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Preface to ”New Spin on Metal-Insulator Transitions”

Electrons in solids behave differently compared to free electrons in vacuum, which is

incorporated in the effective mass m* of electronic quasiparticles. In extreme cases, their mutual

interactions can even result in qualitatively different behavior such as the localization of conduction

electrons upon a metal–insulator transition (MIT). Near such electronic instabilities, unconventional

superconductivity, non-Fermi-liquid transport, exotic magnetism, and other interesting electronic

phases are stabilized in correlated electron systems. This Special Issue provides a view into the

ongoing research endeavors investigating emergent phenomena around MITs.

Andrej Pustogow

Editor
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Editorial

New Spin on Metal-Insulator Transitions

Andrej Pustogow

Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria; pustogow@ifp.tuwien.ac.at

Metal-insulator transitions (MITs) constitute a core subject of fundamental condensed-
matter research. The localization of conduction electrons has been observed in a large
variety of materials and gives rise to intriguing quantum phenomena such as unconven-
tional superconductivity and exotic magnetism. Nearby an MIT, minuscule changes of
interaction strength via chemical substitution, doping, physical pressure or even disorder
can trigger spectacular resistivity changes from zero in a superconductor to infinity in an
insulator near T = 0. While approaching an insulating state from the conducting side, devi-
ations from Fermi-liquid transport in bad and strange metals are the rule rather than the
exception, discussed in terms of spatial inhomogeneity and quantum criticality. Moreover,
charge localization upon MITs has a crucial impact on the magnetic degrees of freedom
that are studied for the possible realization of a quantum spin liquid.

Solving the challenges of correlated electron systems and the emergent phenomena
around MITs has attracted much interest. As the drosophila of electron–electron interactions,
the Mott MIT receives particular attention as it can be studied using the Hubbard model.
On the experimental side, the topic has been recently promoted by the advent of twisted
Moiré bilayer systems; however, true bulk materials, such as organic charge-transfer salts,
fullerides and transition-metal oxides, remain indispensable for elucidating macroscopic
quantum phases such as unconventional superconductivity and frustrated magnetism.
Various novel methods have become available lately to tune and map the complex evolution
of the metallic and insulating phases at cryogenic temperatures, including uniaxial strain
and imaging techniques such as near-field microscopy. The controlled variation of disorder
has also been utilized to study Griffiths phases and Anderson-type MITs.

Investigating MITs requires minute control of the relevant tuning parameters, such as
the electronic bandwidth and band filling. While doping is the preferential tool in oxides,
such as superconducting nickelates that are impacted by topotactic hydrogen [1], pressure
tuning is the method of choice for organic charge-transfer salts. Kawasugi et al. achieved
simultaneous control of band filling and bandwidth via in situ strain and gate tuning on
κ-(BEDT-TTF)2X crystals [2]. Another powerful tuning method is partial chemical substitu-
tion, as applied in κ-type systems [3] and quasi one-dimensional (TMTTF)2X [4]. In the
latter case, the Fabre salts with quarter-filled bands exhibit textbook-like charge-ordered
states driven by inter-site Coulomb interactions, which also give rise to unconventional
superconductivity in β′′-(BEDT-TTF)2X, as reviewed by Ihara and Imajo [5]. Such layered
organic superconductors are well suited to study the Fulde–Ferrell–Larkin–Ovchinnikov
(FFLO) state [6,7]. On the theoretical side, Riedl and coworkers review generalized models
of κ-systems [8], while Tan et al. assessed universal aspects of Mott criticality [9]. Disorder
and Anderson localization are studied using cluster methods [10,11] and experiments
on BEDO-TTF crystals [12]. A useful tool to systematically investigate and compare all
these phenomena is the database for crystalline organic conductors and superconductors
provided by Ganter et al. [13]. The interplay of charge and spin degrees of freedom, promi-
nently seen in manganites [14], is considered important in dimerized organic Mott systems,
where dielectric anomalies have been controversially discussed [15]. In geometrically
frustrated systems, the charge order can transform into a charge glass [16] and magnetic
order can transform into a quantum spin liquid. Regarding the latter scenario, R. Kato et al.
discuss discrepancies of thermal transport measurements on β’-EtMe3Sb[Pd(dmit)2]2 [17].

Crystals 2023, 13, 64. https://doi.org/10.3390/cryst13010064 https://www.mdpi.com/journal/crystals1
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Taupin and Paschen inspect the controversies of condensed-matter research, namely the
topic of whether heavy Fermion systems exhibit ’Planckian dissipation’ [18].

This Special Issue provides a glimpse into the latest progress in answering the existing
questions around MITs, including various topics of solid-state physics.
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et al. Grain-Size-Induced Collapse of Variable Range Hopping and Promotion of Ferromagnetism in Manganite La0.5Ca0.5MnO3.
Crystals 2022, 12, 724. [CrossRef]

15. Iakutkina, O.; Rosslhuber, R.; Kawamoto, A.; Dressel, M. Dielectric Anomaly and Charge Fluctuations in the Non-Magnetic
Dimer Mott Insulator λ-(BEDT-STF)2GaCl4. Crystals 2021, 11, 1031. [CrossRef]

16. Hashimoto, K.; Kobayashi, R.; Ohkura, S.; Sasaki, S.; Yoneyama, N.; Suda, M.; Yamamoto, H.M.; Sasaki, T. Optical Conductivity
Spectra of Charge-Crystal and Charge-Glass States in a Series of θ-Type BEDT-TTF Compounds. Crystals 2022, 12, 831. [CrossRef]

17. Kato, R.; Uebe, M.; Fujiyama, S.; Cui, H. A Discrepancy in Thermal Conductivity Measurement Data of Quantum Spin Liquid
β′-EtMe3Sb[Pd(dmit)2]2 (dmit = 1,3-Dithiol-2-thione-4,5-dithiolate). Crystals 2022, 12, 102. [CrossRef]

18. Taupin, M.; Paschen, S. Are Heavy Fermion Strange Metals Planckian? Crystals 2022, 12, 251. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

2



crystals

Article

Dielectric Anomaly and Charge Fluctuations in the
Non-Magnetic Dimer Mott Insulator λ-(BEDT-STF)2GaCl4

Olga Iakutkina 1,*, Roland Rösslhuber 1, Atsushi Kawamoto 2 and Martin Dressel 1

Citation: Iakutkina, O.; Rösslhuber,

R.; Kawamoto, A.; Dressel, M.

Dielectric Anomaly and Charge

Fluctuations in the Non-Magnetic

Dimer Mott Insulator

λ-(BEDT-STF)2GaCl4. Crystals 2021,

11, 1031. https://doi.org/

10.3390/cryst11091031

Academic Editor: Ingo Dierking

Received: 20 July 2021

Accepted: 24 August 2021

Published: 27 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 1. Physikalisches Institute, Universität Stuttgart, 70569 Stuttgart, Germany;
roland.roesslhuber@pi1.physik.uni-stuttgart.de (R.R.); dressel@pi1.physik.uni-stuttgart.de (M.D.)

2 Department of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan;
atkawa@phys.sci.hokudai.ac.jp

* Correspondence: olga.iakutkina@pi1.uni-stuttgart.de

Abstract: The dimer Mott insulator λ-(BEDT-STF)2GaCl4 undergoes no magnetic order down to the
lowest temperatures, suggesting the formation of a novel quantum disordered state. Our frequency
and temperature-dependent investigations of the dielectric response reveal a relaxor-like behavior
below T ≈ 100 K for all three axes, similar to other spin liquid candidates. Optical measurement
of the charge-sensitive vibrational mode ν27(b1u) identifies a charge disproportionation Δρ ≈ 0.04e
on the dimer that exists up to room temperature and originates from inequivalent molecules in the
weakly coupled dimers. The linewidth of the charge sensitive mode is broader than that of typical
organic conductors, supporting the existence of a disordered electronic state.

Keywords: strongly correlated systems; organic conductors; relaxor-ferroelectrics; dielectric
spectroscopy; infrared spectroscopy; disordered systems

1. Introduction

Strongly correlated electron systems attract much interest due to some novel magnetic,
dielectric, and superconducting properties; both electron–electron interactions and quan-
tum fluctuations are considered crucial for understanding these phenomena. Among these
systems, the quasi-two-dimensional organic charge-transfer salts are renowned for their
versatility and enormously rich phase diagrams, comprising superconducting, spin-liquid,
antiferromagnetic, or charge-ordered phases that arise from the interplay of spin, charge,
and lattice degrees of freedom [1–5]. Besides the most popular examples κ-(BEDT-TTF)2X,
another dimerized family has drawn large attention, the λ-salts, where the lattice sys-
tem consists of triangular and square tiling as depicted in Figure 1b. In addition to the
well-studied unconventional superconducting properties, such as a Fulde–Ferrell–Larkin–
Ovchinnikov state and field-induced superconductivity at strong magnetic fields [6–9], a
spin-liquid-like state was discovered recently [10,11].

The electronic phase of the insulating λ-(BEDT-STF)2GaCl4 is situated between the an-
tiferromagnet λ-(BEDT-TTF)2GaCl4 and the superconductor λ-(BETS)2GaCl4 (cf. Figure 1a
for the molecular structure). While the most insulting compound λ-(BEDT-TTF)2GaCl4
undergoes an antiferromagnetic transition at TN = 13 K, no magnetic order occurs in
λ-(BEDT-STF)2GaCl4 down to 1.63 K regardless of the strong coupling J = 194 K [12].
The temperature dependence of the magnetic susceptibility can be described by a S = 1

2
two-dimensional antiferromagnetic Heisenberg model on the triangular lattice, suggesting
geometrically frustrated spin-liquid-like behavior. However, a nuclear magnetic resonance
(NMR) study found an inhomogeneous electronic state; after an increase of 1/T1, the NMR
relaxation rate saturates at a low temperature, which is in stark contrast to the magnetic
properties of other spin liquid candidates. Hence, λ-(BEDT-STF)2GaCl4 is considered a
realization of a novel quantum disordered state [11].

Crystals 2021, 11, 1031. https://doi.org/10.3390/cryst11091031 https://www.mdpi.com/journal/crystals3
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Figure 1. (a) The donor molecule ET = BEDT-TTF, i.e., bis-(ethylenedithio)-tetrathiafulvalene), is the
most common building block, but sulfur can be replaced by selenium, leading to STF = BEDT-STF,
i.e., bis-(ethylenedithio)-diseleniumdithiafulvalene, and BETS = BEDT-TSF, i.e., bis-(ethylenedithio)-
tetraselenafulvalene. The more extended orbitals cause a larger bandwidth favoring better con-
ductivity. (b) The two-dimensional charge transfer salts form different dimer patterns, where two
crystallographically independent donors crystallize face-to-face. In the κ-phase the dimers are rotated
with respect to each other, while the λ-pattern is organized in stacks with two dimers per unit cell;
here, the constituent molecules A and B differ by symmetry. The unit cell given by black contains
four molecules (A, B) and (B′, A′). The triangular arrangement of the dimers is indicated in green,
where—depending on the particular transfer integrals—a high degree of frustration can be reached.
Due to the weaker diagonal interaction, a square tiling occurs, shown by blue lines.

Having in mind that numerous organic conductors including antiferromagnets and
spin-liquid candidates exhibit dielectric anomalies [13–24], with the charge-order driven
ferroelectric state detected for some of them [25–27], and the growing numbers of possible
applications of ferroelectric materials [28–32], understanding the mechanism of dielectric
anomaly and investigating the charge dynamics of the electronic state in organic conductors
are of great interest. In this study, we focused on the disordered quantum state of λ-
type salts.

To this end, we employ dielectric and vibration spectroscopies to explore the charge
state and the presence of the dielectric anomaly in λ-(BEDT-STF)2GaCl4; in addition, the
compound is investigated by infrared spectroscopy as the standard and very powerful tool
to elucidate the charge distribution on the molecules [33–38].

2. Experimental Details

Single crystals of λ-(BEDT-STF)2GaCl4 were synthesized at Hokkaido University by
the standard electrochemical oxidation method [39]. In contrast to BEDT-TTF molecules, in
BEDT-STF, two central sulfur atoms are substituted by Se atoms, leading to asymmetric
BEDT-STF molecules as sketched in Figure 1a. The crystals have a needle-like shape parallel
to the c-axis and typical dimensions of 1 mm × 0.2 mm × 0.05 mm. The donor molecules
are dimerized with the pairs arranged in the ac-plane. As shown in Figure 2, the conducting
layers of donor molecules alternate with insulating anion sheets along the b-axis, giving
rise to a quasi-two-dimensional structure. The morphology of the crystals corresponds
to the (11̄0), (110), and (001)-planes. For clarity (11̄0) and (110) planes are depicted in
Figure 2c, while the (001)-plane coincides with the c-axis.

4
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Figure 2. Crystal structure of λ-(BEDT-STF)2GaCl4. (a) The λ-type arrangement of donor molecules
within the highly conducting ac-plane. (b) The layered structure becomes obvious when looking
along the c-direction, where the alternation of donor and anion layers are seen. (c) Green and blue
planes correspond to (110) and (11̄0), respectively.

Dielectric measurements between T = 295 and 7 K are carried out using an Agilent
A4294 impedance analyzer that covers the frequency range 100 Hz–10 MHz. The spectra
of the complex dielectric permittivity

ε̂(ω) =
σ̂(ω)− σ0

iε0ω
= ε′(ω) + iε′′(ω) (1)

are obtained along all three directions, [110], [11̄0], and [001], using the two-contact method,
where gold wires are attached on both sides of the crystal with carbon paste; the other
ends of the wires are connected to the sample holder with silver paint. Here, σ0 is the
conductivity caused by free electrons in the material, and ε0 is the vacuum permittivity;
ε
′

and ε
′′

are the real and imaginary parts of the permittivity. To have reliable data, the
sample holder open-loop contribution is subtracted [40]. Using a continuous helium-flow
cryostat (KONTI by CryoVac, Troisdorf, Germany), the samples can be cooled down from
room temperature to T = 7 K.

Optical reflectivity measurements off the (110)-plane of λ-(BEDT-STF)2GaCl4 single
crystals are carried out with a Bruker Hyperion infrared microscope attached to a Bruker
Vertex 80v Fourier-transform infrared spectrometer. The experiments are performed with
the light polarized parallel to [11̄0], i.e., in the direction most sensitive to the charge-
sensitive infrared-active intramolecular vibrational mode ν27(b1u) [35,41,42]. The spectra
are recorded in a frequency range from 500 to 8000 cm−1 between T = 295 and 12 K. The
optical conductivity is calculated via the Kramers–Kronig transformation with constant
extrapolation of reflectivity below 500 cm−1, which is common for insulators, and using
standard ω−4 decay as high-frequency extrapolation.

3. Results and Analysis

3.1. Dielectric Properties

Figure 3 displays the real part of the dielectric permittivity ε′(T) as a function of
temperature measured at various frequencies f = ω/2π along the three directions [001],
[110], and [11̄0] of a λ-(BEDT-STF)2GaCl4 crystal.

For the orientations E ‖ [001] and E ‖ [11̄0], broad maxima develop below T = 100 K,
which are strongly frequency dependent. With decreasing frequency, the peak shifts toward
lower temperatures and becomes sharper. For E ‖ [110], a clear step can be seen in the
real part of the dielectric constant around T = 60 K that shifts toward higher temperatures
with increasing frequency. This behavior is typical for relaxor ferroelectrics, and similar
dielectric anomalies are frequently observed in organic conductors [19–21,43,44].
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Figure 3. Temperature-dependent real part of the permittivity of λ-(BEDT-STF)2GaCl4 recorded
at different frequencies for the electric field along the three different directions, i.e., (a) E ‖ [001],
(b) E ‖ [110], and (c) E ‖ [11̄0].

Dielectric relaxation appears in a rather broad temperature range; for intermediate
temperatures, the frequency dependence of the real and imaginary parts of the dielectric
permittivity is plotted in Figure 4. The overall behavior can be described by the generalized
Debye model [45,46]:

ε̂(ω)− ε∞ =
Δε

1 + (iωτo)1−α
, (2)

where Δε = ε′(ω → 0)− ε′(ω → ∞) is a measure of the dielectric strength, and ε′(ω → 0)
and ε′(ω → ∞) are the limiting static and the high-frequency values of the dielectric con-
stant, respectively. τ0 is the mean relaxation time, and (1 − α) is the symmetric broadening.
The drop in ε′(ω) with increasing frequency implies that the dipoles cannot follow the ac
electric field at high frequencies [47]. Since ε′(ω) and ε′′(ω) are linked via the Kramers–
Kronig relation, the step in the real part results in a peak in the absorption ε′′. The solid
black lines in Figure 4 represent the fit of the data according to Equation (2), and the dashed
green line is the dc contribution σ0.

The temperature dependence of the parameters of λ-(BEDT-STF)2GaCl4 extracted
from the fit of the data by Equation (2) is plotted in Figure 5 as a function of inverse
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temperature 1/T. The dielectric strength Δε exhibits a broad peak around T = 67 K for
the electric field oriented within the (11̄0)-plane and around T = 40 K for the out of plane
direction, E ‖ [11̄0]. This behavior resembles the temperature dependence of ε′(T) for
low frequencies. At high temperatures, the mean relaxation time τ0(T) shows thermally
activated behavior for all three directions; at the same time, the symmetric broadening
(1− α) decreases with decreasing temperature. These features are signatures of cooperative
behavior and glass-like freezing of molecular motion [48].

Figure 4. Double logarithmic presentation of the frequency-dependent real and imaginary parts of
the dielectric permittivity of λ-(BEDT-STF)2GaCl4, ε′ (blue symbols) and ε′′ (red symbols). The data
are recorded along (a) the [001]- and (b) [110]-directions at T = 70 K and (c) for E ‖ [11̄0] at T = 50 K.
The solid black lines represent fits by the generalized Debye model; the dashed green lines indicate
the dc contribution to the imaginary part of the permittivity.

The temperature dependence of the mean relaxation time for disordered glassy sys-
tems with critical slowing down is commonly described by the Vogel–Fulcher–Tammann
(VFT) expression [48,49]:

τ0(T) = τVFT exp
{ ΔVFT

T − TVFT

}
, (3)
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where ΔVFT is the activation energy for reorientational motion, TVFT is the temperature
where the mean relaxation time diverges, and τVFT is the time scale for the response in the
high-temperature limit.

Figure 5. (a) Dielectric strength Δε(T), (b) mean relaxation time τ0(T), and (c) symmetric broadening
(1− α) as a function of inverse temperature for all the directions of λ-(BEDT-STF)2GaCl4, as indicated.

In Figure 6, the mean relaxation time τ0(T) of λ-(BEDT-STF)2GaCl4 is plotted for all
three orientations as a function of 1/(T − TVFT) together with fits by Equation (3). The
Vogel–Fulcher–Tammann law explains how the peak seen in the temperature-dependent
plot ε′(T) of Figure 3 shifts with frequency. The parameters of the mean relaxation time
obtained by the fits are listed in Table 1 for the different axes. We also see that TVFT is equal
to 15 K for all three directions; the value is slightly higher than TVFT ≈ 6 K, extracted for
the spin liquid candidate κ-(BEDT-TTF)2Cu2(CN)3, adjusted to the anomaly observed in
numerous other quantities [44].

Table 1. The Vogel–Fulcher–Tammann parameters of λ-(BEDT-STF)2GaCl4: the mean relaxation
time τ0, activation energy ΔVFT, and glass temperature TVFT obtained for E ‖ [001], E ‖ [110], and
E ‖ [11̄0].

Directions of τVFT ΔVFT TVFT

Measurement (s) (K) (K)

[001]-axis 2.5 × 10−10 560 15
[110]-axis 1.85 × 10−10 525 15
[11̄0]-axis 8.2 × 10−10 250 15

8
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The anisotropy of the activation energy extracted in κ-(BEDT-TTF)2Cu2(CN)3 also
ranged up to a factor of 2 in the Vogel–Fulcher–Tammann fit with remarkable deviations
between different single crystals, reaching up to 510 K and 330 K, respectively [19,20].
Hence, from the slowing down of the relaxation time according to an Arrhenius behavior,
Pinterić et al. obtain values comparable to the ones given in Table 1 with a glass temperature
between 10 and 15 K. Again, the sample-to-sample deviation indicates disorder being
important for κ-(BEDT-TTF)2Cu2(CN)3 and also for κ-(BEDT-TTF)2Ag2(CN)3 [20–22]

Figure 6. Arrhenius presentation of the mean relaxation time τ0(T) of λ-(BEDT-STF)2GaCl4 mea-
sured along the [001] (black square), [110] (red circle), and [11̄0] (blue triangle) axes. The solid green
line corresponds to fits by the Vogel–Fulcher–Tammann expression (3).

Alternatively, the temperature dependence of the real part of the dielectric permittivity
displayed in Figure 3 might be described by a Curie–Weiss behavior. The Curie–Weiss law
for the static dielectric constant as a function of temperature has the form

ε′(T) = C
T − TC

, (4)

where C is the Curie constant, and TC is the Curie temperature. In Figure 7, we plot ε′(T)
along E ‖ [001] and E ‖ [11̄0] for several frequencies.

Figure 7. The real part of the dielectric constant ε′(T) plotted as a function of temperature at certain
frequencies for (a) E ‖ [001] and (b) E ‖ [11̄0]. The dashed black line corresponds to the Curie–Weiss
fit according to Equation (4).

The best fit by Equation (4) for frequencies less than 5 kHz is given by the dashed line;
no clear Curie–Weiss peak is visible for the direction E ‖ [110]. The obtained parameters
are listed in Table 2. From the Curie constant C for E ‖ [11̄0] (out of plane), we can estimate
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the dipole strength following the procedure described by Pinterić et al. [20]. Assuming that
the dielectric behavior is a result of charge imbalance within the dimers, we can estimate
the amount of charge disproportionation Δρ ≈ 0.05e.

Table 2. Parameters C and TC of λ-(BEDT-STF)2GaCl4 obtained from the fit of ε′(T) by the Curie–
Weiss Equation (4) for E ‖ [001] and E ‖ [11̄0].

Directions of C TC
Measurement (K) (K)

[001]-axis 4 × 104 53
[11̄0]-axis 420 15

3.2. Vibrational Spectroscopy

In order to learn about the possible charge disproportionation in λ-(BEDT-STF)2GaCl4
on a microscopic scale, we apply infrared spectroscopy frequently used for investigating
organic charge-transfer salts [33–38,41,50]. Here, we focus on the asymmetric infrared-
active vibrational mode ν27(b1u) that involves the C=C bonds and is thus very sensitive to
the electronic charge per molecule. It can be probed best perpendicular to the plane, i.e.,
for E ‖ [11̄0]. Figure 8a displays the optical conductivity σ1(ω) of λ-(BEDT-STF)2GaCl4
in the corresponding spectral range for several temperatures. The broad band observed
around 1465 cm−1 is assigned to the ν27 vibration for half a hole per BEDT-TTF molecule.
The feature becomes more pronounced upon cooling, but soon it becomes obvious that it is
composed of two modes; eventually, two peaks are well separated.

For the quantitative characterization, the conductivity spectra of the ν27 mode can be
described satisfactorily with one Fano function above T = 90 K, while two Lorentzians are
necessary below. For the optical conductivity, the Fano function and one Lorentzian give
σFano

1 and σLorentz
1 , respectively, as described in, e.g., Equation (5a,b):

σFano
1 (ν) = σ0

γν[γν(q2 − 1) + 2q(ν2 − ν2
0)]

(ν2 − ν2
0)

2 + γ2ν2
(5a)

σLorentz
1 (ν) =

σ0γν2

(ν2 − ν2
0)

2 + γ2ν2
(5b)

where ν = f /c = ω/(2πc), σ0, and γ are frequency, amplitude, and damping, respectively,
and q is a phenomenological coupling constant in the Fano function, which gives the
Lorentzian shape in the case q = ±∞.

In Figure 8b,c, we present examples of the fits to σ1(ω) at T = 295 and 12 K; in
addition, a broad Lorentzian accounts for the electronic background. The peak frequencies
and linewidths are plotted in panels (d) and (e) as a function of temperature. While some
hardening is observed for T > 150 K, the mode frequency saturates when cooling further.
This also holds when we fit the spectra by two modes at low temperatures. Besides some
thermal narrowing, when cooling starts at room temperature, the overall linewidth remains
constant at approximately 13 cm−1 below 150 K.

10
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Figure 8. (a) Temperature evolution of the optical conductivity of λ-(BEDT-STF)2GaCl4 in the region of the molecular
vibration ν27(b1u). The data are shifted with respect to each other by a constant offset for clarity reasons. (b,c) Fits of the
vibrational mode at T = 295 and 12 K. The experimental data are shown in black, the red lines correspond to the overall
fit, and the blue lines are separate contributions to the mode. From the two-state jump model [Equation (7)], we obtain
the green line. (d,e) Temperature dependence of the resonance frequency and linewidth of the charge-sensitive mode
ν27(b1u). While the red squares correspond to the fit by a single contribution for T ≥ 90 K , the blue symbols represent the
two-mode description, where triangles and rotated triangles are related to different Lorentzians; the open blue squares in
panel (e) correspond to the sum of both, demonstrating that the overall width does not change.

In Figure 8d, the temperature-dependent results from fitting the ν27(b1u) vibrational
feature of λ-(BEDT-STF)2GaCl4 by two Lorentzian modes are displayed by blue symbols.
For T < 90 K, the peaks are well separated, but we can also extend this approach to
higher temperatures, as an alternative to the description by a single Fano-line (red squares).
Obviously, there is a kink in the temperature evolution of the vibrational frequency around
T = 100 K that is independent of the fit procedure. At elevated temperatures, the blue-shift
upon cooling follows the typical thermal hardening. The kink in this behavior at around
100 K infers some modification in the physical properties. Even though the origin of this
kink is unclear, it can be related to the realization of an inhomogeneous electronic state
suggested from NMR measurements, where an increasing linewidth was observed in the
same temperature range, and the temperature dependence of the dc resistivity follows
variable-range hopping or soft Hubbard gap models below 100 K, characteristic for systems
with disorder [51,52]. It is also interesting to note that this anomaly occurs exactly at the
temperature where the dielectric dispersion starts to develop, as shown in Figure 3.

Let us first have a look at this separation. The splitting of the ν27(b1u) molecular
vibration is commonly taken as evidence that there are two distinct molecules containing
unequal charge, and the charge imbalance Δρ can be simply determined as the differences
between charges on these two molecules, Δρ = ρ(charge rich)− ρ(charge poor). From the
separation of the two peaks by Δν = 6 cm−1 extracted from Figure 8d, we can estimate the
charge imbalance Δρ according to

Δν27 = −(140 cm−1/e)Δρ , (6)

suggested for BEDT-TTF compounds [35,41]; here we would like to note that, despite this
relation was established for the BEDT-TTF molecules, it will also hold for BEDT-STF, as
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the replacement of some S ions by Se in BEDT-STF or BETS leads to only a small shift in
ν27 of less than 2 or 3 cm−1 , respectively, in absolute value [53,54]. From our data we
obtain Δρ ≈ 0.043e which is independent of temperature. Although the mode is thermally
broadened at higher temperatures, the fit by two terms can be extended up to T = 300 K
without change in the frequency separation. This implies that the charge disproportionation
of Δρ is already present at an ambient condition and remains unaffected by temperature. In
other words, there is no charge-order phase transition in λ-(BEDT-STF)2GaCl4, comparable
to the one seen in one-dimensional charge transfer salts as a mean-field development of
the charge disproportionation [44,55].

The behavior is also distinct from κ-(BEDT-TTF)2Hg(SCN)2Br, where a second peak
develops around 18 cm−1 below the main peak, which, in fact, also exhibits a double
structure with a sideband 5 cm−1 apart [24]. In the present case, we do not see a shoulder
on one side gradually developing towards full peaks; instead, we observe a vibrational
feature that is rather broad, and it becomes more pronounced upon cooling without strongly
increasing or decreasing in width.

This observation is in line with the presence of two crystallographically inequivalent
donor molecules, A and B, forming the dimer in the λ-type salts, as depicted in Figure 1b.
We conclude that these molecules are not only distinct by symmetry but also carry different
charges. The charge imbalance is rather small when compared to the non-dimerized α-
(BEDT-TTF)2I3, for instance, where a charge disproportionation of more than Δρ ≈ 0.1e
is already present at room temperature well above the charge-order transition [56]. To
our knowledge, there are no systematic vibrational studies of the family of λ-salts. In the
related compound λ-(BETS)2GaCl4, a weak charge disproportionation was concluded from
the broadening of the 77Se NMR spectrum and its angular dependence [57].

Most dimerized charge-transfer systems, such as κ-(BEDT-TTF)2Cu2(CN)3 or κ-(BEDT-
-TTF)2Cu[N(CN)2]Cl, do not develop any charge disproportionation beyond 1%, which
is about the experimental resolution [58]. However, with approximately 6.5 cm−1, the
vibrational features of κ-(BEDT-TTF)2Cu2(CN)3 are significantly broader than what is
observed in typical charge-ordered compounds, such as α-(BEDT-TTF)2I3, where the
linewidth is less than 3 cm−1 [59,60], or in κ-(BEDT-TTF)2Hg(SCN)2Cl where the individual
width is around 4 to 5 cm−1 at T = 10 K [24]. This was explained by intradimer charge
fluctuations, using a two-state jump model [36]. A similar conclusion can be drawn from
investigations of the Raman-active fully symmetric vibrations, ν2 and ν3 [61].

As seen from Figure 8e, for λ-(BEDT-STF)2GaCl4 the width of the ν27 modes also
decreases only slightly with a reduced temperature and remains at about 13 cm−1 in total. If
we assume an electronic charge fluctuating within the dimer, depending on the fluctuation
rate, the broadening or splitting of the mode can be described by the Kubo formula [36]:

L(ω) =
F [(γ + 2vex)− i(ω − ωw)]

R2 − (ω − ω1)(ω − ω2)− 2iΓ(ω − ωav)
. (7)

Here, F = f1 + f2, with f1, f2 being the oscillator strengths of the bands at frequency
ω1 and ω2 and halfwidth γ. The charge fluctuation velocity is vex, Γ = γ + vex is the
resulting width, and the abbreviation R2 = 2γvex + γ2. Finally, we define the average and
weighted frequency, ωav and ωw, by

ωav =
ω1 + ω2

2
and ωw =

f2ω1 + f1ω2

f1 + f2
. (8)

When the charge oscillations are slow, vex � |ω1 − ω2|/2, Equation (7) yields two
separated bands centered around ω1 and ω2, while for vex � |ω1 − ω2|/2, the motional
narrowing will give one single band centered at the intermediate frequency ωav. Finally,
when vex ≈ |ω1 − ω2|/2, we shall observe one broad band shifted towards the mode with
larger oscillator strength.

The green line in Figure 8c represents the fit of the data by Equation (7), with a slitting
of 6.2 cm−1 and a fluctuation rate νex = 0.3 cm−1 corresponding to 9 × 1010 s−1. This
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exchange frequency is certainly slower than estimated for κ-(BEDT-TTF)2Cu2(CN)3but
much faster than the νex = 40 cm−1 obtained from Raman measurements on κ-(BEDT-
TTF)2Hg(SCN)2Cl [62].

Although the estimated charge disproportionation of Δρ ≈ 0.043e is in good agreement
with the value obtained from our dielectric measurements, we should keep in mind that
this sort of charge fluctuation is much too fast to be the sole cause for the dielectric response
observed in the kHz and MHz range of frequency. In addition, we do not observe any
significant temperature dependence of the charge disproportionation among the molecules,
which could be related to the significant temperature dependence of the dielectric behavior.
The important facts in λ-(BEDT-STF)2GaCl4 are the intrinsic disorder due to the asymmetric
BEDT-STF molecules and the domain wall formation due to charge order, as discussed
previously [44,59,60]. The random orientation of the asymmetric BEDT-STF molecules
introduces inhomogeneous charge localization, giving rise to enhanced linewidth. Hence,
it is more plausible that the disordered donor molecule structure plays a role for the
broad linewidth as it provides a different chemical environment, suggesting that charge
fluctuations are not dominant in the insulating phase next to the SC phase in the λ-salts.
This supports NMR studies claiming that magnetic fluctuation should contribute to the SC
pairing mechanism [11,63]. To check the effect of the charge fluctuation in detail, ultrasonic
measurements will be useful. Of course, Raman scattering experiments should eventually
be performed to verify our findings.

4. Conclusions

Dielectric and vibrational spectroscopies were performed on λ-(BEDT-STF)2GaCl4
in order to elucidate the charge degrees of freedom. Our temperature and frequency-
dependent investigations of the dielectric properties reveal relaxor-like ferroelectric be-
havior below T ≈ 100 K. The vibration spectroscopy found two ν27 modes which can
be related to inequivalent donor molecules. The amount of charge disproportionation is
consistently estimated to be approximately Δρ = 0.04–0.05e, which remains temperature
independent, ruling out a charge-order transition. At this point, we cannot give a final
answer as to what causes the kink in the vibrational properties around T = 100 K and the
concomitant occurrence of the anomaly in the dielectric constant. The linewidth of the
ν27 mode is broader than that of typical BEDT-TTF salts, indicating that the asymmetric
BEDT-STF molecules constitute a different chemical environment. This supports that the
electronic state in λ-(BEDT-STF)2GaCl4 is strongly influenced by disorder, leading to some
novel quantum state, as previously suggested.
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44. Tomić, S.; Dressel, M. Ferroelectricity in molecular solids: A review of electrodynamic properties. Rep. Prog. Phys. 2015,
78, 096501. [CrossRef] [PubMed]

45. Jonscher, A.K. Dielectric Relaxation in Solids; Chelsea Dielectric Press: London, UK, 1983.
46. Jonscher, A.K. Dielectric relaxation in solids. J. Phys. D 1999, 32, R57. [CrossRef]
47. Lunkenheimer, P.; Loidl, A. Dielectric spectroscopy on organic charge-transfer salts. J. Phys. Condens. Matter 2015, 27, 373001.

[CrossRef] [PubMed]
48. Cross, L.E. Relaxor ferroelectrics. Ferroelectrics 1987, 76, 241. [CrossRef]
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Abstract: We develop a real space cluster extension of the typical medium theory (cluster-TMT)
to study Anderson localization. By construction, the cluster-TMT approach is formally equivalent
to the real space cluster extension of the dynamical mean field theory. Applying the developed
method to the 3D Anderson model with a box disorder distribution, we demonstrate that cluster-TMT
successfully captures the localization phenomena in all disorder regimes. As a function of the cluster
size, our method obtains the correct critical disorder strength for the Anderson localization in 3D, and
systematically recovers the re-entrance behavior of the mobility edge. From a general perspective,
our developed methodology offers the potential to study Anderson localization at surfaces within
quantum embedding theory. This opens the door to studying the interplay between topology and
Anderson localization from first principles.

Keywords: metal insulator transition; Anderson localization; random disorder; typical medium
theory; dynamical mean field theory; coherent potential approximation; dynamical cluster approxi-
mation; cellular dynamical mean field theory; cluster mean field theory

1. Introduction

The localization problem in disordered electronic systems was introduced in Ander-
son’s seminal paper [1] in the late fifties, and it still remains in the forefront of research in
materials science and condensed matter physics [2–5].

In disordered media, the scattering of charge carriers off random impurities may
inhibit their propagation across the sample leading to a spatial confinement of carriers, a
phenomenon known as Anderson localization [1]. Weak localization and strong Anderson
localization have been conjectured and subsequently observed in experiments [6–10]. As a
wave phenomenon, Anderson localization has been demonstrated for electrons [11–16],
sound [17], photons [18–25], and ultra cold atoms [26].

To model disorder, Anderson proposed a simplified model of electrons hopping
between lattice sites being subject to static scattering processes on locally disordered centers.
The stochastic character of the problem is encoded into the on-site energies (disordered
scattering centers) considered as random variables distributed according to a chosen
probability distribution. The Green’s function imaginary part, the local density of states
(LDOS), turns out to be an important quantity which characterizes the disordered system.
For example, the LDOS is finite for extended states, while the spectrum of localized states
is discrete. A decade later, an approach based on the distribution of the site and energy
dependent self-energies was formulated [27]. This approach leads to a self-consistent
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equation for the self-energy, which can be solved on a Cayley tree (Bethe lattice). However,
for general lattices, only an approximate solution can be provided.

Computations for substitutionally disordered three-dimensional materials with or-
dinary lattice structures are therefore difficult to perform within the framework of tight-
binding models [1,27]. Suitable modeling in such cases can be constructed based on
effective medium theories. Among them, single site effective medium methods, such as the
coherent potential approximation (CPA) [28–35] and the typical medium theory (TMT) [36],
proved to be simple and transparent theories that are able to capture important features of
the disorder effects in electron systems. Common to these two methods is the mapping
of the lattice problem into the impurity placed in a self-consistently determined effective
medium. In both methods, the measured quantity is the disorder averaged Green’s func-
tion; however, in CPA, the Green’s function is linearly (algebraically) averaged, while, in
the TMT, the geometric average of the LDOS is used. This difference in disorder averaging
defines the average and the typical effective media, respectively.

Unlike the algebraically averaged Green’s function of the CPA effective medium, the
geometric averaged LDOS, called the typical density of states (TDOS), drops to zero [36–47],
at the Anderson transition. The geometrically averaged TDOS is an approximation to the
most probable value in the distribution of the LDOS. At the Anderson transition, the
system is not self-averaged, hence the distribution of the LDOS is highly skewed with
long tails [37,48]. Therefore, the average and most probable values of the LDOS will be
very different close to the transition [37,49–51]. Dobrosavljevic et al. [36] incorporated such
statistical properties of the LDOS within an effective medium approach, called the TMT.
They showed that the TDOS successfully captures the main signatures of the Anderson
localization transition, with the TDOS being an order parameter to detect the localized
states. In Refs. [52–54], the momentum-space cluster extension of the TMT [54], the typical
medium dynamical cluster approximation (TMDCA) has been developed. The TMDCA is
the typical medium extension of the Dynamical Cluster Approximation (DCA) [55,56], a
momentum-space cluster extension of the CPA. The TMDCA overcomes the shortcomings
of the local single site TMT and accurately predicts the critical disorder strength of the
Anderson localization transition in a single-band Anderson model. For model Hamiltonian
systems, the TMDCA has been applied to non-interacting and weakly interacting disor-
dered three-dimensional systems [52,53,57,58], systems with off-diagonal disorder [59],
phonon localization [60,61], and multi-orbital models [62]. Some of the methods inspired by
the typical medium theories have been combined with first-principles calculations [63–65].

Complementary to the momentum space cluster methods, described above, techniques
using embedding in real space provide an interesting alternative. This constitutes the aim
of the present work. We have previously formulated the embedding into the effective
typical medium which allows for addressing the Anderson localization transition in the
framework of a locally self-consistent approach [66]. In addition, the locally self-consistent
formulation opens up the possibility to formulate linear scaling methods. Unlike the
previous typical medium cluster extensions of TMT, formulated in the momentum space
(TMDCA) [54,67], or in a mixed representation (locally self-consistent approach) [66,68],
here we propose an exclusively real space cluster extension of TMT (cluster-TMT). This
construction is formally equivalent to the real space cluster extension of the dynamical
mean field theory (DMFT) [69–73].

The key accomplishment of the present study is the development of a cluster mean
field theory for the description of Anderson localization. The developed cluster version is
based on a real-space approach, and presents an alternative to the existing momentum space
version of TMDCA. To demonstrate the validity of the method, we apply it to the three-
dimensional Anderson model with box disorder distribution, and reproduce the full phase
diagram and the critical disorder strength, Wc, for the metal-insulator transition. The cluster
mean field theory we designed is an extension of the local single site typical medium theory.
The developed real space cluster extension method incorporates the spatial non-local effects
systemically; therefore, the re-entrance behavior of the 3D Anderson model is recovered.
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We find that cluster extensions of TMT are necessary to properly capture the non-local
effects in the Anderson transition. Quantitatively, our results are in good agreement with
the existing data in the literature. In particular, we find that the converged cluster value of
Wc ≈ 17.05 is superior to the value of 13.4 provided by single site TMT calculations. We
demonstrate that non-local spatial correlations are significant in the 3D Anderson model,
and hence going beyond a single site approximation is necessary to properly describe
the metal-insulator transition. Unlike the single site TMT, the present real-space cluster
computation captures the re-entrance behavior driven by non-local multiple scattering
effects which are missing in local approximations [5,36,48,74]. In addition, just like the
TMDCA, the real space cluster-TMT allows for a computationally efficient treatment of
the non-local effects in Anderson localization. In addition, however, the real-space cluster
TMT opens the door to treating problems with open boundary conditions, which offers
the possibility to study the localization of surface states. One potential application of
this capability would be the search for a material realization of the topological Anderson
insulator [75] via first principles calculations. In addition, the presented formalism being a
real space cluster opens venues for an easier embedding with ab initio Green’s function
electronic structure methods, which offer a more natural approach (in contrast to the
momentum space TMDCA) to disordered real materials, including high entropy alloys and
disordered metals [63–65].

It is worth noting that there is a long history of applications of the CPA both as a
tool for model calculations and in computational studies of real materials. We refer the
interested readers to the review of Yonezawa and Morigaki [76]. An extensive review
of the early development of the DMFT method can be found in Georges et al. [77], and
a review of more recent cluster extensions can be found in Maier et al. [78]. A review
of current research on the Anderson localization using cluster methods can be found in
Terletska et al. [54].

This paper is organized as follows: in Section 2, we present the Anderson model.
In Section 3, we first briefly review the algorithm of the single site TMT and discuss the
algorithm for the real-space cluster extension of the TMT. In Section 4, we present the results
obtained with our cluster-TMT for the 3D Anderson model with box disorder distribution.
We conclude in Section 5 and discuss possible future developments.

2. Model

Anderson proposed [1] that non-interacting electrons on site-disordered lattices may
localize because of the destructive interference of wave functions. Subsequent theoretical
and numerical studies [79] support the picture that, in three dimensions and for large
enough disorder strength, single particle wave functions are localized and decay exponen-
tially on the scale of the localization length.

The Anderson model Hamiltonian has the form:

H = −t ∑
<i,j>,σ

(c†
iσcjσ + H.c.) + ∑

i,σ
Viniσ, (1)

where c†
iσ and ciσ are the creation and annihilation operators for electrons at site i with spin

σ. niσ is the number operator for site i of spin σ; t is the hopping energy between nearest
neighbors. We consider a 3D simple cubic lattice. We set t = 1 to serve as the energy scale.
The local random disorder is given by Vi. Here, we consider a so-called box disorder with
P(Vi) =

1
W Θ(W − Vi). This allows the disorder strength to be characterized by W. Other

distributions are also considered in the literature; some common ones included bi-modal,
Gaussian, and Lorentzian distributions [53,80].

The Anderson model has been the focus of numerous studies of the disorder-induced
electron localization. Highly accurate numerical calculations based on the transfer matrix
method and multifractal analysis have been used to study the model extensively, especially
for zero energy [5,74,81–90].
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Relatively few studies have been devoted to energy away from zero. A prominent
feature at higher energy is the re-entrance from a metal to an insulator to a metal, as the
disorder strength increases [74,82,91,92]. A heuristic argument for the nature of the re-
entrance behavior is based on the tunneling mechanism for energies beyond the bandwidth
of the hopping model. The width of the density of states increases as the disorder increases,
though the states are localized. At sufficiently large disorder, the localized density of
states is large enough to allow tunneling. The tunneling could become sufficiently long
range that the localized states become extended, thus the insulator becomes a metal. This
explains the lower transition in the re-entrance. Further increasing the disorder strength,
the localized state will be more sparse in energy and tunneling becomes less likely to
happen and insulating state resumes.

The above argument depends on the distribution of disorder, and the tunneling
effect is maximised when the localized states are close in energy. A bounded random
distribution is favored as compared to other distributions which are more widely spread
over a range of energies, such as the Lorentzian distribution. The tunneling argument
can only be supported in a system with multiple sites. For example, the TMT, which is a
single site approximation, does not capture the re-entrance behavior. Thus, the capability
of describing the re-entrance can serve as a good test for our real space cluster-TMT.

3. The Real Space Quantum Cluster Extension of TMT

3.1. Typical Medium Theory: TMT

To set the stage for the discussion of the real-space cluster extension of the TMT, here
we briefly review the main steps of the TMT analysis. The TMT can be considered as a
typical medium generalization of the CPA [28–34]. In a similar way to the CPA, the TMT
employs the mapping of the original lattice problem into the impurity placed in a self-
consistently determined effective medium. However, in the TMT, the typical (geometrically
averaged over disorder) local density of states is used to construct the mean field bath for
the effective impurity problem.

The numerical algorithm for the TMT procedure is shown in Figure 1. First, the
guess for the effective medium self-energy Σ(ω) is made, usually zero. Then, the local
(coarse-grained) lattice Green’s function is calculated as Ḡ(ω) = 1

N ∑k
1

ω−εk−Σ(ω)
. Using

the Dyson’s equation, we then obtain the impurity-excluded Green’s function (bath Green’s
function) G−1(ω) = Ḡ−1(ω) + Σ(ω).

The next step is to solve the impurity problem. For each randomly chosen disorder
configuration V, we calculate the impurity Green’s function Gimp(ω, V) = (G−1(ω) −
V)−1. From this quantity, we obtain the typical (geometrically averaged density of states)
ρtyp(ω), which is constructed as ρtyp(ω) = e〈ln(ρ(ω,V))〉. Here, ρ(ω, V) = − 1

π�Gimp(ω, V),
and 〈. . .〉 stands for the disorder averaging. In general, the geometrical average is not
equivalent to the typical value. However, for log-normal distributions, the geometrical
average is the same as the typical value and, since numerical studies have shown that near
the localization transition the local density of states is log-normal distributed [37], this
assumption is appropriate.

The output of the TMT impurity solver is the typical Green’s function which is

obtained using the Hilbert transform: Gtyp(w) = 1
π

∫
dω

′ ρtyp(ω
′
)

ω−ω
′ . This step is the only

difference between the CPA and the TMT self-consistency loop. For example, in the CPA,
instead of the typical, the algebraically average DOS is calculated ρave = 〈ρ(ω, V)〉, with the

average Green’s function Gave(w) = 1
π

∫
dω

′ ρave(ω
′
)

ω−ω
′ being the output of the CPA impurity

solver. Note that, for the CPA case, one can just do the disorder averaging over Green’s
function without the Hilbert transform of the average density.

Finally, the TMT self-consistency loop is closed by getting a new estimate of the
self-energy Σ(ω) = G−1(ω)− G−1

typ(ω), which is then used to calculate the coarse-grained
local lattice Green’s function. The whole procedure then repeats, until convergence is
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reached at which the impurity and the local lattice Green’s function are equal within the
desired accuracy.

Figure 1. Numerical algorithm for the typical medium theory.

3.2. Real Space Cluster-TMT

To properly capture the effect of multiple impurities scattering in the disorder-driven
Anderson localization, the cluster extension of the TMT is needed. Here, we present the
real-space cluster extension of the TMT. Such real space variant of the cluster extension of
the TMT is formally equivalent to the cluster DMFT solver, which has been extensively used
in strongly-correlated electron systems to study non-local effects beyond DMFT. Here, we
use the cluster DMFT approach as a tool to capture spacial non-local correlations beyond
the TMT in disordered non interacting systems.

In the real space cluster-TMT, the infinite lattice in real space is tiled with identical
clusters of size Nc [93]. In such construction, the scattering of electrons by impurities within
a cluster is treated exactly, while the effects of impurities outside the cluster are replaced
by the non-disordered effective medium (bath) that is determined self-consistently. There
is no implicit assumption that the translational invariance is obeyed within the cluster.
Therefore, the Green’s function of the cluster is represented by an Nc × Nc matrix, which
we denote as Ĝc(ω). For the same reason, the self-energy and the bath Green’s function are
also represented in terms of matrices.

The self-consistency procedure for our real space cluster-TMT is shown in Figure 2.
First, we start with the guess of the self-energy matrix Σ̂(ω) (usually zero). Then, we calcu-

late the lattice Green’s function projected onto the cluster space ˆ̄G(ω) =
Nc

N ∑
k∈R.B.Z.

[ω −

t̂(k)− Σ̂(ω)]−1, where R.B.Z. stands for the reduced Brillouin Zone of the cluster with
− 2π

Lc
< kx, ky, kz <

2π
Lc

. In addition, t̂(k) is the dispersion of the lattice model expressed as
a partial Fourier transform over the reduced Brillouin zone. Any element of this disper-
sion matrix is given as t

r,r′ (k) ≡ ∑R exp(ik · (R + r − r
′
))t

r,r′+R
, where R is the location

vector of the super-cell, and r and r
′

are the vectors for the location of each site within a
super-cell [93].

Next, using the Dyson’s equation, we calculate the bath Green’s function matrix,
Ĝ−1(ω) = ˆ̄G−1(ω) + Σ̂(ω), which is used to construct the cluster problem. Then, for each
disorder configuration V, we calculate the cluster Green’s function by solving the matrix
equation G−1

c (ω, i, j) = G−1(ω, i, j)− V(i, j)δij.
The key to incorporate the typical medium into the analysis is to connect the Green’s

function matrix to the typical density of states. For this, we generalize the procedure we
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used for the multi-orbital problem of the TMDCA [62], and define the typical density of
states matrix in a similar way:

ρ̂typ(ω) ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

e〈| ln ρ11(ω)|〉 〈ρ11〉
〈|ρ11|〉 · · · e〈ln |ρ1Nc (ω)|〉 〈ρ1Nc 〉

〈|ρ1Nc |〉
. . .
. . .
. . .

e〈ln |ρNc1(ω)|〉 〈ρNc1〉
〈|ρNc1|〉 · · · e〈ln |ρNc Nc (ω)|〉 〈ρNc Nc 〉

〈|ρNc Nc |〉

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2)

Here, the diagonal entries will be just equal to e〈ρii(ω)〉 because ρii > 0 is always
positive definite; ρii = − 1

π�[Gii(ω)]; and for the off-diagonal terms ρij =
i

2π [Gij(ω) −
Gji(ω)] [94]. The role of the non-local off-diagonal components in the geometrically aver-
aged cluster Green’s function is explained in the Appendix A.

Notice that the real space cluster extension of the CPA, with the average effective
medium, can be obtained by replacing the typical DOS with the linearly average DOS in
the above Equation (2), i.e.,

ρ̂ave(ω) ≡

⎛
⎜⎜⎜⎜⎝

〈ρ11(ω)〉 · · · 〈ρ1Nc(ω)〉
. . .
. . .
. . .

〈ρNc1(ω)〉 · · · 〈ρNc Nc(ω)〉

⎞
⎟⎟⎟⎟⎠. (3)

The ρ̂typ(ω) of Equation (2) possesses the following properties: (1) for Nc = 1, it
reduces to the local TMT with ρtyp(ω) = e〈|lnρ(ω)|〉; (2) At small disorder strength W � Wc,
we observe numerically that < ln ρ(ω) >≈ ln < ρ(ω) >, i.e., the typical density of states
(DOS) reduces to the average DOS calculated using algebraic averaging over disorder:
ρtyp → ρave(ω). Hence, in this regime, the typical DOS obtained with the cluster-TMT
is expected to be close in magnitude to the one obtained with the real-space cluster-CPA
with averaged effective medium. Such real space cluster extension of CPA is different
from other existing cluster extensions, including the DCA [55,56] and non-local CPA [95].
The difference is that, in the real space cluster-CPA, all the quantities are matrices in the
real space, and the coarse-graining step for ˆ̄G uses a projected lattice dispersion which is
constrained to the real space cluster space.

In the next step of the cluster-TMT self-consistency loop, we must calculate the
cluster typical Green’s function Ĝtyp (Ĝave for the cluster-CPA) using the Hilbert transform.
The Hilbert transform is performed for each matrix element individually, Gtyp,ij(w) =

1
π

∫
dω

′ ρtyp,ij(ω
′
)

ω−ω
′ .

Next, using the Dyson’s equation, we get the updated self-energy Σ̂(ω) = Ĝ−1(ω)−
Ĝ−1

typ(ω), which is then used to calculate the coarse-grained lattice Green’s functions

matrix ˆ̄G. The whole procedure then repeats, until convergence is reached with the
desired accuracy.
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Figure 2. The self-consistency algorithm for the real space cluster-TMT formalism.

4. Results

We start the discussion of our results for the 3D Anderson model (for a box disorder
distribution) by first focusing in panel a of Figure 3. This panel displays the Nc = 33 cluster
average DOS (ADOS= 1

Nc
Σi(

−1
π )�Ĝc,ii(ω)) obtained using the average effective medium

(constructed from Equation (3)) in the cluster self-consistent loop. These results correspond
to the real-space cluster extension of the CPA. The data show that, as disorder strength
W increases, the ADOS broadens and gets smaller, but does not go through significant
qualitative changes when the metal-insulator transition is approached.
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Figure 3. (a) The ADOS calculated for Nc = 33 at several disorder strengths W = 2, 8, 12, 18; (b) the
probability distribution function of the local density of states ρii for several values of disorder
strengths, W = 2, 8, 12, 18.

To demonstrate why the ADOS fails to describe the Anderson transition, we display
the probability distribution of the local density of states in panel b of Figure 3. At small
disorder W = 2, the distribution of the LDOS is Gaussian-like. However, as disorder
strength increases, the probability distribution becomes skewed with long tails (indicating
that the system is not self-averaging). At even larger disorder strength (W = 18), the
probability distribution peaks at values very close to zero. Such skewness of the distribution
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functions for large disorder strengths implies that the average and the most probable
(typical) values of the DOS will differ significantly, and hence the numerical algorithms
that employ the globally averaged Green’s function in the self-consistency loop (e.g., the
CPA, the DCA) will fail to describe the Anderson transition.

These results clearly demonstrate that the typical medium treatment is required to
capture the non self-averaging behavior through the Anderson transition. To show this, in
Figure 4, we compare the data for the energy resolved ADOS and the TDOS calculated for
a cluster of Nc = 33 sites. The TDOS(ω) = exp( 1

Nc
Σi ln((−1

π )�Ḡc,ii(ω))) is obtained from
the present real-space cluster-TMT procedure which employs the geometric averaging
in the self-consistency loop. At weak disorder strength (W = 2.5), as expected from our
analytical arguments, both ADOS and TDOS are practically the same, indicating that, when
W � Wc, the real space cluster-TMT reduces to the cluster-CPA scheme. As disorder
strength increases, the ADOS and TDOS behave very differently. While the ADOS(ω)
broadens and remains finite, the TDOS(ω) gets continuously suppressed (W = 10) and
vanishes at even larger disorder strength (W = 16). Such vanishing of the TDOS at strong
disorder values indicates that geometrically average DOS can be used as an order parameter
for the Anderson localized states.
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Figure 4. Evolution of the ADOS (dash lines) and the TDOS (shaded areas) as function of frequency ω

at different disorder strengths W = 2.5, 10, 16, calculated using a cluster of Nc = 33. The approximate
positions of the mobility edge boundaries are marked by vertical arrows.

Notice that, below the Anderson transition, for W � Wc, localization of states starts
at the band tails. This is indicated by the vanishing TDOS(ω) and the finite ADOS(ω)
at higher frequencies ω. The mobility edge (shown by arrows), i.e., the energy which
separates the extended (with a finite TDOS) from the localized states (with zero TDOS)
follows the expected re-entrance trajectory [52]: the mobility edge first expands beyond the
zero disorder edge boundary, and then retracts at larger disorder strengths.

Next, we consider the evolution of the critical disorder strength Wc for the Anderson
transition as a function of the cluster size Nc. The critical disorder Wc is extracted from the
vanishing TDOS at the band center (TDOS(ω = 0)). In Figure 5, we plot TDOS(ω = 0) as
a function of disorder strength W for several cluster sizes Nc = 1, 2, 3, 23, 33, 43. For Nc = 1
(the local TMT case), the critical disorder is Wc ≈ 13.4. Since TMT is a mean field theory, it
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is expected that the critical disorder strength is underestimated and thus it is lower than
the exact value. As the cluster size Nc increases, more spatial fluctuations are taken into
account, which improves the value of Wc. With increasing Nc, the Wc converges quickly to
Wc ≈ 17.05 (see the inset of Figure 5), which is in good agreement with the values of Wc
reported in the literature [90]. In addition, notice that, unlike the TDOS, the ADOS(w = 0)
(shown by the dashed line in Figure 5) remains finite as the disorder strength W increases,
indicating that it can not be used as an order parameter for the Anderson transition, and
hence the typical medium treatment is needed.
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Figure 5. The typical density of states (solid lines) at the band center, TDOS(ω = 0), as a function
of disorder strength W calculated for different cluster sizes Nc = 1, 2, 3, 8, 27, 64. The ADOS(ω = 0)
as a function of disorder strength W is obtained for Nc = 43 (dashed line). Inset: the cluster size Nc

dependence of the critical disorder strength Wc determined from the vanishing TDOS(ω = 0).

Finally, in Figure 6, we present the disorder strength W vs. frequency ω phase diagram.
Here, we plot the cluster size Nc dependence of the mobility edge boundaries at different
disorder strengths W obtained by our real space cluster-TMT formalism. In addition, we
also show the band edges, which are defined by the frequencies at which ADOS(w) = 0.
As we discussed above, a signature of the cluster mean field theory is the re-entrance
at high energy. At Nc > 1, the mobility edge boundaries first expand and then retract
back with increasing W. As Figure 6 displays, such re-entrance behavior is missing in the
single site (Nc = 1) TMT case, and is recovered for Nc > 1 clusters. This indicates that
non-local spacial correlations and multiple-scattering effects in the Anderson transition
are important, and capturing such effects requires the usage of finite cluster methods. To
benchmark our results even further, we also present the mobility edge trajectories obtained
from the highly accurate transfer matrix method (TMM) [54]. For Nc = 43, the cluster-TMT
results are already rather close to those of the TMM. These results demonstrate that our
cluster-TMT method can be used to successfully describe the electron localization in the 3D
Anderson model.
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Figure 6. Disorder strength W vs. frequency ω phase diagram of 3D Anderson model ob-
tained from cluster-TMT calculations. The mobility edge boundaries (solid lines) are obtained
for Nc = 1, 2, 3, 8, 27, 64 cluster sizes. The dashed lines mark the band edges obtained from the
ADOS(ω). The transfer matrix method (TMM) mobility edge boundaries are taken from Ref. [52].

5. Conclusions

We develop a real space quantum cluster theory based on the typical medium theory
for random disorder systems. Unlike the coherent potential approximation with the
algebraically average effective medium, the TMT captures the localization transition by
considering the geometrically averaged local density of states to construct an effective
medium. However, being a single site theory, the TMT underestimates the critical disorder
strength of the transition, and misses the re-entrance behavior, which is due to the combined
effects from multiple scattering sites. Recent studies based on the dynamical cluster
approximation already confirmed that such non-local effects can be captured by considering
momentum-space clusters extension of TMT [54].

In this paper, we construct the real space variant of the cluster-TMT. This method
by construction is similar to the cellular dynamical mean field theory [72], which is a
popular cluster method effectively used for strongly interacting electron systems. Here, we
adopt such a real space cluster approach to disordered systems. Applying our real-space
cluster-TMT approach to the 3D Anderson model with a box distribution, we demonstrate
that the cluster-TMT is a successful self-consistent numerical approach to capture the
Anderson localization transition. Performing Nc cluster-size analysis, we demonstrate
the importance of including non-local spacial effects to properly describe the Anderson
localization physics. Quantitatively, our results are in good agreement with existing data; in
particular, we find that the converged cluster value of Wccluster−TMT ≈ 17.05 is superior to
the value predicted by single-site TMT, WTMT ≈ 13.4. Unlike the single site approach, the
present real-space cluster-TMT captures the re-entrance behavior and correctly reproduces
the phase diagram of the 3D Anderson model. The method, in principle, can also be
used to calculate two particle quantities [96]. Furthermore, while the cluster TMT in this
study has been restricted to periodic boundary conditions, the same methodology can be
used to simulate Anderson localization in surfaces. This will be relevant, for example, to
unraveling the role of disorder in topological materials [75,97]. Another interesting topic
is to combine this approach with the multiple scattering theory [58], and the locally self-
consistent multiple scattering method [66] for the study of materials with random disorder.
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Appendix A

In this section, we discuss the role of the non-local off-diagonal components in the
ansatz for the geometrically averaged cluster Green’s function of Equation (2). For this, we
consider the “local” ansatz given by Equation (A1), where we set all off-diagonal terms in
the typical DOS equal to zero:

ρ̂local
typ (ω) ≡ (A1)⎛

⎜⎜⎜⎜⎜⎝

e〈ln ρ11(ω)〉 · · · 0
. . .
. . .
. . .
0 · · · e〈ln ρNc Nc (ω)〉

⎞
⎟⎟⎟⎟⎟⎠.

In Figure A1, we then compare the Nc = 8 results for the TDOS(ω) obtained with
the “full” ansatz (Equation (2)) and the “local” ansatz (Equation (A1)) calculated at several
values of the disorder strength: W = 8.0, 10, 12, 14. Our data indicate that the majority of
the contribution to the TDOS(ω) is actually coming from the local terms in Equation (2).
The critical behavior at the Fermi level (ω = 0) is the same for both the “local” and the “full”
ansatz. However, the non-local contribution seems to be important for properly capturing
the mobility edge behavior (marked by vertical arrows in Figure A1). Here, at the mobility
edges, we observe the most pronounced difference between the TDOS(ω) obtained using
the “local” and the “full” ansatz. These results indicate that, while the critical behavior at
the band center is captured properly by the “local” ansatz, the mobility edge trajectories of
the “local" ansatz, however, will converge slower with the cluster size Nc. To demonstrate
this explicitly, in Figure A2 (left panel), we plot the typical density of states as a function
of disorder strength W at the band center (TDOS(ω = 0)). The critical value of disorder
strength (Wc) at which the TDOS(ω = 0) = 0 vanishes at the band center is the same for
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both local and non-local ansatzes. However, as shown in the right panel of Figure A2, there
is a substantial difference in the phase boundary near the band edges. Specifically, with
the off-diagonal components, the re-entrance effect is much more pronounced even if the
cluster size is relatively small. The off-diagonal components provide the contribution from
the scattering among multiple sites, and hence generate more accurate results which are
much closer to the results from the highly accurate transfer matrix method.
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Figure A1. Nc = 8 results for the TDOS(ω) at increasing disorder strengths W = 8, 10, 12, 14. The
data for the TDOS obtained using the “full” ansatz of Equation (2) (red shaded region), and the TDOS
curves obtained using the simplified “local” ansatz of Equation (A1) (dashed lines), where the off-
diagonal non-local contributions are set to zero. Vertical arrows mark the mobility edge boundaries.
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97. Roy, B.; Slager, R.J.; Juričić, V. Global Phase Diagram of a Dirty Weyl Liquid and Emergent Superuniversality. Phys. Rev. X 2018,
8, 031076. [CrossRef]

32



crystals

Article

The FFLO State in the Dimer Mott Organic Superconductor
κ-(BEDT-TTF)2Cu[N(CN)2]Br

Shusaku Imajo * and Koichi Kindo

Citation: Imajo, S.; Kindo, K. The

FFLO State in the Dimer Mott

Organic Superconductor

κ-(BEDT-TTF)2Cu[N(CN)2]Br.

Crystals 2021, 11, 1358. https://

doi.org/10.3390/cryst11111358

Academic Editor: Andrej Pustogow

Received: 25 October 2021

Accepted: 5 November 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan; kindo@issp.u-tokyo.ac.jp
* Correspondence: imajo@issp.u-tokyo.ac.jp

Abstract: The superconducting phase diagram for a quasi-two-dimensional organic superconductor,
κ-(BEDT-TTF)2Cu[N(CN)2]Br, was studied using pulsed magnetic field penetration depth measure-
ments under rotating magnetic fields. At low temperatures, Hc2 was abruptly suppressed even by
small tilts of the applied fields owing to the orbital pair-breaking effect. In magnetic fields parallel
to the conducting plane, the temperature dependence of the upper critical field Hc2 exhibited an
upturn and exceeded the Pauli limit field HP in the lower temperature region. Further analyses
with the second derivative of the penetration depth showed an anomaly at 31–32 T, which roughly
corresponded to HP. The origin of the anomaly should not be related to the orbital effect, but the
paramagnetic effect, which is almost isotropic in organic salts, because it barely depends on the field
angle. Based on these results, the observed anomaly is most likely due to the transition between the
Bardeen-Cooper-Schrieffer (BCS) and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states. Addition-
ally, we discuss the phase diagram and physical parameters of the transition by comparing them
with other FFLO candidates.

Keywords: FFLO; organic superconductor; penetration depth measurement

1. Introduction

Superconductivity is one of the most intriguing topics in material science, both in
terms of basic research and applications. Superconductivity appears when electron pairs
are formed and condense in metals. The BCS theory explains the conventional supercon-
ductivity that appears in a variety of simple metals and alloys. However, the details of
unconventional superconductivity are yet to be elucidated. Unconventional superconduc-
tivity is commonly realized nearby metal–insulator transitions, where electron correlations
are enhanced. Even in unconventional superconductivity, the electrons are paired by attrac-
tion, as suggested by the BCS theory; thus, the details of the pairing mechanism are one of
the main topics for unconventional superconductivity studies. The FFLO state, which is
one of the unconventional pairings, was proposed by Fulde and Ferrell [1] as well as Larkin
and Ovchinnikov [2] in 1964. In the FFLO state, the electrons in a pair have unbalanced
momenta, and their total center-of-mass momentum q is finite. The finite q, which modifies
the superconducting order parameter with the additional term, exp(iqr) for the FF state [1]
and cos(qr) for the LO state [2], induces the spatial modulation of the superconductivity.
The superconducting region and the normal-state region appear alternately in real space
because the normal state appears at the node positions where the additional term becomes
zero. The FFLO state is regarded as an inhomogeneous state, which breaks the rotational
symmetry [1–5]. At zero field, the uniform BCS-type pairing with q = 0 is more stable than
the inhomogeneous FFLO state; however, when applying magnetic fields, the Zeeman
effect causes the Fermi surface to split depending on the spin directions. Above the field
where the Zeeman splitting is comparable with the condensation energy of the supercon-
ductivity, known as the Pauli limit HP [6], the BCS superconductivity is destroyed. This is
known as the paramagnetic pair-breaking effect. However, the FFLO state can be favorable
even above HP by pairing on the split Fermi surfaces owing to the finite q. Thus, the FFLO
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state can appear only at high fields above the HP. In higher magnetic fields, the FFLO state
is also suppressed, and many theories [7–9] predict that the stability in magnetic fields is
affected by various parameters. For example, in the case of isotropic three-dimensional
superconductivity, the FFLO phase is very small in the H-T phase diagram [1,2]. Moreover,
the difference between the FF state and LO state becomes larger in fields sufficiently higher
than HP. It is expected that the superconducting symmetry and the strength of orbital
pair-breaking effects also play an important role in the stability of the FFLO state. The
investigation of Hc2 curve above HP is be important to discuss the details of the FFLO state.

To realize an FFLO state, two conditions need to be met: first, the electronic system
should be in a clean limit, and second, the orbital pair-breaking effect should be sufficiently
suppressed. The FFLO state hosts the spatial modulation in real space owing to the
additional vector q, and impurities smear this modulated pattern with scattering. Therefore,
a clean electronic system, in which the mean-free path l is sufficiently larger than the
coherence length ξ‖, is typically required [4,10]. Some theories suggest that the FFLO
state can survive even in some disordered systems [11,12]. For the orbital effect, the Maki
parameter αM, 21/2Horb/HP, where Horb is the orbital limit, must exceed 1.8 [13,14], because
the superconductivity gets destroyed at lower fields before the FFLO state appears if the
orbital effect is strong. Basically, for the most superconductivity, the orbital effect is so strong
that superconductivity does not survive up to HP. The orbital effect is suppressed when
the vortices do not penetrate the superconductor, or the coherence length is sufficiently
small, because it originates from the kinetic energy of the supercurrent around the vortices
by the Lorentz force. Therefore, the FFLO state may be possible when a magnetic field is
precisely applied parallel to the conduction plane of the low-dimensional superconductor,
to prevent the magnetic flux from penetrating the superconducting plane, or in the case of
heavy electron systems. [4,15,16].

The charge-transfer complex κ-(BEDT-TTF)2Cu[N(CN)2]Br (hereafter, abbreviated as
κ-Br) is known as a high-Tc (~12 K) organic superconductor. This salt consists of the organic
donor BEDT-TTF layer and the counter anion layer Cu[N(CN)2]Br, as shown in Figure 1.
κ-Br has intensively been investigated because of its unconventional superconductivity
and proximity to the Mott metal–insulator transition [17,18]. The superconductivity is
presumably classified in the d-wave symmetry originating from antiferromagnetic spin
fluctuations [17–20], which grow near the antiferromagnetic Mott insulator phase. The
superconductivity has a large superconducting energy gap, leading to a large upper critical
field Hc2. Due to the experimental difficulty in performing high-field measurements
up to Hc2, the superconducting phase diagram in magnetic fields has not been clarified
completely until our recent report [21]. The field-temperature superconducting phase
diagram exhibited an upturn of Hc2 in a low-temperature and high-field region, which may
exceed HP. Moreover, this can be scaled with that of κ-(BEDT-TTF)2Cu(NCS)2 (κ-NCS),
which is one of the prime FFLO candidates [22–25]. Basically, the large effective mass and
the electronically quasi-two-dimensionality, suppressing the orbital effect and enhancing
the nesting of Fermi surfaces, are advantageous for stabilizing the FFLO state. Although
this implies that κ-Br also hosts the FFLO state above HP, there have been no reports on the
FFLO phase for κ-Br. Since the electronic structures in the other organic FFLO candidates
found so far, such as λ-(BETS)2GaCl4 (λ-GaCl4), β”-(BEDT-TTF)2SF5CH2CF2SO3 (β”-SF5),
and β”-(BEDT-TTF)4[(H3O)Ga(C2O4)3]PhNO2 (β”-GaPhNO2), are different in various
aspects, it is necessary to consider several factors for discussing the parameters of the
FFLO state. The comparison κ-Br with κ-NCS, which has a very similar electronic state,
must be useful to discuss common points underlying the FFLO state. To detect the BCS-
FFLO transition, a probe that can yield information even in the superconducting state is
needed. As is found in a number of previous studies [23,26,27], the penetration depth is a
very sensitive and high-resolution probe of the superconducting state even in short-time
pulsed magnetic fields. Therefore, we performed penetration depth measurements to
identify κ-Br as the FFLO candidate by detecting the phase boundary between the uniform
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superconductivity and the FFLO state. Additionally, compared with other FFLO candidates,
universal features unique to the FFLO state are discussed.

Figure 1. Crystal structure of κ-(BEDT-TTF)2Cu[N(CN)2]Br. As divided by the red dashed lines, this
material has the two-dimensional layered structure. θ represents the angle from a-axis to b-axis, used
for the magnetic-field direction applied in this study.

2. Radiofrequency (rf) Penetration Depth Measurements

The single crystal measured in the present study was synthesized electrochemically.
The out-of-plane electrical resistance of the sample we measured in this study has been
reported in [21]. For the rf penetration depth measurements with a tunnel diode oscillator
(TDO), the sample, whose dimension was approximately 0.5 mm × 0.5 mm × 0.1 mm, was
placed in one of two circles of a 0.7 mm-diameter 8-shaped coil, which could cancel out the
voltage induced by the field change of pulsed magnetic fields. The direction of the magnetic
field was changed by rotating the sample stage. The TDO circuit was operated at F~82 MHz
with LC oscillators, similar to the reported design [26,28]. In this setup, the skin depth of the
normal state significantly exceeded the sample thickness, and therefore, the change in the
frequency ΔF originated only from the penetration depth of the superconductivity. These
measurements were performed in a 4He cryostat placed in a 60 T pulse magnet, installed
at the International MegaGauss Science Laboratory, Institute for Solid State Physics, The
University of Tokyo.

3. Results

3.1. Characterization of the Measured Sample

To evaluate whether the present sample was enough clean to host the FFLO state or
not, we first estimated the mean-free path l from the quantum oscillations in resistivity, as
shown in Figure 2a. The low-field behavior was related to the suppression of the super-
conductivity. The origin of the peak structure at approximately 10 T has been discussed
in previous studies [29,30]. Above 40 T, the Shubnikov–de Haas oscillation was observed.
The oscillation frequency was approximately 3900 T, which is consistent with the reported
value [31]. Using the Lifshitz–Kosevich formula, the mean-free path l was obtained as
~130 nm, which was several times larger than the typical values 30–70 nm [31] and 20 times
larger than the in-plane coherence length ξ||=6–7 nm [21,32]. This implies that the present
sample was sufficiently clean to form a spatially modulated pattern of the FFLO state.
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Figure 2. (a) Magnetoresistance at 2.2 K in a perpendicular field (θ = 90◦). The inset is the enlarged plot above 40 T to make
the quantum oscillation clearer. (b) Shift of the penetration depth ΔF at various temperatures as a function of field when
θ = 90◦. For clarity, the datasets include offsets. The inset is the temperature dependence of the penetration depth obtained
by the Equations (1) and (2). The blue dashed curve indicates behavior for simple d-wave superconductivity.

In Figure 2b, we present the field dependence of ΔF in the perpendicular fields. At
13 K, which is higher than the critical temperature Tc, the field dependence originated
from the magnetoresistance of the Cu wires composing the coil. Below Tc, a large response
of ΔF was observed at low fields owing to the emergence of superconductivity. The data
above 15 T indicated that the magnetoresistance of Cu did not have a large temperature
dependence in this temperature region. The difference in ΔF between 0 T and 20 T was
directly related to the shift of the penetration depth of the superconductivity Δλ, as shown
in the following equation:

[ΔF(0 T)−ΔF(20 T)]/F = xΔλ/r, (1)

where r and x represent the effective sample radius and filling factor of the sample in the
coil, respectively. The absolute value of the penetration depth λ(T) is given by the sum of
the change and zero-temperature value, λ(T) = Δλ + λ(0). Because the superfluid density
ρ(T) is determined by the relation ρ(T) = [λ(0)/λ(T)]2, the Rutgers equation [33],

16π2ΔCp(Tc)λ(0)=ϕ0TcdHc2′ (Tc)ρ′(Tc), (2)

leads to λ(0) = 0.6 ± 0.2 μm with the reported parameters, heat capacity jump ΔCp(Tc) = 0.6–
0.7 J/Kmol [18–21] and the slope of Hc2 at Tc, μ0Hc2′ (Tc)~−15 T/K [21,34]. Despite the large
error, the value showed a good agreement with the reported values λ(0) = 0.5–0.7 μm [35–37].
The inset shows λ(T) with a fit to the d-wave case (blue dashed curve) [38]. Although a
large error made the precise determination of the pairing symmetry difficult, the d-wave
model was acceptable for the present data. This result indicated that ΔF reflects the change
in penetration depth in the superconducting state.

3.2. Magnetic-Field Dependence of ΔF and d2(ΔF)/dH2 in Nearly Parallel Fields

In Figure 3a, we present the ΔF data at 1.4 K in fields almost parallel to the conducting
plane (θ~0◦), because the FFLO state occurs at lower temperatures when the orbital effect
is sufficiently suppressed. At θ = 0◦, the onset of the change in ΔF from the normal state
was approximately 37 T, which was almost consistent with the reported value of Hc2 [21].
By tilting the angle from θ = 0◦, Hc2 was suppressed. Figure 3b shows the second-field
derivative of ΔF. The black lines represent the field-independent baseline of the normal
state, and the black dotted curves are the eye guides. This plot further indicates that
Hc2 was approximately 37 T at θ = 0◦. Notably, these curves had some anomalies (green
box and blue triangle) below Hc2, which were not clear in the ΔF data in Figure 3a. This
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behavior was similar to the results reported in earlier rf penetration depth studies for
other organic FFLO candidates [23,26,27]. The anomaly at 31–32 T indicated by the blue
triangles appeared to have a bare angle dependence, while the anomaly indicated by
the green boxes showed the angle dependence. The angle dependence of the transition
should not be significant in organics with weak spin-orbit coupling because the phase
transition to the FFLO state is determined by the Zeeman effect; therefore, the anomaly
indicated by the blue triangles at 31–32 T is considered to be the BCS-FFLO transition,
namely HFFLO = 31–32 T. In fact, the angle-independent behavior was observed in other
FFLO candidates [23,25,26,39,40].

Figure 3. (a) Magnetic-field dependence of ΔF at 1.4 K with changing field angle θ. (b) Second derivative of (a) d2F/dH2

as a function of field. The black solid lines and the red dots show the background of the normal state and Hc2. The blue
triangles and green squares indicate the anomalous fields of d2F/dH2. The black dotted, blue dashed, and green dashed
curves are eye guides.

3.3. Temperature Dependence of ΔF and d2(IF)/dH2 in Perfectly Parallel Fields (θ = 0◦)

To discuss the stability of the FFLO state against temperature, in Figure 4, we present
the field-dependent ΔF (a) and its second derivative (b) at θ = 0◦. The symbols shown
here are the same as those used in Figure 3b. The BCS–FFLO transition (blue triangle) was
observed below 4.0 K and showed a slight temperature dependence, as shown by the blue
dashed curve. The additional anomaly in the FFLO state (green box) was immediately
smeared out with increasing temperature above 1.4 K. Considering the angle-dependent
behavior and the observation at low temperatures, the anomaly indicated by the green box
may be related to the vortex transitions in the FFLO state [40,41].
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Figure 4. (a) ΔF (θ = 0◦) as a function of field at various temperatures. (b) Magnetic-field dependence of d2F/dH2. The
symbols and curves are described using the same definitions as those used in Figure 3b.

4. Discussion

In Figure 5a, we organized the obtained Hc2 and HFFLO in parallel fields as an H-T
phase diagram. The Hc2 data reported in the previous study [21] were also plotted. The
Hc2 obtained in this study (red circle) was consistent with the reported data (gray box). The
blue triangles denote the fields in which a kink is observed in Figure 4b. From the initial
slope of the Hc2 curve (solid line) near Tc, the orbital limit field Horb and the perpendicular
coherence length ξ⊥ were estimated to be approximately 130 T, larger than Hc2, and 0.3 nm,
five times smaller than the interlayer spacing 1.5 nm [31], respectively. These values
indicate that the superconductivity was two-dimensional, and the orbital pair-breaking
effect was quenched in parallel fields. To discuss the destruction of superconductivity, only
the paramagnetic pair-breaking effect was considered. In a simple assumption based on the
BCS theory, this effect gave the Pauli limit μ0HP = 1.76kBTc/(21/2μB)~1.84(Tc[K])[T] from
the balance between the superconducting energy gap Δ0 = 1.76 kBTc and the Zeeman energy
gμBH. However, this assumption often does not work for organic superconductors, because
the superconductivity in organics is usually strong-coupling and has unconventional
pairing symmetry [19–21]. In Agosta’s papers [16,23], to discuss the relation between HP
and HFFLO more precisely, the following formula:

μ0HP = αkBTc/{21/2(g*/g)μB}, (3)

which includes the electron correlation and the coupling strength based on McKenzie’s
paper [42], was employed. Notably, g* is the effective g-factor, including all many-body
effects, and α is the coupling constant of the superconducting gap amplitude. The renor-
malized ratio g*/g is experimentally determined using quantum oscillation measurements.
In addition, g*/g can be estimated by the ratio of the electronic heat capacity coefficient γ
and the Pauli paramagnetism χP, because g*/g can be equal to Wilson’s ratio Rw [42]. For
κ-Br, this relation led to μ0HP = 31–32 T, which corresponded to the present HFFLO. This
coincidence indicates that the anomaly observed in this study was caused by the transition
to the FFLO state. Moreover, the Maki parameter αM~5.7 was sufficiently larger than
required. From the angle dependence of Hc2 shown in Figure 3, the FFLO state should exist
only in the limited region near the parallel direction θ~0◦ because of the disappearance
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by the slight misalignment. This fragility to the orbital effect is also a characteristic of the
FFLO state [14,43].

Figure 5. (a) H-T superconducting phase diagram of κ-Br in parallel fields. The gray boxes are the reported Hc2 data [21].
The solid line indicates the slope of the Hc2 curve near Tc at 0 T. The light green region above HP is the FFLO state.
(b) Superconducting phase diagram scaled by HP and Tc, H/HP vs. T/Tc. The circles and triangles represent Hc2

and HFFLO, respectively. The color of the symbols denotes the material. The filled symbols are taken from the TDO
measurements [23,26,27], whereas the unfilled symbols are from other measurements [25,39,44,45]. The dotted gray line
represents an example of the temperature dependence of Horb, which is higher than Hc2 at low temperatures. The red
dotted curve is a simple theoretical calculation [9] of Hc2 for the FFLO state with d-wave superconducting symmetry. The
black dashed curve (right axis) is the temperature dependence of the reduced BCS-type superconducting gap Δ(T)/Δ0.

For comparison with other organic FFLO candidates, the H-T phase diagram in a
parallel field was reduced by HP and Tc, as shown in Figure 5b. The Hc2 and HFFLO data
for other salts are also shown [23,25–27,39,44,45]. The parameters, Tc, g*/g, and α, which
were used for the estimation of HFFLO, are listed in Table 1. We used a typical value by
referring to several references, because there is often some sample dependence in these
parameters, and Tc depends on the measurement method and definition. Despite the large
differences in their electronic states, such as the Fermi surface and dimensionality, these
superconductors shared similar H/HP-T/Tc phase diagrams. In the κ-type dimer-Mott
electronic phase diagram, κ-Br and κ-NCS were located near the Mott metal–insulator
boundary [17,18], indicating strong electron correlations originating from the large onsite
Coulomb repulsion with the growth of the antiferromagnetic fluctuations. This charac-
teristic resulted in a relatively large g*/g and α of κ-Br and κ-NCS. Althoughλ-GaCl4 and
β”-SF5 have significantly different Fermi surfaces [46,47], their parameters were almost
identical and gave a similar HFFLO. For β”-GaPhNO2, the electronic state was expected to
be near the charge-ordered phase on its electronic phase diagram and had a strong charge
instability, which induced strong-coupling superconductivity α~2.5 [48]. Regardless of the
variety in these electronic systems, the calculated HP coincided with HFFLO, as listed in
Table 1. This fact demonstrated that the paramagnetic effect, which was the factor underly-
ing HP, mainly governed the transition between the BCS and FFLO states, as predicted by a
number of theories. Indeed, the dashed curve shown in the right axis in Figure 5b, which is
the temperature dependence of the BCS-type superconducting gap, roughly describes the
BCS region (light orange). Importantly, the paramagnetic pair-breaking was determined by
the competition between the superconducting gap and the Zeeman effect. However, the
Hc2 curves above HP indicated that there were small differences in the stability of the FFLO
state at high fields. The theoretical curve for simple d-wave superconductivity (red dotted
curve) [9] was qualitatively similar to the obtained phase diagram. Nevertheless, the data
in Figure 5b were not accurate enough to discuss small differences with the simple model,
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and therefore, it would be necessary to discuss with an appropriate theoretical model for
the electronic system of each material rather than the simple model. The parameters related
to the stability of the FFLO state are likely the dimensionality and the shape of the Fermi
surface as well as the gap symmetry. For example, (TMTSF)2ClO4, which was expected to
exhibit the FFLO state [49], had a quasi-one-dimensional system, and the difference was
expected to be significant. Although its superconducting phase showed strange differences
in electrical resistivity and specific heat measurements [50,51], it might be interesting to
discuss it through HP. As for the research method to discuss the FFLO state in more detail,
for example, the in-plane angular dependence from Refs. [51,52] may be useful. Further
research should be completed along with theoretical predictions.

Table 1. Reported HFFLO and calculated HP with parameters characterizing the FFLO state. The
abbreviations of the material names are described in the main text. The shown HP is estimated by the
Equation (3) and the parameters shown here, which are typical values taking into account sample
dependence, etc. For the estimation of the values of g*/g, the Wilson’ ratio RW, calculated by γ and
χP, is also used to compare with g*/g determined by angle-dependent quantum oscillations. The
values of α are taken from heat capacity measurements.

Material Tc (K) g*/g α HP (T) HFFLO (T) Refs.

κ-Br 11.7 1.3 3.3 31 31–32 [17,19–21,42,53,54]
κ-NCS 9.0 1.3 2.9 21 21–22 [17,19,22–25,42,55]
λ-GaCl4 4.7 1.0 2.1 10 9–10 [26,39,46,56–58]
B”-SF5 4.3 1.0 2.1 9.5 9–10 [27,40,41,44,59–61]

β”-GaPhNO2 4.8 0.8 2.5 16 16 [45,48,62]

5. Conclusions

We performed high-field rf-penetration depth measurements to determine whether
the FFLO state manifested as a high-field superconducting state distinct from the BCS state
in the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. From the quantum oscillation
and the phase diagram, it was confirmed that the electronic system was sufficiently clean
and two-dimensional to stably host the FFLO state. As has been discussed for the FFLO
state in other candidates, the transition field between the BCS and FFLO states had no
angle dependence, whereas the FFLO state was very sensitive to the field angle and was
immediately smeared out by the slight misalignment. Compared to other organic FFLO
candidates, their H/HP-T/Tc superconducting phase diagrams suggest that HP certainly
corresponds to HFFLO, regardless of the electronic states underlying the superconductivity.
This verifies that the BCS-FFLO transition is determined by the competition between the
Zeeman energy and the superconducting condensation energy. The FFLO state appears at
very high fields above 31–32 T, because κ-Br can also be discussed in this framework, and
its HP is enhanced by the large superconducting gap originating from the strong electron
correlations growing in proximity to the Mott metal-insulator boundary.

Author Contributions: Conceptualization, S.I.; methodology, S.I. and K.K.; investigation, S.I. writing,
S.I.; funding acquisition, S.I. and K.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partially supported by the Japan Society for the Promotion of Science
KAKENHI Grant No. 20K14406.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available from the corresponding author upon reasonable request.

Acknowledgments: We thank Y. Kohama (ISSP, the University of Tokyo) for advice on the rf-
TDO measurement.

Conflicts of Interest: The authors declare no conflict of interest.

40



Crystals 2021, 11, 1358

References

1. Fulde, P.; Ferrell, R.A. Superconductivity in a strong spin exchange field. Phys. Rev. 1964, 135, A550. [CrossRef]
2. Larkin, A.I.; Ovchinnikov, Y.N. Inhomogeneous state of superconductors. Sov. Phys. JETP 1965, 20, 762.
3. Casalbuoni, R.; Nardulli, G. Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 2004, 76, 263.

[CrossRef]
4. Matsuda, Y.; Shimahara, H. Fulde-Ferrell-Larkin-Ovchinnikov state in heavy fermion superconductors. J. Phys. Soc. Jpn. 2007, 76,

051005. [CrossRef]
5. Imajo, S.; Nomura, T.; Kohama, Y.; Kindo, K. Nematic response of the Fulde-Ferrell-Larkin-Ovchinnikov state. arXiv 2021,

arXiv:2110.12774.
6. Clogston, A.M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 1962, 9, 266–267. [CrossRef]
7. Shimahara, H.; Rainer, D. Crossover from Vortex States to the Fulde-Ferrell-Larkin-Ovchinnikov State in Two-Dimensional s- and

d-Wave Superconductors. J. Phys. Soc. Jpn. 1997, 66, 3591. [CrossRef]
8. Shimahara, H. Transition from the vortex state to the Fulde–Ferrell–Larkin–Ovchinnikov state in quasi-two-dimensional super-

conductors. Phys. Rev. B 2009, 80, 214512. [CrossRef]
9. Croitoru, M.D.; Buzdin, A.I. In Search of Unambiguous Evidence of the Fulde–Ferrell–Larkin–Ovchinnikov State in Quasi-Low

Dimensional Superconductors. Condens. Matter 2017, 2, 30. [CrossRef]
10. Aslamazov, L.G. Influence of impurities on the existence of an imhomogeneous state in a ferromagnetic superconductor. Sov.

Phys. JETP 1969, 28, 773.
11. Cui, Q.; Yang, K. Fulde-Ferrell-Larkin-Ovchinnikov state in disordered s-wave superconductors. Phys. Rev. B 2008, 78, 054501.

[CrossRef]
12. Vorontsov, A.B.; Vekhter, I.; Graf, M.J. Pauli-limited upper critical field in dirty d-wave superconductors. Phys. Rev. B 2008, 78,

180505. [CrossRef]
13. Maki, K.; Tsuneto, T. Pauli Paramagnetism and Superconducting State. Prog. Theor. Phys. 1964, 31, 945. [CrossRef]
14. Gruenberg, L.W.; Gunther, L. Fulde-Ferrell effect in type-II superconductors. Phys. Rev. Lett. 1966, 16, 996. [CrossRef]
15. Wosnitza, J. Spatially Nonuniform Superconductivity in Quasi-Two-Dimensional Organic Charge-Transfer Salts. Crystals 2018, 8,

183. [CrossRef]
16. Agosta, C.C. Inhomogeneous Superconductivity in Organic and Related Superconductors. Crystals 2018, 8, 285. [CrossRef]
17. Kanoda, K. Metal-Insulator Transition in κ-(ET)2X and (DCNQI)2M: Two Contrasting Manifestation of Electron Correlation. J.

Phys. Soc. Jpn. 2006, 75, 051007. [CrossRef]
18. Nakazawa, Y.; Imajo, S.; Matsumura, Y.; Yamashita, S.; Akutsu, H. Thermodynamic Picture of Dimer-Mott Organic Super-

conductors Revealed by Heat Capacity Measurements with External and Chemical Pressure Control. Crystals 2018, 8, 143.
[CrossRef]

19. Taylor, O.J.; Carrington, A.; Schlueter, J.A. Specific-Heat Measurements of the Gap Structure of the Organic Superconductors
κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2. Phys. Rev. Lett. 2007, 99, 057001. [CrossRef]

20. Imajo, S.; Kindo, K.; Nakazawa, Y. Symmetry change of d-wave superconductivity in κ-type organic superconductors. Phys. Rev.
B 2021, 103, L060508. [CrossRef]

21. Imajo, S.; Nakazawa, Y.; Kindo, K. Superconducting Phase Diagram of the Organic Superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br
above 30 T. J. Phys. Soc. Jpn. 2018, 87, 123704. [CrossRef]

22. Lortz, R.; Wang, Y.; Demuer, A.; Bottger, P.H.M.; Bergk, B.; Zwicknagl, G.; Nakazawa, Y.; Wosnitza, J. Calorimetric Evidence for a
Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in the Layered Organic Superconductor κ-(BEDT−TTF)2Cu(NCS)2.
Phys. Rev. Lett. 2007, 99, 187002. [CrossRef]

23. Agosta, C.C.; Jin, J.; Coniglio, W.A.; Smith, B.E.; Cho, K.; Stroe, I.; Martin, C.; Tozer, S.W.; Murphy, T.P.; Palm, E.C.; et al.
Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as
applied to κ-(BEDT-TTF)2Cu(NCS)2: Strong evidence of a FFLO state. Phys. Rev. B 2012, 85, 214514. [CrossRef]
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Abstract: The Fermi surface structure of a layered organic superconductor β′′-(BEDT-TTF)2SF5CH2CF2SO3

was determined by angular-dependent magnetoresistance oscillations measurements and band-structure
calculations. This salt was found to have two small pockets with the same area: a deformed square hole
pocket and an elliptic electron pocket. Characteristic corrugations in the field dependence of the interlayer
resistance in the superconducting phase were observed at any in-plane field directions. The features were
ascribed to the commensurability (CM) effect between the Josephson vortex lattice and the periodic nodal
structure of the superconducting gap in the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase. The CM
effect was observed in a similar field region for various in-plane field directions, in spite of the anisotropic
nature of the Fermi surface. The results clearly showed that the FFLO phase stability is insensitive to the
in-plane field directions.

Keywords: organic superconductor; resistance; FFLO phase; vortex dynamics

1. Introduction

The discovery of superconductivity has led to breakthroughs in a wide range of
fields from fundamental research and applications [1]. In particular, since the discovery of
high-temperature superconducting cuprates in 1980s, the search for new superconducting
mechanisms has been one of the major trends in superconductivity basic research. Among
the various superconductors, organic superconductors in the vicinity of metal-insulator
transitions have brought about significant progress in basic research.

Organic conductors based on BEDT-TTF molecules are characterized by a stacked
structure with anion molecule (insulating) layers and BEDT-TTF molecule (conducting)
layers. These conductors have attracted significant interest because of the presence of vari-
ous ground states, a dimer-Mott insulating phase, a charge-ordered phase, a density wave
phase, and a superconducting phase, where the degree of dimerization of the BEDT-TTF
molecules, the Fermi surface instability, and the strong electron correlation play impor-
tant roles. In particular, the possibility of unconventional superconductivity, mediated by
antiferromagnetic spin and/or charge fluctuations, is a central concern.

When the orbital effect is suppressed and the critical field (Hc2) is Pauli-limited, a
unique superconducting phase, namely, the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO)
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superconducting phase is expected to emerge at high fields [2,3]. In conventional super-
conductors, the spin-singlet Cooper pairs formed by up and down spins are destroyed
in a magnetic field by the Zeeman effect. This pair-breaking effect gives the Pauli limit,
HPauli = Δ0/

√
2μB = 1.86Tc, where Δ0 is the superconducting energy gap at 0 K, and μB

is the Bohr magneton [4]. In the FFLO phase, the Cooper pairs are formed between up
and down spins on the polarized Fermi surface. Therefore, the Cooper pairs have a finite
center-of-mass momentum q and show a spatial modulation of the order parameter in
real space; Δ(r) = Δcos(qr), as shown in Figure 1a. As a result, the superconductivity
can be stabilized even above HPauli. In recent years, experimental results suggesting its
existence have been obtained in heavy fermion superconductors [5,6], oxide layered su-
perconductors [7], ion-based superconductors [8], and organic superconductors [9–16]. In
organic superconductors, the FFLO phase transition was first observed by a tuned-circuit
differential susceptometer experiment for κ-(BEDT-TTF)2Cu(NCS)2 [10], and, since then,
various measurements [17–24] have been performed to confirm the FFLO transition.

Figure 1. (a) Schematic illustration of the order parameter oscillation Δ(r) for a single q case in a
FFLO phase and JV lattice in a layered superconductor. The JVs are easily driven by the Lorentz
force in an interlayer current I, leading to nonzero interlayer resistance even in the superconducting
phase. (b) Temperature dependence of the interlayer resistance of the β′′-SF5 salt. The onset of
the superconducting transition can be defined as Tc ≈ 4.8 K, consistent with the specific heat
measurement [23]. Inset: crystal structure of β′′-SF5 salt.

Highly two-dimensional (2D) layered superconductors can be modeled as Josephson-
coupled multi-layer systems. In such superconductors, magnetic flux lines penetrating
the sample can be decomposed into two parts; the pancake vortices (PVs) penetrating
the superconducting layers and the Josephson vortices (JVs) penetrating the insulating
layers. The JVs are pinned more loosely than the PVs, since the order parameter vanishes
in the insulating layers. Therefore, the JVs are easily driven by the Lorentz force in an
interlayer current, and, consequently, nonzero interlayer resistance is observed even in the
superconducting phase. In the FFLO phase, periodic nodal lines of the order parameter
are formed by the finite center-of-mass momentum q of the Cooper pairs as depicted in
Figure 1a. When the nodal lines are parallel to the JVs, they will work as pinning sites of
the JVs. The wavelength of the order parameter oscillation is given by λFFLO = 2π/q, and
the JV lattice spacing is l = Φ0/sH, where s is the interlayer spacing and Φ0 is the flux
quantum. It is expected that JVs are relatively strongly pinned by the nodal line structure
for a commensurate condition l/λFFLO = N (N : integer). Since λFFLO is also expected to
decrease with an increasing field [25,26], the commensurate condition in the FFLO phase
will be periodically satisfied, leading to fine structures in the interlayer resistance curves.
This commensurability (CM) effect was first predicted by Bulaevskii et al. [27]. Thus far,
the CM effect has been observed in the FFLO phases for various organic superconductors,
λ-(BETS)2FeCl4 [15], β′′-(BEDT-TTF)4[(H3O)Ga(C2O4)3]C6H5NO2 (β′′-Ga salt) [28], and
β′′-(BEDT-TTF)2SF5CH2CF2SO3 (β′′-SF5 salt) [29]. Among them, the highly 2D nature of
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the β′′-Ga and β′′-SF5 salts with the large anion layers would provide an excellent platform
for the FFLO studies, since JV dynamics play an essential role in the CM effects.

The β′′-SF5 salt with Tc ≈ 4.8 K is composed of the conducting BEDT-TTF molecular
layer and the large insulating SF5CH2CF2SO3 layer (inset of Figure 1b). A highly 2D elec-
tronic state has been realized, which is characterized by a large ratio of the intralayer to that
of interlayer critical fields H‖

c2/H⊥
c2 ≈ 11.5. The specific-heat measurements show strongly

coupled BCS-like behavior with a full gap given by Δ0/kBT = 2.18 [30]. In a magnetic
field parallel to the conducting layers, the critical field Hc2 significantly exceeded the Pauli
limit HPauli ≈ 10 T, above which the FFLO superconductivity is realized [31–35]. Opti-
cal measurements of isostructural β′′-(BEDT-TTF)2SF5RSO3 (R = CH2, CHFCF2, CH2CF2,
and CHF) compounds revealed that the superconducting phase is adjacent to a charge-
ordered insulating phase [36]. This could indicate superconductivity mediated by charge
fluctuations, which is another reason for the interest in the β′′ salts.

In our previous studies, we clarified the FFLO phase boundary in terms of the mag-
netocaloric effect, torque [35], and resistance measurements [29]. We also observed the
CM effect in fields almost parallel to the a-axis in the FFLO phase, above ∼9 T. The λFFLO
values, ranging from ∼40 nm to ∼210 nm, were obtained under the assumption of a single
q vector perpendicular to the field. The stability of the FFLO phase is closely related to the
nesting instability of the Fermi surface, and the q vector leading to a large nesting part is
favorable for the FFLO phase. Therefore, the optimum q vector depends on the anisotropic
structure of the Fermi surface. Meanwhile, the orbital effect stabilizes the q vector parallel
to the field. This situation can lead to complicated field-direction dependencies of the
optimum q vector. Even multi-q-vector phases are theoretically predicted depending on
the field strength and temperature [37].

In this study, we focused on the stability of the FFLO phase in the β′′-SF5 salt, with an
anisotropic Fermi surface. Firstly, we clarify the Fermi surface structure from the measure-
ments of angular-dependent magnetoresistance oscillations (AMROs), and then we report
the CM effect in various in-plane field directions. The CM effect was surprisingly observed
in a similar field region for various in-plane field directions, despite the anisotropic Fermi
surface structure. Possible scenarios for explaining these results are presented.

2. Materials and Methods

Single crystals of the β′′-SF5 salt were synthesized using a standard electrochemical
method [38]. Two gold wires of 10 μm diameter were attached to both sides of the single
crystal using carbon paste. The interlayer resistance with an electric current perpendic-
ular to the superconducting layers was measured using a conventional four-probe AC
technique. The single crystals were mounted on a two-axis rotator in a 3He cryostat with
a 15 T superconducting magnet and cooled down to ∼0.5 K at a rate of ∼1 K/min. All
measurements were performed at the Tsukuba Magnet Laboratories, NIMS.

3. Results

Figure 1b shows the temperature dependence of the interlayer resistance for the β′′-SF5
salt. The resistance decreased monotonically with decreasing temperature. At ∼4.8 K, a
sudden drop in resistance was observed due to the superconducting transition. Below
∼4 K, the resistance was zero within the noise level. To investigate the 2D Fermi surface
structure, we first measured the AMROs in various rotation planes. Typical AMRO data
are presented in Figure 2a. The angles θ and ϕ are defined in the inset. The characteristic
θ dependence of the interlayer resistance is shown in the upper part of Figure 2a. In
the negative second derivative curves, we can observe AMROs, which are periodic with
tan(θ), as shown in the lower part of Figure 2a. The AMRO period δ directly yields the
reciprocal lattice vector k‖, δ(r) = π/sk‖(ϕ) values. Figure 2b shows the polar plot of k‖
obtained from the AMRO measurements at various ϕ. We can draw the cross-section of the
2D Fermi surface, inscribed in the k‖(ϕ) curves, by a solid curve, assuming an elliptical
shape. The cross-section of the Fermi surface is very elongated, whose area was ∼6% of
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the first Brillouin zone. The AMRO results were almost consistent with those of previous
reports [39].

Figure 2. (a) Typical AMRO data and their negative second derivative curves at 1.5 K for 14 T.
(b) Polar plot of k‖ obtained from the AMRO measurements. The red solid curve shows the 2D Fermi
surface obtained from the AMRO measurements.

In Figure 3a, we present the band calculations by an extended Huckel method [40],
using lattice parameters obtained from X-ray crystallography [38]. The calculated 2D Fermi
surface is depicted in Figure 3b. The results are different from the reported Fermi surface
structure, with a pair of 1D Fermi surface and a closed Fermi surface [38,41], in which
the Brillouin zone is apparently wrong. In our calculations, there were two pockets with
different carriers: a deformed square electron pocket and an elliptic hole pocket. The areas
were equal to each other, and a compensated metal was formed. This is consistent with
a single frequency of the quantum oscillation [42–44]. For comparison, the Fermi surface
obtained from the AMRO measurements is indicated by a red dotted curve, which is almost
consistent with the electron pocket. In the AMRO measurements, the hole pocket was not
observed. The reason for this is not clear at present.

Figure 3. (a) Band structure by an extended Huckel method and (b) 2D Fermi surface structure for
the β′′-SF5 salt. Deformed square hole and elliptic electron pockets were formed. The red dotted
curve indicates the 2D Fermi surface determined by the AMRO measurements.

Figure 4a shows the magnetic field dependence of the interlayer resistance at various
temperatures. The field was applied parallel to the b axis, in the superconducting a′–b
plane, within the accuracy of 0.1°. At 0.5 K, the resistance increased with the field above
6.5 T, defined as Honset. Characteristic corrugation was evident. The corrugation was
reduced with increasing temperature. The critical field was determined as Hc2 ≈ 13 T at
0.7 K from the specific-heat measurements [23]. The finite resistance in the wide field region
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below Hc2 can be ascribed to the motion of the JVs in the insulating layers, as has been
observed in various organic superconductors [15,28,29]. To clearly see the corrugations in
detail, negative second-derivative curves of the resistance are plotted in Figure 4b. At 0.5 K,
we see a broad dip at ∼6.5 T, corresponding to the resistance increase from the noise level.
Above ∼8 T, we see a quasi-periodic dip structure, which is most pronounced at ∼10 T.
This structure can be ascribed to the CM effect, which is observable only in the FFLO phase,
as discussed in the previous reports [29]. At higher fields, the CM effect is reduced and
vanishes above ∼12 T, which corresponds to the melting transition of the JV lattice. As
temperature increases, the dip structure is suppressed and shifts to a lower field region.
Above 2.1 K, such astructure is not evident. As has been discussed [27,29], the dips mean
relatively strong pinning of the JV lattice, ascribed to the CM effect between the JV lattice
and the periodic nodal structure of the gap Δ(r).

Figure 4. (a) Magnetic field dependence of the interlayer resistance at various temperatures. The
field was applied parallel to the b axis in the superconducting a′–b plane within an accuracy of 0.1°.
(b) Negative second-derivative curves of the resistance. Each curve was shifted for clarity.

From the above results, we obtained the temperature–field phase diagram shown in
Figure 5. The blue squares indicate the dip fields Hdip, and the solid curve indicates Hc2,
which was determined from specific-heat measurements [23]. The FFLO phase appears in
a wide region above ∼8 T and below ∼2 K. The phase diagram is very similar to that for
the H ‖ a-axis [29], although the Fermi surface was anisotropic.

Figure 6a shows the magnetic field dependence of the resistance at various field angles
θ. For θ = 0°(H ‖ b-axis), the resistance increased with the field above μ0Honset = 6 T, which
is indicated by an arrow. Figure 6b shows the negative second-derivative curves of the
resistance. The low Honset value for θ = 0°, denoted by an arrow, indicates that only JVs
were formed (no PVs), which were pinned very weakly in the insulating layers. When
the field was tilted from the superconducting layer, Honset increased. This behavior is
explained by the stronger pinning of the flux lines in the superconducting layers, where
PVs are formed. As the field was further tilted, Hc2 was steeply reduced, leading to a
decrease in Honset. For θ = 0°, small dips due to the CM effect can be seen above ∼9.5 T. As
the field was tilted from the layer, the CM effect was suppressed, and no CM effect was
observed for |θ| � 0.6°. The stability of the FFLO phase in such a small angle region is
consistent with the results for the field almost parallel to the a axis [29].
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Figure 5. Temperature–field phase diagram for H ‖ b axis. Hc2 determined by the specific-heat
measurements is indicated by a solid curve [23].

Figure 6. (a) Magnetic field dependence of the resistance at various field angles θ. Definition of θ is
in the inset. (b) Negative second-derivative curves of the resistance. Each curve is shifted for clarity.

Figure 7a shows the field dependence of the negative second-derivative curves at
various in-plane field directions ϕ, as shown in the inset of Figure 7b. For ϕ = 0°, we
see the onset field μ0Honset = 6 T (black arrow). The Honset value had a nonmonotonic
ϕ dependence. It should be noted that Honset is the depinning field of the JV lattice [29],
determined by the pinning strength at the sample edges and/or some other (impurity or
defect) pinning sites, which is not related to the FFLO phase transition. The anisotropic
behavior of Honset is possibly due to the shape effect of the sample. In contrast, we observed
many dips above ∼9 T, owing to the CM effect in a similar field region at any ϕ. This
suggests that the FFLO phase stability was insensitive to the in-plane field direction. An
important feature is that the largest dip was evident at μ0H∗

dip ≈ 9 T (red arrow) in a wide-
angle region, except for ϕ = 0°–45°. This ϕ dependence of the dip amplitude suggests some
differences in the JV dynamics in the FFLO phase. The largest dip field H∗

dip corresponds to
the strongest CM effect and is plotted as a function of ϕ in Figure 7b. We note that H∗

dip is
almost isotropic, despite the anisotropic Fermi surface structure as presented in Figure 3b.
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Figure 7. (a) Magnetic field dependence of the negative second-derivative curves at various in-plane
field directions ϕ defined in the inset of (b). Each curve is shifted for clarity. The onset field Honset

and the largest dip field H∗
dip are indicated by black and red arrows, respectively. (b) Hdip as a

function of ϕ. The dotted curve indicates the expected value for the CM condition Hdip ∝ 1/cos(ϕ)
with a single q vector.

4. Discussion

We observed the CM effect in various in-plane field directions, which is recognized
as strong evidence of the FFLO phase characterized by the q vector. As pointed out, the
q vector leading to a large nesting part is favorable for the FFLO phase, as schematically
depicted in Figure 8a, where the largest number of Cooper pairs can be formed by the
q vector, perpendicular to the flat part of the Fermi surface. On the other hand, in the
presence of the orbital effect, the q vector parallel to the field is favorable for an isotropic
Fermi surface, leading to no CM effect. The observation of the CM effect at any ϕ indicates
that the q vector is not parallel to the field.

Figure 8. (a) Spin-polarized 2D Fermi surface in a magnetic field. Up and down Fermi surfaces are
indicated by red and blue curves, respectively. (b) Schematic nodal line structure of a FFLO phase
and JV lattice in a tilted field for the CM condition l/λFFLO = 1.

The largest dip at H∗
dip in Figure 7a suggest the strongest CM effect, l/λFFLO = 1, where

all the flux lines can fit into the nodal lines completely. Assuming that the q vector is fixed to
a certain direction (for instance, a′-axis), the JV lattice spacing is given by l = Φ0/sHcos(ϕ)
as depicted in Figure 8b. This leads to large ϕ dependence of H∗

dip as indicated by the dotted
curve in Figure 7b, which is inconsistent with the experimental result. This inconsistency
requires another factor on the stability of the FFLO phase. At the nodal lines, the order
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parameter vanishes in the superconducting layers. Therefore, the most stable condition
of the vortex structure will be that all the flux lines are almost parallel to the nodal lines;
the q vector is almost perpendicular to the field. This suggests that the direction of the q
vector changes with the field direction. In the anisotropic Fermi surface, the q vector length
should also be anisotropic, depending on the energy dispersion. Although it is difficult to
know the ϕ dependence of the q vector, this scenario could explain the lack of significant ϕ
dependence of H∗

dip in Figure 7b.
Recent specific-heat measurements show that Hc2 is the same at a few different in-

plane field directions in a low temperature range [23]. The fact shows that the FFLO
stability is independent of ϕ, and seems to be consistent with our results: no significant ϕ
dependence of H∗

dip. Theoretically, the in-plane anisotropies of Hc2 are led by Fermi surface
structure and orbital effects in the FFLO phase [45]. Therefore, no in-plane anisotropy of
Hc2 in the specific-heat measurements suggests that the orbital effect is almost negligible,
and the q vector is most likely pinned to an optimal direction independent of the in-plane
field direction. The inconsistency with our results remains an open question.

Another possible scenario that could explain our results is that multi-q vectors [37]
are formed in the β′′-SF5 salt, since the two different Fermi pockets are present as shown
in Figure 3b. In this case, the q-dependent anisotropic stability of the FFLO phase could
be smeared out; the FFLO phase may appear in a similar field range, independent of the
in-plane field direction. This scenario may also explain the lack of a significant in-plane
anisotropy of H∗

dip and Hc2.
Finally, we briefly mention the results for another FFLO superconductor λ-(BETS)2FeCl4,

which had a pair of 1D and a 2D Fermi surfaces [15]. In this salt, the CM effect was first
observed in the field-induced superconducting phase. The CM effect was clearly observed
for H ‖ c but not for H ‖ a. The results show that a single q vector was fixed to the a-axis
in the whole FFLO phase. The different behavior of the CM effect between β′′-SF5 salt
and λ-(BETS)2FeCl4 will be closely related to the Fermi surface structure. More detailed
measurements of the CM effect in other FFLO superconductors will be required to clarify the
correlation between the Fermi surface structure and the q vector.

5. Conclusions

The AMRO measurements and band-structure calculations in the β′′-SF5 salt show
that the Fermi surface is composed of two small pockets, a deformed square electron
pocket, and an elliptic hole pocket, which are different from the previous report. The CM
effect in the interlayer resistance was observed in a similar field region at any in-plane field
directions. This indicates that the stability of the FFLO phase is almost isotropic, which
is consistent with the observations of precious specific-heat measurements. Two possible
scenarios are proposed: (1) a single center-of-mass momentum q of the Cooper pairs, which
changes with the in-plane field direction, and (2) multi-q vectors, originating from the two
anisotropic Fermi surfaces.
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Superconductivity in an organic insulator at very high magnetic fields. Phys. Rev. Lett. 2001, 87, 067002. [CrossRef] [PubMed]

15. Uji, S.; Terashima, T.; Nishimura, M.; Takahide, Y.; Konoike, T.; Enomoto, K.; Cui, H.; Kobayashi, H.; Kobayashi, A.; Tanaka, H.;
et al. Vortex dynamics and the Fulde-Ferrell-Larkin-Ovchinnikov state in a magnetic-field-induced organic superconductor. Phys.
Rev. Lett. 2006, 97, 157001. [CrossRef] [PubMed]

16. Uji, S.; Kodama, K.; Sugii, K.; Terashima, T.; Takahide, Y.; Kurita, N.; Tsuchiya, S.; Kimata, M.; Kobayashi, A.; Zhou, B.; et al.
Magnetic torque studies on FFLO phase in magnetic-field-induced organic superconductor λ-(BETS)2 FeCl4. Phys. Rev. B 2012,
85, 174530. [CrossRef]

17. Lortz, R.; Wang, Y.; Demuer, A.; Böttger, P.H.M.; Bergk, B.; Zwicknagl, G.; Nakazawa, Y.; Wosnitza, J. Calorimetric Evidence for
a Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in the Layered Organic Superconductor κ-(BEDT-TTF)2Cu(NCS)2.
Phys. Rev. Lett. 2007, 99, 187002. [CrossRef] [PubMed]

18. Bergk, B.; Demuer, A.; Sheikin, I.; Wang, Y.; Wosnitza, J.; Nakazawa, Y.; Lortz, R. Magnetic torque evidence for the Fulde-
Ferrell-Larkin-Ovchinnikov state in the layered organic superconductor κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. B 2011, 83, 064506.
[CrossRef]

19. Wright, J.A.; Green, E.; Kuhns, P.; Reyes, A.; Brooks, J.; Schlueter, J.; Bkato, R.; Yamamoto, H.; Kobayashi, M.; Brown, S.E.
Zeeman-Driven Phase Transition within the Superconducting State of κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. Lett. 2011, 107, 087002.
[CrossRef] [PubMed]

20. Agosta, C.C.; Jin, J.; Coniglio, W.A.; Smith, B.E.; Cho, K.; Stroe, I.; Martin, C. Tozer, S.W.; Murphy, T.P.; Palm, E.C.; et al.
Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as
applied to κ-(BEDT-TTF)2Cu(NCS)2: Strong evidence of a FFLO state. Phys. Rev. B 2012, 85, 214514. [CrossRef]
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Abstract: In the quasi-one-dimensional (TMTTF)2X compounds with effectively quarter-filled bands,
electronic charge order is stabilized from the delicate interplay of Coulomb repulsion and electronic
bandwidth. The correlation strength is commonly tuned by physical pressure or chemical substitution
with stoichiometric ratios of anions and cations. Here, we investigate the charge-ordered state through
partial substitution of the anions in (TMTTF)2[AsF6]1−x[SbF6]x with x ≈ 0.3, determined from the
intensity of infrared vibrations, which is sufficient to suppress the spin-Peierls state. Our dc transport
experiments reveal a transition temperature TCO = 120 K and charge gap ΔCO = 430 K between the
values of the two parent compounds (TMTTF)2AsF6 and (TMTTF)2SbF6. Upon plotting the two
parameters for different (TMTTF)2X, we find a universal relationship between TCO and ΔCO yielding
that the energy gap vanishes for transition temperatures TCO ≤ 60 K. While these quantities indicate
that the macroscopic correlation strength is continuously tuned, our vibrational spectroscopy results
probing the local charge disproportionation suggest that 2δ is modulated on a microscopic level.

Keywords: charge-transfer salts; (TMTTF)2X; Fabre salts; charge order; strongly correlated electron
systems; extended Hubbard model; bandwidth tuning; partial chemical substitution; negative
chemical pressure; phase transitions; metal-insulator transitions; optical conductivity; vibrational
spectroscopy; FTIR

PACS: 71.30.+h; 78.30.Jw; 75.25.Dk

1. Introduction

Organic charge-transfer salts are model systems realizing electronic correlations and
Mott–Hubbard physics, yielding a plethora of metal–insulator transitions in many different
compounds. Owing to their effectively quarter-filled bands with nominally one electron
per two organic molecules, the quasi-one-dimensional Fabre salts (TMTTF)2X are prone
to charge-order instabilities [1]. Initially, charge order (CO) was suggested as a purely
electronic effect due to intersite Coulomb repulsion. Within the extended Hubbard model,
the ratio of nearest neighbor interaction V with respect to the bandwidth W is a measure of
the correlation strength that can be varied by external pressure or by chemical means [2,3].
Eventually, CO is suppressed completely for sufficiently small V/W, and an insulator–
metal transition takes place, stabilizing metallic and superconducting states. At lower
temperatures, more complex phase transitions to anion-ordered and spin-Peierls phases
result in modifications of the magnetic and structural degrees of freedom, such as the
formation of a spin gap and tetramerization of the TMTTF molecules. Previous NMR
and optical studies of electronically-driven charge order provided consistent results on
(TMTTF)2X with centrosymmetric anions X = PF−

6 , AsF−
6 , SbF−

6 , and TaF−
6 [1,4–13] and

tetrahedral anions X = BF−
4 , ReO−

4 [14,15].
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The wave function overlap t ∝ W and, hence, V/W, can be modified by changing
the lattice parameter through introduction of bigger or smaller anions, or by the use of
organic donor molecules with Se instead of S. Chemical substitution in a stoichiometric
manner allows reaching distinct regions in the phase diagram, with a step size determined
by the chemical properties of the respective molecules. Physical pressure, on the other
hand, enables tuning in arbitrary steps through the phase diagram, at the cost of more
difficult experiments that have to be carried out in a pressure cell. The advantages of both
approaches—flexible tuning and ambient pressure experiments—can be achieved by partial
substitution of the constituents, either the donor molecules [16–29] or the anions [30–33],
as depicted in Figure 1. So far, partial substitution has remained poorly investigated
compared to pressure tuning, but, in addition to bandwidth tuning, it also enables the
study of disorder effects on metal–insulator transitions and superconductivity [29].

Figure 1. (Color online) (a) (TMTTF)2X with X = SbF6 exhibits larger electronic correlation strength
V/W as the molecules are separated further apart than for X = AsF6. Modifying the intersite
spacing via physical pressure or chemical substitution allows tuning through charge-ordered (CO),
antiferromagnetic (AFM), and spin-Peierls (SP) states in the phase diagram. (b) Partial substitution
of AsF6 anions (red) with larger SbF6 (black) in (TMTTF)2[AsF6]1−x[SbF6]x yields a position between
the two parent compounds, indicated by the dotted blue line in (a).

Here, we investigate charge order upon partial substitution of the anions in (TMTTF)2-
[AsF6]1−x[SbF6]x. The stoichiometry x ≈ 0.3 is determined via the intensity of SbF−

6 and
AsF−6 vibration modes at 660 and 700 cm−1, respectively. The lack of tetramerization and a
spin gap deduced from optical and magnetic susceptibility measurements indicates the
absence of a spin-Peierls state. Our dc transport results yield a transition temperature TCO
= 120 K and a charge gap ΔCO = 430 K. These values line up with CO in the stoichiometric
(TMTTF)2X compounds, revealing that ΔCO → 0 around TCO ≈ 60 K. Consistent with
the resistivity data, our optical experiments on TMTTF vibrations in the infrared range
yield a splitting of the charge-sensitive ν28 mode below TCO. Despite the higher transition
temperature, the charge disproportionation 2δ = 0.21e (in the limit T → 0) is similar to
(TMTTF)2AsF6. Our findings indicate that the local amplitude of charge imbalance is linked
closely to the nearest anions, while TCO and ΔCO are determined by the macroscopic mix-
ture. This motivates more systematic studies of the role of the anions and the microscopic
properties of CO via partial chemical substitution.

2. Materials and Experiments

CO in (TMTTF)2X has been comprehensively studied in the stoichiometric com-
pounds with octahedral and tetrahedral anions [1,4–15]. For the former, larger anion
size d(TaF−

6 ) > d(SbF−
6 ) > d(AsF−

6 ) > d(PF−
6 ) yields a bigger separation of the TMTTF
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molecules and, hence, an increase of electronic correlations V/W as the wave function
overlap t ∝ W is reduced more strongly than the intersite Coulomb repulsion V (Figure 1a).
This trend has been continued with the recently synthesized new member with NbF−

6 as
counterion, which has similar TCO as (TMTTF)2SbF6 [34]. Accordingly, the compounds
with largest (smallest) anions have the highest (lowest) TCO. Vice versa, physical pressure
reduces the intermolecular distances, decreasing V/W and suppressing CO. However,
the use of stoichiometric compounds confines the available phase space to a few distinct
positions where suitable anions for single crystal growth are available. Reaching the regions
in between two compounds, e.g., between (TMTTF)2SbF6 and (TMTTF)2AsF6, requires
pressure tuning starting from the material with the larger anion, here SbF−

6 [1,6,35,36];
increasing V/W in small increments from the position of X = AsF−

6 was not achieved so
far. In principle, this region in the phase diagram could be reached by “negative” pressure
which can be obtained by uniaxially applying tensile strain, but not through hydrostatic
pressure.

Here, we perform continuous correlation tuning via partial chemical substitution in
(TMTTF)2[AsF6]1−x[SbF6]x. Single crystals were prepared following the standard elec-
trochemical synthesis procedures [37]. While a mixture of approximately 1:1 SbF−

6 and
AsF−6 anions was used, the real stoichiometry upon crystallization can differ from this ratio.
We determined the composition as x ≈ 0.3 by comparing the infrared intensities of the
respective anion vibration modes at 660 and 700 cm−1 in Figure 2. The position in the phase
diagram in Figure 1a is further substantiated by measurements of the magnetic susceptibil-
ity. Our SQUID data in Figure 3 provide solid evidence that (TMTTF)2[AsF6]1−x[SbF6]x
studied here does not exhibit a spin-Peierls ground state, because it lacks a pronounced
drop of χs that would indicate a spin-singlet formation as in the case of (TMTTF)2AsF6 [7].
The data quality at the lowest temperatures prevents the assignment of a possible an-
tiferromagnetic transition, which occurs at TN = 8 K for (TMTTF)2SbF6 [6,35]. Further
characterization of the magnetic ground state is a task for future investigations.

Figure 2. (a) The vibration modes of the anions SbF−
6 and AsF−

6 occur in the infrared spectra of
(TMTTF)2SbF6 and (TMTTF)2AsF6 around 660 and 700 cm−1, respectively. (b) The spectral features
of both anion species are present in the spectrum of (TMTTF)2[AsF6]1−x[SbF6]x. Through integrating
the spectral weight SW in the grey and red shaded frequency ranges, we estimate a stoichiometry
x = 0.3 from the ratios between the intensities of the SbF−6 and AsF−6 modes.

Standard optical spectroscopic experiments in the mid-infrared range (500–8000 cm−1)
were performed with the light polarized along the a, b, and c crystallographic axes in
a temperature range from 300 K down to 5 K. We focused on evaluation of the charge-
sensitive infrared active ν28(b1u) mode probed for E ‖ c, the resonance frequency of which
follows [1,38]
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ν28(ρ) = 1632 cm−1 − ρ · 80 cm−1/e, (1)

where ρ is the molecular charge and e the charge of an electron. For a characterization
of the conduction properties, plotted in Figure 4a, we measured the dc resistivity in situ
during the optical experiments, revealing a considerable increase of TCO = 120 K from the
transition temperature of (TMTTF)2AsF6 (TCO = 102 K) towards that of (TMTTF)2SbF6
(TCO = 156 K).

Figure 3. Temperature dependence of the magnetic susceptibility χs(T) for (TMTTF)2X with
X = SbF6, [AsF6]1−x[SbF6]x (x = 0.3) and AsF6 measured by a SQUID magnetometer. In all
cases, the pronounced Curie tail below 6 K has not been subtracted (dashed region). The magnetic
field was B = 0.5 T for the alloy and 1 T for the two pure compounds; the single crystals are oriented
with B ‖ a. The curves of X = SbF6 and [AsF6]1−x[SbF6]x are vertically shifted by a positive offset
for clarity reasons. The spin-Peierls transition in (TMTTF)2AsF6 can be clearly seen at TSP = 13 K,
whereas the antiferromagnetic transition at TN = 8 K is barely visible for (TMTTF)2SbF6. For the
alloy (TMTTF)2[AsF6]1−x[SbF6]x, we cannot identify any transition within the accessible temperature
range (T > 1.8 K).

Figure 4. (a) Temperature-dependent electrical resistivity of (TMTTF)2[AsF6]1−x[SbF6]x with x = 0.3
(electrical current parallel to a-axis) measured in situ during optical reflection measurements in
the ac-plane. The sharp increase at TCO = 120 K indicates the CO transition. The localization
temperature T0 = 240 K is a little lower compared to the parent compounds (TMTTF)2AsF6 and
(TMTTF)2SbF6 [37], but otherwise the transport properties are qualitatively similar. (b) The Arrhenius
plot yields an approximately constant energy gap Δ/kB = 480 K in the temperature range 40–100 K,
as illustrated in the transport derivative d ln ρ/d(1/T) in the inset.
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3. Results and Analysis

The transition temperature TCO = 120 K agrees with our expectations based on the
stoichiometry, placing (TMTTF)2[AsF6]1−x[SbF6]x with x = 0.3 closer to (TMTTF)2AsF6
than to (TMTTF)2SbF6. Our comprehensive set of experimental results allows us to gain
much deeper insight by evaluating distinctive quantities such as the energy gap associated
with CO, as well as the charge disproportionation 2δ. In order to extract the transport gap,
we plot the resistivity in an Arrhenius plot in Figure 4b. We find an approximately constant
Δ/kB = 480 K between 40–100 K which is, again, in line with the gap size of the parent
compounds [37]. The inset, showing the transport derivative d ln ρ/d(1/T), consistently
yields a temperature-independent transport gap below the sharp peak that occurs in the
vicinity of TCO.

3.1. Universal Relation between Charge Gap and Transition Temperature

The bare value of the transport gap, however, does not reflect the CO state only,
but involves also contributions from Mott localization that cause the upturn of resistivity
below T0. These individual contributions add in quadrature establishing the total value
of Δ(T). To that end, we determine the CO contribution from the temperature-dependent
energy gap Δ(T) = T ln ρ, following the procedure applied in [37]. Δ(T) of (TMTTF)2-
[AsF6]0.7[SbF6]0.3 is shown in Figure 5a, together with the energy gaps of (TMTTF)2X with
X = PF−

6 (here we show the deuterated compound with TCO= 90 K from [39]), AsF−
6 ,

and SbF−
6 [37]. Note that the data have been shifted vertically and in all cases Δ(T0) = 0

by definition. ΔCO is determined from the increase of Δ(T) below the respective TCO,
i.e., ΔCO =

√
Δ2

max − Δ2(TCO), as indicated by the double arrows and dashed lines in
respective colors in Figure 5a. From our present transport results, we obtain ΔCO = 430 K
for (TMTTF)2[AsF6]0.7[SbF6]0.3.

Figure 5. (a) Temperature-dependent energy gap of (TMTTF)2[AsF6]1−x[SbF6]x for x = 0 [37], 0.3,
and 1 [37], and for deuterated (TMTTF)2PF6 with TCO= 90 K [39]. The total gap size, measured

by the resistivity, increases as ΔCO adds up in quadrature Δ(T) = T ln ρ =
√

Δ2
CO + Δ2(TCO) in

the CO state. The increase from Δ(TCO) to Δmax is indicated by double arrows and dashed lines
in respective colors. The curves have been vertically shifted; by definition Δ(T0) = 0. (b) ΔCO of
(TMTTF)2[AsF6]1−x[SbF6]x (blue star) is plotted versus TCO together with the data (solid squares)
of (TMTTF)2X with X = PF−6 , AsF−

6 , SbF−
6 and ReO−

4 [37]. Open squares indicate measurements
on pristine and deuterated PF−

6 and SbF−
6 compounds [39]. The data follow an approximately

linear relationship until ΔCO vanishes for TCO ≤ 60 K. Alternatively, this universal behavior can be
interpreted as a negative ΔCO for TCO → 0.

In Figure 5b, we plot ΔCO as a function of TCO for the data shown in (a), i.e., (TMTTF)2-
[AsF6]1−x[SbF6]x with x = 0.3 (star) and PF−

6 , AsF−
6 , SbF−

6 , together with ReO−
4 (solid

squares) [37]. Included are also additional datasets for pristine and deuterated compounds
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from [39], indicated by the open squares. As we find, all data points fall on a universal
line that yields ΔCO = 0 around TCO = 60 K. It is tempting to relate this temperature scale
with D/kB ≈ 60 K reported in Figure 8b of [14]. In that work, deuteration was found to
contribute an energy D in quadrature to TCO, suggesting that interactions between anions
and the TMTTF donors via the hydrogen atoms interfere with the CO mechanism: TCO
is smaller in the protonated compounds compared to the heavier, less-mobile deuterium
isotopes. Our results on (TMTTF)2[AsF6]1−x[SbF6]x provide an additional piece of evidence
for the importance of anion-TMTTF interactions and motivate further research in this
direction. More precise evaluation of the anion modes and vibrations of the methyl
endgroups, possibly supplemented by calculations, may be a first step in this direction.

While assessing the universal behavior in Figure 5b, one could also consider that
ΔCO has a negative offset for TCO → 0, meaning that the repulsive interactions turn
into attractive charge fluctuations as correlations diminish. This mechanism has been
vividly discussed as a potential candidate for the pairing glue in the quasi-2D molecular
superconductors nearby a CO instability [40–45]. This notion also calls for further scrutiny
of the CO phenomenon by means of continuous correlation tuning, as presented here.

3.2. Charge Disproportionation Determined by Vibrational Spectroscopy

We investigate CO in (TMTTF)2[AsF6]0.7[SbF6]0.3 in more detail by assessing the
optical response of molecular vibrations in the midinfrared frequency range [1,38]. The
charge-sensitive ν28(b1u) mode probed for E ‖ c exhibits a similar splitting in the CO phase
(T = 20 K < TCO) as in the two parent compounds (Figure 6). According to Equation (1),
the separation of the two main peaks corresponds to the charge disproportionation 2δ
between charge-rich and charge-poor molecular sites, which increases from x = 0 to x = 1.
Overall, the ν28 mode for x = 0.3 very much resembles the spectrum of x = 0, in agreement
with the chemical composition, placing the alloy closer to (TMTTF)2AsF6 in the phase
diagram (Figure 1a). We also assessed the optical reflectivity parallel to the stacks (E ‖ a,
see inset of Figure 6) and observe no significant activation of the ν4 mode that is sensitive
to tetramerization of the TMTTF molecules [1,36]. Therefore, we find no evidence for a
spin-Peierls transition in (TMTTF)2[AsF6]0.7[SbF6]0.3 based on our optical data, in line
with the magnetic susceptibility measurements shown in Figure 3. The suppression of
the spin-Peierls state is in agreement with pressure-dependent experiments on (TMTTF)2-
SbF6 and (TMTTF)2AsF6, where antiferromagnetism rapidly replaces the spin-gapped
phase [6,35,36].

Figure 7a presents the optical conductivity of the ν28(b1u) vibration in (TMTTF)2-
[AsF6]0.7[SbF6]0.3 for various temperatures above and below TCO. Consistent with our
transport results in Figure 4, the line exhibits a splitting at T ≤ 120 K. For a quantitative
analysis, we determined the charge disproportionation 2δ from the resonance frequencies
of the peak splitting according to Equation (1), as shown in panels (b) and (c). On first
glance, 2δ exhibits a similar mean-field-like increase upon cooling below TCO. While the
transition temperature is higher than in the parent compound (TMTTF)2AsF6 [1,12], the
charge disproportionation reaches a rather similar value of 2δ = 0.21e in the limit T → 0.
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Figure 6. The ν28 mode in (TMTTF)2[AsF6]1−x[SbF6]x with x = 0.3 is plotted at T = 20 K and
compared to the parent compounds (TMTTF)2SbF6 and (TMTTF)2AsF6 [1,12]. The overall low-
temperature spectrum is very similar for x = 0 and 0.3, with a smaller line splitting Δν28 than for
x = 1. For better comparison of the peaks, the data were scaled and shifted by a vertical offset. Inset:
Comparing the reflectivity for E ‖ a at 5 K and 20 K yields no enhancement of the ν4 mode [1,36]; two
distinct measurement runs of the same (TMTTF)2[AsF6]1−x[SbF6]x sample are shown. The absence
of tetramerization indicates that the spin-Peierls phase is suppressed for a substitution x = 0.3, which
is taken into account in Figure 1a.

Figure 7. (a) Temperature dependence of the ν28 mode in (TMTTF)2[AsF6]1−x[SbF6]x for x = 0.3;
the spectrum is very similar to (TMTTF)2AsF6 [1,12]. While the charge-rich, low-frequency peak
can be identified clearly, the charge-poor, high-frequency peak is spread out more broadly. The data
have been shifted vertically. (b) Peak frequencies from (a). (c) The charge disproportionation below
TCO = 120 K approaches a similar value towards T → 0 as for (TMTTF)2AsF6. The temperature
evolution of 2δ upon CO is compared among (TMTTF)2X with X = PF−6 , AsF−6 and SbF−6 (data taken
from [1,12]).

4. Discussion and Outlook

The dichotomy of TCO (and ΔCO) and 2δ(T = 0), where the former increases upon
anion substitution x in (TMTTF)2[AsF6]1−x[SbF6]x while the latter remains unchanged
(see Figure 6), is surprising in view of the monotonous increase of both quantities in the
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stoichiometric compounds. A priori, from the empirical trend (see Figure 4 in [14]), one
would expect a 20% larger value of 2δ based on TCO= 120 K. Possibly, the molecular
charge arranges according to the closest anion: 2δ is larger nearby SbF−6 anions and smaller
around AsF−

6 , where the latter constitute the majority of anions. The local increase of
charge disproportionation around SbF−6 sites can be gradual as it depends on the structural
extent of the lattice distortion, resulting in a distribution of 2δ. Indeed, the ν28 lines are
broadened and more smeared in the spectrum of x = 0.3 compared to x = 0 (Figure 6).
Note that, while our spectroscopic data are consistent with a microscopic modulation
of the local CO amplitude, our transport data reveal only a single TCO = 120 K, and the
crystal as a whole does not exhibit two transitions. Structural phase separation is further
ruled out as χs (Figure 3) does not exhibit a distinct drop at TSP = 13 K expected for
volume fractions of pure (TMTTF)2AsF6. This shows that the macroscopic CO transition
is a 3D bulk phenomenon that requires substantial coupling among the one-dimensional
TMTTF chains—through/with the anions. To that end, the abovementioned TMTTF–anion
interactions via the hydrogen atoms are crucial ingredients to CO, opposite to the original
notions about a structureless transition. Certainly, the microscopic charge disproportiona-
tion should be studied in more detail by assessing different values of the substitution x
and by complementary methods, such as NMR or other local probes. Magnetic resonance
measurements are also required to investigate the magnetic ground state: studying the
borderland of antiferromagnetic and spin-Peierls phases is of particular interest to the field
of frustrated magnetism and quantum spin liquids [46].

Using partial substitution of the anions, it will be interesting to inspect the length
scales of long-range correlations and short-range CO modulations and associated disorder
effects—in particular in the deuterated compounds where CO is affected from a change in
TMTTF–anion coupling [14,39]. In addition, the interplay of CO and anion order can be
studied via mixing of octahedral and tetrahedral anions, which can possibly stabilize novel
forms of structural order at commensurate stoichiometries. We further suggest to partially
introduce anions, that are not regularly used for single crystal growth, into “established”
systems which provides another knob to tune through unexplored phase space.

Moreover, it is intriguing to compare the continuous correlation tuning methods of
physical pressure and partial chemical substitution. While the former truly modifies the
interactions locally, in the latter case, the microscopic mixture of distinct constituents yields
a change of correlation strength on a macroscopic level, i.e., “on average”. We expect
fundamental differences between (super)conducting systems with itinerant charge carriers
in the vicinity of the Mott transition [24,26–29,31] and the fully insulating Fabre salts
inspected here. Clearly, partial chemical substitution is a powerful tool that enables us to
put new spin on metal-insulator transitions.

5. Summary

We report transport and optical spectroscopy experiments on partially substituted
(TMTTF)2[AsF6]1−x[SbF6]x with x = 0.3, which is equivalent to “negative” pressure ap-
plied to (TMTTF)2AsF6. The transition temperature TCO = 120 K and charge gap ΔCO
= 430 K indicate that this alloy is between the parent compounds (TMTTF)2AsF6 and
(TMTTF)2SbF6, a little closer to the former in agreement with the stoichiometry. This demon-
strates the powerful capabilities of partial anion substitution for continuous bandwidth
tuning. Upon plotting ΔCO as a function of TCO for various (TMTTF)2X salts exhibiting CO,
all data points fall on a universal line. We find that ΔCO vanishes around TCO = 60 K—a
value similar to the contribution to CO upon deuteration (D ≈ 60 K reported in [14]).
While the macroscopic CO transition and its underlying electronic correlation strength are
tuned continuously, our measurements utilizing the local probe of vibrational spectroscopy
indicate that the charge disproportionation adheres to the closest anion on a microscopic
level, yielding a short-range modulation of the CO amplitude around the substituent sites.
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Abstract: Thermodynamic investigation by calorimetric measurements of the layered organic super-
conductors, κ-(BEDT-TTF)2Cu[N(CN)2]Br and its partially deuterated compounds of κ-(d[2,2]-BEDT-
TTF)2Cu[N(CN)2]Br and κ-(d[3,3]-BEDT-TTF)2Cu[N(CN)2]Br, performed in a wide temperature
range is reported. The latter two compounds were located near the metal–insulator boundary in
the dimer-Mott phase diagram. From the comparison of the temperature dependences of their heat
capacities, we indicated that lattice heat capacities of the partially deuterated compounds were larger
than that of the pristine compound below about 40 K. This feature probably related to the lattice
softening was discussed also by the sound velocity measurement, in which the dip-like structures
of the Δv/v were observed. We also discussed the variation of the electronic heat capacity under
magnetic fields. From the heat capacity data at magnetic fields up to 6 T, we evaluated that the
normal-state γ value of the partially deuterated compound, κ-(d[3,3]-BEDT-TTF)2Cu[N(CN)2]Br,
was about 3.1 mJ K−2 mol−1. Under the magnetic fields higher than 3.0 T, we observed that the
magnetic-field insulating state was induced due to the instability of the mid-gap electronic state
peculiar for the two-dimensional dimer-Mott system. Even though the volume fraction was much
reduced, the heat capacity of κ-(d[3,3]-BEDT-TTF)2Cu[N(CN)2]Br showed a small hump structure
probably related to the strong coupling feature of the superconductivity near the boundary.

Keywords: organic superconductor; strong electron correlations; heat capacity; Mott transition

1. Introduction

It is generally recognized that strong electron correlations in the half-filling state
tend to induce a metal–insulator transition, which is called the Mott transition [1–3]. Un-
usual electronic phenomena such as high-Tc superconductivity [4,5], anomalous mass
enhancement of electron carriers [6,7], non-Fermi liquid features [8], and charge dispro-
portionation [9], are known to emerge around the transition. These phenomena are domi-
nated by the Mott–Hubbard physics, which describes the competitive nature of the itin-
eracy and localization of correlated electrons. The two-dimensional (2D) organic charge
transfer compounds with the chemical formula of κ-(BEDT-TTF)2X, where BEDT-TTF is
bis(ethylenedithio)tetrathiafulvalene and X is the monovalent counter anion, are known as
a typical electron correlation system of π-electrons originating from molecular HOMOs.
These compounds give a phase relation determined by the ratio of the on-site or inter-site
Coulomb repulsion U, V, and bandwidth W, which is tunable by pressure. Their physical
properties are summarized as a so-called 2D dimer-Mott-type phase diagram, where the
antiferromagnetic insulating phase and the metallic/superconductive phase are adjacent to
each other [10,11]. The insulating phase and the superconductive phase are separated by
the first-order Mott boundary. The existence of the critical endpoint at a finite temperature
and the rounding of the Mott transition line [12] as well as the disorder-sensitive electronic
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states due to the glassy feature of ethylene groups make the curious merging of the elec-
tronic and phonon states near the boundary [13]. Furthermore, the peculiar criticality across
the first-order boundary [14,15] and the unusual softening of lattice dynamics, known as
critical elasticity, are now being discussed by the sound velocity and the thermal expansion
measurements [16–18].

To further investigate the unusual features in physical properties just near the bound-
ary in terms of multiple degrees of freedom, such as spin, charge, and lattice, information
on thermodynamic properties is important. However, the experiments under pressure
can detect only the relative change of thermal anomalies with the standard calorimetric
technique under external pressures. Pursuing the systematic change of thermodynamic
parameters from the accurate values of the heat capacity just near the boundary region is
required for this purpose. The partial deuteration of donors [19–21] or solid solutions of
halogen sites in the counter anions of Cu[N(CN)2]X (X = Br and Cl) [22,23] are performed
for the purpose of chemical-pressure tuning to approach the critical boundary from the
position of bulk superconductor, κ-(BEDT-TTF)2Cu[N(CN)]2]Br in the phase diagram. Ac-
cording to the results by Kawamoto et al., single crystals synthesized by the BEDT-TTF
molecule, of which ethylene groups on both sides are partially deuterated, can tune chem-
ical pressure systematically [19]. They labeled the deuterated ratio with the notation of
d[n,n] to represent the number of the deuterium in each ethylene group. The increase of
the substitution rate can change the position of the compound with the Cu[N(CN)2]Br –

anion to the Mott boundary gradually. κ-(d[0,0]-BEDT-TTF)2Cu[N(CN)]2]Br (d[0,0] com-
pound, hereafter) shows bulk superconductivity below 11–12 K, while fully deuterated
κ-(d[4,4]-BEDT-TTF)2Cu[N(CN)]2]Br (d[4,4] compound) located in the Mott-insulating
region undergoes an antiferromagnetic transition around 15 K. According to the transport
measurements, the compound with d[3,3]-BEDT-TTF (d[3,3] compound) is located very
close to the boundary as is schematically illustrated in Figure 1 [19,24]. Using the partially
deuterated d[2,2] and d[3,3] compounds, thermodynamic information related to the elec-
tronic and the lattice states just near the boundary are possible to be detected through the
single-crystal calorimetry technique and sound velocity measurements.

Figure 1. A schematic view of the two-dimensional (2D) dimer-Mott phase diagram for the κ-(BEDT-
TTF)2X system. The positions of the d[0,0], d[2,2], and d[3,3] compounds in a slowly cooled case are
shown by the dashed arrows. The possible positions for the rapidly cooled cases (20 K min−1) for the
latter two compounds are also shown by the gray dashed arrows. The position of the Mott boundary
and that of the critical endpoint are shown in the red color.

2. Experiments

Low-temperature heat capacity measurements were performed by the thermal relax-
ation calorimeters designed for measuring single-crystal samples and pellet samples of
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molecule-based compounds. The plate-like single crystals of the d[2,2] and d[3,3] com-
pounds weighing 2–3 mg were attached to the sample stage by a small amount of Apiezon
N grease for low-temperature measurements with magnetic fields applied perpendicu-
larly to the conducting plane. A ruthenium oxide sensor of which the resistance at room
temperature is 10 kΩ was used for the sample-temperature sensor in the low-temperature
experiments between 0.7 K and 3 K, and a Cernox1070 bare chip sensor (LakeShore, West-
erville, OH, USA) was used for the experiments between 5 K and 100 K. The details of the
relaxation calorimetry systems including measurements under magnetic fields are reported
in the literature [25]. The higher-temperature heat capacity of the d[0,0] compound was
measured by a adiabatic calorimeter using multiple pieces weighing about 25 mg. The
thermometer for the adiabatic calorimetry cell was a Pt chip sensor which was calibrated
between 20 K and 300 K. The accuracy of the thermal relaxation technique is within a
few percentages of the absolute values, and the relative precision was about 0.5% for the
present measurements. The sound velocity measurements were performed for block-type
single-crystal samples of the d[2,2] and d[3,3] salts. The change of the sound velocities
transmitted in the crystal was measured by the longitudinal ultrasound waves, of which
the frequency was 30.5 MHz. They were generated and detected by LiNbO3 piezoelectric
transducers (thickness: 100 μm) attached to the side surfaces of the crystals of which details
were similar to those in reference [26]. We applied ultrasonic sounds so as to propagate in
the in-plane direction which was sensitive to the electronic states.

3. Results and Discussion

In Figure 2a, we show the temperature dependences of the heat capacity of the d[0,0]
and d[3,3] compounds in a logarithmic plot. The red color represents the data of the d[0,0]
compound from 0.8 K to 288 K. The low-temperature data below 20 K were obtained by the
thermal relaxation technique as was already reported in references [27,28], and the higher
temperature data were obtained by an adiabatic calorimeter. The black curve shown in the
temperature range below 20 K is the normal state heat capacity obtained by fitting the data
with 8 T, which was applied perpendicular to the conducting layer. The low-temperature
data have already been reported by several groups [29–32].

Figure 2. (a) Temperature dependences of the heat capacity of κ-(BEDT-TTF)2Cu[N(CN)2]Br (d[0,0]
compound) shown by red squares and its partially deuterated compound (d[3,3] compound) denoted
by green triangles shown in a logarithmic plot. The black dots show the data for the normal state
heat capacity determined from the data in reference [27]. The arrow indicates the temperature of the
critical endpoint of the Mott boundary. (b) Cp vs. T lot of the d[0,0], d[2,2], and d[3,3] compounds in
a temperature range below 40 K, which shows the difference of the lattice heat capacity between the
partially deuterated compound and the pristine compound.
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From the overall temperature dependence of the d[0,0] compound, the phonon struc-
ture of the κ-type BEDT-TTF salts showed a Debye-like temperature dependence in the
low-temperature region due to acoustic phonons. It showed a further increase above 100 K
due to the multiple optical phonon modes and molecular vibrations. This feature is similar
to the cases of typical molecular crystals [33]. We also showed the heat capacity data of
the d[3,3] compound obtained for a single crystal between 4.9 K and 100 K in Figure 2a.
The measurement of this sample was performed by slow cooling conditions from room
temperature down to 4 K with a rate lower than 0.1 K min−1. Although the data are shown
in the logarithmic plot in the figure, the difference of the green and red curves observed
below about 40 K means that the lattice heat capacity of the partially deuterated salt became
larger than the pristine non-deuterated d[0,0] compound. From the figure, it is noted that
the difference appeared below the region of the critical endpoint temperature that is shown
by the arrow in the figure. To confirm the difference of the heat capacity between the two
compounds, we showed the data below 40 K in Cp vs. T plot in Figure 2b. The difference
was about 10–15% of the absolute values around 20 K, which exceeded the possible error
bars related to the accuracy of the present heat capacity measurement. This difference was
not originated from the spin entropy, since the κ−(BEDT-TTF)2Cu[N(CN)2]Cl having the
bulk antiferromagnetic ordering showed a smaller heat capacity in this temperature region
as was reported in references [10,11]. The increase of the heat capacity in the partially
deuteration can be confirmed also in the data of the d[2,2] compound shown in Figure 2b,
which were measured in slow cooling conditions. The difference from the d[0,0] data was
slightly smaller, but a similar behavior to that of the d[3,3] compound seemed to exist.
Although we do not have direct evidence at present, we speculate that the phonon structure
shows a glassy feature due to the rounding of the phase boundary and merging of the Mott-
insulating phase and the metallic phase. The lattice softening that gives a higher density of
states of phonons occurs in the compounds just near the boundary can be understood as a
kind of supercritical phenomenon that specifically appears near the boundary. Divergent
compressibility has been reported by thermal expansion measurements [17,18,34].

The peculiar softening of the acoustic phonons of the partially deuterated d[2,2]
and d[3,3] compounds below about 40 K, similar to the reported softening in κ-(BEDT-
TTF)2Cu[N(CN)2]Cl [16] under pressures, was detected by the sound velocity measurement.
The datasets shown in Figure 3 were the relative change in the ultrasonic sound velocity
Δv/v of the d[2,2] and d[3,3] compounds between 5 K and 100 K obtained for the cases with
different cooling rates of 0.5 K min−1 and 20 K min−1. Δv/v showed a peculiar dip structure,
indicating a tendency of significant lattice softening in a temperature range between 20 K
and 50 K, and the temperatures showing the minima were 34 K for 20 K min−1 and 38 K
for 0.5 K min−1 for the d[3,3] compound. Here, we emphasize that the temperature region
where the decrease of the sound velocity took place was roughly corresponding to the
region where the larger heat capacity appeared.

This fact demonstrated that these phenomena originated from the same origin. Al-
though it is still a speculative discussion, the softening response of the ultrasonic compres-
sional wave at this region implied that the coherence of acoustic phonons was disturbed
by the microscopic merging of electronic phases and gave a kind of glassy state in a mi-
croscopic level. The observed experimental results are consistent with the experiment of
κ-(BEDT-TTF)2Cu[N(CN)2]Cl with gas pressure control [16]. Indeed, although the accurate
estimation of the absolute value of the ultrasonic attenuation is difficult owing to the signif-
icant lattice softening, the enhancement of the attenuation, which implies the growth of the
phonon scattering, was observed in this region. By comparing the sound velocity data of
the d[2,2] compound with those of the d[3,3] compound, we can find that the position of the
dip structures shifted to a higher temperature and became much broader, since d[2,2] was
located in the metallic region. The broadening of the hump agreed with the change in the
position in the phase diagram. The shifts of the dip temperature by changing the cooling
rate in both compounds should be related to the change of the positions of the d[2,2] and
d[3,3] compounds in the phase diagram. As is known for this compound, the disorder
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in ethylene groups of BEDT-TTF molecules induced by rapid cooling made the volume
large. The rapid cooling worked as a negative pressure effect. We roughly evaluated the
possible positions of each cooling rate and displayed them in the phase diagram in Figure 1.
The phonon softening near the boundary region is probably consistent with the unusual
elasticity near the boundary reported by thermal expansion measurements [17,18]. It is
important to measure the frequency dependences of Δv/v in order to evaluate the glassy
feature of the phonons. However, higher frequency measurements were not easy because of
the strong reduction in the signals of ultrasonic echoes. The crossing of the 1st-order Mott
boundary at low temperatures can also give an anomaly in sound velocity. Although we
cannot see drastic discontinuity in Δv/v at present, the small kink around 25 K observed in
the slowly cooled d[3,3] salt (light blue) may be attributed to the 1st-order Mott transition,
which was typically less significant than the critical elasticity around the critical endpoint
as reported in reference [16].

Figure 3. Temperature dependences of the relative change of the sound velocity (Δv/v) for the
partially deuterated d[3,3] compound and d[2,2] compound obtained with two cooling rates of
0.5 K min−1 and 20 K min−1. The inset shows the sound velocity anomaly around the superconduct-
ing transition temperature.

The inset of Figure 3 shows the sound velocity anomalies around the superconducting
transition temperature of the d[3,3] and d[2,2] compounds. The sound velocity was sensi-
tive to detect the superconductivity including the fluctuating superconductivity. Since the
fluctuations of the superconductivity also made the lattice softened, the change in the sound
velocity tended to occur at higher temperatures than Tc of the bulk superconductivity. The
onset and the local minimum around 11–13 K of the dip typically correspond to the emer-
gence of the fluctuating superconductivity and the superconducting transition, respectively.
The present experiments were performed in the configuration in which ultrasonic sounds
propagated in the in-plane direction. The absolute value of the change seemed to be larger
than those in the previous measurements of interlayer ultrasonic responses for the d[0,0]
compound [35] and κ-(BEDT-TTF)2Cu(NCS)2 [36], despite the percolative superconductiv-
ity originated from the macroscopic phase separation near the Mott transition in the present
d[2,2] and d[3,3] compounds. The magnitude of the dip in the inset demonstrated that
the volume fraction of the superconducting components changed due to the difference of
deuterated numbers and cooling rates. This sensitive acoustic response to the superconduc-
tivity enabled us to discuss the details of the superconductivity including the fluctuating
superconductivity and percolative superconductivity. In addition, it suggests a possibility
to detect other superconducting state such as the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO)
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superconductivity in the d[0,0] compound and other organic superconductors [37–40]. As
a matter of fact, the FFLO state in the κ-(BEDT-TTF)2Cu[N(CN)2]Br was detected in the
high-field ultrasound measurement by Imajo et al. [38].

The electronic properties related to the percolative feature of the superconductive and
antiferromagnetic components near the boundary can be discussed through the analyses
of the magnetic fields dependences of electronic heat capacity coefficient γ and lattice
heat capacity coefficient β of the d[3,3] compound. It is known that the volume fraction
of the superconductivity of this compound was significantly suppressed and the number
of electrons related to the superconducting components became smaller than that of the
d[0,0] compound.

In Figure 4a,b, we show the heat capacity data at extremely low temperatures between
0.7 K and 2.64 K (T2 = 7 K2) measured in magnetic fields up to 6 T. The data were plotted in
CpT−1 vs. T2. Here, the magnetic fields were applied perpendicularly to the superconduct-
ing layers. From the heat capacities at 0 T, 0.5 T, 1 T, and 1.5 T in Figure 4a, we can notice that
the CpT−1 showed almost a linear dependence against T2 in this low-energy region. The γ
and the β for each magnetic field were determined using a linear fit CpT −1 = γ + βT2 to the
data below 2 K. In Table 1, we show the two thermodynamic parameters γ and β obtained
by the fitting analysis. The γ value at 0 T was about 1.3 ± 0.2 mJ K−2 mol−1, reflecting on
the gap formation in the superconductive ground state. A slight increase of γ in a low-filed
region below 1.0 T indicated the gradual recovery of the electron density of states induced
by the application of magnetic fields, although the values of γ were still very small. In
fact, when applying magnetic fields with an out-of-plane configuration for various layered
superconducting compounds, the pair-breaking mainly due to the orbital effect induced
normal electrons. In the bulk superconductor of the d[0,0] compound, the recovery rate of
the CpT−1 obeyed the square root of H, which was discussed as an evidence of the nodal su-
perconductor explained by Volovik’s theory. The d[0,0] compound showed a typical feature
of the d-wave symmetry from the angle-resolved heat capacity measurements [27,28], and
the normal state γ was evaluated as 22–25 mJ K−2 mol−1. The pair-breaking feature was
also reported in the d[1,1] and d[2,2] compounds in reference [41]. However, the change in
γ by external magnetic fields was reported as negligibly small for the d[4,4] compound and
κ-(BEDT-TTF)2Cu[N(CN)2]Cl located in the insulating region [41]. Although much smaller
than d[2,2], the increase of the γ term observed below 1.0 T for d[3,3] demonstrated that
the normal-state γ value detected was considered as ~3.1 mJ K−2 mol−1.

Table 1. The thermodynamic parameters of the electronic heat capacity coefficient, γ, and the Debye
term, β, for each magnetic field between 0 T and 6 T.

μ0 (H/T) B (mJ K−4 mol−1) Γ (mJ K−2 mol−1)

0 12.5 1.3
0.5 12.0 2.2
1 12.0 3.1

1.5 12.2 2.9
3.5 12.9 2.0
4 13.1 1.9

4.5 13.6 1.6
6 13.1 0.9

The heat capacity data obtained at higher magnetic fields of 3.5 T, 4.0 T, 4.5 T, and 6 T
are shown in Figure 4 b. A curious tendency different from the pair breaking appeared
in the temperature dependence of the electronic heat capacity. The CpT−1 vs. T 2 plots of
3.5 T, 4.0 T, and 4.5 T showed small hump-like structures around T = 1.4–1.7 K, and they
were suppressed in the higher magnetic field of 6 T. The feature was different from the
contribution of simple paramagnetic spins, which should give a Schottky-like heat capacity,
since the Schottky anomaly gives the systematic change due to the increase of Zeeman
splitting. The γ values in these fields were smaller than those of the data at H = 1.5 T. It
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is emphasized that the data at H = 6 T gave a much smaller γ value of 0.9 mJ K−2 mol−1,
which is a comparable value with that at H = 0 T.

Figure 4. CpT−1 vs. T2 plot of the partially deuterated d[3,3] compound obtained under magnetic
fields applied perpendicular to the donor layer. The lower-field data of 0 T, 0.5 T, 1.0 T, and 1.5 T
are shown in (a), and those at higher fields of 3.5 T, 4.0 T, 4.5 T, and 6.0 T are shown in (b) together
with the data at the magnetic field of 0 T. The broken line represents the fitting result of 0 T using
CpT−1 = γ + βT2. The inset in (a) is an enlarged plot of the datasets at magnetic fields of 0 T and 1.5 T
around 1.0 K to make the field dependence clearer.

Figure 5 displays the change in these parameters in magnetic fields. It was confirmed
that β was 12.5 ± 0.1 mJ K−4 mol−1 at 0 T, which is almost consistent with the previous
report of κ-(BEDT-TTF)2Cu[N(CN)2]Br, and the change in β with the increase of the mag-
netic field was relatively small, as is shown in the figure. The change in the γ value with
the magnetic field showed unusual features as the superconductive materials. From the
variation of γ in the higher-field region, we should note that the shift of the Mott boundary,
as was suggested by the transport measurements by Taniguchi et al., certainly occurs in
this compound at this boundary region [24,42]. The normal state γ was evaluated by using
the value at the peak in Figure 5 as 3.1 mJ K−2 mol−1, although it must be an underestimate
due to the field-dependent Mott boundary.

The change in the thermodynamic parameter γ inside the superconducting region
in the dimer-Mott phase diagram was discussed from the theoretical and experimen-
tal viewpoints. According to the previous study of the low-temperature heat capacity
of partial deuterated salts with Cu[N(CN)2]Br, the normal state γ term is evaluated as
20 mJ K−2 mol−1 for the d[1,1] compound and 9–10 mJ K−2 mol−1 for the d[2,2] compound.
The d[4,4] compound is located in the insulating region, and its γ value reaches almost
zero [43]. The d[3,3] compound measured in this work revealed that the normal state γ
value was 3.1 mJ K−2 mol−1, although the insulating phase partially merged by applying
magnetic fields and the gap-like structure seemed to be enhanced under magnetic fields.
The systematic decrease of γ that occurs when approaching the boundary is understood by
the enhancement of the Hubbard-like picture due to the increase of the U/W ratio [44,45].
This feature is interpreted by a theoretical suggestion for strongly correlated electron sys-
tems given by Kotliar et al. using the dynamical mean-field approach, as is shown in
Figure 6 [46]. The superconducting component in the d[3,3] samples may be formed in
the situation where the band-like and Mott–Hubbard features coexist, mainly produced
by the electrons in the mid-gap states. The delicate balance of the magnetic insulating
state and the superconductivity may induce the curious magnetic field dependence in
the low-temperature thermal excitations for this material. It is considered that the bulk
superconducting compounds, such as κ-(BEDT-TTF)2I3, κ-(BEDT-TTF)2Ag(CN)2H2O, κ-
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(BEDT-TTF)2Cu(NCS)2, are in the Fermi liquid region and the Brinkman–Rice enhancement
emerges as was reported previously [47]. The crossover from the Brinkmann–Rice region to
the Hubbard-gap region is considered as a specific feature of the 2D dime-Mott compound.
Such a crossover can be explained by the picture schematically illustrated in Figure 6. The
unconventional nature of the superconductivity was characterized by the four-fold oscilla-
tion of CpT−1 in the angle-resolved heat capacity measurements, which demonstrated that
the antiferromagnetic spin fluctuations play an important role for relatively high transition
temperatures of the dimer-Mott superconductors. The symmetry change of Cooper pairs
from dxy for κ-(BEDT-TTF)2Ag(CN)2H2O to dx2–y2 + s± for the d[0,0] compound occurs
inside the superconductive phase [28,48–53]. The relation with the symmetry change and
the crossover inside the superconducting phase are interesting subjects to be solved by heat
capacity measurements, although it is still a speculative discussion at present.

Figure 5. Magnetic fields dependence of the thermodynamic parameters γ and β of the d[3,3]
compound. The peak structure at 1.0 T means that the normal state electronic heat capacity coefficient
of this compound was about 3.0 mJ K−2 mol−1. The decrease of γ above this field means that an
insulating component was induced in the high-field region. The translucent curves are guides for
the eye.

Figure 6. Schematic illustration of the electronic structure expected for the dimer-Mott compounds.
Normal band metal on the left side gradually changed to the Mott–Hubbard state with the increase of
U/W ratio. The variation from the Brinkman–Rice region to the mid-gap state region may be realized
with the increase of partially deuteration.

Finally, we discussed the heat capacity jump, ΔCp, around the superconductive transi-
tion of the d[3,3] compound. The non-deuterated d[0,0] compound showed a large heat
capacity jump with about ΔCpT−1 of 60 mJ K−2 mol−1, and this anomaly was suppressed
by applying magnetic fields above Hc2. The data of the d[0,0] compound showing the
thermal anomaly are shown in Figure 7a. These results were already reported in refer-
ences [27,28]. The temperature dependence of CpT−1 of the d[3,3] compound is shown in
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the green color in the same figure. The absolute value of CpT−1 was 15% larger than that
of d[0,0] at 10 K due to the difference in the lattice heat capacity as mentioned above. The
heat capacity jump around Tc of the d[3,3] compound was quite small as compared with
that of the d[0,0] compound but visible as a broad hump in the temperature dependence
plot of CpT−1 in Figure 7b. The suppression of this hump by the application of a magnetic
field of 6 T indicated that the superconducting component certainly existed. The ΔCpT−1

was roughly evaluated at most as 10 mJ K−2 mol−1 and the transition temperature was
about 11 K, although the large lattice heat capacity gave ambiguity for the accurate deter-
mination of these electronic components. Since this compound was located just near the
boundary, the much-reduced value of ΔCpT−1 was of course consistent with the smaller
normal state γ value. In spite of the smaller fraction in the d[3,3] compound, the large
value of ΔCp/γT~3.2 indicated that the strong coupling feature of the superconductivity
was retained. Here, we assumed the peak value of γ in Figure 5 was close to the normal
state γ value. It may be underestimated, if we considered the relatively smaller magnetic
field of 1T was used for the evaluation of the normal-state γ value. However, the tendency
of the enhanced electron correlations near the boundary gives a strong attractive force for
electron pairs [44], although the diminishing of electrons which contribute to the density of
states in the mid-gap state is serious for stabilizing bulk superconductivity.

Figure 7. (a) CpT−1 vs. T plot of the heat capacity of the d[0,0] compound (red color) and that of the
d[3,3] compound (green color) obtained at 0 T; (b) the extended plot around the superconducting
transition of the d[3,3] compound obtained at 0 T and 6 T. The data at magnetic fields of 0 T and 6 T
are shown by the green circles and the black circles, respectively. A broad and small hump around
the transition seemed to be suppressed by an external magnetic field.

4. Summary

The thermodynamic properties of κ-(BEDT-TTF)2Cu[N(CN)2]Br and partially deuter-
ated d[3,3] compound have been studied by the heat capacity measurements with the
thermal relaxation and the adiabatic calorimetry techniques. The d[3,3] compound located
just near the boundary showed a larger heat capacity than the pristine compound at low
temperatures below 40 K. This feature was confirmed by the sound velocity measurement as
the significant lattice softening originating from the critical elasticity. The low-temperature
heat capacity in magnetic fields demonstrated that the normal-state γ value was about
3.1 mJ K−2 mol−1. The magnetic fields higher than 3.0 T were found to induce a gapped
insulating state, and this field-induced feature was interpreted in terms of the instability of
the mid-gap state that occurred due to the enhanced electronic correlations around the Mott
boundary. Although the volume fraction was much reduced in the d[3,3] compound, the
heat capacity data showed a small hump structure probably related to the strong-coupling
feature of the superconductivity just near the boundary. This feature was also considered
as the result of the larger U/W ratio near the boundary.
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Abstract: Charge-transfer salts based on bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF or BO for
short) provide a stable two-dimensional (2D) metallic state, while the electrical resistance often shows
an upturn at low temperatures below ~10 K. Such 2D weak carrier localization was first recognized
for BO salts in the Langmuir–Blodgett films fabricated with fatty acids; however, it has not been
characterized in charge-transfer solid crystals. In this paper, we discuss the carrier localization of
two crystalline BO charge-transfer salts with or without magnetic ions at low temperatures through
the analysis of the weak negative magnetoresistance. The phase coherence lengths deduced with
temperature dependence are largely dominated by the electron–electron scattering mechanism. These
results indicate that the resistivity upturn at low temperatures is caused by the 2D weak localization.
Disorders causing elastic scattering within the metallic domains, such as those of terminal ethylene
groups, should be suppressed to prevent the localization.

Keywords: charge-transfer solid crystals; two-dimensional metal; carrier localization; negative
magnetoresistance; phase coherence length

1. Introduction

Since the 1970s, molecular conductors with tetrathiafulvalene (TTF) derivatives have
attracted attention for their rich variety of electronic phenomena such as metal–insulator
transitions and superconductivity [1,2]. Bis(ethylenedithio)-substituted derivative BEDT-
TTF (or ET for short) is especially well known for the production of a variety of supercon-
ductors (more than 40 kinds). Additionally, the bis(ethylenedioxy)-substituted derivative,
BEDO-TTF (or BO for short, Figure 1a), in which the sulfur atoms in the outer six-membered
ring of ET are replaced by oxygen atoms, has also attracted attention as a building molecule.
This donor molecule shows the strong tendency to create complexes of two-dimensional
(2D) layers due to the self-aggregation ability caused by the intermolecular π–π interactions,
along with the C–H···O hydrogen bonding [2,3]. While most of the BO salts exhibit metallic
conduction, only a few examples are reported to show superconductivity [4,5], in contrast
to the ET complexes.
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Figure 1. (a) The chemical structure of the donor molecule BEDO-TTF or BO, i.e., bis(ethylenedioxy)
tetrathiafulvalene). Crystal structures of (b) β′′-(BO)3[Co(pdms)2](CH3CN)(H2O)2 and (c) κ-
(BO)2CF3SO3 viewed along a-axis. Each atom is colored as: gray, C; white, H; blue, N; green,
F; navy, Co; red, O; yellow, S.

Applying this peculiarity, metallic Langmuir–Blodgett (LB) films were fabricated by
mixing BO with fatty acids for potential applications in molecular electronics [4–6]. Self-
organization provided a stable 2D BO layer which was sandwiched by the layers composed
of fatty acids such as stearic [6,7] or arachidic [8] acid. Although the LB films exhibited
room-temperature conductivity as high as 100 S cm−1, the electrical resistance increased
at low temperatures. Two-dimensional weak localization has been proposed as the origin
of the behavior. The characteristic negative magnetoresistance (MR) under the magnetic
field applied perpendicularly to the 2D layer was observed owing to the destruction of the
constructive interference between waves along a closed loop in opposite senses with equal
probabilities [9,10].

On the other hand, the carrier localization in crystalline charge-transfer salts at low
temperatures [11] has not been mentioned much so far in BO complexes, although resis-
tance upturn at low temperatures has often been found with [12] or without [3,13] magnetic
ions. Clarification on the origin of the resistivity upturn at low temperatures is important
to explore electronic phase transition, such as metal–insulator transition and/or supercon-
ductivity in charge-transfer solid crystals, whether they stem from magnetic interaction
or not.

In this paper, we will discuss two crystalline BO salts with and without magnetic ions to
explore the resistance upturn phenomena in single crystals, β′′-(BO)3[Co(pdms)2](CH3CN)
(H2O)2 (abbreviated hereafter as β′′-BO3) [14], where H2pdms = 1,2-bis(methanesulfonamido)
benzene, and κ-(BO)2CF3SO3 (abbreviated hereafter as κ-BO2) [15]. The crystal structures
of the two materials are shown in Figure 1b,c, respectively, consisting of 2D layers of
BO molecules.

β′′-BO3 has a 1/3 band filling with the β′′-type molecular arrangement, according
to the classification for ET salts, showing a metallic state down to 15 K [14]. This salt
was synthesized in order to develop the possible interaction between the conduction
electron and single ion magnet, exhibiting typical frequency dependence of ac magnetic
susceptibility due to the bistable spin state of Co2+. This is a sister compound of β′′-
(BO)4[Co(pdms)2]·3H2O, (abbreviated hereafter as β′′-BO4), which was grown using the
same molecules but with a different solvent, which exhibited ferromagnetic interaction
at low temperatures between BO and Co(pdms)2 ions [16]. The MR of β′′-BO4 cannot be
understood by the weak localization model, showing contribution from the π–d interac-
tion [16]. On the other hand, the π–d interaction with the BO layer in the β′′-BO3 was
considered to be weak in view of the band structure calculation [14].

κ-BO2 has a 1/4 band filling with the κ-type molecular arrangement according to the
classification for ET salts. This is a BO analogue salt of the ET salt with the same structure,
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κ-(ET)2CF3SO3 [17], which is a Mott insulator at ambient pressure but shows metallic
behavior by applying a pressure above 1 GPa, and the superconducting transition occurs
at 4.8 K under 1.1 GPa [18]. Although semiconducting behavior is observed from room
temperature in the first report of κ-BO2 [15], here, a metallic conduction was observed down
to around 10 K, below which electrical resistance increases. The change in the resistive
behavior may be ascribed to the effect of grease (weak pressurization on crystals by cooling)
and slow cooling in the present study.

In terms of common features, the low-temperature MR measurements showed that
both β′′-BO3 and κ-BO2 salts have a negative MR, similar to those observed in LB films.
Here, we analyze the negative MR of the two different types of BO salt with the 2D
weak localization model. The phase coherence lengths are deduced with temperature
dependence largely dominated by the electron–electron scattering mechanism. These
values are comparable to those of other type of materials, such as LB films and polymer
poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), implying a common
origin of the inelastic scattering. These results indicate that the resistivity upturn at low
temperatures is caused by the 2D weak localization, which confirms the 2D nature of the
conduction layer made of BO molecules. Disorders causing elastic scattering within the
metallic domains, such as those of terminal ethylene groups, should be suppressed to
prevent the localization.

2. Materials and Methods

The single crystals were prepared by galvanostatic electrooxidation according to the
literature [14,15]. The electrical resistivity was measured with the four-probe method by
attaching annealed platinum wires on sample surfaces with carbon paste. We measured
three samples for β′′-BO3 (#1, #2, #3) and κ-BO2 (#1, #3 for intralayer direction and #2 for
interlayer direction). For intralayer measurement, the current was applied along b-axis for
β′′-BO3 and along c-axis for κ-BO2. For κ-BO2, interlayer resistivity was also measured for
the sample #2 along b-axis direction; however, β′′-BO3 crystals were too thin to measure
the interlayer resistivity reliably.

Electrical resistivity from room temperature to 2 K and MR under magnetic fields up
to 9 T were measured using physical property measurement system, QUANTUM DESIGN,
with a cooling rate of 0.2–0.3 K/min. A low measurement current of 10 μA was used to
suppress self-heating. The sample was coated with Apiezon N grease to suppress the
discontinuous jumping of resistance which has been often observed in charge-transfer
complexes, possibly caused by microcracking [1]. A gentle pressure of 0.03 GPa was
applied to the sample after being wrapped in Apiezon N grease and cooled down to low
temperature [19]. The sample was rotated in the magnetic field to adjust the sample position
using a horizontal rotator when the magnetic field was perpendicular and parallel to the
2D layer.

3. Results

Figure 2a shows the temperature dependence of the intralayer resistivity along the
b-axis of β′′-BO3 down to 2 K. The resistivity decreased at ambient pressure down to
10~15 K, below which it began to increase, as shown in Figure 2b [14]. Figure 2c shows
the plot of the intralayer conductivity in the lnT scale. In the temperature range of the
resistivity increase, the conductivity followed the lnT dependence asymptotically.

To investigate the origin of the low-temperature upturn of the resistivity, the an-
gle dependence of MR was investigated in a magnetic field (B) oriented perpendicular
(θ = 90◦) and parallel (θ = 0◦) with respect to the 2D layer. MR is defined by the increase of
resistivity by the magnetic field: MR (%) = [ρ(B, T) − ρ(0, T)]/ρ(0, T) × 100%, where ρ is
the resistivity. Figure 3a shows the MR of β′′-BO3 at 2 K for θ = 0◦ and 90◦. Positive MR of
metals was observed for the high field region above 4 T for both magnetic field directions;
however, clear negative MR was observed up to 4 T only when the magnetic field was
applied perpendicular to the 2D layer (θ = 90◦). No negative MR was observed when the
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magnetic field was applied parallel to the 2D layer (θ = 0◦). This behavior is typical for
the weak negative MR caused by weak localization within the 2D conducting layer [9,10],
as was observed for the LB films. The MR can be understood without considering any
contribution from the magnetic anion layers, in sharp contrast to the case of β′′-BO4 salt [16].
As shown in Figure 3b, the negative MR at θ = 90◦ was observed up to ~15 K, where the
lnT dependence in the temperature dependence of resistivity disappeared and turned to
show a metallic behavior.

Figure 2. (a) The temperature (T) dependence of intralayer (b-axis) resistivity (ρ) of β′′-BO3 (sample
#1). (b) Intralayer resistivity in the low temperature region. (c) Intralayer conductivity as a function
of lnT. The broken line represents the relationship of σ ∝ lnT.

Figure 3. (a) The MR (current along b-axis) of β′′-BO3 (sample #1) at 2 K under magnetic field B
parallel (θ = 0◦) and perpendicular (θ = 90◦) to the 2D layer. Clear negative MR was observed when
θ = 90◦. (b) The MR for the perpendicular field in the temperature range of 2–20 K.

Figure 4a shows the temperature dependence of the electrical conductivity of κ-BO2
in the direction parallel (sample #1, along c-axis) and perpendicular (sample #2, along
b-axis) to the 2D layer. From room temperature down to ~10 K, the electrical resistivities
decreased; however, the intralayer resistivity increased below 10 K, as shown in Figure 4b.
Figure 4c shows the plot of the intralayer conductivity of the sample #1 in the lnT scale; the
conductivity follows the lnT dependence asymptotically below 8 K, similar to β′′-BO3. The
interlayer resistivity (sample #2) also increased at low temperatures but very weakly below
4 K. The anisotropy of electrical conductivity reached 1 × 105, which is high compared to
its ET counterpart, κ-(ET)2CF3SO3 [18], implying the strong 2D nature of the conduction
in κ-BO2.
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Figure 4. (a) The temperature (T) dependence of the electrical resistivity (ρ) of κ-BO2 in the direc-
tion parallel (sample #1, along c-axis) and perpendicular (sample #2, along b-axis) to the 2D layer.
(b) Intralayer resistivity of the sample #1 in the low temperature region. (c) Intralayer conductiv-
ity of the sample #1 as a function of lnT. The broken line represents the relationship of σ ∝ lnT.
(d) Interlayer resistivity of sample #2 in the low temperature region.

Figure 5a shows the MR of κ-BO2 under magnetic fields parallel and perpendicular
to the 2D layer. The negative MR for κ-BO2 was obvious at B < 2 T only under the
perpendicular field, similar to β′′-BO3. Figure 5b shows the MR of κ-BO2 at different
temperatures (2–10 K) under the perpendicular field. The negative MR diminished at 10 K.

Figure 5. (a) The MR (current along c-axis) of κ-BO2 (sample #1) at 2 K under magnetic field B parallel
(θ = 0◦) and perpendicular (θ = 90◦) to the 2D layer. Clear negative MR was observed when θ = 90◦.
(b) The MR for the perpendicular field in the temperature range of 2–10 K.

4. Discussion

For both BO salt crystals, the intralayer resistivity increased asymptotically with lnT at
low temperatures. Negative MR was observed under a magnetic field perpendicular to the
2D layer. Under the magnetic field parallel to the 2D layer, there manifested no negative MR,
but only positive MR. These features are characteristic of 2D weak localization [9,10]. The
elastic scatterings of electrons by disorders or imperfections occur several times within a
metallic domain in which phase coherence of the wavefunction is preserved. Then, a closed
loop can be formed within the metallic domain and the constructive interference between
waves in opposite senses with equal probabilities causes the carrier localization [9,10].

To further investigate whether the negative MR showed weak 2D localization, the
changes in MR with respect to temperature and magnetic field were examined. The time-
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reversal, symmetry-breaking perturbations, such as magnetic field, applied perpendicular
to the closed loop destroyed the interference and, thus, suppressed the localization to
cause the negative MR. The negative MR is formulated as the increase in the electrical
conductivity σ due to the magnetic field (magnetoconductance, MC) based on the Hikami–
Larkin–Nagaoka (HLN) expression [10]:

σ(B)− σ(B = 0 T)
σ(B = 0 T)

= A1

[
ln
(

B
Bi

)
+ ψ

(
1
2
+

Bi
B

)]
− A2Bα (1)

where A1, A2, Bi and α are fitting parameters. ψ is a digamma function. The first term
represents the contribution from the 2D localization. The second term represents the nega-
tive MC (i.e., positive MR) of a metal which increases when the magnetic field increased.
The exponent of α is in the range 1~2. The strength of the negative MR can be scaled with
the ratio of A1 and A2. The characteristic magnetic field Bi is associated with the phase
coherence length λ, in which the phase coherence of the carrier wavefunction is preserved
between each inelastic scattering:

λ =

√
�

4eBi
(2)

where � is the reduced Planck constant and e is the elementary charge.
We show typical examples of the fitting of MC under the perpendicular magnetic field

with respect to Equation (1) in the supplementary materials, Figures S1–S3 for β′′-BO3 and
Figures S4 and S5 for κ-BO2. Corresponding fitting parameters are given in Tables S1–S5 in
the supplementary materials, respectively. For β′′-BO3, the curves are fitted to Equation (1)
up to 6 T because the fitting to the metallic MC A2Bα with single exponent α up to 9 T is
rather inappropriate and the exponent α seems to change to a smaller value above ~6 T,
especially at the lowest temperature of 2 K.

Figure 6 shows the temperature dependence of λ deduced by the analysis in terms of
Equations (1) and (2) on a logarithmic scale in the temperature range where the negative
MR was observed for β′′-BO3 and κ-BO2, together with those found for LB films [6–8].
The intralayer coherence length was far larger than the conducting 2D layer thickness of
1.5~2.0 nm, indicating the 2D nature of the conduction. The coherence length increased
with lowering temperature. The temperature dependence of the phase coherence length λ
followed the relation λ∝T−p/2, in which p ~ 1 and p ~ 2 were associated with the situations
in which phase-breaking inelastic scatterings occurred due to electron–electron [20] and
electron–phonon [21,22] interactions, respectively. In the present case of the BO solids and
LB films [6–8], the exponent was rather close to p ~ 1. The mechanism of the inelastic
scattering in these BO solids and LB films may be understood mainly as the electron–
electron interactions.

The result indicates that the negative MR for the crystalline BO salts is well under-
stood in terms of the weak 2D localization model, as in the case of the LB films reported
previously [6–8]. The observation of the weak 2D localization is also shared by the recent
report for polymer PEDOT:PSS, which shows high crystallinity and a 2D nature with a
similar range of phase coherence length [23]. PEDOT also has terminal ethylene groups at
the end of EDOT moiety, which may cause elastic scattering similar to the BO cases.
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Figure 6. Temperature dependence of the phase coherence length λ for β′′-BO3 (sample #1, #2, #3),
κ-BO2 (sample #1, #3). The broken lines represent the temperature dependence following λ∝T−p/2

with p = 1 or p = 2.

5. Conclusions

We have studied the low-temperature carrier localization of the charge-transfer salts
of BO. The resistivity upturn in the two BO salt crystals can be ascribed to the 2D weak
localization with the observation of the negative MR. The present study implies that the 2D
weak localization was universally observed in BO charge-transfer salts, regardless of the BO
packing and band filling. The electron–electron interaction is considered to be the dominant
mechanism for the inelastic scattering. The phenomena demonstrate the formation of the
robust 2D metallic state in the BO salts. However, the carrier localization may mask the
possible electronic transition such as superconductivity of BO salts. Disorders causing
elastic scattering within the metallic domains, such as those of terminal ethylene groups,
should be suppressed to prevent the localization.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst12010023/s1, Figure S1: A typical fitting result for the magnetoconductance of β′′-BO3 #1
along the weak 2D localization model under the perpendicular magnetic field. Figure S2: A typical
fitting result for the magnetoconductance of β′′-BO3 #2 along the weak 2D localization model under
the perpendicular magnetic field. Figure S3: A typical fitting result for the magnetoconductance of
β′′-BO3 #3 along the weak 2D localization model under the perpendicular magnetic field. Figure S4:
A typical fitting result for the magnetoconductance of κ-BO2 #1 along the weak 2D localization model
under the perpendicular magnetic field. Figure S5: A typical fitting result for the magnetoconductance
of κ-BO2 #3 along the weak 2D localization model under the perpendicular magnetic field. Table S1:
Parameters obtained by the fitting shown in Figure S1. Table S2: Parameters obtained by the fitting
shown in Figure S2. Table S3: Parameters obtained by the fitting shown in Figure S3. Table S4:
Parameters obtained by the fitting shown in Figure S4. Table S5: Parameters obtained by the fitting
shown in Figure S5.
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Abstract: The physics of quantum many-body systems have been studied using bulk correlated
materials, and recently, moiré superlattices formed by atomic bilayers have appeared as a novel
platform in which the carrier concentration and the band structures are highly tunable. In this brief
review, we introduce an intermediate platform between those systems, namely, a band-filling- and
bandwidth-tunable electric double-layer transistor based on a real organic Mott insulator κ-(BEDT-
TTF)2Cu[N(CN)2]Cl. In the proximity of the bandwidth-control Mott transition at half filling, both
electron and hole doping induced superconductivity (with almost identical transition temperatures)
in the same sample. The normal state under electric double-layer doping exhibited non-Fermi liquid
behaviors as in many correlated materials. The doping levels for the superconductivity and the non-
Fermi liquid behaviors were highly doping-asymmetric. Model calculations based on the anisotropic
triangular lattice explained many phenomena and the doping asymmetry, implying the importance
of the noninteracting band structure (particularly the flat part of the band).

Keywords: organic conductor; Mott insulator; electric double-layer transistor; uniaxial strain

1. Introduction

The Mott transition, one of the core subjects in condensed matter physics, allows for
the observation of intriguing phenomena, such as high-temperature superconductivity,
exotic magnetism, pseudogap, and bad-metal behavior [1]. Although the Hubbard model
is thought to include the essential physics of these phenomena, a detailed comparison
of the model and real materials is lacking because the pristine Mott state is commonly
obscured by a complicated band structure. In addition, the control parameter in a real
Mott insulator is usually limited to either bandfilling or bandwidth. Moiré superlattices
formed by atomic bilayers have recently emerged as a novel platform for correlated electron
systems. Twisted bilayer graphene exhibits superconductivity and correlated insulating
states [2], and transition metal dichalcogenide heterobilayers provide a correlation-tunable,
Mott-insulating state on the triangular lattice [3]. These artificial systems are a powerful
tool to understand the fundamental physics of quantum many-body systems. However,
the electronic energy scale of these systems is quite different from that of bulk correlated
materials, and an intermediate platform between the artificial and highly tunable moiré
superlattices and the bulk correlated materials, such as high-TC cuprates, is invaluable.

In this brief review, we introduce bandfilling- and bandwidth-control measurements
in a transistor device based on an organic antiferromagnetic Mott insulator (Figure 1) [4–6].
We fabricated an electric double layer (EDL) transistor [7], which is a type of field-effect
transistor, using an organic Mott insulator. Gate voltages induced extra charges on the Mott
insulator surface, which resulted in bandfilling shifts. On the other hand, by bending the
EDL transistor, the Mott insulator was subjected to strain, which resulted in bandwidth
changes. The (gate voltage)-(strain) phase diagram corresponded to the conceptual phase
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diagram of the Mott insulator in bandfilling-bandwidth 2D space. We experimentally
mapped the insulating, metallic, and superconducting phases in the phase diagram. The
experimental phase diagram showed that the superconducting phase surrounded the
insulating phase with a particularly doping-asymmetric shape. The asymmetry was partly
reproducible by calculations based on the Hubbard model on an anisotropic triangular
lattice, implying the importance of the noninteracting band structure. We also showed that
the normal states in the doped Mott-insulating state exhibited non-Fermi liquid behaviors,
probably due to the partial disappearance of the Fermi surface (FS), similarly to the high-TC
cuprates.

 
Figure 1. (a) Conducting BEDT-TTF layer in κ-(BEDT-TTF)2Cu[N(CN)2]Cl. (b) Conceptual phase
diagram based on the Hubbard model [1]. The vertical axis denotes the strength of the electron
correlation. κ-(BEDT-TTF)2Cu[N(CN)2]Cl is located near the tip of the insulating region. (c) Schematic
side view of the device structure. Doping concentration and bending strain are controlled by EDL
gating and substrate bending with a piezo nanopositioner, respectively.

2. Materials and Methods

2.1. Subject Material: Organic Mott Insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl

κ-(BEDT-TTF)2Cu[N(CN)2]Cl (BEDT-TTF: bisethylenedithio-tetrathiafulvalene, ab-
breviated κ-Cl hereinafter) is a quasi-two-dimensional molecular conductor in which the
conducting (BEDT-TTF)2

+ layer and the insulating Cu[N(CN)2]Cl− layer are stacked al-
ternately [8]. The unit cell contains four BEDT-TTF molecules forming four energy bands
based on the molecular orbital approximation. Two electrons are transferred to the anion
layer, resulting in a 3/4 filled system [9]. However, the BEDT-TTF molecules are strongly
dimerized, and the upper two energy bands are sufficiently apart from the remaining two
bands, resulting in an effective half-filled system. If we regard the two BEDT-TTF dimers in
the unit cell (with different orientations) as equivalent, κ-Cl can be modeled as a half-filled,
single-band Hubbard model on an anisotropic triangular lattice: t′/t = −0.44 [10], where t
is the nearest-neighbor hopping, and t′ is the next-nearest-neighbor hopping. Similar to the
high-TC cuprates, the sign of t′/t is negative so that the van Hove singularity lies below
the Fermi energy (hole-doped side). However, t′ exists only for one diagonal of the dimer
sites and accordingly, the FS is elliptical (Figure 2).
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Figure 2. Unit cells, Brillouin zones, band structure, and single-particle spectral functions of κ-Cl.
Note that the calculations are based on the one-band model. However, the band structure and the
spectral functions are shown in the two-site Brillouin zone [blue shaded area in (b)] because the
adjacent BEDT-TTF dimers are not completely equivalent in the material. Accordingly, the X, Z, and
M points in (c) and (d) correspond to points (π/2, −π/2), (π/2, π/2), and (π, 0) in the Brillouin zone of
the one-site unit cell. (a) Schematic of the anisotropic triangular lattice of κ-Cl. Translational vectors e1

and e2 (a and c) are represented by red (blue) arrows. The red (blue) shaded region represents the unit
cell containing one site (two sites). The ellipses on the sites denote the conducting BEDT-TTF dimers.
(b) The momentum space for the anisotropic triangular lattice. The Brillouin zones of the one- (two-)
site unit cell are represented by the red (blue) shaded region bounded by the red solid (blue-dashed)
lines. The solid gray line indicates the FS. (c) Noninteracting, tight-binding band structure along
highly symmetric momenta and density of states (DOS) of κ-Cl (t′/t = −0.44 with t = 65 meV).
The Fermi level for half filling is set to zero and denoted by the dashed lines. (d) Single-particle
spectral functions and DOS of κ-Cl at half filling in the antiferromagnetic state at zero temperature,
calculated by variational cluster approximation [5]. The Fermi level is denoted by the dashed lines at
zero energy. Reproduced with permission from [6].

Because of the narrow bandwidth and the half filling, κ-Cl (U/t = 5.5 [10]) is an anti-
ferromagnetic Mott insulator at low temperatures due to the on-site Coulomb repulsion [11].
The material is in close proximity to the bandwidth-control Mott transition. When low
hydrostatic pressure is applied (∼20 MPa), κ-Cl exhibits the first-order Mott transition to a
Fermi liquid/superconductor (TC ~ 13 K). κ-(BEDT-TTF)2Cu[N(CN)2]Br (U/t = 5.1 [10]),
which is a derivative with a slightly larger t, is also a Fermi liquid/superconductor. The
transition has been thoroughly investigated using precise pressure control, such as continu-
ously controllable He gas pressure [12] and chemical pressure by deuterated BEDT-TTF
inκ-(BEDT-TTF)2Cu[N(CN)2]Br [13]. As TC is relatively high for the low Fermi tempera-
tures, the bandwidth-control Mott/superconductor transition in κ-Cl is sometimes regarded
as a counterpart to the bandfilling-control Mott-insulator/superconductor transitions in
the high-TC cuprates [14].

κ-Cl has a few hole-doped derivatives. κ-(BEDT-TTF)4Hg2.89Br8 has a large U/t
(nearly twice that of κ-Cl) but shows metallic conduction and superconductivity because of
~11% hole doping [15]. The transport properties [16,17] are reminiscent of high-TC cuprates;
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they show linear-in-temperature resistivity above the Mott–Ioffe–Regel limit (bad-metal
behavior) and Hall coefficients inconsistent with the noninteracting FS. Applying pressure
reduces U/t, and the temperature dependence of the resistivity approaches that of a Fermi
liquid. If the doping concentration is precisely controllable, we would be able to obtain
the desired bandwidth–bandfilling phase diagram. However, the doping concentration is
fixed, and the doped derivatives are limited (only 11% [15] and 27% [18]).

2.2. Experimental Method for Bandfilling Control: EDL Doping

To control the bandfilling of κ-Cl, we employed a doping method based on the EDL
transistor [Figure 3a]. The EDL transistor is a type of field-effect transistor in which the
gate-insulating film is replaced by a liquid electrolyte such as an ionic liquid. EDL doping
enables a higher doping concentration than the typical field-effect doping using a solid
gate insulator due to the strong electric fields by the liquid electrolyte. First, we prepared
polyethylene terephthalate (PET) substrates and patterned Au electrodes (source, drain,
voltage-measuring electrodes, and side-gate electrodes) using photolithography. Next, we
synthesized thin single crystals of κ-Cl by electrolysis of a 1,1,2-trichloroethane [10% (v/v)
ethanol] solution in which BEDT-TTF (20 mg), TPP[N(CN)2] [tetraphenylphosphonium
(TPP), 200 mg], CuCl (60 mg), and TPP-Cl (100 mg) were dissolved. We applied 8 μA
current overnight and obtained tiny thin crystals of κ-Cl. However, we could not easily
remove the thin crystals from the solution because the surface tension of the solution easily
broke the crystals. We therefore moved the crystals together with a small amount of the
solution by pipetting them into 2-propanol (an inert liquid). Then, using the tip of a hair
shaft, we manipulated one crystal and placed it on the substrate in 2-propanol. After the
substrate with the κ-Cl single crystal was taken out from 2-propanol and dried, the crystal
tightly adhered to the substrate (probably via electrostatic force). The κ-Cl single crystal was
shaped into a Hall bar using a pulsed laser beam at the wavelength of 532 nm [Figure 3b].
Lastly, we added a droplet of 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethyl
sulfate ionic liquid on the sample and the Au side-gate electrode and placed a 1.2-μm-thick
polyethylene naphthalate (PEN) film on it to make the liquid phase thin. The thinning of
the gate electrolyte using the PEN film reduced the thermal stress at low temperatures.
We immediately cooled the sample to 220 K (~3 K/min), where the ionic liquid was less
reactive. At lower temperatures, the ionic liquid solidified.

Figure 3. (a) Schematic view of device fabrication procedure. (b) Optical top view of an EDL transistor
device. The κ-Cl crystal is laser-shaped into a Hall bar. (c) Gate voltage dependence of sheet resistivity
at 220 K. (d) Gate-voltage dependence of accumulated charge density and doping concentration.
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We controlled the doping concentration of the κ-Cl crystal surface by varying the
gate voltage, VG, at 220 K. Both the positive and negative gate voltages, corresponding
to the electron and hole doping, reduced the sample resistance, implying the deviation
of the bandfilling from 1/2 [Figure 3c]. According to the charge displacement current
measurements [19], the doping concentration reached approximately ±20% at VG of ±0.5 V
[Figure 3d]. Increasing the gate voltage (|VG| > 0.7 V) led to the irreversible increase
of resistance, indicating sample degradation due to chemical reactions. The choice of
ionic liquid was important; the crystal immediately disappeared when we employed ionic
liquids that were too reactive or too good for the solubilization of κ-Cl. Diethylmethyl(2-
methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide [DEME-TFSI], a typical ionic
liquid for EDL doping, was suitable for electron doping but not for hole doping at low
temperatures. At the moment, 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethyl
sulfate is the best choice. We focused on the doping effect on this ionic liquid.

2.3. Experimental Method for Bandwidth Control: Uniaxial Bending Strain via Substrate

We usually control the bandwidth of a molecular conductor by applying hydrostatic
pressure using a pressure medium oil and a pressure cell. However, because the heteroge-
neous device structure was unsuitable for hydrostatic pressure application, we adopted
the strain effect caused by substrate bending, as shown in Figure 4. This method required
no liquid pressure medium (the ionic liquid is already on the crystal) and enabled precise
strain control by fine tuning the piezo nanopositioner that bent the substrate (Figure 4).
Assuming that the bent substrate is an arc of a circle (angle: 2θ, curvature radius: r), strain
S is estimated as

S =
2θ(r + d/2)− 2θr

2θr
=

θd
l

where d and l are the thickness and the length of the substrate, respectively. The relationship
between the sides of the shaded triangle in Figure 4 gives

r sin θ ∼ rθ =

√
r2 − (r − x)2, ∴ θ =

4lx
l2 + 4x2

using the small angle approximation, where x is the displacement of the piezo nanoposi-
tioner. As a result,

S = 4dx/
(

l2 + 4x2
)

.

 

Figure 4. Schematic illustration for the application of uniaxial tensile strain to the κ-Cl sample.

We employed PET substrates with d = 177 μm and l = 12 mm, and x was up to 2.5 mm
so that the typical value of S was ~1%. Note that the strain in this experimental setup was
tensile and uniaxial. As the strain generated by bending was tensile, we employed a PET
substrate with a large thermal expansion coefficient to start the bandwidth scanning from
the superconducting region. Biaxial compression of the κ-Cl crystal by the substrate at low
temperatures resulted in the superconducting state without bending strain. Therefore, we
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applied the bending tensile strain to enhance U/t and induce the bandwidth-control Mott
transition from the metallic/superconducting side to the insulating side. The strain effect
should be dependent on the strain direction. However, we leave the detailed direction
dependence to future work because the strain-induced Mott transition could be observed
regardless of the strain direction at the moment.

3. Results

First, we introduced the superconducting phase transitions around the tip of the Mott-
insulating state in the bandwidth–bandfilling phase diagram in Section 3.1 [4]. Then, we
showed the transport properties under EDL doping at a large U/t in Section 3.2 [5,6] (we
did not apply the bending strain shown in Section 2.3 here).

3.1. Superconducting Phase around the Mott-Insulating Phase
3.1.1. Strain Effect without Gate Voltage

First, we showed the strain effect without the gate voltage (Figure 5). As mentioned in
the Methods section, κ-Cl became a superconductor without bending strain owing to the
thermal contraction of the substrate. TC (~12 K) was similar to that of the bulk κ-Cl crystal
under low hydrostatic pressure. The superconducting state disappeared upon applying the
uniaxial tensile strain, S, and the insulating state appeared at low temperatures. Despite
the uniaxiality, the temperature dependence of the resistivity was qualitatively similar
to that in the bulk κ-Cl crystal under hydrostatic pressure [Figure 5c]. The slope of the
metallic/insulating phase in the phase diagram implied that the insulating state at the
lowest temperatures had low entropy and was the antiferromagnetic Mott-insulating state.
Thus, we could control the bandwidth (and consequently U/t) of the sample across the
bandwidth-control Mott transition at half filling.

Figure 5. (a) Resistivity vs. temperature plots under different tensile strains at gate voltage VG = 0 V,
and (b) contour plots of the resistivity data. (c) Pressure-temperature phase diagram of bulk κ-Cl.
Reproduced with permission from [12].

3.1.2. Doping Effect at Fixed Strain

Next, we fixed the uniaxial tensile strain at the very tip of the insulating state in
the bandwidth–bandfilling phase diagram (S = 0.41%) and applied gate voltages (with
warming of the sample to 220 K, changing VG, and cooling again). Both electron and hole
doping reduced the resistivity and induced the superconducting state, as shown in Figure 6.
TC was similar (~12 K) among the electron-doped and hole-doped states (and the undoped
metallic state). However, the doping effect was highly asymmetric against the polarity
of VG. By hole doping, the resistivity monotonically decreased, and superconductivity
emerged for VG ≤ −0.3 V [approximately 10% hole doping according to Figure 3d]. On the
other hand, the resistivity abruptly dropped, and a superconducting state emerged with
low electron doping (+0.14 V ≤ VG ≤ +0.22 V, approximately 4 ∼ 7% electron doping).
At the phase boundary, the resistivity discretely fluctuated [5]. After further electron
doping, the resistivity increased again, and superconductivity disappeared. Interestingly,
the normal-state resistivity at T > TC also decreased first and increased thereafter with
electron doping.
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Figure 6. Sheet resistivity vs. temperature plots under (a) hole doping and (b) electron doping
at tensile strain S = 0.41%. The dashed line indicates pair quantum resistance h/4e2. (c) Contour
plots of the data in (a,b). h-SC and e-SC denote hole-doped superconductor and electron-doped
superconductor, respectively.

3.1.3. Gate Voltage vs. Strain Phase Diagram

After obtaining the resistivity vs. gate voltage data at the fixed strain, we slightly
increased the strain and repeated the same cycles, as shown in Figure 7a. These measure-
ments resulted in the gate voltage vs. strain phase diagram at low temperatures, which
corresponded (although not proportionally) to the bandfilling–bandwidth phase diagram,
as shown in Figure 7b. The insulating phase was triangular on the hole-doped side (left),
similar to the conceptual phase diagram of a Mott insulator, and the superconducting phase
surrounded the insulating phase. On the other hand, the superconducting phase appeared
to “penetrate” into the insulating phase on the electron-doped side (right).

As shown in Figure 8, the doping asymmetry was qualitatively reproduced by varia-
tional cluster approximation (VCA) calculations of the antiferromagnetic and supercon-
ducting order parameters in a Hubbard model on an anisotropic triangular lattice. At low
U/t, the superconducting (antiferromagnetic) order parameter more drastically increased
(decreased) by electron doping than hole doping [Figure 8a]. The doping dependence of the
chemical potential was nonmonotonic only on the electron-doped side [Figure 8b], imply-
ing the possibility of a phase separation between the Mott-insulating and superconducting
phases [Figure 8c]. The nonmonotonic behavior of the chemical potential seemed to have
originated from the flat part at the bottom of the upper Hubbard band (along the Z–M axis),
which was originally located below the Fermi energy in the noninteracting energy band.
The flat part of the energy band was caused by the absence of t′ along the crystallographic
a-axis, namely, by the nature of the triangular lattice.

Notice that the experimental results are not understood uniquely within the half-filled
band scenario. Calculations on a more detailed quarter-filled band model for the κ-BEDT-
TTF salts also predict the doping-induced superconductivity, where the doping polarity
alters the pairing symmetry (electron doping: extended s + dx2−y2 , hole doping: dxy) [20].
In addition, many quantum Monte Carlo calculations on the Hubbard model indicate
the absence of superconductivity at near half filling [21,22], while superconductivity is
predicted near quarter filling [23].
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Figure 7. (a) Contour plots of sheet resistivity, ρ, under tensile strains, S, of 0.35%, 0.39%, 0.41%,
0.44%, 0.50%, and 0.55% as a function of temperature and gate voltage. (b) Contour plots of sheet
resistivity, ρ, at 5.5 K as a function of gate voltage and tensile strain (left) and the corresponding
conceptual phase diagram (right). Black dots in all figures indicate the data points where the sheet
resistivity was measured. The doping concentration estimated from the average density of charge
accumulated in the charge displacement current measurement [Figure 3d] is shown for reference on
the upper horizontal axis in (b).
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Figure 8. VCA calculations. (a) Antiferromagnetic and dx2 − dy2 superconducting order parameters,
M and D, respectively, vs. doping concentration, δ, for several values of U/t. M and D for metastable
and unstable solutions (empty symbols) at U/t = 4 and 4.5 under electron doping (corresponding to
positive d) are also shown. (b) Doping concentration, δ, vs. chemical potential, μ, relative to that
at half filling (μhalf) for several values of U/t. The results for metastable and unstable solutions at
U/t = 4 and 4.5 are indicated by dashed lines, and the results obtained by the Maxwell construction
are denoted by solid vertical lines. The results imply the presence of phase separation and a first-
order phase transition. It is noteworthy that there is a steep (nearly vertical) increase in δ with
increasing μ for larger values of U/t under electron doping, suggesting a strong tendency toward
phase separation. (c) Chemical potential, μ, vs. doping concentration, δ, for U/t = 4. δ1 and δ2 are
the doping concentrations of the two extreme states in the phase separation. All results in (a) to (c)
were calculated using VCA for the single-band Hubbard model on an anisotropic triangular lattice
(t′/t = −0.44) with a 4 × 3 cluster.

3.2. Non-Fermi Liquid Behaviors in the Normal State under Doping

Non-Fermi liquid behaviors, such as the metallic-like resistivity above the Mott–Ioffe–
Regel limit and the Hall coefficient inconsistent with the volume of the FS, are ubiquitous
features of the normal state of many strongly correlated materials. Here we show that our
Mott EDL transistor also exhibited such behaviors.

Due to the principle of the EDL transistor, only the sample surface was doped. How-
ever, the nondoped region of the sample was also conductive at high temperatures in κ-Cl.
Therefore, to discuss the non-Fermi liquid behaviors at high temperatures, we extracted
surface resistivity, ρs, and surface Hall coefficient, RHs. Assuming a simple summation
of the conductivity tensors of two parallel layers (surface monolayer and remaining bulk
layers), we derived ρs and RHs from

ρs =
L
W

(
1

ρmeasured
− 1

ρ0V
× N − 1

N

)−1

RHs = ρ2
s

(
R2

H measured
ρ2

measured
− R2

H 0V
ρ2

0V
× N − 1

N

)

where L, W, and N denote the length, width, and number of conducting layers, respectively.
Suffixes “measured” and “0 V” stand for the actual measured (combined) values and the
values at 0 V (nondoped values), respectively. A sample with a larger U/t (using the PEN
substrate that had less thermal contraction) than the previous superconducting sample was
measured, and uniaxial tensile strain was not applied.
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3.2.1. Temperature Dependence of the Resistivity

Figure 9a shows the temperature dependence of the surface resistivity, ρs, under
electron doping. Without the gate voltage, the system was insulating at all measured
temperatures (2–200 K). Upon low electron doping (VG ∼ 0.1 V,>3% electron doping),
metallic-like conduction (dρs/dT > 0) above the Mott–Ioffe–Regel limit, ρMIR, (∼ h/e2,
assuming a two-dimensional isotropic FS) appeared at high temperatures even though the
system remained insulating at the lowest temperatures. Although the resistivity was not
linear-in-temperature (between linear and quadratic) in this temperature range, this was a
bad-metal behavior in the sense that the mean free path of carriers was shorter than the
site distance. At VG = 0.34 V, the resistivity below 50 K also exhibited an insulator-metal
crossover across ρMIR. For VG > 0.5 V, the temperature dependence of ρs approached a
Fermi liquid (quadratic in temperature) below 20 K.

 
Figure 9. Temperature T dependence of surface resistivity, ρs, under (a) electron doping and (b) hole
doping.

Hole doping also induced the bad-metal behavior at high temperatures, as shown
in Figure 9b. Although an accurate estimation of the power-law exponent was diffi-
cult, the temperature dependence of ρs appeared more linear in temperature than in the
case of electron doping. The temperature dependence was consistent with the linear-in-
temperature resistivity in the hole-doped compound, κ-(BEDT-TTF)4Hg2.89Br8, at high
temperatures [16,17]. However, we could not observe metallic conduction or the Fermi
liquid behavior at low temperatures down to VG of −0.6 V. Thus, at high temperatures,
the bad-metal behavior emerged in a wide doping range except at VG = 0 V, whereas the
Fermi liquid state at low temperatures appeared only under high electron doping.

3.2.2. Hall Coefficient

In the case of a Fermi liquid with a single type of carrier, 1/e|RH| (RH: Hall coefficient)
would denote the carrier density corresponding to the volume enclosed by FS [24] and
should be independent of temperature. On the contrary, temperature-dependent RH, which
was inconsistent with the volume of the noninteracting FS, often appeared in the normal
state of strongly correlated materials. In the noninteracting single-band picture, κ-Cl
had a large hole-like FS so that 1/eRH in the metallic state should be +p(1 − δ), where
p and δ are the half-filled hole density per layer and the electron doping concentration,
respectively. Figure 10b shows the VG dependence of 1/eRH at 40 K. Near the charge-
neutrality point (Mott-insulating state), we could not observe the distinct Hall effect due
to the high resistivity. Upon electron doping, the Hall coefficients became measurable
and were positive despite the doped electrons. 1/eRH appeared to obey +p(1 − δ) under
sufficient electron doping, indicating that the Mott-insulating state collapsed, and the
system approached the metallic state based on the noninteracting band structure. However,
upon hole doping, 1/eRH became much less than +p(1 − δ). The values also differed from
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the externally doped hole density, −pδ, implying that the Mott-insulating state collapsed
by hole doping, but the system approached a different electronic state with a smaller FS
than the noninteracting case.

 
Figure 10. (a) Hall resistance vs. magnetic field at 40 K. (b) Gate-voltage dependence of the hole
density per site (estimated from 1/eRH) at 40 K. The dashed line denotes the hole density per site
estimated from the volume bounded by the noninteracting FS assuming that doping concentration is
proportional to VG (20% doping at 0.5 V). The center of the shaded insulating region corresponds
to the charge neutrality point (resistivity peak). (c) Temperature dependence of RHs. The solid line
indicates the value where the hole density per site becomes one (half filling).

The temperature dependence of RHs also revealed the peculiarity of the hole-doped
state, as shown in Figure 10c. RHs was almost temperature-independent under electron
doping, as expected for a conventional metal. By contrast, RHs under hole doping mono-
tonically decreased with an increasing temperature, approaching values similar to those
under electron doping.

3.2.3. Resistivity Anisotropy

In-plane conductivity anisotropy also reflected the anomalous state under hole doping.
Figure 11 shows the in-plane anisotropy of the surface resistivity, ρc/ρa, up to 200 K. Here,
ρc (ρa) denotes the surface resistivity along the c axis [a axis; the short axis of the elliptical
FS is parallel to the c axis, as shown in Figure 2b]. Under electron doping, the resistivity
was almost isotropic ( ρc/ρa ∼ 1) and independent of temperature. Under hole doping, by
contrast, ρc/ρa was distinctly larger than one and increased with cooling. The conduction
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along the c-axis diminished in the hole-doped state, and its origin was weakened at high
temperatures.

 
Figure 11. Temperature dependence of in-plane anisotropy of surface resistivity (note that both a and
c axes are parallel to the conducting plane in this material). Data are missing at low temperatures and
low doping (white region in the right panel) due to the high resistance.

3.2.4. Single-Particle Spectral Functions

We compared the above experimental results with model calculations. Figure 12 shows
the single-particle spectral functions (corresponding to the DOS) of the Hubbard model
on an anisotropic triangular lattice at 30 K using the cluster perturbation theory (CPT).
The Mott-insulating state [Figure 12b,e] was reproduced at half filling, where the energy
gap opened at all the k-points. When 17% of the electrons were doped [Figure 12c,f], the
noninteracting-like FS emerged. On the other hand, the topology of FS under 17% hole
doping [Figure 12a,d] appeared different from the noninteracting case. The spectral weight
near the Z point was strongly suppressed (pseudogap), and a lens-like small hole pocket
remained. The partial disappearance of FS was notable in the lightly hole-doped cuprates.

The calculated FS provides insights into the origin of the doping asymmetry of the
Hall effect and the resistivity anisotropy. Sufficient electron doping reconstructed the
noninteracting-like large hole FS, resulting in 1/eRH ∼ p(1 − δ). On the other hand,
hole doping induced the partially suppressed lens-like small FS. In this state, Luttinger’s
theorem seemed violated, and RH could no longer be simply estimated. However, it
was possible that RH was predominantly governed by quasiparticles with a relatively
long lifetime (bright points of the spectral function in the reciprocal space in Figure 12),
resulting in similar values of 1/eRH corresponding to the area of the lens-like hole pocket.
In addition, the large resistivity anisotropy under hole doping could be simply explained
by the suppression of the quasi-one-dimensional FS along the Z–M line, which contributed
to the conduction along the c-axis. As shown in Figure 12g, the spectral density on the
Z–M line was recovered at high temperatures, consistent with the tendency in the Hall and
anisotropy measurements.

The suppression of the spectral weight near the Z–M line under hole doping seemed
to be related to the van Hove singularity (the van Hove critical points lie on the Z–M axis).
With the doping of holes, FS approached the van Hove singularity, and the effect of the
interaction was expected to be enhanced. It was also revealed that the spin fluctuation
was stronger in the hole-doped state because of the van Hove singularity. By contrast, FS
departed from the van Hove singularity with the doping of electrons, resulting in a weaker
interaction effect and a more noninteracting-like FS.
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Figure 12. Fermi surfaces and single-particle spectral functions of the Hubbard model on an
anisotropic triangular lattice at 30 K, calculated using the cluster perturbation theory (CPT). (a–c)
Fermi surfaces for (a) 17% hole doping, (b) half filling, and (c) 17% electron doping, determined
by the largest spectral intensity at the Fermi energy. (d–f) Single-particle spectral functions for (d)
17% hole doping, (e) half filling, and (f) 17% electron doping. The Fermi energy is located at ω = 0
and the parameter set of this model is t′/t = −0.44, U/t = 5.5, and t = 65 meV. (g) Temperature
evolution of the spectral density at 17% hole doping. The suppression near the Z–M line diminishes
at high temperatures.

4. Summary

We fabricated bandfilling- and bandwidth-tunable EDL transistor devices using a flex-
ible organic Mott insulator with a simple band structure. As shown in Section 3.1, drastic
resistivity changes ranging from superconducting to highly insulating (ρ > 109 Ω) states oc-
curred in the proximity of the tip of the Mott-insulating phase in the phase diagram. The su-
perconducting phase surrounded the Mott-insulating phase in the bandfilling−bandwidth
phase diagram. The superconducting transition temperature, TC, was almost identical
among the electron-doped, hole-doped, and nondoped states, in contrast to those of the
high-TC cuprates. Model calculations based on the anisotropic triangular lattice qualita-
tively reproduced the doping asymmetry on the doping levels for superconductivity and
the tendency towards phase separation under electron doping, implying the significance
of the flat part of the upper Hubbard band (originating from the noninteracting band
structure). However, the calculations did not reproduce the reentrance into the slightly
insulating state beyond the electron-doped superconducting state. One possibility was that
a magnetic or charge-ordered state emerged at specific doping levels (for example, ~12.5%),
as in the case of the stripe order in the cuprates [25–28].
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At high U/t where no superconductivity was observed, the transport properties
exhibited non-Fermi liquid behaviors, as shown in Section 3.2. At high temperatures (above
T ∼ 100 K), the metallic-like conduction above the Mott–Ioffe–Regel limit (the bad-metal
behavior) widely emerged regardless of the doping polarity, supporting the universality of
the bad-metal behavior near the Mott transitions. At lower temperatures, the anomalously
large, temperature-dependent Hall coefficient and in-plane resistivity anisotropy appeared
under sufficient hole doping. Model calculations of the spectral density explained the
anomaly under hole doping in terms of the partial disappearance of FS (pseudogap) due
to the approach of the Fermi energy to the flat part of the energy band (same part as the
flat part of the upper Hubbard band before doping). The pseudogap state also appeared in
the lightly doped high-TC cuprates. However, the location of the pseudogap in k-space
differed, owing to the difference of the noninteracting band structure, resulting in the
different doping asymmetry.

The experimental methods shown here are applicable to other molecular conductors,
including κ-(BEDT-TTF)2Cu2(CN)3, which is a genuine Mott insulator without antiferro-
magnetic ordering [29]. The same experiments on this material may reveal more universal
behaviors of a doped Mott insulator. Similar experiments on the molecular Dirac fermion
system [30] are also possible and of great interest.
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Abstract: A molecular Mott insulator β′-EtMe3Sb[Pd(dmit)2]2 is a quantum spin liquid candidate. In
2010, it was reported that thermal conductivity of β′-EtMe3Sb[Pd(dmit)2]2 is characterized by its large
value and gapless behavior (a finite temperature-linear term). In 2019, however, two other research
groups reported opposite data (much smaller value and a vanishingly small temperature-linear term)
and the discrepancy in the thermal conductivity measurement data emerges as a serious problem
concerning the ground state of the quantum spin liquid. Recently, the cooling rate was proposed
to be an origin of the discrepancy. We examined effects of the cooling rate on electrical resistivity,
low-temperature crystal structure, and 13C-NMR measurements and could not find any significant
cooling rate dependence.

Keywords: molecular conductors; quantum spin liquid; thermal conductivity; cooling rate; electrical
resistivity; low-temperature crystal structure; 13C-NMR

1. Introduction

Quantum spin liquid (QSL) in a strongly frustrated spin system on a triangular
lattice is characterized by the absence of long-range magnetic order or valence bond
solid order among entangled quantum spins even at zero temperature [1,2]. Although
theoretical works indicated that the ideal nearest-neighbor Heisenberg antiferromagnet on
the triangular lattice has the long-range Néel ordered ground state (120-degree-structured
state), a possibility of this third fundamental state for magnetism in the general S = 1/2
antiferromagnetic triangular lattice systems has attracted much attention. Indeed, the
number of QSL candidates of real materials is increasing since the beginning of the 2000 [2].

An isostructural series of anion radical salts of a metal complex Pd(dmit)2
(dmit = 1,3-dithiol-2-thione-4,5-dithiolate), β′-EtxMe4−xZ[Pd(dmit)2]2 (Et: C2H5, Me: CH3,
Z = P, As, and Sb; x = 0–2), are Mott insulators at ambient pressure [3]. In crystals of
β′-Pd(dmit)2 salts with the space group C2/c, Pd(dmit)2 anion radicals are strongly dimer-
ized to form a dimer with spin 1/2, [Pd(dmit)2]2

− (Figure 1). The dimers are arranged
in an approximately isosceles-triangular lattice parallel to the ab plane, which leads to a
frustrated S = 1/2 Heisenberg spin system. The anion radical layers and the non-magnetic
cation layers are arranged alternately along the c axis. The ground state of the Pd(dmit)2
salts is found to change among antiferromagnetic long-range order (AFLO), QSL, and
charge order (CO), depending on the anisotropy of the triangular lattice that can be tuned
by the choice of the counter cation [3]. The cation effect on the degree of frustration is
associated with the arch-shaped distortion of the Pd(dmit)2 molecule [4]. The QSL phase
found in β′-EtMe3Sb[Pd(dmit)2]2 is situated between AFLO and CO phases [5,6].
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Figure 1. Crystal structure of β′-EtMe3Sb[Pd(dmit)2]2. The cation on the two-fold axis shows an
orientational disorder.

In β′-EtMe3Sb[Pd(dmit)2]2, no magnetic order is detected down to a very low temper-
ature (~19 mK) that corresponds to J/12,000, where J (~250 K) is the nearest-neighbor spin
interaction energy [7]. Although 13C-NMR spectra show an inhomogeneous broadening at
low temperatures, the observed local static fields are too small to be explained by AFLO or
spin glass state. Low-energy excitations in the QSL state of the β′-EtMe3Sb[Pd(dmit)2]2 are
open to debate even now. Heat capacity and magnetization indicate gapless fermion-like
excitations, while 13C-NMR indicates an existence of a nodal gap [7–9]. The thermal con-
ductivity κ is free from the contribution from the rotation of the methyl (Me-) group that
disturbs the heat capacity analysis below 1 K [8]. In addition, thermal conductivity mea-
surements can detect the spin-mediated heat transport. In 2010, Yamashita and Matsuda
reported that κ/T is finite as temperature T goes to zero, which indicates the presence of
gapless excitations [10]. The finite T-linear term as well as largely enhanced κ values led to
a proposal of contributions across the spinon Fermi surface. In 2019, however, two research
groups reported that κ values are much smaller and κ/T is vanishingly small at 0 K, which
caused a serious problem concerning the ground state of QSL [11,12].

In order to explain this sharp discrepancy in the thermal conductivity measurement
data, Yamashita claimed that there were two kinds of crystals (large-κ and small-κ groups)
in [13] published earlier than [11,12]. Yamashita pointed out the domain formation associ-
ated with the cation disorder or the micro cracks as an origin. It should be noted that in
the context of “two kinds of crystals”, the words “domain” and “micro cracks” are read as
intrinsic properties that emerge in a crystal growth process or in a low-temperature phase,
that is, they should be distinguished from extrinsic ones induced by improper sample
handling. Although Yamashita did not disclose experimental evidence to justify the claim
in [13], the claim had enough impact [14,15]. In response to the Yamashita’s claim, the
existence of two kinds of crystals was verified using X-ray diffraction (XRD), scanning
electron microscope, and electrical resistivity measurements. The conclusion is that there is
only one kind of crystal [11,12]. For example, no difference was found between the small-κ
sample (sample G1) in [11] and the large-κ sample (sample C) in [13], both of which come
from the very same growth batch (No. 752).

Meanwhile, in 2020, Yamashita et al. reported that one kind of crystal gives dif-
ferent results in the κ measurements depending on an experimental condition, “cooling
rate” [16,17]. In their measurements, very slow cooling (−0.4 K/h) led to a finite linear
residual thermal conductivity. In contrast, when the sample was cooled down rapidly
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(−13 K/h), κ/T vanished at the zero-temperature limit, and the phonon thermal conduc-
tivity was strongly suppressed. These results suggest the existence of random scatterers
introduced during the cooling process as another origin of the discrepancy. This proposal
has raised a problem about effects of the newly proposed experimental parameter on other
kinds of measurements. Herein, we investigated effects of the cooling rate on electrical
resistivity, low-temperature crystal structure, and 13C-NMR measurements with relevance
to the discrepancy in the thermal conductivity data.

2. Materials and Methods

For electrical resistivity and XRD measurements, we used single crystals from the
same growth batch (No. 898) as that used in [13] (small-κ samples E and F) and [16]
(crystals 1–3). The procedure of the crystal growth was as follows: (EtMe3Sb)2[Pd(dmit)2]
(60 mg) was dissolved in acetone (100 mL). After addition of acetic acid (9.5 mL), the
resultant solution was allowed to stand at −11 ◦C for 3 months. The β′-type crystals
(black hexagonal plates) were obtained as a single phase. The 13C-enriched dmit ligand
for 13C-NMR measurements was synthesized from tetrachloroethylene-13C1 (99 atom %,
Sigma-Aldrich) that was converted to tetrathiooxalate for the reaction with CS2 [18]. The
13C-enriched single crystals of β′-EtMe3Sb[Pd(dmit)2]2 (No. 899 for slow cooling and No.
923 for rapid cooling) were also obtained by the above-mentioned procedure.

The temperature-dependent electrical resistivities along the a and b axes (ρ//a and
ρ//b) were measured by the standard four-probe method from room temperature to 1.8 K
using a physical property measurement system (Quantum Design Inc., San Diego, CA,
USA). The electric leads were φ10 μm gold wires connected by carbon paste. Probe sizes
are 325 × (1100 × 100) μm3 for ρ//a and 150 × (1350 × 80) μm3 for ρ//b, respectively. For
each current direction, the pristine crystal was cooled down to 1.8 K with different cooling
rates of −0.6 K/h, −1.2 K/h, −6 K/h, and −150 K/h, in this order. In each thermal cycle,
the warming rate was +6 K/h, except for the final cycle (+150 K/h).

Single crystal X-ray diffraction data were collected by a Weisenberg-type imaging
plate system (R-AXIS RAPID/CS, Rigaku Corp., Tokyo, Japan) with monochromated Mo
Kα radiation (UltraX6-E, Rigaku Corp., Tokyo, Japan). Low-temperature experiments were
carried out in the cryostat cooled by a closed-cycle helium refrigerator (HE05/UV404,
ULVAC CRYOGENICS Inc., Chigasaki, Japan). The temperature was controlled by Model
22C Cryogenic Temperature Controller (Cryogenic Control Systems Inc., Rancho Santa Fe,
CA, USA). The pristine crystal was cooled down with a rate of −0.6 K/h. After the data
collection at 5 K, the crystal was warmed up to room temperature with a rate of +60 K/h.
The next cooling process was performed with a cooling rate of −120 K/h. All the diffraction
data were processed using the CrystalStructure 3.8 crystallographic software package [19].
The structures were solved by the direct method (SIR92) [20] and refined by the full-matrix
least-squares method (SHELXL-2018/3) [21]. The H atom coordinates were placed on
calculated positions and refined with the riding model. Due to the orientational disorder
of the EtMe3Sb cation on the two-fold axis (Figure 1), we assumed that the ethyl group
and the corresponding methyl group share two equivalent positions with 50% occupation
factor for the refinements.

13C-NMR spectra and nuclear relaxation rates were obtained by standard pulse Fourier
transform technique using a single crystal. The magnetic field was applied along the
direction 11 degrees tilted from the c* axis to avoid an accidental cancellation of hyperfine
fields originating from 2p and 2s electrons of 13C. The temperature was controlled by Model
32 Cryogenic Temperature Controller. The crystals were cooled at −40 K/h (rapid cooling)
and −0.6 K/h (slow cooling), respectively.

3. Results

3.1. Electrical Resistivity

The electrical resistivity is sensitive to the crack formation. In addition, when the
emergence of an electronic phase depends on the cooling rate as is the case of θ-(BEDT-
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TTF)2RbZn(SCN)4 (BEDT-TTF = Bis(ethylenedithio)tetrathiafulvalene) that possesses the
charge-glass-forming ability, the electrical resistivity can detect a change of the electronic
state [22]. Figure 2 shows temperature-dependent resistivities along the a and b axes
measured with four different cooling rates, −0.6, −1.2, −6, and −150 K/h in this order. β′-
EtMe3Sb[Pd(dmit)2]2 was a semiconductor and the resistivity became too high to measure
below 28 K. Anisotropy within the ab plane was small, including the activation energy
(~41 meV). As shown in Figure 2, temperature-resistivity curves for each cooling rate
overlap almost completely, which means that there was no cooling rate dependence. In
addition, no crack formation (indicated by an abrupt jump of the resistivity) and no thermal
cycle dependence was observed.

 
Figure 2. Temperature-dependent resistivities measured along the a axis (ρ//a) and the b axis (ρ//b)
with four different cooling rates for β′-EtMe3Sb[Pd(dmit)2]2. The inset is a photo of a single crystal.
For both ρ//a and ρ//b, four ρ–T curves (cooling process) overlap almost completely.

3.2. Low-Temperature Crystal Structure

Using the same single crystal, the crystal structure of β′-EtMe3Sb[Pd(dmit)2]2 at 5 K
was determined with two different cooling rates, −0.6 (slow) and −120 (rapid) K/h in this
order. In both cases, the space group remained C2/c and no additional diffraction peak
was observed. Determined crystal structures were identical with the previous result [23],
and did not show any significant effects of the cooling rate on temperature factors and
differential Fourier synthesis (Table 1).

Table 1. Crystal data for β′-EtMe3Sb[Pd(dmit)2]2 at 5 K obtained using two different cooling rates.

Cooling Rate −120 K/h (Rapid) −0.6 K/h (Slow)

a (Å) 14.346 (8) 14.342 (8)
b (Å) 6.317 (3) 6.315 (3)
c (Å) 37.07 (2) 37.07 (2)
β (Å) 97.624 (14) 97.640 (13)

V (Å3) 3330 (3) 3328 (3)
R factor 0.0370 0.0357
G.O.F. 1.079 1.049

Δρmax (e Å−3) 1.363 1.314
Δρmin (e Å−3) −1.089 −0.960

In the crystal, the EtMe3Sb+ cation is located on the 2-fold axis (//b). Since the cation
does not have the 2-fold symmetry, the cation has two possible orientations (1 and 2 in
Figure 1), which could work as an origin of the domain formation. However, our analysis,
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where the ethyl group is assumed to be overlaid with the methyl group with 50% occupation
factor, did not find significant difference in the average cation structure for both cooling
rates (Figure 3).

  
(a) (b) 

Figure 3. Average structure of the cation at 5 K viewed from the b axis (the two-fold axis) for two
different cooling rates: (a) Rapid cooling (−120 K/h); and (b) slow cooling (−0.6 K/h).

3.3. 13C-NMR
13C-NMR enables us to investigate the microscopic electronic states of a crystal. Com-

pared with the electrical resistivity, both NMR spectra and nuclear relaxations are insensi-
tive to microcracks in a crystal. However, they would be able to detect possible domain
formations in a cooling procedure.

Figure 4a shows the spectra at 5K. The 13C atom is introduced into one of the carbon
sites in the C=C bond in the dmit ligand. The four independent 13C sites at which hyperfine
coupling constants distribute up to 10% cause asymmetric spectra [24]. Two spectra with
contrasting cooling rates nearly overlap with each other, by which we conclude negligible
cooling rate variation in the static electronic states.

 
(a) (b) 

Figure 4. 13C-NMR of β′-EtMe3Sb[Pd(dmit)2]2 at 5 K with rapid and slow cooling rates. (a) Spectra;
and (b) nuclear magnetization curves.
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Nuclear magnetization (Mz) curves of the 1/T1 (nuclear spin-lattice relaxation rate)
measurements at 5 K by the rapid and slow cooling procedures are shown in Figure 4b.
Two curves agree with each other, and we conclude that the spin dynamics of the quantum
spin liquid state is insensitive to the cooling rate.

It should be noted that the previous 13C-NMR data obtained using randomly orien-
tated crystals suggest no cooling rate dependence either [5,7]. In [5], the cooling process at
a rate of ca. −10 K/h and measurements at a constant temperature (during 1–2 days) were
repeated alternately, and the sample was cooled from room temperature down to 1.4 K
spending about one month. In [7], on the other hand, the sample was cooled from room
temperature down to 1.8 K within 10 h before the measurements in very low-temperature
region (1.8 K–20 mK). The 13C-NMR data with these two different experimental conditions
coincide with each other in the same temperature region [25].

4. Discussion

In this work, we could not observe the effect of the cooling rate on resistivity, low-
temperature crystal structure, and 13C-NMR. Of course, we must be careful in discussing
the relation between these physical/structural properties and the thermal conductivity.
The problem we are facing is the thermal conductivity below 1 K. In the low temperature
region, the electrical resistivity of the present material is very high, and the mean free
path of a charge carrier becomes shorter than lattice lengths. In such a case, conduction
electrons would be unaffected by an event in the whole crystal. On the other hand, the
low-temperature crystal structures we determined are average ones and do not provide
direct information about the possible domain or defect formation.

Nevertheless, the cooling rate engages in a process in the whole temperature region.
If random scatterers are generated during the cooling process, they would be detected
by physical/structural properties other than the thermal conductivity even in the high
temperature region. In addition, local changes in a crystal could affect an average crystal
structure and 13C-NMR. As we mentioned before, the cooling rate dependence was not
detected in the high temperature region (>~5 K) in this work. In the lower temperature
region, the smaller heat capacity provides more homogeneous temperature distribution,
and thus it is less plausible that the cooling rate plays an important role.

In this sense, the results of this work suggest that further analysis is necessary before
concluding that the cooling rate is an essential experimental condition. Let us reconsider
two different sets of thermal conductivity data from [10,16] (Figure 5). Measurements
with different cooling rates indicated that the slower cooling rate gave the larger κ and
finite κ/T [16]. However, even with the slowest cooling rate (−0.4 K/h), the κ values are
much smaller than the first reported ones [10]. That is, the large-κ data have never been
reproduced. In addition, the measurements in [10] performed with the rapid cooling rate
of −10 K/h show larger κ values than those for Crystal 1 measured with the slowest
cooling rate of −0.4 K/h in [16]. This is quite puzzling and suggests that the cooling rate is
not essential.

In conclusion, the present situation is that one kind of crystal provides two different
thermal conductivity data and a role of the newly proposed experimental parameter,
cooling rate, remains to be seen. In addition, the large-κ data have never been reproduced.
It is an urgent matter to clarify the intrinsic thermal conductivity. From this point of
view, the description “the crystals often do not recover to the initial state after a thermal cycle”
in [16] suggests that the stress from experimental environments including a setup may
enhance or suppress the thermal conductivity. Indeed, crystals used in [10,16] frequently
fell apart when the leads were removed by rinsing out the paste with diethyl succinate.
This suggests the existence of the stress from leads on a crystal. In contrast, we did
not observe any thermal cycle dependence in this work. In order to clarify this point,
monitoring of electrical resistivity during thermal conductivity measurements will be
valuable, because the resistivity is sensitive to the crack formation and pressure in the wide
range of temperature (>~28K).
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Figure 5. Two different sets of the thermal conductivity (κ) data for β′-EtMe3Sb[Pd(dmit)2]2

from [10,16]. The cooling rate in each measurement is indicated in a parenthesis. The inset is
an enlarged view of the data from [16]. The behavior of κ reported in [11,12] is similar to that of
crystal 3 (−13 K/h) in [16].
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Abstract: Strange metal behavior refers to a linear temperature dependence of the electrical resistivity
that is not due to electron–phonon scattering. It is seen in numerous strongly correlated electron
systems, from the heavy fermion compounds, via transition metal oxides and iron pnictides, to
magic angle twisted bi-layer graphene, frequently in connection with unconventional or “high
temperature” superconductivity. To achieve a unified understanding of these phenomena across
the different materials classes is a central open problem in condensed matter physics. Tests whether
the linear-in-temperature law might be dictated by Planckian dissipation—scattering with the rate
∼ kBT/h̄—are receiving considerable attention. Here we assess the situation for strange metal heavy
fermion compounds. They allow to probe the regime of extreme correlation strength, with effective
mass or Fermi velocity renormalizations in excess of three orders of magnitude. Adopting the same
procedure as done in previous studies, i.e., assuming a simple Drude conductivity with the above
scattering rate, we find that for these strongly renormalized quasiparticles, scattering is much weaker
than Planckian, implying that the linear temperature dependence should be due to other effects. We
discuss implications of this finding and point to directions for further work.

Keywords: heavy fermion compounds; strange metals; Planckian dissipation; quantum criticality;
Kondo destruction

1. Introduction

A first step in understanding matter is to delineate the different phases in which
it manifests. To do so, a characteristic that uniquely identifies a phase must be found,
and using its order has worked a long way. How this classification should be extended
to also incorporate topological phases [1] is a matter of current research. Here, we focus
on topologically trivial matter and thus take order-parameter descriptions [2] as a starting
point and consider the case of second-order phase transitions. As an order parameter
develops below a transition (or critical) temperature, the system’s symmetry is lowered (or
broken). Cornerstones are the power law behavior of physical properties near the critical
temperature, with universal critical exponents, and the associated scaling relationships.
Combined with renormalization-group ideas [3], this framework is now referred to as the
Landau–Ginzburg–Wilson (LGW) paradigm. It has also been extended to zero temperature.
Here, phase transitions—now called quantum phase transitions [4]—can occur as the balance
between competing interactions is tipped. To account for the inherently dynamical nature of
the T = 0 case, a dynamical critical exponent needs to be added. This increases the effective
dimensionality of the system, which may then surpass the upper critical dimension for
the transition, so that the system behaves as noninteracting, or “Gaussian”. Interestingly,
however, cases have been identified where this expectation is violated [5–8], evidenced for
instance by the observation of dynamical scaling relationships [9] that should be absent
according to the above rationale. We will refer to this phenomenon as “beyond order
parameter” quantum criticality. It appears to be governed by new degrees of freedom
specific to the quantum critical point (QCP). This is a topic of broad interest both in
condensed matter physics and beyond, but a general framework is lacking. We will here
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discuss it from the perspective of heavy fermion compounds, where it can manifest as
Kondo destruction quantum criticality [5,6]. We will in particular discuss materials that
display linear-in-temperature “strange metal” electrical resistivity, as well as the proposed
relation [10,11] to Planckian dissipation. We will allude to similar phenomena in other
material platforms and point to directions for further research to advance the field.

2. Simple Models for Strongly Correlated Electron Systems

Strongly correlated electron systems host electrons at the brink of localization. The sim-
plest model that can capture this physics is the Hubbard model

H = −t ∑
〈ij〉,σ

(d†
iσdjσ + d†

jσdiσ) + U ∑
i

d†
i↑di↑d†

i↓di↓ . (1)

The hopping integral t transfers electrons from site to site and thus promotes itineracy,
whereas the onsite Coulomb repulsion U penalizes double occupancy of any site, thereby
promoting localization. Thus, with increasing U/t, a (Mott) metal–insulator transition
is expected. This simple model is suitable for materials where transport is dominated
by one type of orbital with moderate nearest neighbor overlap, leading to one relatively
narrow band. Well-known examples are found in transition metal oxides, for instance the
cuprates. Here, the relevant orbitals are copper d orbitals, kept at distance by oxygen atoms.
The creation and annihilation operators are called d and d† here.

If two different types of orbitals interplay—one much more localized than the other—a
better starting point for a theoretical description is the (periodic) Anderson model that,
for the one-dimensional case, reads [12,13]

H = ∑
k,σ

εkc†
kσckσ + ∑

j,σ
ε f f †

jσ f jσ + U ∑
j

f †
j↑ f j↑ f †

j↓ f j↓ + ∑
j,k,σ

Vjk(e
ikxj f †

jσckσ + e−ikxj c†
kσ f jσ) . (2)

Orbitals with large overlap, with the associated creation and annihilation operators
c and c†, form a conduction band with dispersion εk. Orbitals with vanishing overlap
situated at the positions xj are associated with the operators f and f †. They are assumed
to be separated by a distance greater than the f orbital diameter and thus no hopping
between them is considered. However, the hybridization term V allows the f electrons to
interact. This model is particularly well suited for the heavy fermion compounds, which
contain lanthanide (with partially filled 4 f shells) or actinide elements (with partially filled
5 f shells) in addition to s, p, and d electrons. For the so-called Kondo regime, where f
orbitals effectively act as local moments, the Anderson model can be transformed into the
Kondo (lattice) model

H = ∑
k,σ

εkc†
kσckσ − J ∑

i

�Si · c†
i,σ�σσ,σ′ciσ′ , (3)

where the interaction between the localized and itinerant electrons is expressed in terms of
an antiferromagnetic exchange coupling J. �S is the local magnetic moment of the f orbital
and�σσ,σ′ are the Pauli spin matrices. One of the possible ground states of this model is a
paramagnetic heavy Fermi liquid with a large Fermi surface, which contains both the local
moment and the conduction electrons. The resonant elastic scattering at each site generates
a renormalized band at the Fermi energy. Its width is of the order of the Kondo temperature
TK, which can be orders of magnitude smaller than the noninteracting band width. In the
(typically considered) simplest case (with a uniform and k independent hybridization), this
band extends across essentially the entire Brillouin zone.

In popular terms, this heavy fermion band could be seen as the realization of a nearly
perfect “flat band” (an early description of an interaction-driven truly flat band, with zero
energy, is given in [14] and its relevance for strange metal physics is discussed in [15,16]).
Flat bands have also been predicted [17] and later identified in magic angle twisted bi-layer
graphene (MATBG) [18] as a result of moiré band formation, and are expected in lattices
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with specific geometries [19,20] such as the kagome lattice [21,22] through destructive phase
interference of certain hopping paths. Whereas the theoretical description of these latter
flat band systems may be simpler than solving even the simplest Hamiltonians for strongly
correlated electron systems, such as (1)–(3), the inverse might be true for the challenge
on the experimental side. Heavy fermion compounds with a large variety of chemical
compositions and structures [23–25] can be quite readily synthesized as high-quality (bulk)
single crystals; the heavy fermion “flat bands” are robust (not fine tuned), naturally extend
essentially across the entire Brillouin zone, and are pinned to the Fermi energy. Albeit,
they form in the Kondo coherent ground state of the system, which is typically only fully
developed at low temperatures. To realize such physics via a complementary route that
might bring these properties to room temperature is an exciting perspective. Bringing
together these different approaches bears enormous potential for progress. Indeed, for both
twisted trilayer graphene [26] and MATBG [27] the connection to heavy fermion physics
has very recently been pointed out. Another topic discussed across the various platforms is
“strange metal” physics, which we address next.

3. Strange Metal Phase Diagrams

Metals usually obey Fermi liquid theory, even in the limit of strong interactions.
This is impressively demonstrated by the large body of heavy fermion compounds that,
at sufficiently low temperatures, display the canonical Fermi liquid forms of the electronic
specific heat

Cp = γT , (4)

the Pauli susceptibility
χ = χ0 , (5)

and the electrical resistivity
ρ = ρ0 + AT2 , (6)

where ρ0 is the residual (elastic) resistivity. Theoretically, the prefactors γ, χ0, and A
all depend on the renormalized electronic density of states N∗ = N/N0, or the related
renormalized (density-of-states) effective mass m∗ = m/m0 ∼ N∗, to first approximation
as γ ∼ m∗, χ0 ∼ m∗, and A ∼ (m∗)2. N0 and m0 are the free electron quantities. Indeed,
in double-logarithmic plots of γ vs. χ0 (Sommerfeld-Wilson) and A vs. γ (Kadowaki-
Woods), experimental data of a large number of heavy fermion compounds fall on universal
lines, thereby confirming the theoretically expected universal ratios [28]. The scaling works
close to perfectly if corrections due to different ground state degeneracies [29] and effects
of dimensionality, electron density, and anisotropy [30] are taken into account.

More surprising, then, was the discovery that this very robust Fermi liquid behavior
can nevertheless cease to exist. This can have multiple reasons, but the predominant
and best investigated one is quantum criticality [4,25,31,32]. In the standard scenario for
quantum criticality of itinerant fermion systems [33–35], a continuously vanishing Landau
order parameter (typically of a density wave) governs the physical properties. Its effect on
the electrical resistivity is expected to be modest because (i) the long-wavelength critical
modes of the bosonic order parameter can only cause small-angle scattering, which does
not degrade current efficiently, and (ii) critical density wave modes only scatter those areas
on the Fermi surface effectively that are connected by the ordering wavevector. Fermions
from the rest of the Fermi surface will short circuit these hot spots [36]. For itinerant
ferromagnets, ρ ∼ T5/3 is theoretically predicted [4] and experimentally observed [37].
For itinerant antiferromagnets, this type of order-parameter quantum criticality should
result in ρ ∼ Tε with 1 ≤ ε ≤ 1.5, depending on the amount of disorder [36]. Whereas
this may be consistent with experiments on a few heavy fermion compounds, a strong
dependence of ε with the degree of disorder has, to the best of our knowledge, not been
reported. More importantly, for relatively weak disorder, the current is dominated by the
contributions from the cold regions of the Fermi surface which stay as quasiparticles and
the resistivity would have the T2 dependence of a Fermi liquid [38].
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Instead, a number of heavy fermion compounds exhibit a linear-in-temperature elec-
trical resistivity

ρ = ρ′0 + A′T , (7)

a dependence dubbed “strange metal” behavior from the early days of high-temperature su-
perconductivity on [39]. In Figure 1a–d we show four examples, in the form of temperature–
magnetic field (a,b,d) or temperature–pressure (c) phase diagrams with color codings that
reflect the exponent ε of the temperature-dependent inelastic electrical resistivity, Δρ ∝ Tε,
determined locally as ε = ∂(ln Δρ)/∂(ln T). In all cases, fans of non-Fermi liquid behavior
(ε �= 2) appear to emerge from QCPs, with ε close to 1 in the center of the fan and extending
to the lowest accessed temperatures (at least in a,c,d).

Figure 1. Cont.
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Figure 1. Color-coded phase diagrams featuring strange metal behavior in various materials plat-
forms. (a) YbRh2Si2 (left) and YbRh2(Si0.95Ge0.05)2 (right), from [40]. (b) CeRu2Si2, from [41].
(c) CeRhIn5, from [42]. (d) Ce3Pd20Si6, from [43]. (e) SrRu3O7. Note that the temperature scale is cut
at 4.5 K. At lower temperatures, deviations from linear behavior towards larger powers are observed;
from [44]. (f) La2−xSrxCuO4, from [45]. (g) BaFe2(As1−xPx)2, from [46]. (h) Magic-angle twisted
bi-layer graphene, adapted from [47].

The most pronounced such behavior is found in YbRh2Si2 (Figure 1a, left). Be-
low 65 mK, the system orders antiferromagnetically [48]. As magnetic field (applied
along the crystallographic c axis) continuously suppresses the order to zero at 0.66 T [40],
linear-in-temperature resistivity, with A′ = 1.8μΩcm/K and ρ′0 = 2.43μΩcm, extends
from about 15 K [48] down to the lowest reached temperature (below 25 mK) [40]. Re-
cently, this range was further extended down to 5 mK, showing A′ = 1.17μΩcm/K for
a higher-quality single crystal (ρ′0 = 1.23μΩcm) [49], thus spanning in total 3.5 orders of
magnitude in temperature. This happens in a background of Fermi liquid behavior away
from the QCP. A linear-in-temperature resistivity is also seen in the substituted material
YbRh2(Si0.95Ge0.05)2. Its residual resistivity is about five times larger than that of the stoi-
chiometric compound. That this sizeably enhanced disorder does not change the power ε
indicates that the order-parameter-fluctuation description of an itinerant antiferromagnetic
quantum critical point [36] is not appropriate here. This point will be further discussed in
Section 7.

For CeRu2Si2 (Figure 1b), the situation is somewhat more ambiguous. Linear-in-
temperature resistivity does not cover the entire core region of the fan; both above 2 K and
below 0.5 K, crossovers to other power laws can be seen [41]. In CeRhIn5 (Figure 1c), at the
critical pressure of 2.35 GPa, linear-in-temperature resistivity extends from about 15 K down
to 2.3 K, the maximum critical temperature of a dome of unconventional superconductiv-
ity [42]. That the formation of emergent phases such as unconventional superconductivity
tends to be promoted by quantum critical fluctuations is, of course, of great interest in
its own right even if, pragmatically, it can be seen as hindering the investigation of the
strange metal state. Finally, Ce3Pd20Si6 exhibits two consecutive magnetic field-induced
QCPs, with linear-in-temperature resistivity emerging from both [43]. Other heavy fermion
systems show similar behavior, though color-coded phase diagrams may not have been
produced. A prominent example is CeCoIn5. Its electrical resistivity was first broadly
characterized as being linear-in-temperature below 20 K down to the superconducting
transition temperature of 2.3 K [50]. Both magnetic field [51,52] and pressure [53] suppress
the linear-in-temperature dependence and stabilize Fermi liquid behavior, in agreement
with temperature over magnetic field scaling of the magnetic Grüneisen ratio indicating
that a quantum critical point is situated at zero field [54]. Indeed, small Cd doping stabilizes
an antiferromagnetic state [55].

In Figure 1e–h, we show resistivity-exponent color-coded phase diagrams of other classes
of strongly correlated materials, a ruthenate, a cuprate, an iron pnictide, and a schematic phase
diagram of MATBG. Extended regions of linear-in-temperature resistivity are also observed.
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Before we discuss this strange metal behavior in more detail in Section 5, we take a closer look
at the Fermi liquid regions of the heavy fermion phase diagrams.

4. Fermi Liquid Behavior near Quantum Critical Points

The low energy scales and associated low magnetic ordering temperatures typically
found in heavy fermion compounds call for investigations of these materials at very low
temperatures. Indeed, since early on, measurements down to dilution refrigerator tempera-
tures have been the standard. Because scattering from phonons is strongly suppressed at
such low temperatures, this is ideal to study non-Fermi liquid and Fermi liquid behavior
alike. The phase diagrams in Figure 1a–d all feature Fermi liquid regions, at least on
the paramagnetic side of the QCPs. The fan-like shape of the quantum critical regions
dictates that the upper bound of the Fermi liquid regions shrinks upon approaching the
QCP. Nevertheless, high-resolution electrical resistivity measurements still allow to extract
the evolution of the Fermi liquid A coefficient upon approaching the QCP. In Figure 2
we show such dependencies for four different heavy fermion compounds. In all cases,
the A coefficient is very strongly enhanced towards the QCP. In fact, within experimental
uncertainty, the data are even consistent with a divergence of A at the QCP, as indicated by
the power law fits, A ∼ 1/(B − Bc)a, with a close to 1, in Figure 2a,c,d, suggesting that the
effective mass diverges at the QCP.

Figure 2. Variation of the A coefficient of the Fermi liquid form of the electrical resistiv-
ity, ρ = ρ0 + AT2, across QCPs in various heavy fermion compounds. (a) YbRh2Si2, from [40].
(b) CeRu2Si2, from [56]. (c) CeCoIn5, from [51]. (d) Ce3Pd20Si6, from [43].

This finding challenges the classification of heavy fermion compounds into lighter
and heavier versions, that has been so popular in the early days of heavy fermion studies
and that had culminated in the celebrated Kadowaki–Woods and Sommerfeld–Wilson
plots, with each heavy fermion compound represented by a single point. Which A (γ, χ0)
value should now be used in these graphs? In [32] the use of lines instead of points was
suggested, using the largest and smallest actually measured values (and not extrapolations
beyond them) as end points. The question that remains is whether there is a “background”
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value, away from a quantum critical point, that is characteristic of a given compound. We
will get back to this question in the next section.

5. Strange Metal Behavior and Planckian Dissipation

The occurrence of fans or, in some cases, differently shaped regions of linear-in-
temperature resistivity in the phase diagrams of a broad range of correlated electron
systems, as highlighted in Figure 1, raises the question whether a universal principle may be
behind it. A frequently made argument is that linear-in-temperature resistivity is a natural
consequence of the systems’ energy scales vanishing at a quantum critical point and thus
temperature becoming the only relevant scale. However, both the experimental observation
of power laws Δρ ∼ Tε with ε �= 1 in quantum critical heavy fermion compounds [57–60]
and predictions from order-parameter-fluctuation theories of such laws [36] tell us that this
argument cannot hold in general. We thus have to be more specific and ask whether for
quantum critical systems that do exhibit linear-in-temperature resistivities and, apparently,
require description beyond this order-parameter framework, a universal understanding
can be achieved.

A direction that is attracting considerable attention [10,11,61] is to test whether the
transport scattering rate 1/τ of such systems may be dictated by temperature via

1
τ
= α

kBT
h̄

(8)

with α ≈ 1. Should this be the case and τ be the only temperature-dependent quantity
in the electrical resistivity, then a linear-in-temperature resistivity would follow naturally.
Conceptually, this roots in the insight, gained from the study of models without quasiparti-
cles [4,62–65], that a local equilibration time (after the action of a local perturbation) of any
many-body quantum system cannot be faster than the Planckian time

τP =
h̄

kBT
(9)

associated with the energy kBT via the Heisenberg uncertainty principle [65]. The question
then is how to experimentally test this scenario. The simplest starting point is the Drude
form for the electrical resistivity which, in the dc limit, reads

ρ =
m

ne2
1
τ

, (10)

with a temperature-independent effective mass m and charge carrier concentration n,
and (8) for the scattering rate 1/τ, leading to

ρ = α
m

ne2
kBT

h̄
. (11)

Interpreting this as the inelastic part of the linear-in-temperature electrical resistivity (7),
with dρ/dT = A′, one obtains

α =
n
m

e2h̄
kB

A′ (12)

or, in convenient units format,

α = 2.15 · n(nm−3)

m/m0
· A′(μΩcm/K) , (13)

where m0 is the free electron mass. When this results in α ≈ 1, the dissipation is said to
be “Planckian”. Before looking at experiments, let’s contemplate this for a moment. Rela-
tion (12) is based on the simple Drude model, and combines properties of well defined quasi-
particles (n and m) with a property that characterizes a non-Fermi liquid (A′)—possibly one
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without quasiparticles—that is unlikely to follow the Drude model. Furthermore, as shown
in Section 4, the Fermi liquid A coefficient, which is a measure of m, varies strongly with
the distance to the QCP. Another defining property of at least some of these strange metals
are Fermi surface jumps at the QCP (see Section 7). This adds a nontrivial temperature and
tuning parameter dependence to n. One should thus bear in mind that choosing a simple
Drude model as starting point holds numerous pitfalls. If still doing so, it is unclear which
m and n value to use.

In [10], published quantum oscillation data, in part combined with results from
density functional theory (DFT), were used to estimate m and n for a range of different
materials, including also “bad metals” (see Section 6) and simple metals in the regime
where their resistivity is linear-in-temperature due to scattering from phonons. As an
example, for Sr3Ru2O7, de Haas–van Alphen (dHvA) data [66] measured at dilution
refrigerator temperatures on the low-field side of the strange metal fan (Figure 1e) were
used. Contributions from the different bands, assumed as strictly 2D, were summed up as

σ = τ
e2

h̄ ∑
i

ni
mi

, (14)

i.e., a constant relaxation time was assumed for all bands. Then, the heavy bands with
small carrier concentration play only a minor role. In this way, α = 1.6 was obtained.
The dHvA effective masses of all bands were found to be modest (at most 10m0) and
essentially field-independent [66], even though the A coefficient increases by more than a
factor of 8 on approaching the strange metal regime from the low field side [66]. The dHvA
experiments may thus not have detected all mass enhancement [10,66]. As shown below,
using a larger effective mass would reduce α.

Similar analyses were performed for the other materials [10] and we replot the results
as black points in Figure 3. The x axis of this plot is the Fermi velocity vF which, for a 3D
system, can be brought into the form

vF(m/s) = 3.58 · 105 · [n(nm−3)]1/3

m/m0
. (15)

The y axis is the inverse of vF multiplied by α (13) which, again for a 3D system, can
be written as

α

vF
(s/m) = 6.01 · 10−6 · A′(μΩcm/K) · [n(nm−3)]2/3 . (16)

To further assess how the results for α depend on the choice of the quasiparticle
parameters m and n, we here take a different approach. Instead of quantum oscillation
data, we use global (effective) properties, namely, the A coefficient and the Hall coefficient
RH, and estimate α for a number of strange metal heavy fermion compounds. Because of
the extreme mass renormalizations observed in this class of materials (see Section 4), it is
particularly well suited for this test. Combining

m
m0

· n1/3 =
γmole−f.u.

Vf.u.

3h̄2

NAm0k2
B(3π2)1/3

(17)

with the Kadowaki–Woods ratio A/γ2 = 10−5 μΩcm(mole K/mJ)2, which is known to be
very well obeyed in heavy fermion compounds [28], we obtain

m
m0

· [n(nm−3)]1/3 = 3.26 · 104
√

A(μΩcm/K2)

Vf.u.(Å
3
)

. (18)

The rationale for using A instead of γ is that precise resistivity measurements are most
abundant in the literature (also under challenging conditions such as high pressure and
magnetic field) and that the resistivity is much less sensitive to extra contributions from
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phase transitions than the specific heat. In addition, and unlike γ, the A coefficient picks up
effective mass anisotropies, which further improves our analysis. In all cases where reliable
γ values were available [43,67–69], the agreement with our A coefficient γ was satisfactory.

A note is due on the determination of the charge carrier concentration n. It is commonly
extracted from the Hall coefficient RH, using the simple one-band relation RH = 1/ne.
Heavy fermion compounds are typically multiband systems, and thus compensation effects
from electron and hole contributions can occur [70]. To limit the effect of anomalous Hall
contributions, low-temperature data should be used [71]. Quantum oscillation experiments
can determine the carrier concentration of single bands. However, heavy bands are hard to
detect and it is unclear how to sum up contributions from different bands. An alternative is
to determine n via the superfluid density [72], as was done previously [49,73], using the
relation (in cgs units)

n =

(
ξ0 · Tc · γ

7.95 · 10−24

)3/2
, (19)

where ξ0 is the superconducting coherence length, Tc is the superconducting transition
temperature, and γ is the normal-state Sommerfeld coefficient, which can be rewritten as

n(nm−3) = 3020 ·
(

ξ0(nm) · Tc(K) · γ(Jmol−1K−2)

Vf.u.(Å
3
)

)3/2

. (20)

This may be used as a lower bound of the carrier concentration in the normal state.
Table 1 lists the materials we inspected, with their A coefficients (or, when unavailable,

γ), the best estimate of the charge carrier concentration n following the above discussion
(see Table 2 for details), and the strange metal A′ coefficient. m/m0 as calculated via (18),
or (17), is also listed.

Table 1. Parameters used for Figures 3 and 4. The red (or blue) square represents the largest A
coefficient (measured closest to the QCP), the shaded red (or blue) lines the range of A coefficient
measured upon moving away from the QCP. The Sommerfeld coefficient γ is estimated from A
via the Kadowaki–Wood ratio, unless A data are unavailable. The charge carrier concentrations
n and their error bars (where applicable) are taken from Table 2. For CeCoIn5, several values are
listed because the A coefficient is different for in-plane (Ha) and out-of-plane (Hc) field, and the A′

coefficient is different for in-plane (ja) and out-of-plane (jc) currents. For YbAgGe, the A′ coefficient
changes with field; the two extreme A′ values are denoted by the two red squares. For CeCoIn5

(j ⊥ c), Figure 3 shows the range A′ = (0.8 ± 0.2)μΩcm/K from [74]. Data for Ce3Pd20Si6 refer to
the second QCP (near 2 T, see Figure 1d) because for the lower field QCP no full data set on single
crystals is published [43,75].

Compound A (μΩcm/K2) γ (J/molK2) m/m0 n (nm−3) A′ (μΩcm/K)

Ce2IrIn8 – 0.65 [76] 183 2.5 8.8 [76]
Ce3Pd20Si6 5–120 [43] 0.707–3.46 136–665 1.7 18.3 [43]

CeCoIn5 (ja, Ha) 12.4–28.3 [67] 1.11–1.68 310–470 12.4 0.8 [77]
CeCoIn5 (ja, Hc) 1.72–11.5 [67] 0.414–1.07 116–300 12.4 0.8 [77]
CeCoIn5 (jc, Hc) 1.72–11.5 [67] 0.414–1.07 116–300 12.4 2.475 [77]

CeRu2Si2 0.1–3.4 [56] 0.1–0.583 53–310 11.6 0.91 [41]

UPt3 – 0.425–
0.625 [78] 223–329 21.4 1.1 [10]

YbAgGe (H//a) – 0.87–1.4 [79] 1300–2100 1.6 27–59 [80]
YbRh2Si2 1.7–33.8 [68] 0.41–1.85 250–1100 10 1.83 [68]

All these data are then included in Figure 3 in the following way. The vF (15) and
α/vF (16) value resulting from the largest measured A coefficient (or γ value) for each
compound is shown as red square. The shaded red lines represent the published ranges of
A coefficient (or γ value). The error bars represent uncertainties in the determination of the
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charge carrier concentration (see Table 1). Lines for α = 1, 0.1, and 0.01 are also shown. It is
clear that none of the shaded red lines overlaps with the α = 1 line. The discrepancy with
the points extracted from quantum oscillation experiments [10] is quite striking.

Table 2. Charge carrier concentrations (in nm−3) determined as follows: (i) nsc from the supercon-
ducting coherence length ξ0, the superconducting transition temperature Tc, and the normal-state
Sommerfeld coefficient γ, all in zero field, via (20); (ii) nH from the Hall coefficient at the lowest
temperatures, where anomalous contributions are minimal, via RH = 1/ne; (iii) nqo from quantum
oscillation experiments reviewed in [10], by summing up the carrier concentrations from all detected
bands. For CeCoIn5, the γ coefficient is taken at 2.5 K, without taking into account the logarithmic
divergence. The error bar in n used for CeCoIn5 (j ⊥ c) in Figure 3 reflects the range of the parameters
given in [74]. YbRh2Si2 is close to being a compensated metal, resulting in a strong sensitivity of n
to small differences in the residual resistivity. The largest reported RH value, which corresponds to
nH = 26.0 [71], has the lowest compensation and is thus most accurate. Nevertheless, the RH value
of LuRh2Si2 is even larger, corresponding to nH = 11.6 nm−3 [70], suggesting that there is still some
degree of compensation in the sample of [71]. We list the average of both values, 18.8 nm−3, as best
nH estimate. For the plots, we use the approximate average of nsc and nH, i.e., 10 nm−3, with an
asymmetric error bar δn+ = 10 nm−3 and δn− = −5 nm−3 (see Table 1). Similar compensation
effects are also encountered in UPt3 [81]. Bold fonts indicate the values used for the α estimates (see
Table 1).

Compound ξ0 (nm) Tc (K) γ (J/molK2) nsc nH nqo

Ce2IrIn8 - - - - 2.5 [82] -
Ce3Pd20Si6 - - - - 1.7 [43] -

CeCoIn5 5.6 [83] 2.3 [50] 290 [50] 10.8 10.1 [84]–12.5 [74] 12.4 [10]
CeRu2Si2 - - - - 3.1 [41]–7.8 [85] 11.6 [10]

UPt3 12 [86] 0.52 [86] 0.43 [78] 22.4 9 [85] 21.4 [10]
YbAgGe - - - - 1.6 [87] -
YbRh2Si2 97 [49] 0.0079 [49] 1.42 [49] 4.86 18.8 [70,71] -

Figure 3. Planckian dissipation plot of [10] revisited. Double-logarithmic plot of Fermi velocity vF

vs. ne2/(kBkF)(dρ/dT) = α/vF with data from [10] (black points) and data of the heavy fermion
compounds listed in Table 1 and analyzed here. The red squares result from the largest measured
A coefficient (or γ value) for each compound near the strange metal regime, the shaded red lines
from the published ranges of A coefficient (or γ value), and the error bars from uncertainties in the
determination of the charge carrier concentration n and sometimes other parameters (see Table 1).
The full, dashed, and dotted line represent α = 1, 0.1, and 0.01, respectively.
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In Figure 4 we present these results in a different form, as α vs. (m/m0)/n. The red
squares and red shaded lines have the same meaning as in Figure 3. The dashed lines are
extrapolations of the shaded lines to α = 1. We can thus directly read off the values of
(m/m0)/n for which a given compound would, in this simple framework, be a Planckian
scatterer. In all cases, this is for effective masses significantly smaller than even the smallest
measured ones in the Fermi liquid regime.

What are the implications of this finding? We first comment on the discrepancy
with the results from [10]. Apparently, averaging the contributions from different bands
detected in quantum oscillation experiments via (14) leads to sizeably larger Fermi velocities
(sizeably smaller effective masses) than our A coefficient approach. In heavy fermion
compounds, a coherent heavy fermion state forms at low temperatures, and the Fermi
liquid A coefficient is known to be a pertinent measure thereof. It is thus either the use
of (14) that should be reconsidered or the reliance in quantum oscillation experiments to
detect the heaviest quasiparticles. Clearly, if dissipation in strange metal heavy fermion
compounds is to be Planckian, this would hold only for the very weakly renormalized
quasiparticles, as argued for in [88]. To us, this is a rather puzzling result as heavy fermion
bands get successively renormalized with decreasing temperature and thus one would
have expected that the “background” to effects of quantum critical fluctuations already
contains a sizeable non-critical Kondo renormalization.

Figure 4. No Planckian dissipation from heavy quasiparticles in heavy fermion compounds. Double-
logarithmic plot of α vs. (m/m0)/n for various strange metal heavy fermion compounds, as given in
Table 1. Red squares and shaded lines have the same meaning as in Figure 3. The dashed lines are to
help reading off the values of (m/m0)/n for which the linear-in-temperature electrical resistivity in
these compounds could be governed by Planckian dissipation. Note that in all cases the “Planckian
dissipation” effective masses obtained in this way are sizeably smaller than even the smallest values
experimentally accessed by tuning the systems away from the strange metal regime (top end of full
shaded lines).

6. Strange Metal Behavior and the Mott–Ioffe–Regel Limit

In a number of strongly correlated electron systems, including quasi-2D conductors
such as the high-Tc cuprates but also 3D transition metal oxides and alkali-doped ful-
lerides, linear-in-temperature resistivity is observed beyond the Mott–Ioffe–Regel (MIR)
limit [89,90]. At this limit, the electron mean free path approaches certain microscopic
length scales such as the interatomic spacing or the wavelength 2π/kF [65,91–94]. Semi-
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classical transport of long-lived quasiparticles might then, at least naively, be expected not
to exist and the resistivity should saturate, in 3D systems of interest to us here to

ρMIR =
h
e2 · L , (21)

where L is the relevant microscopic length scale. Using the Drude resistivity (10) with the
Fermi velocity vF = h̄kF/m, the Fermi wave vector kF = (3π2n)1/3, and the mean free path
� = τvF one obtains

ρ =
h
e2 · 3π

2
1

k2
F�

=
h
e2 · L · C , (22)

where the value of the constant C depends on details of the electronic and crystal structure.
Assuming C = 1, one gets

ρMIR(μΩcm) = 258 · L(Å) , (23)

In heavy fermion compounds, linear-in-temperature resistivities are limited to low
temperatures (Figure 1a–d) and the A′ coefficients (Table 1) typically result in inelas-
tic resistivities of the order of 10μΩcm at the upper bound of the linear regime. This
is well below the MIR limit. For instance, for YbRh2Si2, using the lattice parameters
a = 4.007 Å and c = 9.858 Å [48] for L in (23) gives ρMIR ≈ 1000μΩcm and ≈ 2500μΩcm,
respectively, much larger than even the total resistivity at 15 K (which is about 30μΩcm
for YbRh2Si2 [48]), the upper bound of linear-in-temperature resistivity for that compound.
In this case, a confusion with a linear-in-temperature resistivity due to electron-phonon
scattering [65,95] can be safely ruled out.

7. Strange Metal Behavior and Fermi Surface Jumps

In Section 5, a simple Drude form was used for the electrical resistivity and all temper-
ature dependence was attributed to the scattering rate. Then, the question was asked which
quasiparticles (with which m/n) to take if the scattering were to be Planckian. The answer
was that this would have to be very weakly interacting quasiparticles, certainly not the
ones close to the QCP from which the strange metal behavior emerges. Here we address
another phenomenon that may challenge a Planckian scattering rate picture: Fermi surface
jumps across these QCPs.

This phenomenon was first detected by Hall effect measurements on YbRh2Si2 [71,96]
(Figure 5a). Let us first recapitulate the experimental evidence for a Fermi surface jump
across a QCP, as put forward in these works. Hall coefficient RH (or Hall resistivity ρH)
isotherms are measured as function of a tuning parameter δ (in case of YbRh2Si2 the mag-
netic field) across the QCP. A phenomenological crossover function, R∞

H − (R∞
H − R0

H)/[1 +
(δ/δ0)

p] [71], is fitted to RH(δ) [or to dρH/dB(δ)] and its full width at half maximum
(FWHM) is determined as a reliable measure of the crossover width. Only if this width
extrapolates to zero in the zero-temperature limit a Hall coefficient jump is established.
Of course, the jump size must remain finite in the zero temperature limit. To identify a
Fermi surface jump, other origins of Hall effect changes must be ruled out, for instance
anomalous Hall contributions from abrupt magnetization changes at a metamagnetic/first
order transition [97]. All this was done for YbRh2Si2 [71,96]. For Ce3Pd20Si6, using a very
similar procedure, two Fermi surface jumps were found at the two consecutive QCPs
(Figure 1d) [43,75]. The crossover at the first QCP [75] is shown in Figure 5b. It is also
important to remind oneself that no Fermi surface discontinuity is expected at a conven-
tional antiferromagnetic QCP as described by the spin-density-wave/order-parameter
scenario [6]. Band folding of the (even at T = 0) continuously onsetting order parameter
can in that case only lead to a continuously varying Hall coefficient, as seen for instance in
the itinerant antiferromagnet Cr upon the suppression of the order by doping or pressure
(see [98] for more details and the original references).
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Figure 5. Fermi surface jumps as evidenced by Hall effect measurements in several strange metals.
(a) YbRh2Si2, from [32,96]. (b) Ce3Pd20Si6, from [75]. (c) Substitution series of three high-Tc cuprates,
from [99]. (d) MATBG, from [100].

These jumps are understood as defining signatures of a Kondo destruction QCP, first
proposed theoretically [5,6,101] in conjunction with inelastic neutron scattering experiments
on CeCu5.9Au0.1 [9]. At such a QCP, the heavy quasiparticles, composites with f and
conduction electron components, disintegrate. The Fermi surface jumps because the
local moment, which is part of the Fermi surface in the paramagnetic Kondo coherent
ground state [102], drops out as the f electrons localize. As such, Kondo destruction
QCPs are sometimes referred to as f -orbital selective Mott transitions. More recently,
THz time-domain transmission experiments on YbRh2Si2 thin films grown by molecular
beam epitaxy revealed dynamical scaling of the optical conductivity [103]. This shows
that the charge carriers are an integral part of the quantum criticality, and should not be
seen as a conserved quantity that merely undergo strong scattering (as in order-parameter-
fluctuation descriptions with intact quasiparticles). We also note that a Drude description
of the optical conductivity fails rather drastically in the quantum critical regime [103]. It
is thus unclear how this physics could be captured by the simple Planckian scattering
approach described above.

Interestingly, Hall effect experiments in other strange metal platforms also hint at Fermi
surface reconstructions. Two examples are included in Figure 5: a series of substituted high-
Tc cuprates [99] (panel c) and MATBG as function of the total charge density induced by the
gate [100] (panel d). Evidence for related physics has also been found in the pnictides [104].
The physics here appears to be related to the presence of d orbitals with a different degree
of localization, with one of them undergoing a Mott transition, such as described by multi-
orbital Hubbard models [105,106]. It may well be that Fermi surface jumps are an integral
part of strange metal physics, and should be included as a starting point in its description.

8. Summary and Outlook

We have revisited the question whether the strange metal behavior encountered in
numerous strongly correlated electron materials may be the result of Planckian dissipation.
For this purpose, we have examined strange metal heavy fermion compounds. Their
temperature–tuning parameter phase diagrams are particularly simple: Fans of strange
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metal behavior emerge from quantum critical points, in a Fermi liquid background. This,
together with the extreme mass renormalizations found in these materials, makes them a
particularly well-suited testbed.

As done previously, we use the Drude form of the electrical conductivity as a starting
point, but complementary to a previous approach based on quantum oscillation data,
we here rely on the Fermi liquid A coefficient as precise measure of the quasiparticle
renormalization. We find that for any of the measured A coefficients, the slope of the
linear-in-temperature strange metal resistivity A′ is much smaller than the value expected
from Planckian dissipation. We also propose a new plot that allows to read off the ratio of
effective mass to carrier concentration that one would have to attribute to the quasiparticles
for their scattering to be Planckian. It corresponds to very modest effective masses. While
this could be something like a smooth background to quantum critical phenomena, the fact
that the strange metal regime occurs entirely below the temperature for the initial onset of
the dynamical Kondo correlations suggests that this background should already incorporate
the non-critical Kondo correlations and thus correspond to a relatively heavy mass.

We have also pointed out that several heavy fermion compounds exhibit Fermi surface
jumps across strange metal quantum critical points and that this challenges the Drude
picture underlying the Planckian analysis. Indications for such jumps are also seen in other
platforms and may thus be a common feature of strange metals. Further careful studies that
evidence a sharp Fermi surface change in the zero temperature limit, such as providing for
some of the heavy fermion compounds, are called for. On the theoretical side, approaches
that discuss the electrical resistivity as an entity and do not single out a scattering rate as
the only origin of strangeness, are needed.
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Abstract: Superconductivity has entered the nickel age marked by enormous experimental and
theoretical efforts. Notwithstanding, synthesizing nickelate superconductors remains extremely
challenging, not least due to incomplete oxygen reduction and topotactic hydrogen. Here, we present
density-functional theory calculations for nickelate superconductors with additional topotactic
hydrogen or oxygen, namely La1−xSrxNiO2Hδ and LaNiO2+δ. We identify a phonon mode as a
possible indication for topotactic hydrogen and discuss the charge redistribution patterns around
oxygen and hydrogen impurities.

Keywords: superconductivity; nickelates; strongly correlated electron systems

1. Introduction

Computational materials calculations have predicted superconductivity in nicke-
lates [1] and the heterostructures thereof [2–4] since many decades, mainly based on
apparent similarly to cuprate superconductors. Three years ago, superconductivity in nick-
elates was finally discovered in an experiment by Li, Hwang, and coworkers [5], breaking
the grounds for a new age of superconductivity, the nickel age. It is marked by an enormous
theoretical and experimental activity, including but not restricted to [5–31]. Superconduc-
tivity has been found by now, among others, in Nd1−xSrxNiO2 [5,6], Pr1−xSrxNiO2 [7],
La1−xCaxNiO2 [8], La1−xSrxNiO2 [9], and most recently in the pentalayer nickelate
Nd6Ni5O12 [10]. Figure 1 shows some of the hallmark experimental critical temperatures
(Tc’s) for the nickelates in comparison with the preceding copper [32] and iron age [33]
of unconventional superconductivity. Also shown are some other noteworthy supercon-
ductors, including the first superconductor, solid Hg, technologically relevant NbTi, and
hydride superconductors [34]. The last are superconducting at room temperature [35],
albeit only at a pressure of 267GPa exerted in a diamond anvil cell. All of these compounds
are marked in gray in Figure 1 as they are conventional superconductors. That is, the
pairing of electrons originates from the electron-phonon coupling, as described in the
theory of Bardeen, Cooper, and Schrieffer (BCS) [36].

In contrast, cuprates, nickelates, and, to a lesser extent, iron pnictides are strongly
correlated electron systems with a large Coulomb interaction between electrons because
of their narrow transition metal orbitals. Their Tc is too high for BCS theory [37,38], and
the origin of superconductivity in these strongly correlated systems is still hotly debated.
One prospective mechanism is antiferromagnetic spin fluctuations [39–43] stemming from
strong electronic correlations. Another mechanism is based on charge density wave fluctu-
ations and received renewed interest with the discovery of charge density wave ordering in
cuprates [44,45]. Dynamical vertex approximation [46–49] calculations for nickelates [27],
which are unbiased with respect to charge and spin fluctuations, found that spin fluctua-
tions dominated and successfully predicted the superconducting dome prior to experiment
in Nd1−xSrxNiO2 [6,50,51].
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Figure 1. Superconducting Tc vs. year of discovery for selected superconductors. The discovery
of cuprates, iron pnictides and nickelates led to enormous experimental and theoretical activities.
Hence, one also speaks of the copper, iron and nickel age of superconductivity.

Why did it take 20 years to synthesize superconducting nickelates that have been
so seemingly predicted on a computer? To mimic the cuprate Cu 3d9 configuration, as
in NdNiO2, nickel has to be in the uncommon oxidation state Ni1+, which is rare and
prone to oxidize further. Only through a complex two-step procedure, Lee, Hwang, and
coworkers [52] were able to synthesize superconducting nickelates. In a first step, modern
pulsed laser deposition (PLD) was used to grow a SrxNd1−xNiO3 film on a SrTiO2 substrate.
This nickelate is still in the 3D perovskite phase—see Figure 2 (left)—with one oxygen
atom too many and will thus not show superconductivity. Hence, this additional oxygen
between the layers needs to be removed in a second step. The reducing agent CaH2 is used
to this end within a quite narrow temperature window [52]. If all goes well, one arrives
at the superconducting SrxNd1−xNiO2 film (top center). However, this process is prone
to incomplete oxidation or to intercalate hydrogen topotactically, i.e., at the position of
the removed oxygen; see Figure 2 (bottom center). Both of those unwanted outcomes are
detrimental for superconductivity.

In [21,53,54], it was shown by density functional theory (DFT) calculations that
NdNiO2H is indeed energetically favorable to NdNiO2 + 1/2 H. For the doped system,
on the other hand, Nd0.8Sr0.2NiO2 without the hydrogen intercalated is energetically fa-
vorable. The additional H or likewise an incomplete oxidation to SrNdNiO2.5 alters the
physics completely. Additional H or O0.5 will remove an electron from the Ni atoms,
resulting in Ni2+ instead of Ni1+. The formal electronic configuration is hence 3d8 instead
of 3d9, or two holes instead of one hole in the Ni d-shell. Dynamical mean-field theory
(DMFT) calculations [21] evidence that the basic atomic configuration is the one of Figure 2
(lower right). That is, because of Hund’s exchange, the two holes in NdNiO2H occupy
two different orbitals, 3dx2y2 and 3d3z2−r2 , and form a spin-1. A consequence of this is that
DMFT calculations predict NdNiO2H to be a Mott insulator, whereas NdNiO2 is a strongly
correlated metal with a large mass enhancement of about five [21].

To the best of our knowledge, such a two-orbital, more 3D electronic structure is
unfavorable for high-Tc superconductivity. The two-dimensionality of cuprate and nicke-
late superconductors helps to suppress long-range antiferromagnetic order, while at the
same time retaining strong antiferromagnetic fluctuations that can act as a pairing glue for
superconductivity. In experiment, we cannot expect ideal NdNiO2, NdNiO2H or NdNiO2.5
films, but most likely some H or additional O will remain in the NdNiO2 film, after the
CaH2 reduction. Additional oxygen can be directly evidenced in standard X-ray diffraction
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analysis after the synthesis step. However, hydrogen, being very light, evades such an
X-ray analysis. It has been evidenced in nickelates only by nuclear magnetic resonance
(NMR) experiments [55] which, contrary to X-ray techniques, are very sensitive to hy-
drogen. Ref. [56] suggested hydrogen in LaNiO2 to be confined at grain boundaries or
secondary-phase precipitates. Given these difficulties, it is maybe not astonishing that it
took almost one year before a second research group [6] was able to reproduce supercon-
ductivity in nickelates. Despite enormous experimental efforts, only a few groups have
succeeded hitherto.

Figure 2. For synthesizing superconducting nickelates (1, left), a perovskite film of Nd(La)1−xSrxNiO3

is grown on a SrTiO3 substrate, and (2, center) the O atoms between the planes are removed by
reduction with CaH2. Besides the pursued nickelate Nd(La)1−xSrxNiO2 (top center), also excess
oxygen or topotactic H may remain in the film, yielding Nd(La)1−xSrxNiO2H (bottom center). The
excess hydrogen results in two holes instead of one hole within the topmost two Ni 3d orbitals (right).
Adapted from Ref. [57].

In this paper, we present additional DFT results for topotactic hydrogen and incom-
plete oxygen reduction in nickelate superconductors: In Section 3, we provide technical
information on the DFT calculations. In Section 3, we analyze the energy gain to topotacti-
cally intercalate hydrogen in LaNiO2 and NdNiO2. In Section 4, we analyze the phonon
spectrum and identify a high-energy mode originating from the Ni-H-Ni bond as a charac-
teristic feature of intercalated hydrogen. In Section 5, we show the changes of the charge dis-
tribution caused by topotactic hydrogen or oxygen. Finally, Section 6 provides a summary
and outlook.

2. Method

Computational details on Eb. In both our previous theoretical study [21] and this article,
the binding energy Eb of hydrogen atoms is computed as:

Eb = E[ABO2] + μ[H]− E[ABO2H]. (1)

Here, E[ABO2] and E[ABO2H] are the total energy of infinite-layer ABO2 and hydride-
oxides ABO2H, while μ[H] = E[H2]/2 is the chemical potential of H. Note that H2 is a
typical byproduct for the reduction with CaH2 and also emerges when CaH2 is in contact
with H2O. Hence, it can be expected to be present in the reaction. A positive (negative) Eb
indicates the topotactic H process is energetically favorable (unfavorable) to obtain ABO2H
instead of ABO2 and H2/2.
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In the present paper, we go beyond [21] that reported Eb of various ABO2 com-
pounds by investigating Eb of La1−xCaxNiO2 systems for many different doping levels.
Here, the increasing Ca-doping is achieved by using the virtual crystal approximation
(VCA) [58,59] from LaNiO2 (x = 0) to CaNiO2 (x = 1). For each Ca concentration, struc-
ture relaxation and static total energy calculation is carried out for La1−xCaxNiO2 and
La1−xCaxNiO2H within the tetragonal space group P4/mmm. To this end, we use density-
functional theory (DFT) [60,61] with the VASP code [62,63] and the generalized gradient
approximations (GGA) of Perdew, Burke, and Ernzerhof (PBE) [64], and PBE revised
for solids (PBEsol) [65]. For undoped LaNiO2, the GGA-PBEsol relaxations predict its
in-plane lattice constant as 3.890 Å, which is close to that of the STO substrate: 3.905 Å.
The computations for La1−xCaxNiO2 and LaCoO2, LaCuO2, SrCoO2, and SrNiO2 are
performed without spin-polarization and a DFT+U treatment [66], as the inclusion of
Coulomb U and spin-polarization only slightly decrease the Eb by ∼5% for LaNiO2 [57].
For NdNiO2, an inevitably computational issue is the localized Nd-4 f orbitals. These
f -orbitals are localized around the atomic core, leading to strong correlations. In non-spin-
polarized DFT calculations, this generates flat bands near the Fermi level EF and leads
to unsuccessful convergence. To avoid this, we employed DFT+U [Uf (Nd) = 7 eV and
Ud(Ni) = 4.4 eV] and initialized a G-type anti-ferromagnetic ordering for both Nd- and
Ni-sublattice in a

√
2 × √

2 × 2 supercell of NdNiO2. For the Nd0.75Sr0.25NiO2 case, 25%
Sr-doping is achieved by replacing one out of the four Nd atoms by Sr in a

√
2 × √

2 × 2
NdNiO2 supercell.

Computational details on phonons. The phonon computations for LaNiO2, LaNiO2H,
LaNiO2H0.125, and LaNiO2.125 are performed with the frozen phonon method using the
PHONONY [67] code interfaced with VASP. Computations with density functional perturba-
tion theory (DFPT) method [68] are also carried out for double checking. For LaNiO2 and
LaNiO2H, the unit cells shown in Figure 3a,b are enlarged to a 2 × 2 × 2 supercell, while
for LaNiO2H0.125 and LaNiO2.125, the phonons are directly computed with the supercell of
Figure 3c,d.

Computational details on electron density. The electron density distributions of LaNiO2,
LaNiO2H, LaNiO2H0.125, and LaNiO2.125 are computed using the WIEN2K code [69] while
taking the VASP-relaxed crystal structure as input. The isosurfaces are plotted from 0.1
(yellow lines) to 2.0 (center of atoms) with spacing of 0.1 in units of e/Å2.

Figure 3. Cont.
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Figure 3. Phonon spectra of (a) LaNiO2 and (b) LaNiO2H and in a 2 × 2 × 2 LaNiO2 supercell doped
with a single (c) H and (d) O atom (i.e., LaNiO2H0.125 in (c) and LaNiO2.125 in (d)). The orange and
black arrows in (b,d) represent vibrations of H and O atoms. The blue dashed oval in (d) labels the
unstable phonon modes induced by intercalating additional O atoms in LaNiO2.

3. Energetic Stability

Figure 4 shows the results of the hydrogen binding energy Eb for the infinite layer
nickelate superconductors Nd1−xSrxNiO2 [5,6,50] and La1−xCaxNiO2 [8]. To reveal the
evolution of Eb when the B-site band filling deviates from their original configurations (3d9

in LaNiO2 when x = 0 and 3d8 in CaNiO2 when x = 1), we also show the binding energy of
LaCoO2 (3d8), LaCuO2 (3d10), SrCoO2 (3d7), and SrNiO2 (3d8).

Figure 4. Hydrogen binding energy (Eb) per hydrogen in two nickelate superconductors,
La1−xCaxNiO2 and Nd1−xSrxNiO2 vs. Sr/Ca doping concentration x; LaCuO2, LaCoO2, and SrCoO2

are shown for comparison. Slightly above 10% (Sr,Ca)-doping infinite layer nickelates are ener-
getically more stable. Note that the doping changes the filling of the B-3d orbital. To study the
relationship between Eb and the types of B-site elements, Eb of several other ABO2 compounds is
computed: LaCoO2, LaCuO2, SrCoO2 and SrNiO2. Note that this changes the filling of B-3d orbital
within a large range: e.g., 3d8 for LaCoO2 and 3d9 for LaNiO2.
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Let us start with the case of La1−xCaxNiO2 [8]. Here, the unoccupied La-4 f orbitals
make the computation possible even without spin-polarization and Coulomb U for La-4 f ,
whereas for NdNiO2, this is not practicable due to Nd-4 f flat bands near EF. Positive (neg-
ative) Eb above (below) the horizontal line in Figure 4 indicates topotactic H is energetically
favorable (unfavorable). When x = 0, i.e., for bulk LaNiO2, the system tends to confine H
atoms, resulting in oxide-hydride ABO2H with Eb = 157 meV/H. As the concentration of
Ca increases, Eb monotonously decreases, reaching −248 meV for the end member of the
doping series, CaNiO2. The turning point between favorable and unfavorable topotactic
H inclusion is around 10% to 15% Ca-doping. Let us note that Eb = 0 roughly agrees
with the onset of superconductivity, which for Ca-doped LaNiO2 emerges for x > 15%
Ca-doping [8].

To obtain Eb in NdNiO2 a much higher computational effort is required: firstly, the
Nd-4 f orbitals must be computed with either treating them as core-states or including
spin-splitting. Secondly, for the spin-polarized DFT(+U) calculations, an appropriate
(anti-)ferromagnetic ordering has to be arranged for both Ni- and Nd-sublattices. In
oxide-hydride ABO2H compounds, the δ-type bond between Ni and H stabilizes a G-
type anti-ferromagnetic order by driving the system from a quasi two-dimensional (2D)
system to a three dimensional (3D) one [21]. Given the large computational costs of Eb for
Nd1−xSrxNiO2 by using anti-ferromagnetic DFT+U calculations for both Nd-4 f (U ∼7 eV)
and Ni-3d (U = 4.4 eV) orbitals, we merely show here the results of NdNiO2 (x = 0),
Nd0.75Sr0.25NiO2 (x = 0.25), and SrNiO2 (x = 1), which are adopted from [21]. With 25%
Sr-doping, the Eb of NdNiO2 is reduced from 134 meV to −113 meV. Please note that Eb of
(Nd,Sr)NiO2 is slightly smaller than in (La,Ca)NiO2, at least in the low doping range. This
can be explained by shorter lattice constants in NdNiO2, in agreement with the finding [21]
that compressive strain plays an important role in reducing Eb.

One can speculate that this suppression of topotactic hydrogen may also play a role
when comparing the recently synthesized (Nd,Sr)NiO2 films on a (LaAlO3)0.3(Sr2TaAlO6)0.7
(LSAT) substrate [51] with the previously employed SrTiO3 (STO) substrate [50]. Lee et al. [51]
reported cleaner films without defects and also a higher superconducting transition tem-
perature Tc ∼20 K for the LSAT film as compared to Tc = 15 K and plenty of stacking fault
defects for the STO substrate [50]. As for (La,Ca)NiO2, Eb = 0 falls in the region of the onset
of the superconductivity for (Sr,Nd)NiO2, which is x ∼10% Sr-doping in LSAT-strained
defect-free films [51] and x ∼12.5% at SrTiO3-substrate states [50]. Topotactic hydrogen
might play a role in suppressing superconductivity in this doping region.

In Figure 4, we further show additional infinite layer compounds LaCoO2, LaCuO2,
SrCoO2, and SrNiO2 for comparison. Their Eb is predicted to be 367, −42, 69, and −134 meV,
respectively. Combining the results of LaNiO2 and CaNiO2, we summarize several ten-
dencies on how to predict Eb of ABO2: (1) the strongest effect on Eb is changing the B-site
element. However, this seems unpractical for nickelate superconductors as the band filling
is strictly restricted to be 3d9−x (x ∼0.2). For both trivalent (La, Nd) and bivalent (Sr,
Ca) cations, Eb decreases when the B-site cation goes from early to late transition metal
elements, e.g., from LaCoO2 (3d8) to LaNiO2 (3d9) to LaCuO2 (3d10). (2) Compressive
strains induced by either substrate or external pressure can effectively reduce Eb, and
we believe that this might be used for growing defect-free films. (3) According to our
theoretical calculations, Eb mainly depends on lattice parameters and band filling of the
B-site 3d-orbitals, but much less on magnetic ordering and Coulomb interaction U.

4. Phonon Dispersion

As revealed by previous DFT phonon spectra calculations [16], NdNiO2 is dynamically
stable. One of the very fundamental questions would be whether topotactic H from over-
reacted reduction and/or O from unaccomplished reductive reactions affect the lattice
stability. To investigate this point, we perform DFT phonon calculations and analyze the
lattice vibration induced by H/O intercalation, as shown in Figure 3.

132



Crystals 2022, 12, 656

The phonon spectrum of LaNiO2 (Figure 3a) is essentially the same as in Ref. [16]; all
the phonon frequencies are positive, indicating it is dynamically stable. Its upmost optical
phonon at around 14 to 16 THz can be identified with the recent experimental resonant
inelastic x-ray scattering (RIXS) data [70] showing a weakly dispersing optical phonon
at ∼60 meV ≈ 15 THz. In Figure 3b, the oxides-hydride LaNiO2H is also predicted to
be dynamically stable. Please note that the phonon dispersions between 0 and 20 THz
are basically the same as those in LaNiO2 (Figure 3a; note the different scale of the y-
axis). However, one can see new, additional vibration modes from the light H-atoms at
frequencies of ∼27 THz and ∼43 THz. Among these vibrations, the double degenerate
mode at lower frequency is generated by an in-plane (xy-plane) vibration of the topotactic
H atom. There are two such in-plane vibrations of H atoms, either along the (100) or
(110) direction (and symmetrically related directions), as indicated by the orange arrows
in Figure 3b. The mode located at the higher frequency ∼43 THz is, on the other hand,
formed by an out-of-plane (z-direction) vibration and is singly degenerate.

We explain these phonon modes in detail by computing the bonding strength between
H-1s–Ni-dz2 and H-1s–La-dxy orbitals. Our tight-binding calculations yield an electron
hopping term of −1.604 eV between H-1s and Ni-dz2 , while it is −1.052 eV from La-dxy
to H-1s. That is, the larger H-1s–Ni-dz2 overlap leads to a stronger δ-type bonding and,
together with the shorter c-lattice constant, to a higher phonon energy. Additionally, the
shorter c-lattice in LaNiO2 should also play a role at forming a stronger H-1s–Ni-dz2 bond.

In our previous analysis of the band character for LaNiO2H [21], the H-1s bands were
mainly located at two energy regions: a very flat band that is mostly from the H-1s itself at
∼−7 to −6 eV, and a hybridized band between H-1s and Ni-dz2 at ∼−2 eV. Together with
the higher phonon energy, this indicates that the topotactic H atoms are mainly confined
by a Ni sub-lattice via bonding and anti-bonding states formed by H-1s and Ni-dz2 orbitals,
instead of the La(Nd) sub-lattice.

The complete (full) topotactic inclusion of H, where all vacancies induced by removing
oxygen are filled by H, is an ideal limiting case. Under varying experimental conditions,
such as chemical reagent, substrate, temperature, and strain, the H-topotactic inclusion
may be incomplete, and thus ABO2Hδ (δ < 1) may be energetically favored. Hence, we
also compute the phonon spectrum at a rather low H-topotactic density: LaNiO2H0.125,
achieved by including a single H into 2 × 2 × 2 LaNiO2 supercells as shown in Figure 3c.
Moreover, such a local H defect, as revealed by the positive frequency at all q-vectors in the
lower panel of Figure 3c, does not destroy the dynamical stability of the LaNiO2 crystal. In
fact, the only remarkable qualitative difference between the complete and 12.5% topotactic
H case is the number of phonon bands at 0 THz to 20 THz. This is just a consequence of
the larger 2× 2× 2 LaNiO2 supercell, with eight times more phonons. Some quantitative
differences can be observed with respect to the energy of the phonon mode: The out-of-
plane vibration energy is enhanced from ∼43 THz in LaNiO2H (Figure 3b) to ∼47 THz
in LaNiO2H0.125 (Figure 3b), and the in-plane vibration mode frequency is reduced from
∼27 THz in LaNiO2H (Figure 3b) to ∼21 THz in LaNiO2H0.125 (Figure 3c). This is because
the H-intercalation shrinks the local c-lattice, i.e., the distance between two Ni atoms
separated by topotactic H, from 3.383 Å in (LaNiO2H: Figure 3b) to 3.327 Å (LaNiO2H0.125:
Figure 3c). The bond length between H and La is, on the other hand, slightly increased
from 2.767 Å in (LaNiO2H: Figure 3b) to 2.277 Å (LaNiO2H0.125: Figure 3c). This lattice
compression (enlargement) explains the enhancement (reduction) for the out-of-plane
(in-plane) phonon frequencies (energies).

These results pave a new way to detect the formation of topotactic H in infinite
nickelate superconductors: by measuring the phonon modes. The existence of localized
phonon modes with little dispersion at ∼25 THz and ∼45 THz indicates the presence of
topotactic hydrogen, which otherwise would be extremely hard to detect. These frequencies
correspond to energies of 103 meV and 186 meV, respectively, beyond the range <80 meV
measured for La1−xSrxNiO2 in [71].

133



Crystals 2022, 12, 656

Lastly, we further study the case representing an incompleted reduction process:
LaNiO2.125, achieved by intercalating a single O into a 2 × 2 × 2 LaNiO2 supercell
(LaNiO2.125: Figure 3d). As the same consequence of employing a supercell in phonon com-
putation, the number of phonon bands is multiplied by a factor of 8 in the frequency region
between 0 THz to 20 THz. One obvious difference between undoped LaNiO2 (Figure 3a)
and LaNiO2.125 (Figure 3d) is that the additional O leads to an unstable phonon mode near
q = X(π,0,0) (blue region in Figure 3d). This phonon mode is formed by an effective vibra-
tion of the additional O along the xy plane in the (001) or (110) direction (and symmetrically
related directions depending on the exact q-vector) of locally cubic coordinate. Such a mode
is related to the structural transition from cubic Pm-3m to a R-3c rhombohedral phase as
in bulk LaNiO3, with the Ni-O-Ni bond along the z-direction deviating from 180◦. Our
simulations for other concentrations of additional O atoms (not shown) also indicate that
incomplete oxygen reduction reactions generally result in local instabilities of LaNiO2+δ

with δ > 0.

5. Charge Distribution

In this section, we perform electron density calculations for LaNiO2, LaNiO2H,
LaNiO2H0.125, and LaNiO2.125 compounds to investigate the bond types resulting from
intercalated H and O atoms. Figure 5a,b show the electron density of LaNiO2 at the NiO-
plane and La-plane (light green planes of the top panels). In Figure 5a, a strong Ni-O bond
is observed, while the low electron density between each Ni-O layer reveals a very weak
inter-layer coupling, indicating the strong quasi-2D nature of the infinite layer nickelates. In
Figure 5b, no bonds are formed between the La (Nd) atoms. The A-site rare-earth elements
merely play the role of electron donors.

Figure 5. DFT calculated valence charge density of (a,b) LaNiO2, (c,d) LaNiO2H, and a LaNiO2

supercell doped with a single (e,f) H and (g,h) O atom. For each compound, the charge density of
(020) and (001) planes are shown in panels (a,c,e,g) and (b,d,f,h), respectively. The La, Ni, O, and H
atoms are labeled by blue, green, red, and black circles, respectively.

134



Crystals 2022, 12, 656

Figure 5c,d present the electron density of LaNiO2H along the same planes. In the
NiOH-plane of Figure 5c, the comparison to Figure 5c shows that intercalated H boosts
a 3D picture with an additional δ-type bond formed by Ni-dz2 and H-1s orbitals (black
circle). Along the LaH-plane (Figure 5d), δ-type bonds are formed by the orbital overlap
between La-dxy and H-1s orbitals. For LaNiO2 with partial topotactic H (LaNiO2H0.125 in
Figure 5e,f), the additional H atoms play similar roles at the Ni-H and the La-H bonds as in
LaNiO2H. The Ni and La atoms without H in between are similar to those in Figure 5a,b,
and those with H are akin to Figure 5c,d. This indicates that the effects induced by topotactic
H are indeed very local, i.e., they only affect the the nearest Ni and La atoms.

In Figure 5g,h, for LaNiO2.125, the additional O increases the local c-lattice (Ni-Ni
bond length via the additional O) from the LaNiO2 value of 3.338 Å to 4.018 Å which is
even larger than the DFT-relaxed value of LaNiO3: 3.80 Å. This lattice expansion can be
clearly seen in Figure 5g. The large electron density between Ni and O along the z-direction
indicates the strength of this Ni-O bond in the z-direction is comparable with the ones
along x/y directions. From Figure 5h, we conclude that similar La-O bonds are formed
after intercalating additional O atoms, and the La-La distance is shrunken by the additional
O atom from 3.889 Å (LaNiO2) to 3.746 Å between the La atoms pointing to the additional
O. However, from the electron density plot, the La-O bond strength seems not stronger
than the La-H bonding in Figure 5c,e. This can be explained by the fact that both O-px and
-py orbitals do not point to orbital lobes of La-dxy, leading to a comparable bond strength
as the La-H bond in LaNiO2Hδ.

6. Conclusions and Outlook

Our theoretical study demonstrates that the parent compounds of infinite-layer nick-
elate superconductors, LaNiO2 and NdNiO2, are energetically unstable with respect to
topotactic H in the reductive process from perovskite La(Nd)NiO3 to La(Nd)NiO2. The
presence of H, which reshapes the systems from ABO2 to the hydride-oxide ABO2H,
triggers a transition from a quasi-2D strongly correlated single-band (dx2−y2 ) metal, to a
two-band (dx2−y2+dz2 ) anti-ferromagnetic 3D Mott insulator. Our predictions [21] have
been reproduced by other groups using DFT+U calculations for other similar ABO2 sys-
tems [53,54]. The recent experimental observation [70] of Ni2+ (3d8) in nickelates indicates
the existence of topotactic H, as do NMR experiments [55]. The presence of H and its
consequence of a 3D Mott-insulator is unfavorable for the emergence of superconductivity
in nickelates. However, it is difficult to detect topotactic H in experiment. Three factors con-
tribute to this difficulty: (1) the small radius of H makes it hard to be detected by commonly
employed experimental techniques such as X-ray diffraction and scanning transmission
electron microscopy (STEM). (2) As revealed by our phonon calculations, the dynamical
stability of La(Nd)NiO2 does not rely on the concentration of intercalated H atoms. Hence,
the same infinite-layer structures should be detected by STEM even in the presence of H.
(3) As revealed by electron density distributions, the topotactic H does not break the local
crystal structure either (e.g., bond length and angle); the H atoms merely affect the most
nearby Ni atoms via a Ni-dz2 -H-1s δ-bond. This is different if we have additional O atoms
instead of H: O atoms do not only induce a dynamical instability but also obviously change
the local crystal by enlarging the Ni-Ni bond length and angle visibly. Oxygen impurities
also lead to unstable phonon modes in LaNiO2+δ and thus a major lattice reconstruction.

The ways to avoid topotactic H revealed by our calculations are: in-plane compressive
strains and bivalent cation doping with Sr or Ca. This draws our attention to the recently
synthesized (Nd,Sr)NiO2 films [51], which were grown on a (LaAlO3)0.3(Sr2TaAlO6)0.7
(LSAT) instead of a SrTiO3 (STO) substrate, inducing an additional 0.9% compressive
strain. These new films were shown to be defect-free and with a considerably larger
superconducting dome from 10% to 30% Sr-doping and a higher maximal Tc ∼20 K [51],
compared to 12.5%–25% Sr-doping and Tc ∼15 K for nickelate films grown on STO which
show many stacking faults [5,6,50]. The compressive strain induced by replacing the STO
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substrate (a = 3.905 Å) by LSAT (a = 3.868 Å) may turn the positive Eb to negative, thus
contributing to suppressing defects and recovering a single dx2−y2 -band picture.

Besides avoiding topotactic H, compressive strain is also predicted as an effective
way to enhance Tc. Previous dynamical vertex approximation calculations [27,57] reveal
that the key to enhance Tc in nickelates is to enhance the bandwidth W and reduce the
ratio of Coulomb interaction U to W. Based on this prediction, we have proposed [27,57]
three experimental ways to enhance Tc in nickelates: (1) In-plane compressive strain,
which can indeed be achieved by using other substrates having a smaller lattice than
STO, such as LSAT (3.868 Å), LaAlO3 (3.80 Å), or SrLaAlO4 (3.75 Å). The smaller in-plane
lattice shrinks the distance between Ni atoms and thus increases their orbital overlap,
leading to a larger W and a smaller U/W. Recent experimental reports have confirmed
the validity of this approach by growing (Nd,Sr)NiO2 on LSAT [51] and Pr0.8Sr0.2NiO2
on LSAT [72]. (2) Applying external pressure on the films plays the same role as in-plane
strain for the, essentially 2D, nickelates. This has been experimentally realized in [73]:
under 12.1 GPa pressure, Tc can be enhanced monotonously to 31 K without yet showing
a saturation. (3) Replacing 3d Ni by 4d Pd. In infinite-layer palladates such as NdPdO2
or LaPdO2 and similar compounds with 2D PdO2 layers and separating layers between
them, the more extended 4d orbitals of Pd are expected to reduce U/W from U/W ∼7 for
nickelates to U/W ∼6 for palladates. Further experimental and theoretical research on the
electronic and magnetic structure and the superconductive properties of palladates are
thus worth performing.
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Abstract: Exotic superconductivity that appears near the charge ordering instability has attracted
significant interest since the beginning of superconducting study. The discovery of possible coexis-
tence of charge ordering and superconductivity in cuprates and kagome metals has further fascinated
researchers in recent years. In this review, we focus on the BEDT-TTF-based organic superconductor
with β′′-type molecular packing sequence, which shows the charge ordering transition in the very
vicinity of superconducting transition, and summarize the experimental results reported up to the
present. At the charge ordering temperature, ultrasonic measurement detects the softening of the
crystal lattice, and 13C-NMR measurement shows an increase in nuclear spin-lattice relaxation rate
divided by temperature 1/T1T. These results suggest that low-energy dynamics are activated near
the charge ordering transition, leading us to invoke the charge-fluctuation mediated superconducting
pairing mechanism.

Keywords: superconductivity; charge order; molecular conductor

1. Introduction

Metallic conductivity in a material is introduced by doping carriers to the conduction
band. When the conduction band is empty, a material simply shows an insulating behavior
and is referred to as the band insulator. Even with the carriers in the conduction band
when the doping level is 1/2, the onsite electron-electron correlations disturb the itinerancy
of carriers to cause another insulating state, known as the Mott–Hubbard insulator [1,2].
Prominent many-body effects near the half filling result in fascinating physics, such as metal-
insulator transition and unconventional superconductivity. Moreover, at the doping level
of 1/4, long-range Coulomb interactions enforce the carriers to localize at every second site,
leading again to an insulating state with charge ordering [3,4]. The electrons near this charge
ordered state would also host exotic ground states through the long-range electron-electron
correlation effect. The effect of charge ordering on superconductivity has been intensively
studied since the discovery of charge ordering in copper-oxide superconductors [5,6].
Recent discovery of superconductivity in the charge ordered state of kagome metal CsV3Sb5
further promotes the discussion on the novel superconducting mechanism mediated by
charge fluctuations [7–9]. The increased charge fluctuations near the valence criticality
in CeCu2Si2 were also proposed to support superconductivity [10]. Above all, organic
conductors that show both superconductivity and charge ordering have been the most
intensively studied for decades [11–19]. Although coexistence between superconductivity
and charge instability has been found in a variety of materials with different electronic
orbitals, no universal understanding on its mechanism has been given. In this review article,
we focus on a BEDT-TTF-based organic conductor, which shows the superconducting
and charge ordering transitions at almost the same temperature, and summarize the
experimental studies reported thus far.
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The BEDT-TTF based organic conductors with the chemical formula (BEDT-TTF)2X
(X = monovalent anion) ideally possess 1/4 carriers per single BEDT-TTF site. In the
celebrated κ-type salts, however, the conduction band is constructed from effective (BEDT-
TTF)2 molecular orbital formed by the strongly dimerized two BEDT-TTF molecules, and
thus the half filling per (BEDT-TTF)2 dimer results in Mott physics [20]. The 1/4 filling per
BEDT-TTF site is restored by arranging the BEDT-TTF molecules in a way that prevents
dimerization, for instance, θ-type and β-type molecular arrangements [18,19,21,22]. The
charge ordered state is found in these series of organic conductors, and, most importantly,
superconductivity appears near the charge criticality. In this respect, our interest is di-
rected to the β′′-type molecular arrangement, because the charge ordering temperature
TCO � 8.5 K was found in the proximity to the superconducting transition temperature
Tc � 7 K in β′′-(BEDT-TTF)4[(H3O)Ga(C2O4)3]·PhNO2 [23]. Here, we summarize the
electronic properties of β′′-(BEDT-TTF)4[(H3O)M(C2O4)3]·G salts with several metallic ions
M and guest molecules G and review the detailed experiments performed for a salt with
the specific combination of M = Ga and G = PhNO2.

This review article is constructed in the following way. In Section 2, we summarize
the crystal structure and superconducting transition temperatures reported for a series of
β′′-(BEDT-TTF)4[(H3O)M(C2O4)3]·G salts. (Hereafter, these chemical formulae are abbrevi-
ated as β′′-M/G.) Section 3 addresses the chemical pressure effects introduced by the guest
molecules. The quantum oscillation, elastic constants, 13C-NMR, and EPR measurements
conducted to investigate the charge ordered state in β′′-Ga/PhNO2 are summarized in
Sections 4–7, respectively. In Section 8, we present the superconducting properties mea-
sured by the temperature, field, and field-orientation dependence of heat capacity. Finally,
in Section 9 a summary of our current understanding on the basis of reported results and
perspective will be given.

2. Crystal Structure and Fermi Surface

β′′-(BEDT-TTF)4[(H3O)Ga(C2O4)3]PhNO2, which we focus on in this review, belongs
to the 4:1 β′′-type BEDT-TTF-tris(oxalato)metallate salts known as the Day series [24,25].
This 4:1 β′′-type family, having the formula (BEDT-TTF)4 AM(C2O4)3G, is synthesized by
means of electrochemical oxidation of the organic BEDT-TTF donor with 18-crown-6 ether
and counter molecule AM(C2O4)3 in solvents G under galvanostatic current. Martin and
co-workers successfully obtained pseudo-κ [26–28], α-β′′ [26,29], and 2:1-β′′ with 18-crown-
6 [26,30–32] phases in addition to the 4:1 β′′-phase by optimizing the synthesis conditions
for each phase. For the 4:1 β′′-phase, independent studies by Akutsu, Coronado, Martin,
and Prokhorova and their co-workers report an extensive variety of M(=Fe3+, Cr3+, Ga3+,
Rh3+, Ir3+, Ru3+, Al3+, Co3+) and G(=C5H5N, DMF, PhCN, PhNO2, PhBr, PhCl, PhF, PhI,
CH2Cl2) [23,25–28,33–38]. When M = Ga and G = PhNO2, the 4:1 β′′-salt is often obtained
as the minor product with the major product of the semiconducting pseudo-κ phase crystals.
β′′-Ga/PhNO2 salt crystallizes as black distorted hexagonal rods, whereas the pseudo-κ
phase crystallizes as dark-brown diamond-shaped plates.

The 4:1 β′′-salts crystallize in the monoclinic space group C2/c. As shown in Figure 1,
this series has a two-dimensional layered structure composed of the BEDT-TTF layers
and counter layers. The two crystallographically independent BEDT-TTF molecules, A
and B, are stacked in the β′′-type arrangement with weak tetramerization without strong
dimerization in the a-b plane. In the counter anion layers, M3+ and A+ form a hexagonal
frame bridged by (C2O4)2−, and G occupies the cavity. The weak tetramerization of
the quarter-filled BEDT-TTF system leads to the semimetallic band structure with the
compensated Fermi surface of the electron and hole pockets, as calculated by the extended-
Hückel tight-binding method [39] with a unit cell transformation from the C-centered
lattice to the primitive lattice [40,41], shown in Figure 1d,e. The small Fermi pockets
indicate a small number of itinerant carriers, which weakens the Coulomb screening effect,
and therefore, the long-range Coulomb repulsion effectively induces the instability of
charge distribution.
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Figure 1. (a) Interlayer packing structure of β′′-(BEDT-TTF)4 AM(C2O4)3G. The red rhombi indicate
tetramers of the BEDT-TTF molecules, and the blue dashed lines represent the counter anion layers.
(b) Arrangement of the BEDT-TTF molecules in the β′′-type packing motif. In this 4:1 β′′-phase, there
are the two crystallographically independent BEDT-TTF molecules, A and B. The arrows signify trans-
fer integrals between them along the diagonal (red), stacking (green), and horizontal (blue) directions.
(c) Honeycomb cavity composed of the monovalent cation A+ and tris(oxalato)metallate M(C2O4)3

2−

in the counter anion layer. The guest molecule G occupies this hexagonal vacancy. (d,e) Fermi surface
(d) and band structure (e) of β′′-(BEDT-TTF)4[(H3O)Ga(C2O4)3]PhNO2 (Ga/PhNO2) derived from
the band calculation using the extended-Hückel tight-binding method [39–41].

3. Chemical Pressure Effect

Because electronic states depend on the transfer integral between the BEDT-TTF
molecules, each M/G should exhibit different low-temperature behavior through the
chemical pressure effect. Figure 2a shows the temperature dependence of the out-of-plane
resistance R(T) reduced by R(300 K) for several M/G [41]. In the inset, the low-temperature
region is enlarged to show the superconducting transition clearly. Whereas R(T)/R(300 K)
above 100 K is moderate in all salts, the low-temperature R(T) behavior strongly depends
on the chemical pressures. For the higher-Tc salts, such as Fe/PhCN and Ga/PhNO2, an
abrupt increase in the resistance is observed at approximately 10 K, whereas the lower-Tc
salts and non-superconducting salts do not show such semiconducting behavior. A simple
deduction is that the factor producing this semiconducting nature raises Tc. Namely, the
origin of the change in the electronic state around 10 K should be connected to the origin of
superconductivity. To organize these results, the chemical substitution effect is summarized
in view of the effective pressure applied to the electronic state. Assuming that the size
of the hexagonal cavity in the counter layer governs the arrangement of the BEDT-TTF
molecules and the distances between them, the size of G occupying the vacancy must be
important. Because the guest molecules G orient toward the b axis as shown in Figure 1, the
b-axis length should dominantly control the chemical pressure. Indeed, the longer G, such
as PhCN and PhNO2, gives the longer b-axis length compared to the shorter G, such as
C5H5N and CH2Cl2 (Figure 2c). To ascertain the b-axis length dependence of the electronic
state, we plotted Tc as a function of b-axis length in Figure 2c. The values of Tc for the series
of salts reported in Refs. [23,28,34–36,38,41–43] were determined by the resistivity data
presented in these studies. The large positive correlation coefficient R∼0.84 indicates that
the electronic state is certainly under the influence of the b-axis length.

To understand the low-temperature electronic state in more detail, the magnetoresis-
tance measured at 1.5 K [41] is displayed in Figure 3a. For some salts, superconductivity
is observed and immediately suppressed below a few teslas. At higher fields (>10 T),
Shubnikov–de Haas (SdH) oscillations are observed. Note that Fe/PhCN and Ga/PhNO2
do not exhibit large SdH signals as compared to other salts; however, small oscillations
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certainly appear in the higher-field region as enlarged in the inset. The Fourier transform
spectra of the SdH oscillations are shown in Figure 3b. As expected for a compensated
metal, Fe/PhCN and Ga/PhNO2 show only one signal at the SdH frequencies of 195 T and
220 T, respectively. These results are consistent with the band calculation [40,41], suggesting
that the cross-sectional area of the Fermi pockets AFS is approximately 10% of that of the
Brillouin zone ABZ. In the case of the other salts, some other additional peaks are observed
in the low-frequency region (∼50 T), which means that a split of the Fermi surface occurs
and changes the topology of the Fermi surface. Indeed, the band calculations for some
salts [41] indicate that an additional tiny hole pocket appears around the Y point depend-
ing on transfer integrals. To study the chemical pressure effect on the SdH oscillations
simply, we here focus on the signal of the electron pocket at the M point (marked with
each circle). Referring to the reported data by Bangura, Coldea, Prokhorova, Uji, and
ourselves [37,40–44], we show the ratio AFS/ABZ (c) and the effective electron mass m∗/me
(d) as a function of b in Figure 3. These results also clarify the b-axis length dependence
of the electronic state. As the elongation of the b-axis length with the longer G should
reduce the amplitude of the transfer integrals in the molecular stacking, it is reasonable
that increasing b leads to the diminution in AFS/ABZ and augmentation of m∗/me. This
perspective is consistent with the variation of band structure calculated as a function of
long-range electron correlations V normalized by the band width W [41]. That is to say, the
electron correlations leading to the charge disproportion facilitate superconductivity.
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4. Charge Ordered State Viewed from High-Field Quantum Oscillations

In the last section, we elucidated that the long-range electron correlations are im-
portant for superconductivity. Considering that electron correlations of π electrons in
the quarter-filled β′′-type salts induce charge instability in itinerant carriers according to
V/W, the charge degrees of freedom must be discussed. As introduced above, Ga/PhNO2
is a good target for this discussion due to the coexistence of the charge ordering and
superconductivity, and thus, we hereafter focus on Ga/PhNO2.

Figure 4a shows the SdH oscillatory component in the electrical transport ΔRosc/R up
to 60 T at various temperatures [45]. At low temperatures, the amplitude of the observed
SdH oscillations dwindles above 40 T and cannot be explained by a single-component SdH
oscillation. This behavior can be understood by assuming that the two oscillations interfere
with each other and render the oscillation beating. Indeed, using the two-component
Lifshitz–Kosevich (LK) formula, the field dependence can be reproduced, as described by
the dotted curves. In Figure 4b, we present the thermal variation in the frequency F of one
of the SdH signals. At higher temperatures, the F is approximately 220 T, which agrees with
the value discussed above [40,41,43]. Below ∼8 K, where the charge disproportion develops,
the value of F decreases. This means that unbalance between the hole and electron Fermi
pockets manifests in the charge ordered state, and the different cross sections of Fermi
surface yield the beating of the SdH oscillations. Considering the proportional relation
between F and AFS, the result indicates that the charge ordering reduces the number
of itinerant carriers. Naturally, the charge ordering affects the effective electron mass.
Figure 4c displays the amplitude A at 42 T as a function of temperature. The dotted curve
represents a fit to the LK formula with m∗/me = 1.6. Above 8 K, the obtained data have
larger values than the fitting curve. To make this deviation clearer, the ratio of the data
and fit, A/A(m∗/me = 1.6), is shown in the inset. As a smaller m∗/me causes a larger A,
the behavior indicates that the charge ordering enhances m∗/me. As the charge ordering
should connect with the localization of the electrons in the strong electron correlations,
these results seem to lend support to the present scenario.
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Figure 4. (a) Oscillatory component of the high-field magnetoresistance ΔRosc/R [45]. The dotted
curves are fits to the two-component LK formula. The dashed envelope is a visual guide for the
amplitude of the oscillations. (b,c) Temperature variation in the frequency F (b) and the amplitude A
(c) of one of the SdH signals. The dotted curve in (c) is a calculation obtained by the LK formula with
m∗/me = 1.6. The inset displays the ratio of A of the data and the simulation when m∗/me = 1.6.

5. Elastic Response to Charge Instability

As charge ordering transition can be detected by elastic properties through the cou-
pling between an electric quadrupole moment and strain of lattice [46], the ultrasonic
properties are measured by our group and the results reported in Ref. [45] are presented in
Figure 5. The relative change in the longitudinal ultrasonic attenuation Δα shows the broad
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maximum around 9 K. The relative change in the elastic constant ΔCL/CL also suggests
that the lattice is softened in this temperature region. The absence of the magnetic field
dependence in this temperature range indicates that this anomaly is not related to super-
conductivity and magnetic degrees of freedom. Therefore, the lattice softening is induced
by the development of the pure charge fluctuations that result in the static charge ordering
at 8.5 K. This viewpoint shows a good agreement with the results of the 13C-NMR [47,48]
as well as the high-field SdH [45] studies discussed in Sections 4 and 6. Note that the small
softening observed at 6 K (inset) is attributable to the superconducting transition due to the
suppression in a magnetic field.
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Figure 5. (a,b) Low-temperature elastic properties, (a) the relative change in the ultrasonic attenuation
Δα, and (b) the elastic constant ΔCL/CL, as a function of temperature [45]. The red and blue curves
are the data at 0 and 5 T, respectively. The arrow in (a) indicates the transition temperature of
the charge ordered state TCO. The inset in (b) is the enlarged plot around Tc. To emphasize the
superconducting transition, a linear extrapolation estimated from the behavior of the normal state is
shown as a dashed line in the inset.

6. Charge Ordering Observed by 13C-NMR Spectroscopy

NMR spectroscopy is a powerful tool to measure the disproportionate local charges at
BEDT-TTF molecules. In this section, we explore the static properties of the charge-ordered
state by reviewing the highly resolved NMR spectra taken at 15 T and precisely quantify
the site-charge modulation that appears near the superconducting transition [47,48].

When the external field is applied along the b axis, a single 13C-NMR peak was
observed at 20 K, as shown in the inset of Figure 6a. The single-peak spectrum was
broadened at low temperatures, and a clearly resolved two-peak structure was observed at
1.6 K. We determined the NMR shift δ from the peak positions and display the temperature
dependence of the NMR shift for each peak in Figure 6a. The peak splitting was observed
below 8.5 K both at 15 T and 8 T. This peak splitting cannot be explained by the effects of a
superconducting transition, because Tc is suppressed to 3 K at 15 T. Only a barely resolved
kink in the NMR shift was observed at Tc. It is clear that the temperature variation of δ and
the peak splitting in units of parts per million (ppm) are identical between 8 and 15 T. The
field-independent peak separation confirms that electron spins are in the paramagnetic
state and have polarization proportional to the external magnetic field. This indicates
the absence of a spontaneous internal field, which could have been generated by some
field-independent magnetic ordering. We identified that the transition at 8.5 K is the order
in the charge degrees of freedom, in which the molecular site charges deviate from the
formal value of 0.5e. We assigned the broad and the sharp peak as the NMR signal from the
charge-rich (R) and charge poor (P) sites, respectively, according to the discussion given
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later. The peak separation is related to the charge imbalance between the R and P sites and
is proportional to the order parameter of the charge-ordered state.

(a) (b)

''-ET-Ga/PhNO TCO

Figure 6. (a) Temperature dependence of the NMR shift at 15 T and 8 T [48]. The vertical axis is
the peak shift from tetramethylsilane (TMS). The field-independent peak separation at the lowest
temperature indicates the absence of any fixed internal field that could be associated with a magnetic
transition. Inset shows 13C-NMR spectra at various temperatures. The peak splitting starts below 8 K,
and a clearly split two-peak structure was observed at 1.6 K. The ratio of the integrated area between
the sharp (cyan) and broad (orange) peaks was evaluated as 0.4:1. (b) Temperature dependences
of 1/T1T measured at 3.6 and 7 T [47]. The peaks at TCO were found in both fields, suggesting
unconventional electronic state affected by long-range electron-electron correlations.

The dynamical properties of electrons associated with the charge ordering transition
are investigated by measuring the nuclear spin-lattice relaxation rate 1/T1 at 3.6 and 7 T [47].
As shown in Figure 6b, 1/T1T increases with decreasing temperature, forming a peak at
TCO. In general, 1/T1T is proportional to the square of the density of states in the Fermi
liquid state and is temperature independent. The temperature dependence of 1/T1T is
introduced by the enhanced magnetic fluctuations in the vicinity of magnetic criticality.
For charge ordering β′′-Ga/PhNO2, however, weak magnetic fluctuations cannot induce a
strong temperature dependence in 1/T1T. Charge fluctuations should be enhanced around
TCO, but they are not directly coupled with 13C nuclear spins, because 13C nuclei with
a nuclear spin I = 1/2 do not carry an electric quadrupole moment, which can interact
with charge fluctuations and cause relaxation of nuclear magnetization. The coupling
between charge and magnetic fluctuations is required to increase 1/T1T at TCO. One
possible interpretation is that the fluctuations in local spin density, which are generated
by charge density fluctuations, create fluctuating hyperfine fields at the 13C site. Direct
observation of charge fluctuations by quadrupolar nuclear spins is desired to reveal the
mechanisms of spin-charge coupling.

Below TCO, the Fermi liquid behavior in 1/T1T is absent until the superconducting
state emerges. The non-Fermi liquid behavior is consistent with the semiconducting resistiv-
ity at the corresponding temperature range just above Tc. Because 1/T1T decreases below
TCO following a power-law close to T2, a clear anomaly associated with a superconducting
transition was not observed at Tc. The temperature dependence of quasi particle density of
states is more clearly observed from the heat capacity measurement (Section 8) [45].

The NMR intensity is proportional to the number of 13C nuclei on the molecular
sites. In the charge-ordered state, if the number of R sites were equal to that of P sites
(PR pattern), the NMR intensity of the narrow peak would be comparable to that of the
broad peak. However, as shown in the inset of Figure 6a, the intensity ratio between the
peaks was 0.4:1, which indicates that there are at least twice as many R sites as P sites in
the charge-ordered state (PRR pattern) [48]. The crystal structure of the β′′-Ga/PhNO2 salt
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consists of two crystallographically independent BEDT-TTF molecules, each of which forms
a pair with another molecule connected by inversion symmetry. The simplest PR charge
pattern can be attributed to the inversion symmetry breaking between a pair of BEDT-TTF
molecules. The experimentally suggested PRR pattern addresses a more complicated
charge pattern, possibly originating from the competition between the long and short range
Coulomb interactions, which will be discussed later.

The large charge modulation was confirmed by the field angle dependence of NMR
spectra at the lowest temperature [48]. The angle dependence of the NMR shift originates
from the anisotropic dipolar Knight shift from π electrons and from the anisotropy of
the chemical shift. The Knight (chemical) shift becomes maximum (minimum) when the
external field is along the long axis of the π orbital, which is perpendicular to the BEDT-
TTF molecular plane. To obtain the pure Knight shift contribution, the chemical shift
contribution should be subtracted from the total NMR shift using a chemical shift tensor
for BEDT-TTF molecules [49,50]. In Figure 7a, the Knight shift is plotted as a function of the
angle between the field and the normal to the molecular plane. The amplitude of this angle
dependence is proportional to the spin density in the π orbital. The contrasting behavior
for the two independent sites confirms that the site charge is strongly modified from the
formal value (0.5e). In particular, a very weak angle dependence for the P sites indicates
that they possess a small site charge.

(b) (c)

3 fold stripe Honeycomb

(a)

''-Ga/PhNO2

Figure 7. (a) Field direction dependence of Knight shift [48]. The field direction is defined with
respect to the molecular long axis. The large amplitude for R sites indicates rich charge filling to the
BEDT-TTF π orbital. (b,c) Schematic images of charge patterns in the conducting plane. The yellow
balls on BEDT-TTF molecules indicate charge-rich (R) sites. The vertical P-R-R pattern can be aligned
horizontally to make stripes (b), or shifted by one site to form a honeycomb structure (c).

Now we discuss a possible charge pattern in the ordered state. The NMR intensity ratio
between the R and P sites suggests a PRR structure. In the two-dimensional conducting
plane, we can assume PRR stripe and honeycomb structures, as shown in Figure 7b,c. The
possibility of interlayer charge ordering was excluded because of the large energy cost for a
charge-rich plane. To get insight into the energetic stability of the structure, we calculated
the average Coulomb potential (per site) between neighboring BEDT-TTF sites, by placing
point charges on molecular sites,

E(q) =
e2

2πε0
〈r−1〉

(
1 − Zq2

)
, (1)

where 〈r−1〉 = 1/8 ∑ r−1
i is the average of the inverse intermolecular distance over eight

neighboring BEDT-TTF sites, and qe is the charge deviation of the P site from 0.5e [48].
The coefficient Z, which depends on the charge pattern, is calculated to be 0.21 and 0.41
for the PRR stripe and honeycomb structures, respectively. The larger Z value for the
honeycomb structure suggests that the honeycomb structure is energetically more stable,
and is thus expected to be realized. In terms of the nearest-neighbor Coulomb potential,
however, the conventional PR stripe structure with equal P and R sites should be the most
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stable charge pattern, whereas this possibility is excluded by our NMR data. It is thus
clear that other interactions should be taken into account. From theoretical studies on other
BEDT-TTF salts with θ-type molecular packing, we learn that the PRR charge pattern can be
stabilized in a wide parameter range in the static limit of the extended Hubbard model [51].
The exotic charge pattern appears in a θ-type structure, because the in-plane structure is
closer to the triangular than to the square lattice. Considering the in-plane structure of
β′′-Ga/PhNO2 salt to be a squeezed triangular lattice, the exotic charge pattern can be
induced by the competition between the off-site and the on-site Coulomb interactions. As in
β′′-Ga/PhNO2 salt, the charge ordering transition occurs in a metallic state, the effect of the
transfer integral should certainly be taken into account [52] to explain the charge pattern
and understand the superconducting pairing mechanism inside the charge ordered state.

7. EPR Measurement to Detect SC/CO Coexistence

NMR spectroscopy is one of the most powerful techniques to investigate the electronic
state from a microscopic viewpoint. However, because of an insufficient spectrum resolu-
tion [inset of Figure 6a], we were not able to exclude the possibility of phase segregation. As
an alternative probe, the electron paramagnetic resonance (EPR) experiment was performed
by our group [53].

The EPR signal in β′′-Ga/PhNO2 salt originates from the π electrons in the highest oc-
cupied molecular orbital of the BEDT-TTF molecules. We succeeded in detecting the charge
anomaly on the clearly resolved EPR spectrum by taking advantage of the anisotropy of g
factors and the bilayer crystal structure of β′′-Ga/PhNO2 salt. Thus, the EPR experiment
allows us to observe the phase segregation, if any, as an additional component of the EPR
spectrum. The present results, which are explained by a single EPR contribution at any
temperature, clearly evidence a uniform coexistence between the superconducting and
charge ordering states.

We measured the temperature dependence of the EPR spectrum in the field applied
parallel to the b axis (b-axis field) and to the direction 45◦ rotated from the b axis (45◦ field).
In the 45◦ field, Tc is suppressed below 3 K by a field of approximately 300 mT. At the
lowest temperature in the 45◦ field, a two-peak EPR spectrum was observed, as shown
in Figure 8b. With increasing temperature, the peak separation becomes small, and a
single peak was observed at temperatures higher than 8.5 K. We found a trace of the
two-peak structure at 8 K as the wiggle around the center of the spectrum at 344.4 mT.
Therefore, the peak positions were determined by the two-peak Lorentzian fit for the
spectra below 8 K [solid symbols in Figure 8c] and by the single-peak Lorentzian fit above
8.5 K [open symbols in Figure 8c]. The abrupt increase in the peak separation below
8 K clearly evidences a phase transition. This anomaly agrees with the charge ordering
transition at TCO = 8.5 K determined from the ultrasonic [45] (Section 5) and 13C-NMR
measurements [47,48] (Section 6) . The origin of the EPR peak splitting associated with
charge ordering is discussed in Ref. [53].

As the charge ordering anomaly is successfully observed in the EPR spectrum, we
compare the EPR spectra in the b-axis and 45◦ fields to unveil the relationship between
the charge ordering and superconducting states. Typical EPR spectra for b-axis fields are
presented in Figure 8a. In the b-axis field of 345 mT, Tc does not change because of the
extremely high upper critical field (Bc2 > 30 T). The effect of the superconducting transition
was observed in the EPR spectrum as a reduction of the integrated intensity below 7 K
[Figure 8d]. Such a decrease in intensity was not observed in the 45◦ field, because Tc
is suppressed below 3 K. This result confirms that the electronic spins that would show
superconductivity in zero field contribute to the EPR intensity when superconductivity is
suppressed by the 45◦ field. Thus, if the superconducting part of the sample did not show
the charge ordering transition, which is the case for the macroscopic phase segregation, an
additional EPR peak originating from the electrons in a normal metallic state should be
observed at the center of the two-peak spectrum. However, such an extra contribution was
not observed at the lowest temperature of 3.6 K, as shown at the bottom of Figure 8b. The
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clear two-peak spectrum in the 45◦ field allows us to conclude that the superconducting
state coexists uniformly with the charge ordered state. We note that the EPR intensity
decreases gradually below Tc in the b-axis field, and finite intensity remains even at 3.6 K.
This behavior contrasts with the conventional behavior expected for a homogeneous super-
conducting state, in which EPR signal should disappear. The EPR in the superconducting
state may originate from the nearly localized electrons in the charge ordered state, for
instance, the pin site in the pinball liquid state [54–56].

(a) (b)

(d)

(c)''-Ga/PhNO
bH

''-Ga/PhNO
b45 fromH

o
2 ''-Ga/PhNO

b45 fromH
o

22

Figure 8. Temperature dependence of EPR spectra in b-axis field (a) and 45◦ field (b) [53]. No
spectrum splitting was observed in b-axis field, whereas clear spectrum splitting was observed in
45◦ field below TCO = 8.5 K. The EPR intensity decreases in b-axis field below Tc � 7 K, but finite
intensity was observed even at 4 K. (c) EPR peak position for 45◦ field determined by Lorentzian fit.
(d) Temperature dependence of EPR intensity normalized at 12 K.

8. Gap Symmetry of the Charge-Fluctuation-Mediated Superconductivity

In the previous sections, we understand the properties of the charge ordering, and
that superconductivity emerges from the charge ordered state. Proximity of these transi-
tion temperatures implies that superconductivity is mediated by the charge fluctuations;
nevertheless, we need to know the exact nature of the superconducting state itself for the
direct determination of the pairing mechanism of superconductivity. The superconduct-
ing gap function is one of the most important pieces of information for discussing the
pairing mechanism. Heat capacity measurement, sensitive to low-energy excitations, is
a powerful method that can scrutinize this through temperature, field, and field-angle
dependence [57–60].

Figure 9a shows the low-temperature heat capacity in various fields measured by our
group [45]. The zero-field data indicate that the finite intercept, which corresponds to the
residual electronic heat capacity, exists. This means that the electronic state is inhomo-
geneous even at 0 T. Considering the cleanness of the electronic state confirmed by the
SdH oscillation, the coexistence with the normal state should be an intrinsic characteristic,
which is consistent with the results of the previous NMR [47,48] and EPR studies [53]
discussed in Sections 6 and 7. With increasing field, the electronic heat capacity is recovered
because of the suppression of superconductivity. As this field-dependent contribution
relates to superconductivity, we here plot the superconducting electronic heat capacity Csc,
subtracting the lattice heat capacity and residual electronic component as a function of
reduced temperature T/Tc in Figure 9b. The low-temperature Csc exhibits neither T2 nor T3

dependence (dashed lines) observed in nodal superconductors, such as the κ-type organic
superconductors, but is well reproduced by the solid curve for the anisotropic full-gapped
model using Δ0[1 + Acos(4φ)]1/2, where Δ0 = 2.5kBTc [61] and A = 0.64 (Δmax/Δmin∼2.2).
Magnetic-field dependence of Cp [45] agrees with the full-gapped model because of the ob-
servation of H-linear behavior at low fields. Thus, the superconducting state of Ga/PhNO2
should be fully gapped.
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Figure 9. (a) Low-temperature heat capacity in various magnetic fields plotted as Cp/T vs. T2 [45].
(b) Electronic heat capacity related to the superconductivity Csc at 0 T. The dashed line represents
T-squared relation, and the solid curve is a calculation for the anisotropic s-wave superconductivity
using the gap function Δ0[1 + Acos(4φ)]1/2. (c) In-plane angle-resolved heat capacity in a field of
0.5 T rotated from the a axis (0◦) to the b axis (90◦). (d) Temperature dependence of the fourfold term
C4/T. The inset is a schematic illustration of the anisotropic s-wave gap.

To deepen the understanding of the gap symmetry in more detail, in Figure 9c we
present the in-plane field-angle dependence of heat capacity in a field of 0.5 T [45]. The angu-
lar dependence is simply described by the equation, Cp/T = [C0 + C2cos(2φ) + C4cos(4φ)]/T
(solid curve). Taking account of the twofold rotational symmetry of the crystal struc-
ture [23], it is natural that the anisotropy of the Fermi velocity yields the twofold compo-
nent C2cos(2φ). As the crystal structure does not have the fourfold symmetry, the fourfold
term C4cos(4φ) should reflect the anisotropic part of the gap function. Hence, to shed
light on the fourfold component, we present the temperature dependence of C4/T in
Figure 9d. The negative values mean that the minima of the fourfold term are located
in the directions of the crystal axes. Such a fourfold periodic term is often observed in
d-wave superconductivity according to the anisotropy of the gap function with four gap
nodes. The correspondence between the angle-resolved heat capacity and the anisotropy of
the gap function has been theoretically and experimentally verified [57–59]. Based on the
zero-energy Doppler effect, the gap-node positions can be determined by the sign of C4/T
in a low-energy limit. However, in the present case, the fourfold component disappears at
low temperatures. This disappearance is the feature of the anisotropic s-wave gap because
the finite gap minima prohibit the quasiparticle excitations by the zero-energy Doppler
effect [57]. This result also suggests that the present superconductivity is fully gapped,
albeit anisotropically.

The full-gap superconductivity is distinct from the well-known dimer-Mott type
organic superconductivity exhibiting d-wave symmetry with line nodes [60]. For the dimer-
Mott system, the superconductivity is mediated by antiferromagnetic spin fluctuations,
which originate from the strong on-site Coulomb repulsion U. Naturally, the on-site
pairing is disadvantageous when utilizing U as an attractive force for the Cooper pairing,
and the gap function must have nodes that render the sign of the gap function reverse.
Similar to the dimer-Mott system, even for the quarter-filled system including the β′′-phase,
d-wave symmetry is favored by spin fluctuations when U is sufficiently stronger than
V [62]. However, with increasing V, the pairing around (π,π) in the momentum space is
suppressed [62], and the on-site pairing interaction becomes more advantageous to reduce
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the Coulomb repulsion between the nearest neighbor sites and the second nearest neighbor
sites. Note the emergent gap symmetry strongly depends on the lattice geometry [62–64];
however, the charge fluctuations should facilitate the on-site pairing. Although there is no
specific theoretical prediction for Ga/PhNO2, the anisotropic s-wave gap function does
not contradict the scenario that superconductivity in Ga/PhNO2 arises from the charge
fluctuations. To verify this picture, further detailed theoretical research is desirable in
the future.

9. Summary

We have reviewed the experimental studies to explore the electronic properties of
the organic superconductor with β′′-type molecular arrangement. Among various combi-
nations between metallic ions M and guest molecules G, Ga/PhNO2 was found to show
a remarkable electronic state, in which high superconducting transition sets in at a tem-
perature very close to the charge ordering transition (Section 2). At the charge ordering
transition, 13C-NMR experiments revealed that the local site charge at each BEDT-TTF
molecule deviates from their average value of 0.5e (Section 6). Associated with this charge
order, the Fermi surface is deformed, as evidenced from the magnetoresistance experiment
(Section 4). This is the smoking gun evidence for the charge ordering on the metallic
background, which can maintain high conductivity even with a partial carrier localization.
It is noteworthy that the EPR measurement suggests a uniform electronic state, excluding a
possibility of phase segregation between the charge ordered insulator and metallic parts of
the sample (Section 7).

At the charge ordering temperature, softening of crystal lattice was observed from
the ultrasonic experiment (Section 5). 13C-NMR measurement also detected an increase
in the low-energy fluctuations in the temperature dependence of 1/T1T (Section 6). As
the peak in the temperature dependence of ultrasonic attenuation and 1/T1T appears at a
temperature very close to the superconducting transition temperature, one would naturally
speculate that the low-energy fluctuations introduced near the charge criticality assists the
superconducting pairing interaction.

The superconducting state was investigated by heat capacity measurements (Section 8).
The temperature dependence and field direction dependence of Cp suggest an anisotropic
s-wave superconducting state. This superconducting gap symmetry is preferable for the
charge-fluctuation-induced superconductivity. However, to identify the novel supercon-
ducting mechanism in β′′-Ga/PhNO2 and to uncover the effect of charge fluctuations on
superconductivity, further studies from both theory and experiments are required.
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5. Wu, T.; Myaffre, H.; Krämer, S.; Hovratić, M.; Berthier, C.; Hardy, W.N.; Liang, R.; Bonn, D.A.; Julien, M.-H. Magnetic-Field-
Induced Charge-Stripe Order in the High-Temperature Superconductor YBa2Cu3Oy. Nature 2011, 477, 191–194. [CrossRef]

6. Croft, T. P.; Lester, C.; Senn, M.S.; Bombardi, A.; Hayden, S.M. Charge Density Wave Fluctuations in La2−xSrxCuO4 and their
Competition with Superconductivity. Phys. Rev. B 2014, 89, 224513. [CrossRef]

7. Ortiz, B.R.; Gomes, L.C.; Morey, J.R.; Winiarski, M.; Bordelon, M.; Mangum, J.S.; Oswald, I.; W.H.; Rodriguez-Rivera, J.A.; Neilson,
J.S.; Wilson, S.D.; et al. New Kagome Prototype Materials; Discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 2019,
3, 094407. [CrossRef]

8. Ortiz, B.R.; Teicher, S.M.L.; Hu, Y.; Zuo, J.L.; Sarte, P.M.; Schueller, E.C.; Abeykoon, A.M.M.; Krogstad, M.J.; Rosenkranz, S.;
Osborn, R.; et al. CsV3Sb5; A Z2 Topological Kagome Metal with a Superconducting Ground State. Phys. Rev. Lett. 2020,
125, 247002. [CrossRef]

9. Liang, Z.; Hou, X.; Zhang, F.; Ma, W.; Wu, P.; Zhang, Z.; Yu, F.; Ying, J.-J.; Jiang, K.; Shan, L.; et al. Three-Dimensional Charge
Density Wave and Surface-Dependent Vortex-Core States in a Kagome Superconductor CsV3Sb5. Phys. Rev. X 2021, 11, 031026.
[CrossRef]

10. Holmes, A. T.; Jaccard, D.; Miyake, K. Signatures of Valence Fluctuations in CeCu2Si2 under high pressure. Phys. Rev. B 2004,
69, 024508. [CrossRef]

11. Kobayashi, H.; Kato, R.; Kobayashi, A.; Nishio, Y.; Kajita, K.; Sasaki, W. A New Molecular Superconductor, (BEDT-
TTF)2(I3)1−x(AuI2)x (x < 0.02). Chem. Lett. 1986, 15, 789.

12. Mori, T.; Inokuchi, H. Superconductivity in (BEDT-TTF)3Cl22H2O. Solid. State Commun. 1987, 64, 335. [CrossRef]
13. Lubczynski, W.; Demishev, S.V.; Singleton, J.; Caulfield, J.M.; du Croo de Jongh, L.; Kepert, C.J.; Blundell, S.J.; Hayer, W.; Kurmoo,

M.; Day, P. A Study of the Magnetoresistance of the Charge-Transfer Salt (BEDT-TTF)3Cl2 · 2H2O at Hydrostatic Pressures of upt
20 kbar: Evidence for a Charge-Density-Wave Ground State and the Observation of Pressure-Induced Superconductivity. J. Phys.
Condens. Matter 1996, 8, 6005. [CrossRef]

14. Mori, H.; Tanaka, S.; Mori, T.; Kobayashi, A.; Kobayashi, H. Crystal Structure and Physical Properties of M = Rb and Tl Salts of
(BEDT-TTF)2 MM′(SCN)4 [M′ = Co, Zn]. Bull. Chem. Soc. Jpn. 1998, 71, 797. [CrossRef]

15. Miyagawa, K.; Kawamoto, A.; Kanoda, K. Charge Ordering in a Quasi-Two-Dimensional Organic Conductor. Phys. Rev. B 2000,
62, R7679. [CrossRef]

16. Maesato, M.; Kaga, Y.; Kondo, R.; Kagoshima, S. Control of Electronic Properties of α-(BEDT-TTF)2 MHg(SCN)4 (M = K, NH4) by
the Uniaxial Strain Method. Phys. Rev. B 2001, 64, 155104. [CrossRef]

17. Takano, Y.; Hiraki, K.; Yamamoto, H. M.; Nakamura, T.; Takahashi, T.; Charge Ordering in α-(BEDT-TTF)2I3. Synth. Met. 2001,
120, 1081. [CrossRef]

18. Nishikawa, H.; Sato, Y.; Kikuchi, K.; Kodama, T.; Ikemoto, I.; Yamada, J.; Oshio, H.; Kondo, R.; Kagoshima, S. Charge Ordering
and Pressure-Induced Superconductivity in β′′-(DODHT)2PF6. Phys. Rev. B 2005, 72, 052510. [CrossRef]

19. Morinaka, N.; Takahashi, K.; Chiba, R.; Yoshikane, F.; Niizeki, S.; Tanaka, M.; Yakushi, K.; Koeda, M.; Hedo, M.; Fujiwara, T.; et al.
Superconductivity Competitive with Checkerboard-Type Charge Ordering in the Organic Conductor β-(meso-DMBEDT-TTF)2PF6.
Phys. Rev. B 2009, 80, 092508. [CrossRef]

20. Ishiguro, T.; Yamaji, K.; Saito, G. Organic Superconductors; Springer:Berlin/Heidelberg, Germany, 1998.
21. Mori, H.; Tanaka, S.; Mori, T. Systematic Study of the Electronic State in θ-type BEDT-TTF Organic Conductors by Changing the

Electronic Correlation. Phys. Rev. B 1998, 57, 12023. [CrossRef]
22. Nogami, Y.; Pouget, J.-P.; Watanabe, M.; Oshima, K.; Mori, H.; Tanaka, S.; Mori, T. Structural Modulation in θ-(BEDT-

TTF)2CsM′(SCN)4 [M′ = Co, Zn]. Synth. Met. 1999, 103, 1911. [CrossRef]
23. Akutsu, H.; Akutsu-Sato, A.; Turner, S.S.; Le Pevelen, D.; Day, P. Laukhin, V.; Klehe, A.-K.; Singleton, J.; Tocher, D.; Probert, M.R.;

et al. Effect of Included Guest Molecules on the Normal State Conductivity and Superconductivity of β′′-(ET)4[(H3O)Ga(C2O4)3]G
(G = Pyridine, Nitrobenzene). J. Am. Chem. Soc. 2002, 124, 12430–12431. [CrossRef]

24. Kurmoo, M.; Graham, A.W.; Day, P.; Coles, S.J.; Hursthouse, M.B.; Caulfield, J.L.; Singleton, J.; Pratt, F.L.; Hayes, W.; Ducasse, L.;
et al. Superconducting and Semiconducting Magnetic Charge Transfer Salts: (BEDT-TTF)4 AFe(C2O4)3·C6H5CN (A=H2O, K,
NH4). J. Am. Chem. Soc. 1995, 117, 12209–12217. [CrossRef]

25. Blundell,T.J.; Brannan,M.; Mburu-Newman, J.; Akutsu, H.; Nakazawa, Y.; Imajo, S.; Martin, L. First Molecular Superconductor
with the Tris(Oxalato)Aluminate Anion, β′′-(BEDT-TTF)4(H3O)Al(C2O4)3·C6H5Br, and Isostructural Tris(Oxalato)Cobaltate and
Tris(Oxalato)Ruthenate Radical Cation Salts. Magnetochemistry 2021, 7, 90. [CrossRef]

26. Martin, L. Molecular conductors of BEDT-TTF with tris(oxalato)metallate anions. Coord. Chem. Rev. 2018, 376, 277–291. [CrossRef]
27. Martin, L.; Turner, S.S.; Day, P.; Guionneau, P.; Howard, J.A.K.; Hibbs, D.E.; Light, M.E.; Hursthouse, M.B.; Uruichi, M.; Yakushi,

K. Crystal Chemistry and Physical Properties of Superconducting and Semiconducting Charge Transfer Salts of the Type (BEDT-
TTF)4[AIMIII(C2O4)3]PhCN (AI = H3O, NH4, K.; MIII = Cr, Fe, Co, Al; BEDT-TTF = Bis(ethylenedithio)tetrathiafulvalene). Inorg.
Chem. 2001, 40, 1363–1371. [CrossRef] [PubMed]

28. Martin, L.; Morritt, A.L.; Lopez, J.R.; Nakazawa, Y.; Akutsu, H.; Imajo, S.; Ihara, Y.; Zhang, B.; Zhange, Y.; Guof, Y. Molecular
conductors from bis(ethylenedithio)tetrathiafulvalene with tris(oxalato)rhodate. Dalton Trans. 2017, 46, 9542–9548. [CrossRef]

29. Akutsu, H.; Akutsu-Sato, A.; Turner, S.S.; Day, P.; Canadell, E.; Firth, S.; Clark, R.J.H.; Yamada, J.-I.; Nakatsuji, S. Superstructures
of donor packing arrangements in a series of molecular charge transfer salts. Chem. Commun. 2004, 18–19. [CrossRef]

153



Crystals 2022, 12, 711

30. Martin, L.; Morritt, A.L.; Lopez, J.R.; Akutsu, H.; Nakazawa, Y.; Imajo, S.; Ihara, Y. Ambient-pressure molecular superconductor
with a superlattice containing layers of tris(oxalato)rhodate enantiomers and 18-crown-6. Inorg. Chem. 2017, 56, 717–720.
[CrossRef]

31. Martin, L.; Lopez, J.R.; Akutsu, H.; Nakazawa, Y.; Imajo, S. Bulk Kosterlitz–Thouless Type Molecular Superconductor β′′-(BEDT-
TTF)2[(H2O)(NH4)2Cr(C2O4)3]18-crown-6. Inorg. Chem. 2017, 56, 14045–14052. [CrossRef]

32. Morritt, A.L.; Lopez, J.R.; Blundell, T.; Canadell, E.; Akutsu, H.; Nakazawa, Y.; Imajo, S.; Martin, L. 2D Molecular Superconductor
to Insulator Transition in the β′′-(BEDT-TTF)2[(H2O)(NH4)2 M(C2O4)3]18-crown-6 Series (M = Rh, Cr, Ru, Ir). Inorg. Chem. 2019,
58, 10656–10664. [CrossRef]

33. Akutsu-Sato, A.; Turner, S.S.; Akutsu, H.; Yamada, J.; Nakatsuji, S.; Day, P. Suppression of superconductivity in a molecular
charge transfer salt by changing guest molecule: β′′-(BEDT-TTF)4[(H3O)Fe(C2O4)3](C6H5CN)x(C5H5N)1−x. J. Mater. Chem. 2007,
17, 2497–2499. [CrossRef]

34. Prokhorova, T.G.; Buravov, L.I.; Yagubskii, E.B.; Zorina, L.V.; Khasanov, S.S.; Simonov, S.V.; Shibaeva, R.P.; Korobenko, A.V.;
Zverev, V.N. Effect of electrocrystallization medium on quality, structural features, and conducting properties of single crystals of
the (BEDT-TTF)4AI[FeIII(C2O4)3]·G family. CrystEngComm 2011, 13, 537. [CrossRef]
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Abstract: Among transition metal oxides, manganites have attracted significant attention because
of colossal magnetoresistance (CMR)—a magnetic field-induced metal–insulator transition close
to the Curie temperature. CMR is closely related to the ferromagnetic (FM) metallic phase which
strongly competes with the antiferromagnetic (AFM) charge ordered (CO) phase, where conducting
electrons localize and create a long range order giving rise to insulator-like behavior. One of the
major open questions in manganites is the exact origin of this insulating behavior. Here we report a
dc resistivity and magnetization study on manganite La1−xCaxMnO3 ceramic samples with different
grain size, at the very boundary between CO/AFM insulating and FM metallic phases x = 0.5.
Clear signatures of variable range hopping (VRH) are discerned in resistivity, implying the disorder-
induced (Anderson) localization of conducting electrons. A significant increase of disorder associated
with the reduction in grain size, however, pushes the system in the opposite direction from the
Anderson localization scenario, resulting in a drastic decrease of resistivity, collapse of the VRH,
suppression of the CO/AFM phase and growth of an FM contribution. These contradictory results
are interpreted within the standard core-shell model and recent theories of Anderson localization of
interacting particles.

Keywords: manganites; colossal magnetoresistance; metal–insulator transition; charge order; grain
size; variable range hopping; Anderson localization; core–shell model

1. Introduction

In contrast to conventional materials, valence electrons of transition metal oxides
are strongly correlated, giving rise to exotic ordered states such as the Mott insulator,
spin density waves, charge order, etc. [1]. Very often, a single material can host more
than one of these states, as well as some conventional phases, which can either coexist or
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be transformed from one into the other by changing temperature, pressure, doping, or
magnetic field. One of the most intriguing is the transition between an insulating and a
metallic phase, the two phases so dissimilar that they may be considered as fundamental
states of condensed matter. It is therefore not surprising that the transition metal oxides
have attracted a lot of attention and are at the heart of condensed matter physics.

Among transition metal oxides, the family of manganese oxides, widely known as
manganites, today plays a prominent role within the field of strongly correlated electron
systems. Although synthesized in 1950 [2], a major interest for manganites started only
in 1994 with the discovery of colossal magnetoresistance (CMR)—a transition close to the
Curie point from an insulating to a metallic state caused by a magnetic field [3,4]. For
general reviews, see Refs. [5–8].

Manganites can be described by a general formula R1−x AxMnO3, where R stands for a
trivalent rare earth or Bi3+ cation and A for a divalent alkaline earth or Pb2+ cation. Substi-
tuting R for A results in the realization of many different ordered states, i.e., in rich phase
diagrams. The conventional phase diagram of the titular compound La1−xCaxMnO3 [9] is
shown in Figure 1a. The left part is dominated by a ferromagnetic (FM) ground state which
is metallic (0.2 � x < 0.5), and the right part is dominated by an antiferromagnetic (AFM)
charge-ordered (CO) ground state which is insulating (0.5 < x � 0.9), indicating a close rela-
tionship between magnetic and transport properties. At high temperatures, La1−xCaxMnO3
is in a paramagnetic (PM) insulating state for all x. The previously mentioned CMR is tied
to the FM metallic part of the phase diagram.

Figure 1. (a) Conventional phase diagram of La1−xCaxMnO3. PMI stands for a paramagnetic
insulating phase, FMM for a ferromagnetic metallic, COI for a charge-ordered insulating, AFM for an
antiferromagnetic, FMI for a ferromagnetic insulating and CAFMI for a canted antiferromagnetic
insulating state. This figure is based on data from Ref. [9]. (b) Splitting of the Mn 3d levels into eg

and t2g orbitals by crystal field and Jahn–Teller distortion.

La1−xCaxMnO3 should crystallize in the ideal cubic perovskite crystal structure with
an Mn atom in the center of the cube, La or Ca atoms at the corners of the cube and O
atoms positioned in the center of each cube face. In this way, each Mn atom is octahedrally
surrounded by six O atoms. In reality, however, the perovskite structure of La1−xCaxMnO3
is distorted, first due to different size of atoms and the pores which they occupy and
second due to the Jahn–Teller effect, which leads to the less symmetric orthorhombic crystal
structure.

According to simple stoichiometry, pure LaMnO3 (x = 0) contains La3+, Mn3+ and
O2−, while pure CaMnO3 (x = 1) contains Ca2+, Mn4+ and O2−. Density functional theory
(DFT) studies [10,11] show that electronic properties of LaMnO3 and CaMnO3 are mostly
determined by Mn3+ and Mn4+, respectively, the only ions with open shells. Mn 3d orbitals
are split by the oxygen octahedral field into three t2g orbitals with lower energy (dxy, dyz
and dxz) and two eg orbitals with higher energy (dx2−y2 and dz2 ) as shown in Figure 1b. The
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deformation of the MnO6 octahedron caused by the Jahn–Teller effect leads to an additional
splitting of Mn3+ eg orbitals into a higher energy dx2−y2 and a lower energy dz2 orbital.
Mn4+ has three electrons which occupy only the t2g orbitals, while Mn3+ has one more
electron which occupies one of the two eg orbitals. Due to the Hund coupling, the spins of
all electrons are parallel, and each electron occupies a separate orbital, which explains why
pure LaMnO3 and CaMnO3 are magnetic and insulating.

Substituting La3+ for Ca2+ introduces the mixed valence state Mn3+/Mn4+, which
opens a conduction channel in La1−xCaxMnO3 via hopping of eg electron between Mn3+

and Mn4+. It is therefore useful to distinguish the conducting eg electrons responsible
for charge transport from the core t2g electrons that give rise to a magnetic moment of
Mn3+ and Mn4+ (see Figure 1b). Due to the Hund interaction, the hopping of conducting
electrons depends on the angle between the magnetic moments of Mn3+ and Mn4+ and
is maximal (minimal) when the moments are parallel (antiparallel). The effective hopping
integral may therefore be written as t = tmaxcos(θ/2), where tmax is the maximal value
and θ the angle between the moments. This, the so called double exchange mechanism
[12–14], qualitatively captures the essential features of the La1−xCaxMnO3 phase diagram
in Figure 1a: the metallic behavior of the FM phase (θ = 0, t = tmax), the insulating behavior
of the AFM phase (θ = π, t = 0), and CMR (θ changes in field).

There are several more interactions that govern the physics of manganites. Namely,
since an Mn3+ octahedron is distorted due to the Jahn–Teller effect, while Mn4+ is not,
each hop of an eg electron from Mn3+ to Mn4+ must be accompanied by a change of local
octahedron. Such a strong electron–lattice coupling competes with electron delocalization
and is believed to give rise to insulating polaron conduction in the PM state at high
temperatures [15–20]. Charge ordering, i.e., a periodic arrangement of Mn3+ and Mn4+,
points towards localization of eg electrons due to the nearest-neighbor Coulomb and/or
Jahn–Teller interaction [21–27], which induces the periodic arrangement of eg dz2 orbitals as
well [9,24,28,29]. Finally, there is a superexchange interaction between neighboring core t2g
electrons that favors AFM alignment of the Mn magnetic moments and directly competes
with the FM double exchange [30–33].

The transport and magnetic properties of La1−xCaxMnO3 therefore depend on the fine
interplay between the interactions that favor electron delocalization with ferromagnetism
and those that favor electron localization with antiferromagnetism. The vast majority of
theoretical models are focused on CMR, the FM metallic and the PM insulating state. They
can be divided into models based on (i) double exchange, (ii) Anderson localization, and
(iii) polarons (see Refs. [34,35]). To date, however, none of these have been successful to
quantitatively capture the CMR and to fully explain the origin of the PM insulating state.

At present, it is believed that the key for understanding the manganites is phase
separation on the nanoscale [35–38]—the coexistence of nanometer-size spatial regions, i.e.,
nanoclusters, with different electronic orders. In such a scenario, close to the boundary
between the FM metallic and the PM or CO/AFM insulating phase, the system consists of
FM nanoclusters embedded in a PM or CO/AFM matrix. Based on the double exchange, eg
electrons can move only within the FM nanoclusters with magnetization oriented parallel
to the eg spin. Easy alignment and/or growth of the FM nanoclusters in a magnetic field
then leads to a large increase in conductivity and eventually to metallic conduction, i.e.,
to CMR. The CMR and metal–insulator transitions in manganites are therefore thought
to rely on cluster-dynamics, rather than on the dynamics of atomic magnetic moments.
Indeed, theories based on small FM clusters of randomly oriented magnetizations seem to
provide a considerable improvement in our understanding of the CMR and the associated
FM metallic state [39–44]. The origin of the insulating behavior in the PM and CO/AFM
phases, however, still remains unresolved.

To gain insight into the origin of the insulating behavior in manganites, we recently
focused on the poorly explored insulating CO/AFM part of the phase diagram x > 0.5
(Figure 1a). Our study on La1−xCaxMnO3 thin films indicated that dc resistivity follows the
Mott three-dimensional (3D) variable-range-hopping(VRH) mechanism, which implies the
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crucial role of structural disorder in driving the insulating behavior through the Anderson
localization of conducting eg electrons [45]. To further explore these ideas, here we conduct a
dc transport and magnetization study on polycrystalline (ceramic) La1−xCaxMnO3 samples,
where the level of structural disorder can be controlled by the grain size. We focus on
the very boundary between the FM metallic and CO/AFM insulating phases x = 0.5,
where the grain size is known to have a large impact on the stability of the CO/AFM
phase [46–52]. Our results show the presence of the 3D VRH in accordance with the thin
film study [45] and the coexistence of both FM and CO/AFM phases. Reducing the grain
size leads to the suppression of the CO/AFM state and a growth of the FM contribution.
The accompanying increase in structural disorder surprisingly induces a disappearance
of the VRH and pushes the system towards the metallic state, which is opposite to the
Anderson localization. Such counter-intuitive behavior is discussed here in light of the
standard core-shell model and recent theories of electron localization in the presence of
structural disorder and electron–electron or electron–lattice interactions [53–56] that have
until now not been considered in manganites.

2. Materials and Methods

Ceramic samples of half-doped manganite La0.5Ca0.5MnO3 were prepared by the
sol–gel method which is based on the esterification and polymerization reaction of ethylene
glycol (EG) and ethylenediaminetetraacetic acid (EDTA). The stoichiometric amounts of
La2O3, CaCO3 and 50 % Mn(NO3)2 solution were used as starting materials. La2O3 and
CaCO3 were converted into metal nitrates by adding nitric acid. These metal nitrates
and excessive EDTA were dissolved in distilled water to obtain a clear solution with an
initial molar ratio of La:Ca:Mn = 1:1:2. The pH of the solution was adjusted to 6–7 by
adding ethylenediamine, and then an appropriate amount of EG was added to the solution.
Subsequently, the solution was heated with stirring to evaporate most of the solvent water.
The resultant gel precursors were decomposed at about 300 ◦C to obtain black precursor
powder which was then separated into several parts and annealed at temperatures of
600, 1100 and 1280 ◦C to gain samples with average grain size approximately 40, 400 and
4000 nm, respectively, labelled hereafter as S40, S400 and S4000 (see Table 1).

Table 1. Structural properties of the La0.5Ca0.5MnO3 samples obtained from SEM imaging and
Rietveld fits. In all samples, the crystallites are significantly smaller than the grains, indicating the
presence of many crystallites within each grain.

Sample
Label

Grain Size
(nm)

Crystallite
Size (nm)

a (Å) b (Å) c (Å)

S4000 4100 ± 1400 301 ± 10 5.4099(3) 7.6240(4) 5.4183(3)
S400 400 ± 120 28 ± 3 5.464(2) 7.787(3) 5.504(2)
S40 43 ± 13 14 ± 2 5.502(3) 7.786(4) 5.424(3)

The crystal structure and surface morphology of the samples were thoroughly investi-
gated at room temperature by X-ray powder diffraction and scanning electron microscopy
(SEM), respectively. The X-ray powder diffraction data were collected with a Bruker D8
Discover diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) equipped with a LYNX-
EYE XE-T detector configured in a Bragg–Brentano geometry. Data were collected in 2θ
range 30–80◦ with a step of 0.02◦ and Cu source with a wavelength of 1.54060 Å with Ni
filter, 2.5◦ Soller slit and fixed slit at 0.4 mm. The slit opening in front of the detector was
6.5 mm, and the detector opening was 1.3◦, resulting in an integrating time per step of
25 s. The crystallite size was determined by the Rietveld method using X’Pert Highscore
Plus software 3.0 (Malvern Panalytical, Almelo, The Netherlands). Its algorithm utilizes
the following formula for crystallite size determination: Di =

180
π

λ
Wi−Wst

, where λ is the
wavelength of the radiation used (Cu in our case), Wi is the Caglioti parameter of the
investigated phase which is refined within the structure refinement, and Wst is the Caglioti
parameter of the standard used to determine the instrumental broadening. The pseudo
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Voigt function was used in both cases, and LaB6 was used as the standard refined under the
same conditions as the measured samples. The variance of the crystallite size is described

by: σ2(Di) =
A2

D
4(Wi−Wst)3 [σ

2(Wi) + σ2(Wst)], with AD representing the constant 180λ/π.
FWHM values as such were not directly used in this procedure, but as stated above, refined
Caglioti parameter W was taken instead.

The surface morphology and grain size were examined in a Jeol JSM-7800F field
emission SEM instrument by collecting the secondary electrons at a working distance of
about 10 mm and with an electron beam acceleration voltage of 10 kV. The grain size for each
sample was determined as an average diameter value of 100 grains on the corresponding
SEM image (for details see Appendix B).

Resistivity (ρ) was measured by the standard four-contact dc technique in the temper-
ature (T) range 4.2–300 K. The current between 1 nA and 100 μA was applied along the
long axis of the samples. The electrical contacts were made by applying silver paste directly
to the sample surface. The contact resistance turned out to be around 10 times smaller
than the 4-point sample resistance in the whole T-range, indicating a high quality of the
contacts. The resistances above 1 GΩ for the most insulating S4000 sample at T < 34 K
were determined by two contact current measurements using the picoammeter Keithley
6487 with voltage excitation up to 10 V. A good overlap between the four-contact and the
two-contact measurement implies that the quality of the contacts does not deteriorate even
at the lowest T, and therefore, the two-contact measurement gives a reliable value of the
sample resistivity.

Magnetization (M) measurements were conducted using commercial Quantum Design
MPMS XL-5 and MPMS 3 magnetometers in magnetic fields H up to 70 kOe and in the T-
range 2–300 K. Zero-field cooled (ZFC) and field cooled (FC) M − T curves were measured
at 0.5 K/min in the field 100 Oe. The FC curves were recorded both during cooling and
warming and are standardly labeled as FCC and FCW, respectively. The magnetic hysteresis
M − H curves were measured at fixed temperatures always from 70 to −70 kOe and back
to 70 kOe. The initial M − H curve from 0 to 70 kOe was measured only at 300 K while
between the two temperatures the sample was kept in the maximum field 70 kOe.

3. Results

3.1. Structural Properties

The granular structure of the ceramic La0.5Ca0.5MnO3 samples determined by SEM is
shown in Figure 2. The average grain size for the three samples S4000, S400 and S40 studied is
4100± 1400 nm (Figure 2a), 400± 120 nm (Figure 2b) and 43± 13 nm (Figure 2c), respectively.

Figure 2. The surface morphology of the ceramic La0.5Ca0.5MnO3 samples. SEM images obtained
from: (a) S4000; (b) S400; and (c) S40 with the average grain size of 4100 ± 1400, 400 ± 120 and
43 ± 13 nm, respectively. The scale bar is indicated in each image.

The dominant phase in all three samples determined by X-ray is La0.5Ca0.5MnO3
with the space group Pnma. S4000 and S40 have a single phase, while S400 contains small
amount of CaMnO3. The X-ray scans are shown in Figure 3, and unit cell parameters
as well as the crystallite sizes are listed in Table 1. Note that in all samples, each grain
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contains many crystallites and the smaller the grain size, the smaller the crystallite size.
Therefore, going from S4000 to S40, the extrinsic structural disorder created by grain and
crystallite boundaries drastically increases and is therefore expected to strongly influence
the transport properties of our ceramic La0.5Ca0.5MnO3 samples which is shown in the next
section. In contrast to the extrinsic, the intrinsic structural disorder created by the La/Ca
substitution is not expected to significantly change between the three samples. The same is
true for any additional disorder coming from crystal defects and/or crystal impurities. For
clarity from now on, we will mainly refer to the disorder created by grains but will keep in
mind that crystallite boundaries, La/Ca substitution and crystal defects/impurities also
contribute to the overall disorder.

 a) S4000 

b) S400 

c) S40 
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Figure 3. X-ray scans of the La0.5Ca0.5MnO3 samples for: (a) S4000; (b) S400; and (c) S40. Red lines
are the experimental data, blue lines are Rietveld fits, and green marks are the maximum positions.
Corresponding residuals are shown below each X-ray spectrum. Several additional maximums for
S400, approximately at 34◦, 49◦ and 61◦, not related to the Pnma structure of La0.5Ca0.5MnO3 indicates
the presence of small amounts of CaMnO3.

3.2. DC Resistivity

The values of the dc resistivity at room temperature ρ300K in the La0.5Ca0.5MnO3 sam-
ples are approximately 6 mΩcm, 1.5 Ωcm and 4.4 Ωcm for S4000, S400 and S40, respectively.
This huge difference in ρ300K of three orders of magnitude between the samples illustrates
the sensitivity of dc transport properties in La0.5Ca0.5MnO3 to the microstructure. It seems
that there is a direct correlation between the ρ300K value and the level of disorder related
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to the grain (and crystallite) boundaries. The most ordered S4000 sample has the smallest
ρ300K, while the most disordered S40 sample has the largest ρ300K value. In a naïve picture,
such behavior can be ascribed to additional electron scattering on grain (and crystallite)
boundaries which are abundant in S40 and rare in S4000 (see Table 1). However, taking
into account that charge transport in La0.5Ca0.5MnO3 close to room temperature possibly
takes place via polaron hopping [45,57,58], a more complex explanation would be more
appropriate which is beyond the scope of the present study.

The difference between the La0.5Ca0.5MnO3 samples is even more pronounced in the
T-dependence of resistivity shown in Figure 4a. Here the resistivities are normalized to
the values at 300 K to emphasize the difference in T-evolution. As we can see, all samples
show insulator-like behavior (negative dρ/dT) with the ρ/ρ300K ratio spanning more than
10 orders of magnitude at the lowest T. Such a large difference, once again, illustrates
the sensitivity of dc transport properties to the sample microstructure. Clear temperature
hysteresis of resistivity is visible only for S4000 in the T-range 100–220 K, with the resistivity
in cooling being lower than the one in warming. A matching temperature hysteresis is also
found in magnetization (see the next section) with indications of a slow relaxation in time.
This implies that during cooling the system stays trapped in a metastable state. As we
can see, the sample S4000 with the largest grains has the steepest dρ/dT, i.e., it shows the
most pronounced insulating behavior. On the other hand, the sample S40 with the smallest
grains shows the weakest insulating behavior. This implies that with reducing the grain
size, i.e., with increasing structural disorder, the system is pushed towards a metallic state.
Such a counter-intuitive behavior will be discussed in Section 4.

Figure 4. (a) DC resistivity and (b) its logarithmic derivative dlnρ/d(1/T) as a function of tem-
perature for the La0.5Ca0.5MnO3 samples: S4000 (red line), S400 (blue line) and S40 (green line).
The resistivities are normalized to the room temperature values to emphasize the difference in the
T-evolution for different samples. The arrows indicate cooling and warming. The dlnρ/d(1/T) curve
for S4000 is shown only in warming for clarity.

Figure 4b shows the temperature dependence of the logarithmic resistivity derivative
dlnρ/d(1/T) for all three samples. The clear maximum in dlnρ/d(1/T) at T ≈ 210 K for
S4000 is ascribed to the phase transition from the PM insulating to the CO insulating state
(CO transition), expected from the conventional phase diagram shown in Figure 1a. Such
a maximum in dlnρ/d(1/T) is typical for La1−xCaxMnO3 compounds in the CO/AFM
insulating part of the phase diagram x > 0.5, and as shown in Refs. [45,59], the position of
the dlnρ/d(1/T) maximum agrees well with the temperature at which the CO transition is
expected according to the phase diagram. For clarity, in Figure 4b, dlnρ/d(1/T) is shown
only for warming. The cooling curve shows a similar maximum at the same T with an
additional feature at a lower T which is related to the hysteretic behavior. The large width
of the maximum in dlnρ/d(1/T) for S4000 indicates that there is no long-range CO, i.e.,

163



Crystals 2022, 12, 724

that CO occurs only at short range. As can be seen in Figure 4b, going from S4000 to S400
the maximum in dlnρ/d(1/T) becomes significantly broader and flatter, while for S40 it
becomes indiscernible. Together with the sharp drop in resistivity, this is a strong indication
that reducing the grain size suppresses the CO/AFM phase.

The logarithmic resistivity derivative dlnρ/d(1/T) shown in Figure 4b is not constant
in temperature for any of the samples, indicating the absence of conventional activated
behavior across an energy gap ρ(T) ∝ exp(Δ/T). A detailed analysis showed that the
insulator-like behavior in S4000 at low-T can be best fitted to the standard Mott 3D VRH
mechanism ρ(T) ∝ exp(T0/T)1/4, where T0 is a characteristic Mott’s activation energy [60].
In general, VRH is typical for disordered systems in which a strong scattering of electrons
caused by disorder leads to the localization of electronic states at the Fermi level EF. In
these so called Anderson insulators, a charge transport takes place via hopping of electrons
among the localized states at EF not only between nearest neighbors but also of variable
range. This mechanism of transport can lead to insulating behavior despite the absence
of an energy gap at EF. In strongly correlated systems such as manganites, however, the
situation becomes more complicated since the disorder-induced localized states may coexist
with the energy gap opened by strong electron–electron interactions [53–55] or with the
mobility gap opened by strong electron/lattice coupling [56], which will be addressed in
Section 4. In case of manganites, the presence of VRH implies that a conducting eg electron
hops between spatially distant Mn3+ and Mn4+.

Figure 5a shows the temperature dependence of resistivity for all samples on a
logρ − T−1/4 plot, suitable for the 3D VRH mechanism which should then follow a straight
line. Again, only the warming curve for S4000 is shown for clarity. As we can see, ρ(T)
in warming for S4000 follows the 3D VRH below the CO transition in a broad T-range
from T ≈ 150 K down to T ≈ 40 K and increases almost eight orders of magnitude. The
cooling curve follows the 3D VRH in a narrower T-range ≈ 120–40 K, i.e., below the hys-
teretic region, where it overlaps with the warming curve. S400 and S40, though showing
insulator-like behavior, do not fit well with the 3D VRH mechanism (see Appendix C).

Interestingly, the disappearance of the VRH with reducing the grain size is accom-
panied by the strong suppression of the CO/AFM phase (Figures 4b and 5a), implying
a close relationship between them (see Section 4 for discussion). The suppression of the
CO/AFM state with reducing the grain size has been well documented in the literature
for the half-doped La0.5Ca0.5MnO3 studied here [46–52], as well as for some other dopings
such as La0.4Ca0.6MnO3 [61,62] and La0.25Ca0.75MnO3 [63] and other compositions such
as Pr0.5Ca0.5MnO3 [64,65] and Nd0.5Ca0.5MnO3 [66]. Such behavior has been ascribed to
surface effects at the grain boundaries, which destabilize the bulk long-range CO/AFM
order and which become progressively more pronounced with the increase of the surface
to volume ratio caused by the reduction in the grain size. As a consequence, the bulk
CO/AFM state is confined only to the interior of the grains, while the grain boundaries are
predominantly FM and consist of FM nanoclusters. This is the so-called core–shell model,
where the core represents the CO/AFM interior of a grain, while the shell represents the
FM grain boundary, schematically shown in Figure 5b. It is therefore expected that S40
with the smallest grains and a lot of grain boundaries has the largest fraction of the FM
nanoclusters, while S4000 with the largest grains and few grain boundaries has the smallest
fraction of the FM nanoclusters. To verify the validity of these conclusions, we performed a
systematic magnetization study which is shown in the next subsection.
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Figure 5. (a) logρ− T−1/4 plot of the normalized resistivity, suitable for the Mott 3D VRH mechanism,
for the La0.5Ca0.5MnO3 samples: S4000 (red circles), S400 (blue line) and S40 (green line). Black
dashed line is a fit to the 3D VRH ρ(T) ∝ exp(T0/T)1/4. Only the warming curve is shown for S4000
for clarity. (b) Schematic representation of the core–shell model in La0.5Ca0.5MnO3, where the core of
a grain is CO/AFM, and the shell is predominantly FM (see text).

3.3. Magnetization

Magnetization curves of the La0.5Ca0.5MnO3 samples in the standard ZFC and FC
protocols are shown in Figure 6. Sharp peak in the ZFC curve and a sudden jump in the
FCC and FCW curves at T ≈ 40 K for S4000 share a striking resemblance with the behavior
of magnetization in Mn3O4 around its ferrimagnetic transition at T ≈ 43–48 K [67,68]. It
is known that during the sample synthesis, small amounts of Mn3O4 phase often appear
within a manganite sample [69–71]. We therefore conclude that the behavior of magnetiza-
tion for S4000 below ≈ 40 K is entirely extrinsic and related to small amounts of the Mn3O4
phase rather than to an intrinsic re-entrant spin glass transition, commonly reported in
the literature [64,72–74]. (The absence of the re-entrant spin glass transition is additionally
confirmed with the ac susceptibility measurements shown in Appendix A.) A rough es-
timate for the fraction of the Mn3O4 phase in S4000 can be obtained from the ratio of the
magnetization measured in S4000 and the one measured in pure Mn3O4. Taking the value
M = 0.3 emu/g for S4000 from Figure 6a, and M = 4.5 emu/g for Mn3O4 from Ref. [68],
both for the FC curves in H = 100 Oe at the lowest T, we obtain around 7% of Mn3O4.
Such a small fraction of Mn3O4 could not be detected by our X-ray measurements.

The absence of sharp features in the ZFC and FCC/FCW curves in all samples (except
the extrinsic feature related to Mn3O4 in S4000) indicates that there are no ‘clean’ magnetic
phase transitions which one would naïvely expect from the phase diagram in Figure 1. (The
same conclusion can be drawn from the corresponding ac susceptibility, a technique which
is even more sensitive for the detection of phase transitions, shown in Appendix A.) On the
other hand, such behavior is consistent with the phase separation, i.e., the existence of FM
and CO/AFM clusters that appear below some critical temperature [35–38]. In addition,
there is a significant difference between the ZFC and FCC/FCW curves which we associate
with the presence of FM nanoclusters. The FCC and FCW curves are not identical only in
the case of S4000, which results in a pronounced thermal hysteresis in the same T-range
100–220 K where the hysteretic behavior of dc resistivity occurs (compare Figures 4a and 6a).
The hysteretic behavior is probably related to the CO transition, visible only for S4000 as a
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maximum in resistivity derivative that nicely coincides with the maximum in ZFC, FCC and
FCW curves at T ≈ 220 K (compare Figures 4b and 6a). Here it is important to recall that the
magnetization and dc resistivity do not probe the same electrons in La0.5Ca0.5MnO3, since
the former is related to the core t2g electrons, while the latter is related to the conducting eg
electrons. The coinciding features in magnetization and dc resistivity, therefore, confirm the
expected strong coupling between the t2g and eg electrons.

Figure 6. Standard ZFC and FC magnetization curves in H = 100 Oe for the La0.5Ca0.5MnO3 samples:
(a) S4000; (b) S400; and (c) S40. In the case of S4000, the FCC and FCW curves do not overlap and are
indicated by the blue and red lines, respectively. In the case of S400 and S40 the FCC and FCW curves
are identical (not shown) which was confirmed on other samples. The ZFC curves in all three panels
are shown by the black lines. The sharp peak in ZFC and sudden jump in FCC and FCW curves at
T ≈ 40 K for S4000 are extrinsic and come from a tiny amount of Mn3O4 phase which often occurs
during the sample synthesis [69–71].

As we can see in Figure 6, the FCC curve at low T has the highest value for S40 and the
lowest for S4000, indicating that S40 has the largest and S4000 the smallest amount of FM
nanoclusters in accordance with the expectation based on the core-shell model introduced
in the previous section (see Figure 5). The same conclusion can be drawn from magnetic
hysteresis loops shown in Figure 7. As can be seen in Figure 7a, the hysteresis loop at the
lowest temperature T = 2 K for S40 closes at H ≈ 2 kOe, reaching a value M ≈ 1.5 μB/Mn
where μB is the Bohr magneton. Beyond 2 kOe, the magnetization stays almost constant
with a field as shown in the inset of Figure 7a. We ascribe such behavior to the FM part of
the sample (the FM shells) which becomes fully saturated at 2 kOe. Taking into account
that Mn3+ with four valence electrons contributes 4 μB/Mn, while Mn4+ with three valence
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electrons contributes 3 μB/Mn, the theoretical saturation value for La0.5Ca0.5MnO3 (which
has equal number of Mn3+ and Mn4+) would be M = 3.5 μB/Mn in the case of all Mn
spins parallel to H. Here, only the contribution of valence electrons is considered since the
orbital contribution of Mn3+ and Mn4+ is quenched [75]. The significantly lower measured
saturation value therefore indicates that not all magnetic moments are aligned parallel
to H which is in accordance with the proposed core–shell model. The measured value
M ≈ 1.5 μB/Mn then implies that only around 40% of the S40 sample is FM. The rest of
the sample is CO/AFM and gives only a tiny contribution to the total magnetization as
visible from the small but finite slope in the M − H curve beyond the saturation (inset of
Figure 7a).

Figure 7. Magnetic hysteresis loops for the La0.5Ca0.5MnO3 samples at: (a) 2 K; (b) 100 K; and (c) 200 K
in the field range −3 < H < 3 kOe. All curves were measured in the FCC protocol. Magnetization
is expressed in units of Bohr magneton μB per Mn atom. Red, blue and green symbols refer to the
S4000, S400 and S40 sample, respectively. The full range of H is shown in insets. The low saturation
values of M indicates that the FM fraction of La0.5Ca0.5MnO3 is < 5%, ≈ 35% and ≈ 40% for the
S4000, S400 and S40 sample, respectively (see text).

Taking the measured values M ≈ 1.2 μB/Mn and M ≈ 0.2 μB/Mn from Figure 7a
implies that around 35% of S400 and only about 5% of S4000 is FM at 2 K. The FM fraction
of La0.5Ca0.5MnO3 in S4000 is probably even lower since there is an additional contribution
to the measured magnetization of the extrinsic ferrimagnetic Mn3O4 phase. Such a small
FM fraction, together with the VRH and a clear signature of the CO transition (Figures 4b
and 5a) in a sample with μm-sized grains (usually taken to represent the bulk behavior),
implies that the insulating CO/AFM phase in La1−xCaxMnO3 is stable even at the very
boundary with the FM metallic phase x = 0.5. This conclusion is in accordance with several
previous reports [46,49,59].

The height and the width of hysteresis in S40 and S400 and consequently the FM
fraction monotonously decrease with increasing T and become negligible on approaching
room temperature (Figure 7) in accordance with the expectation based on the phase diagram.
Here we recall that the hysteresis loops for all samples were measured during cooling
from 300–4.2 K. Peculiar behavior is observed only in the case of S4000 within the thermal
hysteretic region 220–100 K (Figure 6a) as indicated by the M − H curve at 200 K that has
an unexpected increase of slope at high fields (inset of Figure 7c), and the M − H curve at
100 K that is not closed (inset of Figure 7b). The latter points towards slow time relaxations
which imply that on cooling the system enters a metastable state with higher magnetization
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(Figure 6a) and lower resistivity (Figure 4a), the origin of which is beyond the scope of the
present study.

Finally, the coercive field at low T in all three samples is not completely symmetrical
with respect to the origin, i.e., the hysteresis loops exhibit a small horizontal shift. Similar
behavior was found also in Pr0.5Ca0.5MnO3 ceramic samples [64] and was ascribed to the
exchange bias effect related to a FM–AFM interface [64]. The presence of the exchange
bias effect in our ceramic samples therefore provides additional indirect evidence for the
coexistence of the AFM and FM regions, i.e., for the proposed core–shell formation depicted
in Figure 5b. Direct imaging for the core–shell formation in manganites is still missing
and would require studies based on local probes such as magnetic force microscopy at
low temperatures.

4. Discussion

As mentioned in the introduction, the main goal of the present study is to shed more
light on the origin of the insulating behavior in manganites La1−xCaxMnO3, specifically
in the CO/AFM phase, which is still mostly not understood. Motivated by our previous
study [45], which pointed towards the Anderson localization of conducting eg electrons,
here we explore the sensitivity of transport and magnetic properties in La1−xCaxMnO3
to the level of structural disorder controlled by the grain size. We focused on the very
boundary between the FM metallic and CO/AFM insulating phases x = 0.5, where the
grain size is known to strongly affect the stability of the CO/AFM phase [46–52]. Indeed,
drastic changes in dc resistivity and magnetization were observed with varying the grain
size, explained in detail in the previous sections. Here we will summarize these findings to
build a picture of the insulating charge transport in the CO/AFM phase of La1−xCaxMnO3.

The absence of a clear transport gap, evident from the absence of a plateau in
dlnρ/d(1/T) at low T (Figure 4b), immediately eliminates a simple explanation of the
insulating behavior based only on the double exchange, the central interaction that governs
the physics of manganites. Namely, according to the double exchange, one would expect
that the insulating behavior in the CO/AFM state stems from the localization of eg electrons
caused by the prohibition of tunneling from Mn3+ to Mn4+, the magnetic moments of
which are aligned antiparallel. Such a scenario, however, would necessarily result in the
opening of an energy gap at EF since an eg electron would need extra energy to hop to
overcome the strong Hund interaction in contrast to the experiment. A very similar line of
reasoning also excludes localization of eg electrons by charge ordering as a key to insulating
behavior, since here an eg electron would need extra energy to overcome the strong electron–
electron and/or Jahn–Teller interaction [25–27]. Therefore, the double exchange and/or
charge ordering alone cannot explain the insulating behavior of the CO/AFM phase.

Indeed, the finite density of states at EF is supported by the presence of the Mott 3D
VRH transport mechanism in S4000 (Figure 5a) which implies the existence of localized
energy states at EF. Here the localization of conducting eg electrons is caused by structural
disorder which, in contrast to the localization caused by interactions, is not accompanied
by the opening of an energy gap [54]. According to such an Anderson localization scenario,
an increase in the level of structural disorder induced by the reduction in grain size from
4000 to 40 nm should result in a significant increase of resistivity. However, exactly the
opposite behavior was observed in our ceramic samples (Figure 4a), indicating that the
insulating behavior in the CO/AFM phase cannot stem from Anderson localization alone
either. This conclusion should not be surprising, however, since the sudden delocalization
of eg electrons in the FM metallic phase obviously cannot be caused solely by the level
of structural disorder which is not expected to change abruptly with small changes of x
around x = 0.5 (Figure 1a). Moreover, the progressive delocalization of eg electrons during
the metal–insulator transition induced by a high magnetic field [45] cannot be related solely
to the level of structural disorder which is not expected to change during the transition.

One solution to the above problem is to postulate that the localization of conducting eg
electrons in the CO/AFM phase stems from the combined effects of the structural disorder
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and interactions. Indeed, by reducing the grain size not only does the VRH collapse, but
also the fingerprint of the CO transition in dc resistivity disappears (see Figures 4b and 5a),
suggesting that the electron–electron or electron–lattice interactions responsible for the
long range CO/AFM order [25–27] also play a crucial role in the localization of conducting
eg electrons. The same conclusion can be drawn from the magnetization which shows
that the disappearance of the VRH is accompanied by a significant increase of the FM
contribution, i.e., a decrease of the AFM phase (Figure 6). Such behavior indicates that the
grain size plays a delicate role in electron localization in La0.5Ca0.5MnO3. On the one hand,
it strengthens the localization by increasing the level of structural disorder, but on the other
hand, it weakens the localization even more by destabilizing the CO/AFM phase.

There are several theoretical approaches to the problem of electron localization in
the presence of both structural disorder and electron–electron interactions, the so called
Mott–Anderson localization [53–55]. According to these models, the interplay between
the electron–electron interactions and structural disorder is much more complex than
one would expect, i.e., their effects do not necessarily reinforce each other in promoting
insulating behavior. For example, for an intermediate disorder and a low interaction
strength, the increase in electron–electron interactions can push the system towards the
metallic state, rather than to the insulating state, by screening the disorder potential. For low
disorder and intermediate interaction strength, the increase of structural disorder, instead
of the insulating, can promote the metallic behavior by filling in the energy gap created by
the strong electron–electron interactions. Nevertheless, for certain values of disorder and
interaction strengths, the electron–electron interactions and structural disorder do reinforce
each other, which would be in line with the experimental results presented here.

Even more appealing is a recent theory by Di Sante et al. [56] that focuses on the
Anderson localization in the presence of electron–lattice coupling which always ‘antiscreens’
the disorder potential, i.e., strengthens the electron localization and therefore the insulating
behavior. According to this theory, the electron–lattice coupling opens a mobility gap at EF
which separates the localized states around EF from the delocalized states further away
from EF. (Note that there is no energy gap here since the density of states does not go to
zero.) Here, the localization of conducting electrons is driven by a polaron formation, i.e.,
self-trapping by strong electron–lattice interactions and pinning by a disorder potential.
Such a scenario could indeed be playing a role in manganites due to the strong Jahn–Teller
effect believed to be responsible for polaronic conduction at high T [15–20] and for charge
ordering at low T [25–27] as mentioned in the introduction. The observed VRH in S4000
would in this case be related to the states below the mobility gap which are localized by the
combined effects of the structural disorder and strong electron–lattice coupling produced
by the Jahn–Teller effect. The drastic decrease of resistivity with the reduction in grain
size (Figure 4a), accompanied by the collapse of the VRH (Figure 5), could be ascribed to a
weakening of the Jahn–Teller-induced polaron formation related to the suppression of the
CO/AFM state (Figure 4b).

Interestingly, according to the same work by Di Sante et al. [56], close to the metallic
state there is a regime with the so-called ‘bad insulator’ transport, which displays conduc-
tivity values below the Mott–Ioffe–Regel limit and an insulator-like temperature coefficient
dρ/dT < 0 with a finite intercept. Such peculiar behavior is often observed in strongly
disordered metals [76] and here resembles the T-dependence found in the S400 and S40
ceramic samples (Figure 4a). It is reasonable to assume that with decreasing the grain size
even further, La0.5Ca0.5MnO3 would eventually end up in the metallic state. Indeed, Levy
et al. [49] found the metallic behavior in La0.5Ca0.5MnO3 ceramic samples after reducing
the grain size down to 180 nm. The fact that the metallic behavior is absent in our sample
S40 with significantly smaller grains illustrates the sensitivity of the transport properties of
manganites to the sample preparation method that results in a significantly different level
of disorder induced not only by the La/Ca substitution and grain boundaries, but also by,
e.g., crystallite boundaries, which are usually ignored in the literature.
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Finally, the fact that, besides the suppression of the CO/AFM phase, the collapse of
the VRH is also accompanied by the growth of the FM fraction indicates the importance of
the double exchange and the phase separation in manganites, which should be added to
any theory of localization in manganites. The presence of the phase separation opens the
possibility of a different explanation for the approach to the metallic state. If the growth
of the FM fraction results in FM regions (clusters) big enough to host a Fermi surface, the
metal–insulator transition becomes percolative in nature with spatially well-defined FM
metallic and CO/AFM insulating regions. The drop of resistivity by more than 10 orders of
magnitude between S4000 and S40 in Figure 4a without transition to the metallic state, i.e.,
without crossing the percolation threshold, however, cast some doubts on such a percolative
nature. To resolve this issue, the studies based on local probes such as magnetic atomic
force microscopy or scanning tunneling microscopy at low T are highly desirable.

5. Conclusions

In summary, our dc resistivity and magnetization study on La0.5Ca0.5MnO3 ceramic
samples clearly shows that the charge transport in the CO/AFM state at low temperatures
is well described by the Mott 3D variable-range-hopping mechanism which strongly
points towards the disorder-induced (Anderson) localization of conducting electrons. The
drastic decrease of resistivity and collapse of the VRH with reducing the grain size, i.e.,
with increasing the disorder, however, drives the system in the opposite direction of the
Anderson localization picture. The fact that the collapse of the VRH is accompanied by
a strong suppression of the CO/AFM state implies a key role of interactions responsible
for the long range order in localization of conducting electrons. In light of a recent theory
of the Anderson localization in the presence of strong electron–lattice coupling, here we
propose that the insulating behavior in the CO/AFM state of manganites possibly stems
from polaron formation induced by the Jahn–Teller effect and enhanced by a disorder
potential. The significant growth of the FM fraction with reducing the grain size, which
originates from the surface effects on the grain boundaries, implies that the double exchange
interaction and phase separation phenomena also play a role in the destruction of the VRH.
More advanced theories of electron localization in the presence of multiple interactions
would therefore be necessary to fully capture the origin of the insulating behavior in the
CO/AFM state of manganites.
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Appendix A. AC Susceptibility

Looking at the conventional phase diagram of La1−xCaxMnO3 shown in Figure 1a,
we expect the phase boundary x = 0.5 to host both FM and CO/AFM phases in accordance
with the widely accepted phase separation scenario [35–38]. Indeed, the magnetization
measurements on La0.5Ca0.5MnO3 ceramic samples shown in Figure 7 point towards the
presence of two contributions, one related to the CO/AFM order placed in the interiors
of grains and the other related to the FM nanoclusters placed at the grain boundaries as
discussed in the main text. For completeness, here we present the corresponding magnetic
ac susceptibility measurements.

Magnetic ac susceptibility is a very sensitive technique for studying magnetic prop-
erties, especially phase transitions and magnetic relaxation, and is complementary to the
measurements in the static (dc) magnetic field. It measures the differential dM/dH re-
sponse of the magnetization of a sample to an oscillating magnetic field H(t) = hcos(2π f t),
where t is time, h is the field amplitude, and f is the field frequency. At low h, the mag-
netization oscillates with the same frequency as the field but generally with a phase shift
θ, i.e., M(t) = mcos(2π f t − θ). Magnetic ac susceptibility can therefore be expressed as a
complex quantity χ′ + iχ′′, with the real component χ′ = mcosθ/h, which is in-phase with
h and is related to the reversible magnetization processes, and the imaginary component
χ′′ = msinθ/h, which is out-of-phase with h and is related to the irreversible magnetization
processes, i.e., the energy loss due to dissipation [77,78].

In the present study the magnetic ac susceptibility was measured using a high-
resolution CryoBIND susceptometer with the driving ac field with f in the Hz–kHz range
and h = 0.9 Oe. The measurements were performed in the T-range 4.2-320 K, during cool-
ing and warming at the rate 1 K/min. No significant changes in χ′ and χ′′ were observed
while changing the amplitude h of the ac field.

The measured χ′ and χ′′ as a function of T, normalized to the same arbitrary units
by dividing with the mass of each sample, are shown in Figure A1. As we can see, χ′ is
significantly larger than χ′′ for all three samples, indicating the expected dominance of
reversible magnetization processes. Both components, χ′ and χ′′, increase going from S4000
to S40 in accordance with the dc magnetization shown in Figure 6. Only in the case of S4000
do the cooling and the warming curves differ, resulting in a large thermal hysteresis in χ′
and χ′′ in approximately the same T-range where the hysteretic behavior of dc resistivity
and dc magnetization occurs. No hysteretic behavior is observed in S400 and S40.
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Figure A1. Magnetic ac susceptibility for the La0.5Ca0.5MnO3 ceramic samples: (a) S4000; (b) S400;
and (c) S40. Shown are the T-dependence of both the real χ′ (blue lines, left axis), and imaginary χ′′

(red lines, right axis) components, normalized to the mass of the sample. The cooling and warming
curves differ only in the case of S4000.

The sharp peak in χ′ and χ′′ at T ≈ 40 K for the bulk sample S4000 in Figure A1a is a
clear signature of a phase transition, which is here attributed to the ferrimagnetic transition
of the minority Mn3O4 phase, rather than to the intrinsic re-entrant spin glass transition
commonly reported in the literature [64,72–74], as discussed in the main text. The absence
of the spin glass transition is additionally confirmed by the frequency dependence of ac
susceptibility on another La0.5Ca0.5MnO3 sample from the same batch as S4000 shown in
Figure A2. As we can see, the position of the sharp feature at T ≈ 40 K does not change
with f , which is in contrast to expectations for the spin glass transition [77–79]. The absence
of additional sharp features in χ′ and χ′′ implies that there are no intrinsic ‘clean’ phase
transitions, i.e., development of a ‘clean’ long-range order, in accordance with the phase
separation into CO/AFM and FM regions.
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Figure A2. Temperature dependence of the (a) real χ′; and (b) imaginary χ′′ part of the ac susceptibil-
ity at low T for the La0.5Ca0.5MnO3 ceramic sample (the same batch as S4000) at different frequencies.
AC susceptibility depends only weakly on frequency.

Nevertheless, χ′ and χ′′ exhibit non-monotonous T-dependence with several broad
maximums which point towards rich magnetic behavior in La0.5Ca0.5MnO3. The maximum
in χ′ at T ≈ 220 K for S4000 in Figure A1a coincides with the similar maximum in the ZFC
and FCW curves in Figure 6a, as well as with the maximum in dlnρ/d(1/T) in Figure 4b
related to the CO transition. One could therefore ascribe the maximum in χ′ at T ≈ 220 K
to the development of the CO/AFM phase in the interior of grains in the S4000 sample.
The finite value of χ′′ with a very similar T-evolution to that of χ′, however, implies that
the maximum at T ≈ 220 K is related rather to the development of the FM nanoclusters at
grain boundaries, since for the AFM phase, χ′′ is expected to be zero [77,78].

The increase below T ≈ 280 K and a smooth T-dependence of χ′ in S400 and S40,
accompanied by a significant change in χ′′ with one or more broad maximums, is also
attributed to the slow development of the FM nanoclusters at the grain boundaries. The rich
structure in the T-dependence of χ′′ for S400 indicates the presence of various irreversible
magnetization processes probably related to the the dynamics of the FM nanoclusters.

The negligible dependence of χ′ and χ′′ on the driving field amplitude h in all samples
(not shown) indicates that all the features in the temperature plots of Figure A1 are still
a part of linear response, which would not be expected if there was a conventional FM
transition [77]. The dependence of χ′ and χ′′ on the driving field frequency is left for a
future study. Especially interesting would be the frequency dependence for S4000 within
the thermal hysteretic region 100–220 K, where we observed slow time evolution in the dc
magnetization measurements, which points towards the presence of some form of a glassy
(metastable) state.
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Appendix B. Grain Size Distribution

As mentioned in the main text, the grain size of our ceramic samples was determined
as an average diameter value of 100 grains on their corresponding SEM images. The grain
size distributions for each sample are shown as histograms in Figure A3. The vertical black
line represents the average grain size value for each sample.

Figure A3. Grain size distribution in the La0.5Ca0.5MnO3 ceramic samples: (a) S4000; (b) S400; and
(c) S40. The average grain size values 4100 ± 1400, 400 ± 120 and 43 ± 13 nm for S4000, S400 and S40,
respectively, are indicated by the vertical black line.

Appendix C. Fitting of Variable-Range-Hopping Mechanism

As mentioned in the main text, the resistivity of the sample S4000 follows the 3D
VRH in a large T-interval 40–150 K in which it increases almost eight orders of magnitude,
evident from a linear dependence on a logρ-T−1/4 scale (Figure 5a). Although at first sight
it seems that there is a linear region on the logρ-T−1/4 plot at high T (300–140 K), for the
other two samples S400 and S40, as well as at low T (140–20 K) for S40, the resistivity in that
case increases by only one order of magnitude, or even less, which indicates the absence
of the strong exponential T-dependence expected for the 3D VRH. To illustrate this more
explicitly, we follow the procedure outlined in several papers [80–84], where one starts from
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the more general expression for resistivity ρ ∝ exp(C/T)p, with C and p constant. Note
that for C = Δ and p = 1 the previous equation reduces to the simple activated behavior,
while for C = T0 and p = 1/4 it recovers 3D VRH. To extract the exponent p, one defines a
logarithmic resistivity derivative W = −d(lnρ)/d(lnT) which for the previous equation
gives p(C/T)p. The exponent p can then be obtained from the slope of lnW vs. lnT.

The lnW–lnT plots for our ceramic samples S4000, S400 and S40 are shown in Figure A4.
Although the data are somewhat noisy, we can clearly see that the slope p of lnW vs. lnT
agrees with the expected value 1/4 for 3D VRH only for S4000 in the T-range 150–40 K as
stated in the main text. In the case of samples S400 and S40, not only is the value of the
slope of lnW vs. lnT different from 1/4, but also the sign of the slope is incorrect in almost
the whole T-range of interest. We can therefore safely conclude that the resistivity of S400
and S40 does not follow the 3D VRH mechanism.

Figure A4. lnW vs. lnT for the La0.5Ca0.5MnO3 ceramic samples: (a) S4000; (b) S400; and (c) S40, see
text for details. Black dashed lines correspond to the slope expected for the 3D VRH (p = 1/4) and
agree with the measured data only for S4000 in the T-range 150–40 K.
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Abstract: In the 3/4-filled band system θ-(BEDT-TTF)2X with a two-dimensional triangular lattice,
charge ordering (CO) often occurs due to strong inter-site Coulomb repulsion. However, the strong
geometrical frustration of the triangular lattice can prohibit long-range CO, resulting in a charge-
glass state in which the charge configurations are randomly distributed. Here, we investigate the
charge-glass states of orthorhombic and monoclinic θ-type BEDT-TTF salts by measuring the electrical
resistivity and optical conductivity spectra. We find a substantial difference between the charge-glass
states of the orthorhombic and monoclinic systems. The charge-glass state in the orthorhombic system
with an isotropic triangular lattice exhibits larger low-energy excitations than that in the monoclinic
one with an anisotropic triangular lattice and becomes more metallic as the isotropy of the triangular
lattice increases. These results can be understood by the different charge-glass formation mechanisms
in the two systems: in the orthorhombic system, the charge-glass state originates from geometric
frustration due to the equilateral triangular lattice, leading to metallic 3-fold COs, whereas in the
monoclinic system, the charge-glass formation originates from geometric frustration of the isosceles
triangular lattice, in which the charge-glass state is described by the superposition of insulating 2-fold
stripe COs.

Keywords: strongly correlated electrons; metal-insulator transition; charge order; charge glass; charge
crystal; geometrical frustration; organics; optical conductivity

1. Introduction

Charge ordering (CO), in which electrons self-organize into an alternating pattern of
charge-rich and charge-poor sites owing to strong Coulomb interactions, often emerges
in strongly correlated electron systems [1,2]. Inter-site Coulomb interactions play an
essential role in the formation of CO, mostly leading to a long-range order. In geometrically
frustrated systems, however, disordered ground states without long-range CO have been
reported [3–10]. This is considered due to competition among various types of CO patterns
coming from geometrical frustration [11], which prevents a specific charge configuration,
similar to geometrically frustrated spin systems such as a quantum spin liquid and spin
glass. Thus, geometrical frustration can suppress the tendency toward long-range CO,
leading to exotic electronic states such as a charge-glass state.

Crystals 2022, 12, 831. https://doi.org/10.3390/cryst12060831 https://www.mdpi.com/journal/crystals179
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Quasi-two-dimensional (quasi-2D) organic compounds with a triangular lattice, θ-
(BEDT-TTF)2MM

′
(SCN)4 (M = Tl, Rb, Cs, M

′
= Zn, Co) (where BEDT-TTF denotes

the donor molecule bis(ethylenedithio)tetrathiafulvalene and MM
′
(SCN)4 represents a

monovalent anion), have been extensively studied as a platform of the CO metal-insulator
transition system [12–31]. In θ-(BEDT-TTF)2MM

′
(SCN)4, there are two crystal forms with

orthorhombic (I222) and monoclinic (C2) symmetries [10,12] (see Figure 1a–d). The both
crystal structures consist of an alternating stack of BEDT-TTF and anion layers, and the
charge transfer between these layers leads to a quarter-filled hole band system. Figure 1b,d
show the 2D molecular arrangement of each BEDT-TTF layer for the orthorhombic θo-type
and monoclinic θm-type systems, respectively. The nearest-neighbor Coulomb interactions
are given by V1 and V2 in the θo-type system and by V1, V2, and V

′
2 in the θm-type system.

Note that V2 ≈ V
′
2 for the θm-type system [10,12,25]. While the θo-type system exhibits

a horizontal CO pattern (Figure 1b), the θm-type system shows a diagonal CO pattern
(Figure 1d) [20]. The ground states of θo-type salts, ranging from charge ordered insulating
states to a metallic state, can be tuned using the anisotropy of the nearest-neighbor Coulomb
interactions on the triangular lattice, V2/V1, which depends on the anions [8] (see Figure 1e).
Indeed, the orthorhombic θ-(BEDT-TTF)2TlZn(SCN)4 (hereafter, abbreviated as θo-TlZn)
and θ-(BEDT-TTF)2RbZn(SCN)4 (θo-RbZn) with relatively anisotropic V2/V1 values are
well-known long-range CO compounds with the transition temperature TCO ≈ 240 K [20]
and 200 K [3], respectively. Such a periodic CO state can be regarded as a charge-crystal
state. Importantly, this charge-crystal state can be kinetically avoided when the sample is
cooled faster than a critical cooling rate, leading to a charge-glass state where the charge
configurations are randomly quenched. For instance, the charge-crystal state in θo-RbZn
can be suppressed for the critical cooling rate of ∼30 K/min, resulting in a charge-glass
state (see Figures 1f and 2c). In θo-CsZn, which has a more isotropic triangular lattice, the
critical cooling rate becomes much slower. As a result, the charge-glass state can be realized
even upon very slow cooling (<0.1 K/min) (see Figures 1f and 2a). These experimental
facts imply that geometrical charge frustration between V1 and V2 plays an important role
for the charge-glass formation in the θo-type salts.
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The monoclinic θ-(BEDT-TTF)2TlZn(SCN)4 (θm-TlZn) shows a diagonal CO at
TCO = 170 K [10] (see Figure 2e). In θm-TlZn, the long-range CO can be suppressed by
rapid cooling (>∼50 K/min), and the charge-glass state can be realized. Although the
triangular lattice for θm-TlZn is more anisotropic than that for θo-TlZn, the critical cooling
rate of θm-TlZn is much slower than that of θo-TlZn (see Figure 1f). This suggests different
mechanisms of charge-glass formation between these two systems. In this study, in order
to clarify the different charge-glass formation mechanisms between the orthorhombic and
monoclinic θ-type salts, we measured electrical resistivity and optical conductivity spectra
of θo-CsZn, θo-RbZn, and θm-TlZn.
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Figure 2. Resistivity and Arrhenius plot in the θ–type salts. (a) ρ(T) curve of θo-CsZn measured
during cooling. (b) Arrhenius plot of the same data in (a). (c) ρ(T) curve of θo-RbZn measured during
rapid cooling of 30 K/min (blue) and slow cooling of 0.1 K/min (red). (d) Arrhenius plot of the same
data in (c). (e) ρ(T) curve of θm-TlZn measured during rapid cooling of 100 K/min (blue) and slow
heating after slow cooling of 0.1 K/min (red). (f) Arrhenius plot of the same data in (e). The black
lines in (b,d,f) represent the fits to ρ ∝ exp (Δ/(kBT)).

2. Materials and Methods

Single crystals of θo-CsZn, θo-RbZn, and θm-TlZn were grown by the electrochemical
oxidation method [17]. The typical sample size used for the resistivity and optical con-
ductivity measurements was ∼0.1 mm × 1 mm × 3 mm. The in-plane dc resistivity was
measured by the 4-terminal method in the linear I-V region. The polarized optical conduc-
tivity measurements were carried out with a Fourier transform microscope spectrometer in
the range of 600–8000 cm−1. For θo-CsZn, the optical conductivity measurements in the far-
infrared region (100–650 cm−1) were performed using a synchrotron radiation light source
at BL43IR in SPring-8. The optical conductivity was calculated through a Kramers–Kronig
(KK) transformation from the optical reflectivity determined by comparison with a gold
thin film evaporated on the sample surface.

3. Results

3.1. Electrical Resistivity in θo-CsZn, θo-RbZn, and θm-TlZn

Figure 1a,c,e show the temperature dependence of resistivity ρ(T) for θo-CsZn, θo-RbZn,
and θm-TlZn, respectively. θo-CsZn with the most isotropic triangular lattice shows no long-
range CO and enters the charge-glass state below ∼100 K. Regardless of the cooling rate of
the sample, θo-CsZn always shows the charge-glass state. In contrast, θo-RbZn and θm-TlZn
show the long-range CO transition at 200 K and 170 K, respectively, which can be suppressed
by rapid cooling, resulting in the charge-glass state. Figure 1b,d,f show the Arrhenius plot
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of the resistivity for θo-CsZn, θo-RbZn, and θm-TlZn, respectively. Clear activation-type
behaviors can be seen both for the charge-crystal and charge-glass states in all the salts.
By fitting the data to ρ(T) = ρ0 exp (Δ/kBT), we obtained the activation energies for the
charge-crystal and charge-glass states as shown in Figure 2b,d,f. The activation gap for
θo-CsZn is very small (approximately 18 K), consistent with the fact that this material is
located near the phase boundary. As for θo-RbZn, the gap sizes of the charge-crystal and
charge-glass states show a large difference. Previous X-ray diffuse scattering experiments
in θo-CsZn have revealed a short-range 3 × 3 CO [5,13,14]. Since the 3-fold CO in θo-RbZn
is expected to be metallic, the gap size of the charge-glass state (∼400 K) becomes much
smaller than that of the charge-crystal state (∼1950 K). In contrast, in θm-TlZn, there is little
difference in the activation gaps between the charge-crystal and charge-glass states. These
differences are considered to originate from the different mechanisms of the charge-glass
formation in the θo- and θm-type systems, as will be discussed later.

3.2. Optical Conductivity Spectra in θo-CsZn, θo-RbZn, and θm-TlZn

For a comprehensive understanding of charge-glass formation in θ-type salts, we
measured the optical conductivity spectra in the series of θ-type salts. Figure 3a shows
the optical conductivity spectra σ1(ω) of θo-CsZn for E ‖ a at various temperatures. At
room temperature, there are two characteristic broad bands at around 1000 and 2000 cm−1.
In addition, the antisymmetric or antiresonance features of the vibrational modes of the
BEDT-TTF molecule around 400, 900, and 1300 cm−1 can be seen, which become more
noticeable at low temperatures [7]. Moreover, as lowering the temperature, σ1(ω) in the
low-energy region below ∼500 cm−1 is strongly enhanced. The enhancement of σ1(ω)
is different from a Drude response since the dc conductivity σdc in θo-CsZn decreases to
∼1 Ω−1cm−1 at 4 K. The absence of a Drude peak at low temperatures is also expected
from the fact that the resistivity obeys the Arrhenius law as shown in Figure 2b. Thus,
the optical spectra are mainly composed of three characteristic structures with center
frequencies of 100–300, 800–1000, and 2000–2500 cm−1 (referred to as Llow, Lmiddle, and
Lhigh, respectively). As discussed in Ref. [7], the low-energy peak can be attributed to the
short-range CO with a relatively long-period 3 × 3 CO. As for the broad bands Lmiddle and
Lhigh, very similar features have been observed in other quarter-filled organic conductors
close to a CO phase [32–34]. A transition between Hubbard-like bands induced by the
intersite Coulomb repulsion V gives rise to a broad band in the mid-infrared region of the
order of V, which corresponds to Lhigh. The other band Lmiddle is a charge-fluctuation band
originating from short-range CO fluctuations.

Figure 3b shows the temperature dependence of σ1(ω) of θo-RbZn for E ‖ a measured
during slow cooling (charge-crystal state) and heating after rapid cooling (charge-glass
state). The optical conductivity spectra at room temperature are similar to that of θo-CsZn,
having two broad structures at around 1000 and 2500 cm−1. When the sample is slowly
cooled, the CO transition occurs at 200 K, below which the optical conductivity spectra
show a drastic change. The spectral weight below 3000 cm−1 disappears, and a clear
optical gap is observed below ∼2000 cm−1, which is comparable to Δ/kB obtained from the
Arrhenius plot of the resistivity in the charge-crystal state. In contrast, when the sample
is quenched, the CO transition is suppressed and a charge-glass state is realized. The
optical conductivity spectra in the charge-glass state share a similar shape with that above
the CO transition. Thus, the optical conductivity spectra between the charge-crystal and
charge-glass states show a large difference, indicating that the charge configurations are
very different between these two states.
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Figure 3. Optical conductivity spectra in the θ–type salts. (a) Optical conductivity spectra σ1(ω) in
θo-CsZn measured at several temperatures during slow cooling of 1 K/min. (b) Optical conductivity
spectra σ1(ω) in θo-RbZn measured at several temperatures during slow cooling of 1 K/min (solid
line) and slow heating after rapid cooling of more than 50 K/min when passing through TCO (dashed
line). (c) Optical conductivity spectra σ1(ω) in θm-TlZn measured at several temperatures during
slow cooling of 1 K/min (solid line) and slow heating after rapid cooling of more than 50 K/min
when passing through TCO (dashed line). For clarity, the data are shifted vertically. Note that the
sharp peak at approximately 2100 cm−1 is the CN stretching mode of SCN in the anion layer.

Figure 3c shows the temperature dependence of σ1(ω) of θm-TlZn for E ‖ c measured
in the charge-crystal and charge-glass states. Although the optical conductivity spectra are
slightly different in the charge-crystal and charge-glass states, the optical gaps are almost
identical in the whole temperature range, which are consistent with the dc resistivity data in
which the activation energies for the charge-crystal and charge-glass states are close to each
other (see Figure 2f). The obtained optical gaps in the charge-crystal and charge-glass states
are about 1200–1300 cm−1 at low temperatures, which are comparable to Δ/kB obtained
from the Arrhenius plot of the resistivity. Importantly, in the charge-crystal state, in addition
to a broad peak structure around 3500 cm−1, a shoulder-like feature around 2000 cm−1

emerges as lowering the temperature, whereas in the charge-glass state, the growth of
the 2000 cm−1 feature seems to be frozen (see the hatched area in Figure 3). The optical
spectra obtained for the charge-crystal state can be well understood by previous theoretical
calculations performed for the diagonal CO phase [31], in which the first low-energy peak
and the high-energy broad feature are well reproduced.

4. Discussion

We compare the optical conductivity spectra of the three salts in the charge-glass
state. Figure 4 shows the optical conductivity spectra of the charge-glass states in θo-CsZn,
θo-RbZn, and θm-TlZn. It can be clearly seen that the optical conductivity of θo-CsZn
with the most isotropic triangular lattice shows a significant low-energy peak, and as the
anisotropy of the triangular lattice increases, the spectral weight in the low-energy region
shifts to a higher-energy region. This systematic evolution of the optical conductivity
spectra is considered to reflect the different charge configurations in the charge-glass states
in the three salts.

To discuss the difference of the optical conductivity spectra in the three salts, we
consider the extended Hubbard model. The ground-state properties of θ-(BEDT-TTF)2X
have been extensively studied by the extended Hubbard model on an anisotropic triangular
lattice [25,27,28,30,31,35–38]. The Hamiltonian of the extended Hubbard model is given by

HEHM = ∑
〈i,j〉σ

(
−tijc†

iσcjσ + h.c.
)
+ U ∑

i
ni↑ni↓ + ∑

〈i,j〉
Vijninj, (S1)
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where c†
iσ (ciσ) is the creation (annihilation) operator for a hole at the i-th site with spin

σ (↑ or ↓), ni (≡ ∑σ niσ ≡ ∑σ c†
iσciσ) is the number operator, tij and Vij are the transfer

integrals and the intersite Coulomb interactions between the i-th and j-th sites, respectively,
and U is the on-site Coulomb repulsion.
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Figure 4. Comparison of optical conductivity spectra of the charge–glass states in the θ–type salts.
Optical conductivity spectra of the charge-glass states in θo-CsZn (red), θo-RbZn (blue), and θm-TlZn
(green) measured at 4 K, 50 K, and 50 K, respectively.

In Ref. [31], the polarization dependence of the optical conductivity spectra has been
calculated for various charge ordering patterns, based on the extended Hubbard model.
When V1 and V2 are close, the optical conductivity spectra for two polarization directions
become isotropic, except for the difference in the magnitude of the optical conductivity
spectra (which reflects the difference between the intermolecular distances in the V1 and
V2 directions [31]), indicating the strong geometric frustration of the isotropic triangular
lattice. In contrast, when V1 is larger than V2 (that is, in the case of diagonal CO), the
optical conductivity spectra for two polarization directions become anisotropic: the optical
spectra for the polarization parallel to the V1 direction (b-axis direction in θm-TlZn) have
only a low-energy peak, whereas the optical spectra for the polarization perpendicular
to the V1 direction (c-axis direction in θm-TlZn) show a step-like increase in the low-
energy region, followed by a broad structure in the high-energy region. Indeed, very
similar behaviors have been observed in our experimental results (see Figure 5). Such a
polarization dependence in the optical spectra has also been observed in other 1D charge-
ordered organic materials [39], where the polarization dependence corresponding to the
stripe charge ordering pattern has been reported.

Next, we discuss the charge configurations of the charge-glass states in the θo-type and
θm-type systems. When U � tij, the extended Hubbard model is compatible to the spinless
fermion model (t-V model) that neglects the spin degrees of freedom. The Hamiltonian of
the t-V model is given by

Ht-V = ∑
〈i,j〉

(
−tij f †

i f j + h.c. + Vijñiñj

)
, (S2)

where f †
i ( fi) is the creation (annihilation) operator for a spinless fermion at the i-th site

and ñi = f †
i fi is the number operator. It has been well established that the classical ground

states of the t-V model (tij = 0) on an isosceles triangle lattice as shown in Figure 6b are
disordered owing to geometric frustration when V1 ≥ V2, whereas the vertical CO becomes
a unique ground state at V1 < V2 [29,40,41]. At V1 > V2, the chain-striped states such as
the horizontal and diagonal COs emerge owing to the geometric frustration between the
two diagonal Coulomb interactions V2, which is the case for θm-TlZn.
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Figure 5. Polarization dependence of optical conductivity spectra in the charge–glass/crystal states
of the θ–type salts. (a–c) Optical conductivity spectra of (a) the charge-glass state in θo-CsZn for E ‖ a
(blue) and E ‖ c (red) measured at 4 K, (b) the charge-crystal state in θo-RbZn for E ‖ a (blue) and
E ‖ c (red) measured at 50 K, and (c) the charge-crystal state in θm-TlZn for E ‖ c (blue) and E ‖ b
(red) measured at 50 K.

When V1 = V2, the ground states include a vertical-striped state, horizontal-striped
state, diagonal-striped state, and three-sublattice state, all of which are degenerate (see
Figure 6a,). The three-sublattice state has been discussed in terms of a pin-ball liquid [29].
The θo-type compounds can be categorized in this regime. Indeed, the X-ray diffuse
scattering experiments have revealed that for θo-CsZn, diffuse rods with qd = (2/3, k, 1/3)
corresponding to a 3 × 3 CO are observed [5,13,14], while for θo-RbZn above TCO, diffuse
rods associated with a short-range 3 × 4 CO are observed at qd = (±1/3, k,±1/4) [4,15,16].
Such three-fold diffuse rods are different from that of θm-TlZn, where diffuse lines at
qd = (1/2, l) corresponding to the superposition of the chain striped COs as shown in
Figure 6b have been observed [10].

Based on the above calculations, we discuss the charge-glass formation mechanisms
in the θo-type and θm-type systems. In the charge-glass state of the θo-type salts with an
isotropic triangular lattice, the short-range 3-fold periodic CO patterns have been observed.
Although the q vectors of the short-range COs are slightly different from the 3-fold CO
shown in Figure 6a, the presence of the 3-fold COs makes the system metallic. As a result,
the optical gap and Arrhenius gap in the charge-glass state become smaller than that in
the charge-crystal state. On the other hand, in the charge-glass state of the θm-type system
with an isosceles triangular lattices, the short-range 2-fold COs have been reported. In
this case, the charge-glass state is described by the superposition of the insulating 2-fold
stripe COs [10]. Therefore, there is no significant difference in the magnitude of charge
separation between the charge-crystal and the charge-glass states. Thus, the sizes of the
optical gap and Arrhenius gap become almost the same in the charge-crystal and charge-
glass states. From these facts, we conclude that the charge-glass states in the θo-type and
θm-type systems originate from the geometrical frustration of the equilateral and isosceles
triangular lattices, respectively. Since recent thermal expansion and noise spectroscopy
measurements have pointed out that the lattice degrees of freedom in addition to the
electron degrees of freedom play an important role for the charge-glass formation in the
θ-type BEDT-TTF compounds [42,43], elucidating the effect of lattice degrees of freedom
on the charge-glass formation needs to be addressed in the future.
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V2V1

V2

V1

Figure 6. Schematic charge configurations on triangular lattices. (a) Charge configurations on the
isosceles triangular lattice. Vertical, horizontal, diagonal, and three-sublattice COs are described. In
the three-sublattice structure, the sublattice A is filled by one hole (pin), the sublattice B is empty, and
the sublattice C is randomly occupied by the remaining holes (ball). The green hexagon stands for
the unit cell. (b) Chain striped CO patterns on the isosceles triangular lattice, such as horizontal and
diagonal COs. V1 and V2 (V1 > V2) are the nearest-neighbor Coulomb interactions. Since all these
states are degenerate in the classical limit of the t-V model, the classical ground state can be described
by the superposition of these states. The magenta and white circles represent the charge-rich and
charge-poor sites, respectively.

5. Conclusions

We investigated the charge-glass states of θo-CsZn, θo-RbZn, and θm-TlZn by mea-
suring the electrical resistivity and optical conductivity spectra. We find that there is a
fundamental difference between the charge-glass formation mechanisms in the θo-type and
θm-type systems. The charge-glass state in θo-CsZn exhibits large low-energy excitations,
consistent with the fact that the material is located near the CO phase boundary. In θo-RbZn,
the optical gaps between the charge-crystal and charge-glass states show a large difference,
indicating that the charge configurations are very different between the two states. In
contrast, the optical gap of the charge-glass state in θm-TlZn does not differ from that in
the charge-crystal state. These results can be understood by the different charge-glass
formation mechanisms in the θo-type and θm-type systems: in the θo-type system, the
charge-glass state originates from geometric frustration due to the equilateral triangular
lattice, leading to metallic 3-fold COs, whereas in the θm-type system, the charge-glass
formation originates from geometric frustration of the isosceles triangular lattice, in which
the charge-glass state can be described by the superposition of insulating 2-fold stripe COs.
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Abstract: We present a prototype database for quasi two-dimensional crystalline organic conductors
and superconductors based on molecules related to bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF,
ET). The database includes crystal structures, calculated electronic structures, and experimentally
measured properties such as the superconducting transition temperature and critical magnetic
fields. We obtained crystal structures from the Cambridge Structural Database and created a crystal
structure analysis algorithm to identify cation molecules and execute tight binding electronic structure
calculations. We used manual data entry to encode experimentally measured properties reported in
publications. Crystalline organic conductors and superconductors exhibit a wide variety of electronic
ground states, particularly those with correlations. We hope that this database will ultimately lead to
a better understanding of the fundamental mechanisms of such states.

Keywords: organic superconductor; superconductivity; charge density wave; spin density wave;
spin liquid; FFLO state; materials database; data science

1. Introduction

Machine searchable databases that contain structural properties of related materials,
calculated electronic structure, and measured electromagnetic properties, are providing a
new way to design advanced functional materials. In addition, consolidating structural
and functional information may lead to a better understanding of the microscopic mecha-
nisms of correlated electron materials. Herein, we detail the launch of a new database of
crystalline organic materials, many of which are conducting or superconducting, with the
goal of motivating data-centered research to enhance the understanding of lower dimen-
sional correlated electron materials. The database can be accessed through a website at
osd.clarku.edu.

The crystalline organic materials (COM) are well suited to create this type of database
first of all because they are interesting experimentally. Partially driven by their low dimen-
sionality, this class of materials exhibits a variety of competing electronic behaviors [1–5]
including metallic conductivity, Mott insulators [6–8] , antiferromagnetic states [9–11], and
superconductivity [12,13]. Other forms of long range charge order have also been observed,
such as charge density waves (CDWs) [14–16] and spin density waves (SDWs) [17,18]. More
exotic long range order, such as the quantum hall effect [18] and some of the first believ-
able evidence for field induced inhomogeneous superconductivity (the FFLO state) [19–23]
were also found in COM. There has also been discussion about the existence of tilted Dirac
points [24] and spin liquids [25–27] in these organic salts.

In addition to their rich correlated electron behavior, COMs are easy to access theo-
retically because they form regular stoichiometric crystals based on a few common cation
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molecules held together with various anion complexes. It is the electron deficient cation
layer that contains holes, which enables itinerant electron behavior within the layer. It
is evident that the geometric arrangement of the cation molecules is a principal factor
that determines the electronic ground state of the system. This so-called packing of the
cation molecules can be altered either by placing different molecules into the anion layer,
or by applying external pressure. By adjusting the physical parameters of the cation layer,
competing correlated electron states are selectively enabled and a complex electronic phase
diagram can be traversed [28–30].

There has been much theoretical progress towards understanding how the vari-
ous degrees of freedom of these materials lead to the bulk electronic states that are
observed [31–33]. From a theoretical perspective, the materials offer a unique window
into the physics of correlated electrons, because (i) COMs span the full range of states from
interaction-induced insulators to superconductors and metals, (ii) the electronic structures
are relatively simple, with only one orbital per molecule typically being relevant, (iii) nearly
all the materials are stoichiometric and exhibit a high degree of crystalline order, so that
simple models may closely approximate experiments, and (iv) COMs are built from com-
mon molecular entities, so that variations in properties may be directly related to structural
variations across vast numbers of compounds.

The theoretical study of these materials via the tight binding model, or density func-
tional theory (DFT), is leading to a better understanding of the fundamental physics
behind correlated electron systems and of quantum materials in general. Various packing
sub-families are known, in which particular structural degrees of freedom, and their re-
lationship with the underlying hopping integrals, are key inputs to predict the behavior
of the system [34–37]. Highlights of the strong exchange between experiment and theory
include, e.g., quantitative agreement between results of high level calculations (dynamical
mean field theory) and measurements of Mott critical scaling [7] and correlation-driven
crossovers in the optical response [38].

This new database was built to be used both as a way to find representative mate-
rials for targeted experiments investigating particular correlated electron states, or the
proximity of competing states, and as a research tool for discovering structure–function
relationships [39,40]. An aspirational use of the database would be to predict and design
new materials with targeted electronic properties. To serve these functions, the database
contains experimentally measured properties, crystal structures, and calculated electronic
structures of quasi one and two-dimensional crystalline organic conductors and supercon-
ductors. We hope that the enhanced accessibility of information that our database provides
will serve the scientific community and lead to new discoveries.

2. Website and Database

When arriving at the home page of the website, the user is presented with a list of
available materials and a window in which one may specify a desired type of packing, cation
molecule, and anion molecule in order to search for any matches in the database. Leaving
a field blank will act as a wildcard. The user can then click on a material to navigate to the
home page for that material, which shows its crystal parameters followed by an interactive
set of graphics starting with rotatable views of the crystal structure, the calculated electronic
structure, and the cation morphology. These views are followed by available measurements
of the material properties. Individual pages for each measurement enable the user to view
associated information in greater detail. When observing crystal structures, they can be
viewed and filtered to include all of the atoms, only the cations, only the anions, or rectangles
to represent the cations. Electronic structure diagrams can also be customized by the user to
show different k-paths or results from various types of calculations.

In order to identify relevant information to include in the database, the websites
of journals were automatically searched for key phrases such as “BEDT-TTF”, “organic
conductor”, and “organic superconductor”. The papers resulting from those searches were
then recorded as potentially containing measurement information relevant to the database.
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Each paper of interest was parsed to determine its relevance, and encode any reported
measurements into the database. Candidates for crystal structures were obtained from
the Cambridge Structural Database (CSD) by performing a substructure search on the
set of known cations. An algorithm was then used to analyze each crystal structure and
determine if it was a lower dimensional charge transfer salt of interest. Relevant crystal
structures were then added to the database, and their electronic structures were computed
automatically. For a smaller selection of materials DFT (WIEN2k) was also used to calculate
the electronic structure to compare to the tight binding results. The organization is depicted
in Figure 1. The database currently contains 110 materials, 184 crystal structures obtained
from the CSD and 440 measured properties. A link is provided for each material to the
corresponding CIF entry on the CSD website for the crystal structure information, and a
link is provided to the paper where each measurement was found. Below we describe in
more detail how the electronic calculations were made, and the methods for encoding the
measurements into the database.

Figure 1. Diagram showing the structure and flow of information into the database.

3. Crystal Structure Analysis Algorithm

To automatically identify relevant crystal structures from the Cambridge Structural
Database, we created an algorithm to assess relevance, and to perform some preliminary
diagnostics. The algorithm reads a CIF file, which contains a list of the atomic coordinates
within the unit cell, and the lattice information. The distance between each pair of atoms is
calculated, and if that distance is below the bonding threshold distance for the given atomic
species, it is assumed that a bond exists between them. In this manner, the molecules
within the unit cell are identified (see Figure 2a,b). The structure of each molecule is then
compared to a list of predefined structures of cation molecules such as BEDT-TTF. If the
structures match, it is then known that the molecule is a cation molecule of interest. At this
point it can be determined whether the material is quasi two-dimensional or not, and if so,
what crystal axis is perpendicular to the layers. This is achieved by examining the overlap
between cation and non-cation molecules for each Cartesian axis. If along a certain axis
there are only overlapping cation molecules with no non-cation molecules, we make the
assumption that this axis is in the plane of a conducting layer.

With the orientations and identities of the cations and anions automatically identified,
this algorithm can automatically suggest the chemical formula and packing type of a given
crystal structure. This is useful in grouping multiple structures for the same compound;
however, we did not use this detected chemical formula as the compound label in the
database. The name of a crystal structure is entered as denoted in the original paper to
ensure that any special chemical naming conventions used by the authors are preserved in
the database.
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In order to display the packing geometry of the cation molecules to the user, the
best fit plane of each cation is computed, and a minimum area rectangle algorithm is
applied to generalize a cation molecule as a rectangle in three dimensional space. This type
of generalization is common in cartoon diagrams of these materials. The resulting unit
cell of cation-rectangles, shown in Figure 2c–f, is useful to inspect the packing geometry
of the material. Given that the overlap of the cations is the major determinant of the
electronic structure of the crystalline organics, seeing the cations as blocks to visually
show the morphology of the crystal symmetry of the cations is instructive. The relative
distances and angles of the rectangles can then be calculated to quantitatively analyze the
packing. We also generated two-dimensional diagrams, which more simply showed the
geometric orientation of the cation molecules within the conducting layers based on the
angles calculated before.

Figure 2. Views of various stages of the crystal structure analysis algorithm. The individual images
show the initial unit cell consisting of atoms within a lattice (a), detected molecules (b), detected
cation molecules shown as rectangles (c), detected anisotropy and layers (d), a new unit cell consisting
of only the cation layer (e), and a two-dimensional depiction of the cation layer (f). In this example,
the material is β”-(ET)4[(H3O)Cr(C2O4)3]2[(H3O)2]5H2O, as reported in [41].

4. High-Throughput Electronic Structure Calculations

High-throughput electronic structure calculations using density functional theory
(DFT) have found applications in several materials databases; however, the large unit cells
of these materials and low crystal symmetries make full-scale DFT calculations with plane-
wave basis sets computationally expensive. This is especially problematic for cases with
open-shell anions, which feature localized unpaired electrons. Unless the local correlations
in the anion layer are treated explicitly (via DFT + U), anion bands may appear erroneously
near the Fermi energy, yielding incorrect Fermi surfaces. More importantly however,
many of our crystal structures have missing or disordered atoms, especially in the anion
layer. This is particularly prevalent in anion layers that contain solvents, which are often
disordered across unit cells. It is therefore necessary to reduce the computational expense
and focus exclusively on the cation layers.

To calculate the electronic structure of every crystal structure in our database, we construct
a two-dimensional tight binding model [42] for highest occupied molecular orbitals in the
layer of cation molecules using a series of local DFT calculations. Solving the tight-binding
(TB) model produces the band structure. To carry out the calculation, we used the crystal
structure analysis algorithm previously described to identify all symmetrically equivalent
molecules and pairs of molecules with the cation layers. We then used the method employed
in [43] to estimate tight-binding hopping integrals using quantum chemistry packages (in this
case ORCA [44]). Results are shown in Figure 3, for the example of α-(ET)2KHg(SCN)4. The
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method is based on calculations on pairs of molecules in which the local crystal environment
is otherwise ignored, which significantly reduces computational expense. For this purpose,
we used basis sets including 3-21G, 6-31G, 6-311G, and def2-SVP in conjunction with the
B3LYP hybrid density functional. Localized Wannier molecular orbitals (MOs) are constructed
for each molecule via maximizing the overlap with the corresponding orbital of the isolated
molecules. The procedure is as follows:

1. Obtain Isolated MOs: For each molecular pair (labeled i, j), a calculation is first
performed on the isolated molecules. From this, the MO coefficients (in the basis of
Gaussian atomic orbitals) for each molecule are obtained as Φ0

i and Φ0
j . These are

combined as:

Φ0 =

(
Φ0

i 0
0 Φj

)
(1)

2. Construct Wannier Functions: For each molecular pair, a calculation is then per-
formed in the geometry corresponding to the crystal structure. This produces the
diagonal MO energies E, the overlap matrix S, and the MO coefficients Φ. In ORCA, S

is output in the atomic orbital basis. It is first rotated into the basis of the isolated MOs:

S̄ = Φ0 S Φ†
0 (2)

In this geometry, the basis of isolated MOs are no longer orthonormal. Thus, the local
Wannier functions are constructed via symmetric orthornormalization, Φ̄0 = S̄−1/2Φ0.

3. Rotate Fock Matrix: The diagonal orbital energies are then rotated into the above-
defined localized MOs:

F = Φ̄0 Φ−1 E (Φ†)−1 Φ̄†
0 (3)

The resulting Fock matrix has the structure:

F =

(
Fii Fij
Fji Fjj

)
(4)

The on-site terms Fii and Fjj now contain both the diagonal Wannier orbital energies,
and small off-diagonal “crystal field” contributions. It is advantageous to remove the
latter terms via unitary transformation:

F̄ =

(
Ui 0
0 Uj

)
F

(
U†

i 0
0 U†

j

)
(5)

where F̄ii = Ui Fii U†
i and F̄jj = Uj Fjj U†

j are diagonal. The intersite hoppings can

then be read from F̄ij = Ui Fij U†
j .

We note, because this latter unitary transformation is different for every molecular pair,
the hopping integrals obtained for different pairs represent slightly different definitions of the
local Wannier functions. Nonetheless, this approximation is no more severe than the pairwise
construction inherent to the method. Although this approach neglects the anion layer, the
results agree well with full-scale calculations performed with Wien2k (at the GGA level) and
experimental electronic structure as well (see Figure 3c); however, the former approach is
much faster. With Wien2k, for example, a full DFT calculation using GGA functionals can
take several days to complete (with 100 processors), while construction of a TB model with
ORCA calculations takes approximately five minutes per compound (with 10 processors),
even when using more expensive hybrid functionals. Such a speed-up is desirable when
making high-throughput calculations for each crystal structure entry in the database.

Because the pairwise calculations are made separately, we had to adjust the signs
of the resulting charge transfer integrals such that the phase of the molecular orbital on
each symmetrically equivalent molecule was the same. We used the centroids of the
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cation molecules for the positions of the sites, disregarding the out of layer component.
The filling of each model was deduced from the stoichiometry and charge of the cation
molecules. Solving the tight binding Hamiltonian at each point in k-space produced
the energy eigenvalues that constitute the electronic structure. In this manner, the band
structure, Fermi surface, and density of states are automatically computed and may be
viewed on the website. Users can interact with these data directly by selecting the k-path to
use and which basis sets to display. In addition, the computed hopping integrals, and their
locations in the unit cell are presented to the user in order to serve as a basis for further
theoretical modeling.

Figure 3. Views of various stages of the tight-binding electronic structure calculation. The individ-
ual images show the quantum chemistry calculation of inter-molecular charge transfer integrals
(a), site-hopping integrals model (b), and electronic structure (c). In this example the material is
α-(ET)2KHg(SCN)4, as reported in [39]. Note that the WIEN2k band structure in red is close to the
TB band structures, especially near the Fermi level.

5. Measurements

• Locations of phase transitions:

– Metal insulator.
– Superconductivity, Tc, Hc1, Hc2, HP, (where HP is the Pauli paramagnetic limit).
– Charge density wave.
– Spin density wave.
– Magnetic ordering.

As a function of:

– Temperature.
– Magnetic field.
– Pressure.

• Lattice parameters.
• Conductivity.
• London penetration depth.
• Coherence length.
• Shubnikov—de Haas and de Haas—van Alphen frequencies.
• Effective mass.
• Dingle temperature.
• Scattering time.
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Each measurement entry in the database consists of three blocks of information: a
block specifying the state of the system being measured, a block specifying the value of the
measurement, including the error bars if available, and a block specifying the method by
which the measurement was made. Our goal behind the data entry is to create a digital
copy of measurement information in the precise manner in which it was specified by the
authors who made the measurement. We implemented support for as many measurements
as we could for this process. For example, the ability to specify a numeric value using an
exact decimal, a range between two decimals, or an average decimal with a plus or minus
value. Although laborious, we found that manual data entry was the most reliable way to
extract measurement information from papers. We used a web application on the website
for this purpose, shown in Figure 4.

Once we had a sufficient number of measurements, there were many decisions that
needed to be made about how they were presented. For a deep understanding of a single
material, it is necessary to see a detailed view of the actual measurements labeled by the
method of measurement; for example, the superconducting transition temperature, Tc,
found by resistance or specific heat, and the point on the transition curve, e.g., onset or
midpoint, used to locate the transition, with citations for each measurement. For that
reason, the details of the measurement method and the error bars, if given, are stored
in the database. For that reason, it is also necessary to present an average value for a
material when a number of materials are being compared to each other. We made the
decision to discount some of the grossly outlying measurements in cases where we thought
the data were not convincing. These rules for curating the data are constantly being
reconsidered to present the most useful data to the community; however, the full collection
of measurements will always be available so that a user of the database can analyze the
published measurements with their own algorithms.

Figure 4. View of the web application used for data entry. In this example, the Tc of β-(TMTSF)2PF6

under 12 kbar of applied pressure is specified to be 0.9 Kelvin as reported in [12].

6. Discussion and Future Outlook

We present this database of crystalline organic conductors and superconductors as an
evolving tool that will be continuously updated with new materials, features, and metrics.
The goal of gathering all relevant calculation and measurement information into one central
location is an arduous one, but the progress that we have made so far illustrates that it is
possible. In further developing this database, we have two main goals.

Our first main goal is to populate the database with as many entries as possible. The
limiting step in this process for inclusion of experimental measurements is data entry.
Manual data entry of measurements from scientific articles is the only method with a
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high enough degree of reliability to be useful in our database. We have used members of
our laboratory to perform data entry, and have trained undergraduate students as well.
Currently, our database includes only a small fraction of all the relevant data that exist. In
order to increase the number of measurements in our database, we will need to increase the
size of our data entry team. We are considering crowdsourcing the process so that verified
database users from across the world can also contribute. In addition, verified users will
have the option of submitting CIF files for automatic calculation of electronic structure and
tight-binding parameters. We would also like to populate the database with results from
explicitly correlated theoretical methods suitable for high-throughput applications (such as
density matrix embedding theory [45]). Presently, a tight-binding electronic structure is
provided for each crystal structure in the database. For some of these crystal structures,
missing or corrupt atoms in the anion layer prevent the use of a full LAPW DFT calculation;
however, we eventually plan to include full LAPW DFT calculations for as many of the
crystal structures in the database as possible. Any persons interested in becoming involved
with the project can click on the orange button at the bottom of the home page to request
an account. An option is also available to provide anonymous feedback.

Our second main goal regarding development of the database is to implement new
features. We plan to add an interactive web interface by which users can analyze the con-
tents of the database as a whole by correlating various calculated and measured properties.
We also would like to improve the search feature of the website so that more detailed
searches can be performed. There are many different avenues by which our existing work
can be further developed. We are trying to create as many tools as possible to perform
simple visualization and analysis of data online, such as the feature shown in Figure 5. A
number of parameters can be extracted from the band structure calculations, such as the
density of states at the Fermi level, and the cross sectional area of the Fermi surface. We are
working on finding robust universal algorithms to calculate these and other representative
values. Given this collection of the unit cell parameters, extracted electronic values, and
measurement parameters, any set of data can be graphed against any other set of data, and
scatter plots can be created including markers labeled with the material names. It is also
possible to combine parameters with common arithmetic operations to create additional
metrics. We will continue to enhance the user interface to create a more versatile and
expansive analysis interface.

Following the invention and widespread availability of computers, an increasing
trend towards digitization in science has taken place. Scientific databases have emerged
in practically every area of study because they enable the analysis of many pieces of
information, and the distribution of that information to individuals around the world. The
field of data science has also grown to develop new ways of analyzing the large amount
of data available. Many databases for materials science currently exist, particularly those
that focus on electronic structure, crystal structure, and other measured properties [46].
Our inspiration to create this database of organic conductors and superconductors was
drawn in part by the success of other databases containing density functional theory
electronic structure calculations for many crystal structures [47–50]. Our goal is to gather
as many different types and pieces of information related to quasi two-dimensional organic
conductors and superconductors as possible. We foresee this database as having a number
of different applications. Primarily, it will serve as a useful reference tool for the scientific
community of organic conductors and superconductors. Database users can easily find
and view crystal structures, electronic structures, and other measured properties for the
materials that they are interested in. We hope to cultivate a community of scientists from
across the world who are interested in using the database, contributing data to the database,
and requesting new features for the database. We also look forward to analyzing the
data that are stored in the database. Many techniques in the field of data science are
appropriate for this purpose. In particular, certain types of data mining and machine
learning have proven useful in the analysis of other materials databases [51–54]. We hope
that the identification of trends between various parameters will ultimately lead to a better
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understanding of the fundamental mechanisms of correlated electron systems in quasi
two-dimensional organic conductors and superconductors.

Figure 5. View of the 3D in-browser crystal structure analysis tool. The section on
the right provides interactive features to the users. In this example the material is
β”-(ET)4[(H3O)Cr(C2O4)3]2[(H3O)2]5H2O, as reported in [41].
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Abstract: In this paper we critically discuss several examples of two-dimensional electronic systems
displaying interaction-driven metal-insulator transitions of the Mott (or Wigner–Mott) type, including
dilute two-dimension electron gases (2DEG) in semiconductors, Mott organic materials, as well as
the recently discovered transition-metal dichalcogenide (TMD) moiré bilayers. Remarkably similar
behavior is found in all these systems, which is starting to paint a robust picture of Mott criticality.
Most notable, on the metallic side a resistivity maximum is observed whose temperature scale
vanishes at the transition. We compare the available experimental data on these systems to three
existing theoretical scenarios: spinon theory, Dynamical Mean Field Theory (DMFT) and percolation
theory. We show that the DMFT and percolation pictures for Mott criticality can be distinguished by
studying the origins of the resistivity maxima using an analysis of the dielectric response.

Keywords: Mott transition; quantum criticality; resistivity maxima; dielectric response; dilute
2DEGs; Mott organics; twisted transition-metal dichalcogenide bilayers; dynamical mean field
theory; percolation theory; spinon theory

1. Introduction

The physics of strongly correlated matter has many faces. Still, for a majority of
systems the underlying theme is the role of “Mottness” [1]. It is clear that if one aspect of
strong correlations should be understood first, it should be the fundamental nature of the
Mott metal-insulator transition [2]. Its simplest reincarnation is the transition induced by
tuning the bandwidth at half-filling, a setup that produced rather spectacular advances in
recent years. Several systems were identified as nearly-ideal realizations of this paradigm,
allowing systematic study using a wide arsenal of experimental probes.

In this article we present an overview of three classes of two-dimensional experimental
systems that exhibit bandwidth-controlled Mott criticality: dilute two-dimensional electron
gases in semiconductors, “Mott-organic” compounds, and transition-metal dichalcogenide
moiré systems. Thereby we aim to present the experimental facts as “bland” as possible, in
Section 3, without favoring one or the other theoretical explanation. The remarkable simi-
larities between these model systems suggests a robust universality, including characteristic
behavior such as the appearance of resistivity maxima.

Possible explanations of two-dimensional Mott criticality follow in the section there-
after (Section 4), where the experimental distinguishable features of each theory takes the
forefront. This is followed by a separate discussion of the largely-overlooked utility of
dielectric spectroscopy in Section 5, in not only identifying phase segregation and spatial
inhomogeneity, but also in revealing the thermal destruction of coherent quasiparticles
associated with Landau’s Fermi liquid theory.

However, first we need to address the demarcation of our topic. What makes the
metal-to-insulator transition in these systems stand out from ‘traditional’ metal-to-insulator
transitions [3,4]?

Crystals 2022, 12, 932. https://doi.org/10.3390/cryst12070932 https://www.mdpi.com/journal/crystals201
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2. In Search of Mott Criticality

Condensed matter physics, or recently for sales purposes re-branded as “quantum
matter physics”, is the study of electric and magnetic properties of materials that surround
us. The grand question that trumps all others is: how to understand which materials
conduct electricity and which are insulating? Traditionally, a conducting material is called
a metal—not to be confused with the chemical, metallurgical or astronomical meaning of
that word. Our main question (metal or insulator?) has not only tremendous technological
applications (in fact, all modern electronic technology depends on our ability to rapidly
switch materials between metallic and insulating behavior), but also requires a thorough un-
derstanding of the problem of emergent behavior of many interacting quantum-mechanical
electrons and ions.

Only at zero temperature does there exist a sharp difference between insulators and
metals [4]. There are three distinct possibilities: zero conductivity σ(T = 0) = 0 means
insulating; zero resistivity ρ(T = 0) = 0 means a superconductor; and anything in between
is a metal σ(T = 0) = 1/ρ(T = 0) �= 0. At any nonzero temperature, an insulator
typically has activated behavior ρ(T) ∼ eΔ/T whereas the standard Fermi liquid theory of
a metal predicts a temperature-squared increase of the resistivity ρ(T) = ρ0 + AT2. It has
therefore become common-place to use the derivative of the resistivity dρ/dT as a measure of
whether something is conducting (dρ/dT > 0) or insulating (dρ/dT < 0)—but this is highly
misleading! As we will show later in Section 3, close to a Mott metal-insulator transition we
often find non-monotonic behavior of the resistivity as a function of temperature, making
the ‘derivative’ criterion useless. Even worse, there exist cases where the resistivity has
dρ/dT < 0 but at zero temperature it does not diverge, signalling that this is not a true
insulator (see e.g., [5,6]). Another example is the case of Mooij correlations [7,8], where the
temperature-derivative of the resistivity in a metal can become negative. Consequently,
since only at zero temperature the insulator/metal distinction is well-defined, we must
stick with that definition. Regardless of the slope, a material is a metal if its resistivity does
not diverge as T → 0.

Many materials can be understood within the framework of band theory and its ex-
tensions such as Fermi liquid, Boltzmann transport, and density functional theory. This
framework provides a very simple answer to the metal-or-insulator question: if the Fermi
level lies in the middle of a band gap, the system is insulating; otherwise, the system be-
haves as a metal. This concept has the important consequence that for a crystalline material
with (up to some weak disorder) well-defined unit cells, insulators can only appear when
there is an even number of electrons per unit cell. Consequently, within the band theory
picture, there exist only three possible routes to induce a metal-to-insulator transition: by
changing the electronic density; via spontaneous symmetry breaking; or via band overlap
when the filling is even. An example of the first is doping a semiconductor, which is the
metal-insulator transition we induce on a daily basis inside transistors. An example of the
second is the transition into antiferromagnetic ordering: when the system is at half-filling
of a band (meaning one electron per unit cell), after antiferromagnetic unit cell doubling
there are two electrons per unit cell, and the system can become a band insulator. The third
case can be realized by for example straining a system such that the band gap changes from
positive to negative.

There are, however, two main exceptions to the paradigm of band theory. On the one
hand, disorder can become so large as to prevent the motion of the charge carriers—this
is known as Anderson localization [9]. On the other hand, the presence of very strong
electron-electron interactions can force the electrons to become “stuck” like in a traffic
jam—this is known as Mott insulation [2]. The standard model of Mott insulation is the
Hubbard model with a tight-binding Hamiltonian:

H = −t ∑
〈ij〉σ

c†
iσcjσ + U ∑

i
ni↑nj↓, (1)
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where t is the nearest-neighbor hopping on some lattice and U is the onsite repulsion.
When U = 0, the system is a metal when half-filled. When U � t, it becomes energetically
favorable to occupy each site with exactly one electron rather than to fill bands up to the
Fermi level. The resulting Mott state can therefore not be described by band theory!

Mott insulators have been observed in a wide variety of materials, most famously
transition-metal oxides, including high Tc superconducting cup rates [3]. Observing a clear
transition from a standard Fermi liquid metal to a Mott insulator, however, is quite elusive.
This transition can be induced either by changing the electronic density (“filling-controlled”)
or by changing the ratio U/t (“bandwidth-controlled”). The filling-controlled Mott transi-
tion [10] notoriously leads to a whole zoo of different instabilities, pseudogaps, and strange
metal behavior, and is typically masked at low temperatures by superconductivity. The
bandwidth-controlled Mott transition is, in contrast, often masked by (antiferromagnetic)
spin order that hides any Mottness behind the veil of unit cell doubling.

This might, at first, suggest that Mott criticality is something unattainable. By “crit-
icality” we mean that approaching the Mott transition we find vanishing energy scales,
and that the resistivity curves display scaling behavior. There are, however, two clever
tricks to realize Mott criticality. The first trick is dimensionality: a transition that is strongly
first-order in d = 3 dimensions often becomes continuous or weakly first-order in d = 2
dimensions. The most striking example of this is, of course, the solidification of 3He. The
second, and perhaps even more important trick is frustration: if the lattice structure is highly
frustrated (with competing magnetic interactions) one can avoid [11] antiferromagnetic
ordering altogether—revealing the true Mott transition.

In this review we, therefore, focus on three classes of systems that are indeed (quasi)
two-dimensional as well as frustrated: Wigner crystals in extremely dilute two-dimensional
electron gases; layered Mott organic compounds; and the more recent addition of transition-
metal dichalcogenide (TMD) moiré bilayers. Indeed, as we will show in Section 3, these
systems all seem to exhibit remarkably similar distinct features, including clear signatures
of critical resistivity scaling. Because these systems all have a fixed electron density per
unit cell of n = 1 (at least in the insulating limit), the observed transitions are plausibly
within the universality class of bandwidth-tuned Mott transitions.

A brief side-note is in order: we briefly mentioned superconductivity and disorder-
induced insulators. These phases can also have a continuous transition between them, the
so-called superconductor-to-insulator transition [12,13]. This, however, is an interesting
topic that falls outside the scope of this review. Similarly, we also will not consider disorder-
driven metal-insulator transitions [14,15], since this regime typically does not include any
Mottness. More general but also somewhat older reviews of metal-insulator criticality can
be found in Refs. [3,4,16–18].

3. Experiments

Given that experimental results should always be leading, the aim of this section is to
introduce three material systems that are likely exhibiting a bandwidth-tuned Mott metal-
insulator transition: dilute 2DEGs, organics, and moiré systems. To support the clarity of
interpretation, we will stress experimental similarities between these systems without much
room for theoretical guesswork—that is the next section’s realm.

While each system has a different tuning parameter (density, pressure, or field), the elec-
trical resistivity through the transition is the key observable, see Figure 1. Its behavior reveals
how the transport gap Δ decreases when we approach the transition from the insulating
side; as well as how the resistivity behaves on the metallic side, where Fermi liquid behavior
ρ(T) = ρ0 + AT2 is typically seen at T < TFL with an enhanced effective mass m∗. Remark-
ably, in all systems one also observes distinct resistivity maxima at T ∼ Tmax > TFL, signalling
the breakdown of coherent transport. Crossover to the quantum critical regime is described
by an additional temperature scale To, which is extracted from the scaling collapse of the
resistivity curves as shown in Figure 2.
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Figure 1. The key observable revealing a metal-insulator transition is the resistivity. Here we show ρ

vs. T resistivity curves as a function the tuning parameter, for representative examples of the three
material systems considered: (a) 2DEG in Si-MOSFET tuned by electronic density (reprinted with
permission from Ref. [19] Copyright 2019 American Physical Society), (b) Mott organic material
κ-(BEDT-TTF)2Cu2(CN)3 tuned by pressure [20], and (c) TMD moiré bilayer MoTe2/WSe2 tuned by
displacement field (Data imported from [21]). In all cases, one observes distinct resistivity maxima on
the metallic side, at a temperature Tmax that decreases towards the transition.

Figure 2. Critical scaling has been observed in all three experimental systems, when the resistivity is
plotted versus T/To where To is the characteristic crossover (quantum critical) energy scale. Note that
in all cases a strong “mirror” symmetry [22,23] exists between the insulating (upper) and metallic
(lower) scaling branch. (a) In a dilute 2DEG, scaling of the bare resistivity ρ(T) was achieved by
simply rescaling T with To ∼ |δ|1.6 (Adapted with permission from Ref. [24] Copyright 1995 American
Physical Society); (b) In organic compounds, the normalized resistivity ρ̃ is obtained by normalizing
the resistivity by the critical resistivity along the Widom line. This leads to excellent scaling collapse
with To ∼ |δ|0.60±0.01 (Adapted with permission from Ref. [25] Copyright 2015 Springer Nature); (c) A
similar approach was followed in TMD moiré bilayer MoTe2/WSe2, with similar To ∼ |δ|0.70±0.05

(Data imported from [21]).

A practical summary of the experimental results is presented in Table 1.
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Table 1. A summary of available experimental results for the three classes of systems considered.
The sources (references) are given in the text below. Question-marks indicate the lack of reliable data.
Fermi liquid (T2) transport behavior has not been documented in 2DEG systems, in contrast to strong
evidence for it in Mott organics and TMD moiré bilayers. Note that the characteristic energy scales
Δ, (m∗)−1, TFL, Tmax, as well as To display similar continuous decrease towards the transition in all
three systems, consistent with general expectations for quantum criticality. One should keep in mind
that the error bars on the estimated exponent could be substantial, since the results typically depend
strongly on the utilized fitting range.

System Dilute 2DEG Mott Organics TMD Moiré Bilayers

Transition Type continuous? weakly first order
(at T < Tc ∼ 0.01TF) continuous?

Δ |n − nc| |P − Pc|νz,
νz ≈ 0.7 − 1

|E − Ec|νz,
νz ≈ 0.6

1
m∗ |n − nc| ? ?

To
|n − nc|νz,
νz ≈ 1.6

|P − Pc(T)|νz,
νz ≈ 0.5 − 0.7

|E − Ec|νz,
νz ≈ 0.7

TFL ? |P − Pc| |E − Ec|νz,
νz ≈ 0.7

Tmax |n − nc| |P − Pc| |E − Ec|νz,
νz ≈ 0.7

3.1. Dilute 2DEG in Semiconductors

In dilute two-dimensional electron gases (2DEG) [26], the electron density can be
quantified by the dimensionless parameter rs = 1/

√
πnaB where n is the electron density

and aB the Bohr radius. The ratio of interaction energy versus kinetic energy scales as rs,
and therefore at large enough rs (of the order rs ∼ 40 in 2D) the electrons will spontaneously
crystallize into a Wigner solid. In a two-dimensional Wigner crystal, the electrons form a
triangular lattice with exactly one electron per unit cell—essentially forming a frustrated
Mott insulator. When the electron density n is varied, the size of the unit cell changes
accordingly so that the Wigner crystal always remains fixed at one electron per unit cell.
The transition from an insulating Wigner crystal to a metal can therefore be plausibly
viewed as a bandwidth-tuned Mott transition. Note that this is counter-intuitive: after
all, one tunes the electron density! However, what matters is the electron density counted
per unit cell and that remains constant. This idea suggests [27–29] that the melting of a
Wigner solid by increasing density should be viewed as a Wigner–Mott transition, possibly
bearing many similarities to Mott transitions in narrow-band crystalline solids such as Mott
organics or transition-metal oxides. If this viewpoint is correct, then the resulting metal
above the transition should display resemble other strongly correlated Fermi liquids, a
notion that is starting to gain acceptance on the base of recent experiments [30–32].

Experimentally, high-quality 2DEGs can be realized in metal-oxide-semiconductor field-
effect devices (MOSFETs) in various semiconductors [24,30,32,33]. Through electrostatic gating
the electronic density can be elegantly tuned, typically in the range of n ∼ 1010–1012 cm−2.
The peak electron mobility in ultra-clean samples can be as high as 104 cm2/V s [19], which
implies that down to very low temperatures the transport properties are dominated by
electron-electron interactions (like Wigner crystallization) rather than extrinsic disorder effects.
Lower-mobility devices have also been extensively studied (for a review see Chapter 5 of
Ref. [18]), displaying different types of metal-insulator transitions displaying electron glass
dynamics [34], which we will not discuss here.

Indeed, tuning the electronic density leads to insulating transport below a critical
density, typically around nc ∼ 1011 cm−2 [24,33], see Figure 1a. Activated behavior is often
observed close to the transition [34,35], with the activation energy Δ ∼ |n − nc|. Further on
the insulating side disorder effects may become important, where Efros-Shklovskii hopping
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(and other effects of disorder) is also observed [24], but only at the lowest temperatures.
On the metallic side, a pronounced resistivity drop (often by a factor of 10 or more) is
observed [24,30] below the temperature Tmax ∼ |n − nc| which decreases as the transition
is approached. Characteristic scaling of the resistivity maxima has been reported in several
systems [30–32], see Figure 3, which has been interpreted as evidence for strong correlation
effects. However, the expected T2 dependence of the resistivity has not been observed,
despite the reported effective mass enhancement (m∗)−1 ∼ |n − nc| [36], characteristic
of correlated Fermi liquids. Quantum critical scaling collapse of the resistivity curves
has also been demonstrated [24] around the critical density, albeit excluding the lowest
temperatures data, as shown in Figure 2a. This is achieved by rescaling T by a crossover
scale To ∼ |n − nc|νz, with νz ≈ 1.6. The resulting scaling function reveals surprising
“mirror symmetry” [22], which was phenomenological interpreted [23] as evidence “strong-
coupling quantum criticality”. Similar systems to these 2DEGs include the observation
of a Wigner crystal in low-density doped monolayer WSe2 [37], where more detailed
experiments still need to be performed.

Figure 3. Characteristic scaling of the resistivity maxima has been reported in several 2DEG electron
systems in semiconductors: (a) Si-MOSFETs (adapted with permission from Ref. [29] Copyright 2012
American Physical Society); (b) p-GaAs/AlGaAs quantum wells (adapted with permission from Ref. [29]
Copyright 2012 American Physical Society); (c) SiGe/Si/SiGe quantum wells (adapted with permisssion
from Ref. [30] Copyright 2020 American Physical Society); (d) few layered-MoS2 (Adapted with permission
from Ref. [32] Copyright 2020 American Physical Society). All data collapse to the same (theoretical)
scaling function [29] obtained from the Hubbard model at half-filling, in the vicinity of the Mott point.

3.2. Organic Compounds

An organic compound [38] refers to a crystalline system where each unit cell contains
an entire molecule, rather than just loosely bound ions. A particularly interesting class of
organic compounds is based on the molecule bis-(ethylendithio)-tetrathiafulvalen (BEDT-
TTF or ET), which can be fabricated with other ions into quasi-two-dimensional layered
systems. Compounds based on BEDT-TTF exhibit a spectrum of interesting quantum
matter phenomena, ranging from superconductivity [39] to electron glass behavior [40].

Our interest goes out especially to κ-(ET)2Cu[N(CN)2]Cl and κ-(ET)2Cu2(CN)3, where
the molecules are organized in triangular lattice layers [38]. These materials are strongly
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correlated, and indeed, despite being half-filled they are insulating at ambient pressures.
Due to the geometric frustration of the triangular lattice [11], no magnetic order has been
observed in κ-Cu2(CN)3 and antiferromagnetic order only at relatively low temperatures
(T < TN ≈ 20K) in κ-Cl. The absence of magnetic order is the strongest indication that
κ-Cu2(CN)3 might realize a spin liquid ground state [41,42].

Upon applying pressure, a zero-temperature first-order phase transition brings the
system into a paramagnetic metallic phase at pc = 122 MPa (κ-Cu2(CN)3) or pc = 24.8 MPa
(κ-Cl), see Figure 1a [20,25]. The first order phase boundary ends in a critical point at
Tc = 20 K or Tc = 38 K, respectively. It is important to emphasize that these temperatures
are very small compared to the electronic energy scales. The Hubbard repulsion U and
bandwidth W are both on the order of a fraction of eV [42], which implies Tc � U, W. As
such, even though the observed Mott criticality appears at nonzero temperatures, much of
the observed phenomena above Tc can be described as if the system resides in the vicinity
of a quantum critical point [25].

Above Tc, a crossover pressure Pc(T) can traced [25] where the measured resistivity exhibits
an inflection point, see Figure 4. This defines the “quantum Widom line” (QWL) [43] by analogy
to the standard liquid-gas crossover. Defining the critical resistivity ρc(T) to be the resistivity
along the QWL, all resistivity curves collapse onto each other when plotted as ρ(P, T)/ρc(T)
vs. T/T0(P), as shown in Figure 2b. Here the scale To(P) reflects a critical energy scale that
vanishes at the critical pressure, To ∼ |P − Pc|0.6 for Cu and To ∼ |p − pc|0.5 for κ-Cl [25]. On
the insulating side of the transition, the resistivity is approximately activated ρ ∼ exp(Δ/T) [42].
On the metallic side, it follows [44] the standard Fermi liquid behavior at low temperatures
ρ(T) = ρ0 + AT2, up to a temperature scale TFL, see Figure 5a. This destruction of the Fermi
liquid seems to correspond to the appearance of a maximum in the resistivity [20].

Figure 4. Finite temperature phase diagram of the Mott organic materials. (a) first-order phase transition
line, as observed in κ-Cu2(CN)3 (adapted with permission from Ref. [25] Copyright 2015 Springer
Nature) at T < Tc ∼ 20K, displaying “Pomeranchuk” behavior [45], by “sloping” towards the metallic
phase. The corresponding “Quantum Widom Line” [43] arises at T > Tc, which is identified as the center
of the quantum critical region [46] with resistivity scaling [25]. (b) Phase diagram [44] for κ-Cu2(CN)3

over a broader T-range, displaying the convergence of the quantum Widom line (QWL) on the insulating
side, and the “Brinkman-Rice” line (TBR = Tmax, which intersect at the critical end-point T = Tc. The
Fermi-Liquid line TFL < TBR is also shown. (c) The universal phase diagram for a series of spin-liquid
Mott organics compounds was established [42] by rescaling the temperature T and the interaction
strength U by the respective electronic bandwidth W. The parameters W and U were independently
measured [42] for each material using optical conductivity.

In addition to transport measurements, and in contrast to other systems we consider, Mott
organics have also been carefully investigated using optical probes. This allowed to directly
identify [42] the quantum Widom line, which is back-bending towards the insulating side at
higher temperatures following the closing of the Mott gap. In addition, the “Brinkman–Rice”
line traced by Tmax was identified as marking the thermal destruction of Landau quasiparticles,
as seen by the vanishing of the Drude peak in the optical conductivity [44], see Figure 6.
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Finally, the controversy about the presence or absence of the low-T phase coexistence
region has been resolved in Mott organics, by using dielectric spectroscopy [20]. Its precise
location on the phase diagram has been identified by the observation [20] of colossal
dielectric response, as a smoking gun for percolative phase coexistence. In addition, the
same technique was able to demonstrate the coincidence of the resistivity maxima in the
(uniform) metallic phase, with the thermal destruction of Landau quasiparticles. This is seen
as a dramatic drop and a change [20] of sign of the dielectric function at T < TBR = Tmax.
These experimental results are shown in Figure 6, and discussed in more detail in Section 5.

Figure 5. Fermi liquid behaviour at low temperatures, for (a) Mott organic material κ −
[(BEDT-TTF)1−x(BEDT-STF)x]2Cu2(CN)3 [44] and (b) MoTe2/WSe2 moiré bilayers (Data imported
from [21]). Clear ρ = ρ0 + AT2 behavior is observed in both cases, up to a temperature scale TFL

that seems to decrease linearly towards the metal-insulator transition. The resistivity curves can be
collapsed by plotting ρ(E, T)/ρc(T) vs. T/T0 where T0 ∼ |E − Ec|0.70±0.05, see Figure 2c. Note that
this crossover scale seems to follow both the gap size on the insulator, as well as the destruction of
the Fermi liquid on the metallic side.

Figure 6. Transport behavior vs. dielectric response across the phase diagram of κ-Cu2(CN)3 [20].
(a) DC transport shows only very gradual change across the BR line (resistivity maxima), and cannot
one see any clear indication of the phase coexistence region. (b) In dramatic contrast, the low-
frequency dielectric function ε1 assumes small positive values in the Mott insulator (pale pink), and
large negative values in the quasiparticle regime (deep blue); we clearly see the boundaries of these
regimes tracing the QWL and the BR line (following Tmax), as observed in transport. Remarkably,
“resilient” quasiparticles [47] persist past the Fermi Liquid line, at TFL < T < TBR = Tmax, where
bad metal behavior [48] (metallic transport above the Mott-Ioffe-Regel [49] limit is observed). At low
temperature, the Mott point is buried below the phase coexistence dome, which is vividly visualized
through colossal dielectric response (ε1 ∼ 103–104).
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3.3. Moiré Materials

The most recent addition to the field of strongly correlated systems are moiré materials.
These are bilayer structures made of Van der Waals materials such as graphene and transition-
metal dichalcogenides (TMDs). A lattice mismatch or relative twist angle between the layers
causes a large-scale geometric “moiré” pattern. This larger unit cell (typically in the range of
5–10 nm) drastically reduces the effective electron kinetic energy such that the bandwidth is on
the order of W ∼ 10 meV. As a result, the systems become strongly correlated, with U/W ∼ 10
or larger. Using electrostatic gating one can tune the electronic density, typically in the range of
a few electrons or hole per moiré unit cell (corresponding to n ∼ 1012 cm−2).

While the most famous of correlated moiré materials is without a doubt twisted bilayer
graphene, more convincing evidence for Mott correlations has so far only been observed in
TMD bilayers. Here, we focus on one particular system: the heterobilayer MoTe2/WSe2 [21].
The lattice mismatch between MoTe2 and WSe2 gives rise to a moiré period of aM ∼ 5 nm.
At half-filling of the first valence band, an insulating phase appears which can be tuned into
a metal by applying a vertical displacement field E. This flat valence band can be described
by a spin-orbit coupled triangular lattice Hubbard model, where the displacement field E
tunes the bandwidth [50].

The temperature-dependent resistivity across the transition is shown in Figure 1c.
On the insulating side, the system has well-defined activated behavior of the resistivity
with a gap Δ continuously vanishes as the critical displacement-field value is approached,
Δ ∼ |E − Ec|0.60±0.05. At the critical point, the resistivity is claimed to follow a powerlaw,
ρc ∼ T−1.2, although the reliability of the low-T data may be questionable. On the metal-
lic side, the low-T resistivity follows the Fermi liquid law ρ(T) = ρ0 + AT2 where the
quadratic prefactor diverges A ∼ |E − Ec|−2.8±0.2. This clear Fermi liquid does not persist
up to all temperatures, instead, a resistivity maximum appears at Tmax ∼ |E − Ec|0.70±0.05,
see Figure 5b. No magnetic order has been observed, which might be due to the geometric
frustration of the triangular moiré lattice structure. Remarkably, this experiments uses the
recently-developed excitonic sensor [21], which allows the measurements of the spin sus-
ceptibility across the transition. This reveals Curie-law behavior over a broad temperature
range, thus demonstrating the presence of localized magnetic moments, as expected for a
Mott system.

Finally, among other moiré systems it is worth mentioning the twisted hetero-bilayer
WSe2 [51]. Though it was claimed to exhibit some sort of Mott-related criticality, it is
not certain whether a true insulating phase has indeed been observed given that the
activated transport does not continue down to the lowest measured temperatures. In
addition, insulating behavior seems to disappear above a relatively low of the order of
T∗ ∼ 5–10 K, which is similar to twisted bilayer graphene, but much smaller than the
estimated bandwidth of the order of W ∼ 100–200 K. Furthermore, no clear resistivity
maxima on the metallic side have been observed. Whether or not tbWSe2 can be classified
as a true Mott insulator is therefore quite controversial. Alternatively, the observed behavior
could be a result of some sort of magnetic order, which may arise close to half filling even
in weakly-coupled systems.

3.4. Universal Criticality

The resistivity curves of the three systems, as shown Figures 1 and 2, show remarkable
universality, reflected in the fact that all curves can be collapsed by scaling with T0 ∼ |δ|zν

where δ is the tuning parameter and zν the critical exponent. It is important to realize,
however, that the precise scaling procedure applied was not identical in the three cases,
and the resulting critical exponent also somewhat depend on the system.

So what is different between these systems? Let us first focus on the energy scale.
The typical bandwidth W ranges from ∼100 s meV in Mott organics, to ∼10 s meV in the
moiré systems, to 0.1–1 meV in the dilute 2DEGs. A finite temperature critical point is only
observed in the organics, though at about Tc ∼ 1%W—which leaves open the possibility
that a finite T critical endpoint exists in the other two systems. Indeed, most experiments
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are performed (so far) above the Kelvin range in moiré materials, and above 100 mK in
2DEG, which makes it hardly possible to reliably explore the T-range below few percent of
the bandwidth.

Secondly, in order to achieve quantum critical scaling in Mott organics, one needs
to first identify a Widom line as a demarcation of the finite-temperature crossover from
insulator to metal. A similar analysis was carried out for moiré materials, although the
obtained Widom line displayed no apparent “curving” as a function of temperature. This is
manifestly not performed in the dilute 2DEGs. It might be interesting to see whether better
collapse can be achieved through such a method.

Thirdly, with a bit of good-will, the critical exponents in organics and Moiré systems
are in the same ballpark; whereas the critical exponent in the dilute 2DEGs with zν = 1.60
is significantly larger. It is also important to realize that in 2DEGs there has not been a
clear observation of a Fermi liquid regime—unlike in organics and Moiré systems, see
Figure 5. These ways in which 2DEGs stand out might be related to the fact that there is no
underlying (Wigner) lattice on the metallic side, which could point to a perhaps nontrivial
role of significant charge density fluctuations on the metallic side, an effect not present in
lattice Mott systems.

4. Competing Theoretical Pictures

As we mentioned in Section 2, the observation of Mott criticality and scaling opens
big questions on the theoretical front. Currently, there exist three main different physical
pictures to address these issues.

A true Mott transition should not be hidden by some period doubling symmetry
breaking. The Lieb-Schultz-Mattis theorem states that in absence of spin order, the ground
state of Mott insulator must be a spin liquid [52]. This leads directly to the first theoretical
picture: Mott criticality can only occur if the Mott phase is a spin liquid, where inter-site
spin correlations play an important role. The theory of Senthil [53] chooses this path, by
introducing an explicit spinon theory of the Mott spin liquid.

Alternatively, one focuses on local electronic processes only, ignoring inter-site spin
correlations. Then the Mott transition at low temperature becomes first-order; however, it is
only weakly first order. A first order transition line always ends at a critical point Tc, and as
long as Tc is sufficiently low compared to any experimental scale, one still finds criticality
and scaling. This is the picture emerging from Dynamical Mean Field Theory (DMFT) [54],
a strong-coupling self-consistent approach to calculate the local electronic self-energy.

The third picture again accepts the first-order nature of a Mott transition, but this
time embraces it. A first-order transition is always accompanied by a region where both
phases coexist. Minor disorder or self-generated pattern formation [55,56] can smear this
phase coexistence region into a continuous-looking transition exhibiting nontrivial electron
dynamics. This is the ‘percolation theory’ picture of Mott criticality.

The goal of this review paper is to put the main theoretical predictions next to the
experimental findings. As such, we will not dive into the pros and cons of each theoretical
picture. A summary of the main theoretical predictions is provided in Table 2.
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Table 2. A summary of predictions from competing theoretical pictures. The expected transition
type differs between the three pictures, with observable differences in the behavior of the mass
enhancement m∗, the Kadowaki–Woods ratio A/(m∗)2, the destruction of the Fermi liquid at TFL,
and the appearance of a resistivity maxima at Tmax. Details are provided in the text below.

Theory Predictions 2D Spinon Theory DMFT Percolation Theory

Transition Type continuous weakly first order
(at T < Tc ∼ 0.01TF) first order

Δ |g − gc|Sνz,
νz = 0.67

|U − Uc1|νz,
νz ≈ 0.8 remains finite

m∗ weak: ln 1
|g−gc | strong: |U − Uc2|−1 no divergence

A/(m∗)2 ? constant
(KW law obeyed)

diverges: (xo − xc)−t;
t = s/m

TFL |g − gc|2ν |U − Uc2| T∗ ∼ |xo − xc|
Tmax Tmax = ∞ |U − Uc2| T∗ ∼ |xo − xc|

4.1. Spin Liquid Picture of the Mott Point

A popular approach to describe a spin liquid state is through spin-charge separation. In
Ref. [53], the electron is split into a charge-0 spin-1/2 fermionic spinon f and a charge-e
spin-0 bosonic chargon b. The Mott transition, in this picture, amounts to the condensation
of the chargon field, whose critical behavior falls within the 3D XY universality class.
The Fermi liquid corresponds to the condensed phase of the chargon, whereas the Mott
insulator corresponds to a gapped phase of the charged boson. The splitting of the electron
leads to redundant degrees of freedom described by an emergent gauge field. Fluctuations
of this gauge field lead to a logarithmic enhancement of the quasiparticle effective mass,

m∗ ∼ ln
1

|g − gc| , (2)

where g is the tuning parameter and gc is the critical value. However, as in any theory with
a non-local electronic self-energy, the quasiparticle residue Z is not simply proportional to
the inverse effective mass; instead Z ∼ |g − gc|β/ ln 1

|g−gc | . Furthermore, approaching the
Mott transition from the metallic side the spin susceptibility χ remains constant whereas
the compressibility κ vanishes. Physically, these effects result from important inter-site spin
correlations, where a gapless spin liquid can be viewed as a certain superposition of spin
singlets formed by pairs of spins in the Mott insulating state. As a result, there emerges a
finite gap δ to charge excitations, while the rearrangement of singlets leads to characteristic
gapless spin excitations with fermionic quasiparticles. This picture is a specific realization
of the famous RVB picture of Baskaran and Anderson [57], first proposed in the context of
high-Tc superconductors.

Another significant consequence of describing the Mott transition as chargon conden-
sation, is that the T = 0 conductivity is not continuous. The electron resistivity will display
a universal jump from a (disorder)-dependent constant value ρ = ρ0 in the Fermi liquid; to
ρ = ρ0 +

Rh
e2 (with R of order one) at the critical point; to ρ = ∞ in the Mott insulator. On

the metallic side, the Fermi liquid is predicted to break down above TFL ∼ |g − gc|2ν and
give rise to a marginal Fermi liquid state, which in turn survives up to TMFL ∼ |g − gc|ν.
In both cases, ν = 0.67 is the 3D XY correlation length exponent. On the insulating side,
the boson condensation picture implies that the charge gap vanishes as Δ ∼ |g − gc|ν. The
spinons, however, remain gapless and form a spinon Fermi surface, with low-temperature
specific heat scaling as C ∼ T2/3.

Note that the original work in Ref. [53] does not directly provide a detailed description
for finite temperature dependence of the resistivity, and thus no explicit prediction for a
possible deviation from the Kadowaki-Woods (KW) law (A/(m∗)2 ≈ constant) [58]. On
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the other hand, Ref. [58] presents arguments that the physical requirement for the validity
of the KW law is the locality of the electronic self-energy (as in DMFT theory) [54], a
condition which is not obeyed by the RVB-type spin-liquid theories such as the Senthil’s
spinon picture.

It should be stressed that the spinon theory makes one sharp prediction about fi-
nite temperature transport in the critical regime. Namely, the critical resistivity curve is
predicted to assume a universal power-law form ρc(T) ∼ 1/T in d = 3 [59], but remain
T-independent in d = 2, see Figure 7. This therefore leads to distinct resistivity maxima in
3D, but not in 2D [53], where monotonic T-dependence should be found on both sides of
the transition, albeit with opposite slope. Physically, this difference reflects the proposed
importance of “infrared” (IR, long distance) effects due to gauge fields, which should have
strong (spatial) dimensionality dependence. Concerning quantum critical scaling, it is
interesting that this theory proposes the emergence of two crossover temperature scales,
both of which vanish at the transition.

Figure 7. Predictions of the spinon theory (reprinted with permission from Ref. [59] Copyright 2009
American Physical Society). (a) The phase diagram features a quantum critical point at T = 0, and
two distinct finite-T crossover scales T∗ (above which the system is quantum critical) and T∗∗ (below
which the system is either a metal or a gapless spin liquid). (b) and (c) Resistivity and conductivity
along the lines A, B and C in the phase diagram in (a). Critical resistivity is predicted to diverge as
ρc(T) ∼ 1/t in d = 3, leading to resistivity maxima on the metallic side (coductivity minima). In
contrast, the same theory predicts finite critical resistivity ρc(T) ∼ ρ∗ in d = 2 [53], hence monotonic
behavior on both sides of the transition and no resistivity maxima.

We finally mention that a similar spin-charge separation theory has been very recently
proposed to also describe the Wigner–Mott transition in TMD bilayers, where a possible
role of charge fluctuations has also been discussed for the metallic side [60,61].
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4.2. Dynamical Mean Field Theory Picture of the Mott Point

Our second theory of interest is Dynamical Mean Field Theory (DMFT), which ex-
plicitly ignores all nonlocal (spin or charge) spatial correlations, and therefore aims to
self-consistently calculate the local electronic self-energy Σ(ω) [54]. Physically, its real part
describes the modifications of the electronic spectra, while its imaginary part encodes the
frequency and temperature dependence of the electron-electron scattering rate. In this way,
this theory is not limited to low-temperature excitations only, but is able to capture strong
inelastic scattering at high temperatures, and therefore describe both the (coherent) Fermi
liquid regime, and also the incoherent high-temperature transport, for example the famed
bad metal behavior [48,62] above the MIR limit [49].

While there exist some limiting cases where an analytic solution is possible, it is mainly
a numerical approach at finite temperature. DMFT is exact in the limit of large coordination,
which physically corresponds to maximal magnetic frustration. Therefore, in the simplest
implementation, DMFT describes Mott physics in absence of any magnetic order, nor does
it include any (inter-site) spin liquid correlations. We should mention that extensions of
DMFT have recently been proposed [63] that include spinon effects, based on an alternative
(matrix M, N) rotor representation. This theory, which includes some dynamical effects
even at the saddle-point level, suggest that coherent spinon excitations are very fragile to
charge fluctuations emerging upon the closing of the Mott gap, suppressing the spin liquid
correlations not only on the metallic side, but also within the critical region. We will not
further discuss these most sophisticated approaches here, but will limit our attention to the
predictions of the simplest single-site DMFT theory.

When applied to the single-band Hubbard model on a frustrated lattice (such as
the triangular lattice), DMFT predicts that on the metallic side the quasiparticle mass
diverges linearly m∗ ∼ |U − Uc2|−1 at a critical value Uc2 (similar to the prediction of
the Brinkman–Rice (BR) theory of the Mott transition [64]). The quasiparticle weight Z
is inversely proportional to (m∗). Similarly, other features of the Fermi liquid such as
the Kadowaki-Woods law A ∼ (m∗)2 are upheld. This Fermi liquid behavior persists
up to a temperature TFL that vanishes linearly when approaching Uc2. Interesting, at
Tmax ∼ TFL the resistivity exhibits a maximum [29]. On the insulating side, there exist
no well-defined quasiparticles as the self-energy diverges, Σ(ω) ∼ 1/ω. The electronic
spectrum is split into an upper and lower Hubbard band, separated by a gap that remains
nonzero at Uc2. The insulating state becomes unstable at a lower value of the interaction
Uc1 < Uc2, where the gap closes δ ∼ |U − Uc1|, νz, νz ≈ 0.8 [65]. As a result, there emerges
a low-T first-order metal-insulator transition, and an associated phase coexistence region at
Uc1 < U < Uc2 [54]. These main predictions are summarized in Figure 8.

At nonzero temperature, the first-order transition line ends at a critical point at a tem-
perature Tc ≈ 0.015W, significantly smaller than the bare bandwidth W. At temperatures
T � Tc the results can be viewed as effectively quantum critical [46,65]. This quantum
critical regime is centered around the so-called quantum Widom line (QWL) [43], which
physically represents a finite-temperature instability trajectory of the insulating phase, as
shown in Figure 8a. It extends the first-order line past T = Tc, and can experimentally be
detected from an inflection point analysis [25] of the resistivity curves. In this regime, the
resistivity satisfies the scaling law ρ(T, δU) = ρc(T) f (T/T0(δU)) with a crossover temper-
ature scale To ∼ |δU|νz where νz ≈ 0.6, see Figure 8c. The crossover scale To is a property of
the quantum critical regime and should not be confused with the low-temperature scaling
of the Fermi liquid temperature TFL. DMFT therefore predicts two different regimes of
scaling: the quantum critical regime at T � Tc, and the metal regime dominated by scaling
in TFL.
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Figure 8. Predictions of DMFT theory. (a) Phase diagram featuring a phase coexistence region
at T < Tc, and a Quantum Critical region centered around the Quantum Widom Line (QWL)
(adapted with permission from Ref. [46] Copyright 2011 American Physical Society). (b) Resistivity
(normalized by the Mott-Ioffe-Regel (MIR) limit) as a function of temperature T across the transition.
Note the pronounced resistivity maxima on the metallic side (adapted with permission from Ref. [66]
Copyright 2010 American Physical Society. (c) scaling collapse of the resistivity curves, displaying
pronounced “mirror symmetry” of the two branches (adapted with permission from Ref. [46]
Copyright 2011 American Physical Society).

4.3. Percolative Phase Coexistence Picture

In the early theories of both Mott insulators [2] and Wigner crystals, the transition from
insulator to metal was often assumed to be robustly first order, at least at sufficiently low
temperature. However, even the presence of weak disorder or medium-ranged interactions
will create an “emulsion” (microscopic phase coexistence) with Mott/Wigner insulating
“islands” in between metallic “rivers” as proposed by Spivak and Kivelson in the context of
2DEG systems in semiconductors [55,67]. If so, then tuning bandwidth and/or temperature
should produce a continuous variation of the metallic fraction x. As long as it exceeds the
percolation threshold (x > xc), the system is conducting. At x < xc the metallic domains no
longer connect across the system, and conduction stops, at least at T = 0. Critical behavior
now arises because we dealing with a classical percolation transition.

In this picture, the T = 0 metal-insulator transition may occur without actually closing
the insulating gap Δ. Similarly, at the percolation threshold x = xc the metallic Fermi
liquid at low T is still stable, and consequently there is no strict divergence of the effective
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mass m∗, nor the vanishing of TFL at the percolation threshold. We note, however, that
such a (classical) percolation picture should apply only if the characteristic domain size
is sufficiently larger than the characteristic correlation (or dephasing) length, therefore
strictly speaking not at the lowest temperatures. However, finite-temperature variation of
the transport properties should be adequately captured, as abundantly documented [68] in
other systems featuring microscopic phase separation, such as Colossal Magneto-Resistance
(CMR) manganites, for example.

There is, however, an interesting and nontrivial feature of the percolation picture
pertaining to finite temperatures. Because of its localized spins, the entropy of the Mott
or Wigner–Mott insulating phase should be higher than that of the of the metal (Fermi
liquid). As a result, when raising the temperature in the metallic regime, the insulating
volume fraction will increase: a manifestation of the Pomeranchuk effect [45]. As a result,
the resistivity should increase up to some T = Tmax, above which the metallic domains no
longer connect, and resistivity will decrease again [56], leading to resistivity maxima. This
qualitative picture has been advocated in the work of Spivak and Kivelson, but no concrete
prediction of the precise temperature dependence of the resistivity has been made, nor how
the corresponding family of curves should scale as the transition is approached.

Interestingly, the same physical picture should in fact apply not only to Wigner–Mott
transitions in semiconductors, but also the to conventional Mott transition, provided that
there exists a well-defined metal-insulator phase coexistence region around the Mott point.
Indeed, recent work on Mott organics [20] revealed precisely such a phase coexistence
region, albeit only at very low temperatures of the order of at most few percent of the
(bare) Fermi energy. Here, careful theoretical modeling [20] firmly established the validity
of the percolation picture, but only within a well-defined phase coexistence region. In
contrast, in all the systems studied (2DEG, Mott organics, moiré), the pronounced resis-
tivity maxima persist even much further onto the metallic side, where Tmax can reach a
substantial fraction of TF, where phase coexistence is very unlikely. Furthermore, recent
experimental work on Mott organics by Kanoda and collaborators demonstrated [69,70] the
extreme fragility of such a phase coexistence region to disorder, as generally expected in
2D systems [71]. Nevertheless, it is extremely useful to have an independent experimental
method to distinguish the phase coexistence region (where percolative effects are likely)
from the regimes where a more uniform electron fluid/solid resides. The possibility to do
so was spectacularly demonstrated in the context of Mott organics. In the next section we
discuss how the dielectric response can tell which mechanism (quasiparticle destruction or
percolation) is at play in a given regime.

We briefly mention that percolation effects have been also discussed in the context of
spinon theory in a recent paper [72], which does require however significant disorder. On
the other hand, the Spivak-Kivelson theory does not require disorder as the micro-emulsion
of insulators and metals can be self-generated. This seems to be more in line with the
experiments of Section 3: at least the 2DEGs [19] and the Mott organics [38] are displaying
Mott criticality in the cleanest samples possible. It is therefore very plausible that most
universal features observed in all critical Mott systems are not the result of disorder, but
are instead the inherent manifestations of strong correlation physics.

5. Interpreting Resistivity Maxima

As we have seen from our brief theory overview above, several scenarios were pro-
posed, with sometimes similar predictions for characteristic features seen in experiments.
A notable example is the clear emergence of the resistivity maxima on the metallic side, at a
temperature T = Tmax � TFL, which is seen to decrease towards the transition. What is its
physical content? The three theoretical pictures propose very different physical perspectives
on what goes on here.

As we mentioned in Section 4.1, spinon theory [53] predicts the presence of resistivity
maxima only in d = 3, but not in d = 2. However, robust resistivity maxima are clearly
seen all the material systems of Section 3. An understanding of the resistivity maxima must
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therefore come from either the DMFT perspective on Mott physics, or from the percolative
scenario. Both mechanisms provide reasonable albeit very different routes to explain
the resistivity maxima. How should one distinguish them and thus identify the precise
mechanism at play in a given system? Luckily, important clues were provided by recent
experiments on Mott organics [20]. Here one finds two distinct regimes, both featuring
similar resistivity maxima, but with very different dielectric response. One such regime is
corresponds to the (spatially inhomogeneous) metal-insulator phase coexistence region,
where colossal enhancement of dielectric response has been found. The other regime
was found further on the metallic side, where a dramatic drop and a change of sign the
dielectric constant signaled thermal destruction of coherent quasiparticles due to strong
correlation effects.

In the following we show how general scaling arguments can be used within each of
the two proposed scenarios, to demonstrate the general robustness of these trends, thus
providing a new window of what precisely goes on near the Mott point.

5.1. Resistivity Maxima from Thermally Destroying Coherent Quasiparticles

Both experiments and theory provide evidence that a strongly correlated Fermi liquid
forms on the metallic side of the Mott point, with a characteristic “Brinkman–Rice” (BR)
energy scale TBR ∼ 1/m∗, which decreases towards the transition, thus characterizing
the heavy quasiparticles. Inelastic electron-electron scattering increases with temperature,
eventually leading to the thermal destruction of the quasiparticles around T ∼ TBR, and
the associated modification of both the single particle (ARPES) spectra and the optical
conductivity. At higher temperatures, transport assumes incoherent character, which can
no longer be understood in terms of the quasiparticle picture or Fermi Liquid ideas alone.
Its precise form generally depends on band filling and the correlation strength, but more
precise predictions require a specific microscopic model and a theoretical picture.

Concrete and quantitative results, in this regime, were given by DMFT theory, which
provided first insight into the origin of the resistivity maxima in certain Mott organic
materials at half-filling, as well as in certain oxides. Subsequent DMFT studies stressed that
the characteristic temperature scale for the resistivity maxima indeed tracks the BR scale
of the quasiparticles (Tmax = TBR), while preserving the functional form of the resistivity
curves across this coherence-incoherence crossover. This revealed the scaling behavior of
the resistivity curves in the correlated metallic regime, with a universal scaling function of
T/Tmax. The predicted scaling behavior has been confirmed by a number of experiments
on various systems [29,30,32], displaying even quantitative agreement with the theoretical
scaling function, with no adjustable parameters.

Further optical and dielectric studies [20] in Mott organics also confirmed the predicted
destruction of the Drude peak around TBR, again signaling the thermal destruction of
quasiparticles. They established that it dramatically affects not only DC transport, but
also the dielectric response, which in this metallic regime is seen to display a dramatic
drop from moderate positive values at T > Tdrop ∼ Tmax to very large but negative values
at T < Tdrop ∼ Tmax. These studies, combining experiments and DMFT theory, have
firmly established that the dielectric response can be used to directly reveal the thermal
destruction of quasiparticles around the BR temperature.

In the following, we extend the systematic studies of Ref. [29], to stress that within
DMFT both DC transport and the dielectric response display the characteristic crossover
behavior across TBR, and the associated scaling behavior upon approaching the Mott
point. To do this we calculate the dielectric function ε1 as a function of temperature and
interaction U, using the same setup as in our recent work [20]. For simplicity, we focus on a
simple semi-circular band model at half filling, and carry out DMFT calculations using the
standard CTQMC impurity solver with the the Maximum Entropy method for analytical
continuation to the real axis. Just as in Ref. [29], once we get the single particle self energy
from our DMFT equations, we calculate the real part of optical conductivity σ1(ω) from the
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standard Kubo formula, and the imaginary part of optical conductivity σ2(ω) using the
Kramers-Kroning tranform; the (complex) dielectric function is then obtained via [73]

ε(ω) = 1 + 4πi
σ(ω)

ω
. (3)

The results for the single-particle density of states and the optical conductivity are
shown in Figure 9, and results for the DC transport and the low-frequency dielectric
response are displayed in Figure 10, for the parameter range corresponding to the correlated
metallic phase (U � Uc1). Here panels (a) and (b) reproduce the results of Ref. [29], showing
the characteristic scaling behavior of the resistivity maxima near the Mott point. The
analogous behavior for the dielectric function ε1 is shown in panels (c) and (d), firmly
establishing that the observed crossover behavior assumes a universal scaling form in the
correlated metallic regime. The notion that the thermal destruction of quasiparticles lies
behind both phenomena is seen even more clearly in Figure 11, where we show how the
scale Tmax for the resistivity maxima, and the scale Tdrop of the dielectric response, both
scale with the quasiparticles weight Z = m/m∗, as the transition is approached.

These results establish a way to experimentally recognize the thermal destruction of
quasiparticles as a dominant mechanism behind the resistivity maxima within a correlated
but uniform metallic phase. Since the correlation processes captured by DMFT are essen-
tially local (i.e. “ultraviolet, UV”), these effects should not display significant dependency
on spatial dimensional. Indeed, experiments have shown that similar resistivity maxima
are seen within correlated metallic phases both in 2D and in 3D systems.

Figure 9. (a) DMFT results for the evolution of the single-particle Density of States (DOS) for several
values of the temperature (reprinted with permission from Ref. [66] Copyright 2010 American
Physical Society), as well as (b) that of the optical conductivity, in the strongly correlated metallic
regime. Different colors correspond to the four distinctive transport regimes (inset in (b)). DOS fea-
tures a distinct quasiparticle peak at low temperatures, which is thermally destroyed at temperature
Tmax = TBR ∼ (m∗)−1, where the resistivity (inset of right panel) reaches a maximum. The optical
conductivity displays the corresponding suppression of the low-frequency Drude peak around the
same temperature.
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Figure 10. (a) DC resistivity as a function of temperature for several interaction strengths. (b) Scaled
resistivity curves. (c) Real part of dielectric function ε1 at ω/D = 0.01, as a function of temperature
for several interaction strengths. (d) Scaled dielectric function curves. Results are obtained for a
half-filled Hubbard model solved within DMFT.

Figure 11. (a) Tdrop as a function of Tmax. (b) Tmax as a function of Z. (c) Tdrop as a function of Z.

Note, however, that DMFT predicts very different behavior closer to the Mott point,
specifically within the phase coexistence region at T < Tc and Uc1 < U < Uc2. Here,
just as around any first-order phase transition line, we expect hysteresis phenomena and
inhomogeneous phase separation, where metallic and insulating domains coexist on a
nano-scale. As stressed in the seminal work by Spivak and Kivelson [55], thermal effects
can modify the relative volume fraction of the two coexisting phases, producing under
appropriate conditions the characteristic resistivity maxima. In recent work motivated by
experiments, a microscopic “hybrid-DMFT” approach was developed [20] to quantitatively
describe this regime in the context of Mott organics, resulting in spectacular agreement
with experiments. In the following section, however, we wish to stress that the qualitative
aspects of this regime display a number of universal scaling features, which can be precisely
understood from the perspective of percolation theory.

5.2. Percolation Scenario Due to Phase Coexistence

To focus on the universal scaling aspects of percolative processes within the metal-
insulator phase coexistence region, we follow the seminal ideas of Efros and Shklovskii [74],
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and set up a two-component random resistor network model, with characteristic low-
frequency form for the (complex) conductivity for each component:

σI = σo
I exp(−Δ/T)− iCω,

σM =
σo

M
1 − iωτ

.
(4)

Here we assumed activated DC transport for the insulating component, with ca-
pacitance C and a standard Drude form for the conducting component, with finite DC
conductivity σo

M. To leading order near the percolation point, we ignore the T-dependence
of σo

M, σ0
I , and C, since the dominant effects come from the variation of the respective

volume fractions, and the activated form of insulating transport. The temperature is ex-
pressed in the units of the activation energy Δ, which is also taken to be a constant. The
corresponding expressions for the (complex) dielectric functions of the two components
are given by:

εI = 1 + 4πC +
4πi
ω

σo
I exp(−Δ/T),

εM = 1 − 4πτσo
M +

4πi
ω

σo
M.

(5)

Here we ignored the capacitance of the metallic domains, which can be neglected if
τσ0

M/C � 1.
Such a random resistor network model is appropriate for any percolating two compo-

nent metal-insulator system. To describe formation of the resistivity maxima, an additional
physical condition has to be met, as emphasized by Spivak and Kivelson in the context
of Wigner–Mott transitions, but which is in fact valid for any Mott-like system in gen-
eral. As we mentioned before, this “Pomeranchuk effect” [45] requires that the first-order
line (and the entire phase coexistence region) be “tilted” towards the metal, so that the
higher-entropy phase emerges at higher temperatures. To schematically represent such a
situation we assume that, within the phase coexistence region, the volume fraction x of the
metallic component decreases with temperature. As an illustration, we take the following
simple model:

x(xo, T) = xc +
1
2

tanh[
xo − x∗(T)

w(T)
], (6)

where xc represents the percolation threshold, w(T) = a(Tc − T)/Tc defines the width
of the coexistence region, and x∗(T) = xc + b(T/Tc), as illustrated in Figure 12a, for
a = 0.4 and b = 1. In this model, the parameter xo controls the metallic volume fraction
at T = 0, which decreases at T > 0, and reaches the percolation threshold x = xc at
T = T∗(xo) = Tc(xo − xc)/b. Physically, the the DC resistivity will first increase with T as
the metallic volume fraction decreases. Past percolation threshold, however, the metallic
domains no longer connect. Transport then assumes insulating (activated) form, resulting
in subsequent resistivity decrease at T > T∗, and the emergence of resistivity maxima
around T ∼ T∗. Similarly, the dielectric constant ε1 grows (diverges) as the percolation
threshold is approached from the insulating side, due to the formation of large metallic
clusters with increased polarizability. On the metallic side, however, it displays a rapid
decrease, dropping to large negative values within the metallic phase. As a result, dielectric
response displays colossal enhancement around the percolation threshold, a phenomenon
that can be viewed as a smoking gun for percolative charge dynamics.
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Figure 12. (a) The red line is x = x(T∗). For T larger than the blue dashed line, x = 0. We calculate
the percolation results along the grey dashed lines. (b) R/Ro

M as a function of T for different T∗.
(c) Scaled resistivity curves.

To illustrate these ideas, we use the Effective Medium Approximation (EMA) for percola-
tion, which solves the following nonlinear equations for the complex dielectric function:

x(
εM − ε

εM + (z/2 − 1)ε
) + (1 − x)(

εI − ε

εI + (z/2 − 1)ε
) = 0, (7)

and for illustration selected σo
M/σo

I = 100, τσo
M = 1000, C = 1, Tc/Δ = 0.4, and z = 4

corresponding to 2D transport (xc = 0.5). Precisely the anticipated behavior is observed
from numerically solving the EMA equation for the corresponding DC resistivity R = σ−1,
as shown in Figure 12b. Here, we select several values of xo, corresponding to x > xc
(low temperature metallic regime), and plot the resistivity as a function of temperature
(following dashed lines in Figure 12a. We observe distinct resistivity maxima around the
temperature T∗(xo) corresponding to the percolation threshold. Note how the maxima
become sharper and sharper as T∗ is reduced, corresponding to the exponential (activated)
decrease of the “field” h ∼ exp{−Δ/T∗}. The expected behavior is also seen in dielectric
response, as shown in Figure 13a, where we observe sharp maxima at T ∼ T∗. Here again
we see the increased “rounding” of these maxima at higher T∗, corresponding to larger
h(T∗). This behavior can be seen even more clearly in Figure 13b, where ε1 is plotted as a
function of the reduced concentration τ = (x(T)− xc)/xc, which vanishes at T = T∗.

Figure 13. (a) The dielectric constant ε1 as a function of T for different T∗. (b) ε1 as a function of τ for
different T∗. (c) Scaled dielectric function curves.

These qualitative trend can be even more rigorously described within the scaling
theory for percolation, where the DC conductivity as well as the ω = 0 dielectric constant
are known to satisfy the following scaling relations:

σ1(τ, h) = σo
MhsFσ(τ/hm); ε1(τ, h) = hs−1Fε(τ/hm), (8)

where τ = (x(T) − xc)/xc measures the distance to the percolation threshold, and
h = σI/σM plays a role of the “symmetry breaking field”, which leads to the round-
ing of the transition. The critical exponents s and m, as well as the crossover scaling
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functions Fσ and Fε are universal quantities within percolation theory. To illustrate this
scaling behavior within EMA, we collapse the family of resistivity curves by plotting Rhs as
a function of τ/hm, as shown in Figure 12c, and ε1h1−s as a function of s a function of τ/hm,
as shown in Figure 13c. Note how a perfect scaling collapse is observed here, but only
around the peak of the dielectric response, i.e. only close to the percolation threshold. Such
behavior is, in fact, not surprising, since we expect scaling phenomena to arise only within
a given critical region, and not further away from the critical point.

We should stress again that all our qualitative results are rigorously valid within
general percolation theory for our two-component phase coexistence model, and EMA
was simply used as an illustration. EMA correctly captures the general crossover phenom-
ena associated with percolation, but only introduces approximate values for the critical
exponents sEMA = 0.5 and mEMA = 0.5, which are otherwise know even more accurately
from numerical simulations. These details, however, are not of direct relevance for our
purposes. What is important is the result that, within our “Pomeranchuk” model for phase
coexistence, the percolation scenario predicts distinct resistivity maxima but also striking
colossal dielectric anomalies, at the same temperature scale of T = T∗ which decreases
towards the MIT. This behavior is in distinct contrast to the behavior we found from the
DMFT picture of a correlated but uniform metallic phase, which also leads to resistivity
maxima, but very different behavior of the dielectric response. This observation, which
was quantitatively validated in recent experiments on Mott organics [20], thus reveals a
distinct criterion to settle the long-lasting controversies between the origin of the resistivity
maxima in different systems.

6. Conclusions

In this paper we discussed three different classes of physical systems which all display
very similar phenomenology expected for Mott-like metal-insulator transitions. We stressed
that most qualitative features are clearly seen in all these examples, including the continuous
decrease of the characteristic energy scales TFL, TBR = Tmax, To, Δ towards the transition,
the phenomenon of quantum critical scaling seen in transport, as well as the emergence
of distinct resistivity maxima on the metallic side. These observations, which are starting
to portray a robust and consistent phenomenology of Mott criticality, is putting serious
constraints on theory. We discussed which of these features seem compatible with various
proposed theoretical pictures of the Mott point, and which ones do not.

In the final section of this paper we also presented new theoretical results, which open
the possibility to precisely determine, from experiments, which mechanism dominates in
which regime. We argue that the dielectric response offers unique insights, which so far have
not been appreciated enough, as a powerful tool to distinguish between different phase
coexistence and the thermal destruction of quasiparticles.

A class of issues we did not discuss in any detail in this paper is the (explicit) role
of disorder around the Mott point. Given the fact that new classes of ultra-clean material
are starting to emerge, with even more pronounced salient features of Mott criticality, it
is becoming possible to plausibly minimize the role of disorder on experimental grounds.
On the other hand, new experimental efforts are starting [69,70] to emerge in the opposite
direction: to systematically add and to control the level of disorder, for example by high-
energy X-ray irradiation. These fascinating research directions are guaranteed to open
entirely new chapters in the study of metal-insulator quantum criticality. This will require
theorists to rekindle the efforts to understand the interplay of strong correlation with
disorder [75], and perhaps to develop new ideas in the process.
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Abstract: Machine learning approaches have recently been applied to the study of various problems
in physics. Most of these studies are focused on interpreting the data generated by conventional
numerical methods or the data on an existing experimental database. An interesting question is
whether it is possible to use a machine learning approach, in particular a neural network, for solving
the many-body problem. In this paper, we present a neural network solver for the single impurity
Anderson model, the paradigm of an interacting quantum problem in small clusters. We demonstrate
that the neural-network-based solver provides quantitative accurate results for the spectral function
as compared to the exact diagonalization method. This opens the possibility of utilizing the neural
network approach as an impurity solver for other many-body numerical approaches, such as the
dynamical mean field theory.

Keywords: metal insulator transition; anderson localization; random disorder; typical medium
theory; dynamical mean field theory; coherent potential approximation; neural network; quantum
impurity solver; Anderson impurity

1. Introduction

A single quantum impurity is the simplest quantum many-body problem for which
interaction plays a crucial role [1,2]. It was designed as a model to describe diluted magnetic
impurities in a non-magnetic metallic host. In the 1960s, it was showed that the perturbation
series in coupling strength diverges even with an infinitesimal anti-ferromagnetic coupling
value [1]. This early unexpected result motivated the development of innovative approaches
to model the strongly correlated systems [1–3].

While the physics of a single impurity problem has been rather well studied, interest
in the quantum impurity problem was revived during the 1990s. This was partly due to the
interest in mapping lattice models onto impurity models [4–8], since at infinite dimensions,
the lattice models are equivalent to single impurity models in a mean-field represented by
the density of states of the host. This approximated mapping is known as the dynamical
mean-field theory. It has been further generalized to cluster impurity models which include
some of the effects present in finite dimensional systems [9–11].

These mappings provide a systematic tractable approximation for the lattice models
and have become a major approach in the field of strongly correlated systems [11]. Com-
bined with density functional theory, they provide one of the best available methods for
the study of the properties of materials in which strong interactions are important [12].

The mean-field where the single impurity is embedded, i.e., the density of the bath,
can be rather complicated. Therefore, there is in general no analytic method for an accurate
solution. Many different methods for solving the effective impurity problem have been
proposed. They can be broadly divided in two categories: semi-analytic and numeric.

Between the semi-analytic methods, the most widely used one is the iterative pertur-
bation theory. It interpolates the self-energy at both the weak and strong coupling limits
and incorporates some exact constraints, such as the Luttinger theorem [13]. Another
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widely used semi-analytic method is the local moment approximation. It considers the
perturbation on top of the strong coupling limit represented by the unrestricted Hatree
Fock solution [14].

Numerical methods can also be divided into two main classes, diagonalization-based
and Monte-Carlo-based. Diagonalization methods usually require discretizing the host
by a finite number of so-called bath sites. The Hamiltonian which includes the bath
sites and the impurity site are diagonalized exactly [15]. Another digonalization-based
method is the numerical renormalization group in which the bath sites are mapped onto
a one-dimensional chain of sites. The hopping amplitude decreases rapidly down the
chain. The model is then diagonalized iteratively as more sites are included [16]. Density
matrix renormalization group and coupled cluster theory have also been used as impurity
solvers [17–20].

Hirsh and Fye were the first to propose the quantum Monte Carlo method for solving
impurity problems [21]. The time axis of the simulations is divided up using the Trotter–
Suzuki approximation. The interaction in each time segment is handled by the Hubbard–
Stratonovich approximation [22]. The Monte Carlo method is then used to sample the
Hubbard–Stratonovich fields. Continuous time quantum Monte Carlo methods have seen a
lot of development over the last decade. They directly sample the partition function without
using the Trotter–Suzuki approximation [23], similar to the Stochastic Series Expansion in
the simulation of quantum spin models. Notably, the continuous time quantum Monte
Carlo using the expansion with respect to the strong coupling limit has been proposed and
complicated coupling functions beyond simple Hubbard local density-density coupling
terms can now be studied [24].

On the other hand, the past few years have seen tremendous development of ma-
chine learning (ML), both algorithms and their implementation [25–27]. Many of the ML
approaches in physics are designed to detect phase transitions or accelerate Monte Carlo
simulations. It is a tantalizing proposal to utilize ML approaches to build a solver for
quantum systems.

To build a quantum solver based on the ML approach, we need to identify the feature
vector (input data) and the label (output data) for the problem. Then a large pool of data
must be generated to train the model, specifically a neural network model. The Anderson
impurity problem is a good test bed for the validity of such a solver. We note that similar
ideas have been explored using machine learning approaches [28]. This paper is focused on
using the kernel polynomial expansion and supervised ML, specifically a neural network,
as the building blocks for a quantum impurity solver.

While it is relatively inexpensive to solve a single impurity problem using the above
methods in modern computing facilities, current interest in the effects of disorder warrants
the new requirement of solving a large set of single or few impurities problems in order
to calculate the random disorder average [29–35]. Our hope is that a fast neural-network-
based numerical solver in real frequency can expand the range of applicability of the
recently developed typical medium theory to interacting strongly correlated systems, such
as the Anderson–Hubbard model [36–39].

This paper is organized as follows. In the next section, we map the continuous
Green function into a finite cluster as has been performed in many dynamical mean field
theory calculations. In Section 3, we discuss the expansion of the spectral function in
terms of Chebyshev polynomials. In Section 4, we discuss how to use the results from
Sections 2 and 3 as the feature vectors and labels of the neural network. In Section 5, we
present the spectral function calculated by the neural network approach. We conclude and
discuss future work in the last section.

2. Representing the Host by a Finite Number of Bath Sites

We first identify the input and the output data of a single impurity Anderson model.
The input data includes the bare density of states, the chemical potential and the Hubbard
interaction on the impurity site. For a system in the thermodynamic limit, the density
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of states is represented by a continuous function. Since inputting a continuous function
to the neural network presents a problem, we describe the continuous bath by a finite
number of poles as it is performed within the exact diagonalization approach [15,40–43].
We approximate the host Green function by a cluster of bath sites,

G0(iωn) ≈ Gcl
0 (iωn). (1)

In the exact diagonalization method, the continuum bath is discretized and represented
by a finite number of so-called bath sites, see Figure 1. Assuming that there are Nb bath
sites, each bath site is characterized by a local energy (εi) and a hopping (ti) term to the
impurity site. Two additional variables, one the local Hubbard interaction (U) and the other
the chemical potential (ε f ), are required to describe the impurity site. Therefore, there is a
total of 2 + 2Nb variables representing the impurity problem.

U

Figure 1. The cluster which represents the quantum impurity model. The red circle represents the
impurity site with local interaction U and chemical potential ε f . The bath sites are represented by
blue circles; each of them has a local energy εi, and a hopping to the impurity site ti.

The full Hamiltonian in the discretized form (Figure 1) is given as

H = ∑
i,σ

ti(c†
i,σc0,σ + H.c.) + ∑

i,σ
εic†

i,σci,σ+

U(c†
0,↑c0,↑ − 1/2)(c†

0,↓c0,↓ − 1/2)− ε f ∑
σ

c†
0,σc0,σ,

(2)

c†
i,σ and ci,σ are the creation and annihilation operators for site i with spin σ, respectively.

The impurity site is denoted as the 0-th site. The sum of the bath sites goes from 1 to Nb,
and the spin σ = ±1/2.

The host Green function represented in such a finite cluster can be written exactly as,

Gcl
0 (iωn) = (iωn + ε f −

Nb

∑
k=1

tkt∗k
iωn − εk

)−1. (3)

Many different prescriptions for the parameterization of the host Green function have
been investigated in detail for exact diagonalization solvers [44]. Conceptually, practical
applications of the numerical renormalization group method also require the approximated
mapping of the problem onto a finite cluster chain. Unlike the exact diagonalization
method, the cluster chain can be rather large; therefore much higher accuracy can be
attained in general.

These approaches do not mimic the continuum in the time dimension as it is done by
continuous time Quantum Monte Carlo methods, and the mapping onto the finite cluster
may represent a nuisance. Nonetheless, this is a necessity for any diagonalization-based
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method. In our case, the mapping presents an opportunity to naturally adapt the method
to a machine learning approach in which a finite discretized set of variables is required.

Under the above approximation, the finite set of variables, {ti}, {εi}, U, ε f , can be
treated as the input feature vector for the machine learning algorithm. The next question
is what is the desired output or label. We will focus on the spectral function in this study.
For this purpose, the next step is to represent the spectral function with a finite number
of variables instead of a continuous function. The kernel polynomial method fulfills this
goal [45].

3. Expanding the Impurity Green Function by Chebyshev Polynomials

In this section, we briefly discuss the kernel polynomial method for the calculation
of the spectral function of a quantum interacting model. Once the host parameters, the
impurity interaction and chemical potential are fixed, the ground state of the cluster is
obtained using a diagonalization method for sparse matrices. We use the Lanczos approach
in the present study [46,47]. Once the ground state is found, the spectral function can be
calculated by applying the resolvent operator, 1/(ω − H), to the ground state. A popular
method is the continuous fraction expansion [47]. The challenge is that the continuous
fraction tends to be under-damped and produce spurious peaks [46,47]. A more recent
method is to use an orthogonal polynomial expansion. We will argue that for the application
of the ML method, the polynomial expansion method tends to produce better results as we
will explain later [45].

The zero temperature single particle retarded Green function corresponding to a
generic many-body Hamiltonian is defined as

G(ω) = 〈GS|c 1
ω + i0+ − H

c†|GS〉, (4)

where |GS〉 is the ground state of H, and c† and c are the creation and annihilation operators,
respectively [45,48]. The spectral function is given as A(ω) = −(1/π)Im(G(ω)).

Consider the Chebyshev polynomials of the first kind defined as Tn(x) = cos(n arccos(x)).
Two important properties of the Chebyshev polynomial are their orthogonality and their
recurrence relation. The product of two Chebyshev polynomials integrated over x = [−1, 1]
and weighted by the function wn = 1

π
√

1−x2 is given as

∫
dxwn(x)Tn(x)Tm(x) =

1 + δn,0

2
δn,m. (5)

The recurrence relation is given as

Tn(x) = 2xTn−1(x)− Tn−2(x). (6)

The Chebyshev polynomials expansion method is based on the fact that the set of
Chebyshev polynomials form an orthonormal basis as defined in Equation (5). Thus a
function, f (x), defined within the range of x = [−1, 1] can be expanded as

f (x) = μ0 + 2
∞

∑
n=1

μn(x)Tn(x), (7)

and the expansion coefficient can be obtained by the inner product of the function f (x) and
the Chebyshev polynomials as follow

μn =
∫ 1

−1
dx f (x)Tn(x)wn(x). (8)

Practical calculations involve truncation at a finite order. The truncation is found to be
problematic when the function to expand is not smooth. In our problem, the function is the
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spectral function of a finite size cluster, which is a linear combination of a set of delta func-
tions. For this reason, a direct application of the above formula will not provide a smooth
function. This is analogue to the Gibbs oscillations in the Fourier expansion. The remedy is
to introduce a damping factor (kernel) in each coefficient of the expansion [45,49–52]. Here
we use the Jackson kernel given as

f (x) ≈
N

∑
n=0

gnμn(x)Tn(x), where (9)

gn =
(N − n + 1)cos( πn

N+1 ) + sin( πn
N+1 )cot( π

N+1 )

N + 1
. (10)

We refer the choice of the damping factor to the review by Weiße et al. [45].
We list the steps for calculating the coefficients as follows.

1. The input bare Green function is approximated by the bare Green function of a
finite size cluster. The set of parameters μ, {ti}, {εi} are obtained by minimizing
the difference between the left-hand side and the right-hand side of Equation (1)
according to some prescriptions [15,40–43].

2. The ground state (|GS〉) and the corresponding energy (EGS) are obtained by the
Lanczos algorithm.

3. The spectrum of the Hamiltonian is scaled within the range [−1,1] as required by the
Chebyshev expansion. H ⇒ (H − EGS)/a, where a is a real positive constant. The
units of energy are also scaled in terms of a.

4. The expansion coefficients are given by the inner product between the spectral func-
tion and the Chebyshev polynomials.

μn =< α0|αn >, (11)

where |α0〉 = c†|GS > and |αn〉 = Tn(H)|α0〉. With the |α0〉 and the |α1〉 = H|α0〉
ready, all the higher order coefficients can be obtained via the recurrence relation

|αn〉 = 2H|αn−1〉 − |αn−2〉. (12)

5. The spectral function is obtained by feeding the coefficients into Equation (7).

All the coefficients can be obtained by repeated use of Equation (12) which involves
matrix vector multiplication. The matrix for an interacting system is usually very sparse,
and the computational complexity of the matrix vector multiplication is linear with respect
to the vector length, which grows as 4Nb+1 assuming no reduction by symmetry is applied.

Since practical calculations are limited to a finite order, N, the impurity Green func-
tion can be represented by N coefficients of the Chebyshev polynomials expansion. It is
worthwhile to mention that the expansion of the Green function in terms of orthogonal
polynomials is independent of the method for obtaining the coefficients of the polynomials.
Instead of employing exact diagonalization, a recent study shows that one can obtain the
expansion coefficients by representing the quantum states by matrix products [48].

4. Feature Vectors and the Labels for the Machine Learning Algorithm

Our strategy is to train a neural network with a large set of variables for the host,
i.e., the bath sites, the impurity interaction and the impurity chemical potential. The
impurity solver calculates the impurity Green function for a given bath Green function,
local impurity interaction and chemical potential that is a total of 2 + 2Nb variables for
the input.

The output is the impurity Green function which can be represented by N coefficients
of the Chebyshev polynomials expansion. Using the above method, the spectral function
is effectively represented in terms of N coefficients. It allows us to naturally employ the
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supervised learning method by identifying the 2+ 2Nb variables as the input feature vectors
and the N variables as the output labels.

While the kernel polynomial method grows exponentially with the number of sites,
the end result is represented by a finite number of coefficients which presumably does not
scale exponentially with the number of sites. Once the neural network is properly trained,
we can use it to predict the impurity Green function without involving a calculation which
scales exponentially.

5. Results

We generated 5000 samples for training the neural networks with randomly chosen
parameters which are drawn uniformly from the range listed as follows:

ti,↑ = ti,↓ = [0, 1.5],

εi,↑ = εi,↓ = [−5, 5],

U = [0, 10],

ε f = [−2.5, 2.5].

(13)

We assume that the electron bath has a symmetric density of states. That is, ti = ti+Nb/2
and εi = −εi+Nb/2 for i = 1 to Nb/2 and Nb even. This further reduces the number of
variables in the feature vector to Nb + 2.

Before embarking on training the neural network, we would like to have some un-
derstanding of the range of Chebyshev coefficients. For this purpose, we randomly pick
32 samples and plot the coefficients in Figure 2. There are two prominent features of the co-
efficients: 1. There are clear oscillations and the coefficients do not decrease monotonically.
2. For all cases shown here, the coefficients essentially vanish for orders around 200 and
higher. Due to these two reasons, we decide to train the neural network for the coefficients
between 0 and 255.
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Figure 2. Cont.
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Figure 2. The coefficients of the Chebyshev polynomial expansion for 32 randomly chosen parameter
sets of the finite cluster. Only the first 256 coefficients are shown, as higher order terms are vanishingly
small. Only the coefficients directly calculated from the kernel polynomial method (KPM) are shown
here. The coefficients obtained from the neural network match very closely with the ones from the
KPM and would not be visible by laying them on the same plot, and thus they are omitted. The
spectral functions and the corresponding parameters are presented in Figures 3 and 4 respectively.
We demonstrate the quality of the coefficients obtained from the neural network in Figure 5. The
magnitude of the the last five coefficients in each panel is smaller than 10−5.

With the above approximations, the task of solving the Anderson impurity model boils
down to mapping a vector containing Nb + 2 variables to a vector containing N coefficients.
For the particular case, we study we choose Nb = 6 and N = 256. Machine learning
algorithms can thus be naturally applied to this mapping.

We set up an independent dense neural network for each coefficient. The neural
network has 14 layers. The input layer contains Nin = Nb + 2 units, and the output layer
contains the expansion coefficient for one specific order. The 12 hidden layers have the fol-
lowing number of units: 2Nin, 2Nin, 4Nin, 4Nin, 8Nin, 8Nin, 8Nin, 8Nin, 4Nin, 4Nin, 2Nin, 2Nin.

As we consider a total of 256 orders, we train 256 independent neural networks.
Considering the coefficients at different orders separately may lose some information
contained in the correlations between them. While it is possible to predict a few coefficients
by only one neural network, we do not obtain a good prediction using a single neural
network for all 256 coefficients without an elaborated fine tuning. Therefore, here instead
of searching for a optimal number of coefficients to be predicted for one neural network,
we consider each coefficient independently.

In Figure 3, we show the spectral functions corresponding to the same 32 samples used
in Figure 2. Both the results from the direct numerical calculation based on the Lanczos
method and recurrence relations and those predicted by the neural network are plotted.
They basically overlap each other. There is a slight difference for the range of energies where
the spectral function is nearly zero. This is perhaps due to the incomplete cancellation
among the expansion terms at different orders. An improvement may be attainable if we
consider the correlations of the coefficients for different orders. The input parameters of
each of the 32 samples are plotted in Figure 4.
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Figure 3. The spectral function, A(ω), is plotted for the same 32 randomly chosen parameter sets used
in Figure 2. Both the results from the KPM and from the neural network are shown. They match each
other very closely and visually overlap. A closer inspection reveals that there are slight oscillations in
the spectral function when the weights are very small. This may be due to the inexact cancellations of
different orders in the coefficients generated by the neural network method. In general, these oscillations
are rather small and only appear when the spectral weight drops to near zero.
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Figure 4. The input parameters of the 32 samples used in Figures 2 and 3; i = 1 corresponds to U;
i = 2 corresponds to ε f ; i = 3, 4, 5 correspond to ε1, ε2, ε3; and i = 6, 7, 8 correspond to t1, t2, t3.

Evidence of the capability of the neural network approach can be seen in Figure 5
where we plot the comparison of the first 32 expansion coefficients obtained by the direct
numerical calculation and the neural network prediction. We find that two methods
give very close results for the 1000 testing samples we consider. Please be reminded that
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5000 samples are used for training. All the 1000 testing samples exhibit a linear trend. This
clearly shows that a neural network is capable of providing a good prediction. There were
no exceptional outliers among the 1000 testing samples we tested.
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Figure 5. Comparison of the first 32 coefficients as computed by the KPM and the neural network
method; 1000 samples are plotted in each figure. The figures are ordered from left to right and top to
bottom from the order 0−th to the order 31−th.
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6. Conclusions

We demonstrate that the supervised machine learning approach, specifically the neural
network method, can be utilized as a solver for small quantum interacting clusters. This
could be potentially useful for the statistical DMFT or the typical medium theory for
which a large number of impurity problems have to be solved to perform the disorder
averaging [29–33,36]. The main strategy is to devise a finite number of variables as the
feature vector and the label for the supervised machine learning method. In line with the
exact diagonalization method for the single impurity Anderson model, the feature vector is
represented by the hoppings and the energies of the lattice model. The output we consider,
the spectral function, is represented in terms of Chebyshev polynomials with a damping
kernel. The labels are then the coefficients of the expansion. By comparing the coefficients
directly calculated by the Lanczos method and the recurrence relation with the ones by the
neural network, we find the agreement between these two methods is very good. Notably,
among the 1000 samples we tested, there is no exceptional outlier. They all have a good
agreement with the results of the numerical method.

For a simple impurity problem, the present method may not have an obvious benefit,
as a rather large pool of samples have to be generated for training purposes. The situation
is completely different for the study of disorder models, such as those being studied by the
typical medium theory, where the present method has a clear advantage. Once the neural
network is trained, the calculations are computationally inexpensive. For systems in which
disorder averaging is required, this method can beat most if not all other numerical methods
in term of efficiency. Moreover, the present approach is rather easy to be generalized for
more complicated models, such as the few impurities models required in the dynamical
cluster approximation. In addition, this method can be easily adapted to the matrix product
basis proposed for the kernel polynomial expansion [48,53].

The range of parameters we choose in the present study covers the metal insulator
transition of the Hubbard model within the single impurity dynamical mean field theory.
An interesting question is the validity of the trained neural networks for the parameters
well outside the range of the training data. We expect that the results could deteriorate
without additional training data.

The size of the bath we choose in the present study is Nb = 6. This choice is somewhat
arbitrary, for more accurate results for the single impurity problem a larger number of
bath sites is preferred. The computational time required to generate the training set scales
exponentially with the number of bath sites; however the computational time required to
train the neural networks only scales as the third power with the number of bath sites. A
larger number of bath sites should pose no problem for the present approach.

The ideas presented in this paper are rather generic. They can be generalized to the so-
lutions by different solvers. For example, this approach can be adapted to Quantum Monte
Carlo results as long as they can be represented in some kind of series expansion [54,55].
Our approach can also be adapted to predict the the coefficients of the coupled cluster
theory [19,20].
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Abstract: The families of organic charge-transfer salts κ-(BEDT-TTF)2X and κ-(BETS)2X, where
BEDT-TTF and BETS stand for the organic donor molecules C10H8S8 and C10H8S4Se4, respectively,
and X for an inorganic electron acceptor, have been proven to serve as a powerful playground for
the investigation of the physics of frustrated Mott insulators. These materials have been ascribed a
model character, since the dimerization of the organic molecules allows to map these materials onto
a single band Hubbard model, in which the dimers reside on an anisotropic triangular lattice. By
changing the inorganic unit X or applying physical pressure, the correlation strength and anisotropy
of the triangular lattice can be varied. This has led to the discovery of a variety of exotic phenomena,
including quantum-spin liquid states, a plethora of long-range magnetic orders in proximity to
a Mott metal-insulator transition, and unconventional superconductivity. While many of these
phenomena can be described within this effective one-band Hubbard model on a triangular lattice,
it has become evident in recent years that this simplified description is insufficient to capture all
observed magnetic and electronic properties. The ingredients for generalized models that are relevant
include, but are not limited to, spin-orbit coupling, intra-dimer charge and spin degrees of freedom,
electron-lattice coupling, as well as disorder effects. Here, we review selected theoretical and
experimental discoveries that clearly demonstrate the relevance thereof. At the same time, we outline
that these aspects are not only relevant to this class of organic charge-transfer salts, but are also
receiving increasing attention in other classes of inorganic strongly correlated electron systems. This
reinforces the model character that the κ-phase organic charge-transfer salts have for understanding
and discovering novel phenomena in strongly correlated electron systems from a theoretical and
experimental point of view.

Keywords: organic charge-transfer salts; magnetic exchange beyond Heisenberg; intra-dimer charge
and spin degrees of freedom; electron-lattice coupling; disorder

1. Introduction

1.1. Crystal and Electronic Structure

Organic charge-transfer salts have received, in the last decades, a lot of attention for
their variability as materials and their model role in understanding most of the challenging
phenomena in correlated systems [1,2], such as the Mott-metal insulator transition [3–5],
Mott criticality [6–9], quantum-spin liquid phases [10–13], unconventional superconduc-
tivity [14,15] or multiferroicity [16], among others. One of the most studied families is
the κ phase. The κ phase in organic charge-transfer salts consists of alternation in charge
donating organic BEDT-TTF (BEDT-TTF = bisethyelenedithio-tetrathiafulvalene) or BETS
(BETS = bisethylenedithio-tetraselenafulvalene) layers and acceptor inorganic anion layers,
as depicted in Figure 1 for the example of κ-(BEDT-TTF)2Cu2(CN)3 crystallizing in the
space group P21/c.

The choice of different inorganic layers X in κ-(BEDT-TTF)2X and κ-(BETS)2X influ-
ences the orbital overlap between the organic molecules and allows for distinct magnetic
and electronic properties in these systems. In the charge-transfer process, each molecule
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donates a charge of half an electron. The κ-type arrangement of organic molecules exhibits
a strong dimerization of the molecules forming a triangular lattice of dimers with one hole
per dimer, as illustrated in Figures 1c and 2.

Figure 1. (a) Layered structure of organic electron donor and inorganic electron acceptor layer,
shown for the example κ-(BEDT-TTF)2Cu2(CN)3; (b) structure of BEDT-TTF and BETS molecules;
and (c) κ packing motif of the organic layer of κ phase charge-transfer salts from the top view.

Figure 2. Center: Illustration of the mapping of the organic layer of κ phase charge-transfer salts to
an anisotropic triangular lattice. The various ingredients for generalized models beyond the strongly
dimerized one-band Hubbard picture discussed in this work are illustrated in the boxes.

Alternatively, one can consider the molecules within a dimer as the building blocks
(see inset in Figure 2) leading to an extended molecule model with half a hole per molecule.
By symmetry, there are four distinct hopping parameters between the highest occupied
molecular orbitals (HOMO) |gi〉 of the molecules. The hoppings are conventionally ab-
breviated as t1...4, as shown in Figure 2. Here, t1 is the intra-dimer hopping and one can
make use of geometrical expressions t = (t2 + t4)/2 and t′ = t3/2 [17,18] to relate the t1...4
hoppings of the extended molecule model to the t, t′ hoppings of the dimer model shown
in Figure 2. The corresponding electronic structure of the dimer model consists, then, of an
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anti-bonding dimer orbital [|a〉 = 1√
2
(|g1〉+ |g2〉)], occupied by one electron (or one hole),

and of a bonding dimer orbital [|b〉 = 1√
2
(|g1〉 − |g2〉)] occupied by two electrons.

1.2. Phase Diagram

Under the assumption of very strong dimerization, it is well-established, as mentioned
above, that the κ-phase organic charge-transfer salts are model systems to realize the
half-filled one-band Hubbard model [1,2,11,18–20]:

H = − ∑
<i,j>,σ

(tijc†
i,σcj,σ + h.c.) + ∑

i
U ni,↑ni,↓ (1)

with hopping tij = t, t′ (see Figure 2). One key parameter of this model is the ratio of the
strength of Coulomb repulsion U to the kinetic energy W ∼ t, t′. The κ-phase charge-
transfer salts all lie in a range close to the Mott transition, i.e., U/W ∼ 1.

The essential features of the Hubbard model can be identified in experimental tem-
perature – pressure (T − p) phase diagrams of κ-phase organic charge-transfer salts. The
application of hydrostatic pressure causes an increase in the orbital overlap and, therefore,
an increase in W (or decrease in U/W). As a result, a Mott insulator is expected to undergo
an insulator-to-metal transition. This is indeed observed for various Mott-insulating κ-
phase charge-transfer salts, including κ-(BEDT-TTF)2Cu[N(CN)2]Cl [1,3,4,9,21,22] (‘κ-Cl’,
Figure 3a) and κ-(BEDT-TTF)2Cu2(CN)3 [5,7,23] (‘κ-CuCN’, Figure 3b) and κ-(BETS)2Mn
[N(CN)2]3 (‘κ-Mn’) [24–26]. In all cases, very moderate pressures in the order of kbar,
or even less, induce a Mott metal-insulator transition (MIT). This finding demonstrates,
on the one hand, the proximity of various κ-phase charge-transfer salts to the Mott MIT
and, on the other hand, it also shows the tunability of these materials in laboratory settings
through physical and chemical pressures [1,2].

At low temperatures, the pressure-induced Mott MIT in κ-Cl and κ-CuCN is found
to be a first-order transition. Upon increasing temperature, the first-order line ends in a
second-order critical endpoint at (pcr, Tcr). Above the endpoint, only a crossover but no
phase transition exists, similar to the liquid–gas transition. In the purely electronic model
of the Mott transition, the Mott critical endpoint is, thus, expected to fall into the Ising
universality class [27,28]. This notion of Mott criticality is further corroborated by DMFT
(dynamical mean field theory) calculations [29], which are also able to predict the order of
the Mott MIT. In Section 4, we will discuss the limitations of this purely electronic model
when the coupling to lattice degrees of freedom becomes relevant.

Whereas the behavior very close to the first-order critical endpoint at Tcr is one of
a classical phase transition, an intriguing observation in κ-phase charge-transfer salts is
a quantum-critical scaling of measured transport in the crossover region T � Tcr. Such
a quantum-critical scaling was predicted based on DMFT calculations of the Hubbard
model [30,31]. While one would typically predict quantum-critical scaling to occur at
lowest temperatures T → 0, it is important to note that the dominant energy scales [20] of
the Mott transition (U and W) are of the order of 1000 K� Tcr . Thus, for intermediate
temperatures, the system effectively behaves as if the Mott critical endpoint were located
at zero. In fact, frustration suppresses magnetic ordering tendencies, so that frustrated
organic charge-transfer salts are suggested to show the properties of genuine Mott systems
to lower temperatures [20,32]. Such an importance of magnetic frustration for investigating
paramagnetic Mott metal-insulating transitions has been recently discussed as well, in the
context of inorganic V2O3 [33].
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Figure 3. Experimental temperature–pressure phase diagrams of κ-phase charge-transfer salts:
(a) κ-(BEDT-TTF)2Cu[N(CN)2]Cl (‘κ-Cl’) [1,3,4,9,16,21,22] and (b) κ-(BEDT-TTF)2Cu2(CN)3 (‘κ-
CuCN’) [7,10,23,34]. At ambient pressure and low-enough temperatures, both compounds exhibit a
Mott insulating ground state (i.e., a moderate to large correlation strength, U/W). Upon applying
pressure, U/W is reduced and eventually a first-order Mott metal-insulator transition is induced
(red line) which ends in a second-order critical endpoint (red circle). On both sides of the Mott
transition, intriguing electronic orders emerge at lowest temperatures. On the Mott insulating side,
κ-Cl orders antiferromagnetically [35], which is well-understood given the anisotropy of its triangular
lattice (t′ < t). The antiferromagnetic (AFM) order is believed to be accompanied by the emergence
of long-range ferroelectric order, making this compound multiferroic [16]. In contrast, κ-CuCN is
characterized by an almost isotropic triangular lattice with t′ ∼ t. For a long time, it has, therefore,
been considered as a candidate for quantum spin-liquid (QSL) behavior [10]. However, there exist
recent results which argue in favor of the formation of a valence bond solid (VBS) [12,13,34,36–38].
On the metallic side of the Mott transition, both compounds exhibit superconductivity (SC). A region
of percolative superconductivity SCperc can also be found in the Mott insulating state close to the
metal-insulator boundary.

The spin degrees of freedom in the Mott insulating state of κ-phase charge-transfer
salts become important at very low temperatures T → 0. κ-Cl undergoes a transition into
an antiferromagnetic (AFM) ordered ground state at TN ∼ 27 K [35]. In the dimer model,
AFM order might be expected when the triangular lattice is very anisotropic and close to
the square lattice, which is indeed the case for κ-Cl (t′/t ≈ 0.45 [18,39]). In contrast, when
the triangular lattice is more isotropic, as is the case for κ-CuCN (t′/t ≈ 0.8–0.9 [18,39–42]),
various theoretical studies of the Hubbard model on the triangular lattice at half-filling
suggest the emergence of a quantum spin liquid, as, for instance, in Refs. [43–45]. In fact,
κ-CuCN has been considered for a long time as a prime candidate for the realization of
a quantum spin liquid [10,46] that potentially hosts gapless excitations [47]. However,
thermal expansion measurements [48,49] indicate the presence of a phase transition around
6 K, often referred to as the “6 K anomaly”, which might prevent the formation of a
possible spin-liquid phase. In recent years, the interpretation of magnetic torque [8] and
NMR [50] data suggested that a valence-bond solid rather than a quantum spin liquid
might be formed in κ-CuCN [12] below T∗ ∼ 6 K. This picture was further supported
by recent ESR studies confirming the presence of a spin gap opening [34] around the 6 K
anomaly. Still, open questions regarding the magnetic ground state of κ-CuCN remain; see
Ref. [13] for a recent review of the large set of experimentally available data on this system.

κ-Mn also shows magnetic order for T < 30 K in the Mott insulating state at the
lowest temperature [24,26,51]. However, the magnetic order that is realized in κ-Mn is
not of the Néel type, as observed in κ-Cl. In fact, it was shown that κ-Mn realizes a spin-
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vortex crystal order that can only be understood when taking ring-exchange interactions
into account [51], as we will explain in detail in Section 2. In addition, in contrast to
κ-Cl, where the magnetic ordering occurs within the Mott insulating state, the onset of
magnetic order in κ-Mn coincides with a first-order metal-to-Mott insulator transition
at TMI = TN [24]. The ordered, low-entropy state in κ-Mn dictates a negative slope of
dTMI/dp in the temperature–pressure phase diagram; see also Refs. [13,38] for discussions
of dTMI/dp in κ-Cl and κ-CuCN.

On the metallic side of the Mott MIT, superconductivity is often found at low tem-
peratures [52,53], as seen in the temperature–pressure phase diagrams of κ-Cl, κ-CuCN
and κ-Mn, with moderate transition temperatures Tc ∼ 10 K (see Figure 3). Note that also
chemical modifications, e.g., replacing Cl completely by Br in κ-Cl, can be used to obtain
superconducting metals at ambient pressure. The proximity of the superconducting phase
to a (magnetic) Mott insulating phase suggests a close connection between the κ-phase
organic charge-transfer salts and the high-temperature cuprate superconductors [54], where
the origin of superconductivity is attributed to the presence of spin fluctuations. Actually,
a few theoretical treatments of the dimer model (see, e.g., Refs. [15,55–61]) follow the
scenario of superconductivity mediated by spin fluctuations.

1.3. Outline of This Review

Whereas the one-band Hubbard model on the triangular lattice clearly captures es-
sential features of the phase diagram of the κ-phase organic charge-transfer salts, it has
become evident in recent years that generalized models for κ-phase organic charge-transfer
salts must contain additional contributions to accurately account for all salient features of
their phase diagrams. The present review summarizes theoretical and experimental works,
based on which the importance of specific, additional interactions were suggested. The
paper is structured as follows (see also Figure 2 for a sketch of the synopsis). In Section 2, we
discuss the role of spin-orbit coupling and higher order four-spin ring exchange couplings
for the magnetic properties of the Mott insulating κ-phase charge-transfer salts. We then
proceed, in Section 3, with a summary of new effects in the extended molecule model such
as ferroelectricity in the Mott insulating state or mixed superconducting order parameters.
In the following Section 4, we present evidence for the importance of electron-lattice cou-
pling in these correlated electron systems. The last aspect that we will cover in Section 5 is
the role of disorder for the properties of the κ-phase charge-transfer salts close to the Mott
transition. In Section 6, we present a conclusion and outlook of the review and discuss
specific important open questions and their relevance for the broader field of correlated
electron systems.

2. Magnetic Exchange beyond Heisenberg

Deep in the Mott insulating phase, the charge degrees of freedom do not influence
the low energy properties of the system and a description in terms of a purely spin-1/2
magnetic model on the triangular lattice is a suitable starting point, where one dimer
represents one magnetic site (see Figure 4). The dominant magnetic exchange terms are of
the Heisenberg type:

H = ∑
〈ij〉

Jij Si · Sj, (2)

with exchange J on bonds indicated by solid lines and J′ on bonds indicated by dashed lines
in Figure 4a. This model can be obtained from a perturbation expansion of the Hubbard
model (Equation (1)) in powers of t/U [62,63]. Depending on the ratio J′/J, it is possible
to scale in between the limit of a square lattice (J′/J = 0), an isotropic triangular lattice
(J′/J = 1) and one-dimensional chains (J′/J = ∞). In the κ-phase charge-transfer salts, this
ratio is determined by the nature of the anion layer. Further Heisenberg exchanges up to
fourth neighbors are shown in Figure 4a.

Beyond the Heisenberg exchange there are two main contributions, which, albeit
being subdominant, may change the nature of the magnetic ground state of the κ-phase
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charge-transfer salts completely. One is the spin-orbit coupling, which allows for the
presence of anisotropic bilinear magnetic exchange, such as the Dzyaloshinskii–Moriya
vector D (Figure 4b), changing the symmetry properties of the magnetic model severely. A
second important contribution is the four-spin ring exchange K, K′, which is expected to be
non-negligible for materials close to the Mott MIT. Note that in the presence of a magnetic
field, additional terms with an odd number of spins, such as the scalar spin chirality, are
also present. We do not discuss these terms here.

a

c0

(a) (b)

Figure 4. Magnetic exchange in κ-phase charge-transfer salts. (a) Heisenberg exchange terms J, J′, J′′,
J′′′ and four-spin ring-exchange K and K′ on the two distinct four-site plaquettes on the anisotropic
triangular lattice. (b) The SOC-induced DM vector D is oriented approximately along the long side
of the organic molecule, here illustrated for the example κ-(BEDT-TTF)2Cu2(CN)3. Figures reprinted
from Refs. [51,64].

2.1. Magnetic Bilinear Anisotropic Interactions

Magnetic anisotropic interactions arise due to the presence of spin-orbit coupling.
Originally, this aspect was often ignored in the context of the organic charge-transfer salts
due to the light nature of the Se, S, C and H atoms in the BEDT-TTF and BETS molecules.
However, it was pointed out early on [65] that at least at very low temperatures the influence
of anisotropic interactions may be significant to capture new magnetic phenomena. The
full bilinear magnetic model for S = 1/2 can be expressed as follows:

H(2) = ∑
〈ij〉

Jij Si · Sj + Dij · (Si × Sj) + Si · Γij · Sj, (3)

with the antisymmetric Dzyaloshinskii–Moriya (DM) vector Dij and the symmetric pseudo-
dipolar tensor Γij. Note that on the bonds indicated by the dashed lines in Figure 4a, the
DM vector vanishes due to an inversion center at the bond center. To obtain an intuition
about the strengths of the anisotropic terms, we consider perturbation-theory expressions
in the strongly localized limit with weak SOC, i.e., U � t, |�λ|. Here,�λ is a spin-dependent
hopping term in the electronic Hubbard picture, arising due to the presence of SOC,
Hhop = ∑ij c†

i (tij I2×2 +
i
2
�λij ·�σ)cj [66], with the single particle operator c† = (c†

i↑ c†
i↓) and

the Pauli matrices�σ. In second-order perturbation theory, the bilinear-exchange couplings
scale with J ∝ t2/U, D ∝ (t�λ)/U, and Γ ∝ (�λ ⊗�λ)/U [64]. In κ-phase charge-transfer salts,
the hopping amplitude is an order of magnitude larger than SOC, so that the Heisenberg
term is expected to be dominant, with important contributions of the DM vector at very
low temperatures and negligible contributions of the pseudo-dipolar tensor.

In Table 1, we list selected ab-initio results [12,51,64,67] for various κ-phase organic
compounds. The nearest-neighbor Heisenberg-exchange couplings are on the order of a
few hundred Kelvin, where the ratio J′/J indicates whether the material is closer to the
square lattice limit (J′/J < 1) or whether it is approaching the limit of one-dimensional
chains (J′/J > 1). The DM vector is, as expected, significantly smaller with |D| ∼ 5 K
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for the BEDT-TTF and |D| ∼ 25 K for the BETS compounds. The stronger anisotropic
contribution in the BETS material can be directly related to the presence of the heavier
Se atoms in the organic molecule (see Figure 1b). The DM vector is consistently oriented
approximately along the long side of the molecule, as shown in Figure 4b for the example
of κ-(BEDT-TTF)2Cu2(CN)3. This implies that the main contribution is the component
perpendicular to the triangular plane of molecular dimers. For all discussed Mott insulators
in this review, this out-of-plane component has a staggered pattern, while the component
along the dashed bonds in Figure 4a has a stripy pattern by symmetry [51,64].

Table 1. Representative exchange parameters in K for indicated materials κ-(BEDT-TTF)2Cu[N(CN)2]Cl
(κ-Cl), κ-(BEDT-TTF)2Ag2(CN)3 (κ-AgCN), κ-(BEDT-TTF)2B(CN)4 (κ-BCN), κ-(BETS)2Mn[N(CN)2]3

(κ-Mn): Bilinear exchange J, J′, D (defined in Equation (3) and Figure 4) and averaged four-spin ring
exchange K, K′ (defined in Equation (5) and Figure 4). The DM vectors for the Pnma salts are given in
the coordinate system (a, b, c), while the P21/c values are indicated with () * and given with respect
to (a, b, c*). The ratio J′/J indicates the deviation from the isotropic triangular limit J′/J = 1 and K/J
indicates the significance of the four-spin ring exchange. This table is not intended to be a complete
representation of available results, but serves as orientation with selected values.

Material J; J′; D K; K′ J′/J K/J

κ-Cl 482; 165; (−3.6,−3.6,−0.2) [64] 62; 21 [67] 0.34 0.13
κ-AgCN 250; 158; (−2.9,−0.9,−2.9) * [64] 20; 13 [67] 0.63 0.08
κ-CuCN 228; 268; (+3.3,+0.9,+1.0) * [64] 18; 18 [12] 1.18 0.08
κ-BCN 131; 366; (+1.0,+4.2,−0.1) [64] 05; 15 [67] 2.79 0.04
κ-Mn 260; 531; (+22.6,−1.9,+8.8) * [51] 16; 39 [51] 2.04 0.06

In the well-studied material κ-(BEDT-TTF)2Cu[N(CN)2]Cl, the presence of the DM
interaction can be directly related to an observed small ferromagnetic contribution to an
antiferromagnetic transition at TN = 27 K by ESR [35]. This observation is consistent with a
weak canting of the magnetic moments, as one would expect from the presence of a DM
interaction in an AFM Néel ordered state.

Further important effects of bilinear anisotropic interactions can be detected when the
spin system couples to an external magnetic field H. To fully grasp the consequences of
these anisotropic interactions, it is helpful to follow an approach first introduced in the
1990s [68]. Specific DM patterns (e.g., uniform and staggered DM patterns) allow to apply
local rotations for each spin, so that the anisotropic interactions may be “gauged” away.
Note that for this approach, it is assumed that Γ ∝ D ⊗ D, which is generally not perfectly
fulfilled in the presence of Hund’s coupling. While this condition is not fully obeyed, the
general behavior of the system in the presence of an external field may still be described
sufficiently with this model. A local rotation about the angle ηiΦ, with ηi = ±1 for different
sublattices and Φ = 1/2 arctan(J/|D|), results, then, in a bilinear isotropic Heisenberg
Hamiltonian in the presence of a uniform and of a staggered magnetic field:

H(2) = ∑
〈ij〉

J̃ij S̃i · S̃j − μB ∑
i
(Heff,u + ηiHeff,s) · S̃i. (4)

Here, S̃ are the rotated spin operators, Heff,u ≈ GT
u · H is the effective uniform magnetic

field, Heff,s ≈ GT
s · H − 1

2J ((G
T
u · H)× D) the effective staggered magnetic field, and Gu/s

the uniform/staggered contribution to the gyromagnetic tensor. In other words, applying
an external uniform field H to an anisotropic magnetic material with a staggered DM
vector is equivalent to applying an external uniform (Heff,u) and staggered field (Heff,s) to
an isotropic magnetic material. Intuitively, it is then evident that in such a material the
susceptibility toward a staggered order parameter is significantly enhanced, even up to
large fields, in spite of the DM vector itself being comparatively small in magnitude.

This aspect was discussed in the context of analyzing the response of the QSL/VBS
candidate κ-(BEDT-TTF)2Cu2(CN)3 in the presence of an external magnetic field [64] in
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μSR experiments [69]. However, while this ingredient is indeed important, a consistent
interpretation of the numerous available experimental observations seems to be only
possible if disorder-induced orphan spins are also considered [12,34,36,37]. Hence, we will
discuss the full description of this material in detail in Section 5.

2.2. Four-Spin Ring Exchange

As mentioned above, magnetic materials may be described with a pure spin model if
they are in the strongly localized limit, i.e., t/U � 1. In this limit, it is possible to extract,
for instance, the bilinear Heisenberg model via second-order perturbation theory from
the Hubbard model, where the Heisenberg exchange scales roughly with t2/U. Since the
organic compounds considered in this review are close to the Mott MIT, these materials
should, rather, be placed in the t � U regime. When constructing a spin model for this class
of materials, it may, therefore, be necessary to consider higher order contributions. The
most dominant higher order spin contribution is an isotropic four-spin ring exchange [70]:

H(4) =
1
S2 ∑

〈ijkl〉
Kijkl [(Si · Sj)(Sk · Sl) + (Si · Sl)(Sj · Sk)− (Si · Sk)(Sj · Sl)], (5)

defined on a plaquette spanned by the sites 〈ijkl〉. Note that we do not consider here
four-spin terms arising from spin-orbit coupling effects. In Figure 4a, the two distinct four-
site plaquettes on the anisotropic triangular lattice are illustrated and labelled with K and
K′. From perturbation theory, the four-site ring exchange scales with t4/U3, increasing in
magnitude as t approaches U. For certain ratios of J′/J and K/J, ring exchange can suppress
magnetic order [71,72] or induce new types of orders [73]. In Table 1, we list selected ab-
initio results [12,51,64,67] for representative κ-phase salts. For all listed materials, the
four-spin ring exchange is ∼5–10% of the nearest-neighbor Heisenberg exchange. This is a
comparatively strong contribution consistent with the proximity of the organic materials
to the Mott MIT (t � U). Note that it is not required by symmetry that the three terms
in Equation (5) have precisely identical prefactors. Since they are very similar for the
considered materials, we discuss here averaged values for simplicity.

The corresponding classical phase diagram on the triangular lattice [51] is shown
in Figure 5 using constraint ratios of the isotropic couplings suggested by perturbation
theory [72] and setting anisotropic couplings to zero. This phase diagram contains the well-
known phases of the bilinear models on the anisotropic triangular lattice, the two-sublattice
Néel order (“2SL”) and a spiral order with ordering wave vector Q = (q, q), including
the so-called “120◦ order” at the limit of an isotropic triangular lattice with J′/J = 1.
In addition, a four-spin ring exchange induces novel phases, for instance four-sublattice
orders, such as the non-coplanar chiral (NCC) order and the coplanar spin-vortex crystal
(SVC) order. In the NCC phase, the magnetic moments are arranged such that, if they
would be arranged at the corner of a tetrahedron, they would point toward or away from
the center of the tetrahedron. The sign of the magnetic moments on a four-site plaquette
can be summarized by a sign of the plaquette, as indicated in the NCC phase in Figure 5.
The SVC phase is also a four-sublattice phase with vortex orientations, but in this case, the
magnetic moments are constrained to a single plane.

Based on the ab-initio values in Table 1, three representative organic charge-transfer
salts can be placed in the phase diagram in Figure 5: κ-(BEDT-TTF)2Cu[N(CN)2]Cl (κ-Cl),
κ-(BEDT-TTF)2Cu2(CN)3 (κ-CuCN), and κ-(BETS)2Mn[N(CN)2]3 (κ-Mn). Within the square
lattice regime (J′/J � 1), the four-spin ring exchange does not change the magnetic ground
state. Consequently, while κ-Cl is found to have a significant ring-exchange contribution,
its ground state is the two-sublattice AFM Néel state, consistent with experiments and as
determined with the purely bilinear spin model.

In contrast, in the regime of an isotropic triangular lattice (J′/J ≈ 1), the four-spin
ring exchange starts to play an important role for the magnetic ground state, so that
κ-CuCN as significant ring exchange is placed in the classical phase diagram close to phase
boundaries between the multi-Q spiral phase and the NCC phase. Quantum fluctuations
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may suppress the long-range order, entering a QSL/VBS phase, as suggested by semi-
classical [72] and DMRG [71] calculations. If disorder would be absent in κ-CuCN (see
Section 5), the magnetic interactions including four-spin ring exchange would point to a
QSL/VBS ground state.

2SL

SVC

spiral

0.0 1.0 2.0 3.0
0.0

0.1

0.2

0.3

0.4

NCC

+

-

+

+

-

multi-Q

(a) (b)

Figure 5. (a) Classical phase diagram for the four-spin ring-exchange on the anisotropic triangular
lattice. Indicated are the locations for κ-(BEDT-TTF)2Cu[N(CN)2]Cl (κ-Cl), κ-(BEDT-TTF)2Cu2(CN)3

(κ-CuCN), and κ-(BETS)2Mn[N(CN)2]3 (κ-Mn), based on ab-initio calculations in Refs. [12,51,64,67]
(see Table 1). The depicted phases include the two-sublattice (2SL) Néel order, non-coplanar chi-
ral (NCC) order, and spin-vortex crystal (SVC) order. For this phase diagram, the constraints
J′/J = J′′′/J′′ = K′/K, K/J′′ = 2, and |D| = |Γ| = 0 were enforced. (b) 13C NMR spectra measured
in Ref. [74] (“Exp.”) and simulated for hypothetical SVC and 2SL phases [51]. Figures adapted
from Ref. [51].

A third consequence of a nonzero four-spin ring exchange is realized in κ-Mn [51],
where the higher order magnetic exchange does not suppress magnetic order, but instead
selects an unconventional four-sublattice magnetic order, the SVC phase, which could
not be accessed without a finite K. The SVC and NCC phases introduced by a significant
ring exchange (see Figure 5a) are characterized by a vector chiral order parameter |vp|,
defined on a four-site square plaquette built by the solid bonds in Figure 4a. The vector
chirality vp = Si × Sj + Sj × Sk + Sk × Sl + Sl × Si is finite when nearest-neighbor spins
are orthogonal, but second-neighbor spins are antiparallel, as realized in the NCC and SVC
phases. In the two-sublattice Néel order and spiral phases, the vector chirality vanishes:
|vp| = 0. While it is difficult to estimate the influence of quantum fluctuations based on
solely the classical phase diagram, there is a some experimental evidence for κ-Mn, which
seems to require such a four-sublattice chiral phase. For κ-Mn, the interpretation of the
magnetic properties from experimental evidence was initially challenged by the fact that
the anion layer is composed of magnetic S = 5/2 manganese atoms forming a distorted
triangular lattice. However, the ordering temperature TN = 22 K [26,74,75] of κ-Mn can be
assigned to the organic BETS spins, based on the fact that the ab-initio exchange between
Mn spins is with ∼1 K two orders of magnitude smaller and that the entropy change around
TN observed in specific heat measurements is too small (8% of R ln 2) for the significant
participation of Mn spins [51]. For comparison, in the compounds λ-(BETS)2FeCl4 and
κ-(BETS)2FeBr4, the Fe3+ and organic spins order simultaneously [76–78]. Such features
as Jaccarino–Peter superconductivity [79] and beats in the Shubnikov–de Haas effect, as
reported in the latter compounds, are not observed in κ-Mn [24–26]. One example, where
the experimental evidence of κ-Mn is not compatible with a 2SL or spiral order phase is the
magnetic torque as a function of magnetic field [75]. As mentioned above, the out-of-plane
and in-plane components of the DM vector differ in their pattern by symmetry. As a result,
the vector chirality couples linearly only to Db, the contribution along the dashed bonds
in Figure 4a, confining the spins to lying in the a∗c plane, while the 2SL and spiral phases
couple only to Dac, confining the spins to the plane perpendicular to this contribution. In
magnetic torque experiments, the features associated with BETS spins vanish for magnetic
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fields in the a∗c plane, suggesting that the field couples to an order parameter for which
this plane is a special plane of symmetry. This is only true for the NCC and SVC phases.
Additionally, 13C NMR experiments [74,80] show signatures which are by symmetry not
compatible with two-sublattice orders, but can be fitted well with the SVC order. The
experimental NMR resonance [74] (top panel in Figure 5b) is symmetrical about the Larmor
frequency ν0 with a rich fine structure. The expected resonance patterns were simulated in
Ref. [51] using an ab-initio hyperfine coupling tensor, Lorentzian broadening and neglecting
the Mn dipolar fields. As evident from Figure 5b, the 2SL phase can be immediately ruled
out, with only four distinct resonances, which are not symmetric around ν0. In contrast, the
SVC phase shows 16 distinct, symmetric resonances, allowing for an excellent simulation of
the experimental data. Taking the classical phase diagram together with the experimental
evidence on magnetic properties of κ-Mn, this BETS compound is a prime example for a
material with the exotic magnetic order of the spin-vortex crystal phase, induced by the
four-spin ring exchange.

3. New Physics in the Extended Molecule-Based Model

In this section, we focus on experimental and theoretical observations that strongly
suggest that a treatment of the κ-phase charge-transfer salts in the full molecule-based
model is not only needed, but also can be the source of entirely new ordering phenomena.
In particular, we provide an in-depth review on the role of intra-dimer charge degrees of
freedom in generating electronically driven ferroelectric ground states and we discuss the
role of the anisotropy of the three inter-dimer hoppings that exist in the molecule model for
the pairing symmetry of unconventional superconductivity.

3.1. Ferroelectricity in the Mott Insulating Ground State

When changing from the effective half-filled one-band dimer model on the triangular
lattice with on-site Coulomb repulsion U per dimer and hopping terms t, t′ between dimers
to the molecule-based model, the following energy scales are at place: the hopping parame-
ters t1...4 as shown in Figure 2, a Coulomb repulsion Ũ on the molecule (please note that U
was defined as the onsite Coulomb repulsion on the dimer, while Ũ corresponds to the on-
site Coulomb repulsion on the molecule), and additional inter-molecule Coulomb repulsion
terms V, which are generally expected to be smaller than Ũ (typically V/Ũ ∼ 0.4) [81,82].
Including V in the considerations introduces the possibility of intra-dimer charge orders
that may compete with the dimer-Mott insulating state [81–83]. As a result, a new degree
of freedom, namely, intra-dimer charge fluctuations, may emerge in dimerized κ-phase
charge-transfer salts [81,82].

Many of the theoretical considerations regarding the inclusion of intra-dimer charge
degrees of freedom into minimal low-energy models were further motivated by the si-
multaneous experimental discoveries of dielectric anomalies in various Mott insulating
κ-phase charge-transfer salts [16,84–86]. There is a large body of evidence suggesting that
these anomalies result from ferroelectricity which might be driven by the active intra-dimer
charge degrees of freedom.

Dielectric spectroscopy is a common tool that is sensitive to ferroelectric order [84].
A typical signature for a ferroelectric transition is a peak in the temperature dependence
of the dielectric constant ε′(T). Such a peak was indeed observed for various κ-phase
charge-transfer salts in the Mott insulating state, as depicted in Figure 6. First, it was
discovered in κ-(BEDT-TTF)2Cu2(CN)3 (κ-CuCN, Figure 6b) below T � 60 K by Abdel-
Jawad et al. [85]. Here, the peak of the dielectric constant shifts with frequency, which
is a characteristic for a “relaxor ferroelectric”. In line with this classification, the peak
temperatures as a function of frequency are well-described by a Vogel–Fulcher–Tammann
equation with characteristic temperature of TVFT ∼ 6 K, which interestingly corresponds
to the temperature of the famous “6 K anomaly” in this compound [34,87]. A relaxor
ferroelectric does not manifest long-range order, but rather represents a cluster-like order
mediated by short-range correlations.
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Figure 6. Role of intra-dimer charge degrees of freedom revealed by dielectric measurements:
(a–c) Frequency-dependent dielectric constant ε′ on three κ-phase organic charge-transfer salts:
(b) κ-(BEDT-TTF)2Cu[N(CN)2]Cl (κ-Cl) [16,84,88], (c) κ-(BEDT-TTF)2Cu2(CN)3 (κ-CuCN) [85] and
(d) κ-(BEDT-TTF)2Hg(SCN)2Cl [86]. Symbols represent the measured data, solid lines are guide to
the eyes. The red dashed lines represent Curie–Weiss fits of the data in (b,d), whereas they show
the frequency dependence of the peak position in (c). These three materials differ by the degree of
dimerization (t1/t′), as well as the frustration strength (t′/t, defined in the effective dimer model).
Values for t1/t′ and t′/t for each of the materials are included below the figures and taken from
Refs. [18,42,86]; (d) Schematic view of charge distribution on the dimerized κ-phase structure. For
temperatures above the ferroelectric transition temperature (i.e., T > TFE), charge is equally distributed
within a dimer. For T < TFE, intra-dimer charge order sets in, giving rise to a macroscopic polarization.

In contrast to this, a so-called “order–disorder”-type transition, where the peak posi-
tion is independent of frequency, was found in κ-(BEDT-TTF)2 Cu[N(CN)2]Cl (κ-Cl) [16,88],
as shown in Figure 6a. This notion was further corroborated by measurements of the
ferroelectric hysteresis as well as measurements of the switchability of the ferroelectric
polarization. The dielectric constant in κ-Cl at high temperatures is well-described with a
Curie–Weiss law with a characteristic temperature TCW ∼ 27 K. This temperature is iden-
tical to the antiferromagnetic ordering temperature TN of this compound, making this
material a realization of a multiferroic system [16]—an intriguing state of matter with
cross-coupling between charge and spin degrees of freedom. Independent of the detailed
behavior as a function of temperature or frequency, it can be concluded that these dielectric
measurements indicate active charge degrees of freedom deep inside the Mott insulating
state, which casts doubts on the stringent applicability of the dimer model.

In fact, intra-dimer charge order would be a natural explanation for the formation
of ferroelectricity in the κ-phase charge-transfer salts. In general, ferroelectricity requires
(i) the existence of dipoles and (ii) the breaking of inversion symmetry for the formation
of a macroscopic polarization. In case of intra-dimer charge order, both conditions are
naturally fulfilled in the dimerized κ-phase structure, see Figure 6d. At high temperatures
above the ferroelectric transition temperature T > TFE, the charges are localized on a dimer,
corresponding to fluctuating dipoles [89]. When cooling below TFE, the charges localize on
one of the two organic molecules that form a dimer. As a result, a static dipole is created. At
the same time, through localization on one of the molecules, inversion symmetry is broken.
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Thus, overall a macroscopic polarization arises. This electronically driven mechanism
for ferroelectricity, which is invoked for both salts κ-Cl and κ-CuCN [16,81,85,90,91], is
different from the off-center displacement of ions in conventional ferroelectrics [92].

Clearly, the electronically driven scenario requires a proof of intra-dimer charge or-
der, similar to the case of weakly dimerized quasi one-dimensional TMTTF-based [93]
as well as α-phase BEDT-TTF salts [94,95], where charge order and ferroelectricity are
well established. However, attempts to resolve a charge disproportionation within the
BEDT-TTF dimer for κ-Cl and κ-CuCN have remained unsuccessful [96]. By monitoring
charge-sensitive phonon vibrational modes in infrared spectroscopy, no indications for
a charge-order-induced splitting of modes were observed for κ-Cl and κ-CuCN within
their experimental resolution [97]. This puts an upper limit on the possible size of charge
disproportionation of δ∼±0.005 e. The absence of a detectable charge disproportionation
has motivated proposals of alternative explanations for the observation of dielectric anoma-
lies [5,98–100]. Prominent proposals include (i) charged domain-wall relaxations in the
weak ferromagnetic state at lower temperatures for κ-Cl [98], (ii) charge defects triggered by
a local inversion-symmetry breaking in the anion in κ-CuCN [99–102] and (iii) a percolative
enhancement of the dielectric constant in proximity to a Mott MIT based on experiments on
κ-CuCN [5,103]. Besides controversies regarding the data analysis of the dielectric data, see,
e.g., Refs. [84,88,96], there is another concern that some of the alternative explanations for
the dielectric anomalies involve material-specific arguments. This makes these proposals
a possible explanation for the respective specific compounds, but does not answer the
question of why so many κ-phase charge-transfer salts exhibit dielectric anomalies deep in
the Mott insulating state. We note that the proposal that the dielectric signal even deep in
the Mott insulating state arises from the spatial coexistence of insulating and correlated
metallic phases close to the Mott MIT [5,103] does not necessarily explain the emergence of
long-range order-disorder-type ferroelectricity.

Within the picture of intra-dimer charge order, the degree of charge disproportionation
δ is expected to relate to the strength of dimerization. From ab-initio model parame-
ters, κ-Cl and κ-CuCN both fall in the same range of rather strong dimerization with
t1/t′ ∼ 4.2–5 [18,42] (see Figure 6). Thus, a clearer case for electronically driven ferro-
electricity might be made when dimerization is still dominant, but weaker than in the
materials cited above. Indeed, according to DFT calculations, the related material κ-(BEDT-
TTF)2Hg(SCN)2Cl is characterized by such a moderate degree of dimerization t1/t′ ∼ 3 [86].
For this compound, charge order with δ = ± 0.1 e was unequivocally identified in vibra-
tional spectroscopy [104]. Dielectric data for this compound [86] is shown in Figure 6c.
The behavior of ε′(T) is very reminiscent of the behavior of the characteristics of well-
established order-disorder type ferroelectrics [105]. Whereas in κ-(BEDT-TTF)2Hg(SCN)2Cl
there is, thus, strong evidence for long-range charge [104] and ferroelectric order [86], there
is no long-range charge order in its sister compound κ-(BEDT-TTF)2Hg(SCN)2Br. Nonethe-
less, experimental evidence from Raman spectroscopy for a “quantum dipole liquid” was
presented for the Br-variant, in which electric dipoles from intra-dimer charge degrees of
freedom remain fluctuating down to lowest temperatures [106]. Overall, the collection of
data on both compounds κ-(BEDT-TTF)2Hg(SCN)2X with X = Cl, Br [86,106,107] provide
strong evidence that intra-dimer charge degrees of freedom are relevant in dimerized
κ-phase materials.

3.2. Superconductivity in Extended Molecule-Based Models

There are also distinct differences between the physics of the dimer model and the ex-
tended molecule-based model in the metallic regime as a result of (i) intra-dimer Coulomb
interactions and (ii) the anisotropy of the inter-dimer hoppings. The relevance of the latter
becomes evident in the discussion of the superconducting order parameter of the κ-phase
materials. In fact, following previous work by Kuroki et al. [108], Guterding et al. [15,60]
calculated the superconducting pairing symmetry of a few κ-based charge-transfer-salts su-
perconductors using a random phase approximation (RPA) spin-fluctuation approach and
hopping parameters extracted from ab-initio-based density functional theory calculations
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in the molecule description. It was found that the order parameter is substantially altered
when considering the anisotropy in t2 and t4 (defined in Figure 2), which is averaged out
in the dimer model. Sufficiently large anisotropy promotes a peculiar competition between
square-like and diagonal hoppings, which is absent in the effective dimer model. As a
result, for significant anisotropy, mixed-order parameters of type s± + dx2−y2 are favored
over the single-component dxy (in the notation of the physical Brillouin zone). Qualitatively,
these results were later reinforced by solving the linearized Eliashberg equation using the
two-particle self-consistent approach [61], even though there is a quantitative difference in
the precise location of the crossover from dxy to s± + dx2−y2 .

The theoretically predicted mixed-order parameter in the full molecule-based model
has eight nodes (see Figure 7a), giving rise to three distinct coherence peaks (Figure 7b,c).
The existence of the three coherence peaks was confirmed in low-temperature scanning
tunneling spectroscopy of κ-(BEDT-TTF)2Cu[N(CN)2]Br [60]. It is also interesting to note
that calculations on the extended Hubbard model using Monte Carlo simulations found
that superconductivity with mixed s + d order parameter is stabilized on the verge of
charge-order and dimer-Mott instabilities [109–111].
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Figure 7. Theoretical results for κ-(BEDT-TTF)2Cu[N(CN)2]Br, calculated by an RPA spin-fluctuation
approach using hopping parameters extracted from ab-initio-based density functional theory calcu-
lations in the extended molecular model: (a) Eight-node mixed-symmetry superconducting gap Δ,
(b) |Δ| as a function of the angle φ with respect to kx, (c) quasi-particle DOS ρqp in the superconduct-
ing state. The three coherence peaks A, B, C are consistent with scanning tunneling spectroscopy
results [60]. Figures adapted from Ref. [60].

4. Coupling of Correlated Electrons to the Crystal Lattice

Treating the organic κ-phase charge-transfer salts or any other correlated electron
system in terms of a purely electronic Hubbard model does not consider that charge and
spin degrees of freedom are coupled to the crystal lattice [112,113]. That this electron-lattice
coupling could have significant consequences for the behavior of the correlated electron
system might already be inferred from the fact that physical pressure is often used to
induce phase transitions and associated critical behaviors. For example, as outlined in
Section 1.2, pressure can be used to induce the Mott MIT. Importantly, the underlying
compressibility of the crystal lattice does also necessarily imply that the crystal lattice
can respond to the correlated electron system in non-trivial ways. Since such a type of
coupling exists in any solid-state realization of a correlated electron system, understanding
the consequences of the electron–lattice coupling is nowadays central to various fields of
research. A prominent example is the electronic nematic phase which is believed to be
ubiquitous to the phase diagrams of many high-temperature superconductors [114–116]
and which is intimately coupled to lattice instabilities [117–119]. In addition, the coupling to
the lattice has received increasing levels of attention in the field of organic [34,49,87,120,121]
and inorganic frustrated magnets [122–128].
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In the following, we deepen the discussion of the underlying ideas by analyzing recent
experimental results for the κ-phase organic salts [9,129]. The high-pressure sensitivity
of these materials suggests that they are characterized by a comparatively large coupling
of the electrons to the crystal lattice [130]. In this sense, the κ-phase charge-transfer salts
are an ideal testground to discover and understand novel effects that arise from electron–
lattice coupling, since any effect will be significantly amplified when such a coupling is
naturally strong.

4.1. Critical Elasticity around the Mott Critical Endpoint

We start by a discussion of how coupling of correlated electrons to the crystal lat-
tice impacts the pressure-induced Mott transition. For that, we review theoretical ideas
and experimental results on κ-(BEDT-TTF)2Cu[N(CN)2]Cl (κ-Cl). The purely electronic
Mott critical endpoint is characterized by a diverging response function [27,28]. When
such an electronic system is embedded into a crystal lattice with finite compressibility,
then the lattice responds to changes in the electronic system [112,113,131]. Sufficiently
away from the critical endpoint, the crystal lattice will barely respond to the only weakly
fluctuating electronic degrees of freedom. However, close to the endpoint, when the elec-
tronic system becomes critical, the internal pressure exerted by the electronic system will
induce additional lattice strain. In other words, the crystal lattice is driven soft, leading
to a renormalization of the system’s compressibility due to a vanishing elastic modulus.
These renormalization effects can successfully be captured in DMFT calculations of the
compressible Hubbard model [112,113].

Importantly, the softening of the crystal lattice implies that the crystal lattice itself
becomes critical when the electronic degrees of freedom become critical. This was pointed
out in Ref. [131] based on considerations of an effective field theoretical description of
the coupling of the Mott order parameter to lattice strain. The electronic Mott transition
is, hence, expected to be preempted by an isostructural transition. Consequently, the
criticality of the Mott system coupled to lattice degrees of freedom is described by mean
field criticality, the universality class of isostructural solid–solid transitions, where the shear
forces of the crystal lattice strongly suppress fluctuations [131,132].

Experimentally, the relevance of the theoretical considerations above was explicitly
demonstrated by studies of the lattice strains as a function of pressure, i.e., strain–stress
relations, around the Mott critical endpoint in κ-Cl in Ref. [9]. The experimental data is
shown in Figure 8a. The key result here is the observation of pronounced non-linearities
in the strain–stress relationships at temperatures higher than the critical temperature
Tcr ≈ 37 K. Even at a temperature of 43 K, i.e., (T − Tcr)/Tcr ∼ 20%, the renormalization
of the compressibility is found to be of the order of the compressibility itself. Thus, these
results indicate a breakdown of Hooke’s law induced by critical electronic degrees of
freedom. The measured data do not only qualitatively agree with the physical picture
described above, but also quantitatively. Following the classification as an isostructural
solid–solid endpoint [131], for which the volume reflects an appropriate order parameter,
the experimental data was quantitatively well described by the associated mean-field
criticality [9].

Taken together, theory and experiment suggest that any Mott system that is coupled to
a compressible lattice will eventually be controlled by this “critical elasticity”. Importantly,
this effect can be dominant in a wide range of the temperature–pressure phase diagram, as
experimentally proven for κ-Cl and schematically depicted on the right side of Figure 8a [9].
Thus, the example of the Mott MIT and its criticality demonstrates nicely that electron–
lattice coupling is not only a small, perturbative correction to the correlated electron
problem, but an essential ingredient.
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Figure 8. Coupling of correlated π-electrons with the crystal lattice in κ-(BEDT-TTF)2Cu[N(CN)2]Cl.
(a) Strain–stress relationships across the pressure-induced Mott metal–insulator transition [9]: The rel-
ative length-change data on the left as a function of hydrostatic pressure indicate a wide temperature
region above the critical endpoint located at Tcr ∼ 37 K, in which strongly non-linear strain–stress
relationships are observed. This result implies that the crystal lattice itself becomes soft as the elec-
tronic degrees of freedom become critical. This effect has been termed “critical elasticity” [131,132]
and prevails in an extended region around the endpoint (right panel); (b) ambient-pressure study of
the damping factor of a low-lying optical phonon, likely related to the BEDT-TTF breathing mode,
as a function of temperature [129]. The damping factor is inversely proportional to the phonon life-
time. Three characteristic regimes were identified in the data: (i) low damping at high temperatures
(T > Tins) before the charge gap opens, (ii) high damping when the charges localize on the dimer
(TN < T < Tins) and (iii) low damping below the onset of spin and charge order (T < TN). Figures
adapted from Refs. [9,129].

4.2. Phonon Anomalies Probed by Inelastic Neutron Scattering

The fact that the (de-)localization of the π electrons at the Mott MIT causes drastic
anomalies in the lattice properties is a very good indication that, vice versa, anomalies
in the lattice dynamics can be a very sensitive probe of underlying fluctuating electronic
degrees of freedom. Thus, probing lattice dynamics can be a very important tool to detect
active charge and/or spin degrees of freedom, e.g., in the Mott insulating state where the
role of intra-dimer charge degrees of freedom is particularly debated (see Section 3.1, above).

Due to the large number of atoms per unit cell, there are typically many lattice and
molecular vibration modes observed in, for instance, Raman or vibrational spectroscopy
over a large energy range [101]. The modes of interest that are expected to be particularly
sensitive to fluctuating electronic degrees of freedom are energetically low-lying phonons,
in particular those that involve breathing motion within the BEDT-TTF dimer. Based on
ab-initio phonon calculations, those phonons typically lie in an energy range of just a few
meV, e.g., at 4.1 and 4.7 meV in κ-(BEDT-TTF)2Cu2(CN)3 (κ-CuCN) [101]. Such low-energy
phonons can be probed with high sensitivity in neutron-scattering measurements. For a
long time, neutron-scattering measurements on the organics have been rare due to the
typically small size of the single crystals [133]. However, technical improvements have now
allowed to perform inelastic neutron-scattering measurements to probe phonon changes in
κ-Cl [129] at ambient pressure and even more recently on κ-CuCN [37].

The main result of the work on κ-Cl, as shown in Figure 8b, is that the damping of a
low-lying optical phonon, located around 2.6 meV, shows a strongly non-monotonic behav-
ior as a function of temperature [129]. In particular, the phonon damping is specially high
in an intermediate temperature range: When cooling κ-Cl from 100 K to below ∼50–60 K,
the phonon damping increases rapidly, corresponding to a significantly reduced phonon
lifetime. Upon further cooling below TN ∼ 27 K, the phonon lifetime is found to be signifi-
cantly enhanced again. Interestingly, the onset of phonon damping at ∼50–60 K coincides
with the opening of the charge gap at Tins [134]. Below this temperature, the hole carriers
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become localized on the dimer, but the intra-dimer charge degree of freedom remains
active. Only when the intra-dimer charge and the spin degrees of freedom are ordered
below TN, is a truly inelastic behavior of the phonon modes recovered (see schematics in
Figure 8b). While this result suggests an intimate coupling of the lattice with charge and
spin degrees of freedom, which makes the lattice unstable, it is important to note that the
neutron data does not support a structurally driven damping of the phonon modes. Thus,
electronic degrees of freedom (charge and spin) are the driving force behind these lattice
anomalies [129].

A possible way to describe such a coupling is given by the pseudospin-phonon-
coupled model, as proposed in Ref. [135], which can be extended to the coupling of phonons
to other stochastic variables than only spins. According to this model, the characteristic
energy of the electronic degree of freedom must be of the order of the phonon energy itself
for significant phonon damping to occur. Interestingly, the intra-dimer charges that give
rise to the dipole liquid in the related κ-(BEDT-TTF)2Hg(SCN)2Br [106] (see Section 3.1)
were found to be located at ∼40 cm−1, which is similar in energy to the overdamped optical
phonon in κ-Cl. Thus, it seems likely that the overdamped phonons observed in inelastic
neutron-scattering experiments in κ-Cl are related to fluctuating intra-dimer charge and
spin degrees of freedom.

We note that the recent study of phonons in κ-CuCN [37] revealed strong similarities in
the behavior of the phonon modes. This includes (i) a strongly overdamped phonon mode,
when the π-electrons are localized on the dimers and (ii) a recovery of a long-lived phonon
mode below the characteristic temperature of 6 K. This result clearly strengthens the notion
that the enigmatic “6 K anomaly” is a result of a phase transition rather than a crossover. It
was argued based on a spin-charge coupling model that the observed anomalous phonon
behavior is consistent with a transition into a valence-bond solid below 6 K.

5. Role of Disorder

Disorder of various kinds is inevitably present in any real material. Even though
observations of quantum oscillations in κ-phase metals in low fields and/or relatively high
temperatures indicate the high crystalline quality of pristine samples [136], there is by now
some body of evidence that disorder is important for understanding the properties of the
κ-phase charge-transfer salts. In the present section, we discuss experimental results of the
impact of controlled disorder on the properties close to the Mott MIT, as well as theoretical
results on the role of disorder and resulting orphan spins in the magnetic phase.

5.1. Experimental Study of Phenomena Close to the Mott Transition under Controlled Disorder

To better grasp the effect of disorder, it is pivotal to develop means to controllably
change the degree of disorder. For the κ-phase organic charge-transfer salts, two means
are established with which disorder can be controlled, both reversibly and irreversibly (see
Figure 9a): (i) control of the conformational degree of freedom of the ethylene endgroups
(EEG) in the BEDT-TTF molecule by varying the cooling rate through the associated glass
transition at Tg [137], and (ii) introduction of molecular defects, dominantly in the anion
layer [138], through X-ray irradiation [139]. In the remainder of this section, we summarize
recent results, based on both techniques.

First, we focus on the reversible approach of introducing disorder through controlling
the EEG disorder. Those ethylene endgroups ([C2H4]) can adopt two different configura-
tions, when viewed along the central C=C bond. The EEGs can either show an eclipsed
or a staggered configuration, see Figure 9a. Upon cooling, the EEG tend to adopt one
of the conformations. However, the ordering usually cannot be completed for kinetic
reasons [130,137]. The associated relaxation becomes so slow close to Tg that equilibrium
cannot be achieved, resulting in a certain amount of intrinsic structural disorder. Impor-
tantly, the amount of disorder can be controlled in a reversible manner by heating above
Tg, thus melting the frozen EEG configuration, and consecutively adjusting the cooling rate
through the glass transition at Tg.
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Figure 9. Experimental studies of the impact of weak disorder in κ-phase charge-transfer salts.
(a) Experimentally, disorder can be deliberately introduced either by (i) creating molecular defects
through X-ray irradiation [139] or (ii) by controlling the ethylene endgroup conformation via the
cooling rate through the glass-forming temperature Tglass [137]; (b) temperature–pressure phase
diagram for κ-(BEDT-TTF)2Cu[N(CN)2]Cl, subjected to different irradiation times [140]. Symbols
represent the discontinuous Mott metal–insulator transition. (b) adapted from Ref. [140].

An important task is to quantify the amount of disorder induced by the glassy EEG
freezing. This task was addressed in Ref. [141] utilizing a special heat-pulse protocol to
achieve large cooling rates up to several 1000 K/min, together with modelling of the glass
transition in terms of a double-well potential with realistic energy parameters [137,141,142].
It was found that EEG disorder levels of up to ∼6% might be reached in real experiments
with the largest cooling speeds. Conversely, this implies for the pristine, slowly cooled
crystal that intrinsic EEG disorder levels are at a maximum about 2 to 3%.

Experimentally, an increase in the residual resistivity, as well as an influence on
the superconducting Tc, were observed in metallic κ-(BEDT-TTF)2Cu[N(CN)2]Br upon
cooling with higher speed through Tg [143,144]. However, closer to the Mott transition,
the effects of changing effective Hubbard parameters with EEG conformation is likely to
dominate over disorder effects. This was demonstrated experimentally in Refs. [141,145],
and substantiated by ab-initio calculations of the band structure of fully EEG-ordered
κ-salts in Ref. [146]. In fact, it is possible to tune across the critical ratio (U/W)c for the
Mott transition in deuterated κ-(BEDT-TTF)2Cu[N(CN)2]Br by adjusting the cooling rate
through Tg. In such cooling-rate-dependent studies, important results, such as the critical
slowing down of charge carriers at the Mott critical endpoint [145], were made possible.

Whereas the control of disorder through the glassy freezing of the EEG disorder is
reversible, it is hard to disentangle effects that result from disorder and from changes in
effective Hubbard parameters, in particular when the material is situated close to the Mott
MIT. Thus, the introduction of disorder by X-ray irradiation is a promising, complementary
approach to study the influence of disorder, despite its irreversibility. A detailed review of
the experimental procedures and various results are given in Ref. [139].

Before turning to the results, it is important to summarize what type of disorder is
created by X-ray irradiation. From studying molecular vibration modes in Cu-containing
κ-phase charge-transfer salts by infrared optical spectroscopy [147], it was shown that
irradiation has the strongest impact on vibrational models associated with the anion. This
meets the intuitive expectation that X-rays should be mostly absorbed in the anion because
they contain the heaviest atom, Cu. Thus, X-ray irradiation induces primarily molecular
defects in the anion layer which creates a random lattice potential for the π carriers in
the BEDT-TTF layer. This notion was corroborated by DFT calculations [138]. In addition,
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there is no strong indication that X-ray irradiation changes the carrier concentration in the
BEDT-TTF layer [139].

By now, there are various studies which have utilized X-ray irradiation to probe
the interplay of disorder and correlations close to the Mott transition in κ-phase charge-
transfer salts [139,140,147–156]. In fact, the corresponding Mott–Anderson model has
attracted significant attention from a theoretical perspective, leading to a large number of
numerical evaluations of its properties (e.g., Refs. [157–168]). In the limit of independent
electrons, the introduction of disorder is known to transform a metal into an Anderson
insulator [169,170]. In the opposite limit of no disorder, but strong correlations, the latter
will drive a metal–insulator transition. Naively, thus, both disorder and correlations
promote insulating states. However, the interplay is much more complex, as discussed
theoretically [171] and also witnessed experimentally in transport studies (ρ(T)) on κ-phase
charge-transfer salts close to the Mott transition. Here, the impact of disorder on metallic
salts on ρ(T) [149,151] is found to be distinct from those of the Mott insulators κ-Cl and
κ-CuCN [139,154]: For κ-(BEDT-TTF)2Cu[N(CN)2]Br, weak disorder increases the residual
resistivity while simultaneously suppressing the superconducting critical temperature.
For higher degrees of disorder, insulating behavior with dρ(T)/dT < 0 is observed
across the full temperature range. On the contrary, for Mott insulators, whose ρ(T) shows
activation-type behavior before irradiation, ρ(T) decreases at any given temperature with
an increasing dose of irradiation. Generally, the impact of disorder is found to be stronger
for κ-phase charge-transfer salts closer to the Mott transition.

These opposing trends of the effect of disorder on the metal vs. the Mott insulator
motivate a detailed study of the Mott MIT in the presence of varying degrees of disorder
and pressure. Such studies were performed in Refs. [140,155] and we show the resulting
phase diagram of Ref. [140] in Figure 9b for irradiation times below 150 h, corresponding
to weak to moderate disorder. This study revealed a very clear tendency of the position
and character of the MIT upon increasing disorder. While the MIT initially retains its
discontinuous character at low temperatures, the location of the MIT is shifted to lower
pressures and lower temperatures. Upon increasing irradiation further to ∼150 h, no
signatures of a discontinuous MIT were detected. Thus, for low disorder, the MIT shows
characteristics of the pristine Mott transition. Only above a critical disorder strength is the
Mott character no longer evident.

Interestingly, a lower critical pressure pcr for increased levels of disorder strengths
shows equivalent features to an increased critical correlation strength (U/W)c. This is
consistent with theoretical predictions of a “soft Coulomb gap” [159]—disorder widens the
Hubbard bands by introducing a finite spectral weight at the Fermi level. Consequently, a
larger U is needed to fully open the Mott gap. This interpretation is supported by optical
conductivity data on κ-(BEDT-TTF)2Cu[N(CN)2]Cl (κ-Cl) at ambient pressure [139] as well
as from scanning tunneling microscopy studies of the normal-state density of states in
κ-(BEDT-TTF)2Cu[N(CN)2]Br [172], even in its pristine form.

Besides the position of the metal–insulator transition in the temperature–pressure
phase diagram, the behavior of κ-Cl after longer irradiation at ambient and finite pressures
also reveals interesting phenomena that motivate various further studies of disordered
Mott systems. Possible questions of interest include how disorder affects the nature of the
transformation of metallic into insulating regions across the first-order phase transition. The
thermodynamic data of Refs. [9,140] clearly indicate an increased broadening of the jump-
like changes in the volume across the first-order phase transition for samples with increasing
levels of irradiation-induced disorder. NMR measurements on strongly irradiated κ-Cl
under hydrostatic pressure [156] revealed very slow dynamics, associated with an electronic
Griffiths phase, located in proximity of the Mott phase boundary of the pristine, almost
clean material. The authors of this work argued that the observed slow dynamics are
incompatible with a macroscopically phase separated state and associated-domain wall
motion. Further experimental studies will be useful in the future to support the intriguing
physics presented above.
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In addition, it was suggested that the suppression of the first-order transition stabilizes
the quantum-critical behavior of the Mott transition to lower temperatures [155]. Further-
more, it was found that large irradiation times of ∼500 h suppress the antiferromagnetic
order [154] that is present in pristine crystals at ambient pressure. The absence of long-
range order in strongly disordered κ-Cl is particularly interesting in light of the discussion
of the role of disorder in spin-liquid candidate systems. Clearly, an important step for the
future is a detailed quantification of the X-ray-induced amount of disorder and its spatial
distribution, which unfortunately is still lacking so far for the κ-phase charge-transfer salts.
This input will be important for achieving quantitative comparisons between experiments
and theories of disordered, correlated materials.

5.2. Disorder in the Magnetic Phase: Scenario of a Valence Bond Solid Host with Orphan Spins

Among the Mott insulating κ-phase charge-transfer salts, κ-(BEDT-TTF)2Cu2(CN)3
(κ-CuCN) was recently at the center of increased interest in the context of disorder ef-
fects [12,34,36,37]. The magnetic ground state of this material is expected to have a van-
ishing net-magnetic moment, such as a quantum-spin-liquid (QSL) or valence-bond-solid
(VBS) state. In these states, so-called “orphan spins” may emerge as a result of non-magnetic
vacancies caused by defects in the anion layer, or by domain wall patterns in the VBS case,
for instance, as a result of the randomized ethylene endgroup conformation discussed
above (see Figure 10a).

The effects of orphan spins were argued in Ref. [12] to offer a consistent explana-
tion for experimental observations in κ-CuCN such as magnetic torque [8] and NMR [50]
measurements. This interpretation is in contrast to the originally proposed critical sce-
nario [64,69], which was introduced based on the unconventional field-dependence of the
μSR linewidth, i.e., of the magnetic susceptibility. In a critical scenario, one would expect
either a uniform criticality or, as elaborated in Section 2, in the presence of a DM interaction
a staggered criticality. As detailed below, both scenarios are, however, not compatible with
the magnetic-torque observations.

Theoretically, the magnetic torque can be expressed as τ = H2χτ(H) f (θ), where
χτ(H) is the torque susceptibility with a possible non-trivial field dependence and f (θ) is a
function of the angle θ between magnetic field and sample (see Figure 10b). The experimen-
tal torque observations by Isono et al. [8] can be summarized as: (i) an unconventional field
dependence of the torque susceptibility χτ ∝ H−0.8, (ii) a sinusoidal dependence of the
torque as a function of magnetic-field angle τ ∝ sin(θ − θ0), and (iii) a field-dependence of
the angle shift θ0(H). A critical scenario is not compatible with these three observations
simultaneously. A uniform criticality would lead to sinusoidal-torque response for all
relevant field strengths. This does not allow for a field-dependent angle-shift θ0(H) as
observed in the experiment. A staggered criticality, on the other hand, would lead to a
sawtooth-shaped magnetic torque, also in contrast to the experimental observation.

A consistent explanation for all three key torque features is given by the consideration
of disorder-induced orphan spins. An orphan spin can be described by a localized magnetic
moment and generally consists of a broad screening cloud, which depends on the interac-
tions of the host system. The induced magnetic moment can then be described by a uniform
contribution ∑i′∼m〈S̃i′ 〉 = cu〈S̃I,m〉 and a staggered contribution ∑i′∼m ηi′ 〈S̃i′ 〉 = cs〈S̃I,m〉.
Here, we labelled the sites surrounding the impurity site m within the screening cloud with
index i′ and sublattice index ηi′ = ±1. In contrast to the pristine bulk case, the induced stag-
gered magnetic moment is then parallel to the induced defect magnetization. This ensures
the impurity torque has sinusoidal field-dependence, even if the staggered contribution
is the dominant one, allowing for a scenario which simultaneously leads to a sinusoidal
magnetic-torque shape and a field-dependent angle shift. In Figure 10c, a scenario of
Ref. [12] is illustrated with the experimentally observed field exponent (ζI = 0.8) and a
dominant staggered contribution (cs/cu = 10). The result is a sinusoidal angle dependence
of the total torque τ = τB + τI. The angle shift θ0 is field-dependent due to the relative shift
in the bulk torque (with τB ∝ H2) and the impurity torque (with τI ∝ H2H−ζI ).
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Figure 10. (a) Disorder scenarios in a valence-bond solid state, discussed for κ-(BEDT-TTF)2Cu2(CN)3.
Local spin 1/2, or so-called “orphan spins”, may be caused by (i) vacancies in the anion layer,
emphasized by the red circle or (ii) specific domain wall patterns, a possible result of randomness
in the ethylene endgroup conformation. (b) Magnetic-torque setup, with crystal axes a and c (with
a∗ ⊥ bc, c∗ ⊥ ab), magnetic field H and the angle θ between sample and field. (c) Theoretical magnetic
torque τ dependence on field angle θ, with indication of the angle shift θ0 and resolution of impurity
(τI) and bulk (τB) contributions. Figures adapted from Ref. [12].

Considering expressions derived in the framework of finite-randomness large-spin
fixed point (LSFP) [173,174], it also turns out that the critical exponent is not as sample-
dependent as one might expect for a disorder phenomenon. The corresponding exponent is
restricted to be 2/3 < ζ < 1, so that the experimentally observed ζ = 0.8 falls in the middle
of the possible range. These LSFP expressions also allow to predict the temperature and
field dependence of the NMR linewidth ν, in good agreement with experiment [50]. They
were recently employed in the analysis of a comparative study of NMR spin-relaxation-rate
measurements for κ-phase compounds for which the magnetic ground state is argued not to
order: κ-CuCN, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Hg(SCN)2Cl [36]. Moreover,
in κ-CuCN both, the measured NMR linewidth and magnetic torque become temperature
independent around ∼1 K, suggesting a common impurity origin for NMR linewidth and
magnetic torque. The VBS scenario was supported further recently by ESR measurements
observing the opening of a spin gap below the T∗ anomaly [34]. The nature of this transition
was investigated in inelastic neutron scattering (INS) measurements, where the observed
crossover was interpreted in favor of a VBS instead of a QSL state [37].

In addition to offering a consistent explanation of the magnetic torque, NMR, ESR, and
INS results, the orphan-spin scenario could potentially also solve an open issue for κ-CuCN
which was subject for debate for over a decade. The linear temperature dependence of
specific heat measurements [46] was interpreted as the signature of a spinon Fermi surface,
so that gapless spinon excitations of the QSL state would be present. Seemingly in contrast
to this observation, thermal conductivity measurements [175] revealed κ/T = 0 for T → 0,
which is not compatible with the presence of low-lying fermionic excitations. Considering
the presence of orphan spins, both of these observations are reasonable. In this scenario,
low-lying excitations in the form of local domain walls may lead to a linear temperature
dependence of specific heat. Since these excitations are local, they would not be observed
in transport measurements such as thermal conductivity.

6. Conclusions and Outlook

Organic charge-transfer salts, especially those of the κ-(BEDT-TTF)2X and κ-(BETS)2X
family, are considered to be model systems to explore the physics of strongly correlated
electron systems in proximity of the Mott metal–insulator transition. This notion has been
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corroborated by a successful description of a large set of properties of the systems in terms
of the one-band Hubbard model in the strongly dimerized limit as well as the nice tunability
of the real materials in laboratory settings. In recent years, it became clear that all salient
features of these materials, however, can only be accurately captured when including
further aspects in the generalized models. In this review, we covered a selection of new
aspects that have proven to be relevant to the physics of κ-phase organic charge-transfer
salts. In particular, we discussed theoretical and experimental evidence for the relevance
of (i) magnetic interactions beyond the Heisenberg exchange, including spin-orbit and
higher order ring-exchange couplings, (ii) intra-dimer degrees of freedom in creating novel
states, such as electronically driven ferroelectric states and mixed superconducting order
parameters, (iii) the coupling of correlated electrons to lattice degrees of freedom and
(iv) disorder. Nonetheless, a few open questions remain. Some examples are:

• As discussed in the review, ab-initio extracted magnetic models for triangular κ-
phase charge-transfer salts indicate the importance of four-spin interaction terms with
spin-orbit coupling effects, as well as, in the presence of a magnetic field, possible
products of an odd number of spin operators, such as the scalar spin chirality. What
(quantum) phases are to be expected arising from these interactions that are relevant
for these materials?

• How do intra-dimer charge and spin degrees of freedom conspire in the ground-state
properties of frustrated Mott insulating κ-phase charge-transfer salts? In particular,
what impact do the intra-dimer charge degrees of freedom have in promoting (im-
peding) the formation of long-range spin order? Can these effects be theoretically
described with models containing both, spin and charge degrees of freedom?

• What is the role of magnetoelastic coupling in the formation of novel states of matter,
such as putative spin-liquid states in κ-(BEDT-TTF)2X? Can we develop accurate
models to capture these effects?

• Can we quantitatively describe the impact of disorder on the properties of these
charge-transfer salts close to the Mott metal–insulator transition experimentally and
theoretically? To this end, how can we accurately quantify the level of disorder in
real materials and determine the nature of the disorder and their spatial distribution?
Which models and methods allow to theoretically describe the interaction between
disorder and bulk properties properly?

• What novel phases may be realized under non-equilibrium conditions [176]?

While this review focuses on the physics of the κ-phase organic charge-transfer salts
specifically, many of the discussed aspects are relevant for the entire family of strongly
correlated electron systems. For example, four-spin exchange interactions are expected to
be relevant in triangular-lattice based inorganic Mott insulators with 4d or 5d transition
metal ions. Likewise, as was pointed out in the past [177], charge effects might be generi-
cally relevant in frustrated Mott systems even deep in the Mott insulating phase. Recent
examples are, for instance, the studies of the dielectric properties of the Kitaev magnet
α-RuCl3 [178]. Furthermore, the coupling of the correlated electron system to the lattice
is under intensive scrutiny in the study of, for instance, unconventional superconductors
(high-Tc cuprates [179], Sr2RuO4 [180] or Fe pnictides and chalcogenides [115]), frustrated
magnets [181] and multiferroics [92,182]. Last but not least, the impact of disorder is
now studied for instance in ultra-clean metals [183] and high-temperature superconduc-
tors [184,185] by deliberately introducing defects through irradiation.

Many of the insights that we reviewed in this manuscript resulted from the continuous
effort of advancing theoretical and experimental methods. With new techniques becoming
available in the future, there is no doubt that the organic charge-transfer salts will remain
key model systems for discovering, understanding and predicting physical properties
arising from strong electron correlations in real materials.
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62. Chao, K.; Spałek, J.; Oleś, A. Canonical perturbation expansion of the Hubbard model. Phys. Rev. B 1978, 18, 3453. [CrossRef]
63. Gros, C.; Joynt, R.; Rice, T.M. Antiferromagnetic correlations in almost-localized Fermi liquids. Phys. Rev. B 1987, 36, 381.

[CrossRef] [PubMed]
64. Winter, S.M.; Riedl, K.; Valentí, R. Importance of spin-orbit coupling in layered organic salts. Phys. Rev. B 2017, 95, 060404.

[CrossRef]
65. Balents, L. Spin liquids in frustrated magnets. Nature 2010, 464, 199–208. [CrossRef] [PubMed]
66. Bernevig, B.A. Topological insulators and topological superconductors. In Topological Insulators and Topological Superconductors;

Princeton University Press: Princeton, NJ, USA, 2013.
67. Riedl, K. First Principles Studies of Frustrated Spin Systems: From Low-Energy Models to Experiments. Ph.D. Thesis, Goethe-

Universität Frankfurt am Main, Frankfurt am Main, Germany, 2019.
68. Shekhtman, L.; Entin-Wohlman, O.; Aharony, A. Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s

weak ferromagnetism. Phys. Rev. Lett. 1992, 69, 836–839. [CrossRef] [PubMed]
69. Pratt, F.L.; Baker, P.J.; Blundell, S.J.; Lancaster, T.; Ohira-Kawamura, S.; Baines, C.; Shimizu, Y.; Kanoda, K.; Watanabe, I.; Saito, G.

Magnetic and non-magnetic phases of a quantum spin liquid. Nature 2011, 471, 612. [CrossRef] [PubMed]
70. Motrunich, O.I. Variational study of triangular lattice spin-1/2 model with ring exchanges and spin liquid state in κ-(ET)2Cu2

(CN)3. Phys. Rev. B 2005, 72, 045105. [CrossRef]
71. Block, M.S.; Sheng, D.N.; Motrunich, O.I.; Fisher, M.P.A. Spin Bose-Metal and Valence Bond Solid Phases in a Spin-1/2 Model with

Ring Exchanges on a Four-Leg Triangular Ladder. Phys. Rev. Lett. 2011, 106, 157202. [CrossRef]
72. Holt, M.; Powell, B.J.; Merino, J. Spin-liquid phase due to competing classical orders in the semiclassical theory of the Heisenberg

model with ring exchange on an anisotropic triangular lattice. Phys. Rev. B 2014, 89, 174415. [CrossRef]
73. Cookmeyer, T.; Motruk, J.; Moore, J.E. Four-spin terms and the origin of the chiral spin liquid in Mott insulators on the triangular

lattice. Phys. Rev. Lett. 2021, 127, 087201. [CrossRef]
74. Vyaselev, O.M.; Kato, R.; Yamamoto, H.M.; Kobayashi, M.; Zorina, L.V.; Simonov, S.V.; Kushch, N.D.; Yagubskii, E.B. Properties of

Mn2+ and π-Electron Spin Systems Probed by 1H and 13C NMR in the Organic Conductor κ-(BETS)2Mn [N (CN)2]3. Crystals
2012, 2, 224–235. [CrossRef]

75. Vyaselev, O.M.; Biberacher, W.; Kushch, N.D.; Kartsovnik, M.V. Interplay between the d- and π-electron systems in magnetic
torque of the layered organic conductor κ-(BETS)2Mn[N(CN)2]3. Phys. Rev. B 2017, 96, 205154. [CrossRef]

76. Mori, T.; Katsuhara, M. Estimation of πd-Interactions in Organic Conductors Including Magnetic Anions. J. Phys. Soc. Jpn. 2002,
71, 826–844. [CrossRef]

77. Konoike, T.; Uji, S.; Terashima, T.; Nishimura, M.; Yasuzuka, S.; Enomoto, K.; Fujiwara, H.; Zhang, B.; Kobayashi, H. Magnetic-
field-induced superconductivity in the antiferromagnetic organic superconductor κ-(BETS)2FeBr4. Phys. Rev. B 2004, 70, 094514.
[CrossRef]

78. Kartsovnik, M.V.; Kunz, M.; Schaidhammer, L.; Kollmannsberger, F.; Biberacher, W.; Kushch, N.D.; Miyazaki, A.; Fujiwara,
H. Interplay between conducting and magnetic systems in the antiferromagnetic organic superconductor κ-(BETS)2FeBr4.
J. Supercond. Nov. Magn. 2016, 29, 3075–3080. [CrossRef]

79. Jaccarino, V.; Peter, M. Ultra-high-field superconductivity. Phys. Rev. Lett. 1962, 9, 290. [CrossRef]
80. Vyaselev, O.M.; Kartsovnik, M.V.; Kushch, N.D.; Yagubskii, E.B. Staggered spin order of localized π-electrons in the insulating

state of the organic conductor κ-(BETS)2Mn[N(CN)2]3. JETP Lett. 2012, 95, 565–569. [CrossRef]
81. Hotta, C. Quantum electric dipoles in spin-liquid dimer Mott insulator κ-ET2Cu2(CN)3. Phys. Rev. B 2010, 82, 241104. [CrossRef]
82. Kaneko, R.; Tocchio, L.F.; Valentí, R.; Becca, F. Charge orders in organic charge-transfer salts. New J. Phys. 2017, 19, 103033.

[CrossRef]
83. Seo, H.; Hotta, C.; Fukuyama, H. Toward Systematic Understanding of Diversity of Electronic Properties in Low-Dimensional

Molecular Solids. Chem. Rev. 2004, 104, 5005–5036. [CrossRef]
84. Lunkenheimer, P.; Loidl, A. Dielectric spectroscopy on organic charge-transfer salts. J. Phys. Condens. Matter 2015, 27, 373001.

[CrossRef]
85. Abdel-Jawad, M.; Terasaki, I.; Sasaki, T.; Yoneyama, N.; Kobayashi, N.; Uesu, Y.; Hotta, C. Anomalous dielectric response in the

dimer Mott insulator κ-(BEDT-TTF)2Cu2(CN)3. Phys. Rev. B 2010, 82, 125119. [CrossRef]

262



Crystals 2022, 12, 1689

86. Gati, E.; Fischer, J.K.H.; Lunkenheimer, P.; Zielke, D.; Köhler, S.; Kolb, F.; von Nidda, H.A.K.; Winter, S.M.; Schubert, H.; Schlueter,
J.A.; et al. Evidence for Electronically Driven Ferroelectricity in a Strongly Correlated Dimerized BEDT-TTF Molecular Conductor.
Phys. Rev. Lett. 2018, 120, 247601. [CrossRef]

87. Manna, R.S.; de Souza, M.; Brühl, A.; Schlueter, J.A.; Lang, M. Lattice Effects and Entropy Release at the Low-Temperature Phase
Transition in the Spin-Liquid Candidate κ-(BEDT-TTF)2Cu2(CN)3. Phys. Rev. Lett. 2010, 104, 016403. [CrossRef] [PubMed]

88. Lang, M.; Lunkenheimer, P.; Müller, J.; Loidl, A.; Hartmann, B.; Hoang, N.H.; Gati, E.; Schubert, H.; Schlueter, J.A. Multiferroicity
in the Mott Insulating Charge-Transfer Salt κ-(BEDT-TTF)2Cu[N(CN)2]Cl. IEEE Trans. Magn. 2014, 50, 2700107. [CrossRef]

89. Itoh, K.; Itoh, H.; Naka, M.; Saito, S.; Hosako, I.; Yoneyama, N.; Ishihara, S.; Sasaki, T.; Iwai, S. Collective Excitation of an Electric
Dipole on a Molecular Dimer in an Organic Dimer-Mott Insulator. Phys. Rev. Lett. 2013, 110, 106401. [CrossRef] [PubMed]

90. Gomi, H.; Imai, T.; Takahashi, A.; Aihara, M. Purely electronic terahertz polarization in dimer Mott insulators. Phys. Rev. B 2010,
82, 035101. [CrossRef]

91. Gomi, H.; Ikenaga, M.; Hiragi, Y.; Segawa, D.; Takahashi, A.; Inagaki, T.J.; Aihara, M. Ferroelectric states induced by dimer lattice
disorder in dimer Mott insulators. Phys. Rev. B 2013, 87, 195126. [CrossRef]

92. van den Brink, J.; Khomskii, D.I. Multiferroicity due to charge ordering. J. Phys. Condens. Matter 2008, 20, 434217. [CrossRef]
93. Nad, F.; Monceau, P. Dielectric Response of the Charge Ordered State in Quasi-One-Dimensional Organic Conductors. J. Phys.

Soc. Jpn. 2006, 75, 051005. [CrossRef]
94. Lunkenheimer, P.; Hartmann, B.; Lang, M.; Müller, J.; Schweitzer, D.; Krohns, S.; Loidl, A. Ferroelectric properties of charge-

ordered α-(BEDT-TTF)2I3. Phys. Rev. B 2015, 91, 245132. [CrossRef]
95. Takano, Y.; Hiraki, K.; Yamamoto, H.; Nakamura, T.; Takahashi, T. Charge disproportionation in the organic conductor,

α-(BEDT-TTF)2I3. J. Phys. Chem. Solids 2001, 62, 393–395. [CrossRef]
96. Tomić, S.; Dressel, M. Ferroelectricity in molecular solids: A review of electrodynamic properties. Rep. Prog. Phys. 2015,

78, 096501. [CrossRef] [PubMed]
97. Sedlmeier, K.; Elsässer, S.; Neubauer, D.; Beyer, R.; Wu, D.; Ivek, T.; Tomić, S.; Schlueter, J.A.; Dressel, M. Absence of charge order

in the dimerized κ-phase BEDT-TTF salts. Phys. Rev. B 2012, 86, 245103. [CrossRef]
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