440] [0.458, 0.714] [0.394, 0.780] [0.507, 0.705] [0.220, 0.880]

Step 13. The normalized aggregated q-ROF evaluation decision matrix was calculated
by applying Equation (31), as presented in Table 13.
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Table 13. The normalized evaluation matrix of the IDSs.

IDS HIC1_1 NIC1_2 HYC1_3 HLC2_1 NPC2_2 ALC2_3 ISC2_4

IDS1 [0.823, 0.295] [0.823, 0.295] [0.823, 0.295] [0.823, 0.295] [0.817, 0.342] [0.747, 0.365] [0.770, 0.330]
IDS2 [0.801, 0.318] [0.330, 0.770] [0.110, 0.990] [0.832, 0.301] [0.564, 0.630] [0.555, 0.562] [0.801, 0.311]
IDS3 [0.801, 0.318] [0.823, 0.295] [0.823, 0.295] [0.832, 0.301] [0.909, 0.248] [0.715, 0.438] [0.801, 0.311]
IDS4 [0.823, 0.295] [0.823, 0.295] [0.823, 0.295] [0.832, 0.301] [0.817, 0.342] [0.555, 0.562] [0.801, 0.311]
IDS5 [0.801, 0.318] [0.823, 0.295] [0.394, 0.780] [0.812, 0.303] [0.909, 0.284] [0.715, 0.438] [0.801, 0.318]
IDS6 [0.801, 0.318] [0.823, 0.295] [0.823, 0.295] [0.812, 0.303] [0.909, 0.284] [0.715, 0.438] [0.801, 0.318]

IDS APC3_1 NEC3_2 HOC3_3 OSC4_1 CSC4_2 FRC4_3

IDS1 [0.877, 0.259] [0.857, 0.260] [0.458, 0.713] [0.394, 0.780] [0.507, 0.704] [0.588, 0.528]
IDS2 [0.901, 0.211] [0.880, 0.220] [0.458, 0.715] [0.441, 0.661] [0.507, 0.706] [0.414, 0.765]
IDS3 [0.880, 0.220] [0.440, 0.660] [0.458, 0.714] [0.394, 0.780] [0.507, 0.705] [0.110, 0.990]
IDS4 [0.770, 0.330] [0.550, 0.550] [0.458, 0.714] [0.394, 0.780] [0.507, 0.705] [0.440, 0.432]
IDS5 [0.220, 0.880] [0.880, 0.220] [0.458, 0.714] [0.394, 0.780] [0.507, 0.705] [0.588, 0.528]
IDS6 [0.880, 0.220] [0.660, 0.440] [0.458, 0.714] [0.394, 0.780] [0.507, 0.705] [0.220, 0.880]

Step 14. Calculate the total of the weighted comparability arrangement for all alterna-
tives by applying the Wq-ROFHA operator, as presented in Equations (24) and (25), and as
exhibited in Table 14.

Table 14. The  j and j values of the IDSs.

IDSs
Wq-ROFHA Operator Wq-ROFHGM Operator

  
IDS1 0.784 0.382 0.139 0.567
IDS2 0.741 0.489 0.102 0.789
IDS3 0.767 0.438 0.113 0.777
IDS4 0.741 0.421 0.127 0.578
IDS5 0.760 0.483 0.119 0.671
IDS6 0.771 0.419 0.125 0.651

Step 15. Calculate the full power weight of the comparability arrangements for all alterna-
tives by applying the Wq-ROFHGM operator, as exhibited in Equations (26) and (27), and as
exhibited in Table 14.

Step 16. The score values of the all alternatives are computed by applying the values of the
Wq-ROFHA and Wq-ROFHGM operators for each alternative by applying Equation (20), as
presented in Table 15.

Table 15. The score values of the IDSs for  j and j.

IDS  j j

IDS1 0.701 0.286
IDS2 0.626 0.156
IDS3 0.665 0.168
IDS4 0.660 0.275
IDS5 0.639 0.224
IDS6 0.676 0.237

Step 17. The proportional weight of the alternatives is calculated with the assistance
of Equations (32)–(34), as shown in Table 16.
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Table 16. The proportional importance and the final ranking of the IDSs.

IDS ja jb jc j Rank

IDS1 0.186 2.952 1.000 2.398 1
IDS2 0.147 2.000 0.792 1.595 6
IDS3 0.157 2.136 0.843 1.701 5
IDS4 0.176 2.814 0.947 2.089 2
IDS5 0.162 2.455 0.874 1.867 4
IDS6 0.172 2.597 0.925 1.976 3

Step 18. The evaluation values ( j) of the alternatives are identified by applying
Equation (35). Then, the six intrusion-detection systems are rated according to the most
possible value of the evaluation values ( j), as presented in Table 16 and in Figure 6.

 

Figure 6. Ranking of the IDSs using the CoCoSo method.

4.3. Results Interpretation

In this subsection, some interpretations are introduced of the results obtained from
applying the proposed approach, Entropy-CoCoSo, under a q-rung orthopair fuzzy en-
vironment. The results obtained are divided into two parts. The first part relates to the
results of the main criteria weights and their sub-aspects. The second part relates to the
results of the intrusion-detection systems evaluation used in the study. Initially, the four
main criteria were evaluated by the participating experts. The results obtained indicate that
the PSC1 criterion has the highest weight, with a weight of 0.278, followed by the TGC3
criterion with a weight of 0.266. Whereas, the ASC2 criterion has the lowest weight, 0.226,
and occupies the last rank in the ranking of the main criteria. Accordingly, the sub-criteria
related to each main criterion were evaluated. Thus, the sub-criteria related to the PSC1
criterion were evaluated as follows: the NIC1_2 criterion has the top weight with a weight
of 0.377, followed by the HIC1_1 criterion with a weight of 0.319; the HYC1_3 criterion has
the lowest weight, 0.304. The sub-criteria related to the ASC2 criterion were calculated as
follows: the HLC2_1 criterion has the maximum weight, with a weight of 0.282, followed
by the ISC2_4 criterion, with a weight of 0.271; the ALC2_3 criterion has the minimum
weight, 0.196. In addition, the sub-criteria related to the TGC3 criterion were estimated as
follows: the NEC3_2 criterion has the highest weight, with a weight of 0.404, followed by
the HOC3_3 criterion with a weight of 0.312; the APC3_1 criterion has the lowest weight,
0.284. Afterward, the sub-criteria related to the TPC4 criterion were assessed as follows:
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the FRC4_3 criterion has the largest weight, with a weight of 0.379, followed by the OSC4_1
criterion with a weight of 0.322; the CSC4_2 criterion has the smallest weight, 0.299.

In the end, the results of the intrusion-detection systems used in the evaluation process
were revealed as follows: Suricata (IDS1) has the top rank with a weight of 2.398 followed
by Snort (IDS4) with a weight of 2.089. In turn, Zeek (IDS2) has the lowest rank with a
weight of 1.595.

4.4. Comparative Analysis

In this sub-section, a comparative analysis is demonstrated to test and verify the
effectiveness of the developed approach, q-ROF Entropy-CoCoSo. Consequently, the
assessment results were compared with Alyami et al.’s [16] fuzzy AHP–TOPSIS approach.
In this regard, the same weights of the main criteria and sub-aspects obtained by applying
the proposed approach were used, as shown in Table 10. Accordingly, the results of ranking
the alternatives used in the study using the two approaches are presented in Table 17 and
in Figure 7. The results of the comparison show that IDS1 is the best alternative according
to the results of the two approaches. IDS2 is the least alternative in the order. According
to the results, it can be seen that there are some changes in the order of some alternatives,
such as IDS3, IDS4, IDS5, and IDS6. The presence of some differences in the order of the
alternatives can be explained by the difference in the mathematical basis for each approach.
Finally, the results of the comparative analysis and the reliability of the proposed approach
can be verified by the experts.

Table 17. Comparative analysis with other approach for ranking the IDSs.

Approaches IDS1 IDS2 IDS3 IDS4 IDS5 IDS6

q-ROF Entropy-CoCoSo 2.398 1.595 1.701 2.089 1.867 1.976

Ranking 1 6 5 2 4 3

Fuzzy AHP-TOPSIS 0.927 0.287 0.582 0.675 0.497 0.723

Ranking 1 6 4 3 5 2

 

Figure 7. Final ranking of the six IDSs using various approaches.

4.5. Sensitivity Analysis

We have conducted a sensitivity analysis from the three perspectives of changes in pa-
rameter q, parameter γ, and parameter Ψ. Sensitivity analysis was conducted on the results
obtained to confirm their reliability and stability and to examine the change that occurred
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to them as a result of the change in some inputs and parameters. In decision-making ap-
proaches, some parameters are defined subjectively based on the perception of the problem
by decision-makers and the extent of the risks in the environment. Consequently, these
parameters change according to the circumstances in which the decision-making system is
being modeled. In our proposed Entropy-CoCoSo q-ROF approach, three parameters—q,
γ, and Ψ—are defined, which are determined based on the personal preferences of the
experts. Accordingly, several changes were made to these parameters to show their decisive
influence on the final IDS’s ranking results. These changes were divided into four scenarios.
The first scenario refers to the change in the values of parameter q. The second scenario
indicates the change in the values of parameter γ. The third scenario refers to the change
in the values of parameters q and γ. Lastly, the fourth scenario refers to the change in the
values of parameter Ψ.

The first scenario is the effect of a change in parameter q on the evaluation of IDSs.
Accordingly, the value of the parameter q was changed several times, from q = 2 to q = 20, to
show its impact on the evaluation of IDSs, as presented in Figure 8. Although the value of the q
parameter has been changed several times, the order of the IDSs has not changed at all. IDS1
remains the best alternative throughout the sensitivity analysis and parameter value change q,
followed by IDS4. By contrast, IDS2 remains the lowest in order despite the change in the value
of the parameter q. The changes that can be observed based on the change in the value of the
parameter q in the order of the IDSs, show there is a large convergence between the values of
the assessment of IDS4 and IDS6 at the value of q = 2. Significant convergence occurs between
the IDS4 and IDS1 assessment values at q = 8; otherwise, the order of the IDSs remains the same
despite the presence of some increases in the weights of the IDSs.

Figure 8. Closeness coefficient values of IDSs in terms of different values of q.

The second scenario is the effect of a change in parameter γ on the evaluation of IDSs.
Accordingly, the value of the parameter γ was changed several times, from γ = 0.1 to γ = 1.0,
to show its effect on the evaluation of IDSs, as shown in Figure 9. Although the value of
the parameter γ was changed several times, the order of the IDSs changed only when the
value of parameter γ = 1.0. IDS1 remains the best alternative throughout the sensitivity
analysis and parameter value change γ = 0.1 to γ = 0.9 followed by IDS4, except when
parameter value γ = 1.0, then IDS6 becomes the second rank in the analysis process. In
contrast, IDS2 remains lowest in order throughout the change of the value of the parameter
γ = 0.0 to γ = 0.9, except when the value of γ = 1.0 is changed, then IDS2 becomes the fifth
rank, penultimate. The changes that can be observed based on the change in the value of
the parameter q in the order of IDSs, is that when the value of the parameter γ = 1.0, the
order of the IDSs changes so that IDS1 is in the first order, while IDS6 is in the second order,
and IDS4 is in the third order. On the contrary, the rank of some IDSs was changed, such as
the rank of IDS2 and the IDS5, which became the fifth and sixth, respectively.
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Figure 9. Closeness coefficient values of IDSs in terms of different values of γ.

The third scenario is the effect of a change in parameter q and γ on the evaluation of
IDSs. Accordingly, the values of q and γ were changed several times, from q = 2 to q = 15,
and γ = 0.1 to γ = 1 to show their combined effect on the assessment of the IDSs, as shown
in Figure 10. Although the values of the parameters q and γ changed many times, the order
of the IDSs has not changed at all. IDS1 remains the best alternative during sensitivity
analysis and changing the values of q and γ parameters, followed by IDS4. In contrast, IDS2
remains the lowest in terms of rank despite the change in the values of the two parameters
q and γ. Changes that can be observed based on the change in the value of parameters q
and γ for the order of IDSs, is that there is a great convergence between the values of the
evaluation process weights for the IDSs used in the study. The convergence between the
weights of the IDSs is difficult to see in Figure 10, and this is one of the shortcomings of
Figure 10.

Figure 10. Closeness coefficient values of IDSs in terms of the different values of q and γ.

The fourth scenario is the effect of a change in parameter Ψ on the evaluation of IDSs.
Accordingly, the value of parameter Ψ was changed several times from Ψ = 0.1 to Ψ = 1.0,
to show its effect on the evaluation of the IDSs, as shown in Figure 11. Although the value
of parameter Ψ was changed several times, the order of the IDSs did not change at all.
IDS1 remains the best alternative throughout the sensitivity analysis and parameter value
change Ψ = 0.1 to Ψ = 0.9, followed by IDS4. On the contrary, IDS2 remains in the lowest
order by changing the parameter value Ψ = 0.1 to Ψ = 1.0.
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Figure 11. Closeness coefficient values of the IDSs in terms of the different values of Ψ.

5. Conclusions

Given the spread of computer networks and the dependence of public and private
institutions on their efficiency and quality of work, any disruption or sabotage of them
may lead to great losses. Information systems and networks are constantly subject to
cyber-attacks. Thus, firewalls and antivirus are not enough to fend off all these attacks, as
they are only able to protect the “front entrance” of computer systems and networks. IDSs
can help protect your corporation from malicious activities. There are different types of
IDSs to protect networks, as intrusion attacks are becoming more and more common on a
global scale. In addition, hackers using new technologies are trying to penetrate systems.
An IDS is a tool that identifies these attacks and will take an immediate step to get the
system back to normal, as the IDS can also detect network traffic and send an alarm if a
breach is found.

In this regard, this study discusses the most effective and used IDSs. This study
was conducted with the participation of many experts under the q-ROF environment
to deal with the uncertainty that may occur as a result of different circumstances and
differences in evaluation frameworks. Six intrusion-detection systems, namely, Suricata
(IDS1), Zeek (IDS2), Security onion (IDS3), Snort (IDS4), Wazuh (IDS5), and OSSEC (IDS6),
were evaluated according to four key criteria and thirteen sub-aspects. The main criteria
were protected system, audit source location, targets, and types. The sub-aspects, on the
basis of which the effectiveness of the intrusion-detection systems was evaluated, were
HIDS, NIDS, hybrids, host log files, network packets, application log files, IDS sensors alerts,
applications, network, host, open-source, closed source, and freeware. A hybrid MCDM
approach, including q-ROF entropy-CoCoSo techniques, was proposed, where entropy
was applied to evaluate the main criteria and their sub-aspects. The CoCoSo method
is applied to rate six IDSs according to their effectiveness. Afterward, comparative and
sensitivity analyses were performed to confirm the stability, reliability, and performance of
the proposed approach. The findings indicate that most of the IDSs appear to be systems
with high potential. According to the results, Suricata is the best IDS that relies on multi-
threading performance. Although the results here confirm that the proposed method is
applicable and effective, it has some limitations. The key limitation of the approach is the
difficult mathematical algorithm for the computation of Hamacher functions.
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Abstract: Passive human sensing approaches based on the analysis of the radio signals emitted by the
most common wireless communication technologies have been steadily gaining momentum during
the last decade. In this context, the Bluetooth technology, despite its widespread adoption in mobile
and IoT applications, so far has not received all the attention it deserves. However, the introduction
of the Bluetooth direction finding feature and the application of Artificial Intelligence techniques
to the processing and analysis of the wireless signal for passive human sensing pave the way for
novel Bluetooth-based passive human sensing applications, which will leverage Bluetooth Low
Energy features, such as low power consumption, noise resilience, wide diffusion, and relatively low
deployment cost. This paper provides a reasoned analysis of the data preprocessing and classification
techniques proposed in the literature on Bluetooth-based remote passive human sensing, which is
supported by a comparison of the reported accuracy results. Building on such results, the paper
also identifies and discusses the multiple factors and operating conditions that explain the different
accuracy values achieved by the considered techniques, and it draws the main research directions for
the near future.

Keywords: Bluetooth; wireless passive human sensing; wireless sensor networks

1. Introduction

In general terms, radio-based passive human sensing refers to the ability to remotely
discern the presence and, possibly, the activities, of human beings, without the need for
them to bring or wear any device and for the sensing device to emit a probing signal [1]. In
fact, the sensing device relies on external sources for the generation of the probing signal by
exploiting the radio signal emitted by the most common wireless communication devices
(e.g., WiFi and Bluetooth). More specifically, the radio signal is received, processed and
the required information is extracted from the deformation and degradation that affect the
signal when the presence of a human body obstructs its trajectory (see Figure 1a).

Comparing with conventional, computer-vision based approaches, such as those
described in [2–5], passive remote sensing offers several important advantages. First, there
is easier user acceptance, as wireless networks are not able to record images, and therefore,
they are not perceived as privacy-invasive by the perspective users. Second, they have
wider applicability, as wireless networks do not suffer from Line-of-Sight (LoS) obstruction
and bad illumination conditions and may also support through-the-wall sensing. LoS
sensing is shown in Figure 1a), whereas non-LoS sensing and through-the-wall visibility
are illustrated in Figure 1b).

Finally, deployment efforts and costs may be reduced, as passive sensing may take
advantage of the existing wireless communication infrastructures and sensor networks [6],
such as the ones used for public utility and safety [7].
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(a) (b)

Figure 1. Line of Sight (LoS) visibility (a). Non-Line of Sight and through-the-wall (b).

In the literature, passive (also called deviceless) remote sensing of human beings
was first developed using ad hoc RF transmitters and receivers. Next, WiFi off-the-shelf
technology, already successfully applied to a variety of other applications, such as patient
monitoring [8–10] and factory automation [11], was adopted for this goal. The reason for
relying on WiFi mainly resides in the high transmission rate, which allows high-frequency
sampling, and in the availability of very detailed Channel State Information (CSI), which
allows a stable and reliable extraction of the presence, position and activity information
of the human subject. Nevertheless, the Bluetooth technology offers some interesting
advantages over WiFi, which suggest the investigation of its application to the passive
remote sensing area. In fact, recent studies demonstrated that Bluetooth represents a valid
alternative for several reasons:

• Bluetooth is integrated in most portable devices (such as tablet, smartphone, PDA, etc.),
and it is often used for personal health monitoring [12–14].

• It is energy-efficient (its power consumption is lower than WiFi), in particular after
the introduction of the Bluetooth Low Energy specifications in Bluetooth 4.0.

• Its deployment in business, industrial and home environments is simple and flexible,
as Bluetooth devices are small, minimally invasive and less expensive than other
solutions [15].

Despite the aforementioned advantages, the number of studies that have investigated
the application of Bluetooth to passive human sensing so far is significantly lower than
the number of works based on WiFi. This consideration motivates this paper, which
presents an overview of the most relevant works dealing with Bluetooth-based passive
human sensing. The paper provides a thorough analysis of the data preprocessing and
classification techniques proposed in the literature, which is followed by a comparison of
the reported accuracy results. Building on the presented results, the paper identifies and
discusses the multiple factors and operating conditions that explain the different accuracy
results achieved by the considered techniques. On the basis of this discussion, the paper
draws the main research directions for the near future.

To the best of our knowledge, there are no other reviews, in the literature, dealing with
Bluetooth-based wireless passive human sensing at the time of writing this work.

The paper is structured as follows. Section 2 discusses related work on human
body passive sensing through wireless communication technologies, with a special fo-
cus on Bluetooth.

Section 3 addresses the Bluetooth protocol features that are relevant to the considered
application, describing how the human body affects the received Bluetooth signal.

Section 4 discusses data collection, analysis and preprocessing techniques, while
Section 5 analyzes the classification methods adopted in the relevant literature.

Section 6 proposes a performance comparison of the results presented in the considered
literature, while Section 7 discusses the results obtained by each described technique,
deriving insights on the factors that affect their accuracy. Finally, Section 8 provides
conclusive remarks and hints for future research.
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2. Related Work

Most of the literature dealing with Bluetooth indoor signal propagation and the effect
of the human body focuses on active (or device-based) indoor localization [16–27], where
the human to be localized carries, or wears, a Bluetooth device that can track, or can be
tracked by, other Bluetooth devices in the environment. This approach belongs to the active
sensing class, where either the sensing devices are equipped with both a transmitter and a
receiver (see Figure 2 on the left), or the sensed human carries an active device (see Figure 2
on the right).

Figure 2. Two classes of active sensing. On the left, the sensing device is equipped with both internal
probing signal transmitter and receiver. On the right, the sensed human brings an active device that
receives the probing signal and produces the sensing result.

Device-based sensing approaches can as well be used to detect and track human
beings and their activities [28,29]. However, requesting the subjects to carry a traceable
device all the time is not always feasible or desirable. Passive, device-free sensing systems,
instead, take advantage of the human body’s property of disturbing the radio signals
when partially or totally obstructing their trajectory, thus causing signal fluctuations. In
principle, by analyzing such fluctuations, it could be possible to separate the influence of
the human body from both the original signal and other causes of noise, thus allowing
human detection, positioning and activity recognition. However, modeling the “baseline”
noise and signal fluctuations that can be expected in the absence of the obstructing human
body, thus allowing a reliable detection and tracking, is not a trivial process [30]. The
Bluetooth standard stack only allows to measure the Received Signal Strength Information
(RSSI), which is a scalar indication of the intensity of the received signal at a given time and
is subject to fluctuations and fading during normal operation. The WiFi standard, instead,
allows the measurement of the much more informative Channel State Information that,
for the most recent devices, is a 3D matrix of complex values representing the amplitude
attenuation and phase shift of multi-path WiFi channels [31]. Moreover, the CSI provides
more stable information than the RSSI [32,33]. Consequently, the literature regarding the
use of WiFi for passive human detection and activity tracking is much wider than the
literature on Bluetooth for similar applications.

Human presence can influence a wireless signal in its spatial, temporal and frequency
domains [34]. In particular, human motion can affect the frequency and temporal domains,
whereas the location of the human body in the environment can affect the signal’s phase.
The RSSI alone does not provide phase information, and therefore, some other source of
information is needed when the CSI is not directly available. Recently, Bluetooth v5.1 [35]
introduced the possibility to measure the signal’s Angle of Arrival and Angle of Departure,
which can be used to improve both the positioning and activity tracking accuracy. However,
to the best of the authors’ knowledge, such an approach has not been reported in the
literature so far.

Multiple RSSI samples can be used to extract more information, either in time or in
space. In time, for example, by measuring through a fixed, static receiver a time sequence
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of RSSI samples emitted by a fixed, static transmitter, it is possible to track human body
motion and recognize specific activities (see Figure 3a).

In space, instead, by deploying several transmitters and receivers, a very accurate
positioning of a human body can be obtained by exploiting geometrical considerations [36]
(see Figure 3b).

(a) (b)

Figure 3. Moving humans counter and multi-transmitter, multi-receiver configurations. (a) Moving
humans counter. The RSSI undergoes an abrupt change when a human body traverses the signal
trajectory. (b) Multiple transmitters, multiple receivers.

A special case is based on the radio tomographic approach, where a very high number
of transmitter/receiver couples over a spacial grid (see Figure 4) allows to use imaging
techniques to obtain an extremely detailed and accurate positioning of the subject [37].

Figure 4. Tomographic sensing.

In principle, any wireless transmission technology can support some form of remote
human sensing approach. In particular, an interesting comparison is reported in [6], where,
curiously, Bluetooth is not mentioned. Table 1 summarizes the main pros and cons of
exploiting some of the most popular communication technologies for wireless remote
human sensing, such as the ones listed below.

Radio Frequency Identification (RFID) is a technology for contactless, short-range, two-
way communications that is mainly used for tag detection and identification as well as for
low datarate short message exchange. The main advantages of RFID technology are the
reasonable resilience to radio frequency noise and the low cost of RFID tags. Conversely,
the RFID reader is quite expensive [6]. The main disadvantage of using RFID for passive
human sensing is the very short sensing range.

Frequency Modulated Continuous Wave (FMCW) radars are instead active sensing de-
vices in which the sensor contains both a transmitter and a receiver [38,39]. The main
advantages of applying FMCW to human sensing are the high sensitivity and distance accu-
racy [6]. However, FMCW-based devices are specifically aimed at sensing, and therefore, a

256



Sensors 2022, 22, 3523

human sensing approach based on this technology cannot leverage existing communication
infrastructures, but a separate deployment is needed. Moreover, FMCW-based human
sensing is not in the scope of this study, as the focus here is on passive human sensing.

Bluetooth and its low-energy version (BLE) are among the most widely adopted wireless
communication technologies. Their main advantages are low power consumption, which
allows the installation of battery-operated nodes, and the relatively low deployment costs,
even in case a specific infrastructure is required. Moreover, such technologies have the
ability to support both regular communications and passive human sensing at the same
time, as regular advertisement signals are exploited for sensing (see, for example, [40,41]).
The main disadvantages of Bluetooth and BLE are that they currently do not provide CSI
and an effective way to cope with the abrupt RSSI changes due to Frequency Hopping (see
Section 3.2).

WiFi is the wireless communication technology that is most widely adopted for pas-
sive human sensing. Early works in the literature exploited the WiFi RSSI values, but the
most accurate and effective applications are based on the ability of some recent devices
to provide Channel State Information (CSI) multidimensional samples, thus supporting a
more detailed extraction of human activity information [31]. The main advantages of using
WiFi for human sensing are the wide diffusion of the WiFi communication technology
and the reliable and fine-grained information provided by the CSI, which allows sensing
low-amplitude activities (e.g., hand gestures) and vital signs (e.g., breathing). However,
WiFi devices cannot be used for communications and passive sensing at the same time [6],
and therefore, a separate infrastructure is needed for sensing or the same infrastructure
must be multiplexed in time, thus reducing the time available for both services. Moreover,
WiFi power consumption is sensibly higher than Bluetooth power consumption (this is
particularly true for Bluetooth Low-Energy), and the deployment cost of an ad hoc infras-
tructure is also higher. Finally, WiFi is relatively less robust to changes in the environment
and noise than other signals [6].

Visible Light Communication (VLC) technology is also being exploited for human sens-
ing [42]. VLC technology uses low-cost, high-efficiency photodiodes (LED), is resilient to RF
noise, and it can leverage the existing lighting infrastructure. However, such a technology
requires a complex light sensing infrastructure that is hardly justifiable by its application to
human sensing, as a large number of photodiodes need to be installed on the sensorized
environment floor [6].

LoRa [43] is a radio frequency transmission technique based on a spread spectrum
modulation, which enables long-range transmissions with low power consumption [44].
Both properties are interesting for human sensing. In the work in [45], LoRa is used for
active remote human sensing in a radar-like fashion, by equipping the sensing device
with both a transmitter and a receiver modified and adapted to the specific application.
However, LoRa requires a dedicated infrastructure for sensing.

The LTE (long-term evolution) mobile communication system [46], which seamlessly
covers almost all areas, both indoor and outdoor, can act as a diffused external illuminator
for wireless human sensing [47].

The 6G communication networks also promise localization and human activity de-
tection among their most relevant services [48]. The two main disadvantages of using
LTE and 6G for remote human sensing are the long distance between the transmitter, the
receiver and the human, which require complex filtering techniques to remove the noise
and separate the signals [6], and the significant risk of privacy violation due to both the
non-locality of the probing signal and the potential for receiving the sensing signal from a
long distance, which would allow for mass monitoring.
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Table 1. Pros and cons of the most relevant applications of wireless communication technologies to
wireless remote human sensing, as reported in the literature.

Wireless Technology Advantages Disadvantages

RFID Resilience to RF noise Very short range

FMCW High sensitivity; High
distance resolution

Active approach; Ad
hoc infrastructure

Bluetooth, BLE

Widespread use for
communications; Low power

consumption; Low
deployment cost;

Simultaneous communication
and sensing

No support for CSI; Abrupt
changes in RSSI due to FHSS

WiFi
Widely adopted for

communications; High spatial
resolution; Reliability

Not all devices provide CSI;
Non-simultaneous

communications and sensing;
Relatively high deployment

cost; Relatively high
power consumption

VLC
Resilience to RF noise;

Relatively cheap
sensing devices

Complex ad hoc
sensing infrastructure

LoRa Long sensing range; Low
power consumption Active approach

LTE, 6G
Wide availability of the

illuminating signal; Stability
and reliability

Complex noise filtering and
signal separation techniques;

Severe privacy concerns

One of the earliest and simplest applications of Bluetooth to deviceless human sensing
is to support remote elderly care, by allowing the remote caregivers to monitor that their
patients regularly take their prescriptions [40,41]. The described system consists of three
principal components:

• A Bluetooth beacon positioned under a medicine calendar (i.e., a tool used to norm
the assumption of the correct daily dose of drugs).

• A computer tablet positioned at fixed, short distance from the beacon.
• A smartphone for the remote caregiver.

In this application, the Bluetooth beacon periodically transmits a message with a
unique ID, while the tablet measures the received signal RSSI. When a human approaches
the medicine calendar, thus disturbing the signal sent by the beacon, the RSSI suddenly
drops, and the dedicated application running on the tablet records the event and sends a
notification to the caregiver’s smartphone. The detection accuracy obtained by the system
in a real environment is higher than 90%.

More recently, by measuring and analyzing the fluctuations in the received signal
RSSI, a passive device-free system based on a network of Bluetooth Low Energy (BLE)
beacons was able to detect the presence [49] and estimate the number [50] of humans in a
lecture room. With 24 beacons positioned under the seats in the room and four receivers
positioned on the ceiling laterally to the seats, the detection accuracy was higher than 95%,
while the accuracy of the number of people estimated was about 82%, with an average
room occupancy of about 30 attendees.

In [51], a system to detect the presence of humans in a waiting queue is presented.
Usually, waiting queues are controlled by barrier poles with retractable belts, which can be
moved if needed, and the system described in [51] is able to detect the transit of people
between two barrier poles so as to allow to estimate the queue waiting time. To this aim,
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the transmitting and receiving devices are positioned on the barrier poles, facing from the
two opposite sides of the queue path, and two detection methods are studied:

• Analysis of RSSI variance;
• Analysis of RSSI average.

The results reported in [51] show that the RSSI variance is better suited for detecting
the transit of people between the two poles, i.e., the motion of a body traversing the ideal
line connecting the two poles (see Figure 3a), while the RSSI average is more suitable for
detecting people standing between the two poles. The accuracy of this system in detecting
walking people is about 98% using variance and 96% using average. However, the second
algorithm is also able to detect motionless people standing in the monitored area, whereas
the first algorithm is only suitable for detecting moving people.

3. Human Body Influence on the Bluetooth Signal

In order to better understand the advantages and limitations of using the Bluetooth
technology for passive human detection and tracking, this section recapitulates some
relevant Bluetooth features.

3.1. Bluetooth Recapitulation

Bluetooth is a short-range wireless protocol that supports connections within a range
from a few meters to a few dozen meters (depending on the antenna gain, the environment
and the specific PHY adopted) [52].

The Bluetooth Classic protocol, also referred to as Bluetooth Basic Rate/Enhanced
Data Rate (BR/EDR), works in the globally unlicensed Industrial, Scientific and Medical
(ISM) 2.4 GHz short-range radio frequency band, which is divided into 79 channels with
1 MHz spacing. The Bluetooth technology is designed to work well even in very noisy
environments, copying with fading and interference. To this end, Bluetooth uses the
Frequency Hopping Spread Spectrum (FHSS) [53] technique, that forces two connected
devices (master and slave) to frequently change the dedicated communication channel, so
the devices hop from one channel to another according to a pseudo-random sequence. The
channel sequence is maintained by the master device through a map in which the channels
are marked as ‘in use’ if they work properly and ‘unused’ otherwise. This map is updated
after a channel is found working well for a given time interval and is shared with the
secondary devices so as to have the same information at both ends of the communication.

Two types of Bluetooth connections are available:

1. Asynchronous Connection-Less: a uni-directional communication, in which a slave
device (also called advertiser or broadcaster) periodically sends packets, while a
master device (also called hub or scanner) continuously scans the channels while
waiting for packets.

2. Synchronous Connection-Oriented: a bi-directional communication, in which a con-
nection between a master and a slave is established over a dedicated channel.

The most relevant advantages of the Bluetooth technology are the resilience to noise
and interference, thanks to the FHSS technology, the low cost of the devices, and the low
power consumption compared to other technologies. In particular, the introduction of
Bluetooth Low Energy (BLE) has further reduced the power consumption, thus improving
the lifetime of battery-powered devices. For this reason, BLE is also widespread in Internet
of Things (IoT) applications.

3.1.1. Bluetooth Low Energy

Bluetooth Low Energy divides the ISM band into 40 channels with 2 MHz spacing.
Three channels are used as advertising channels (or primary channels) for broadcasting,
while the remaining 37 data channels (or secondary channels) are used for data exchange
after a connection event. Mobile devices can be designed to support both Bluetooth Classic
and BLE (dual-mode device) or to only support BLE (single-mode device). Single-mode
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devices are generally used in applications that require low power consumption as a major
constraint. Moreover, the BLE stack is thinner compared to the Bluetooth Classic one, to
reduce the firmware footprint and protocol management complexity for the applications
that run directly on sensors [54].

The first version of BLE protocol was introduced with Bluetooth v4.0, and then, it was
updated up to Bluetooth v5.3.

Comparing with the previous versions, in Bluetooth v5.0, major improvements were
introduced. First, the coverage range was extended from about 50 m to more than 200 m
for outdoor environments, whereas in indoor environments, the range changed from about
10 m to about 40 m. Furthermore, the Bluetooth Core Specification v5.0 [55] introduced a
new way to perform advertising, called Extended Advertising, which allows the 37 channels
previously reserved for data communication to be also used as secondary advertising
channels. Traditional advertising transmits the same payload on the three primary channels,
whereas the Extended Advertising transmits payload data only once on a secondary
channel. This way, the total amount of transmitted data is lower, and therefore, the duty
cycle is reduced. Another benefit of the Extended Advertising is that using a secondary
channel to transmit the payload, 255-byte-long packets can be broadcast. In the previous
versions of the protocol, instead, only 31-byte-long packets could be broadcast. With this
version of BLE, it is also possible to chain packets together and transmit each chained
packet on a different channel.

Bluetooth v5.0 also introduced the Periodic Advertising, which allows the receivers
to synchronize their scanning for packets with the schedule of the transmitter device. In
the previous versions, the advertising process included a degree of randomness in the
timing of the advertising packet transmission to avoid repeated packet collisions. However,
this implies that scanners could lose some packets, i.e., those transmitted out of their
round of scan. In the Periodic Advertising, scanning is performed within the transmission
window of the transmitter, thus avoiding such packet losses, and therefore in a more
power-efficient way.

In addition, Bluetooth v5.0 reduced the minimum allowed Advertising Interval from
100 ms to 20 ms, thus allowing a rapid recognition of the advertising beacons.

Bluetooth v5.1 [35] introduced a new feature that allows Bluetooth devices to deter-
mine the direction of a Bluetooth incoming transmission.By equipping either the receiver
or the transmitter with an array of antennas, the receiver can determine either the Angle of
Arrival (AoA) or the Angle of Departure (AoD), respectively [56].

In both methods, a special signal, called a direction-finding signal, is transmitted by
the transmitting device and used by the receiving device to calculate the direction of the
received signal, which in ideal conditions corresponds to the direction along which the
transmitting device lays. In the AoA method, the receiving device (that is connected to an
array of antennas) receives different copies of the same signal from different consecutive
antennas in the array. The received signals are phase-shifted due to the different distances
of the receiving antennas to the single transmitting antenna. The Angle of Arrival θ is
computed from the phase difference according to Equation (1), where λ is the wavelength,
ψ is the phase difference and d is the distance between two consecutive antennas in the
array [56].

θ = arccos(
ψλ

2πd
) (1)

In the AoD method, instead, the transmitting device is equipped with an antenna array
which emits a signal from each of the antennas. The receiving device, which is equipped
with a single antenna, given that λ is the wavelength and d is the distance between two
consecutive antennas in the transmitting array, determines the phase difference ψ from two
received signals and computes the direction θ according to Equation (2).

θ = arcsin(
ψλ

2πd
) (2)
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In Bluetooth 5.1, the direction-finding signals are generated by both defining a new
Link Layer Protocol Data Unit (PDU) for direction finding between two connected devices,
and a way to use the existing advertising PDUs for connectionless direction finding. In
both cases, a special field, known as the Constant Tone Extension (CTE), is added to the
end of the PDUs.

Bluetooth v5.1 also introduced the Randomized Advertising Channel Indexing, which
allows the devices in advertising state to randomize the selection of advertising channels
so that they are not selected in strict order (37, 38, 39) as in the previous Bluetooth versions
but in a random order. This feature improves packet collision avoidance.

In Bluetooth v5.2 [57], the LE Power Control feature was introduced. This new feature
allows the transmitting devices to dynamically change their transmission power level
and inform the receiving device that this has happened. This process is useful to keep
high the signal quality and low the error rates, respectively. Moreover, the process also
improves coexistence in general, thus benefiting all the protocols working in the 2.4 GHz
frequency band.

Bluetooth v5.3 [58] introduced some improvements in the Periodic Advertising, i.e.,
the host of a receiving device can inform the controller that a packet has been found
to contain data that has already been received in an earlier packet. The controller can,
therefore, disregard the current periodic advertising packet and immediately switch to
another channel.

3.2. Influence on Bluetooth Signal

Numerous studies proved that radio signals in the 2.4 GHz frequency band are easily
influenced by the human body. An experiment explicitly aimed at demonstrating the effects
of a human body occluding the Line-of-Sight between a transmitter and a receiver (see
Figure 1a) was reported in 2014 [59], where the received signal power was measured with
and without obstruction, and the measured attenuation was approximately 10 dB. However,
signal fluctuations were exploited to detect the presence of people in an environment
already in 2006 [60].

Received signal fluctuations can be caused by changes in the environment, in the
state of the transmitter or the receiver, or by design, e.g., because the protocol requires
actions that produce such fluctuations. In order to exploit the signal fluctuations for passive
human sensing, it is mandatory to exclude the unwanted causes or, at least, to find a
way to separate their effects from the effects of the targeted human body. Compared to
WiFi, Bluetooth appears to be better suited for this purpose, because it is less subject to
electromagnetic noise thanks to the FHSS technique. However, the FHSS itself by design
generates fluctuations in the received signal due to the communication channel switch.
In fact, measurements at the receiver side of the signal emitted by a Bluetooth beacon in
advertising mode showed that different channels have different noise and attenuation
characteristics [20]. To reduce the influence of the channel hopping on the signal RSSI,
each Bluetooth channel should be modeled and processed separately [16]. In the reported
experiments, four BLE beacons were used. In particular, three beacons were modified
to allow a separate RSSI measurement for each advertising channel, while the other one
was not modified. After measuring the RSSI values of all beacons, the RSSI variance was
calculated for each beacon. The modified beacons allowed the calculation of separate
variances for each channel, while the non-modified beacon only allowed the calculation
of the variance of the hybrid signal resulting from the channel hopping. As the Bluetooth
protocol does not allow the determination of the time instant at which the hopping takes
place, and it does not report the current advertising channel, it was not possible to filter out
the RSSI fluctuations produced by the hopping. Consequently, the hopping contributed to
the overall RSSI variance. As it was expected, the RSSI variance calculated over the signal
transmitted by the unmodified beacon was significantly larger than the per-channel RSSI
variances obtained by the modified beacons.
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The described study demonstrated that the FHSS causes a significant increase of the
RSSI fluctuations, which would heavily impact the reliability of a passive human detection
approach based on a set of unmodified Bluetooth devices. For this reason, most of the
research works in this area rely on some way to manage each advertising channel separately.

4. Data Preprocessing

The demonstration that the wireless signal generally suffers from the noise due to the
surrounding environment is introduced in [61]. Moreover, endogenous fluctuations, i.e.,
the ones coming from inside the device, always affect the received signal. The aim of the
preprocessing stage is ideally the elimination, and more in general the attenuation, of noise
and endogenous fluctuations, so that the only fluctuations present in the signal after this
step are those generated by the human presence between the connected devices.

In [62], a Kalman filter was used for signal noise reduction. The Kalman filter uses
linear models, i.e., linear transformations both in the transitions from the current state to
the next state and in the transformation from state to measurement, and it also assumes
that the noise associated to both the measurements and state of the system is Gaussian.
Unfortunately, the hypotheses of linearity and Gaussian noise are not always satisfied in
wireless passive human sensing, as shown in [61], where the Kalman filter and the Moving
Average filter were compared.

In [62], the Kalman filter performed well with the available data, whereas in [61],
such a filter performed poorly, flattening the signal to the point where relevant peaks
corresponding to the presence of a human body were deleted. The Moving Average filter,
instead, is simpler and less accurate than the Kalman filter under linearity and Gaussian
noise hypotheses, but it performed better on RSSI data [61].

An advanced version of the Moving Average filter, i.e., the Exponential Weighted Mov-
ing Average filter, was adopted in [22]. Unlike the Moving Average filter, this filter assigns
different weights to the values of the considered time series according to an approximated
exponential law. The filtered RSSI value is computed according to Equation (3), where
α ∈ [0, 1] is the smoothing factor. In particular, the value of α in [22] is 0.05.

fi,j[n] = αRSSIi,j[n] + (1− α) fi,j[n− 1] (3)

A similar principle is used in [51], where data preprocessing consists of computing
the weighted average according to Equation (4), where α = 0.9 produces a larger weight
for the previous values than for the current value, thus reducing the effect of noisy outliers.

Meancurrent = αMeanold + (1− α)RSSIcurrent (4)

In [63], a passive detection system is described, in which the signal is preprocessed
using an α-trimmed mean filter. The α-trimmed filter is generally used in very high noise
conditions. In this case, calculating the mean of the signal as the average of the samples
is not recommended, because an outlier might significantly alter it. Instead, given a
sliding window with q RSSI values, this filter sorts the RSSI values and then removes α
extremes. After this process, the average of the remaining values is computed according to
Equation (5), where 0 ≤ α ≤ 0.5.

f (q; a) =
1

q− 2!αq"
q−!αq"

∑
i=!αq"+1

RSSi (5)

The described process has an offline phase, which produces an estimate of the initial
parameters of the system, and an online phase, which produces an estimate of the detected
human bodies location, according to the received RSSI samples. Since the environment may
significantly change between the offline estimation phase and the online phase, the Analysis
of Variance (ANOVA) [64] is adopted to check if the estimate of the initial parameters is
still valid.
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In [16], a localization system is discussed that uses BLE beacons with a modified
firmware able to select a specific channel (either 37, 38, or 39) to send the advertising
packets through. This way, one of the causes of increased RSSI variance is removed, but a
new problem is introduced. In fact, some packets may get lost in some channels during
a scan round due to the fact that the transmitter might send its packet out of the receiver
scan interval. At each scan round, the receiver stores the RSSI values from each channel in
a vector of RSSI values that represents the RSSI sample for that round. If a packet is lost,
the vector has one component missing, and this leads to errors in the analysis steps. As a
consequence, some method to fill the missing component of the vector is needed. First, the
missing sample component must be detected, and then, an adequate value must be selected
to replace the missing value. The chosen solution is that the missing sample component is
replaced by the median value of the last WL1 samples from the same channel.

Other preprocessing methods based on statistic techniques are available in the litera-
ture. The works in [49,50] describe a passive system that is able to detect the presence, and
count the number, of human beings in a lecture room. To train and test this system, three
datasets were used:

• DS1, containing raw RSSI values.
• DS2 and DS3, containing preprocessed data.

The first dataset was produced by collecting five measurement sessions for each
lecture, thus obtaining a total of 80× 5 = 400 sessions. The installation was composed of
24 transmitting beacons and four receivers. Provided that each beacon sent one frame per
second, and that each session lasted 300 s, for each session, a total of 24× 4× 300 = 28,800
samples were collected. To reduce the dataset size, a summarized dataset DS2 was built
by calculating, for each measurement session, four features, i.e., mean, variance, trimmed-
mean, and trimmed-variance, which were calculated according to Equation (5). Next, the
position of the beacons was taken into account by introducing a weighting factor depending
on the receiver–transmitter distance. The weighting factor was a normalization matrix W,
which is used to apply a Min/Max normalization to the data. The set of normalized data
was the third dataset DS3. Experimental results show that with the described preprocessing
approach, the performance improved from 70% to 98%.

Recently, Deep Neural Networks are being applied also to passive human sensing.
The main advantage of deep learning techniques is that they do not need, in general, to
manually build specific features for the classification process. Instead, such features are
calculated by a neural network that is adequately trained over large amounts of data [65],
thus consistently reducing the amount of preprocessing. In [66], for example, raw RSSI
values are simply averaged over one-minute intervals and then fed to a deep neural network
that is trained to output an estimate of the initial and final position of a human moving in
the monitored area.

5. Classification Methods

The lack of protocol support to gather the Channel State Information (CSI) sensibly
reduces the amount of information that can be obtained by analyzing the received signal.
Most likely for this reason, to the best of the authors’ knowledge, as reported in Section 6,
the current literature regarding human body sensing through Bluetooth mainly focuses
on indoor passive people detection, counting, and approximate motion tracking, whereas
complex activities recognition and vital signs sensing have not yet been investigated.

For the considered applications, statistic techniques, Machine Learning techniques,
and Artificial Neural Networks are adopted in the literature, as described in the follow-
ing subsections.

5.1. Statistical Methods

The approaches defined as “statistic” use methods based on the analysis of either
the mean or the variance of the RSSI values. In [51], two algorithms based on these
techniques are presented. The first algorithm, based on the analysis of the variance of a
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stream (sequence) of RSSI values, is more suitable to detect the motion of a human body,
for example, when entering an area of interest. In this case, the RSSI values are detected
in subsequent time instants, and therefore, their sequence represents the evolution of the
Bluetooth signal perturbation when a human body moves in the area between the receiver
and the transmitter devices.

In general, the RSSI variance is calculated over a sliding window always containing
the last n samples according to Equation (6), where xi represents the current RSSI value
and μ is the average of all the RSSI values within the sliding window.

Var(x) =
1
n

n

∑
i=1

(xi − μ)2 (6)

The size n of the sliding window must be chosen according to the specific application.
If n is too large, too old RSSI values are considered in the calculation, and this could
lead to delayed detection. If n is too small, the smoothing effect of previous samples on
the calculation is not sufficient to remove the measurement noise, thus leading to false
positives or false negatives in the classification. In [51], the optimal value of n is 10. It
was determined considering the time it takes a human to cross the monitored area and the
number of messages received for second. Moreover, the mean μ in Equation (6) is replaced
with a weighted average computed according to Equation (4).

In the second algorithm reported in [51], the weighted average calculated according to
Equation (4) is subtracted from each new RSSI sample and, if the resulting value exceeds
a given threshold Tm, then a detection event is triggered. The weighted average is not
updated when a detection event is triggered, because the average is intended to represent
the “background” condition, where no human body is present in the monitored area.

The threshold Tm is critical and requires a complex calculation involving a preliminary
calibration, which is repeated every time something changes in the system deployment,
and an initial stabilization time interval that is needed every time the system is turned on
or reset. Moreover, the formulation of Tm includes some constants that were experimen-
tally determined on the basis of the available data and setup and that might potentially
undermine the generality of the proposed approach.

5.2. Machine Learning Methods

Machine Learning techniques include both classification and regression algorithms,
so they can be used both for presence detection and counting people. For example, K-
Means and Gradient Boosting were adopted in [67], whereas Artificial Neural Networks,
regression models and Decision Trees (Random Forest) were adopted in [68], and Random
Forest were applied in [69]. Passive, BLE-based presence detection systems in the literature
exploit Logistic Regression, k-Nearest Neighbor (KNN), and Support Vector Machine (SVM)
with linear, polynomial and Radial Basis Function kernel. In [49], a presence detection
system was developed, and the algorithms mentioned above were compared on three
different datasets. Such datasets, here called DS1, DS2, and DS3, were built according to
the process formerly described in Section 4, i.e.,

• DS1, containing the raw RSSI data.
• DS2, containing data resulting from the first preprocessing step.
• DS3, containing data resulting from the second preprocessing step.

The best accuracy was obtained with the (SVM) algorithm [70] using a Radial Basis
Function (RBF) kernel applied to the third dataset. An RBF kernel [71] is a function used
when the boundaries of the classes are hypothesized to be curve-shaped and nonlinear. An
RBF kernel involves the choice of two hyperparameters, i.e., the penalty parameter and the
kernel width. In [49], such parameters are auto-optimized in the SVM implementation. In
98.97% of cases, this algorithm recognized the presence of a subject between two nodes.
The KNN algorithm, instead, was more efficient with the first and second datasets and
obtained higher accuracy than the other algorithms.
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In general, all the analyzed algorithms performed similarly when applied to the same
dataset, apart from a few exceptions. In particular, for the dataset DS1, the highest accuracy
obtained was 70.15% with the KNN algorithm, while the Logistic Regression algorithm
obtained 69.81%. If we look only at the accuracy that the two algorithms achieve, the KNN
performed better than the Logistic Regression, but the KNN is a parametric algorithm
in which the execution time increases with an increasing amount of data. The Logistic
Regression algorithm, instead, is a linear algorithm and is faster than the KNN. The SVM
algorithm performed slightly worse than the other algorithms on DS1, especially with the
linear kernel (62.67%). The reason for this could lay in the distribution of the data. The
linear SVM algorithm assumes that a linear boundary can be found between two classes,
whereas the kernel trick supports different, nonlinear models of the data. However, in
some cases, even the nonlinear kernels struggle in approximating the strongly nonlinear
distribution of real data.

For the dataset DS2, containing four features for every transmitter–receiver couple, the
KNN resulted as the best performing algorithm with 96.90% accuracy, whereas the SVM
with an RBF kernel produced 96.46% accuracy.

The situation changed for dataset DS3, which was normalized to keep in account the
distance between the transmitter and the receiver. The SVM with the RBF kernel performed
better than the other algorithms (98.97%).

An analysis of the accuracy obtained by applying the described algorithms to all the
datasets evidences that the preprocessing stage is always useful to increase the classification
accuracy. In fact, as it is shown in Figure 5, the classification accuracy obtained with DS1 is
70%, with DS2 approaches 97%, and with DS3 approaches 99%.

Figure 5. Comparison of the classification models used in [49] with the datasets DS1 (without
any processing), DS2 (after aggregation and preprocessing), and DS3 (after normalization with
weight factors).

The regression algorithms used to develop the counting system, instead, are the
KNN Regression, the Least Squares Regression (LSR), the Polynomial Regression, and the
Support Vector Regression. These algorithms were compared in [50], in which a counting
system was developed and the same preprocessing approach of the previous paper was
adopted, obtaining similar performance improvements. In fact, for the dataset DS1, the
lowest Root Mean Square Error (RMSE) among all the considered approaches was 18.78,
for the second dataset DS2, it was 6.40, and for DS3, it was 5.42. Notably, for DS2 and DS3,
the LSR algorithm performed considerably worse than the others, as shown in Figure 6.
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Figure 6. Comparison of the regression models used in [50] with datasets DS1 (without any process-
ing), DS2 (after aggregation and preprocessing), and DS3 (after normalization with weight factors).
The error measure is the Root Mean Square Error (RMSE).

As a consequence, the selection of the best algorithm requires further considerations
regarding the resource requirements or other specific characteristics of the intended ap-
plication. In particular, the computational complexity of the considered approach, and
therefore its execution time and memory requirements, can sensibly influence the choice of
the approach, depending on the hardware that will be used for implementing the system.

5.3. Artificial Neural Networks

Artificial Neural Networks are still little used in Bluetooth-based passive counting and
detection, whereas the development of a Bluetooth-based localization system exploiting
Artificial Neural Networks is described in [66].

In [18], a system for obstruction detection between two nodes, aimed at RSSI signal
correction, was developed. Two Artificial Neural Networks were compared to detect
obstructions, i.e., a Multi-Layer Perceptron (MLP) network, with two hidden layers of
20 neurons, and a Radial Basis Function (RBF) network, with only one layer of 20 neurons.
The comparison demonstrated that both the neural networks detected the obstructions
between nodes with high accuracy, with the MLP performing better (91%) than the RBF
(89%) according to an estimate based on the data reported in the paper. The detection rate
of the proposed approaches in discriminating clear Line-of-Sight, i.e., when no human
body was present in the LoS between transmitter and receiver, was also measured. The
MLP obtained a 94% detection rate, while the RBF obtained a 92% detection rate.

6. Overall Performance Comparison

Table 2 provides a comparison of the different approaches addressed in this paper.
Presence detection refers to methods able to reveal the presence of a human body either still
or in motion, whereas motion detection refers to methods that only reveal moving human
bodies. People counting, instead, refers to methods able not only to reveal the presence of a
human body but also to count the number of human bodies present in the monitored area.
Finally, clean Line-of-Sight (LoS) detection refers to approaches able to detect the presence
of a human body obstructing the line of sight between the transmitter and the receiver (see
Figure 1a).

The approaches discussed in this section were trained and tested on different datasets
and with different sensors set up. As the codebase and the datasets of the cited studies are
not publicly available, the comparison is based on the data reported in the cited works.
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Table 2. Performance comparison of the considered approaches.

Application Preprocessing
Classification/

Regression
Techniques

Accuracy

Presence detection [40] - Statistical techniques 90%

Presence detection [51] Weighted Moving Avg. RSSI-mean 96%

Motion detection [51] Weighted Moving Avg. RSSI-variance 98%

Presence detection [49] α-trimmed filter and
normalization

Logistic Regression,
KNN, SVN (linear,

polynomial and
RBF kernel)

≈ 98%

People counting [50] α-trimmed filter and
normalization

Least Squares
Regression, NN

Regression, Support
Vector Regression,

Polynomial Regression

±5.42 miscalculation 1

Presence detection [18] - Neural Networks:
MLP and RBF (MLP) 91%, (RBF) 89%

Clean LoS
detection [18] - Neural Networks:

MLP and RBF
(MLP) 94%, (RBF) 92%

clean LoS detection rate 2

1 This value is not an accuracy value, but the Root Mean Square Error. In [50], such an error metrics was chosen
because it represents the misestimation in counting the number of people in the room. 2 These percentages are
detection rates and not accuracy values. Accuracy is the sum of the true positives and true negatives over the
whole set of samples, whereas here, the true positives over the whole set are considered.

The comparison shows that the accuracy of all the techniques is above 87%, and in
some cases, it approaches 100%. Nevertheless, some significant differences need to be
taken into account. In [40], a simple statistical approach was used for human detection, i.e.,
when the value of the average RSSI was above a threshold, a detection event was triggered.
With this approach, the detection rate was slightly above 90%. Conversely, in [51], a more
complex statistical approach was used, and two algorithms were implemented based on
the RSSI-variance and RSSI-mean. The first algorithm is more suitable to detect a human
crossing the LOS between two nodes, and it obtains an accuracy of 98%. The second
algorithm, instead, is best suited for detecting a human that stands between two devices,
and it obtains an accuracy of 96%.

In [49], different Machine Learning algorithms for human detection were compared.
The best result was obtained with the SVM algorithm using an RBF kernel (98.97%) on a set
of preprocessed data. However, the other algorithms perform similarly on the same type of
preprocessed data (≈98%). On raw RSSI data, all the tested algorithms performed worse,
with accuracy values between ≈70% and 62%. As stated in Section 5, this result supports
the observation that appropriate preprocessing is generally needed to improve the accuracy
of the classification and regression algorithms and reduce the size of the final dataset, thus
shortening the execution time of more complex algorithms, such as the k-Nearest Neighbor
one. In [50], a very similar approach was applied to human counting, obtaining an RMSE
of 5.42.

In [18], Artificial Neural Networks were used to detect a human body obstructing the
space between a transmitter and a receiver, although the system was indeed intended for
the correction of the RSSI signal in case of obstructions. The proposed networks, an MLP
and an RBF, reached 91% and 89% accuracy, respectively, thus underperforming compared
to the statistical approaches. However, the proposed Artificial Neural Networks were
only tested on raw data. In principle, they could benefit from data preprocessing, thus
further improving their performance. Consequently, more experiments are needed to better
understand which approach has the higher potential over the others.
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7. Discussion

In the previous sections, some applications of the Bluetooth technology (in partic-
ular, BLE) to passive human detection, counting and tracking in indoor environment
were described and analyzed. Moreover, a comparative overview of their performance
was provided.

As the signal RSSI depends on the position and distance between two Bluetooth
devices and on the geometric and physical characteristics of the environment, the devel-
opment of a “generic” passive human sensing system able to cope with all the possible
variations in the environment and spatial deployment of the transmitting and receiving
devices would require a generalization ability that is hardly obtainable.

Current approaches, instead, rely on some training or initialization process that builds
a model of the received signal RSSI that is able to explain all the possible fluctuations of
the RSSI values, thus allowing their classification. Such a model can be either explicit, e.g.,
defined in terms of statistical parameters, or implicit, e.g., obtained by training an ANN.

Building a data-driven model, however, requires that a suitable dataset is gathered
from the specific environment where the system will be deployed; i.e., a long data collection
process is needed to initialize the system. Furthermore, if Neural Networks are exploited,
the data collection process becomes longer and longer, because large datasets are needed
to train Neural Networks. The lack of universal datasets to train and test the developed
systems makes the comparison of existing techniques difficult.

Another issue often highlighted in the literature is the impossibility of independently
extracting the RSSI signal values from each advertising channel of the BLE beacons. The
BLE beacons need to be modified at the hardware or firmware level in order to transmit
on a certain preset channel and to allow the researcher to discriminate the variation in the
signal due to the presence of a human body from other fading effects.

According to Table 2, the RSSI-variance and RSSI-mean approaches used in [51] might
be considered as the best performers for presence detection. The reported accuracy results
are even better than those reached by more recent Artificial Neural Networks approaches.
However, in this study, the BLE transmitters were modified to transmit only on one
advertising channel, so that the channel information can be transmitted to the receiver into
the payload of the advertising message. Such a modification allows to separately analyze
each advertising channel, thus substantially reducing the variance in the RSSI signal and
dramatically improving the detection stability and reliability. However, the proposed
modification, although being frequently adopted in the relevant literature, is not allowed
by the Bluetooth standard, and therefore, it represents a substantial violation of the protocol.
In other words, the proposed approach would not work with off-the-shelf beacons.

The Machine Learning techniques used in [49] obtained about 98% accuracy. In
particular, as already stated in Section 5, 98% accuracy was reached by using the SVM
algorithm with an RBF kernel on a reduced and normalized dataset. In this case, unlike the
previous approach, only standard devices were used, and only four receivers were used
with 24 transmitters, instead of requiring the same number of receivers and transmitters.
As a consequence, the approach proposed in [49] can be applied to a much wider range of
cases and environments while performing close to best in class.

8. Conclusions

This paper provided a reasoned overview of the Bluetooth-based approaches for
passive remote sensing of the human body reported in the literature. The work illustrated
and commented on the pros and cons of each approach. Moreover, the experimental results
and performance of the considered approaches were described, compared and discussed.

Although the inherent limitations imposed by the Bluetooth protocol may affect its
applicability to passive human sensing, a number of recent research works proposed
specific preprocessing and non-parametric classification and regression techniques, and
they demonstrated the effectiveness and accuracy of the proposed approaches. In general,
the adoption of BLE-based remote passive wireless human sensing approaches should be
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preferred whenever the power consumption of the sensing devices, the deployment cost,
and the simultaneous communication and sensing capability are very relevant. However,
some interesting aspects still need to be investigated. In particular, the FHSS mechanism
significantly affects the reliability of RSSI-based human sensing, and therefore, several
works in the literature address modifications of the transmitting device original firmware
in order to either bypass the FHSS mechanism or include the channel information in the
transmitted frame. Such modifications, however, violate the Bluetooth protocol and should
be avoided, also because bypassing FHSS reduces the robustness to noise of the proposed
approach. A possible alternative approach can be to estimate, at the receiver side, the
transmitter channel mapping and, therefore, to foresee the next hop. Effective techniques
are available to obtain such an estimate, such as the ones in [72–74].

Furthermore, the recent introduction in the Bluetooth standard of the direction-finding
technology has a potential for supporting the development of novel approaches able to
extract more information from the BLE signal, thus allowing for more accurate and detailed
human sensing applications, similarly to what happened with WiFi. In particular, when
determining the Direction of Arrival (DoA) of the received signal (see Section 3.1.1), the
receiver can compute a suitable estimate of the phase shift of the reflected, scattered and
refracted signal components, and leverage such information to produce a more accurate
sensing, thus allowing for complex activity recognition, vital signs detection, and multi-
person tracking.
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Abstract: The next-generation wireless LAN standard named IEEE 802.11be supports a multilink
operation to cost-efficiently boost throughput performance, for which an efficient multilink channel
scheme is essential. The synchronous channel access scheme with an enhancement allowing multilink
transmission before backoff completion greatly enhances the performance of multilink devices with
no simultaneous transmit and receive capability, for which, however, backoff count compensation
is necessary for coexistence with legacy and other multilink devices. In this paper, we identify the
backoff count overflow problem of the enhanced synchronous channel access scheme with backoff
compensation, which becomes aggravated once triggered due to repeated compensations. Then,
we propose four solutions to mitigate this problem: limiting consecutive free-riding transmissions,
limiting a compensated backoff value, using the contention window value of a main link, and
balancing transmissions between links. Through comparative evaluation and analyses for dense
single-spot and indoor random deployment scenarios, we demonstrate in terms of throughput
and latency that the proposed solutions successfully mitigate the problem while preserving the
coexistence performance.

Keywords: IEEE 802.11be; multilink operation; channel access; backoff; coexistence

1. Introduction

A multilink operation (MLO) is a salient feature of the upcoming next-generation
wireless LAN (WLAN) standard, i.e., IEEE 802.11be (also called extremely high throughput
(EHT)) [1,2], that enables the simultaneous utilization of multiple links using individual
frequency channels for both transmission and reception. The benefit of MLO is the simulta-
neous utilization of multiple frequency bands at a lower hardware cost than the approach
of using a single multiband radio. Designing an efficient channel access operation for the
presence of radio frequency (RF) power leakage between links to best exploit the benefit of
MLO is still a challenge. In the IEEE 802.11be working group (WG), it was agreed that the
multiple links involved in MLO may or may not have RF power leakage between them.
A multilink device (MLD), which has links with power leakage between them, is unable
to simultaneously transmit and receive (STR) across different links, as the power leakage
from one link will make the other links unable to sense each’s channel medium. This type
of MLD is called a non-STR MLD. On the other side, an MLD with no RF power leakage
between its links will be able to simultaneously transmit and receive signals and thus is
called an STR MLD.

The channel access scheme of IEEE 802.11be is classified into an asynchronous opera-
tion (Async) and a synchronous operation (Sync). In Async, each of the links belonging
to an MLD independently performs a channel access process (backoff procedure, BO).
Therefore, different links finish their BOs at different times; thus, their transmissions will be
asynchronous between them, which is ideal for STR MLDs. In Sync, all links also perform
individual BOs. When a link finishes its BO earlier than other links, it waits until the other
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links also finish their BOs. If the waiting link sees its channel busy, the link must rerun
its BO. Because only simultaneous transmission initiation is allowed on all links, the RF
power leakage between links does not affect the operation of Sync. However, Sync does not
utilize multiple channels better than Async, since it requires all links to have zero backoff
counts for transmission.

There has been a notable discussion on the enhancements of Sync for better multilink
exploitation and a hybrid of the Sync and Async schemes for faster transmission (FT),
called Sync-FT [3]. In this work, the coexistence issue of Sync-FT was discussed since legacy
single-link devices (SLDs) may coexist with EHT MLDs in practical WLANs, and multiple
solutions were proposed. This is because, with Sync-FT, a link of the MLD can transmit
before its BO completion, which is called free-riding. This behavior prioritizes channel
access for the MLD, resulting in long and frequent wait times for the legacy device. It was
shown in the work that compensating the backoff count for each free-riding transmission
achieved the best coexistence performance while having a marginal throughput decrease in
MLDs. However, there may arise a backoff count overflow problem where the accumulated
backoff count of an MLD resulting from repeated compensations becomes too large; thus,
the MLD is not able to obtain a transmission opportunity by its own BO completion once
an overflow occurs.

This paper aims to identify the backoff count overflow problem of the enhanced
multilink channel access scheme (Sync-FT) with backoff compensation in an IEEE 802.11be
WLAN and propose solutions applicable to both STR and non-STR MLDs. First, we
describe the Sync scheme of an MLO and its design variants including Sync-FT. Next, we
demonstrate the backoff count overflow problem of backoff compensation for Sync-FT
and identify that the problem is aggravated once triggered due to continuing free-riding
transmissions and compensations. Subsequently, we propose four solutions to mitigate this
problem: limiting consecutive free-riding transmissions, limiting a compensated backoff
value, using the contention window (CW) value of a main link, and balancing transmissions
between links. Through comparative evaluation and analyses for dense single-spot and
3GPP indoor random deployment scenarios, we demonstrate in terms of throughput
and latency that the proposed solutions successfully mitigate the backoff count overflow
problem. We also investigate the coexistence performance of the solutions and demonstrate
that the proposed solutions preserve coexistence performance with other MLDs and legacy
SLDs while solving the backoff count overflow problem.

In summary, the main contributions of our work are listed as follows:

• Identification of the backoff count overflow problem of the Sync-FT channel access
scheme of EHT with backoff count compensation;

• Design of potential solutions to mitigate the problem with minimal modification
of standards;

• Comprehensive simulation work to show the performance gain of the proposed solu-
tions with coexistence of multiple networks with different channel access mechanisms
and legacy devices.

The rest of the paper is organized as follows. Section 2 explains the multilink Sync
operation and Sync-FT modification, and its coexistence issue and a backoff compensation
solution are presented in Section 3. Section 4 describes the backoff count overflow problem.
Section 5 details the proposed solutions, and Section 6 evaluates them via simulation
compared with other channel access schemes in coexistence scenarios. Finally, Section 7
concludes the paper.

2. Synchronous Multilink Channel Access

Sync is one of the multilink channel access mechanisms for EHT that has been consid-
ered to be used for transmissions of non-STR MLD. This operation uses both links in the
backoff process, but a transmission is triggered only if the backoff counters of both links
are zero. Once a link finishes its BO, it waits until the other link finishes BO. If another
device occupies the channel while an MLD is in the waiting mode, the backoff count of the
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waiting link should be rechosen, and its BO is initiated with the new count. This means
that a multilink transmission aligns the transmission start time in each link; thus, RF power
leakage does not affect channel access and transmission. However, the requirement of the
availability of both links at the same time leads to severe performance degradation espe-
cially when the channels are crowded. The inability to perform independent transmission
in individual links may cause an MLD to suffer from waiting. Therefore, the use of Sync
may not be able to exploit the potential of MLO for throughput enhancement.

In what follows, we describe two design variants of Sync.

2.1. Synchronous Operation with a Primary Link

The Sync with a primary link scheme (Sync-PL) is similar to the conventional wideband
operation of IEEE 802.11 [4,5] In this scheme, an MLD runs a single BO in a primary link (PL)
only and does not run in other links. When the primary link is about to reach a zero backoff
count, the MLD performs a short clear channel assessment (CCA) for a point coordination
function interframe space (PIFS) on each of the other links to check each’s availability. The
links that are clear to send (idle) in a given short CCA period will then be able to send
simultaneously with the primary link. The links in which the MLD transmits frames are
the primary link and the other idle link(s). The MLD starts transmission in these links at
the same time and ends transmission at the same time as well to avoid RF power leakage
between the links. If all other links are found to be busy, the MLD transmits in the primary
link only. Since only the primary link performs BO, a single link transmission is available
only in the primary link. Sync-PL is expected to have better throughput performance
than the basic Sync since at least a single link transmission is enabled. One concern is
that a transmission is triggered only by the backoff completion of the primary link; thus,
transmission opportunities highly depend on the load condition of the corresponding
channel.

2.2. Synchronous Operation for Faster Transmission

Another enhancement of Sync is called Sync for faster transmission (Sync-FT) and has
proven to be better in throughput performance than Sync. Sync-FT is a hybrid of Sync-PL
and Async. As in Async, it lets the links of an MLD run individual backoff processes.
When a link finishes its BO earlier than the others, the MLD performs a short CCA in each
of the other links and starts a multilink transmission in a set of links sensed idle as in
Sync-PL while freezing the backoff counts of the links. Once the links finish transmission,
they resume individual backoff processes. The links that completed backoff at the time
of transmission choose a new backoff count and initiate a new backoff process, while the
other links resume BO with their remaining counts. We call the transmission of a link with
BO completion as a main transmission and the transmission of a link before BO completion
as a free-riding transmission. This operation enhances the multilink utilization of non-STR
MLDs by avoiding the failure of link utilization due to RF power leakage. The operation is
applicable to both STR and non-STR MLDs. Sync-FT enables both single-link and multilink
transmissions in all links.

3. Coexistence Issue of Sync-FT and Backoff Count Compensation Solution

In this section, we describe the coexistence issue of Sync-FT and the backoff compen-
sation solution.

3.1. Coexistence Issue

There may coexist legacy SLDs and EHT MLDs with different channel access schemes
in networks. Therefore, the main coexistence scenarios are given below:

• MLD vs. legacy SLD;
• MLD vs. MLD with different channel access schemes.

Suppose that a legacy device starts a backoff process with the same backoff count as
an MLD with Sync-FT. However, while the legacy station obtains a single transmission
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opportunity (TXOP), the MLD may obtain more TXOPs. This is because Sync-FT enables
the MLD to transmit in a link before the backoff completion of the link. Such behavior
prioritizes the channel access of the MLD and gives more TXOPs to it, resulting in long and
frequent waiting times of the legacy device. When two MLDs, one with Sync-PL (MLD1)
and the other with Sync-FT (MLD2) coexist, MLD2 is likely to obtain more TXOPs than
MLD1 due to the aggressiveness of Sync-FT against Sync-PL.

In the basic design of Sync-FT, a link performing transmission by another link’s BO
completion, which we call a free-riding link, resumes its ongoing backoff process after
finishing transmission, with the remaining count value. This behavior makes the links
under Sync-FT transmit more frequently than others that have to complete BO before
transmission (e.g., legacy SLDs). In other words, this behavior makes the free-riding link
go through a relatively deflated backoff count on average.

3.2. Sync-FT with Backoff Compensation

One of the proposed designs to tackle the coexistence issue of Sync-FT is having backoff
count compensation after free-riding of a link [3]. This is a straightforward modification
where the backoff count of a free-riding link is compensated for by an appropriate amount
such that it finally goes through the backoff time given by its backoff counts on average.
Before the additional backoff count value is added to the current count by compensation,
a new backoff count should first be chosen. After a free-riding transmission finishes, the
link stores the current backoff count value and rechooses a new backoff count. Then, it
performs a new backoff process with an initial count as the sum of the stored backoff
count and the rechosen one. This solution is simple in implementation, since it reuses
existing functions of the backoff mechanism and can resolve the coexistence issue caused
by Sync-FT’s aggressive behavior.

4. Backoff Count Overflow Problem

The backoff compensation solution described in the previous section leads to another
problem called a backoff count overflow problem. This problem is that a link has a very
large value of its backoff count, thus preventing it from finishing its countdown and
transmission. In general WLANs, a greater backoff value is usually caused by consecutive
transmission failures, causing a CW value to rise and in turn increasing a random backoff
value chosen within the CW. This backoff count overflow problem, however, happens in
Sync-FT with backoff compensation implementation even without consecutive transmission
failures.

The problem is illustrated in Figure 1. Upon completion of each free-riding trans-
mission, the link compensates for its backoff count value by the remaining amount of
the previous value. There is a possibility that one link may become stuck in consecutive
free-riding transmissions and keep compensating its backoff count value, thus making the
count increase indefinitely. This phenomenon happens especially when the channels of the
links have heterogeneous load conditions; hence, some links in low load conditions keep
decreasing their backoff values and make the other links keep free-riding with no chance of
transmitting via their own BO completion. This is the case when links tend to have different
backoff stages (i.e., different CW values) and thus heterogeneous backoff counts. As a
free-riding transmission makes a link rechoose a backoff count from its current CW value
(without a change in its backoff stage), a link with a higher backoff stage will statistically
choose a larger backoff count value and, thus, have a higher chance of free-riding again. In
other words, once a link performs a free-riding transmission, it will retain half of the current
backoff count value on average (assuming that the BO completions of links are independent
from each other and, thus, randomized between them) and add a new rechosen value,
which is highly likely to make the resulting backoff count larger than the other links; If this
happens consecutively, the link will always be a free-riding link.

Figure 2 shows the time evolution of the backoff count values of the two links of an
MLD. In the figure, Link 1 and 2 have similar backoff count ranges in the beginning, but
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Link 2 suddenly keeps increasing its backoff count, while Link 2 still has a similar backoff
count range. This is due to consecutive free-riding transmissions of Link 2. As mentioned
above, a free-riding transmission of a link inflates the link’s backoff count when backoff
count compensation is applied, which in turn increases the possibility of the link’s recurrent
free-riding transmissions. This happens even when links are in the same load condition,
but it is aggravated when they are in different load conditions. In such a condition, the
backoff stages of links may be different from each other because of different occurrence
rates of collisions.

Figure 1. Illustration of the backoff count overflow problem (backoff count values after compensation
are colored red).

Figure 2. Backoff count evolution example for two links of an MLD.

5. Solutions to Backoff Count Overflow Problem

In this section, we describe the proposed solutions with additional design variants.
Figures 3–5 (Proposals 1, 2, and 3, respectively) illustrate the changed operation of Link 2
against the Sync-FT operation with compensation illustrated in Figure 1 (the operation of
Link 1 remains the same as Figure 1, since only Link 2 performs free-riding) while Figure 6
(Proposal 4) illustrates another example operation of Sync-FT (with backoff compensation)
and the changed operation side by side. We assume in the figures that Link 1 is in the first
backoff stage (CW = 16) and Link 2 is in the second backoff stage (CW = 32).

5.1. Proposal 1: Limiting Consecutive Free-Riding Transmissions

The main cause of an indefinite increase of a backoff count value, resulting in a backoff
overflow, is consecutive free-riding transmissions of a link. This solution is made to alleviate
the problem by limiting the number of allowed consecutive free-riding transmissions of
each link. As illustrated in Figure 3, if a link performs a free-riding transmission, it starts
its consecutive counter with value one. The next free-riding transmission right after the
first one will result in an increment of the consecutive counter by one. The counter will
keep increasing through consecutive free-riding transmissions of the link. Once the counter
reaches its limit, the link will block its next free-riding transmission and reset the counter
to zero. The counter will also be reset if there is a transmission caused by the link’s own BO
completion. The blocked free-riding transmission will keep its remaining backoff count
value and continue to decrease the value after a main transmission finishes without a
compensation. Setting the limit to one is the same as disabling any consecutive free-riding
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transmission, i.e., one link can free-ride only once, then must finish its own backoff process
to transmit.

Figure 3. Proposal 1: limiting consecutive free-riding transmissions (backoff count values after
compensation are colored red).

5.2. Proposal 2: Limiting a Compensated Backoff Value

A backoff overflow is caused by adding compensation to what is already a large
backoff count value. In order to prevent that from happening, we designed the second
solution to limit the compensated backoff count value itself. There are two ways of limiting
the compensated backoff count value:

• (Option 1) limiting the total backoff count: The compensated backoff count, which
is the sum of a rechosen number and a compensation value, is limited by a certain
value (e.g., current CW value or that multiplied by a certain factor). It is illustrated in
Figure 4.

• (Option 2) limiting a compensation value: Instead of limiting the total backoff value,
only the compensation value to be added to the new rechosen number is limited. This
is to prevent adding an overlarge value to a large remaining backoff count.

In both solutions, we can ensure the new backoff value remains at a smaller value and
increase the chance of a free-riding link to complete its backoff process the next time.

(a) Option 1

(b) Option 2

Figure 4. Proposal 2: limiting a compensated backoff value.

5.3. Proposal 3: Using the CW Value of a Main Link

As explained previously, the backoff overflow problem is aggravated if the links of
an MLD have different backoff stages. The case is especially true when a free-riding link
has a higher backoff stage than the link of the main transmission, because this can cause
the randomly chosen count value of the free-riding link to become higher. In the solution
illustrated in Figure 5, a free-riding link will use the same CW value as that of the link
performing a main transmission, without considering its own backoff stage or current CW
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value. By using the same CW value as the main link, the free-riding link will have a higher
probability to finish its own backoff process at a similar time as the main link. The same
CW value with the main link will only apply to the new compensated rechosen value and
will not affect transmissions by other means.

Figure 5. Proposal 3: using the CW value of a main link (backoff count values after compensation are
colored red).

5.4. Proposal 4: Balancing Transmissions between Links

The main idea of this solution is to balance the number of TXOPs between links so
that equal opportunities are given between them. The solution introduces a FR_COUNT
value. This is a variable that increases when a link performs a free-riding transmission
and decreases when it skips a transmission caused by its own BO completion, but it can
never be lower than zero. Skipped transmissions will be excluded from compensation, thus
mitigating the backoff overflow problem. The solution has several optional features to be
implemented according to what to skip when the FR_COUNT of a link becomes higher
than a limit as illustrated in Figure 6:

(a) Sync-FT vs. basic operation

(b) Sync-FT vs. Option 1

(c) Sync-FT vs. Option 2

(d) Sync-FT vs. Option 3

Figure 6. Proposal 4: balancing transmissions between links (backoff count values after compensation
are colored red).
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• Basic: A single link transmission of the link is skipped when its backoff count
becomes zero.

• Option 1: A free-riding transmission is skipped when another link finishes BO.
• Option 2: Both main and free-riding transmissions are skipped together when the link

finishes BO.
• Option 3: Only a main transmission is skipped while a free-riding transmission of

another link is still allowed when the link finishes BO.

6. Performance Evaluation

We evaluated and compared the performance of MLO with Sync-FT with the proposed
solutions. Both throughput and latency performance were observed in the evaluation. The
coexistence of MLDs with legacy SLDs was also considered. In addition, backoff count
values were observed as a way to determine the effectiveness of the proposed solutions to
the backoff overflow problem.

6.1. Environmental Setup

Each MLD had two links (Link 1 and Link 2) working in individual channels. RF
power leakage between the links of an MLD was considered, so all MLDs were non-STR
MLDs. Each EHT basic service set (BSS) was composed of an access point (AP) and
connected device(s) (a single device in a single-spot scenario and multiple devices in a
3GPP indoor scenario). APs and MLDs were equipped with MLO capability, while legacy
devices were not. All devices used the modulation and coding scheme (MCS) 7 in 80 MHz
(i.e., data bit rate of 680.6 Mbps) with the aggregation MAC service data unit (AMPDU)
of 64 MPDUs, where each MPDU was 1500 bytes long. We considered full-buffer traffic
conditions. Proposal 1 used one as a consecutive free-riding transmission limit, Proposal 2
used Option 1, and Proposal 4 used Option 1 with the FR_COUNT limit set to five. The
operation frequency band of the network was 5 GHz, and the channel bandwidth was
20 MHz. Other system parameters followed those for the simulation scenario [6] and
evaluation methodology [7] used for IEEE 802.11ax as listed in Table 1. All simulation
results were obtained by averaging over five runs; in each run, 50 s were simulated.

Table 1. Simulation parameters.

Parameter Value

Number of links per MLD 2
Channel bandwidth of a link 80 MHz
Number of STAs per BSS 1
MCS 7 (680.6 Mbps)
Traffic generation Full buffer
Max aggregation size 64 MPDUs
MPDU size 1500 bytes
Slot length 9 us
SIFS 16 us
DIFS 34 us
CWmin 16
CWmax 1024
Center frequency 5 GHz
STA transmit power 18 dBm
AP transmit power 21 dBm
STA antenna gain −4 dBi
AP antenna gain +2 dBi
Noise figure 7 dB

We considered two deployment scenarios:
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• Single-spot deployment: We placed all BSSs in one spot with no distance between them.
Overlapping BSSs (OBSSs) were added in each of the links at the same time, i.e., one
OBSS means one legacy BSS in either channel of Link 1 and Link 2.

• 3GPP indoor deployment [8]: We followed Figure 7 to deploy the BSSs in the field. Each
BSS consisted of 20 connected devices working in the respective link mentioned in the
figure. The devices were randomly placed within their serving AP’s coverage area.

Each deployment scenario had two coexistence scenarios:

• MLD vs. MLD: We considered EHT BSSs, each with its own multilink channel access
scheme. One half of EHT BSSs was set using Sync-PL, and the rest used various
channel access schemes, including the proposed solutions. The goal of this scenario
was to examine the performance of the proposed solutions compared to the Sync-PL
channel access scheme.

• MLD vs. Legacy SLD: We considered two legacy BSSs in each of the channels per 1
EHT BSS. The EHT BSS used various channel access schemes, including the proposed
designs. The goal was to examine the performance of legacy BSSs, which is affected
by the EHT BSSs.

Figure 7. 3GPP indoor deployment scenario.

6.2. Single-Spot Deployment
6.2.1. MLD vs. MLD

Figure 8 shows the performance results with one MLD BSS with Sync-PL and the
other with various channel access schemes. Sync-PL was chosen as the benchmark, because
it suits a non-STR MLD better than the basic Sync operation. In the figure, along with
the proposed solutions, we also considered Sync-FT (with no backoff compensation),
Sync-FT with a rechoose option (Sync-FT-Repick), and with backoff compensation (Sync-
FT-Repick+Comp). From the throughput and latency results, we see that Sync-FT and its
modified rechoose design (MLD1) had a significantly higher performance than Sync-PL,
while the other schemes (except Proposal 4) showed only slightly better performance than
Sync-PL. This is because the earlier designs are highly aggressive against Sync-PL. On
the contrary, the proposed solutions (except Proposal 4) coexisted better with Sync-PL.
One point to note is that Proposal 4 had a worse performance than Sync-PL, which was
caused by the excessive penalties given to the free-riding link. Figure 8c shows that our
solutions alleviated the backoff overflow problem. The problem was severe, with Sync-
FT-Repick+Comp showing the largest value of the average backoff count. Sync-FT and
Sync-FT-Repick did not show the problem since they did not use backoff compensation
and, thus, showed aggressive behavior. The proposed solutions achieved both harmonized
coexistence and alleviation of backoff overflow.

6.2.2. MLD vs. Legacy SLD

The results of this scenario are presented in Figure 9. The case of legacy BSSs only
(with no MLD BSS) is shown first labeled as “Legacy Only” in the graphs as a comparative
measure to examine whether an EHT BSS has a positive or negative effect on the legacy
performance. Compared to Sync-FT and Sync-FT-Repick, Sync-FT-Repick+Comp had a
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lower MLD performance in throughput and latency. This can be considered as due to the
conservative behavior of Sync-FT-Repick+Comp; however, it is due to the backoff overflow
problem as shown in Figure 9c. All the proposed solutions succeeded in suppressing
the Sync-FT’s channel access aggressiveness, while still maintaining good performance.
Their average backoff count values were well limited compared to Sync-FT-Repick+Comp.
The performance enhancement by mitigating the problem was especially noticeable in
terms of latency; Figure 9b shows that Proposal 2 had 21.5% lower latency than Sync-
FT-Repick+Comp. This implies that the proposed solutions were effective in solving the
backoff overflow problem, while supporting the coexistence with legacy SLDs. On the
other hand, it is also shown that the performance of legacy BSSs was also higher when half
of them were replaced with an EHT BSS. This is due to the higher effectiveness of MLO in
utilizing the channel medium and, thus, more room given to remaining legacy BSSs for
channel access.

6.3. 3GPP Indoor Deployment

The indoor path loss model of the IEEE 802.11ax simulation scenario was used as
given below:

PL(d) = 40.05 + 20 log10( fc/2.4) + 35 log10(d/5) (1)

where d is a transmitter–receiver distance in meters, and fc is the center frequency in GHz.
Then, the receive power (Pr) is obtained as

Pr = Pt + At − PL(d) + Ar (2)

where Pt is the transmit power, and At and Ar are the antenna gains of the transmitter
and receiver, respectively. The noise figure is 7 dB, and the noise floor is −94 dBm. We
considered the transmission bit rates of IEEE 802.11ac (6.5 to 78 Mbps). The signal–to–
noise ratio (SNR) vs. packet error rate (PER) curves of the IEEE 802.11ax’s evaluation
methodology [7] were used for packet error generation. For link adaptation, the highest bit
rate with a PER lower than 10% was selected [9,10]. The control frames were transmitted at
the lowest bit rate.

6.3.1. MLD vs. MLD

With the same reasoning as the single-spot deployment, Sync-PL was also used as
a comparative benchmark in this scenario. The evaluation results are given in Figure 10.
From both throughput and latency results, we can see that Sync-FT-Repick+Comp had
the worst performance compared to Sync-PL because of the backoff overflow problem.
All of the proposed solutions showed increased performance that was similar to Sync-
FT and Sync-FT-Repick. This means that they alleviated the backoff overflow problem.
Another proof that the proposed solutions effectively alleviated the problem is shown in
Figure 10c. The problem happened with Sync-FT-Repick+Comp, showing a significantly
large value of the average backoff count. The problem was considerably alleviated by
the proposed solutions, as they showed small average backoff count values. Among the
solutions, Proposal 2 (limiting a compensated backoff value) showed a relatively high
backoff count value, meaning it was less effective than the other solutions.

6.3.2. MLD vs. Legacy SLD

The evaluation results of this scenario are presented in Figure 11. In the figure,
Sync-FT-Repick+Comp showed lower performance than Sync-FT and Sync-FT-Repick,
especially in the latency performance, which was possibly caused by backoff overflow.
Figure 11c shows that Sync-FT-Repick+Comp suffered the backoff overflow problem. All
proposed solutions mitigated the problem without ruining coexistence with the legacy BSSs.
Proposals 1 and 4 showed slightly worse MLD performance, which was more noticeable in
the latency performance. It is shown in Figure 11c that the average backoff count values
of all proposed solutions were as small as Sync-FT and Sync-FT-Repick, thus proving that
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they were effective in solving the backoff overflow problem. As observed in the results of
the single-spot deployment scenario, the performance enhancement in this deployment
scenario was also noticeable in terms of latency; Figure 11b shows that Proposal 2 had
13.5% lower latency than Sync-FT-Repick+Comp.

(a) Throughput

(b) Latency

(c) Average backoff count

Figure 8. MLD vs. MLD performance in the single-spot deployment scenario.
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(a) Throughput

(b) Latency

(c) Average backoff count

Figure 9. MLD vs. legacy SLD performance in the single-spot deployment scenario.
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(a) Throughput

(b) Latency

(c) Average backoff count

Figure 10. MLD vs. MLD performance in the 3GPP indoor deployment scenario.
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(a) Throughput

(b) Latency

(c) Average backoff count

Figure 11. MLD vs. legacy SLD performance in the 3GPP indoor deployment scenario.

7. Conclusions

Sync-FT is one of the best options for multilink channel access in IEEE 802.11be
WLANs, especially for non-STR MLDs. Due to the raised coexistence issue of Sync-FT
resulting from its aggressive channel access behavior, the backoff count compensation
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solution can be applied to it. In this paper, we identified the backoff count overflow problem
of Sync-FT with backoff count compensation, which happens due to continuing free-riding
transmissions and backoff count compensations, thus causing an unlimited increase in
the backoff count value. We proposed four solutions to alleviate the problem and showed
through comprehensive evaluation that all proposed solutions were effective in mitigating
the problem while still preserving coexistence with other MLDs and legacy SLDs.
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The following abbreviations are used in this manuscript:

AP Access Point
ASync Asynchronous channel access operation
BO BackOff procedure
BSS Basic Service Set (BSS)
CCA Clear Channel Assessment
CW Contention Window
CWmax Contention Window maximum
CWmin Contention Window minimum
DIFS Distributed coordination function InterFrame Space
EHT Extremely High Throughput
FT Faster Transmission
MAC Medium Access Control
MCS Modulation and Coding Scheme
MLO MultiLink Operation
MLD MultiLink Device
OBSS Overlapping Basic Service Set
PIFS Point coordination function InterFrame Space
RF Radio Frequency
STR Simultaneous Transmission and Reception
SLD Single-Link Device
SLO Single-Link Operation
Sync Synchronous channel access operation
WLAN Wireless Local Area Network
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Abstract: By enabling name-based routing and ubiquitous in-network caching, Named Data Network-
ing (NDN) is a promising network architecture for sixth generation (6G) edge network infrastructures.
However, the performance of content retrieval largely depends on the selected caching strategy,
which is implemented in a distributed fashion by each NDN node. Previous research showed the
effectiveness of caching decisions based on content popularity and network topology information.
This paper presents a new distributed caching strategy for NDN edge networks based on a metric
called popularity-aware closeness (PaC), which measures the proximity of the potential cacher to the
majority of requesters of a certain content. After identifying the most popular contents, the strategy
caches them in the available edge nodes that guarantee the higher PaC. Achieved simulation results
show that the proposed strategy outperforms other benchmark schemes, in terms of reduced content
retrieval delay and exchanged data traffic.

Keywords: Named Data Networking; information centric networking; caching; edge networks; 6G

1. Introduction

A multitude of innovative applications, ranging from holographic telepresence to
extended reality (XR), are expected to be delivered on top of sixth-generation (6G) networks,
which would highly challenge the existing Internet infrastructure. Disruptive solutions
are needed to cope with the demands of such future bandwidth-hungry and low-latency
applications. By supporting name-based routing and ubiquitous in-network caching, the
Named Data Networking (NDN) [1] paradigm is identified as a key enabler of 6G network
architectures aimed at improving content distribution.

NDN is an information centric networking (ICN) architecture that promotes a commu-
nication model directly based on topology-independent content names, instead of internet
protocol (IP) addresses. Content retrieval is based on the exchange of two named packets:
the Interest, transmitted by the end-clients to retrieve the content, and the Data, transmitted
by any node owning a copy of the content. Each Data packet is uniquely named and secured
and, therefore, it can be cached by any NDN node in the path between the requester and
the original source.

More specifically, NDN nodes are provided with a Content Store (CS) to cache incom-
ing Data packets. The default caching strategy in NDN is Cache Everything Everywhere

(CEE) coupled with Least Recently Used (LRU) replacement, i.e., each node caches
each incoming Data packet and, if the CS is full, the LRU policy is applied to remove an
existing item and make room for the new one. Although this strategy can speed up the data
retrieval, several studies have showed that better performance can be obtained if selective
decision strategies are implemented that improve the cache diversity [2].
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One of the most important caching decision metrics is the content popularity. Typically,
Internet contents show a skewed popularity distribution [3]: only a few contents are highly
requested and deserve to be cached. Another crucial caching decision metric is the centrality
of the nodes. The work in [4] focuses on the betweenness centrality metric and demonstrates
that caching at the most central nodes can increase the cache hit probability and decrease
the cache eviction rate, as these nodes are traversed by the majority of content requests.
However, from the perspective of content retrieval, the node centrality should be re-defined
by taking into account the capability of the node of satisfying the content requests, in
addition to its topological feature [5,6].

So far, existing work [5–7] defined a popularity-aware betweenness centrality metric
to enable coordinated caching decisions between distributed cachers. Basically, these
strategies weight the betweenness centrality of a node with the popularity of the contents
that can be transmitted through it. By introducing a relevant signalling among the nodes,
collaborative decisions are deployed, where the most popular contents are cached in the
most central nodes. However, in edge topologies, typically characterized by hierarchical
topologies [6,8], the nodes with the highest betweenness centrality are also far away from
the end-clients, i.e., the content consumers. Therefore, they cannot guarantee a low retrieval
delay and a small network traffic. Instead, it would be crucial to cache the content as close as
possible to the consumers to meet the proximity requirements of upcoming 6G applications.

In this paper, we define a new caching scheme based on a popularity-aware close-
ness (PaC) metric, which allows to cache the most popular contents in the edge nodes
according to their proximity to the majority of requesters. Thanks to lightweight signalling
piggybacked in Interest and Data packets, the potential cachers are ranked according to
the PaC metric, and the best available cacher per path is selected. Performance evaluation
shows that the conceived strategy is able to limit the retrieval delay while maintaining low
exchanged traffic and the signalling overhead, compared to related literature based on the
betweenness centrality metric [6].

The remainder of this paper is organized as follows. Section 2 provides background
material on caching strategies in NDN. The proposal is discussed in Section 3 and evaluated
in Section 4. Final remarks are reported in Section 5.

2. Background and Motivations

2.1. NDN in a Nutshell

In NDN, caching operations are embedded in the forwarding process of the Interest
and Data packets, which is shown is Figure 1.

Figure 1. Forwarding process in NDN.

At the reception of an Interest packet, the node looks in the CS and, in case of a name
matching, it immediately sends the Data back. Vice versa, the node checks if an equal
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request is pending in the Pending Interest Table (PIT) and, in case of a positive outcome,
the incoming interface of the Interest is added to the PIT entry and the packet is discarded,
thus reducing the traffic in the network. If the PIT matching fails, the Interest is forwarded
according to named-based forwarding rules towards the original source.

When the Data packet arrives, the node checks for a name matching in the PIT and,
in case of a positive outcome, the packet is cached and then forwarded towards the con-
sumer(s). Vice versa, if the PIT matching fails, the Data is considered unsolicited and it
is discarded.

The vanilla NDN caching strategy, CEE, typically leads to poor performance due to
the lack of cache diversity [2]. A conventional scheme that limits the cache redundancy
without introducing much complexity is Fixed Probability-based caching, where the Data
packets are cached according to a fixed probability, usually set to 0.5 [9].

2.2. Caching Strategies in the Literature

To improve the content retrieval performance, several NDN caching strategies have
been proposed in the last few years [2]. Among them, we can identify two major categories,
namely popularity-based schemes and centrality-based schemes, which leverage, respec-
tively, content popularity information and network topology information to select which
contents to cache and where.

In popularity-based schemes [10–14], NDN nodes cache the most popular contents
according to the locally measured rate of received Interests, which is stored in a Popularity
Table. Typically, a threshold based mechanism is considered: contents that are requested a
number of times higher than the threshold are cached.

In centrality-based schemes [4], instead, the caching decision depends on the importance
of the nodes, expressed in terms of topological centrality. For instance, the pioneering
proposal called Betw [4] leverages the betweenness centrality of the nodes as decision metric
and replaces contents with the least recently used (LRU) policy. According to the graph
theory, given a set V of network nodes, the betweenness centrality (CB) of a node vi ∈ V is
defined as:

CB(vi) = ∑
vk �=vj �=vi∈V

σvk ,vj(vi)

σvk ,vj

, (1)

with σvk ,vj(vi) and σvk ,vj being, respectively, the number of shortest content delivery paths
from the two endpoints vk and vj that pass through vi and the total number of shortest
content delivery paths between the same endpoints. Betw strategy is built on the follow-
ing intuition: if a node vi is traversed by many content delivery paths, then it is more
likely to get a cache hit. Therefore, contents are cached in the nodes with the higher
betweenness centrality.

In [5], however, the authors observe that the topological centrality metric alone does
not reflect the importance of a node from the content delivery perspective. Therefore, the
authors define a new popularity-aware centrality metric, which aims at placing the most
popular contents at high central nodes, and the remaining contents with decreasing popu-
larity at nodes with decreasing centrality score. With the same target, the Betweenness and
Edge Popularity caching (BEP) strategy [6] leverages a coordinated signalling mechanism
piggybacked into Interest and Data packets. In BEP, the edge nodes (i.e., the leaf nodes
directly connected to the consumers) track the number of received requests and periodically
compute the content popularity with an exponential weighted moving average (EWMA)
formula. The information is maintained in a Popularity Table, where contents are also
ranked in terms of popularity. When a content request arrives, the edge node includes the
correspondent popularity ranking in the Interest and forwards it towards the origin source.
In addition, the Interest carries an array of betweenness centrality values, which is filled by
all on-path routers. When the origin source receives the Interest, it compares the popularity
ranking against the available betweeneess values and identifies the cacher by matching the
two metrics, i.e., if the content has the highest popularity, it will be cached in the node with
the highest centrality, and so on.
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Despite their differences, all the noted approaches consider the betweenness centrality
in the caching decision. However, this metric does not guarantee the minimum retrieval
delay for the consumers. Indeed, especially when considering edge domains, typically
characterized by hierarchical topologies [8], the nodes with the highest betweenness cen-
trality are usually far away from the leaf nodes, where the consumers are attached. Instead,
a peripheral edge node, e.g., a base station (BS), has typically low betweenness centrality,
but it can be very close to the consumers and cover a key role as cacher.

Given a content x, the closest node to the requesters of x would be able to deliver the
content with the lowest delay. Therefore, to take advantage of the limited cache capacity
at the edge, it is necessary to select the most popular contents and cache them in the
closest nodes along the delivery paths. In addition to reducing the content retrieval latency,
caching contents close to the consumers allows for the reduction of intra-domain traffic.
Indeed, contents may traverse a lower number of hops and free bandwidth resources over
edge links.

Table 1 compares the main features of the related caching strategies available in the
literature and our proposal.

Table 1. Comparison of caching strategies based on popularity and/or topology metrics.

Work Popularity Topology Domain Decision Strategy

[10] � - Edge/Core Caching popular contents based on a fixed
popularity threshold

[11] � - Edge Caching popular and fresh contents based on a flexible
popularity threshold

[12] � - Edge/Core
Caching only popular long-lasting contents (in the core

network); caching popular short-lasting contents only once per
each delivery path (in the edge network)

[13] � - Edge/Core Caching popular contents based on a flexible
popularity threshold

[14] � - Edge Caching popular contents based on a strict hierarchical
coordination between the nodes

[4] - � Edge/Core Caching contents in the most central nodes based on the
betweenness centrality metric

[5] � � Edge Caching based on a popularity-weighted
content-based centrality

[6] � � Edge/Core Caching based on popularity and betweenness
centrality metric

Our work � � Edge Caching based on a popularity aware consumer
proximity metric

3. PaC-Based Caching

3.1. Main Pillars and Assumptions

To capture the aforementioned needs and overstep the limitations of existing solutions,
we propose a different topological metric that accounts for the proximity of potential cachers
to the consumers and is weighted by the content popularity. We leverage the resulting metric,
namely PaC, in a new strategy aimed at caching the most popular contents as close as
possible to the majority of consumers in order to limit the data retrieval delay and the
exchanged data traffic.

As shown in Figure 2, the reference scenario of our study is an edge domain, e.g., the
backhaul network of a mobile network operator, a campus network, composed of a set V
of NDN nodes [8]. A subset of nodes denoted as I ⊂ V act as ingress nodes that consumers
are connected to. A few other nodes, instead, act as egress nodes towards the content
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sources, i.e., remote servers hosting the contents. A catalogue X of cacheable contents
is considered.

For ease of reference, the key notations used in the paper are summarized in Table 2.

Table 2. Summary of the main notations.

Symbol Description

V set of NDN edge nodes
I set of NDN ingress nodes, with I ⊂ V
X catalogue of contents
vj generic ingress node
vi generic edge node
xn generic content
Rvi (xn) average request rate for content xn at node vi
ΘP popularity threshold
Rvj average content request rate at ingress node vj
T time interval for updating caching decision parameters
Mvj number of distinct contents received at the ingress node vj
Îi(xn) set of ingress nodes forwarding Interests for content xn to node vi
PaC(vi, xn) popularity-aware closeness metric for content xn at node vi
h(vi ,vj) hop distance between nodes vi and vj

Figure 2. Reference scenario.

All the nodes have caching capabilities and implement the traditional NDN forwarding
fabric with the best route strategy, i.e., Interests are forwarded along the shortest path
between ingress and egress nodes. A routing protocol, e.g., named-data link state routing
protocol (NLSR) [15], is enabled for intra-domain dissemination of both connectivity and
name prefix information.

To enable the PaC-based caching (PaCC), the following main modifications are foreseen
to the legacy NDN routines, data structures, and packet fields:

• Content popularity is tracked at the edge nodes in terms of locally perceived content
request rate. Values are maintained in a Popularity Table and properly advertised in the
new RATE field of the Interest packet to account for the actual content request number
over each edge link.

• Each node tracks the distance, in terms of hop count, from the on-path ingress nodes
through a newly added field HOPCOUNT. This information, combined with the content
request rate, is used to compute the PaC metric that is then advertised in the new PAC

field of the Interest packet by the forwarding nodes.
• The highest PaC metric, discovered during the Interest forwarding, is carried by the

returning Data packet in a new PAC field, and it is used to select the cacher.
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Figure 3 shows the new fields introduced in the Interest and Data packets, respectively,
that enable the PaC-based caching thanks to an implicit signalling mechanism, which will
be clarified subsequently.

(a) Interest

(b) Data

Figure 3. Overhauled NDN packets (fields with text in orange are those added by the PaC-
based caching).

3.2. Tracking Content Popularity

Similarly to other schemes [6,10,11,13], the edge nodes track in the Popularity Table
the received requests in order to identify the most popular contents.

Basically, the ingress nodes (green devices in Figure 2) counts the Interests received
from consumers they are connected to, in order to determine the average request rate of
each content. At the ingress node vj ∈ I, the average request rate for content xn is denoted
as Rvj(xn).

The node periodically updates the average request rate, with a time interval T set to
one minute, similarly to [13], to properly infer potential changes in the request patterns.
Therefore, we assume each entry in the Popularity Table includes three fields: content name,
average request rate, and current counter of requests.

In our design, the ingress nodes are also in charge of identifying the most popular
contents that should be cached along a delivery path. More specifically, a content is
considered popular by the ingress node vj if it is requested a higher number of times than a
popularity threshold ΘP. This latter is computed as the EWMA of the average request rate
per each requested content:

ΘP = (1− α)ΘPOld + αRvj , (2)

with

Rvj =
∑

Mvj
n=1 Rvj(xn)

Mvj

, (3)

with Mvj being the number of distinct contents requested during the last time interval
T, as perceived by node vj, and α ∈ (0, 1) set to 0.125 to avoid large fluctuations in the
computation and give relevance to the historical values.

Because the Interest aggregation in the PIT hides the actual number of consumers
requesting the same contents, a specific signalling mechanism is deployed to let intermedi-
ate nodes effectively track the request rate. More specifically, each time an ingress node
vj forwards an Interest for content xn to the next on-path node vi, it includes the average
request rate information in the RATE field. Of course, the same edge node vi can be in
multiple shortest delivery paths towards the same content. For instance, node v4 in Figure 2
is traversed by two shortest paths from the ingress nodes v8 and v9. Instead, node v2 is
traversed by three shortest delivery paths from the ingress nodes v8, v9, and v10.

We denote as Îi(xn) ⊂ I the set of ingress nodes forwarding Interests for content xn to
vi. In other words, vi belongs to the shortest paths connecting the ingress nodes belonging
to Îi(xn), which receive the requests from the consumers, and the egress node towards
the origin source. Since NDN implements only on-path caching, vi is a candidate cacher
for a content xn for which requests are received by ingress nodes in Îi(xn). For instance,

294



Sensors 2022, 22, 3460

a content cached at v2, in Figure 2, may serve the requests coming from the three ingress
nodes, v8, v9, v10.

The intermediate node vi (e.g., v4 in Figure 2) collects the Rvj(xn) values from the
Interests received through the incoming interfaces and calculates the local average request
rate as:

Rvi (xn) = ∑
j∈ Îi(xn)

Rvj(xn). (4)

When re-transmitting the Interest packet, vi, in its turn, overwrites the RATE field with
the new cumulative value, thus the next-hop node will be aware of the average number of
requests that can be satisfied with a Data packet over that incoming interface. The next-hop
node (e.g., v2 in Figure 2) also calculates the cumulative request rate, and so on.

3.3. Popularity-Aware Closeness Metric

The PaC metric of a potential cacher vi for content xn, PaC(vi, xn), considers the dis-
tance, in terms of hop count, between vi and the ingress nodes connected to the consumers.
Since, in NDN, vi receives Interests for xn from an ingress node vj only if it is in the for-
warding path between vj and the origin source, PaC(vi, xn) takes into account only the set
of ingress nodes Îi(xn).

In parallel, the metric considers the number of consumers that could be satisfied by
the potential cacher. The higher is the number of requests for xn that cross vi, the higher
should be the PaC metric.

In mathematical terms, the PaC metric for a node vi ∈ V and a content xn can be
expressed as:

PaC(vi, xn) =
Rvi (xn)| Îi(xn)|

∑j∈ Îi(xn)
(h(vi ,vj)

+ 1)
(5)

where | Îi(xn)| is the cardinality of the set of ingress nodes in Îi(xn), used to normalize the
metric, and h(vi ,vj)

is the hop distance between vi and the ingress node vj.
It can be observed that PaC(vi, xn) increases with the request rate of xn and it is equal

to zero if vi does not receive any request for xn. At the same time, the metric decreases if vi
is far from the consumers.

3.4. Caching Algorithm

When an Interest for content xn arrives at an ingress node vj, the latter updates the
corresponding entry in the Popularity Table, checks if the content is popular, and then
accesses the CS to find a matching Data packet to send back immediately. If the CS lookup
fails, then vj checks the PIT. If this lookup also fails, then vj acts differently depending
whether the content is popular, i.e., its average request rate is higher than the popularity
threshold, or not. If it is not popular, then there is no need to cache it along the path.
Therefore, vj increases by one the HOPCOUNT field of the Interest, fills the RATE field, in
order to allow the next hop updating the Popularity Table, but leaves the PAC field to the
default zero value, to indicate that the content is not popular. The request will be forwarded
towards the origin server according to the standard NDN forwarding fabric. Of course, it
may happen that an edge on-path node belonging to multiple delivery paths has cached
the content (because it is considered popular by another ingress node) and, therefore, the
request can be still satisfied at the edge.

The returning Data packet, being not popular, should not be cached. However, to
make the best of the available storage space, unpopular Data packets can be cached in case
the CS is not full, e.g., during the network bootstrap phases.

Vice versa, if xn is popular, then vj updates all the new fields of the Interests, i.e.,
HOPCOUNT, RATE, and PAC, and transmits the packet to the next-hop, according to the
FIB entry.

The subsequent node vi receiving the Interest performs a slightly different processing.
First, it accesses the information from the Interest header fields and checks if the Popularity

295



Sensors 2022, 22, 3460

Table needs to be updated. In NDN, Interests cannot loop, therefore a newly received
Interest carries consistent information in the header fields. The latter can be equal to the
previously recorded one, if the request pattern has not changed. The node then performs a
lookup in the CS for a match. If the Data packet is found, then vi computes its PaC metric
and compares it with the value in the PAC field. If its value is greater, then it overwrites the
field and sends the packet back. Vice versa, if its PaC value is smaller, it simply sends the
Data packet without altering it. The receiving node with the highest PaC will also cache
the Data, thus moving the copy closer to the consumers.

In case the CS and the consequent PIT matching fail, vi computes its PaC and, if its
value is greater than the current one, it updates the PAC, HOPCOUNT, and RATE fields.
Conversely, if the PaC is lower than the current one, it only updates the HOPCOUNT

and RATE fields. It then re-transmits the request according to the FIB and waits for the
Data packet.

When finally receiving the Interest, the origin server, or an intermediate cacher, copies
the PaC value from Interest to the corresponding field in the Data packet header and
transmits the packet. The first node with the corresponding PaC will cache the Data. If the
CS if full, an existing item is replaced according to the LRU policy.

The flowcharts summarizing the Interest processing and Data processing for the
PaC-based caching are depicted in Figure 4 and Figure 5, respectively.

Figure 4. Interest processing in the presence of PaC-based caching.

Figure 5. Data processing in the presence of PaC-based caching.

3.5. A Toy Example

To better understand the PaC metric, we consider the toy example in Figure 6 that
includes eight edge nodes in a hierarchical topology. The nodes v1, v2, . . . ,v5 are ingress
nodes tracking the average content request rate. For the sake of simplicity, we assume that
three distinct popular contents, namely x1, x2, x3, should be cached at the edge and their
request rate is stable. The available storage space at each node allows for caching only
one content.

It can be observed that the average request rate for x1, the most requested content
at the edge, is 22 at v1 and 20 at v2, v3, whereas it is 6 at v5. When computing the PaC
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metric for the nodes traversed by the Interests for x1, according to Equation (5), it results in
PaC(v1, x1) = 22, PaC(v2, x1) = PaC(v3, x1) = 20, PaC(v5, x1) = 6, PaC(v6, x1) =

62·3
6 =

31, PaC(v7, x1) =
6·1
2 = 3, and PaC(v8, x1) =

68·4
12 = 22.66. The node with the highest PaC

metric for x1 is v6, which is indeed the node closer to the majority of consumers that are
attached to the ingress nodes v1 − v3. If instead we consider the path {v5 → v7 → v8}, the
node with the highest PaC is v8. However, caching x1 at v6 would imply that the node at
the upper layer, v8, will not receive further Interests for x1 and therefore, its local request
rate will decrease. As a consequence, in a subsequent time window, x1 will be cached at v5.

Vice versa, an approach based on the betweenness centrality, like BEP, would be
considered as best cacher for x1 node v8, which has the highest centrality, but it is also the
farthest away from the consumers. Therefore, caching x1 at v8 would highly increase the
retrieval delay and the intra-domain traffic.

Content x2 is requested only at v4 and v5 and it results in PaC(v4, x2) = 15,
PaC(v5, x2) = 3, PaC(v7, x2) = 18·2

4 = 9, PaC(v8, x2) = 18·2
6 = 6. The node with the

highest PaC metric is v4 which, again, is the one closer to the majority of consumers. There-
fore, the majority of requests will be served with minimum delay and with minimum
intra-domain traffic. To serve requests coming from path {v5 → v7 → v8}, instead, v7
would be selected as cacher.

By following the same procedure, it can be found that the higher PaC for content x3 is
obtained at v8.

Figure 6. Toy example: an edge network with eight nodes.

4. Performance Evaluation

4.1. Simulation Settings

The proposed caching strategy has been implemented in ndnSIM, the official simulator
of the NDN research community [16]. As representative edge domain, we consider a tree
topology randomly generated with the Georgia Tech Internetwork Topology Models (GT-
ITM) [17]. The topology includes 20 intermediate nodes and 8 leaves acting as ingress
nodes. The root node connects the edge domain with a remote server acting as content
producer. Because the performance assessment is focused on the edge domain, the external
network is simply simulated as a link, with latency of 30 ms [18], between the root node
and the server. The latency of edge links is instead uniformly distributed in the range
[2–5] ms.

We consider a catalog of 15,000 contents, each one consisting of 1000 Data packets
1 Kbyte-long. A variable number of consumers attached to the leaf nodes of the topology,
request contents according to the Zipf’s law [3], with skewness parameter α set to 1. In
these settings, we consider two distinct simulation scenarios.

• In the first scenario, we assume that the total caching capacity of the edge domain,
uniformly distributed among the nodes, is varying from 0.25% to 2% of the overall
catalog size, similarly to the values reported in [19]. The number of consumers is set
to 60.
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• In the second scenario, we assume that the cache capacity is fixed to 0.5% of the overall
catalog size, whereas the number of consumers range from 20 to 70.

The main simulation settings are summarized in Table 3.

Table 3. Main simulation settings.

Parameter Value

Content catalog size 15,000 contents

Content size 1000 Data packets

Data packet size 1000 bytes

Content Popularity Zipf-distributed with α = 1

Scenario GT-ITM [17]

Edge link latency Uniformly distributed in [2, 5] ms

Number of consumers 20–70

Number of edge nodes 28

Caching capacity From 0.25% to 2% of the catalogue size

We compare the proposed model (labeled as PaCC in the plots) against the following
benchmark solutions:

• Cache everything everywhere (labeled as CEE in the plots). It is the vanilla NDN
caching strategy where all the incoming Data packets are cached.

• Fixed probability-based caching (labeled as Prob in the plots). It caches incoming Data
according to a fixed probability set to 0.5 [9].

• Betweenness and edge popularity caching (labeled as BEP in the plots). It implements a
caching scheme based on the popularity-aware betweenness centrality metric, as in [6].

For all the noted schemes, the replacement policy is LRU.
The following performance metrics are considered:

• Retrieval delay: it is computed as the average time taken by a consumer to retrieve a
content.

• Number of hops: it is computed as the average number of hops traveled by the Interest
packets for retrieving the corresponding Data packets.

• Exchanged NDN packets: it is the total number of Interest and Data packets transmit-
ted by all the nodes, i.e., consumers, providers, and edge nodes, during the simulation,
to retrieve the contents.

The first two metrics capture the effectiveness of the compared schemes in caching
content copies in proximity to the consumers. The last metric provides insights about the
efficiency of the schemes, in terms of traffic exchanged in the network. Results are averaged
over 10 runs and reported with 95% confidence intervals.

4.2. Results
4.2.1. Impact of the Cache Size

Figure 7 shows the performance metrics when varying the cache size of the edge
domain from 0.25% to 2% of the content catalogue size. As expected, it can be observed
that, as the cache size increases, performance improves for all the considered schemes.
Indeed, the higher the storage space at the edge, the higher is the number of contents that
can be stored, with consequent advantages in terms of reduced retrieval delay, number of
hops, and exchanged traffic.
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Figure 7. Metrics when varying the cache size of the edge domain from 0.25% to 2% of the content
catalogue size (number of consumers equal to 60).

Being oblivious of content popularity and topology information, the simplest CEE
solution shows the worst performance in terms of content retrieval delay, due to higher
number of hops traversed to reach the requested content. It generates the highest load of
exchanged NDN packets. The Prob scheme slightly outperforms CEE, because it does not
cache indiscriminately contents but it tries to better distribute them in the CS of edge nodes.

As the cache size of the edge domain increases, differences among the two decrease,
because there is higher chance to find storage space for caching contents within nodes.
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PaCC outperforms all the other schemes in terms of all the considered metrics. How-
ever, the gap with BEP reduces as the edge domain is more capable to cache contents.

To conclude the analysis, Figure 8 shows the percentage of Interest packets that reach
the origin server because it has not been found a CS matching at the edge. Reasonably,
the traffic to the cloud reduces when the storage space at the edge increases, with PaCC
outperforming all the benchmark schemes.
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Figure 8. Percentage of Interest packets that are forwarded to the origin server.

4.2.2. Impact of the Number of Consumers

The second set of results, reported in Figure 9, measures the metrics of interest when
varying the number of consumers.

Under such settings, the proposed PaCC solution achieves the best performance in
terms of content retrieval delay, number of hops, and exchanged NDN packets.

It can be observed that, as the number of consumers increases, all schemes experience
a shorter delay and a lower number of hops. Such a behaviour has to be ascribed to the
fact that under the simulated settings, due to the Zipf distribution, a higher number of
requests, from different consumers, concentrate on the same few contents, the most popular
ones. Hence, such contents are more likely to be cached in the edge domain, instead of
being retrieved from the original producer. The number of exchanged packets, instead,
reasonably increases with the number of consumers, to account for the increasing number
of Interests issued by more consumers and number of Data packets forwarded to each
single consumer.

4.2.3. Overhead Analysis

To better show the pros and cons of the conceived solution, we summarize in Table 4
the main differences between the compared schemes in terms of incurred overhead, i.e.,
additional signalling bytes piggybacked in the exchanged NDN packets. A high signalling
overhead introduced by a caching strategy could deteriorate the content retrieval perfor-
mance, e.g., by increasing the content retrieval delay due to the transmission of larger
packets that occupy the channel for a longer time and may generate a higher channel load
and resulting congestion. It is worth observing that the blind CEE and Prob schemes incur
no additional overhead. Similarly to PaCC, BEP foresees one additional field in the Data
packet to convey the maximum betweenness to be compared with that of the nodes along
the backforwarding path. It is the PaC metric in our proposal. Three additional fields per
Interest are foreseen by PaCC, for a total of 10 bytes (less than 1% overhead per packet). For
BEP, the overhead per Interest is a function of the number of nodes traversed along the path
(|Π|) by the packet carrying the BETWEENNESSARRAY field. For a path made of 5 nodes
the overhead gets equal to 24 bytes. Under the majority of settings (|Π| > 1), PaCC is also
more efficient than BEP in terms of exchanged bytes in the network per packet. Therefore,
the signalling overhead introduced by PaCC is extremely low, which contributes to limit
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the retrieval delay metric, as showed in Figures 7 and 9.
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Figure 9. Metrics when varying the number of consumers (cache size equal to 0.5% of the cata-
logue size).
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Table 4. Additional fields per packet: PaCC vs. benchmark schemes.

Strategy Interest (Size in Bytes) Data (Size in Bytes)

CEE - -

Prob - -

BEP POPULARITYRANKING (4) BETWEENNESS (4)
BETWEENNESSARRAY (4×|Π|)

PaCC
RATE (4) PAC (4)
PAC (4)

HOPCOUNT (2)

5. Conclusions

In this work we have proposed a novel caching strategy for edge domains, called
PaCC, which accounts for content popularity and proximity to the consumers. Achieved
results, collected under a variety of settings, confirm that the devised solution allows
more judicious content caching decisions that are particularly crucial when the storage
capabilities of the edge domain are small. As a consequence, the content retrieval delay
experienced by PaCC is reduced compared to the considered benchmark schemes.

As a further benefit, the proximity of contents to consumers achieved by PaCC allows
for reduction in the overall amount of exchanged data traffic at the expense of a negligible
additional overhead per NDN packet. Such a finding is relevant because future networks
will be overwhelmed by a myriad of (huge) contents exchanged by massively deployed
devices and requested by increasingly demanding users.

The performance of the conceived solution can be further improved by addressing the
following aspects: (i) optimizing the method for tracking the content popularity, (ii) optimiz-
ing the computation of the popularity-aware closeness metric. In PaCC, a threshold-based
mechanism is implemented to track the popularity of contents based on the number of
received content requests. However, more accurate mechanisms could be introduced in
our design, for instance based on artificial intelligence (AI) content popularity prediction
algorithms [20]. In parallel, more accurate metrics could be considered to estimate the
proximity of the cachers to the consumers. In our design, we leverage the hop count metric,
which, however, cannot reflect the presence of congested links or congested nodes. The
proximity information could be improved by taking into account other additional metrics
like the round-trip-time over the network links and/or the load on the nodes.
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Abstract: Long Range (LoRa) systems have recently attracted significant attention within the research
community as well as for commercial use due to their ability to transmit data over long distances
at a relatively low energy cost. In this study, new results for the bit error rate performance of Long
Range (LoRa) systems operating in the presence of Rayleigh, Rice, Nakagami-m, Hoyt, η-μ and
generalized fading channels are presented. Specifically, we propose novel exact single integral
expressions as well as simple, accurate expressions that yield tight results in the entire signal-to-noise
ratio (SNR) region. The validity of our newly derived formulas is substantiated by comparing
numerically evaluated results with equivalent ones, obtained using Monte-Carlo simulations and
exact analytical expressions.

Keywords: bit error rate; fading channels; Internet of things; LoRa; performance evaluation

1. Introduction

In recent years, the exponential growth in the number of inexpensive, Internet-
connected devices has given birth to the Internet of things (IoT) and its numerous ap-
plications, including autonomous farming, wearable health monitoring, smart homes and
cities. Nevertheless, the increasing number of connected devices in conjunction with
memory, bandwidth and energy availability constraints has revealed the limits of tradi-
tional connectivity technologies, namely ZigBee, Bluetooth and WiFi, in terms of energy
consumption, scalability and throughput [1].

In order to fulfill the communication requirements of the IoT, the so-called Low-Power
Wide Area Networks (LPWAN) have recently attracted significant attention within the
research community as well as for commercial use, due to their ability to complement
traditional cellular and short-range wireless technologies in an efficient manner [2–5].

Among all available LPWAN protocols, the so-called LoRa (Long Range) technol-
ogy [6] has emerged as a promising candidate for smart sensing technology for civil (e.g.,
environment and health monitoring, smart metering, precision agriculture) and industrial
applications, in urban and rural environments, due to its long-range and low-power capa-
bilities. LoRa modulation is a 3GPP standard based on the chirp spread-spectrum (CSS)
technology [7–20] and uses the industrial, scientific and medical (ISM) frequency bands at
433 MHz, 868 MHz or 915 MHz with data rates of up to 50 kbps.

Although the LoRa technology is well documented in [6], there are still relatively few
studies on its theoretical performance. A summary of related works is presented in Table 1.
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Table 1. Related works on theoretical performance of LoRa systems in the presence of fading
and noise.

Authors Title Source Findings

Vangelista, L.
Frequency shift chirp

modulation: The LoRa
modulation

[7]

Introduced the LoRa modulation system
and provided initial results on its

performance over AWGN channels by
means of a single integral.

Elshabrawy, T.; Robert, J.

Closed-form
approximation of LoRa

modulation BER
performance

[21]
Provided simple closed-form expressions of

LoRa systems in the presence of AWGN
and Rayleigh fading.

Dias, C.F.; Lima, E.R.D.;
Fraidenraich, G.

Bit error rate closed-form
expressions for LoRa

systems under Nakagami
and Rice fading channels.

[22]

Provided an exact closed-form expression
for the BER of LoRa systems under

Rayleigh fading as well as analytical
expressions for the BER under Nakagami-m

and Rice fading in terms of a finite sum.

Courjault, J.; Vrigenau, B.;
Berder, O.; Bhatnagar, M.

A Computable Form for
LoRa Performance

Estimation: Application
to Ricean and Nakagami

Fading.

[23]

Authors elaborate on the properties of the
generalized Marcum Q-function to provide
accurate expressions for the BER of LoRa

systems in the presence of Rice and
Nakagami-m fading.

Hoeller, A.; et al.

Analysis and
Performance

Optimization of LoRa
Networks With Time and

Antenna Diversity

[11]

Authors addressed the performance of
LoRa systems operating in the presence of
Rayleigh fading, enhanced with antenna

and time diversity techniques. The
optimization of the performance of such

systems has further been addressed.

Ma, H.; Cai, G.; Fang, Y.;
Chen, P.; Han, G.

Design and Performance
Analysis of a New
STBC-MIMO LoRa

System

[24]

Authors have proposed a new STBC MIMO
LoRa system architecture. Its theoretical

performance was analyzed in the presence
of Rayleigh fading. A closed-form
approximate BER expression of the
proposed system under perfect and

imperfect channel state information (CSI)
was proposed.

Xu, W.; Cai, G.; Chen,
Performance analysis of a

two-hop relaying LoRa
system

[25]

Authors studied a two-hop opportunistic
amplify-and-forward relaying LoRa system
employing a best relay-selection protocol
and operating over Nakagami-m fading.

Specifically, the mathematical representation of the LoRa modulation/demodulation
process and its performance in terms of the symbol and bit error rates for additive white
Gaussian noise (AWGN) and frequency selective fading channels were addressed in [7].
In [21], a moment matching method was employed to obtain accurate closed-form approx-
imations for AWGN and Rayleigh fading channels. Multi-antenna LoRa systems were
addressed in [11,24]. The performance of relay-based LoRa networks was addressed in [25].
A first attempt to provide exact BER expressions for Rayleigh, Rice and Nakagami-m fading
is available in [22]. Nevertheless, as was pointed out in [21,23], the proposed methodology
for channels other than Rayleigh may suffer from numerical stability issues, due to the
computation of large values of binomial coefficients. To this end, ref [23] leveraged the
properties of the Marcum Q-function to provide accurate approximations for the BER of
LoRa systems over Rice and Nakagami-m fading channels.

However, several results obtained using this method, i.e., for Nakagami-m fading,
require the computation of hypergeometric functions with two arguments [23], which in
turn are not available as built-in functions in standard mathematical software packages such
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as Matlab or Mathematica [26]. Moreover, for the numerical evaluation of the underlying
mathematical expressions, the computation of an approximation threshold parameter is
required. Nevertheless, the exact computation of this threshold is rather complicated and
therefore, a heuristic method for its computation was proposed by the authors in the same
work. The above facts motivate simpler, yet accurate expressions for the evaluation of the
BER of LoRa systems in the presence of noise and fading. On the other hand, analytical
results for the error performance of LoRa systems in the presence of fading channels other
than Rayleigh, Rice and Nakagami-m, are—to the best of our knowledge—not available in
the open technical literature. Indeed, as it was pointed out in [27], the above mentioned
classical fading models do not always fit well measured data, especially at the tail portion.
This motivates research on performance evaluation over generalized fading models that
include the classical ones as special cases.

Motivated by the above facts, in this study we present new analytical expressions
for the average bit error rate evaluation of LoRa systems in the presence of fading. More
specifically, the novel research contributions of this work can be summarized as follows.

1. Under the assumption of Nakagami-m and Rice fading channels, we present ap-
proximate analytical expressions for the SER performance of LoRa systems. These
expressions yield accurate results in the entire signal to noise ratio (SNR) region that
are practically indistinguishable from the exact solution;

2. For the special case of Nakagami-m fading, using a moment matching method, a
simple yet tight approximation to the SER is obtained in closed form;

3. For all fading scenarios, exact analytical SER expressions in terms of a single integral
are presented;

4. A novel, accurate analytical expression for the SER of LoRa systems operating in
the presence of Hoyt fading is presented. To this end, a new integral involving
exponentials, modified Bessel functions and the Marcum-Q function, whose second
argument is a linear function of the integration variable, is evaluated;

5. An exact single integral expression for the SER of LoRa systems operating over η-μ
fading channel is presented, assuming a propagation environment consisting of a
finite number of multi-path clusters;

6. An exact single integral expression for the SER of LoRa systems operating over
generalized fading channels is presented, by approximating the PDF of the SNR with
a mixture gamma distribution. As a test case, SER results of LoRa systems operating
in the presence of κ-μ fading channels are presented.

In order to validate the correctness of the proposed mathematical analysis, all analyti-
cal results are substantiated by means of Monte-Carlo simulations. Note that the proposed
analytical framework provides accurate results in the entire SNR range, thus circumventing
the need for evaluating system performance via time consuming Monte-Carlo simulations
(It is a common practice to use Monte-Carlo simulations in order to verify the correctness
of analytical results. Please note that although Monte-Carlo simulations may also be used
to obtain performance evaluation results, they suffer from two significant disadvantages,
as compared to analytical results. First, one has to specify the system model using soft-
ware defined components, i.e., to simulate channel, noise, modulation, demodulation and
detection. Although this process provides further insights on the system structure, it is
computationally very intensive, time consuming and requires large amounts of memory
to achieve a given accuracy. Specifically, as a rule of thumb, in order to obtain exact BER
results of the order of 10−6, random samples of two orders of magnitude larger, namely 108,
are required. Such large vectors are difficult to be handled by software tools such as Matlab.
On the other hand, analytical results in the form of equations yield accurate results within a
large range of system level parameters). The remainder of this work is structured as follows.
Section 2 presents an overview of the LoRa modulation and its BER performance. Section 3
presents the main results of this work. Numerical results are presented in Section 4 whereas
Section 5 concludes the work. Notations: A list of mathematical notations used in this work
is available in Table A1.
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2. Overview of the LoRa Modulation

In this section, an overview of the LoRa modulation and the corresponding bit error
probability are presented. LoRa systems employ the shift chirp modulation scheme, also
known as spread spectrum modulation. The number of samples within the duration of a
symbol, Ts, is determined by the spreading factor (SF). It holds that Ts = 2SF/B, where B is
the signal bandwidth. In typical applications, SF ∈ {6, 7, . . . , 12}. Note that the coverage of
LoRa is determined by SF. Specifically, increasing SF results in wider coverage but also in a
reduction in the data rate.

The modulation encoder maps a group of SF bits to a symbol, sk, k ∈ {0, 1, . . . L}
where L = 2SF − 1. The transmitted waveform can be expressed as [21]

sk(nT) = h
√

Esωk(nTs) (1)

= h

√
Es

N
exp

{
j2π

n
N
[(k + n) mod N]

}
(2)

where N = 2SF, Ts = 1/B is the sampling period, n ∈ {0, 1, . . . L} is the sample index
at time nTs, Es is the signal energy, h is the fading channel coefficient and ωk(nTs) are
orthonormal basis functions.

Figure 1 depicts the main functional blocks of a LoRa non-coherent demodulator.
Specifically:

• The input signal is sampled at a period of Ts = 1/B;
• The resulting signal is then multiplied with a down chirp signal;
• A Fast Fourier Transform (FFT) is performed at the output of the previous block to

retrieve the symbol value;
• The information signal is estimated using maximum likelihood detection.

Figure 1. A simplified overview of the LoRa non-coherent demodulator.

Using the orthogonal properties of sk(nT), the correlator output at the demodulator is
given as [21]

L

∑
n=0

rk(nT)ω∗
i (nT) =

{
h
√

Es + φi if k = i
φi if k �= i

(3)

where rk(·) is the received signal and φi is the complex Gaussian noise. The decision rule
for the detected index symbol can be expressed as [21]

k̂ = {i| argi max
(
|δk,ih

√
Es + φi|

)
}. (4)
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The conditional symbol error probability given the squared channel coefficient h is
given as [21–23]

P(e|h) = Pr{ρ2 > |h
√

Es + φi|2} (5)

where ρ2 = max{|φi|}|i �=k is the maximum of L independent and identically distributed
(i.i.d) exponential random variables with CDF given by

Fρ2(x) = [1− exp(−x/2)]L. (6)

Moreover, the RV R � |h
√

Es + φi|2 conditioned to h2 follows a non-central chi-square
distribution with PDF given by [21–23]

fR|h2(x) =
1
2

exp
(
− x + 2Nh2γ

2

)
I0

(√
2Nh2γx

)
, (7)

where γ = 1/E〈|φi|2〉 is the SNR. The CDF of R conditioned to h2 can be expressed in
terms of the Marcum Q-function as

FR|h2(x) = 1−Q1

(√
2Nh2γ,

√
x
)

. (8)

Finally, using (5)–(7), the average symbol error probability is given in terms of the
following two-fold integral [21–23]

Ps =
1
2

∫ ∞

0

∫ ∞

0

{
1− [1− exp(−x/2)]L

}
× exp

(
− x + 2Nyγ

2

)
I0

(√
2Nγxy

)
fh2(y)dxdy. (9)

The resulting bit error probability can be expressed as [21,23]

Pb =
2SF−1

2SF − 1
Ps. (10)

3. Main Results

In this section, exact analytical expressions for Ps in terms of a single integral as well
as accurate approximations will be obtained for Nakagami-m, Ricean and Hoyt fading
channels.

3.1. Symbol Error Probability for Nakagami-m Fading Channels

Under Nakagami-m fading, the RV h2 follows a gamma distribution with PDF given
as [28]

fh2(y) =
mm

Γ(m)
ym−1 exp(−my) (11)

where m > 0 is the fading parameter. For m = 1, i.e., for Rayleigh fading, (11) reduces to
the exponential distribution. An exact analytical expression for Ps is given in the follow-
ing proposition.
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Proposition 1. The exact symbol error probability of LoRa systems under Nakagami-m fading in
terms of a single integral is given as

PNak
s =

1
2

(
m

Nγ + m

)m ∫ ∞

0
e−x/2[1− (1− e−x/2)L]

× L−m

[
Nγx

2(Nγ + m)

]
dx (12)

Proof. By substituting (11) into (9) and changing the order of integration, a valid operation
according to the Fubini theorem because the resulting integrals are convergent, one obtains

Ps =
mm

2Γ(m)

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

×
[∫ ∞

0
ym−1e−(Nγ+m)y I0

(√
2Nxy

)
dy
]

dx. (13)

By employing [29] (Equation (3.15.1/2)) and [30] (Equation (8.972/1)), (12) is readily
obtained, thus completing the proof.

Note that (12) yields the exact value of Ps for arbitrary values of m. In addition, it
converges rapidly due to its exponentially decaying kernel and can be evaluated numer-
ically in an efficient manner using built-in routines available in popular mathematical
software packages such as Matlab or Mathematica. In what follows, we derive accurate
approximations for Ps, assuming both arbitrary and integer values of the fading parameter
m. The following result holds.

Proposition 2. For arbitrary values of m, an accurate approximation for the Ps of LoRa systems in
the presence of Nakgami-m fading is given as

PNak
s ≈

(
m

Nγ + m

)m
exp(−x̃N/2)

×
∞

∑
n=1

x̃n
N

2nΓ(n + 1) 1F1

[
m; n + 1;

Nγx̃N
2(Nγ + m)

]
(14)

where as for integer values of m

PNak
s ≈ 1− Nγ

Nγ + m
exp

[
− mx̃N

2(Nγ + m)

]
×

m−1

∑
n=0

εn

(
m

Nγ + m

)n
Ln

[
− Nγx̃N

2(Nγ + m)

]
(15)

where

εn =

{
1 if n < m− 1
1 + m

Nγ if n = m− 1
(16)

and

x̃N = 2
N−1

∑
n=1

n−1. (17)

Proof. Our starting point to the proof is (5) via which a generic expression for Ps can be
obtained. Observe that for large values of SF, i.e., for SF ≥ 6, the RV ρ2 can be replaced
with its mean with sufficient accuracy. Note that this observation has also been reported
in [21]. Consequently, using (5) and (8), Ps can be approximated as
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Ps ≈ 1−Eh2

〈
Q1

(√
2Nγh2,

√
x̃N

)〉
, (18)

where x̃N is the expectation of the RV ρ2, which, by employing the memoryless property of
the exponential distribution [21], can be deduced as (17). Using (11), the expectation in (18)
can be further written as

Ps ≈ 1− mm

Γ(m)

∫ ∞

0
ym−1e−myQ1

(√
2Nγy,

√
x̃N

)
dy (19)

Using [31] (Equation (10)) and [31] (Equation (11)) (Note that [31] (Equation (11)) has
a typo, i.e., N should be replaced with Γ(N)), (14) and (15) can be deduced for real and
integer values of m, respectively, thus completing the proof.

Next, using a moment matching method, a simpler closed-form expression for Ps will
be derived, which holds for arbitrary values of m. Specifically, we propose approximating
the statistics of the RV R with those of a gamma distribution with scale parameter a and
shape parameter b, using a moment matching method. The following result holds.

Proposition 3. A closed-form approximation for the Ps of LoRa systems under Nakagami-m fading
can be obtained as

PNak
s ≈ 1− Γ(a, bx̃N)

Γ(a)
. (20)

where x̃N is given by (17),

a = μ̃2
1/(μ̃2 − μ̃2

1), b = μ̃1/(μ̃2 − μ̃2
1), (21a)

μ̃1 = 2(1 + Nγ), (21b)

μ̃2 = 8(1 + 2Nγ) + 4γ2(1 + m)N2/m. (21c)

Proof. Observe that R2 follows a squared gamma-shadowed Rice distribution and thus,
using [32] (Equation (5)), its n-moment is readily obtained as

μ̃n = 2n
(

m
Nγ + m

)m
Γ(n + 1)

× 2F1

(
m, n + 1; 1;

Nγ

Nγ + m

)
. (22)

Using [33] (Equation (7.3.1/129)), μ̃1 and μ̃2 can be further simplified as (21). Finally,
Ps can be deduced as the CDF of a gamma distribution with parameters a and b that can
be obtained in closed form using a moment matching method [34] as (20) and (21), thus
completing the proof.

Using Proposition 2, a closed-form approximation for the Ps under Rayleigh fading
will be obtained. Specifically, the following result holds.

Corollary. Under Rayleigh fading, a closed-form approximation for Ps can be deduced as

PRay
s ≈ 1− exp

[
− x̃N

2(1 + Nγ)

]
(23)

Proof. The proof can be readily obtained by setting m = 1 to (15).
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3.2. Symbol Error Probability for Rice Fading Channels

Under Rice fading, the RV h2 follows a non-central chi-square distribution with PDF
given as [28]

fh2(y) =
1 + K

exp(K)
exp[−(1 + K)y]I0

[
2
√

K(1 + K)y
]

, (24)

where K is the Rice factor. For K = 0, (24) reduces to the exponential distribution, i.e.,
Rayleigh fading.

An exact analytical expression for Ps is given in the following proposition.

Proposition 4. The exact symbol error probability of LoRa systems under Rice fading in terms of a
single integral is given as

PRice
s =

(1 + K) exp(−K)
2(1 + K + Nγ)

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

× e
2K+2K2+γNx

2+2K+2γN I0

[√
2NK(1 + K)γx
1 + K + Nγ

]
dx (25)

Proof. The proof can be concluded by following a similar line of arguments as in the
proof of Proposition 1. Specifically, by substituting (24) into (9) and changing the order of
integration, Ps can be expressed as

Ps =
1 + K

2 exp(K)

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

×
[∫ ∞

0
e−(Nγ+K+1)y I0

[
2
√

K(1 + K)y
]

× I0

(√
2Nxy

)
dy
]
dx. (26)

The inner integral, i.e., with respect to y, can be evaluated in closed form by employ-
ing [29] (Equation (3.15.17/1)), yielding (25), thus completing the proof.

Again, (25) converges rapidly due to its exponentially decaying kernel and can be
evaluated numerically in an efficient manner. In what follows, an accurate approximation
for Ps will be derived. The following result holds.

Proposition 5. Under Rice fading, an accurate closed-form approximation for Ps can be deduced as

PRice
s ≈ 1−Q1

[√
2NγK

1 + K + Nγ
,

√
x̃N(1 + K)

1 + K + Nγ

]
(27)

Proof. Using (18) and (24), Ps can be approximated as

Ps ≈1− 1 + K
exp(K)

∫ ∞

0
e−(1+K)y I0

[
2
√

K(1 + K)y
]

×Q1

(√
2Nγy,

√
x̃N

)
dy (28)

By employing [35] (Equation (15)), the resulting integral can be evaluated in closed-
form yielding (27), thus completing the proof.
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3.3. Symbol Error Probability for Hoyt Channels

Under Hoyt (Nakagami-q) fading, the RV h2 follows a non-central chi-square distribu-
tion with PDF given as [28]

fh2(y) =

√
1
2
+

1
4η

+
η

4
exp

[
−
(

1
2
+

1
4η

+
η

4

)
y
]

× I0

[(
1

4η
− η

4

)
y
]

, (29)

where η = q2, with 0 < q ≤ 1 being a parameter related to the fade intensity. For q = 1, (29)
reduces to the exponential distribution (Rayleigh fading).

An exact expression for Ps can be deduced using the following proposition.

Proposition 6. Under Hoyt fading, Ps can be expressed in terms of a single integral as

PHoyt
s =

η + 1
2
√

A

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

× e
Nγx[(1+η)2+4Nηγ]

2A I0

[
N(η2 − 1)γx

2A

]
dx (30)

where

A = 1 + 2Nγ + η2(1 + 2Nγ) + 2η(1 + 2Nγ + 2N2γ2) (31)

Proof. The proof can be concluded by following a similar line of arguments as in the
proof of Proposition 1. Specifically, by substituting (29) into (9) and changing the order of
integration, Ps can be expressed as

Ps =
1
2

√
1
2
+

1
4η

+
η

4

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

×
{∫ ∞

0
e−

(
Nγ+ 1

2+
1

4η +
η
4

)
y I0

[(
1

4η
− η

4

)
y
]

× I0

(√
2Nxy

)
dy
}

dx. (32)

The inner integral, i.e., with respect to y, can be evaluated in closed form by employ-
ing [29] (Equation (3.15.17/15)), yielding (30), thus completing the proof.

An accurate approximation for Ps can be obtained using the following proposition.
The following result holds.

Proposition 7. Under Hoyt fading, an accurate approximation for Ps can be deduced as

PHoyt
s ≈ 1− 1

γ

√
1

4η
+

η

4
+

1
2

× I
[√

2N,
√

x̃N ,
1
γ

(
1

4η
− η

4

)
,

1
γ

(
1

4η
+

η

4
+

1
2

)]
(33)
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where

I(a, b, c, p) =
a2

2p + a2 exp
[
− b2 p

2p + a2

]
×

∞

∑
k=0

2k

∑
n=0

Γ(2k + 1)c2k

p2k+1(k!)24k

× ζn,k

(
2p

2p + a2

)n
Ln

[
− b2a2

4p + 2a2

]
(34)

and

ζn,k =

{
1 if n < 2k
1 + 2p

a2 if n = 2k
(35)

Proof. Using (18) and (29), Ps can be approximated as

Ps ≈1−
√

1
2
+

1
4η

+
η

4

∫ ∞

0
e−

(
1
2+

1
4η +

η
4

)
y

× I0

[(
1

4η
− η

4

)
y
]

Q1

(√
2Nγy,

√
x̃N

)
dy (36)

which can be written as (33) with

I(a, b, c, p) =
∫ ∞

0
exp(−px)I0(cx)Q1(a

√
x, b)dx (37)

To the best of our knowledge, however, this integral is not available in related works
such as [31,35,36]. Nevertheless, as shown in the Appendix A, I(a, b, c, p) can be evaluated
as (34), thus completing the proof.

3.4. Symbol Error Probability for Physical η-μ Fading Channels

Under η-μ fading, the PDF of h2 is given by [27]

fh2(y) =
2
√

πμμ+0.5θμyμ−0.5

Γ(μ)Hμ−0.5 exp(−2μθy)Iμ−0.5(2μ�Hγ) (38)

where μ is related to the fading severity. The η-μ fading is quite general as it can accurately
model small-scale variations of the fading signal under non line-of-sight (NLOS) conditions
and includes as special cases both the Nakagami-m and the Hoyt fading models. The PDF
of h2 may be expressed in two formats, namely Format 1, where θ = (2 + η−1 + η)/4 and
H = (η−1− η)/4 with 0 < η < ∞ and Format 2, where θ = 1/(1− η2) and H = η/(1− η2)
with −1 < η < 1. As pointed out in [27], Format 1 can be converted into Format 2 by
employing a bilinear transformation. Thus and without loss of generality, Format 1 will
be assumed next. Moreover, the special case of integer μ, termed physical η-μ model,
assumes a finite number of multipath clusters and has been adopted in several works, e.g.,
see [27,37–39]

Using [30] (Equation (8.467)), the modified Bessel function I±(n+1/2)(z), with n > 0
being an integer, can be expressed as a finite sum, namely

I±(n+1/2)(z) =
1√
π

n

∑
k=0

(n + k)!
n!(n− k)!

[
(−1)kez ∓ (−1)ne−z

(2z)k+0.5

]
. (39)

Substituting (39) into (38) and employing [30] (Equation (8.353/7)), fh2(y) can be
expressed as
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fh2(y) =
μθ

HΓ(μ)

μ−1

∑
k=0

akyμ−k−1
[
(−1)ke−Ay + (−1)μe−By

]
(40)

where

ak =
(−1)k(μ + k− 1)!(4μH)−k

k!(μ− k− 1)!
(41a)

A = 2μ(θ − H), B = 2μ(θ + H). (41b)

An exact expression for Ps can be obtained using the following proposition.

Pη−μ
s =

0.5
Γ(μ)

(
μθ

Hγ

)μ
{

μ−1

∑
k=0

akγk(−1)kΓ(μ− k)2μ−k

[
(−1)k

(
λ +

2A
γ

)k−μ

×
∫ ∞

0
e−x/2[1− (1− e−x/2)L]Lk−μ

[
λγx

2(λγ + 2A)

]
dx

+ (−1)μ

(
λ +

2B
γ

)k−μ ∫ ∞

0
e−x/2[1− (1− e−x/2)L]Lk−μ

[
λγx

2(λγ + 2B)

]
dx ]}. (42)

Proposition 8. The exact symbol error probability of LoRa systems operating under physical η-μ
fading channels can be expressed in terms of a single integral as (42).

Proof. The proof can be readily deduced by following the same steps as in the proof of
Proposition 1.

3.5. Symbol Error Probability for Generalized Fading Channels Using a Mixture
Gamma Distribution

In what follows, we present analytical results for the SER of LoRa systems assuming
generalized fading channels for which the PDF of the SNR can be expressed as a mixture
gamma distribution. As was shown in [40], the proposed approach is valid for a plethora of
fading distributions, including the κ-μ, the η-μ and composite fading/shadowing channels
such as the generalized-K and the Suzuki ones. The PDF of h2 can be expressed as [40]
(Equation (1))

fh2(y) =
Nterms

∑
i=1

aiyβi−1e−ζiy, (43)

where Nterms is the number of terms required for a given accuracy, and ai, βi and ζi are
the parameters of the ith Gamma component. The parameter Nterms can be selected so
that the first k moments of the original and the approximate distributions are matched
or the Kullback–Leibler distance of the original and the approximate distributions is
minimized [40]. For such channels, an exact expression for Ps can be obtained using
the following proposition.

Proposition 9. The exact symbol error probability of LoRa systems operating under generalized
fading channels can be expressed in terms of a single integral as

Pgen
s =

1
2

Nterms

∑
i=1

ai(Nγ + ζi)
−βi Γ(βi)

∫ ∞

0
e−x/2

× [1− (1− e−x/2)L]L−βi

[
Nγx

2(Nγ + ζi)

]
dx (44)

Proof. The proof can be readily deduced by following the same steps as in the proof of
Proposition 1.
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4. Numerical Results

In this section, numerical results are presented to validate the proposed error rate
analysis. Analytical results are compared with equivalent ones obtained using Monte-
Carlo simulations. A number of random samples equal to 105 is used to ensure statistical
convergence. The simulation methodology is described in Algorithm 1. Unless otherwise
specified, values of SF of 7 and 12 have been assumed.

Algorithm 1 Monte-Carlo simulation methodology.

Require: Number of samples ≥ 0
Es ← SNR
errors ← 0
Number of samples ← 105

while Number of samples �= 0 do
generate random channel coefficient h for a given fading distribution
generate noise coefficient φi from a normal distribution
generate ρ2 as the maximum of exponential random variables

if ρ2 > |h
√

Es + φi|2 then
errors ← errors + 1

end if
Number of samples ← Number of samples− 1

end while

Figures 2 and 3 depict the BER of LoRa modulation in the presence of Nakagami-m
fading as a function of γ for m ∈ {1, 1.5, 2, 3, 3.55}, and SF of 7 and 12, respectively. In
both figures, approximate BER results for m > 1 were obtained using the approximation
presented in Proposition 2 as well as the moment matching method in Proposition 3. The
exact BER values were obtained using the two-fold integral in (9), the single integral
expression in Proposition 1 and Monte-Carlo simulation based on (5), using 105 random
samples. For m = 1, i.e., Rayleigh fading, approximate results were obtained using (23). As
it can be observed, the approximate formulas obtained using Proposition 2 match well the
exact results in the entire SNR region. In addition, the moment matching method yields
accurate results for low values of m; nevertheless, deviations from the exact results are
observed for m > 2 and high SNR values. Finally, for Rayleigh fading, (23) yields very
accurate results that are practically indistinguishable from the exact ones.

Figure 2. BER of LoRa systems operating in the presence of Nakagami-m fading as a function of the
SNR, γ, for SF = 7 and various values of m.
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Figure 3. BER of LoRa systems operating in the presence of Nakagami-m fading as a function of the
SNR, γ, for SF = 12 and various values of m.

Figures 4 and 5 depict the BER of LoRa modulation in the presence of Rice fading as a
function of γ for K ∈ {1, 5, 10}, and SF of 7 and 12, respectively. The exact BER values were
obtained using both the two-fold integral in (9) as well as the single integral expression in
Proposition 4. In both figures, approximate BER results have also been obtained using the
approximation presented in Proposition 5. As it can be observed, the approximate formulas
obtained using Proposition 2 match well the exact results in the entire SNR region for all
values of K.

Figure 4. BER of LoRa systems operating in the presence of Rice fading as a function of the SNR, γ,
for SF = 7 and various values of K.
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Figure 5. BER of LoRa systems operating in the presence of Rice fading as a function of the SNR, γ,
for SF = 12 and various values of K.

Next, we estimate the BER of LoRa systems in an agricultural environment, described
in detail in [41]. In that work, an experimental test bed exploiting smartphone components
was utilized in a measurement campaign, performed under realistic, in terms of agriculture,
conditions. Specifically, part of the measurement campaign focused on measuring the
Received Signal Strength Indicator (RSSI) for various distances between the LoRa radio
modules participating in the experiments and for various transmit power level settings.
Both LoRa radios had their transmit power adjusted to 10 dBm, the SF was set to either
7 or 11 and the bandwidth (BW) was 125 kHz or 250 kHz. It has also further been assumed
that small scale fading is modeled by the Rice distribution with K = 2.63 dB, a typical
value encountered in rural environments [42]. The noise power equals −85 dBm. Figure 6
depicts the estimated BER of the considered propagation scenario as a function of the link
distance. Again, an excellent match of exact and approximate results was observed for all
test cases under consideration.

Figure 6. BER estimation of LoRa systems operating in the presence of Rice fading in an agricultural
environment using a measurement campaign.
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Figures 7 and 8 depict the SER of LoRa modulation in the presence of Hoyt fading
as a function of γ for q ∈ {0.1, 0.5, 0.9}, and SF of 7 and 12, respectively. Again, the
exact BER values were obtained using both the two-fold integral in (9) and the single
integral expression in Proposition 6. The approximate BER results were obtained using
Proposition 7. In order to derive the approximate BER results, the corresponding infinite
series were truncated to N = 220 and N = 350 terms for q = 0.1 and SF of 7 and 12,
respectively whereas for q = 0.5 and q = 0.9, only 20 terms were sufficient to provide
a good match with the analytical results for both considered values of SF. Again, the
approximate formulas obtained using Proposition 7 match well with the exact results in
the entire SNR region for all values of q.

Figure 7. BER of LoRa systems operating in the presence of Hoyt fading as a function of the SNR, γ,
for SF = 7 and various values of q.

Figure 8. BER of LoRa systems operating in the presence of Hoyt fading as a function of the SNR, γ,
for SF = 12 and various values of q.
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Figure 9 depicts the SER of LoRa modulation in the presence of η-μ fading as a
function of γ for SF ∈ {7, 9, 10}. The fading parameters are assumed to be μ = 2.065 and
η = 0.00847518, obtained through a measurement campaign in an indoor environment, as
reported in [27]. In order to apply the analytical results obtained in Proposition 8, a physical
η-μ model with μ = 2 was assumed. Exact results were obtained using Monte-Carlo
simulation. As can be observed, analytical results closely approximate exact ones, for all
considered values of SF, especially for low and medium values of γ, thus demonstrating
the usefulness of the proposed analysis.

Figure 9. SER of LoRa systems operating in the presence of η-μ fading as a function of the SNR, γ, in
an indoor environment, as reported in [27] and various values of SF.

In the following, we consider LoRa systems operating in the presence of κ-μ fading as
a function of γ. Note that the κ-μ distribution is a two-parameter fading model that well
describes wireless propagation in the presence of a line-of-sight (LoS) component [27]. The
PDF of h2 is given by [27]

fh2(y) =
μ(1 + κ)0.5(μ+1)y0.5(μX,k−1)

κ0.5(μ−1) exp(μκ)

× exp[−μ(1 + κ)y]Iμ−1

[
2μ
√

κ(1 + κ)y
]

(45)

where κ and μ account for the intensity of the LoS component and the Nakagami-m
component, respectively. Note that the κ-μ distribution includes both the Nakagami-m
(κ = 0) and the Rice (m = 1) distributions as special cases.

Using [40] (Equation (19)), the parameters of its mixture gamma approximation can be
expressed as

ai = ψ(θi, βi, ζi), βi = μ + i− 1, ζi = μ(1 + κ) (46a)

θi =
μ(1 + κ)0.5(μ+1)

κ0.5(μ−1) exp(μκ)

μ2i+μ−3[κ(1 + κ)]0.5(2i+μ−3)

(i− 1)!Γ(μ + i− 1)
(46b)

ψ(θi, βi, ζi) =
θi

∑Nterms
j=1 θjΓ(β j)ζ

−β j
j

. (46c)
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Figure 10 depicts the SER of LoRa systems over κ-μ fading, assuming μ = 2.1, κ = 10
and SF ∈ {7, 9, 10}. The κ-μ distribution was approximated with a mixture gamma dis-
tribution using 37 terms. As it is evident, the results obtained using the mixture gamma
approximation match very well with the exact ones, obtained using (9) and (45), for all
considered values of SF.

Figure 10. SER of LoRa systems operating in the presence of κ-μ fading as a function of the SNR, γ,
for κ = 10, μ = 2.1 and various values of SF.

Finally, it is worth pointing out that our newly derived formulae for Rice and Nakagami-
m fading were tested against the ones proposed in [23] and a close match was reported.
Nevertheless, as also mentioned in the introduction section, the proposed analytical frame-
work still provides accurate results with much lower complexity than those reported
in [23].

5. Conclusions

In this work, we elaborated the LoRa system model to include an extensive perfor-
mance analysis in the presence of various types of fading channels, using exact single
integral expressions as well as accurate approximations. The results presented herein are
valid for most of the well-known fading models available in the open technical literature.
Moreover, they are computationally efficient and thus they may serve as a useful tool for
system engineers for performance evaluation purposes.
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Appendix A. Evaluation of I(a, b, c, p)

In order to obtain an analytical expression for I(a, b, c, p), we first employ an infinite
series representation for the modified Bessel function, namely [30] (Equation (8.447/1))

I0(cx) =
∞

∑
n=0

c2kx2k

22k(k!)2 (A1)

Substituting (A1) into (37) and exchanging the series and integral operators—a valid
operation due to the uniform convergence of the resulting integrals—I(a, b, c, p) can be
written as

I(a, b, c, p) =
∞

∑
n=0

c2k

22k(k!)2

∫ ∞

0
x2k exp(−px)

Q1(a
√

x, b)dx. (A2)

Because 2k is always an integer, (A2) can be evaluated using [31] (Equation (11)),
yielding (A2), thus completing the proof.

Table A1. Mathematical Notations.

j =
√
−1 imaginary unit

z∗ conjugate of the complex number z
Pr{·} probability operator
EX〈·〉 expectation of the random variable (RV)
fX(·) probability density function of the RV X
FX(·) cumulative distribution function of the RV X
δi,k Kronecker delta function: δi,k = 1 for i = k and 0 otherwise

Ia(·) modified Bessel function of the first kind and order a [30] (Equation (8.431))
Γ(·) Gamma function [30] (Equation (8.310/1))

Γ(·, ·) incomplete Gamma function [30] (Equation (8.350/2))
pFq(·) generalized hypergeometric function [30] (Equation (9.14/1))

Qm(·) generalized Marcum-Q function [35]:
Qm(a, b) = a1−m ∫ ∞

b xm exp
[
−(x2 + a2)/2

]
Im−1(ax), m ≥ 1

Lν(·) The generalized Laguerre function of order ν [30] (Equation (8.972/1)):
Lν(z) = 1F1(−ν; 1; z)
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Abstract: Recently, more and more mobile devices have been connected to the Internet. The Internet
environment is complicated, and network security incidents emerge endlessly. Traditional blocking
and killing passive defense measures cannot fundamentally meet the network security requirements.
Inspired by the heuristic establishment of multiple lines of defense in immunology, we designed and
prototyped a Double Defense strategy with Endogenous Safety and Security (DDESS) based on multi-
identifier network (MIN) architecture. DDESS adopts the idea of a zero-trust network, with identity
authentication as the core for access control, which solves security problems of traditional IP networks.
In addition, DDESS achieves individual static security defense through encryption and decryption,
consortium blockchain, trusted computing whitelist, and remote attestation strategies. At the same
time, with the dynamic collection of data traffic and access logs, as well as the understanding and
prediction of the situation, DDESS can realize the situation awareness of network security and the
cultivation of immune vaccines against unknown network attacks, thus achieving the active herd
defense of network security.

Keywords: network security; double defense; zero trust; situation awareness; immunology

1. Introduction

With the development of the Internet and its deep integration with human social life,
more and more mobile devices are connected. They are heterogeneous and ubiquitous,
and put forward higher requirements for network security. The predominant best-effort
design of TCP/IP network architecture focuses on the end-to-end communication between
non-commercially and mutually trusted users. The network data transmission is entirely
transparent, and the service and the bearer are separated. However, it instead hands
over the security control to the users. This helps to improve the network availability and
flexibility but at the cost of network security [1]. The Internet appears to be incapable
of responding to users’ demands for security in obtaining massive content. In addition,
the current internet IP addresses have positioning, identity, and forwarding functions that
pose many challenges for supporting quality of service (QoS), especially for the Internet
of things (IoT) [2], Internet of Vehicles (IoV) [3], and the authenticity and credibility of the
fusion of the virtual and real world in the metaverse [4].

Currently, network security protection is mainly based on IP networks’ character-
istics and adopts passive defense measures with blocking and killing methods, such as
firewalls, authentication technology, access control, vulnerability scanning, disaster recov-
ery, and honeypot technology. The defense capabilities of these measures can be passive
or static, depending on predetermined settings before accessing the system and updating
the preset defense library during use. Therefore, they can only detect and defend against
a number of predefined network security attacks. Moreover, although these methods
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require higher user permissions and privileges, they can be easily controlled and exploited
by attackers [5]. It is worth mentioning that the network security vulnerabilities con-
stantly emerge while the attack methods are persistently refreshed. As demonstrated in
Figure 1, attackers usually scan the weakest link in security defense to launch network
attacks. Traditional defense measures focus on improving the protection capabilities against
attacks rather than identifying, tracking, and investigating the responsibility of the attack-
ers. They passively receive every intrusion attack, which is difficult to detect, identify,
and respond to emerging attack methods, and it is challenging to solve network security
problems fundamentally.

Figure 1. Network attack procedures.

While paying attention to network security, we found much inspiration from the
biological immune system. The biological immune system has the advantages of feature
extraction, distributed detection, self-tolerance, self-adaptation, robustness, and the capabil-
ities of pattern recognition, learning, and memory [6]. It forms individual immunity to viral
infections through its physical barrier, innate immune system, and adaptive immune sys-
tem, and achieves the public herd immunity through collaboration between heterogeneous
nodes and the cultivation and injection of vaccines [7]. Inspired by the multiple defense
lines in immunology [8], this paper proposes a double defense strategy with endogenous
safety and security (DDESS) as shown in Figure 2 based on the multi-identifier network
(MIN) architecture [9]. We adopt identity authentication as the core access control method
to solve traditional IP network security problems, and implement static network security
defense through key encryption technology, blockchain technology, and trusted computing
whitelist strategy. At the same time, through the dynamic collection of data traffic and
access logs, DDESS can find the network vulnerabilities in the existing system, understand
and predict the situation, realize the situation awareness of network attacks, and cultivate
the immune vaccine of unknown network attacks, to complete the active dynamic defense
of network security and the balance of network availability and security.

In summary, this paper makes the following contributions:

• This paper discusses the problem of the network’s bottleneck resulting from the
traditional IP-network carrying capacity and the poor network security. In this regard,
we inspire our proposed system from the idea of zero-trust network [10]. In doing
so, based on MIN architecture [9,11], we built a security strategy with an identity
identifier as the core of network transmission. This strategy is built based on identity
identifiers rather than network locations. Only after user authentication, authorization,
and account verification can the user and the application communicate.

• Signature of network transmission packets protects data from theft. A variety of the
data related to the identifiers is stored in the consortium blockchain of the MIN to
ensure the identifier data’s non-repudiation, tampering-resistance, and traceability.
The independently developed voting consensus algorithm Proof of Vote (PoV) [12]
improves the throughput of the system. At the same time, the encryption key and data
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are stored in the trusted computing modules (TCM) to ensure that they are not read
or disclosed [13], and protected by remote authentication [14]. Real-time monitoring
of the trusted whitelist of accessing applications can promptly detect and respond
to attacks.

• The network traffic and application access logs are collected and analyzed for further
situation awareness. DDESS classifies and extracts appropriate attack information,
including attack behavior and mode, and makes use of the convolutional neural net-
works (CNN) to evaluate the network security attack index of attack information.
In addition, DDESS predicts the network security of the existing network system and
provides the corresponding solutions. DDESS simulates network behaviors in the
sandbox. It then analyzes these simulation results, cultivates a security immune vac-
cine, enriches the network attack behavior database, and prevents unknown network
attack behaviors.

Figure 2. Double defense strategy with endogenous safety and security (DDESS).

The remainder of this paper is organized as follows: Section 2 reviews the related
work of image anomaly detection. A detailed description of our proposed method is given
in Section 3. In Section 4, we present experimental setups and comparisons. Section 5
carries out the corresponding experiments and gives out the simulations results. Section 6
concludes the paper and points out some of our future research.

2. Related Work

The traditional static defense of network security is divided into three types: reinforce-
ment protection of the system, intrusion detection, and network deception [15].

Firewall (including packet filtering, proxy type, state inspection, in-depth inspection,
web application) [16], encryption and decryption, data authentication [17], and access
control [18] focus on protecting information and enhancing the security of the network
system itself. They play a protective role in ensuring the normal access channels of the
network system, authenticating legitimate user identities and rights management, and the
security of confidential data and information.

Intrusion detection [19], vulnerability detection [20], traffic analysis [21], log auditing [22],
and other attack methods for known characteristic information make use of methods such
as characteristic scanning, pattern matching, and comprehensive data analysis to conduct
dynamic monitoring, linkage alarms, and emergency response to prevent or eliminate
attack threats.
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Honeypot technology [23] deploys some hosts and network services as decoys to
induce attackers to carry out attacks, thereby capturing and analyzing the attack behaviors,
understanding the tools and methods used by the supplier, and speculating the intention
and motivation of the attack, thereby enhancing its security protection capabilities [24].
However, it is difficult to deploy a honeypot environment that is not readily perceivable by
intruders [25].

The above static defense methods can better defend against attacks with known char-
acteristics and fixed patterns. However, it cannot defend against attacks based on unknown
vulnerabilities backdoors, complicated and changeable multimode joint attacks, and at-
tacks from within the network. With the continuous improvement of the automation and
intelligence of countermeasures, the construction and strengthening of the network security
defense system alone can no longer meet the actual needs of network security defense.
Dynamic defense technology has gradually attracted widespread attention and is consid-
ered a revolutionary technology that changes the asymmetry of network security, such as
Moving Target Defense (MTD) [26], Cyberspace Mimic Defense (CMD) [27], and Cyber
Deception (CD) [28].

Let us dive into a specific scenario: vulnerabilities have constantly been discovered
in the Internet of Vehicles (IoV), and the security problems of Vehicle to Everything (V2X)
interactive communication are gradually emerging. The Internet of Vehicles requires real-
time and timely resolution of network security issues. Therefore, many machine learning-
based solutions in V2X scenarios have been proposed to provide dynamic defenses and
address these problems. The surveillance of physical layer security (PLS) was explored in
the field of connected vehicles [29]. A delimitated anti jammer scheme based on machine
learning [30] secures the network and alleviates the traffic congestion simultaneously; in
the meantime, it can reduce the computing delay.

Network dynamic defense is an innovative network defense technology system grad-
ually developed to deal with the increasingly severe cyberspace security situation, which
makes it possible to break the long-standing impregnable asymmetry and will balance the
difficulty of network attack and defense in the future.

In this paper, we present a network defense strategy that integrates static and dynamic
defenses. It adopts the ideas of the zero-trust network, and employs identity authentication,
blockchain technology, and trusted computing technology, with situation awareness and
dynamic immune functions.

3. Static Defense

We adopt the idea of a zero-trust network and build a multi-identifier network sys-
tem with identity as the core, supplemented by data signature, blockchain technology,
and trusted computing technology to realize the static defense of network security to
improve the autoimmunity of network individuals.

3.1. Multi-Identifier Network System with Identity as the Core

The network identifier is the data carried in the network packet for addressing and
forwarding by the intermediate router. In the traditional IP network, the target IP address
of a network packet is its network identifier, forming a thin waist hourglass structure
with IP as the core in the network layer, which identifies two network nodes for end-
to-end communication. This network architecture is no longer suitable for the network
communication requirements of the existing network to obtain content and services. At the
same time, since the original design purpose of the IP network is to communicate between
non-commercial users who trust each other, the network transmission is entirely transparent
to the intermediate router, which makes data theft and monitoring easy. The IP network
lacks top-level design and usually adopts a passive patching method for network security,
making it increasingly challenging to implement [31].

The multi-identifier network (MIN) system [11] takes identity as the core, and supports
the coexistence of multiple network identifiers such as identity, content [32], service, space,
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space, and location information, and IP, to solve the depletion of IP addresses and the
security problems existing in IP networks, as shown in Figure 3. The multi-identifier net-
work is divided into a management plane (multi-identifier system, MIS) and data plane
(multi-identifier routers, MIR), which supports simultaneous transmission of multiple
network identifiers in the network, as depicted in Figure 4. MIS supports the management
and resolution of network identifiers by multiple parties equally, and is responsible for the
affairs related to identifiers combined with offline. Its main functions include identifier
registration, identifier query, identifier generation, and identifier query. The multi-identifier
router (MIR) is mainly responsible for the addressing, forwarding, and mutual translation
functions of multiple identifier network packets. It supports the push transmission mode
of identity and IP identifiers and the pull transmission mode of content identifier and
service identifier.

Figure 3. Multi-identifier network architecture.

Identity is not limited to users but also includes the unique identification of network
communication physical entities (from now on referred to as users) such as devices, inter-
faces, applications, and business systems in the digital network world. It is the equivalent
of physical network entities in the digital network world. The identity of a physical entity
is unique in the digital network world, which is different from a username. A physical
entity can have different usernames in different systems.

The identity identifier is the core network identifier in the MIN, and all multi-identifier
routers need to support routing and forwarding of the identity identifier. Other types of net-
work identifiers will be associated with a particular identity identifier. In an unsupported
network domain, it can go back to the identity identifier for data forwarding. The hash
value of the real identity information of the network communication entity (such as ID
number, fingerprint, face, voiceprint, iris, and other biometric information, password) is
included in the signature field in the data packet. It carries the sender’s accurate identity
signature information and time stamps, realizes dynamic access control based on identity,
establishes a unified digital identity identifier and life cycle management for users and
other physical entities participating in network communications, and saves them in the
consortium blockchain of the MIS system.

After the communication entity is registered in the MIS, a unique identity is formed,
corresponding permissions are assigned according to its role identification, and fine-grained
permission management is carried out by monitoring its access behavior to realize the
management and control of dynamic permissions. The principle of the least authority
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is implemented for communication entities, and their authority is allocated reasonably
to ensure that each communication entity (including applications, services, users) can
only access the required information or resources. When it is necessary to access sensitive
resources, the identity recognition module will call other real identity information saved in
the MIS for secondary verification, such as SMS verification code, dynamic password, face
verification, to form access control and dynamic threat identification, privilege confirmation,
alarm, and blocking at the regional boundary. The information transferred by users in
the system will be recorded. The data package is highly bound with the user identity
information to realize the traceability of data and behaviors.

Figure 4. Separation of multi-identifier network management plane and data plane.

3.2. Encryption and Blockchain Protection

Identity authentication is based on Elliptic Curve Cryptography (ECC), rather than
RSA. In addition to the registration phase, the subsequent authentication phase does not
require the participation of a trusted third party, which ensures communication security and
reduces the overhead of computing and communication. Data transmitted in the network
will be protected by hash and asymmetric encryption at the packet level, rather than at
the channel level, to prevent sensitive information from being eavesdropped, intercepted,
or tampered with.

The nodes in the MIS consortium chain are divided into committee nodes, accounting
nodes, and ordinary user nodes. The committee nodes are elected by members who volun-
teer to maintain the consortium chain and have equal voting rights jointly. The bookkeeping
node is a node with the privilege to produce blocks voted by the committee nodes.

During user registration, the user will generate his public and private key pair, package
the public key and the real identity information signed by the private key, and submit it to
any blockchain node in the MIS system. The node will check the format of the registration
request and find whether the user information already exists in the local database to avoid
repeated registration. After that, this node will perform primary verification of the content
of the registration information, package it into blockchain transaction information and
submit it to the accounting node in the MIS consortium blockchain, and store the transaction
information in the transaction pool.
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We adopted the PoV consensus algorithm [33] to accelerate the process of consortium
blockchain consensus, as depicted in Figure 5. At the beginning of the blockchain consensus,
the accounting node will take out some transaction information from the transaction pool
to generate a pre-block, and send it to the committee node in the consortium chain to
request a signature. The committee node verifies the pre-block header and the content
of each transaction, and sends it back to the accounting node after signing. If the billing
node receives more than half of the signatures of the committee nodes within a given time
threshold, it will store the signature information in the block header and set the timestamp
to write this pre-block to the master of the consortium chain, and the pre-block becomes
an official block. Otherwise, the pre-block will be deleted; the transaction will be taken
out from the transaction pool again, and the pre-block will be generated and sent to all
committee nodes for verification and signature.

Figure 5. PoV consensus and block generation procedure.

When a user performs network data transmission, the user’s signature information
will be included in the data packet to record the user’s access path in the multi-identifier
network and realize the traceability of network security. When abnormal access is de-
tected, the registered identity information reserved by the user will be retrieved from the
consortium chain database, and the user will be warned or prohibited.

3.3. Trusted Computing Whitelist

Trustworthiness is the expectation that an entity can acquire the expected effect when
realizing a given goal. It should be salable, adaptive, and auto-configurable, especially for
the ubiquitous computing scenarios, such as Internet of Things and Internet of Vehicles [34].
We adopted the active immune trusted computing module (TCM) independently developed
by China [13] in the client host hardware to save the encryption keys used in the consensus
process of the blockchain nodes.

The private key is stored in the TCM chip and cannot be leaked and read. The public
key can be used everywhere to identify the node identity and for signature verification.
At the same time, all kinds of data generated by the node (such as blocks, transactions)
are signed using the signature algorithm provided by TCM, to protect the private data
such as encryption keys, and ensure data integrity, confidentiality, and security of the data
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through the transmission of the trusted chain. Identity authentication and encryption key
mechanisms ensure the credibility of the computing environment.

Whitelist is adopted for application identification, and protection, such as NFD,
PSYNC; only a few trusted applications are allowed to run in the current network system
to realize the supervision and protection of the whole life cycle of applications from startup,
loading, and operation, which reduces the load of the system and improves the availability
of the system, as shown in Figure 6. The application developers use their private key to
issue the application signatures and register them with the MIS, or the MIS trusted service
to provide the verification benchmark and establish the application white list database.
For applications on the whitelist, we conduct essential behavior analysis on their regular
operations, and establish the whitelist behavior rule base of the applications. When an
application starts, the hash measurement value of the application is obtained and compared
with the expected benchmark value taken from the trusted module (TCM) to complete the
integrity measurement. The execution of the application will be allowed only when the
application is integrity and has not been tampered with. At the same time, during the oper-
ation of the application, the running status of its key behaviors is monitored in real-time,
and the pre-established application behavior rule base is compared to detect abnormal
behaviors in time, and record their operations in the log, to trade off between security and
availability, and ensure the orderly operation of the application.

Figure 6. Trusted computing remote attestation and whitelisting.

At the same time, the security of TCMs needs to be guaranteed. [35] The feasibility
of trusted computing storage and computing environment can be confirmed remotely
through remote attestation Direct Anonymous Attestation (DAA) technology [14]. DAA
uses the Carmenisch–Lysyanskaya signature mechanism [36] to sign certificates of the
public key generated by the TCM to ensure the legitimacy of the TCM module. The TCM
module uses the DAA certificate to interact with the DAA verifier, thereby identifying and
distinguishing the compromised TCM module and ensuring the security of the trusted root.

4. Dynamic Defense

Static defense methods, such as identity authentication, data signatures, blockchain,
and trusted computing, provide sufficient external barriers for network security to obtain
balanced network confidentiality, integrity, and availability and hence protecting network
nodes’ security. They can effectively prevent and trace security problems. At the same time,
nodes in the network are not simply isolated. They may face group network problems and
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new types of severe or unknown attacks. Therefore, it is necessary to build an effective dy-
namic defense system. The measures taken into consideration by DDESS include situation
awareness and network security vaccine training and distribution.

4.1. Situation Awareness

Network situation awareness refers to the acquisition, understanding, and display
of security elements that can bring about the network situation changes in a large-scale
network environment, as well as the prediction of network development trends [37,38].
It is divided into network security situational extraction, understanding, and prediction.

When a network individual conducts a static defense, numerous original log files
and backbone network traffic data will be generated, including user usage logs and alarm
information, which provides a wealth of training materials for dynamic defense situation
awareness of network security.

DDESS builds a decision tree containing all or part of the rules in the security policy
rule set on the log file, which parses, filters, omissions, and normalizes the entries in the
log file. Firstly, the raw data generated by the network monitoring equipment and manage-
ment system are preprocessed, including data cleaning, noise reduction, dimensionality
reduction, standardized merging or conversion, and data verification, removing duplicate
and redundant information, merging similar information, and correcting error information,
in order to obtain standardized asset data sets, threat data sets, and vulnerability data
sets. Then, it carries out data correlation analysis and uses expert knowledge to model
network activities and their regulations and characteristics, and identifies the existence and
forms of various individuals in the network, and further identifies three different behaviors:
malicious attack behavior, abnormal risk behavior (including weak password, account
risk login, remote control), and normal access behavior. Behaviors that do not conform to
the behavior baseline will trigger behavior alarms to detect risks in time and better find
hidden attacks.

Based on the identified attack activities and their characteristics, the attacker’s inten-
tion is inferred by further analyzing the semantics of these attack activities and the possible
correlation among them. Its main tasks include identifying the source and type of these
attack activities and judging the attacker’s capability, opportunity, and the possibility of
conducting a successful attack. Based on the network attack chain, network traffic abnor-
malities are found, such as external attacks, internal malicious scanning, ARP spoofing
attack, and internal illegal accesses. The attacker’s intentions can be mainly analyzed
from the attack’s behavior and target. The attack behavior prediction analyzes the logical
relationship between attack behaviors and infers possible changes. In addition, we need
to consider the function and importance of network assets to infer the attacker’s attack
intention and source. DDESS situational understanding draws portraits of user behaviors,
including individuals and groups. Moreover, it constructs the network attack knowledge
graph and draws the security graph from different perspectives, such as external attacks,
internal horizontal penetration, and network data leakage. Therefore, DDESS can under-
stand the current overall network security situation, detect and discover security events,
and analyze and evaluate the network vulnerabilities and the impact of attacks.

DDESS first checks the network’s security status to achieve network security situation
awareness. Then, it understands in detail the various assets and participants within the
networks and their potential vulnerabilities to attacks. It finally draws a graph of the
network assets and the corresponding security vulnerabilities. After comprehensively
acquiring network threat status data, convolutional neural networks (CNN) [39] are used
to evaluate the potential network security risks and the behavioral patterns of different
nodes. The resulting infliction of existing attack behaviors is based on the current network
status and the identified attack activities, along with the vulnerabilities of network assets,
as shown in Algorithm 1.
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Algorithm 1 Training of security situational project model
Input:

The total number of layers L, the number of neurons in each hidden layer and output layer,
activation function f , loss function, iteration step η,
maximum iteration times MAX and stop iteration threshold ε

Output:
linear relation coefficient matrix ω and bias vector b of each hidden layer and output layer.

1: Input the risk vector dataset R = {r1, r2, r3, · · · , rn}.
2: for m=1 to L do
3: Extract the m−layer features δm with a convolution kernel

δm(r)← f
(
∑ ωmδm−1 + bm

)
4: Reduce network scale with max pooling:

δm(r) = maxpooling(om−1(r) + bm)
5: end for
6: update the weight ω with backpropagation:
7: for l = L to 2 do
8: Compute δl based on δl+1 and ωl+1 and zl

9: Compute the gradient $ωl+1 and $bl

10: Update ωl and bl in lth layer:

ωl ← ωl − η
m
∑

i=1
δi,l(ai,l−1)T

bl ← bl − η
m
∑

i=1
δi,l

11: if Δω < ε or L > MAX then
12: break;
13: end if
14: end for

The overall time complexity of Algorithm 1 is the cumulative time complexity of all
convolution layers

Time : O

(
D

∑
l=1

m2
l · f 2

l · Cl−1 · Cl

)
, (1)

and the spatial complexity is

Space : O

(
D

∑
l=1

f 2
l · Cl−1 · Cl +

D

∑
l=1

m2
l · Cl

)
(2)

where D is the network depth, fl is the filter size, Cl is the filter number and the output
channels number of layer l, and Cl−1 also represents the input channels number of layer l.
ml is the size of the output feature map, and ml = �(nl − fl + 2 ∗ pl)/sl�+ 1, where nl is
the size of the input matrix, pl is the padding, and sl is the stride. In addition, we eliminate
gradient vanishing problem with batch normalization [40] and introduce max pooling layer
and 1× 1 convolution kernel [41] for dimensionality reduction to reduce both the time and
space complexity. DDESS can predict the future security status and the changing trend of
the network and takes effective defensive measures.

4.2. Network Security Vaccine Training and Herd Immunity

The active immune trusted computing technology adopted in static defense can
provide immune capabilities for network information systems. The vaccine culture used in
organisms usually selects pathogens with strong immunogenicity, loses toxicity through
biochemical inactivation or repeatedly immune iteration of animal cells, and retains
its immunogenicity.

Biological vaccines are usually injected into organisms to produce immunity. However,
network vaccines are different from biological vaccines in a way that they aim to provide a
real-time and automatic defense. While defending against attacks, such vaccines improve
the network’s resilience and elasticity to maintain its availability and thus return to a
normal state eventually. Therefore, the cultivation of network defense vaccines needs
to be carried out dynamically in the network environment. The network vaccine can be
described as:
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V : (antigen, srcaddr, destaddr, timestamp, protocol). (3)

The vaccine of network security’s immunity is a string extracted from the character-
istics of data packets transmitted over the network. Antibodies are the measures taken
in static defenses and the rules generated in dynamic defenses. During the matching
process of antigens and antibodies, the immune cells constantly defend against network
attacks, form clonal regeneration, and evolve into memory cells. The memory cells record
accurately the network intrusions that have occurred, and encapsulate them into a vaccine
cell after stamping them with a timestamp according to the vaccine format as shown in
Equation (3).

The encapsulated network security vaccine is transmitted to the vaccine defense center
of the adjacent network to be finally distributed among the network nodes. The selection
of such a network considers the local routing table, routing, and forwarding. When the
antigenic match with the vaccine happens, it becomes activated and can detect network
attacks. At the same time, network nodes can also be used for training and cultivating
network vaccines as described by Equation (3). When new types of attacks are discovered,
these nodes will continue training and learning to enhance the vitality of antibodies in
vaccine cells to improve the autoimmunity and achieve adversarial collaboration.

5. Experiments

We evaluated the overall defense effectiveness, and intrusion detection performance
of DDESS compared with related state-of-the-art schemes in this section.

5.1. Overall Performance Evaluation

Experiments were conducted on a testbed using the topology presented in Figure 7.
The router pkusz11 plays the role of the edge router that is connected to the Internet.
Experiments and simulations are based on the published KDD-99 dataset that consists of
5 million records [42]. These records are totally made up of 41 attributes and one attack
category field which marks all observations as either “normal” or “attacked” with one
of the following attacks: Denial of Service (DoS), Remote to Local (R2L), User to Root
(U2R), and Probing/surveillance. We carry out attack experiments on DDESS combined
with the multi-identifier network. The selected attack methods are conventional under IP
networks, such as target detection, attack injection, ARP attacks, and so on. Experiments’
results are demonstrated in Table 1, where � indicates that the attack was successful, while
� represents an attack failure.

Figure 7. DDESS performance evaluation topology.
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Table 1. Attack results of experiments.

Attack Phase Description IP-IP IP-MIN

Target detection

Host discovery � �

ping scan � �

OS recognition System fingerprints obtained Host non-survival

Port scan All ports probed The host is alive,
but no port detected

Attack injection
Trojan

TCP trojan � �

UDP trojan � �

ICMP trojan � �

One-sentence shell � �

Action ARP Attack
Information sniffing Target cannot be sniffed

Network disconnection attack Target not affected

MIN can effectively defend against target detection attacks such as host discovery,
ping scanning, and operating system recognition. It can also prevent Trojan attack injections
and one-sentence shell attacks. Attacks within the action phase were divided into ARP
disconnection and ARP spoofing. We used “arpspoof” to send fake MAC-IP binding
packets, hence poisoning the gateway’s ARP cache. The attacker can therefore disconnect
the target network or monitor its traffic. For the ARP disconnection attack, ARP spoofing
was first initiated with an arpspoof tool to change the IP forwarding path from one target
host to another within the LAN. Both types of ARP attacks were successfully blocked in
MIN as shown in Table 1.

5.2. Performance of Dynamic Defense

We compared the intrusion detection performance of DDESS on the KDD-99 dataset [42]
with that of state-of-the-art machine learning based methods with 10-fold cross-validation.
Our comparison references included Gradient Boosted Machine (GBM) [43], k-Nearest
Neighbor (kNN) [44], Classification and Regression Trees (CART) [45], Multi-Layer Percep-
tron (MLP) [46], and AdaBoost [47]. The evaluation results are depicted in Figure 8.
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Figure 8. Performance comparison of intrusion detection.
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It was observed that, compared with other algorithms, GBM, MLP, and CHAT have
better performance in accuracy, reaching 99.81%, 99.79%, and 99.71%, respectively. In order
to trade-off the precision rate and recall rate, F-Measure was usually applied [48],

F-Measure =
(1 + β2)P× R

β2P + R
, (4)

where P means the precision rate and R represents the recall rate. Here, we chose β2 = 1
because we attached importance of both P and R. GBM still achieved the best F-Measure
value (99.71%) across all the algorithms, whereas kNN obtains the worst one (99.35%).

As far as attack detection rate (ADR) is concerned, algorithms which are adaptive to
continuous attacks have better effects. In Figure 8, GBM (99.56%) and CART (99.51%) can
outperform other methods in ADR.

In addition, DDESS can acquire the best false alarm rate (0.118%) because the deep
neural networks can reduce the opportunities for false positives. A low false alarm rate
and low latency are important for time-sensitive networks (TSN) of Internet of Things
(IoT) [31]. Therefore, in order to better monitor network security, we proposed DDESS to
comprehensively measure these indicators and come to trade-offs.

We further evaluated the prediction performance of dynamic defense and compared it
with TSA-AdaBoost [49], a situation awareness algorithm based on the AdaBoost machine
learning method. DDESS adopts the batch normalization [40] to reduce the influence of
gradient vanishing problem, and max-pooling layer and 1× 1 convolutional kernel [41] for
dimensionality reduction. Therefore, the overall fitness of the proposed DDESS is better
than TSA-AdaBoost for the prediction of test samples, as shown in Figure 9a. We select
mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage
error (MAPE) as the prediction evaluation metrics to evaluate the proposed prediction
model, where

MAE =
1
N

N

∑
i=1

|ŷi − yi| (5)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (6)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣, (7)

where ŷi means the prediction situation value. As shown in Figure 9b, the MAE and RMSE
values of DDESS are 0.0306 and 0.035, respectively, while these of TSA-AdaBoost are 0.0417
and 0.0486, respectively. Compared with TSA AdaBoost, DDESS has less overall error
precision in predicting network security situation value. In addition, the MAPE value of
DDESS and TSA-AdaBoost is 6.67% and 8.95%, respectively, which means that DDESS has
better accuracy than TSA AdaBoost.

Let us analyze forecast results in Figure 9a from a network administrators’ perspective.
Although the situational value on day 3 is relatively low, it is predicted that the network
situational value will have a higher tendency on the next day (i.e., day 4), which will
warn network administrators about the occurrence of network attacks. At the same time,
based on the 11th-day forecast trend, this is likely to be the end phase of network attacks,
which will make administrators pay special attention to the network behavior logs for the
next two days to ensure that they are not deleted or destroyed by attackers. On the other
hand, the forecasts on the 12th and 13th show that network attacks continue, and some
vulnerabilities probably exist in the network system.
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Figure 9. Prediction performance comparison on situation awareness.

DDESS can train the attack model and make corresponding portraits of the attack
and the attacker without requiring additional hardware, such as FPGA. To perceive the
motivation behind the attack, DDESS will classify and mark the attack behaviors of the
same source. This helps learn and predict potential attacks behaviors from the same source
in the future.

5.3. Competition and Trial

The multi-identifier network system (MIN) combined with DDESS technology has
withstood the “Network Security Challenge Competition” held by the Purple Mountain
Laboratory [50]. Forty-eight teams continuously carried out remote online high-intensity
network attacks for 72 h. During this period, the cumulative number of attacks reached
3.58 million. More precisely, the MIN was one of the few network security systems any
team has not broken through. It also successfully prevented most competition-related
qualification attacks such as Linux privilege escalation, virtual machine escape, session
forging and hijacking, and simulation PWN. The DDESS-based system has been proved to
be more robust when compared with traditional commercial workarounds.

6. Conclusions and Future Work

To overcome the current internet security problems, we propose a double defense
strategy with endogenous safety and security (DDESS) based on the MIN system. DDESS
provides both static and dynamic defense strategies against different network attacks.
The proposed system preserves network security using static defensive measures such as
identity verification, encryption protection, and trusted computing. It also uses dynamic
defensive measures like situation awareness and vaccine cultivation and distribution.
Experiments and performance analysis showed that DDESS provides sufficient availability
and robust security compared to other existing network defense solutions. In the future
work, we plan to introduce edge computing technology to reduce the pressure of central
servers and better adapt to the network development, such as 6G, Internet of things (IoT),
etc. In addition, we will study the intrusion detection algorithms, and put forward more
effective strategies for network security detection and prediction in our future work.
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The following abbreviations are used in this manuscript:
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DAA Direct Anonymous Attestation
TCM Trusted Computing Module
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ADR Attack Detection Rate
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Abstract: Deep learning has become a predominant method for solving data analysis problems in
virtually all fields of science and engineering. The increasing complexity and the large volume of data
collected by diverse sensor systems have spurred the development of deep learning methods and
have fundamentally transformed the way the data are acquired, processed, analyzed, and interpreted.
With the rapid development of deep learning technology and its ever-increasing range of successful
applications across diverse sensor systems, there is an urgent need to provide a comprehensive inves-
tigation of deep learning in this domain from a holistic view. This survey paper aims to contribute
to this by systematically investigating deep learning models/methods and their applications across
diverse sensor systems. It also provides a comprehensive summary of deep learning implementation
tips and links to tutorials, open-source codes, and pretrained models, which can serve as an excellent
self-contained reference for deep learning practitioners and those seeking to innovate deep learning
in this space. In addition, this paper provides insights into research topics in diverse sensor systems
where deep learning has not yet been well-developed, and highlights challenges and future oppor-
tunities. This survey serves as a catalyst to accelerate the application and transformation of deep
learning in diverse sensor systems.

Keywords: deep learning; computer vision; biomedical imaging; biometrics; remote sensing;
cybersecurity; Internet of Things; natural language processing; audio and speech processing; control
system and robotics; information system; food; agriculture; chemistry

1. Introduction

In recent years, driven by the rapid increase in available data and computational
resources, deep learning has achieved extraordinary advances and almost become the de-
facto standard approach in virtually all fields of science and engineering. Essentially, deep
learning is a part of the field of machine learning, a subfield of artificial intelligence (AI)
concerned with learning data representations using computational methods. In traditional
machine learning algorithms, manually choosing features and a classifier is needed, while in
a deep learning algorithm, the features are extracted automatically by the algorithm through
learning from its own errors. It is this automatic feature extraction that distinguishes deep
learning from the field of machine learning.

Neural networks make up the backbone of deep learning algorithms. A neural net-
work aims to learn nonlinear maps between inputs and outputs through its elementary
computational cells (also called “neurons”). It is the number of layers (also called depth)
of neural networks that distinguishes a shallow network from a Deep Neural Network
(DNN). Typically, a network must have more than three layers to be considered a DNN.
Deep networks learn representations of the data in a hierarchical manner to simulate the
mechanism of the human brain in extracting information from given data.

The increasing complexity and the large volume of data collected by diverse sensor
systems have brought about significant developments in deep learning, which have funda-
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mentally transformed the way the data are acquired, processed, analyzed, and interpreted.
Therefore, in this paper, we provide a comprehensive investigation of deep learning in
diverse intelligent sensor based systems, covering fundamentals of deep learning models
and methods, deep learning techniques for fundamental tasks in individual sensor systems,
insights of reformulation of these fundamental tasks for broader applications in diverse
intelligent sensor based systems, and challenges of breaking through the bottleneck of
current deep learning approaches in exploring the full potential of deep learning. We
searched Google Scholar (GS) and Web of Science (WOS) with the keywords deep learning
(DL) and sensor. This resulted in 16,100 articles from 2020. We further selected, based on
the top journals and conferences, around 150 most relevant papers for careful inspection,
and traced some further relevant references from there. From these, we observed that
existing relevant surveys [1–4] have one or more of the following limitations: (1) touching
only a small subset of topics in individual domains, (2) lacking an overview of common
techniques/algorithms from different domains, and (3) lacking a holistic view based on the
individual domains of diverse intelligent sensor based systems. This survey aims to be a
catalyst for accelerating the application and transformation of deep learning across diverse
intelligent sensor based systems.

The contributions of this paper can be summarized as follows.

• This is the first paper to provide a comprehensive investigation of deep learning
in diverse sensor systems from the perspective, in a holistic view, of different data
modalities across different intelligent sensor based systems and application domains.

• This paper presents the fundamentals of deep learning and the most widely used deep
learning models and methods in a concise and high-level way, which would be very
useful for people to get a quick start in the field.

• This paper provides a comprehensive summary of deep learning implementation tips
and links to tutorials, open-source codes, and pretrained models, which can serve as an
excellent self-contained reference for deep learning practitioners and researchers. This
is a unique feature that makes it distinguishable from existing literature survey papers.

• This paper identifies the fundamental tasks in individual intelligent sensor based
systems and provides insights to reformulation of these task for broader applications
for those seeking to innovate deep learning in diverse sensor systems.

• This paper provides insights into research topics where deep learning has not yet been
well-developed, and highlights the challenges and future directions of deep learning
in diverse intelligent sensor based systems.

2. Deep Learning Basics

2.1. History of Deep Neural Networks

The origin of DNNs can be traced back to 1943, when McCulloch and Pitts proposed
the first artificial neural network [5]. Since then, deep learning has grown gradually and
achieved a few significant milestones in its development. One of them worth mentioning
is Rosenblatt’s “perceptron” introduced in 1958. It demonstrated that a perceptron will
converge when what they are trying to learn can be represented [6]. However, such a
model has obvious limitations, and multilayer perceptrons are required by complex tasks,
but at that time, it was not clear how to train these models. Subsequently, deep learning
encountered its first winter.

Until 1985, Hinton et al. proposed the back-propagation algorithm, which has greatly
stimulated the development of this field [7]. At almost the same period, the “neocogitron”
which inspired the Convolutional Neural Networks (CNNs), the Recurrent Neural Net-
works (RNNs), and the DNNs were proposed [8–10]. However, due to the limitation of
hardware, these models were hard to use for handling large data, and thus the development
of deep learning was trapped again.

By 2006, Hinton and others solved the training problem of DNNs by using a layer-
wise pretraining framework, which greatly revitalized the field [11,12]. At the same time,
algorithms for training deep AutoEncoders (AEs), and other deep architectures were
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proposed [13], which allowed deep learning to develop at an exponential rate. From then,
a variety of deep learning methods increasingly emerged, including Deep Belief Networks
(DBNs), Restricted Boltzmann Machines (RBMs), CNNs, Generative Adversarial Networks
(GANs), Graph Neural Networks (GNNs), and so on.

In recent years, two astounding deep learning applications made a global splash and
shocked the world. One is AlphaGo, which defeated the world champion Go players using
deep learning with the support of abundant hardware resources (https://www.deepmind.
com/research/highlighted-research/alphago accessed on 2 November 2022). Another
is AlphaFold, which solved the 50-year-old challenging protein folding problem. These
further stimulated the rapid development of deep learning in various domains. Nowadays,
with the advancements in Graphics Processing Units (GPUs) and High-Performance Com-
puting (HPC), deep learning has become one of the most efficient tools with outstanding
performance in almost every domain.

2.2. Fundamentals of Deep Neural Networks

DNNs try to mimic the way biological neurons send signals to each other through
numerous neurons (also called nodes). Generally, the architecture of a DNN consists of
multiple neuron layers including an input layer, an output layer, and one or many hidden
layers [14] (Figure 1). Each neuron is connected to another neuron to pass information. The
input to a DNN can be numbers, characters, audios, images, etc., which are broken down
into bits of binary data that a computer can process. The output can be continuous values,
binary values, or categorical values, depending on the tasks. A DNN relies on training data
to learn and improve its accuracy over time. During the learning, if it cannot accurately
recognize a particular pattern for a given task, an algorithm would adjust its weights until
it determines the correct mathematical manipulation to fully process the data [13].

Input Data Deep Neural Network Outputs

Input layer Output layerMultiple hidden layers 
…Numbers

Characters

Audios

Images

Videos

etc.

Continuous 

values

Binary values

Categorical 

values

etc.

Figure 1. Diagram of a DNN.

2.2.1. Neuron Perception

A neuron multiplies each of its inputs by an associated weight and then sums these
weighted inputs and adds a predetermined number called the bias (Figure 2). The neuron is
activated if its output is above a specified threshold and will pass its output to the next layer
of the DNN. That is, in a DNN, neurons in each layer get inputs from the previous layer,
learn representations, and then pass the information to the next layer. Each successive layer
of a DNN uses the output of the previous layer for its input. This way, a DNN produces an
output at the end.
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Inputs

Weights Sum & Bias

Activation
Output
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Figure 2. Diagram of the perception of a neuron.

2.2.2. Activation Functions

The activation function is an important aspect of a DNN. It defines the output of
a node given inputs and is mainly used to generate a nonlinear relationships between
the input and the output. Currently, there are 10 types of nonlinear activation functions
(Table 1). Here, we elaborate on four most popular activation functions, namely sigmoid,
tanh, ReLU, and leaky ReLu, describe their application scenarios, and analyze their pros
and cons.

Table 1. Ten types of nonlinear activation functions.

Name Definition

Sigmoid f (x) = 1
1+e−x

Tanh f (x) = ex−e−x

ex+e−x

ReLU f (x) = max(0, x)
LeakyReLU f (x) = max(0.1x, x)
Parametric ReLU f (x) = max(ax, x)

ELU
{

x for x ≥ 0
α(ex − 1) for x < 0

Probability sig(x) = 1
1+e−x

Softmax softmax(xi) =
exp(xi)

∑j exp(xj)

Swish σ(x) = x
1+e−x

GELU f (x) = 0.5x
(

1 + tanh
[√

2
π (x + ax3)

])
with a = 0.044715

The sigmoid activation function is one of the most widely used activation functions.
It takes an arbitrary value as input and outputs a value between 0 and 1. The larger the
input, the closer the output value is to 1. This function is differentiable and provides a
smooth gradient, and is suitable for tasks that require predicting probabilities as outputs.
Its limitation is that it stops the DNN from learning and makes the DNN suffer from the
vanishing gradient problem as the gradient value approaches zero.

The tanh activation function also has an S-shape like the sigmoid function, but with the
difference in output range of −1 to 1. That is, with tanh, the larger the input, the closer the
output value is to 1. This function is widely used for hidden layers of a DNN, because it can
help to center the data and make the learning for the next layer easier. However, it also faces
the same problem of vanishing gradients as the sigmoid function. However, in practice, the
tanh activation function is more preferred than sigmoid due to its zero-centered nature.

The ReLU activation function, which stands for Rectified Linear Unit, is another most
important and popular activation function. Its main feature is that it does not activate
all the nodes at the same time, and only the nodes with an output larger than 0 will be
activated. Therefore, this function is computationally efficient, compared to the sigmoid
and tanh activation functions. In addition, it facilitates the convergence of gradient descent
towards the global minimum of the loss function. Its limitation is that it may cause possible
dead nodes due to the negative side of the curve making the gradient value zero.
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Therefore, the leaky ReLU activation function, which is an improvement of ReLU,
has been proposed to solve the dying ReLU problem. It has a small positive slope for the
negative side, which enables back-propagation for negative inputs. This way, the gradient
of the negative side of the curve will be a nonzero value, and the problem of dead nodes is
solved. The limitation of this activation function is that it makes the learning of the DNN
time-consuming.

2.2.3. Stochastic Gradient Descent (SGD)

The SGD is an efficient approach for fitting linear classifiers or regressors under
convex loss functions, especially in high-dimensional optimization. Therefore, it has
been widely and successfully used as an important optimization method for training a
DNN [7,14–16]. It has the advantages of high efficiency and ease of implementation, but
also the disadvantages of requiring some hyperparameters such as the regularization
parameter and the number of iterations, and being sensitive to feature scaling.

2.2.4. Back-Propagation (BP)

The BP, which is short for “backward propagation of errors”, is the most prominent
algorithm to train a DNN. Strictly, it refers only to the algorithm for computing the gradient,
not how to use the gradient. However, loosely and generally, it refers to using the mean
squared error and the SGD to fine-tune the weights of a DNN. Specifically, it calculates the
gradient of a loss function with respect to all the weights in the DNN by the chain rule, and
employs the SGD to decide how to use the gradient to properly tune the weights. A DNN’s
weights are iteratively tuned until the desired output is achieved.

2.3. Learning Scenarios of Deep Learning
2.3.1. Supervised Learning

Supervised learning is a learning paradigm that uses a set of labeled examples as
training data and makes predictions for all unseen points [17]. Supervised algorithms are
expected to learn the mapping between pairs of inputs and output values, also called anno-
tations or labels. This scenario includes two types of problem: classification and regression.

2.3.2. Semi-Supervised Learning

Semi-Supervised learning (SSL) aims to learn predictive models that make use of both
labeled and unlabeled data. SSL provides a feasible solution in the setting where unlabeled
data are easily accessible, but labels are difficult to obtain [18]. By exploring the pattern in
additional unlabeled data, SSL methods can improve the learning performance. Deep SSL
has dominated this research area in recent years [19–21].

2.3.3. Unsupervised Learning

In contrast to supervised learning, unsupervised learning constructs models where
only unlabeled data are available [22]. The key of unsupervised methods is to discover
hidden patterns and discriminative feature representations without human intervention.
Clustering and dimensionality reduction are examples of unsupervised learning problems.

2.3.4. Reinforcement Learning

Different from supervised learning, reinforcement learning refers to the learning
scenario where the learner receives rewards after a course of actions by interacting with
the environment, and then determines the optimal actions by maximizing the rewards to
achieve the goal [17]. With different states of the environment, the problem can be divided
into two settings: the planning problem and learning problem.
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2.4. Training Strategy and Performance
2.4.1. Learning Rate

Learning rate is one of the most important hyperparameters when configuring a neural
network. It controls how much a model is changed based on the estimated error each
time the model weights are updated [23]. Choosing an appropriate learning rate is very
challenging, because a very small value may cause the training process to be too long and
get stuck, while a very large value may result in learning a suboptimal set of weights or
with an unstable training process. A typical solution to choose the appropriate learning rate
is to reduce the learning rate during training. Currently, there are three kinds of popular
ways to achieve this: constant, factored, and exponential decay.

2.4.2. Weight Decay

Weight decay is a regularization technique applied to the weights of a neural network
for shrinking the weights during back-propagation. It works by adding a penalty term,
which is usually the L2 norm of the weights, to the loss function. It can help to prevent
overfitting and avoid exploding gradient.

2.4.3. Dropout

Dropout is widely used to prevent overfitting by randomly dropping out neural units
in a neural network. It is a strong regularization to prevent complex co-adaptations on
training data [24]. More technically, at each training stage, individual nodes are either
dropped out of the network with probability 1− p or kept with probability p, leading to
a reduced network. Dropout forces a neural network to learn more robust features and
roughly doubles the number of iterations required to converge, but the training time for
each epoch is less.

2.4.4. Early Stopping

Early stopping is a training strategy used to reduce overfitting without compromising
on model accuracy. The underlying idea behind early stopping is to stop training before a
model starts to overfit. There are mainly three strategies for early stopping: training models
on a preset number of epochs, stop when the loss function update becomes very small, and
observing the changes of training and validation errors with the number of epochs.

2.4.5. Batch Normalization

Batch normalization is a technique to standardize the inputs to a neural network for
stabilizing the learning process and reducing the number of training epochs required to
train deep networks [25]. With batch normalization, a network can use higher learning
rates, achieve better results, and the training can be faster. It also makes activation functions
viable by regulating the inputs to them, and adds noise which reduces overfitting with a
regularization effect.

2.4.6. Data Augmentation

Data augmentation refers to a set of techniques to artificially increase the amount
of training data by generating new data from existing data. It is a low-cost and effec-
tive method to improve the performance and accuracy of deep learning models in data-
constrained environments. For visual data, alterations such as cropping, rotating, scaling,
flipping, contrast changing, adding noise are effective and popular data augmentation
methods. For other kinds of data, data augmentation is not as popular as for visual data,
due to the complexity of the data. Some advanced models such as GANs are popular for
data augmentation [26–28].

348



Sensors 2023, 23, 62

2.5. Deep Learning Platforms and Resources
2.5.1. Deep Learning Platforms

The two currently most renowned end-to-end open source platforms for deep learning
are TensorFlow [29] and PyTorch [30]. They provide comprehensive and flexible ecosystems
of tools, libraries, and community resources that let engineers and researchers easily build
and deploy deep learning powered applications.

TensorFlow (https://www.tensorflow.org/ accessed on 2 November 2022) is devel-
oped by researchers and engineers at Google and was released in 2015. It is a symbolic
math library and is best suited for data flow programming across a wide variety of tasks. It
provides multiple abstraction levels for building and training a DNN. In addition, it has
adopted Keras (https://keras.io/ accessed on 2 November 2022), which is a functional
API that extends TensorFlow and allows users to easily code some high-level functional
sections. It provides system-specific functionality such as pipelining, estimators, and eager
execution, and supports various topologies with different combinations of inputs, output,
and layers.

PyTorch (https://pytorch.org/ accessed on 2 November 2022) is based on Torch and
is relatively new compared to TensorFlow. It is developed by researchers at Facebook and
was released in 2017. It is well known for its simplicity, ease of use, flexibility, efficient
memory usage, and dynamic computational graphs. Due to its computation power and
native programming feeling, PyTorch is emerging as a winner. Furthermore, it has a
large community of developers and researchers who have built rich and powerful tools
and libraries to extend PyTorch. Some popular libraries include GPyTorch, BoTorch, and
Allen NLP.

Other frameworks include Caffe [31], Torch [32], DL4j (https://deeplearning4j.konduit.
ai/ accessed on 2 November 2022, Neon (https://github.com/NervanaSystems/neon ac-
cessed on 2 November 2022, Theano [33], MXNet [34], and CNTK [35]. The choice of which
platform is superior has always been controversial, but PyTorch and TensorFlow are undoubt-
edly the two most popular deep learning frameworks today.

2.5.2. Codes and Pretrained Models

While TensorFlow and PyTorch have provided official tutorials on how to use them,
topic-specific tutorials for different levels are beneficial and complementary. There are
many reputable courses online, for example, Practical Deep Learning for Coders (https://
course.fast.ai/ accessed on 2 November 2022), which provides practical programming skills
and an easy-to-use code library for most important deep learning techniques. Furthermore,
it is free and without ads, and is designed for learners with various background levels.
More useful courses can be found at the collection of AI Curriculum from top universities
(https://github.com/Machine-Learning-Tokyo/AI_Curriculum accessed on 2 November
2022). A comprehensive collection of deep learning books, videos, lectures, workshops,
datasets, tools, etc., is available on GitHub (https://github.com/ChristosChristofidis/
awesome-deep-learning accessed on 2 November 2022).

Open source code can greatly help to learn deep learning and improve the efficiency
of the learning. The distinguished Papers With Code website https://paperswithcode.
com/accessed on 2 November 2022) collects new research papers and their corresponding
open source codes, as well as the latest trending directions and state-of-the-art results across
many standard benchmarks.

As we will describe in later sections, utilizing pretrained models is an important
technique in transfer leaning and can greatly improve the efficiency of deep leaning. A
collection of pretrained models is available for both TensorFlow (https://github.com/
tensorflow/models accessed on 2 November 2022) and Pytorch (https://pytorch.org/
vision/stable/models.html accessed on 2 November 2022). The AI community Hugging
Face (https://huggingface.co/accessed on 2 November 2022) also provides a huge collec-
tion of pretrained models as well as the codes to train these models. The website Model
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Zoo (https://modelzoo.co/ accessed on 2 November 2022) is also a great place to discover
pretrained models and open source deep learning codes.

2.5.3. Computing Resources

Training deep learning models requires relatively high computing resources. Therefore,
open source web-based development environments that run entirely in the cloud are very
helpful for average researchers. The two currently popular web applications for interactive
computing are Jupyter Notebook (https://jupyter.org/ accessed on 2 November 2022)
and Colab (https://colab.research.google.com/ accessed on 2 November 2022). They
are very similar, and both require zero configuration, provide access to GPUs free of
charge, and support most popular machine learning libraries. They are easy to use and to
create documents that contain live code, equations, visualizations, and text. Furthermore,
their flexible interfaces allow users easily to configure, arrange, and share workflows for
team work.

Tracking and visualizing metrics such as loss and accuracy during the model training
is a vital process of training a DNN. A predominant toolkit for this purpose is Tensorboard
(https://www.tensorflow.org/tensorboard accessed on 2 November 2022), which works
for both TensorFlow and Pytorch. In addition to the above functions, it can visualize
model graphs, views histograms of weights, biases, or other tensors as they change over
time, project embeddings to a lower dimensional space, display images, text, and audio,
and so on.

3. Deep Learning Models and Methods

3.1. Convolutional Neural Network (CNN)
3.1.1. Introduction of CNN

The design of convolutional networks was inspired by biological processes where the
pattern of connections between neurons resembles the organization of the human visual
cortex: individual cortical neurons respond only to stimuli in the receptive fields, which
partially overlap to cover the entire field of view [36].

A typical CNN consists of several convolutional layers and pooling layers followed
by fully connected layers at the end (Figure 3). The input of a CNN is a tensor arranged in
four dimensions (N × h× w× c), where N denotes the number of inputs, h and w are the
height and width of the input, and c the depth or number of channels of the input (c = 3 for
an RGB image). The convolutional layer convolves the input with k kernels/filters of size
(kh × kw × kc), where kh < h, kw < w, and kc ≤ c, and generates and passes k feature maps
to the following layer. These kernels share the same parameters and form the base of local
connections. The convolution operation performs a dot product (usually the Frobenius
inner product) of the kernel with a small region of the layer’s input matrix each time, then
an activation function (usually the ReLU function) is applied. As the kernel slides along the
input matrix, a feature map is generated. The pooling layers reduce the dimension of the
feature maps by subsampling, thus decreasing the number of parameters for training. The
pooling operation usually takes the maximum (max pooling) or average value (average
pooling) of the local cluster of neurons (local pooling) or all neurons (global pooling) in the
feature map. The last few layers of a CNN are fully connected layers, as in a multilayer
perception that connect every neuron in one layer to every neuron in the following layer.
Through these layers, the CNN extracts high-level representations from the input data, and
its final layer outputs the probabilities that the instance belongs to each class.

Figure 3. A typical CNN architecture.
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CNNs improve the fully connected networks in three major aspects: (1) local connec-
tions, (2) weight sharing, and (3) subsampling. These mechanisms significantly reduce the
number of parameters, speed up convergence, and make CNN an outstanding algorithm in
the field of deep learning. CNNs are particularly popular in computer vision applications
since they fully exploit the two-dimensional structure of the input image data [37].

Since its first introduction, the CNN design has received widespread attention from
researchers, and various variant models and improvements have been proposed. Next,
we introduce several representative CNN models and their main contributions. Table 2
summarizes these models and following works.

Table 2. Summary of popular CNN architectures.

Model Usage Main Contribution Code Year

AlexNet [37] Recognition Depth is essential � 2012
VGG [38] Recognition Small kernel size � 2013
GoogLeNet/Inception [39] Recognition Inception module (sparse connections) � 2013
ZfNet [40] Visualisation Understanding network activity � 2014
ResNet [41] Recognition Residual module (skip connections) � 2015
DenseNet [42] Recognition Dense concatenation � 2017
UNet [43] Segmentation U-shaped encoder-decoder architecture � 2015
Faster R-CNN [44] Segmentation Region proposal network � 2015
Highway Networks [45] Recognition Cross-layer connection � 2015
YOLO [46] Detection High efficiency ‘only look once’ � 2016
Mask R-CNN [47] Segmentation Object mask � 2017
MobileNet [48] Recognition/Detection Depthwise separable convolutions � 2017
Pyramidal Net [49] Recognition Pyramidal structure � 2017
Xception [50] Recognition Extreme version of Inception � 2017
Inception-ResNet [51] Recognition Inception with residual connections � 2017
PolyNet [52] Training solution Optimize networks � 2017

3.1.2. AlexNet

AlexNet [37] consists of eight layers: five convolutional layers, some of which fol-
lowed by max-pooling layers, concatenated with three fully connected layers. It uses the
ReLU activation function, which shows improved training performance over tanh and
sigmoid which are prone to the vanishing gradient problem [53] (e.g., the derivative of
sigmoid becomes very small in the saturating region, and therefore, the updates to the
weights almost vanish). A dropout layer is used after every fully connected layer, reducing
overfitting. AlexNet was one of the first deep neural networks to push ImageNet classifica-
tion accuracy up by a significant amount (a top five accuracy of 80.2%) in comparison to
traditional methods. The depth of the model was essential for its high performance, and
while computationally expensive, training was made feasible by the utilization of GPUs.

3.1.3. VGG

VGG [39] improves over AlexNet by replacing large size kernels (11 and 5 in the first
and second convolutional layer, respectively) with multiple 3× 3 kernels one after another.
The idea behind this is that with a given receptive field, stacking multiple kernels of smaller
size is better than using one kernel of larger size. This is because multiple nonlinear layers
increase the depth of the network, which enables it to learn more complex features at a
lower cost. In addition, the 3× 3 kernels help retain finer representations of the input.
In VGG-D, blocks with the same kernel size are applied multiple times to extract more
complex and representative features. This concept of blocks or modules became a common
theme in the networks after VGG. It achieved top five accuracy of 91.2% on ImageNet.

3.1.4. GoogLeNet (Inception)

GoogLeNet [38] introduces the inception module to form a sparse architecture rather
than the previous dense connection architecture to reduce the computation requirement of
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training deep networks such as VGG. It builds on the idea that most of the activations in a
deep network are either unnecessary or redundant because of correlations between them.
Therefore, the most efficient architecture of a deep network will have a sparse connection
between the activations, rather than a dense connection architecture. Thus, the inception
module (Figure 4) approximates a sparse CNN with a normal dense construction. Since
only a few neurons are effective, the width and number of the convolutional filters of a
particular kernel size is kept small. Convolutions of different sizes are used to capture
features at varied scales (5× 5, 3× 3, 1× 1). A bottleneck layer (1× 1 convolutions) is
introduced for massive reduction of the computational cost. All these changes allow the
network to have a large width and depth. GoogLeNet is built on top of the inception blocks
and it replaces the fully-connected layers at the end with a simple global average pooling
which averages out the channel values across the 2D feature map. This drastically reduces
the total number of parameters. It achieves 93.3% top five accuracy on ImageNet and is
much faster to train than VGG.

Figure 4. The inception module in GoogLeNet.

3.1.5. ResNet

ResNet [41] was proposed to solve the vanishing gradient problem [54] and degra-
dation problem. The vanishing gradient prevents the update of the weights and hinders
convergence from the beginning due to the increased depth. The degradation problem
refers to the phenomenon that as the network depth increases, accuracy gets saturated and
then degrades rapidly (this is not caused by overfitting but adding more layers leads to
higher training error) [41]. Degradation of training accuracy indicates that not all systems
are similarly easy to optimize. Hence, the residual learning framework is designed to recast
the original mapping H(x) into a residual mapping which is easier to optimize than the
original mapping. The residual module (Figure 5) creates a shortcut connection between
the input and output to the module, implying an identity mapping, thus allowing the
stacked nonlinear layers to fit a residual mapping G(x) := H(x)− x. With these shortcuts,
the residual module helps to build deeper neural networks as large as a network depth of
152. In addition, ResNet adopts a global average pooling followed by the classification layer
as in GoogLeNet. It achieves better accuracy (95.51% top five accuracy with ResNet-152)
than VGGNet and GoogLeNet while being computationally more efficient than VGGNet.

Figure 5. Illustration of a residual learning module.

3.1.6. DenseNet

DenseNet [42] is one of the new discoveries in neural networks for visual object
recognition. DenseNet is quite similar to ResNet but with some fundamental differences:
ResNet uses an additive method to merge the previous layer (identity) with the future

352



Sensors 2023, 23, 62

layer, whereas DenseNet concatenates the output of the previous layer with the future
layer. For ResNet, the identity shortcut that stabilizes training also limits its representation
capacity, while DenseNet has a higher capacity with multilayer feature concatenation.
In DenseNet, each layer obtains additional inputs from all preceding layers and passes
on its own feature maps to all subsequent layers (Figure 6). With concatenation, each
layer is receiving collective knowledge from all preceding layers. However, the dense
concatenation requires higher GPU memory and more training time.

Figure 6. DenseNet block vs. ResNet block.

3.1.7. UNet

UNet [43] is an architecture originally developed for biomedical image segmentation
and is now one of the most popular approaches in semantic segmentation tasks. UNet
is a U-shaped encoder-decoder network architecture consisting of four encoder blocks
and four decoder blocks that are connected via a bridge (Figure 7). The encoder network
(contracting path) acts as the feature extractor and learns an abstract representation of the
input image through a sequence of the encoder blocks. It halves the spatial dimensions
and doubles the number of filters at each encoder block. The decoder network takes the
abstract representation and generates a semantic segmentation mask. It doubles the spatial
dimensions and half the number of feature channels.

Figure 7. UNet architecture.

3.1.8. Mask R-CNN

Mask Region-based CNN (mask R-CNN) [47] is the state-of-the-art in terms of image
segmentation. It detects objects in an image and generates a high-quality segmentation
mask for each instance. Mask R-CNN can deal with two types of image segmentation:
semantic segmentation separates the subjects of the image from the background with-
out differentiating object instances; and instance segmentation accentuates the subjects
by detecting all objects in the image while segmenting each instance. The R-CNN is a
type of model that utilizes bounding boxes across the object regions and then evaluates
CNNs independently on all the Regions of Interest (RoI) to classify multiple image regions
into the proposed classes. An improved version of R-CNN is Fast R-CNN [55] which
extracts features using RoI Pooling from each candidate box and performs classification
and bounding-box regression. Faster R-CNN [44] was then designed to add the attention
mechanism with a region proposal network to the Fast R-CNN architecture. Mask R-CNN
is an extension of Faster R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recognition (Figure 8). It outputs a class
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label, a bounding-box offset, and the object mask, where the mask output requires the
extraction of a fine spatial layout of an object. The key element of Mask R-CNN is the pixel-
to-pixel alignment, which is the main missing piece of Fast/Faster R-CNN. Mask R-CNN
is simple to implement and train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally, the mask branch only adds a
small computational overhead, enabling a fast system and rapid experimentation.

Figure 8. Mask R-CNN model.

3.1.9. YOLO

YOLO [46] is a popular model for real-time object detection, which concerns what and
where objects are inside a given image. The algorithm applies a single neural network to
the full image, and then divides the image into regions and predicts bounding boxes and
probabilities for each region. These bounding boxes are weighted by the predicted proba-
bilities. YOLO is popular because it achieves high accuracy while also being able to run in
real-time. The algorithm ‘only looks once’ at the image in the sense that it requires only one
forward propagation pass through the neural network to make predictions. After non-max
suppression (which makes sure the object detection algorithm only detects each object
once), it then outputs recognized objects together with the bounding boxes. With YOLO, a
single CNN simultaneously predicts multiple bounding boxes and class probabilities for
those boxes. It trains on full images and directly optimizes detection performance.

3.2. Recurrent Neural Network (RNN)
3.2.1. Introduction of RNN

The RNN is a type of artificial neural network that is especially suitable for pro-
cessing sequential information such as natural languages or time series data such as
videos [56,57]. Applications of RNNs include handwriting recognition [58], speech recogni-
tion [59], gesture recognition [60], image captioning [61], natural language processing [62]
and understanding [63], sound event prediction [64], tracking and monitoring [65–69], etc.

Unlike traditional neural networks, the RNN can exploit sequential information by
means of a connection that acts as feedback to prior layers (Figure 9). The most distin-
guished characteristic of an RNN is that it has memory, taking information from prior
inputs to influence the current input and output. Because of this unique characteristic, an
RNN can remember important information of the input, which allows it to predict with
great precision what will happen next. That is why the RNN is the method of choice for
processing sequential data. Another salient characteristic of the RNN is that it shares the
same weight parameters within each layer of the network, whereas a normal feed-forward
network has different weights on each node.

The RNN employs the back-propagation through time (BPTT) algorithm to adjust and
fit the parameters of the model [70–72]. BPTT is almost the same as the standard BP, except
that it sums errors at each time step, while BP does not need to sum errors because it does
not share parameters between each layer. This also makes the RNN have two main issues
of vanishing gradients and exploding gradients [73]. In other words, gradients may decay
or explode exponentially due to the multiplications of a large number of small or large
gradients during training over time. Therefore, the RNN tends to forget the previous inputs
as the new inputs come in. One solution to these issues is to clip the gradient and scale the
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gradient. Long Short-Term Memory (LSTM) [63] (see below) is proposed to handle this
issue by providing memory blocks in its recurrent connections.

Input

Output

Hidden Layer

Unfold

Figure 9. Diagram of an RNN. x, y represent the input and output, respectively, t is the time, h is the
memory unit of the network, and U, V, and W are weight matrices.

3.2.2. Bidirectional Recurrent Neural Network (BRNN)

The BRNN was firstly invented in 1997 by Schuster and Paliwal for increasing the
amount of input information available to the network [74]. It is a variant architecture
of the RNN. While the classical RNN can learn only from previous layers to predict the
current state, the BRNN learns from future data to improve its accuracy. This is achieved
by a structure of connecting two hidden layers of opposite direction to the same output
(Figure 10). BRNNs are especially beneficial in cases where the context of the input is
required. For example, in handwriting recognition, performance can be improved by
knowing the letters before and after the current letter [75]. The BRNN is more common in
supervised learning rather than semi-supervised or unsupervised learning because it is
difficult to compute a reliable probabilistic model.

Figure 10. Diagram of a BRNN. x, y represent the input and output, respectively, h, h′ represent the
two bidirectional memory units, and t is the time. Solid arrows represent data forward propagation,
and dashed arrows represent data back propagation.

The training of a BRNN is similar to the BPTT algorithm. However, since there are
forward and backward passes, simultaneously updating the weights for the two processes
leads to erroneous results. Therefore, to update forward and backward passes separately,
the forward and backward states are firstly processed in the forward pass, and then the
output values are passed. Subsequently, the reverse takes place for the backward pass;
that is, the output values are processed first, and then the forward and backward states
are processed. Finally, the weights are updated after the completion of both forward and
backward passes.

3.2.3. Long Short-Term Memory (LSTM)

The LSTM was proposed by Hochreiter and Schmidhuber, and has been widely used
for many applications [76]. It is an improved version of RNN, with the memory blocks
(also called cells) able to let new information in, forget information, and give information
enough importance to affect the output. It uses a mechanism of ‘gates’ for controlling its
memory process (Figure 11). There are three gates: input gate, output gate, and forget
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gate. The input gate is responsible for accepting new information and information from the
previous hidden state. The forget gate is responsible for deciding the storage or removal of
information based on the learned weights. The output gate is responsible for determining
the value of the next hidden state. This gate mechanism regulates the flow of information
in the RNN and resolves the short-term memory issue, thus enabling an RNN to hold its
value for a sufficient amount of time.

, ,

++

tanh

+
tanh

+

Figure 11. Diagram of a LSTM memory cell. c, h are the cell state and hidden state, respectively, t is
the time, and Ft, It, Ot are the forget gate, input gate, and output gate, respectively.

The gates in the LSTM are modeled in the form of sigmoid function. To decide which
information can pass through and what information can be discarded, the short-term
memory and input pass through the sigmoid function, which transforms the values to be
between 0 and 1, where 0 indicates the information is unimportant and 1 indicates the
information is valuable. The use of the sigmoid function also guarantees that the gates can
be back-propagated. The LSTM keeps the gradients steep enough and thus solves the issue
of vanishing gradients in RNNs. This also makes its training comparatively short and its
accuracy comparatively high.

3.2.4. Gated Recurrent Unit (GRU)

The GRU, proposed by Cho et al. in 2014 [56], is also a variant of RNN and is very
similar to the LSTM and, in some cases, produces equally good results [77]. It has two
gates, an update gate and a reset gate (Figure 12), rather than three gates as in LSTM. The
reset gate is responsible for the short-term memory and controls what information goes
out or is discarded. The update gate is responsible for long-term memory and regulates
information to be retained from previous memory as well as the new memory to be added.
In addition, the GRU uses hidden states rather than separate cell states in LSTM to regulate
the flow of information. Therefore, due to the reduced number of parameters and its
simpler architecture, GRU is faster to train with high effectiveness and accuracy. The GRU
is also able to address the short-term memory problem of RNN and to effectively hold
long-term dependencies in sequential data.

tanh

+ +

+ +
1-

Figure 12. Diagram of a GRU memory cell. xandy are the input and output, respectively, h is the
hidden state, t is the time, and Rt and Ut are the reset gate and update gate.
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3.2.5. RNN with Attention

Introducing attention to RNNs is probably the most significant innovation in sequential
models in recent times. Attention refers to the ability of a model to focus on specific elements
in the data. As mentioned, RNNs try to remember the entire input sequence through a
hidden unit before predicting the output. However, compressing all information into one
hidden unit may lead to information loss, especially for long sequences. To help the RNN
focus on the most important elements of the input sequence, the attention mechanism
assigns different attention weights to each input element. These attention weights designate
how important or relevant a given input sequence element is at a given time step.

The first attention mechanism developed for RNNs was proposed by Bahdanau et al. [78]
in 2014, who used it for language translation. Later, several RNN variants with attention
mechanism were proposed. Examples include the dual state attention based RNN for
time series prediction [79], the attention based GRU for visual question answering [80],
and the outstanding attention-LSTM for Google’s neural machine translation system [81].
The success of attention-LSTM has inspired more research of neural networks based on
attention mechanism, and with more and more powerful computing resources becoming
available, state-of-the-art models now typically use a memory-hungry architectural style
called transformers (Section 3.7).

3.3. AutoEncoder (AE)
3.3.1. Introduction of AE

The AE is a type of artificial neural network that can learn data representation in an
unsupervised manner [13]. It is a specific type of feed-forward neural network where the
input is the same as the output. Its aim is to learn a low-dimensional representation (also
called latent-space representation or encoding) of high-dimensional data by training the
network to capture the most important elements of the inputs, usually for dimensionality
reduction. By using it as an encoding and decoding technique, and combing it with other
DNNs such as CNN and RNN, the AE concept has been extensively applied for data
(images, audio, etc.) denoising [82,83], information retrieval [84,85], image inpainting and
enhancement [86,87], and anomaly detection [88,89].

A classical AE consists of three components named encoder, code, and decoder
(Figure 13). The encoder maps the input data to the feature space and produces the
code, while the decoder then reconstructs the data by mapping this code back to the data
space. The encoder is essentially a fully-connected neural network (though other types of
networks such as CNNs can also be used), and the decoder has a similar mirror network
structure as the encoder. The code is a compressed representation of the input and is
important to prevent the AE from memorizing the input and overfitting on the data.

Input Output

Code

Encoder Decoder

Figure 13. Diagram of an AE.
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Since the goal of an AE is to get an output identical to the input, it can be trained by
minimizing a reconstruction loss formulated as:

LA(x, x̂) = ||x− x̂||2, (1)

where x is the input and x̂ is the corresponding reconstruction by the AE. It is trained the
same way as a DNN via BP, and also has the vanishing gradient problem because gradients
may become too small as they go back through many layers of the AE.

3.3.2. Sparse AE (SAE)

The SAE is a regularized AE proposed by Ranzato et al. [90] to learn sparse represen-
tations. It is used to learn latent representations instead of redundant information of the
input data, and has been shown to improve performance on classification tasks. A SAE
selectively activates regions of the network, depending on the input data. As a result, it
is restrained to memorize the input data but can effectively extract features from the data.
More specifically, a SAE adds a nonlinear sparsity between its encoder and decoder to force
the code vector into a quasi-binary sparse code. There are two ways to impose this sparsity
regularization, and both are adding a constraint term to the loss function. By adding an L1
regularization as the constraint term, the loss function is formulated as:

LS(x, x̂) = L(x, x̂) + α ∑ |ah|, (2)

where L(x, x̂) is computed using Equation (1), α is the parameter to control the regulariza-
tion strength, and a is the activation of the hidden layer h. By adding a KL-divergence as
the constraint term, the loss function is formulated as:

LS(x, x̂) = L(x, x̂) + βKL(ρ||ρ̂), (3)

where L(x, x̂) is computed using Equation (1), β is the parameter to control the regular-
ization strength, ρ̂ is the average activation of the code over the input data, ρ is a sparsity
hyperparameter, and KL(ρ||ρ̂) is the KL divergence of (ρ||ρ̂), with minimum at ρ̂ = ρ.

3.3.3. Contractive AE (CAE)

The CAE is another variant of the classical AE, which adds a contractive regularization
to the code to improve its feature representation capability [91]. Its basic principle is that
similar inputs should have similar encodings and similar latent space representations.
To this end, CAE requires the derivative of the hidden layer activations to be small with
respect to the input. Thus, the mapping from the input to the representation will converge
with higher probability. The loss function of the CAE is defined as:

LC(x, x̂) = L(x, x̂) + γ||J(x)||2F, (4)

where L(x, x̂) is computed using Equation (1), γ is the parameter to control the regular-
ization strength, J(x) represents the Jacobian matrix of the encoder, and ||J(x)||2F is the
square of the Frobenius norm of the Jacobian matrix. It is worth mentioning that these two
terms in the CAE loss function contradict each other. While the reconstruction loss L(x, x̂)
aims to distinguish the difference between two inputs and observe changes in the data,
the regularization ||J(x)||2F aims to allow the model to ignore changes in the input data.
However, a loss function with these two terms enables the hidden layers of the CAE to
capture only the most essential information.

3.3.4. Denoising AE (DAE)

The DAE was originally proposed by Vincent et al. [92,93] based on the AE for
removing noise of the input. Now, it has become an important and essential tool for feature
extraction and selection. Different from the above types of AEs, the DAE does not have
the input image as its ground truth. Its basic idea is to slightly corrupt the input data but
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still use the uncorrupted data as target output. This way, it can force the DAE to recover
a noise-free version of the input data. Furthermore, a DAE model cannot simply learn a
map that memorizes the input and overfits the data because the input and target output
are no longer the same. Essentially, a DAE gets rid of noise with the help of nonlinear
dimensionality reduction. The loss function used by the DAE is expressed as:

LD(x, x̂′) = ||x− x̂′||2, (5)

where x′ is the corrupted version of input x, and x̂′ is the reconstruction by the DAE. A
DAE can exploit the statistical dependencies inherent in the input data and remove the
detrimental effects of noisy inputs.

3.3.5. Variational AE (VAE)

While AEs can learn a representative code from the input data and reconstruct the data
from this compressed code, the distribution of this compressed code remains unknown
and cannot be expressed in a probabilistic fashion. The VAE [94] is designed to handle this
issue and learn to format the code as a probability distribution. This way, the learned code
can be easily sampled and interpolated to generate new unseen data. Therefore, the VAE is
a kind of deep generative model. The VAE makes the code to be a Gaussian distribution, so
that the encoder can be trained to return its mean μ and variance σ2. The loss function for
VAE training is defined as:

LV(x, x̂) = L(x, x̂) + KL(N(μ, σ), N(0, 1)), (6)

where L(x, x̂) is computed using Equation (1), KL(N(μ, σ), N(0, 1)) is a regularization term
on the learned code to force the distribution of the extracted code to be close to a standard
normal distribution. The reason why an input is encoded as a distribution with some
variance rather than a single point is that it expresses the latent space regularization very
naturally. Sampling from this latent distribution and feeding it to the decoder can lead to
new data being generated by the VAE.

3.4. Restricted Boltzmann Machine (RBM)

The RBM was invented by Hinton in 2007 for learning a probability distribution over
its set of inputs [95]. It is a generative stochastic artificial neural network that has wide
applications in different areas such as dimensionality reduction [96], classification [97],
regression [98], collaborative filtering [99], feature learning [100], and topic modeling [101].

A classical RBM has two layers, named visible layer and hidden layer (Figure 14). The
visible layer has input nodes to receive input data, while the hidden layer is formed by
nodes that extract feature information from the data and output a weighted sum of the
input data [102]. An important and unique characteristic of the RBM is that the output
generated by the hidden layer is further processed to become a new input to the visible
layer. This process is called reconstruction or backward pass, and is repeated until the
regenerated input is aligned with the original input. This way, an RBM is able to learn
a probability distribution over the input. In an RBM, there is no typical output layer. In
addition, every node can be connected to every other node, and there are no connections
from visible to visible or hidden to hidden nodes.

Visible Layer

Hidden Layer H

V

Figure 14. Diagram of an RBM. V, H, and W represent the state vector of the visible layer, the state
vector of the hidden layer, and the weight matrix between hidden and visible layers, respectively.
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An RBM is also a generative model. It represents a probability distribution by the con-
nection weights learned from the data. Denote the m visible nodes as V = (v1, v2, . . . , vm)
and n hidden nodes as H = (h1, h2, . . . , hn). In a binary RBM, the random variables (V, H)
take values (v, h) ∈ {0, 1}m+n, and the joint probability distribution is given by the Gibbs
distribution p(v, h) = 1/Ze−E(v,h) with the energy function defined as [103]:

E(v, h) = −
n

∑
i=1

m

∑
j=1

wijhivj −
n

∑
i=1

bihi −
m

∑
j=1

cjvj, (7)

where Z = ∑v,h e−E(v,h) is the normalization factor, i ∈ 1, 2, . . . , n and j ∈ 1, 2, . . . , m, wij is a
weight associated with the edge between nodes vj and hi, and bi and cj are biases associated
with the ith visible and the jth hidden variable, respectively. The RBM has proven to be
capable of achieving highly expressive marginal distributions [104].

3.5. Generative Adversarial Network (GAN)
3.5.1. Introduction of GAN

The GAN was firstly proposed by Goodfellow et al. [105] and has become one of the
most popular generative adversarial models. Its purpose is to learn the distribution of input
data and thus enable the network to generate new data from that same distribution. Since
the GAN was proposed, it has gained much attention in various areas such as synthetic
training data [106], image and audio style transfer [107], music generation [108], text
to image generation [109], super-resolution [110], semantic segmentation [111], natural
language processing [112], and predicting the next frame in a video [113].

A GAN is basically composed of two neural networks, named generator and discrimi-
nator (Figure 15). The generator takes a random vector sampled from a noise distribution
as input and generates samples. The discriminator takes the generated samples and real
samples as input and tries to distinguish them as real or fake. These two networks compete
with each other. The goal of the generator is to generate fake samples that are hard for the
discriminator to distinguish from real samples. The goal of the discriminator is to beat the
generator by identifying whether its received samples are fake or real. This competition
between the generator and discriminator goes on until the generator manages to generate
fake samples that the discriminator cannot distinguish from real ones.

Discriminator

Real or Fake

Generator

Real data

Generated fake dataLatent variable

Figure 15. Diagram of a GAN.

This zero-sum game is modeled as an optimization problem by:

min
G

max
D

L(D, G), (8)

where D and G denote the generator and discriminator, respectively, and

L(D, G) = Ex∼pdata(x)[log(D(x))]−Ex∼pz(z)[1− log(D(G(z)))], (9)

where x is the input data, pdata(x) is the distribution of input data, and z is noise from a
distribution pz(z). The GAN is trained in an alternative way of firstly maximizing the dis-
criminator loss and then minimizing the generator loss. Both generator and discriminator
employ independent back-propagation procedures. In this way, GANs have the ability to
learn the data distribution in an unsupervised manner.
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3.5.2. Deep Convolutional GAN (DCGAN)

The DCGAN, proposed by Radford et al. [114], is a convolution-based GAN. It is
one of the most powerful and successful types of GAN, and has been widely used in
many convolution-based generation-based techniques. Compared to GAN, the DCGAN
uses convolutional and convolutional-transpose layers to implement its generator and
discriminator, and this is the origin of its name. Another interesting characteristic of
DCGAN is that, unlike the typical neural networks to map input to a binary output, or a
regression output, or even a categorical output, the generator of a DCGAN can map from
random noise to images. For example, the generator of the DCGAN in [114] takes in a noise
vector of size 100× 1 and maps it into an output image of size 64× 64× 3 (Figure 16). The
DCGAN can be used to generate images as ‘real’ as possible from a distribution.

100

4

4

1024
512

8

8

16

16

256
128

32

32

64

64

3

Project & Reshape
Z G(z)

Figure 16. Diagram of a DCGAN.

3.5.3. Conditional GAN (cGAN)

The cGAN (Figure 17) is a type of GAN whose generator and discriminator are
conditioned on some auxiliary information from other modalities [115]. As a result, it can
learn multimodal mapping from inputs to outputs by feeding it with different contextual
information. In other words, a cGAN allows us to guide the generator to generate the kind
of fake samples we want. The input to the auxiliary layer can be class labels or some other
properties we expect from the generated data. As the cGAN uses some kind of labels for
it to work, it is not a strictly unsupervised learning algorithm. The advantages of using
additional information are (1) the convergence will be faster and (2) the generator can
generate specific output given a certain label.

Discriminator

Real or Fake

Generator

Real data

Generated fake dataLatent variable

ConditionCondition

Figure 17. Diagram of a cGAN.

3.5.4. Other Types of GANs

Other well-known types of GANs include Info GAN (also called iGAN) [116], Auxi-
lary Classifier GAN (ACGAN) [117], Stacked GAN [118], Wasserstein GAN [119], Cycle
GAN [120], and Progressive GAN [121].

(1) The Info GAN is a modified GAN that aims to learn interpretable and meaningful
representations. To this end, it splits the input of the generator into two parts: the typical
noise and a new “latent code” which is composed of control variables. The code is then
made meaningful by maximizing the mutual information between the code and the gener-
ated output. This way, the generator can be trained by using the control variables to affect
specific properties of the generated outputs.
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(2) The ACGAN is similar to the cGAN because both their generators take noise and
labels as input. However, the ACGAN has an auxiliary class label output compared to the
cGAN. Therefore, the ACGAN can be seen as an extension of the cGAN. It has the effect of
stabilizing the training process and allowing the generation of large, high-quality images,
while learning representations in a latent space independent of class labels.

(3) The Stacked GAN is an extension of the GAN for generating images from text by a
hierarchical stack of cGANs. Its architecture is composed of a set of text-conditional and
image-conditional GANs. More specifically, the first-level generator is conditioned on text
and generates a low-resolution image. The second-level generator is conditioned on both
the text and the low-resolution image and outputs a high-resolution image.

(4) The Wasserstein GAN is an advanced GAN that aims to better approximate the
distribution of data observed in a given training dataset. To this end, it uses a critic rather
than a discriminator to scores the realness or fakeness of a given image. Its underlying
idea is to let the generator minimize the distance between the distribution of the data
in the training dataset and the distribution of the generated samples. The advantage of
Wasserstein GAN is that its training process is more stable and less sensitive to model
architecture and hyperparameter configurations.

(5) The Cycle GAN is an advanced GAN proposed for image-to-image translation.
Its outstanding characteristic is that it learns mapping between inputs and outputs using
an unpaired dataset. The Cycle GAN simultaneously trains two generators and two
discriminators. One generator is responsible for generating images for the resource domain
learned from, and the other is responsible for generating images for the target domain.
Each generator has a corresponding discriminator.

(6) The Progressive GAN is proposed for stable training and large-scale high-resolution
image generation. Similar to a GAN, the Progressive GAN consists of a generator and
a discriminator, which are symmetrical to each other. Its key feature is to progressively
grow the generator and discriminator, starting from a low resolution, and then adding new
layers to increase the model’s fine details as training progresses. As a result, training is
faster and more stable, producing images of unprecedented quality.

3.6. Graph Neural Network (GNN)

Graph neural networks are a class of neural networks that operate on the graph
structure, where data are generated from non-Euclidean domains and represented as
graphs with complex relationships and interdependencies between nodes [122]. Examples
of graph data include social networks, citation networks, molecular structures, and many
other types of data that are organized in a graph format.

A graph is represented as G = (V, E), where V is the set of vertices or nodes, and E is
the set of edges. Let vi ∈ V denote a node and eij = (vi, vj) ∈ E denote an edge pointing
from vi to vj. The neighborhood of a node v is defined as N(v) = {u ∈ V|(v, u) ∈ E}.
The adjacency matrix A is an n× n matrix with Aij = 1 if eij ∈ E and Aij = 0 if eij /∈ E.
A graph may have node attributes X, where X ∈ Rn×d is a node feature matrix with
xv ∈ Rd representing the feature vector of a node v. Furthermore, a graph may have edge
attributes Xe, where Xe ∈ Rm×c is an edge feature matrix with xe

v,u ∈ Rc representing
the feature vector of an edge (v, u). A directed graph is a graph with all edges directed
from one node to another. An undirected graph is considered as a special case of directed
graphs, where there is a pair of edges with inverse directions if two nodes are connected. A
graph is undirected if and only if the adjacency matrix is symmetric. A spatial–temporal
graph is an attributed graph where the node attributes change dynamically over time. The
spatial–temporal graph is defined as G(t) = (V, E, X(t)) with X(t) ∈ Rn×d.

There are three general types of analytics tasks on graphs: graph-level, node-level,
and edge-level. In a graph-level task, the goal is to predict a single property for an
entire graph [123]. This is often referred to as a graph classification task, as the entire
graph is associated with a label. To obtain a compact representation on the graph level,
GNNs are often combined with pooling and readout operations [124–126]. Node-level
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tasks are concerned with predicting the identity or role of each node in a graph [127],
and therefore, the model outputs relate to node regression and node classification tasks.
Recurrent GNNs and convolutional GNNs can extract high-level node representations by
information propagation and graph convolution. With a multiperceptron or a softmax layer
as the output layer, GNNs are able to perform node-level tasks in an end-to-end manner.
Similarly, an edge-level task predicts the property or presence of edges in a graph, hence
the outputs relate to the edge classification and link prediction tasks. With two nodes’
hidden representations from GNNs as inputs, a similarity function or a neural network can
be utilized to predict the label/connection strength of an edge.

Based on the model architectures, GNNs can be categorized into recurrent graph
neural networks, convolutional graph neural networks, graph autoencoders and generative
graph neural networks, and spatial-temporal graph neural networks.

3.6.1. Recurrent Graph Neural Network (RecGNN)

RecGNNs aim to learn node representations with recurrent architectures. A repre-
sentative model in this class is the GNN proposed by Scarselli et al. [128], which updates
the states of nodes by exchanging neighborhood information recurrently until a stable
equilibrium is researched, as in the following equation:

h(t)
v = ∑

u∈N(v)
f
(

xv, xe
(v,u), xu, h(t−1)

u

)
, (10)

where f (·) is the parametric function and h(0)
v is the initial state randomly set. Other

popular RecGNNs include the GraphESN [129] which extends echo state networks to
improve the training efficiency of GNN, and the Gated GNN [130] which employs a gated
recurrent unit as the recurrent function that reduces the recurrence to a fixed number of
steps. RecGNNs are conceptually important and inspired later research on ConvGNNs. In
particular, the idea of information passing is inherited by spatial-based ConvGNNs.

3.6.2. Convolutional Graph Neural Network (ConvGNN)

ConvGNNs generalize the operation of convolution from grid data to graph data. The
main idea is to generate a representation of a node v by aggregating its own features xv and
neighbors’ features xu, where u ∈ N(v). Different from RecGNNs, ConvGNNs stack multi-
ple graph convolutional layers to extract high-level node representations. ConvGNNs play
a central role in building up a great deal of other complex GNN models. ConvGNNs can be
further divided into spectral-based methods and spatial-based methods: the first category
defines graph convolutions by introducing filters from the perspective of graph signal
processing [131], and the latter inherits ideas from RecGNNs to define graph convolutions
by information propagation.

Spectral-based methods have a solid mathematical foundation in graph signal process-
ing, and they are based on the normalized graph Laplacian matrix which is a mathematical
representation of an undirected graph, defined as L = In − D−1/2 AD−1/2, where D is a
diagonal matrix of node degrees. This normalized Laplacian matrix can be factored as
L = UΛUT , where Λ and U denote the ordered diagonal matrix of eigenvalues and the
corresponding eigenvector matrix, respectively. The graph convolution of an input signal x
with a filter g ∈ Rn is then defined as:

x ∗G g = F−1(F (x)%F (g)) = U(UTx%UT g) (11)

where % denotes the element-wise product, and F (x) is the graph Fourier transform of the
signal x. Let gθ = diag(UT g) denote a filter, the spectral graph convolution is simplified as:

x ∗G gθ = UgθUTx. (12)
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Popular spectral-based GNNs inlcude the Spectral CNN [132], ChebNet [125] and GCN [127],
where the key difference lies in the design of the filter gθ .

The spatial-based graph convolution is defined on the nodes’ spatial relations, and it
convolves a node’s representation with its neighbors’ representations to derive the updated
representation, inheriting the idea of information propagation of RecGNNs. Representative
spatial-based GNNs include the Diffusion CNN [133], message-passing neural network
(MPNN) [134], GraphSage [135], and graph attention network (GAT) [136] (which brings
in attention mechanisms), mixture model network (MoNet) [137], and FastGCN [138].
Since GCN [127] bridged the gap between spectral-based approaches and spatial-based
approaches, spatial-based methods have developed rapidly recently due to their attractive
efficiency, flexibility, and generality.

3.6.3. Graph Autoencoder (GAE) and Other Generative Graph Neural Networks

GAEs and generative GNNs are unsupervised learning frameworks that encode nodes
into a latent vector space and decode graph information from the latent representations.
GAEs are used to learn network embeddings and graph generative distributions. A net-
work embedding is a low-dimensional vector representation of a node that preserves a
node’s topological information. For network embedding, GAEs learn latent node represen-
tations through reconstructing graph structural information, such as the graph adjacency
matrix. Representative GAEs for network embedding include the DNGR [123], SDNE [139],
GAE [140], Variational GAE [140], and GraphSage [135]. These models combine different
AEs and other models such as ConvGNNs and LSTM. With multiple graphs, GAEs are able
to learn the generative distribution of graphs by encoding graphs into hidden representa-
tions and decoding a graph structure given hidden representations. The majority of GAEs
for graph generation are designed to solve the molecular graph generation problem [141],
which has a high practical value in drug discovery. These methods either propose a new
graph sequentially, such as DeepGMG [142] and GraphRNN [143], or in a global manner,
such as GraphVAE [144]. GNNs are also integrated with the architecture and training
strategy of GANs, resulting in MolGAN [145] and NetGAN [146].

3.6.4. Spatial–Temporal Graph Neural Network (STGNN)

Graphs in many real-world applications are dynamic, both in terms of graph structures
and graph inputs. STGNNs occupy important positions in capturing the dynamics of
graphs. The task of STGNNs can be forecasting future node values or labels, or predicting
spatial–temporal graph labels. STGNNs capture spatial and temporal dependencies of
a graph simultaneously. Current approaches integrate graph convolutions to capture
spatial dependence with RNNs or CNNs to model temporal dependence. Most RNN-
based approaches capture spatial–temporal dependencies by filtering inputs and hidden
states passed to a recurrent unit using graph convolutions [147]. As alternative solutions,
CNN-based approaches tackle spatial–temporal graphs in a non-recursive manner with
the advantages of parallel computing, stable gradients, and low memory requirements.
CNN-based approaches interleave 1-D-CNN layers with graph convolutional layers to
learn temporal and spatial dependencies, respectively, as in the CGCN [148].

3.6.5. Training of GNNs

Given a single network with part of the nodes labeled and others unlabeled, Con-
vGNNs can be trained in a semi-supervised manner to learn a robust model that effectively
identifies the class labels for the unlabeled nodes [127]. To this end, an end-to-end frame-
work can be built by stacking a couple of graph convolutional layers followed by a softmax
layer for multiclass classification. In addition, GNNs can be trained in a supervised manner
for graph-level classification, which is achieved by applying the graph pooling layers and
readout layers [123]. Finally, GNNs can learn graph embedding in a purely unsupervised
manner in an end-to-end framework (e.g., an AE framework [140]).
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3.7. Transformer

The transformer [149] is a prominent type of deep learning models that has achieved
impressive advances on various tasks such as computer vision and audio processing.
Originally proposed for natural language processing, the transformer mainly relies on deep
neural networks and the self-attention mechanism, emphasizing the global dependencies
between the input and output, thereby providing strong representation capability and
state-of-the-art performance. Due to the significant improvement made by the transformer
model, several variants have been proposed for either improving model performance or
adapting the model to specific tasks in recent years.

3.7.1. Vanilla Transformer

The transformer follows the encoder-decoder structure (Figure 18). The encoder is
composed of a stack of identical blocks with two modules: the multihead self-attention
layers and the position-wise fully connected feed-forward network (FFN). A residual skip
connection, followed by a batch normalization layer, is applied to each submodule. Besides
the two modules in the encoder block, the decoder block inserts an additional masked
multihead attention layer, which is specially modified to avoid positions from attending to
subsequent positions. In the following, we introduce the two modules in more detail.

Figure 18. The model architecture of the Transformer.

(1) The multihead attention layer adopts the self-attention mechanism with the Query-
Key-Value (Q-K-V) model. The inputs are first projected into three kinds of vectors: the
query vector q, the key vector k with dimension dk, and the value vector v with dimension
dv. After packing a set of these vectors together into three matrices, namely queries
Q ∈ RN×Dk , keys K ∈ RN×Dk , and values V ∈ RN×Dv , the scale dot-product attention can
be computed as follows:

Attention(Q, K, V) = softmax

(
Q · K&
√

dk

)
· V = AV . (13)

In this process, Q ·K& computes a score between each pair of input vectors and yields
the degree of attention. The produced scores are divided by

√
dk to avoid the vanishing

gradient problem and improve the stability of training. The softmax operator transforms
the divided scores into probabilities A, which is also called the attention matrix. After
multiplying values V with the attention matrix, vectors with higher probabilities receive
more attention from the subsequent layers.
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Rather than using a single self-attention operation, multihead attention learns h dif-
ferent linear projections and transforms the queries, keys, and values into h sets with
Dk, Dk, Dv dimensions. Then, the self-attention operation can be implemented in parallel
and produce different output values, which are subsequently concatenated and projected
linearly back to Dm-dimension feature.

Multihead(Q, K, V) = concat(head1, . . . , headh)W
O

where headi = Attention
(

QW Q
i , KWK

i , VWV
i

) (14)

where W Q
i ∈ RDmodel ×Dk , WK

i ∈ RDmodel ×Dk , WV
i ∈ RDmodel ×Dv denote the parameters for

linear projections for the Q, K, V branches, respectively. WO
i ∈ RhDv×Dmodel denote the

parameters for linear projections after concatenation. In the vanilla transformer, Dk = Dv =
Dmodel /h = 64 and h = 8.

(2) The fully connected feed-forward network consists of two linear transformations
with a RelU activation function in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (15)

3.7.2. Transformer Variants

Motivated by the impressive success of the transformer, researchers have devoted
numerous efforts to make further progress in a variety of tasks. Improvements have been
achieved from three perspectives: using pretrained models (PTM), modifying the vanilla
transformer architecture, and adapting to new tasks.

(1) Using pretrained models: Compared with training a model from scratch, using
pretrained transformer models has been revealed to be beneficial for building up universal
feature representations. Powerful PTMs help reduce the need for task-specific architectures
by simple fine-tuning on the downstream datasets. Bidirectional Encoder Representations
from Transformers (BERT) [150] is the first fine-tuning based model with transformer
architecture for natural language understanding and pushed the performance frontier of 11
NLP tasks. Generative Pretrained Transformer (GPT) series [151,152] show that massive
PTMs with large-scale parameters can help achieve strong universal representation ability
and provide state-of-the-art performance on different types of tasks, even without the fine-
tuning process. Bidirectional and Auto-Regressive Transformers (BART) [153] generalized
the pretraining scheme and built a denoising auto-encoder model to further boost the
capacity in language understanding.

(2) Modifying the vanilla transformer architecture: As self-attention is considered
to be the fundamental component of the transformer, various architecture modifications
have been proposed to address its limitations including computational complexity and
ignorance of prior knowledge. Representative modifications including Low-rank based
Sparse attention [154], linearized attention [155], improved multihead attention [156], and
prior attention [157] have been designed to reduce complexity and make the most of the
structural prior. Another branch of important modifications is adapting the architecture
to be lightweight in terms of model size and computation, such as Lite Transformer [158],
Funnel Transformer [159] and DelighT [160].

(3) Adopting to new tasks: Besides NLP, the transformer concept has been adapted
in various fields, including computer vision [161–166] and multimodal data processing.
For vision tasks, the transformer architecture has been extensively explored. ViT [161]
is the first vanilla transformer architecture applied to image classification tasks without
any alternation. It directly reshapes the image patches and flattens them into a sequence
as the input. Experiments on large datasets such as ImageNet and JFT-300M show that
the transformer has great potential in capturing long-range dependency and suits vision
tasks well. Researchers also attempted to modify the network architecture and make it
more feasible to vision tasks. Transformer in Transformer (TNT)[165], iGPT [162], and Swin
Transformer [166] are representative models in this regard.
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3.8. Bayesian Neural Network (BNN)

While DNNs have been shown to achieve great success in different applications, they
are unable to deal with the uncertainty of a given task due to model uncertainty. This is due
to their essence of using BP to approximate a minimal cost of point estimates of the network
parameters, while discarding all other possible parametrizations of the network [167]. The
BNN is proposed to mitigate this by providing a strict framework to train an uncertainty-
aware neural network [168,169]. The application domains of BNN are very wide, including
recommender systems [170], computer vision [171], natural language processing [172],
speech recognition [173], biomedical applications [174], and so on.

The BNN is essentially a stochastic neural network trained using a Bayesian
method [175,176]. A stochastic neural network is a type of DNN involving stochastic
components into its network. The stochastic component is used to simulate multiple pos-
sible models with their associated probability distribution. The main aim of a stochastic
neural network is to obtain a better idea of the uncertainty associated with the model.
This is achieved by comparing the predictions of multiple models obtained by sampling
the model parameterization. The uncertainty is low if these models generate consistent
predictions, otherwise the uncertainty is high. This process can be formulated as:

y = Φθ(x) + ε, (16)

where θ = (W , b) are the parameters of the neural network which follow the probability
distribution p(θ), and ε is the random noise used to ensure the function Φ represented by
the network is only an approximation. This way, a BNN can be defined as a stochastic
neural network trained using Bayesian inference [177].

The uncertainty of a neural network is a measure of how certain a model is with its
prediction. With BNNs, there are two kinds of uncertainty: aleatoric uncertainty and epis-
temic uncertainty. The aleatoric uncertainty refers to the noise inherent in the observations,
and cannot be reduced by collecting more data. The epistemic uncertainty is also known
as model uncertainty and is caused by the model itself. It can be reduced by collecting
more data. The BNN usually solves this issue by placing a probability distribution on the
network weights or by learning a mapping from input to probabilistic outputs to derive
the estimation of uncertainty. More specifically, the epistemic uncertainty is modeled by
placing a prior distribution on the network weights and then capturing the degree of
change of these weights over the data. The aleatoric uncertainty is modeled by placing a
distribution on the outputs of the model.

One problem of BNNs is that they are hard to train. In practice, the Bayes by Backprop
algorithm proposed by Blundell et al. [178] is used for learning a probability distribution on
the network weights. Another problem of using BNNs is that they rely on prior knowledge,
and it is challenging to derive insights about plausible parametrization for a given model
before training. However, BNNs have become promising due to the following advantages.
Firstly, thanks to its stochastic component, BNNs can quantify uncertainty, which means
the uncertainty is more consistent with the observed errors. Moreover, BNNs are very
data-efficient because they can learn from a small dataset without overfitting. This is due
to the fact that they can distinguish the epistemic and aleatoric uncertainty. Finally, BNNs
enable the analysis of learning methods, which is important for many fields such as traffic
monitoring and medicine.

3.9. Fuzzy Deep Neural Networks (FDNN)
3.9.1. Introduction of FDNN

Typical DNNs are trained by minimizing the loss or error given an input through
gradient descent-based weight update [179]. This is a calculus-based method that iter-
atively computes the minimum of the error function. However, obvious disadvantages
of this method are that it is computationally intensive and may not find the global min-
imum [180]. To address this issue, multiple FDNNs have been proposed, for example,
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the fuzzy RBM [181] and the Takagi Sugeno fuzzy deep network [182]. As an emerging
method, FDNNs have been applied in distributed systems [183], cloud computing [184],
traffic control [185], healthcare [186], image processing [187], and various other areas.

A FDNN is a hybridization of DNNs and fuzzy logic methods, to solve various
complex problems involving high-dimensional data. The key benefit of a DNN is its
ability to learn from data, but it cannot clarify how its final output is achieved. Combined
with fuzzy logic, a FDNN can interpret the results generated by the network [188]. More
specifically, a FDNN introduces an additional fuzzy inference into a DNN to create an
explainable rule-based structure. This way, through this rule-based structure, how a
decision is made by the network is understandable.

3.9.2. Types of FDNN

A FDNN can be comprised by a broad category of DNNs and fuzzy inference systems
in different architectures. Current architectures in the literature can be classified into three
categories: sequential FDNN, parallel FDNN, and cooperative FDNN [189].

A sequential FDNN has a structure that passes the data through the DNN and the
fuzzy inference system sequentially (Figure 19a). It is suitable for solving problems in-
volving high linearity, such as text documents, time-series data, video classification, and
speech recognition.

Input Data

Fuzzy System Deep Neural Network

Output Data

Input Data

Fuzzy System Deep Neural Network

Output Data

(a) (b)

Input Data Fuzzification Deep Neural Network Defuzzification Input Data

Learning Algorithm

(c)

Figure 19. Diagram of three types of FDNN. (a) Sequential FDNN, (b) Parallel FDNN, and (c) Coop-
erative FDNN.

A parallel FDNN has a structure that passes the data separately through the DNN and
the fuzzy inference system, and fuses the results to generate the output (Figure 19b). This
kind of FDNN has been used for multiple classification tasks [190].

A cooperative FDNN has a structure where the input data are firstly passed through a
fuzzy interface block to generate fuzzy values, which are subsequently input to a DNN
followed by a defuzzification block to convert the fuzzy values into output data (Figure 19c).
An example application of the cooperative FDNN is fuzzy classification [191].

3.10. Deep Reinforcement Learning (DRL)

A reinforcement learning (RL) agent executes a sequence of actions and observes states
and rewards, with major components being the value function, policy and model. A RL
problem may be formulated as a prediction, control or planning problem, and solution
methods may be model-free or model-based, with value function and/or policy [192].
Exploration-exploitation is a fundamental trade-off in RL. Knowledge would be critical
for RL. DRL, integrating deep learning and RL, represents a step forward in building
autonomous systems with a higher-level understanding.
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3.10.1. Deep Q-Network

Value function is a fundamental concept in reinforcement learning, and temporal dif-
ference learning [193] and its extension, Q-learning [194], are classic algorithms for learning
state and action value functions respectively. Q-learning learns the action-value function
Q(s, a), i.e., how good it is to take an action a at a particular state s, to build a memory
table Q[s, a] that stores Q values for all possible combinations of s and a. However, if the
combinations of states and actions are large, the memory and computation requirement for
Q is very high. Deep Q-learning addresses this problem by generalizing the approximation
of the Q-value function rather than remembering the solutions. The challenge in RL is
that both the input and target change constantly during the process, which makes training
unstable. Deep Q-Network (DQN) [195] ignited the field of DRL, making an important
contribution in stabilizing the training of action value function approximation with DNNs
using experience replay. In addition, it designs an end-to-end RL approach, with only the
pixels and the game score as inputs, so that only minimal domain knowledge is required.
Important extensions of DQN are the Double DQN [196] which addresses the over-estimate
issue in Q-learning, and Dueling DQN [197] which uses two separate heads to compute the
state value function V(s) and associated advantage function A(s, a) (Figure 20).

Figure 20. Deep Q-Network and Dueling Deep Q-Network architectures.

3.10.2. Asynchronous Advantage Actor-Critic (A3C)

A3C [198] uses multiple agents with each agent having its own network parameters
and a copy of the environment. These agents interact with their respective environments
asynchronously, learning with each interaction. Each agent is controlled by a global
network. As each agent gains more knowledge, it contributes to the total knowledge of
the global network. The presence of a global network allows each agent to have more
diversified training data. An actor-critic algorithm predicts both the value function V(s)
and the optimal policy function π(s). The learning agent uses the value of the value
function (critic) to update the optimal policy function (actor). It determines the conditional
probability P(a|s; θ), the parameterized probability that the agent chooses the action a when
in state s. Different from most deep learning algorithms, asynchronous methods can run
on a single multi-core CPU.

3.10.3. Trust Region Policy Optimization (TRPO)

A policy maps the state to action. Policy optimization is to find an optimal mapping
from state to action. Policy gradient methods are popular in RL. The basic principle uses
gradient ascent to follow policies with the steepest increase in rewards. However, large
policy changes can destroy training, and it is not easy to map changes between policy and
parameter space and to deal with the vanishing or exploding gradient problems and poor
sample efficiency. The challenge is to have an accurate optimization method to limit the
policy changes and guarantee any change will lead to improvement in rewards. A more
commonly used method is to use a trust region, in which optimization steps are restricted
to lie within a region where the approximation of the true cost function still holds. By
preventing updated policies from deviating too wildly from previous policies, the chance
of a catastrophically bad update is lessened, and many algorithms that use trust regions
guarantee or practically result in monotonic improvement in policy performance. The
idea of constraining each policy gradient update, as measured by the Kullback–Leibler
(KL) divergence between the current and proposed policy, has a long history in RL [199].
TRPO [200] is an algorithm in this line of work that has been shown to be relatively robust
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and applicable to domains with high-dimensional inputs. To achieve this, TRPO optimizes a
surrogate objective function—specifically, it optimizes an (importance sampled) advantage
estimate, constrained using a quadratic approximation of the KL divergence. It avoids
parameter updates that change the policy too much with a KL divergence constraint on the
size of the policy update at each iteration. The generalized advantage estimation (GAE)
proposed several more advanced variance reduction baselines [201]. The combination of
TRPO and GAE remains one of the state-of-the-art RL techniques in continuous control.

3.11. Deep Transfer Learning (DTL)

Deep learning has a strong dependence on massive training data compared to tra-
ditional machine learning methods. Having sufficient training data is a prerequisite for
a deep learning model to understand the latent patterns of the data. However, this is
quite a challenge itself since the collection of data is time consuming and expensive. It
is difficult to build a large-scale and high-quality annotated dataset in many fields. In
addition, the training of deep learning models relies on intensive computation, which in
practice can be challenging due to limited resources (e.g., high performance GPUs) and
time constraints. Transfer learning is a concept of reusing a pretrained model on a new
problem, which is an efficient way to tackle the insufficient training data problem and
reduce the computational resource requirement and training time. It is very common in
deep learning to use a pretrained model as a feature extractor in a new task or fine-tune the
pretrained model (or some high-level parts of the model) to a new learning task.

Let Ds and Dt denote the source domain and target domain, and Ts and Tt denote
two learning tasks (Ds �= Dt or Ts �= Tt), respectively. Transfer learning can be defined as
the process of enhancing the learning of the target predictive function fT(·) in Dt using
knowledge derived from Ds and Ts. It is a deep transfer learning task when fT(·) is a
nonlinear function that reflects a DNN. There are three forms of transfer learning: inductive
transfer learning [202], transductive transfer learning [203], and unsupervised transfer
learning [204]. In the first, Ts and Tt are different, and some labelled data in Dt are required
to induce fT(·) for use in Dt. In the second, we have the same Ts and Tt but different Ds
and Dt, while no labelled data in Dt are available but labelled data in Ds are available.
Finally, in the last setting, Tt is different from but related to Ts, and there are no labelled
data in both Ds and Dt during training. The focus is on solving unsupervised learning
tasks in Dt, such as clustering, dimensionality reduction, and density estimation.

According to the content to be transferred, transfer learning methods can be cate-
gorised into four cases: (1) instance-based approaches try to reweight the samples in Ds for
learning in Dt [205]; (2) feature-based approaches encode knowledge into feature represen-
tations which are transferred across domains to help improve the performance of Tt [202];
(3) parameter-based approaches transfer knowledge across tasks through the shared param-
eters of the Ds and Dt learning models [206]; and (4) relational-based approaches, which
transfer the knowledge through learning the common relationships between Ds and Dt.
Recently, statistical relational learning techniques dominate this context [207].

3.12. Federated Learning (FL)

FL is applied in a situation where a group of clients wants to collaboratively train a
global model without sharing their private local dataset [208]. Compared with conven-
tional machine learning methods which require gathering different datasets, clients in FL
collaboratively train a global model by exchanging local model weights/gradients without
sharing their local dataset. There are typically two key players in FL: (1) the clients holding
the local dataset and training the local model, and (2) the central server coordinating the
training process and updating the global model. In general, FL contains three phases [209]:

Phase 1: FL initialization. The central server initializes the FL training model and sets
the hyperparameters, including the number of FL training iterations, the total
number of participating clients, the number of clients selected at each training
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iteration, and the local batch size used in each training iteration. Then, the
central server broadcasts the global model to the selected clients.

Phase 2: Local model training and updating. In each FL training iteration, clients first
update the local model using the shared global model and train the local model
using the local dataset. Then, clients send the local model weights or gradients
to the central server for model aggregation.

Phase 3: Global model aggregation. The central server aggregates the model weights or
gradients from the participating clients and shares the aggregated model to the
clients for the next training iteration.

Algorithm 1 shows the pseudocode of an FL system proposed in [210]. According to
the characteristics of training data, FL methods are usually classified into two categories:
horizontal FL and vertical FL [208,211].

Algorithm 1 FedAvg [210]
Input:

Nglobal: Maximum number of global iterations, n: the total number of participating clients, m: the
number of clients used in each global iteration, Nlocal: the number of local epochs, and η: the
local learning rate.

Output:
Global model weight wG

Processing:
1: [Central Server]
2: Initialize w0

G
3: for each iteration t from 1 to Nglobal do
4: Mt includes m clients randomly selected from the n clients
5: for each client i ∈ Mt in parallel do
6: wt

i , Ni ← LocalTraining(i, wt
G)

7: end for
8: wt+1

G = 1
∑m

j=1 Nj
∑m

i=1 Niwt
i

9: end for
10: [Each Participating Client]
11: LocalTraining(i, w):
12: Bi is the set of batches for the local dataset Di
13: for each epoch j from 1 to Nlocal do
14: for each batch b ∈ Bi do
15: w ← w− η∇L(w; b)
16: end for
17: end for
18: return the weights w and Ni = |Di|

3.12.1. Horizontal FL (HFL)

HFL is used in scenarios where the datasets of the clients share the identical feature
space but a different sample ID space [210,212]. For example, the electricity usage held by
different electricity supplier companies may have the same feature space but different ID
space. The communication protocols in FL can be divided into two classes: client-server
protocol [210,213] and peer-to-peer protocol [212,214,215]. The client-server protocol de-
ploys a central server to coordinate the training process, whereas the peer-to-peer protocol
randomly selects a client as the server for the coordination work in each iteration.

In the client-server protocol, the clients are assumed honest and the server is assumed
honest but curious. To avoid private information leakage, the exchanged model parameters
are usually encrypted or masked by clients. The key steps are summarized as follows:

Step 1: The central server initializes the model and hyperparameters and allocates com-
putation tasks to named clients.

Step 2: The participating clients train their local models on their local dataset, encrypt
the model weights/gradients, and transmit them to the central server.

Step 3: The server conducts model aggregation, for example by averaging.
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Step 4: The server broadcasts the updated model to all clients.
Step 5: The clients decrypt the model and update their local models.

In the peer-to-peer protocol, as there is no central server, two approaches are usually
adopted to coordinate the training process:

(1) Cyclic Setting: All clients form a circular chain, denoted by {C1, C2, . . . , Cn}. Client
Ci transmits its local model to client Ci+1. Client Ci+1 aggregates the received model
with its local model which is trained on its local dataset and then transmits the
updated model along the chain to client Ci+2. The training process stops once the
termination condition is met.

(2) Random Setting: Client Ct randomly picks a client Ci from all participants with
equal chance and sends its model information to another client Ci. Ci aggregates
the received model with its local model which is trained on its local dataset, then
randomly picks another client Cj with equal chance and sends the updated model to
it. The training process stops once the termination condition is met.

3.12.2. Vertical FL (VFL)

VFL is used in scenarios where datasets between participating clients share the iden-
tical sample ID space but a different feature space. For example, a bank and an online
shopping company may have the same customers but provide different services. The
communication protocols for VFL can be divided into two classes: communication with a
third-party coordinator [216] and communication without a third-party coordinator [217].
Assume that two clients, C1 and C2, plan to train a global model using their local datasets,
and that samples from C1 are labeled. In addition, C1 and C2 are assumed honest but
curious to each other.

To protect the private data, the communication protocol with a third-party coordinator
is designed as follows [216]:

Step 1: As the two datasets of C1 and C2 contain samples with different IDs, it is neces-
sary to extract the common samples sharing the same IDs [218].

Step 2: The coordinator C3 produces a pair of public and private keys and broadcasts
the public key to C1 and C2.

Step 3: C1 and C2 compute encrypted gradients and add a mask. In addition, C1 com-
putes the encrypted loss. C1 and C2 then transmit the encrypted results to C3.

Step 4: C3 decrypts the received results and broadcasts them back to C1 and C2. C1 and
C2 then update their local model using the received information.

To protect the private data, the communication protocol without a third-party coordi-
nator is designed as follows [217]:

Step 1: A sample ID alignment process [219] is first employed to select the shared IDs
between C1 and C2. Samples sharing the same IDs are confirmed to train a
vertical FL model.

Step 2: C1 produces an encryption key pair and transmits its public key to C2.
Step 3: The two clients initialize their model weights and compute their partial predic-

tion results. C2 then transmits its result to C1.
Step 4: C1 computes the model residual, encrypts the residual, and transmits it to C2.
Step 5: C2 computes the encrypted gradient and transmits the masked gradient to C1.
Step 6: C1 decrypts the masked gradient and transmits it back to C2. Then, C1 and C2

update their model locally.

3.13. Multiple Instance Learning (MIL)
3.13.1. Introduction of MIL

The concept of multiple instance learning was firstly proposed by Dietterich et al. [220]
for investigating the problem of drug activity prediction. It is a type of weakly supervised
learning where the training set is composed of many bags and each bag contains many
instances, and a label is provided for the entire bag rather than each individual instance
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in it. This problem occurs when dealing with a lack of detailed annotation for large
quantities of data. For example, it emerges when developing computer-aided diagnosis
algorithms where medical images have only a patient-level diagnosis label rather than
costly local labels annotated by experts [221]. Furthermore, it naturally occurs in a number
of real-world learning scenarios, including image and video classification [222], document
classification [223], and sound classification [224].

Generally, there are two assumptions in multiple instance learning: the standard and
the collective assumption. The former assumes only negative instances are contained in
negative bags, while one or more positive instances are contained in positive bags. This
means that as long as there is one positive instance in the bag, the bag is positive. On the
contrary, the collective assumption refers to cases where more than one positive instance is
needed to identify a positive bag. These two assumptions are applied to different problem
domains. For example, the standard assumption works well for drug activity prediction,
while the collective assumption is more suitable for traffic jam detection.

3.13.2. Training Mechanism of MIL

The MIL problem under the standard assumption can be solved through alternate
optimization. Specifically, the labels of all instances are assumed to be known at first, then
a classification model can be obtained through supervised learning. Subsequently, this
model is used to make predictions for each training instance, and the labels of the training
instances are updated accordingly, and then this classification model can be retrained with
the updated labels again, and this process repeats until convergence. Thus, the optimization
process has mainly two parts: supervised learning and label updating.

When training the supervised learning model, only the predicted “most correct” (i.e.,
the highest classification score) is selected from the positive instance bag, and other in-
stances in the positive instance bag are discarded, regardless of whether the prediction
is positive. This is because, under the standard assumption, the MIL can only consider
the “most correct” instance in the positive instance bag. Therefore, this selection strategy
is exactly in line with the problem definition. In addition, if there are enough negative
instances, only the instance that is predicted to be “most correct” in each negative instance
bag can be used for training. Such a negative instance is also called hard instance or most
violated sample. In practice, they are most effective for fast model convergence.

3.13.3. Challenges of Using MIL

The unique challenges of using MIL arise from four aspects: the level of prediction, the
composition of bags, the ambiguity of instance labels, and the distribution of the data [225].
These factors affect the choice and the performance of MIL algorithms.

(1) The level of prediction refers to whether a network makes the prediction on a bag-
level or an instance-level. These two kinds of tasks employ different loss func-
tions, and thus algorithms designed for bag classification are not optimal for in-
stance classification. Cheplygina et al. [226] details how to choose algorithms for
different problems.

(2) The composition of bags refers to the ratio of instances from each class or the relation
between instances. The proportion of positive instances in positive bags is generally
defined as witness rate (WR). If the WR is very high, which means positive bags
contain only a few negative instances, the problem can be solved in a regular su-
pervised framework. However, if the WR is very low, which means a serious class
imbalance problem because a few positive instances have a limited effect on training
the network, many algorithms will have a poor performance. Several MIL algorithms
have been proposed for this problem [227–229].

(3) The ambiguity of instance labels refers to label noise or instances not belonging
to a class clearly. This is inherent to weakly supervised learning. Some MIL algo-
rithms impose strict requirements on the correctness of bag labels, such as the DD
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algorithm [230]. For practical problems where positive instances may be found in
negative bags, algorithms working under the collective assumption are needed [231].

(4) The distributions of positive and negative instances also affect MIL algorithms. This
has two sides. First, the positive instances can either be located in a single cluster
in feature space or be corresponding to many clusters, which leads to different
applicable MIL algorithms [230,232]. Second, the distribution of the training data
can or cannot entirely represent the distribution of negative instances in the test data,
which also leads to different applicable MIL algorithms [233,234].

4. Deep Learning in Diverse Intelligent Sensor Based Systems

4.1. General Computer Vision Sensor Systems

A well-known application domain of deep learning is general computer vision, where
the processed data are images and videos acquired from camera-based sensor systems.
The research in this domain focuses on enabling computers to gain an understanding like
that of human vision from images or videos. Deep learning is used for a wide range of
important tasks in this domain, as described next.

4.1.1. Image Classification

Conceptually, image classification is one of the simplest yet most fundamental prob-
lems in computer vision. It refers to the process of predicting information classes from
an image. CNNs are the most commonly employed techniques for solving this problem.
Specifically, the CNNs take an image as input and aim to output the class of the input
image. Since AlexNet [37] achieved remarkable classification performance in the ImageNet
challenge, many types of CNN models have been proposed for image classification, such
as VGG [39], ResNet [41], and DenseNet [42]. In 2017, Xie et al. proposed ResNeXT [235],
which is an extension of ResNet and VGG, and achieved the state-of-the-art performance of
3.03% top-five errors. Around the same time, the problem of supervised image classification
was regarded as “solved”, and the ImageNet classification challenge concluded. However,
in many applications, the tasks cannot be formulated as plain vanilla image classification
problems. Many object classes may be present in a single image. Therefore, more research
efforts are being made toward object detection and segmentation.

4.1.2. Object Detection

Object detection is also a fundamental problem in computer vision. Its aim is to
identify and localize different objects in an image. Therefore, deep learning models for this
problem usually consist of two components: the backbone component, which is similar to
an image classification model, and the region proposal component, for predicting bounding
boxes. Region-proposal and Region-based CNN (R-CNN) is a pioneering work for object
detection [236]. However, it requires much computing time and memory for training.
Therefore, several improved variants of R-CNN have been proposed, such as the renowned
Fast R-CNN [55] and Faster R-CNN [44]. Another kind of models for object detection is
represented by YOLO (You Only Look Once), which achieved reasonable performance
for real-time object detection [46]. Other advanced models include Region-based Fully
Convolutional Networks (R-FCNs) [237], which use ResNet as an object detector and are
faster than the Faster R-CNN, and the Single-Shot MultiBox Detector (SSD) [238], which
is even faster than YOLO and has comparable accuracy to Faster R-CNN. Most object
detection methods mentioned above incur a high computational cost due to their bounding
box processing. More architectures addressing this issue and achieving higher accuracy
can be found in recent overview articles [239,240].

4.1.3. Semantic Segmentation

Semantic segmentation refers to the process of dividing an image into meaningful
types of regions. It is a vital step for many image processing and analysis tasks. Its aim is
to label an image at the pixel level, or more accurately to assign each pixel to the class it
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most likely belongs to. A predominant and outstanding architecture particularly for the
semantic segmentation problem is U-Net [43]. Due to the huge success of U-Net, many
variants have been proposed to fit specific applications and achieved great results [241–245].
U-Net was originally proposed for addressing medical image segmentation. Similarly,
other domain-oriented deep neural networks have been developed, including SegNet [246],
PSPNet [247], and DeepLab [248]. More detailed discussions of semantic segmentation can
be found in various surveys [249–251]. In a way, semantic segmentation can be seen as a
rough classification, for example two different dog objects being segmented as one entity,
but in many applications we need a finer segmentation, where each dog is segmented out
separately. Hence, instance segmentation methods are important.

4.1.4. Instance Segmentation

Instance segmentation is essential for many real-world application scenarios such
as autonomous driving, medical imaging, robot vision, and so on. It refers to detecting
instances of objects and, more challenging, demarcating their boundaries. Because in-
stance segmentation involves both the detection of different objects and their per-pixel
segmentation, networks for solving it can be either R-CNN driven or FCN driven. Mask
R-CNN [47] is one of the representative networks. Its overall structure is the two-stage
object detection network Faster R-CNN, where the box head is used for detection and
the mask head for segmentation. Fundamentally, these instance segmentation networks
employ object detection networks in identifying the object bounding boxes, while an extra
component mask head is used to further extract the foreground of the bounding boxes.
Other reputable networks include YOLACT [252] and SOLO [253] inspired by YOLO, and
PolarMask [254] and AdaptIS [255] inspired by the object detection network FCOS [256].
See several recent reviews of instance segmentation for more details [257–259].

4.1.5. Pose Estimation

Pose estimation refers to the problem of inferring the pose of a person or an object in
an image or video. In other words, it concerns determining the position and orientation
of the camera relative to a given person or object of interest. This is typically achieved by
identifying, locating, and tracking a number of key points of the person or object. This
problem is basic and important because it occurs in many real-world applications such
as object/person tracking. Deep learning is often employed to detect and track these key
points. There are many specific neural network architectures for this purpose, and the most
robust and reliable ones that make good places to start include Stacked-Hourglass networks
[260], Mask R-CNN, and PoseNet [261]. Key factors in designing DNNs for pose estimation
include using dilation convolution, upsampling operations, and skip connections. This is
because pose estimation requires a higher-resolution feature map and is more sensitive
to the location of keypoints compared to classification/detection tasks. More advanced
networks have been described in various reviews [262–264].

4.1.6. Style Transfer

Style transfer refers to the computer vision task of blending two input images, named
content image and style reference image, and producing an output image that maintains
the core elements of the content image while following the style of the style reference image.
It can power practical applications such as photo and video editing, gaming, virtual reality,
and so on. Neural networks have become the state-of-the-art method for style transfer.
Generally, CNNs are the mainstream approaches for this problem, and a style transfer
model usually consists of two networks, namely a pretrained feature extraction network
and a transfer network. Significant networks that are good starting points include the
model proposed by Johnson et al. [265] for single style transfer, the model proposed by
Dumoulin et al. [266] at Google for multiple style transfer, and the model proposed by
Huang et al. [267] for arbitrary style transfer. Detailed explorations and more advanced
architectures can be found in recent surveys [107,268,269].
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4.1.7. Video Analytics

Video analytics refers to generating descriptions of the content of, or events in the
video, which involves tasks of object (persons, cars, or other objects) detection, tracking, as
well as calculating their appearance and movements. It is also an important and essential
computer vision technique and has significant practical benefits such as monitoring video
for security incidents helps prevent crime, intelligent traffic systems, and more [270,271].
While its tasks overlap beyond image analysis tasks, they are more challenging because
they involve both spatial and temporal information.

The object detection problem in video is associated with the object segmentation
problem, because an accurate object segmentation facilitates object detection, and ro-
bust object detection in turn facilitates object segmentation. Recent neural networks for
this problem are based on recurrent convolution neural networks (RCNN). For example,
Donahue et al. [272] firstly proposed a long-term RCNN, where a set of CNNs is employed
for visual understanding and then their outputs are fed to a set of RNNs for analyzing
temporal information. Other representative RCNN based models include the one proposed
by Ballas et al. [273], MaskRNN [274], and MoNet [275]. For comprehensive discussions of
video analytics we refer to recent surveys [270,271,276,277].

4.1.8. Codes, Pretrained Models, and Benchmark Datasets

Various implementation codes and pretrained models of many of the above intro-
duced methods can be found in the references provided in Section 2.5.2. Some renowned
benchmark datasets that are widely used in general computer vision to evaluate different
deep learning methods are listed as follows.

(1) MNIST: http://yann.lecun.com/exdb/mnist/ (accessed on 2 November 2022).
(2) CIFAR-10 and CIFAR-100: https://www.cs.toronto.edu/kriz/cifar.html (accessed

on 2 November 2022).
(3) ImageNet: https://image-net.org/challenges/LSVRC/ (accessed on 2 November 2022).
(4) COCO: https://cocodataset.org/#home (accessed on 2 November 2022).
(5) PASCAL VOC: http://host.robots.ox.ac.uk/pascal/VOC/ (accessed on 2 Novem-

ber 2022).
(6) OpenImages: https://storage.googleapis.com/openimages/web/index.html (ac-

cessed on 2 November 2022).
(7) MIT pedestrian: http://cbcl.mit.edu/software-datasets/PedestrianData.html (ac-

cessed on 2 November 2022).
(8) Youtube-8M: https://research.google.com/youtube8m/ (accessed on 2 Novem-

ber 2022).
(9) SVHN: http://ufldl.stanford.edu/housenumbers/ (accessed on 2 November 2022).
(10) Caltech: http://www.vision.caltech.edu/datasets/ (accessed on 2 November 2022).

4.2. Biomedical Sensor Systems

Deep learning has fundamentally converted the way we process, analyze, and interpret
data, including in biology and medicine. We discuss deep learning in biomedical sensor
systems from the perspective of three different biomedical domains: biomedical imaging,
omics data analysis, and prognostics and healthcare.

4.2.1. Biomedical Imaging

Biomedical image analysis is one of the most important and fundamental areas in
biomedical science and has become a cornerstone of modern healthcare. Automatic biomed-
ical image analysis involves a set of basic tasks introduced in Section 4.1, such as image
reconstruction and registration, image or object classification, object detection, segmenta-
tion, and tracking. According to the different image types and their unique characteristics,
we further divide biomedical imaging into four subareas and discuss the application of
deep learning in each, as in [278].

376



Sensors 2023, 23, 62

(1) Medical Imaging. Medical images are typically acquired using devices such as
X-ray CT (computed tomography), MRI (magnetic resonance imaging), and US
(ultrasound). With the advancement of medical imaging devices, the quality of
medical images has improved over the years, but their automated analysis is still a
challenging task. DNNs can provide powerful solutions to this problem. For example,
U-Net [43] and UNet++ [279] are two most reputable and popular architectures for
medical image segmentation. In fact, U-Net has become the de facto standard method
in medical image segmentation due to its huge success in the field. Various CNN-
based architectures have achieved top performance for brain tumor analysis [280].
For a more in-depth discussion of DNN architectures in medical imaging, we refer to
recent overview and survey papers [281–283].

(2) Pathological Imaging. Pathological images are generated from specimen slides by
virtual microscopy, also called whole-slide imaging. Their visual interpretation is
more challenging than for medical images due to the large size and high resolution of
the images. As in medical imaging, deep learning brings great potential in providing
reliable image interpretation in this subarea. For example, Zhu et al. [284] proposed a
DeepConvSurv model based on CNN for survival analysis with pathological images.
Li et al. [285] proposed a DenseNet based solution for pathological image classifi-
cation. A recent trend in pathological image processing is to incorporate multiple
instance learning to deal with the high resolution and weak labels of pathological
images. More advanced models can be found in a recent survey paper [286].

(3) Preclinical Imaging. Preclinical imaging refers to the visualization of small living
animals for conducting in-vivo studies for clinical translation. Preclinical images can
be obtained by micro-US, MRI, and CT for anatomical imaging, or bioluminescence,
PET (positron emission tomography), and SPECT (single photon emission computed
tomography) for molecular visualization. Employing deep learning for interpreting
these images is comparatively under-researched. A few related DNN-based methods
are discussed in recent works [287,288].

(4) Biological Imaging. Biological images capture various aspects of organisms and
biological systems that are not visible to the naked eye. Automated analysis and in-
terpretation of these images is challenging, as they are typically very noisy and highly
variable depending on experimental conditions, and they can be quite large. DNNs
have proven to be very suitable for biological image analysis and have empowered
biological research [289,290]. Moreover, to facilitate the design of DNN architectures
for this purpose, neural architecture search-based solutions have been proposed for
cell segmentation [291,292]. Architectures for deep learning-based biological image
analysis have been discussed in several recent papers [293–295].

4.2.2. Omics Data Analysis

Omics data are complex, heterogeneous, and high-dimensional, and deep learning
methods are specially suitable to analyze them. According to the different types of data,
we introduce deep learning in omics data analysis from the following aspects.

(1) Genomics. Deep learning methods have been applied to genomics data analysis for
several years, and have achieved impressive results. For example, CNNs have been
employed for single-nucleotide polymorphisms and indels detection [296]. SAEs
have been successful in predicting the effect of genetic variants on gene expres-
sion [297]. Both have achieved better results than traditional methods. A review of
more architectures can be found in a recent survey paper [298].

(2) Transcriptomics. Analysis of transcriptomics data may yield an estimate of the ex-
pression level of each gene or transcript across several samples [299]. Therefore, it can
be seen as a typical deep learning problem. Various deep learning methods have been
proposed for addressing this problem. For example, a RAN-based solution for de-
tecting long ncRNAs achieved a remarkable 99% accuracy [300]. For comprehensive
introductions and discussions we refer to various survey papers [301,302].
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(3) Proteomics. Protein data analysis mainly centers around two topics: protein struc-
ture prediction (PSP) and protein interaction prediction (PIP) [303]. For PSP, deep
learning-based methods have been used to solve problems such as backbone angles
prediction [304], protein secondary structure prediction [305], and protein loop mod-
eling and disorder prediction [306]. Moreover, due to the success of deep learning in
generating higher-level representations and ignoring irrelevant input changes, deep
learning methods have become the technology of choice to help PSP. For PIP, deep
learning-based methods have been used to analyze protein–protein interactions [307],
drug–target interactions [308], and compound–protein interactions [309]. A latest
trend in PSP is using GNNs to better learn complex relationships among protein
interaction networks for PSP.

4.2.3. Prognostics and Healthcare

Clinical data and electronic medical records are vital for prognostics and healthcare
management. Deep learning to handle these kinds of data is also rapidly growing [310,311].
For example, deep learning-based methods have been used for detecting cardiac arrhythmia
from electrocardiograms [312] and for phenotype discovery using clinical data [313]. There are
also examples of using DNNs and topic modeling techniques to learn effective representations
from electronic health records [314,315]. A key challenge in this area is the efficient utilization
of temporal information for achieving high performance [316]. Hybrid DNNs such as those
incorporating RNN and CNN components are promising in addressing this challenge.

4.2.4. Codes, Pretrained Models, and Benchmark Datasets

Various implementation codes and pretrained models of many of the above intro-
duced methods can be found in the references provided in Section 2.5.2. In addition,
the implementation of nnU-net [317], which is a powerful self-adapting neural network
framework that can automatically configure itself, including selecting the optimal prepro-
cessing, architecture, training, and post-processing for any new task, is publicly available
(https://github.com/MIC-DKFZ/batchgenerators accessed on 2 November 2022). Some
renowned benchmark datasets that are widely used in the biomedical domain to evaluate
different deep learning methods are listed as follows.

(1) Decathlon: http://medicaldecathlon.com/ (accessed on 2 November 2022)
(2) MedPix: https://medpix.nlm.nih.gov/home (accessed on 2 November 2022)
(3) NIH Pancreas-CT: https://academictorrents.com/details (accessed on 2 November

2022)
(4) AMRG Cardiac Atlas: http://www.cardiacatlas.org/studies/amrg-cardiac-atlas/

(accessed on 2 November 2022)
(5) Cancer Imaging Archive: https://wiki.cancerimagingarchive.net (accessed on 2

November 2022)
(6) OASIS Brains: http://www.oasis-brains.org/ (accessed on 2 November 2022)
(7) ADNI: https://adni.loni.usc.edu/data-samples/access-data/ (accessed on 2 Novem-

ber 2022)
(8) DDSM: http://www.eng.usf.edu/cvprg/ (accessed on 2 November 2022)
(9) CTC: http://celltrackingchallenge.net/ (accessed on 2 November 2022)
(10) ISIC Archive: https://www.isic-archive.com/#!/onlyHeaderTop/gallery (accessed

on 2 November 2022)

4.3. Biometric Sensor Systems

Biometrics deals with recognizing people by using their physical and behavioral
characteristics. Biometric recognition can be formulated as a verification or identification
problem. The verification task aims to verify whether a person is who they claim to be
by comparing the person’s biometric template with the reference template of the claimed
identity. The identification task compares a person’s biometric template with references of
all identities in the database to establish the person’s identity. In either task, the system
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needs to collect the biometric data, extract features, and perform comparison or classifi-
cation. Deep learning has a big impact on biometrics in terms of feature extraction and
classification, which primarily involves supervised learning. Recent advances in this field
also applied generative models with unsupervised learning to enhance the learning of
features and improve recognition performance. In this section, we review deep learning
approaches for biometric applications and discuss how the methods can benefit the field of
biometrics and the open research questions.

4.3.1. Automatic Face Recognition

Faces are one of the most commonly used biometrics in surveillance, forensics, security,
access control applications scenarios. Acquisition of face biometrics is based on cameras
and the collected data are in the format of images or videos. While being noninvasive and
convenient, face biometrics are subject to imaging conditions and physical factors related
to illumination, pose, expression, aging, and other appearance changes.

Conventional methods for automatic face recognition can be categorized into feature-
based approaches and appearance-based approaches, which extract local features and
global representations, respectively. With a hierarchical structure, deep learning simultane-
ously extracts local and global representations while handling nuisance factors. Among
different architectures, CNN-based models show the most significant impact in this field.
For example, CNNs with different architectures and loss functions [318] were trained to
learn DeepID features in joint identification-verification tasks. Verification essentially deals
with the similarity between two faces, and therefore, metric learning such as joint Bayesian
and triplet loss are adopted. Identification, on the other hand, is a multiclass classification
problem, hence the cross-entropy is usually used in the loss function. Facebook proposed
DeepFace [319], which is a nine-layer CNN trained on four million Facebook images from
four thousand subjects. DeepFace addresses the alignment issue and learns effective face
representations with high transferability. Google proposed FaceNet, a deep CNN with
triplet loss [320] to learn direct embeddings of images, which are effective in face veri-
fication, identification and clustering tasks. In addition, various CNN frameworks are
proposed to handle the pose and illumination variations. For example, the face identity-
preserving framework [321] integrates feature extraction layers with a reconstruction layer
to reconstruct face images in a canonical view. An ensemble of pose-aware CNNs [322]
was proposed for face recognition, where each model is trained for a specific pose using
pose-specific images generated by 3D rendering.

To improve the efficiency of training deep neural networks, researchers have proposed
different learning strategies. For example, a sparse network can be trained iteratively from
a denser model using correlations between neural activations of consecutive layers [323].
A face alignment network [324] trained jointly with the face recognition network can
reduce the number of training samples needed. Furthermore, hybrid discriminative and
generative models were proposed to learn identity-specific representations that are pose-
invariant [325]. Generative models such as AEs and GANs are also used to generate
identity-bearing facial images [326]. In addition, the recognition of facial attributes such
as age and gender [327] is an important task because it helps narrow down candidate
matches, which can then facilitate face recognition. Hierarchical representations from a
CNN or an ensemble of CNNs have been used for this purpose via classification [327] or
regression [328]. CNN with different constructs have been adopted, including the residual
network [329]. Training such models requires crowdsourcing to get the age and gender
labels, which usually results in small datasets not sufficient to train deep neural networks.
Therefore, models such as VGGNet and GoogleNet pretrained on large datasets such as
ImageNet are often adopted and fined-tuned for age and gender estimation [330].

4.3.2. Periocular Region and Iris

The periocular region presents salient traits for face and facial attribute recognition,
which is helpful when the lower half of a face is occluded. Researchers have used CNN and
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RBM models trained with unsupervised learning to learn representations from periocular
image patches and transferred the representations to recognition tasks [331]. Deep learning
models were also used with conventional handcrafted methods to enhance performance.
For example, autoencoders were used to learn latent representations from the texture
features extracted by handcrafted filters [332], and CNNs were trained on both face images
and the SIFT features to gain higher recognition accuracy [333].

The iris is a highly distinctive biometric trait. However, the acquisition of iris images
often suffers low user acceptance. Iris recognition relies on random texture information in
the irises and the quality of the extracted information depends on the preprocessing steps,
including iris segmentation, off-axis gaze correction and removal of eyelashes. Gabor filter-
ing is the classic method widely used in real-world applications for capturing iris texture
information [334]. Deep learning replaces the Gabor filters with neural network modules.
For example, CNNs were used to learn source-specific filters for iris images from visible
and near-infrared sources [335]. Deep CNNs integrating inception layers were proposed
for iris recognition, providing robust performance in terms of segmentation and alignment.
Sparse autoencoders were also trained for feature extraction in mobile applications where
iris images were collected by mobile devices [336]. Moreover, representations learned by
CNNs were fused with handcrafted features to improve recognition accuracy.

4.3.3. Fingerprint and Palmprint

Fingerprints are one of the most established biometric modalities. The acquisition of
fingerprints uses cameras and the collected data are images. Two types of features are used,
one is global features in terms of loop, delta, and whorl, and the other is local features in
terms of ridge, valley, and minutiae. The major challenges of fingerprint recognition are
the intra-subject variations caused by displacement, distortion, pressure, skin condition,
and other noises. Applying deep learning to fingerprint recognition aims to extract deep
global and local representations, as well as enhancing the fingerprint images.

CNNs are the most popular models in fingerprint biometric applications. With differ-
ent designs in the neural network structures and training strategies, CNNs have been used
for identification [337], authentication [338], liveness detection [339], double-identity detec-
tion [340], fingerprint alteration detection [341], spoofing detection [341], latent fingerprint
recognition [342], cancellable recognition systems [343], and fingerprint segmentation [344],
enhancement [345], and indexing [346]. Recent work also started to explore the use of
CNNs for contactless and partial 3D fingerprint recognition [347–351]. DBNs are also used
for fingerprint liveness detection, anti-spoofing, and enhancement [352]. One of the biggest
challenges for most fingerprint recognition systems is the spoofing attack, which tries to
circumvent a recognition system using artificial replicas of human characteristics similar to
the legitimate enrolled trait. Models based on AEs such as stacked AEs and sparse AEs [353]
were proposed to defend against spoofing attacks on fingerprint recognition systems and
to perform liveness detection. Moreover, generative models based on GANs are widely
used to generate fingerprint images [354]. The generation of high-quality fingerprints is
used for fingerprint recovery [355] and presentation attack detection [356]. Furthermore,
hybrid deep learning models or ensemble DL methods have been proposed to perform
multiple tasks at once. For example, the Inception, MobileNet, and GAN are integrated
in one framework [357] for localization and detection of altered fingerprints in order to
address obfuscation presentation attack.

Palmprint and hand geometry share similar traits as fingerprints. Classic features
include the hand/palm shape, principal lines, wrinkles, delta points, and minutiae features.
Deep learning is used to learn these multiscale features from the palmprint and hand
images. Various models based on CNN and RBM [358] have been used for palmprint
recognition. The models are trained with either the whole palmprint images or regions of
interest [359].
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4.3.4. Voice-Based Speaker Recognition

Application scenarios of speaker recognition can be classified into speaker verifi-
cation, speaker identification, speaker diarization (which is used for automated speech
transcription systems where dialogue is generated along with the speaker’s information),
and speaker recognition in-the-wild (which refers to real-world scenarios where conditions
are unknown or even corrupted with noise, echo and cross-talk). The in-the-world scenario
is one of the major challenges targeted by researchers. The general types of speaker recogni-
tion are text-dependent and text-independent, and their difference lies in whether specific
phrases are required or not. Deep learning methods are currently the state-of-the-art in the
above-mentioned application scenarios and types. These methods process voice inputs
in two patterns: raw sound waves and preprocessed data. Although some methods (e.g.,
the SincNet [360], RawNet [361], and AM-MobileNet [48]) are directly trained using raw
speech data, most methods rely on signal preprocessing, which segments the signal into
frames, performs normalization, converts signals to the frequency domain, and extracts
spectrogram, mel-filterbank and mel-frequency cepstral coefficients (MFCC).

Based on the learning strategies, existing DL methods for speaker recognition can be
categorized into stage-wise approaches and end-to-end systems. The stage-wise strategy
involves two stages: speaker-specific feature extraction and classification of speakers.
The i-vector [362] is a classic method for speaker recognition, consisting of a feature
extractor based on Gaussian mixture models (GMM) and universal background models
(UBM) and a classifier based on linear discriminant analysis. Inspired by i-vector, DL
architectures are proposed to dig deeper representations, resulting in DL-based speaker
embedding systems, d-vectors [363] (deep vector), x-vectors [364] (time-delay), and t-
vectors [365] (triplet network). End-to-end systems do not require a multistage network.
However, pretraining steps such as extraction of spectogram, MFCC, and mel-filterbank, or
automatic feature learning with AEs, are employed to enhance recognition performance.
Residual networks are widely used in feature extraction and end-to-end speaker recognition
systems. Representative methods include the DeepSpeaker [192] (which integrates CNN
with residual network), RawNet [361] (which consists of convolutional layers and gated
recurrent unit layers with residual block constructs), and AM-MobileNet [48]. Some
architectures adopted speech specific layers to facilitate speech signal processing. For
example, the SincNet [360] uses a parameterized Sinc function to perform convolutions,
which results in a smaller number of parameters and achieves better performance and faster
convergence than standard CNNs. Autoencoders have also been widely used in speaker
recognition for data encoding, feature dimension reduction, and data denoising [366].
Furthermore, generative models based on GANs are used for data augmentation and
generation in speaker recognition systems to help extend short utterances into long speeches
to enhance recognition performance [367]. An example is the SpeekerGAN [368] which is a
variant of conditional GAN trained on inadequate speech data.

4.3.5. Behavioral Biometrics

Handwritten signature is the most popular behavioural biometrics that has been
widely used in various applications in legal, medical, and banking sectors. Based on how
the signature is acquired, signature verification can be operated in two scenarios, including
offline methods that use static signature images as inputs and online methods that further
take into account the dynamics of the signing process (such as the pressure and velocity).
Various deep learning models have been proposed to extract deep representations from the
signature images and the signing process to improve verification accuracy for both offline
and online applications. Popular models include the RNNs [369] (LSTM, gated recurrent
unit), CNNs [370], DBN [371], and the combination of these models with AEs [372]. Classic
methods such as the length normalized path signature descriptors [373], direction features,
and wavelet features [371] are also used as inputs to train deep nets, instead of raw images,
to improve performance. A Siamese network structure with contrastive loss was used for
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writer-independent verification [374], which measures how likely two given signatures are
written by the same writer without knowledge of the writer’s identity.

Gait and keystrokes are two other popular behavioral biometrics which use the shape
and motion cues of a person’s walking style and the typing patterns respectively for person
recognition. There are two ways to acquire gait data: one is to use cameras or motion
sensors to capture image/video [375] during the gait phases and the transition periods
between phases, the second is to use sensors such as accelerators [376] to capture the signal
variations of the person during walking. Deep learning methods for image/video-based
gait recognition share great similarities with those in computer vision applications. The
major difference lies in the input images, where models for gait recognition are usually
silhouette shape-based and are trained with gait energy images [375] or chrono-gait im-
ages [377]. In terms of models, CNNs, LSTM, AEs, and their combinations are popular. In
particular, 3D CNNs with temporal information in gait sequences considered provide a
significant improvement in performance [378].

4.3.6. Physiological Signals-Based Biometrics

Brain biometrics and heart biometrics are the major modalities in this category, which
are an emerging branch of biometric technology. Brain biometrics are based on EEG (elec-
troencephalogy) signals, which are recordings of the electrical pulses of the brain activity
collected from a person’s scalp using electrodes. Similarly, the heart signals are collected
from the chest, finger, or arm using electrical, optical, acoustic and mechanical sensors.
The resultant signals are referred to as ECG (electrocardiography), PPG (photoplethys-
mography), PCG (phonocardiogram), and SCG (seismocardiogram), respectively. Other
physiological signals used for biometric applications include the EMG (electromyography),
EDA (electrodermal activity), and EOG (electrooculogram). Deep learning contributes to
brain, heart, and other physiological signals-based biometrics in two aspects: automatic
representation learning and classification. Various models based on MLPs, LSTM, and
CNNs [379] are proposed to directly learn deep representations from the physiological
signals for biometric recognition for end-to-end systems. In addition, since the salient fea-
tures of these signals are usually in the frequency domain, pretraining steps such as Fourier
transform and wavelet package decomposition were adopted in many works to convert the
signal into the frequency or time-frequency domain [380]. Other pretraining steps include
constructing functional connectivity networks using multichannel EEG signals, followed
by CNNs [381] or GCNNs [382] to learn structural representations from the networks. The
acquisition of physiological data from human subjects is a difficult and time-consuming
task, and therefore, the datasets are usually small. To address this issue, generative mod-
els based on AEs [383,384] and GANs [385] were proposed for data augmentation and
incomplete data reconstruction. The results show a significant improvement in recognition
performance with data augmentation. We refer to [386] for a comprehensive survey in
this area.

4.3.7. Databases

Databases commonly used for biometric performance evaluation are summarized in
Table 3. We separate the databases for different biometric modalities.
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Table 3. Databases for biometric applications.

Modality Database

Face Labeled Faces in the Wild http://vis-www.cs.umass.edu/lfw/ (accessed on 2 November 2022)
Face YouTube Faces http://www.cs.tau.ac.il/wolf/ytfaces/ (accessed on 2 November 2022)
Face AR Face database [387]
Face MORPH https://uncw.edu/oic/tech/morph.html (accessed on 2 November 2022)
Iris VSSIRIS https://tsapps.nist.gov/BDbC/Search/Details/541 (accessed on 2 November 2022)
Iris Mobile Iris Challenge Evaluation http://biplab.unisa.it/MICHE/ (accessed on 2 November 2022)
Iris Q-FIRE [388]
Iris LG2200 and LG4000 https://cvrl.nd.edu/projects/data/ (accessed on 2 November 2022)
Fingerprint FVC-onGoing https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/Home.aspx (accessed on 2 November 2022)
Fingerprint NIST SD27 https://www.nist.gov/itl/iad/image-group/nist-special-database-2727a (accessed on 2 November 2022)
Palmprint PolyU Palmprint database http://www4.comp.polyu.edu.hk/csajaykr/database.php (accessed on 2 November 2022)
Voice Google Audioset https://research.google.com/audioset/ (accessed on 2 November 2022)
Voice VoxCeleb https://www.robots.ox.ac.uk/vgg/data/voxceleb/ (accessed on 2 November 2022)
Signature GPDS-960 corpus https://figshare.com/articles/dataset/GPDS960signature_database/1287360/1 (accessed on 2 November 2022)
Signature Signature verification competition 2004 [389]
Gait CASIA-B http://www.cbsr.ia.ac.cn/english/Gait20Databases.asp (accessed on 2 November 2022)
Gait OU-ISIR LP dataset http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitLPBag.html (accessed on 2 November 2022)
Keystroke CMU Benchmark Dataset https://www.cs.cmu.edu/keystroke/ (accessed on 2 November 2022)
EEG EEG Motor Movement/Imagery Dataset https://physionet.org/content/eegmmidb/1.0.0/ (accessed on 2 November 2022)
EEG BED [390]
ECG ECG-ID https://physionet.org/content/ecgiddb/1.0.0/ (accessed on 2 November 2022)
ECG PTB https://www.physionet.org/content/ptbdb/1.0.0/ (accessed on 2 November 2022)

4.4. Remote Sensing Systems

In general, remote sensing refers to non-contact and long-distance detection tech-
nology, which uses remote sensors to capture the radiation and reflection characteristics
of objects on the earth’s surface [391]. Remote sensors, typically mounted on airborne
and satellite platforms, are the core component in any remote sensing system, and can be
classified into two types: passive and active sensors. Passive sensors measure energy that
is naturally available, and are usually optical and camera-based, such as panchromatic and
multispectral sensors, providing images in the visible range. Different from passive sensors,
active sensors such as radar sensors receive the reflection of the impulse they emitted and
are less influenced by the environment.

With the availability of remote sensing imagery, DL methods have seen a rapid surge
of interest from the remote sensing community and made a remarkable breakthrough. Deep
learning in remote sensing confronts some new challenges:

(1) Multiple image modalities. Multimodality remotely sensed datasets, such as multi-
and hyperspectral data, light detection and ranging (LiDAR) data, and synthetic
aperture radar (SAR) data differ from each other not only in the imaging mechanism
but also in the imaging geometries and contents. Different data modalities are
often complementary. The design of deep models is crucial in making the most of
these data.

(2) Growing importance of prior knowledge. Remote sensing data presents the real
geodetic measurements for the earth surface, with each data point containing geo-
physical or biochemical information. Hence, minimizing distortion and improving
data quality are especially crucial to remote sensing tasks. Pure data-driven models,
without any prior knowledge, will lead to possible misinterpretation or blind trust.

In the following sections, we will investigate how deep learning models are modified
to cope with these two challenges from the perspective of image classification, scene
classification, object detection and segmentation, and multimodal data fusion.
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4.4.1. Image Classification

Image classification is one of the most active research topics in remote sensing, which
aims to assign semantic labels to every pixel in the image. Various works used machine
learning algorithms such as random forest (RF) and support vector machine (SVM) to
improve the accuracy. The advent of deep learning pushed the boundary even further.
Chen et al. [392] proposed the first deep learning-based classification model, which uses a
stacked AE to extract hierarchical spectral information. Soon afterwards, DBN [393], and
sparse SAEs [394] were introduced to learn stable and effective features for hyperspectral
data classification. Makantasis et al. [395] proposed to use CNNs as feature extractor and
a multiLayer perceptron (MLP) responsible for the classification task. Santara et al. [396]
constructed an end-to-end CNN-based framework and generated band specific spectral-
spatial features for classification. In [397], Li et al. proposed a pixel-pair strategy for CNN-
based classification, and achieved state-of-the-art performance even with limited training
samples. Recent improvements can be attributed to (1) specially designed architectures such
as Siamese CNNs [398], the capsule network [399], and Transformer [400], and (2) improved
feature representation [401,402].

4.4.2. Scene Classification

Scene classification, which aims to automatically classify the image into the category
it belongs to, has become one of the most active areas of high-resolution remote sensing
image understanding, and attracted growing attention in the past decade [403]. It is a
relatively challenging task because even different scenes may contain objects with similar
features. Such variations make scene classification considerably difficult. Compared with
traditional approaches based on bag-of-visual-words (BoVW), deep models have distinct
advantages in learning more abstract and discriminative features, thereby providing much
better classification accuracy. Hence, most of the recent works paid much attention to
building a robust and informative scene representation. Using PTMs [404,405] is a popular
technique in scene classification, as it is difficult and time-consuming to train a CNN
model from scratch with a limited number of training samples. Fine-tuning [406] also
helps the PTMs adapt to the specific task and learn oriented feature representation for
remote sensing images. Another family of methods focuses on feature selection [407],
features aggregation [402,408,409], and fusion [410–412]. For example, Lu et al. [409]
proposed a supervised feature encoding module and a progressive aggregation strategy
to make full use of intermediate features. To cope with large intra-class variance caused
by large resolution variance and confusing information, Zhao et al. [412] proposed a
multigranularity multilevel feature fusion branch to extract structural information and
fine-grained features.

4.4.3. Object Detection

With the rapid development of intelligent earth observation, automatic interpretation
of remote sensing data has become increasingly important. Object detection in remote
sensing aims to identify ground objects of interest such as vehicles, roads, buildings or
airports from images and correctly classify them. In recent years, DL-based methods have
been dominating this research area and made remarkable progress.

Preliminary work for object detection in remote sensing images [413–415] borrows
the coarse-localization-fine-classification pipeline and CNN models from the computer
vision community. Zhu et al. [416] introduced AlexNet CNN [37] to extract robust features,
combined them with an image segmentation method for localization, and finally employed
an SVM classifier for detection. Chen et al. [413] presented a hybrid DNN (HDNN) for
vehicle detection, which used a DNN as feature extractor and a MLP as classifier. To further
adapt CNN models to remote sensing object detection, researchers also take the rotation-
invariant characteristic and context information into consideration. Cheng et al. [417]
used and a newly proposed rotation-invariant layer to cope with object rotation vari-
ations. To cope with performance drop resulting from object appearance differences,

384



Sensors 2023, 23, 62

Zhang et al. [418] proposed to use attention-modulated features as well as global and local
contexts to detect objects from remote sensing images.

The advent of two-stage models such as RCNN [236] and faster RCNN [44], and one-
stage methods such as YOLO series [46,419,420], made another leap in detection accuracy.
By adapting two-stage models, most work focuses on improving the quality of region
proposals [421–423]. More recently, advanced deep architectures such as Transformer[424]
have also been introduced to advance the performance.

4.4.4. Multimodal Data Fusion

Data fusion, as a fundamental task in the field of remote sensing, has been exten-
sively studied for decades. With the availability of multimodal remote sensing data, data
fusion techniques are expected to integrate complementary information and help boost
the performance of downstream tasks. We briefly discuss two main topics in this area:
(1) pansharpening, and (2) task-specific data fusion.

The goal of pansharpening is to integrate panchromatic (PAN) images and multispec-
tral (MS) images, which are two types of optical remote sensing images with inevitable
trade-off between spectral diversity and spatial resolution [425]. In general, PAN images
provide high spatial resolution but contain limited spectral information, while MS images
have much higher spectral resolution with less spatial details. The key point in pansharp-
ening is that while ensuring the spatial increment, the detail injection implemented should
preserve the unified spatial–spectral fidelity for fusion products [426]. The first DL-based
pansharpening was proposed by Huang et al. [427], in which a modified sparse denoising
autoencoder (MSDA) algorithm was used to learn the relationship between high-resolution
(HR) and low-resolution (LR) image patches. Masi et al. [428] utilized a shallow CNN to
upsample the intensity band after the intensity–hue–saturation (IHS) transform. As pan-
sharpening aims to maximize the spatial injection and minimize spectral distortion, much
effort has been devoted to making network architectures good at extracting spatial details
while preserving spectral information [429,430]. To this end, Yuan et al. [431] proposed
a multiscale and multidepth CNN to better fulfill spatial detail extraction and improve
the fusion quality. Yang et al. [432] designed structural and spectral preservation mod-
ules and trained the network in the high-pass domain for more effective spatial injection.
Zhang et al. [426] introduced saliency analysis as a measure to indicate the demand for
spectral and spatial details, and treated them differently in the CNN based fusion process.

Unlike pansharpening aiming only at producing high-quality fusion products, task-
specific data fusion usually leverages feature-level or decision-level fusion with specific
downstream tasks such as land cover mapping and object detection in a unified frame-
work [433]. A simple way of utilizing multimodal data for training a NN-based model
is to concatenate them into an N-dimensional input. In [434], Lagrange et al. found that
combining a digital surface model channel with RGB data in the training process can help
retrieve some specific classes. For the image classification task, Hong et al. [433] designed
an extraction Network (Ex-Net) and a fusion Network (Fu-Net) to learn from two different
types of modality. Experiments on HS-LiDAR and MS-SAR data reveal the superiority of
multimodal data fusion. Irwin et al. [435] combined SAR, optical imagery and airborne
LiDAR data for surface water detection, in which a multilevel decision tree is developed to
synthesize the results from a single data source.

4.4.5. Codes, Pretrained Models, and Benchmark Datasets

To fulfill the demand of training deep learning-based models, a number of datasets are
proposed by research groups in the earth observation community. Details of the publicly
available datasets are shown in Table 4.
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Table 4. Databases for remote sensing applications.

Database Task Imagery Resolution Channels

UCMerced LandUse [436]
Image classification

Multispectral - 115
University of Pavia [437] Hyperspectral 1.3 m 11

Salinas [437] Hyperspectral 3.7 m 224

WHU RS19 [438]

Scene classification

Aerial up to 0.5 m 3
AID [439] Aerial - 3

NaSC-TG2 [440] Multispectral 100 m 4
NWPU-RESISC45 [403] Multispectral 30–0.2 m 3

NWPU VHR-10 [441]

Object detection

- 0.5–2 m 3
UCAS-AOD [416] Aerial - 3
HRSC2016 [442] - 2–0.4 m 3

DOTA [443] Aerial - 3
DIOR [444] Aerial - 3

HRSID [445] SAR 0.5–3 m -

4.5. Intelligent Sensor Based Cybersecurity Systems

Cybersecurity is the practice of protecting critical systems and sensitive information
from digital attacks, such as intrusion attacks and malware attacks. This section briefly
reviews deep learning applications used in the detection of the four types of attacks:
intrusion detection, malware detection, phishing detection, and spam detection.

4.5.1. Intrusion Detection

Intrusion detection has become an essential task in the cybersecurity field. The objec-
tive of an intrusion detection system (IDS) is to distinguish malicious activities in network
traffic and protect sensitive information. The following is a summary of the common attack
types used in intrusion attacks.

(1) Denial-of-Service (DoS) attacks, such as botnet and smurf, aim to crash a machine or
network service by flooding it with traffic, rendering it inaccessible to its users.

(2) Distributed DoS (DDoS) attacks aim to interrupt the regular traffic of a targeted
network by flooding the target or its surrounding infrastructure with huge quantities
of network traffic.

(3) User-to-Root (U2R) attacks attempt to get root access as a normal user by exploiting
system weaknesses.

(4) Remote-to-Local (R2L) attacks are attempts by a remote system to obtain unautho-
rized access to the root.

(5) Password-based attacks attempt to obtain access to a system by attempting to guess
or crack passwords.

(6) Injection attacks use well-designed instructions or queries to steal sensitive informa-
tion or obtain unauthorized access to a system.

Deep learning-based techniques have demonstrated exceptional performance for
intrusion detection in complicated, large-scale traffic conditions. For example, several recent
methods [446–448] have introduced neural networks based on DBNs to achieve improved
detection accuracy on the NSL-KDD dataset [449]. However, DBNs-based methods have
the drawback that they are computationally unfeasible to train in an end-to-end supervised
manner. AEs are widely used as a preprocessing step in intrusion detection, followed by the
application of a deep learning classifier. For example, Abolhasanzadeh et al. [450] proposed
an AE-based model with seven layers to extract compact and discriminant representations
of the input data, and achieved high detection accuracy on the NSL-KDD dataset. In
addition, several recent methods based on AEs have considered using stacked AEs for
intrusion detection [451–454]. Vu et al. [455] proposed combining variational AEs [94] with
several classifiers, such as naive Bayes, SVM, decision tree, and random forest classifiers
for intrusion detection, and achieved good results on the NSL-KDD and UNSW-NB15
datasets. These AEs-based methods have the drawback of requiring an additional model
to perform classification in additional to the AEs. To address this drawback, recent deep
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learning-based methods increasingly use CNNs for intrusion detection systems [456,457].
Especially, the LSTM networks have proven very useful because they have the strong
ability to process data in intrusion detection that is often structured as sequences of features
evolving over time. Several intrusion detection methods in the literature are based on LSTM
networks [458]. Among these methods, the one proposed in [459] adopts a three-layer
LSTM network, which achieves high detection accuracies on the ADFA-LD and UNM
datasets. Similarly, the method proposed in [460] adopts a cascade of three LSTM network
modules, which achieve an impressive intrusion detection accuracy by combining them
through a voting mechanism. In addition, to take full advantage of LSTMs in processing
time series data and CNNs in extracting spatial patterns, several recent methods consider
combinations of LSTMs and CNNs for intrusion detection. For example, the method
described in [461] uses both a CNN and a hybrid LSTM-CNN to perform the intrusion
detection. The method developed in [462] uses a hybrid LSTM-CNN model based on
the LeNet. GANs have been used for intrusion detection because their advantage of
learning in an unsupervised manner is very suitable for learning the characteristics of data
distributions in specific situations (e.g., under normal conditions) in the IDS context. For
example, Schlegl et al. proposed a CNN-based GAN [463] to learn the characteristics of data
captured under normal conditions, which is then used to detect anomalies by computing
the distance between freshly captured data and normal data. In addition, Zenati et al. [464]
proposed to further improve the computational efficiency of the GAN in [463] to achieve a
faster detection.

4.5.2. Malware Detection

Malware is a malicious software that is disseminated to compromise a system’s se-
curity, integrity, and functioning. The types of malware include viruses, worms, trojans,
backdoors, spyware, botnets, and so on. Deep learning in this field is mainly concentrated
on malware detection and analysis. The developed techniques can be generally classified
into two categories: PC-based and Android-based malware detection.

(1) PC-based malware detection. Deep learning can be used to learn the language of
malware through the executed instructions, and thus to help extract resilient features.
To achieve this goal, Pascanu et al. [465] firstly proposed a method based on the Echo
State Network (ESN) and RNN to classify malware samples. Later, David et al. [466]
proposed a DeepSign to automatically generate malware signatures, which does not
rely on any specific aspect of the malware. This model uses stacked denoising AE
(SDAE) and creates an invariant compact representation of the general behavior of
the malware. In 2017, Yousefi-Azar et al. [467] proposed a generative feature learning-
based method for malware classification and achieved a network-based anomaly
detection using AE. Recently, two GAN-based methods for malware detection have
been proposed [468,469]. Specifically, in [468], Kim et al. adopted a transferred
deep convolutional GAN (tDCGAN) to generate the fake malware and learn to
distinguish it from the real one, which achieves robust zero-day malware detection.
In [469], latent semantic controlling GAN (LSCGAN) is proposed to detect obfuscated
malware, where features are first extracted using a VAE and then transferred to a
generator to generate virtual data from a Gaussian distribution.

(2) Android-based malware detection. Malicious Android apps detection is vital and highly
demanded by app markets. Deep learning models can automatically learn features
without any human interference. The first investigation of applying deep learn-
ing to Android malware detection was Droid-Sec [470], which learns more than
200 features from both the static and dynamic analysis of Android apps for malware
detection. Later, Hou et al. [471] proposed DroidDelver to deal with Android mal-
ware threats, which firstly categorizes the API calls of the Smali code into a block and
then applies a DBN for newly unknown Android malware detection. Su et al. [472]
proposed the DroidDeep for Android malware detection, which is also a DBN-based
model. In 2017, CNN was firstly applied to Android malware detection context

387



Sensors 2023, 23, 62

by McLaughlin et al. [473]. They used CNN to extract raw opcode sequences from
disassembled code, with the purpose of removing the need to count the vast number
of distinct n-grams. Later, Nix et al. [474] proposed a CNN-based framework for An-
droid malware classification, which gets help from API-call sequences. Specifically,
a pseudo-dynamic program analyzer is firstly used to generate a sequence of API
calls along the program execution path. Then, the CNN learns sequential patterns
for each location by performing convolution alongside the sequence and sliding
the convolution window down the sequence. Recently, Jan et al. [475] employed
a Deep Convolutional GAN (DCGAN) for investigating the dynamic behavior of
Android applications.

4.5.3. Phishing Detection

Phishing is a form of fraud in which the attacker tries to learn sensitive information
such as login credentials or account information by sending emails or other communication
messages. Therefore, phishing detection is a vital task in cybersecurity. Deep learning has
also been researched to facilitate the solving of this task. For example, Zhang et al. [476]
proposed to detect phishing email attacks by using a 3-layer FCN which consists of one
input layer, one hidden layer, and one output layer. In addition, in this network, tanh
and sigmoid activation functions are used to better fit the data. Mohammad et al. [477]
proposed a self-structuring neural network for detecting phishing website attacks. It can
automate the process of structuring the network, which is important for extracting the
dynamic phishing-related features. Benavides et al. [478] investigated a variety of networks
for cyber-attacks classification and found that the most regularly utilized are DNN and
CNN. Although diverse deep learning-based methods have been presented and analyzed,
there is still a research gap in the application of deep learning in cyber-attacks recognition.

4.5.4. Spam Detection

The research of spam detection can be basically classed into text spam detection and
multimedia spam detection.

(1) Text Spam Detection. Text-based spam content generally includes malicious URLs,
hashtags, fake reviews/comments, posts, SMS, chat messages, etc. Wu et al. [479]
developed a deep learning-based method to identify spam on Twitter, which employs
MLP classifiers to learn the syntax of many tweets to perform pre-processing and
create high-dimensional vectors. It outperforms the traditional feature-based ma-
chine learning methods such as random forest. Jain et al. [480] proposed a semantic
CNN (SCNN) that employs a CNN with an additional semantic layer for malicious
URL detection, where the semantic layer is a Word2Vec network used to map the
word. Thejas et al. [481] proposed a hybrid deep network for click fraud detection,
which involves an ANN and auto-encoders (AEs). The ANN is used to gain learning
and pass knowledge to the other layers in the hybrid neural network, while the AEs
are used to acquire the distribution of human clicks. The proposed hybrid network
achieved high accuracy on a real-time dataset of ad-clicks data. Singh et al. [482]
proposed using a CNN to classify the aggressive behavior on social networks, which
achieved significant accuracy. Ban et al. [483] proposed using a Bi-LSTM network to
extract features from Twitter text for spam detection.

(2) Multimedia Spam Detection. Deepfake is a currently famous technology that synthe-
sizes media to create falsified content by replacing or synthesizing faces, speech,
and manipulating emotions. It uses deep neural networks to learn from large and
real samples to simulate human behavior, voices, expressions, variations, etc., and
thus, its generated content seems genuine [484]. This technology can be valued in
many applications such as movies, games, education, etc. However, it can seriously
eradicate trust due to giving forged reality [485]. It also brings many challenges for
the spam detection, as its synthetic media is generated by deep learning techniques.
Therefore, an arms race between Deepfake techniques and spam detection algorithms
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has begun. For example, Hasan et al. [485] proposed employing a blockchain-based
Ethereum smart contract framework to deal with media content authenticity. This
system can preserve all historical information related to the creator and publisher of
the digital media, and then it checks the authenticity of video content by tracking
whether it is from some reliable or trustworthy source or not. Fagni et al. [486] pro-
posed a TweepFake to detect deepfake tweets, which involves CNN and bidirectional
gate recurrent unit (GRU). For more advanced neural networks for multimedia spam
detection we refer to the survey paper [487].

4.5.5. Codes, Pretrained Models, and Benchmark Datasets

Various implementation codes and pretrained models of many of the above introduced
methods can be found in the references provided in Section 2.5.2. The popular benchmark
datasets for intrusion detection are summarized in Table 5.

Table 5. Benchmarks for cybersecurity intrusion detection.

Dataset Year Main Attack Types

AWID3 [488] 2021 Flooding, injection, Botnet
CIC-IDS2017 [489] 2017 DoS/DDoS, port scan, web attacks
AWID2 [490] 2016 Flooding, injection, web attack
UNSW-NB15 [491] 2015 DoS, worms, back-doors, generic
ADFA-LD [492] 2013 Password, web attacks
NSL-KDD [449] 2009 DoS, Probe, U2R, R2L

4.6. Internet of Things (IoT) Systems

With the development of commodity sensors and increasingly powerful embedded
systems, the research of IoT is rapidly emerging and developing. According to the different
sensor systems in the IoT, we describe deep learning in this domain from four aspects:
smart healthcare, smart home, smart transportation, and smart industry.

4.6.1. Smart Healthcare

Deep learning and IoT in smart healthcare systems can be researched in the following
two aspects.

(1) Health Monitoring. Sensor-equipped mobile phones and wearable sensors enable a
number of mobile applications for health monitoring. In these applications, human
activity recognition is used to analyze health conditions [493]. However, extracting
effective representative features from the massive raw health-related data to recog-
nize human activity is one of the significant challenges. Deep learning is employed
for this purpose in these applications. For example, Hammerla et al. [494] proposed
to use CNNs and LSTM to analyze the movement data and then combine the analy-
sis results to make a better freezing gaits prediction for Parkinson disease patients.
Zhu et al. [495] proposed using a CNN model to predict energy expenditure from
triaxial accelerometers and heart rate sensors, and achieved promising results to
relieve chronic diseases. Hannun et al. [496] proposed using a CNN with 34 layers
to map from a sequence of ECG records obtained by a single-lead wearable monitor
to a sequence of rhythm classes, and achieved higher performance than that of board
certified cardiologists in detecting heart arrhythmias. Gao et al. [497] proposed a
novel recurrent 3D convolutional neural network (R3D), which can extract efficient
and discriminating spatial-temporal features for action recognition through aggre-
gating the R3D entries to serve as an input to the LSTM architecture. Therefore,
with wearable devices, it can monitor health state and standardize the way of life at
any time. Deploying deep learning-based methods on low-power wearable devices
can be very challenging because of the limited resources of the wearable devices.
Therefore, some research works employing deep learning for health monitoring focus
on addressing this issue. For example, Ravi et al. [498] utilized a spectral domain
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preprocessing for the data input to the deep learning framework to optimize the
real-time on-node computation in resource-limited devices.

(2) Disease Analysis. Using the comparatively cheap and convenient mobile phone-based
or wearable sensors for disease analysis is increasingly important for healthcare.
Deep learning has been widely used in assisting this. For example, CNNs have
been used to automatically segment cartilage and predict the risk of osteoarthritis by
inferring hierarchical representations of low-field knee magnetic resonance imaging
(MRI) scans [499]. Another work using CNNs is to identify diabetic retinopathy
from retinal fundus photographs [500], which has achieved both high sensitivity and
specificity over about 10,000 test images with respect to certified ophthalmologist
annotations. Other examples of employing deep learning for disease analysis include
the work of Zeng et al. [501], where a deep learning-based pill image recognition
model is proposed to identify unknown prescription pills using mobile phones. In ad-
dition, Lopez et al. [502] proposed a deep learning-based method to classify whether
a dermotropic image contains a malignant or benign skin lesion. Chen et al. [503]
proposed a ubiquitous healthcare framework UbeHealth for addressing the chal-
lenges in terms of network latency, bandwidth, and reliability. Chang et al. [504]
proposed a deep learning-based intelligent medicine recognition system ST-MedBox,
which can help chronic patients take multiple medications correctly and avoid taking
wrong medications.

4.6.2. Smart Home

Smart home enables the interconnection of smart home devices through home net-
working for better living. In recent years, a variety of systems has been developed with the
application of deep learning techniques. Two main kinds of smart home applications are
indoor localization and home robotics, described below.

(1) Indoor Localization. With the spread of mobile phones, indoor localization has become
a critical research topic because it is not feasible to employ Global Positioning System
(GPS) in an indoor environment. Indoor localization covers several tasks such as
baby monitoring and intruder detection. However, there are a lot of challenges to
achieve these task, e.g, the multi-path effect, the delay distortion, etc. In addition,
high processing speed and accuracy are essential for indoor localization systems.
Fingerprinting-based indoor localization is a powerful strategy to address these
challenges. For example, Gu et al. [505] proposed a semisupervised deep extreme
learning machine (SDELM), which takes advantage of semi-supervised learning,
deep learning, and extreme learning machine, and achieves a satisfactory localization
performance while reducing the calibration effort. Mohammadi et al. [506] proposed
a semisupervised DRL model, which uses VAEs as the inference engine to generalize
the optimal policies. Wang et al. [507] proposed using an RBM with four layers to
process the raw CSI data to obtain the locations. One challenge of applying deep
learning in this field is the lack of suitable databases for large indoor structures
such as airports, shopping malls, and convention centers. In addition, DRL-based
fingerprinting is another area that has not received much attention. However, DRL is
gaining enormous momentum and may push the boundaries of performance.

(2) Home Robotics. Equipped with commodity sensors, home robots can perform a variety
of tasks in home environments. For example, popular tasks include localization,
navigation, map building, human–robot interaction, object recognition, and object
handling. However, case-specific strategies are needed for guiding a mobile robot
to any desired locations when GPS is not available. In [508], a deep learning-based
method for autonomous navigation to identify markers or objects from images and
videos is proposed, which uses pattern recognition and CNNs. Levine et al. [509]
proposed to train a large CNN to achieve successful grasps of the robot gripper
using only monocular camera images. This method can predict the probability of
the task-space motion of the gripper, and is independent of the camera calibration or
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the current robot pose. Therefore, it greatly improves the hand-eye coordination of a
robot for object handling, and thus improve human–robot interaction. Reinforcement
learning and unsupervised learning will be promising in this area because it is
inefficient to manually label data that may change dramatically depending on the
user and environment in a smart home.

4.6.3. Smart Transportation

Nowadays, intelligent transportation systems heavily depend on the historical and
real-time traffic data collected from all kinds of sensors, such as inductive loops, cameras,
crowd-sourcing, and social media. Deep learning in various smart transportation systems
currently has the following focuses.

(1) Traffic Flow Prediction. Traffic flow prediction is a basic and essential problem for trans-
portation modeling and management in intelligent transportation systems. Deep
learning has been increasingly used in this area to exploit the rich amount of traffic
data and thus extract highly representative features. For example, Huang et al. [510]
proposed using a DBN to capture effective features from each part of road traffic net-
works, and then these features from related roads and stations are grouped to explore
the nature of the whole road traffic network to predict traffic flow. Lv et al. [511]
proposed a stack of AEs model to extract features from historical traffic data to make
the prediction. In addition, there are a lot of works focused on using deep learning for
traffic and crowd flow prediction [512,513]. Most current methods to predict traffic
flow are for short-term prediction while long-term prediction horizons can reduce
costs and provide better intelligent transportation system management. Research
in this field is very challenging due to the difficulty of achieving high accuracy of
long-term prediction. A promising solution is using data-driven methods.

(2) Traffic Monitoring. Traffic monitoring is one of the most popular research fields in
smart transportation. Its aim is to both reduce the workload of human operators and
warn drivers of dangerous situations. Therefore, traffic video analytics is a key part
of traffic monitoring. One of the key tasks in traffic monitoring is object detection,
which includes pedestrian detection, on-road vehicle detection, unattended object
detection, and so on. As in other tasks (Section 4.1), deep neural networks for object
detection have also played an important role here, and have significantly improved
the accuracy and speed of traffic monitoring. For example, Ren et al. [44] proposed
using a region proposal network (RPN), which shares full-image convolutional fea-
tures with the detection network and can achieve nearly cost-free region proposals.
Redmon et al. [46] proposed to formulate frame object detection as a regression prob-
lem, which separates the processes of recognizing bounding boxes and computing
class probabilities. Another important task in traffic monitoring is object tracking,
which plays a significant role in surveillance systems, including tracking suspected
people or target vehicles for safety monitoring, urban flow management, and au-
tonomous driving. Deep learning has also been widely in this area. For example,
Vincent et al. [451] proposed building deep networks based on stacking layers of
denoising AEs for this purpose. Li et al. [514] proposed a robust tracking algorithm
based on a single CNN to learn effective feature representations for the target object.
Ondruska et al. [515] proposed an end-to-end object tracking approach, which uses
RNN to directly map from raw sensor input to object tracks in sensor space.

(3) Autonomous Driving. Autonomous driving is crucial to city automation. Vision-
based autonomous driving systems have two main paradigms: mediated perception-
based and behavior reflex-based. The underlying idea of mediated perception-based
methods is to recognize multiple driving-relevant objects, such as lanes, traffic
signs, traffic lights, cars, and pedestrians. However, most of these systems rely on
highly precise instruments and thus bring unnecessarily high complexity and cost.
Therefore, current autonomous driving systems focus more on real-time inference
speed, small model size, and energy efficiency [516]. Deep learning is adopted here to
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learn a map from input images/videos to driving behaviors, or to construct a direct
map from the sensory input to a driving action. For example, Bojarski et al. [517]
trained a CNN to map raw pixels from a single front-facing camera directly to steering
commands. Xu et al. [518] proposed using an end-to-end FCN-LSTM network to
predict multimodal discrete and continuous driving behaviors. Readers interested in
finding more deep learning-based methods for this topic are referred to the survey
paper [519]. Currently, most papers on deep learning for self-driving cars focus
on perception and end-to-end learning. Although deep learning has made great
progress in the accuracy of object detection and recognition, the level of recognition
detail still needs to be improved to perceive and track more objects in real time in the
autonomous driving scene. In addition, the gap between image-based and 3D-based
perception needs to be filled.

4.6.4. Smart Industry

Smart industry, also known as industry 4.0, represents the latest trend of the manufac-
turing revolution. In the era of smart industry, explosive data produced in manufacture
can be analyzed by deep learning to empower the manipulators with human-like abilities.
Deep learning in several main research topics are described as follows.

(1) Manufacture Inspection. Manufacture inspection refers to inspecting and assessing the
quality of products. Various deep learning-based visual inspection methods have
been proposed and become a powerful tool to extract representative features and
thus to detect product defects in large scale production. For example, Li et al. [520]
proposed a CNN-based classification model to implement a robust inspection system,
which significantly improves the efficiency. Park et al. [521] proposed a generic CNN-
based method to extract patch features and predict defect areas through thresholding
and segmenting for surface integration inspection. Deep learning based methods
have achieved the best experimental results so far in this domain, with accuracies
ranging from 86.20% up to 99.00%.

(2) Fault Assessment. Fault assessment is crucial to building smart factories. Specific
application tasks include machinery conditions monitoring, incipient defects identi-
fication, root cause of failures diagnosis, fault detection of rotating machines with
vibration sensors, bearing diagnosis, tool wear diagnosis, and so on. This information
can then be incorporated into manufacturing production and control. Deep learning
has also been used here to solve these tasks. For example, Cinar [522] proposed
using transfer learning models for equipment condition monitoring. Chen et al. [523]
investigated the latest deep learning based methods for machinery fault diagnostics.
Wang et al. [524] proposed a wavelet-based CNN to achieve automatic machinery
fault diagnosis. Specifically, a wavelet transform is used to transfer a one-dimensional
vibration signal into a two-dimensional one which is then fed into the CNN model.
Wang et al. [525] proposed a continuous sparse auto-encoder (CSAE), which incor-
porates a Gaussian stochastic unit into its activation function to extract nonlinear
features of the input data. Lei et al. [526] proposed a sparse filtering based two-layer
neural network model, which is used to learn representative features from the me-
chanical vibration signals in an unsupervised manner. Generally, AE fits well with
high-dimensional data and thus is a good technique of choice for fault assessment.

(3) Others. Deep learning has also been used in many sectors of renewable power
systems. For example, Alassery et al. [527] proposed using neural networks for solar
radiation prophesy models for green energy utilization in the energy management
system. Another promising application of deep learning in the smart industry field
is smart agriculture. For example, Khan et al. [528] proposed an optimized smart
irrigation system for effective energy management, which overcomes the problems of
transmitting data failure, energy consumption, and network lifetime reduction in the
field of IoT-based agriculture. DNNs have also been applied in waste management.
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For example, Kshirsagar et al. [529] proposed using a customized LeNet model to
classify garbage into cartons and plastics.

4.6.5. Codes, Pretrained Models, and Benchmark Datasets

Implementation codes and pretrained models of many of the above introduced ap-
plications can be found in the references provided in Section 2.5.2. In addition, some
commonly used datasets suitable for building deep learning applications in IoT are listed
as follows.

(1) CGIAR Dataset: http://www.ccafs-climate.org/ (accessed on 2 November 2022)
(2) Educational Process Mining: https://archive.ics.uci.edu/ml/datasets/mining (ac-

cessed on 2 November 2022)
(3) Commercial Building Energy Dataset: https://combed.github.io/ (accessed on 2

November 2022)
(4) Electric Power Consumption: https://archive.ics.uci.edu/ml/datasets/power (ac-

cessed on 2 November 2022)
(5) AMPds Dataset: http://ampds.org/ (accessed on 2 November 2022)
(6) Uk-dale Dataset: https://jack-kelly.com/data/ (accessed on 2 November 2022)
(7) PhysioBank Databases: https://physionet.org/data/ (accessed on 2 November 2022)
(8) T-LESS: http://cmp.felk.cvut.cz/t-less/ (accessed on 2 November 2022)
(9) Malaga Datasets: http://datosabiertos.malaga.eu/dataset (accessed on 2 November

2022)
(10) ARAS Human Activity Datasets: https://www.cmpe.boun.edu.tr/aras/ (accessed

on 2 November 2022)

4.7. Natural Language Processing (NLP)

NLP is a crucial and widely researched field. It is a subfield of AI that is concerned
with enabling computers to understand text and spoken language in much the same way
humans do. Due to the ambiguities of human language, NLP is a very challenging problem.
Some involved popular tasks include speech recognition, sentiment analysis, machine
translation, and question answering, introduced in the following.

4.7.1. Speech Recognition

Speech recognition, also called speech-to-text, refers to the task of enabling a computer
to translate human speech into text. There are many algorithms for speech recognition,
but deep learning provides more advanced solutions. This is because DNNs can combine
several aspects of the voice signals such as grammar, syntax, structure, and composition
to understand and process human speech. The initial success in speech recognition was
achieved by Zweig et al. [530] on a small-scale dataset with an error rate of 34.8%. After
that, more advanced neural networks were proposed to improve recognition accuracy such
as the representative networks Segmental RNN, EdgeRNN, and Quanaum CNN [531–533].
Comprehensive introductions of architectures for speech recognition can be found in recent
survey papers [534–536].

4.7.2. Sentiment Analysis

Sentiment analysis refers to the task of determining the attitude of reviewers, more
specifically, the task of determining whether data are positive, negative, or neutral. It
focuses on the polarity of a text but also aims to detect specific feelings and emotions
such as happy and sad, and intentions such as interested and not interested. Popular
types of sentiment analysis include graded sentiment analysis, emotion detection, and
multilingual sentiment analysis. When applying deep learning to sentiment analysis, it is
usually formulated as a classification problem, where DNN takes texts as input and outputs
a category representing the sentiment class. For example, the Bag-of-Words (BoW) model
is one of the most reputable methods for document level sentiment classification [537]. The
Recursive AE (RAE) network proposed by Socher et al. is the first model for sentence level
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sentiment classification [538]. The Adaptive RNN (AdaRNN) is a renowned model for
aspect-level sentiment classification [539]. More introductions and discussions of DNNs
for sentiment analysis are given in other review papers [540,541].

4.7.3. Machine Translation

Machine translation refers to the process of automatically translating text from one
language to another without human involvement. This is one of the first applications of
computing power, starting in the 1950s. Deep learning is well suited for this problem
because DNNs can consider the whole input sentence at each step for generating the output
sentence. This way, it can address the limitations of traditional methods that need to break
an input sentence into words and phrases, and thus provide better translation quality.
Basically, DNNs for machine translation have an encoder-decoder structure, where the
encoder learns to extract the important features from its input sentence, and the decoder
processes the extracted features and outputs the target sentence. For example, Kalchbren-
ner et al. [542] proposed a model with a CNN encoder and RNN decoder, which is the
most original and classic structure of machine translation. More advanced architectures for
machine translation are discussed in recent survey papers [543,544].

4.7.4. Question Answering

Question answering refers to building systems that can answer questions posed in
a natural language by humans. For this problem, a DNN takes a specific question and a
paragraph of text as input and aims to output an answer to this question based on the given
text. Such DNNs need to understand the structure of the language and have a semantic
understanding of the context and the question, thus, attention-based DNNs are needed to
handle the complex training. More specifially, attention-based RNNs are suitable for this
task. One of the most famous networks for question answering is R-Net [545], which em-
ploys a gated attention-based RNN. Other renowned architectures include FusionNet [546]
and the recently emerging Transformer. For comprehensive introductions and discussions
on question answering we refer to recent surveys [547,548].

4.7.5. Codes, Pretrained Models, and Benchmark Datasets

In addition to the references provided in Section 2.5.2, we refer to a survey of pretrained
models for NLP [549]. A collection of renowned benchmark datasets that are widely used
in NLP to evaluate different deep learning methods can be found at https://github.com/
niderhoff/nlp-datasets/blob/master/README.md accessed on 2 November 2022. In
addition, we list the most advanced pretrained language models as below.

(1) BERT: https://github.com/google-research/bert (accessed on 2 November 2022)
(2) GPT2: https://github.com/openai/gpt-2 (accessed on 2 November 2022)
(3) XLNet: https://github.com/zihangdai/xlnet (accessed on 2 November 2022)
(4) RoBERTa: https://github.com/facebookresearch/roberta (accessed on 2 Novem-

ber 2022)
(5) ALBERT: https://github.com/google-research/albert (accessed on 2 November 2022)
(6) T5: https://github.com/google-research/T5 (accessed on 2 November 2022)
(7) GPT3: https://github.com/openai/gpt-3 (accessed on 2 November 2022)
(8) ELECTRA: https://github.com/google-research/electra (accessed on 2 Novem-

ber 2022)
(9) DeBERTa: https://github.com/microsoft/DeBERTa (accessed on 2 November 2022)
(10) PaLM: https://github.com/lucidrains/PaLM-pytorch (accessed on 2 November 2022)

4.8. Audio Signal Processing

Audio signal processing was an early application of deep learning and is still one
of its major application domains. Before deep learning, conventional methods for audio
signal processing relied on handcrafted feature extraction, including the mel frequency
cepstral coefficients (MFCCs), discrete cosine transform, and mel filter bank. Deep learning
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improves the processing performance by learning hierarchical representations from the
audio signal using various models such as CNNs, RNNs, and GANs. These models are
either trained using raw audio signals or classical features extracted from audio signals.
This section briefly reviews the application of deep learning in the main scenarios of audio
signal processing, including speech recognition, music and environmental sound analysis,
localization and tracking, source separation, audio enhancement, and synthesis.

4.8.1. Speech Recognition

Different from the speech recognition in Section 4.7.1, here speech recognition refers
to converting speech into sequences of words in the context, which is the base for any
speech-based interaction system. It is widely used in virtual assistance systems such as
Google Home, Apple Siri, and Microsoft Cortana, and speech transcriptions such as the
YouTube caption function. For a long time, the modeling of speech was dominated by
methods based on Gaussian mixture models and hidden Markov models due to their math-
ematical elegance. However, deep learning models dramatically reduced the word error
rate on various recognition tasks, and hence became mainstream [550]. Popular models for
speech recognition include LSTMs, GRUs [551], and a combination of LSTM layers with
convolutional layers [552]. RNN blocks (including LSTM and GRU) are widely used to
model the temporal correlations in speech sequences. Sequence-to-sequence models such
as CTC (connectionist temporal classification) [553] and LAS (listen, attend and spell) [554]
were also proposed. Transfer learning also plays an important role to enhance systems
on low resource language with data from rich resources languages [555]. In addition to
speech recognition, other applications related to speech are voice activity detection, speaker
recognition (see Section 4.3.4), speech translation, and language detection [556].

4.8.2. Music and Environmental Sound Analysis

Music analysis involves low-level tasks such as onset/offset detection, fundamen-
tal frequency estimation, rhythm analysis, and harmonic analysis, and high-level tasks
such as instrument detection, separation, transcription, segmentation, artist recognition,
genre classification, discovery of repeated themes, music similarity estimation, and score
alignment. These tasks were previously done by handcrafted features and conventional
classifiers, and are now addressed by deep learning algorithms such as LSTMs, CNNs, and
RNNs [557]. Modern systems integrate temporal modeling [558], applying 2D convolution
on spectro-temporal inputs before doing 1D convolution to fuse representations across
frequencies, followed by GRU to capture the sequence dependencies.

Environmental sound analysis is often used in multimedia indexing and retrieval,
acoustic surveillance, and context-aware devices. In terms of recognition tasks, deep
learning models are mainly used for acoustic scene classification [559] (the scene labels
can be home and street), acoustic event detection [560] (detect the start and end time of an
event and assign a label to the event) and tagging [561] (predict multiple sound classes at
the same time).

4.8.3. Source Separation, Enhancement, Localization and Tracking

Source separation aims to recover one or several source signals from a given mixture
signal. It is an important task in audio signal processing in real-world environments, and is
often performed before speech recognition to improve the data quality. In single-channel
setups (only one microphone is used), deep learning aims to model the single-channel
spectrum or the separation mask of a target source [562]. Convolutional and recurrent
layers are often used in such models. Furthermore, some methods integrate supervised
learning and supervised learning for source separation. For example, deep clustering [563]
performs supervised learning to estimate embedding vectors for each time-frequency point,
then cluster them in an unsupervised manner for separation. In multi-channel setups (e.g.,
audio data are collected from multiple microphones), the separation can be improved by
taking into account the spatial locations of sources or the mixing process. In this case, the
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input of DNNs contains spatial features as well as spectral features, and the DNNs are used
to estimate the weights of a multi-channel mask [564].

Audio enhancement aims to reduce noise and improve the audio quality. It is a critical
component for robust systems. Deep learning in audio enhancement is mainly designed
for reconstructing clean speech [565] or estimating masks [566] from noisy signals. To this
end, researchers have proposed various models based on GANs [112], denoising AEs [567],
CNNs [567] and RNNs [568].

For localization and tracking, deep neural networks are often trained on the phase
spectrum [569], magnitude spectrum [570], and cross-correlation between channels [567].
The key is to design an architecture, e.g., a CNN, in a way that can learn the inter-channel
information while extracting within-channel representations.

4.8.4. Sound Synthesis

Sound synthesis can be used to generate realistic sound samples, speeches [571],
music and art [572]. It is achieved by generative models which learn the characteristics
of sound from a database and output desired sound samples. When the deep learning
model is operated to generate fake speeches for a given person, it is often referred to as
DeepFake. Popular deep learning models used for sound synthesis include VAEs and
GANs [573], where the sound is synthesized and upsampled from a low-dimensional
latent representation. Autoregressive approaches such as LSTM and GRU, on the other
hand, generate new samples iteratively based on previous samples [574]. With multiple
stacked layers, such methods are able to process sound at different temporal resolutions.
The WaveNet [575] is a popular model in this regard. It stacks dilated convolutional
layers, providing context windows of reasonable size to allow the model to learn context
information (e.g., speaker identity). Furthermore, the problem of autoregressive sample
prediction is cast into a classification problem. Follow-up models such as the parallel
WaveNet [576] further improve the computational efficiency during the training stage.

4.9. Robotic Systems

Applications of deep learning in robotics are mainly aimed at addressing the challenges
in learning complex and high-dimensional dynamics, learning control policies in dynamic
environments, advanced motion manipulation, object recognition and localization, human
action interpretation and prediction, sensor fusion, and task planning. In terms of deep
learning architectures and strategies, existing methods for robotics can be classified into
discriminative models, generative and unsupervised models, recurrent models, and policy
learning models trained with reinforcement learning. This section briefly reviews how
these models are used in different tasks.

4.9.1. Learning Complex Dynamics and Control Policies

Robots often need to cope with states with high-level uncertainty, which requires the
system to be able to quickly and autonomously adapt to new dynamics. This is important
in tasks such as grasping new objects, traveling over surfaces with unknown or uncertain
properties, managing interactions with a new tool or environment, and adapting to system
degradation. Discriminative models, such as CNNs, were trained to assess the possibility
of a specific robot motion for successfully grasping common office objects from image
data [509]. DeepMPC [577] is a recurrent conditional deep predictive dynamics model
for robotic food-cutting which is a controlling task with complex nonlinear dynamics.
Transforming recurrent units were adopted to handle the time-dependent dynamics by inte-
grating long-term information while allowing transitions in dynamics. Generative models
such as AEs and GANs were also used to model the nonlinear dynamics of simple physical
systems [578] and inverse dynamics of a manipulator [579]. Reinforcement learning plays a
significant role in robotic control tasks. It is useful in learning to operate dynamic systems
from partial state information. For example, it has been used to learn deep control policies
for autonomous aerial vehicles control [580].
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4.9.2. Motion Manipulation

It remains elusive to find robust solutions for robotic motion tasks such as grasping
deformable or complex geometries, using tools, and actuating in dynamic environments.
The corresponding challenges approached with deep learning methods are grasp detection,
path and trajectory planning, and motion control. Deep learning models based on recurrent
units, CNNs [581,582], and deep spatial AEs [583] have been used for learning visuomotor
and manipulation action plans.

4.9.3. Scene/Object Recognition and Localization

Scene and object recognition as well as localization are critical tasks for robot systems,
since knowing what kind of objects are there in the environment and the locations of those
objects is a prerequisite for performing other tasks. Deep learning methods have shown
promising performance in recognizing and classifying objects for grasp detection [581,584],
including advanced applications such as recognizing deformable objects and estimating
their state and pose for grasping [585], semantic tasks [586], and path specification [587].

4.9.4. Human Action Interpretation and Prediction

Effective human–robot interaction requires the robot to have social skills, hence, the
robot needs to be capable of inferring the intentions of humans and giving corresponding
responses or actions accordingly. Such skills are critical in human–robot collaborative
applications such as social robots, manufacturing, and autonomous vehicles. Interpreting
and predicting human social behavior is a complex task, and it is difficult to formulate
handcrafted solutions. Deep learning methods present great potential in this area. Learning
by demonstration [581] is one way to solve the problem, where deep learning models are
trained to learn manipulation action plans by watching unconstrained videos from the
World Wide Web. In another study, a recurrent model was trained for the robot to learn
grasping actions from a human collaborator [588].

4.9.5. Sensor Fusion

The use of multiple sources of information is necessary in robotic systems, as it pro-
vides a plethora of rich representations of the environment and brings proper redundancy
to the system to deal with uncertainties. The challenge is how to construct meaningful and
useful representations from the various data sources. Due to the hierarchical structures,
deep learning models naturally support the processing and integration of high-level repre-
sentations learned from different data streams. For example, generative models [589] and
recurrent models [590] with unsupervised learning were proposed for integrating multi-
modal sensorimotor data, including video, audio, and joint angles, for robotic systems. The
level of abstraction depends on the application specifics.

4.9.6. Knowledge Adaptation in Robotic Systems

Training deep learning models can be time-consuming and data demanding. A robotic
system should be crafted in a way that is easy to adapt to a similar task. Transfer learning
plays an important role in leveraging the knowledge gained by previous solutions of similar
problems to solve new problems. To this end, researchers have used pretrained models [236]
and proposed sim-to-real approaches [591] to facilitate the learning process and improve
efficiency. For example, AlexNet, GoogleNet, and VGG models pretrained on the ImageNet
dataset have been used for extracting high-level representations from image data for object
recognition in robotic systems. The sim-to-real approaches offer a way to create the solution
in a simulation environment and apply it to the real-world problem, which is a safer and
more economical way than the traditional trial-and-error approaches. Furthermore, some
works focused on extraction of domain invariant features [592] to transfer knowledge
across domains. Other works proposed learning by imitation/demonstrations approaches
to help robots to learn manipulation skills [593]
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4.10. Information Systems

Deep learning has received increasing attention in information systems. Major appli-
cations include social network analysis, information retrieval, and recommendation.

4.10.1. Social Network Analysis

Social network analysis is an important problem in data mining. It targets social
media networks such as Facebook, Twitter and Instagram to analyze their patterns and
infer knowledge from them. Network representation learning is an important task in social
network analysis. It encodes network data into low-dimensional representations, namely
network embeddings, which effectively preserves network topology and other attribute
information, facilitating subsequent tasks such as classification [594], link prediction [595],
semantic evaluation [596], anomaly detection [597], and clustering [598].

Semantic evaluation helps machines understand the semantic meaning of users’ posts
in social networks and infer the users’ opinions. Examples of sentiment classification
are the SemEval [599] and Amazon purchase review [596]. Link prediction is widely
used in recommendation and social ties prediction applications, where deep learning
models are trained to learn robust representations to enhance prediction performance and
deal with the scalability issue [595]. Popular models for link prediction include RBMs,
DBNs [600], and GNNs [601]. In some studies, transfer learning with pretrained models
(e.g., RBMs) was applied to improve the training efficiency and address the insufficient
data issue [600]. Anomaly detection aims at spotting malicious activities in social networks,
such as spamming and fraud. Such activities can be interpreted as outliers that deviate from
the majority of normal activities. Deep learning approaches based on network embedding
techniques are receiving increasing attention in this field [597]. Anomaly detection is
also related to crisis response [602] which focuses on detecting natural and man-made
disasters, where deep learning models are trained to identify information from the posts
and classify them into classes such as bushfire and earthquake. It is worth noting that
attention mechanisms have been widely adopted in sequence-based tasks to allow the
deep learning models to focus on relevant parts of the input during the learning process.
Attention layers are also used for aggregating important features from the local neighbors
of nodes, as in graph attention networks [136].

4.10.2. Information Retrieval

Deep learning approaches are also employed in document retrieval and web search
applications [603]. A representative work is the deep-structured semantic modeling
(DSSM) [603] which adopts a DNN for latent semantic analysis. A following work im-
proved DSSM by applying convolutional layers to integrate representations extracted from
each word in the sequence in order to generate representations for a subset of words [604].
Moreover, deep stacking networks were proposed for general information retrieval tasks,
where multiple network blocks were stacked on top of each other to extract high-level,
low-dimensional abstractions in the final feature space.

4.10.3. Recommendation Systems and Others

Recommender systems play an important role in online shopping services by helping
users discover items of interest from a large resource collection. A memory augmented
graph neural network (MA-GNN) can capture both the long- and short-term user inter-
ests. Ma et al. [605] proposed memory augmented graph neural networks for sequential
recommendation. Specifically, a GNN was used to model the item contextual informa-
tion within a short-term period, a shared memory network was designed to capture the
long-range dependencies between items, and co-occurrence patterns of related items were
captured to model the user interests. Furthermore, a heterogeneous information network
containing different types of nodes and links is a powerful information model in this
field. Hence, researchers have proposed embedding methods to represent the network
for recommender systems [606]. Other applications include bibliometric analysis such as

398



Sensors 2023, 23, 62

citation prediction [607] and co-authorship network analysis. In such works, deep learning
models, especially graph neural networks, were proposed to learn patterns from the citation
networks, co-authorship networks, and heterogeneous bibliometric networks [608].

4.11. Other Applications
4.11.1. Deep Learning in Food

Deep learning has recently been introduced in food science and engineering and has
proved to be an advanced technology. The research of deep learning in food mainly focuses
on the following topics.

(1) Food Recognition and Classification. Food analysis is important for the health of human
beings. As image sensing has become an easy and low-cost information acquisition
tool, food analysis based on images of food has become popular. Food images
contain important information of food characteristics, which can be used to recognize
and classify food to help people record their daily diets. Currently, with the great
success of CNN in various recognition and classification tasks, several CNN variants
have been adopted for food recognition and classification [609–611]. These methods
achieve relatively good results, yet there is still room for improvement in accuracy
and efficiency.

(2) Food Calorie Estimation. Food calorie estimation is widely adopted in many mobile
apps to help people monitor and control nutrition intake, lose weight, and improve
dietary habits to stay healthy. An image-based food calorie estimation method has
been proposed and become popular [612]. It uses a multitask CNN and outperforms
the traditional search-based methods. Following this, more CNN-based methods
have been proposed for this task and proved that CNNs are effective for image-based
food calorie estimation [613,614].

(3) Food Quality Detection. Food quality is vital for the health of human beings. Food
quality detection can be further divided into subtopics of vegetable quality detec-
tion, fruit quality detection, and meat and aquatic quality detection. Among them,
vegetables and fruits quality detection are currently hot and challenging topics.
Stacked sparse AE and CNN were adopted for detecting vegetable quality based
on hyperspectral imaging [615], where the diversity of surface defects in size and
color are problematic for traditional methods based on the average spectrum of the
whole sample. DNNs coupled with spectral sensing methods have been proposed
for addressing problems of varieties classification, nutrient content prediction, and
disease and damage detection in fruit quality detection [616,617].

(4) Food Contamination. Food contamination is a serious threat to human health, and
thus has received great attention from all over the world. Several deep learning
based methods have been proposed for predicting, monitoring, and identifying food
contamination. For example, Song et al. [618] proposed using DNNs to predict the
morbidity of gastrointestinal infections by food contamination. Gorji et al. [619]
proposed using deep learning to automatically identify fecal contamination on meat
carcasses. We refer to the survey paper [620] for more works and discussions. Gener-
ally, CNNs and their variants are still the most widely used and effective methods in
this field.

4.11.2. Deep Learning in Agriculture

Since the concept of precision farming was proposed, it has brought new problems and
challenges. Deep learning has been adopted to develop agricultural intelligent machinery
equipment due to its strong ability of extracting features from image and structured data.

(1) Plant Diseases Detection. Detecting diseases of crop is important for improving pro-
ductivity. There are many types of disease species to be inspected. Deep learning
technologies have been applied to crop disease classification or detection. For ex-
ample, Ha et al. [621] proposed a deep learning based method to detect radish
disease, where the radish was classified into diseased and healthy through a CNN.
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Ma et al. [622] also proposed using a CNN to recognize the four types of cucumber
diseases. Lu et al. [623] proposed using CNNs to identify ten types of rice diseases,
which proved the superiority of CNN-based methods in identifying rice diseases.

(2) Smart Animal Breeding Environment. Deep learning technologies have been adopted
for monitoring and improving animal breeding environment. The currently most
popular research in this domain is face recognition and behavior analysis of pigs and
cows. For example, Yang et al. [624] proposed using a CNN combined with spatial
and temporal information to detect nursing behaviors in a pig farm. Qiao et al. [625]
proposed using a Mask R-CNN to settle cattle contour extraction and instance seg-
mentation in a sophisticated feedlot surrounding. These works demonstrated the
effectiveness of CNNs in automatic recognition of nursing interactions for animal
farms. In addition, Hansen et al. [626] proposed a CNN-based method to recognize
pigs. Tian et al. [627] proposed using CNN to count pigs.

(3) Land Cover Change Detection. Land cover change is vital for the natural basis of human
survival, the Earth’s biochemical circle, and the energy and material circulation of
the Earth system. One of the fundamental tasks in land cover change is cover
classification. Deep learning techniques have been adopted for addressing this task.
For example, Kussul et al. [628] proposed a multilevel deep learning architecture to
classify the land cover and crop types using remote sensing data. Gaetano et al. [629]
proposed a two-branch CNN for land cover classification. In addition, several CNN
variants and transfer learning are adopted in the literature to validate land cover and
classify wetland classes. See the survey papers [630,631] for details.

4.11.3. Deep Learning in Chemistry

Deep learning has been actively and widely used in computational chemistry in the
past few years. Several hot and popular research topics are discussed as follows. To build a
molecule with a particular property would first require developing methods to accurately
correlate any given structure to the property. These can then be used to intelligently design
a molecule that maximizes the desired property. The final step is to design an efficient
synthesis from readily available starting materials.

(1) Materials Design. Advanced materials are fundamental for many modern technologies
such as batteries and renewable energy. Deep learning in this field is comparatively
new, but there has been a rapid growth in the past few years. Xie et al. [632]
proposed using a crystal CGNN to capture the crystalline structure for accurate and
interpretable prediction of material properties. In addition, CGNNs and several
CGNN variants have been proposed to predict the properties of bulk materials [633],
optimize polymer properties [634], and explore chemical materials space [635]. These
works demonstrated great potential of deep learning in exploring properties of
materials. In addition to this, deep learning has been used to optimize synthesis
parameters [636] and perform defect detection [637].

(2) Drug Design. Drug design is one of the most important applications of chemistry.
Its aim is to identify molecules that achieve a particular biological function with
maximum efficacy. Deep learning has been used to optimize the properties of
molecules to improve potency and specificity, while decrease side effects and pro-
duction costs. Specifically, AEs, GANs, and RNNs have been used to generate potent
drug molecules [638–640]. More deep learning based methods are reviewed and
discussed in recent papers [641–643].

(3) Retrosynthesis. The underlying challenge of retrosynthesis is similar to that of board
games such as Chess and Go [644]. It can be solved by formulating the retrosynthesis
as a tree search, where the branching factor is how many possible steps can be taken
from a particular point. Therefore, inspired by AlphaGo, one of the predominant
retrosynthetic AI was proposed by Segler et al. [645], which adopted the AlphaGo
methodology of Monte Carlo Tree Search with deep neural network. This method
has shown great potential. However, assessing synthesis plans is a challenging task.
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Other research has been using RNNs and AE to perform retrosynthetic analysis of
small molecules [646].

(4) Reaction Prediction. Reaction prediction refers to taking a set of known reagents and
conditions and predicting the products that will form. Deep learning has been used
in this field to reduce the high computational cost in chemical space exploration.
A representative work using DNNs to predict which products can be formed is
presented by Wei et al. [647]. RNN variants and Siamese architectures have also been
proposed for reaction prediction [648,649]. Emphasizing interpretability by using
GCNN to predict reaction in a manner similar to human intuition is currently a hot
research direction in this field [650].

5. Deep Learning Challenges and Future Directions

5.1. Efficiency

One of the growing problems of deep learning is computing efficiency. With the
increasing volume of data and increasing complexity of DNNs, the requirement for comput-
ing power is increasingly high. This can be solved to some extent by advanced multicore
GPUs, and tensor processing units (TPUs). However, more efficiency is often needed when
optimizing deep learning architectures for embedded devices applications. This can be
achieved through codesigning model architectures, training algorithms, software, and
hardware to allow multimachine parallelism and scalable distributed deep learning [278].
For example, using compression techniques to compress the layers and thus optimize the
model architecture; trimming the number of parameters to achieve a smaller footprint or
a more efficient model; designing layers and architectures specifically with efficiency to
save the number of parameters and avoid over-parameterization. Another challenging
and promising direction is to design programmable computational arrays, bare-hardware
implementation, and stochastic computation mechanisms [1].

5.2. Explainability

A major problem that affects the deployment of deep learning in various areas is the
lack of transparency, which also called the “black box” problem. Deep learning algorithms
learn from data to find patterns and correlations that human experts would not normally
notice, and their decision-making processes often confuse even the engineers who created
them. This might not be a problem when deep learning is performing a trivial task where a
wrong result will cause little or no damage. However, when it comes to medical diagnosis or
financial trades, a mistake can have very serious consequences. Therefore, the transparency
issue is a potential liability when applying deep learning. Various visual analysis tools
have been proposed to dissect DNNs and reveal what they actually learn, as investigated
in the paper [651]. In addition, there are some techniques such as LIME [652] and Deep
Lift [653] that can be used to explain the model using feature importance. However, the
transparency issue has been well solved now. A promising way is to link neural networks
to the existing well-known physical or biological phenomena [1]. This will help to develop
a metaphysical relationship to demystify the DNN’s “brain”.

5.3. Generalizability

Generalizability is an important concern when applying a trained deep learning
model in practice. It is challenging to demonstrate a deep learning model’s generalizability
before implementing the model. To address the problem of model generalizability, many
researchers try to use as much and as diverse data as possible to train a deep learning model.
However, this is very challenging for some applications such as clinical scenarios where
obtaining sufficient training samples with labels is extremely expensive and labor-intensive.
Some researchers work on optimization algorithms that minimize the training error to
achieve generalization. For example, Neyshabur et al. [654] proposed Path-SGD for better
generalization, which is invariant to rescaling of weights. Hardt et al. [655] proposed to use
stochastic gradient descent to ensure uniform stability, and thus to improve generalization
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for convex objectives. However, these are based on the assumption of having a “closed set”
where the possible conditions in the test data are exactly the same as those in the training
data. For many practical applications, the scenario is that “incomplete knowledge of the
world is present at training time, and unknown classes can be submitted to an algorithm
during testing” [656]. Therefore, a possible and promising research direction is using more
generalizable or “open set” approaches to develop and evaluate deep learning models,
such as open-set recognition [657].

5.4. Ethical and Legal Issues

Though deep learning has been widely deployed in many fields and has gained great
success, some ethical and legal issues are emerging. There are two prominent issues. The
first is the biased learning issue, where the model will provide a biased and prejudiced
prediction/recommendation. One typical real-life example is the COMPAS (Correctional
Offender Management Profiling for Alternative Sanctions) algorithm, which is used in US
court systems to predict the probability that a defendant would become a recidivist [658].
This algorithm produced two times as many false positives for recidivism for black criminals
(45%) than white criminals (23%). Another critical issue is the privacy of the deep learning
training data. For example, social network face images could be used for training the deep
learning model without the prior consent of the subjects. The lack of relevant governing
frameworks on the regulation of these ethical and legal issues affects the wide application of
deep learning in sensitive areas such as healthcare, finance, security, and law enforcement.
The community is in desperate need of developing a relevant code of ethics and legal
frameworks for addressing those issues.

5.5. Automated Learning

Deep learning has achieved great success in automatically learning representative
features and performing recognition of these learned features. Although this has greatly
eliminated the cumbersome process of handcrafting features, the development of deep
learning models is resource-intensive, requiring significant domain knowledge and time to
produce and compare dozens of models. Various software tool kits have been developed
for getting production-ready deep learning models with great ease and efficiency [659,660].
However, these are not satisfactory enough for developing high-level and user-friendly
platforms that are easy also for non-experts to adopt existing DNNs or to design their own
solutions. Automated machine learning (AutoML) is a research field for this purpose. For
deep learning, a variety of neural architecture search (NAS) methods have been proposed
to automate the network designing process [291,661], which will be a promising way to
solve the automated learning problem.

5.6. Distributed Learning

With the development of IoT and smart-world applications, massive numbers of smart
mobiles and embedded devices are incorporated into the computing, resulting in network
congestion and latency. Recent research in edge computing and in-device computing has
provided solutions to this problem by utilizing IoT devices and some novel mechanisms
within centralized and distributed computing frameworks [662,663]. Despite the achieve-
ments, several critical issues have yet to be well solved, and significant work still needs to
be done. For example, the training of deep learning models in IoT devices is a problem that
needs to be further solved. A possible way is to locally train the distributed and partial
neural network input in IoT devices through offloading pretrained feature output for addi-
tional training at higher layers. In addition, developing appropriate paradigms to analyze
data in a timely manner is another challenging problem requiring further research. Possible
and promising research can be undertaken in the following directions: (1) distributed deep
learning at the network edge, and more specifically, developing and optimizing parallel
simultaneous edge network architectures for self-organization and runtime; and (2) in-
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device deep learning, and more specifically, implementing deep networks in IoT devices by
considering the limited hardware and computational capabilities.

5.7. Privacy-Preserving Federated Learning

Nowadays, increasing privacy concerns have emerged along with the aggregation
of distributed computing results. Privacy-preserving federated learning has become a
solution for privacy-preserving deep learning [208,664]. By training deep learning models
on separate datasets that are distributed across different devices or parties, it can preserve
the local data privacy to a certain extent. However, despite the achievements, the challenge
of protecting data privacy while maintaining the data utility through deep learning still re-
mains. Potential and promising research problems and directions are: (1) how to effectively
apply the privacy-preserving mechanisms [665,666] to federated learning frameworks for
better privacy preservation; (2) develop efficient solutions to defend the final model against
inference attacks extracting sensitive information from it; and (3) how to efficiently handle
data memorization in federated learning to prevent privacy leakage.

5.8. Multimodal Learning

With the development of various sensor system, increasing numbers of data modalities
can be obtained. Different modalities are characterized by different statistical properties,
and thus it is important to discover the relationship between different modalities. Research
in many application areas needs to be based on data from multiple modalities to achieve
a more complete picture of the task, for example, biomedical studies typically involve
both image and “omics” data. Therefore, multimodal learning, which can represent the
joint representations of different modalities, is required for taking full advantage of all
available data in such studies. This has been well recognized in several works [667,668]
but deserves more attention. Potential research problems and directions are: (1) designing
new learning frameworks with more powerful computing architectures to effectively learn
feature structures of the multimodal data of increasing volume; (2) developing new deep
learning models for multimodal data that take semantic relationships into consideration
to mine the intermodality and crossmodality knowledge; and (3) designing online and
incremental multimodal deep learning models for data fusion to learn new knowledge
from new data without much loss of historical knowledge.

6. Conclusions

Deep learning has become a predominant method for solving data analysis problems
in virtually all fields of science and engineering. The increasing complexity and the large
volume of data collected by diverse sensor systems have brought about a significant
development of deep learning, which has also fundamentally transformed the way data
are acquired, processed, analyzed, and interpreted. In this paper we have provided a
comprehensive investigation of deep learning in diverse sensor systems, starting from the
fundamentals of deep learning models and methods, to mapping specific deep learning
methods with individual suitable sensor systems. This paper also provides a comprehensive
summary of implementation tips and links to tutorials, open-sourced codes, and pretrained
models for new deep learning practitioners and those seeking to innovate deep learning in
diverse sensor systems. In addition, this paper provides insights into research topics where
deep learning has not yet been well-developed, but may have potential, and highlights the
challenges and future of deep learning in diverse sensor systems. We hope this survey will
provide an excellent self-contained and comprehensive reference for industry practitioners
and researchers in the field.
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Abstract: Indoor localization has recently and significantly attracted the interest of the research
community mainly due to the fact that Global Navigation Satellite Systems (GNSSs) typically fail
in indoor environments. In the last couple of decades, there have been several works reported in
the literature that attempt to tackle the indoor localization problem. However, most of this work is
focused solely on two-dimensional (2D) localization, while very few papers consider three dimensions
(3D). There is also a noticeable lack of survey papers focusing on 3D indoor localization; hence, in
this paper, we aim to carry out a survey and provide a detailed critical review of the current state of
the art concerning 3D indoor localization including geometric approaches such as angle of arrival
(AoA), time of arrival (ToA), time difference of arrival (TDoA), fingerprinting approaches based
on Received Signal Strength (RSS), Channel State Information (CSI), Magnetic Field (MF) and Fine
Time Measurement (FTM), as well as fusion-based and hybrid-positioning techniques. We provide
a variety of technologies, with a focus on wireless technologies that may be utilized for 3D indoor
localization such as WiFi, Bluetooth, UWB, mmWave, visible light and sound-based technologies. We
critically analyze the advantages and disadvantages of each approach/technology in 3D localization.

Keywords: 3D indoor localization; location-based services; Internet of Things

1. Introduction

For centuries, scientists have been fascinated by the idea of determining position. The
first positioning systems appeared several millennia ago, when people driven by their
need to know their position when travelling typically used natural landmarks to orientate
themselves before establishing their own landmarks (trails, lighthouses, etc). Down the line,
other approaches were introduced such as celestial and astronomic methods as well as dead
reckoning for ocean navigation. Most of them, however, were extremely limited in range
while all of them relied on visual observations, at least to some extent, and hence required
clear lines of sight between the light source and the user to be positioned. This restricted
their use to specific times of day or to specific weather conditions. The late-nineteenth-
century discovery of radio waves paved the way for radio-based navigation/positioning.
Radio frequency signals have a greater transmission range than visible light while the
can be transmitted through clouds or fog or even propagate as ground waves over vast
distances, depending on the frequency of transmission overcoming the range issue for
ground-based and satellite-based navigation systems [1].

For many years, location-based services (LBSs), applications and systems have been
playing an important role in our lives. Outdoor localization has been very successfully
implemented using Global Navigation Satellite Systems (GNSSs) which was typically the
de facto approach in wireless positioning. Various GNSSs have been established over the
years such as the American Global Positioning System (GPS), Russia’s Global Navigation
Satellite System (GLONASS) and the European GALILEO. GNSSs require at least three
satellites to determine the specific location on the globe as well as one more satellite for time
synchronization. Therefore, it is imperative that these satellites have an unobstructed path
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between them and the receiving device being positioned. Due to this, heavily shadowed
urban areas (areas of dense and tall buildings, usually referred to as ‘urban canyons’) or
indoor areas cannot be reliably supported by GNSSs. Therefore, there has been significant
work reported in the literature [2] over the last 20-30 years which includes many solutions
and approaches for solving the localization problem in satellite-denied environments
using—over the years—the current available radio technologies. However, none of these
solutions have been standardized as the universal solution (like GNSSs for outdoors) for
this kind of environment. Various reasons could be found for this, such as the incremental
need for more and more accuracy, the rapid evolution of wireless (and other) technologies
that facilitate the support of this higher accuracy which makes the adoption of one system
unreasonable if it is going to become obsolete in the near future, the cost and maturity of
the underlying technologies to be integrated in mobile devices, etc. Several attempts have
been proposed in the literature for improving GNSS localization by fusing the data with
IMU sensors and although the accuracy as shown in [3] was indeed improved by 20% or
as shown in [4] by 38%, no considerable efforts have been identified that present accurate
enough results for indoor environments. Moreover, localization accuracy is relatively
subject to the application used. For instance, typical GPS-level accuracy (3-10m) would be
sufficient for automobile navigation while room-level accuracy (2-4m) would be enough to
identify the presence of someone in a room or area of an indoor environment [5,6].

The global indoor positioning and indoor navigation market was valued at USD
6.1 billion in 2020 and is expected to increase at a compound annual growth rate (CAGR)
of 22.9 percent from 2020 to 2025, reaching USD 17.0 billion by 2025 [7]. The growing
integration of beacons in cameras, LED lightings, Point of Sale (PoS) devices and digital sig-
nage; the proliferation of smartphones, connected devices and location-based apps among
customers; and the inefficiency of GPS technology in the indoor environment are driving
the global adoption of the indoor location market [8]. The COVID-19 pandemic, which
started in 2019 has had an impact on the indoor location market; however, businesses are
now using it for facility management, virus monitoring, personnel tracking and manage-
ment and smart quarantining. Indoor location solutions are being adopted by governments
and private organizations across industries to keep residents indoors and track them. For
example, Inpixon is providing its location-based technology applications and services free
of charge or at a reduced rate (depending on the solution) to healthcare providers and other
organizations looking for solutions to help control the spread of COVID-19 or manage the
impact of the pandemic to ensure citizens’ safety and well being [9,10].

In the last couple of decades, there have been several positioning systems proposed
and implemented using different techniques and approaches in an attempt to tackle the
indoor localization problem. Most such systems solve the problem only in two dimensions,
meaning that the position is estimated only on a horizontal (x-y) plane, ignoring the vertical
(z) dimension. One practical implication of this could be the inability to recognize if a
device is located in a pocket or is held up high or whether a user is located on the first or
ground floor of a shopping mall (see Figure 1). This additional localization data in some
cases might be crucial. Examples may include a drone used for seeding and fertilizing
crops in a greenhouse, where knowing the altitude of the drone with respect to the crops is
important or a drone used in search and rescue operations to rescue climbers in canyons or
miners in mines, where GNSSs might fail. In most of these cases, accuracy better than sub-
meter level is required to avoid crashing the UAV on obstacles. Precise 3D positioning can
also find applications in supporting wireless communication and effectiveness in antenna
orientation and beamforming [11], pilot assignment [12], channel prediction and resource
allocation [13]. Furthermore, due to the rapid increase in the world’s population, not
only are buildings nowadays built upwards (skyscrapers), but also road traffic in cities
is increasing, which will eventually lead to development of self-driving underground
cities in the form of tunnels where GPS will no longer be able to provide localization
and navigation. The fact that 3D positioning methods enable the identification of the
accurate position of UAVs in space, for example, in urban canyon scenarios could also
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be extended to perform accurate positioning of a device underwater by utilizing more
appropriate ranging technologies (e.g., acoustic) [14–16]. In the past decade, there has
been a tremendous technical development in indoor positioning/navigation; however,
there is yet to be technology that is affordable enough for general market adoption, as
opposed to outdoor, well established GNSSs. There are so many factors that could play a
role in improving localization accuracy, such as signal attenuation, NLOS conditions and
even corporal shade, that the precision of the indoor positioning systems is highly vital
in order to reach the most accurate results. While there are several papers on 2D indoor
positioning in the literature, to the best of our knowledge, no comprehensive survey on
3D indoor positioning has been conducted. Therefore, in this paper, we discuss existing
techniques and technologies for 3D indoor localization and establish a precedent for the
need of 3D positioning in the said domain. Furthermore, our work follows an intuitive
flow by highlighting the challenges and issues in indoor localization and outlining the
existing solutions. The utilization of 5G-related technology has become the development
trend of the future 3D indoor positioning. 5G operates through MIMO (Multi-user Multiple
Input Multiple Output) antennas, which provide a precise orientation of the signal in one
specific direction instead of a multi-directional broadcast. 5G technologies can achieve
centimeter-level accuracy for 3D indoor positioning; however, they have not yet reached
the necessary global implementation levels. With the rapid rise of more 5G-supported
devices, this is soon to be changed. Already, the discussions for the next generation (6G)
of wireless systems have begun, envisioning precise localization and sensing systems,
as it is believed that 6G systems will accelerate the transition to even higher frequency
operation, such as mmWave and THz ranges, as well as significantly wider bandwidths. It
is evident that 6G communication opens up a new range of challenges and opportunities in
localization and sensing which the authors of [17] summarize in five key research questions:
(1) How can cm-level 3D positioning/sensing accuracy be achieved by utilizing the range
of technologies used in 6G? (2) How can novel waveform designs be devised to better
facilitate localization and sensing in addition to providing the fundamental communication
benefits? (3) How can energy efficiency, high positioning/sensing accuracy and (we also
say) low cost be supported in very high frequency and very highly mobile and dynamic
environments in 6G systems? (4) Can real-time energy efficient AI/ML algorithms be used
to further facilitate and support the localization and sensing process? (5) How can the
quality and accuracy between active and passive sensing be bridged?

This survey paper focused on studies performed specifically on three-dimensional
indoor positioning systems as well as the techniques and technologies to facilitate them
by studying various books, articles and papers published by various reputable journals.
Although this paper focuses mainly on indoor positioning, some sections may include
outdoor positioning examples such as drone navigation as similar principles apply to both
cases as both cannot accurately predict the vertical positioning using satellites. Furthermore,
this paper excludes two-dimensional indoor positioning studies as there are plenty already
reported in the literature.

The remainder of this paper is organized as follows:

• Section 2: We discuss different 3D localization techniques such as geometric ap-
proaches like AoA, ToA and TDoA. Moreover, we discuss fingerprinting approaches
as they are one of the widely used methods based on metrics such as RSS, CSI, MF and
FTM. Furthermore, we discuss the principles of sensor fusion and specifically filtering
approaches such as Kalman and Particle Filtering as well as cooperative positioning
and PDR. To conclude this section, we discuss the fusion of positioning approaches,
also known as hybrid positioning systems and existing systems found in the literature.

• Section 3: We provide a variety of technologies, with a focus on wireless technolo-
gies that may be utilized for 3D indoor localization such as WiFi, Bluetooth, UWB,
mmWave, visible light and sound-based technologies such as acoustic signals and
ultrasound. We analyze the advantages and disadvantages of each technology item
primarily focusing the discussion on their applicability for 3D localization.
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• Section 4: We discuss the principles of machine learning for 3D indoor localization
and provide various existing systems reported to date in the literature.

• Section 5: We provide a critical discussion and conclusions concerning the survey.

Figure 1. 3D indoor positioning application example in a multi-storey mall (by Unknown Author
(https://meet.bnext.com.tw/blog/view/3442? accessed on 26 November 2022)— is licensed under
CC BY-NC-ND)

A summary of the various notations and symbols used in this paper is shown
in Table 1.

Table 1. Notations and Symbols Used Throughout the Paper.

2D 2-Dimensional 3D 3-Dimensional

BLE Bluetooth Low Energy CSI Channel State Information

FP Fingerprinting FT Fixed Terminal

FTM Fine Time Measurement GNSS Global Navigation Satellite
System

GPS Global Positioning System IMU Inertial Measurement Unit

IoT Internet of Things KF Kalman Filter

LBS Location Based System LOS Line of Sight

MF Magnetic Field ML Machine Learning

mmWave Millimeter Wave NLOS Non-Line of Sight

PDoA Phase Difference of Arrival PDR Pedestrian Dead Reckoning

PF Partice Filter RAT Radio Access Technology

RSS Received Signal Strength TDoA Time Difference of Arrival

ToA Time of Arrival ToF Time of Flight

TWTF Two Way Time of Flight UAV Unmanned Aerial Vehicle

UWB Ultra Wideband VLC Visible Light Communication
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2. 3D Localization Techniques

In this section, the current state of the art on 3D localization is reviewed. This review
covers geometric, fingerprinting-based, sensor-fusion-based as well as hybrid approaches,
critically evaluating and quantifying their 3D positioning performance based on the work
reported in the literature. At the end of this section in Table 2, a summary of all geometric
approaches can be found, describing their advantages and disadvantages, as well as their
accuracies found in the literature.

2.1. Geometric Approach

Among the many indoor positioning techniques (2D and 3D) that have been reported
in literature, the most widely used and recognized are the ones based on a geometric
approach. This approach suggests that localization is generally carried out in two steps.
The mobile device first records one or more signal parameters that are dependent on the
mobile user’s location from an adequate number of transmitters and then computes the
relative location coordinates in a 2D or 3D plane using standard geometry. In this method,
there are three approaches: angle-distance, timing-based techniques (ToA and TDoA) and
angular-based techniques (AoA). In timing-based techniques the approximate distance to
each transmitter is computed by determining the time required for the signal to reach the
terminal when transmitted from a specific access point. The latter technique relies on the
ability of the terminal to record the angle of arrival of a signal from a given access point
or base station. Modern radio technologies such as UWB and even more millimeter-wave
(mmWave) radio create opportunities for very accurately estimating the time and angle of
arrival (using phased antenna arrays) [18–20]. There are three prevalent terminologies that
describe the geometric approach to determine position, based on distance or angle of arrival
measurements: triangulation, trilateration and angulation (see Figure 2). Triangulation is
the estimation of a 2D or 3D location using unilateral or multilateral measurements (the
position is determined from the measured lengths of three sides of a triangle). Trilateration
is the estimation of location using several distance measurements, whereas angulation uses
angles relative to known positions. In this subsection, we will describe techniques which
utilize all these approaches [21].

Figure 2. 3D Trilateration and 3D Triangulation.

2.1.1. Angle-Distance

The simplest geometrical method for estimating the device’s position is one that uses
the distance and angle of arrival from a single transmitter. This appears to be dependent
on the device’s ability to execute direction finding and distance measurement. Direction
finding on the terminal can be achieved through the use of a rotating directional antenna
installed on the mobile terminal or through the use of specific procedures if the system is
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Multiple Input Multiple Output (MIMO). Ranging can be estimated by either translating
the recorded time of arrival into distance (multiplying by the speed of light) or by applying
the free space path loss formulation to the recorded received signal strength.

2.1.2. Angle of Arrival—AoA

AoA utilizes the triangulation concept described earlier, where a mobile terminal (MT)
obtains the angles of arrival of two signals from two fixed transmitting locations. The
main advantage of AoA is that, with it, it is possible to establish a position with as low
as two sensors for 2D or three for 3D localization, as there is no need for an extra sensor
for time synchronization (as is the case in time-based approaches which lead to distance
estimation) [22]. Although AoA can give accurate estimates when the distance between the
transmitter and the receiver is modest as compared to RSS approaches, it requires more
sophisticated equipment and much more careful calibration and as the transmitter-receiver
distance increases, its accuracy decays, meaning that a small error in the angle of arrival
calculation translates into a large error in the actual location estimation. Furthermore,
because of multi-path effects in indoor environments, the AoA may be sometimes difficult
to measure [2].

The estimation of the angle of arrival (AoA) has received a lot of attention from
researchers mainly due to the advances in phased-array antenna technology that facilitate
the accurate estimation of angles of arrivals. mmWave technologies further enhance this
ability as these arrays need to be relatively small to be implemented in microcontroller
boards and handheld devices; however, the range is limited [20,23]. In order to achieve
accurate results, several existing AoA estimate algorithms examine the entire angle space.
Although the existing methods may be reasonable in a variety of different scenarios, for
future commercial small and low power wireless devices such as Bluetooth-based Internet
of Things (IoT) devices, they may not be practical. This problem is exacerbated in 3D
systems, as the elevation angles must also be considered [24]. In terms of work reported
concerning this topic, researchers in [25] present an AoA-based algorithm for tracking the
position of an anonymous target in 3D space. The placement of dispersed sensors allows for
the measurement of the azimuth and elevation angles of the AoAs. The extended Kalman
filter (EKF) (see Section 2.3.1) is used to create a unified factor graph (FG) framework,
presuming the target movement is non-linear. The observation procedure is carried out
using a practical AoA-based position detector. RMSEs were produced in order to assess the
suggested tracking technique’s accuracy. The observer attained RMSE = 1.6 m using the 3D
location detector, while the suggested EKF reduces this value to 1.4 m.

2.1.3. Time of Arrival—ToA

AoA techniques are typically impractical in more typical everyday scenarios, as it
is typically difficult to obtain the angular information using current conventional mobile
devices such as smartphones. In this respect, distance can be calculated instead by either
the Received Signal Strength (RSS) readings [26,27] or the ToA (sometimes referred to as
Time of Flight—ToF) measurements [28,29]. A limiting factor for the ToA case is that the
receiving and transmitting clocks must be synchronized in order to accurately estimate the
ToA and produce more precise distance estimates. This is usually achieved by introducing
an extra synchronizing node (as in GNSS) [22]. For three-dimensional positioning, at least
four fixed nodes are required.

At least four non-coplanar anchor nodes (ANs) are required for the ToA-based 3D
positioning to enable unique position estimation. However, direct method (DM) and
particle filter (PF) (see Section 2.3.1) algorithms were developed to address the three-anchor
ToA-based 3D positioning problem in [30]. The proposed DM reduces this problem to the
solution of a quadratic equation, exploiting the knowledge about the workspace, to first
estimate the x- or z-coordinate and then the remaining two coordinates. The implemented
PF uses 1000 particles to represent the posterior probability density function (PDF) of the
AN’s 3D position. The prediction step generates new particles by a resampling procedure.
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The ToA measurements determine the importance of these particles to enable updating the
posterior PDF and estimating the 3D position of the AN. The DM achieved a horizontal
accuracy of 10 cm and a vertical accuracy of 5 cm, while the PF achieved 9 cm and 5 cm,
respectively. To reduce the impact of the non-line of sight (NLOS) error, which significantly
reduces the localization accuracy, a ToA-based 3D indoor localization algorithm named
LMR (LLS Minimum Residual) is proposed in [31]. Firstly, the NLOS error is estimated and
used to correct the measurement distances and then to calculate the target location with the
linear least squares (LLS) solution. The final node location can be obtained accurately by
NLOS error mitigation. The average accuracy achieved was around 0.8 m.

A system based entirely on ToF sensors is proposed in [32]. A major contribution is a
new distance measuring method, enabling Time-of-Flight sensors to sense the 3D positions
of fast moving reflective markers. ToF sensors are tiny depth sensing systems that are
becoming more common in augmented reality smartphones and embedded systems. ToF
sensors measure the amount of time it takes for light to travel from the camera to the scene
and return to the sensor. This generates photos in which each pixel represents the distance
between the camera and the related objects. The sensors are able to be placed on a device
and are capable of determining a position with low latency and at rapid update rates. A ToF
camera emits light and records three-dimensional images of reflective markers. Distance
measurements may be used by a device equipped with a ToF imaging sensor to estimate
the relative 3D location of each visible marker. While the final precision of the proposed
positioning system depends on the geometry of the captured scene, this evaluation shows
that it is possible to use ToF 3D imaging systems for centimeter-level (0.9–1.4 cm) indoor
positioning. Along with the high achievable update rates and the simple implementation
with a single sensor, it is believed that these results prove the feasibility of this positioning
solution for a wide range of applications.

2.1.4. Time Difference of Arrival—TDoA

ToA approaches are a fairly simple position finding approach that use ranging mea-
surements; nevertheless, as mentioned previously, they are susceptible to proper synchro-
nization between transmitter and receiver clocks, as well as the fact that the receiving
entity must issue a notification that the transmission has occurred. Time Difference of
Arrival (TDoA) is a modified version of the ToA technique that solves this constraint; all
it requires is that the transmission has a distinct and unambiguous starting point [33].
The advantage of using ToA and TDoA techniques is the fact that the distances between
reference node and target node when increased do not affect the accuracy unless the trans-
mitters in the area outside the ToA and TDoA sites are used. Weak synchronization of time,
multipath propagation and low SNR, however, will reduce the resolution of ToA/TDoA
measurements [34].

The authors in [35] present a novel TDoA-based approach suitable for single-anchor
positioning systems, implemented by phase wrapping-impaired array antenna, with the
latter being a typical occurrence in large Switched Beam Antenna (SBA) operating in the
low microwave range. The proposed method takes advantage of the large bandwidth of
radio link, established between the anchor and the positioning target by generating an un-
ambiguous equivalent phase relationship between antenna array elements. The technique
is validated by adopting a relatively large SBA antenna operating in the 4.75–6.25 GHz
bandwidth and capable of positioning a target in a 3D domain. Combining range and angle
errors, the associated cumulative distribution function error in 90% of cases shows an error
of 0.13 m.
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Table 2. Geometric Approach 3D Positioning Existing Systems.

Technique Advantages Disadvantages Accuracy Ref.

AoA -Do not require clock
synchronization

-Accurate angle
measurements may require
additional equipment such as
directional antenna to
support the system which
will increase the cost.

1.4 m [25]

ToA

-The distances between
reference node and target
node when increased do not
affect the accuracy

-Weak synchronization
of time
-Multipath propagation
-Low SNR will reduce the
resolution of ToA
measurements

0.05 m
0.8 m [30]

[31]

TDoA -Similar to ToA -Similar to ToA 0.13 m [35]

2.2. Fingerprinting Approaches

Another approach is fingerprinting (FP). The FP process consists of an online and
an offline phase. During the offline one (also known as the data collection phase), the
received signal strength (RSS) measurements are obtained at multiple different locations
across a known environment. These measured fingerprints are pre-stored and are then
used as reference when comparing them to the measured signals collected during the
online stage to estimate the user location [36,37]. Fingerprinting techniques have gained
popularity due to their ability to enable positioning estimation without additional hardware,
knowledge of the space layout or AP positions. An advantage of such techniques is that
they may be used in a variety of indoor environments, even including underground [38].
Fingerprinting offers a discrete rather than a continuous estimate of the user location.
Technically, the precision of position estimate may be enhanced by decreasing the distance
between offline measurement locations, which would increase the density of the fingerprint
field, until nearly continuous location estimation is achieved. However, due to channel
statistics and measurement noise, the difference in signal intensity between two neighbour
points will become considerably different, making an estimate of the right location nearly
impossible [2]. The RSS fingerprint’s values may often fluctuate due to signal interference
such as objects being moved, doors opening/closing and the amount of people within
the given environment. Because of this, there is a need to constantly update and calibrate
the “fingerprinting map” [38]. This causes a massive disadvantage as it requires a lot of
effort and time to renew the fingerprints especially in large buildings. One solution is
to use channel models to construct the fingerprinting map. For instance, in [39], an FP
map is constructed using 3D Ray Tracing and this map has been calibrated with a small
set of manually collected data across the environment to calibrate it for multiple types
of devices. Another way to address this problem is crowd-sourcing mapping which has
been proposed in [40]. In other words this is called cooperative positioning technique. The
radio map is constructed and maintained in those systems using fingerprints acquired
and expressly annotated by users. However, the quality of the users’ input might have
an impact on cooperative systems, resulting in low position accuracy. For these reasons,
several alternative techniques explore inertial sensors and interfaces incorporated in mobile
phones in order to generate the radio map using user motion patterns [38]. The principles
of cooperative positioning will further be discussed in the next section.

At the end of this section in Table 3, a summary of all fingerprinting approaches can
be found, describing their advantages and disadvantages, as well as their accuracies found
in the literature.
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2.2.1. RSS-Based Fingerprinting

Received Signal Strength (RSS) is obtained by measuring the power of the signal at
the receiver. It is either used directly as a fingerprint or is plugged into signal model
equations to determine the distance between the transmitting and the receiving device. The
strength of the signal is proportional to the distance between the devices—the closer the
transmitter and receiver are to each other, the greater the RSS value. RSS is typically used
in conjunction with other techniques and technologies such as Wi-Fi, ultrasound, ZigBee,
UWB and fingerprinting approaches [36]. Due to its simplicity and low cost, RSS-based
approaches are the most common and widely used localization techniques. However, in
some scenarios (such as NLOS conditions), it suffers from poor localization accuracy due
to increased signal attenuation caused by transmission through walls and other possible
obstructions such as movement of humans inside a building, as well as excessive RSS
fluctuation caused by multipath fading and noise. To counteract these issues, several
filter or averaging mechanisms can be applied; however, in most cases, to achieve high
localization accuracy, a relatively complex algorithm must be employed [2]. For example,
in [41], a Kalman filter is applied to eliminate a large part of the noise from the RSS data and
therefore enhance the accuracy. A multilateration problem is formulated via Singular Value
Decomposition (SVD), which is extensively applied in numerous fields such as control
systems, in order to estimate the location of target nodes in three-dimensional settings. The
distance between the reference nodes and the target nodes is approximated using RSS for a
given set of reference nodes and the position of the target node, meaning the 3D coordinate,
may then be computed.

Woodman and Harle [42] describe another method for obtaining relatively good
positioning accuracy as well as accurate continuous information about the current location
on the z-axis. The entire system was evaluated experimentally, using an independent
tracking system for ground truth. The results show that it can track a user throughout
an 8725 m2 building spanning three floors to within 0.5 m 75% of the time and to within
0.73 m 95% of the time. In [43], the expansion of the 2D RSS-based WLAN fingerprinting
localization technique to 3D is presented by implementing and extending the Isolines and
Euclidian Distance Algorithms. The third dimension is regarded discretely as the floor level.
Both algorithms were tested in two different environments of university and a museum.
Within the university test bed, the floor level (z-position) could be estimated correctly in
86.67% of cases for the Isolines Algorithm and 93.33% of cases for the Euclidean Distance
Algorithm. The results in the museum test bed reached 96.84% with the Isolines Algorithm
and 100% with the Euclidean Distance Algorithm.

2.2.2. CSI-Based Fingerprinting

Channel State Information (CSI) refers to known channel properties of a communi-
cation link when establishing a wireless communication. Through this information, it is
possible to identify the propagation characteristics of the channel between the transmitter
and the receiver. This gives access to information such as scattering, fading and power
decay with distance which is typically not available with conventional RSS measurements.

Most of the Wi-Fi-based indoor positioning technology can be divided into two main
categories: RSS-based and CSI-based. However, in the indoor environment, the RSS
signal, as a kind of coarse-grained information, is highly susceptible to interference from
other signals and the indoor multipath effect, so it cannot provide sufficient accuracy and
reliability [44,45]. For Wi-Fi signals using IEEE 802.11n [46] communications protocol, it
can obtain CSI in Orthogonal Frequency Division Multiplexing (OFDM) subcarriers by
modifying the wireless network card driver [47].

CSI is classified into two types: (a) channel impulse response (CIR) and (b) channel
frequency response (CFR). CIR is a time-domain representation of the complex channel and
describes the channel’s amplitude and phase in time bins, whereas CFR is its frequency-
domain equivalent, which displays the complex channel in frequency sub-carriers. CIR
requires an impulse signal to be generated, whereas CFR may be simply retrieved using
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orthogonal frequency division multiplexing (OFDM) devices. Due to insufficient synchro-
nization, CIR is also more prone to error. Phase compensation techniques for CFR help to
solve synchronization problems. CSI fingerprinting is recommended over RSS fingerprint-
ing because it can work with a single AP in both LOS and NLOS scenarios. Because many
RF systems use OFDM, it can achieve high positioning resolution up to the centimeter level
and can be readily supported by existing infrastructure [48].

In terms of work reported on this topic, the researchers in [49] designed a positioning
system based on CSI for the tracking and navigation of UAVs. As the authors state, with
UAV technology, due to a common issue and a phenomenon called “black flying” which
involves acts such as illegally intruding into certain areas such as airports, gas stations,
nuclear power plants, petrochemical plants, detention centres and others [50], it is necessary
to introduce necessary countermeasures for such scenarios. The system operates by firstly
monitoring the communication information between the UAV and the controller and
analyzing the CSI. Secondly, the angle of azimuth (AoA) and angle of elevation (EOA) is
estimated for the direct LOS signal and then utilizes the positioning model to calculate
the position of the UAV. Eventually, Wireless Insite (WI) is applied to verify the system
which is a simulation software that applies and analyzes the operating aspects of radio
transmission and wireless communication systems using Ray Tracing model methods. The
testing results show that the 2D position error is around 1.1 m and the 3D position error is
around 2.02 m.

Machine Learning (ML) (see Section 3) has also been used in conjunction with CSI.
For instance in [51], WiCluster is introduced, which uses a novel ML technique for passive
indoor positioning. WiCluster can predict both zone-level and exact 2D or 3D positions
without the need for accurate location labels during training. As stated in this paper, initially
CSI-based indoor positioning studies focused on non-parametric digital signal-processing
(DSP) techniques. More recently, however, the focus has been shifted to parametric ap-
proaches (e.g., fully supervised ML methods). However, these methods do not handle the
complexity of real-world environments well and do not meet the requirements for large-
scale commercial deployments: the accuracy of DSP-based methods degrades significantly
in non-line of sight conditions, whereas supervised ML methods require large amounts
of difficult-to-obtain centimeter accuracy position labels. WiCluster, on the other hand, is
precise and it requires lower label information that is easily acquired and works well in
non-line of sight settings. This system demonstrates meter-level accuracy in three separate
realistic environments: two offices and one multi-story building. The average accuracy was
around 0.97 m. The positioning system performs effectively even in rooms with no direct
line of sight to the transmitter or receiver.

2.2.3. Magnetic Field-Based Fingerprinting

Despite that most of the fingerprinting techniques are based on Wi-Fi RSS measure-
ments, recently there have been major advancements in Magnetic Field (MF)-based location
fingerprinting techniques for indoor positioning that take advantage of MF anomalies. The
Earth’s Magnetic Field (EMF) is a ubiquitous and location-specific signal. Due to the fact
that the local MFs in steel-frame buildings can be influenced by both natural and man-made
sources (e.g., steel and reinforced concrete structures, electric current and electronic appli-
ances), causing anomalies in the local MF inside the building, it is a promising resource that
can be used in accurate global self-localization. When compared to other existing indoor lo-
calization systems, the MF system is more cost- and energy-efficient while maintaining the
same precision and it relies on built-in EMF sensors on smartphones without the need for
additional equipment [37]. MF anomalies, on the other hand, can only affect specific types
of regions. Because of the sensitivity limits of the smartphone built-in sensors, the limited
discernibility of received local MF signals may result in multiple positions having the same
MF-location information in regions away from disturbances. This makes distinguishing
between different positions of the same local MF value extremely challenging.
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The authors of [52] introduce a 3D MF-based tracking system where the recorded
data is analyzed using the Kalman Filter, which removes the overlays caused by kinematic
effects in order to obtain reliable distance and elevation measurements between mobile
stations and reference points. The results reveal that in a typical indoor environment,
good positioning accuracy may be achieved in the range of 0.5–1.5 m with regards to the
horizontal plane as well as to the z-value. To further improve and assist the MF localization
system, a visual-based camera-assisted indoor positioning system is introduced in [37].
This vision-based approach, similarly to previous fingerprint-based positioning systems,
employs image feature points as the matching resource. By comparing the query image
to the pre-built image database, the location where an image was captured by a user
may then be determined. Unlike previous systems, this methodology may display the
user’s location on a visual 3D map of the indoor environment, allowing people to identify
their position more precisely. Unlike most original MF-based indoor location systems,
which rely just on MF fingerprinting to find individuals, this multi-pronged approach is
significantly improved by using a camera-based visual positioning technique in places with
less disturbances. All results reveal that the camera-aided MF indoor positioning system
outperforms others in both accuracy and reliability when compared to two competing
systems evaluated using smart mobile devices in different indoor conditions. Compared
with results using MF alone, the camera-aided MF solution achieves more than a 50%
improvement in average error distance in both cases of fewer and abundant disturbance
environments.

Table 3. Fingerprinting Approach 3D Positioning Existing Systems.

Technique Advantages Disadvantages Accuracy Ref.

RSS
-Simple to set up and use
-Low cost as it does not
require additional hardware

-Suffers from poor accuracy in
NLOS conditions
-Very laborious

0.73 m
2.2 m [42]

[43]

CSI -Immune to noises and
fading

-Insufficient synchronization
which may lead to error

0.97 m
2.02 m [49]

[51]

MF

-Cost- and energy-efficient
while maintaining similar
precision
-Relies on built-in EMF
sensors on smartphones
without the need for
additional equipment

-MF anomalies can only affect
specific types of environments 0.5–1.5 m [52]

FTM
-Does not require offline
training, which saves
significant labour

-Performs poorly in NLOS
and multipath propagation
scenarios

1.11 m [53]

2.2.4. Fine Time Measurement-Based Fingerprinting

The fine timing measurement (FTM) protocol which was standardized in IEEE 802.11 [54]
can achieve meter-level positioning accuracy with time of flight (TOF) echo technology.
One of the major issues for positioning, as with many other ranging measurements, is
the mitigation of NLOS effects [55]. If the direct path between a fixed terminal (FT)
and a mobile terminal (MT) is obstructed, the signal’s time of arrival (ToA) at the FT is
delayed, introducing a positive bias. The use of such ToA estimations may considerably
reduce positioning accuracy [56]. The fingerprint-based Wi-Fi location approach is mostly
implemented using received signal strength (RSS) or channel status information (CSI). In
comparison to RSS-based solutions, this new technology does not require offline training,
which saves significant labour [57].

In this context, ref. [53] proposes a real-time 3D indoor localization algorithm based
on Wi-Fi FTM together with built-in sensors. The received signal strength indicator and
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round-trip duration acquired from Wi-Fi Access Points (APs) are combined for proximity
recognition and provide more precise range results. The adaptive extended Kalman filter
(AEKF) is utilized to estimate the pedestrian’s real-time direction and walking speed.
Additionally, the AEKF, proximity detection and Wi-Fi ranging findings are combined
using the unscented particle filter. The combination of the Wi-Fi FTM-based method and
built-in sensor-based method effectively improves the positioning accuracy and stability.
The final CDF error of 2D positioning is within 1.11 m at 67.5% and the altitude error is
within 0.28 m at 67.5%.

2.3. Sensor Fusion

Sensor fusion is the technique of combining data from various sensors in an attempt to
minimize the amount of error in a positioning system. Despite the fact that many traditional
localization frameworks not utilizing sensor fusion have been enhanced in various other
ways to decrease the uncertainty or improve accuracy, sensor fusion frameworks often
provide a further improvement in the positioning accuracy [58]. Sensor fusion networks
are usually categorized based on the type of sensor configuration. There are three main
types [59]:

• Complementary: Sensors give independent types of information about the environ-
ment. Sensors are not directly reliant on each other, but can be combined to provide a
more comprehensive image of the area of interest. This fixes the issue of sensor data
inadequacy. In general, fusing complementary data is simple since data from different
sensors may be added to one other. A complementary configuration would be the use
of numerous cameras, each watching different sections of a room.

• Competitive/redundant: Sensors are designed competitively if each sensor provides
independent measurements of the same property. Competitive configuration is often
distinguished by either fusion of the data from different sensors or the fusion of
measurements from a single sensor obtained at different instants.

• Cooperative: A cooperative sensor network leverages information from two (or more)
independent sensors to extract information that would not be obtainable from a single
sensor. Stereoscopic vision is an example of a cooperative sensor configuration—by
integrating two-dimensional images from two cameras at slightly different angles to
form a three-dimensional image of the scene.

The three fundamental sensor communication methods are as follows [60]:

• Distributed: Information is sent between nodes at a set communication rate (e.g., every
five scans)

• Decentralized: There is no communication between the sensor nodes. In decentralized
systems, every node makes its own decision. The final behavior of the system is the
aggregate of the decisions of the individual nodes.

• Centralized: All sensors send data to a single node. The centralized system is a subset
of the distributed scheme in which the sensors interact with each other every scan.

Current indoor positioning technologies can be divided into two types: infrastructure-
based approaches and infrastructure-free approaches. Infrastructure-based techniques
achieve indoor positioning using data gathered from external infrastructure or equipment
such as network nodes, WiFi signals, Bluetooth signals, radio frequency (RF) signals,
magnetic signals and video signals. Infrastructure-free techniques are able to achieve
indoor positioning without any external signals. The majority of these techniques rely on
inertial sensors, such as accelerometers, magnetometers and gyroscopes. These sensors
are able to achieve accurate results even in complex indoor environments. However,
these sensors’ drift and bias flaws present major issues. Infrastructure-based solutions
demand the installation of different equipment which in most cases is quite costly, whereas
infrastructure-free solutions are more flexible and cost-effective, as they involve the sensors
that are already built into the smart devices. The trend in recent years has been toward
infrastructure-free solutions; however, the accuracy is too insufficient to be employed in
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real-world applications [61]. Smartphones offer various types of measures that can be used
to achieve indoor positioning using simply smartphone-based data. By adding relative
height information, such as from barometer data and using suitable filtering, 3D positioning
may be easily achieved.

At the end of this section in Table 4, a summary of all sensor fusion approaches can be
found, describing their advantages and disadvantages, as well as their accuracies found in
the literature.

2.3.1. Filtering Approaches

In many environments, the measurements from positioning systems still contain
unwanted noise and the quality of the measurement data can be enhanced using filters [62].
Filtering is a typical example of sensor fusion. The two most common used filtering
approaches are kalman filters (KFs) and particle filters (PFs). KFs and PFs, which represent
location probability as a set of samples (particles), are among the most-efficient methods
due to their ability to accommodate non-linear state and measurement models, handle
multiple hypotheses and seamlessly combine different types of information.

Kalman Filter

The Kalman Filter (KF) [63] is one of the most common implementations of Bayesian
filters [1]. Kalman filtering is an algorithm which uses a series of measurements observed
over time, including statistical noise and other inaccuracies, to produce estimates of un-
known variables that are more accurate than those based on a single measurement alone, by
estimating a joint probability distribution over the variables for each timeframe [41]. One
of the key advantages of KFs is their computational efficiency in implementing Gaussian
process mean and covariances using just matrix and vector operations. The algorithm
operates in two stages. The KF generates estimates of the current state variables, together
with their uncertainty, for the prediction phase. Once the result of the next measurement
is seen (which is unavoidably corrupted with some error, including random noise), these
estimates are updated using a weighted average [64]. The algorithm is able to work in
real time with only the present input measurements and the previously determined state,
as well as its uncertainty matrix. Extensions and modifications of the filter, such as the
extended Kalman filter (EKF) [65] and the unscented Kalman filter (UKF) [66], which
operate on nonlinear systems, have also been developed. Furthermore, Kalman filtering
has been effectively applied in multi-sensor fusion and distributed sensor networks to
produce more distributed Kalman filtering [67]. In most cases, Kalman filtering is used to
eliminate systematic errors of different systems.

Work reported in [61] describes a methodology for attaining 3D indoor position using
foot-mounted sensors by extending an existing 2D model to 3D. The Zero Velocity Potential
Update (ZUPT) algorithm was utilized to detect when a pedestrian has stopped moving
and this information was used in the Kalman filter to eliminate systematic errors. To acquire
correct height information, a 3D indoor positioning barometer was added and merged with
an accelerometer using a Kalman filter. The particle filter was removed due to its high
processing time cost and difficulties in implementing wearable devices. The suggested
approach has been tested in a number of real-world and simulated settings. The distance
errors are around 1% and the positioning errors are less than 1% of the total travelled
distance. Results demonstrate that the suggested system outperforms other comparable
systems that make use of the same low-cost IMUs. In [41], RSS is used to estimate the
distance between reference nodes and the target nodes for 3D position estimation. However,
due to RSS fluctuations, which lead to rather inaccurate distance estimations, a Kalman
filter is applied to the measurements to reduce these fluctuations. The experiment findings
demonstrate that increasing the number of reference nodes (used in the computation of
multilateration localization) improves accuracy, but only up to six nodes. The estimation
error increases as the number of reference nodes goes beyond six (i.e., seven and eight
nodes). This differs with the theoretical notion that increasing the number of nodes leads
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to increased location accuracy. The average accuracy achieved was around 0.6 m. Ref. [68]
proposes a high-scale 3D indoor positioning system that uses EKF for real-time 3D pose
estimation (position and orientation) by integrating IMU relative motion data with camera
measurements to fixed LED landmarks with known absolute positions. The findings
demonstrated that by observing one LED on average in each camera frame, this technique
can confidently predict the global 3D position of the sensor pair with less than 0.4 m
accuracy. Some other existing works which utilize Kalman filtering have already been
discussed previously (see Sections 2.1.2, 2.2.1 and 2.2.4).

Particle Filter

Another important type of Bayesian filter is based on estimation of integrals by
numerical integration. These approaches, known as particle filters (PFs) [69], have grown in
popularity to be used in position tracking applications. Particle Filtering’s underlying idea
is the representation of the state Probability Density Function (PDF) by a predefined number
of hypotheses; hence, it does not implement an analytical function. In comparison to KFs,
PFs often have a substantially higher complexity depending on the amount of particles that
must be created to model the PDF. Furthermore, PFs are subject to inconsistent behaviour,
due to phenomena such as sample degeneracy or sample impoverishment.

PFs have recently been used in some works on 3D positioning. For instance, ref. [42]
outlines a smartphone-targeted positioning system that employs numerous sensors such as
accelerometers, gyroscopes and barometers, as well as technologies such as PDR, WiFi po-
sitioning and PF (which is able to work in three-dimensional space). The research reported
in this paper aims to provide solutions to three main problems: real-time indoor localiza-
tion in multi-story buildings, re-sampling in 3D Particle Filter (PF) related to transition
between floors and determining final position from a cloud of particles. According to the
test findings, the accuracy of the 3D algorithm is higher for all final location estimators. The
mean error for 2D PF reached roughly 1.7 m, whereas 3D PF reached about 1.4 m. The most
significant advantage of a 3D particle filter is that particles maintain their XY locations and
headings when travelling across levels. In the 2D version of the algorithm, the particles
were generated afresh after floor change. In this situation, the global heading needs to
stabilize once again, even though on the previous floor the majority of the particles had
steady heading. The authors of [70] use a PF with three states (XYZ) to estimate the 3D
position of a moving node. Due to the fact that no movement information is available, the
PF uses a measurement model to produce some random particle motion once every second.
When a range measurement to a beacon is obtained, the distance between all particles
and that beacon is estimated. The moving object’s location is determined by computing
the weighted mean position of all particles. The experiments were conducted with the
help of Bespoon (https://bespoon.xyz, accessed on 26 November 2022) and Decawave
(https://www.decawave.com, accessed on 26 November 2022) equipment [71], reaching
mean positioning accuracies in NLOS conditions of 0.51 m and 0.24 m, respectively.

Pedestrian Dead Reckoning—PDR

Similar to maps for outdoor localization, building structure information is required as
basic data for many indoor positioning services; however, this information may not always
apply to all buildings. As a result, research is being carried out on determining the building
environment using pedestrian sensing data acquired from multiple people moving within
a building. To obtain precise building structural data, high-accuracy pedestrian trajectories
must first be estimated from sensor data. Dead reckoning is the technique of computing the
current position of a moving object by utilizing a previously established position as well as
integrating estimations of speed, heading direction and course over elapsed time. Due to
the rapid advancements of smartphone capabilities because of the increase in the variety
of different built-in sensors, such as accelerometers which may be utilized as pedometers,
and because magnetometers can be used as compass heading providers, these can be used
to estimate the direction in which a person is walking and to estimate movement relative
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to initial location [72]. Pedestrian dead reckoning (PDR) can be used to enhance other
positioning techniques by expanding the range into places where other positioning systems
are inaccessible [73]. One of the biggest issues when employing PDR to determine position
and velocity is due to sensor inaccuracy; the system in most cases eventually diverges.
However, the extended Kalman filter calculation is adopted to tackle this problem. The
extended Kalman filter calculates system state errors for altitude, angular velocity, position,
velocity and acceleration, as presented in [67,74]. Along the same lines, ref. [75] presents a
Cascade Pedestrian Dead Reckoning (C-PDR) approach. C-PDR is a 3D pedestrian dead
reckoning method that does not require any infrastructure and is based on a waist-worn
inertial system. This system utilizes data from a triaxial accelerometer, gyroscope and
magnetometer. The ability to wear the inertial platform around the user’s waist allows the
system to be implemented in a wider range of different applications. Wearing the tracking
device on one or more limbs may limit the agility of the users’ movements, for example,
in defense and rescue services. In order to track the walking path in 3D space, C-PDR
combines a pedestrian activity classifier with a position estimation mechanism.

2.3.2. Cooperative Positioning

Due to the rapid evolution of smart devices and the Internet of Things (IoT) concept,
another promising terrestrial positioning method known as cooperative positioning has
sparked the attention of the research community in recent years. Since modern wireless
smartphones are capable of establishing peer-to-peer (P2P) connections and performing
a variety of ranging measurements, the cooperative positioning approach is based on the
fact that smart devices can communicate and share data with one another in order to form
location estimations within a given indoor environment. Cooperative positioning is split
into two categories: deterministic and probabilistic methods. Deterministic approaches
consider the location of users as undefined variables to be calculated from measured
ranges, angles, signal strengths, etc. Although deterministic localization strategies perform
well in wireless sensor networks, they are not suited for situations where the tracking
of people is required, as they are unable to accurately process the prior user positioning
data [76]. Probabilistic methods (also known as Bayesian), alternatively, consider the
users’ locations as random variables in space whose distribution of probability must be
derived from measurements of intrinsic uncertainties [77]. The Bayesian method is a
statistical approach that is based on the Bayesian understanding of probability and reflects
a degree of confidence in the occurrence of an event. Bayesian techniques are implemented
as recursive filters (such as KFs and PFs as described above) that incorporate previous
position information as well as motion data produced by inertial sensors, making them
ideal for the location and monitoring of moving objects in indoor environments.

Some 3D cooperative positioning works exist in the literature. In [78], a 3D universal
cooperative localizer (3D UCL) is proposed for VANETs in 3D space under several forms of
ranging data such as ToA, RSS, AoA and Doppler frequency. One ranging measurement
contains three hybrid variables, which are derived by subtracting the node receiving this
ranging measurement’s x, y and z positions from the position of its pairing neighbor.
Testing results show accuracy of around 0.8 m. In [79], a 3D cooperative approach is
developed that outperforms non-cooperative algorithms in accuracy and robustness to
anchors; nonetheless, the fundamental issue of a lack of height reference data remains
unsolved. In order to address the underlying problem of a lack of reference data at altitude
in the 3D cooperative localization approach, previous location information is provided to
limit the initial position when a severe fall in accuracy arises. The testing was carried out
at a university in a room of approximately 6 m by 15 m. The test was performed using
15 test points which are set on two lines, whose angles with the central axis of the door are
90 and 30 degrees, respectively. At each test point, 10 testers were asked to estimate the
distance with the central axis of the door by themselves. The average error of the 10 testers
at 15 points was achieved at about 0.3 m.
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Table 4. Sensor Fusion 3D Positioning Existing Systems.

Technique Advantages Disadvantages Accuracy Ref.

KF
-Capable of handling Non-linear
models
-Low computational complexity

-Designed for Gaussian noises 0.6 m
0.4 m

[41]
[68]

PF

-Capable of handling
non-Gaussian and non-linear
estimations
-Methodologically simple and
flexible

-Number of particles is a trade-off
between computational
complexity and accuracy
-Issue of filter initialization [80]

1.4 m [42]

Cooperative

-Incorporates the sensors within
the smart devices to
communicate and share data
with one another
-Cost-efficient as no additional
hardware is required

-Computational complexity,
communication bottlenecks,
scalability and lack of robustness
against failure [80]

0.3–0.8 m [79]

PDR

-Can be used to enhance other
positioning techniques by
expanding the range into places
where other positioning systems
are inaccessible

-Possible IMU sensor errors
-Estimation errors increase with
the distance to the known initial
position

1.24 m [75]

2.4. Hybrid 3D Positioning Systems

To further leverage the benefits of various sensors and approaches, different types
of measurements from different networks or technologies can be combined to enhance
positioning. Different networks or technologies that provide various types of metrics
can be combined to produce hybrid positioning systems. Different types of measures
obtained from different networks/technologies are more effective than the same type of
measurements provided within the same network/technology because they combine the
benefits of different technology [81]. Some examples of existing hybrid positioning systems
are presented below.

2.4.1. ToA/AoA

One example of a hybrid positioning system is proposed in [82], where the authors
take advantage of the ToA and AoA approaches for dealing with access node (AN) location
uncertainty without increasing computing complexity. First, the 2D positioning approach
is expanded to geometry-based 3D, in which a robot’s location is determined by using
both the ToA and the AoA measurements in the robot positioning algorithms. Second,
an EKF-based (see Section 2.3.1) positioning algorithm is developed and implemented,
with the AN location uncertainty mapped to the measurement noise statistics. Aside from
3D positioning accuracy, vertical accuracy is also used as a performance parameter, as
vertical accuracy is important in certain applications. The 3D and vertical RMSE as well
as the number of operations needed to implement the considered algorithms (at one time
instant) were utilized as the metrics for comparison. The numerical findings demonstrated
that the EKF-based algorithms used remained a preferable choice in terms of both 3D
and vertical RMSE performances as long as the error in AN placement was kept under
0.5 m (i.e., standard deviation along the x-direction). On the other hand, the proposed
geometry-based approach, namely weighted centroid geometric (WCG), was capable of
maintaining a higher positioning accuracy than EKF-based approaches when exposed to
AN locations uncertainty larger than 0.5 m (standard deviation error), thus yielding a
higher robustness. The 3D RMSE averaged about 1.9 m, while vertical RMSE averaged
about 0.4 m.

2.4.2. PDR/Fingerprinting

The authors in [83] propose an indoor navigation algorithm by combining both PDR
and fingerprinting approaches. It employs a variety of sensors and technologies, including
nine-axis sensors (such as 3D gyros, accelerometers and magnetometers), WiFi and magnetic
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matching. PDR is utilized to provide continuous position solutions as well as to detect
errors in both WiFi fingerprinting and magnetic matching. Meanwhile, WiFi fingerprinting
uses point-by-point matching technology, whereas magnetic matching focuses on profile
matching. Finally, the position-tracking module receives updates from the WiFi and
magnetic matching results. This algorithm was tested with Samsung Galaxy S4 and Xiaomi
4 smartphones in different indoor environments (i.e., Environment 1 with abundant WiFi
APs and significant magnetic changes and Environment 2 with less WiFi and magnetic
information). In these conditions, the hybrid PDR/WiFi/MM algorithm provided RMS
accuracy of 2.8 m and 2.9 m in the two test environments. Another work [40] outlines the
software navigation engine for indoor positioning by utilizing the already existing data
from smartphone sensors and communications modules such as IMU (3D accelerometer,
gyroscope), a magnetic field sensor (magnetometer), WiFi and BLE modules, together
with the floor premises plan. Indoor navigation software uses such technologies as PDR,
Wi-Fi fingerprinting, geomagnetic fingerprinting and map matching. Being blended in the
particle filter, dissimilar measurements allow solving a set of principal tasks. Positioning
results given for different indoor environments in a shopping mall and in a big exhibition
hall show fast TTFF indoors and accurate and reliable real-time indoor positioning with
accuracy of about 1–2 m.

As can be seen, to the best of the authors’ knowledge, only two existing 3D hybrid
positioning works have been found in the literature. Table 5 showcases these systems and
it can be observed that the accuracy varies from 1 to 2 m.

Table 5. Hybrid 3D Positioning Existing Systems.

Technique Accuracy Ref.

ToA/AoA 1.9 m [82]
PDR/Fingerprinting 1–2 m [83]

3. Machine Learning for 3D Indoor Positioning

For widespread deployment of indoor positioning, accuracy, dependability, scalability
and environmental adaptation remain the main challenges, in particular unpredictable
radio propagation characteristics in constantly changing indoor environments as well as
access technology constraints. Indoor environments, in contrast to outdoor, are extremely
complex, with various shapes and sizes, as well as the presence or absence of stationary
and moving objects (e.g., furniture and people). These variables drastically change both
LOS and NLOS radio signal propagation, resulting in unpredictable attenuation, scattering,
shadowing and blind spots that significantly reduce indoor positioning accuracy. To solve
these issues, artificial intelligence (AI) and machine learning (ML) techniques have recently
been extensively researched and have achieved reasonable success [84]. The fundamental
benefit of using AI/ML techniques is their ability to make effective decisions based on
observed data without the need for precise mathematical formulation. Moreover, ML has
also proven to be a useful tool for fusing multidimensional data acquired from various
location sensors, technologies and techniques. Due to rapid advancements in machine
learning in recent years, several computer vision-based positioning systems exist in the
literature such as [85,86]; however, these papers focus on 2D positioning. Such papers
would be great benchmarks for further research and 3D expansion. Three-dimensional
point cloud classification could also be considered, for example, [87].

One work utilizing ML has already been mentioned previously in the paper
(see Section 2.2.2). Another work is proposed where the researchers in [88] have designed
a miniaturized indoor positioning device while considering several machine learning
optimization algorithms and using a hybrid method of Levenberg–Marquardt and ToA
positioning algorithm to achieve 3D positioning in space. The purpose of this system and
the utilization of machine learning is the ability to precisely locate the height of the target
in the absence of height difference between base stations. The hybrid method was able
to achieve more accurate results of 19.19 cm RMSE compared to the traditional ToA and
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TDoA methods of 2.7 m RMSE with no significant degradation in efficiency. The reason for
such differences in the RMSE measurements are in fact the errors measured in the z-axis,
with 271.85 cm using the traditional method and 12.20 cm using the machine learning
hybrid method, which justifies the contribution of this algorithm. The authors in [89]
propose a 3D positioning approach for navigation within a hospital building. This system
is designed particularly for multiple-story buildings. It aims to obtain the building level,
longitude and latitude for a specific location. This system can recognize the horizontal
information of the plane space, as well as the vertical information of different floors. In
order to estimate the positions of mobile stations, it employs deep learning algorithms to
analyze the received signal strength from cellular networks and Wi-Fi access points. In
order to determine the precise position information (building level, longitude and lati-
tude) in multiple-level buildings, a two-stage deep learning process (level classification
and location determination) has been developed. A deep learning neural network was
trained for the first stage of level classification. Three deep learning neural networks were
trained to obtain the distinct location coordinates (longitude and latitude) for three different
building levels. The average distance error of the location determination for different floors
was 0.28 m.

4. Technologies for 3D Localization

Due to the uniqueness of each indoor environment and the immaturity and cost of
various technologies (e.g., UWB, mmWave), there are no established standards for indoor
positioning systems yet. In practice, each installation is adapted to spatial dimensions,
structural materials, accuracy specifications and budget restrictions. Therefore, several
different wireless positioning techniques and algorithms are currently being utilized and
several more have been reported in the literature, which take advantage of Radio Access
Technologies (RATs) such as Wi-Fi, Bluetooth, Ultrawideband (UWB), mmWave, cellular
(2G–6G), etc. The importance of such technologies is their integration in modern smart
devices. Alternative non-radio technologies applied in modern systems are ultrasound,
inertial sensors and Visible Light Communication (VLC). At the end of this section in Table 6,
a summary of all 3D positioning technologies can be found, describing their advantages
and disadvantages, as well as their accuracies found in the literature. As well as Table 7,
compares these technologies from the perspective of reception range, availability, energy
efficiency, cost and scalability.

4.1. Wi-Fi

Nowadays, smartphones have become one of the most common technologies in
everyday society and they are mostly used indoors. Ref. [40] states that “80% of smartphone
usage happens inside buildings.” The majority of modern smart devices are WiFi capable,
making WiFi a great choice for indoor localization as well as one of the most thoroughly
researched localization technologies in the literature. Because existing Wi-Fi access points
may also be utilized as signal collection reference points, modest localization systems (with
reasonable localization accuracy) can be created without the requirement for additional
infrastructure [2]. Wi-Fi positioning systems have been in the lead for commercialized
indoor localization, due to the massive deployment of Wi-Fi access points by mobile
network carriers. Unfortunately, WPSs majorly depend on the density and distribution of
Wi-Fi access points (APs) in the known environment, which directly affects the accuracy
and the availability of the systems. Unfortunately, WPS accuracy and availability degrades
as a result of its reliance on the number and distribution of Wi-Fi APs in its unique indoor
service region. Although unsupervised as well as supervised Wi-Fi APs have been used
to improve the location databases (DBs), such as fingerprinting DB or AP location DB, to
increase the localization performance, taking environmental factors into account has little or
no effect on improving location effectiveness in Wi-Fi dead zones. While the installation of
additional APs will improve the system performance, the mobile network carriers usually
are not willing, as they make the systems less time-efficient and more costly [74]. As
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mentioned previously in the paper, Wi-Fi is also the technology used for fingerprinting
approaches such as RSS, CSI and FTM (see Sections 2.2.1, 2.2.2 and 2.2.4).

Ref. [74] proposes and implements a highly scalable 3D indoor positioning system
based on loosely linked Wi-Fi/Sensor integration. Location database, which is derived
using dynamic surveying data, is used to estimate Wi-Fi location. PDR is utilized as
a time update model to compensate for the limitations of pedestrian motion modeling.
The test findings suggest that providing a stable and accurate 3D indoor location in a
scaled indoor environment is doable by using the basic yet complimentary loosely coupled
Kalman filtering.

The researchers in [36] propose a robust 3D indoor positioning system appropriate for
an indoor IoT application. This system is based on a Bayesian network that operates by
determining the intensity of Wi-Fi signals. Using just four APs and a modest number of RPs,
the suggested 3D Bayesian Graphical Model (3D-BGM) obtained an overall localization
accuracy of 2.9 m.

WiFi round-trip time (RTT) was utilized in [90] for a 3D indoor localization algorithm
for smartphones. In the proposed algorithm, the weighted centroid (WC) algorithm is
utilized to estimate the rough two-dimensional (2D) position due to its easy implemen-
tation and low complexity. The coarse target altitude is acquired according to pedestrian
activity. Then, the coarse altitude and 2D position combine into a rough 3D position,
which is regarded as the initial position of the standard particle swarm optimization (SPSO)
algorithm. The SPSO algorithm aims to estimate a more accurate 3D location on the basis
of the cursory 3D position of the smartphone. To reduce computation, the density-based
spatial clustering of applications with noise (DBSCAN) algorithm was used to assist in
updating the SPSO particles. Experimental results show that the proposed positioning
algorithm has better 3D accuracy than WC and least-squares (LS) algorithms, with a 2D
accuracy of 1.147 m and an altitude precision of 0.305 m.

In [91], a smartphone-based 3D indoor positioning method is proposed which takes
into account information from a WiFi interface and from the barometer sensor. Several
experiments have been performed in two real scenarios and measurements have been
made over commercial mobile devices. When tested in two different environments, it
was distinguished that this method allows obtaining a lower positioning error even if few
APs are available: when more than five Access Points (APs) are used, the proposed 3D
positioning system is able to accurately localize the user with an error below 2 m and 1.2 m,
respectively.

4.2. Bluetooth

Bluetooth was established as an open specification with low power, short range
wireless data and voice connections and has long been used in the communication and
proximity markets. It is used to transmit data over short ranges between devices via
ultra high frequency (UHF) radio waves, ranging from 2.402 GHz to 2.48 GHz. Initially,
it was developed as a wireless replacement for the RS-232 data cable. Similarly to WiFi,
due to its broad availability in smart devices, it also seems like a great option for indoor
localization. There are currently two main types of Bluetooth indoor positioning solutions:
connection-based and inquiry-based [92].

While Bluetooth Low Energy (BLE) may be utilized with many localization approaches
such as RSS, AoA and ToF, the majority of existing BLE-based localization solutions rely on
RSS-based inputs since RSS-based systems are believed to be much simpler. However, due
to the fact that it is strongly dependent on RSS-based inputs, the localization accuracy is
limited. Despite the fact that BLE in its original form can be used for localization (due to its
range, low cost and energy consumption), two BLE-based protocols, iBeacons (by Apple
Inc., California, U.S.) and Eddystone (by Google Inc., California, U.S.), have recently been
proposed, primarily for context aware proximity-based services [2].

The research in [92] presents an inquiry-based Bluetooth indoor positioning method
using RSS probability distributions. The results suggest that the RSS probabilistic technique
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is a viable option for Bluetooth positioning. On the other hand, Bluetooth positioning
has a substantial bottleneck owing to the low power consumption protocol: the updating
frequency. Considering the accuracy of position determination is not very high, the test
results show that the technique suggested in this study performs rather well. When
compared to WLAN positioning, however, the Bluetooth signal characteristics and the
number of access points result in lower accuracy.

The authors in [93] discuss low-cost 3D indoor positioning with Bluetooth smart
device and least square (LS) methods. Nonlinear least square (NLS) method is adopted for
parameter estimation of Bluetooth signal propagation model and various linear least square
methods are used for 3D location estimation of the target Bluetooth device. Simulation and
hardware experiment results illustrate that the nonlinear least square method is suitable
for parameter estimation of Bluetooth signal propagation and the generalized least square
(GLS) method has better performance than total least square methods. The proposed
method also has the merits of low cost, low power consumption, high usability and high
location precision. The hardware experiments have achieved a 3D positioning accuracy of
2.27 m and this was lowered to 1.97 m when combined with a barometer.

4.3. Cellular (2G–6G)

In cellular-based localization, downlink transmissions from the Base Station (BS) to
the mobile device and uplink transmissions from the mobile device to the BS can be used
to facilitate user positioning. The cellular-positioning techniques can be divided into two
types based on the entity that computes the position: (1) mobile-based, in which the user
device calculates its own location, and (2) network-based, in which the network location
server computes the user device’s position. Most cellular-based positioning systems are
network-based due to their centralized design, which provides the network operator
complete control of the location service, as well as their support for older devices. After
an extensive literature review, no relevant 3D positioning works have been identified
utilizing 2G–4G cellular technology. This is mainly due to the fact that at the time that
these technologies were developed the need for 3D positioning was not as high as it is
now. Therefore, the majority of existing systems using cellular technology are 5G-based.
Ref. [94] suggested a 3D positioning method in a simulated indoor 5G ultra-dense network.
The paper suggests a 3D dynamic reconstruction fingerprint matching technique, with the
first step being to rebuild the entire fingerprint matrix from partial data. The sub-optimal
service base stations are then removed from the dataset to simplify the fingerprint data.
Finally, the 3D coordinates are estimated using the k-nearest neighbor matching approach.
Positioning errors are assessed at various Signal-to-Noise Ratio (SNR) levels. The mean
error is 0.31 m at SNR = 2 dB and 0.16 m at SNR = 20 dB. Ref. [95] focused their research on
positioning a single cell (base station) equipped with a wideband 5G signal and a vector
antenna (VA). This technique avoids the problems of multi-cell systems, such as base station
synchronization and greater deployment costs due to system complexity. They employed
statistics-based expectation maximization and the subspace-spaced technique to estimate
position. The results which were obtained using sounding reference signals in a line of
sight scenario demonstrate that VA is capable of providing 3D positioning with sub-meter
accuracy in 5G networks without the need for numerous cells or antennas. The researchers
in [96] discuss various ways of utilizing space detection to achieve more accurate and
precise results for indoor localization. The designed and developed 5G simulation as well
as the 5G-based particle filter fusion resulted in a reliable localization performance. For
this, two approaches were proposed, the first one being the map data out of computer-
aided design (CAD) plans and the second the accuracy clarification of the positioning
technique performance followed by a simple 5G-based PF which uses map information
and geospatial analysis, smartphone sensor values and 5G simulation as input to provide a
3D trajectory for a long term robust performance in both online and offline environments.
The results of this investigation show that map and routing graph preparation can be
carried out efficiently, which ensures the accuracy and precision of indoor localization.
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The approaches in map generation, simulation and localization were developed using
available data sources as well as common algorithms with new usages in the 5G-based
fusion domain. Moreover, a novel interpretation in accuracy and precision analyses has
been discussed and tested with the simulated 5G measurements, based on the desired
3GPP standards. For a complex building design, errors below 3 m can be considered as the
target accuracy of the 5G campus network. In the 4G era, cellular positioning was used for
emergency services and services associated with lawful interception. Commercial use cases
have gained significant interest concerning 5G and use cases such as factory automation,
transportation and logistics are included in 5G alongside regulatory use cases. Positioning
and location services are expected to be a critical components of the system requested by
most commercial applications, such as AR/VR/XR, gaming, sensing, low-cost tracking
and new industrial applications requiring exceptionally high precision as we move closer
to 6G. This could also be enhanced by fusing with artificial intelligence powered mobile
networks as suggested in [97]. As a result, location accuracy and latency requirements are
expected to tighten even more with 5G [98]. The fifth generation (5G) new radio (NR) had
a successful worldwide release in 2020. After a few years, the majority of the world has
already adapted to this new communication standard and there is now a need to aim for
new potential technologies while finding substantial use cases for the next generation of
wireless systems, termed 6G communication systems. Wireless networks are frequently
praised only for their communication capabilities, while their inherent positioning and
sensing benefits are disregarded. In this sense, the 5G NR access interface, with its high
carrier frequency, large bandwidth and massive antenna array, provides excellent prospects
for precise localization and sensing systems. Furthermore, 6G systems will accelerate the
transition to even higher frequency operation, such as millimeter wave (mmWave) and THz
ranges, as well as significantly wider bandwidths. Furthermore, the THz frequency range
provides several opportunities, including not just precise localization but also high-quality
imaging and frequency spectroscopy [17]. In the 5G evolution to 6G, connectivity remains
one of the most significant enablers of new services, but monetization of private networks
requires more than simply a wireless connection. Beyond connectivity, for example, in
industrial automation, high-accuracy positioning and sensing must be smoothly integrated
into a single communication system [99]. 6G systems built for communication, sensing and
location will enable new applications while improving traditional connectivity [98,100].
Future trends in wireless communication indicate that 6G radios are likely to use signals at
the mmWave range and have channel bandwidths which are at least five times wider than
5G. From a localization and sensing perspective this has multiple benefits: (1) there is a
more direct relation between the propagation paths and the environment as the signals on
these frequencies do not typically penetrate walls; (2) the very fine time resolution of the
power delay in these wide channels facilitates the resolvability of multi-path components
and especially the LoS ones to more accurately estimate ranges; (3) smaller wavelengths
that mean smaller antennas, especially phased array antennas that facilitate the good
estimation of azimuth and elevation angles and hence enable accurate 3D positioning [17].
In addition to these, the high frequencies to be used in 6G systems open up a new potential
in terms of sensing and imaging based on the radar-like technology that arises. The fact that
multi-path components are highly resolvable in terms of time, angle and Doppler in the
the power delay profile or impulse response enables the acquisition of spatial knowledge
about the physical environment (known as imaging). The availability of this environment
spatial information will better facilitate the use of Simultaneous Localization and Mapping
(SLAM) approaches.

4.4. Ultra-Wideband

Ultra-wideband (UWB) is a short-range wireless technology which uses much wider
bandwidths compared to the narrow-band transmissions typically used in Wi-Fi systems.
UWB systems typically use frequencies ranging from 3.1 to 10.6 GHz but the bandwidth
needs to be at least 20% of the central frequency. In addition, instead of measuring the
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signal strengths (RSS), the positioning is achieved by using the transit time methodology
(ToA). The advantage of UWB technology compared to other Radio Access Technologies
is that it offers “spatial awareness” since the wide bandwidth allows for better resolution
in the time domain allowing for more accurate time and thereafter distance estimates to
be measured. The localization accuracy could reach a centimeter level of approximately
10–30 cm, in comparison to GPS (1–3 m) or Wi-Fi (2–10 m) [101]. However, the issue with
using UWB is that it is extremely short-ranged and requires a direct line of sight between
receiver and transmitter due to high losses experienced when signals propagate through
obstructions. This requires a greater number of transmitters within an indoor environment,
which subsequently increases the cost. Even though it is not as widespread or cost-efficient
as other RATs, utilizing the “spatial awareness” of this technology and especially combining
it with the cooperative positioning approach, makes UWB a technology to consider in the
future. The world’s largest smartphone manufacturers, such as Apple, Samsung and
Huawei, are all currently capitalizing on the UWB projects, specifically the manufacturing
of the chips and antennas. However, Apple is the first to actually deploy it in a phone, with
the others expecting to shortly follow.

In recent years, UWB technology has received a lot of interest for indoor positioning.
Several systems have already been implemented commercially, while many others are
being utilized as experimental testbeds such as those provided by Decawave and Bespoon
companies. These systems have been thoroughly researched and validated for specific
purposes. Other activities have focused on modelling the LOS and NLOS circumstances
in order to develop NLOS identification metrics that will allow some NLOS mitigation
methods to be implemented. The NLOS problem, which is the primary source of inaccuracy
in UWB range and positioning, is still an open research topic [70].

Ref. [102] proposes a UWB positioning system which utilizes two way time of flight
(TWTF) to compute range measurements. These readings are employed in the multilater-
ation approach to determine the trans-receiver location (TAG). The authors of this paper
state that this type of system has the advantage of providing high accuracy positioning
(about 10 cm from the state of the art), as well as low power consumption, high multipath
resolution, high data rate and other benefits. The system’s testing has statically analyzed
the system’s positioning and range capabilities in an indoor office environment. The test
yielded an average 3D accuracy of 100 ± 25 mm.

The authors in [103] propose a 3D ToA positioning algorithm while utilizing the UWB
technology. The main idea of the proposed algorithm is to replace the quadratic term in
the positioning estimation with a new variable and the usage of the weighted least squares
linear estimation followed by the combination with Kalman filter to reduce the interference
error in the transmission process. The simulation results show that the positioning accuracy
can reach about 5–10 cm.

Another example is proposed in [104], where a high resolution UWB positioning radar
system based on TDoA was developed. The UWB radar system provides millimeter accu-
racy in dense multipath indoor environments for 1D, 2D and 3D localization. The system is
fully compliant with the FCC UWB regulations and utilizes time domain measurements to
suppress both multipath signals and NLOS errors and has a potential for even sub-mm
accuracy. Specifically, a 3 mm maximum error was achieved for the x, y dimensions with a
7 mm maximum error in the z-dimension.

The authors in [105] present a novel approach to a self-localizing anchor-system
calibration that uses a calibration unit (CU) for improved localization accuracy. This study
confirmed that the use of the CU decreases the average positional error of the anchors in 3D
UWB localization systems. In addition, the simulations were confirmed to be a valid tool
for determining the best position of the CU. Finally, the first demonstration of an anchor
calibration with a CU and anchors localized in the working coordinate system in 3D was
presented. It had an error of 0.32 m.

Mobile laser scanning (MLS) has been widely used in 3D city modelling data collection,
such as Google cars for Google Map/Earth. Building Information Modelling (BIM) has
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recently emerged and become prominent. Three-dimensional models of buildings are
essential for BIM. Static laser scanning is usually used to generate 3D models for BIM,
but this method is inefficient if a building is very large or it has many turns and narrow
corridors. Therefore, the researchers in [106] propose using MLS for BIM 3D data collection.
The positions and attitudes of the mobile laser scanner are important for the correct geo-
referencing of the 3D models. This paper proposes using three high-precision ultra-wide
band (UWB) tags to determine the positions and attitudes of the mobile laser scanner. The
accuracy of UWB-based MLS 3D models is assessed by comparing the coordinates of target
points, as measured by static laser scanning and a total station survey. The UWB system
can achieve centimeter positioning accuracy on the horizontal plane (around 8 cm), but
decimeter accuracy in height (around 19 cm).

4.5. mmWave

Millimeter-wave (mmWave) technology is defining a new era in wireless communica-
tion by providing very wide bandwidths. This technology is currently used in some Wi-Fi
systems (e.g., IEEE802.11ad) and is planned to be used in 5G communications in the near
future as it offers much more flexibility to use wider bandwidths and hence have the strong
potential to achieve much higher data rates and capacity. mmWave communication systems
typically operate in the frequency range between 30 and 300 GHz. The first standardized
consumer radios were in the 60 GHz unlicensed band, i.e., 57–64 GHz, where 2 GHz signal
bandwidth is typical in applications. The very large availability of bandwidth, together
with the use of massive phase array antennas that allow the estimation of the phase can be
used for achieving cm-level accuracy or better [18]. Additionally, mmWave systems have
higher transmit power allowance compared to UWB systems which compensates partly
the high path losses that are typically experienced on those very high frequencies. Another
way to alleviate those loss is by using beamforming. Directional beamforming is a chal-
lenging task as it requires good knowledge of the propagating channel and also imposes
an extra difficulty and challenge in mmWave-based positioning as the exact orientation
(azimuth, elevation) angle of the user equipment (UE) should be well known. In [19], the
authors derived theoretically the Cramér–Rao bound (CRB) on position and rotation angle
estimation uncertainty from mm-wave signals from a single transmitter, in the presence of
scatterers. They demonstrated that in open Line of Sight (LoS) conditions, it is possible to
estimate the target’s position and orientation angle by exploiting the information coming
from the multipath, though with a significant performance penalty. Moreover, the authors
of [20] demonstrated the benefits of array antennas towards identifying the orientation of
the device. Finally, due to this high sensitivity of the mmWave technology, positioning
accuracy seems to be strongly correlated with the distance away from the target to be
positioned. For instance, the authors of [23] conducted AoA and signal measurements
in a 35 m by 65.5 m open space and achieved a position accuracy ranging from 16 cm to
3.25 m. Positioning research using this mmWave technology is still in very early stages but
early theoretical findings and some practical experiments demonstrate its strong potential
to achieve the very high accuracy required by modern smart applications. The authors
in [107] propose a multipath-assisted localization (MAL) model based on millimeter-wave
radar to achieve the localization of indoor electronic devices. The model fully considers
the help of the multipath effect when describing the characteristics of the reflected signal
and precisely locates the target position by using the MAL area formed by the reflected
signal. At the same time, for the situation where the radar in the traditional Single-Input
Single-Output (SISO) mode cannot obtain the 3D spatial position information of the target,
the advantage of the MAL model is that the 3D information of the target can be obtained
after the mining process of the multipath effect. Experiments show that the proposed
MAL model enables the millimeter-wave multipath positioning model to achieve a 3D
positioning error within 15 cm. A virtualized indoor office scenario with only one mmWave
base station (BS) is considered in [108]. User equipment (UE) motion feature, mmWave line
of sight (LoS) and first order reflection paths’ AoA-ToA are fused for indoor positioning.
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Firstly, an improved least mean square (LMS) algorithm that combines motion message
is proposed to refine the multi-path AoA estimation. Furthermore, a modified multi-path
unscented Kalman filter (UKF) is proposed to track UE’s position in the scenario. The
information exchanges of the two stages not only consists of estimates (position, AoA) but
also variance of position. Based on the simulation results, the proposed methods provide
two times LoS-AoA estimation gains and centimeter 3D positioning accuracy, respectively,
of around 60 cm. In addition, this strategy is capable of positioning task with insufficient
anchor nodes (ANs).

4.6. Visible Light

Indoor localization based on visible light communication (VLC) has gained a lot of
attention in recent years. One of its main advantages is its ability to provide high-accuracy
positioning by utilizing the ubiquitous LED lights found in modern buildings without the
need for any additional specialized infrastructure for location services [68]. According
to the optical receiver in use, VLC-based positioning methods in the literature may be
divided into two types, camera-based [109] and photodiode-based [110]. Camera-based
solutions in particular have proven popular with both academics and industry, for example,
because of the high positioning precision achieved by imaging geometry and the strong
interoperability of user devices. On a standard smartphone with a front-facing camera,
state-of-the-art commercial solutions may provide centimeter-level precision. Despite
already existing systems’ promising performance, there are still several practical challenges
to be solved [68].

A large majority of VLP solutions rely on multilateration or triangulation to obtain
location estimations. However, because of the physical field-of-view limits of both the
luminaire (transmitter) and photodiode (receiver) in 3D, performance qualifications of
these approaches in 3D positioning are limited and often unattainable. The limitations of
FOV have an influence on line of sight (LOS) access to luminaires, which is problematic
when several luminaires are required for positioning. Recently, several researchers have
been trying to enhance lighting with other peripherals such as more PDs, a steerable laser
and even a rotating receiver to eliminate the requirement to position with more than one
luminaire while still enabling 3D positioning in the most recent literature. These additional
peripherals improve positioning accuracy, especially if they have angular diversity. The
developers in [111] introduce the notion of Ray-Surface Positioning (RSP). This method
combines angular information from a steerable beam with range information obtained
from an isointense envelope measured at a receiver. The first implementation of RSP is
discussed to test theoretical and simulated predictions on 3D positioning accuracy and was
averaged at around 30 cm.

The authors of [112] describe an RSS-based VLP as a “possible competitor” to UWB-
positioning. The paper also describes some approaches already developed by other re-
searchers; for example, in [113], a three-dimensional VLP approach is proposed which is
based on Artificial Neural Networks (ANN) utilizing the hybrid between phase PDoA and
RSS approach. The approach is believed to minimize the distortions caused by inaccurate
modeling as well as improve the overall robustness of conventional VLP systems. In [114],
an LED-based 3D IPS is proposed which is aimed at both lighting and communications.
The system is based on experimentally measured RSS with less than 3 cm of error. Another
efficient 3D VLP algorithm is [115], with the intention of utilizing it for drone navigation.
The receiver module did not require any extra height sensors; therefore, a four-LED ar-
rangement was studied. However, simulations revealed that a traditional design of four
Light Emitting Diodes (LEDs) arranged in a square form is incapable of solving the 3D
position properly achieving accuracy of around 50 cm.

4.7. Sound-Based Technologies

A sound is a mechanical wave-like vibration that propagates or travels across any
medium. The medium through which the waves propagate or travel can be either solid,
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liquid or gas. A sound wave is also the pattern of disturbances caused by the movement
of energy away from the source of the sound. Sound waves are sometimes known as
longitudinal waves which means the propagation of particle vibration is somewhat parallel
to the propagation of energy waves [116]. A source is necessary for the generation of sound.
A speaker is an example of a sound source as its diaphragm is able to vibrate in order
to produce sound. When a sound source vibrates, the particles in the medium around
it vibrate as well. As the medium continues to vibrate because of the vibrating particles,
the vibrating particles travel further away from the source of sound. The propagation of
vibrating particles away from the source occurs at the speed of sound, therefore creating a
sound wave [117].

Sound signals, which are pressure waves moving in the air, benefit from the fact that
sound travels at a significantly slower pace than electromagnetic signals, making it much
easier to measure the time between signal generation and arrival. Because the radio signal
arrives at the sensor almost instantly and the sound signal arrives later, the difference
between these two times can be used to calculate distance [118].

4.7.1. Ultrasound

Ultrasonic sounds have a high frequency that cannot be heard or identified by the
human ear, greater than 20KHz. Humans are unable to hear or recognize ultrasonic sounds
nor can they generate them. Ultrasonic systems have generally been recognized as a
captivating technology for indoor applications, due to some of its advantages such as
low power consumption, adequate centimeter level accuracy under line of sight (LoS)
conditions and even low cost, especially when considering the hardware devices and
equipment required for practical real-time implementations [2,119]. Some 3D ultrasonic
positioning systems have previously been created utilizing two major approaches: emitters
are fixed in place while receivers move in the environment and vice versa. In most cases, a
trilateration method is used to estimate the positions of the receivers, which is often based
on the determination of time differences of arrival (TDoA), times of arrival (ToA), angle
of arrival (AoA) or even hybrid techniques, to measure the distances between emitters
and receivers. Some examples of existing ultrasonic-based localization systems based on
trilateration include Active Bat, Cricket, Dolphin and Millibots [120].

Active Bat [121] and Cricket [122] are two of the most well known systems that utilize
ultrasonic signals. The architecture of Active Bat requires mobile users to wear ultrasonic
tags. Ceiling-mounted ultrasound receivers pick up the signal from the tag and send
it to a central server. Active Bat employs ultrasonic time-of-flight lateration, in which
the user delivers both an ultrasound and a radio signal and the system computes the
difference in arrival times between the two signals to establish the user’s position. Cricket
improves Active Bat by narrowing the time frame in which arriving signals are processed by
employing radio signal arrival time. Dolphin is another distributed ultrasonic positioning
system. Only a few nodes’ locations are known in Dolphin, while the rest of the nodes can
infer their own locations based on the locations of reference nodes [123].

The researchers in [124] describe a 3D positioning system that uses broadband ultra-
sonic chirp pulses to acquire high-precision distance measurements. The higher bandwidth
solves most of the difficulties associated with narrowband signals often employed with
conventional piezo-ultrasonic transducers (typically with a bandwidth of 2 KHz), such
as poor resolution, low ambient noise immunity, limited range and low robustness to the
Doppler effect. A set of experiments were performed to evaluate the proposed system. Very
stable 3D position estimates were obtained (absolute standard deviation less than 2.3 cm)
and a position refresh rate of 350 ms was achieved.

Ultrasonic advantages include high accuracy at close range distances. The disadvan-
tage is that they are highly prone to NLOS propagation and multipath effects.
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4.7.2. Audible Sound

The human ear can effortlessly identify or sense frequencies ranging from 20 Hz to
20 kHz. As a result, sound waves with frequencies ranging from 20 Hz to 20 kHz are
referred to as audible sounds. Human ears are sensitive to every minute pressure difference
occurring in the air if it lies in the audible frequency ranges. They can detect pressure
fluctuations as small as one billionth of atmospheric pressure [116].

It is also feasible to encode information for positioning systems using audible sound
signals. Obviously, the simple concept of just generating an artificial audible sound has
too many problems, the most significant of which is that it would irritate persons nearby.
However, there are more complex systems to solve this issue, which works by watermarking
an already available sound, like music in malls and other public locations in a way that the
human ear cannot detect [118].

Table 6. Comparison of 3D Indoor Positioning Technologies.

Technology Approach Advantages Disadvantages Accuracy Ref.

Wi-Fi

-RSS FP
-CSI FP
-RTT
-FP + Barometer
-FTM

-Simple to set up and use
-Low cost as it does not require
additional hardware

-Suffers from poor accuracy in
NLOS conditions
-Low accuracy when compared to
other technologies

2.90 m
0.97 m
1.15 m
1.20 m
0.5–1.5 m

[36]
[51]
[90]
[91]
[52]

Bluetooth -GLS + Barometer

-Easy to set up
-Easy to operate
-Inexpensive
-Low energy consumption

-Difficult to calibrate each BLE
beacon
-Need extra hardware, medium
accuracy
-Prone to radio interference

1.97 m [93]

Cellular
-FP
-ToA/AoA
-PDR

-Can be implemented with existing
hardware in smart devices
-No interference with other devices
which operate at same frequency

-Low reliability due to varying
signal propagation conditions
-Requires synchronized base
stations

0.16 m
1 m
3 m

[94]
[95]

[96]

Magnetic Field -FP

-Cost- and energy-efficient while
maintaining similar precision
-Relies on built-in EMF sensors on
smartphones without the need for
additional equipment

-MF anomalies can only affect
specific types of environments 0.5–1.5 m [52]

UWB

-TWTF
-ToA
-TDoA
-TOF

-High accuracy positioning even in the
presence of severe multipath
-Does not interfere with existing RF
systems

-Need extra hardware
-Expensive compared to other
technologies

0.1 m
0.05–0.1 m
0.07 m
0.32 m

[102]
[103]

[104]

[105]

mmWave -ToA/AoA
-Higher transmission rate
-Large bandwidth
-Low interference

-More expensive
-Compatibility issue, not all
devices are able to support
mmWave
-Higher power consumption

0.15 m
0.6 m

[108]
[111]

VLC
-RSP
-PDOA/RSS
-Trilateration

-Not affected due to EM radiations from
RF systems
-Easy to install
-Performs well in LOS conditions

-Performs poor in NLOS
conditions
-Has interference issues from other
ambient light sources
-Short range

0.3 m
0.03 m
0.5 m

[111]
[113]

[115]

Ultrasound -High accuracy at close range distances

-Highly prone to NLOS
propagation and multipath effects
-Receiver and transmitter need to
see each other directly

0.02 m [53]

Audible
-Widely supported
-Works well in a wide variety of
environments

-Can be heard by humans
-Position is computed only when
the user requests it
-Performs poorly in NLOS
conditions

0.6 m [123]
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Ultrasound systems, because of their reliance on technologies, require the user to
acquire additional hardware such as badges or tags. As a result, many positioning ap-
proaches have been suggested by researchers that utilize the hardware already present in
the users’ smart devices, such as audible sound positioning systems like Beep [123]. Beep
is a 3D localization system that uses audible sound for positioning. Existing devices (cell
phones, PDAs, PCs, etc.) support audible sound, making it the foundation for a low-cost
and widespread location system. Audible sound removes the requirement of additional
user infrastructure. Beep provides on-demand positioning, which means that position
is computed only when the user requests it, which saves power by avoiding continual
communication between the user’s device and the sensors. The testing results show that in
more than 97% of cases, the measured location is accurate to within 0.6 m.

Table 7. Comparison of 3D Indoor Positioning Technology Attributes.

Technology Reception Range Availability Energy Efficiency Cost Scalability Ref.

Wi-Fi 45 m High Low Low High

[2,81,118]

Bluetooth 100 m High High Low Low
Cellular 1 km High Low Low High

Magnetic Field ∼ High High Low Medium
UWB 10–20 m Medium Low High Medium

mmWave 10–20 m Low Low High Medium
VLC 1.4 km Low Low Medium High

Ultrasound 20 m Low Medium High High
Audible 2 m High Medium Medium High

5. Critical Discussion and Conclusions

This paper reviews and discusses the current state of the art on 3D indoor positioning.
This review includes the different techniques/approaches and technologies which can be
used and/or combined to achieve the high 3D accuracy requirements of modern smart
applications while maintaining cost efficiency. Table 1 showcases the various technologies
that have been utilized for 3D indoor positioning, indicating their potential advantages and
disadvantages. For instance, Wi-Fi, a technology that has been extensively utilized by either
adopting fingerprinting approaches (RSS, CSI or FTM-based) as well as various geometric
approaches is considered a technology that can be fairly easy to set up at a relatively low
cost; however, it demonstrates poor accuracy in NLOS conditions compared to technologies
like UWB and mmWave. Likewise, Bluetooth, given its simplicity and inexpensiveness, is
similar to Wi-Fi; however, it is prone to radio interference; therefore, it is typically linked
with low positioning accuracy. VLC and Ultrasound, despite the fact that they demonstrate
relatively good accuracy compared to other technologies, are both extremely short-ranged
and applicable only in line of sight situations. Moreover, audible sound, considering the
fact that it is widely supported in various types of environments and able to achieve sub-
meter level accuracy, cannot be utilized in common positioning scenarios mainly due to
the disturbing noise it causes. Finally, UWB and mmWave technologies demonstrate the
most promising results compared to other technologies, reaching centimeter-level accuracy
even in multipath scenarios and are relatively insensitive to interference. Nevertheless,
their main disadvantage is the fact that as of today there is a lack of supporting devices
(mostly mmWave), making them a relatively expensive or infeasible option. However,
the global technology evolution trend demonstrates that this is likely to change in the
near future. In terms of approaches, the geometric ones which use angular (AoA) or
timing information (ToA, TDoA) and base their principle of operation on the utilization
of signals collected by a receiver from a dispersed collection of transmitters constitute a
fundamental and relatively accurate way of estimating 3D position. Positioning accuracy
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obviously relies on the accuracy of the measured distances or angles and this accuracy seems
to be strongly correlated with the underlying technology used. For instance, UWB and
mmWave technologies demonstrate a high accuracy in estimating distance (based on timing
measurements), while the introduction of phased arrays in these modern system facilitates
the accurate estimation of angular information. The number of dispersed nodes also plays
an important role in 3D localization estimation. The greater the number of transmitters,
the higher the accuracy; however, this imposes an additional financial, implementation
and administrative cost when implementing such systems, especially in more complex and
crowded areas, as well as considering scenarios where objects or people are continually
moving. Nevertheless, the rapid evolution of the Internet of Things and the availability of
many moving nodes facilitate the 3D localization process especially by using sensor fusion,
filtering or even cooperative positioning strategies. Cooperative positioning appears to be
a promising solution, as the devices within space are interconnected and can determine
location relative to one another. Fingerprinting also constitutes a candidate approach for 3D
positioning typically complemented or combined with other approaches or technologies
(e.g., barometers) to calculate the z-dimension or improve the accuracy (by using filtering).
The problem is that the data collection process is typically extremely laborious and extra
challenges emerge when dynamism appears in the environment either when people are
moving around or when geometric or morphological changes happen to the environment
itself or even when users use different devices and hold them in various different ways. The
literature reports that magnetic field-based positioning could be less laborious; however, it
only works in specific types of indoor environments.
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Abstract: The groundbreaking transformations triggered by the Industry 4.0 paradigm have dramati-
cally reshaped the requirements for control and communication systems within the factory systems
of the future. The aforementioned technological revolution strongly affects industrial smart and
distributed measurement systems as well, pointing to ever more integrated and intelligent equipment
devoted to derive accurate measurements. Moreover, as factory automation uses ever wider and
complex smart distributed measurement systems, the well-known Internet of Things (IoT) paradigm
finds its viability also in the industrial context, namely Industrial IoT (IIoT). In this context, commu-
nication networks and protocols play a key role, directly impacting on the measurement accuracy,
causality, reliability and safety. The requirements coming both from Industry 4.0 and the IIoT, such as
the coexistence of time-sensitive and best effort traffic, the need for enhanced horizontal and vertical
integration, and interoperability between Information Technology (IT) and Operational Technology
(OT), fostered the development of enhanced communication subsystems. Indeed, established tech-
nologies, such as Ethernet and Wi-Fi, widespread in the consumer and office fields, are intrinsically
non-deterministic and unable to support critical traffic. In the last years, the IEEE 802.1 Working
Group defined an extensive set of standards, comprehensively known as Time Sensitive Networking
(TSN), aiming at reshaping the Ethernet standard to support for time-, mission- and safety-critical
traffic. In this paper, a comprehensive overview of the TSN Working Group standardization activity is
provided, while contextualizing TSN within the complex existing industrial technological panorama,
particularly focusing on industrial distributed measurement systems. In particular, this paper has
to be considered a technical review of the most important features of TSN, while underlining its
applicability to the measurement field. Furthermore, the adoption of TSN within the Wi-Fi technology
is addressed in the last part of the survey, since wireless communication represents an appealing
opportunity in the industrial measurement context. In this respect, a test case is presented, to point
out the need for wirelessly connected sensors networks. In particular, by reviewing some literature
contributions it has been possible to show how wireless technologies offer the flexibility necessary to
support advanced mobile IIoT applications.

Keywords: TSN; Industry 4.0; smart distributed measurement systems; IIoT; IoT; Ethernet; Wi-Fi

1. Introduction

The need to communicate information has driven human activities over the years,
adapting to and impacting on the technological and economical growth of the society.
Notably, the communication of data between sensors, controllers and actuators becomes
of critical importance, thus impacting on the measurement accuracy and the possibility
to stably control an industrial process. Moreover, the novel smart factory requires ever
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integrated measurement systems, able to communicate data from and to the field with
the management areas of the industrial plant. Nowadays, the Time Sensitive Networking
(TSN) project is capturing much research interest as a promising set of standards, able
to cope with strict requirements coming from different application areas. Although this
paper focuses on industrial measurement networks, in fact, TSN is the outcome of the
interweaving in the recent history of the industrial field and the consumer one. This is the
reason why a brief dive into the past is needed, to better understand the importance and
the power of TSN.

The year was 1999 when the term Internet of Things (IoT) was coined, by Kevin Ashton,
during a famous presentation [1]. Objects have always been fundamental, as they allow
people to interface with (and even to modify) the physical world, but in the IoT context,
they acquire the capability to use some of the five functional senses through a specific sensor
network [2]. In this context, objects acquire computational and communication capabilities,
all being interconnected, thus allowing access to information and data anywhere and at any
time [3]. Additionally, the famous “click” is becoming obsolete: it is possible to directly “ask”
your house to close the shutters or to turn off the light. This smart approach has enormous
advantages in various application fields, for example, smart buildings [4], smart cities [5],
e-health [6], transportation [7] and even smart farming [8]. Moreover, using IoT to develop
smart and distributed Industrial measurement systems brings several advantages, thus
giving the possibility to take continuous, thorough and real time measurements on wide
areas [9]. In this context, the development of smart, distributed and IoT-based measurement
systems definitely foresees the design of high-performing and real time communication
networks, able to accurately transfer sensor and control data. Indeed, the transmission delay
uncertainty of measurement data between several sensors placed in a wide and challenging
industrial area, has an impact on the measurement quality. Furthermore, during last
years, thanks to the advanced technologies derived from the IoT and Cyber Physical
Systems (CPSs) [10], the Industry 4.0 plan mandates the integration of these networks,
comprising accurate measurement systems and smart actuators, within the whole industrial
system. At present, the usage of IoT technologies to develop smart industrial systems,
namely Industrial Internet of Things (IIoT) [3], acquires a fundamental importance. Indeed,
integration must be guaranteed both horizontally and vertically, respectively, within the same
level and between levels of the automation pyramid. An effective way to provide vertical
integration is the usage of the OPC-UA (Unified Architecture) protocol [11], developed in
2008 by the Open Platform Communications Foundation. In this context, measurement
systems may also communicate with higher levels of the automation pyramid and even
exchange data between different plants, paving the way for a fully integrated smart factory.
The rise of attention towards Industry 4.0 and IIoT made them evolving into strategic
technologies, and a considerable pressure towards effective implementations comes from
diverse scenarios [12–17]. Moreover, suitable communication and computation technologies
devoted to measurement activities are needed, to guarantee specific accuracy levels. In this
context, reasonably, the industrial network must handle not only an increased amount of
measurement traffic in a deterministic way, but also the coexistence of time-critical and
normal data exchange [9,18–21]. Indeed, in time-critical applications, the concept of time
assumes a greater importance and a more refined meaning, and the best effort behavior
is no longer sufficient. The communication network has to guarantee bounded latency
and jitter, as well as a real-time behavior, defined as the ability to deliver the useful data
before a specified instant of time, namely the deadline. From a metrological perspective,
measurement data must be sent before a specific deadline, while managing also best-
effort traffic, like network configuration, and higher priority traffic like alarms. Moreover,
handling time-critical and accurate measurements is of fundamental importance not only
to provide enough stability to the controlled system, but also to handle safety-critical
applications. Safety operation of an industrial system is unavoidable due to the strict
interaction between humans and machines, thus underlining the need for deterministic
and accurate measurement systems devoted to safety [22,23].
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Currently, industrial communication systems are based on several established tech-
nologies, namely Fieldbuses and Real Time Ethernet (RTE) networks. However, novel
approaches had to be pursued to accomplish the crucial requirements of the foreseen ad-
vanced applications, with strict time-criticality being one of them, along with high reliability,
fault tolerance, and security. Furthermore, there are additional issues to consider, such as
dense networks, sensors-to-cloud data exchange, seamless reconfiguration, support for a
big data approach and convergence [24,25]. This requires a strict and seamless coexistence
of IT and OT, that is, of best efforts and deterministic/time-critical data and protocols to
the field level devices.

This new set of requirements poses several challenges that may be difficult to address,
even by the best performing industrial communication systems, such as RTE networks.
This has driven the interest of the industrial community towards a complete redesign
of the whole architecture of the communication system. An important opportunity in
this direction has been represented by the IEEE 802.1 Time-Sensitive Networking (TSN)
standardization activity, which is currently recognized as the future de facto standard for
industrial communications, as it will be better explained in the next paragraphs [26,27].

This review paper aims to provide a comprehensive analysis of the state-of-the art
on TSN, providing appropriate bibliographic references to allow the reader to go in deep
with the specific topics. Indeed, the TSN standardization project comprises many stan-
dards, and this survey can become a compass to, hopefully, guide the reader into the TSN
world. Moreover, the applicability of TSN to the Instrumentation and Measurement field
is analyzed, by demonstrating the impact and benefits of deterministic communication
in the measurement uncertainty. In detail, the paper is organized as follows. Section 2
collocates TSN in the context of the scientific literature and provides the motivations to
address the adoption of TSN in both the Industrial Automation and Instrumentation and
Measurement fields. Section 3 provides an introduction of fieldbus and RTE technologies,
pointing out the limits of the established industrial panorama that stimulated the introduc-
tion of TSN. Section 4 presents the TSN family of standards. Section 5 briefly describes
the TSN Industrial Automation profile. Section 6 addresses the usage of TSN networks to
design smart measurement systems, possibly based on wireless communication. This is
achieved by the introduction of a meaningful test case, as well as by a discussion about the
implementation of TSN over Wi-Fi. Finally, Section 7 concludes the paper and provides
some future research directions.

2. Background and Motivation

The TSN project aims to provide all the features needed to handle time-critical traffic
in different scenarios, and this resulted in a set of protocols that can be properly adopted
and configured to design networks able to cope with the specific requirements for the
application at hand. Given the intrinsic potentialities and the disrupting changes in the
networking architecture the project introduced, the research interest towards the TSN
development has been steadily growing in the last years, as can be evinced from an analysis
of the recently published research articles in this field. To this regard, Figure 1 reports
at a glance the outcomes of such an analysis. In detail, Figure 1a on the left reports the
number of articles indexed by Scopus related to TSN topics over the last ten years, showing
a marked increase. The same plot also reports the number of published surveys and
reviews about TSN. Even more importantly, Figure 1b reports the percentages, among such
articles, of those published in journals and conferences belonging to either the Industrial
Automation or the Instrumentation and Measurement (I&M) fields. As it can be observed,
such percentages are rather low, and this has been also confirmed by a further analysis
relevant to the papers specifically concerned with the Industrial Automation Profile of TSN,
that will be discussed later in Section 5. As a matter of fact, the data in Figure 2 clearly
shows that the number of contributions concerned with the Industrial Automation profile
is still limited, revealing that such field of application of TSN, and the strictly related ones
like I&M, need to be further addressed.

465



Sensors 2022, 22, 1638

Moving from the above considerations, this paper investigates the adoption of TSN
in the industrial scenario focusing, in particular, on its possible usage to develop smart,
distributed and IoT based measurement systems.

(a)

Industry  

1%

2%

Others
94%

3%
I&M

 IEEE Access

(b)

Figure 1. An analysis of the recently published research articles in the field of TSN. (a) Number of
articles per year on Scopus. (b) Number of articles published on conferences or journals belonging to
the I&M and industrial fields on Scopus.

Figure 2. Number of articles per year on Scopus. Research key: IEEE/IEC 60802 in all the article fields.

Despite this, from the observations made above, it is important to underline that an
Industrial communication network needs to handle a variety of data flows, with different re-
quirements. This topic is even more critical considering the need for IoT smart measurement
systems [9], and wireless connectivity, as also underlined by the Physikalisch-Technische
Bundesanstalt (PTB) [28]. In this context, the measurements coming from sensors cover a
widespread importance, impacting on several data flows. In particular, on cyclic real-time
flows, alarms and events. In this context, sensors data need to guarantee certain levels of
measurement precision and accuracy, thus allowing suitable handling of critical situations
and/or stably controlling a process. Furthermore, in the harsh industrial environment, the
analysis of the impact of complex, distributed and IIoT measurement networks, even wire-
lessly connected, on the measurement accuracy is of fundamental importance. In particular,
there is the need for a precise analysis (by using also new measurement metrics) of the
impact of such new intelligent and smart systems on the measurement activity. This prob-
lem is even more critical if the measurement system uses Artificial Intelligence techniques,
or vision systems, the latter dramatically increasing the amount of time-critical data to send
and process. In this context, a significant example is the impact of the transmission delay on
the measurement process. Indeed, assuming that at a specific instant of time ts the sensor
sends a measure xs, the data will be received at an instant of time tr = ts + td, where td is a
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random variable describing the delay introduced by the communication network. For this
reason, the communication network has an impact on the measurement uncertainty, as the
real value of the measured variable is xr �= xs. From a measurement point of view, this issue
seems to present different simple solutions, especially if the td uncertainty can be neglected.
Indeed, considering only the measurement aspects, it is both possible to timestamp the
data coming from sensors or adjust the deterministic error after data reception. In this
context, the measurement error linearly increases with the network delay, as experimented
by the authors of [29]. Unfortunately, in an Industrial scenario, measurements need to
be used in real-time to control a process or handle critical situations, such as alarms or
sporadic events. In this context, several works focus on the possibility, from a control
perspective, to model and take into account the network delay in the control design stage.
For example, authors of [30] try to compensate both network delay and packet loss by
suitably designing the control stage. For example, the delay could be taken into account by
using a e−std term in the control model. In this context, the problem is that network delay
is not even deterministic, as in general, td follows a specific probability function. From a
measurement point of view, according to the ISO Guide to the Expression of Uncertainty in
Measurement (GUM) [31], it is possible to evaluate the uncertainty (type B) introduced by
the communication network delay td, as per Equation (1).

u(x) =
∣∣∣∣ δx(t, td)

δtd

∣∣∣∣ · u(td) (1)

where x is the signal received from the sensor, which depends on both t and td, and u(td)
is the uncertainty on the knowledge of td. From the latter observation, it is possible to
conclude that lowering u(td), by using a deterministic network, lowers the measurement
uncertainty. In particular, measurement data need to be handled with a certain priority,
given by the critical level of the specific operation, that in turn reflects on the measurement
uncertainty. It is worth observing that, practically, the calculation of δx(t,td)

δtd
can be approxi-

mated by evaluating the dynamics of the specific sensors employed, thus deriving the Δx
Δt

of the sensor. This is possible as x(t, td) = x(t− td), thus involving in
∣∣∣ δx(t,td)

δtd

∣∣∣ = ∣∣∣ δx(t,td)
δt

∣∣∣.
If the measurement system has been well designed, the sensor dynamics needs to be fast
enough to capture the measurand variations, thus being the latter approach a worst-case
analysis. In the next Section, the widespread used communication networks for industrial
applications are presented, underlining why they are not applicable to handle the require-
ments coming from the Industry 4.0 paradigm and to limit the measurement uncertainty.

3. The Long Journey from Fieldbus to the RTEs Technologies

The main important events that had an impact on today’s technological panorama are
presented in Figure 3.

In the early days of industrial automation systems, the need for data sharing among
different parts of a machine soon led to the design of dedicated communication systems,
targeted at the industrial scenario, universally known as fieldbuses [32]. First installations
of fieldbuses date back to the early 1970s, but the number of available solutions quickly
diverged, to such an extent that it was referred to as a “fieldbus war” [33], where several
manufacturers have proposed proprietary industrial communication protocols, often with
similar but completely non-interoperable functionality. To overcome this fragmentation,
many research energies were spent in standardization processes. the project was shelved
to develop a unique communication system, in 1999 the first version of the IEC 61158
international standard was released, which comprised several fieldbuses [34]. During the
years, the IEC 61158 standard became a huge project collecting a lot of different fieldbuses,
the majority of the total, for example Profibus, ControlNet, and Interbus (only to cite a few).

Significant limitations characterized these networks: low data rates, low number of
connected nodes, as well as significantly reduced interoperability capabilities. Indeed,
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the integration of heterogeneous technologies and the sharing of data among different solu-
tions were severely limited and internetworking capabilities were substantially absent [35].

t
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Figure 3. Main players involved in the fieldbus war.

With the subsequent proliferation of Ethernet technologies and the widespread avail-
ability of Internet connections, the automation world started to develop a new set of
Ethernet–based systems, using the IEEE 802.1/802.3 specifications for the lowest communi-
cation layers. However, unless strict traffic and access controls are implemented, legacy
Ethernet was unable to guarantee the required network latency, reliability and determinism.
This intrinsic lack of real-time capabilities gave rise to the development of several dedicated
(and proprietary) solutions, collectively referred to as real-time Ethernet (RTE), or Industrial
Ethernet, networks [36]. The IEC 61158 and IEC 61784 international standards gathered
several of them, e.g., PROFINET, Ethernet/IP, Modbus/TCP, and Ethernet POWERLINK,
to name a few. Unfortunately, again the number of available RTEs rapidly increased, im-
pairing interoperability, convergence, integration/implementation costs, and substantially
replicating the former fieldbus battle [37,38].

Several shortcomings led to this situation. Indeed, one of the major barriers to the real-
ization of a “one fits all” solution was that different standardization bodies were involved
in the design of a new RTE protocol, as well as consortia (e.g., Profibus, ODVA, etc.) has
been formed to protect relevant market shares and brands. This resulted in a widespread
adoption of RTE solutions in the last years, with a large industrial pervasiveness, but also in
different approaches to obtain the desired performance. Indeed, irrespective to the market
share, these consortia had no control over the standardization process of the underlying
Ethernet (IEEE 802.1/802.3) standard, and often an RTE solution has been obtained in-
troducing some protocol “hack” over the legacy Ethernet. Particularly, a well-accepted
classification of different RTEs systems follows the sketch in Figure 4, which identifies three
different RTE classes with respect to different real-time performance [39].
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Class 1 Class 2 Class 3

Ethernet infrastructure

Ethernet MAC

TCP/UDP
IP

BE RT

Applications

Ethernet infrastructure

Ethernet MAC

TCP/UDP
IP

BE

RT

Applications

Ethernet infrastructure
with RT properties

Scheduling/Priority

Ethernet MAC

TCP/UDP
IP

BE

RT

Applications

Scheduling/Priority

Figure 4. A widespread classification of RTE industrial networks.

For the aim to provide interoperation, several studies were made to connect different
fieldbuses to each others or with different technologies using specific hardware or middle-
ware protocol structure such as [40–43]. The latter one is also an example of a hybrid wired
and wireless network, being a mixed network, a key solution to develop smart measure-
ment systems. Nowadays, how to adapt the widespread used fieldbus and RTE systems
to the requirements of Industry 4.0 is still challenging. Several research activities have
been made in this direction [44,45]. Despite all this, the complex technological panorama
is so broad that the development of a plethora of “adapters” to interconnect different
fieldbus and RTE systems is practically infeasible. In this scenario, the development of new
systems to use the CPS architecture and enact the Industry 4.0 revolution is undoubtedly
required [46].

4. The Time Sensitive Networking Project

The Industry 4.0 paradigm highlights the need for increasingly standardized and
integrated networks [47]. In this context, Time Sensitive Networking (TSN) standards offer
a viable solution, pointing to the development of a novel smart factory paradigm. The idea
underlying the whole TSN project is to deeply modify the Ethernet standard at its roots
(by the development of a new Ethernet MAC layer and a new Ethernet infrastructure),
to introduce all those intrinsic mechanisms required to support a broad range of time-,
mission-, and safety-critical applications. Indeed, on the contrary, all the available RTE
networks build upon the legacy features of Ethernet, use protocol strategies (as a clever use
of Virtual LAN [VLAN] prioritization) or even out-of-standard data-link layers to introduce
real-time capabilities over a network support that is intrinsically non-real-time [48,49].

Nevertheless, the first efforts in the stated direction have been pursued by the con-
sumer electronics industry, and specifically for targeting the needs for deterministic Ether-
net connections for professional audio and video streaming. This pushed towards introduc-
ing the needed modifications directly within the IEEE related standards. For this reason,
in 2005 the Audio Video Bridging (AVB) Task Group (TG) was formed within the IEEE 802.1
standard committee. In parallel, the AVnu Alliance has been formed, an associated group of
manufacturers and vendors to support the compliance and marketing activities. The activi-
ties of the AVB TG allowed to strongly enhance the real-time capabilities of Ethernet with
four new IEEE standards: 802.1AS-2011, 802.1Qat-2010, 802.1Qav-2009 and 802.1BA-2011.
The new potentialities of Ethernet AVB were soon deemed suitable also for the industrial
scenario [50]. For this reason, it was rapidly evident that the AVB name was not appropriate
to cover all the potential use cases that the achievable performance attracted.

In 2012, AVB was renamed in TSN Task Group, a subgroup of IEEE 802.1 Working
Group [51]. The suitability of these set of standards to different fields of application, has led
to the definition of different profiles, that represent one of the most powerful characteristic
of TSN and have been presented in Section 5. The IEEE 802.1 defines Data Link Layer (DLL)
protocols, as can be noticed from Table 1.
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Table 1. IEEE 802.1 Contribution within IEEE 802.

ISO/OSI Layer IEEE 802 Standard

Data Link Layer

802.2 Logical Link Layer

802.1 Bridging

802.3 MAC 802.11 MAC

Physical 802.3 PHY 802.11 PHY

As it is possible to notice from Table 1, a network-specific Medium Access Control
(MAC) layer is located right under the 802.1 bridging layer. In this article, two different
LANs are considered: the IEEE 802.3 (Ethernet) and the IEEE 802.11 (Wi-Fi) one. TSN,
traditionally, aims to enhance the performances of the IEEE 802.3 networks, but could also
be applied to IEEE 802.11 networks, to reduce both delay and jitter [52]. The TSN over
Wi-Fi networks will be analyzed in Section 6.2. The TSN standardization project focuses
mainly on the IEEE 802.1Q (IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks) [53], with the development of several amendments to the standard.
Indeed, time-sensitive traffic in different scenarios may have different QoS requirements,
involving in the need of a set of configurable mechanism and protocols. Standards and
amendments within the TSN project [54] are listed in Table 2.

Table 2. The TSN standardization project.

Standard Description Reference

IEEE 802.1AB Station and Media Access Control Connectivity Discovery [55]
IEEE 802.1AS Timings & Syncronization [56]
IEEE 802.1AX Link Aggregation [57]
IEEE 802.1CB Frame Replication & Elimination [58]
IEEE 802.1CS Link Local Registration Protocol [59]

Ongoing Projects

IEEE P802.1CQ Multicast and Local Address Assignment [60]
IEEE P802.1DC Quality of Service Provision by Network Systems [61]

IEEE P802f YANG Data Model for EtherTypes (amending IEEE 802-2014 [62]) [63]
IEEE P802.1ABcu LLDP YANG Data Model (amending IEEE 802.1AB [55]) [64]
IEEE P802.1ABdh Support for Multiframe PDUs (amending IEEE 802.1AB [55]) [65]
IEEE P802.1ASdm Hot Standby (amending IEEE 802.1AS [56]) [66]
IEEE P802.1ASdn YANG Data Model (amending IEEE 802.1AS [56]) [67]
IEEE P802.1CBcv FRER YANG Data Model (amending IEEE 802.1CB [58]) [68]
IEEE P802.1CBdb FRER Extended Stream Identification Funs (amending IEEE 802.1CB [58]) [69]

Amendments to the IEEE 802.1Q standard

Amendment Description Reference

802.1Qat Stream Reservation Protocol (SRP) [70]
802.1Qav Credit based Shaper [71]
802.1Qaz Stream Resv. Pot. [72]
802.1Qbu Frame Preemption [73]
802.1Qbv Enhancements for Scheduled Traffic [74]
802.1Qca Path Control [75]
802.1Qcc TSN Configuration [76]
802.1Qch Cyclic Queuing [77]
802.1Qci Per–stream Filtering [78]
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Table 2. Cont.

Standard Description Reference

802.1Qcp Yang Data Model [79]
802.1Qcr Asynchronous Shaping [80]
802.1Qcx YANG Data Model for Connectivity Fault Management [81]

Ongoing Projects

P802.1Qcj Automatic Attachment to Provider Backbone Bridging (PBB) services [82]
P802.1Qcw YANG Data Models [83]
P802.1Qcz Congestion Isolation [84]
P802.1Qdd Resource Allocation Protocol [85]
P802.1Qdj Configuration Enhancements for Time-Sensitive Networking [86]

Amendments to the IEEE 802.3 standard

Amendment Description Reference

802.3br Interspersing Express Traffic [87]

In the Table, the IEEE 802.3br amendment to the IEEE 802.3 standard is also reported,
as the TSN preemption support requires a slight modification of the Ethernet standard.
Moreover, in Table 2 are listed, among the others, several 802.1 ongoing projects, thus
underlining that the TSN task group is still performing a ceaseless standardization activity.
For this reason, Table 2 has not been considered exhaustive and definitive. Moreover, it
is worth observing that this paper focuses on the most important standards for industrial
measurement applications, and does not address all the aforementioned standards. This
wide range of mechanisms and protocols offered by TSN, comprehensively aiming to
reduce frame loss, synchronize stations among each other, provide bounded latency and
high reliability [76], and need to be precisely configured in each bridge of the considered
network, to meet specific QoS requirements.

4.1. Network Architecture and Configuration

Smart and distributed measurement systems foresee to send measurement data from
a talker to several Listeners, through a proper network. IEEE 802.1Q [53] standard defines
the Bridged Network providing structures, protocols and services to connect different LANs
by means of bridges. Several unidirectional flows of frames called streams, are transferred
between end-stations, such that the role of “talker” and “listener” is assigned to an end-
station basing on the specific stream. Indeed, a specific end-station could be a talker for
the i-th stream and a listener for the j-th one. A network structure example is provided in
Figure 5.

In Figure 5, two data streams are considered, the red and the light blue one. It
is worth observing that End Station ES3 receives frames within the light blue stream
and transmit data by means of the red one, being, respectively, both a Listener and a
Talker. Furthermore, the standard comprises both MAC and VLAN bridges, the latter
one allowing, by means of meaningful tags, to logically split the whole network into
different Virtual LANs. This logical partition enhances the capability of the network,
giving the possibility to properly limit and filter the traffic between different VLANs
while allowing an unrestricted data flow within a specific VLAN. As TSN is composed
by several mechanisms to handle time-critical traffic, each bridge in the network must be
properly configured, basing on the Quality of Service (QoS) requirements of the specific
stream. The IEEE 802.1 Qcc amendment [76] (Otherwise noted, this document has to
be considered the reference for this section), in Clause 46, addresses the configuration
process of a Time-Sensitive Network. This amendment, by providing mechanisms to
specifically configure the TSN network, gives for the first time a vision of TSN as a well-
structured and defined network. Indeed, it may be of interest to observe that the acronym
“TSN” is introduced in IEEE 802.1Q by the Qcc amendment. Meaningful configuration
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information, containing requirements for a specific stream, are conveyed from talkers and
listeners (in this context generally referred as users of a stream) to the bridges forming the
network in charge of transmitting the frames within the stream. An interface, namely the
User/Network Interface (UNI), manages the transmission of configuration information
between users and network, introducing a certain degree of abstraction between the two
parts. This data exchange is bidirectional: the join or leave requests from users, respectively,
configuring and releasing communication resources for the stream, are followed by the
status responses from the network. There are different ways to manage the configuration
information, correspondingly to three different models: the fully distributed, centralized
network/distributed user and fully centralized ones. The first two methods foresee that the
talker and listeners convey configuration information to the network, in the first case
directly to the bridges, and in the second one through the nearest bridge, to a Centralized
Network Configuration (CNC) device. Conversely, in the fully centralized approach, a
Centralized User Configuration (CUC) entity establishes the time-sensitive requirements
based on user’s information, and communicates them to the CNC. A complete schematic
representing a fully centralized architecture is shown in Figure 5. As can be seen, using this
architecture, both talkers and listeners convey the stream’s management information to the
Centralized Unit CUC through the orange dashed lines (the purple and green dashed lines
must not be considered in the fully centralized architecture) and the CUC properly inform
the CNC. On the other hand, by removing all the orange elements, it allows us to obtain
the centralized network/distributed user model, where the user’s information is conveyed
to the CNC by means of the purple and green dashed lines. The CNC, where present,
properly manages the streams, scheduling frames in all the bridges of the network, basing
on the UNI information. Centralized configuration model allows to run computationally
complex configuration mechanisms in centralized entities rather than in all the bridges and
to handle single streams requirements with a comprehensive vision of the network and
the user’s requirements. The latter feature covers a fundamental importance considering
time-critical applications. The fully distributed model is obtained in Figure 5 removing
both the orange and green elements: the management information are conveyed by users
to the bridges placed at the network boundaries (purple dashed lines) and from there to
the whole network. Within the talker parameters set, besides identification, stream, data
frame and management information, the traffic parameter set contains QoS indications
such as the maximum allowed jitter (that has an impact on the needed synchronization
performances), latency and redundancy (that specifies the number of trees to generate for
the specific stream) to cite only a few.

Figure 5. A simple network example.

The configuration capabilities of TSN are attracting much research interest, with sev-
eral solutions already offered in the literature. Both the authors of [88,89], taking advantage
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from the freedom given by the standard on the choice of the communication protocol
between end station and the CUC, suggest the usage of OPC-UA solutions. In particular,
they propose the usage of a fully centralized model where end stations communicate
the join message to the CUC through a OPC-UA network, the CUC conveys the stream’s
requirements to the CNC that manages the bridges and then transmits back the status
information through the CUC to the end stations. Furthermore, in [89], an interesting
TSN architecture is used to enable fog computing. Additionally, authors of [90] propose
a solution to configure a multiple-domain TSN network and in [91] a learning-based self-
configuration mechanism is developed to automatically reconfigure a TSN network basing
on proper traffic measurements. In this regard, recently, automated configuration mecha-
nisms and tools seem to attract interest from the research community, since they allow a
seamless on-the-fly reconfiguration of dynamic TSN networks. For example, the authors
in [92] retrieve the optimal network configuration by analyzing traffic in the edge switches.
In this way, traffic requirements are extracted and forwarded to the CNC, which in turn
properly configure the network, allowing a fast response to varying demands. Similarly,
in [93], a “knowledge base entity” directly communicates with network entities using the
NETCONF Event Notifications protocol obtaining devices’ configuration and capabilities.
In case of network changes, the knowledge base entity is automatically notified. Based
on the stored information, the CNC elaborates the appropriate configuration. As a matter
of fact, this standard covers a fundamental importance to suitably configure the sensor
network, under both time and measurement strict requirements.

4.2. Synchronization

The aforementioned needs for a deterministic communication in modern distributed
systems requires an accurate time measurement carried out with subsequent timestamps.
For this reason, all the devices in the network need to share a common notion of time [94],
in other terms they need to be accurately synchronized, especially when carrying measure-
ment data [95]. The TSN synchronization standard, IEEE 802.1AS [56] (In this section when
referring to IEEE 802.1AS capabilities, otherwise noted, this document has to be considered
as the reference), specifies different media-dependent features, in Clause 10, 11, 12, and 13.
In this section, Full-Duplex Ethernet LANs are considered (Clause 11), while in Section 6.2,
Wi-Fi LANs are addressed (Clause 12). In this context, the synchronization protocol is based
on the IEEE 1588, which is generally also known as Precision Time Protocol (PTP) [96] (In
this section when referring to IEEE 1588 characteristics, otherwise noted, this document
has to be considered as the reference). In particular, PTP comprises several protocols and
parameters that can be used to compose flexible configurations (the so-called profiles) able
to cope with different requirements and applications and to provide a synchronization
accuracy in the order of microseconds. IEEE 802.1AS synchronization protocol, namely
generalized PTP (gPTP), can be considered the TSN profile of PTP [97].

4.2.1. Network Time–Aware Devices

The gPTP protocol considers a network comprising several so-called time-aware systems,
connected by a proper IEEE 802.3 full-duplex LAN. End stations and bridges forming the
bridged network discussed in Section 4.1 may be considered as time-aware stations in the
802.1AS standard, and they correspond, respectively, to IEEE 1588 ordinary and boundary
clocks. Stations that are not able to run the gPTP algorithm, called ordinary stations, are
not involved in the synchronization process. The network presents a hierarchical logical
structure where a root station namely GranMaster (GM) is used as a clock reference.
The timing information is then communicated from the GM to the whole Time Sensitive
Network. The so-called synchronization spanning tree is generated using the Best Master Clock
Algorithm (BMCA), since the commonly used IEEE 802.1D [98] spanning tree generated
by the Rapid Spanning Tree Protocol (RSTP), which is also encompassed by the IEEE
802.1Q [53] specification, is often considered sub-optimal for synchronization purposes.
Indeed, RSTP is used to both provide redundancy while avoiding logical loops in the network.
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It logically defines an active topology to be used as the default one, and an alternative path
when a fault is detected [99]. Redundancy is then discussed in Section 4.7, but bases its
behavior on the specific Spanning Tree Protocol employed. The Spanning Tree, generated
by BMCA, avoids the cyclic forwarding of the timing messages, in agreement with the IEEE
1588 specification. End stations, for example, sensors and actuators in an industrial network,
are modeled as the so-called ordinary clocks in the IEEE 1588-2008 standard. Ordinary clocks
are devices characterized by a single port from which they will receive both the timing
and regular messages, respectively, from an event interface and a general interface. A local
clock, whose characteristics are addressed in Appendix B of the standard, is used as a
source of time and, accordingly to the PTP protocol, has to be synchronized with the GM
clock. Finally, some blocks built to run specific functions need to be mentioned, such as
the Timestamp Generation block (linked only with the event interface) and the PTP protocol
engine. PTP boundary clocks, instead, may be used to properly model the gPTP bridges.
The latter device typology differs from the first one only for the presence of multiple ports,
each of them comprising both the event and general interface. Obviously, one port is used
for input message and the others for output ones. In the following, the synchronization
process is analyzed.

4.2.2. The Synchronization Process

Each time-aware station in the network comprises a local clock, to properly timestamp
the needed timing information. Unfortunately, different clocks may present both syntoniza-
tion and synchronization problems, i.e., the associated square waves may have different
frequencies and phases, respectively. The PTP aim is to communicate to all the stations a
meaningful timing information, from which it is possible to syntonize and synchronize all
the attached clocks. Consider the i-th station in the spanning tree. The timing information
is communicated from the i-1-th to the considered station by a Sync and eventually a
Follow-Up message, as represented in Figure 6.
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MP

SP

SP

Bridge 1

Bridge 2

End Station 3

t
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t
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Sync Follow Up

Sync Follow Up

Sync Follow Up

t sync
LC1

t sync
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t sync
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Figure 6. The gPTP synchronization activity.

The BMCE algorithm gives to each port within a time-aware device a specific role,
namely Master Port (MP), Slave Port (SP), Passive Port (PP) and Disabled Port (DP). As can
be seen in Figure 6, a MP is a port within a bridge or the GrandMaster enabled to send
or forward timing information. In contrast, a SP is a port within bridges and end stations
enabled only to receive timing information. PPs are ports that can potentially be elected
GrandMaster, but that has been set to a wait state because in the network there is a better
quality or higher priority master. Finally, DPs are ports that do not participate to the
synchronization process. They discard all PTP messages, except for management ones.
Both the syntonization and synchronization activities can be carried out by means of two
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parameters, as specified by the IEEE 1588 document. When the i-th station receives the Sync
message, a timestamp is generated and the tLCi

sync time in the local clock time base is measured.
Then, from the timing information contained in both the Sync and Follow-Up messages, it is
possible to calculate the exact tGM

sync in the GM clock time base. The synchronization offset
could be calculated as per Equation (2).

syncO f f setLCi = tGM
sync − tLCi

sync (2)

Considering N different timing transmissions, from 1 to N, it is also possible to
calculate the ratio between the GM and local clock frequencies, as per Equation (3).

f reqRatioLC =
tLCi
sync,N − tLCi

sync,1

tGM
sync,N − tGM

sync,1
(3)

In accordance with the IEEE 1588 standard, from the two aforementioned parameters,
it is then possible to correctly synchronize the clock (the practical mechanism to perform this
operation is out of the scope of the standard). The GrandMaster timing information has to
be communicated, through the spanning tree, to all the time-aware devices within the gPTP
domain. All the stations performs the aforementioned synchronization and all the bridges
transmit the timing information to the subsequent stations. The communication of the
timing information through the spanning tree introduces two kind of delays, the propagation
and residence one. The first one is related to the time needed to send a message between a
station through all the links, while the second one is the latency introduced by each bridge
on the network. Each station is going to evaluate the propagation delay on all the links
connecting the considered device to other ones. In such a way, for each link L connecting
two stations A and B, the propagation delay is measured twice and both A and B are
aware of the propagation delay. In this way, the synchronization algorithm can be run in
both directions. The propagation delay measurement is carried out with the usage of the
peer delay measurement mechanism, specified by IEEE 1588–2008. Consider a station A
measuring the propagation delay in the link LA→B connecting A with B, the synchronization
messages exchange is represented in Figure 7.
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Initiator

Bridge 1

Bridge 2

t

t

Pdelay_Req Pdelay_Resp

t 2

t 1

Pdelay_Resp_FU

t 3

t 4
A
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A
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Figure 7. The propagation delay measurement: messages exchanged between two stations, A and B.

Station A starts the communication, sending a Pdelay_Req message at a specific times-
tamped time tA

1 , that is received by station B at the timestamped instant of time tB
2 . Station

B sends a response message to A, Pdelay_Resp, at the timestamped time tB
3 , received by

A at the time tA
4 . Subsequently, a Pdelay_Resp_Follow_Up message is sent from B to A,

containing the tB
3 time stamp. Station A is now aware of all four timestamps taken: under
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the assumption that the local clock frequencies, namely fA = fB, of the two stations is the
same, it is possible to calculate the propagation delay between A and B using Equation (4).

dprop,AB =
(tB

2 − tA
1 ) + (tA

4 − tB
3 )

2
=

(tA
4 − tA

1 )− (tB
3 − tB

2 )

2
(4)

It is worth observing that, as the two stations have to still be considered not synchro-
nized, the correspondent clocks may have different frequencies and phases. The phase
issue is already solved, as Equation (4) foresees to calculate differences in the same time
base. For this reason, the phase shifts cancel each other out. Furthermore, as in general
fA �= fB, Equation (4) needs to be properly modified by converting the timestamps taken
by station B in the device’ A local time base, as per Equation (5).

tA
3 − tA

2 = (tB
3 − tB

2 ) ∗ RRA→B (5)

It is worth noting that in Equation (5), RRA→B represents the ratio between frequency
of station B local clock and station A one. As a last consideration, in general the transmission
time is not symmetrical, i.e., the delay from A to B is not exactly equal to the B to A
one. In such a situation, the obtained value needs to be properly modified with the so-
called delayAssimetry value. Both IEEE 802.1AS and IEEE 1588-2008 standards include a
non-mandatory procedure to handle this issue, which is described in Clause 8.3 of [56].
Furthermore, the residence delay is simply calculated by a bridge, time stamping both the
reception of the timing message from the previous station and the transmission of the
synchronization message from the specific Master Port.

The Follow-Up message contains several parameters useful to calculate the tGM
sync in

Equations (2) and (3). Referring to a generic i-1-th station transmitting to the i-th device the
timings information, the Follow-up message contains:

1. The preciseOriginTimeStamp, tGM
origin, expressed in the GM timebase containing the

timestamp originally created by the GM.
2. The correctionfieldi-1, dGM

i−1 , containing the total delay introduced from the generation
of tGM

origin. This field is the sum of all the propagation delays introduced by the links
used to convey the message before the considered stations and of all the residence
times introduced by the bridges used to convey the timing information before the
considered station. This parameter is expressed in the GrandMaster time base.

3. The rate ratio RRi−1 between the the GM frequency and the i-1-th device.

After the reception of the timing messages each station can compute the tGM
sync value to

be used in Equations (2) and (3) as in Equation (6).

tGM
sync = tGM

origin + dGM
i−1 (6)

In Equation (6), for simplicity, the time bases in which the measurements are taken
are not considered. It is worth noting that the transformation of a timing measurement
in a different time base can be carried out by multiplying or dividing timestamps by Rate
Ratios between neighbors clock frequencies. If the current station i is a bridge, it computes
the dGM

i for each Master Port adding the residence time and the MP-specific propagation
time to the dGM

i−1 value.
The synchronization protocol performances have been evaluated in several works.

For example, Ref. [100] offers a comprehensive analysis targeted for an industrial scenario
carried out by a meaningful simulation assessment, that also take into account the PHYsical
Jitter. Authors identified as a key parameter the synchronization precision (SP), defined as the
maximum time difference between the time-aware systems local clocks and the GrandMas-
ter’s one. Furthermore, moving from the assumption that within the industrial scenario
SP ≤ 1μs, they demonstrate that this condition can be surely met considering time-aware
systems approximately placed between 1 and 30 hops away from the GrandMaster. Other
relevant works, targeted for different scenarios, are for example [101,102]. In conclusion,
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as the measurement process is time-critical, the synchronization standard of TSN covers a
great importance. In particular, as already stated in Section 2, the network must handle
deterministic communication, thus reviling the need for precisely synchronized stations.

4.3. The Resource Reservation Capabilities of TSN

The early days of TSN within the IEEE 802.1Q standards date back to the 2009, when
the IEEE 802.1Qav [71] amendment was approved. A peculiarity of this document is the
introduction of the notions of Latency, Time-Sensitive Stream, Stream Reservation (SR)
and Audio Video Traffic within the list of definitions at the beginning of the IEEE 802.1Q
standard. According to [71], latency is defined as the propagation delay between two points
of a network, where it is possible to take proper time-stamps. Time-sensitive streams are
groups of frames for which the experienced latency needs to be bounded. An efficient
mechanism to handle such time-aware data transmission is to split the streams in different
traffic classes and provide bandwidth reservation for the time-critical ones, namely Stream
Reservation (SR) classes. In conclusion, a bridge port supports from 1 to 8 queues, referring
to different traffic classes and the standard defines as forwarding process as the ordered
sequence of operations necessary to choose the frame to send in a specific instant. Figure 8
represents the queuing and forwarding process of IEEE 802.1Q, where it is possible to
understand the relation between the different standards and mechanisms addressed in
this section.

Express MAC

(eMAC)

Preemptable MAC

(pMAC)

MAC Layer (IEEE 802.3br)

Physical

TC #0TC #1TC #8 TC #7

...

Queues

Gate Gate Gate Gate

Transmission Selection

802.1Qbv

TS TS TS TS

Figure 8. The queuing and forwarding process within IEEE 802.1Q.

The TSN working group gives a great importance to the forwarding process, that
is comprehensively addressed in different standards. Indeed, it gives the possibility to
design smart measurement systems with different data flows, characterized by different
deadlines and priorities, thus allowing us to handle different uncertainty levels depending
on the specific application. From Figure 8, it is worth observing that within the different
Traffic Classes (TCs) a per-queue Transmission Selection (TS) algorithm is run to choose
the specific frame to send. Afterwards, the IEEE802.1Qbv [74] standard defines what set of
Traffic Queues can send data, by suitably opening a specific group of gates. Afterwards,
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an inter-queue TS algorithm allows to choose what frame to send. The last queue data
can also preempt the transmission of the lower-priority queues by a specific mechanism
described in Section 4.4. By using such a complex scheduling policy, it is possible to handle
different traffic classes with a large variety of different requirements, thus allowing us to
give to critical measurements a higher priority.

4.3.1. The Stream Reservation Protocol

The calculation of the amount of bandwidth reserved for each class can be performed
by the Stream Reservation Protocol, now part of the IEEE 802.1Q standard [53] in clause 35.
The original version dates back to 2010 and was outlined in the 802.1Qat [70] amendment,
but some modifications are introduced by the Qcc [76] standard to enhance the perfor-
mances of the algorithm and to adapt the Stream Reservation Protocol (SRP) to the new
centralized approaches. The SRP protocol, basing on the talker and listener requirements,
provide resource reservation in each bridge within the network path of the specific stream,
with the aim to meet the QoS requirements. Afterwards, proper messages are sent to the
end stations (both talkers and listeners) to inform on the result of the reservation activity,
either successful or failed. It is worth observing that if required resources are correctly
assigned to a stream, the transmission of its frame is guaranteed by each bridge within the
network. As a last consideration, in order to handle emergency communication, various
relevance levels are associated to the streams so that a bridge is allowed to give major
priority to the most relevant streams.

4.3.2. The Transmission Selection Algorithms

The standard defines three different transmission policies: the strict priority algorithm,
the Credit Based Shaper (CBS) and the Enhanced Transmission Protocol (ETS). CBS and
ETS are described, respectively, in the Qav [71] and Qaz [72] amendments. The strict
priority algorithm is the default scheduling algorithm since its implementation in bridges
is mandatory. Furthermore, different algorithms can be used to generate the schedule on
the condition that they are able to guarantee 802.1Q priorities requirements.

The Credit Based Shaper was introduced by the Qav amendment to properly provide
to the SR classes the bandwidth previously determined, for example, with the usage of
SRP or, in case of a fully centralized configuration model, also directly by the CNC [76].
Indeed, the frame selection following a pre-determined value of priorities (i.e., strict priority
schedule), reviles the unsuitability to provide different bandwidth allocation to different
traffic-classes. The CBS bases his foundation on a typical credit and debit system, where
the currency are bits. Some examples, contained in the standard, are suitably represented
in Figure 9.
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lowCredit
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debit

Frame 
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Higher priority
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Figure 9. Credit Based Shaper principle.
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The operations carried out by the CBS algorithm in Figure 9 are listed below:

1. For 0 ≤ t ≤ T, the credit of a specific queue starts from 0 and maintains that level until
a frame enters the related queue;

2. In t = T a frame is queued but, due to the presence of the higher-priority frame, can
not be transmitted immediately. For T ≤ t ≤ 2T, as the transmission of the queued
frame is blocked by the higher priority one, the queue accumulates credit;

3. For 2T ≤ t ≤ 3T, the frame is transmitted and the credit level decreases;
4. For 3T ≤ t ≤ 5T, as the queue is indebted, also if no frame is queued the credit

increases until reaches the null value;
5. For 5T ≤ t ≤ 8T, as a frame is blocked by a higher priority transmission, the credit

level reaches the maximum value;
6. For 8T ≤ t ≤ 9T, the transmission of a frame decreases the credit. The remaining

credit is positive, but no frame is queued so exactly after the instant t = 9T the credit
is restored to zero;

7. For 10T ≤ t ≤ 14T, it is possible to notice that if the queue is indebted (i.e., the credit
is negative) it is not possible to start a new frame transmission, and it is needed to
wait until credit becomes non-negative.

A maximum indebtedness level is fixed, to give the possibility to the queue to send
an entire frame also starting from a null credit. Vice versa, the queue stores credit when
a higher priority class queue prevents the frame transmission, to be used for more than
one consecutive frame transmission when the line becomes free. The algorithm need to be
properly configured by tuning the rates at which the credit decreases during transmission
and increases when blocked by higher priorities queues, respectively, denoted as sendslope
and idleslop. Generally specking, these two values are different, as it possible to see in
Figure 9 by comparing the time line with the relative bittery levels. It is possible to prove that
the idleslope divided by the total transmission rate of the port, is the bandwidth fraction
used by the queue [71]. For this reason, the idleslope has to be previously determined,
for each supported queue, for example by means of the aforementioned SRP protocol.

As a last consideration, the IEEE 802.1Qcr [80] standard, needs to be mentioned. This
standard foresees the inclusion of a different shaper, the Asynchronous Traffic Shaper (ATS).
An interesting work addressing the shaping activity of TSN, can be found in [103]. Indeed,
the authors firstly perform a theoretical evaluation of the delay bounds and secondly,
by means of a meaningful case study, they demonstrate the tightness of the delay bounds
already introduced.

4.4. Frame Preemption and Interspersing Express Traffic (IET)

The IEEE 802.1Qbu [73] is an amendment to the IEEE 802.1Q [53] standard, whose last
version was developed in 2016 and it was received by IEEE 802.1Q in 2018. The amend-
ment’s aim is to support the IEEE 802.3br [87] (The original version of the standard [104]
was developed in 2016 and was included in the Ethernet Standard [105] in 2018) Interspers-
ing Express Traffic, that allows the preemption (i.e., the suspension of the transmission of) the
ordinary traffic, to transmit the time-critical frames. This feature is surely important, since
it allows us to give an higher priority to the time-sensitive frames, while guaranteeing the
transmission of both time-critical and non-time-critical traffic. IEEE 802.3br comprises two
different typologies of frames, the time critical (namely, Express) traffic and the preemptable
one. The provision of IET allow a further step forward: a new MAC layer mechanism is
introduced to temporary mark the completion of a frame that has been forcibly preempted.
In this way, preempted frames are not lost, since the transmission of the remaining part can
be completed in a later moment when the transmission medium is free from express traffic.
A meaningful example is presented in Figure 10.
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Figure 10. Express and preemptable traffic: an example.

The time-critical (or IET) frames, represented by red squares in Figure 10, are scheduled
exactly when the transmission request is made (the bridge knows in advance their activation
instant) and the communication activity is not subjected to interruptions. In such a way,
the real-time behavior of this kind of traffic is enhanced. Conversely, the preemptable
traffic during a time-critical transmission need to suspended from the communication.
The preemptable frame is then resumed when no express traffic is present, as illustrated in
Figure 10 for both the green and purple frames. When frame preemption is not available
the non-time-critical frames (for example the green one) will be delayed because the
empty spaces between IET frames are not sufficient to accommodate for their transmission.
Conversely, if frame preemption is available both at bridge (802.1Qbu) and at devices
(802.3br), non-IET frames can be preempted, and the different chunks can fill the gaps.
The relation between the IEEE 802.1Qbu and IEEE 802.3br amendments is represented
in Figure 8, where it is possible to notice that two different MAC layers are introduced,
eMAC and pMAC, to handle, respectively, express and preemptable traffic. The effect of
the preemption capability was evaluated in several works [106–110]. Conversely, authors
of [111] underlined the importance to study the impact of the preemption activity also
on the delay introduced in the Best Effort (BE) traffic communication. Indeed, also the
Best Effort traffic, conveying for example diagnostic or configuration messages, need to
be properly exchanged. The results obtained in such a work reviled interesting, as the
preemption activity allowed to exchange messages also for low ST traffic periods. Clearly,
when the ST traffic period increases the delay introduced in the BE traffic communication
becomes lower.

4.5. Enhancements for Scheduled Traffic

The IEEE 802.1Qbv [74], developed in 2015, provides a mechanism to improve de-
terminism in Time-Sensitive Networks. A system of queue-specific gates regulates the
possibility to selectively send frames ready for the transmission from specific queues. In par-
ticular, a gate can be in two different states, namely opened and closed, respectively, allowing
or denying the possibility to transmit a frame belonging to the specific queue. Within each
queue with an opened gate, a specific scheduling algorithm is run to decide which frame
of the queue will be sent. Furthermore, a precise scheduling of the time instants when to
change the gate states must be performed. The latter problem can be formalized by a set
of linear inequalities [112], which lead, especially on large networks, to computationally
heavy problems as addressed by the authors in [113]. Some meaningful simulation results
can be derived from [114], which show that using the enhancements for scheduled traffic it
is possible to effectively bound the latency of time-critical classes.

4.6. Cycling Queuing and Forwarding

The aforementioned mechanisms used to manage the forwarding process, such as
the Credit Based Shaper, the preemption and the Enhancements for scheduled traffic,
contributes to reduce and bound the latency. Furthermore, Cyclic Queuing and Forwarding
(CQF), addressed in the IEEE 802.1Qch amendment [77], contributes to make the latency
bounded and predictable. The main contribution of this document within the 802.1Q
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standard [53] is given by annex T, where CQF is explained. The basic principle of CQF is
illustrated in Figure 11.
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Figure 11. CQF principle.

The time is divided in intervals of duration d, namely I1, I2, I3, ... and each bridge Bj in
the network sends frames received from Bj−1 during Ii to Bj+1 during Ii+1. For example,
consider the green frames communication between B1 and B4. In a worst-case situation
a frame is sent by B1 at the beginning of I1 and received by B4 at the end of I3. In the
best situation, a frame is sent by B1 at the end of I1 and received by B4 at the beginning
of I3. In conclusion, the latency introduced by CQF between B1 and B4 is expressed by
Equation (7).

d ≤ L1→4 ≤ 3 · d (7)

As a further example, latency introduced by a B1 to B5 frame transmission is expressed
by Equation (8).

2 · d ≤ L1→5 ≤ 4 · d (8)

Summarizing, in consideration of the number of hops in the two previous examples,
respectively h1→4 = 2 and h1→5 = 3, it is possible to generalize the previous relations,
obtaining the result in Equation (9).

(h− 1)d ≤ Lh ≤ (h + 1)d (9)

In Equation (9) h is the number of hops and Lh is the latency introduced for the
transmission of the frames when the path is characterized by h hops. It is worth observing
that the latency calculated by Equation (9) permits to pre-determine the h and d dependent
latency value introduced by CQF, so that it is proved that CQF is deterministic.

4.7. Frame Replication and Elimination for Reliability (FRER)

Redundancy is traditionally considered a good methodology to increase the reliability
of the communication. Several algorithms were developed over the years, such as the
Rapid Spanning Tree Protocol [98], or the Media Redundancy Protocol (MRP), commonly
based on the usage of an alternative path if a failure is detected on the default one [115].
Unfortunately, the latter ones foresee the introduction of a delay between the fault detection
and the sending instant of the packet, so that others algorithms were developed to provide
seamless redundancy. With the aim of standardization, TSN introduces the IEEE 802.1CB [58]
(This document has to be considered as the reference for this section, otherwise noted.)
standard, that comprises several functions, also known as Frame Replication and Elimi-
nation for Reliability (FRER), cooperating to replicate the packets and send them through
different paths to the receiver. After the reception of the packets, extra copies are eliminated,
introducing a seamless redundancy. Such an approach is considered fundamental for the
Time Sensitive Networks in order to guarantee the reception of critical data also in case of
equipment failure, providing low packet loss. Several member streams, conveying duplicated
packets through different paths, are then created for aim of redundancy, whose combination
forms the so-called Compound Stream. An example is provided in Figure 12, where it is
supposed that multiple paths can be used for the red stream of Figure 5 transmission.
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Figure 12. FRER example.

In such a situation, two member streams, i and j, are created between ES3 and ES4.
FRER makes use of paths already created, for example, by means of the IEEE 802.1Qca [75]
standard. Authors of [115] particularly describe the TSN approach, where features of the
stream reservation (IEEE 802.1Qca [75]), configuration (IEEE 802.1Qcc [76]) and FRER stan-
dards strongly cooperates to provide redundancy. Furthermore, they qualitative compare
the TSN approach with a total different methodology, based on the decoupling of the stream
reservation and redundancy protocols. The main conclusion they draw, among others,
is that FRER introduce advantages on the protocol overhead and bandwidth utilization,
while introduces a lower flexibility. Furthermore, the algorithm can also replicate and
eliminate frames in bridges within the network between Talker and Listeners. Consider
the possibility to connect bridges B1 and B2 in Figure 12. In this situation, it is possible
to also split frames in bridge B1 and eliminate copies in bridge B2, in order to make the
packet loss even lower. Besides that, the FRER activity is managed with the usage of several
functions, deeply analyzed in clause 7 of [58]. How each function behaves is clearly out
of the scope of this article, but some topics useful to understand the general behavior of
the FRER are now analyzed. Some of the activities of these functions are summarized on
the top part of Figure 12. The so-called Stream Identification Function (SIF), addressed by
Clause 6 of the standard, performs a key activity in the FRER context. This function is built
on top of the MAC Layer, using one Service Access Point (SAP) to communicate packets
to the lower layers (i.e., MAC and Physical) and several SAPs, serving different packet
streams, to transmit packets through the layers above. In particular, the function uses
the Internal Sublayer Service (ISS) specified by the IEEE 802.1AC [116] layering standard.
ISS comprises two different primitives offered by the MAC layer, the indication and the
request one, respectively, referring to the reception of a frame from the lower layers and
the request of a frame transmission from the upper layers. In each primitive data set is
present a connection_identifier parameter which, in turn, comprises two parameters, namely
stream_handle and sequence number. The first one identifies the packet stream, while the
second one identifies the packet sequence order. Both parameters are encapsulated by the
FRER into the connection_identifier for internal use (they are not directly transmitted to
the lower layers).

When the SIF function receives a packet, it identifies the stream and forwards the
packet to the upper layer via the specific SAP if the stream is known. Otherwise, if the
stream is unknown, the packet is handled by a specific SAP that serves the unknown
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streams. An interesting usage of this function is in the bridged network [53]. It is worth
observing that the identification function comprises a Lower Identification and an upper
one. In the first stage, the packets not belonging to a known stream are identified and
transmitted to the peer device through a Non-Stream Transfer Function (NSTF). In the
second stage, the proper SAP is identified and the FRER algorithm is used to convey the
packets. On the top of the SIF is built the Sequence Encode/Decode Function (SEDF), that,
with the usage of the connection_identifier’s sequence_number sub-parameter, decodes an in-
coming packet from the lower layer allowing the Recovery Function to discard extra packets.
Conversely, when a transmission request is generated, SEDF encodes the packet sequence
number in a frame to be transmitted through the underlying LAN. The latter activity is
of fundamental importance to allow the peer station decoding operation and usually it is
done adding an R-TAG in the transmitted frame containing both the stream and the packet
number. Considering the frames to be transmitted, before the encapsulation activity, they
are managed by the Sequencing Function, that assigns them a specific sequence_number and
the Stream Splitting Function that replicates the packet assigning to each copy a specific
stream_handle value. Additionally, it is to recall the presence of the so-called Latent Error
Detection Function. The aim of this function is to trigger an event when some extra packets
are not received, in order to signal an equipment failure on a specific path, that can be
opportunely managed. For simplicity, some functions are not represented in Figure 12, such
as SIF (that is placed right under the SEDF function) and the individual recovery function
that performs a per-stream elimination activity. One drawback of FRER is the limited
amount of available parameters, which are also strictly tied with the specific upper layer
protocol, provided to identifies a stream. The ongoing project P802.1CBdb [69], known as
FRER Extended Stream Identification Functions, overcome these problems by introducing
a new set of parameters which are independent from the upper layer protocol in use.

Several articles in the literature highlight some of the limitations of the FRER algorithm.
Authors in [117] pointed out that the arbitrary replication of all the packets may result
in an inefficient network, suggesting the usage of a Machine Learning based algorithm
for fault detection. In this way, a failure can be predicted and redundancy established
just before the fault occurs. Furthermore, an interesting article [118] provides a critical
overview of FRER, underlying some relevant limitations and challenges. Among others, it
is worth observing that usually the Shortest Path Tree (SPT) is used as the default one. Then,
the IEEE 802.1Qca standard [75] allows the usage of longer paths for aim of redundancy.
This leads to different communication times through different paths, and a possible out-of-
order communication. Indeed, the authors pointed out the need for a worst-case analysis
of the algorithm. Moreover, authors of [26] demonstrated with a simple example, the non-
composability of FRER with End-to-End (E2E) mechanisms. Finally, authors of [119] carried
out an analysis on the performances of the FRER algorithm, evaluating the interval of time
between the reception of the packet and its first copy.

5. The TSN Profile for Industrial Automation

Within the TSN standards, it is possible to create several configurations, called profiles,
to adapt the network behavior to requirements coming from different fields of applications.
The TSN working group, at present, is working on several profiles, listed in Table 3. Among
them, the industrial automation profile is the most relevant to this analysis. It also targets the
needs of the Instrumentation and Measurement field, since it has major knock-on effects in
every aspect of the industrial scenario, not only revolutionizing real-time communications,
but also the way of conceiving industrial devices and distributed measurement systems.
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Table 3. TSN profiles.

Description Standard Reference

Audio Video Bridging (AVB) systems IEEE Std 802.1BA [120]
Time-Sensitive Networking for Fronthaul IEEE 802.1CM [121]

Ongoing Projects

Industrial Automation IEEE/IEC 60802 [122]
TSN Profile for Service Provider Networks IEEE P802.1DF [123]
TSN Profile for Automotive IEEE P802.1 DG [124]
TSN for Aerospace Onboard Ethernet
Communications IEEE P802.1 DP [125]

The TSN profile for Industrial Automation (TSN-IA) aims to provide guidelines for
the configuration of TSN to meet Industrial Automation requirements. The Industrial
Automation use cases are analyzed in a specific document [126] and the IEEE/IEC joint
project 60802 is currently working on the aforementioned profile to cope with the specified
use cases. While the draft standard is not publicly available, some information can be
inferred from the documents found on the WG website [122]. For instance, significant
attention is given to synchronization and timing issues related to the IEEE 802.1AS standard,
to Energy Efficient Ethernet (EEE) capabilities [127] and to the new queuing and frame
preemption options. The [126] document makes a list of the industrial traffic typologies,
that are briefly summarized in Table 4.

Table 4. Industrial traffic typologies.

Traffic Typology
Characteristics

Periodic Sporadic Deadline Bandwidth Bounded Latency Priority

Isochronous cyclic real-time X X X X

Cyclic real-time X X X X

Network Control X X

Audio/Video X X X

Brownfield X X X

Alarms/Events X X X

Configuration/Diagnostic X X

Internal/pass-through X X

Best-Effort X

In the last part of the TSN-IA profile specifications, it is also possible to find a detailed
analysis of the required functions for an industrial network. Here, the standard takes
into account some of the protocol features specified above (either mandatory or optional),
and specifies a fine tuning of their parameters. As a final confirmation that the standard-
ization activity is currently in progress, at the moment of writing, the standard covers in
details the clock synchronization issues, whereas other sections have yet to be completed,
as for instance, the requirements for security, bridge delay, network access, etc.

6. TSN in Time–Critical, Possibly Wireless–Based, Measurement Systems

6.1. A Representative Test Case

The scheduling, bandwidth reservation, real-time behavior, Wi-Fi capabilities and
other features of TSN, open up to interesting and advanced time–critical application where
a constant flow of information, often coming from heterogeneous sensors, is of vital im-
portance. An example is the scenario proposed by [128] where a swarm of quadcopters is
controlled to perform maneuvers at high speed. In this application, measurements from
cameras and onboard sensors are used by a centralized control system to determine the
references of each individual agent so that they can move in a coordinated way. Specifically,
a system consisting of eight cameras acquires the position and attitude of each vehicle with

484



Sensors 2022, 22, 1638

a frequency of 200 Hz. The camera frames are sent via a UDP stream to a central processing
unit. Furthermore, each quadrotor is equipped with on-board sensors (accelerometer and
gyroscope), the measurements are sent via an XBee–UDP bridge to the central processing
unit. Here, they are processed, and each vehicle receives setpoints for coordinated motion
via a PPM analog transceiver with a 50Hz refresh rate. Another communication channel
is a low priority downlink for the purpose of data logging. The real-time requirements
are evident since the failure to comply with a deadline or delays in the communication
chain could lead to unexpected and catastrophic results. The use of different types of traffic,
such as real-time and best effort, is also evident, with the separation achieved through the
use of physically separate communication channels. However, the communication archi-
tecture has some limitations. To maintain a sufficiently low latency and high bandwidth,
the data flow from the cameras uses UDP, which does not provide any QoS mechanism,
exposing the system to potential packet losses. Using bridges to switch from UDP to other
communication systems can represent an additional bottleneck. Both of these downsides
are destined to become critical if the number of agents, and therefore the data flow, in-
creases. In this context, some of TSN’s features can bring benefits. For example, bandwidth
reservation and traffic scheduling can be used to prioritize video streams and cyclic data
for the control system. The Frame Replication and Elimination for Reliability (FRER) can
be used to increase the reliability of the communication. The use of these features allow
us to lower the network latency and jitter, mitigating the effects discussed in Section 2.
Additionally, the intrinsic clock synchronization required by TSN brings some advantages.
Often in distributed autonomous systems GPS is used for clock synchronization in agents.
TSN provides further improvements by providing a shared sub-microsecond time refer-
ence to the network’s nodes, which can overcome GPS’s existing constraints [129]. In
addition to the decrease in latency, communication times, and improve synchronization,
a precise time-stamping of measured data can also be used to compensate for further delays
introduced by the measurement, processing, and control chain.

6.2. TSN over Wi-Fi

The smart interconnection of several objects of the everyday life within the Internet
of Things vision, envisages a massive usage of wireless communications. The test case
analyzed in the previous Section represents an iconic example of time-critical application
that employs wireless communication. The development of increasingly efficient wireless
technologies is also becoming of fundamental importance in the factory automation sce-
nario, to provide enhanced mobility and to provide seamless connectivity to area which
are difficult to cable. Indeed, wireless communication becomes a key player in the Industry
4.0 deployment process [130], introducing several benefits such as flexibility, reduction
of maintenance and installation costs, and the reduction of network failures. The afore-
mentioned advantages also reflect in the possibility for typical industrial controllers to
acquire information from sensors and send control signals to the actuators via a wireless
communication system, building up the so-called Wireless Networked Control Systems
(WNCS) [131–133]. Some of the research activity, in the past, focused on IEEE 802.15.4
based-networks, such as WirelessHART ones [134]. These networks, by means of the Time
Division Multiple Access protocol together with a proper scheduling algorithm, (for exam-
ple the rhythmic model suggested by the authors of [135]), are characterized by enhanced
real-time capabilities. In the last years, Wi-Fi was also revealed to be promising to be
applied in factory automation as, compared with the IEEE 802.15.4 solutions, it gives the
possibility to cope with the timing requirements of the modern control systems and to
perform a useful Rate Adaptation activity [136]. Indeed, for example, authors of [137]
underlined the necessity of a minimum control frequency of 1 kHz for some specific ap-
plication, not achievable by wirelessHART since it is characterized by a time slot of at
least 10 ms. How to adapt emergent wireless technologies, such as 5G and Wi-Fi, to the
strict requirements of the factory automation is an open research field [138–141], together
with recent works concerning industrial LoRa networks [142]. Some works suggest the

485



Sensors 2022, 22, 1638

usage of hybrid wired/wireless networks, integrating ethernet TSN networks with both
Wi-Fi [52] and 5G [143]. Actually, TSN over Wi-Fi networks are promising to adapt Wi-Fi
to the stringent requirements of the industrial context. At present, the IEEE 802.11AS
standard [56] specifically refers also to IEEE 802.11 LANs, providing a synchronization
mechanism similar to the one analyzed in Section 4.2. Indeed, the synchronization activity
over Wi-Fi is performed exactly as presented in Section 4.2, with the exception of some
media-dependent activities specified in IEEE 802.1AS [56], Clause 12. In particular, how to
communicate the timing messages between a Master Port and the attached Slave Port in the
generated spanning tree is quite different with the respect to the full-duplex Point to Point
links. In this case, in fact, the IEEE 802.11 [144] Timing Measurement (TM) procedure is
used to calculate the propagation time. The last version of the IEEE 802.11 standard allows
also to use the Fine Timing Measurement (FTM) mechanism [144]. The transposition of the
other TSN features in WiFi is still an open research field.

7. Conclusions

This article provided an assessment of TSN, aimed at investigating the adoption of
such a wide family of standards in the context of Instrumentation and Measurements and
Industrial Automation systems. As a first achievement, a careful bibliographic analysis
showed that the aforementioned fields of applications are still not adequately addressed,
as clearly indicated by the limited number of scientific contributions. Moving from this
consideration, the paper provided a detailed description of the TSN features that are
supposed to be more suitable for the targeted applications. Then, the impact of the ever
performing TSN networks and protocols on the data exchange between sensors, actuators,
controllers and measurement equipment was studied.

The analysis clearly evidenced the possible benefits deriving from the adoption of
TSN, with respect to the state of the art communication systems. Nonetheless, it also
showed the need for a better estimation of the effect of TSN networks on the measurement
uncertainty. Moreover, the possible introduction of TSN on distributed Instrumentation and
Measurement systems, based on wireless communication, was addressed. Although the
analysis referred to specific examples, the benefits brought by TSN appear evident, thanks
to its traffic prioritizing and synchronization features, that result in more precise time-
stamping of the acquired sensor data, with the consequent performance improvement of
the (wireless) distributed measuring system. Finally, the assessment carried out in this
paper clearly outlines some future activities. Indeed, substantial efforts are expected in the
development of theoretical and/or simulation analyses to improve awareness as well as
knowledge in the relevant scientific community. Furthermore, practical experiments on
prototype testbeds have to be carried out. This, on the one hand, allows us to check the
quality of the theoretical/simulation models, to eventually validate them. On the other
hand, experimental sessions allow us to practically assess some specific issues like the
effects of TSN on the measurement accuracy, as well as the impact of the TSN protocol stack
on limited-resource devices such as those often used in distributed measurement systems.
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Abstract: With the decrease in the cost and size of drones in recent years, their number has also
increased exponentially. As such, the concerns regarding security aspects that are raised by their
presence are also becoming more serious. The necessity of designing and implementing systems
that are able to detect and provide defense actions against such threats has become apparent. In this
paper, we perform a survey regarding the different drone detection and defense systems that were
proposed in the literature, based on different types of methods (i.e., radio frequency (RF), acoustical,
optical, radar, etc.), with an emphasis on RF-based systems implemented using software-defined
radio (SDR) platforms. We have followed the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines in order to provide a concise and thorough presentation of the
current status of the subject. In the final part, we also describe our own solution that was designed
and implemented in the framework of the DronEnd research project. The DronEnd system is based
on RF methods and uses SDR platforms as the main hardware elements.

Keywords: drone; UAV; RF methods; software-defined radio; detection system; defense system

1. Introduction

Technical innovations continue to manifest at an ever-increasing speed, causing fast
and drastic changes to modern society. These changes, driven by the possibilities offered by
new technologies, affect citizens, governments, and all public and private industry sectors.

As a result, the development of small, low-cost unmanned aerial vehicles (UAVs),
commonly known as drones, has resulted in an ever-increasing number of these devices
being utilized in a variety of applications [1]. UAVs have introduced new participants
in aviation, quickly evolving beyond their military origin to become powerful business
tools [2,3].

Applications of UAVs range from recreation to commercial and military applications,
including enjoyment, hobbies, games with drones, homemade entertainment videos, recre-
ational movies [4–6], low altitude flying base stations [7], and the operation of UAVs for
military purposes [8–13].

The following research questions were developed for this project:

• What functions should a drone detection and defense system (DDDS) have in order to
prove its functionality?

• Which are the most popular methods used in the implementation of DDDSs?
• Which are the main parameters that should be taken into consideration in research?
• What gaps are in the current research of DDDSs?

A widely-used methodology was utilized to conduct a systematic literature review
based on preferred reporting items for systematic reviews and meta-analyses (PRISMA) [14]
in order to obtain the answers to our study questions. We conducted a literature search in
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scientific databases that encompass prominent computer science journals and conferences,
such as IEEE Xplore, ACM digital library, ScienceDirect, SAGE Journals Online, and
Springer Link, to discover key articles on the drone detection and defense systems topic.
We used the following search string to discover the relevant publications and papers for
our research: (‘Drone’ OR ‘UAV’) AND (Counter) in the domains of electrical engineering,
applied physics, telecommunications, defense, and computer information systems, for
the previous six years (2016–2021). In total, we gathered a set of 7349 potentially relevant
publications, excluding grey literature and pre-prints.

We next looked at the titles, keywords, and abstracts of the publications in order to
find the papers and articles that described at least one distributed ledger modeling or
simulation approach. We chose a total of 99 publications in the process. We examined the
references of the selected publications for other papers that were relevant to our inquiry
in order to expand our literature collection. Figure 1 shows the overall number of articles
produced as a result of this approach.

Figure 1. PRISMA 2020 flow diagram for systematic reviews.

The additional references that were identified in the bodies of the selected publications,
or referencing those, were added to the literature list. We carefully studied the selected
publications once the literature selection procedure was completed in order to determine
the described applications and problems. The results of our analysis are reported in the
following sections, which represent the core of the topical literature review.

The main contributions of our paper can be summarized as follows:

• We provide a detailed review regarding the drone defense systems based on RF
methods, focusing on the solutions that are based on software-defined radio (SDR)
platforms. To our best knowledge, other reviews that were performed concerning
drone defense systems have not detailed that particular category of solutions;

• We discuss the current worldwide status of the legal issues regarding the jamming
function, that enables the systems to annihilate the drones after they are detected;

• We present our own solution for an RF-based drone defense system that was designed
and implemented within the framework of the DronEnd research project. The system
was developed using several SDR platforms and a custom-made mount for dynami-
cally adjusting the orientation of the jamming antenna, which enables the detection,
localization, and annihilation of drones in a given monitored area.
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The rest of this article is organized as follows: Section 2 reviews the most recent
incidents that involved the reckless flying of UAV systems and the regulations taken by
different governments and agencies around the world.

Section 3 describes the system requirements of a drone defense system in correlation
with their basic mechanism/sensing technologies, considering their advantages and draw-
backs. Also, this section highlights the specific models and architectures used in research
for drone detection and defense systems. Section 4 details aspects regarding RF-based
DDDSs and the use of SDR platforms in such systems. Section 5 contains a discussion
regarding the challenges and the future research directions related to DDDSs. In Section 6,
a solution for a drone detection and defense system based on SDR platforms, developed by
the authors, is proposed and detailed, also highlighting the novel elements that are brought
about, compared to the other existing solutions. The last section concludes the paper and
includes the future perspectives of this work.

2. The Necessity of Drone Detection and Defense Systems: Incidents and Regulations

The drone industry’s rapid rise has outpaced the rules for safe and secure drone
operation, making them a symbol of illegal and destructive terror and crimes [15].

Drones have gained attention as a threat to safety and security since their entrance
into civilian technology, which has fueled the development of anti-drone (or counter-
drone) technologies. Anti-drone systems are designed to protect against drone accidents or
terrorism, but they will need to evolve in order to deal with future drone flight systems [16].

UAVs have been used in a variety of military actions. Non-military UAVs have been
accused of endangering airplanes, as well as persons and property on the ground. Due to
the potential of an ingested drone to quickly damage an aircraft engine [17], safety concerns
have been raised. Multiple near-misses and verified collisions have occurred involving
hobbyist UAV pilots operating when violating the aviation safety standards [18].

2.1. Recently Reported Incidents

The necessity of anti-drone defense systems has gained importance, considering the
large number of dangerous occurrences that are mentioned in Table 1.

Table 1. List of the recent UAV-related incidents.

Incident Type Time and Place of the Event
Short Description of the

Incident
Aftermaths References

Aircraft collisions

17 April 2016/UK, London,
Heathrow International
Airport

An Airbus A320 collided with
a Metropolitan Police UAV as
it approached landing

There were no serious issues
reported. [19]

21 September 2017/USA,
Staten Island, New York City

A civilian UAV collided with a
Black Hawk helicopter

The helicopter was able to
continue flying and landed
in a safe manner.

[20]

12 October 2017/Canada,
Jean Lesage Airport, Quebec
City

A Skyjet Aviation Beech King
Air A100 collided with a UAV

The plane landed safely, with
only minor damage to its
wings.

[21]

13 December 2018/Mexico,
Tijuana International Airport

On a Boeing 737–800 operating
as Flight 773, a “quite loud
noise” was heard

After a safe landing, the
aircraft’s nose was
discovered to be damaged.
The reason for the incident
has not been identified;
however, it was examined as
a drone strike by the airline.

[22]

10 August 2021/UK,
Buttonville Municipal
Airport

A Cessna 172 registered
C-GKWL collided with a drone
operated by the York Regional
Police

The Cessna landed safely but
with significant damage. [23]
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Table 1. Cont.

Incident Type Time and Place of the Event
Short Description of the

Incident
Aftermaths References

Near-miss
incidents

January 2017/P.R. China,
Hangzhou Xiaoshan
International Airport

A 23-year-old Xiaoshan UAV
operator was arrested after
taking footage with a drone
that flew too close to planes
landing

DJI, China’s biggest drone
manufacturer and the
producer of the Mavic Pro
drone (which was discovered
to have been used in the
event), issued a statement
expressing its “strong
condemnation” of the illegal
filming.

[24]

25 March 2018/New
Zeeland, Auckland Airport

A UAV approached within 5 m
of an Air New Zealand Boeing
777–200 on final approach to
airport

The pilots spotted the UAV
as the plane was
approaching a position when
evasive action was
impossible, and they initially
worried it would be pulled
into an engine.

[25]

19 December 2018/UK,
Gatwick

A repeated deliberate intrusion
of UAVs of “industrial
standards” occurred

The suspension of all takeoffs
and landings began at 9:03
p.m. on 19 December due to
UAV sightings over the
runway. Flights were briefly
restarted the next morning
but were banned again after
more UAV sightings.

[26]

Other incidents
that targeted
officials and
strategic
objectives

April 2015/Japan

A small drone carrying
radioactive materials was
dropped on the roof of Japan’s
Prime Minister’s mansion

The drone was not only able
to fly to the Prime Minister’s
home, but it was also left
unattended for over two
weeks. Due to the
characteristics of the area,
notably privacy, it may have
been difficult to deploy
intensive detecting
technology.

[27]

October 2016/Syria

ISIL used two ultra-small
drones purchased from
Amazon to assassinate two
Iranians in Syria

The first incidence of
commercial drone terrorism,
significant since commercial
off-the-shelf drones were
employed, demonstrating
that a wide variety of drone
terrorism was achievable
because the drones could be
cheaply bought without
having the expert-level skill
to fly.

[28]

August 2018/Venezuela

Two bomb-carrying drones
had a failed attempt to
assassinate Venezuelan
President Nicolas Maduro
during a national outdoor
celebration

The first time a drone was
used to try to assassinate the
country’s leader. This
incident emphasizes the
importance of anti-drone
technology for avoiding a
traumatic event. Temporary
anti-drone systems require
rapid installation and
deployment.

[29]
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In addition to the highlighted incidents, the number of small mishaps caused by
unauthorized or illegal drones invading restricted regions is increasing by the day [30].
This is another reason for anti-drone technology becoming increasingly important. As the
regulations concerning drone usage are also a significant aspect to be considered when
designing a DDDS, we review in the following subsection several aspects in this matter.

2.2. Regulations Regarding the Use of Drones

The most important agencies that regulate the use of drones (e.g., European Union
Aviation Safety Agency (EASA), Federal Communication Commission (FCC), Australian
Communication and Media Authority (ACMA), Civil Aviation Authority (CAA), etc.)
have adopted action plans in order to ensure critical objectives against the illegal usage of
UAVs [30–32].

For example, in order to address the hazards and threats posed by drones, European
Union members in EASA have endorsed a counter-unmanned aerial systems (counter-UAS)
action plan, proposed by the agency in 2019, which has subsequently been included in the
European Plan for Aviation Safety (EPAS) [32].

The EASA’s EPAS is applicable to all of the national and appropriate agencies, and it
has resulted in the effective control of UAV hazards.

Furthermore, the EU has approved EASA’s standard European guidelines in order to
enable UAV integration and safe operation in the aviation system. The rules that apply
to drones are outlined in Regulation (EU) 2019/94735 on the rules and procedures for the
operation of unmanned aerial vehicles (UAVs) and Regulation (EU) 2019/945 on unmanned
aerial vehicles and third-country operators of unmanned aerial vehicles (UAVs).

According to the document, there are three primary types of drone incident offenders
that endanger civil aviation, as follows: non-criminal motivation, gross negligence, and
criminal/terrorist motivation [30]. They relate to the drone’s remote pilot’s intention, as
described in Table 2.

Table 2. EASA categorization of intention/motivation of pilots of unauthorized drones.

Negligence

Individuals Who Are Oblivious to or Are Unaware of the
Appropriate Regulations and Constraints. As a Result,
They Fly Their Drones across Sensitive or Forbidden
Terrain. They Have a “Clueless” Mentality and Have No
Intention of Disrupting Regular Aviation.

Gross negligence

Individuals who are reckless because they are aware of the
appropriate regulations and constraints yet choose to
break them for personal or professional advantage (e.g.,
aggressive spotters). Their actions can be described as
“reckless”, as they disrupt civil aviation while completely
ignoring the implications of their conduct.

Individuals who intentionally strive to use drones to
disrupt aerodromes and flight operations, regardless of
whether they are aware of the applicable legislation and
limits. These individuals may even act as a group to
maximize their impact. While their actions may have
unexpected repercussions for aviation safety, they do not
seek to put human lives in jeopardy.

Criminal/terrorist motivation

Criminals and terrorists are persons who intentionally
strive to utilize drones to interfere with the safety and
security of civil aviation, regardless of whether they are
aware of the applicable legislation and limits. These
persons should be considered criminally motivated or
even terrorists because their actions are purposeful and
show no concern for human lives and property.
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3. Drone Detection and Defense Systems: Classification, Sensors, Countermeasures

In this section, we focus on the classification of drone detection and defense systems
depending on different criteria, on the comparison of the different sensor types that can be
used in order to detect the presence of the drones in the monitored area, on the classification
of the countermeasures that can be adopted in order to annihilate the detected drones, and
on the regulations regarding the use of jamming as countermeasure.

3.1. Classification of Drone Detection and Defense Systems

Firstly, it is necessary to classify DDDSs in order to understand their capabilities, as it
is summarized in Table 3.

Table 3. Classification of DDDSs.

Category Definition

Ground-based: fixed Systems designed for usage in fixed locations [33]

Ground-based: mobile Systems designed to be installed on automobiles and operated while
they are in motion [33]

Hand-held Systems designed to be operated by a single person using their hands;
the majority of these systems resemble rifles [34]

UAV-based Systems designed to be mounted on unmanned aerial vehicles
(UAVs) [34]

UAV-swarm-based Systems designed to use multiple drones [35]

A DDDS implies different available technologies for detection, tracking, and classifica-
tion, in addition to neutralization techniques. The most essential elements recommended
for the DDDS are considered to be detection, tracking, and classification of the target
drones [30,34]. The different technologies that are used for allowing drone detection are
summarized in Table 4.

Table 4. Technologies used for drone detection in DDDSs.

Technology Description References

Acoustic UAVs are detected and tracked by using an
array of microphones [36–53]

Imaging (EO/IR) UAVs are detected and tracked by using
EO/IR cameras [54–72]

Radar UAVs are detected and tracked using their
radar signature [73–102]

Radio frequency (RF)

UAVs are detected, tracked, and identified by
monitoring the radio frequencies used for

communications; this technology could
localize the UAV and the pilot

[103–113]

Hybrid Combination of two or more of the
above-mentioned technologies [104,114]

3.2. Classification of Detection Sensors

All of the types of sensors that are currently used in DDDS present specific advantages
and limitations and, as a direct consequence, such a system must incorporate more sensors
of different types in order to achieve a higher detection rate [33].

A brief description of each category of sensors is given below and the different pros
and cons for each category are summarized in Table 5.

498



Sensors 2022, 22, 1453

Table 5. Pros and cons of sensors used in DDDSs.

Type Pros Cons References

Acoustic

• Covers the spectrum of
20 Hz–20 kHz;

• Acoustic signature library could be
updated easily from flight to flight;

• Lightweight and can be easily
associated with other types of
sensors.

• Limited range;
• Vulnerable to ambient noise;
• Susceptible to decoys.

[36–53]

Imaging

• Covers all of the visible and IR
spectrum (3 MHz–300 GHz);

• IR cameras could operate in cloudy
weather and in day or night;

• Could be assisted by
computer-vision technologies.

• Provides 2D images;
• Limited performances by weather

conditions and background
temperature;

• Dependent of georeference data
• LoS is required.

[54–72]

Radar

• Bandwidth used: 3 MHz–300 GHz;
• Could operate in all weather and

day/night conditions;
• Offers information regarding the

velocity of the target;
• Can recognize micro-Doppler

signatures (MDS)
• Offers high coverage;
• Good accuracy;
• Compact and high mobile, required

for tactical applications;
• High reliability.

• Large radar cross-section is desired;
• Difficult to differentiate UAVs from

birds;
• Limited performance for low

altitudes and speeds (death cone);
• Could interfere easily with small

objects, especially birds;
• LoS is required;
• High cost.

[73–102]

RF

• Capturing the communication
spectrum and signals UAV and
operators;

• Low complexity and easy to
implement;

• Could operate in all weather and
day/night conditions;

• Easier to improve due to modular
implementation of receivers and
digital signal processing units used
in implementation;

• Possibility to localize the pilot.

• Knowledge regarding UAV
communication specifications (e.g.,
frequency bands, modulations, etc.)
is required;

• Difficult to accurately determine
AoA;

• Difficult to use in urban areas due to
fading and multipath phenomena;

• Vulnerable to malicious or illegal
modified RF that will exceed
receiver capabilities.

[103–113]

3.2.1. Radio Frequency Sensors (RF)

UAV RF detection is a technique that involves the interception and analysis of the
signals transmitted (Tx, Rx) between the UAV and the ground station. Usually, these signals
consist of uplink (from the ground station) control signals and downlink (from the drone)
data signals (position and video data) [103]. A detailed analysis of the DDDSs that are
based on RF methods are presented in Section 4.

3.2.2. Radar

The Radar solution for drone defense systems represents an active method to identify
and localize a potential UAV threat. In order to determine the range, angle, or velocity of
a UAV, radar is widely used as an active sensor in sensing systems in a DDDS. A radar
system consists of a transmitter, a receiver, and a processor [73].
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3.2.3. Imaging Sensors

This technology involves the use of cameras that take images from a designated area
in order to determine the presence of a target drone.

Electro-Optical (EO) Cameras

Some DDDS use imaging sensors (EO/IR), which could be led by other sensors (such
as radar and RF) in order to obtain images of the drone and its main characteristics (e.g.,
payload). These images can be recorded and analyzed by specialists in order to determine
the threat level [55].

The main disadvantage of this method is its low performance under dark and foggy
conditions. Moreover, the quality of the images depends on the quality of the lenses and
the angle of the photography (LoS is mandatory).

Infrared (IR) Cameras/Thermal

This method employs thermal IR cameras that are able to detect the heat produced by
a UAV’s hardware components, such as the motors, batteries, and processors.

This detection method presents disadvantages related to detection range and environ-
ment caused by the sensibility of the sensors that measure the thermal difference between
the drone and the background. In consequence, the detection of drone presence depends
on the drone’s motor temperature, angle (LoS is mandatory), distance, and the temperature
of the IR sensors [58].

3.2.4. Acoustic Sensors

This technology involves the use of a microphone array that captures the noise gener-
ated by the propellers and rotors of a UAV and compares it with an intern acoustic signature
database [42].

Table 5 summarizes the advantages and limitations of each of the different technologies
that were mentioned above.

3.3. Classification of Countermeasures

The necessity of DDDS arose for the first time in military applications under special
regulations that exceed other governmental or structure capabilities and responsibilities.
In consequence, the neutralization techniques are more numerous than the detection
techniques [30].

The most important DDDS countermeasures are as follows:

• Electromagnetic pulse (EMP)—a beam generated with the goal to damage the internal
electronics of the target drone [115–117];

• Interceptor drone/Collision Drone—a drone used to force the target drone to land or
return home [118–123];

• Lasers—directed rays used to destroy the target or blind the camera (dazzler) [124–129];
• Magnetic—use powerful magnets in order to create a magnetic field around a protected

area [130];
• Prey birds—eagles or falcons specially trained to attack the enemy’s drone [131];
• Shooting nets—a net is launched towards the target drone to prevent the propellers

from rotating [132];
• Projectiles—large-caliber ammunition used to destroy the target [133];
• Missiles—conventional ammunition, could be guided or unguided [133];
• Guns—conventional weapons and ammunition [133];
• Water cannons—a stream of water is directed towards the target drone [134];
• RF/GNSS jamming—disrupt the communication of the target drone with the control

station and/or global navigation satellite system (GNSS) [135–139];
• Spoofing—decoys the drone by using imitation GNSS and control signals in order to

take over the command [140–145];
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• Mixed countermeasure techniques—use two or more countermeasures in order to maxi-
mize the neutralization rate.

The main advantages and drawbacks of each of the different countermeasure technique
are presented in Table 6.

Table 6. Characteristics and limitations of countermeasure techniques.

Type Pros Cons References

Electromagnetic pulse
(EMP)

• Could burn or interfere with the
internal electronics of the drone,
disrupting its operation;

• Could operate in both narrowband
and wideband domains.

• Accurate direction of jamming is
necessary;

• Difficult to know the effectiveness
of jamming.

[115–117]

Interceptor drones
• Searching and tracking capabilities;
• Could carry weapons and

ammunition.

• Requires a relatively close
approach to the target;

• Have a considerable delay.
[118–123]

Lasers

• Could operate at low powers
(dazzlers) to blind the UAVs cameras
or high power, which could
burn/destroy the target;

• Easy to track the target;
• Cheaper and safer than projectiles or

another physical countermeasure.

• Sensitive to weather conditions;
• It is necessary to have an accurate

measurement of the target’s
position;

• High power lasers could interfere
with other systems.

[124–129]

Magnetic • Cost effective;
• Could respond to multiple threats.

• Small protected area;
• Could interfere with other

systems.
[130]

Prey birds • Does not require complex technology;
• Fewer humans are required.

• Applicable only to slower and
small UAVs;

• Could harm the falcons.
[130]

Projectiles/
shooting nets/
water cannons

• Effective against any type of UAV;
• Work in all weather conditions;
• Quick reaction method.

• Might cause collateral damage;
• High costs;
• Requires professional operators.

[131–134]

RF/GNSS jamming

• Could neutralize grouped targets
simultaneously, degrading their
received signal-to-noise ratio (SNR);

• GNSS frequencies and bands are
widely known and relatively easy to
jam;

• The directivity diagram of the
jamming signal can be oriented and
directed as desired.

• Ineffective against autonomous
UAVs;

• Ineffective against drones that use
inertial navigation
systems/sensors (INS);

• Ineffective against UAVs that use
encrypted communications;

• Effective only for short distances;
• The jamming could interfere with

other sensible equipment.

[135–139]

Spoofing

• DSP and AI algorithms could copy
and reproduce the control
communication signal with high
accuracy in a relatively short time;

• Could exploit the vulnerabilities of
various systems of UAVs.

• It is necessary to have a consistent
analysis of the targeted UAVs
regarding their operation
frequencies;

• Spectrum sensing systems are
desirable.

[140–145]
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However, as pointed out in [35], destroying the drone does not mean that the problem
is solved. Even if a drone is destroyed using one of the methods listed above, it is just half
of the answer. It is critical to discover and detain the operator of the illegally flying UAV in
order to resolve the problem completely. Without this, a motivated operator will almost
certainly return with a newer and better UAV capable of causing even more disruption
and damage.

3.4. Regulations Regarding the Use of Jamming in DDDSs

For most of the above-mentioned categories of countermeasures, there are not currently
any regulations in force. However, in the case of RF jamming, several existing regulations
apply, which will be detailed in the following paragraphs.

The neutralization of drones using jammers is still (in most countries) not legally
permitted and is currently the subject of numerous regulatory and legal discussions.

The EU authorities were among the first organizations that took a position regarding
the use of jamming devices. The Directive 2014/53/EU prohibits the use of such devices
that could cause harmful interferences to the authorized radiocommunications and prevent
the normal operation of the communications using radio frequencies [146]. This directive
was transposed in all of the member state’s legislations.

The Directive 2014/53/EU was transposed into Romanian legislation by Government
Decision no.740/2016. According to this decision, the manufacture, importation, possession,
advertising, placing on the market, making available on the market, putting into service
and/or use of radio equipment or devices designed to cause harmful interference (jammers)
are all prohibited and sanctioned with contravention [147].

In the UK, there were a lot of concerns regarding the collateral damage and the safety
risks that must be taken into consideration when using jamming, because of the radio
signal interference and the impact on other airspace users. However, only a few regulations
have stated that such technology should not be used in any circumstances [148].

The FCC (Federal Communications Commission) in the United States does not merely
state that the manufacture, sale, importation, and operation of jammers are all forbidden
(Communications Act of 1934, Section 301), but that there are some exceptions, such
as institutions under the US government. There is always the risk of a drone losing
control, crashing, and causing property damage, or personal harm, when a drone jammer
is deployed. This means that anyone using a drone jammer, even government-authorized
workers, could be held liable. As a result, the deployment of drone jammers by private
entities, such as power companies or airports, is still sporadic but strictly regulated. Only
the federal government has the ability to approve the use of drone jammers, and this
rigorous restriction extends to their manufacture, importation, and sales [149].

In the Russian Federation, flying a drone is legal. However, most Russian cities are
equipped with GPS jammers, which create radio interference, preventing electronics, such
as drones, from operating normally. As a consequence, drone users have to keep a safe
distance from them because all of the major cities have integrated GPS jammers that can
interfere with their drone positioning [150]. Also, there are some regulations that prohibit
flying a drone within 500 m of a military installation.

In P. R. China, only the local authorities can use jammer “guns” and other RF DDDSs [151].
Despite of the lack of regulations regarding the use of RF jamming signals against

drones, and some risks that should be taken into consideration, this method has to be
considered to be among the most efficient.

4. Drone Detection and Defense Systems Based on RF Methods

As was mentioned in Section 3, one of the most used methods for drone detection is
the identification of the RF signals that are exchanged by the drones with another entity
(ground station/operator). Moreover, the annihilation of the detected drones can also be
obtained by RF methods, by means of transmitting strong enough jamming signals that
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can interrupt the communication between the drone and its operator (as mentioned in
Section 3.3).

Usually, drones operate on different frequencies, but most commercial drones operate
in Industrial, Scientific, and Medical (ISM) frequency bands of 433 MHz and 2.4/5.8 GHz.
The simple power detection in these bands will not work due to the presence of other
legitimate users in the same geographical area. Therefore, most of the modern RF detection
systems provide the detection and identification of the special and unique signals that are
generated by the UAV or the data protocols implemented in a UAV.

There are two main functions that are necessary for the detection of the drones, as
follows: The identification of the presence of the drones by scanning the frequency spectrum
and localization of the drones. The annihilation function, which is necessary in order to allow
the defense against the detected drones, can be performed by means of RF jamming, in
order to interrupt the communication between the drones and their operators. Table 7
summarizes the main elements regarding the implementation of such systems. In the
following paragraphs, each of the below mentioned categories will be detailed.

Table 7. RF-based drone detection and defense systems.

References
Implemented

Functions
Methods

SDR Platform Used (Including Manufacturer,
City and Country)

[152] Identification
Localization

RF fingerprinting (SFS, WEE, PSE)
AoA (MUSIC, RAP MUSIC) USRP-X310 (Ettus Research, Santa Clara, CA, USA)

[153] Identification RF fingerprinting (DRNN) USRP-X310 (Ettus Research, Santa Clara, CA, USA)
[154] Identification RF fingerprinting (CNN) USRP-X310 (Ettus Research, Santa Clara, CA, USA)
[155] Identification RF fingerprinting (KNN) USRP-B210 (Ettus Research, Santa Clara, CA, USA)
[156] Identification RF fingerprinting (KNN, XGBoost) -
[157] Identification RF fingerprinting (Wi-Fi) -

[158] Identification RF fingerprinting LimeSDR (Lime Microsystems, Guilford,
UK)(customized)

[159] Identification RF fingerprinting -
[160] Localization Received-signal strength (RSS) USRP N210 (Ettus Research, Santa Clara, CA, USA)

[161] Localization RSS AD-FMCOMMS5-EBZ Evaluation Board (Analog
Devices, Wilmington, DC, USA)

[162–164] Annihilation RF jamming BladeRF (Nuand, San Francisco, CA, USA)
[165] Annihilation RF jamming Great Scott Gadgets HackRF One

Most of the RF-based solutions that are described in the literature focus only on the
detection of the drones and do not propose countermeasures for the annihilation of the
detected drones. One of the reasons behind this might be the increase in the complexity
and price of the system that will be generated by the inclusion of such countermeasures
in the designed system. A second reason might be related to the fact that most of the
references that will be commented on in this section include academic research, in which
the target was not the design of a complete commercial system. A third reason could be
the fact that jamming equipment is not legal in many areas worldwide, as discussed in
Sections 2 and 3. However, as mentioned previously, the jamming solution can be used in
most of the countries if the system that generates it is used for national security or public
order purposes.

Almost all of the implementations that were used for validating the solutions that are
proposed in the literature are based on SDR platforms because of some of the significant
advantages that are offered by this category of platforms, such as the following:

• Low to moderate cost;
• Extended frequency range, which can usually cover all of the frequency bands that are

used by commercial drones;
• Scalability, allowing the extension of the platform, depending on the functions that are

foreseen, to be implemented;
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• Flexibility, allowing the processing of RF signals corresponding to different communi-
cation standards.

Only a few of the existing works include aspects that are related to both of the functions
that were mentioned previously as necessary for the detection of the drones, identification
and localization. Such an example is [152], where the authors proposed a drone detection
system based on multi-dimensional signal feature identification. After identifying the
channel on which the drone communicates with the controller, features, such as signal
frequency spectrum (SFS), wavelet energy entropy (WEE), and power spectral entropy
(PSE), are extracted in order to allow a precise identification of the drone. In a subsequent
step, MUSIC and RAP-MUSIC algorithms are used for performing the localization of the
drone, by using information, such as azimuth and elevation. The proposed solution is
implemented and tested using USRP X310 SDR platforms and a circular antenna array,
obtaining an average detection rate of more than 95%.

In most of the papers that are concerned with the identification of the drones RF
fingerprinting techniques are used, which rely on the unique characteristics of the RF
signal waveforms captured from different drones [153–157]. In [153], a classification of
the detected drones is made using a deep residual neural network (DRNN), the results
being validated using a USRP X310 SDR platform as a receiver and nine different drones as
targets. The authors of [154] separate Wi-Fi and Bluetooth signals from UAV transmitted
signals based on their bandwidth and modulation features and classify the UAV signals
using machine learning (ML) techniques. In [155], the detection of multiple drones is
performed using the k-nearest neighbor (KNN) algorithm after performing a short-time
Fourier transform (STFT) on the received signal. A real-time testbed based on the USRP
B210 SDR platform is also used for evaluating the performance of the proposed method. A
combination of RF fingerprints and hierarchical learning is used in [156] for the classification
of the detected drone signals. A Wi-Fi statistical fingerprint approach is proposed in [157],
which accounts for the particular characteristics of the Wi-Fi control traffic produced by
drones and their remote controllers.

In [158], a solution that is based on the low cost LimeSDR platform is developed
for detecting the presence of drones in the 2.4–2.5 GHz ISM band. The authors use the
LMS7002M RF chip from the LimeSDR module but customize the firmware of the FPGA
located on the same SDR platform in order to implement the signal processing steps that are
necessary for the identification of the RF signals that are transmitted by different drones.

The authors of [159] apply a STFT on the RF signals that are collected using a spectrum
analyzer and calculate the time guards associated with the different hopping sequences
using the autocorrelation function (ACF) in order to obtain an accurate differentiation of
the different UAV remote control (RC) signals.

The following paragraphs will detail the different approaches that were proposed for
the implementation of the localization function.

A received-signal strength- (RSS-) based 3D localization system utilizing a software-
defined radio is proposed in [160], using the recursive least squares (RLS) algorithm in
order to numerically estimate the drone’s 3D position.

The authors of [161] propose a localization approach based on the arrays of directional
antennas, for obtaining the direction of arrival (DoA) of the NTSC signal that is transmitted
by the drones.

Although the articles that were mentioned above only focused on the detection of
drones based on RF methods, there are also papers that present implementations of the
annihilation function using RF jamming as a countermeasure against drones [163–165].

In [162,163], a low-cost SDR platform, BladeRF X40 (Nuand, San Francisco, CA, USA),
was used as hardware to implement a jamming system against unauthorized UAVs. The
GNU Radio toolkit was used as a software environment for performing the necessary signal
processing tasks. In [162], the communication of the drone with the remote control in the
2.4 GHz ISM band was targeted, whereas in [164] the GPS navigation system was targeted.
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The authors of [164] implemented a protocol-aware jammer using the BladeRF SDR
platform as hardware. Tests were made to target the Futaba Advanced Spread Spectrum
Technology (FASST) and the Advanced Continuous Channel Shifting Technology (ACCST)
UAV remote control systems.

In [165], a portable jammer is proposed, based on the HackRF One SDR platform
and a Raspberry Pi as a host computer. Multiple tests were made in order to validate the
proposed solution, in both the 2.4 GHz and 5.8 GHz ISM bands and in the GPS L1 band.

5. Challenges and Future Perspectives for Drone Detection and Defense Systems

The previous sections contained a review of the different approaches that can be used
for implementing a DDDS. In this section, the challenges that currently have to be faced
when developing such a system will be detailed, together with a discussion regarding the
future perspectives of this domain.

One of the challenges that is faced when implementing a DDDS is the ability to identify
and, in a further step, to annihilate not only one, but several different target drones. In
recent years, many applications have used multiple drones [166], therefore, such a feature
becomes an important characteristic for a DDDS. Depending on the sensors that are used
in the system, the possibility of detecting several target drones may or may not exist. A
few examples of systems that include such a feature exist in the literature. In [167,168],
algorithms are developed in order to allow multi-UAV detection using video streams.
In [169], an RF-based deep learning (DL) algorithm is proposed for performing multiple
drone detection. The possibility of a simultaneous annihilation of several drones is an even
more challenging task. Electromagnetic pulses (EMP) have been proposed as a possible
solution for defense against drone swarms [170]. RF jamming performed using antenna
arrays could also generate, by means of signal processing methods (beamforming), multiple
beams that could be targeted towards multiple target drones.

Another challenge that a DDDS would have to face, especially if the area in which
the system is installed is a residential area, and there are several households in the close
neighborhood, is to avoid interference or damage to nearby equipment (in the case of
RF jamming and EMP) and to respect the privacy of the nearby neighbors (in the case of
imaging sensors). In the case of RF jamming, this could be solved if the antennas that are
used or the beams, in the case of using a beamforming approach, are very directive and
targeted directly towards the target drone(s).

When referring to a DDDSs based on RF methods, one of the main challenges that has
to be addressed is related to the legal issues around the use of jamming as a countermeasure,
as was also commented on in Section 3.4. For the time being, in most of the regions
worldwide, such a countermeasure can only be legally used when it is integrated into
a system that is used for the defense of national security or for public order objectives.
However, as the number of situations when such a system would be necessary also applies
to the defense of private areas that cannot be included in the above mentioned categories, it
is to be expected that the legislation in this domain might be modified in the near future in
order to include the possibility of private users also legally using such a system, as long as
the interference caused to the nearby areas is kept below certain well-defined thresholds.

An important limitation of RF-based DDDSs is related to the impossibility of detecting
and annihilating autonomous drones in cases when they have a predefined flying path and
do not have any active data communication with an operator located on the ground.

As mentioned in Table 5, each of the different types of sensors (RF, radar, imaging,
and acoustic) has its own drawbacks and limitations. As such, the performance of a DDDS
that is implemented using a single type of sensor is directly affected by the disadvantages
and limitations of that particular category. By combining several different sensor types
in a single hybrid DDDS, the system could benefit from the advantages of each different
category of sensors. A first benefit would be the increase in accuracy that such a hybrid
system could achieve, when the information regarding the identification and localization
of the drone would be obtained from multiple different sensors. A second benefit would be
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related to the possibility of detecting the target drone in situations when one of the sensor
types would not allow the detection on its own. For example, if we consider a hybrid
DSSS that is implemented using both RF and imaging sensors, the imaging sensors could
be used for detecting autonomous drones (that cannot be identified using the RF sensors)
and the RF sensors could be used for detecting drones in low visibility conditions (when
the imaging sensors could not provide the detection). Very few implementations of such
hybrid systems are described in the literature (for example those in [105,115]), and we
consider that such an approach is a promising future research and development direction
for DDDSs.

6. DronEnd Detection and Defense System

In the current section, a drone detection and defense system, designed and imple-
mented by the authors, together with a research team from the cybersecurity company
Cyberwall [171], will be presented. The system was developed within the framework of the
DronEnd research project [172]. The preliminary details regarding the project were given
in [173].

The goal of the DronEnd ground defense system is to secure a certain area against
the unauthorized presence of drones. In order to achieve this goal, the DronEnd system
scans the RF spectrum in order to detect the presence of the drones in the supervised area,
identifies the location of the drone by means of AoA algorithms, and annihilates the drone
by using RF jamming methods. The block diagram of the implemented DronEnd ground
defense system is presented in Figure 2.
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USB 3.0 

RF Cable 
UART 

 

USRP X310               
SDR platform 

Twin RX Twin RX Host signal 
processing 

PC 

USRP 
B200mini 

Motorized 
antenna 
mount 

Power 
amplifier 

Motor 
control  

Figure 2. Block diagram of the DronEnd ground defense system.

In the following subsections, all of the elements of the system will be detailed, high-
lighting the steps that are necessary in order to perform the functions of detection, localiza-
tion, and annihilation of the drone through jamming.

6.1. Detecting the Presence of the Drone Using Spectrum Sensing Algorithms

A first step required for detecting the presence of a drone in the case of RF-based drone
defense systems is to monitor the radio spectrum through a spectrum sensing process in
order to identify the signals that are transmitted by the drone. For the implementation of
the spectrum sensing process in the DronEnd system, spectrum sensing algorithms based
on the energy detection method have been used. Algorithms, such as 3EED [174] and 3EED
with an adaptive threshold [175], that were previously developed, provide improved perfor-
mance compared to the classical energy detection (CED) [176] algorithm and were used to
identify the presence of the drones in the monitored area. The above-mentioned algorithms
were implemented on SDR platforms from the USRP family (USRP X310 (Ettus Research,
Santa Clara, CA, USA) [177] equipped with Twin-RX RF Daugterboards (Ettus Research,
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Santa Clara, CA, USA) [178], 10–6000 MHz frequency range). The frequency bands that
are used by the drones that were used to test the DronEnd system (DJI Mavic Air (SZ DJI
Technology Co., Ltd., Shenzhen, China) [179], DJI Phantom 4 Pro v2.0 (SZ DJI Technology
Co., Ltd., Shenzhen, China) [180], and DJI Mini 2 (SZ DJI Technology Co., Ltd., Shenzhen,
China) [181]) were the 2.4 GHz (2400–2500 MHz) and the 5 GHz (5730–5830 MHz) ISM
bands, which can be covered using the above-mentioned SDR platforms that can receive
signals on frequencies up to 6 GHz. Because the position of the target drones was not
initially known, omnidirectional antennas were used in this step.

Figure 3 shows the graphical user interface that was implemented in order to view
the results of the spectrum sensing. The signal that was transmitted by the DJI Mavic
Air drone on channel four of the ISM 2.4 GHz band can be seen as captured using the
USRP X310 SDR platform. In the following subsections, the other elements of the DronEnd
system will be detailed, highlighting the steps that are necessary in order to perform the
functions of localization and annihilation of the drone through jamming. The capture
of the RF data was performed using a GNU Radio python script. As the instantaneous
bandwidth captured using the Twin-RX RF daughterboard is smaller than 100 MHz, in
order to cover the 100 MHz bandwidth of the 2.4 GHz and 5 GHz ISM bands, several
sub-bands were concatenated.

 

Figure 3. Graphical user interface of the spectrum sensing process implemented in the DronEnd
system, showing the signal transmitted by the DJI Mavic Air drone in the 4th channel of the 2.4 GHz
ISM band.

Once the signal that is transmitted by the target drone is detected, the next step is
triggered, which is to localize the angle of arrival of the received signal, as will be discussed
in the next subsection.

6.2. Localization of the Drone Using AoA Algorithms

Once the frequency that is used by the drone to communicate has been identified, a
second necessary step is to obtain information about the position of the drone. This step
was performed using AoA algorithms for detecting the angle of incidence of the detected
RF signal. Such algorithms exploit the phase difference of the signals that are received from
the drone using a multi-antenna system. The SDR platform that was used as the hardware
for providing the RF receive front-end was the USRP X310 [177], on which two Twin-RX
RF modules [178] were mounted (covered frequency range of 10–6000 MHz, instantaneous
bandwidth 80 MHz). Each of the Twin-RX modules offers two coherent reception channels,
and the local oscillator that was used can be shared by the two boards, so that in the end,
a total of four coherent reception channels are obtained and are aligned in phase. The
antenna system that was used was a linear system of four antennas, spaced at a distance
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equal to half the wavelength of the minimum frequency that the drones used for testing
could transmit (2.4 GHz). In order to estimate the initial phase difference between the four
reception channels, a calibration step was required after each system restart, which involves
the transmission of a test signal that will be received through the RF cables of equal length
on all four of the reception channels. A 5-port RF splitter (Mini-Circuits ZN4PD1-63HP-S+
(Mini-Circuits, New York, USA) [182]) was used in order to distribute the signals. Figure 4
shows both the antenna system that was used and the USRP X310 SDR platform during the
calibration stage.

 

Figure 4. The linear antenna system that was used and the USRP X310 SDR platform during the
calibration procedure of the Twin-RX RF modules.

Once the calibration step was completed, the four dipole antennas (VERT2450 [183])
that make up the antenna system were connected to the four receive channels of the USRP
X310 SDR platform and, based on the phase difference of the signals that were received,
the angle of incidence that corresponds to the drone location could be identified by using
AoA algorithms. We used one of the classical AoA algorithms, the MUSIC algorithm, and
the result was both displayed on a graphical user interface, as shown in Figure 5, and
forwarded as an input to the software module that is responsible for setting the orientation
of the jamming antenna, which will be detailed in the next subsection.

  

Figure 5. Tests performed using the DronEnd ground system (DJI Mavic AIR target drone). The
estimated angle of incidence can be noticed.
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The positioning that was thus obtained was one in azimuth, as the antenna system
that was used was placed horizontally. By using a second system that was located in a
vertical plane, the elevation of the drone could be also estimated.

6.3. Annihilation of the Drone Using RF Jamming

A final step is to transmit a jamming signal to the identified target drone in order to
disrupt the communication between the drone and its operator. As the jamming signal
should only be transmitted in the direction of the target drone, in order to avoid interference
with other equipment in the area, a directional antenna was used for the jamming operation.
Figure 6 shows the following components that were used to implement this step: the
transmitting antenna, the motorized antenna mount, the stepper motor control module
that was used to move the antenna mount, and the power amplifier.

 
Figure 6. Components used for transmitting the jamming signal.

The angle of incidence that was detected by the AoA algorithm was processed (filtered)
using a script implemented in the Matlab environment in order to remove any erroneous
indications related to the position of the drone and was subsequently transmitted using a
serial interface (UART) to the motor control module (MCM), which controls the stepper
motors that are used to move the motorized support for positioning the jamming antenna.
The MCM was based on a Microchip ATMega328p processor, which, using the angle
information that is obtained using the AoA algorithm, controls the stepper motors. Two
Nema 17 stepper motors, controlled using Texas instruments DRV8825 drivers, were used;
one to adjust the azimuth and one to adjust the elevation of the jamming signal antenna.
In the current configuration, given that the drone’s position was estimated only in the
azimuth plane, the commands were transmitted only to one of the two motors (the one that
was responsible for the azimuth movement).

The SDR platform that was used to generate the jamming signal was a USRP B200mini
platform (70–6000 MHz frequency range) (Ettus Research, Santa Clara, CA, USA) [184].
Given that the maximum power that can be obtained at the output of the SDR platform is
10 dBm, a power amplifier (Mini-Circuits ZHL-2W-63-S+ (Mini-Circuits, New York, NY,
USA) [185]) was used to amplify the jamming signal in order to extend the range of the
system, which offers a 42 dB gain and a maximum output power of 2 W. The antenna that
was used to transmit the jamming signal was a Ubiquiti UMA-D (Ubiquiti Inc., New York,
NY, USA) directional antenna [186], which covers the 2.4–2.5 GHz and 5.1–5.9 GHz bands
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and offers a 10 dBi gain in the 2.4 GHz band and a 15 dBi gain in the band of 5.8 GHz.
By using a directional antenna that targets the location of the drone for the transmission
of the jamming signal, the interferences that are caused to other communication systems
that are operating in the neighborhood are minimized. Moreover, the transmit gain can
be adjusted depending on the size of the area that has to be protected. Figure 7 shows
the jamming signal with a 10 MHz bandwidth emitted in channel four of the 2.4–2.5 GHz
ISM band, captured using an Anritsu MS2690A (Anritsu Corporation, Atsugi, Japan)
spectrum analyzer.

 
Figure 7. Jamming signal transmitted by the DronEnd ground system on channel 4 in the 2.4–2.5 GHz
ISM band.

The tests were performed in an outdoor suburban scenario using the DJI Mavic Air,
the DJI Phantom 4 Pro v2.0, and the DJI Mini 2 drones as targets and the annihilation of
the drone, which resulted in a forced landing on the position where the drone was located
when the jamming signal was turned on, was possible for distances of 40 m from the area
where the DronEnd ground system was located.

6.4. Conclusion and Future Research Directions

To conclude, the main novel elements that are introduced by the DronEnd system,
when compared to other drone detection and defense systems based on RF methods that
were mentioned in Section 4, can be summarized as follows:

• Incorporates all of the three functions (identification, localization, and annihilation)
that are necessary for a drone detection and defense system in an integrated and scal-
able platform, which can be reconfigured depending on the requirements of different
use cases;

• Includes an agile and accurate identification subsystem, based on improved spectrum
sensing algorithms, which performs a real-time identification of the signals that are
transmitted by the drone and, moreover, allows a dynamic tracking of the signal
transmitted by the drone, even when the transmit frequency is changed;

• Annihilates the detected drone by means of jamming, avoiding at the same time
significant interference with nearby devices, as a directional antenna, targeted directly
towards the target drone using a motorized antenna mount, is used.

Several aspects are considered as future research directions, in order to improve the
performance of the proposed system.
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The first direction is related to the possibility of replacing the mechanical motorized
antenna mount that was used for targeting the directional jamming antenna with an
equivalent static planar antenna array. By using such an approach, the orientation of
the resulting antenna beam that was necessary for following the target drone would
not involve any moving parts, as the steering would be obtained only by using signal
processing methods. The advantages of such an approach would include a smaller delay,
the possibility of adjusting the beamwidth by signal processing means, depending on the
application necessity, and the absence of aging effects that might affect mechanical parts.
However, as the transmit power level that is needed in order to obtain a large enough range
for the system might be high, a challenge that would have to be addressed is the design of
a power amplification stage for supplying the planar antenna array.

The second direction is related to the addition of a second antenna array, in an orthog-
onal plane, compared to the one in which the current antenna array is located. By using
such a setup, the identification of the target drone could be performed both in azimuth and
elevation, allowing for a more precise steering of the directional antenna that is used for
transmitting the jamming signal.

The third research direction is related to a subject that was also commented on in
Section 5, which is the implementation of a hybrid DDDS in order to improve the overall
performance of the system. The addition of imaging sensors is considered, as such an
approach would have a twofold contribution; it would improve the accuracy of the detected
targets for the situations in which the target drone would be detected by both types of
sensors, and it would allow the detection of the target drones also in the situations when
only one type of sensor would be able to identify them.

7. Conclusions and Future Work

In this paper, a survey related to the current status of drone detection and defense
systems was performed and our own solution for a drone defense system based on SDR
platforms (DronEnd) was presented. Different aspects, such as regulatory issues and
reported incidents that involved drones, were included in the survey. A classification of the
drone detection systems that were based on the type of sensors that are used was performed.
A detailed description of the RF-based drone detection and defense systems was made,
with an emphasis on the use of SDR platforms for the implementation of such systems.
The drone defense system that was developed by the authors within the framework of the
DronEnd research project is presented in the final part of the paper. As future work, we
intend to conduct a detailed testing of the DronEnd ground system, in order to verify the
performance of our solution from the detection, localization, and annihilation points of
view and we also plan to develop a flying version of the DronEnd system, by mounting
an embedded SDR platform on a support drone and approaching the target drones from
the air.
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Abbreviations

ACCST Advanced Continuous Channel Shifting Technology
ACF Autocorrelation Function
ACMA Australian Communication and Media Authority
AI Artificial Intelligence
AoA Angle of Arrival
CNN Convolutional Neural Network
DDDS Drone Detection and Defense Systems
DoA Direction of Arrival
DRNN Deep Residual Neural Network
DSP Digital Signal Processing
DL Deep Learning
EASA European Union Aviation Safety
EMP Electromagnetic Pulses
EO Electro-optical
FASST Futaba Advanced Spread Spectrum Technology
FCC Federal Communications Commission
FPGA Field-Programmable Gate Array
GNSS Global Navigation Satellite System
GPS Global Positioning System
INS Inertial Navigation Systems/Sensors
IR Infrared
IS Islamic State
ISM Industrial, Scientific, and Medical
KNN K-Nearest Neighbor
LoS Line of Sight
MDS Micro-Doppler Signatures
MCM Motor Control Module
ML Machine Learning
MUSIC MUltiple SIgnal Classification
NTSC National Television Standards Committee
PSE Power Spectral Entropy
RC Remote Control
RF Radio Frequency
RLS Recursive Least Squares
RSS Received-Signal Strength
SDR Software-Defined Radio
SFS Signal Frequency Spectrum
SNR Signal-to-Noise Ratio
STFT Short-Time Fourier Transform
UAS Unmanned Aerial Systems
UAV Unmanned Air Vehicle
WEE Wavelet Energy Entropy
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Abstract: Blind modulation classification (MC) is an integral part of designing an adaptive or
intelligent transceiver for future wireless communications. Blind MC has several applications in
the adaptive and automated systems of sixth generation (6G) communications to improve spectral
efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent
software-defined radios (SDR) for future communication. In this paper, we provide various MC
techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We
focus on the most widely used statistical and machine learning (ML) models and emphasize their
advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum
a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest
neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods.
This survey will help the reader to understand the main characteristics of each technique, their
advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and
ML-based algorithms, under various constraints, which allows a fair comparison among different
methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is
also provided. We also provide a survey of some practical experiment works carried out through
National Instrument hardware over an indoor propagation environment. In the end, open problems
and possible directions for blind MC research are briefly discussed.

Keywords: blind modulation classification; orthogonal frequency division multiplexing; higher-
order cumulant and cyclic cumulant; maximum-likelihood; maximum a posteriori; deep learning;
convolutional neural networks; probability of correct classification; testbed implementation

1. Introduction

Blind modulation classification (MC) determines the modulation type of the received
signal, ensuring proper demodulation and retrieval of the transmitted data [1–4]. Recently,
MC has played a significant role in both military and civilian communications, such as
cognitive radio, signal intelligence, link adaptation, signal control, and SDR [3–7]. With an
intelligent receiver, blind parameter estimation and classification algorithms may be used,
resulting in a substantial increase in spectral efficiency since no predefined training or pilot
sequence is needed [8–10].

Over the years, various MC algorithms for single-carrier (SC) systems have been
developed, which can be divided into likelihood-based (LB) and feature-based methods
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(FB) [1,5,6,11–17]. Although the LB approaches are optimal in a Bayesian context, they have
high computational complexity [11]. They often necessitate prior information about the
signal parameters in order to distinguish modulation formats, which is typically undesir-
able in an intelligent or adaptive transceiver system. Furthermore, FB algorithms, which
consist of features extraction and classifier construction, usually provide a sub-optimal
solution. They are inherently simpler to implement, have less computational complexity,
and may not necessitate prior information about the signal parameters and channel statis-
tics. To identify the modulation schemes, existing FB approaches extract specific features,
such as cumulants [12,13], cyclic statistics [5,6,14–16], and wavelet transform [17], and use
threshold values to distinguish the extracted features. As a result, they are better fit for fad-
ing and additive white Gaussian noise (AWGN) channels. The algorithms [5,6,14–16,18–21]
based on higher-order cyclic statistics are reliable and perform well in flat fading as well
as in frequency-selective fading channels. They consider M-ary phase-shift keying (M-
PSK) and M-ary quadrature amplitude modulation (M-QAM) modulation schemes by
using non-zero cyclic frequencies of received signals. The combination of higher-order
correlation-, cumulant-, cyclic cumulant-, and cyclostationarity-based MC algorithm for
multiple-antenna systems is analyzed in [5]. The algorithm described in [6] is designed
for single-antenna and single-carrier (SC) systems. It requires the combined features of
cumulants and cyclic cumulants and performs well over flat fading channels. Further-
more, the algorithm proposed in [5,6] can also distinguish various quadrature PSK (QPSK)
variants, such as offset QPSK (OQPSK), minimum-shift keying (MSK), and π/4-QPSK
modulation types.

Recent advances in machine learning (ML) and data science have resulted in its ex-
tensive application in various fields. Artificial intelligence (AI) and other advanced ML
approaches have significantly improved state-of-the-art outcomes in computer vision,
speech recognition [22], drug discovery, genomics, and, most recently, physical layer com-
munication [23]. MC algorithms [24–36] focused on various ML algorithms. In [24], the MC
technique is evaluated using genetic programming (GP) and K-nearest neighbor (KNN).
Cumulants are utilized by GP as input features to distinguish modulation types. In [25],
extreme learning machine (ELM) and higher-order statistics-based MC algorithms for mul-
tiple antenna systems are presented. Convolutional neural networks (CNNs) are explored
in [26] that can distinguish modulation schemes even at low signal-to-noise ratio (SNR)
scenarios. Furthermore, CNN-based MC techniques are robust to prediction errors on car-
rier phase offset and SNR. The approach investigated in [27] extracts unique characteristics
using higher-order cumulants (HOCs), and then the feed-forward neural network model is
developed to distinguish modulation schemes. In comparison to typical centralized train-
ing, distributed learning-based MC (DistMC) based on several edge devices can achieve a
faster training process and reduce communication costs through collaborative training [28].
Multi-task learning (MTL) based MC has a single trained model for all SNRs under carrier
frequency offset (CFO) and phase offset (PO) conditions [29,30]. In [35], an adversarial
transfer learning-based MC developed a framework for SC systems that combines transfer
learning with adversarial networks to handle the problem of limited data in a realistic
scenario. A complex-valued network [36] is presented to illustrate the enormous potential
for MC and show the higher classification performance as compared to the real-valued
network. The authors [37] studied a phoneme-based distribution regularization algorithm
for speech enhancement by utilizing speech recognition information in the modulation
domain. However, the approaches mentioned above [1,5,6,11–17,24–36] are only applicable
to SC systems.

Orthogonal frequency division multiplexing (OFDM) is a well-known multicarrier
modulation technology used in advanced wireless communications systems. OFDM is
employed in the 4G Third-Generation Partnership Project (3GPP) Long Term Evolution-
Advanced (LTE/LTE-A), Worldwide Interoperability for Microwave Access (WiMAX),
and high-speed wireless local area network (WLAN) standards such as 802.11n [19]. It is
also an integral part of 5G New Radio (NR) cellular. The key feature of OFDM is the ability
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to convert frequency-selective fading to flat fading channels. Due to the high spectrum
utilization and strong anti-multipath interference ability, the OFDM modulation scheme has
been employed as the main transmission approach for high data rate systems [38,39]. M-PSK
and M-QAM are the two most popular modulation schemes that are used with OFDM. MC
for OFDM signals is a critical research challenge for 5G and beyond wireless communication,
where AI would be a fundamental aspect of the communication system [40–43].

Various MC algorithms for the OFDM systems were carried out in [44–97]. The al-
gorithms for multiple-input multiple-output and OFDM (MIMO-OFDM) systems based
on deep neural network (DNN) and Gibbs sampling are investigated in [44]. Moreover,
these methods are restricted to known channel conditions and/or perfect synchroniza-
tion. The likelihood-based MC algorithm for index modulation investigated in [47,71] is
applicable to both known and unknown channel state information (CSI). However, both
techniques require perfect synchronization classification of M-PSK/M-QAM modulation
types. The likelihood and maximum a posteriori [50] based MC approach are employed
when CSI is known. The MC approach based on the statistical features of the received
OFDM signal is studied in [61]. This technique uses mean, skewness, and kurtosis as
features to distinguish QPSK, 16-QAM, and 64-QAM modulation schemes. However,
this technique does not perform well with timing and frequency synchronization errors.
The MC algorithm based on amplitude moments is discussed in [62]. This method dis-
tinguishes between 16-QAM and 64-QAM modulation schemes by using the correlation
between any two subcarriers. The non-parametric Kolmogorov–Smirnov (KS) based tech-
nique presented in [98,99] is used to classify M-PSK/M-QAM modulation schemes. It
operates in the presence of known timing offset and unknown frequency and phase offsets,
and the non-Gaussian noise channel. Most of the above MC algorithms for the OFDM
signal are restricted to known CSI and/or perfect synchronization cases. Moreover, a dis-
crete Fourier transform (DFT) and normalized higher-order cumulant [63] based blind
MC is discussed to classify the lower-order digital modulation schemes for the OFDM
system. However, the classification accuracy is unsatisfactory, subjected to channel degra-
dation. In [96], the authors developed a high-performance deep residual network (ResNet)
with a triple-skip residual stack (TRNN) based MC algorithm for real-time OFDM signal
classification in dynamic fading channel conditions.

The objective of this paper is to present a comprehensive review of various MC tech-
niques for OFDM signals. The statistical approach and the AI approach are two main classes
of MC algorithms that will be discussed in detail. We concentrate on the most common
statistical and ML models, emphasizing their benefits and drawbacks. The contributions of
various research papers are summarized into compact forms. This will make it easier for the
reader to recognize the important features of each approach. Furthermore, we also present
results obtained by applying some statistical and ML algorithms with a testbed based on
the National Instrument (NI) radio frequency (RF) hardware over an indoor transmission
environment. Finally, challenges and potential research directions are briefly explored.

The remainder of the paper is organized as follows. The signal model of the received
OFDM system is presented in Section 2. The statistical approach for MC is discussed
in Section 3. We summarize the advantages and the limitations of AI models in MC in
Section 4. Finally, challenges and future research directions involved in MC are discussed
in Section 5. The organization of the paper is provided in Figure 1. The abbreviation used
in the rest of the paper is listed in Table 1.
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Table 1. List of abbreviations in alphabetical order.

Acronym Explanation

AI
ALRT
AMAP
ASB
AWGN
BAT
BFSF
BICM-ID
CNN
CSI
DBN
DVB
FB
FCP
FFT
FNSF
FPGA
FSF
FSST
GLRT
HGWO
HLRT
HOC
HOS
ICI
IQ
IQL
KNN
KS
LLR
MAP
MC
MFCC
MDNCC
NOMA
OFDM-IM
PCC
PDF
PER
PSO
SC
SDR
STFT
TDD
TF-HMS
UMP
VLC
WOA
WPS
WT

Artificial Intelligence
Average Probability Ratio Test
Approximated Maximum a Posteriori
Amplitude Spectrum of Bispectrum
Additive White Gaussian Noise
Bit Allocation Table
Bi-Fold Signal Fortification
Bit-Interleaved Coded Modulation Iterative Decoding
Convolutional Neural Network
Channel State Information
Deep Belief network
Digital Video Broadcasting
Feature Based
False Classification Probability
Fast Fourier Transform
Frequency Non-Selective Fading Channel
Field Programmable Gate Array
Frequency Selective Fading Channel
Fourier Synchrosqueezing Transformation
Generalized Likelihood Ratio Test
Hybrid Grey Wolf Optimization
Hybrid Likelihood Ratio Test
Higher Order Cumulant
Higher Order Statistics
Inter-carrier Interference
In-phase and Quadrature
Improved Q-learning
K-Nearest Neighbors
Kolmogorov–Smirnov
Log-likelihood ratio
Maximum a Posteriori
Modulation Classification
Mel Frequency Cepstral Coefficient
Multi-Distance-Based Nearest Centroid Classifier
Non-Orthogonal Multiple Access
Orthogonal Frequency Division Multiplexing with Index Modulation
Percentage of Correct Classification
Probability Density Function
Packet Error Ratio
Particle Swarm Optimization
Single Carrier
Software-defined Radio
Short-Time Fourier Transform
Time Division Duplex
Twin-Functioned Human Mental Search
Uniformly Most Powerful
Visible Light Communication
Whale Optimization Algorithm
Wavelet Packet Signals
Wavelet Transform
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Figure 1. The organization of the paper.

2. OFDM Signal Model

The system model of MC for the OFDM system is shown in Figure 2. It consists of an
adaptive OFDM transmitter, a receiver with statistics-based MC, ML-based MC, and DL-
based MC. The transmitter can adjust its baseband modulation format and the number of
subcarriers according to the requirement of the data rate and the available CSI. The signal
is transmitted over a frequency-selective fading channel. This channel introduces all kinds
of impairments into the transmitted signal, including timing, frequency, and phase offsets.
The receiver consists of an MC system pre-processing block and selection of a proper MC
algorithm. In the following subsections, we provide the mathematical framework of the
OFDM signal for MC.

The discrete baseband OFDM samples dm[n] of the mth OFDM symbol, obtained by
N-point inverse discrete Fourier transform (IDFT), which can be written as

dm[n] =
N−1

∑
k=0

Dm[k]ej2πkn/N , 0 ≤ n ≤ N − 1, (1)
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where N = ρs × Nd, ρs is the oversampling factor, Nd is the number of data subcarriers,
and Dm[k] is the baseband modulated oversampled data obtained by zero-padding the
baseband modulated information, i.e., M-PSK/M-QAM and denoted by D̂m[k]. Thus, Dm[k]
is given by

Dm[k] =

⎧⎪⎨⎪⎩
D̂m[k] 0 ≤ k ≤ Nd/2− 1
Ẑ0 Nd/2 ≤ k ≤ Nd(ρs − 1/2)− 1
D̂m[k] Nd(ρs − 1/2) ≤ k ≤ N − 1,

(2)

where Ẑ0 is a vector of zeros of length Nd(ρs − 1). To combat the effect of intersymbol
interference (ISI), a cyclic-prefix (CP) of Ncp samples from the end of the OFDM symbol
are added at the beginning of the OFDM symbol before the transmission. The transmitted
baseband OFDM symbol d̄m[n] of length N + Ncp, with CP is then given by

d̄m[n] =

{
dm[n + N] −Ncp ≤ n ≤ −1
dm[n] 0 ≤ n ≤ N − 1.

(3)

After passing through a frequency-selective fading channel with impulse response g[l]
of length L, the received baseband OFDM samples of the mth OFDM symbol are given by

xm[n] = e(j2πεn/N+φ)
L−1

∑
l=0

g[l]d̄m[n− l − τ] + ω[n], 0 ≤ n ≤ Ns − 1 (4)

where ε is the normalized carrier frequency offset (CFO), φ is the phase offset, τ is the
symbol timing offset (STO), Ns length of the OFDM symbol with CP, Ns = N + Ncp and
Ncp ≥ L, and ω[n] is the AWGN with zero mean and variance σ2

ω.

[3]݉ܦ[2]݉ܦ[1]݉ܦ[0]݉ܦ
ܰ]݉ܦ − 1]

݀݉[1]݀݉[2]݀݉[3]
݀݉[ܰ − 1]

݀݉[0]

Figure 2. Block diagram of blind modulation classification for OFDM system.

3. Statistics-Based Approach to MC

3.1. LB Approach

In the LB system, MC refers to numerous composite hypothesis problems. The LB-MC
is based on the assumption that the probability density function (PDF) of the analyzed
waveform includes all classification information, depending on the embedded modulated
signal. The average likelihood ratio test (ALRT) [47], generalized likelihood ratio test
(GLRT) [46], and hybrid likelihood ratio test (HLRT) [47] are the main three LB-MC tech-
niques studied in the literature, based on the model selected for the unknown parameter.
In some works in the literature, quasi-ALRT [46] and quasi-HLRT [45,46] are also described.
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ALRT: In this method, unknown parameters are considered random variables with
specific PDFs. For the hypothesis Hj, which represents the jth modulation, j = 1, 2, ..., M,
the likelihood function (LF) is as follows

Λj
ALRT = ∑

vj

Λ[xm[n]|vj, Hj]p(vj|Hj), (5)

where Λ[xm[n]|vj, Hj] denotes the conditional LF of the received signal xm[n] associated
with noise over Hj, conditioned on the undefined vector vj under Hj. By integrating over
vj and using its known PDF, the problem is reduced to a basic hypothesis-testing problem.
The conditional LF for a baseband complex AWGN is provided by

Λ[xm[n]|vj, Hj] =
1

πN0
exp

⎛⎝− 1
η0

∑N−1
n=0 |xm(n)− sm[n]|2

N0

⎞⎠ (6)

where N0 represents the power spectral density (PSD) of AWGN in W/Hz, with the auto-
correlation E{ω[n], ω∗[n + τ]} = N0δ[n], with E{.} denoting the expectation and * repre-
senting the complex conjugate. Furthermore, here sm[n] = e(j2πεn/N+φ) ∑L−1

l=0 g[l]d̄m[n− l−
τ]. ALRT produces an optimal classifier in the Bayesian context when the chosen p(vj|Hj)
is the same as the true PDF.

GLRT: This approach considers the unknown parameters to be unknown deterministic.
The best result is obtained by carrying out the so-called uniformly most powerful (UMP)
test [100]. If UMP test does not exist or is difficult to obtain, a rational technique is used to
estimate the unknown parameters based on the assumption that Hj is true, and then utilize
these estimations in ALRT as if they were accurate. When maximum likelihood is applied
for estimations, the hypothesis test is known as GLRT. The unknown parameters of GLRT
are, of course, considered deterministic unknowns, and LF under Hj is provided by

Λj
GLRT [xm[n]] = max

vj
Λ
[
xm[n]|vj, Hj

]
. (7)

HLRT: This is the combined approaches of the above techniques, where the LF under
Hj is defined by

Λj
HLRT = max

vj1
∑
vj2

Λ
[
xm[n]|vj1 , vj2 , Hj

]
p(vj2 |Hj)dvj2 , (8)

where vj =
[
v†

j1
v†

j2

]†
with † as the transpose and vj1 and vj2 are vectors of unknown

parameters treated as unknown deterministic and random variables, respectively. Generally,
vj1 and vj2 are made up of parameters and data symbols, respectively.

It is to be noted that ALRT necessitates multidimensional convergence, while GLRT
necessitates multidimensional maximization. ALRT could be unrealistic due to the diffi-
culties of performing multidimensional integration in the presence of a large number of
unknown parameters and the requirement to know the PDFs. Furthermore, maximiza-
tion over unknown parameters in GLRT results yield the same LF value for nested signal
constellations, such as BPSK and QPSK, 16-QAM, and 64-QAM, resulting in inaccurate
classification. However, with HLRT, averaging over unknown data symbols eliminates
the GLRT problem of nested constellations. In the case of a two-hypothesis classification
problem, a decision is made on the basis of

Λ(1)
H [xm[n]]/Λ(2)

H [xm[n]]
H1≥
<
H2

ηl , l = A(ALRT), G(GLRT), H(HLRT), (9)
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where ηl represents the threshold. The left-hand side of (9) represents the likelihood ratio,
and the test is referred to as the ALRT, GLRT, and the HLRT, respectively, depending on
the approach used to estimate the LF. The extension of (8) to multiple classes is simple.
Likewise, the log function can be extended to the two members of the inequality (9). Table 2
lists multiple LB-MC algorithms proposed in the literature, outlining the modulation types,
uncertain parameters, and the channel employed.

Table 2. Summary of LB approaches for OFDM signals.

Author(s) Classifier(s) Modulation(s) Parameter(s) Channel
Average PCC
at 20 dB SNR

T. Yucek [45] Sub-optimum algorithm BPSK, QPSK,
16-QAM and 64-QAM Imperfect noise variance AWGN 99.9%

J. Leinonen [46] Quasi-log-likelihood Ratio
Test based classifer

BPSK, QPSK,
16-QAM and 64-QAM

Known channel correlation
between adjacent subchannels AWGN 98.50%

J. Zheng [47] ALRT, HLRT and
Energy-based detector

BPSK, QPSK,
8-PSK and 16-QAM

Known CSI, Known noise
variance and unknown CSI Rayleigh 97.40%

T. Fang [48]
Expectation maximization
block-quasi HLRT
(EM-Block-QHLRT)

BPSK, QPSK,
8-PSK and 16-QAM

Unknown CSI and unknown
noise power

Acoustic
Rayleigh 100%

M. Marey [49]

Iterative EM-based MC
algorithm, bit-interleaved
coded modulation iterative
decoding (BICM-ID) scheme

QPSK, 64-QAM,
1024-QAM and 8194-QAM

Presence of synchronization
error and known and unknown
CSI

Rayleigh 99%

An LB-MC for the OFDM system is studied in [45]. The aim of this work is limited
to reliable blind MC schemes. A maximum likelihood that provides optimal performance
in the presence of AWGN is introduced. A sub-optimal classifier is obtained based on
the optimal maximum-likelihood classifier to minimize the computational complexity.
The accuracy of such classifiers is evaluated through Monte Carlo simulations. In the
simulation, an OFDM system with 64 subcarriers is considered. The subcarriers are divided
into 4 bands, each of which has 16 subcarriers. In each sub-band, four distinct modulation
formats, namely BPSK, QPSK, 16-QAM, and 64-QAM, are used to transmit the signal
according to the channel conditions. Perfect CSI is considered for the simulation. It is
observed that the proposed sub-optimal algorithm achieves near to optimal performance
with significantly less complexity. As a result, it can be used rather than signaling in realistic
systems to improve spectral efficiency.

In the proposed method [46], a modified quasi-log-likelihood ratio (QLLR) based MC
for the OFDM system is studied. The ALRT- and GLRT-based classifiers need few symbols
to achieve acceptable classification performance in the presence of appropriate channel
estimation with relatively high SNR. To achieve acceptable performance, a modified QLLR-
based classifier needs high SNR and more symbols but their computational complexity
remains lower compared to the ALRT- and GLRT-based classifiers. In order to classify
QPSK, 16-QAM, and 64-QAM, the modified QLLR test is applied on received symbol sets.
This method seems to be feasible if the operating point of SNR is comparatively high as
compared to ALRT- and GLRT-based classifiers.

Another LB-MC for OFDM with index modulation (OFDM-IM) is analyzed in [47].
The modulation parameters in OFDM-IM often include the number of active subcarriers
in addition to the constellation of signals, which distinguishes them from traditional
modulations. Specifically, two MC cases are assumed. One is the MC with known CSI,
and another is the MC with unknown CSI. ALRT, HLRT-LLR, and HLRT-energy-based
classifiers are considered for the case of known CSI. When compared to ALRT, both HLRT-
LLR and HLRT-energy have lower computational complexity, but show degradation in
classification performance. In the case of unknown CSI, the energy-based detector is first
used to recognize the active subcarriers, then the expectation-maximization (EM) algorithm
is employed to estimate the CSI for each hypothesis. The number of subcarrier N = 128,

528



Sensors 2022, 22, 1020

CP length Ncp = 15, number of channel tap L = 5 and Rayleigh channel are considered
the simulation parameters. The simulation results revealed that with an increment in the
observed data, the classification accuracy of MC with unknown CSI is near the MC with
known CSI. Furthermore, a numerical analysis of MC for OFDM and OFDM-IM shows
that OFDM-IM has less classification accuracy than the OFDM. It illustrates that OFDM-IM
would have less MC efficiency than OFDM because of the identification of the additional
parameter, i.e., the number of active subcarriers that would be necessary for OFDM-IM.

In [48], a MC for OFDM signal underwater acoustic multipath channel is studied.
It works in the presence of unknown channel impulse response (CIR) and noise power.
Channel is first estimated by the EM block. If the number of blocks in EM increases,
the channel estimation increases accordingly. Then, the QHLRT method is used to classify
the subcarrier modulations. The EM-block-QHLRT method is compared with the EM-
QHLRT. The number of subcarrier N = 1024, CP length Ncp = N/4, sampling frequency
48 kHz and acoustic Rayleigh channel are considered the simulation parameters for this
technique. It is observed that after 5 dB SNR, the classification rate achieved by EM-block-
QHLRT is higher than 90%, which shows a higher accuracy compared to the EM-QHLRT-
based classifier.

In [49], an iterative EM-based MC algorithm is used for OFDM-SDR systems. The soft
information provided by the channel decoder of bit-interleaved coded modulation iterative
decoding (BICM-ID) scheme is utilized as a priori information to the proposed classifier.
Simulation is done for the perfect CSI and imperfect CSI for higher-order modulations over
the Rayleigh fading channel. The results show a slight difference between the perfect CSI
and imperfect CSI, which shows the robustness of the suggested method. The suggested
method improves significantly with iterations and outperforms traditional uncoded al-
gorithms. The suggested method obtained acceptable classification performance in the
presence of synchronization error, i.e., timing, frequency, and phase offset with reduced
processing time. Furthermore, as the constellation size increases, the identification per-
formance degrades. This is because of the less reliable soft information provided by the
channel decoder.

3.2. Maximum a Posteriori (MAP) Approach

MC is the process of determining the modulation format of received signals from a
set of L modulation formats M =

{
Mj, j = 1, 2, ..., M

}
, based on a series of N received

samples xm = [xm[0], xm[1], ..., xm[Ns − 1]]. The maximum a posteriori (MAP) criteria can
be used to find the optimal modulation classifier by using the Bayes decision principle [57].
For received signal xm, the a posteriori probability of Mj is defined as P(Mj|xm), and the
decision is made by

M̂j = arg max
Mj∈M

P(Mj|xm), (10)

Another well-known classifier originating from the MAP criteria is the ML classifier.
The a posteriori probability can be expressed using the Bayes’ rule as

P(Mj|xm) =
P(xm|Mj)P(Mj)

P(xm)
, (11)

where P(xm|Mj) denotes the likelihood of the received samples xm when the modulation
format Mj is given, P(Mj) is the prior likelihood of the modulation format Mj, and P(xm)
is the marginal likelihood of the received samples xm, which is independent of Mj. When
all the candidate modulation formats are equiprobable, then the MAP classifier is identical
to the ML classifier [51].

M̂j = arg max
Mj∈M

P(xm|Mj). (12)

Table 3 lists multiple MAP-based MC algorithms studied in the literature, outlining
the modulation types, uncertain parameters, and the channel employed.
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Table 3. Summary of maximum a posteriori (MAP) based classifiers for OFDM signals.

Author(s) Classifier(s) Modulation(s) Parameter(s) Channel
Average PCC
at 20 dB SNR

L. Häring [50]
MAP Algorithm,
channel reciprocity
in TDD systems

BPSK, 4-QAM,
16-QAM and 64-QAM

Perfect knowledge
about data rate Rayleigh 99%

L. Häring [51] ML and MAP Algorithm
no modulation, BPSK,
QPSK, 16-QAM
and 64-QAM

Perfect synchronization
and unknown CSI Rayleigh 99%

L. Häring [52]

Simplified MAP algorithm
that utilized frame structure,
channel reciprocity, total
number of transmitted data

no modulation, BPSK,
QPSK,16-QAM
and 64-QAM

Perfect knowledge
about data rate AWGN 100%

L. Häring [53] Improved Approximated
MAP Algorithm

QPSK, 16-QAM
and 64-QAM Perfect synchronization - 79.5%

L. Häring [54] Signalling-assisted
modulation classifier M-QAM

Known CSI, knowledge
about total number of
loaded bits and coding rate

AWGN 98.5%

L. Häring [55] Jointly optimizes the bit
loading algorithm M-QAM Perfect synchronization and

knowledge about signalling AWGN 99%

L. Häring [56] Influence of imperfect
reciprocity IEEE 802.11a/n Unknown CSI and knowledge

about total number of loaded bits Rayleigh 100%

C. Husmann [57] MAP Algorithm BPSK, QPSK,
16-QAM and 64-QAM

Perfect time and frequency
synchronization AWGN 97.5%

S. Bahrani [58]
Improved Approximated
MAP Algorithm, channel
prediction method

BPSK, QPSK, 16-QAM
64-QAM and no modulation

Perfect synchronization and
unknown CSI AWGN 98%

M. Karabacak [59] Adaptive Pilot Based BPSK, QPSK, 16-QAM
and 64-QAM

Perfect synchronization
and known CSI AWGN 99.8%

S. bahrani [60] Rate adaptive (RA)
bit loading algorithm

BPSK, QPSK, 16-QAM
and no modulation

Perfect synchronization
and unknown CSI Rayleigh 100%

A MAP-based MC algorithm in time division duplex (TDD) based OFDM systems
with adaptive QAM modulation is studied in [50]. It takes advantage of the channel
reciprocity in TDD systems and the data rate of transmission. Unlike the signaling-free
adaptive modulation technique, MC and data detection are decoupled here, resulting in
significantly decreased computational complexity. Moreover, this technique utilizes the
fixed bit allocation table (BAT) for all transmission frames. As a result, more symbols
of the same modulation scheme can be employed to make a decision. Compared to the
traditional ML method, simulations have validated the superior classification performance
of the modified MAP algorithm. This technique allows adaptive modulation to be applied
in wireless OFDM systems without reducing the effective data rate due to the signaling of
the BAT.

A novel efficient MC algorithm in wireless TDD-based OFDM systems with adaptive
modulation is analyzed in [51]. The frequency-selective behavior of the channel is expe-
rienced by a finite impulse response (FIR) filter model with Rayleigh fading coefficients.
Jakes’ spectrum with the Doppler frequency fdm is used to model the time correlation of
the different path coefficients. This adaptive modulation approach adapts modulation
formats among BPSK, QPSK, 16-QAM, and 64-QAM to a group of two adjacent subcarriers.
The conventional maximum-likelihood method is modified to a MAP classifier that uses
reciprocity of the channels in TDD systems. Moreover, a less computationally complex
classifier based on the MAP criteria is developed and evaluated, which is desirable for real-
time implementations. The feasibility of complexity reductions is validated by simulations.
The classification performance of the proposed technique is slightly reduced in terms of the
packet error rate compared to perfectly known modulation schemes.
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A framework of MAP algorithms for MC in OFDM-based communication systems
with adaptive modulation is studied in [52]. This work extends the achievements in
MAP-based MC [50,51] by adding a new constraint to the framework. In this paper,
a metric approximation is used, whose accuracy increases with rising SNR; the reason
behind using this is the high computational complexity of the optimal algorithm. The side
information like the known frame structure, channel reciprocity, and the knowledge of
total data transmission rate, which are typically available in wireless TDD systems are
intensively utilized by the proposed classifiers. By utilizing this information, the proposed
likelihood-based MC algorithms are highly effective for the short OFDM frames.

Another MAP-based MC for OFDM systems with adaptive coding and modulation
(ACM) is carried out in [53]. The proposed classifier for QAM schemes utilizes the channel
reciprocity in TDD systems that requires knowledge about the joint probabilities of the
subcarrier-wise bit efficiencies at the transmitter and receiver sides. In contrast to prior
heuristic approaches [52], these probabilities are calculated analytically if the transmitter
and receiver apply the same bit loading (BL) algorithm on their erroneously estimated
channel state information. Furthermore, the performance of the proposed MC algorithm
employing analytical results is comparable to the simulated joint probabilities. However,
it is still somewhat superior due to the subsidiary-independent technique’s sub-optimal
approach [50]. Analytical and simulation results outperform the heuristic approach [52],
especially at higher SNRs.

Another modulation classification algorithm for wireless TDD-based OFDM systems
with adaptive modulation and coding is analyzed in [54]. The proposed MAP-based
classifiers use the distinct signaling bits that are transmitted along with the information
symbol. Thus, these can be viewed as a hybrid of MC and a signaling-based transmission
principle. According to the signal structure of the received data symbols, these classification
algorithms are characterized as bit allocation tables, i.e., a list of modulation formats
used on each subcarrier. These received bit allocation tables are explicitly transmitted
auxiliary information. Numerical studies indicate that the reliability of the classifier can
be significantly enhanced by the use of the specified auxiliary information in a standard
indoor propagation environment. Moreover, the simulation results of effective spectral
performance show that the proposed method can be a reliable alternative in pure signaling-
based or MC schemes in adaptive OFDM transmission. It outperforms the non-adaptive
OFDM transmission system. However, this algorithm works in the presence of known CSI,
knowledge about the total number of loaded bits, and coding rate.

An adaptive transmission algorithm for TDD-based wireless OFDM systems is carried
out in [55]. In this technique, at the transmitter side, the BL algorithm and at the receiver side
modulation classification algorithm are jointly optimized. To increase the effective data rate,
a MAP modulation classification algorithm is applied in place of signaling the complete BAT
to the receiver. The classification reliability is increased while preserving the enhanced link
quality and low signaling overhead with this optimization on the BL algorithm. The idea
behind this contribution is to maximize the effective bandwidth efficiency by this joint
optimization of the BL algorithm at the receiver side and the modulation classification
algorithm at the receiver side. Thus, the data rate loss caused by the signaling overhead is
reduced. The simulations are performed in a typical indoor propagation scenario using
burst transmission. It shows the enhancement of bandwidth and reduces the signaling
overhead compared to the conventional methods.

A reciprocity-based MC algorithm for adaptive OFDM transmission systems in TDD
mode is studied in [56]. This proposed transmission technique used the BL algorithm at the
transmitter and MC at the receiver. A MAP-based MC is proposed, which is already effec-
tive for short frames if channel reciprocity in TDD systems is assumed. In this contribution,
the authors analyze the performance of an improved version of this algorithm in a more
realistic scenario. Simulations are carried out to validate the accuracy of the MC algorithm
in the presence of imperfections caused by channel time-variance, channel estimation errors,
and non-reciprocal transceiver filters. Simulation setup investigations are focused on indoor
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propagation scenarios typical for WLAN. For calibrated transceivers, the simulations show
superior performance of the proposed adaptive transmission scheme with MC compared to
a non-adaptive transmission in a typical indoor propagation scenario. It also has superior
classification performance as compared to the signaling-based technique.

A simplified MAP-based MC is analyzed in [57]. An adaptive OFDM based on an
IEEE 802.11a system is simulated. The system occupies a bandwidth of 20 MHz, which is
split into N = 64 subcarriers. Among these subchannels, Nd = 48 subchannels are used
for data transmission: 4 are reserved for channel tracking and synchronization purposes
and the remaining 12 are unused. Throughout this paper, they have assumed perfect
time and frequency synchronization, which they consider to be a typical indoor scenario.
The number of multipath components is assumed to be 16 such that the length of the guard
interval is set to be 16 too. The maximum Doppler frequency is assumed to be fd = 55 Hz
corresponding to a speed of 3.33 ms, and the Doppler spectrum follows Jakes’ model.
The correlation is very strong in the considered system due to the quantized structure of
the effective channel. The quantization is a result of adaptive power allocation. In the
context of this paper, a MAP-based MC approach is investigated in wireless local area
network (WLAN) based OFDM systems with adaptive modulation. The receiver has to
estimate the channel, which is modeled by a slowly varying multipath Rayleigh fading
channel and AWGN. The performance of the MC algorithm is measured in terms of the
end-to-end packet error rate (PER). Package errors occur due to data detection errors and
MC classification errors. The PER of the proposed MC algorithm is almost identical to the
PER of an error-free MC algorithm. This exemplifies the potential of MC applications in
real-time scenarios.

Another MAP-based MC for the TDD-based OFDM system is studied in [58]. This
paper proposes a channel prediction approach for improving the efficiency of the MC used
in the adaptive OFDM scheme. To achieve an acceptable prediction performance, effective
noise reduction and interpolation techniques are used. The channel is supposed to be
frequency-selective, with Rayleigh fading coefficients and a power delay profile decided
by the standard indoor environment for IEEE 802.11a models. For time correlation, Jakes’
Doppler spectrum is presumed, with the maximum Doppler frequency fd set to 20 Hz by
default. Finally, simulations for the channel modeled with the Gaussian Doppler spectrum
are carried out to explore the robustness of the proposed approach to the channel model.
The probability of incorrect classification for both Jakes’ and Gaussian Doppler spectrum is
compared, in the case fd = 20 Hz. In this case, it can be shown that the proposed technique
is sufficiently robust to the model of the channel’s time variance.

The importance of adaptive modulation for effective usage of channel capacity in the
OFDM system is shown in [59]. The need to transfer the information about modulation to
the receiver is abolished by the MC algorithm, and thus, these algorithms are a very useful
method to increase the channel capacity. However, in practice, two different sets of pilot
symbols are used for the identification of the modulation type and for the estimation of the
channel impulse response. The author proposes only one set of pilot symbols to find the
information about the modulation type as well as the channel in this paper. As the pilot
symbols are related to the modulation type, so they are named “adaptive pilots”. The iden-
tification of the modulation type is successfully done with the help of these adaptive pilots
without affecting the performance of the channel estimation. By assigning unique pilots to
every possible modulation type, the modulation information is embedded. BPSK, QPSK,
16-QAM, and 64-QAM are the possible pilot patterns with corresponding modulation types.
It is shown by the simulation results that modulation types are successfully identified
by the proposed adaptive pilots, while no effect is introduced to the channel estimation
process. For the application of the proposed algorithm, pilots can be located at different
locations with different values. However, when more number modulation formats are
involved in the communication, more adaptive pilots may be required, which degrades the
spectrum efficiency of the transmission.

532



Sensors 2022, 22, 1020

The MC approach enables the estimation BAT technique in adaptive OFDM sys-
tems [60]. The authors analyze a less computationally complex MAP-based MC algorithm.
They derive an estimation of the probability of classification error of a MAP-based classifier.
Moreover, based on the derived estimation, a rate-adaptive (RA) BL algorithm is developed.
The findings of the simulation reveal that the proposed RA algorithm greatly improves the
accuracy of modulation classification. Furthermore, it is also shown that, in comparison to
traditional RA methods, the proposed BL approach improves classification performance
for SNR above 15 dB.

3.3. FB Approach

In the FB algorithm, the expert domain feature needs to be extracted first and then
decisions are made for the classification. Some of the expert domain features are the vari-
ance of the normalized signal amplitude, phase, and frequency [101], the variance of the
zero-crossing interval [102], moments, cumulants [63], cyclic cumulants [5], cyclostationar-
ity [103], Fourier transform [63], wavelet transform (WT) [17], and constellation shape [104]
of the received signal. The fuzzy logic [105], entropy [106], and constellation shape recovery
technique also have been used for MC. Various decision-making approaches have been em-
ployed, including maximum-likelihood detector [63], Hellinger distance [107], Euclidean
distance [108], and unsupervised clustering techniques [109].

MC with Higher Order Statistics (HOS)

Here, we provide a framework of the MC method with HOS [110]. The moment with
the kth order and pth conjugations for xm associated with xm[n] is defined as

Mkp,xm = E
[

xk−p
m (x∗m)

p
]
. (13)

where ()∗ represents a complex conjugate. The corresponding cumulant with kth order and
pth conjugations is defined as

Ckp,xm = cum(xm, xm, ..., xm,︸ ︷︷ ︸
k−p

x∗m, x∗m, ..., x∗m︸ ︷︷ ︸
p

), (14)

where cum() represents the joint cumulant function. HOS provides an integrated technique
as well as a nonlinear signal processing viewpoint. Nevertheless, the information in the
power spectrum of the second-order statistics is only appropriate for describing Gaussian
processes statistically. In MC applications [111], a general fourth-order statistics C42,xm is
frequently used. According to (13) and the fourth-order cumulant formula for four random
variables, X, Y, Z, and W can be expressed as

cum(X, Y, Z, W) = E[XYZW]− E[XY]E[ZW]− E[XZ]E[YW]− E[XW]E[YZ], (15)

and

C42,xm = cum(xm, xm, x∗m, x∗m)

= E
(
|xm|4

)
−
(∣∣∣E(x2

m)
∣∣∣)2

− 2E2
(
|xm|2

)
,

(16)

In a similar fashion, a typical second-order cumulant can be written as

C21,xm = E
(
|xm|2

)
. (17)

The normalized fourth-order cumulant [12] is typically used to calculate MC, de-
fined as

Ĉ42,xm =
C42,xm

C2
21,xm

. (18)
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The FB-MC approaches are listed in Table 4, which highlights selected features, modu-
lation types, channels, and undefined parameters.

Table 4. Summary of FB approaches for OFDM signals.

Author(s) Feature(s) Modulation(s) Parameter(s) Channel
Decision-Making
Approaches

Average PCC
at 20 dB SNR

A. D. Pambudi [61]
Mean,Variance,
Skewness, Kurtosis
and Moment Order

QPSK,16-QAM
and 64-QAM - Rayleigh Threshold based

technique 91%

D. Shimbo [62] Amplitude, Moments
and Correlation 16-QAM and 64-QAM Prior knowledge

about CFO AWGN Threshold based
technique 89%

R. Gupta [63]

Using discrete Fourier
transform (DFT) and
normalized fourth-order
cumulants

BPSK, QPSK, MSK,
OQPSK, and 16-QAM

Unknown Signal
Parameters, unknown
CSI and imperfect
synchronization

Rayleigh Likelihood ratio test 97.5%

J. Zhang [64] Wavelet transform (WT),
Transient characteristics

4-FSK, QPSK,
16-QAM and OFDM Unknown Signal Parameters Rayleigh - 100%

Y. Zhu [65]
Kurtosis coefficient,
Power spectral parameter,
Energy distribution parameter

2-ASK, 4-ASK, 2-FSK,
4-FSK and OFDM

Unknown symbol rate and
carrier frequency

AWGN, FNSF,
FSF and Rayleigh

Threshold based
technique 97%

Y. Ma [66] Constellation cluster,
number of cluster center

QPSK, 8-QAM, 16-QAM,
32-QAM and 64-QAM Rotation plane and angle AWGN Peak-density

clustering algorithm 87.5%

Tomoya [67]
Identification estimation
method, Modulation parameters
of rotation planes and angles

OFDM, CDMA, a block
of QAM and so on - AWGN - 92.5%

J. Chen [68] Inter-class identification,
Higher order cumulants

OFDM, 2-FSK, 4-FSK,
8-FSK, BPSK, QPSK,
8-PSK, 16-QAM,
32-QAM and 64-QAM

Perfect CSI Rayleigh Threshold based
technique 100%

H. Li [69] Empirical Distribution
Function-Based Gaussian Test M-QAM

Unknown symbol duration,
cyclic prefix duration and
number of subcarriers

AWGN - 95%

Y. Liu [70]
Latent Dirichlet
Bayesian network,
Gibbs sampling method

QPSK, 8-PSK and 16-QAM Imperfect CSI and unknown SNR Flat fading - 97.5%

Y. Liu [71]
Optimal Bayesian Method,
latent Dirichlet model, mean
field variation inference

QPSK, 8-PSK,
16-QAM, and 16-PSK Imperfect CSI and unknown SNR Flat fading - 97%

A.K. Pathy [72]
Using DFT and normalized
fourth-order and
sixth-order cumulants

BPSK, QPSK, MSK,
OQPSK, and 16-QAM

Unknown Signal Parameters,
unknown CSI and
imperfect synchronization

Rayleigh Likelihood ratio test 97%

Multicarrier modulation given by the OFDM signal generator using an IEEE 802.16e
standard is studied in [61]. Based on the standard of IEEE 802.16e, three possible modu-
lation formats can be used, such as QPSK, 16-QAM, and 64-QAM. The mean, variance,
skewness, kurtosis index, and moment order of the received signal are all considered and
compared in order to determine the modulation scheme non-line-of-sight (NLOS) with six
multipath components. The dominant statistic features capable of separating the QPSK
modulation scheme from 16-QAM and 64-QAM are skewness, kurtosis, and variance,
as determined by the statistical properties of the received signal. Furthermore, the high
order moment is one of the most important statistical features that distinguish the 16-QAM
modulation scheme from the 64-QAM modulation scheme. However, in the context of
timing and frequency synchronization issues, this approach does not perform well.

In another FB-MC [62], the amplitude moments and correlation properties are used to
classify the modulation scheme for OFDM systems. This technique considers the presence
of CFO, which is the cause of intercarrier interference (ICI) in the amplitude moments of the
received signal. Therefore, the ICI component is estimated by using the correlation between
the subcarriers. To determine the influence of ICI components in the amplitude moments,
the authors derive the amplitude moment in the form of infinite series of elementary
functions. It is observed that the amplitude moments increase as the frequency offset
increases. Considering 4096 subcarriers in an OFDM symbol, at least 10 OFDM symbols
are required to achieve the desired classification accuracy at 30 dB SNR. This approach
outperforms the existing amplitude moment-based approach with the prior information
about CFO. This is due to the estimation and elimination of the ICI components in the
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amplitude moments. However, this MC algorithm is restricted to known CSI and proper
synchronization circumstances.

In [63], another FB blind MC approach is suggested and implemented on radio fre-
quency (RF) testbed for OFDM signals. The authors use the combined features of DFT
and the fourth-order cumulant, as shown in Figure 3. This algorithm does not need prior
information about the signal parameters and CSI. It also works effectively when there are
synchronization problems, such as timing, frequency, and phase errors. Before the feature
extraction process, a random uniformly distributed timing offset is added in each OFDM
symbol to reduce the influence of the timing offsets. The authors have listed BPSK, QPSK,
OQPSK, MSK, and 16-QAM for the OFDM signal. The number of subcarrier N = 1024,
CP length Ncp = N/4, channel tap L = 4, number of OFDM symbol 50, normalized CFO
−0.5 < ε < 0.5, symbol timing offset [−N/2, N/2], sampling rate 50 Msamples/s, symbol
rate 1 Msymbols/s, and Rayleigh channel are considered the simulation parameters for
this technique. Classification is carried out in two stages. First, the received signal is
transformed into the frequency domain by using the DFT operation, then the normalized
fourth-order cumulant of the frequency domain signal is calculated. The modulation for-
mats OQPSK, MSK, and 16-QAM can be distinguished by the normalized fourth-order
cumulant, which is expressed as

C̃42R =
1
K

K

∑
m=1

�C42Xm
−
∣∣∣ 1

K ∑K−1
v=0 e−j4πv/K(τ+θu)X2

m[v]
∣∣∣2

1
K ∑K−1

v=0 |Xm[v]|2 − C21,W
, (19)

where Xm[v] represents the DFT of the received signal xm[n], C21,W = σ2
W represents the

estimated variance of AWGN, and K is the total number of OFDM symbols.
The histogram of the above is given in Figure 4. The second stage performs the DFT

of the square of the received signal then calculates the normalized fourth-order cumulant,
which is expressed as

C̃42U =
1
K

K

∑
m=1

�C42Um
−
∣∣∣ 1

K ∑K−1
v=0 e−j4πv/K(τ+θu)U2

m[v]
∣∣∣2

1
K ∑K−1

v=0 |Um[v]|2 − C21,W
, (20)

where Um[v] = Xm[v]� Xm[v], � denotes the linear convolution operator. For BPSK and
QPSK modulation schemes, the above Equation (20) gives different values, as shown in
Figure 5.

( . )2 →  ܶܨܦ
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Figure 3. Schematic diagram of blind modulation classification studied in [63].
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In the paper [64], the authors use a method for applying wavelet transform (WT) to
OFDM and SC signals to extract their transient characteristics and then use the transient
characteristics to identify the two types of signals. Good performance can be achieved
in low SNR and multipath channel conditions. In addition, the effects of the sample rate
and symbol rate on the identification algorithms are analyzed and simulated. The author
conducts a variety of simulation experiments to assess the performance of the proposed
identification algorithms and the effects of the sample rate and symbol rate on the iden-
tification algorithms. All results are based on 100 Monte Carlo trials. The percentage of
correct classification (PCC) versus the SNR plot represents the average variance of signals
versus SNR. Every 8000 data samples make up of a trial source. We notice that the average
variance is large in the OFDM curve and small in the SC curve. The result is well separated
between OFDM and SC modulations. When SNR is 0 dB, the PCC between OFDM and SC
signals can reach 100% when the symbol rate is greater than 20 kHz.

Another FB-MC [65] is using spectrum analysis to classify the OFDM and SC. The au-
thors utilize the energy distribution parameter and the kurtosis of the power spectrum
coefficient to classify OFDM and SC. This method does not need any prior information
about the symbol rate, carrier frequency, etc. In simulation results, it is found that extracted
spectrum parameters have better performance over AWGN as well as Rayleigh fading
channels. It has a classification rate of up to 97% with an SNR at 10 dB.

In [66], the peak-density clustering algorithm is used to investigate an MC technique
for adaptive optical OFDM systems. The clustering technique is used to find the centers
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of the signal constellation clusters. The number of cluster centers is calculated using the
density and distance metrics of samples. The number of cluster centers is utilized to distin-
guish M-QAM. The OFDM signals are fed into an arbitrary waveform generator (AWG)
with a sampling rate of 50 GSamples/s. The electrical OFDM signal is then converted
into an optical signal using an external cavity laser (ECL) and an intensity modulator.
The modulated optical signal is then routed through a variable optical attenuator (VOA)
and an erbium-doped fiber amplifier (EDFA) to alter the signal SNR and mimic different
transmission circumstances. They use a 50 GSamples/s real-time oscilloscope to capture
data and another VOA to regulate the input power before the photodetector. Finally, OFDM
MC and demodulation are conducted for a test sample of 8192 lengths in each optical SNR.

In the paper [67], the identification of these orthogonal modulations, i.e., OFDM, code
division multiple access (CDMA), is studied. The classification method is based on general
orthogonal modulations, whose modulation parameters should be estimated. The iden-
tification method applies to both adaptive modulation and increased security in radio
communications. General orthogonal modulations are employed to identify modulations.
First, the modulation parameters of rotation planes and angles are estimated. Orthonor-
mal vectors are derived by received signal samples and rotated to hold orthogonality
among time slots. Then, the inverse rotation corresponds to the modulation parameters
to be estimated. The difference vector between the received signal vectors is used for
this method. In computer simulations, OFDM, CDMA, a block of QAM, and so on are
considered candidate modulations. The bit error probability of the estimated modulation
is presented to compare the performance from the point of view of SNR and the number
of samples. The proposed estimation performance is evaluated in the AWGN channel by
computer simulations.

Based on the higher-order cumulants, an MC algorithm is carried out that discrimi-
nates the OFDM signals from SC signals [68]. First, OFDM signals are discriminated from
SC signals based on distinct features parameters over the Rayleigh channel. In order to
verify the effectiveness, the modulation set is assumed as OFDM, 2-FSK, 4-FSK, 8-FSK,
BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-QAM. The combination of the second- and
fourth-order cumulants is used as the feature to discriminate the OFDM signals from the
SC signals. Simulation results show that the algorithm is stable with low computational
complexity and high PCC in low SNR level.

In the paper [69], a classification technique is devised for identifying the OFDM signals
from the SC. In addition to differentiating the OFDM signals from SC, some important
parameters of OFDM signals are estimated for further processing. The estimated param-
eters include the number of subcarriers, the length of the OFDM symbol, and the CP
length. Using these parameters, traditional modulation classification techniques may be
used to identify the linear modulation format on each OFDM subcarrier. The analytical
distribution function-based Gaussian test technique is shown to differentiate OFDM from
SC modulations effectively, and the correlation test is shown to estimate the cyclic prefix
length effectively. A fast Fourier transform (FFT) is used to effectively estimate the num-
ber of subcarriers. The simulation findings show that the proposed technique provides
classification performance of more than 90% for SNR greater the 15 dB.

In the paper [70], a Bayesian inference-based MC technique for the MIMO-OFDM
signal is used. This technique uses the Gibbs sampling convergence approach on a latent
Dirichlet model as a baseline. However, the inference-based technique has a significant
computational overhead, and it also needs perfect synchronization at the receiver.

In the paper [71], an MC algorithm for the MIMO-OFDM system is analyzed under
the unknown frequency-selective fading channels and SNR. This work is an extension of
the achievements in MAP-based MC [50,51] by adding a new constraint to the framework.
The classification problem is presented as a Bayesian inference task, with solutions provided
based on Gibbs sampling and mean-field variational inference. The Gibbs sampling method
yields the best Bayesian result. It is shown that after multiple iterations, switching to the
mean-field variational inference technique improves classification accuracy for the small
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length of the received signal. However, most of the existing MC consider channels as flat
fading when the number of receiving antennas exceeds the number of transmitting antennas.
However, under more general circumstances, the proposed algorithm works quite well. It is
shown that the proposed Bayesian methods outperform existing non-Bayesian techniques
based on independent component analysis (ICA). However, this inference-based technique
is quite difficult, and it also necessitates perfect synchronization at the receiver.

A tree-based blind MC method for asynchronous MIMO-OFDM is developed in [72].
It extracts unique features for different modulation schemes using normalized fourth-order
and sixth-order cumulants. It then performs a threshold-based classification using the
likelihood ratio test to determine the modulation format of the received signal. The number
of subcarrier N = 128, CP length Ncp = N/4, number of channel tap L = 4, number of
OFDM symbol 50, normalized CFO −0.5 < ε < 0.5, symbol timing offset [−N/2, N/2],
sampling sampling rate 50 Msamples/s, symbol rate 1 Msymbols/s, and Rayleigh channel
are considered the simulation parameters for this technique. The classification performance
of this algorithm is validated by using the RF testbed in a realistic scenario. The authors
consider the higher number of transmitting and receiving antennas in the simulation
process. However, the actual experimental systems in this paper only contain at most two
transmitter antennas and two receiver antennas.

In the paper [112], signal parameter estimation, modulation classification, and syn-
chronization are carried out for the OFDM signal. At the first stage, the cyclic cumulant is
used to estimate the number of subcarriers, symbol length, useful symbol length, CP length,
and oversampling factor. At the second stage, the elementary cumulant is used to classify
the BPSK, QPSK, OQPSK, MSK, and 16-QAM modulation scheme over the Rayleigh fading
channel. After that, a modified maximum likelihood technique is used to estimate the CFO
and STO for the OFDM system jointly. After correction of the CFO and STO, recovery of
the constellation diagram of modulation schemes and BER analysis is performed. The BER
is found approximately 8.5× 10−3 and 6.5× 10−2 at 20 dB SNR for QPSK and 16-QAM
modulation schemes, respectively. This technique is also validated over the NI RF testbed
setup over an indoor propagation environment.

4. Artificial Intelligence-Based Approach to MC

AI is certainly the next big “game-changing” technology that includes both ML and
DL. In MC, ML finds lots of significance in terms of decision trees, KNN, support vector ma-
chine (SVM), artificial neural network (ANN), and some hybrid algorithms. DL is a kind of
a subsidiary of ML, which originates from the study of ANN. Neural networks are inspired
by biology and try to mimic the neural structure of the human brain [113,114]. Recently,
researchers in the field of wireless communication stated using DL extensively. It finds
applications especially in the field of communication systems, such as non-orthogonal mul-
tiple access (NOMA) technology, MIMO technology, resource allocation scheme, and signal
MC. Tables 5 and 6 lists a few of the ML- and DL-based MC algorithms studied in the liter-
ature, outlining the modulation types, uncertain parameters, and the channel employed.

4.1. ML-Based MC

In this paper [73], the authors extract the features by calculating higher-order cumu-
lants, then the extracted features are applied to naïve Bayes classifier for MC. However,
the authors assume proper equalized and perfectly synchronized signals received at the
receiver. The features, combinations of fourth-order C42 and sixth-order cumulants C63
often produce better classification performance than using each of these features alone.
By using the same set of features, the naïve Bayes classifier is compared with the ML-based
classifier and SVM-based classifier. It is observed that the naïve Bayes classifier outperforms
the ML-based classifier and SVM-based classifier with less computational complexity.

This paper [74] introduces a technique for classifying OFDM signals using higher-
order moments and cumulants with multiple types of classifiers and cluster techniques.
There are four considered methods of classification, namely, KNN, ML, SVM, and neural
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network (NN) classifiers. Fuzzy k-Means and fuzzy c-means are two cluster techniques
that are used for the two classes of OFDM signals. One class is considered fixed WiMAX
(IEEE 802.16d), which includes BPSK, QPSK, 16-QAM, and 64-QAM modulations. Another
class is considered OFDM signals used in Wi-Fi (IEEE 802.11a), which includes and BPSK,
QPSK, 16-QAM, and 64-QAM modulations. In the simulations, the input signals are
normalized to have zero mean and unit variance after transmitting through the Rayleigh
fading channel. The normalized output signal is then used for the feature extraction process.
Higher-order moments and cumulants up to the 8th order are used to extract features.
The extracted features are used as input to the different types of classifiers, such as SVM,
KNN, ML, and NN classifiers, which use the fuzzy k-means and fuzzy c-means as clustering
techniques. The performance of the SVM classifier with the fuzzy k-mean is better than all
the combinations of classifiers and clustering algorithms for most of the SNR values.

Table 5. Summary of ML-based classifiers for OFDM signals.

Author(s) Classifier(s) Modulation(s) Parameter(s) Channel(s)
Average PCC
at 20 dB SNR

M.L.D. Wong [73]
Optimize Shannon’s
channel capacity,
Naive Bayes classifier

BPSK, QPSK,
16-QAM and 64-QAM

Perfect
synchronization AWGN 96.8%

S. E. El-Khamy [74]

Higher order moments
and cumulants, Fuzzy
K-Means and
Fuzzy C-means

BPSK, QPSK,
16 QAM, and 64 QAM - Rayleigh 100%

X. Yuan [75]
Higher-order cumulants,
random forest based
MC algorithm

QPSK, 16-QAM
and 64-QAM

Imperfect time
synchronization

Frequency-
selective 100%

W. Machid [76]
Least squares (LS)
method and iterative
closest point (ICP)

BPSK, QPSK,
16-QAM, and 64-QAM

Unknown noise
variance and CSI Flat fading 97.5%

Y. Zhang [77] High order cumulants,
Decision Tree classifier

BPSK, QPSK,
GFSK, 16-QAM,
64-QAM and OFDM

Presence of
timing offset Flat fading 99.5%

B. Dehri [78]

Higher order statistics,
pattern recognition
methods, ANN or SVM,
or RFC or KNN

QPSK and 16-QAM Presence of CFO
and Imperfect CSI Rayleigh 100%

Y. Gu [79]

Peaks in the distribution of
amplitude, the variance of
the amplitude, the variance
of the phase, and the variance
of the spectrum, SVM classifier

BPSK, QPSK,
16-QAM, 64-QAM,
256-QAM and GMSK

Unknown CFO AWGN 100%

J. He [80] Clustering and
Gaussian model

QPSK,
16-QAM, 64-QAM - AWGN 100%

L. Gaohui [81]

High order cumulants and
bi-spectral envelope peaks,
hierarchical iterative SVM
classifier model

M-QAM, MFSK and MPSK Perfect
synchronization Rayleigh 100%
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Table 6. Summary of DL-based classifiers for OFDM signals.

Author(s) Classifier(s) Modulation(s) Parameter(s) Channel(s)
Average PCC
at 20 dB SNR

R. M. Al-Makhlasawy [82]

Mel Frequency Cepstral
Coefficients (MFCCs)
and multi-layer feed
-forward neural network

QPSK, 8-QAM,
16-QAM, 32-QAM,
64-QAM and 128-QAM

Perfect
synchronization AWGN 100%

Y. Li [83] Bispectrum and
CNN Alexnet model

BPSK, 2-ASK,
2-FSK, 4-FSK, 8-FSK,
LFM, and OFDM

- AWGN 97.5%

S. Hong [84] CNN with dropout layer BPSK, QPSK, 8-PSK,
16-QAM and 64-QAM

Perfect
synchronization Rician fading 99%

J. Shi [85] CNN, ReLU and
PReLu activation

BPSK, QPSK,
8-PSK, and 16-QAM

Presence of phase offset
and imperfect CSI AWGN 100%

S. Hong [86] CNN BPSK, QPSK, 4-PAM,
8-PSK, and 16-QAM Perfect synchronization Rician fading 97.5%

F. Meng [87] CNN with two step training,
Transfer learning

BPSK, QPSK, 8-PSK,
16-PSK, 16-QAM,
32-PSK and 64-QAM

Unknown CFO
and unknown SNR

Time invariant and
frequency non-selective 100%

D. H. AlNuaimi [88] GaFP-Net, TF-HMS,
MDNC, and IQL

QPSK, BPSK, DPSK,
ASK, FSK, 16-QAM,
32-QAM, 64-QAM,
and 128-QAM

Unknown CFO AWGN 86%

Z. Zhang [89] CNN-LSTM

BPSK, QPSK, 8-PSK,
AM-DSB, AM-SSB,
CPFSK, GFSK, WBFM,
4-PAM, 16-QAM, and 64-QAM

Presence of CFO and STO Rayleigh 91%

M.C. Park [90] IQ and FFT window bank (FWB),
CNN-LSTM-based classifier

QPSK, 16-QAM,
32-QAM, and 64-QAM - Rayleigh 98.5%

Y. Zhang [91]

Mixed order moment,
hybrid grey wolf optimization
(HGWO) algorithm,
DNN-based classifier

QPSK, 16-QAM,
32-QAM, and 64-QAM Presence of CFO and STO Rayleigh 100%

Z. Zhao [92] AlexNet/GoogLeNet-
TL-based classifier

BPSK, QPSK, 8-QAM,
16-QAM, 32-QAM and 64-QAM - AWGN 100%

J. Yin [93] Lightweight CNN (LCNN)-based
Shuffle MC, FFT, l2 regularization BPSK, QPSK, 8-PSK, 16-QAM - Rician fading 100%

G. Kong [94]

Fourier synchrosqueezing
transformation (FSST), Independent
component analysis (ICA),
hierarchical CNN-based MC

16-QAM, 64-QAM,
and 256-QAM Perfect Synchronization Rayleigh 90%

Q. Zheng [95]
Spectrum interference-based
two-level data augmentation
method, deep CNN

BPSK, QPSK, 8-PSK, 16-QAM,
64-QAM, GFSK, CPFSK, 4-PAM,
WBFM, AM-SSB, and AM-DSB

- Rayleigh 89.3%

T. Huynh-The [97] CNN with integrated attention
and residual connections

BPSK, QPSK,
8-PSK, and 16-QAM Presence of CFO Rayleigh 88%

The MC problem for MIMO systems employing OFDM under imperfect timing syn-
chronization scenarios is studied in [75]. The proposed algorithm first uses the HOC of the
received signal to extract the unique features, which show the robustness to STO. After that,
a random forest classifier is used as the decision criterion to perform the classification
problem. The main benefits of random forests are their better classification performance
and low exposure to noise. The number of subcarrier N = 128, CP length Ncp = N/4,
channel tap L = 5, number of transmitting antennas 2, number of receiving antennas 8
and frequency-selective channel are considered the simulation parameters. The simulation
results show that the proposed classifier can work well in the presence of STO with satisfac-
tory classification accuracy. In a realistic scenario, where perfect STO estimation is difficult
to achieve, these algorithms can provide conceptual help.

In the paper [76], a modulation classifier without knowing noise variance is studied for
the OFDM system. In order to estimate the amount of phase rotation caused by flat fading,
the authors investigate adopting the iterative closest point, which is a kind of template
matching technique. Combining the least squares-based phase estimation, the classification
performance of the proposed method can be improved significantly. The PCC at several
SNRs when each correction is performed in flat fading, where four types of modulation
schemes, i.e., BPSK, QPSK, 16-QAM, and 64-QAM, are used. From these results, it is found
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that, as compared with the method of using only the least-squares method, the method
combining the least squares (LS) method with the iterative closest point (ICP) algorithm
does not deteriorate the accuracy of the phase correction, even if the number of signal
points decreases.

In this paper [77], the classification of OFDM, BPSK, QPSK, Gaussian frequency-shift
keying (GFSK), 16-QAM, and 64-QAM is realized by MATLAB programming based on the
characteristic of HOCs. A new feature parameter is proposed according to the second- and
sixth-order cumulant. Simulations are conducted with classifiers, including KNN, SVM,
decision theory, and back-propagation neural network (BPNN). It is found that the average
classification rate is greater than 95%.

In the paper [78], the authors propose a blind MC algorithm for space-time block
coding (STBC)-based MIMO-OFDM system, which works in the presence of CFO, channel
estimation errors, and impulsive noise. Multiple signal classification (MUSIC) algorithms
are used to estimate the CFO and channel statistics. The estimated CFO and channels
are compensated and equalized, then features are extracted using higher-order moments
(HOMs) and HOCs. Finally, the extracted features are applied to ANN, SVM, RF classifier
(RFC), and KNN classifier. The simulation results show that the SVM and ANN classifiers
have better classification performance, even at low SNR.

In [79], an SVM-based MC algorithm is studied for the OFDM system in the presence
of frequency offset in which statistics-based features are used as input of the SVM classifier.
The number of peaks in the distribution of amplitude, the variance of the amplitude,
the variance of the phase, and the variance of the spectrum are extracted from the received
signal. These extracted features are used to make a dataset. This dataset is applied to the
SVM classifier to classify the modulation scheme of the received signal. The proposed
method shows great accuracy in high SNR channels with over 80% accuracy. It also
shows robustness against the frequency offset. However, when the signal is flooded
by noise and extremely influenced by frequency offset, the proposed still has over 50%
accuracy. The algorithm is tested experimentally on the SDR platform, which can realize
a variety of communication systems by updating the software. Based on such a popular
SDR hardware platform and using GNU Radio, the modulation formats are generated,
transmitted, and classified.

In [80], the design and implementation of the MC algorithm for the OFDM visible
light communication (OFDM-VLC) system are explored. Clustering and Gaussian model
analysis are used to obtain the classification feature values. The modulation format is then
classified using these classification feature values. The simulation results show that the
suggested method can achieve 100% classification accuracy at 1 dB to 2 dB lower than that
of the clustering scheme. Furthermore, the experimental findings show that the suggested
MC technique is feasible in an OFDM-VLC system.

In [81], an MC algorithm base on a hierarchical iterative SVM classifier is studied for the
OFDM signal. To extract characteristic values from OFDM signals, higher-order cumulants
and bi-spectral envelope peaks are used, and the resulting characteristic values are then
processed to create fresh training sample data. The feature extracted by using HOCs is
used to distinguish multicarrier signals from the SC signals. The bi-spectral envelope peaks
are used to distinguish the OFDM signal from the multicarrier signal. The training dataset
obtained from the higher-order cumulants and bi-spectral envelope peaks of the received
signal is applied to the input of a hierarchical iterative SVM classifier. The number of
subcarrier N = 128, CP length Ncp = N/4, symbol rate 1024 bps, sampling rate 3000 kHz
and Rayleigh channel are considered the simulation parameters for this technique. It is
found the classification accuracy of the SVM-based classifier is improved when compared
with the wavelet transform method and higher-order cumulant-based method.

4.2. DL-Based MC

A lot of focus has recently been drawn by DL due to its effective ability to integrate
offline preparation and online deployment [115]. DL is a specialist in automated feature
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extraction from a huge amount of data instead of the complicated and challenging nature
of man-made features [116,117].

In the paper [82], a cepstral algorithm for MC is proposed with adaptive modulation
in OFDM systems. The expert domain features of the received signal are extracted us-
ing Mel frequency cepstral coefficients (MFCCs), and the modulation formats and their
order are classified using a multi-layer feed-forward neural network. This classifier has
the capability of recognizing the M-ary amplitude-shift keying (M-ASK), MSK, M-PSK,
M-ary frequency-shift-keying (M-FSK), M-QAM signals and the order of the identified
modulation. The classification performance of the proposed technique is evaluated using
the false classification probability (FCP). The AWGN channel is taken into account when
creating the mathematical model for most of the results. The simulation results reveal
that the modulation format and order can identify by extracting cepstral features from
the received signal and with the help of the transforms, such as discrete cosine trans-
form (DCT), discrete sine transform (DST), and the discrete wavelet transform (DWT).
These classify the distinct features using a robust back-propagation feed-forward neural
network for different modulations, such as QPSK, 8-QAM, 16-QAM, 32-QAM, 64-QAM,
and 128-QAM. The proposition to identify the modulation type and order is proven to be
considered effective.

In the paper [83], the authors develop an MC algorithm that is based on the bispectrum
and CNN AlexNet models. As we know, bispectrum is a high-order statistic that suppresses
AWGN well and is frequently utilized in signal detection and nonlinear system characteri-
zation areas. Furthermore, AlexNet exhibits outstanding image classification performance
despite having a very basic structure of eight layers. First, the authors compute the bispec-
trum of received signals, then take the amplitude spectrum of the bispectrum (ASB), which
is used as input to the CNN network. After that, they fine-tune the chosen AlexNet, which
automatically extracts the distinct features from ASB images. Finally, these features are
passed into a softmax classifier, which classifies the modulation type. The simulations are
performed under different noise environments for the dataset that includes BPSK, 2-ASK,
2-FSK, 4-FSK, 8-FSK, linear frequency modulation (LFM), and OFDM signals. It is observed
that the bispectrum-AlexNet model has a classification accuracy greater than 97.7% when
the SNR is greater than 5 dB.

The above MC techniques are developed by utilizing feature extraction-based machine
learning. Moreover, the standard approaches face bottlenecks, where the PCC is very small
and it is also impossible to incorporate them in realistic OFDM systems because it is difficult
to extract distinct features from OFDM signals using conventional methods. In order to
address this problem, the authors [84] suggest a CNN-based MC system for recognizing
OFDM signals. In particular, a CNN is used to train in-phase (I) and quadrature (Q) samples
for OFDM signals. The authors construct two datasets with separate modulations for the
MC function. Dataset 1 contains BPSK, QPSK, 8-PSK, and 16-QAM modulations, while
dataset 2 contains BPSK, QPSK, 8-PSK, 16-QAM, and 64-QAM modulations. These two
datasets are utilized to test the robustness of the proposed system. Each modulation format
considers 20,000 data samples for training and research. Since CNN can efficiently extract
the distinct features of received OFDM signals, the simulation results indicate that CNN
trained on I and Q samples achieves better classification performance than conventional
machine learning based approaches.

In the paper [85], a CNN-based MC method by considering the phase offset effect is
studied. As shown in Figure 6, CNN-based MC is first trained by the received I and Q
samples in the presence of phase offsets at different values of SNR. As shown in Figure 7,
the DL-based MC technique is mainly implemented by CNN. The PReLU is used as an
activation function for all layers, except the last layer, and the softmax is used as an
activation for the last layer to implement a multi-classification problem. The authors use
two sets of data with different modulation modes for the MC issue, i.e., Dataset 1 and
Dataset 2, to verify the robustness of the classification technique [85]. The number of
subcarrier N = 16, CP length Ncp = 2, number of OFDM symbol 6 and AWGN channel
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are considered the simulation parameters for this technique. Comparative experiments
show that its performance of classification is much higher than the conventional extraction
methods. Moreover, the classification accuracy relatively reduces at the low SNRs due to
the presence of phase offsets. By gradually increasing the SNRs, effective classification
accuracy can be achieved eventually.

Figure 6. Framework of the proposed CNN-based MC system [85].

Figure 7. CNN structure design in the proposed CNN-based MC method [85].

An adaptive modulation model based on machine learning for a MIMO-OFDM system
is carried out in [44]. The 5G new radio (NR) technology can be used in a wider range of
internet of things (IoT) applications than traditional systems. The adaptive modulation tech-
nique, which changes data rate and latency based on channel conditions, can be efficiently
employed in 5G digital NR technology. The traditional adaptive modulation technique
is developed by assigning modulation formats based on the channel conditions since the
rule-based MC is unable to analyze transmission efficiency based on channel correlations
between antennas. The number of propagation modes is enhanced exponentially based
on the available number of modulations and antennas. So, these are not appropriate for
5G NR systems. The proposed adaptive modulation technique is learned by the training
data, which are generated by the feature extracted from the received signal. The DNN
application for adaptive modulation is the primary method of the main component analysis,
which improves the model efficiency. The simulation results on the optimal transmission
mode classification for the MIMO-OFDM signal show that the proposed model supports
adaptability according to the condition of the complex MIMO channel.

In [86], the authors here present a CNN-based MC approach for the identification of
OFDM signals, which is linked to a CNN that is trained on I and Q samples. The suggested
CNN-MC technique is made up of two parts: three convolutional layers and four fully
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connected layers. The number of subcarrier N = 16, CP length Ncp = 2, number of OFDM
symbol 6 and Rician channel are considered the simulation parameters for this technique.
The suggested technique outperforms existing modulation classification algorithms in
terms of accuracy and reliability. However, any parameters, such as number of subcarriers,
number of null subcarriers, STO, CFO, phase offset, and CP length, change these MC and
do not provide accuracy of more than 50% for adaptive OFDM systems.

The other approach described in [87] focuses on two-step training to enhance the
classification performance of CNN-based classifiers. Transfer learning is also introduced to
increase the performance of the retraining. A wider range of modulation formats for the
OFDM signal, such as BPSK, QPSK 8-PSK, 16-QAM, 32-QAM, and 64-QAM, is recognized
by the suggested technique.

In [88], the MC algorithm for the OFDM signal is developed by using an intelligent
pyramid model. This algorithm has four stages, i.e., pre-processing, feature extraction,
feature clustering, and classification. In the pre-processing step, the authors improve the
received signal quality, which involves two steps quality evaluation and quality augmen-
tation, using the bi-fold signal fortification (BFSF) approach. The number of subcarrier
N = 2048, CP length Ncp = 3, sampling frequency 5 MHz and AWGN channel are consid-
ered the simulation parameters for this technique. If the received signal quality is poor, then
quality augmentation is performed, taking into account noise reduction, equalization, quan-
tization, and CFO compensation. Then the feature extraction process is performed by the
gated feature pyramid network (GFP-Net). After that, the authors make the cluster from the
extracted feature by using an intelligent twin-functioned human mental search (TF-HMS)
optimizer to minimize the classification complexity. Finally, they offer the multi-distance-
based nearest centroid classifier (MDNCC) technique, as well as improved Q-learning
(IQL), to determine the correct modulation format for the received signal. However, this
technique only considers the CFO as the synchronization when performing the modulation
classification of the received signal.

In [89], a CNN long short-term memory (CNN-LSTM) based dual-stream structure
for MC is developed. The first stream extracts local raw temporal characteristics from
raw signals, while the second stream learns knowledge from amplitude and phase data.
To learn spatial and temporal information from each stream, CNN-LSTM is used, which
combines the spatial feature extraction ability of CNN and superior capacity of processing
time-series data of LSTM. Furthermore, the features learned from two streams interact in
pairs as a result of an effective operation, expanding the diversity of characteristics and,
therefore, improving the classification performance of the received signal.

In [90], a CNN-based MC is studied in order to classify SC and OFDM systems with
varying symbol lengths. The majority of older DL-based MC algorithms misinterpreted
OFDM-based signals with varying OFDM usable symbol lengths. To address this issue,
FFT window banks (FWB) are utilized as input to the CNN model to estimate the length of
an OFDM symbol. After estimating the OFDM symbol length, a CNN-based MC technique
is utilized to categorize the OFDM and SC modulation formats concurrently using FWB
and IQ samples as combined input. However, compared to the traditional DL-based MC,
this technique needed a longer received symbol to obtain the correct classification.

In [91], an OFDM signal identification technique based on a hybrid grey wolf opti-
mization (HGWO) algorithm to optimize with a deep neural network model is carried
out. This technique can distinguish the OFDM modulation signal from complex signals,
such as SC, OFDM signals, and wavelet packet signals (WPM) in a multipath channel.
In this technique, mixed order moment u20 = M42(xm)/M2

20(xm), characteristics parameter
R = σ2/μ2, and N = BW

Δ f − 1 are extracted from the received signal. Then, a dataset is
prepared by using u20, R, and N, which are the input of the classifier. Then the HGWO
algorithm is used to optimize the weights and thresholds of the DNN. The experimental
findings demonstrate that the suggested method significantly speeds and improves the con-
vergence speed of GWO. When compared to traditional methods, such as particle swarm
optimization (PSO) and whale optimization algorithm (WOA), this technique outperforms
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the two. However, the HGWO technique in this study is limited because it is only used
to improve the weight and threshold of the DNN model, and the network structure must
be chosen manually. The intelligent optimization technique applied to the structure of the
deep learning network may enhance classification accuracy.

In [92], the MC technique for OFDM VLC systems based on transfer learning (TL) is
developed. For virtually all SNR values, the suggested AlexNet/GoogLeNet-TL-based
strategy outperforms previous approaches in which the AlexNet/GoogLeNet is trained
from scratch (AlexNet/GoogLeNet-SC). In more practical, few-training-data circumstances,
AlexNet/GoogLeNet-TL outperforms AlexNet/GoogLeNet-SC by a wide margin.

In [93], the authors design and implement lightweight CNN (LCNN) based MC
methods, i.e., the ShuffleMC method for the IoT cyber–physical systems. The ShuffleMC
technique requires considerably fewer parameters and is far less computationally complex
than the CNN-based MC method but the classification performance of both is almost
the same at high SNR. Furthermore, the authors introduce the FFT to pre-process the
received OFDM signals for improved classification performance and training acceleration.
In addition, l2 regularization is used in the training procedure to minimize over-fitting and
marginally enhance classification performance.

In [94], a hierarchical CNN-based MC is developed for the waveform and MC in radar
communications systems. Using time-frequency representation of the received signal from
the Fourier synchrosqueezing transformation (FSST) and deep CNN, the received signal is
categorized as either SC radar signals or multicarrier radar signals. Then the cyclic prefix
duration, the number of subcarriers, and subcarriers spacing are estimated for the received
OFDM signal. After that, the independent component analysis (ICA) operation is used to
make the I- and Q-components, which are fed into the CNN classifier for MC.

In [95], a spectrum interference-based two-level data augmentation method in CNN
for MC is studied. The short-time Fourier transform (STFT) and IFFT are used to assist
in the expansion of signals and the introduction of variations while maintaining the key
characteristics. The frequency-domain data are provided to radio signals to improve
modulation classification. Experimental results demonstrate that using a two-level data
augmentation approach based on spectrum interference may considerably enhance the
accuracy of the deep CNN for MC, especially when the SNR is low. This methodology
obtains state-of-the-art classification accuracy when compared to a range of data augmenta-
tion approaches and leading modulation classification algorithms using the public dataset
RadioML 2016.10a.

In [97], a CNN-based MC algorithm is designed, which used a novel data generation
technique allowing deep networks to compute correlations between samples inside each
OFDM symbol and between symbols. The authors construct a unique advanced processing
block that integrates attention and residual connections to boost the learning efficiency
of the model. This approach is tested on a synthetic OFDM signal dataset and shows
improved classification performance under various channel circumstances.

The cross-talk between sub-carrier has been addressed in terms of CFO. The errors in
CFO destroys the orthogonality among the subcarriers or subchannels, thereby introducing
ICI. Therefore, classification performance for the MC algorithm may degrade due to ICI or
the presence of CFO. Therefore, we need to estimate and compensate for the CFO before
MC [63]. In the paper [62], the amplitude moments and correlation properties are used
to classify the modulation scheme for OFDM systems. This technique considered the
presence of CFO, which is the cause of ICI in the amplitude moments of the received signal.
Therefore, the ICI component is estimated and eliminated by using the correlation between
the subcarriers. This approach achieves the desired classification accuracy at 30 dB SNR
for the normalized CFO for range 0.1 ≤ ε ≤ 0.2. In [63], the authors use the DFT and
fourth-order cumulant to classify the modulation scheme in the presence of CFO. However,
this technique has good classification accuracy for the normalized carrier frequency offset
of range −0.5 ≤ ε ≤ 0.5. In [90], a CNN-based MC is studied to classify modulation
format for OFDM systems in the presence of CFO. FFT window banks (FWB) are utilized
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as input to the CNN model to estimate the length of an OFDM symbol. After estimating
the OFDM symbol length, a CNN-based MC technique is utilized to categorize the OFDM
and SC modulation formats concurrently, using FWB and IQ samples as combined input.
The classification performance of this technique degrades to 87.3% in a minor CFO and
83.4% in a moderate CFO. However, it has a classification accuracy of 98.5% at high SNR in
the absence of CFO.

5. Challenges and Future Research Directions

Based on an exhaustive literature review, this paper summarizes the two major MC
approaches for the OFDM signal: statistics based and AI based, and also highlights their
advantages and disadvantages. In the statistics-based approach, the LB approach provides
optimal classification performance. As the number of unknown parameters increases,
it becomes more computationally complex to find a desired analytical solution for the
decision problem. If there is a closed-form solution made, it can be impractical because of
its high computational complexity. A sub-optimal classifier is obtained from the optimal
ML classifier to minimize computational complexity. In the FB algorithm, the expert
domain feature needs to be extracted first, then decisions are made for the classification.
FB algorithms are easier to implement, despite being sub-optimal. Many of the ML- and
DL-based MC first use the signal pre-processing step, which includes noise reduction,
parameter estimation, and making the signal synchronized, which enhances the quality
of the received signal. After that, proper selection of classification model that can reduce
the signal processing steps, increase the modulations classification accuracy and provide
more reliable and effective methods of modulation classification, compared to conventional
modulation methods.

Nevertheless, several studies are mainly based on ideal hypotheses and rely on a
large number of labeled signals. Most of the MC research is still focused on the simulation
stage. The communication environment is more sophisticated, and signal frame lengths are
varied in the realistic implementation scenario. However, with the increasing complexi-
ties of the communication environment and the increasing need for numerous particular
tasks, it is difficult to make sure that a huge training data set is generated effectively for
particular tasks. The development of semi-supervised algorithm systems is needed to solve
this problem. Effective semi-supervised algorithms may be able to fulfill the increasing
need for diverse signal processing demands by collecting a large amount of data, only
a small fraction of which is labeled data. Another potential task is to figure out how to
develop hardware platforms, implant applications, and evaluate algorithms employing
measured data.

Another challenge in the future is how to incorporate a DL-based transmission signal
modulation identifier for OFDM signals on a field-programmable gate array (FPGA), which
would necessitate further research into data quantization, model compression, and other
related studies. Finally, DL techniques have a wide range of applications and growth
potential as a powerful method for processing data and extracting features. In various
fields, combining the DL model with other intelligent algorithms will yield more efficient
results. Furthermore, traditional DL-based MC is challenging to implement in OFDM-
based narrow-band (NB)-IoT devices, as it requires high computational complexity and
more power as well as memory resources. However, implementing light-weight DL-based
blind MC for NB-IoT devices that need less computational, space, and power requirements
might be a difficult task for future adaptive transceiver systems. Another challenge in
the future is modulation classification for OQPSK, π/4-QPSK, and MSK. Higher-order
modulation classification for OFDM, MIMO-OFDM system, and adaptive OFDM systems
over a randomized environment using a hybrid model need to be proposed in future
wireless communication. In addition, we have to extend to a large number of modulation
formats that work for all types of systems. MC can be implemented for massive MIMO
systems, such as intelligent reflective surfaces, to reduce the distortion due to the non-line-
of-sight (NLOS) component of the signal in future wireless communication.
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In OFDM-IM, the number of active subcarriers can be adjusted to achieve the desired
spectral efficiency and BER performance. Thus, the MC algorithm for OFDM-IM needs to
be explored. As compared to the OFDM system, the filter bank multicarrier (FBMC) system
does not require a CP, so it makes the use of radio resources more efficient. Therefore, MC
for FBMC can be a future problem. In NOMA, if a different user uses a different modulation
format, then MC for NOMA can be a challenging task. As compared to the OFDM system,
orthogonal time frequency space (OTFS) has significantly high error performance over
delay-Doppler channels with a wide range of Doppler frequencies. MC for OTFS can be a
future research problem for designing advanced wireless communication systems. Due
to the high peak-to-average power ratio (PAPR), it is difficult to use OFDM on the uplink.
To overcome this problem, single-carrier frequency division multiple access (SC-FDMA) is
used on the uplink. Therefore, the MC algorithm for SC-FDMA needs to be developed. MC
for multicarrier code-division multiple access (MC-CDMA) can also be a critical research
problem for future wireless communication.
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