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The increase in the volume and sophistication of malicious software (malware) and

malware-related attacks targeting modern networks and systems calls for new, more advanced and

effective solutions. Recently, there has been a growing interest in developing and advancing machine

learning-based approaches to detect malware, which are constantly evolving and becoming more

evasive. This Special Issue aims to present recent advances and high-quality research on machine

learning-based approaches to detect attacks and malicious software that pose severe threats to the

mobile platforms of today.
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High Accuracy Detection of Mobile Malware Using
Machine Learning
Suleiman Y. Yerima

Cyber Technology Institute, School of Computer Science and Informatics, De Montfort University,
The Gateway, Leicester LE1 9BH, UK; syerima@dmu.ac.uk

Introduction

As smartphones and other mobile and IoT devices have become pervasive in everyday
life, malicious software (malware) authors are increasingly targeting the operating systems
that are at the core of these mobile systems. Malware targeting mobile platforms has
witnessed an explosive growth in the last decade. As a result of this rapid increase in mobile
malware, the limits of traditional signature-based antivirus scanning have been stretched.
This has led to the emergence of machine learning-based detection as a complementary
solution to traditional antivirus scanning. Although machine learning-based malware
detection has continued to attract great research interest, many challenges remain as
emerging malware families continue to evolve with more sophisticated capabilities and
stealthy evasive techniques.

This Special Issue in Electronics presents some of the most recent research results and
innovative machine learning-based approaches to detecting malicious software and attacks
that can compromise mobile platforms.

The authors of [1] proposed a novel Android botnet detection system based on image
features and manifest file features. The method aims to overcome the limitations of hand-
crafted features for machine learning-based botnet detection. Their proposed approach
employs Histogram of Oriented Gradients, together with byte histograms obtained from
images representing the app executables, and these are subsequently combined with the
features derived from manifest files. The proposed system was evaluated using the ISCX
botnet dataset, and the experimental results demonstrate its effectiveness with F1 scores
ranging from 0.923 to 0.96 using popular machine learning algorithms.

In [2], the authors present a study on generating malware adversarial samples using
deep learning models. Gradient-based methods are usually employed in generating adver-
sarial samples; however, they generate the samples on a case-by-case basis, which is very
time-consuming for large scale sample generation. To address this issue, a novel method
was proposed, which extracts feature byte sequences from benign samples using deep
learning. Feature byte sequences represent the characteristics of benign samples and can
affect classification decisions. The feature byte sequences are directly injected into malware
samples to generate adversarial samples. The proposed method is compared with random
injection and gradient-based methods, and the experimental results show that the new
method is suitable for generating a large number of adversarial samples.

The authors of [3] propose an ensemble classification-based approach for malware
detection. The first-stage classification is performed by a stacked ensemble of dense (fully
connected) and convolutional neural networks (CNN), while the final stage classification is
performed by a meta-learner. For the meta-learner, 14 classifiers are explored and compared.
For baseline comparison, 13 machine learning methods are used: K-Nearest Neighbors,
Linear Support Vector Machine (SVM), Radial basis function (RBF) SVM, Random Forest,
AdaBoost, Decision Tree, ExtraTrees, Linear Discriminant Analysis, Logistic, Neural Net,
Passive Classifier, Ridge Classifier and Stochastic Gradient Descent classifier. The results of
experiments performed on the Classification of Malware with PE headers (ClaMP) dataset
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are presented. The best performance is achieved by an ensemble of five dense and CNN
neural networks, and the ExtraTrees classifier as a meta-learner.

In [4], the authors presented a comparative study of deep learning techniques with
the aim of investigating their efficacy for Android botnet detection, based on static features.
To create the deep learning-based botnet detection system, a bespoke tool for automated
reverse engineering of Android Package Files (APKs) was developed and used to extract
342 features, which are then used to represent the application as a vector of binary vectors.
These vectors were used to train several deep learning models including: Convolutional
Neural Networks (CNN), Dense Neural Networks (DNN), Gated Recurrent Units (GRU),
Long Short-Term Memory (LSTM), as well as more complex networks like CNN-LSTM and
CNN-GRU. Evaluation experiments were conducted using 6802 Android applications out
of which 1920 were botnet samples from the ISCX botnet dataset. The results showed that
the deep-learning models outperformed classical machine learning classifiers and achieved
very high accuracy, as well as high precision, recall and F1 scores.

The authors of [5] investigated the relevance of the features of unpacked malicious
and benign executables such as mnemonics, instruction opcodes, and API calls to identify
a feature that classifies the executable. Prominent features were extracted using Minimum
Redundancy and Maximum Relevance (mRMR) and Analysis of Variance (ANOVA). Ex-
periments were conducted on four datasets using machine learning approaches such as
Support Vector Machine (SVM), Naïve Bayes, J48, Random Forest (RF), and XGBoost. In
addition, they evaluated the performance of deep neural networks such as Deep Dense
Network (DDN), One-Dimensional Convolutional Neural Network (1D-CNN), and CNN-
LSTM in classifying unknown samples, and observed promising results using APIs and
system calls. On combining APIs/system calls with static features, a marginal performance
improvement was attained compared to models trained only on dynamic features. More-
over, to improve accuracy, the solution was implemented using distinct deep learning
methods and demonstrated a fine-tuned deep neural network that resulted in an F1-score
of 99.1% and 98.48% on Dataset-2 and Dataset-3, respectively.

In [6], the authors presented an approach called eRBCM to detect malware. The
eRBCM system was designed using the reinforcement learning approach, which utilizes
the strength of Monte–Carlo simulations and builds a strong machine learning model to
detect complex malware patterns. It combines the most beneficial elements of MOCART’s
reinforcement learning and RF’s exploration capabilities. A large number of experiments
were conducted using different malware benchmarks, including ARP attack, ICMP attack,
and Microsoft Malware. eRBCM was consistently better than its competitors in terms of
learning the new malware patterns and detecting unknown malware. This was mainly
explained by eRBCM‘s self-adaptability to exploration and intelligent tuning of the balance
for the trade-off between exploration and exploitation.

The authors of [7] present a study on detecting drive-by exploits in images using
deep learning. With steganographic techniques being combined with polyglot attacks to
deliver exploits in web browsers, machine learning approaches have been proposed for
detecting steganography in images. However, exploit code hiding has not been system-
atically addressed; hence the paper proposes the use of deep learning methods for such
detection, accounting for the specifics of the situation in which the images and the malicious
content are delivered using Spatial and Frequency Domain Steganography algorithms.
The methods were evaluated by using benchmark image databases with collections of
JavaScript exploits, for different density levels and steganographic techniques in images. A
convolutional neural network was built to classify the infected images with a validation
accuracy around 98.61% and a validation AUC score of 99.75%.

In [8], the authors propose a Salp Swarm Algorithm (SSA) as a trainer for Multilayer
perceptron (MLP) in the context of digital forensics. SSA is an effective meta-heuristic algo-
rithm that belongs to the swarm-based family. It has a single parameter that decreases in an
adaptive manner relative to increasing iteration. It also performs an extensive exploration
in the initial iterations and then adaptively switches to exploit the most promising areas of
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the search space. Furthermore, SSA also preserves the best-found solution so that it never
loses the optimal solution. Lastly, follower salps change their locations adaptively following
other members of the population, so it has the power to alleviate the local minima problem.
In this paper, seven metaheuristic algorithms are compared to the proposed approach:
Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Genetics Algorithm
(GA), Differential Evolution algorithm (DE), and BackPropagation. In the majority of cases,
the SSA-based MLP outperformed the other approaches when evaluated on the digital
forensics dataset created from audit logs, registry, and file system.

The authors of [9] provide a systematic review of machine learning-based Android
malware detection techniques. This paper aims to enable researchers to acquire in-depth
knowledge in the field and to identify potential future research and development directions.
The paper critically evaluates 106 carefully selected articles and highlights their strengths
and weaknesses as well as potential improvements. Finally, the machine learning-based
methods for detecting source code vulnerabilities are discussed, because it might be more
difficult to add security after the app is deployed.

In [10], the authors present a systematic literature review and examination of the state
of the art of Business Email Compromise (BEC) phishing detection techniques with the
aim of providing a detailed understanding of the topic to allow researchers to identify the
main principles of BEC phishing detection. Based on a selected search strategy, 38 articles
(of 950 articles) were chosen for closer examination. The selected articles were discussed
and summarized to highlight their contributions as well as their limitations. In addition,
the features of BEC phishing used for detection were provided, and the ML algorithms
and datasets that were used in BEC phishing detection models were discussed. In the
end, open issues and future research directions of ML-based BEC phishing detection were
also discussed.

Acknowledgments: I would like to thank all the authors for the papers they submitted to this Special
Issue. I would also like to acknowledge all the reviewers for their careful and timely reviews to help
improve the quality of this Special Issue.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Malicious botnet applications have become a serious threat and are increasingly incor-
porating sophisticated detection avoidance techniques. Hence, there is a need for more effective
mitigation approaches to combat the rise of Android botnets. Although the use of Machine Learning
to detect botnets has been a focus of recent research efforts, several challenges remain. To overcome
the limitations of using hand-crafted features for Machine-Learning-based detection, in this paper,
we propose a novel mobile botnet detection system based on features extracted from images and a
manifest file. The scheme employs a Histogram of Oriented Gradients and byte histograms obtained
from images representing the app executable and combines these with features derived from the
manifest files. Feature selection is then applied to utilize the best features for classification with
Machine-Learning algorithms. The proposed system was evaluated using the ISCX botnet dataset,
and the experimental results demonstrate its effectiveness with F1 scores ranging from 0.923 to 0.96
using popular Machine-Learning algorithms. Furthermore, with the Extra Trees model, up to 97.5%
overall accuracy was obtained using an 80:20 train–test split, and 96% overall accuracy was obtained
using 10-fold cross validation.

Keywords: botnet detection; Histogram of Oriented Gradients; image processing; android botnets;
machine learning

1. Introduction

The prevalence of mobile malware globally is a well-known phenomenon as increasing
malware of different types continue to target mobile platforms and particularly Android.
The McAfee Threat report of June 2021 stated that around 7.73 million new mobile malware
samples were seen in 2020 alone [1]. The report further revealed that 2.34 million new
mobile malwares had already been discovered in the wild during the first quarter of 2021.

Android, being an open source mobile and IoT platform that also permits users to
install apps from diverse sources is the prime target for mobile malware. Unverified and/or
re-packaged apps can be downloaded and installed on an Android device from virtually
any online third-party source other than the official Google play store. Even though the
Google play store benefits from screening services to prevent the distribution of malicious
apps, cleverly crafted malware, such as the Chamois botnet [2–4], were still able to bypass
protection mechanisms and infect millions of users worldwide.

Chamois was distributed through Google play and third-party app stores and infected
over 20.8 million Android devices between November 2017 and March 2018. The first
generation of the Chamois botnet was primarily distributed through fake apps, and initial
eradication efforts by anti-malware professionals almost completely eliminated the threat.
The creators of the botnet responded by adopting a more sophisticated distribution model
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that bundled Chamois into a fake payment solution for device manufacturers and a fake
advertising SDK for developers.

As mobile devices—especially smartphones—tend to be online for long periods, they
provide a suitable platform for operating botnets when they have been compromised.
Mobile botnets are controlled using SMS or web-based commands and control channels
and are used for various attacks, such as Distributed Denial of Service (DDoS), phishing
attacks, spam distribution, click fraud, credential stuffing etc. A study by Imperva on
mobile botnet activity revealed that 5.8 million bot-infected mobile devices were used to
launch credential stuffing attacks on websites and apps over a 45-day period on six major
cellular networks [5].

DDoS attacks are high volume and high frequency and are thus easily detected by
traditional network intrusion detection systems. By contrast, credential stuffing attacks
from botnets are characterized by low frequency and low volume network traffic and are
therefore more challenging to detect. Thus, complementary approaches to network-based
detection are needed to strengthen defense against mobile botnet infection and attacks.

As mobile malware continues to increase and become more sophisticated, research
efforts directed at detecting and mitigating Android malware has intensified in recent years.
Several Machine-Learning-based detection systems have been proposed in the current
literature to combat the rising incident of Android malware, including botnets [6–8]. Such
systems rely on statically or dynamically extracted features for training the Machine-
Learning models. In many cases, these features are either hand-crafted and/or depend
heavily on domain expertise to effectively extract them. As the Android OS evolves, many
of these hand-crafted features may become deprecated or obsolete and the entire feature
extraction process will need to be re-engineered.

The utilization of image processing techniques to extract features from image-based
representation of the application has the distinct advantage of eliminating the need to rely
on hand-crafted features to build Machine-Learning models. Moreover, with image-based
approach, little or no modification will be required to adapt to platform/OS evolution, and
this leads to long-term efficiency compared to systems based on hand-crafted features.

Hence, in this paper, we propose a system that utilizes an image processing technique
called Histogram of Oriented Gradients, to extract features for training Machine-Learning
models to detect Android botnets. Our proposed system is a novel scheme that detects
Android botnets based on Histogram of Oriented Gradients (HOG). In the scheme, the
HOG features are combined with byte histograms and features from the app manifest file to
improve prediction accuracy. Furthermore, we demonstrate the feasibility of our approach
using a dataset of Android botnets and benign samples.

The rest of the paper is organized as follows: In Section 2, we provide an overview of
related work. Section 3 describes our proposed system, while in Section 4, we outline the
study undertaken to evaluate the system. Section 5 presents and discusses the results of the
evaluation. Finally, in Section 6, we conclude the paper and give an outline of future work.

2. Related Work

There is extensive literature regarding the Machine-Learning-based detection of mobile
malware, and [9,10], provide recent surveys on the topic. Here, we provide an overview of
related works in Android botnet detection as well as image-based detection of malicious
applications.

2.1. Image-Based Analysis of Malicious Applications

In [11], a method for image-based malware classification using an ensemble of CNN
architectures was proposed. This was based on the malimg dataset where the raw images
were used as input to the CNN-based classification system. Additionally, a malware dataset
of 96 packed executables was also used and converted into images to evaluate the proposed
system. The images were divided into training and validation sets based on a 70:30 split.
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The method consisted of using transfer learning with fine-tuned ResNet-50 and VGG16
models that were pre-trained on ImageNet data. The output of these models obtained
through SoftMax classifiers were fused with a version of the output that had been reduced
using PCA and fed to a one-vs-all multiclass SVM classifier. In their experiments, they
obtained a classification accuracy of up to 99.50% with unpacked samples and 98.11% and
97.59% for packed and salted samples, respectively.

In [12], the authors presented a method to recognize malware by capturing the memory
dump of suspicious processes and representing them as RGB images. The study was based
on 4294 malware samples consisting of 10 families and benign executables and several
Machine-Learning classifiers, including J48, SMO with RBF kernel, Random Forest, Linear
SVM and XGBoost. Dimensionality reduction was achieved using UMAP based manifold
learning strategy. A combination of GIST and HOG features were used to extract features
from the RGB images. The method yielded the highest prediction accuracy of up to 96.39%
using the SMO classifier.

In [13], Bozkir et al. evaluated several CNN architectures for PE malware classification
using coloured images. They used the Malevis Dataset containing 12,394 malware files
and split this into 8750 training and 3644 testing samples. From their experiments, they
obtained an accuracy of 97.48% using the DenseNet architecture.

Nataraj et al. [14] used grayscale images to visualize malware binaries to distinguish
between different families. GIST was used to extract features from the images, and using
KNN as a classifier they achieved 97.18% classification accuracy on experiments with a
dataset consisting of 9458 malware samples from 25 families. In another paper [15] by
the same authors, similar results were obtained when they applied image processing with
dynamic analysis, in order to address both packed and unpacked malware.

Kumar et al. [16] proposed a method that uses an autoencoder enhanced deep convolu-
tional neural network (AE-DCNN) to classify malware images into their respective families.
A novel training mechanism is proposed where a DCNN classifier is trained with the help
of an encoder. The encoder is used to provide extra information to the CNN classifier that
may be lost during the forward propagation thus resulting in better performance. On the
standard malimg dataset, 99.38% accuracy and F1-score of 99.38% were reported.

In [17], Fine Tuning and Transfer Learning approaches were used for multi-class
classification of malware images. Eight different fine-tuned CNN-based transfer learning
models were developed for vision-based malware multi-classification applications. These
included VGG16, AlexNet, DarkNet-53, DenseNet-201, Inception-V3, Places365-GoogleNet,
REsNet-50 and MobileNet-V2. Experiments based on the malimg dataset showed high
performance with 99.97% accuracy.

Similarly, in [18], the IMCFN system i.e., image-based malware classification using
fine-tuned convolutional neural network architecture, was presented. IMCFN converts raw
malware binary into color images that are used by fine-tuned CNN architecture to classify
malware. It fine-tunes a previously trained model based on ImageNet dataset and uses
data augmentation to address class imbalance. The method was evaluated using malimg
and an IoT-android mobile dataset containing 14,733 malware and 2486 benign samples.
With the malimg dataset, an accuracy of 98.82% was obtained, while 97.35% accuracy was
obtained for the IoT-android mobile dataset.

Xiao et al. [19] proposed a malware classification framework, MalFCS based on
malware visualization and automated feature extraction. Malware binaries are visualized
as entropy graphs based on structural entropy, while a deep convolutional neural network
is used as a feature extractor to automatically extract patterns shared by a family from
entropy graphs. An SVM classifier was used to classify malware based on the extracted
features. The method achieved 99.7% accuracy when evaluated on the malimg dataset and
100% accuracy when evaluated on the Microsoft dataset.

Awan et al. also proposed an image-based malware classification system, which was
investigated using malimg data [20]. The VGG19 model was used with transfer learning as
a feature extractor, while a CNN model enhanced by a spatial attention mechanism was
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used to enhance the system. The attention-based model achieved an accuracy of 97.68% in
the classification of the 25 families using a 70:30 training and testing split.

In [21], DenseNet was used with the final classification layer adopting a reweighted
class-balanced loss function in the final classification layer to address data imbalance issues
and improve performance. Experiments performed on malimg dataset yielded 98.23%
accuracy while 98.46%, 98.21% and 89.48% accuracies were obtained with BIG 2015, MaleVis
and Malicia datasets, respectively.

In [22,23], local binary patterns (LBP) were used while [24] used Intensity, Wavelet and
Gabor to extract grayscale image features. Han et al. [25], used entropy graphs and similar-
ity measures between entropy images for malware family classification. They obtained an
accuracy of 97.9% by experimenting with 1000 malware samples from 50 families. In [26],
the authors first disassembled binary executables and then converted the opcode sequences
into RGB images. They evaluated their approach on 9168 malware and 8640 benign binaries
achieving 94.8% to 96.5% accuracy.

Dai et al. [27] proposed a method for identifying malware families aimed at addressing
the deficiencies of dynamic analysis approaches, by extracting a memory dump file and
converting it to a grayscale image. They used the Cuckoo sandbox and built the procdump
program into the sandbox, while using the ma command to extract the dump of the
monitored process. Histogram of Gradient (HOG) was used to extract features from
the image file and train KNN, Random Forest and MLP classifiers. Experiments were
performed on 1984 malware samples from the Open Malware Benchmark dataset, and
MLP performed best with an accuracy of 95.2% and F1-score of 94.1%.

Although these works highlight the success of employing image-based techniques in
malware related work, their focus has largely been on Windows (PE) malware and family
classification. By contrast, this paper uses image-based techniques for detection of botnets
on the Android platform based on a novel approach to utilize HOG with manifest file
features.

In a recent paper that focused on Android, Singh et al. [28] proposed a system called
SARVOTAM that converts malware non-intuitive features into fingerprint images to extract
quality information. Automatic extraction of rich features from visualized malware is
then enabled using CNN, ultimately eliminating feature engineering and domain expert
cost. They used 15 different combinations of Android malware image sections to identify
and classify malware and replaced the softmax layer of CNN with ML algorithms like
KNN, SVM and Random Forest to analyze grayscale malware images. It was observed
that CNN-SVM outperformed the original CNN as well as CNN-KNN and CNN-RF. The
experiments performed on the DREBIN dataset achieved 92.59% accuracy using Android
certificates and manifest malware images.

2.2. Botnet Detection on Android

In [29], the authors proposed a signature-based, real-time SMS botnet detection system
that applies pattern-matching for incoming and outgoing SMS messages. This is followed
by a second step that uses rule-based techniques to label SMS messages as suspicious or nor-
mal. They performed experiments to evaluate their system with more than 12,000 messages.
The system detected all 747 malicious SMS messages but also had a high false positive rate
with 349 normal SMS messages misclassified as malicious.

Jadhav et al. presented a cloud-based Android botnet detection system in [30], based
on strace, netflow, logcat, sysdump and tcpdump. Although this is a real-time dynamic
analysis system, one major drawback is the ability of sophisticated botnets to detect and
evade the cloud environment. Moreover, detecting Android botnets using a cloud-based dy-
namic analysis system based on several types of traces is more resource intensive compared
to an image-based static analysis system.

Moodi et al. [31], presented an approach to detect Android botnets based on traffic
features. Their method was based on SVM where a new approach called smart adaptive
particle swarm optimization support vector machine (SAPSO-SVM) is developed to adapt
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the parameters of the optimization algorithm. The proposed approach identified the top
20 traffic features of Android botnets from the 28-SABD Android botnet dataset.

Bernardeschia et al. [32], used model checking to identify Android botnets. Static
analysis is used to derive a set of finite state automata from the Java byte code that represents
approximate information about the run-time behaviour of an app. However, the authors
only evaluated their approach using 96 samples from the Rootsmart botnet family and
28 samples from the Tigerbot family in addition to 1000 clean samples.

Anwar et al. [33], proposed a static technique that consists of four layers of botnet
security filters. The four layers consist of MD5 signatures, permissions, broadcast receiver
and background services modules. Based on these, classification models were built using
SVM, KNN, J48, Bagging, Naive Bayes and Random Forest. Experiments were performed
on 1400 mobile botnet applications from the ISCX Android botnet dataset and 1400 benign
applications. They observed the best result of 95.1% accuracy from the results of their
experiments. In [34], the Android Botnet Identification System (ABIS) was proposed based
on static and dynamic features using API calls, network traffic and permissions. These
features were used to train several Machine-Learning classifiers, where Random Forest
showed the best performance by obtaining a precision score of 0.972 and a recall score
of 0.960.

Yusof et al. proposed a botnet classification system based on permission and API
calls in [35]. They used feature selection to select 16 permissions and 31 API calls that
were subsequently used to train Machine-Learning algorithms using the WEKA tool. The
experiments were performed on 6282 benign and malicious samples using Naive Bayes,
KNN, J48, Random Forest and SVM. Using both permission and API call features, Random
Forest obtained the best results with 99.4% TP rate, 16.1% FP rate, 93.2% precision and
99.4% recall. This work was extended in [36] to include system calls and this resulted in
improved performance with Random Forest achieving 99.4% TP rate, 12.5% FP rate, 98.2%
precision, 99.4% recall and 97.9% accuracy.

In [37], a system for Android botnet detection using permissions and their protection
levels were proposed. Random Forest, MLP, Naive Bayes and Decision Trees were used
as Machine-Learning classifiers, with the experiments conducted using 1635 benign and
1635 botnet applications from the ISCX botnet datasets. Random Forest achieved 97.3%
accuracy, 98.7% recall and 98.5% precision as the best result.

In [38], Android botnet classification (ABC) was proposed as a Machine-Learning-
based system using requested permissions as features with Information Gain feature
selection applied to select the most significant requested permissions. Naive Bayes, Random
Forest and J48 were used as classifiers and experiments showed that Random Forest had
the highest detection accuracy of 94.6%, lowest FP rate of 9.9%, with precision of 93.1%
and recall of 94.6%. The experiments were performed on 2355 Android applications
(1505 samples from the ISCX botnet dataset and 850 benign applications).

Karim et al. proposed DeDroid in [39], as a static analysis approach to extract critical
features specific to botnets that can be used in the detection of mobile botnets. They
achieved this by observing the code behaviour of known malware binaries that possess
command and control features. In [40], an Android botnet detection system based on deep
learning was proposed. The system is based on 342 static features including permissions,
API calls, extra files, commands and intents. The model was evaluated using 6802 samples
including 1929 ISCX botnet dataset samples and 4873 clean applications.

The performance of CNN was compared to Naive Bayes, Bayes Net, Random Forest,
Random Tree, Simple Logistic, ANN and SVM. The CNN-based model achieved the best
performance with 98.9% accuracy, 98.3% precision, 97.8% recall and 98.1% F1-score. In [8],
a comprehensive study of deep learning techniques for Android botnet detection was
presented using the same dataset and static features utilized in [40]. CNN, DNN, LSTM,
GRU, CNN-LSTM and CNN-GRU models were studied, and the overall best result from
DNN was 99.1% accuracy, 99% precision, 97.9% recall and 98.1% F1-score.
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This cross-section of Android botnet detection systems summarized above indicates
that in the current literature, most proposed solutions are based on hand-crafted (static or
dynamic features) or rely on in-depth (Android) domain knowledge, unlike the system
proposed in this paper. Furthermore, compared to image-based approaches, hand-crafted
features may not be sustainable in the long run because as the Android OS evolves, new fea-
tures are added while some old ones may become deprecated. This will require significant
re-engineering of hand-crafted based systems to cope with the OS/platform evolution.

Some recent papers have begun exploring image-based techniques for Android botnet
detection. In [41], the Bot-IMG framework was used to extract HOG descriptors and train
Machine-Learning-based classifiers to distinguish botnets from benign applications. An
enhanced HOG scheme was proposed, which enabled improved accuracy performance
with the use of autoencoders. The system was evaluated with experiments performed
using 1929 ISCX botnet applications and 2500 benign applications.

KNN, SVM, Random Forest, XGBoost and Extra Trees learning algorithms were
trained using the HOG-based schemes. With Extra Trees, the best result from 10-fold cross
validation was obtained using autoencoder and gave 93.1% accuracy with 93.1% F1-score.
In [42], the authors used permissions to generate images based on a co-occurrence matrix.
The images were used to train a CNN model to classify applications into benign or botnet.
The experiments were performed on 3650 benign applications and 1800 botnet applications
from the ISCX dataset. Their best result was 97.2% accuracy, 96% recall, 95.5% precision
and 95.7% F1-score.

Different from [41,42], the system presented and evaluated in this paper is a novel
botnet detection system based on image features (i.e., HOG, byte histograms) and manifest
features (i.e., permissions, intents). All of these features come from a single pre-processed
composite image derived from automated reverse engineering of the Android applications.
In this paper, we demonstrate the feasibility and performance of the proposed scheme by
using it to train and evaluate several popular Machine-Learning classifiers on a dataset of
1929 ISCX botnet applications and 2500 benign applications.

3. Proposed HOG-Based Android Botnet Detection System

Our proposed system is based on the Bot-IMG framework [41], which enables auto-
mated reverse engineering of the Android applications, image generation and subsequent
extraction of image-based and manifest features. Figure 1 shows an overview of the system
for HOG-based Android botnet detection. As shown in the figure, the first step involves
reverse engineering the apks to extract the various files contained in the application.

Out of all the files present in an apk, only the manifest file and the Dalvik executable
(dex) file are utilized in the proposed system. The manifest file is processed using AXML-
Printer2 tool, which converts it into a readable text file that is scanned to generate a set
of 187 features consisting of permissions and intents. These features extracted from the
manifest file are encoded for gray-scale representation.

Thus, the presence of a feature is denoted by 255 (or white), while a 0 (i.e., black) is
recorded if the feature is absent and these are stored in an array of manifest features. The
dex file is converted to a byte array consisting of integer encoded bytes ranging from 0 to
255. This byte array from the executable is combined with the array of manifest features.
The combined array is then used to generate a composite gray-scale image representing the
application.
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Figure 1. Overview of the different steps involved in building the image-based Android botnet
detection system.

The image files are processed by the feature extraction engine using the algorithm
described in Section 3.2 to generate feature vectors for each application used in the training
of the Machine-Learning models. During the training of a model, a feature selection
algorithm is applied to select the best features. The trained model is then used to detect
botnet apps by classifying an unknown application into ‘botnet’ or ‘benign’. The proposed
system is based on HOG, byte histograms and manifest features. We provide a brief
description of HOG in the following section.

3.1. Histogram of Oriented Gradients

HOG, first proposed for human detection by Dalal and Triggs [43] is a popular image
descriptor that has found wide application in computer vision and pattern recognition. For
example, it has been applied to handwriting recognition [44], recognition of facial expres-
sions [45], pedestrian detection system for autonomous vehicles [46]. HOG is considered
to be an appearance descriptor because it counts occurrences of gradient orientation in
localized portions of an image. Due to the simple computations involved, HOG is gener-
ally a fast descriptor compared to Local Binary Patterns (LBP) or Scale Invariant Feature
Transforms (SIFT).

HOG descriptors are computed on a dense grid of uniformly spaced cells and over-
lapping local contrast normalizations are used for improved performance. For each pixel,
magnitude and orientation can be computed using the following formulae:

g =
√

gx2 + gy2 (1)

θ = tan−1
(

gy

gx

)
(2)

where gx and gy are calculated from the neighboring pixels in the horizontal and vertical
directions respectively. Figure 2 illustrates how the histograms are generated for a cell, using
the highlighted pixel as an example. For the pixel represented by number 65, the change in
x direction gx is 69 − 54 = 15, and the change in y direction gy is 78 − 30 = 48. Using the
Equations (1) and (2), the total magnitude g = 50.3 while the orientation θ = 72.65◦. To
generate the histogram for the cell, using nine bins representing the orientations separated
20 degrees apart, each pixel’s contribution will be added to the bin according to orientation.
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For example, in Figure 2, the orientation is 72.65◦, which is between 60 degrees and
80 degrees. Thus, the magnitude is split between these two bins by using the following
weighting approach where the distances from the bin orientations are used. Hence, we
have (72.65− 60)/20 and (80− 72.65)/20 as the weights that will be used to split the
50.3 magnitude between the bins. This means that the split will result in 31.7 and 18.6 being
placed in the 4th and 5th bins respectively. The process is repeated for all the pixels in the
cell.

Figure 2. Building a Histogram of Oriented Gradients using nine bins representing positive orienta-
tions spaced 20 degrees apart.

The binning of the magnitudes by taking the orientations into consideration, produces
a histogram of gradient directions for the pixel magnitudes in a cell. If the number of bins
is taken as 9, then, each cell will be represented by a 9× 1 array. In order to make the
gradients less sensitive to scaling, the histogram array is normalized in blocks, where each
block is made up of b× b cells. Hence, taking b = 2 will result in 4 cells per block. This
means that each block will be represented by a 36× 1 vector or array (i.e., 4 cells × nine
bins). Block normalization is based on the L2-norm computed as in Equation (3), where ε
is a small constant:

v←
√
||v||22 + ε2 (3)

In the default situation, the HOG algorithm takes an input image whose size is
128 × 64. Therefore, in the 128 × 64 pixel image, it turns out that if we take 8 × 8 pixels in
each cell and 2 × 2 cells in each block, then this will result in 7 horizontal block positions
and 15 vertical block positions. Hence, we get a total HOG vector length of 3780 (which is
36 × 7 × 15). As such, to get a HOG descriptor vector of length 3780 for an image, we are
required to choose the following parameters: n = 9 (number of orientations); ppc = 8 × 8
(number of pixels per cell) and cpb = 2 × 2 (number of cells per block).

3.2. Characterizing Apps with Image and Manifest Features

The methodology for extracting the HOG descriptors and using them together with
byte histogram and manifest features to characterize the apps, is discussed in this sec-
tion. The steps involved in deriving the composite features for Machine-Learning-based
detection approach are shown in Algorithm 1.
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Algorithm 1 : Extracting image-based and manifest-based features.

Input: D = {(I1, y1), (I2, y2). . . (In, yn)} set of images with their class labels
Output: V = {(V1, y1), (V2, y2). . . (Vn, yn)} class labelled set of output vectors

01: Initialize X1, X2, X3, X4 and X5, the arrays of size K = 8192 with zeros
02: Initialize BH the byte histogram array of size 256 with zeros
03: Initialize HOG parameters: n = 9, dim = 128 × 64; ppc = 8 × 8; cpb = 2 × 2
04: for each image I do
05: Slice the image to separate the first 187 pixels
06: Copy first slice having 187 pixels into a manifest vector M
07: // Obtain the HOG vector for the image
08: Convert second slice into an array P of pixel decimal values
09: Copy the first K ∗ 5 bytes into arrays X1, X2, X3, X4, X5
10: Reshape X1, X2, X3, X4, X5 to 128 × 64 size arrays
11: Convert X1, X2, X3, X4, X5 into images
12: for each sub-image j do
13: Hj ← getHogVector(n, dim, pbc, cpb)
14: Hj ← subsample(Hj)
15: end
16: HV ← concatenate(H1, H2, H3, H4, H5)
17: // Obtain the byte histogram vector for the image
18: X ← concatenate(X1, X2, X3, X4, X5)
19: for index = 0, 1, 2 . . . 255 do
20: count = 0
21: for b = 0, 1, 2. . . Length(X)− 1 do
22: count = count +1
23: if count > max
24: count = max
25: end if
26: end

27: BH(index)← 255 ∗
(

log( count+1
max )−log( 1

max )
−log( 1

max )

)

28: end
29: // Obtain the overall output vector for the image
30: V ← concatenate(M, HV, BH)
31: end

The required input is the set of images from benign and botnet apps, while the output
will be a high dimensional vector V. The images generated from the apps are of different
sizes. Thus, in order to utilize the original HOG descriptors generation approach proposed
by Dalal and Triggs, the images must be reshaped to 128 × 64 pixels. However, it has been
found that resizing the images diminishes the performance of the trained Machine-Learning
models [41]. We therefore adopt a methodology that uses five patches or segments from
the image with each segment being 128 × 64 pixels in size. In line 1 of Algorithm 1, the five
arrays X1, X2, X3, X4 and X5 that will hold the pixels of the five segments are initialized
with zeros.

This approach utilizes only the first 40,960 pixels of the images (after extracting the
manifest features) making for a fast and efficient system. Once the five segments from the
image are copied into the arrays, they are reshaped into 128 × 64 arrays and converted
into 5 separate images. This is because the HOG descriptor function only takes images as
input and not arrays. From line 12 to line 15 of Algorithm 1, five different HOG vectors
are generated for each segment image, and in line 14, we sub-sample each of them to
retain 500 descriptors. The 500 descriptors from each batch are then concatenated into a
2500 descriptor vector HV in line 16.

13



Electronics 2022, 11, 486

From line 17 to line 28 of Algorithm 1, a byte histogram is generated, but only for the
same combined area where the HOG descriptors were extracted, i.e., the first 40,960 pixels
of the application’s image. The byte histogram will consist of a vector of dimension 256
that will hold the occurrences of bytes (pixels) within that region. The occurrences are
clipped and log-scaled as depicted in lines 23, 24 and 27 respectively, to keep the values
between zero and 255. Finally, the overall feature vector V of dimension 2943 is generated
by concatenating the extracted manifest vector M (MV) with the final HOG vector (HV)
and the log-scaled byte histogram (BH).

3.3. Feature Selection Using CHI Square Algorithm

Since the image processing resulted in a high dimensional vector, we apply feature
selection for dimensionality reduction and to improve the performance of the Machine-
Learning classifiers. As we know, if there are more features resulting a high dimensional
vector as an input to the classifier during the training phase, they will contribute to algo-
rithmic complexity in terms of data storage and processing. As not all features contribute
to the model’s performance in the classification phase, it is suitable that they be removed
from the training phase as well. This process is termed as ‘Dimensionality Reduction’.

Dimensionality reduction can be achieved by “measuring” the contribution of each of
the features to the model’s prediction performance. Those features that have insignificant
contributions can be safely removed to enhance the training speed of the Machine-Learning
model. Dimensionality reduction chooses those features, which are good contributors to
the model performance, and hence this process is also called Feature Selection.

Various approaches for Feature Selection have been presented in the literature, such as
Information Gain, Mutual Information, Principal Component Analysis and the Chi-Square
test [47]. In our research, we chose to use the Chi-Square test, which results in a better
prediction performance for our ML classifiers. The Chi-Square test is represented by the
formula given in Equation (4):

χ2 = ∑
i
(Oi − Ei)

2/Ei (4)

where
χ2 = Chi-Squared value
Oi = Observed value
Ei = Expected value

In our case, the observed value could take one of the values of the input features
variable and the expected value would be another feature variable. If there is a strong
correlation between them (that is χ2 is too low) then it is enough to consider only one out
of them and hence reduce one feature. Similarly, all possible combinations of the feature
variables can be compared and sorted according to their Chi-Square values. Then, we can
choose those feature variables that have high Chi-Square values from the list.

4. Experiments and Evaluation of the System
4.1. Dataset Description

The ISCX botnet dataset obtained from [48] has been used to evaluate the proposed
system. The dataset consists of 1929 botnet apps of 14 different families. We complemented
this dataset with 2500 clean apps from different categories on the Google play store and used
VirusTotal for verification. Thus, our experiments were based on a total of 4429 applications
from, which the images were generated and processed using the Bot-IMG framework.The
clean applications can be made available to third parties on request.

4.2. Evaluation Metrics

The following metrics were used in measuring the performance of the models: accu-
racy, precision, recall and F1-score. All the results of the experiments are from 10-fold cross
validation where the dataset is divided into 10 equal parts with 10% of the dataset held out
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for testing, while the models are trained from the remaining 90%. This is repeated until
all of the 10 parts have been used for testing. The average of all 10 results is then taken
to produce the final result. We also employed the 80:20 split approach where 80% of the
samples were used for training and 20% for testing.

4.3. Machine-Learning Classifiers

In this section, a brief overview of the Machine-Learning classifiers is presented, which
were used to distinguish between botnet and clean apps. In general these are algorithms,
which are trained on the labelled data (input) and then the learned model is used for
estimating the target variable (output, in this case, malicious botnet or clean app).

1. K-Nearest Neighbor (KNN): KNN is a supervised classifier that classifies an input
data into a specific set of classes based on the distance metric among its nearest neigh-
bors [49]. Various distance metrics are possible candidates for the K-NN algorithm,
such as the Euclidean distance, Manhattan distance, City block distance and Ham-
ming distance. Due to its simplicity, Euclidean distance is the preferred choice among
these distance measures. The K-NN algorithm uses vectors in a multidimensional
feature space as training examples, each having a class label. During the training
phase the algorithm stores the feature vectors and their class labels for the purpose of
learning the model. During the classification phase, an unlabeled vector is classified
by assigning the label, which is most frequent among the k training samples. Here k
is a user defined constant whose choice depends on the type of data to be classified.

2. Support Vector Machines (SVM): SVM classifies the input data into different classes
by finding a hyperplane in a higher dimension space of the feature set to distinguish
among various classes [50]. This technique transforms the input data, which is divided
into separate classes non-linearly, by applying various types of kernel functions, such
as linear, polynomial, Gaussian and radial basis functions. SVM follows the concept of
minimizing the classification risk as opposed to optimizing the classification accuracy.
As a result, SVMs have a better generalization capability and hence can be used
in situations where the number of training samples are less and the data has large
number of features. SVMs have been popularly used in text and image classification
problems and also in voice recognition and anomaly detection (e.g., security, fraud
detection and healthcare).

3. Decision Trees (DT): A Decision Tree uses a tree-like structure that models a labelled
data [51]. Its structure consists of leaves and branches, which actually represent
the classifications and the combinations of features that lead to those classifications,
respectively. During the classification, an unlabeled input is classified by testing
its feature values against the nodes of the decision tree. Two popular algorithmic
implementations of Decision Trees are the ID3 and C4.5, which use the information
entropy measurements to learn the tree from the set of the training data. The procedure
followed when building the decision tree, is to choose the data attributes that most
efficiently splits its set of inputs into smaller subsets. Normalised information gain is
used as the criteria for performing the splitting process. Those attributes that have the
highest normalized information gain are used in making the splitting decision.

4. Random Forest (RF): Random Forest belong to the class of classifiers that are known
as the Ensemble Learning classifiers [52]. As the name suggests, RF is a collection
of several decision trees that are created first and are then combined in a random
manner to build a “forest of trees”. A random sample of data from the training set is
utilised for training the constituent trees of the RF. It is observed that due the presence
of mutiple DTs in the RF, it circumvents the over-fitting problem encountered in
DTs. This is due to the fact that RF performs a “bagging” step that uses bootstrap
aggregation to deal with the over-fitting problem. During the classification phase, the
RF takes the test features as an input and each DT within the RF is used to predict the
desired target variable. The final outcome of the algorithm is achieved by taking the
prediction with maximum votes among the constituent DTs.
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5. Extra Trees (ET): Extra Trees is also an ensemble Machine-Learning algorithm that
combines the predictions from many decision trees [53]. The concept is similar to the
Random Forests, however there are certain key differences between them. One of the
difference lies in how they take the input data to learn the models. RF uses bootstrap
replicas (sub-sampling of the data), where as the Extra Trees use the whole input
data as it is. Another difference lies in how the the cut points are selected in order to
split the nodes of the tree. RF chooses the split in an optimal manner, however the
Extra Trees do it randomly. That is why another name for Extra Trees is Extremely
Randomised Trees. As such, Extra Trees add randomisation to the training process,
but at the same time maintains the optimization. In other words, Extra Trees reduce
both the bias and variance and are a good choice for classification tasks as compared
to Random Forests.

6. XGBoost (XGB): XGBoost also belongs to the category of Ensemble Learning classi-
fiers similar to RF and ETs, mentioned above [54]. However, they are based on the
concept of Boosting, rather than Bagging (which is implemented in RF). Boosting is a
process of increasing the prediction capabilities of an ensemble of weak classifiers. It
is actually an iterative process where the weights of the each of the constituent weak
classifiers are adjusted based on their performance in making the predictions of the
target variable. Boosting is an iterative method that uses random sampling of the data
without replacement (as opposed to replacement used during the bagging process in
the RF). In boosting, errors that occur in the prediction of earlier models are reduced
by the predictions of future models. This step is very much different from the bagging
process used in Random Forest classifiers that use an ensemble of “independently”
trained classifiers.

5. Results and Discussions

In this section we present the results of the experiments performed to evaluate the
performance of the proposed scheme described in Section 3. The proposed scheme was
implemented with Python and the following libraries were utilized: OpenCV, PIL, Scikit-
learn, Scikit-image, Pandas, Keras, Numpy, Seaborn and Matplotlib. The experiments were
performed on an Ubuntu Linux 16.04 64-bit machine with 8 GB RAM.

Six popular Machine-Learning classifiers were used to evaluate the proposed scheme.
These include: K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machines
(SVM), Decision Trees (DT), Extra Trees (ET) and XGBoost (XGB). We implemented two
other schemes for baseline comparison of the Machine-Learning classifier performance.
The first baseline scheme was the original HOG scheme where all the images in the training
and test sets were resized to the standard 128 × 64 pixels and resulting in vectors of size
3780 used in training the models. The second baseline scheme used five segments to extract
HOG descriptors in an identical way to our proposed scheme described by Algorithm 1
and used them to train the models without adding byte histograms or manifest features.
We call the second baseline scheme the ‘enhanced HOG’ method.

In Table 1, the results of our proposed scheme using 10-fold cross validation are
shown for the six Machine-Learning classifiers. We present the precision and recall for
both malicious botnet class (M) and the benign or clean class (C). Note that the F1-scores
presented in the table are weighted values, due to the difference in the numbers of samples
in each class. The table shows that all of the classifiers obtained an overall accuracy
performance of 92.3% or above, indicating that our proposed approach enables the training
of high performing machine learning classifiers. The Extra Tree classifier had the highest
weighted F1-score of 0.96, followed by Random Forest with 0.958 and XGBoost with 0.952.
The lowest weighted F1-score was for KNN with 0.923 while SVM obtained a weighted
F1-score of 0.926.

The Extra Trees classifier had the best precision and recall values except in the case of
malware recall, which was 94.2% compared to that of Random Forest, which had 94.4%.
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SVM had the lowest malware class recall of 92.1% while KNN had the lowest benign class
recall of 90.7%.

Table 1. Classifier performance with permissions, byte histograms and HOG descriptors (10-fold
cross validation results).

Precision (M) Recall (M) Accuracy Precision (C) Recall (C) F1-Score

Extra Trees 0.965 0.942 0.960 0.955 0.974 0.960

SVM 0.911 0.921 0.926 0.938 0.930 0.926

KNN 0.889 0.942 0.923 0.953 0.907 0.923

XGBoost 0.950 0.935 0.952 0.950 0.962 0.952

RF 0.962 0.944 0.958 0.955 0.970 0.958

DT 0.913 0.940 0.936 0.954 0.933 0.936

In Table 2, the results of the proposed scheme using a train–test split of 80:20 are
presented. The table shows that all of the classifiers resulted in an overall accuracy of
93.7% or higher, with the Extra Tree classifier yielding an accuracy of 97.5%. The Extra Tree
classifier had the highest weighted F1-score of 0.980 followed by XGBoost and Random
Forest with 0.970 and Decision Trees with 0.950. SVM and KNN had the lowest weighted
F1-score of 0.940. Extra Trees had the highest malware class recall of 97% while SVM had
the lowest recall of 92% for malware. Extra Tree, XGBoost and RF had the highest recall for
benign class with 98%, while SVM had the lowest one, with 92%. Based on these results
Extra Trees model will be the classifier of choice for our proposed Android botnet detection
system.

Table 2. Classifier performance with permissions, byte histograms and HOG descriptors (train–test
split results).

Precision (M) Recall (M) Accuracy Precision (C) Recall (C) F1-Score

Extra Trees 0.970 0.970 0.975 0.980 0.980 0.980

SVM 0.890 0.920 0.937 0.940 0.920 0.940

KNN 0.860 0.940 0.944 0.960 0.900 0.940

XGBoost 0.970 0.940 0.966 0.960 0.980 0.970

RF 0.970 0.960 0.973 0.970 0.980 0.970

DT 0.920 0.950 0.953 0.960 0.950 0.950

The results presented in Tables 1 and 2 demonstrates the effectiveness of our proposed
scheme. This is evident in the performance of the strongest and the weakest classifiers in
the group. SVM and KNN were the weakest classifiers but still managed to yield quite high
accuracies and F1-scores in both 10-fold cross validation and the split based evaluation. On
the other hand, the strongest classifiers Extra Tress, RF and XGBoost produced results that
were comparable to the state-of-the art in the literature.

It is possible that the few malicious botnets that were not detected by the system had
characteristics that made them resemble benign apps. For example, botnets with relatively
few permissions and intents, or those with HOG representation were very close to those of
benign training examples. This could be addressed in future work by extracting additional
types of features or complementing our proposed method with alternative methods, for
example through an ensemble or voting approach.

In Table 3 and Figure 3, we compare the performance of the proposed scheme with the
two baseline schemes (HOG original and HOG enhanced) using the overall classification
accuracy as the metric. The accuracies of each of the Machine-Learning classifiers for the
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compared schemes can be seen side by side in Figure 3. The proposed scheme outperforms
the baseline schemes in all of the Machine-Learning classifiers.

From Table 3, HOG original obtained the highest classification accuracy of 89.2% with
the XGBoost classifier. This suggests that the resizing of the images during pre-processing
has adverse effects on the performance of the models. The enhanced HOG scheme reached
a highest accuracy of 92.7% also with XGBoost classifier. The scheme proposed in this
paper, which additionally leverages byte histograms and encoded manifest features led to
significantly improved performance.

Table 3. Comparison of the baseline HOG schemes with the proposed method using the overall
accuracy (10-fold cross validation results).

HOG (Original) HOG (Enhanced) HOG + BH + MF

XGBoost 0.892 0.927 0.952

Extra Trees 0.863 0.925 0.960

RF 0.871 0.919 0.958

KNN 0.877 0.877 0.920

SVM 0.811 0.866 0.926

DT 0.773 0.835 0.935

Figure 3. Overall classification accuracy for the various classifiers using the three compared schemes.

In Figure 4, the average training times for the samples trained during the 10-fold cross
validation experiments are shown. Note that the training includes the feature selection
step. The XGBoost classifier needed about 14.49 s to train 3987 samples in the training set,
equivalent to an average of 3.6 milliseconds per sample. The rest of the classifiers were
much faster and required significantly lower average training times for the training sets as
shown in Figure 4.

The highest accuracy classifier, Extra Trees, needed an average of 1.72 s for the training
sets—equivalent to 0.43 milliseconds per sample. In the pre-processing stage, the average
amount of time taken to extract the features per application was approximately 1.37 s.
These relatively low pre-processing and training times required per application indicates
that the proposed approach is feasible in practice.The fact that we successfully utilized
off-the-shelf Python libraries to build and evaluate the proposed system also indicates that
commercial implementation is viable.
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Figure 4. Average training times for the training set samples in seconds for each of the ML classifiers
using our proposed scheme.

Although we demonstrated the effectiveness of our proposed method by experimen-
tal results showing high performance with several classifiers, our observed results also
compare favorably with existing works. Due to variations in environments, datasets, the
numbers of samples, reported metrics etc., direct comparison is not always possible. How-
ever, the set of results reported in this paper either exceeds or is similar to what has been
reported in recent related works.

For example, the work in [41] was based on the same dataset used in this paper but had
a lower performance with 93.1% as the highest accuracy. The papers [33,38] also reported
lower accuracies than our results. However, these works were based on a different dataset
and used hand-crafted features. As mentioned before, such features on Android have the
disadvantage of maintenance overhead in the long run. Moreover, it was shown in [55] that
the performance of hand-crafted features used to build machine learning models declined
over time.

6. Conclusions and Future Work

In this paper, we proposed a novel approach for the detection of Android botnets
based on image and manifest features. The proposed approach removes the need for
detection solutions to rely on extracting hand-crafted features from the executable file,
which ultimately requires domain expertise. The system is based on a Histogram of
Oriented Gradients (HOG) and additionally leverages a byte histogram and the manifest
features. We implemented the system in Python and evaluated its performance using six
popular Machine-Learning classifiers.

All of them exhibited good performance with Extra Trees, XGBoost and Random
Forest obtaining better performance as compared to the state-of-the-art results. These
results demonstrate the effectiveness of the proposed approach. An overall accuracy of
97.5% and F1-score of 0.980 were observed with Extra Trees when evaluated with the 80:20
split approach; while a 96% accuracy and 0.960 F1-score were observed when evaluated
using a 10-fold cross validation approach. In future work, we plan to explore other types
of image descriptors and investigate whether they could be leveraged to improve the
performance of the HOG-based scheme.
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Abstract: Deep learning methods have been applied to malware detection. However, deep learning
algorithms are not safe, which can easily be fooled by adversarial samples. In this paper, we study
how to generate malware adversarial samples using deep learning models. Gradient-based methods
are usually used to generate adversarial samples. These methods generate adversarial samples
case-by-case, which is very time-consuming to generate a large number of adversarial samples. To
address this issue, we propose a novel method to generate adversarial malware samples. Different
from gradient-based methods, we extract feature byte sequences from benign samples. Feature byte
sequences represent the characteristics of benign samples and can affect classification decision. We
directly inject feature byte sequences into malware samples to generate adversarial samples. Feature
byte sequences can be shared to produce different adversarial samples, which can efficiently generate
a large number of adversarial samples. We compare the proposed method with the randomly injecting
and gradient-based methods. The experimental results show that the adversarial samples generated
using our proposed method have a high successful rate.

Keywords: adversarial sample; malware detection; deep learning; convolutional neural network

1. Introduction

Deep neural networks have been successfully applied in different fields, such as
computer vision and natural language processing. Recently, deep neural networks have
gained attention to improve the performance of malware detection [1–4]. Deep learning
algorithms can automatically learn features from training data, so malware detectors can
implement end-to-end training based on it. Most of the approaches directly use binary
Windows portable executable (PE) files as input data for the malware detection model
to distinguish malicious and benign samples. The experimental results show that deep
learning-based malware detectors can achieve high detection accuracy.

Despite their successful application in different fields, deep learning methods are
sensitive to small perturbations in input samples. Szegedy et al. [5] found that small
changes on input samples can cause classification errors. These perturbed samples are
called adversarial samples. In the field of malware, similar methods have been proposed to
evade malware detectors [6–8]. These methods are usually optimized by computing the
gradient of the objective function, with respect to each byte of a source malware binary.
Gradient-based methods generate adversarial samples case-by-case. Each time they only
translate a source malware sample into a corresponding adversarial malware sample. If
the number of padding bytes needed to inject into a malware is large, the time cost for
generating an adversarial sample is very high. Therefore, these methods are not suitable
for generating a large number of adversarial samples.

In this paper, we propose an efficient deep learning-based method for generating
malware adversarial examples. We firstly extracted the feature byte sequences from benign
samples, according to their importance. The importance of a sequence for classification
is evaluated by a feature weight calculation method. Feature byte sequences were then
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injected into malware samples to generate adversarial samples. Since benign sequences can
be stored into a database and shared by different malware samples, our proposed method
can generate adversarial samples more efficiently. We tried to use two different strategies,
the end-of-file and the mid-file, to inject binary sequences into a PE file. The experimental
results show that the adversarial samples generated using our proposed method have a
high successful rate for attacking CNN-based malware detectors.

The rest of this paper is organized as follows. In Section 2, we introduce the related
work. In Section 3, we propose the research motivation and the method for generat-
ing malware adversarial examples. The experiments and discussions are described in
Sections 4 and 5, respectively. Finally, we give our conclusions in Section 6.

2. Related Work

Deep learning methods have been widely applied in many fields and achieved ex-
cellent experimental results. However, recent studies show that deep learning models
are sensitive to small perturbations in the input data [6,9]. The data samples after adding
perturbations are called adversarial samples. Adversarial samples may cause deep learning
algorithms to make wrong decision. The methods for generating adversarial samples can
be divided into two categories: black- and white-box algorithms. The white-box algorithms
assume that attackers have detailed information about the structure and parameters of the
deep learning model [5,10]. Such information can be exploited to calculate perturbations.
For black-box algorithms [11,12], any information about deep learning models is unknown.
The perturbations of adversarial samples are usually computed based on the gradients of
the loss function, with respect to the input data and a target label.

Goodfellow et al. [9] made a point that adversarial samples are the result of the learning
models being too linear, rather than too nonlinear, and proposed the fast gradient sign
algorithm to generate adversarial examples (FGSM). They found that networks with hidden
units which have unbounded active functions simply respond by making their hidden unit
activations very large, so it is better to only change the original input. Papernot et al. [12]
proposed the Jacobian matrix-based method (JSMA) to generate adversarial samples. JSMA
constructs adversarial samples by computing forward derivatives of deep neural network.
This model uses knowledge of the network architecture to create adversarial saliency
maps. The saliency maps indicate which input features an adversary should perturb, in
order to impact output result of classification. Xiao et al. [13] proposed an optimization
framework for the attacker to find the near-optimal label flips that maximally reduces the
classification performance. The framework simultaneously models the adversary’s attempt
and the defender’s reaction in a loss minimization problem. Based on this framework,
they developed an algorithm of attacking support vector machines (SVMs). Moosavi-
Dezfooli et al. [11] proposed Deepfool, which is based on an iterative linearization of the
classifier to generate minimal perturbations that are sufficient to change class labels. The
experimental results show that Deepfool can generate smaller perturbations than that
generated by FGSM.

Sometimes attackers cannot obtain the detail knowledge about the deep learning
model. For example, only the network outputs on certain inputs can be observed. Under
these cases, black-box algorithms are applied to adversarial samples generation. Black-box
attack was firstly proposed by Papernot et al. [14]. They trained a substitute network
to fit the unknown neural network, and then generated adversarial examples using the
substitute neural network [12]. The substitute network is a simulator of the target network.
Therefore, the success of the black-box attack depends on the transferability property to
hold between the target and substitute network. Liu et al. [15] conducted an extensive
study of the transferability over large models and a large-scale dataset. Their results prove
that the transferability for non-targeted adversarial samples is prominent, even for large
models and a large-scale dataset. They also presented novel, ensemble-based approaches
to generate transferable adversarial samples.

24



Electronics 2022, 11, 154

In the malware detection field, different black- and white-box algorithms are also
presented. Different from images, there are semantic dependencies between bytes in an
executable, any modification to a byte value may cause the executable cannot be executed
or loss its intrusive functionality. To avoid this problem, some methods [7,16] generate
adversarial malware samples by appending specific bytes at the end of executables. The
input size of deep learning-based detector is fixed. If the size of an executable is bigger
than the fixed size, it cannot be used to generate an adversarial sample. To solve this issue,
padding bytes can be injected into the gaps between sections in a PE file [17].

Hu and Tan [18] used the generative adversarial network to generate adversarial
samples. They constructed a substitute detector to fit the black-box malware detector.
Then, the generative adversarial network is trained to minimize the probability that the
generated adversarial samples are predicted as malware by the substitute detector. Al-
Dujaili et al. [19] investigated the methods that reduce adversarial blind spots for DNN
based detectors. They considered it a saddle-point optimization problem and used the
inner maximize methods to improve the robustness of DNN. Hu and Tan [20] proposed
a black-box algorithm to evade a RNN-based detector. They trained a substitute RNN
to approximate the victim RNN, then used the generative RNN to output sequential
adversarial samples. Chen et al. [21] proposed the adversarial crafting algorithm based on
the Jacobian matrix to generate adversarial samples.

Bojan et al. [16] proposed a white-box algorithm for evading the deep learning-based
detector MalConv [3]. The algorithm is a gradient-based method which aims to minimize
the confidence associated to the malicious class. To preserve the intrusive functional-
ity of an executable, they appended padding bytes at the end of each malware sample.
Suciu et al. [7] also proposed a white-box algorithm to evade Malconv model. Based on
FGSM, they proposed the one-shot FGSM append attack. The algorithm uses the gradient
value of the classification loss, with respect to the target label to update the appended
byte values.

Apart from the above-mentioned malware adversarial sample generation methods,
there are some other methods. Kreuk et al. [22] proposed to generate adversarial examples
by appending to the malware binary file a small section. Peng et al. [23] used a generative
adversarial network to generate semantics aware adversarial malware samples, which can
fool the detection algorithms. They trained a recurrent neural network BiLSTM based a
substitute detector to fit the black-box malware detector. In [24], the authors proposed
two white-box methods and one black-box method to attack the CNN-based malware
detector MalConv [3]. Recently, Chen et al. [25] used the deep reinforcement learning to
generate malware adversarial examples, which has high success rate. A comparison of
typical methods for generating adversarial samples is given in Table A1 (see Appendix A).

3. Methodology for Generating Adversarial Malware Examples
3.1. Motivations

Different deep learning-based detectors have been proposed [3,20,26]. As one of
the most popular algorithms in deep learning, convolutional neural network (CNN) is
widely applied in these detectors. Since CNN can automatically learn features from
training samples, these detectors directly use a binary executable file as input and classify
it. In our work we focus on how to generate adversarial samples which can evade CNN-
based malware detectors. The problem of generating adversarial malware samples can be
formalized as follows.

An executable x is represented as a sequence of L binary bytes x = (x1, x2, · · · , xL),
where xi is between 0 and 255 and L is the length of an executable. In our work we set
L = 2× 106. If the length of an executable is less than 2× 106, zeros are padded at the end of
the file. The malware detector is denoted as fθ(x) : x→ [0, 1] , where θ is the parameters of
a detector, and fθ(x) outputs the probability that x is malware. If fθ(x) > 0.5, x is classified
as malware, otherwise x is classified as benign.
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Given a malicious file which is correctly classified as malware, an adversarial sample
generation method can inject carefully-selected bytes into an executable (while preserving
its runtime functionality), so that the executable can be classified as benign.

Conventional methods use gradient-based algorithm to generate adversarial sam-
ples [7,16]. These approaches use the input gradient value to update the injected byte
values. Gradient value is calculated by minimizing the classification loss function of a
detector, with respect to the target label. The gradient-based algorithm is an iterative
algorithm and only one byte value is computed per iteration. Therefore, the computation
cost for generating an adversarial sample is high, which is not suitable for generating a
large number of adversarial examples. The motivation of our research is to design a method
which can generate adversarial samples efficiently.

3.2. Finding Data Area Important for Classification

To evade the detection of malware detectors, we need to inject padding bytes into a
source malware binary to change its category. To avoid using gradient-based algorithms
to calculate the values of injected padding bytes, the padding bytes we use are the byte
sequences extracted from benign executables. If these byte sequences can represent the
characteristics of benign executables, the probability that an adversarial malware sample
can fool a detector will increase. Therefore, our main task is to extract byte sequences which
can represent the characteristics of benign executables.

To evade the detection of malware detectors, we need to inject padding bytes into a
source malware binary to change its category. To avoid using gradient-based algorithms
to calculate the values of injected padding bytes, the padding bytes we use are the byte
sequences extracted from benign executables. If these byte sequences can represent the
characteristics of benign executables, the probability that an adversarial malware example
can fool a detector will increase. Therefore, our main task is to extract byte sequences which
can represent the characteristics of benign executables.

CNN-based detectors generate explicit feature maps for input samples. Figure 1 gives
an example for CNN convolution operation. The input data is a sequence. When we apply
convolution to the input data, we mix two buckets of information. The first bucket is the
input data. The second bucket is the convolution kernel, a single matrix of floating-point
numbers. The output of the kernel is the altered sequence which is often called a feature
map. Usually there are multiple convolution kernels and each kernel outputs a feature
map. Feature maps represent features of an input data at different level. Through analyzing
feature maps, we can discover which features are more important for decision making, and
the data corresponding to important features can be used to construct adversarial samples.
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Figure 1. Convolution of a sequence with a convolution kernel.

Grad-CAM [27] algorithm provides explanations for decisions from a large class of
CNN-based models. We use the Grad-CAM algorithm to evaluate the important values of
each feature map for a target class c. The important value of a feature map, with respect to
a specific class is computed as Equation (1). αc

k indicates the importance of FeatureMapk,
with respect to class c.

αc
k =

1
Len_FeatureMapk

∑
i

∂Sc

∂FeatureMapk[i]
(1)
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where FeatureMapk is the kth feature map, FeatureMapk[i] is the ith element of FeatureMapk,
Len_FeatureMapk is the number of elements of FeatureMapk, c is a class label, Sc is the
input for class c in the softmax layer (classification layer in a CNN).

To discover the importance area of the input data for class c, the contributions of all
feature maps need to be considered. The weighted sum of all feature maps is computed,
which is defined as Equation (2). Lc is called the class-discriminative localization map,
which has the same size as a feature map.

Lc = ReLU(∑
k

αc
kFeatureMapk) (2)

In (2) the ReLU function (ReLU(x) = Max(0, x)) is applied to the linear combination of
feature maps because only the features that have a positive impact on class c are considered.
Without the ReLU function, the localization map sometimes highlights more than just the
class of interest and performs worse at localization. Each element Lc[i] can be seen as a
feature extracted from the input data. The element Lc[i], with a greater value, will also have
more positive impact on class c. We can find the data area that is important for class c by
mapping Lc[i] back to the corresponding data area in the input.

3.3. Generating Adversarial Examples

In reality the structure and parameters of a malware detector are unknown. In order to
obtain the feature maps, we have to create a pseudo detector, which can simulate the true
detector. MalConv [3] is a typical CNN-based detector. In our work, we select MalConv
network as the pseudo detector. The network structure of MalConv is shown in Figure 2.
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Figure 2. Structure of MalConv.

We regard an executable (PE file) as a byte stream. The input of MalConv is a fixed-
length sequence from a PE file. If the length of an executable is shorter than the fixed-length,
a number of zeros are inserted at the end of an executable. In MalConv, the first layer
is an embedding layer, where each byte of an input sequence is converted into an 8-
dimensional embedding vector. MalConv has two parallel convolutional layers. These
embedding vectors are then transferred to two one-dimensional convolutional layers to
generate feature maps, respectively. The next layer is a temporal max pooling layer, which
combines the outputs of the two convolutional layers and passes them to a fully connected
layer and a softmax layer for classification.

In our paper, we use Equation (1) to calculate the important value of each feature
map, with respect to class c, denoted as αc

l,k, which is the important value of the kth
feature map generated from the lth convolutional layer FeatureMapl,k. MalConv has
two parallel convolutional layers. We normalize αc

l,k for each independent convolutional
layer, respectively, which is shown as Equation (3).

wc
l,k =

αc
l,k

∑k αc
l,k

(3)

The class-discriminative localization map is calculated as the weighted sum of the
feature maps generated by the two parallel convolutional layers, which is shown as
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Equation (4). Here, we set all convolution kernels to have the same size; thus, all fea-
ture maps, as well as the class-discriminative localization map, have the same size, which
are one-dimensional vectors. Different CNN-based networks have different structures.
Another key problem we should resolve is how to locate the byte sequences in a source
binary file, according to the class-discriminative localization map.

Lc = ReLU(∑
l

∑
k

wc
l,kFeatureMapl,k) (4)

A MalConv model has two independent convolutional layers, and each convolution
layer has multiple convolution kernels. To simplify data mapping, we set the kernel length
equal to the kernel’s moving stride, all kernels have the same length, and the length of the
input data is 2× 106 bytes. The mapping relationship between a feature map and an input
data can be constructed as follows.

In [3], the authors tried different parameter settings to test the performance of MalConv.
We followed [3] and set the length and the moving stride of a kernel as 500, and the kernel
number of each convolutional layer as 128. Figure 3 shows the relationships between an
input data and a features map. In Figure 3, each square in the first row represents an
input byte, and each square in the second row represents the embedding vector of an input
byte. Kernel1 is a one-dimensional convolution kernel of a convolutional layer, whose
length is 500. Kernel1 is convolved across the embedding data, computing the dot product
between the entries of the kernel and the embedding data and producing a one-dimensional
feature map FeatureMap1. If each convolutional layer has 128 kernels, we can obtain 128
one-dimensional feature maps from one convolutional layer. The embedding data has
the same length as the input data. Therefore, each feature map has 4000 elements. In
Figure 3, the fourth row shows the mapping relationship between an element of a feature
map and a byte sequence in the input data. For example, the first element of FeatureMap1,
FeatureMap1 [1], is calculated by convoluting Kernel1 with the first five hundred elements
of the embedding vector, and each input byte corresponds to an element of the embedding
vector. Therefore, FeatureMap1 [1] is related with the first five hundred bytes of the input
data. The class-discriminative localization map is the weighted sum of all feature maps, so
it has the same mapping relationship as that of a features map.
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Figure 3. Mapping feature map back to raw data.

To generate adversarial examples, we firstly train a MalConv model as the pseudo
detector. Then, we create a dataset for feature extraction. All samples in the dataset
are benign samples and can be correctly classified as benign by a detector. We input a
sample to the pseudo detector and obtain the class-discriminative localization map Lc

of the sample. According to the mapping relationship between input data and the class-
discriminative localization map, we can extract the byte sequences from the input data,
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which can represent the features of a sample. We usually extract the byte sequences
corresponding to the elements having the greatest value in Lc. We call these byte sequences
as feature byte sequences, which can be stored and shared by different adversarial samples.
When generating an adversarial example, we randomly select one or multiple sequences
and inject them into a malware sample.

Different from adversarial samples of image, feature byte sequences injected into a
malware sample should have concrete program semantics. Sometimes the head and tail of
a feature byte sequences are separated from other bytes of a program and cannot represent
complete program semantics. In this case, we should extend a feature byte sequence to
include the separate parts. For example, a feature byte sequence (bytes in the box), extracted
according to the mapping relationship, is shown in Figure 4. The decompiling codes of
the binary bytes are shown in Figure 5. We can see the head byte FF and the tail byte 45
cannot represent correct program semantics. To generate a feature byte sequence having
correct program semantics, we should extend the feature byte sequences to include 8B and
08. From this point we can see the injected byte sequences, generated using our method,
are explainable.
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To more accurately locate the important area in the input data, we train several
MalConv models with different parameter settings and combine the class-discriminative
localization map from all MalConv models to locate the important area of the input data.

Algorithm 1 gives the algorithm for extracting feature byte sequences from input data
using multiple detection models. The length of convolution kernels in different MalConv
models can be different. For the convenience of extracting feature byte sequences, we define
a new data structure byteWeightMap. It is a vector having the same length as the input data.
Each element in byteWeightMap records the important value of the corresponding byte of
the input data. The important values of input bytes are assigned according to Lc. According
to the mapping relationship, we can find the byte sequence corresponding to Lc

i (the ith
element of Lc); then, the values of the elements of byteWeightMap corresponding to the
byte sequence are set as Lc

i . The function SetByteWeight() implements this objective. Due
to multiple models used to locate feature byte sequences, we use Lc

i and byteWeightMapi
represent the class-discriminative localization map and byteWeightMap, generated from
model Mi (the ith detector). The vector f ByteWeightMap is the sum of all byteWeightMapi,
which stores the final important value of each byte of the input data.

In Algorithm 1, ModelNum is the number of models, and thresh gives the threshold
of important value for selecting feature sequences. xbenign is the input data. The function
GetFeatureMap() returns all the feature maps generated by model Mi. FeatureMapj,k[n]
is the nth element of the kth feature map generated by the jth convolutional layer of a
MalConv model. The function ExtFeaSeq() extracts all bytes whose important values
are bigger than thresh from xbenign, according to vector f ByteWeightMap. The continuous
bytes, having the same important value, consist of a feature byte sequence. Figure 6 shows a

29



Electronics 2022, 11, 154

sample how to extract feature byte sequences from input data. We set thresh as 50; therefore,
only two feature byte sequences (sequences in black box) are extracted from input data.
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Algorithm 1: Extracting feature byte sequences of a benign sample.

Input: xbenign, c = benign, M1, · · · , MModelNum, ModelNum, thresh
Output: f eatureByteSequenceArray[]

f ByteWeightMap =
→
0 ;

for i = 1 to ModelNum do
FeatureMapArray = GetFeatureMap

(
Mi, xbenign

)
;

WeightVector =
→
0 ;

for each FeatureMapj,k in FeatureMapArray do
αc

j,k = 1
Len_FeatureMapj,k

∑n
∂Sc

∂FeatureMapj,k [n]
;

end
for each αc

j,k do
wc

j,k = Normalize(αc
j,k);

WeightVector = WeightVector + wc
j,kFeatureMapj,k;

end
Lc

i = ReLU(WeightVector);
byteWeightMapi = SetByteWeight

(
Lc

i
)
;

f ByteWeightMap = f ByteWeightMap + byteWeightMapi;
end
f eatureByteSequence[] = ExtFeaSeq

(
f ByteWeightMap, thresh, xbenign

)

3.4. Strategies for Injecting Feature Sequences

A malware adversarial sample should preserve the same semantics as that of a source
file. It requires that any byte in the source executable cannot be changed. Therefore, feature
sequences should be injected into the spare space of an executable, which cannot be exe-
cuted by a computer. Two strategies can be adopted to locate spare space in an executable:
mid-file and end-of-file injection. We apply both strategies to generate adversarial samples
in our work.

Mid-file injection: we locate the gaps between neighboring PE sections by parsing a PE
file header. The gaps are placed by the compiler, since the physical size allocated to a PE
section is greater than its virtual size. The length of a gap is calculated as RawSize-VirtualSize.
The index of the start address of a gap is computed as PointerToRawData (offset address of a
section) + VirtualSize. We collect the start address and length of each gap in an executable,
then inject the feature byte sequences with appropriate length into these gaps.

End-of-file injection: another strategy we use is adding new sections at the end of
a PE file and injecting feature byte sequences into the newly added sections. Since the
new sections are not accessed by program code, the semantics of the original PE file are
preserved. The process of adding a new section block includes three steps. First, we modify
the value of bytes, which store the number and size of sections in the PE file header and
update the values of file alignment and section alignment. Then, we use the offset address
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of the last section block plus the offset address of the new block as the final offset address.
Next, we set the attribute values of the new section, such as the section name, execution
attributes, size of the hard disk, and size of the memory. Finally, we modify the offset
address of the aligned section and the offset address of the file in the section table and
modify the size of image in the PE header.

Similar to [17], our method adopting the mid-file injection generates adversarial sam-
ples by injecting perturbed bytes in the gaps between neighboring PE sections. The method
adopting end-of-file injection generates malware adversarial examples by adding new
sections at the end of PE file, which is similar to previous methods [7,16,22,24]. However,
all these methods [7,16,17,22,24] are belong to gradient-based method, which is optimized
by computing the gradient of the objective function, with respect to each byte of a source
malware binary. The gradient-based algorithm is an iterative algorithm and only one byte
value is computed per iteration. Generating an adversarial malware sample by gradient-
based method spends much time, so it is not applicable for generating a large number of
adversarial samples. To avoid using gradient-based algorithms to calculate the values of
injected padding bytes, our methods use the byte sequences extracted from benign executa-
bles to generate adversarial samples. In addition, our methods aim to evade CNN-based
malware detectors, which is similar to [23]. We make a more detailed comparison between
our method and the gradient-based method [16] in Sections 4 and 5.

4. Experiments
4.1. Dataset Description

The malware samples we used came from the VirusShare project at http://virusshare.
com/ (accessed on 1 December 2021). We downloaded 20,000 malicious samples, whose
sizes were between 1 KB and 5 MB. The benign samples were collected from Windows
platforms. We collected 20,000 benign Windows PE files in total. Two criteria were used to
assess the quality of adversarial samples. The successful rate (SR) of the adversarial attack
is defined as the percentage of the adversarial samples that can evade a detector. Another
is the time cost for generating adversarial samples, which is used to evaluate the efficiency
of the proposed algorithm. The experimental environment was 64-bit Ubuntu14 operating
system, CPU Intel® Xeon Silver 4116 with 256 G memory.

4.2. Experimental Results

In the experiments, we trained four MalConv detectors. The description of parameter
setting, training data, and detection accuracy is shown in Table 1. In Table 1, the column
“Kernel Number” gives the kernel number for each convolutional layer. The training
samples included fifty percent benign files and fifty percent malicious files, i.e., 5000 benign
files and 5000 malicious files. The accuracy is defined as the percentage of the testing
samples that can be correctly classified.

Table 1. Parameter setting for detectors.

Detector Kernel Length Moving Stride Kernel Number Training Samples Accuracy

MalConv1 200 200 200 20,000 92.5%
MalConv2 400 400 150 20,000 92.6%
MalConv3 500 500 128 20,000 94.1%
MalConv4 800 800 100 20,000 91.8%

To objectively evaluate the successful rate that adversarial examples evade detection,
in each experiment, we selected one MalConv model as the detector and used the remaining
models to generate feature byte sequences. We repeated the experiments four times and
used the average successful rate of four experiments to evaluate the performance of the
proposed method. For each experiment, we randomly chose 100 benign samples from the
testing set and use Algorithm 1 to extract the features sequences from benign samples.
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Only the sequences with the highest important value in each sample were selected. We got
about two thousand feature sequences per experiment. We randomly selected 1000 samples
that were correctly classified as malware from the testing set and injected feature sequences
into them, in order to generate adversarial samples.

To observe how the number of injected bytes affects the performance of the proposed
method, we injected different numbers of bytes into a sample. The number of the injected
bytes was set to 1000, 2000, 5000, 10,000, and 20,000, respectively. In our work, two injection
strategies were applied to inject feature byte sequences.

The experimental results, adopting the mid-file and the end-of-file strategies, are
shown in Tables 2 and 3, respectively. In two tables, “Avg Time Cost Per Sample” means
the time cost for generating an adversarial sample.

Table 2. SR of the proposed method adopting the mid-file strategy.

No. of Injected Bytes 1000 2000 5000 10,000

SR of Experiment 1 0.42 0.55 0.78 0.88
SR of Experiment 2 0.46 0.57 0.77 0.86
SR of Experiment 3 0.45 0.59 0.78 0.90
SR of Experiment 4 0.41 0.61 0.76 0.89

Average SR 0.44 0.58 0.77 0.88
Avg Time Cost Per Sample(min) 0.2 0.5 1.1 2.1

Table 3. SR of the proposed method adopting the end-of-file strategy.

No. of Injected Bytes 1000 2000 5000 10,000 20,000

SR of Experiment 1 0.34 0.41 0.60 0.77 0.88
SR of Experiment 2 0.37 0.44 0.61 0.73 0.90
SR of Experiment 3 0.32 0.40 0.64 0.74 0.91
SR of Experiment 4 0.33 0.43 0.63 0.76 0.87

Average SR 0.34 0.42 0.62 0.75 0.89
Avg Time Cost Per Sample(min) 0.2 0.2 0.4 0.9 1.9

To verify whether the feature sequences can represent the characteristics of benign
executables, we compared the proposed method with the randomly injecting method. The
randomly injecting method randomly extracts byte sequences from benign executables
and injects them into malware to generate adversarial samples. For the randomly injecting
methods, we also used two different strategies to inject randomly extracted sequences. The
experimental results are shown in Tables 4 and 5, respectively.

Table 4. SR of the randomly injecting method adopting mid-file strategy.

No. of Injected Bytes 1000 2000 5000 10,000

SR of Experiment 1 0.09 0.11 0.18 0.21
SR of Experiment 2 0.09 0.11 0.17 0.20
SR of Experiment 3 0.06 0.13 0.15 0.24
SR of Experiment 4 0.08 0.13 0.14 0.23

Average SR 0.08 0.12 0.16 0.22

From Tables 2–5, we can see that the successful rate of the proposed method was signifi-
cantly higher than that of the randomly injecting method, which was about 30–60% higher
than that of the corresponding randomly injecting method. It proves that the feature se-
quences injected into adversarial samples can reflect the characteristics of benign executables,
which can influence the decision of the detectors. The injected sequences were extracted
from benign executables. If more benign sequences were injected in a malware sample, a
malware sample will be more similar as a benign sample. Therefore, we can see, for both
methods, that the success rate increased with the length of the injected bytes increasing.
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Table 5. SR of the randomly injecting method adopting end-of-file strategy.

No. of Injected Bytes 1000 2000 5000 10,000 20,000

SR of Experiment 1 0.03 0.07 0.07 0.10 0.18
SR of Experiment 2 0.05 0.05 0.09 0.12 0.15
SR of Experiment 3 0.03 0.06 0.09 0.11 0.16
SR of Experiment 4 0.05 0.06 0.07 0.11 0.19

Average SR 0.04 0.06 0.08 0.11 0.17

For the end-of-file strategy, all malicious features in malware samples are preserved
and not modified. Compared with the end-of-file strategy, the mid-file strategy injects
feature sequences into the gaps between sections, which destroys some malicious features
of malware samples. To mislead the detector, the end-file strategy needs to inject more
feature byte sequences to counteract the effects of the original malicious features. Therefore,
from Tables 2–5 we can see when injecting the same number of benign bytes into malware
samples, the successful rate of the method adopting the mid-file strategy is higher than that
adopting the end-of-file strategy. For the proposed method, the successful rate adopting
the mid-file strategy is about 3–23% higher than that adopting the end-of-file strategy. For
the randomly injecting method, the successful rate adopting the mid-file strategy is about
4–11% higher than that adopting the end-of-file strategy.

We also compare the proposed method with the gradient-based method [16]. The
end-of-file strategy is adopted to inject feature sequences. For the gradient-based method,
the gradient is calculated by minimizing the classification loss of the detector, with respect
to the target label. In the experiment we select two different classification loss functions
to calculate the gradient. One is the softmax classification loss (see Equation (5)), which
is used to train MalConv. The other is the mean-square error (see Equation (6)), which is
often used to train conventional back propagation (BP) networks.

Lso f tmax(θ) = −
1
m




m

∑
i=1

k

∑
j=1

1{y(i) = j}log
eθT

j x(i)

∑k
l=1 eθT

l x(i)


 (5)

Lms(θ) =
1

2m ∑m
i=1(ŷi − yi)

2 (6)

Due to the limitation of computing cost, only 200 adversarial samples are generated
for each experiment and the maximum number of the injected bytes is less than 10,000.
The experimental results adopting two different classification loss functions are shown in
Table 6. We can see the successful rate of the proposed method adopting the end-of-file
strategy is about 6–10 percent higher than that of the gradient-based method adopting
softmax classification loss. The successful rate of the gradient-based method adopting
softmax classification loss is about 5–17 percent higher than the method adopting mean
squared error loss.

Table 6. SR of the gradient-based method [16].

Softmax Classification Loss Mean Squared Error

Byte seq. len. 1000 2000 5000 10,000 1000 2000 5000 10,000

Experiment 1 0.23 0.33 0.52 0.70 0.15 0.25 0.36 0.51
Experiment 2 0.26 0.39 0.55 0.66 0.21 0.27 0.40 0.49
Experiment 3 0.25 0.30 0.56 0.69 0.19 0.29 0.42 0.52
Experiment 4 0.22 0.32 0.53 0.71 0.22 0.30 0.41 0.54
Average SR 0.24 0.31 0.54 0.69 0.19 0.28 0.40 0.52

Avg Time Cost Per Sample(min) 25 51 99 239 23 47 100 240
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5. Discussion

From the experiments we can see the gradient-based algorithm takes a relatively
long time to generate an adversarial sample. In our work, 200 adversarial samples are
generated for each experiment. The gradient-based method takes an average about 100 min
to generate an adversarial sample (See Table 6), because it only generates one appended
byte per iteration. In addition, it is hard to determine the iteration number when appended
bytes converge to their optimal values. If we use the gradient-based algorithm to generate
a large amount of adversarial samples, the time cost is very high. For the proposed method,
most time is spent on training a CNN-based detector. In the experiments, we spent about
10 h training a MalConv model. The time for extracting feature sequences is about one hour.
Injecting feature sequences into a PE file can be done in a very short time (the average time
in our experiment is about one minute, see Tables 2 and 3). Because the feature sequences
can be shared by all adversarial samples, the proposed method is suitable for generating a
large number of adversarial samples.

Interpretability is another challenge faced by adversarial sample generation algo-
rithms. The gradient-based methods calculate the value of injected bytes by minimizing
the classification loss of a detector, with respect to the target label. These injected bytes
have no explainable semantics and are only treated as binary values. Different from the
gradient-based methods, the proposed method injects feature byte sequences into malware.
A feature sequence is a byte sequence extracted from a benign executable. By decompiling
the executable, the semantics of a feature byte sequences can be clearly defined. Therefore,
using the proposed method we can explain the meaning of the injected bytes.

In our study, the proposed method is only designed to generate the adversarial samples
for CNN-based detectors. The feature byte sequences are selected based on the convolution
operation of CNN. This means that we need to know in advance which algorithms a
detector uses. Compared with our proposed method, the gradient-based methods are more
commonly used methods, which do not assume the classification methods a detector uses.
So, they can be more widely used to generated adversarial samples for different neural
networks, such as BP network, CNN [16], and RNN [20].

Generating malware adversarial samples is different from generating image adver-
sarial samples. For image adversarial samples, we can directly update each pixel. For
malware adversarial samples, we cannot modify any byte of a source executable, otherwise
we cannot guarantee that it can be executed correctly. Therefore, we have to inject padding
bytes into the gaps or the end of a PE file. The number of gaps and the length of each gap
in a PE file are limited. Using the mid-file strategy, sometimes we cannot find enough gaps
to store feature byte sequences in an executable, which may reduce the successful rate. For
the end-of-file strategy, we can append any number of section blocks at the end of a PE file
by modifying the PE file structure. Therefore, it is relatively easy for the end-file strategy
to inject enough bytes to generate an adversarial sample. However, adversarial samples
generated using the end-of-file strategy are prone to be detected by simply analyzing the
PE section table or examining if such sections are accessed by program instructions. In
addition, if the length of a malware sample is greater than the input length of a detector,
and the end-of file strategy cannot be applied.

6. Conclusions

In this paper we study how to generate malware adversarial samples. Different from
previous gradient-based methods, we generate malware adversarial examples by injecting
byte sequences into a source executable. The injected byte sequences can be shared by
different adversarial samples. Our proposed method is efficient and suitable for generating
a large number of adversarial samples. We proposed the algorithm to extract feature byte
sequences for CNN-based deep learning models. Feature byte sequences can represent
the characteristics of benign samples. Compared with the padding bytes generated using
gradient-based methods, the feature byte sequences are explainable. The experimental
results show that the adversarial samples, generated using the proposed method, have a
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high successful rate, and the proposed method is suitable for generating a large number of
adversarial samples. It is possible that a more robust malware detector can be trained using
the generated adversarial samples and the original samples. In this work, we have not
yet provided definitive evidence for the benefits of the generated adversarial samples in
improving performance of malware detection, due to the complexity of adversarial training
malware detectors. In our future work, we plan to investigate how to use the generated
adversarial malware samples to improve the performance of malware detection models.
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Abstract: The security of information is among the greatest challenges facing organizations and
institutions. Cybercrime has risen in frequency and magnitude in recent years, with new ways to
steal, change and destroy information or disable information systems appearing every day. Among
the types of penetration into the information systems where confidential information is processed is
malware. An attacker injects malware into a computer system, after which he has full or partial access
to critical information in the information system. This paper proposes an ensemble classification-
based methodology for malware detection. The first-stage classification is performed by a stacked
ensemble of dense (fully connected) and convolutional neural networks (CNN), while the final
stage classification is performed by a meta-learner. For a meta-learner, we explore and compare
14 classifiers. For a baseline comparison, 13 machine learning methods are used: K-Nearest Neighbors,
Linear Support Vector Machine (SVM), Radial basis function (RBF) SVM, Random Forest, AdaBoost,
Decision Tree, ExtraTrees, Linear Discriminant Analysis, Logistic, Neural Net, Passive Classifier,
Ridge Classifier and Stochastic Gradient Descent classifier. We present the results of experiments
performed on the Classification of Malware with PE headers (ClaMP) dataset. The best performance
is achieved by an ensemble of five dense and CNN neural networks, and the ExtraTrees classifier as
a meta-learner.

Keywords: malware analysis and detection; applied machine learning; mobile security; neural
network; ensemble classification

1. Introduction

Many aspects of society have shifted online with the broad adoption of digital tech-
nology, from entertainment and social interactions to business, entertainment, industry
and, unfortunately, crime as well. Cybercrime is rising in frequency and magnitude in
recent years, with a projection of reaching USD 6 trillion by 2021 (up from USD 3 trillion
in 2015) [1] and also taking on conventional crime both in number and revenues [2]. Ad-
ditionally, these new cyber-attacks have become more complex [3], generating elaborate
multi-stage attacks. By the end of 2018, about 9599 malicious packages appeared per
day [4]. Such attacks also resulted in significant damage and major financial losses. Up
to USD 1 billion was stolen from financial institutions around the world in two years due
to malware [5]. In addition, Kingsoft estimated that between 2 and 5 million computers
were attacked each day [6]. With cybercrime revenues reaching USD 1.5 trillion in 2018 [7]
and cybercrime’s global cost predicted to reach USD 6 trillion by 2021 [8], addressing cyber
threats has become an urgent issue.

Moreover, the COVID-19 pandemic has delivered an extraordinary array of cybersecu-
rity challenges, as most services have moved to online and remote mode, raising the danger
of cyberattacks and malware [9,10]. Especially, in the healthcare sector, cyber-attacks can
lead to compromised sensitive personal patient data, while data tampering can lead to
incorrect treatment, with irreparable damage to patients [11].
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Today, computer programs and applications are developed at high speed. Malicious
software (malware) has appeared and is growing in many formats and is becoming in-
creasingly sophisticated. Computer criminals use them as a tool to infiltrate, steal or falsify
information, causing huge damage to individuals, businesses and even threatening national
security. A generic term generally used to describe all various types of unauthorized soft-
ware programs is malware (malicious software), which includes viruses, worms, Trojans,
spyware [12], Android malicious apps [13], bots, rootkits [14] and ransomware [15]. In
achieving its objectives, malware has been used by cybercriminals as weapons. Malware
has been used to conduct a wide variety of security threats, such as stealing confidential
data, stealing cryptocurrency, sending spam, crippling servers, penetrating networks and
overloading critical infrastructures. While large numbers of malware samples have been
identified and blocked by cybersecurity service providers and antivirus software manu-
facturers, a significant number of malware samples have been created or mutated (e.g.,
“zero-day” malware [16]) and appear to evade conventional anti-virus scanning tools based
on signatures. As these techniques are primarily based on modifications of signature-based
models, this has caused the information security industry to reconsider their malware
recognition techniques.

Malware detection methods can be classified into methods based on signatures and
behavior. Currently, signature-based malware detectors can work effectively with pre-
viously known malware that has already been detected by some anti-malware vendors.
However, it cannot detect polymorphic malware that can change its signatures, as well as
new malware whose signatures have not yet been created. One solution to this problem is
to use heuristic analysis in combination with machine learning techniques that provide
higher detection efficiency. As practice has shown, the traditional approach to the field of
malware detection, which is based on signature analysis [17], is not acceptable for detecting
unknown computer viruses. To maintain the proper level of protection, users are forced to
constantly and timely update anti-virus databases. However, the delay in the response from
the anti-virus companies for the emergence of new malware (its detection and signature
creation) can vary from several hours to several days. During this time, malicious new
programs can cause irreparable damage.

To address this problem, in addition to the signature approach, heuristic analysis is
used. At the same time, the file can be considered “potentially dangerous” with some
probability based on its behavior (dynamic approach) or the analysis of its structure
(static approach). Static analysis generally consists of two main stages: the training stage
and the stage of using the results (detection of virus programs). At the training stage,
a sample of infected (virus) and “clean” (legitimate) files is formed. In the structure of
the files, some signs characterize each of them as viral or legitimate. As a result, a list of
feature characteristics is compiled for each file. Next, the most significant (informative)
features are selected, and redundant and irrelevant features are discarded. At the detection
stage, feature characteristics are extracted from the scanned file. Heuristic algorithms
developed specifically to detect unknown malware are characterized by a high error
rate. Heuristic-based detection uses rules formulated by experts to distinguish between
malicious and benign files. Additionally, behavior-based, model checking-based and
cloud-based methods have performed effectively in malware detection [18].

Modern research in the area of information security aimed at creating such protection
methods and algorithms that would be able to detect and neutralize unknown malware, and
thus not only increase the computer security but also save the user from constant updates
of antivirus software. The size of gray lists is constantly growing with the advancement
of malware writing and production techniques. Intelligent methods for automatically
detecting malware are, therefore, urgently required. As a result, several studies have
been published on the development of smart malware recognition systems using artificial
intelligence methods [19–22].

A prerequisite for creating effective anti-virus systems is the development of artifi-
cial neural network (ANN)-based technologies. The ability of such systems to learn and
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generalize results makes it possible to create smart information security systems. Arti-
ficial intelligence (AI) has several advantages when it comes to cybersecurity: AI can
discover new previously unknown attacks; AI can handle a high volume of data; AI-based
cybersecurity systems can learn over time to respond better to threats [23].

This study aims to implement an ensemble of neural networks for the detection of
malware. The novel contributions of this paper are the following:

(1) The detailed experimental analysis and verification of machine learning and deep
learning methods for malware recognition performed on the Classification of Malware
with PE headers (ClaMP) dataset;

(2) A novel ensemble learning-based hybrid classification framework for malware detec-
tion with a heterogeneous batch of convolutional neural networks (CNNs) as base
classifiers and a machine learning algorithm as a final-stage classifier, which allows
us to achieve the improvement of malware detection accuracy;

(3) An extensive ablation study to select CNN model architectures and a machine learning
algorithm for the best overall malware detection performance.

The other parts of this study are structured as follows. In Section 2, related works
are discussed including the presentation of adequate criticism of existing methods and
approaches. Section 3 describes the methodology used in this paper. Section 4 discusses
the implementation and results obtained. Section 5 presents the conclusion of the study.

2. Related Works

Malware search algorithms are divided into two classes based on the method of
collecting information—dynamic and static. In static analysis, suspicious objects are
considered without starting them, based on the assembly code and attributes of executable
files [24]. Dynamic analysis algorithms work either with already running programs or
run them themselves in an isolated environment, exposing the information that has arisen
in the course of work: they analyze the behavior of the program, sections of code and
data and monitor resource consumption [25]. According to the type of objects detected,
malware search algorithms are divided into signature and anomalous ones. Signature
programs tend to highlight the signatures of malware. Anomaly detection algorithms seek
to describe legitimate programs and learn to look for deviations from the norm.

At the same time, machine learning is also widely used as a powerful tool for security
experts to identify malicious programs with high accuracy, when the number of malicious
programs is high enough, and their options have become diverse. Among the main
methods is the Windows Portable Executable 32-bit (PE32) file header analysis [26]. For
example, Nisa et al. [27] transformed malware code into images and applied segmentation-
based fractal texture analysis for feature extraction. Deep neural networks (AlexNet
and Inception-v3) were used for classification. Previously, the use of ensemble methods,
such as random forest and extremely randomized trees, allowed the improvement of the
performances of machine learning models in detecting malware in internet of things (IoT)
environments [28] and Wireless Sensor Networks (WSN) [29].

Many studies are being performed to analyze malware to curb the increase in mali-
cious software [30]. The existing deep learning-based malware analysis methods include
convolutional neural networks (CNN) [31], deep belief network (DBN) [32], graph convo-
lutional network (GCN) [33], LSTM and Gated Recurrent Unit (GRU) [34], VGG16 [35] and
generative adversarial networks (GAN) [36]. However, it is not possible to guarantee the
generalization potential of artificial neural network-based models [37].

To solve the above-mentioned problems, more general and robust methods are, there-
fore, required. Researchers are creating numerous ensemble classifiers [38–42] that are less
susceptible to malware feature collection. Ensemble methods [43] are a class of techniques
that incorporate several learning algorithms to enhance the precision of overall prediction.
To minimize the risk of overfitting in the training results, these ensemble classifiers inte-
grate several classification models. In this way, the training dataset can be more effectively
used, and generalization efficiency can be increased as a result. While several models of
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ensemble classification are already developed, there is still space for researchers to im-
prove the accuracy of sample classification, which would be useful for improving malware
detection.

Therefore, this paper proposes an ensemble earning-based approach for using fully
connected and convolution neural networks as base learners for malware detection.

3. Materials and Methods

Malware developers are primarily focused on targeting computer networks and
infrastructure to steal information, make financial demands or prove their potential. The
standard approaches for detecting malware were effective in detecting known malware.
Via these approaches, however, new malware can never be blocked. The latest machine
learning platform [44] has significantly enhanced the identification capability of models
used for malware detection. It is possible to detect malware using machine learning
methods in two steps, namely, extracting features from input data and choosing important
ones that best represent the data, and classifying/clustering. The technology proposed is
focused on machine learning that can learn and discern malicious and benign files, as well
as make reliable forecasts of new files that have not been seen before.

The phases involved in achieving the final solution are (1) data processing and feature
selection and (2) model engineering, which includes the following steps: data selection
and scaling, reduction in dimensionality, ANN model exploration and meta-learner classi-
fier selection, ensemble model development, model testing and performance evaluation.
Figure 1 indicates the flow to the model evaluation stage of the stages involved in the
system methodology, beginning with data selection, which is described in more depth in
the following subsections.

Figure 1. Outline of malware detection methodology.

3.1. Data Collection and Processing

For machine learning to be a success, the selection of a representative dataset is
necessary. This is because it is important to train a machine learning algorithm on a dataset
that correctly represents the conditions for the model’s real-world applications.

For this model, the dataset gathered contains malicious and benign data from the
Classification of Malware with PE headers (ClaMP) dataset, obtained from GitHub. We
used the ClaMP_Integrated dataset, which has 2722 malware and 2488 Benign instances.
The dataset has 69 features, which include, among others, the following features:

- DOS image header: e_cp–pages in file, e_cblp–bytes on the last page, e_cparhdr–size
of header, e_crlc–number of relocations, e_cs–initial CS value, e_csum - checksum,
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e_ip–initial IP value, e_lfanewe_lfarlc, e_magic–Magic number, e_maxalloc–maximum
extra paragraphs, e_minalloc–minimum number of extra paragraphs, e_oemid–OEM
ID, e_oeminfo–OEM information, e_ovno–overlay number, e_res and e_res2–reserved
words, e_sp–initial SP value, e_ss–initial SS value.

- File header features: CharacteristicsCreationYear, Machine, NumberOfSections, Num-
berOfSymbols, PointerToSymbolTable, SizeOfOptionalHeader.

- Other raw features: AddressOfEntryPoint, BaseOfCode, BaseOfData, CheckSum,
DllCharacteristics, FileAlignment, ImageBase, LoaderFlags, Magic, MajorImageVer-
sion, MajorLinkerVersion, MajorOperatingSystemVersion, MajorSubsystemVersion,
MinorImageVersion, MinorLinkerVersion, MinorOperatingSystemVersion, MinorSub-
systemVersion, NumberOfRvaAndSizes, SectionAlignment, SizeOfCode, SizeOfHead-
ers, SizeOfHeapCommit, SizeOfHeapReserve, SizeOfImage, SizeOfInitializedData,
SizeOfStackCommit, SizeOfStackReserve, SizeOfUninitializedData, Subsystem.

- Derived features: sus_sections, non_sus_sections, packer, packer_type, E_text, E_data,
filesize, E_file, fileinfo.

However, we used only 68 features (all numerical), because one feature “packer_type”
is a string, which was not used. The numerical features were scaled using the standard
scaling method. These features, along with the class label (0 for benign and 1 for malicious),
were used to build the ensemble classification model.

3.2. Dimensionality Reduction

To fix a variety of estimation and classification questions, machine learning meth-
ods are commonly used. Bad machine learning output can be triggered by overfitting
or underfitting the results. Removing the unimportant characteristics guarantees the al-
gorithms’ optimal efficiency and improves pace. Principal Component Analysis (PCA)
was introduced to perform attribute dimensionality reduction. Based on previous studies,
40 features were chosen to be passed into the machine learning model (representing 95%
of the total variability in the dataset), because these features are critical in neural network
learning, whether a file is malicious or benign.

3.3. Deep Learning Models

As deep learning models, we considered fully connected (FC) multilayer perceptron
(MLP) and one-dimensional convolutional neural networks (1D-CNN), which are discussed
in detail below.

3.3.1. Multilayer Perceptron

As a baseline approach, we adopted a simple multilayer perceptron (MLP). Let the
output of the MLP be known y(t) at the input X(t), where X(t) is a vector with components
(x1, x2, . . . , xn), t is the number of the sequence value and t = 1, T (T is predetermined).

To find model parameters w = (w0, w1, . . . , wm) and Vk = (V1k, V2k, . . . , Vnk), hk,
k = 1, m such that the model output F(X, V, w) and the real output of the MLP y(t) would
be as close as possible. The relationship between the input and output of a two-layer
perceptron is established by the following relationships:

Zk = σ(V1kx1 + V2kx2 + . . . Vnkxn − hk), k = 1, m (1)

y = σ(w1Z1 + w2Z2 + . . . wmZm + w0) (2)

The following expression describes a perceptron with one hidden layer, which is able
to approximate any continuous function defined on a bounded set.

m

∑
k=1

wk·σ(V1kx1 + V2kx2 + . . . Vnkxn − hk) + w0 (3)
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Training of MLP occurs by applying a gradient descent algorithm (such as error
backpropagation) similar to a single-layer perceptron.

3.3.2. One-Dimensional Convolutional Neural Network (1D-CNN)

While CNN models have been developed for image processing, where an internal
representation of a two-dimensional input (2D) is learned by the model, the same mech-
anism can be used in a process known as feature learning on one-dimensional (1D) data
sequences, such as in the case of malware detection. The model understands how to extract
features from observational sequences and how to map hidden layers to different types of
software (malware or benign).

ŷ = Φ([x1, . . . , xN ]), (4)

where X : x1, . . . , xN indicates the input of the network, and Y : ŷ is the output. Therefore,
the network learns a mapping from the input space X to the output space Y.

The key block of the convolutional network is the convolutional layer. A group of
trainable filters are the parameters of this layer (scan windows). Each filter operates in size
through a tiny window. The scanning window sequentially traverses the whole picture
during the forward propagation of the signal (from the first layer to the last layer) according
to the tiling principle and measures the dot products of two vectors: the filter values and
the outputs of the chosen neurons. Thus, a two-dimensional activation map is generated
after passing all the shifts in the width and height of the input field, which gives the
effect of applying a particular filter in each spatial area. The network uses filters that are
enabled when there is an input signal of some kind. A series of filters are used for each
convolutional layer, and each generates a different activation map.

xl
j = f

(
M

∑
i=1

xl−1
i ·kl

ij + bl
j

)
, (5)

where k is the convolution kernel, j is the size of kernels, M is the number of inputs xl−1
i , b, is

kernel bias, f ( ) is the neuron activation function and (·) represents the convolution operator.
The sub-sampling layer is another feature of a convolutional neural network. It is

usually positioned between successive convolution layers, so it may occur periodically.
Its purpose is to reduce the spatial size of the vector gradually to reduce the number of
network parameters and calculations, as well as to balance overfitting. The convolution
layer resizes the feature map, using the max operation most frequently. If the output from
the previous layer is to be fed to the fully connected layer, the flattening layer is used, and
then it needs to be flattened. The layer of the Parametric Rectified Linear Unit (PReLU) is
an activation function that complements the rectified unit with a negative value slope.

The dropout layer is used to regularize the network. It also makes it possible to
be thinner for the network size. The neurons that are less likely to raise the weight of
learning are randomly removed. The practical importance of dropout unit is to prevent
overfitting [45]. This dropout layer, as we have two classes, is succeeded by a fully
linked (dense) layer that reduces the final output vector to two classes, and we expect the
program’s behavior to be either malicious or benevolent. The final activation function is
SoftMax, which shrinks the two outputs to one.

The output of each convolutional layer in 1D-CNN is also the input of the subse-
quent layer. It also represents the weights learned by the convolution kernel from the
training samples.

A unique and essential part of CNNs is the fully connected (FC) layer, which outputs
a final output. The output of the network’s previous layers is reshaped into a single vector
(flattened). Any of them reflects the probability that a class label is a special function. The
final probabilities for each label are supplied by the output of the FC layer.
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3.4. Network Model Optimization

Optimization of neural network hyper-parameters, which rule how the network
operates and governs its accuracy and validity, is still an unsolved problem. Optimizers
adjust the parameters of neural networks, such as weight and learning rate, to minimize
loss. Known examples of neural network optimization algorithms are Stochastic Gradient
Descent (SGD) [46], AdaGrad [47], RMSProp [48] and Adam [49], which usually show
a tradeoff of optimization vs. generalization. This means that higher training speed
and higher accuracy in the training may result in poorer accuracy on the testing dataset.
Here, we adopted the Exponential Adaptive Gradients (EAG) optimization [50], which
combines Adam and AdaBound [51]. During training, it exponentially sums the gradient
in the past and adaptively adjusts the learning rate to address poor generalization of the
Adam optimizer.

3.5. Ensemble Classification

The basic principle of ensemble methods is that training datasets are rearranged in
several ways (either by resampling or reweighting) and by adding a base classifier to
each rearranged training dataset, an ensemble of base classifiers is built. After that, a new
ensemble classifier is developed using the stacked ensemble method by combining the pre-
diction effects of all those base classifiers, where a new model learns how to better integrate
predictions from multiple base models. We used the two-stage stacking technique [52].
First, several models are trained based on a dataset. Then, the output of each of the models
is processed to create a new dataset. The actual value it is supposed to approximate is
related to each instance in the current dataset. Second, the dataset with the meta-learning
algorithm is used to provide the final output.

In the design of a stacking model (Figure 2), base models are often referred to as level-0
models, and a meta-learner (or generalizer) that integrates base model projections, referred
to as a level-1 model, is involved. Models that fit into the training data and are compiled
with forecasts are the base models. The meta-learner (level-1 model) is a classification
model trained to combine the predictions of the base model. The meta-learner is informed
by simple models on the choices made. To train the base models, a new batch of previously
unused data is used and predictions are made, and the input and output value pairs of
the training dataset are used to fit the meta-learner, along with projected outputs given by
these predictions.

Figure 2. Schematics of ensemble classification approach.
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The ensemble learner algorithm consists of three stages:

1 Set up the ensemble:

(a) Select N base learners;
(b) Select a meta-learning algorithm.

2 Train the ensemble:

(a) Train each of the N base learners on the training dataset {X1, X2, . . . , XM}, where
M is the number of samples;

(b) Perform the k-fold cross-validation on each of the base learners and record the
cross-validated predictions {y1, y2, . . . , yN};

(c) Combine cross-validated predictions from base learners to form a new feature matrix as
follows. Train the meta-learner on the new data (features x predictions from base-level
classifiers) {(X1, X2, . . . , XM, y1), (X1, X2, . . . , XM, y2), . . . , (X1, X2, . . . , XM, yN)}.
Combine base learning models and the meta-learner to generate more accurate predic-
tions on unknown data.

3 Test on new data:

(a) Record output decisions from the base learners;
(b) Send base-level decisions to the meta-learner to make ensemble decision.

On the training dataset, stacking capitalizes over every single best learner. Usually,
the greatest gains are made when base classifiers used for stacking have high variability
and uncorrelated outputs predicted values. As base models, we used the following neural
networks: fully connected MLP with one hidden layer (Dense-1), fully connected MLP with
two hidden layers (Dense-2) and one-dimensional CNN (1D-CNN). The configurations of
neural networks are summarized in Table 1.

Table 1. Model configuration of neural networks with their parameters. FC—fully connected.
Conv1D—one-dimensional convolution. PReLU—Parametric Rectified Linear Unit.

Dense-1 Network Dense-2 Network 1D-CNN Network

Parameters

X—number of neurons
in 1st hidden layer

X—number of neurons in 1st
hidden layer

Y—number of neurons in 2nd
hidden layer

F—number of filters in
convolutional layers

N—number of neurons in dense
layer

Input layer of 40 × 1 features

1 FC layer (X neurons) 1 FC layer (X neurons) 2 Conv1D layers
(F 2 × 2 filters)

PReLU PReLU Max-pooling layer
Dropout layer (p = 0.3) Dropout layer (p = 0.3) 2 Conv1D layers (F 2 × 2 filters)
1 FC layer (2 neurons) 1 FC layer (Y neurons) Max-pooling layer

Softmax output layer

PReLU 1 FC layer (N neurons)
Dropout layer (p = 0.3) Dropout layer (p = 0.5)
1 FC layer (2 neurons) 1 FC layer (2 neurons)
Softmax output layer Softmax output layer

The examples of neural network architectures are presented in Figure 3.
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Figure 3. Example of architectures used as base learners: (a) Dense-1 network architecture, (b) Dense-
2 network architecture and (c) 1D-CNN network architecture.

The role of the meta-learner is to find how best to aggregate the decisions of the base
classifiers. As meta-learners, we explored K-Nearest Neighbors (KNN), Support Vector
Machine (SVM) with linear kernel, SVM with radial basis function (RBF) kernel, Decision
Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), AdaBoost Classifier, Extra-
Trees (ET) classifier, Isolation Forest, Gaussian Naïve Bayes (GNB), Linear Discriminant
Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (LR), Ridge
Classifier (RC) and stochastic gradient descent classifier (SGDC). Here, KNN is a model
that classifies unknown input data based on having the most similarity (least distance) to
known input data. SVM is a supervised learning method that constructs a higher dimen-
sional hyperplane to separate input data belonging to various classes while maximizing
the data input distance to the hyperplane. The DT classifier creates a decision tree by
splitting according to the feature which has the highest information gain. RF fits many
DT classifiers on different sub-samples of the dataset and uses averaging to improve the
prediction accuracy. AdaBoost fits a classifier on the dataset and performs weighting of
incorrectly classified instances to improve accuracy. Isolation Forest performs classification
based on identified anomalies in data. GNB performs classification based on the probability
distributions of features and classes. The ET Classifier [53] creates a meta-estimator that fits
multiple decision trees on the training dataset sub-samples and uses averaging to improve
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precision and over-fitting management. The goal of LDA is to find a linear combination
of input characteristics that distinguishes two or more input data groups. A quadratic
decision surface is used by QDA to distinguish two or more groups of input data. LR is a
linear regression-like statistical approach that predicts a result for a binary output variable
from an input variable. RC converts the label data to (−1,1) and fixes the regression method
problem. As a target class, the greatest value of prediction is admitted. SGDC is a learning
algorithm for stochastic gradient descent that finds the decision boundary with a linear
hinge loss.

3.6. Evaluation of Malware Detection Results

To measure the classification potential of the proposed ensemble learning model,
the performance of the proposed model was evaluated using the Leave-One-Out Cross-
Validation (LOOCV) with a 10-fold cross-validation method.

The true labels were compared against the predicted labels and the true positive (TP),
true negative (TN), false positive (FP) and false-negative (FN) values were calculated. The
recall, precision, accuracy, error rate and F-score values were calculated (we assumed the
binary classification problem, where a positive class is labeled by +1 and a negative class is
labeled by −1):

False positive rate (FPR) (also specificity):

FPR =
∑m

i=1[a(xi) = +1][yi = −1]
∑m

i=1[yi = −1]
(6)

here [·] is the Iverson bracket operator.
True positive rate (TPR) (also sensitivity and recall):

TPR =
∑m

i=1[a(xi) = +1][yi = +1]
∑m

i=1[yi = +1]
(7)

False negative rate (FNR):

FNR =
∑m

i=1[a(xi) = −1][yi = +1]
∑m

i=1[yi = +1]
(8)

Here, a(x) is the classifier with inputs Xm =
(

x1, . . . , xm
)
, and

(
y1, . . . , ym

)

are outputs.
Precision is calculated as:

Precision =
TPR

TPR + FPR
(9)

To compute F-score, the following equation is used:

F− score = 2
Precision× Recall
Precision + Recall

(10)

The Matthews Correlation Coefficient (MCC) is calculated as:

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

The Cohen’s Kappa statistic (shortly, kappa) is

k = 1− 1− p0

1− pe
(12)

where p0 represents the ratio of correct agreement in the test dataset, and pe is the ratio of
agreement that is expected by random selection.
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In this study, performance was calculated using 10-fold cross-validation. According
to F1-score, instead of checking the performance of the model with accuracy alone, we
selected the best model. The accuracy can be a confusing metric in datasets where a major
class imbalance occurs. For a highly imbalanced sample, a model would correctly guess
the value of the majority class for all predicted outcomes, and achieve a high performance
in classification but making erroneous predictions in the minority and main classes. The
F1-score discourages this type of action by computing the metrics for each mark and finding
its unweighted average. We also consider area under curve (AUC) as a measure of binary
classification consistency, which is known as a balanced metric that can be used even
though there are classes of very different sizes in the dataset. Furthermore, the performance
of the proposed model on a binary dataset is represented using the confusion matrix.

We used the performance outcomes achieved from the results from each fold of the
10-fold cross-validation for statistical analysis. We adopted the non-parametric Friedman
test followed by the post-hoc Nemenyi test to compare the findings and measure their
statistical value. Second, both strategies were ranked based on the selected performance
measures (we used accuracy, AUC and F1-score). Then, each method’s mean ranks were
determined. If the difference between the mean ranks of the methods was less than the
critical difference obtained from the Nemenyi test, the difference between method outputs
was assumed not to be significant.

4. Implementation and Results
4.1. Experimental Settings

The machine learning models were trained on the features acquired from the dataset
using Python’s Scikit-learn libraries. All experiments were performed on a laptop computer
with 64-bit Windows 10 OS with Intel® Core™ i5-8265U CPU @ 1.60 GHz 1.80 GHz with
8 GB RAM (Intel, Santa Clara, CA, USA).

4.2. Results of Machine Learning Methods

The results from using classical machine learning models are summarized in Table 2,
while their confusion matrices are summarized in Figure 4. The best results were obtained
by the ExtraTrees (ET) model, achieving an accuracy of 98.8%. As can be seen from Table 2
and Figure 3, the ET model generated very good results for the precision, recall, F1 and
accuracy of the two classes. This agrees with the low FPR and FNR of 0.8% and 1.4%
obtained by the ET model.

Table 2. Summary of results of machine learning models. Acc–Accuracy. Prec–Precision. Rec–Recall. Spec–Specificity.
FPR–False Positive Rate. FNR–False Negative Rate. AUC–Area Under Curve. MCC–Matthews Correlation Coefficient.
SVM–Support Vector Machine. RBF–Radial Basis Function. LDA–Linear Discriminant Analysis. SGDC–Stochastic Gradient
Descent Classifier.

Meta-Learner Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

Nearest Neighbors 0.973 0.973 0.973 0.973 0.029 0.025 0.973 0.973 0.946 0.946
Linear SVM 0.954 0.954 0.954 0.954 0.045 0.047 0.954 0.954 0.908 0.908

RBF SVM 0.924 0.924 0.924 0.924 0.012 0.132 0.924 0.928 0.856 0.849
Decision Tree 0.933 0.933 0.933 0.933 0.107 0.032 0.933 0.93 0.866 0.864

Random
Forest 0.931 0.931 0.931 0.931 0.08 0.059 0.931 0.93 0.861 0.861

Neural Net 0.977 0.977 0.977 0.977 0.021 0.025 0.977 0.977 0.954 0.954
AdaBoost 0.962 0.962 0.962 0.962 0.041 0.036 0.962 0.961 0.923 0.923
ExtraTrees 0.988 0.988 0.988 0.988 0.008 0.014 0.988 0.989 0.977 0.977

LDA 0.936 0.936 0.936 0.936 0.08 0.05 0.936 0.935 0.871 0.871
Logistic 0.959 0.959 0.959 0.959 0.039 0.043 0.959 0.959 0.917 0.917
Passive 0.933 0.933 0.933 0.933 0.037 0.094 0.933 0.935 0.867 0.866
Ridge 0.936 0.936 0.936 0.936 0.08 0.05 0.936 0.935 0.871 0.871
SGDC 0.958 0.958 0.958 0.958 0.035 0.049 0.958 0.958 0.915 0.915
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Figure 4. Confusion matrices of machine learning models.

4.3. Results of Neural Network Classifiers

To select the base classifiers, first, we performed an ablation study to find the best rep-
resentatives of Dense-1, Dense-2 and 1D-CNN models in terms of their performance with
respect with different values of hyperparameters. The results are presented in Tables 3–5.
Note that in all cases, we used sparse categorical cross-entropy loss function and an Adam
optimizer. For the training of Dense-1 and Dense-2 models, we used 100 epochs, while for
the training of 1D-CNN models, we used 20 epochs. In all cases, 80% of data were used for
training and 20% for testing.

Table 3. Malware detection performance with different number of neurons in hidden layer of Dense-1 model. Best models
are shown in bold.

No. of Neurons in 1st Layer Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

5 0.956 0.956 0.956 0.956 0.035 0.052 0.956 0.956 0.912 0.912
10 0.962 0.962 0.962 0.962 0.043 0.033 0.962 0.962 0.924 0.924
15 0.965 0.965 0.965 0.965 0.034 0.036 0.965 0.965 0.929 0.929
20 0.971 0.971 0.971 0.971 0.026 0.033 0.971 0.971 0.941 0.941
25 0.977 0.977 0.977 0.977 0.023 0.023 0.977 0.977 0.954 0.954
30 0.977 0.977 0.977 0.977 0.022 0.024 0.977 0.977 0.954 0.954
35 0.980 0.980 0.980 0.980 0.022 0.019 0.980 0.979 0.959 0.959
40 0.979 0.979 0.979 0.979 0.023 0.019 0.979 0.979 0.958 0.958
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Table 4. Malware detection performance with different number of neurons in hidden layers of Dense-2 model. Best models
are shown in bold.

No. of Neurons
in 1st Layer

No. of Neurons
in 2nd Layer Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

5 5 0.954 0.954 0.954 0.954 0.057 0.036 0.954 0.953 0.908 0.908
5 10 0.958 0.958 0.958 0.958 0.046 0.039 0.958 0.958 0.915 0.915
5 15 0.960 0.960 0.960 0.960 0.032 0.047 0.960 0.960 0.919 0.919
5 20 0.964 0.964 0.964 0.964 0.039 0.033 0.964 0.964 0.928 0.928
5 25 0.961 0.961 0.961 0.961 0.042 0.036 0.961 0.961 0.922 0.922
5 30 0.965 0.965 0.965 0.965 0.038 0.033 0.965 0.965 0.929 0.929
5 35 0.963 0.963 0.963 0.963 0.040 0.034 0.963 0.963 0.926 0.926

10 5 0.963 0.963 0.963 0.963 0.042 0.033 0.963 0.963 0.926 0.926
10 10 0.969 0.969 0.969 0.969 0.031 0.032 0.969 0.969 0.937 0.937
10 15 0.965 0.965 0.965 0.965 0.036 0.033 0.965 0.965 0.931 0.931
10 20 0.968 0.968 0.968 0.968 0.030 0.034 0.968 0.968 0.936 0.936
10 25 0.971 0.971 0.971 0.971 0.028 0.030 0.971 0.971 0.941 0.941
10 30 0.971 0.971 0.971 0.971 0.028 0.030 0.971 0.971 0.941 0.941
10 35 0.972 0.972 0.972 0.972 0.024 0.030 0.972 0.973 0.945 0.945
15 5 0.958 0.958 0.958 0.958 0.055 0.029 0.958 0.958 0.917 0.917
15 10 0.972 0.972 0.972 0.972 0.026 0.030 0.972 0.972 0.944 0.944
15 15 0.972 0.972 0.972 0.972 0.034 0.023 0.972 0.972 0.944 0.944
15 20 0.969 0.969 0.969 0.969 0.028 0.034 0.969 0.969 0.937 0.937
15 25 0.971 0.971 0.971 0.971 0.024 0.033 0.971 0.971 0.942 0.942
15 30 0.977 0.977 0.977 0.977 0.026 0.021 0.977 0.977 0.954 0.954
15 35 0.980 0.980 0.980 0.980 0.022 0.019 0.980 0.979 0.959 0.959
20 5 0.967 0.967 0.967 0.967 0.035 0.032 0.967 0.967 0.933 0.933
20 10 0.976 0.976 0.976 0.976 0.016 0.032 0.976 0.976 0.951 0.951
20 15 0.972 0.972 0.972 0.972 0.028 0.027 0.972 0.972 0.945 0.945
20 20 0.973 0.973 0.973 0.973 0.027 0.027 0.973 0.973 0.946 0.946
20 25 0.980 0.980 0.980 0.980 0.023 0.018 0.980 0.979 0.959 0.959
20 30 0.978 0.978 0.978 0.978 0.023 0.022 0.978 0.978 0.955 0.955
20 35 0.978 0.978 0.978 0.978 0.022 0.022 0.978 0.978 0.956 0.956
25 5 0.970 0.970 0.970 0.970 0.030 0.030 0.970 0.970 0.940 0.940
25 10 0.974 0.974 0.974 0.974 0.024 0.027 0.974 0.974 0.949 0.949
25 15 0.974 0.974 0.974 0.974 0.022 0.030 0.974 0.974 0.947 0.947
25 20 0.975 0.975 0.975 0.975 0.028 0.022 0.975 0.975 0.950 0.950
25 25 0.980 0.980 0.980 0.980 0.023 0.017 0.980 0.980 0.960 0.960
25 30 0.980 0.980 0.980 0.980 0.023 0.018 0.980 0.979 0.959 0.959
25 35 0.980 0.980 0.980 0.980 0.024 0.017 0.980 0.979 0.959 0.959
30 5 0.976 0.976 0.976 0.976 0.031 0.017 0.976 0.976 0.953 0.952
30 10 0.978 0.978 0.978 0.978 0.015 0.029 0.978 0.978 0.955 0.955
30 15 0.974 0.974 0.974 0.974 0.024 0.027 0.974 0.974 0.949 0.949
30 20 0.979 0.979 0.979 0.979 0.024 0.018 0.979 0.979 0.958 0.958
30 25 0.980 0.980 0.980 0.980 0.024 0.017 0.980 0.979 0.959 0.959
30 30 0.981 0.981 0.981 0.981 0.022 0.017 0.981 0.981 0.962 0.962
30 35 0.983 0.983 0.983 0.983 0.013 0.019 0.983 0.984 0.967 0.967

Table 5. Malware detection performance with different number of filters in convolutional layers and neurons in the final
fully connected layer of 1D-CNN model. Best models are shown in bold.

No. of Filters No. of Neurons Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

32 10 0.957 0.957 0.957 0.957 0.045 0.041 0.957 0.957 0.914 0.914
32 15 0.960 0.960 0.960 0.960 0.055 0.027 0.960 0.959 0.919 0.919
32 20 0.964 0.964 0.964 0.964 0.036 0.036 0.964 0.964 0.927 0.927
32 25 0.960 0.960 0.960 0.960 0.053 0.028 0.960 0.960 0.921 0.920
32 30 0.961 0.961 0.961 0.961 0.058 0.022 0.961 0.960 0.922 0.922
32 35 0.964 0.964 0.964 0.964 0.049 0.026 0.964 0.963 0.927 0.927
32 40 0.966 0.966 0.966 0.966 0.039 0.029 0.966 0.966 0.932 0.932
32 45 0.967 0.967 0.967 0.967 0.042 0.026 0.967 0.966 0.933 0.933
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Table 5. Cont.

No. of Filters No. of Neurons Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

48 10 0.967 0.967 0.967 0.967 0.032 0.033 0.967 0.967 0.935 0.935
48 15 0.965 0.965 0.965 0.965 0.039 0.032 0.965 0.965 0.929 0.929
48 20 0.972 0.972 0.972 0.972 0.020 0.035 0.972 0.972 0.944 0.944
48 25 0.962 0.962 0.962 0.962 0.032 0.043 0.962 0.963 0.924 0.924
48 30 0.969 0.969 0.969 0.969 0.016 0.045 0.969 0.969 0.938 0.937
48 35 0.970 0.970 0.970 0.970 0.018 0.041 0.970 0.971 0.940 0.940
48 40 0.972 0.972 0.972 0.972 0.019 0.036 0.972 0.972 0.944 0.944
48 45 0.971 0.971 0.971 0.971 0.026 0.033 0.971 0.971 0.941 0.941
64 10 0.961 0.961 0.961 0.961 0.053 0.027 0.961 0.960 0.922 0.922
64 15 0.965 0.965 0.965 0.965 0.020 0.047 0.965 0.966 0.931 0.931
64 20 0.980 0.980 0.980 0.980 0.019 0.022 0.980 0.980 0.959 0.959
64 25 0.972 0.972 0.972 0.972 0.040 0.017 0.972 0.971 0.944 0.943
64 30 0.974 0.974 0.974 0.974 0.016 0.035 0.974 0.974 0.948 0.947
64 35 0.969 0.969 0.969 0.969 0.046 0.017 0.969 0.969 0.939 0.938
64 40 0.979 0.979 0.979 0.979 0.022 0.021 0.979 0.979 0.958 0.958
64 45 0.974 0.974 0.974 0.974 0.023 0.029 0.974 0.974 0.947 0.947

128 10 0.978 0.978 0.978 0.978 0.013 0.029 0.978 0.979 0.957 0.956
128 15 0.980 0.980 0.980 0.980 0.022 0.018 0.980 0.980 0.960 0.960
128 20 0.975 0.975 0.975 0.975 0.011 0.038 0.975 0.976 0.950 0.950
128 25 0.980 0.980 0.980 0.980 0.022 0.019 0.980 0.979 0.959 0.959
128 30 0.979 0.979 0.979 0.979 0.020 0.022 0.979 0.979 0.958 0.958
128 35 0.985 0.985 0.985 0.985 0.018 0.013 0.985 0.985 0.969 0.969
128 40 0.983 0.983 0.983 0.983 0.019 0.015 0.983 0.983 0.967 0.967
128 45 0.979 0.979 0.979 0.979 0.013 0.028 0.979 0.979 0.958 0.958

4.4. Results of Ensemble Learning

Based on the ablation study, we selected one Dense-1 (with 35 neurons) model, two
Dense-2 (with (40,40) and (40,50) neurons) models and two 1D-CNN (with (25,25) and
(30,35) neurons) models as base learners based on their kappa and F1-score performance.
We performed classification with several different meta-learner classification algorithms.
For KNN, the number of nearest neighbors was set to 3. For linear SVM, C was set to 0.025.
For RBF SVM, the C parameter (which performs regularization by applying a penalty to
reduce overfitting) was set to 1, and gamma was set to 2. For DT and RF, the max depth
was set to 5. In all cases, 10-fold cross-validation was used, where each cross-validation
fold was made by randomly selecting 80% of samples, and the remaining 20% were used
for testing. The results are presented in Table 6.

Table 6. Ensemble learning results with different meta-learners: mean values from 10-fold cross-validation. Best values are
shown in bold.

Meta-Learner Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

Nearest Neighbors 0.984 0.984 0.984 0.984 0.014 0.018 0.984 0.984 0.967 0.967

Linear SVM 0.974 0.974 0.974 0.974 0.029 0.023 0.974 0.974 0.948 0.948

RBF SVM 0.979 0.979 0.979 0.979 0.021 0.022 0.979 0.979 0.958 0.958

Decision Tree 0.987 0.987 0.987 0.987 0.002 0.023 0.987 0.987 0.973 0.973

Random Forest 0.991 0.991 0.991 0.991 0.008 0.009 0.991 0.991 0.983 0.983

Neural Net 0.974 0.974 0.974 0.974 0.029 0.023 0.974 0.974 0.948 0.948

AdaBoost 0.997 0.997 0.997 0.997 0.006 0 0.997 0.997 0.994 0.994

ExtraTrees 0.999 0.999 0.998 1.000 0.000 0.002 0.999 0.999 0.999 0.999

Naive Bayes 0.968 0.968 0.968 0.968 0.027 0.036 0.968 0.969 0.937 0.936

LDA 0.975 0.975 0.975 0.975 0.027 0.023 0.975 0.975 0.95 0.95

QDA 0.974 0.974 0.974 0.974 0.029 0.023 0.974 0.974 0.948 0.948

54



Electronics 2021, 10, 485

Table 6. Cont.

Meta-Learner Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

Logistic 0.973 0.973 0.973 0.973 0.031 0.023 0.973 0.973 0.946 0.946

Ridge 0.971 0.971 0.971 0.971 0.049 0.011 0.971 0.97 0.943 0.942

SGDC 0.975 0.975 0.975 0.975 0.027 0.023 0.975 0.975 0.95 0.95

The average performance results are visualized in Figures 5–7, whereas the results
from the 10-fold cross-validation are shown as boxplots in Figures 8–10. The results
demonstrate that the ExtraTrees meta-learner achieved the highest performance in terms of
accuracy, AUC and F1-score measures.

Figure 5. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: accuracy.

Figure 6. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: F1-score.
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Figure 7. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: AUC.

Figure 8. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: accuracy.

56



Electronics 2021, 10, 485

Figure 9. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: area under curve.

Figure 10. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: F1-score.
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Finally, we present the confusion matrix of the best ensemble model (with the ET
classifier as the meta-learner) in Figure 11.

Figure 11. Confusion matrix of the best ensemble model (with the ET classifier as meta-learner).

4.5. Statistical Analysis

To perform the statistical analysis of the experimental results, we adopted the Fried-
man test and the Nemenyi test. The results are presented as critical difference (CD)
diagrams in Figures 12–14. If the difference between the mean ranks of the meta-learners
is smaller than the CD, then it is not statistically significant. The results of the Nemenyi
test again show that the ExtraTrees meta-learner allows us to achieve the best perfor-
mance; however, the performance of AdaBoost and Decision Tree meta-learners is not
significantly different.

Figure 12. Comparison of mean ranks of meta-learners based on their accuracy performance: results of Nemenyi test.

Figure 13. Comparison of mean ranks of meta-learners based on their AUC performance: results of Nemenyi test.
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Figure 14. Comparison of mean ranks of meta-learners based on their F1-score performance: results of Nemenyi test.

4.6. Ablation Study of the Ensemble

We also conducted the ablation study to evaluate the contribution of the individual
parts in the proposed ensemble classification base framework for malware recognition.
We compared and analyzed the impact of the ensemble size of the classification results.
We analyzed the following ensembles, consisting of a smaller number (4) of neural net-
works models:

1. Case ENSEMBLE1: two Dense-2 (with (40,40) and (40,50) neurons) models and two
1D-CNN (with (25,25) and (30,35) neurons) models;

2. Case ENSEMBLE2: one Dense-1 (with 35 neurons) model, one Dense-2 (with (40,40)
neurons) model and two 1D-CNN ((25,25), and (30,35) neurons) models;

3. Case ENSEMBLE3: one Dense-1 (with 35 neurons) model, two Dense-2 (with (40,40)
and (40,50) neurons) models and one 1D-CNN (with (30;35) neurons) model.

The results are summarized and compared in Table 7. In all cases, the ExtraTrees
Classifier was used as a meta-learner. The Full Model here corresponds to the five-model
ensemble with PCA scaling of data. The results show that the best performance was
achieved by the full five-model ensemble with data scaling using PCA and ExtraTrees as
the meta-learner.

Table 7. Comparison of ensemble models. Best values are shown in bold.

Case Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

ENSEMBLE1 0.989 0.988 0.987 0.979 0.011 0.012 0.989 0.989 0.968 0.968

ENSEMBLE2 0.985 0.983 0.985 0.983 0.017 0.014 0.984 0.984 0.967 0.967
ENSEMBLE3 0.985 0.984 0.984 0.985 0.013 0.016 0.986 0.988 0.971 0.970
Full Model 0.999 0.999 0.998 1.000 0.000 0.002 0.999 0.999 0.999 0.999

4.7. Comparison with Related Work.

Finally, we compare our results with some of the related work on classifying benign
and malware files in Table 8 and explain in more detail below. Note that the methods
working on different malware datasets were compared. Alzaylaee et al. [54] explored
2-, 3- and 4-layer fully connected neural networks on a dataset of 31,125 Android apps,
with 420 static and dynamic features, while comparing the results to machine learning
classifiers. The best results were achieved with a three-layer network with 200 neurons in
each layer. Bakour and Ünver [55] suggested a visualization-based approach that converted
software characteristics into grayscale images and then applied local and global image
features as voters in an ensemble voting classifier. Cai et al. [56] used information gain for
feature selection and weight mapping functions derived by machine learning methods,
which were optimized by the differential evolution algorithm. Chen et al. [57] used an
attention network architecture based on CNN to classify apps based on their Application
Programming Interface (API) call sequences. Fang et al. [58] used a DeepDetectNet deep
learning model for static PE malware detection model, and an adversarial generation
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network RLAttackNet based on reinforcement learning, which was trained to bypass
DeepDetectNet. The generated adversarial samples were used to retrain DeepDetectNet,
which allowed the improvement of malware recognition accuracy.

Imtiaz et al. [59] proposed a deep multi-layer fully connected Artificial Neural Net-
work (ANN) that has an input layer, few hidden layers and an output layer. The approach
has been validated with the CICInvesAndMal2019 dataset of Android malware. Jeon and
Moon [60] proposed a convolutional recurrent neural network (CRNN), which uses the
opcode sequences of software as input. The front-end CNN performs opcode compression,
and the back end dynamic recurrent neural network (DRNN) detects malware from the
compressed sequence.

Jha et al. [61] proposed using RNN with feature vectors obtained by skip-grams of
the Word2Vec embedding model for malware recognition. Namavar Jahromi et al. [62]
proposed a modified Two-hidden-layered Extreme Learning Machine (TELM), which was
tested on Ransomware, Windows, Internet of Things (IoT) and other malware datasets.

Narayanan and Davuluru [63] suggested using CNNs and Long Short-Term Memory
(LSTM) networks for feature extraction and SVM or LR for the classification of malware
based on their machine language opcodes. The approach was validated on Microsoft’s
Malware Classification Challenge (BIG 2015) dataset with nine malware classes. Song
et al. [64] proposed a JavaScript malware detection based on the Bidirectional LSTM neural
network. Wang et al. [65] suggested CrowdNet, a radial basis function network, as a
malware predictor. Yen and Sun [66] extracted instruction code and applied hashing to
extract features. Then, the features were transformed into images and used to train a CNN.

Table 8. Comparison with other known deep learning approaches for malware recognition. n/a—data were not provided.

Reference Benign Malware Acc. (%) Prec. (%) Recall (%) F-Score (%)

Alzaylaee et al. [54] 19,620 11,505 98.5 98.09 99.56 98.82
Bakour and Ünver [55] - 4850 98.14 n/a n/a n/a

Cai et al. [56] 3000 3000 96.92 96.75 97.23 96.99
Chen et al. [57] 4596 4596 97.23 98.69 98.69 98.69
Fang et al. [58] 749 726 n/a n/a 98.07 n/a

Imtiaz et al. [59] 5065 426 93.4 93.5 93.4 93.2
Jeon and Moon [60] 1000 1000 96 n/a 95 n/a

Jha et al. [61] 20,000 20,000 91.91 n/a n/a 91.76
Namavar Jahromi et al. [62] - 18,831 99.03 n/a n/a n/a

Narayanan and Davuluru [63] - 7826 99.8 n/a n/a n/a
Song et al. [64] 30,487 29,893 97.71 n/a n/a 98.29
Wang et al. [65] 6375 6375 n/a 94 n/a n/a

Yen and Sun [66] 720 720 92.67 n/a n/a n/a
This paper 2488 2722 99.99 99.99 99.98 99.99

5. Conclusions

There is an increase in demand for smart methods that detect new malware variants,
because the existing methods are time-consuming and vulnerable to many errors. This
paper analyzed various machine learning algorithms and models of neural networks,
which are smart approaches that can be used for malware detection. With neural networks
used as base learners, we proposed an ensemble learning-based architecture and explored
14 machine learning algorithms as meta-learners. As baseline models, we used machine
learning algorithms for comparison. We conducted our experiments on a dataset that
included malware and benign files from Windows Portable Executables (PE).

In this paper, we analyzed and experimentally validated the use of ensemble learning
to combine the malware prediction results given by different machine learning and deep
learning models. The aim of this practice is to improve the recognition of Windows
PE malware. With ensemble methods, it is not required to select any specific machine
learning model. Instead, the prediction capability of each combination of the machine
learning models is aggregated to create a learning procedure that achieves the best malware
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detection performance. We explored our proposed ensemble classification framework with
lightweight fully connected and convolutional neural network architectures, and combined
deep learning and machine learning techniques to learn effective and efficient malware
detection models. We conducted extensive experiments on various lightweight deep
learning architectures and machine learning models within the framework of ensemble
learning under the same conditions for a fair comparison.

The results achieved show that the malware detection ability of ensemble stacking
exceeds the ability of other machine-learning methods, including neural networks. We
showed that the ensemble learning framework based on lightweight deep models could
successfully tackle the problem of malware detection. The results obtained indicate that
ensemble learning methods can be implemented and used as intelligent techniques for
the identification of malware. The classification system with the Extra Trees algorithm as
a meta-learner and an ensemble of dense ANN and 1-D CNN models obtained the best
accuracy value for the classification procedure, outperforming other machine learning
classification methods. Our proposed framework can lead to highly accurate malware
detection models that are adapted for real-world Windows PE malware.

The application of explanatory artificial intelligence (XAI) [67] strategies to interpret
the outcomes of deep learning models for malware detection will be carried out in the
future to provide useful information for malware analysis researchers. We also intend
to explore ensemble learning architectures and run further tests with larger databases of
malware. We strive to improve the classification ability and accuracy of the ensemble
learning model by refining the model architecture and validating it for multiple malware
datasets in future work.
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webshell detection in Internet of things environments. Trans. Emerg. Telecommun. Technol. 2020. [CrossRef]

29. Wei, W.; Woźniak, M.; Damaševičius, R.; Fan, X.; Li, Y. Algorithm research of known-plaintext attack on double random phase
mask based on WSNs. J. Internet Technol. 2019, 20, 39–48. [CrossRef]

30. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A Survey of Deep Learning Methods for Cyber Security. Information 2019,
10, 122. [CrossRef]

31. Ren, Z.; Wu, H.; Ning, Q.; Hussain, I.; Chen, B. End-to-end malware detection for android IoT devices using deep learning. Ad
Hoc Netw. 2020, 101, 102098. [CrossRef]

32. Yuxin, D.; Siyi, Z. Malware detection based on deep learning algorithm. Neural Comput. Appl. 2017, 31, 461–472. [CrossRef]
33. Pei, X.; Yu, L.; Tian, S. AMalNet: A deep learning framework based on graph convolutional networks for malware detection.

Comput. Secur. 2020, 93, 101792. [CrossRef]
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Abstract: Android is increasingly being targeted by malware since it has become the most popular
mobile operating system worldwide. Evasive malware families, such as Chamois, designed to
turn Android devices into bots that form part of a larger botnet are becoming prevalent. This calls
for more effective methods for detection of Android botnets. Recently, deep learning has gained
attention as a machine learning based approach to enhance Android botnet detection. However,
studies that extensively investigate the efficacy of various deep learning models for Android botnet
detection are currently lacking. Hence, in this paper we present a comparative study of deep learning
techniques for Android botnet detection using 6802 Android applications consisting of 1929 botnet
applications from the ISCX botnet dataset. We evaluate the performance of several deep learning
techniques including: CNN, DNN, LSTM, GRU, CNN-LSTM, and CNN-GRU models using 342
static features derived from the applications. In our experiments, the deep learning models achieved
state-of-the-art results based on the ISCX botnet dataset and also outperformed the classical machine
learning classifiers.

Keywords: botnet detection; deep learning; Android botnets; convolutional neural networks; dense
neural networks; recurrent neural networks; long short-term memory; gated recurrent unit; CNN-
LSTM; CNN-GRU

1. Introduction

The increase in Android’s popularity worldwide has made it a continuous target
for malware authors. The volume of malware targeting Android has continued to grow
in the last few years [1,2]. Android has been attacked by numerous malware families
aimed at infecting mobile devices and turning them into bots. These bots become parts
of larger botnets that are usually under the control of a malicious user or group of users
known as botmasters. The Android botnets may be used to launch various types of attacks
such as distributed denial of service (DDoS) attacks, phishing, click fraud, theft of credit
card details or other credentials, generation and distribution of spam, etc. Nowadays,
malicious Android botnets have become a serious threat. Additionally, their increasing
use of sophisticated evasive techniques such as self-protection or multi-staged payload
execution [3], calls for more effective approaches to detect them.

The Chamois malware family [3–5], which was discovered on Google Play in August
2016 is one example of the emerging sophisticated Android botnet threats. By March 2018,
Chamois had infected over 20 million devices, which were commandeered into a botnet
that received instructions from a remote command and control server [5]. The botnet was
used to serve malicious advertisements and to direct victims to premiums Short Message
Service (SMS) scams. The early version of Chamois disguised as benign apps that tricked
users into downloading it on their devices, and this was detected and almost completely
eradicated by the Android security team. Later versions of Chamois appeared which were
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distributed by tricking developers and device manufacturers into incorporating the botnet
code directly into their apps. Chamois was sold to developers as a legitimate software
development kit, and to the device manufacturers as a mobile payment solution [5].

The emergence of evasive and technically complex families like Chamois has driven
interest in adopting machine learning based techniques as a means to improve existing
detection systems. In the past few years, several works have investigated traditional
machine learning techniques such as Support Vector Machines (SVM), Random Forest,
Decision Trees, etc., for Android botnet detection. Some of the more recent machine
learning based Android botnet detection work, such as ref. [6] and ref. [7] have focused on
deep learning. Nevertheless, empirical studies that extensively investigate various deep
learning techniques to provide insight into their relative performance for Android botnet
detection are currently lacking. Hence, in this paper, we present a comparative analysis
of deep learning models for Android botnet detection using the publicly available ISCX
botnet dataset. Our approach is based on classification of unknown applications into ‘clean’
or ‘botnet’ using 342 static features extracted from the apps. We evaluate the performance
of several deep learning models on 6802 apps consisting of 1929 botnet apps from the ISCX
botnet dataset. The models investigated include Convolutional Neural Networks (CNN),
Dense Neural Networks (DNN), Gated Recurrent Units (GRU), Long Short-Term Memory
(LSTM), as well as more complex networks like CNN-LSTM and CNN-GRU.

The rest of the paper is organized as follows: Section 2 contains related works.
Section 3 gives an overview of the overall system for deep learning-based Android botnet
detection, while Section 4 provides brief background discussions of the deep learning
models that were built for this study. Section 5 discusses the methodology and experimen-
tal approach, while Section 6 presents the results and discussion of results. Finally, the
conclusions and future work are outlined in Section 7.

2. Related Work

Kadir et al. in their paper [8], studied several families of Android botnets aiming to
gain a better understanding of the botnets and their communication characteristics. They
presented a deep analysis of the Command and Control channels and built-in URLs of the
Android botnets. They provided insights into each malicious infrastructure underlying
the families, and uncovered the relationships between the botnet families by using a
combination of static and dynamic analysis with visualization. From their work, the
ISCX Android botnet dataset consisting of 1929 samples from 14 Android botnet families
emerged. Since then, several works on Android botnet detection have been based on the
dataset which is available from ref. [9].

Anwar et al. [10] proposed a mobile botnet detection method based on static features.
They combined permissions, MD5 signatures, broadcast receivers, and background services
to obtain a comprehensive set of features. They then utilized these features to implement
machine learning based classifiers to detect mobile botnets. Having performed experiments
using 1400 botnet applications of the ISCX dataset, combined with an extra 1400 benign
applications, they recorded an accuracy of 95.1%, a recall of 0.827, and a precision of 0.97
as their best results.

Android Botnet Identification System (ABIS) was proposed in [11] to detect Android
botnets. The method is based on static and dynamic features consisting of API calls, permis-
sions, and network traffic. ABIS was evaluated with several machine learning techniques.
In the end, Random Forest was found to perform better than the other algorithms by
achieving 0.972 precision and 0.96 recall.

In ref. [12], machine learning was used to detect Android botnets using permissions
and their protection levels as features. Initially, 138 features were utilized and then in-
creased to 145 after protection levels were added as novel features. In total, four machine
learning models (i.e., Random Forest, multilayer perceptron (MLP), Decision Trees, and
Naive Bayes) were evaluated on 3270 applications containing 1635 benign and 1635 botnets
from the ISCX dataset. Random Forest was found to have the best results yielding 97.3%
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accuracy, 0.987 recall, and 0.985 precision. The authors of [13] also utilized only the ‘re-
quested permissions’ as features and applied Information Gain to reduce the features and
select the most significant requested permissions. They evaluated their approach using
Decision Trees, Naive Bayes, and Random Forest. In their experiments, Random Forest
performed best, with an accuracy of 94.6% and false positive rate of 0.099%.

Karim et al. in [14], proposed DeDroid, a static analysis approach to investigate
properties that are specific to botnets that can be used in the detection of mobile botnets.
in their approach, ‘critical features’ were first identified by observing the coding behavior
of a few known malware binaries that possess Command and Control features. These
‘critical features’ were then compared with features of malicious applications from Drebin
dataset [15]. The comparison with ‘critical features’ suggested that 35% of the malicious
applications in the Drebin dataset could be classed as botnets. However, according to their
study, a closer examination confirmed 90% of the apps as botnets.

Jadhav et al. [16], present a cloud-based Android botnet detection system that lever-
ages dynamic analysis by using a virtual environment with cluster analysis. The toolchain
for the dynamic analysis process is composed of strace, netflow, logcat, sysdump, and
tcpdump within the botnet detection system. However, in the paper there were no ex-
perimental results provided to evaluate the effectiveness of the proposed cloud-based
solution. Moreover, the virtual environment can easily be evaded by the botnets using
different fingerprinting techniques. In addition, being a dynamic-analysis based approach,
the systems effectiveness could be degraded by the lack of complete code coverage [17,18].

In ref. [19], a method was proposed by Bernardeschia et al. to identify Android botnets
through model checking. Model checking is an automated technique used in verifying
finite state systems. This is achieved by checking whether a structure representing a
system satisfies a temporal logic formula describing their expected behavior. In particular,
static analysis is used to derive a set of finite state automata from the Java byte code that
represents approximate information about the run-time behavior of an app. Afterwards,
the botnet malicious behavior is formulated using temporal logic formulae [20]; then by
adopting a model checker, it can be automatically checked whether the code is malicious
and identify where the botnet code is located within the application. These properties
are checked using the CAAL (Concurrency Workbench, Aalborg Edition) [21] formal
verification environment. The authors evaluated their approach on 96 samples from
the Rootsmart botnet family, 28 samples from the Tigerbot botnet family, in addition to
1000 clean samples. The results obtained on the 1124 app samples showed perfect (100%)
accuracy, precision, and recall.

Alothman and Rattadilok [22] proposed a source code mining approach based on
reverse engineering and text mining techniques to identify Android botnet applications.
Dex2Jar was used to reverse engineer the Android apps to Java source code. Natural
Language Processing techniques were applied to the obtained Java source code. They also
evaluated a ‘source code metrics (SCM)’ approach of classifying the apps into ‘botnet’ or
‘clean’. In the SCM approach, statistical measures, such as total number of code lines, code
to comment ratio, etc., were extracted from the source code and the metrics were used as
features for training machine learning classifiers. The Java source code was extracted from
9 apps from 9 ISCX botnet families, as well as 12 normal apps. The TextToWordVector filter
within WEKA (Waikato Environment for Knowledge Analysis), together with TF-IDF, was
then applied to the code. They also applied WEKA’s StringToWordVector with TF-IDF filter
while varying the numbers of the ‘words to keep’ parameter. SubSetEval feature selection
method was used to reduce the features. The features were applied to Naive Bayes, KNN,
J48, SVM, and Random Forest algorithms, were KNN obtained the best performance.

In ref. [23], a real-time signature-based detection system is proposed to combat SMS
botnets, by first applying pattern-matching detection approaches for incoming and out-
going SMS text messages. In the second step, rule-based techniques are used to label
unknown SMS messages as suspicious or normal. Their method was evaluated with over
12,000 test messages, where all 747 malicious SMS messages were detected in the dataset.
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However, the system produced some false positives where 349 SMS messages were flagged
as suspicious. In ref. [24], a botnet detection technique called ‘Logdog’ is proposed for
mobile devices using log analysis. The approach relies on analyzing the logs of mobile
devices to find evidence of botnet activities. Logdog writes logcat messages to a text file in
the background while the Android user continues to use their device. The system targets
HTTP botnets looking for events or series of events that indicate botnet activities and was
tested manually on a botnet and a normal app.

In ref. [6], Android botnet detection based on CNN and using permissions as features
was proposed. In the proposed method, apps are represented as images that are constructed
based on the co-occurrence of permissions used within the applications. The images were
then used to train a CNN-based binary classifier. The binary classifier was evaluated
using 5450 apps containing 1800 botnet apps from the ISCX dataset. They obtained an
accuracy of 97.2%, with a recall of 0.96, precision of 0.955, and f-measure of 0.957. Similarly,
ref. [7] proposes an Android botnet detection approach based on CNN, where not only
permissions were used as features but also API calls, Commands, Intents, and Extra Files.
Unlike in ref. [6], 1D CNN was used and the model was evaluated with the 1929 ISCX
botnet apps and 4873 benign apps resulting in 98.9% accuracy, 0.978 recall, 0.983 precision,
and 0.981 F1-score.

Different from the aforementioned earlier works, this paper aims to investigate the
performance of several deep learning techniques to gain insight into their effectiveness in
detecting Android botnets based on the extraction of 342 static features from the applica-
tions. To this end, we implemented CNN, DNN, LSTM, GRU, CNN-LSTM, and CNN-GRU
models and evaluated the models using 1929 ISCX botnet apps and 4873 benign apps. The
deep learning models developed in the study are discussed in Section 4 and the results of
the experiments with the models are presented in Section 6.

3. Deep Learning-Based Android Botnet Detection System

At a fundamental level, our botnet detection system is designed to distinguish be-
tween clean apps and botnet apps. As a result, it may sometimes fail to correctly classify an
unknown app by mistakenly identifying a benign app as botnet or vice-versa. The various
accuracy metrics used in the experiments presented in Section 6 will enable us to capture
the extent to which a given deep learning model used as a classifier can be relied upon
to correctly predict which category an unknown app should belong to. The classification
system is implemented by extracting static features from thousands of applications consist-
ing of both botnet and clean examples. A bespoke tool that we developed in Python for
automated reverse engineering of Android Package files (APKs) was utilized in the process.
Using the tool, we extracted a total of 342 features from 5 different categories shown in
Table 1.

Table 1. The five types of features used in developing the deep learning models.

Feature Types Number

API calls 135
Permissions 130
Commands 19

Extra executables 5
Intents 53
Total 342

The five feature types include: (1) API calls (2) commands (3) permissions (4) Intents
(5) extra (binary or executable) files. Most of the features were from the ‘API calls’ and
‘permissions’ category as shown in Table 1. A selection of the features is shown in Table 2.
These features are represented as vectors of binary numbers with each feature in the vector
represented by a ‘1’ or ‘0’. Each feature vector (corresponding to one application) is labelled
with its class. The feature vectors are loaded into the deep learning model during the
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training phase. After training, the model can then be used to predict the class (clean or
botnet) of an unknown application using its extracted feature vector. Figure 1 gives a high
level overview of the overall botnet detection system.

Table 2. Examples of features extracted for the deep learning models.

Feature Name Type

TelephonyManager.*getDeviceId API
TelephonyManager.*getSubscriberId API

abortBroadcast API
SEND_SMS Permission

DELETE_PACKAGES Permission
PHONE_STATE Permission
SMS_RECIVED Permission

Ljava.net.InetSocketAddress API
READ_SMS Permission

Android.intent.action.BOOT_COMPLETED Intent
io.File.*delete( API

Chown Command
Chmod Command
Mount Command

.apk Extra File
.zip Extra File
.dex Extra File
.jar Extra file

CAMERA Permission
ACCESS_FINE_LOCATION Permission

INSTALL_PACKAGES Permission
android.intent.action.BATTERY_LOW Intent

.so Extra File
android.intent.action.POWER_CONNECTED Intent

System.*LoadLibrary API

Electronics 2021, 10, x FOR PEER REVIEW 5 of 18 
 

 

The five feature types include: (1) API calls (2) commands (3) permissions (4) Intents 

(5) extra (binary or executable) files. Most of the features were from the ‘API calls’ and 

‘permissions’ category as shown in Table 1. A selection of the features is shown in Table 

2. These features are represented as vectors of binary numbers with each feature in the 

vector represented by a ‘1’ or ‘0’. Each feature vector (corresponding to one application) 

is labelled with its class. The feature vectors are loaded into the deep learning model dur-

ing the training phase. After training, the model can then be used to predict the class (clean 

or botnet) of an unknown application using its extracted feature vector. Figure 1 gives a 

high level overview of the overall botnet detection system.  

 

Figure 1. Overview of the deep learning-based detection system for Android botnets. 

Table 2. Examples of features extracted for the deep learning models. 

Feature Name Type 

TelephonyManager.*getDeviceId API  

TelephonyManager.*getSubscriberId API 

abortBroadcast API 

SEND_SMS Permission 

DELETE_PACKAGES Permission 

PHONE_STATE Permission 

SMS_RECIVED Permission 

Ljava.net.InetSocketAddress API 

READ_SMS Permission 

Android.intent.action.BOOT_COMPLETED Intent 

io.File.*delete( API 

Chown Command 

Chmod Command 

Mount Command 

.apk Extra File 

.zip Extra File 

.dex Extra File 

.jar Extra file 

CAMERA Permission 

ACCESS_FINE_LOCATION Permission 

INSTALL_PACKAGES Permission 

android.intent.action.BATTERY_LOW Intent 

Figure 1. Overview of the deep learning-based detection system for Android botnets.

4. Deep Learning Techniques Applied to Android Botnet Detection
4.1. Convolutional Neural Networks

A CNN is a feedforward neural network whereby the information moves only in the
forward direction from the input node, through the hidden nodes to the output nodes with
no loops or cycles. Such (feedforward) networks are primarily used for pattern recognition.
CNN generally works well for identifying simple patterns in data which will then be used
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to form more complex patterns in the higher or deeper layers. CNNs typically consists of
convolutional layers and pooling layers. The role of the convolutional layer is to detect
local conjunctions of features from the previous layer, while the role of the pooling layer
is to merge semantically similar features into one [25]. CNNs combine concepts such as
shared weights, local receptive fields and spatial subsampling [26]. They take advantage of
many parallel and cascaded convolutional filters to solve high dimensional non-convex
problems such as regression, image classification, semantic segmentation, object detection,
etc. Due to weight sharing in each layer and by processing limited dimensions, a CNN
requires fewer parameters than a traditional neural network and is much easier to train.

Datasets that possess a one-dimensional structure can be processed using a one-
dimensional convolutional neural network (1D CNN). A 1D CNN is quite effective when
you expect to derive interesting features from shorter (fixed-length) segments of the overall
feature set, and where the location of the feature within the segment is not important.
The use of 1D CNN can be commonly found in Natural Language Processing (NLP)
applications. Similarly, 1D CNN is applicable in problems where vectorized data are used
to represent the characteristics of the items whose state or category is being predicted
(e.g., an Android application). The 1D CNN could be used to extract potentially more
discriminative feature representations that describe any existing patterns or relationships
within segments of the vectors characterizing each entity in the dataset. These new features
are then fed into a classifier (e.g., LSTM, GRU or a fully connected layer) which will in
turn process the derived features to produce a set of outputs that will contribute towards a
final classification decision. Hence, CNNs can be employed as feature extraction layers
for a given classifier which then eliminates the need to apply separate feature ranking and
selection outside of the deep learning model.

Figure 2 depicts a 1D CNN model made up of two convolutional layers and two max
pooling layers. The output of last pooling layer is flattened and connected to a dense (fully
connected) layer of N units. The N-unit dense layer is in then connected to a final output
layer containing a single neuron with a sigmoid activation function which is given by:
S = 1

1+e−x .

Figure 2. 1D CNN model with 2 convolutional and max pooling layers feeding a dense (fully
connected) layer. The model is designed for botnet detection by classifying Android applications into
‘normal’ or ‘botnet’.

The output layer performs the final classification into one of two classes, i.e., ‘botnet’
or ‘normal’. The convolutional layers utilize Rectified Linear Units (ReLU) with activation
function given by: f (x) = max(0, x). ReLU helps to mitigate vanishing and exploding
gradient issues [27].
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4.2. Long-Short Term Memory

LSTM [28,29] is a type of recurrent neural network (RNN) which, unlike feedforward
networks, utilizes feedback and is able to ‘memorize’ parts of the input and use them in
making predictions. RNNs are designed to handle sequential data and thus have found
popular application in areas such as speech recognition and machine translation. Different
from traditional artificial neural networks that fully connect all nodes, or CNN that explore
nodes from local to global layer by layer, RNNs use state neurons to explore the relationship
in context. Traditional RNNs have a known problem of vanishing gradients which hinders
their ability to have long term memory and thus can only make predictions based on the
most recent information in the sequence. LSTM solves the vanishing gradient problem
and is therefore able to process longer sequences (long term memory). LSTM is a recurrent
neural network that can understand contextual information from a sequence of features. It
has the ability to add or remove information from the hidden state vector with the aid of a
gate function, thereby retaining important information in the hidden layer vectors.

As shown in Figure 3a, LSTM consists of three gate functions. These include: the
forget gate, the input gate, and the output gate. The forget gate is used to control the
amount of information in Ct−1 is retained in the process of computing Ct and it (the forget
vector) can be expressed as:

ft = σ
(

U f xt + W f ht−1 + b f

)
(1)

where U f , W f , and bf constitute the parameters of the forget gate and xt is the input vector
in step t, while ht−1 is the hidden state vector in the previous step t − 1. The input gate
determines how much information of xt is added to Ct and can be expressed as:

ft = σ
(

U f xt + W f ht−1 + b f

)
(2)

where Ui, Wi, and bi are the parameters of the input gate and hence Ct can be calculated
by relying on the forget gate vector ft as well as the input gate vector it as follows:

ft = σ
(

U f xt + W f ht−1 + b f

)
(3)

where C̆t = tanh(Ucxt + Wcht−1 + bC) denotes the information represented in the hidden
layer vector. Note that ∗ denotes the Hadamard (element-wise) product. The output gate
controls the output in Ct, and we have:

ot = σ(Uoxt + Woht−1 + bo) , ht = ot ∗ tanh(Ct) (4)

where Uo, Wo, and bo are the parameters of the output gate and Ct is the internal state in
step t.

Figure 3. Recurrent neural networks. (a) LSTM; (b) GRU.
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4.3. Gated Recurrent Units

A GRU [30] is also a kind of RNN model and a variant of LSTM. However, unlike
LSTM which has three gates, GRU has only two gates, i.e., reset gate and update gate, as
shown in Figure 3b. This makes GRU less complicated and therefore faster to train than
LSTM. The gates are two vectors that decide which information should be passed to the
output. The update gate enables the model to determine how much of the past information
needs to be passed along to the future. The update gate Zt is calculated for step t using the
formula given by:

zt = σ(Uzxt + Wzht−1) (5)

where Uz, Wz are the parameters (weights) of the update gate and ht−1 holds information
for the previous t − 1 units. The reset gate is used to decide how much of the past
information to forget which can be calculated using:

rt = σ(Urxt + Wrht−1) (6)

where Ur, Wr are the parameters (weights) of the reset gate and ht−1 holds information for
the previous t − 1 units. The current memory content will use the reset gate to store the
relevant information from the past as follows:

ct = tanh(Ucxt + rt ∗Wcht−1) (7)

where Uc, Wc are the parameters (weights). Note that ∗ denotes the Hadamard (element-
wise) product. At the last step, the vector ht which holds the information for the current
unit and passes it down the network will be calculated by:

ht = zt ∗ ht−1 + (1− zt) ∗ ct (8)

A GRU network obtains a long spatial (or temporal) sequence with lower computa-
tional complexity compared to traditional encoder-decoder architecture. With its gating
mechanisms, GRU can overcome the vanishing gradient problem and is therefore capable
of processing longer sequences than standard RNN. Both GRU and LSTM can be applied to
sequences of spatial features to determine the extent of dependencies or establish context
between features that are located several places apart.

4.4. Dense Neural Networks

The DNN model is a regular deeply connected neural network with several layers. In
a DNN model, each neuron in a layer receives an input from all the neurons present in the
previous layer. The layers are known as the dense layers and constitute the hidden layers
of the network. Such neural networks are also known as Multilayer perceptron (MLP). It is
composed of an input layer, an output layer that makes a decision or prediction about the
input, and an arbitrary number of hidden layers in between. The model is often trained on
a set of input–output pairs and learns to model the correlation (or dependencies) between
those inputs and outputs. The basic unit (a perceptron) of the model produces a single
output based on several real-valued inputs by forming a linear combination using its input
weights. The output is typically passed through a non-linear activation function ϑ:

y = ϑ

(
n

∑
1

wixi + b

)
= ϑ

(
WTX + b

)
(9)

where W denotes the vector of weights, X is the vector of inputs, b is the bias and ϑ is the
non-linear activation function.

The sigmoid or the hyperbolic tangent functions were the non-linear activation func-
tions typically used in the past due to their ability to map complex relationships within
data. However, these two non-linear activation functions do not perform well in networks
with many layers due to the vanishing gradient problem. Nowadays, rectified linear
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activation function ReL (and its variants) is the preferred function used in training dense
neural networks. Hence, the neurons in a network employing ReL activation are known
as ReLU (Rectified Linear activated Units). ReL is a piecewise linear function given by:
f (x) = max(0, x). It will output the input directly if positive, and will output a zero if
negative. ReLU overcomes the vanishing gradient problem and enable models to learn
faster and perform better. Hence, it is used as the default activation function when devel-
oping the DNN and the CNN networks. In our study, we have experimented with different
numbers of hidden layers for the DNN, and numbers of units per layer and recorded the
performance of each configuration.

4.5. Hybrid Models

In this paper, we refer to hybrid models as those combining different deep learning
techniques to leverage the unique capabilities of each of the techniques. For example in
CNN-LSTM or CNN-GRU depicted in Figure 4, the model will utilize CNN to extract
local n-gram features (where n is set by the length of the filters). The CNN’s max pooling
layer downsamples the output to reduce the dimensionality, which also contributes to the
reduction in overfitting. The LSTM or GRU layers are then used to capture long-range
dependencies that may be present within the features encoded by the CNN layers. The
vectors output by the LSTM-GRU layer with the context and dependencies information
will then be transmitted to dense layers for further processing before the final classification
by the sigmoid activated output layer consisting of a single unit.

Figure 4. Overview of the CNN-LSTM and CNN-GRU hybrid model architecture.

5. Methodology and Experiments

In this section, we further detail our approach and outline the experiments undertaken
to evaluate the deep learning models implemented in this paper. The models were devel-
oped in Python using the Keras library with TensorFlow backend. Other libraries utilized
include Scikit Learn, Seaborn, Pandas, and Numpy. The experiments were performed on a
Ubuntu Linux 16.04 64-bit Machine with 8GB RAM.

5.1. Problem Definition

Let A = {a1, a2, . . . an} be a set of applications where each ai is represented by a vector
containing the values of n features (where n = 342). Let a = {f 1, f 2, f 3, . . . fn, cl} where
cl ∈ {botnet, normal} is the class label assigned to the app. Thus, A can be used to train a
model to learn the behaviors of botnet and normal apps, respectively. The goal of a trained
model is then to classify a given unlabeled app Aunknown = {f 1, f 2, f 3, . . . fn, ?} by assigning
a label cl, where cl ∈ {botnet, normal}.
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5.2. Dataset Used for the Investigation

As mentioned earlier, the ISCX Android botnet dataset from [9] was utilized for the
experiments in this paper. This dataset contains 1929 botnet apps and has been employed
in previous works including [6–8,10–13,22]. Table 3 shows the distribution of samples
within the 14 different botnet families present in the dataset. To complement the ISCX
dataset, we obtained 4873 clean from Google Play store. These apps were cross-checked for
maliciousness using Virus Total (https://www.virustotal.com (accessed on 20 December
2020)). Thus, a total of 6802 apps were used in our experiments.

Table 3. Botnet dataset composition.

Botnet Family Number of Samples

Anserverbot 244
Bmaster 6

Droiddream 363
Geinimi 264
Misosms 100
Nickyspy 199

Notcompatible 76
Pjapps 244
Pletor 85

Rootsmart 28
Sandroid 44
Tigerbot 96
Wroba 100
Zitmo 80
Total 1929

5.3. Experiments to Evaluate the Deep Learning Techniques on the Android Dataset

In order to investigate the performance of the deep learning models, we performed
several experiments with different configurations of the models to enable us observe the
optimum performance that is possible with each model architecture. The models are
designed to exploit the capabilities of the constituent neural network types as discussed
in Section 4. The following metrics are used in measuring the performance of the models:
Accuracy, precision, recall, and F1-score. Given TP as true positives, FP as false positives,
FN as false negatives, and TN as true negatives (all with respect to the botnet class), the
metrics are defined as follows (taking the botnet class as positive):

• Accuracy: the ratio between correctly predicted outcomes and the sum of all predic-
tions expressed as: TP+TN

TP+TN+FP+FN
• Precision: All true positives divided by all positive predictions, i.e., was the model

right when it predicted positive? Expressed as: TP
TP+FP

• Recall: All true positives divided by all actual positives. That is, how many positives
did the model identify out of all possible positives? Expressed as: TP

TP+FN
• F1-score: This is the weighted average of precision and recall, given by: 2×Recall×Precision

Recall+Precision

All the results of the experiments are from 10-fold cross validation where the dataset
is divided into 10 equal parts with 10% of the dataset held out for testing, while the models
are trained from the remaining 90%. This is repeated until all of the 10 parts have been
used for testing. The average of all 10 results is then taken to produce the final result.
Additionally, during the training of all the deep learning models (for each fold), 10% of the
training set was used for validation.

6. Results and Discussions

This section will present the results of investigating CNN-GRU, CNN-LSTM, CNN,
and DNN models. Subsequently, a comparative performance evaluation of the models
and how they measure against traditional machine learning models will be discussed.
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Finally, we will examine how these models have performed compared to results reported
in previous works on Android botnet detection.

6.1. CNN-GRU Model Results

Here, we present the results obtained from CNN-GRU model where the configurations
of both the CNN layer and the GRU layer were varied. A summary of the results is
presented in Table 4. In the top half of the table, the configuration had 1 convolutional layer
and 1 max pooling layer in the CNN part. These models are named as CNN-1-layer-GRU-X
where X stands for the number of hidden units in the GRU layer. The Convolutional layer
receives input vector of dimension 342 from the input layer, and it consists of 32 filters each
of size = 4. The max pooling layer has its parameter set to 2, which means it would reduce
the output of the convolutional layer by half. The outputs from the max pooling layer are
concatenated into a flat vector before sending to the GRU layer. As depicted in Figure 4, the
output from the CNN-GRU layers are forwarded to 2 dense layers. The first dense layer
had 128 units, while the second one had 64 units. The 64-unit layer is finally connected
to a sigmoid-activated single-unit output layer where the final classification decision into
‘clean’ or ‘botnet’ is made. The model can be summarized in the following sequence:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> flatten -> GRU[X] -> Dense [128,
ReLU] -> Dense[64, ReLU]-> Dense[1, Sigmoid] where X is the number of GRU hidden
units taken as 5, 10, 25, and 50, respectively.

Table 4. Results from the CNN-GRU models of various configurations using the architecture depicted
in Figure 4.

Accuracy Precision Recall F1-Score Number of
Parameters

CNN-1-layer-GRU-5 0.988 0.982 0.976 0.979 90,442
CNN-1-layer-GRU-10 0.989 0.986 0.975 0.980 172,457
CNN-1-layer-GRU-25 0.988 0.981 0.978 0.979 419,402
CNN-1-layer-GRU-50 0.989 0.980 0.980 0.980 833,977
CNN-2-layer-GRU-5 0.988 0.985 0.974 0.979 53,528
CNN-2-layer-GRU-10 0.989 0.986 0.974 0.980 93,993
CNN-2-layer-GRU-25 0.989 0.982 0.978 0.980 217,098
CNN-2-layer-GRU-50 0.991 0.988 0.979 0.984 425,273

The results of the bottom half of Table 4 are from the same CNN-GRU architecture
described above, but with the CNN part having 2 convolutional layers and 2 max pooling
layers. The model can be summarized in the following sequence:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> Conv [32 filters, Size=4] -> max
pooling -> flatten -> GRU[X]->Dense [128, ReLU] -> Dense[64, ReLU]->Dense[1, Sigmoid]
where X is the number of GRU hidden units taken as 5, 10, 25, and 50, respectively.

Note that a dropout = 0.25 is incorporated between each of the layers in the models to
reduce overfitting.

From Table 4, we can see that the model with the 1-layer CNN had higher overall
accuracy of 98.9% when the number of GRU hidden units were set at 10 or at 50. The
corresponding F1-score were also the highest at 0.980. The recall of the GRU-50 model was
0.980 compared to that of the GRU-10 model, which was 0.975. This means that the GRU-50
model was better at detecting botnet apps than the GRU-10 model in the top half of Table
4. Note that the GRU-5 model from the 1-layer CNN batch (top-half) which had 5 hidden
units actually did perform well also by obtaining an overall accuracy of 98.8%, with an
F1-score of 0.979 and a botnet detection rate (recall) of 97.6%. It had the least numbers of
parameters to train, i.e., 90,422.

From the bottom half of Table 4, the 2-layer CNN models with the best overall accuracy
was the one with 50 units in the GRU layer (i.e., CNN-2-GRU-50). It obtained 99.1%
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accuracy, and the best F1 score of 0.984. The recall (botnet detection rate) was 97.9% while
the precision was 98.8%, the highest in all of the CNN-GRU models. From these set of
results, we can conclude the following:

• The best overall performance for the CNN-GRU models was from the model with
2 convolutional layers and 50 hidden units in the GRU layer.

• Very good results can be obtained by CNN-GRU model with only 1 convolutional
layer and few hidden units (5) in the GRU layer. The accuracy observed was 98.8%,
and the F1 score was 0.979. The lower the number of hidden units, the faster it is to
train the model.

6.2. CNN-LSTM Model Results

This section presents the results of the CNN-LSTM models with different configura-
tions in both the CNN layer and the GRU layer. The results are presented in Table 5. Similar
to the results of CNN-GRU in Table 4, the top half is for the models with 1 convolutional
layer and 1 max pooling layer in the CNN part, while the bottom half (of Table 5) shows the
results of the models having 2 convolutional layers and 2 max pooling layers in the CNN
part. The models are named with the convention CNN-1-layer-LSTM-X in the top half, or
CNN-2-layer-LSTM-X in the bottom half, where X stands for the number of hidden units
in the LSTM layer. As depicted in Figure 4, the output from the CNN-LSTM layers are
forwarded to 2 dense layers. The first dense layer had 128 units, while the second one had
64 units. The 64-unit layer is finally connected to a single unit sigmoid activated output
layer where the final classification decision into ‘clean’ or ‘botnet’ is made. The model can
be summarized in the following sequence:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> flatten -> LSTM[X] -> Dense [128,
ReLU] -> Dense [64, ReLU]-> Dense[1, Sigmoid]

where X is the number of LSTM hidden units taken as 5, 10, 25, and 50, respectively.

Table 5. Results from the CNN-LSTM models of various configurations using the architecture
depicted in Figure 4.

Accuracy Precision Recall F1-Score Number of
Parameters

CNN-1-layer-LSTM-5 0.990 0.987 0.977 0.982 117,497
CNN-1-layer-LSTM-10 0.990 0.986 0.980 0.983 226,617
CNN-1-layer-LSTM-25 0.990 0.985 0.979 0.982 555,117
CNN-1-layer-LSTM-50 0.990 0.983 0.983 0.983 1,106,777
CNN-2-layer-LSTM-5 0.989 0.986 0.973 0.980 66,553
CNN-2-layer-LSTM-10 0.989 0.986 0.974 0.980 120,633
CNN-2-layer-LSTM-25 0.990 0.984 0.979 0.981 284,073
CNN-2-layer-LSTM-50 0.989 0.984 0.976 0.980 560,473

For the bottom half of Table 5, the models can be summarized in the following se-
quence:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> Conv [32 filters, Size=4] -> max
pooling -> flatten -> LSTM[X]->Dense [128, ReLU] -> Dense [64, ReLU]->Dense [1, Sigmoid]

where X is the number of LSTM hidden units taken as 5, 10, 25, and 50, respectively.
Note that a dropout = 0.25 is incorporated between each of the layers in the models to

reduce overfitting.
Table 5 (top half), it can be seen that the all the CNN-LSTM models with only 1 layer

in the CNN part had overall accuracy of 99%. The models with 10 and 50 hidden units,
respectively, in the LSTM layer obtained identical F1-score of 0.983, compared to the
ones with 5 and 25, respectively, which had F1-score of 0.982. The best recall (or botnet
detection rate) of 98.3% was recorded with the LSTM-50 model. However, having more
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than 1.1 million parameters, the LSTM-50 model will be longer to train than the LSTM-10
model which has only 226,617 parameters.

From the bottom half of Table 5, the 2-layer CNN models with the best overall accuracy
was the one with 25 units in the LSTM layer (i.e., CNN-LSTM-25). It obtained 99% accuracy,
and the best F1 score of 0.981. The recall (botnet detection rate) was 97.9% while the
precision was 98.4%. From the results of Table 5, we can conclude the following:

• The best overall performance for the CNN-LSTM models was from the model with
1 convolutional layer and 25 hidden units in the LSTM layer.

• Very good results can be obtained by CNN-LSTM model with only 1 convolutional
layer and few hidden units (5) in the LSTM layer. This is evident from the results of
the CNN-1-layer-LSTM-5 where the accuracy observed was 99%, and the F1 score was
0.982, precision was 98.7%, and recall (botnet detection rate) was 97.7%.

• Comparing Tables 4 and 5, the results of CNN-LSTM were generally better than those
of CNN-GRU even though a CNN-GRU model obtained the highest F1-score of 0.984
with an overall accuracy of 99.1%.

6.3. CNN Model Results

In this section we discuss the results of the CNN model which is summarized in
Table 6. The CNN model consists of 2 convolutional layers and 2 max pooling layers. The
resulting vectors are ‘flattened’ and fed into a dense layer containing 8 units. The model’s
sequence can be summarized as follows:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> Conv [32 filters, Size=4] -> max
pooling-> flatten -> Dense [8, ReLU] -> Dense [1, Sigmoid]

Table 6. Results from a 2-layer CNN model obtained by varying the number of filters, with length of
filters = 4 in both convolutional layers.

Accuracy Precision Recall F1-Score Number of
Parameters

CNN-2-layer-4-filters 0.986 0.978 0.974 0.976 2,777
CNN-2-layer-8-filters 0.988 0.980 0.977 0.978 5,657

CNN-2-layer-16-filters 0.988 0.980 0.976 0.978 11,801
CNN-2-layer-32-filters 0.989 0.983 0.978 0.981 25,625
CNN-2-layer-64-filters 0.987 0.980 0.975 0.977 59,419

In our preliminary study presented in [24], this particular configuration of the model
has been determined to yield the best performance on the same features extracted from
the same app dataset used for the other models presented in this paper. More extensive
performance evaluation of the CNN model has been presented in [24], where the effect
of varying the other parameters, such as filter length, number of layers, and max pooling
parameter has been investigated.

As shown in Table 6, the CNN model with 32 filters yielded the best results with 98.9%
overall accuracy, precision = 0.983, recall = 0.978, and F1-score = 0.981. When compared to
the results in Tables 4 and 5, it can be observed that most of the CNN-LSTM configurations
and some of the CNN-GRU configurations achieved higher results than the CNN-only
model. This suggests that the LSTM and GRU were able to capture some dependencies
amongst the features thus improving the performance of the model.

6.4. DNN Model Results

The results obtained from the Dense Neural Network model is presented in this
section. The naming convention used to describe the models is DNN-Y-layer-N as shown
in Table 7, where Y stands for the number of hidden layers and N is the number of units in
the layer. For example, the sequence of the DNN-2-layer-200 model can be summarized
as follows:
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Input [342] -> Dense [200, ReLU] -> Dense [200, ReLU] -> Dense [1, Sigmoid]

Table 7. Results from the DNN model with various numbers of layers and units per layer.

Accuracy Precision Recall F1-Score Number of
Parameters

DNN-1-layer-100 0.990 0.984 0.982 0.983 34,401
DNN-2-layer-100 0.991 0.990 0.979 0.984 44,501
DNN-3-layer-100 0.991 0.988 0.980 0.984 54,601
DNN-1-layer-200 0.990 0.982 0.982 0.982 68,801
DNN-2-layer-200 0.990 0.981 0.983 0.982 109,001
DNN-3-layer-200 0.989 0.982 0.980 0.981 149,201
DNN-1-layer-300 0.990 0.985 0.981 0.983 103,201
DNN-2-layer-300 0.989 0.984 0.978 0.981 193,501
DNN-3-layer-300 0.989 0.979 0.984 0.981 283,801

Note that a dropout = 0.25 is incorporated between each of the layers in the models
to reduce overfitting. Additionally, in all of the DNN models and the previous models in
Sections 6.1–6.3, the optimization algorithm used was ‘Adam’ and ‘Binary cross entropy’
was used for the loss function. Furthermore, all the models were configured to automati-
cally terminate the training after the validation loss is observed to have not changed for a
specific number of K training epochs, where K was set to 20.

From Table 7, it can be observed that the DNN models with a single hidden layer did
not result in the best outcomes. Likewise, in most cases, using 3 hidden layers as observed
with the DNN-3-layer-200 and DNN-3-layer-300 also did not give the best outcomes. The
best performance was obtained from the model with 2 hidden layers and 100 units in each
layer, where the overall accuracy is 99.1% and F1-score = 0.984. The model with 3 hidden
layers and 100 units in each layer also gave identical results. This shows that increasing the
number of units in each layer is unlikely to improve the performance any further.

6.5. Best Deep Learning Results vs. Classical Non-Deep Learning Classifiers

In Table 8, we juxtapose the best results from our investigation of the deep learning
classifiers with the results from the classical machine learning techniques. The DNN and
the CNN-GRU models achieved the best results as depicted in the table. The highest
accuracy achieved by both models were 99.1% which also corresponds to the highest F1-
score of 0.984. These results are followed closely by the CNN-LSTM model which achieved
99% overall accuracy and F1-score of 0.983. Next, was the CNN-only model with 98.9%
accuracy and F1-score of 0.981. All of these models outperformed the classical machine
learning classifiers where the best two were SVM and Random Forest. SVM had 98.7%
overall accuracy and F1-score of 0.976, while Random Forest obtained 98.5% accuracy and
F1-score of 0.973. These results suggest that with the static based features extracted for
detecting Android botnets, the deep learning models will perform beyond the limits of the
classical machine learning classifiers.

In the table, the GRU-only model is shown as having the least accuracy results com-
pared to all the other models. This GRU model consisted of 200 hidden units and obtained
an overall accuracy of 82.9%. Similarly, with LSTM-only models, overall accuracies below
75% were observed (results not shown in the table). This confirmed our initial expecta-
tion that pattern recognition (e.g., with convolutional layers or dense layers) was more
important for the type of feature vectors used in the study, rather than context or depen-
dencies. However, the results of Sections 6.1 and 6.2 for the hybrid models suggests that a
combination of methods that can capture both characteristics is promising.
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Table 8. A summary of the best results of each technique compared to popular non-deep learn-
ing classifiers.

Accuracy Precision Recall F1-Score Number of
Parameters

DNN-2-layer-100 0.991 0.990 0.979 0.984 44,501
DNN-3-layer-100 0.991 0.988 0.980 0.984 54,601

CNN-2-layer-GRU-50 0.991 0.988 0.979 0.984 425,273
CNN-1-layer-LSTM-10 0.990 0.986 0.980 0.983 226,617
CNN-1-layer-LSTM-50 0.990 0.983 0.983 0.983 1,106,777
CNN-2-layer-32-filters 0.989 0.983 0.978 0.981 25,625

SVM 0.987 0.980 0.973 0.976 -
Random Forest 0.985 0.982 0.965 0.973 -
Simple Logistic 0.984 0.983 0.963 0.973 -

Decision Tree (J48) 0.981 0.974 0.958 0.966 -
Naïve Bayes 0.872 0.728 0.874 0.795 -

Bayes Net 0.867 0.736 0.832 0.781 -
GRU-200 0.829 0.677 0.766 0.718 122,001

6.6. Model Training Times

When training the deep learning models, the number of epochs has a major influence
on the overall model training time. In our experiments we utilized a stopping criterion
based on minimum validation loss rather than specifying a fixed number of training epochs.
For this reason, the number of training epochs varied between the different configurations
of a given model. Hence, the longest CNN-GRU model to train was the CNN-2-layer-GRU-
25 which took 145 s, and the testing time was 0.482 s. Whereas the shortest CNN-GRU
model to train was the CNN-1-layer-GRU-10 model which took 84.4 s with a testing time
of 0.399 s. The longest CNN-LSTM model to train was the CNN-2-layer-LSTM-5 which
took 141 s with a testing time of 0.468 s. The shortest CNN-LSTM model to train was the
CNN-1-layer-LSTM-25 model which took 83.6 s with a testing time of 0.419 s. Compared
to the other models, the DNN was the fastest to train with training times ranging from 10
to 26 s and an average testing time of 0.15 s.

6.7. Comparison with Previous Works

The results obtained in our study improves the performance beyond the reported
results in previous papers that also used the ISCX botnet dataset in their work. This can
be observed in Table 9. The second column shows the numbers of the botnet and benign
samples used in each of the referenced paper. Note that in some papers, some of the metrics
were not reported. Even though the complete datasets and techniques used were different
in each of the previous works, Table 9 shows that the models developed in this paper
achieved state-of-the-art results with the ISCX botnet dataset compared to the others.

Table 9. Performance comparisons with previous works that utilize ISCX botnets samples.

Paper Botnets/Benign ACC (%) Prec. Rec. F1-Score

Hojjatinia et al. [6] 1800/3650 97.2 0.955 0.960 0.957

Tansettanakorn et al. [11] 1926/150 - 0.972 0.969 -

Anwar et al. [10] 1400/1400 95.1 0.970 0.827 -

Abdullah et al. [13] 1505/850 - 0.931 0.946 -

Alqatawna and Faris [12] 1635/1635 97.3 0.987 0.957 -

Yerima and Alzaylaee [7] 1929/4873 98.9 0.983 0.978 0.981

This paper 1929/4873 99.1 0.990 0.979 0.984
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7. Conclusions and Future Work

In this paper, we presented an extensive evaluation of various deep learning tech-
niques for Android botnet detection using 342 static features consisting of 5 different types.
The deep learning models investigated include: CNN, DNN, GRU, LSTM, as well as CNN-
LSTM and CNN-GRU. The experiments were undertaken using 6802 apps consisting of
1929 botnet apps from the ISCX botnet dataset which has been utilized in several previous
works. The outcomes of our experiments showed that with optimum configuration, the
deep learning models performed quite well yielding high accuracies that were beyond the
limits of the classical machine learning classifiers. DNN showed the best overall perfor-
mance, while CNN-GRU and CNN-LSTM showed promising results that were much better
than GRU-only or LSTM-only models. In future work, we plan to further investigate the
performance of the deep learning models for botnet detection using alternative static and
dynamic features. Another possible direction is to explore alternative network architectures
such as those consisting of parallel rather than purely sequential integrations of the deep
learning model components.
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Abstract: Malware is one of the most significant threats in today’s computing world since the number
of websites distributing malware is increasing at a rapid rate. Malware analysis and prevention
methods are increasingly becoming necessary for computer systems connected to the Internet.
This software exploits the system’s vulnerabilities to steal valuable information without the user’s
knowledge, and stealthily send it to remote servers controlled by attackers. Traditionally, anti-
malware products use signatures for detecting known malware. However, the signature-based
method does not scale in detecting obfuscated and packed malware. Considering that the cause of a
problem is often best understood by studying the structural aspects of a program like the mnemonics,
instruction opcode, API Call, etc. In this paper, we investigate the relevance of the features of
unpacked malicious and benign executables like mnemonics, instruction opcodes, and API to identify
a feature that classifies the executable. Prominent features are extracted using Minimum Redundancy
and Maximum Relevance (mRMR) and Analysis of Variance (ANOVA). Experiments were conducted
on four datasets using machine learning and deep learning approaches such as Support Vector
Machine (SVM), Naïve Bayes, J48, Random Forest (RF), and XGBoost. In addition, we also evaluate
the performance of the collection of deep neural networks like Deep Dense network, One-Dimensional
Convolutional Neural Network (1D-CNN), and CNN-LSTM in classifying unknown samples, and
we observed promising results using APIs and system calls. On combining APIs/system calls with
static features, a marginal performance improvement was attained comparing models trained only on
dynamic features. Moreover, to improve accuracy, we implemented our solution using distinct deep
learning methods and demonstrated a fine-tuned deep neural network that resulted in an F1-score of
99.1% and 98.48% on Dataset-2 and Dataset-3, respectively.

Keywords: malware; machine learning; deep learning; static analysis; dynamic analysis; hybrid
analysis; security

1. Introduction

Malware or malicious code is harmful code injected into legitimate programs to per-
petrate illicit intentions. With the rapid growth of the Internet and heterogeneous devices
connected over the network, the attack landscape has increased and has become a concern,
affecting the privacy of users [1]. The primary source of infection, causing malicious
programs to enter the systems without users’ knowledge. Mostly freely downloadable
software’s are a primary source of malware, which include freeware comprising of games,
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web browsers, free antivirus, etc. Largely financial transactions are performed using the In-
ternet, these have caused huge financial losses for organizations and individuals. Malware
writing has transformed into profit-making industries, thus attracting a large number of
hackers. Current malware is broadly classified as polymorphic or metamorphic, and they
remain undetected by a signature-based detector [2].

Malware writers employ diverse techniques to generate new variants that commonly
include (a) instruction permutation, (b) register re-assignment, (c) code permutation using
conditional instructions, (d) no-operation insertion, etc. Malware analysis is the process
aimed to inspect and understand a malicious behavior [3]. Normally malware are analyzed
by extracting strings, opcodes, sequence of bytes, APIs/system call, and the network trace.

In this paper, we conduct a comprehensive analysis using multiple datasets by exploit-
ing machine learning and deep learning approaches. Classifiers are trained independently
using the static, dynamic feature, and their combinations. We employ dynamic instru-
mentation tools like Ether [4], a sandbox approach for analyzing malware. In addition,
we also make use of sandbox [5]. The motivation behind using the aforesaid sandboxes
are to stop side-effects induced to the host environment and to permit malware to exhibit
its capabilities, which can be used as features for developing detection models. Ether in
particular is based on the application of a hardware virtualization extension, such as Intel
VT [6] and resides entirely outside of the target OS environment. In addition to providing
anti-debugging facilities, Ether can also be used for software de-armoring dynamically.

Starting from these considerations, we propose a malware detector, exploiting machine
learning and deep learning techniques. The experiments were conducted on malware and
benign Portable Executables (PE), Android applications, and metamorphic samples created
using virus kits. The motivation for using these types of files was arrived at by monitoring
the submissions received over the Virus Total [7], a service that performs online scanning
of malicious samples. In particular, we consider a set of features obtained from benign
and malicious executables like mnemonics, instruction opcodes, and API/system calls for
automatically discriminating legitimate and malicious samples. In summary, we list below
the contributions of our proposal:

• Comprehensive analysis of machine learning and deep learning-based malware de-
tection system using four datasets comprising of PE files, collection of ransomware,
Android apps, and metamorphic samples;

• We show that information-theoretic and statistical feature selection methods improve
the detection rate of traditional machine learning algorithms. However, the former
approach exhibited better results in all cases comparing the statistical approach;

• Evaluation of classification models on different types of features such as the opcode
sequence and API/system calls. Here, we investigate the performance of models
trained on independent attribute categories and unifying static and dynamic features.
We show that combining static features with dynamic attributes does not significantly
improve classifier outcomes;

• Exhaustive analysis demonstrates an enhanced F1 score generated by deep learning
methods on comparing machine learning algorithms. Furthermore, a detailed anal-
ysis of code obfuscation on samples developed using virus kits was performed. We
conclude that malware kits generate metamorphic variants which employ simple
obfuscation transformation easily identified using the local sequence alignment ap-
proach. Besides, we show that machine learning algorithms can precisely separate
instances generated through virus kits using generic features like an opcode bigram.

The rest of the paper is organized as follows: In the next section we provide an
overview about the current state of the art in the malware detection context; in Section 3
we present the proposed method for malware detection; experimental analysis is discussed
in Section 4; and, finally, in Section 5 a conclusion and future research plan are presented.
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2. Related Work

To highlight the novelty of our work, we examine malware detection techniques topics
for which the proposed method is related: The technique for malware detection and classi-
fication through machine learning and deep learning algorithms, and other techniques.

2.1. Machine Learning-Based Malware Detection Techniques

Krugel et al. [8] used dynamic analysis to detect obfuscated malicious code using a
mining algorithm. Authors in [9] proposed a hybrid model for the detection of malware
using different features like byte n-gram, assembly n-gram, and library functions to classify
an executable as malware or benign. The work [10] considers the system call subsequence
as an element and regards the co-occurrence of system calls as features to describe the
dependent relationship between system calls.

Furthermore, the work in [11] extracted 11 types of static features and employed
multiple classifiers in a majority vote fusion approach where classifiers such as SVM, k-NN,
naive Bayes, Classification and Regression tree (CART), and Random Forest were used.
Nataraj et al. [12] consider the Gabor filter and evaluated it on 25 × 86 malicious families.
Thus, they built a model using the k-nearest Neighbors approach with Euclidean distance.

2.2. Deep Learning-Based Malware Detection Techniques

Recently in [13], applications were represented in the form of an image to discrimi-
nate between malicious and benign applications. The solution considered static features
extracted by reverse-engineering the malicious code and encoding it by SimHash. The
DroidDetector tool [14] discriminates between legitimate and malicious samples in an An-
droid environment by exploiting a deep learning network, relying on required permissions,
sensitive APIs, and dynamic behaviors features. A deep convolutional neural network for
malware detection is proposed by McLaughin et al. [15], starting from the analysis of raw
opcode sequence obtained by a reverse engineering Android applications. MalDozer [16]
is a tool aimed at Android malware detection and family identification by analyzing API
method calls. Furthermore, the study in [17] proposes a malware detector focused on the
Android environment, aimed to discriminate between malicious and legitimate samples
and to identify malware belonging to the family.

2.3. Malware Detection Using Other Techniques

API calls have been used in the past for modeling program behavior [18,19] and for
detecting malware [20,21]. This paper relies on the fact that the behavior of malicious
programs in a specific malware class differs considerably from programs in other malware
classes and benign programs. Sathyanarayan et al. [22] used static extraction to extract API
calls from known malware to construct a signature for an entire class. In [23], authors use
static analysis to detect system call locations and run-time monitoring to check all system
calls made from a location identified during static analysis.

Damodaran et al. [24] compared malware detection techniques based on static, dy-
namic, and hybrid analysis. Authors in [25] used Hidden Markov Models (HMMs)to
represent the statistical properties of a set of metamorphic virus variants. The metamorphic
virus data set was generated from metamorphic engines: Second Generation virus generator
(G2), Next Generation Virus Construction Kit (NGVCK), Virus Creation Lab for Win32
(VCL32), and Mass Code Generator (MPCGEN). Vinod et al. [26] proposed a method to
find the metamorphism in malware constructors like NGVCK, G2, IL_SMG, and MPCGEN
by executing each malware sample in a controlled environment like QEMU and monitoring
API calls using STraceNTX. Suarez-Tangil et al. [27] focus their efforts to discern malicious
components from the legitimate ones in repackaged Android malware. They consider
control flow graphs generated from code fragments of the application under analysis. They
highlight that most research papers on Android malware detection are focused on outdated
repositories, such as the MalGenome project [28] and the Drebin [29] datasets.

85



Electronics 2021, 10, 1694

DroidScope [30] uses a customized Android kernel to reconstruct semantic views to
collect detailed application execution traces. An approach aimed at detecting Android
malware families was presented in [10,31]. The method is based on the analysis of system
calls sequences and is tested obtaining an accuracy of 97% in mobile malware identifica-
tion using a 3-gram syscall as a feature. Android malware detection exploiting a set of
static features was addressed in [32]. Unsupervised machine learning techniques were
used to build models with the considered feature set, statically obtained from permission
invocations, strings, and code patterns. Furthermore, the Alde [33] framework employs
static analysis and dynamic analysis to detect the actions of users collected by analytics
libraries. Moreover, Alde analyses gives insight into what private information can be
leaked by apps that use the same analytics library. Casolare et al. [34] also focused on
the Android environment by proposing a model checking-based approach for detecting
colluding between Android applications. A comparison of existing techniques is given in
Table 1.
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3. Proposed Methodology

In the following subsections, we discuss our proposed methods for detecting mali-
cious files. We prepare four datasets (a) the first dataset (dataset-I) comprises malicious
executables collected from VX-Heavens [35] along with legitimate files, (b) the second
dataset (dataset-II), which is the collection of malicious files including ransomware’s down-
loaded from virusshare [36] along with goodware gathered from diverse sources finally,
(c) malicious Android applications acquired from the Drebin project [37] and benign apks
(dataset-III), and (d) synthetic malware samples created using virus generation kits. To
improve readability, we present the expansion of abbreviations and meaning of symbols in
abbreviations and mathematical symbols.

To predict unknown samples, we used malwares from a collection of sources such as
the VX Heavens repository [35], ransomware downloaded from virusshare [36], synthetic
malware samples created using a virus kit, and malicious Android apps. Additionally,
we gathered legitimate samples from diverse sources. The generation of feature space
of features like mnemonic, instruction opcode, API calls [38], and 4-gram mnemonic are
extracted after unpacking the files. The basic idea of dynamic analysis is to monitor the
program while in execution. Dynamic analysis of malware needs a virtual environment
to avoid infection on the host system. We thus used different types of sandboxes each for
a different dataset. For VX-Heavens samples, the executable files were made to run on a
hardware virtualized machine such as Xen [39]. The advantage of using an emulator is that
the actual host machine is not infected by the viruses during the dynamic API tracing step.
Ransomware dataset were analyzed in the Parsa sandbox [5] which hooks the API calls
to provide the requested resources to the executable matching an environment condition.
Finally, malicious Android apps were executed in an emulator and system call traces were
logged using strace utility and each application was subjected to random events such as
clicks, swipes, change of battery level, update of geo-location, etc.

API Call tracing requires that the samples are unpacked or unarmored, as explained
earlier since the packers generally try to destroy the import table [40] of the malware or
benign program. To unpack samples, we used Ether patched XEN. Ether patched XEN
is transparent to malware. Hence the anti-debugging techniques like Virtual Machine
Detection [4], Debugger Detection (IsDebuggerPresent() API Call, EFLAGS bitmask) and
Timing Attacks (analyzed values of RDTSC before and after) could be avoided due to a
hardware virtualized environment. We have used XEN as a virtual environment running
on top of Debian Lenny (Debian 5.0.8). Xen is a generic and open source virtualizer. XEN
achieves near native performances by executing the guest code directly on the host CPU.
In our process, we followed these steps:

• Disk Image Creation: We created a disk image, this disk image works as a separate
hard disk;

• Windows XP Installation: Once the disk image was created, we installed Windows
XP on that disk image. We chose Windows XP Service Pack 2 as most of the viruses,
written for Windows environments only. Another reason to choose Windows XP
Service Pack 2 is that the ether patched version of Xen has been tested with XP SP2 as
guest OS and Debian Lenny as host OS;

• Running Ether Patched Xen: Once we have installed the Operating System on Ether
patched XEN, we run the machine using the vncviewer [41];

• Unpacking using Ether Patched Xen: To analyze the malware dynamically, the mal-
ware is executed on the DomU machine (XP SP2) and its footprints are recorded on
the Dom0 system (Debian Lenny).

Ether dumps the sample by finding the Original Entry Point using the memory writes
a program does. The dumped sample could be found in the images directory of ether.
Once we have unpacked malware samples, they execute in an emulated environment and
API tracing achieved using Veratrace.
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3.1. Software Armoring

Software armouring or executable packing, as shown in Figure 1, is the process of
compressing/encrypting an executable file and prepending a stub that is responsible for
decompressing/decrypting the executable for execution [42,43]. When execution starts,
the stub will unpack the original executable code and transfer control to it. Today most
malware authors use packed executables to hide from detection. Due to software armoring,
malware writers can defeat malicious applications from detection.

Figure 1. Software de-armoring.

Before beginning with the analysis of the malware, we should check whether the
malware is armored or not. We use Ether as a tool for de-armoring since it is not signature-
based and also due to its transparency to malware. Ether detects all the writes to memory
a program does and dumps the program back in the binary executable form. It creates a
hash-table for all the memory maps, and whenever there is a write to a slot in the hash
table, it reports that as the Original Entry Point, which is the starting point of execution of
a packed executable.

3.2. Feature Extraction

In our approach, we used API calls (dynamic malware analysis), and mnemonic/
opcode, instruction opcode, and 4-gram mnemonic (static malware analysis). The process
of feature extraction is briefly explained in Figure 2. To extract these features the various
open-source tools used are listed below:

• API Call tracing using Veratrace. Veratrace is an Intel PIN-based API call tracing
program for Windows. This program can trace API calls of only de-armored pro-
grams obtained from Ether. The output of Veratrace is parsed, and each executable
is represented in the form of a vector. The collection of vectors of all applications is
represented in the form of a two-dimensional matrix referred to us as the Frequency
Vector Table (FVT) of API traces;

• Mnemonics and instruction opcode are extracted using ObjDump [44]. A custom-
developed parser transforms the sample to FVT of mnemonics and instruction opcode.

In the following paragraphs, we briefly introduce the features extracted from malware
and legitimate executables.

3.3. API Calls Tracing

The Windows API, informally WinAPI, is Microsoft’s core set of application program-
ming interfaces (APIs) available in the Microsoft Windows operating systems. In Windows,
an executable program to perform its assigned work needs to make a set of API calls.
For example, for file management, some of the API calls are OpenFile: Creates, opens,
reopens, or deletes a file; DeleteFile: Deletes an existing file; FindClose: Closes a file
search handle that is opened by FindFirstFile, FindFirstFileEx, or FindFirstStreamW
function; FindFirstFile: Searches a directory for a file or subdirectory name that matches
a specified name; and GetFileSize: Retrieves the size of a specified file, in bytes. Thus
no executable program can run without the API calls. Hence, the API calls made by an
executable is a good measure to record its behavior.
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Figure 2. Feature extraction.

To extract APIs, we use Veratrace an API Call Tracer for Windows. It can trace all calls
made by a process to the imported functions from a DLL. For extracting APIs, Veratrace
mandates unpacking the samples. If packed, the import table would be populated with API
calls like GetProcAddress() and LoadLibrary(), which are also common to legitimate
executables. We have designed a parser to parse all the traces and filter out API names
without argument, which is considered a feature in our work.

3.4. Mnemonic, Instruction Opcode, and 4-Gram Mnemonic Trace

We performed static analysis using the open-source ObjDump tool to obtain assembly
language code. From these files, mnemonics, instruction opcode, and 4-gram mnemonic are
extracted. An independent parser is developed to filter out mnemonics and
instruction opcodes.

Each file is represented in the form of a vector, where the elements of the vector are the
occurrence of an attribute. Since attribute values have different ranges, we normalize the
data to a common scale. In our approach, we utilized a standard scalar approach “Z–Score”.
Besides, the normalized feature space is then discretized into three bins and used as an input
to the Minimum Redundancy Maximum Relevance (mRMR) feature selection algorithm.

3.5. Feature Selection

In earlier studies, it has been reported that the feature selection is an integral com-
ponent [45] in a machine learning pipeline. Many feature selection algorithms have been
designed specifically for the application domain, furthermore every algorithm uses differ-
ent criteria (such as information gain, Gini index, etc.) for extracting prominent attributes.
In the presence of irrelevant features, the detection model learns complex hypothesis func-
tions, and learning models cannot generalize in identifying a new sample. Fundamentally,
the role of a feature selection approach is to extract a prominent subset of attributes to
improve classifier performance. The advantages of feature selection are listed below:

• Dimension reduction to haul down the computational cost;
• Reduction of noise to boost the classification accuracy;
• Introduce more interpretable features that can help identify and monitor the un-

known sample.
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We observe that the initial feature space obtained contained irrelevant attributes.
By irrelevance, we mean set of feature which cannot identify a class and can never influ-
ence detection. In particular, these attributes appear equally in all samples of the target
class. As a result, we selected discriminant features using maximal statistical dependency
criterion based on mutual information known as Minimum Redundancy Maximum Rele-
vance (mRMR), and by comparing means of two or more features using the ANOVA [46]
as shown in Figure 3.

Figure 3. Feature selection process.

The training process can be either supervised, unsupervised, and semi-supervised.
Supervised feature selection determines feature relevance by evaluating the correlation
of attributes with the class. As our training data is labeled, we used supervised feature
selection algorithms and filter methods to determine the correlation of the features with the
class label. Using Filter methods, features are selected based on their intrinsic characteristics,
their relevance, or controlling power concerning the target class. Such methods are based
on mutual information, statistical test (t-test, F-test). A feature can become redundant due
to the existence of other large volumes of relevant attributes in the feature space.

3.5.1. Minimum Redundancy Maximum Relevance

Maximum relevance criteria select features that highly correlated to the target class.
mRMR is a filter method demanding the feature space to be discretized into states. However,
this feature set is not a comprehensive representation of the characteristics of the target
variable due to two essential aspects, as cited in [47]:

1. Efficiency: If a feature set of 50 samples contains many mutually highly correlated
features, the representative features are very few, say 30, which means that 20 features
are redundant, increasing the computational cost;

2. Broadness: According to their discriminative powers, we select some attributes,
but such feature space is not maximally representative of the original space covered
by the entire data set. The feature set may represent one or several dominant charac-
teristics of an unknown sample, but it could also be a narrow region of relevant space.
Thus the generalization ability could be limited.

92



Electronics 2021, 10, 1694

To expand the representative power of the attribute set features while maintaining
minimum pair-wise correlation, the minimum redundancy criterion supplements the
maximum relevance criteria such as mutual information with target class. The mutual
information of two features x and y is defined as the joint probabilistic distribution P(x,y)
and their respective marginal probabilities P(x) and P(y) (refer to Equation (1)).

I(x,y) = ∑
i,j∈S

P(xi, yj) log
P(xi, yj)

P(xi)P(yj)
, (1)

where x, y is the feature, namely mnemonic, instruction opcode, api call, 4-gram mnemonic,
P(xi, yj) is the joint probabilistic distribution of feature x and y, P(xi), P(yj) are the
marginal probabilities, I(x, y) is the mutual information between feature x and y, i in-
dicates the level or state of feature x and j indicates the state of feature y, and S is the set
obtained from cross product of set of states of x and y. Subsequently, we compute the
relevance and redundancy value of attributes discussed below.

• Relevance value of an attribute x, V(x) is computed using Equation (2):

V(x) = I(h, x), (2)

where h is the target variable or class, I(h, x) is the mutual information between class
and feature x.

• Redundancy value, W(x) of feature x is obtained using Equation (3):

W(x) = ∑
j∈N

I(yj, x), (3)

where N is the total number of attributes, I(yj, x) is the mutual information of features
yj and x respectively.

Using Equations (2) and (3), minimum redundancy and maximum relevance of an
attribute is computed, which is discussed below:

• Mutual Information Difference (MID): Is defined as the difference between the rel-
evance value (V(x)) and the redundancy value (W(x)). To optimize the minimum
redundancy and maximum relevance criteria, the difference between the relevance
and redundancy value (see Equation (4)) was computed.

MID(x) = V(x)−W(x), (4)

Hence, the feature with maximum MID value indicates the mRMR feature;
• Mutual Information Quotient (MIQ): Is obtained by dividing the relevance value with

the redundancy value, thus optimizing the mRMR criteria (refer to Equation (5)):

MIQ(x) =
V(x)

W(x) + 0.001
. (5)

Hence, the feature with a maximum MIQ value indicates the mRMR feature. Our
approach use both these criteria, i.e., MID and MIQ, for selecting features, and compare
classifier performance trained on the set of MID and MIQ attributes.

3.5.2. Analysis of Variance

Analysis of Variance (ANOVA) is a statistical method to compare the means of two
or more groups. Depending upon the features and the level of features, ANOVA can be
classified as follows:

• One way ANOVA: Requires one feature with at least two levels such that the levels
are independent;
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• Repeated Measures ANOVA: It commands one feature with at least two levels such
that the levels are dependent;

• Factorial ANOVA: This approach demands two or more features, each of which with
at least two levels either dependent, independent, or mixed.

Our proposed approach uses factorial ANOVA criteria for feature selection. In doing
so, attributes highly correlated to the target class are determined. In particular, using
ANOVA we estimate the impact of one or more independent variables on the dependent
variable (i.e., class label). Feature influence is computed using variance, furthermore,
it indicates separability between the class. Specifically, if the variance of an attribute is
low then it has less impact on the target class. Using ANOVA, we choose a subset of
independent variables having a stronger affinity towards classes. Generally, Post Hoc tests
such as “F” statistics is performed to analyze the results of experiments. “F–Statistic” has
its tailed distribution and is always positive. Variation in data can be due to two critical
aspects (a) variation within the group and (b) variation between the group. Prominent
features are derived using the procedure discussed below:

SSp
T = SSp

B + SSp
W , (6)

where SST is the total sum of squares of feature p.

SSp
T =

k

∑
i=1

l

∑
j=1

(Xij − µp)
2, (7)

Here, k is the number of classes (malware/benign), l is the number of states of feature p,

µp =
1

k ∗ l

k

∑
i=1

l

∑
j=1

Xij, (8)

µp is the mean of frequencies of feature p.

SSp
W =

l

∑
i=1

k

∑
j=1

(Xji − µ
p
i )

2, (9)

where SSp
W is the sum of squares of within the group of feature p, and µ

p
i is the mean of

frequencies of feature p in ith discretization state.

DFp
W = (k ∗ l)p − lp, (10)

where DFp
W is the degree of freedom of feature p within the group, and (k ∗ l)p is the

number of observations of feature p, lp is the number of samples of feature p:

DFp
B = lp − 1, (11)

where DFp
B is the degree of freedom of feature p between the group. Finally, F–Score is

defined as:

F(DFp
B , DFp

W) =
(SSP

B/DFP
B )

(SSP
W/DFP

W)
. (12)

Eventually a feature p, with the highest F–Score is selected as a candidate member of
the feature set.

3.6. Classification

A classification is a form of data analysis that can be used to extract models describing
classes. It predicts categorical (discrete, unordered) labels. In our work, we utilized
various machine learning and deep learning algorithms, such as Support Vector Machine
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(SVM) [45,48], Naïve Bayes [49], J48 [50], Random Forest (RF) [51], and XGBoost [52].
In addition, we also evaluate the performance of the collection of deep neural networks
like the Deep Dense network, One-Dimensional Convolutional Neural Network (1D-
CNN) and CNN-LSTM in classifying unknown samples. The hyperparameters of all
deep neural networks were tuned using the random search cross-validation approach.
The above-mentioned classification algorithms were chosen as they have been extensively
used in prior research work, and a subset of these classifiers have demonstrated to produce
improved detection of unknown malware files [53–55] .

In real-world applications, the size of the dataset is massive, data appears in a different
form. The shallow network has a limited generalization capability. For obtaining better
results, the shallow networks must be presented with features that are handpicked or
suitably chosen after several iterations of the feature selection algorithms. Thus, the entire
process is computationally expensive, also error-prone if attributes are extracted by humans.
In contrast, deep neural networks employ a myriad of hidden layers, with each layer
consisting of many neurons. Each neuron act as a processing unit to output complex
features of input data. The lower layers extract features that are gradually amplified in the
subsequent layers (higher layers). A deeper layer derives important aspects of the input
data by omitting irrelevant details needed for classification. Thus, deep networks does not
require feature extraction from scratch. In general, classification is a two step process as
discussed below:

1. In the first step, we built a classifier describing a predetermined set of classes or con-
cepts, also known as the learning step (or training phase). In this stage, a classification
algorithm builds the classifier by analyzing or learning from a training set and their
associated class labels. A tuple or feature, X, is represented by an n-dimensional
attribute vector, X = (A1&A2&...&An), where, n depicts measurements made on
the tuple from n database attributes, respectively, A1, A2, ..., An. Each tuple, X, is
assumed to belong to a predefined class determined by the class label. The labels
corresponding to the class attribute is discrete valued and unordered. The individual
tuples making up the training set are referred to as training tuples and are randomly
selected from the dataset. The class label of each training tuple is known to the
classifier already, thus this approach is known as supervised learning;

2. In the second step, we use the classification model and predict the test data. This re-
served set of samples is never used in the training phase. Eventually, the performance
of the model on a given test set is estimated, generally evaluated as the percentage of
test set tuples that are correctly classified by the classifier.

4. Experimental Evaluation and Results
4.1. Evaluation Metrics

We used following evaluation metrics:

• True Positive Rate (TPR) or Recall (R) = TP
TP+FN ;

• Precision (P) = TP
TP+FP

Using Recall and Precision F-measure is estimated;
• F-measure = 2× P×R

P+R
Finally accuracy can be computed as shown below;

• Accuracy (A) = TP+TN
TP+FN+TN+FP

True Positive (TP) is number of samples correctly identified as malware. True Nega-
tive (TN) is the count of files identified as legitimate. False Negative (FN) is the number of
malicious files misclassified as benign. False Positive (FP) is the number of benign files
wrongly labeled as malware by the classifier.
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4.2. Experiments Results

In this section, we discuss the experiment’s setup, results obtained and the analysis
of the result. The primary objective of this work is to perform analysis on different types
of a dataset using various machine learning algorithms. For this purpose we created four
datasets discussed below:

• Dataset-1 (VX-Dataset): A total of 2000 Portable Executables were collected which
consists of 1000 malware samples gathered from sources VxHeaven (650) [35], User
Agency (250), and Offensive Computing (100), and benign samples were collected
from Windows XP System32 Folder (450), Windows7 System32 Folder (100), Mik-
Tex/Matlab Library (400), and Games (50);

• Dataset-2 (Virusshare-Dataset): A total of 622 executables were downloaded from
virusshare [36], these belong to malware families like Mediyes, Locker. Intallcore,
CryptoRansom, Citadel Zeus, and APT1_293. In addition, we collected 118 benign
files from the freshly installed Windows operating system. These samples were used
to evaluate the classifier performance on multi-label classification;

• Dataset-3 (Android-Dataset): A total 4000 applications were considered, out of
which 2000 malicious samples were randomly chosen from the Derbin project [37],
and 2000 legitimate applications were downloaded from the Google Playstore. Each
benign application was submitted to the VirusTotal service to validate its genuinity;

• Dataset-4 (Synthetic Samples): VX Heavens reports nearly 152 synthetic kits and a
few metamorphic engines to generate functionally equivalent malware code. Phal-
con/Skin Mass-Produced Code generator (PS-MPCs), Second Generation virus-
generator (G2), Mass Code Generator (MPCGEN), Next Generation Virus Creation
Kit (NGCVK), and Virus Creation Lab for Win32 (VCL32) are widely used to generate
synthetic malware. A total of 320 viruses were generated with virus constructors and
used as training samples. A separate test set is considered which includes 95 viruses
(20 viruses from each generator and 15 real metamorphic) and 20 benign samples.

For experimenting on Dataset-1 and Dataset-4, we used a machine installed with
Debian Lenny (Debian 5.08) as the host operating system, Windows XP Service Pack 2 as
the guest operating system, i7 processor with 8GB RAM and 1TB HDD. Experiments on
Dataset-2 and Dataset-3 were performed on Intel core i7, 10th generation with 16GB RAM,
and 1TB HDD. Before executing samples in the system, we freshly installed the operating
system and a snapshot of virtual environment was taken. After executing the sample, we
restore the sandbox to its clean state, otherwise it would have a negative impact on the
feature extraction phase.

4.3. Investigation of Relevant Feature Type-Dataset-1

We extracted mnemonics from 2000 samples. The experimental results obtained from
feature reduction using mRMR (MID and MIQ) and ANOVA are as shown in Figure 4.
We obtained these outcomes after classifying the samples using SVM, AdaBoost, Random
Forest, and J48. Five mnemonic-based models were constructed at a variable length,
starting from 40 to 120 at an interval of 20. Among these five models, ANOVA provides
the best result with a strong positive likelihood ratio of 16.38 for the feature length of
120 mnemonics using AdaBoostM1 (J48 as base classifier). The main advantages of this
model are its low error rate and speed. However, mnemonic-based features can be easily
modified using code obfuscation techniques.
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Feature Length

(a) True positive rate.

Feature Length

(b) False positive rate.

Figure 4. Performance of classifiers on mnemonic features.

The dynamic API features initially had a feature length of 4480. We use reduction
algorithms like mRMR (MID), mRMR (MIQ), and ANOVA to obtain a reduced feature-
length of 40, 60, 80, and 120 as illustrated in Figure 5. When we compare the different
feature lengths, we observe that the likelihood for returning positive values is the highest in
the case of mRMR (MIQ) at a feature-length of 120 prominent APIs using Random Forest.

Feature Length

(a) True positive rate.

Feature Length

(b) False positive rate.

Figure 5. Performance of classifiers trained on API features.

Next, we derived 4-grams from a total feature space consisting of 1249 features.
The features effectively reduced with mRMR (MID) methods, mRMR (MIQ), and ANOVA.
The classification model’s performance is estimated over variable feature-length starting
from 40 until 120 in steps of 20 as shown in Figure 6. For the above-mentioned five-feature
length, mRMR(MIQ) produces the best result with over 96% accuracy for feature-length
120 with Random Forest. However, the limitation stated in [56] is applicable in the current
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scenario. Generation of 4-grams are computationally expensive, exhibit diminishing returns
with more data, are prone to over-fitting, and do not seem to carry vital information from
discriminating samples. At the same time, 4-grams do exhibit some merits as it partially
depicts the behavioral snapshot of a program and sometimes produces comparable results
to other approaches.

Figure 6. Performance of 4-gram features.

Finally, we derived the opcode-based feature set and reduced these features with
mRMR (MID), mRMR (MIQ), and ANOVA, where the performance of the model is evalu-
ated over a feature-length between 40 and 120 in increments of 20 as shown in Figure 7.
Among these five-feature lengths, we observed that ANOVA attains the highest perfor-
mance with a positive likelihood ratio of 19 for feature-length 100 using Random Forest.
However, the results obtained with mRMR is very close to the ANOVA features.

Feature Length

(a) True positive rate.

Feature Length

(b) False positive rate.

Figure 7. Performance of classifier trained on opcode features.

Hence, from the results we obtained, we observe that API features had a higher
detection rate of 97.4% with only a fallout of 1.7% as against 4-gram’s 93.15% accuracy.
Again, when we compare the results obtained from API features as opposed to the results
gathered from mnemonic features and opcode features, we see that opcode features had
the highest likelihood ratio of 19 as against mnemonic features, and API features having a
LR+ ratio of 16.38 and 15.69, respectively.

To summarize experiments on Dataset-1 considering each feature independently on
four classification algorithms, namely J48, Support Vector Machine (SVM), AdaBoostM1
(with J48 as a base classifier), and Random Forest (RF), we observe that Random Forest and
AdaBoost produced the best results. We can attribute this accuracy of Random Forest as it
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is an ensemble-based technique that derives its output from the sample by accumulating
votes from multiple forests. We can credit the boosting technique that AdaBoost employs
for improving its accuracy. AdaBoost cascades multiple weak classifiers to give a strong
learner, ensuring a high degree of precision. The J48 classifier comes next in terms of the
results produced in comparison to the other classifiers. The output produced by J48 is close
to the best classifiers in some cases but is consistently inferior compared to the other two
classifiers. SVM produces poor results among the four classifiers, which can be explained
by SVM’s tendency for over-fitting when the number of features is higher than the number
of samples.

We further evaluate the performance of machine learning models generated by com-
bining different feature categories. We consider such a feature space as a multimodal
attribute set. The term modality means the particular mode in which something is ex-
pressed. In this context, it refers to the various features obtained with feature extraction,
as shown in Figure 2. In the unimodal architecture, we perform classification based on a
single modality and thus, this framework is limited to operating on a single attribute type.
To investigate if blending different features from diverse feature categories could improve
classification accuracy, we furthered our experiment using multimodal architecture.

Multimodal architecture involves learning based on multiple modalities. This solution
is based on utilizing the relationship existing between the various features of the data
available. This network can be used in converting data from one modality to another
or in using one attribute set to assist the learning of another attribute set etc. We have
achieved multimodal fusion in our experiment by carrying out feature selection (as shown
in Figure 3) on the relevant attributes from diverse categories (4-gram, mnemonics, API,
and opcodes) and then fusing them as shown in Figure 8.

As each feature has a different representation and correlation structure, the fusion of
all these relevant features helps to extract maximum performance. Furthermore, after fus-
ing these features, we were able to obtain a new feature space comprising of promising
attributes. Additionally, we considered the new feature space for creating diverse classifi-
cation models.

The presence of irrelevant features or redundancy in the data set might degrade the
performance of the multimodal classification. Since we present the feature sets through
various feature selection methods before performing feature fusion, our classifier is less
susceptible to problems induced due to redundancy and extraneous features.

Figure 8. Multimodal architecture for feature fusion classification.
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The ensemble classifier demonstrated the maximum accuracy of 97.98% with a feature-
length of 240 using Random Forest, as shown in Figure 9. Among the unimodal classifiers,
the API features demonstrated the highest detection rate of 97.4% with a FPR of 1.7%.
Moreover, the opcode features displayed a detection rate of 91.6% and 0.48% FPR. By ana-
lyzing the results of both the unimodal and multimodal architectures, the results obtained
using the multimodal architecture illustrate significant improvement compared to the
results gained from the unimodal classifiers (as shown in Figures 4–7). Since the ensemble
classifier was developed by concatenating prominent features from various feature sets,
it is evident from the results that each modality considered for fusion has contributed to
the overall performance of the classifier. Furthermore, this demonstrates that multimodal
learning can be promising for increasing the detection in the malware detection task.

Figure 9. Performance of feature fusion.

Summary: Experiments on VX-Dataset demonstrates that combining prominent
mRMR features results in improved results on comparing individual features. The highest
detection rate is obtained with Random Forest and AdaBoost models, due to ensemble,
bagging, and boosting strategies. APIs play a significant role in predicting examples,
with poor outcomes obtained using opcodes. Another important trend noticed is that the
results of multimodal feature space and API unimodal classifier marginally differ. This
is because the opcode attribute in combined attribute space does not contribute towards
classification, as they introduce more sparsity in feature vectors. Hence, we conclude that
dynamic feature, i.e., API plays a critical role in discriminating malware and benign files.

4.4. Evaluation on Virusshare Samples Dataset-2

In this experiment, we perform a comprehensive evaluation on samples downloaded
from Virusshare. As we saw inferior performance using static features, we performed
analysis on APIs by running samples in the Parsa sandbox. The transition from Ether
to an alternative sandbox (Parsa sandbox) arrived as many executables crashed while
running in Ether. We observed that Parsa sandbox provides the requested resources to
the executing samples by logging the API calls. This sandbox delivers the resources by
matching the API used by executable with an API list which corresponds to a distinct
set of operations corresponding to a mouse event, browser activities, file operations, etc.
In this, the program is given an illusion of being run in a real environment as opposed to
the virtual environment. While a program is executing, we log all APIs, extract call names,
and select prominent calls using mRMR to create a machine learning model. In addition,
we perform experiments using different deep learning models without feature engineering
and compare the outcomes of both ML models and deep neural networks. Table 2 com-
pares the average of the results of different models. We observe that the best results are
obtained with a deep neural network, followed by one-dimensional convolutional neural
network and XGBOOST. Table 3 exhibit the network topology and hyperparameters of
deep neural network models. In all intermediate layers, we use ReLU activation function
and randomly drop some neurons (i.e., dropout) to attain the best outcome for a particular
neural network configuration.
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Table 2. Results of models on Virusshare dataset.

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

DNN 99.1 99.1 99.1 99.1
1D-CNN 97.9 97.9 97.9 97.9
CNN-LSTM 69.4 79.6 73.4 79.6
XGBOOST 97.8 97.8 97.5 97.8
Random Forest 97.3 97.25 96.89 97.35
AdaBoostM1 96.8 97.8 96.4 97.0
SVM 89.28 88.24 88.72 86.8
J48 87.54 88.08 87.6 86.53

Table 3. Network architecture and hyperparameters of deep neural network models.

Model Topology

DNN
Dense1_units = 100; Dropout = 0.2; Activation = relu; Dense2_units = 50;
Dropout = 0.2; Activation = relu; dense_final_units: 6; Activation = softmax;
Optimizer: Adam; Learning rate: 0.001; batch size = 128, epoch = 40

1D-CNN

Conv1D: (num_filters = 15, filter_size:2); Activation = relu; Maxpooling1D;
Conv1D: (num_filters = 15, filter_size = 2); Activation = relu; Maxpooling1D;
Flatten; Dense units = 100; Activation: relu; dropout = 0.05; dense_ final_units = 6;
Activation = Softmax; optimizer = Adam, epoch = 15

SVM kernel = rbf; gamma = 1 ; max_iter = 500; decision_function_shape = ovo

XGBOOST XGBClassifier()

CNN-LSTM

Conv1D: ( num_filters = 15, filter_size = 2); Activation: relu; maxpooling1D;
LSTM_units = 100; Dense_units = 100; Activation = relu; Dropout = 0.05;
Dense_units = 50; Activation = relu; Dropout = 0.05; Dense_final_units = 6; Acti-
vation = softmax; Optimizer = adam

4.5. Evaluation on Android Applications Dataset-3

In this experiment, we identify malicious Android applications (also known as app.)
using machine learning and deep learning techniques. Here, we use system calls as a
feature for representing each application. First, we create an Android virtual device and
install applications to be inspected. A total of 2000 malware applications are randomly
chosen from Drebin dataset [37], and 2000 legitimate applications are downloaded from
the Google Playstore. While running applications, system calls are recorded using strace
utility, during this event we employ Android Monkey (a utility in Android SDK for fuzz
testing application) to simulate the collection of events (e.g., changing the location, battery
charging status, sending SMS, dialling to a number, swipes, clicking on widgets of an app,
etc.). In particular, in this work we execute an application with 1500 random events for one
minute, however, the analysis could also be performed with varying events.

Relevant system calls are selected using the mRMR feature selection approach, and fur-
ther each app. is represented using a numerical vector employing Term Frequency Inverse
Document Frequency (TF-IDF). The performance of machine learning classifiers on the se-
quence of system call (two calls considered in sliding window fashion) is shown in Table 4.
It was observed that distinguishing feature vectors were obtained by considering two
consecutive system calls. Some examples of system call sequence are shown in Figure 10.

101



Electronics 2021, 10, 1694

Figure 10. System call sequence.

We considered 40% of top system calls from the list of unique calls extracted from
entire training set.

Table 4. Performance matrix of machine learning classifiers on system call sequence.

Classifier Accuracy F1-Measure TPR AUC

Random Forest 97.80% 97.8% 97.7% 0.998
AdaBoostM1 97.37% 96.4% 96.8% 0.97

J48 95.12% 95.1% 96.0% 0.965
SVM 95.02% 95.3% 95.1% 0.963

XGBoost 99.82% 99.82% 99.71% 0.998

From Table 4, we can visualize the best outcome for the XGBoost classifier. However,
this result is obtained with an extra effort i.e., feature engineering which is a critical task
in the machine learning pipeline. To eliminate the task of feature engineering, we make
use of deep neural network architecture, which is a collection of layers, with each layer
consisting of several neurons. A neuron acts as a processing unit that collects multiple
inputs, multiplies weight, and finally applies the activation function. We use a deep neural
network with an input layer consisting of 500 neurons and the second layer contains
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250 neurons. In all layers, we use the Rectified Linear Unit (ReLU) activation function. The
sigmoid activation function was used in the output layer since malware identification is a
binary classification problem. For faster convergence and to avoid overfitting, the Adam
optimizer and cross-entropy loss function are utilized. Table 5 is the results obtained at
varying values of dropout, the best results are obtained with a dropout rate of 0.1.

Table 5. Performance of multi-level perceptron on varying the dropout rate.

Dropout Accuracy (%) F1-Score (%) Precision (%) Recall (%)

0.1 98.48 98.48 98.48 98.48
0.2 97.92 97.92 97.97 97.87
0.3 98.38 98.38 98.48 98.28
0.4 98.13 98.14 97.41 98.89
0.5 98.03 98.04 97.50 98.58
0.6 97.97 97.96 98.57 97.37

4.6. Evaluation on Synthetic Samples Dataset-4

Malware constructors generate variants from the base virus by inserting equivalent
instructions, reordering, and subroutine permutations as code obfuscation techniques.
The segments mutate from one generation to another where mutant code is transformed by
the metamorphic engine to evade AntiVirus (AV) signature detection. This motivates the
use of machine learning techniques to explore metamorphism among variants and within
different families among synthetic samples, and to understand the extent of obfuscation
induced by the virus kits. Malware data set comprising of 800 NGVCK viruses were
used. Prior studies in [57] reported that the NGVCK samples could easily bypass strong
statistical detectors based on HMM by using the opcode sequence. Likewise, 1200 benign
executables were downloaded from different sources, which include games, web browsers,
media players, and executables of system 32 from a fresh installation of the Windows XP
operating system. As in previous experiments, we scan all benign with VirusTotal to assure
that none of the benign samples is infected. The complete data set was divided such that
80% of samples are used for training and the remaining 20% are used as a test set. In this
experiment, executables based on API calls were analyzed.

We extracted unique opcode bigrams from the training set and found 733 of them.
Prominent opcodes are filtered out using the mRMR approach. We also studied the impact
of varying feature lengths beginning with 50 bigram opcode until 250 bigrams are included.
The feature space is extended in increments of 50 opcodes at a time. We found that
an increase in bigrams had a marginal influence on the classifier performance. As we
progressively extend the feature vector, the informative attributes begin to appear, which
eventually improves the results. However, if we further increase the features beyond
a certain limit there is a drop in accuracy, primarily due to the addition of noise. We
developed a classification model using different algorithms such as J48, AdaBoostM1 with
J48 as a base classifier, and Random Forest. Table 6 compares the best outcome of classifiers
attained at a feature length of 150 bigrams.

Table 6. Performance metrics of machine learning models.

Classifier Accuracy (%) F-Measure (%) Precision (%) Recall (%)

J48 99.5 99.4 99.5 99.3
AdaboostMI(J48) 99.5 99.4 99.5 99.3
Random Forest 99.7 99.6 99.5 99.7
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To understand the extent of metamorphism in virus generation kits, 677 viruses were
created using different infection mechanisms to form malware families. In particular, we
generated using virus kits (NGVCK, MPCGEN, G2, and PSMPC) and also downloaded real
malware samples downloaded from VX Heavens. Data set description is given in Table 7.

Table 7. Data set description with samples, number of families, and number of variants of each family.

Constructors Number of Families Number of Variants

NGVCK 5 21
G2 5 21

PSMPC 5 21
MPCGEN 5 21

Real Malware Samples 11 5–77

Mnemonics are extracted from each malware sample and aligned using the global and
local sequence alignment method. Sequence alignment places one opcode sequence over
another to determine if sequences are identical. In the process of alignment, two opcode
sequence gaps may be inserted. We have adopted a simple scoring scheme where a match is
assigned a value of +1, and every mismatch and gap score is assumed as −1. A similarity
matrix is constructed using pairwise alignment of malware samples within the family.
We record minimum, average, and highest similarity distance for all malware samples.
Likewise, the similarity distance of base malware across malware families is computed.

Two families are said to overlap if the similarity distance computed for base malware
samples Basei and Basej is within the range of minimum and average similarity distance
determined for families i or j. This means the greater the distance of a sample from the
base malware, the lesser the similarity. Conversely, a high score depicts a higher similarity
between any two samples. Table 8 depict a segment of pairwise alignment of two samples
generated using the NGVCK constructor. Each row preceded with a hash symbol represents
a gap and an asterisk designate a mismatch of an opcode for any two malware samples.

The local alignment technique is employed to identify a common code among ob-
fuscated samples as the code varies in the subsequent generation to identify conserved
code regions. We found variants generated from MPCGEN are similar to G2 and PSMPC.
In Figure 11, MPCGEN-F1 and MPCGEN-F3 have high similarities with a base malware of
G2 and PSMPC (G2-F1, G2-F3, PSMPC-F1, and PSMPC-F3).

Table 8. Pairwise alignment of two samples generated using the NGVCK constructor. The sequence
shows match, mismatch, and gaps inserted for aligning the samples.

Sample 1 Sample 2

push push
retn retn
# - mov
# - sub

and and
lea lea

mov mov
mov mov
# - popa
# - sub

jmp jmp
* inc mov
* shr and
* ror mov

* cmp dec
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Figure 11. Overlapping MPCGEN malware families.

To examine obfuscation techniques using malware constructors, we calculated align-
ments of sequences and recorded mismatch among mnemonics. There was a visible instruc-
tion replacement for NGVCK samples in comparison to other synthetic generators. In Table 9,
prominent mismatch opcodes are shown for four generators as the rest has shown a similar
trend. mov, push, lea, pop, and jmp are primarily used as replacement instructions.

Table 9. Replacement of opcodes for malware generator (NGVCK, G2, PSMPC, and MPCGEN).
For all generators, mov, push, pop, and jump instructions are replaced.

NGVCK G2 PSMPC MPCGEN

add mov int call jnz loop mov pop
push mov mov pop - cmp mov
mov pop lea mov - int mov
call mov xor cwd - mov lea
mov sub mov movsb - jmp int
push add rep movsb - call add
mov xor xor mov - add movsw
and mov cwd mov - lea jmp
mov jz int inc - movsw mov

mov cmp movsb movsw - push pop

To ascertain overlap among real malware samples of VX-Heavens and the obfuscated
families, we studied the overlapping of the opcode sequence of real malware samples with
synthetic ones. Initially, we determine base malware alignment (a sample that is closer to all
samples in a family). Figure 12 shows the overlap of Win32.Agent with NGVCK indicating
real samples that also use code modification similar to synthetic constructors. Win32.Bot
and Win32.Downloader overlap Win32.Autorun, Win32.Downloader, Win32.Mydoom, and
Win32.Xorer families indicating that worm families preserve the common base code to
differ in syntactic structure due to obfuscation or an extension of malevolence.
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Figure 12. Overlapping families of real malware with other families.

5. Conclusions and Future Work

In this paper, we address the detection of malicious files using diverse datasets
comprising of real and synthetic malware samples. The solution employs a collection of
machine learning and deep learning approaches. Machine learning models were trained on
prominent features derived using mRMR and ANOVA. Our results show that the Random
Forest classifier attained better results, comparing all other machine learning algorithms
used in this work. We also conclude that models trained on static features did not attain
good results due to the sparse vectors. We demonstrate the efficacy of APIs and system
call sequence in identifying samples. Moreover, to improve accuracy, we implemented
our solution using distinct deep learning methods, and demonstrate fine-tuned a deep
neural network that resulted in an F1-score of 99.1% and 98.48% on Dataset-2 and Dataset-
3, respectively. Finally, we performed an exhaustive analysis of code obfuscation on
variants generated using NGVCK and other virus kits. We found that NGVCK samples
are appropriately detected by using a simple feature, such as opcode bigram. We also
demonstrated that there exists inter-constructor overlaps especially amongst G2, MPCGEN,
and PSMPC indicating the use of a generic code for infection. Our results also show
that malware constructors employ naive obfuscation techniques, particularly they utilize
junk instructions, a replacement of equivalent instructions involving mov, push, pop, jump,
and lea.

In future, we would like to analyze malware and benign samples using an ensemble
of features and classify unseen samples using ensembles of classifiers employing majority
voting. We would also like to experiment on multi-class classification, i.e., labeling malware
to its respective family. Moreover, we plan to investigate the efficacy of the machine learning
and deep learning models on evasive samples generated through feature manipulations,
and propose a countermeasure against adversarial attacks.
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Abbreviations
The following abbreviations are used in this manuscript:

List of Abbreviations
1D-CNN One-Dimensional Convolutional Neural Network
ANOVA Analysis of Variance
API Application Programming Interface
AV AntiVirus
CART Classification and Regression Tree
CNN Convolutional Neural Network
CNN-LSTM CNN Long Short-Term Memory Network
DNN Deep Neural Network
FN False Negative
FP False Positive
FPR False Positive Rate
FVT Frequency Vector Table
G2 Second Generation Virus Generator
HMMs Hidden Markov Models
k-NN K-Nearest Neighbors
MID Mutual Information Difference
MIQ Mutual Information Quotient
MPCGEN Mass Produced Code Generation Kit
mRMR Minimum Redundancy and Maximum Relevance
NGVCK Next Generation Virus Construction Kit
OS Operating System
PE Portable Executables
PSMPC Phalcon/Skin Mass–Produced Code generator
QEMU Quick EMUlator
ReLU Rectified Linear Activation Function
RF Random Forest
SMS Short Message Service
SVM Support Vector Machine
syscall System Call
TF-IDF Term Frequency Inverse Document Frequency
TPR True Positive Rate
R Recall
RDTSC Read Time Stamp Counter
P Precision
TP True Positive
TN True Negative
FP False Positive
FN False Negative
VCL32 Virus Creation Lab for Win32
XGBoost eXtreme Gradient Boosting

List of Mathematical Symbols
∑ Summation notation
log Logarithm
x, y Features or Attributes
P(x) Probability distribution of x
I(x, y) Mutual information between feature x and y
P(xi, yj) Joint probabilistic distribution of feature x and y
P(xi), P(yj) Marginal probabilities of x and y
i Level or state of feature x
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j Level or state of feature y
S Set obtained from cross product of set of states of x and y
V(x) Relevance value of an attribute x
h Target variable or class
I(h, x) Mutual information between class h and feature x.
W(x) Redundancy value of feature x
N Total number of attributes
I(yj, x) Mutual information of features yj and x respectively
MID(x) Difference between the relevance value V(x) and the redundancy value W(x)
MIQ(x) Obtained by dividing the relevance value with the redundancy Value
SSp

B Sum of squares of feature p belonging to group B
SSp

W Sum of squares of feature p belonging to group W
SSp

T Total sum of squares of feature p
k Number of classes (malware/benign)
l Number of states of feature p
µp Mean of frequencies of feature p
Xij Feature at class I and state j
µ

p
i Mean of frequencies of feature p in ith discretization state

DFp
W Degree of freedom of feature p within the group W

(k ∗ l)p Number of observations of feature p
lp Number of samples of feature p
DFp

B Degree of freedom of feature p between the group B
F(DFp

B , DFp
W) F-score

X A tuple or feature represented by an n-dimensional attribute vector
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Abstract: The use of innovative and sophisticated malware definitions poses a serious threat to
computer-based information systems. Such malware is adaptive to the existing security solutions and
often works without detection. Once malware completes its malicious activity, it self-destructs and
leaves no obvious signature for detection and forensic purposes. The detection of such sophisticated
malware is very challenging and a non-trivial task because of the malware’s new patterns of exploiting
vulnerabilities. Any security solutions require an equal level of sophistication to counter such attacks.
In this paper, a novel reinforcement model based on Monte-Carlo simulation called eRBCM is
explored to develop a security solution that can detect new and sophisticated network malware
definitions. The new model is trained on several kinds of malware and can generalize the malware
detection functionality. The model is evaluated using a benchmark set of malware. The results prove
that eRBCM can identify a variety of malware with immense accuracy.

Keywords: malware detection; Monte-Carlo simulation; reinforcement learning

1. Introduction

As the Internet has become essential in our life, the number of users who use internet
services such as e-commerce and e-banking, has increased rapidly. Unfortunately, this
increment is accompanied by an increased number of cyber-criminals who use malware
(malicious programs) to achieve their malicious intentions [1].

Cyber-criminals launch new malware/attacks every year that are more sophisticated
and harmful than previous years. Malware can adapt to the environment according to the
security barriers set in an IT environment. Millions of new definitions are generated daily
to exploit the vulnerabilities and compromise commercial information systems [2].

To overcome this severe threat, security companies such as Kaspersky and Symantec
have introduced several anti-malware products to protect individuals and companies [2].
These products are for known malware definitions. While such solutions can detect
known malware with high accuracy, they often lack the ability to detect unknown malware.
Moreover, referencing all the different malware has become a complex task because of the
enormous increase in the number of malware programs, making it difficult to find lasting
solutions. These limitations have made it necessary to explore intelligent approaches that
are flexible and adaptable in detecting unknown malware.

Most of the new intelligent approaches to malware detection are trained using the
selective features of known malware that can represent malware in its best form. These
representations are then used as training instances for a suitable machine-learning algo-
rithm that generalizes or maps such features-based malware detection mechanisms [3–13].
This work extends a previously explored approach called RBCM, which is also based on
reinforcement learning [3]. The RBCM extension is called eRBCM, and merges the most
beneficial features of Monte-Carlo-based real-time learning (MOCART) [4] and random
forest [5–7] to make it more scalable for higher-order training datasets.
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The rest of this paper is organized as follows: Section 2 presents the various approaches
adopted to detect and analyze network malware; Section 3 describes our motivations and
contributions; Section 4 provides a short introduction to MOCART; Section 5 illustrates
the enhancements to our previous approach (RBCM) [14], made to avoid converging to
local minima in the search spaces with a narrow range of values in an observation dataset;
Section 6 shows the experimental set-up and compares the performance of eRBCM with its
state-of-the-art rivals; and Section 7 presents our conclusions and future work.

2. Related Work

According to the malware detection taxonomy outlined by [8], machine-learning
approaches can be classified based on three major dimensions: malware targets, malware
features, and the AI model used to generalize malware detection. This section focuses on
the third dimension, the machine-learning algorithm, since our study evaluates algorithm
performance in the malware detection task. Machine-learning algorithms are scalable to
generalize non-linear problem spaces, which is the main motivation for exploring such
approaches to optimize malware detection.

Different malware detection approaches in the literature have adopted different
machine-learning techniques, such as random forest (RF) [5–7], neural network [9–11], deci-
sion tree [12,13], naïve Bayes [14,15], KNN and SVM [15], ARIMA [16], and reinforcement
learning [17,18].

The RF machine-learning technique has been applied in several malware classification
problems in the literature [5–7] because of its competitive performance compared to other
algorithms. In an original approach proposed in [19], where the malware features were
modelled as grayscale images, a comparison between three machine learning techniques
revealed that RF outperformed the naïve Bayes and KNN algorithms.

RF was explored in [6] to generalize the malware detection and classification. The
authors presented a machine-learning technique called AMICO [6], which was trained
using the network-traffic-based selection parameters. The main purpose was to evaluate the
payload information in network traffic. Parameters such as IP address, source URL, target
URL, file contents, etc. were analyzed to identify the malware patterns. In the sandbox
environment, a download reconstruction module was used to generate the network traffic
in real-time. The traffic was based on executable files and the malware detection technique
was evaluated using real-time generated data. The training data constructed to generalize
the AI model was based on both malware-based traffic data and normal traffic.

To distinguish between malware and benign files, Vadrevu et al. [7] opted for a
supervised learning approach based on a RF algorithm, where the training set of labelled
malicious instances was evaluated over a period of one to two months. The simulated data
contained a fair distribution of both kinds of samples. The model trained on this data was
tested using an academic network, and the test results showed that AMICO could detect
90% of the malicious content that travelled over the network during the testing phase.

A classifier based on a decision tree was used in [7] to detect malicious contents.
The “Malware Target Recognition (MaTR)” model is a hybrid of a decision tree classifier
and is optimized by using a sophisticated heuristic-based feature search to keep the rules
exploration-focused towards the promising area of the search space. In their work, the
heuristics are built using the structural information of malicious contents and structural
anomalies. Examples of malicious content structure include file path, attributes, and
size, while examples of structural anomalies include entry point and section names. The
classifier was trained using a benchmark dataset called VX-Heaven. The heuristics were
built in the pre-processing stages and remained part of the training instances to extract
quality rules. The classifier was tested on malicious contents that were not used during
the training phase. The test data showed an accuracy of 99% for the decision-tree-based
classifier’s malware detection.

Neural-network-based approaches in malware detection were introduced in [9–11],
while a recurrent neural network (RNN)-based model was explored by Andrade et al. [9].
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The model was trained using a benchmark dataset that is publicly available for exploring
new security solutions. Their neural network model creates new connections among
the neurons based on cycles to increase the memory-based connectivity. The model also
balances the trade-off between the long-term and short-term memory approaches. Short-
term memory emphasizes the exploration of solution space, while long-term memory
exploits the already known best regions of the solution space. The experimental results
showed that RNN detected malicious content with 67% accuracy.

There are several approaches for app malware detection. Approaches including
EspyDroid [20], AndroShield [21], Droidcat [22], and RevealDroid [23] are used as solutions
for obfuscation camouflage techniques such as junk code insertion, package renaming, and
altering control-flow [24–26].

Other approaches for app malware detection, such as API-Graph [27], DroidEvolver [28],
and DroidSpan [29], are oriented towards solving the problem of sustainability (performance
over time). However, it is unclear how these approaches address this problem in the case of a
network attack or malware.

This paper focuses mainly on exploring a machine-learning model that can generalize
the patterns of a variety of malware.

3. Motivations and Contributions

Our motivations are summarized below.
Because of the enormous increase in new malware samples, traditional approaches

are not scalable to the sophistication of new attacks and lack the capability to detect and
analyze these attacks. Intelligent, self-adaptive approaches for efficient network malware
detection and analysis are required [2].

There is a need for an approach that can be easily scaled for large and high-dimensional
malware datasets to avoid extensive training episodes. This is essential in order to general-
ize the characteristics of different kinds of malware. The security solution can be trained
on different datasets without changes in the learning structures.

Our contributions are summarized as follows.
We improve RBCM [3] to avoid being trapped in local minima. The current version

combines the best features of MOCART [4] and RF [5–7]. Monte-Carlo simulations are
optimized to dynamically select the region and scale of samples used by the learning
model. The dynamic sampling technique is used to enhance the performance of the
RBCM learning model, which selects a sampling region of lower error and fixed size. This
drawback decreases RBCM’s performance in cases where the sample space is limited or
there are large areas of low-quality samples that reduce the error with respect to the current
surroundings, but the model does not learn new knowledge.

We test eRBCM using the three datasets: Microsoft Malware [30], ARP attack, and
ICMP attack [31]. Furthermore, we provide a comparison of eRBCM with four state-of-the-
art, best-performing prediction algorithms.

4. Monte-Carlo-Based Real-Time Learning (MOCART)

MOCART [4] is a Monte-Carlo (MC)-simulation-based machine-learning algorithm
that applies the Monte-Carlo tree search to obtain estimates from one node of the solution
space to another to reach the goal node. The MC simulations explore the solutions using
a sample space and build a learning structure. In MOCART, MC simulations build a
value function that can predict the outcomes for each action in an uncertain or unknown
environment. The simulations use a model of system which can predict outcomes for
a deterministic or nondeterministic problem space. As a result of these characteristics,
MOCART has been used in several domains, especially nondeterministic domains. Be-
cause of these capabilities, MOCART is particularly suitable for malware detection, as the
behavior of a sophisticated piece of malware can be non-deterministic, and it might behave
differently at the same state in a problem space. This is particularly true for a new set of
malwares that are sensitive to sandboxing and Trojans. However, MOCART underperforms
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in domains where the number of possible samples generated during simulations are limited
or if the simulation model is biased towards more exploitation than exploration.

5. Reinforcement Learning Model RBCM

To generalize the pattern recognition of various malware attacks, an updated version
of reinforcement learning called eRBCM is explored in this work. eRBCM combines the
best features of MOCART and RF.

The sampling techniques are modified in RBCM to keep finding new samples until
the error rate remains below a threshold θ.

RBCM suffers from local minima when space dimensions are of a small scale or data
has fewer variations with respect to class labels [4]. eRBCM increases the number of
samples in the simulation model if class labels are not equally distributed. The generative
model of eRBCM is shown in Figure 1 for a sample S, simulation length d, and extension n.

Figure 1. Generative model for eRBCM.

The generative model of eRBCM extends the simulation length by n, as shown in
step 6 of Figure 1. The update decision is made by using epsilon e, which depends on the
current root mean square error (RMSE) of the learning structure (the learning structure is
a Q function). This is a validation RMSE of the Q function on unseen data. The decision
parameter is dynamic and keeps reducing itself depending on the RMSE, which makes
the sample exploration self-adaptive and keeps the trade-off between exploration and
exploitation in balance. Figure 2 explains the sampling process with respect to the depth of
search for samples in the direction of solutions.

Figure 2. Selection process of deeper search.

The search space at S1 was simulated with three neighboring states and only S3 was
extended as it met the criteria for decision making. The state S3 produced the smallest
RMSE of its siblings and a more reliable and stronger heuristic to select the direction to
explore deeper into. This also assisted the Q function to be updated with the weight values
that reduce the error of the network. The epsilon value was updated on each extension of
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the search process; for example, epsilon at S4 will be 0.002. If no neighbor of S4 produces
a lower RMSE than S4, the search will stop at this state of the space. This process is also
intuitive to bring the search out of local minima, as the RMSE will never be reduced below
the best local minimum and the generative model will explore more spaces.

Due to dynamic changes in epsilon in the generative model, the model can learn biased
strategies to explore the space rather than exploiting the best results. However, because of
a fixed number of extensions, the search policy is kept balanced at the exploitation of the
best and the search of new states in the search process. The adaptive use of epsilon also
introduces the benefit of avoiding the visit for the same sample more than once. It reduces
the time of searching for the best solution in the space and gives eRBCM the advantage of
quicker convergence than CNN.

6. Reinforcement Learning Model Experimentation
6.1. Experimentation

All experiments were performed using Windows 10 Enterprise with 16 GB RAM and
dual Intel Core (TM) i7-4702MQ CPUs, each of 2.20 GHz speed. The benchmark malware
files were analyzed using different programs for deep visibility of attack data. The tools
used were Wireshark and Network Miner. All tools were run in a special operating system
called Security Onion. The attack files were further processed to generate a training dataset.
The benchmark malware datasets analyzed were: Microsoft Malware dataset [30], ARP
attack dataset [31], and ICMP attack dataset [31].

6.1.1. Microsoft Malware Data

The dataset in [30] is organized with respect to machines and has several input features
(e.g., ‘machineidentifier’ and ‘hasdetected’) which are malware detected on the machine.
This column is used as the actual output for training the machine-learning algorithms. The
dataset contains the system details for each observation, including default browser, current
OS version, firewall, processor, primary disk type, volume capacity, total physical RAM,
casing details, and gaming systems. This dataset is used for training machine-learning
algorithms to detect malware on end systems running Windows OS.

6.1.2. ARP Attack Dataset

The ARP dataset [31] is taken from the Contagion malware dataset. ARP attacks
exploit the vulnerabilities related to Address Resolution Protocol. ARP vulnerabilities can
lead to attacks such as ARP spoofing. These types of attacks require careful analysis of
the network characteristics for detection. The dataset for this malware is given in pcap
files, which contain the network characteristics of the malware attack. Wireshark is used to
extract the pattern of the malware. The data in pcap files is exported to csv which is then
used as a training dataset.

6.1.3. ICMP Attack Dataset

The ICMP malware dataset [31] is also in the form of pcap files or network data
of ICMP-related attacks (IMCP smurf or ping of death, etc.). These malwares exploit
the vulnerabilities of network traffic based on ICMP messages or echo messages. Such
messages can penetrate a network without being flagged because most of the security
solutions are used to filter TCP/UDP based messages. The pattern of such attacks is
extracted using Wireshark and exported to a csv file which is then used to train machine-
learning algorithms.

eRBCM was trained using the benchmark datasets. The model testing also included
malware definitions not used in the training. The malware categories of ICMP and ARP
include several patterns (definitions) of network malware that are part of the benchmark
dataset [28]. These models were trained using 200 malwares in both categories. The
testing of the eRBCM to measure its performance was conducted on 150 malwares that
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were different from the 200 used in the training of eRBCM. The eRBCM performance was
compared with the following state-of-the-art machine-learning techniques:

1. J48.
2. Convolutional neural network (CNN).
3. Feedforward neural network (FNN).
4. Random forest (RF).

The model performance was measured by applying the correlation coefficient (CC),
RMSE, and accuracy. Higher correlation coefficient and accuracy values indicate a better
performance, while a model with a lower RMSE is considered superior to those with a
higher RMSE.

6.2. Results

The results of each model were averaged over ten runs, with the averages shown in
Figure 3. The results show that RF established better correlation-based rules and had a
superior performance than other models with respect to the CC. RF extracts the best possible
rules as it is an ensemble model of a decision tree and identifies the best tree structure.

Figure 3. The correlation coefficient (CC) results of each model.

Figure 4 shows each model’s accuracy. The accuracy profile indicates that eRBCM’s
performance was better than its competitors. Because of variations in sample size in
each run, the error-rate fluctuated greatly in each episode of testing. The application of
convolutional neural network to extract the attack behaviors of the different malware was
a promising strategy. The convolutional neural network took several training episodes to
converge as compared to eRBCM.

Figure 4. The accuracy results of each model.
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While random forest had a higher CC than other models, its performance lacked
consistency in relation to accuracy due to the complex nature of malware patterns. When
comparing RF and J48, RF performed better with respect to CC and accuracy because it is
an ensemble model.

The performances of CNN and FNN were comparable in terms of accuracy, indicating
the capability of neural network structures to generalize malware patterns. However, FNN
identified fewer similar rules and produced low correlation-based outcomes.

The main success of eRBCM in terms of performance is its self-adaptability to explore
and then balance the trade-off between exploration and exploitation. eRBCM can guide
its search towards the promising area of a solution space due to epsilon. The generative
model explores more on the lower sides of RMSE as compared to regions of higher RMSE.

Figure 5 displays the RMSE results of each machine-learning technique. The results
show that eRBCM produced a lower RMSE than most of its rivals. eRBCM performed
better than its predecessor, RBCM, and had a consistently better performance than other
models because of its adaptive approach in simulations to keep the sample size and space
suitable for model learning. The samples were selected based on the quality of the search
for a solution during Monte-Carlo simulations.

Figure 5. The RMSE performance of each model.

6.3. Look-Ahead Search of eRBCM

Figure 6 provides a deep insight into the sample selection mechanism of eRBCM.
The accuracy of each solution search in a simulation depends on a specific number of
samples from the search space. The sample selection mechanism is non-linear and requires
adaptation to each problem set given to the simulation model.

Figure 6. The dependence of RMSE on the number of samples per simulation.
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eRBCM’s selection mechanism depends on a threshold based on the error rate. It
selects a threshold value that minimizes the RMSE. This is the main reason for the successful
generalization of attack patterns by eRBCM. The self-adaptivity of epsilon enables eRBCM
to explore the larger but focused area of search space compared to RBCM and CNN. eRBCM
converges faster than its rival because of the self-tuning of epsilon.

The look-ahead search of the generative model also benefits eRBCM in terms of
searching high-quality regions with a smaller number of iterations. The regions of lower
RMSE are explored in more depth compared with the regions of higher RSME. This can
lead to local minima, but due to the dynamic value of epsilon, the generative model departs
such regions in few iterations.

Figure 7 shows the results with respect to RMSE for look-ahead search self-adaptability.
The results show that the extended search produced quality solutions with low RMSE. The
enhanced performance in the look-ahead search during simulations is explained by the
guided exploration of the generative model in the simulation. The higher the n-value of
the simulation model (as given in Figure 1), the more eRBCM explores more promising
states of the solution space.

Figure 7. The dependence of RMSE on the number of states extended in a simulation.

With shallow searches in the region of quality solutions, eRBCM remains biased to-
wards the exploitation of the best solutions found and it converges to suboptimal solutions
as shown in Figure 7. With extensions to look-ahead search, the deep search provides an
optimal balance of exploration and exploitation of the current best-found solutions. It
also explains the phenomena shown in Figure 2 relating to the look-ahead search of the
generative model of eRBCM. At a deeper search, the eRBCM generative model mirrors the
natural selection mechanism of evolutionary techniques. It provides a new solution as a
mutation of the existing best solution, as shown in Figure 2. At state S3, for example, the
generative model generates a new state S4 which is a mutation of S3.

7. Conclusions

In this paper, we presented a new approach called eRBCM to detect malware. The new
model was designed using the reinforcement learning approach, which utilizes the strength
of Monte-Carlo simulations and builds a strong machine-learning model to detect complex
malware patterns. It combines the most beneficial elements of MOCART’s reinforcement
learning and RF’s exploration capabilities. A large number of experiments were conducted
using different malware benchmarks, including ARP attack, ICMP attack, and Microsoft
Malware. eRBCM was consistently better than its competitors in terms of learning the
new malware patterns and detecting unknown malware. This was mainly explained
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by eRBCM‘s self-adaptability to exploration and intelligent tuning of the balance for the
trade-off between exploration and exploitation.

For future work, we plan to test our approach with various attacks to measure its
scalability and accuracy. Furthermore, eRBCM will be explored for mobile malware using
benchmark datasets. The mobile malware will be analyzed using sophisticated forensics
tools, identifying key patterns via an innovative pre-processing stage. The malware will
be scanned and categorized based on its malicious agenda. In each category, the com-
mon parameters will be explored using clustering, with these clusters used to generate a
training dataset.
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Abstract: Steganography is the set of techniques aiming to hide information in messages as images.
Recently, stenographic techniques have been combined with polyglot attacks to deliver exploits in
Web browsers. Machine learning approaches have been proposed in previous works as a solution for
detecting stenography in images, but the specifics of hiding exploit code have not been systematically
addressed to date. This paper proposes the use of deep learning methods for such detection, account-
ing for the specifics of the situation in which the images and the malicious content are delivered
using Spatial and Frequency Domain Steganography algorithms. The methods were evaluated by
using benchmark image databases with collections of JavaScript exploits, for different density levels
and steganographic techniques in images. A convolutional neural network was built to classify the
infected images with a validation accuracy around 98.61% and a validation AUC score of 99.75%.

Keywords: steganography; steganalysis; polyglots; neural networks; deep learning

1. Introduction

Steganography is a set of techniques designed to hide information or objects by
embedding them in another object called a host, so that they go unnoticed. Stenography
has been applied since ancient Greece but it has recently grown in importance as an area
of study in communications and computer security [1] due to its application by illegal
or malicious organisations to evade security measures and extract information by hiding
malicious code in digital objects such as video, images, audio or documents, among other
uses. The fight against stenography is the discipline of steganalysis, which aims to detect
the existence of hidden information in the host.

Depending on the steganography technique, the detection can be easier or more diffi-
cult. One of the most common techniques is the addition of a signature in the stego file, but
other techniques such as adding the data after the host EOF are also very common. More so-
phisticated techniques distribute stego in different ways exploiting different characteristics
of the images. This part is reviewed in Section 2.

Many of the current widely used tools are capable of identifying EOF steganography
or signature [2], but the implementations are not as effective in detecting more sophisticated
techniques and they are able to avoid the security controls.

Steganography techniques can be applied to introduce malicious code based on poly-
glot techniques embedded in a stego image. A polyglot is an image and JavaScript code
at the same time. If in the web page it is invoked as the next block of code, an image
is displayed:

1<img src=‘‘polyglot_stego_image.jpg ’’/>

However, if in the web page it is invoked as the next block of code, a JavaScript code
embedded in the image is executed:

1<script src=‘‘polyglot_stego_image.jpg ’’> </script >
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During the recent COVID-19 pandemic, one of the main attack categories reported
by the European Union Agency for Cybersecurity (ENISA) was the delivery of malware
using undetected and sophisticated mechanisms [3]. One such sophisticated type of attack
is the binomial steganography-polyglot, which has been exploited for real attacks, as it
is currently undetectable by standard security measures [4]. The malicious code can be
executed using “polyglot” techniques, which consist of embedding the code in such a way
that it is executable when is read by the web browser. In this type of attack, it is important
to detect the stego image before it is executed by the browser, which requires some kind of
detection model.

The attacker shows other examples of applications (https://www.bleepingcomputer.
com/tag/steganography/ (accessed on 1 November 2022)), for instance, Zeus malware
to set up a man-in-the-middle attack (https://www.silicon.co.uk/security/virus/zeus-
banking-trojan-205640 (accessed on 1 November 2022)), Lockibot malware family to down-
load the malicious malware as second step embedded in an image or in September of 2022,
the latest Window logo cyber espionage attack (https://www.cybertalk.org/2022/09/30
/hackers-hide-malware-in-windows-logo/ (accessed on 1 November 2022)) for Middle
East countries.

This paper proposes a new approach to detect polyglots. It is based on the early detec-
tion of the stego image created with LSB (Least Significant Bit) steganography, LSB with
Fermat and Fibonacci generators and F5 using deep learning (DL) techniques. Specifically,
a convolutional neural network (CNN) is used to classify the infected images and the clean
images. The main advantages of the work reported here over other approaches are (1) that
the images are only resized in the pre-processing part, trying to keep the images as close as
possible to the original and reducing the time processing and resources consumption; (2) a
very good performance of the algorithm has been obtained in the detection of different
LSB steganographies (LSB, LSB set with generator function (Fibonacci, Fermat), LSB in the
description) and F5 [5]; (3) a higher quality of steganography images is able to be detected
with lower relation of bits per pixel (BPP).

The rest of the paper is structured as follows: Section 2 briefly reviews the background
of steganography and steganalysis techniques, including the application in polyglot attacks
based on steganography. Section 3 proposes a method to detect polyglots and a description
of the different setups and experiments that were performed in order to design the algo-
rithm. Section 4 exposes the results and analysis of the different experiments. Finally, the
Section 5 provides the conclusion, including remarks and outlook.

2. Background

In this section, a brief report on the the state of the art is presented, including relevant
steganography techniques and the corresponding detection approaches, with a focus on
the use of least significant bit stenography (LSB) and F5 for embedding polyglots. Finally,
previous works applying a deep learning approach to steganalysis are described.

2.1. Stenography

As previously stated, steganography is the art of hiding information in a host in such
a way that it is not detectable [6]. There are different types of steganography depending
on the object where the message is hidden, e.g., text, image, audio, video and network or
protocol stenography. This paper focuses on the image stenography.

Several groups of algorithms can be applied to embed data into images [7]. Some
examples of groups of techniques are:

• Based on spatial domain. They are based on the statistics of the image and create a hid-
den channel using a replacement method. It can be implemented in a sequential way,
e.g., using the least significant bits (LSB) or in a random sequence, for instance, by us-
ing the least significant bits (LSB) with Fermat or Fibonacci formulas generator (https:
//stegano.readthedocs.io/en/latest/software.html#the-command-stegano-lsb-set (ac-
cessed on 15 July 2021)).
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• Based on the frequency domain. It spreads the data over the frequency domain of
the signal. Almost all robust methods of steganography are based in the Frequency
Domain. Some examples are F5 algorithm (a Discrete Cosine Transform (DCT)),
OutGuess (https://www.rbcafe.es/software/outguess/ (accessed on 1 August 2022)),
YASS (https://github.com/logasja/yass-js (accessed on 1 August 2022)), etc. There
are more robust methods than LSB, although they have the limitation of the number
of least significant bits of an image.

• Based on spread spectrum image steganography (SSIS). They are based on modulating
a narrow band above the carrier.

• Based on machine learning algorithms [8].
• Manually inserting the code in the image randomly, etc.

2.2. Steganalysis: Frameworks and Techniques

Steganalysis is the process of detecting steganography by observing variations at
different levels between the cover object and the final stego file. The aim of steganalysis
is to identify suspicious information flows and to determine whether or not they have
encoded hidden messages [9,10].

The steganalysis techniques depend on what information is available, whether it
is just the stego, both the stego and the cover file, the stego and the message, or the
stego and the steganography technique used. The less information available, the more
difficult the steganalysis becomes. There are frameworks, such as the one proposed by
Xiang-Yang et al. [11], for blind steganalysis.

In addition to the general framework, many authors suggest different taxonomies of
steganalysis techniques as Nissar and Mir’s one [12] or the Karampidis et al. taxonomy [13],
both of them well-known and commonly accepted. Yet neither Karampidis et al. nor Nissar
and Mir include the latest techniques as machine learning or deep learning as a technique
to approach steganalysis, and there are only a few previous studies using these approaches
to address the specificity of polyglots, which are described below.

2.3. Polyglot Attacks with Steganography

Steganography attacks are based in the broad use of multimedia files and the difficul-
ties of the traditional security tools to detect stegos in the files. Some security approaches
detect the strange behaviour, not the steganography infection, so a system could be infected
for a long time without notice. The infection begins just when the user downloads the file
where a polyglot is hidden. Typically, these polyglots are sent by email by phishing [4].

Polyglots are able to execute the code, e.g., in a power shell. The usual behaviour of
the attack is based on botnets that works as command and control (C&C). This means that
there is hidden some malicious code (downloader) which is “zombie” until the control
botnet contacts to it and sends the instructions.

According to Kaspersky ICS CERT, steganography is mainly used in industry target
attacks and in different areas [4]. Some of the most famous pieces of malware using
steganography for espionage were Loki Bot (https://www.zdnet.com/article/lokibot-
information-stealer-now-hides-malware-in-image-files/ (accessed on 1 October 2022)) and
ZeroT (https://attack.mitre.org/software/S0230/ (accessed on 1 October 2022)). Other
examples of bank trojans that use steganography in their attacks, some of them from the
Bebloh family [14], e.g., Shiotob or URLZone, or the Ursnif family [15], e.g., Gozi or ISFB.
Additionally, during the COVID-19 pandemic, there were directed attacks with polyglots
related to making information about the vaccines be unnoticed.

2.4. Previous Work in Steganalysis and Deep Learning

In steganalysis, approaches outside the deep learning fields have been based nowadays
in the computation of rich models followed by ensemble classifiers, as [16] or [17] propose.

Regarding deep learning, the first references using neural networks date back to
2005 [18,19]. These works proposed a feed-forward network used as classifier to detect if
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there is presence of steganography or not. However, the first approaches in CNN, based
in Local Contrast Normalization or Local Response Normalization, appear in 2015 [20].
The performance of this CNN for stegoanalysis was not as good as that of traditional
approaches, but also in 2015, the first batch normalisation-based CNN approach emerged
with similar performance to the other existing ones [21].

Since CNN requires large amounts of memory and time for the training, the steganog-
raphy and AI communities worked on approaches to reduce them, resulting in approaches
based in transfer learning [22], as the one proposed by [21]. However, these early ap-
proaches do not have good accuracy.

From 2015 to 2016, efforts focused on spatial steganalysis [23,24], and in 2017, work
was reoriented to JPEG steganalysis [23,25]. Then came the GAN model [26,27], but it
does not seem to be very successful since the accuracy was low in comparison to the
traditional works. The GAN approach consisted of generating JPEG-infected images to
train a CNN and generate a model that could subsequently classify between the presence
of steganography or lack thereof. As it will be described in next sections, steganography
is very sensitive to any modification in the images, and, as the GAN approach added
additional noise in the images, the results were not as good as expected.

SRNET [28] is also a CNN for classification of images that tries to add information
to help to detect singularities due to the structure of the network and get rid of the Relu.
The use of Relu and a softmax function for classification, as in the model proposed in this
paper, provides better results for detecting stego images, as we review in Section 4 Results
and discussion.

In 2021, another CNN approach was published [29]. It uses a pre-processing stage,
feature extraction, separable convolutions and a classification module. In addition to pre-
processing, this approach implements a HPF (High-Pass Filter) and 30 filters consisting
of padding and strides. The authors of [30] performed a study of a filter subset selection
method for steganalysis CNN. This study shows that the application of redundant filters
produces over-fitting, introduces noise and exploits the performance of the steganalysis
CNN models. These assertions have been taken as the basis for the approach proposed
in this paper, so the work reported here goes further by minimising pre-processing, only
using a single rescaling step.

The metric Bits per Pixels measures the quality of the steganography implementing
the relation between the number of secret bits embedded and the number of bits of the
original image. This metric is used for [29] to establish the performance of the steganalysis
method, being able to detect infected images with a 0.2 bpp and getting an accuracy of
80.3%. In the final model proposed in this paper, the model is able to detect images with
a 0.0027 bpp and a validation accuracy of 98.61% is obtained, so it is able to detect the
infection in higher-quality steganography images (with a smaller proportion of infected
data in the host) and better validation accuracy.

This new approach only features resizing in the pre-processing stage, it uses a sigmoid
function in the classification, instead of a softmax as [29] did, and it uses a drop-out for
adding more flexibility to the model. The approach also uses Adam optimization and
drop-out in order to improve the generalization of the model, as suggested in [31].

3. Proposal for a Steganalysis Approach to Polyglot Detection
3.1. Description of the Approach

The steganalysis approach reported in this paper is based on the use of convolutional
neural networks (CNN) for image classification. CNNs are selected due to the performance
of this type of Neural Networks (NN) in the classification of images [32,33] and the ability
to learn the different dimensions of the image to distinguish the nuances of the infected
images in comparison to the clean images as used for face recognition in [34].

As CNNs take images (both clean and stego) as input data for training, they are able
to learn their features and classify a new image as infected or clean. It learns patterns more
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difficult to identify by the visual analysis, the analysis of channels or statistical analysis.
This is an important feature to take into account in the selection of this technique.

The steps that the authors have performed for the final proposal CNN are described
below and shown in Figure 1. A data set has been created by collecting clean images from
Coco dataset and ILSVR dataset. On the other hand, stego images were collected from
StegoAppDB [35]. As only a stego F5 dataset was found, a stego dataset for polyglots
must be created. Identified polyglots in Javascript were then collected. With the polyglots
and the cleaned images, stegos were generated with different LSB techniques, sequential
and random.

Figure 1. Framework of Blind Steganalysis.

Once that LSB stego dataset, the clean images dataset and the StegoDB App dataset
have been created, the clean images and the stegos images are joined and then the images
with the metadata of stego or clean label are split into two datasets: a training dataset and
a test dataset. The training dataset is used to train the 2D CNN classification model and the
test dataset to validate the performance of the produced model. As a result of the process, a
model evaluation was obtained in which the validation accuracy was calculated, obtaining
the precision in the classification of the stego images.

The model uses a rescaling pre-processing stage very light in comparison to previous
tests carried out by other authors and described below. The CNN contains 10 blocks of
CNN + Batch Normalisation + Relu that classify into the classes mentioned above, i.e., clean
and infected. To obtain good results, a large variety of colour images, objects, different
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embedded malware/polyglots and different steganography techniques were required, as
explained in the following subsections.

The first model designed is based on a CNN having three parts: the preparation mod-
ule, the convolution module and the classification module. The preparation module was
composed of two further sub-modules in where data are re-scaled and data augmentation
(rotating) and batch normalization (batch size = 32) are applied. The convolution module
was composed of 10 sub-modules (conv2D, batch normalization and activation) and, finally,
the classification module used a sigmoid activation on the basis that only two possible
values should be handled: the presence of steganography or lack thereof.

The output of the network is the probabilities that an image belongs to the “stego”
class and to the “non-stego” class. Due to poor results in validation accuracy (see Figure 2)
using this model, a second version of the model was tested, dropping out the pre-processing
sub-module and removing the data augmentation based on rotation. The dropping out
removes part of information for the training in each iteration making more flexible the
model for possible modifications and the elimination of the data augmentation reduces the
errors in the training, as there were no real stego images. The second and final model (see
Figure 3) obtains very good results for classification, as described in Section 4.

Figure 2. Validation Accuracy and Training Loss of Watermelon & Model 1 & 20 polyglots.

Regarding the dataset to train the model, watermelon images were first used in the
classification model. The dataset contained both stego watermelon images generated with
a polyglot using the LSB technique and clean watermelon images. Initial results gave an
accuracy of 0.9672, which may suggest over-fitting. Although they will be discussed in
detail in the following subsection “Experimental setup”, a number of issues were identified
that could potentially lead to over-fitting, namely:

• The type and variety of objects displayed in the images. COCO were used as sources
since the images they contain show different types of objects. The ILSVRC dataset was
also used as source of images to increase variety and avoid possible biases.

• The number of polyglots embedded in the images. Several trainings were held varying
the number of Javascript polyglots and the number of images infected.
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• The characteristics of the images. Training was conducted with greyscale or colour
images. Polyglots were embedded before and after colour transformation for differ-
ent tests.

• The homogeneity of the images (same size, orientation, etc.) Image transformation
regarding size and orientation has been performed.

Multiple combinations of these cases were made to obtain higher prediction accuracy
and to avoid over-fitting.

Figure 3. Structure of our proposal of CNN to detect LSB Steganography.

Data enrichment (conversion to gray, rotating and resizing the images) was also
applied after the generation of the infected images, but as additional noise was introduced
in the identification of the stego images, detection became impossible (accuracy of 0.561)
(see Figure 4) and this approach was discarded. After testing all possible combinations
in the dataset that could have an impact on accuracy and overfitting, a model with an
accuracy of 95.21% (see Figure 5) was obtained. Then, the model was improved with other
possible steganography algorithms (random LSB Algorithms (LSB with Fibonacci and
Fermat generators and F5), and, after the training, a validation accuracy of 98.61% was
obtained (see Figure 6).

The experimental setup is described in Section 3.2.

127



Electronics 2023, 12, 473

Figure 4. Validation accuracy and Training Loss of Coco Gray & Model 1 & 20 polyglots.

Figure 5. Validation accuracy and Training loss in Coco+ILSVR(205K) Model 2 & 104 Polyglots.
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Figure 6. Validation accuracy and Validation AUC ROC in Coco+ILSVR(205K)+F5 & Model 2 & LSB,
LSB Random, F5.

3.2. Experimental Setup

In order to obtain the most accurate and least over-fitted model, different datasets
were created to train the model. Datasets included both clean images and stego images
with known polyglots embedded using LSB stenography. Images were extracted from the
COCO dataset [36] or a combination of COCO dataset and ILSVR dataset [37]. The infected
datasets were composed of clean images with a different number of hidden polyglot
Javascript code of known vulnerabilities [38]. More concretely, the following datasets and
procedures for training the model were tested:

1. Watermelon dataset + LSB steganography (v0.1): Dataset of different watermelon
images. It contained 1354 clean images and 1946 infected images with 1 polyglot.

2. Watermelon dataset + LSB steganography (v0.2): Dataset of different watermelon
images. It contained 1354 clean images and 1946 infected images with 20 polyglots.

3. COCO Dataset + LSB steganography (v1): Using COCO as source from images that
contain a variety of items/situations, LSB technique was used to create stego images with
polyglots, resulting in a dataset with 37,000 clean images and 3000 infected images.

4. COCO Dataset + LSB steganography + Image modifications (Resizing, Relocation, . . . )
(v2): Using the the dataset configured in (2), data augmentation and images resizing
were performed.

5. COCO Dataset + Gray Conversion + LSB Steganography (v3): Using the clean COCO
dataset configured in (2) (40,000 images), 20,280 images images were first converted
to greyscale and polyglots were included in 1256 of these greyscale images using the
LSB technique.

6. COCO Dataset + LSB Steganography (v4): Using the images from COCO, the num-
ber of different polyglots embedded using the LSB technique was increased up to
20 common and known structures in Javascript. The number of infected images
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were also increased up to 411,000 images, being 328,000 clean images and 83,000
infected images.

7. COCO Dataset + LSB Steganography (v5): As the previous dataset configuration can
suggest overfitting, a new version of the training dataset was designed. Using images
from COCO dataset, the number of different polyglots embedded using the LSB
technique was increased up to 104 common and known structures in JavaScript. The
number of clean images was reduced to 123,460 and the number of infected images
to 31,000.

8. COCO Dataset + ILSVR dataset + LSB Steganography (v6): Using images from both
COCO dataset and ILSVR dataset [37], the following two datasets were generated,
which contained 41.026 clean images and 8.313 embedded images in the first case and
205.130 clean images and 41.026 embedded images in the second. In both cases, stego
images were embedded with 104 common structures of polyglots in JavaScript using
the LSB technique.

9. COCO Dataset + ILSVR dataset + LSB Steganography + LSB Steganography using
Fermat and Fibonacci generation (v7): Based on v4 dataset, 33.347 images infected
using Fermat and Fibonacci generator are added. The final dataset is composed of
279.503 images, from them 41.026 LSB infected images and 33.347 images infected
using Fibonacci and Fermat generators.

10. COCO Dataset + ILSVR dataset + LSB Steganography + LSB Steganography using
Fermat and Fibonacci generation (v7) + F5 [35] (v8) : Based on v5 dataset, 33.347
images infected using Fermat and Fibonacci generator and 621 F5 images are added.
The final dataset is composed of 280.124 images, from them 41.026 LSB infected
images, 621 F5 infected images and 33.347 images infected using Fibonacci and
Fermat generators.

The Python library Stegano (https://pypi.org/project/stegano/ (accessed on 1 July
2021)) was used for generation of stegoimages. Images colour variation was implemented
using the Pillow (https://pypi.org/project/Pillow/ (accessed on 1 July 2021)) library
of Python.

Tensorflow and Python were used to generate code of the models, which were based
on a convolutional neural network for the classification of images. Implementations were
run in multiple environments:

• Local machine;
• Docker Virtual machine based in Tensorflow without GPU;
• Google Colab with no hardware optimizations;
• Google Colab with GPU [39];
• Google Colab with TPU.

Training in the first three environments was discarded due to the resulting long run
times or the impossibility to perform the task. The number of images and the use of the
neural network required hardware optimisations, and the best-performance models were
obtained using Google Colab with TPU.

Regarding the hyperparametry of the models, during the different training processes
of both of them, the hyperparameters were never modified in order to be able to compare
the results in a robust way.

4. Results and Discussion

The two models generated (with and without pre-processing submodule) were tested.
As explained above, the second model (without pre-processing submodule) was generated
on the assumption that, although it was not a standard approach, getting rid of image
details may condition the classification results.

The results of the validation of both models are in Table 1.
The results confirm that the pre-processing sub-module (model 1) is not needed. When

the number of different polyglots that infect images is increased, the model that includes
pre-processing seems not to be good (accuracy 56.1% see Figure 4).

130



Electronics 2023, 12, 473

Using the second model (without pre-processing) with a wide variety of images and
the same increased number of different polyglots, accuracy reaches very good values
95.43%, see Figure 7).

Table 1. Results of Experiments.

Dataset Model Number of Polyglots Type of Stego Val Accuracy

Watermelon (v0.1) 1 1 LSB 0.9672
Watermelon (v0.2) 1 20 LSB 0.561

Coco RGB (v1) 1 1 LSB 0.9507
Coco RGB (v2) 2 20 LSB 0.9543
Coco Gray (v3) 2 20 LSB 0.9399
Coco RGB (v5) 2 104 LSB 0.9739

Coco RGB (v3+v4) 2 20 LSB + Gray 0.0915
Coco+ILSVR (v6) 2 104 LSB 1
Coco+ILSVR (v7) 2 104 LSB 0.9521

Coco+ILSVR+F5 (v8) 2 NA LSB, F5 0.9861

Figure 7. Validation accuracy and Training loss in Coco RGB(v2) Model 2 & 20 Polyglots.

The second model performs very well overall. The results also show that the richer
the image, the easier it is to detect embedded polyglots. Thus, the second model more
accurately classifies embedded polyglots in colour images than in greyscale images.

It is also noteworthy that if rescaling, greyscale conversion or rotation occurs after LSB
stenography, the noise introduced makes classification not possible.

On the other hand, if a large number of different polyglots are used to infect the
images, the number of images must be considerably larger to avoid overfitting.

When the second model is trained in a realistic way, i.e., with 280k (approx.) very
different images that are provided from different sources and a good number of different
polyglots, it can classify with 95.21% accuracy (Figure 5) whether an image is infected or
not, with a 0.0027 bpp in the worse relationship, and an error less than 0.06%, which can be
considered a good quality indicator of the model and it is supposed to be an advantage
over other approaches such as [28,29], that obtain 80.3% of accuracy with a 0.2 bpp in the
first case and a 31.3% of error in the second case.

Finally, Model 2 was trained with richer types of steganography methods (LSB + LSB
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with Fermat and Fibonacci Generators and F5) and it results in a new model with a
validation accuracy of 98.61% and a validation AUC score of 99.75% (see Figure 6).

5. Conclusions and Outlook

Convolutional networks have demonstrated their ability to solve image-based tasks
such as recognition, classification or segmentation in previous work. In this work, these
networks have been used for a stegoanalysis task, namely, for the detection of polyglot
payloads in images, which is quite different from the original applications of this type
of networks. Results provide evidence of the feasibility of these networks to solve the
task and the model provided evidence of better detection results than other previously
proposed approaches.

However, results shown here are limited to the detection of stego images using the
LSB and F5 stegographic techniques. Future work should expand the range of infected
images, including a diversity of stegographic techniques. This is critical in the adversarial
environment of malware detection using polyglots, whereby the robustness of models
for detecting a diversity of potential variations in the embedded payload represents a
significant challenge.
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Abstract: In recent times, cybercrime has increased significantly and dramatically. This made the
need for Digital Forensics (DF) urgent. The main objective of DF is to keep proof in its original
state by identifying, collecting, analyzing, and evaluating digital data to rebuild past acts. The proof
of cybercrime can be found inside a computer’s system files. This paper investigates the viability
of Multilayer perceptron (MLP) in DF application. The proposed method relies on analyzing the
file system in a computer to determine if it is tampered by a specific computer program. A dataset
describes a set of features of file system activities in a given period. These data are used to train
the MLP and build a training model for classification purposes. Identifying the optimal set of MLP
parameters (weights and biases) is a challenging matter in training MLPs. Using traditional training
algorithms causes stagnation in local minima and slow convergence. This paper proposes a Salp
Swarm Algorithm (SSA) as a trainer for MLP using an optimized set of MLP parameters. SSA has
proved its applicability in different applications and obtained promising optimization results. This
motivated us to apply SSA in the context of DF to train MLP as it was never used for this purpose
before. The results are validated by comparisons with other meta-heuristic algorithms. The SSAMLP-
DF is the best algorithm because it achieves the highest accuracy results, minimum error rate, and
best convergence scale.

Keywords: digital forensic; optimization; multilayer perceptron; salp swarm algorithm; connection
weights

1. Introduction

Great technological development has led to the use of the Internet in many areas of
life [1]. Many companies have taken advantage of the Internet to provide many services
using e-commerce without having to submit to market restrictions. This reflected positively
in the country’s economy by increasing competitiveness and achieving great returns. This
has caused a huge positive shift in the number of customers who use the Internet to buy,
sell, and transfer large amounts of money [2]. These large sums are tempting for many
hackers and scammers to engage in many activities that violate privacy. These put a
lot of people and companies at risk through the web and cause huge financial losses [3].
Other violations that may occur online include impersonation, loss of privacy, brand theft,
and loss of customers’ trust in institutions. Hence, the suitability of the Internet for carrying
out business and banking operations is called into question.

DF is a direct result of cybercrime, which is typically applied in computer-related
crimes [4–6]. This includes Intellectual property infringement, use of unauthorized priv-
ileges to deal with the computer systems, privacy infringement, a security breach of
confidential data repositories, carrying out terrorist operations via the Internet, misuse of
electronic data, etc. DF is defined as an organized process that uses scientific techniques to
collect, document, and analyze electronically stored data. This helps utilize the computer
equipment and storage media to provide evidence to detect the abnormal events [7].
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Suspicious events and unsafe activities may lead organizations to lose a lot of money,
in addition to losing their prestige. Therefore, such events may lead to serious repercussions
for both individuals and institutions. According to the statistics shown by the published
reports, the number of computer violations has reached more than five million violations
so far [8]. Many cybercrimes go unrecorded because their victims do not report them to
officials. Victims of cybercrime feel confused and humiliated or believe that the authorities
are not taking the necessary measures to punish the attackers. In addition to the lack
of competencies and expertise from the workforce, the government needs to mitigate
computer crimes [9].

Crime scene cyber investigations include conducting forensic analysis of all types
of storage and digital media increasing the volume of data obtained. The value of data
depends on the extent to which it is used in decision-making. The process of analyzing
digital data during forensic practice is traditionally manual in most cases. Investigators
perform reports using some statistical tools to give a picture of the collected data [10].
However, the cost of digital investigations increases with increasing data dimensions.
Furthermore, forensic cases increase the data analysis complexity, which leads to the
deterioration of the manual process quickly [11]. It is necessary to use more advanced
methods with potential beyond the capacity of the conventional manual analysis in dealing
with big data. Machine learning (ML) is an efficient and more sophisticated method that
facilitates the production of useful knowledge for decision-makers. This is carried out by
analyzing data sets from different perspectives and fixing them into meaningful forms [12].

The primary goal of DF analysis is to identify who is responsible for these cyber
security crimes. This is performed by the selection, classification, and reordering of the
sequence of events of the digital crime. Acts reorganization analyzes DF and prepares a
schedule of these cyber events. It determines digital evidence, which is information with
true value gained from trusted sources that admit or do not admit to committing cybercrime.
Over there, there are many sources from which reliable information can be collected to
rebuild cybercrime events, such as web browsers, history files, cookies messages, temporary
files, log files, and system files [13].

Some of the valuable sources of information that can aid the DF are the system files and
their metadata. These files are normally modified by users and the usual use of computer
machines. The reconstruction process for digital events can benefit from the system files
affected by cyber-crime. However, these files may be modified by normal programs [14].
For this reason, the reconstruction of digital events and the determination of the timeline
sequence of events and activities are essential. This helps to recognize whether the type of
application that manipulates the file system is reliable or malicious.

The main problem to be solved in this paper is the classification of files that have been
accessed, manipulated, changed, and deleted by application programs. This depends on
using some features that are represented by footprints. Identifying the affected files by
specious acts facilitates the process of event reconstruction in the file system.

This paper presents one of the Neural Network techniques for rebuilding the acts
of a digital crime. Multi-layer perceptron (MLP) is one of the artificial neural networks
(ANNs) that imitates the neural human system [15]. It has been used in many applications
as a supervised classifier. The main advantage of MLP is that it can learn and tackle many
complex problems with promising results in science and engineering. It can be adopted
efficiently for either supervised or unsupervised learning. In addition, it has a large ability
to tackle parallelism, fault tolerance, and robustness to noise. MLP has a great capacity to
generalize as well.

The most common problems of gradient-based MLP are stagnation in local minima,
a tendency to the starting values of its parameters, and slow convergence. Due to the local
minima problem, several studies in the literature proposed different approaches to train
MLP. Swarm-based algorithms have been widely used to train MLPs. These algorithms
simulate the natural survival of animals such as the Gradient-Based Optimizer (GBO) [16],
Slime mould algorithm (SMA) [17], Heap-based optimizer (HBO) [18], and Harris hawks
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optimization (HHO) [19]. However, the local minima problem still exists. Furthermore,
based on the no-free-lunch theorem (NFL), there is no preference among swarm algorithms.
The superiority of one swarm algorithm over another does not imply superiority in all
applications. This means that there is no guarantee that it will perform similarly when
applied to other optimization problems. These reasons motivated us to propose a new
method to train MLPs using the SSA algorithm in the context of DF.

SSA [20] is one effective meta-heuristic algorithm that belongs to a swarm-based
family. It has a set of characteristics that motivated us to select it. First, it has a single
parameter that decreases in an adaptive manner relative to the increasing iterations. Second,
it performs an extensive exploration in the initial iterations then it adaptively switches to
exploit the most promising areas of the search space. Third, SSA preserves the best-found
solution so that it never loses the optimal solution. Fourth, follower salps change their
locations adaptively following other members of the population, so it has the power to
alleviate the local minima problem.

SSA has been implemented to solve different optimization problems. In [21], Yang
proposed a memetic SSA (MSSA) with multiple independent salp chains. He aimed to
make more exploration and exploitation. Another improvement was using a population-
based regroup operation for coordination between different salp chains. The MSSA is
applied for an efficient maximum power point tracking (MPPT) of PV systems. The results
showed the output energy generated by MSSA in Spring in Hong Kong is 118.57%, which
is greater than the other algorithms. In [22], the author integrated the SSA with the Ant
Lion Optimization algorithm (ALO) for intrusion detection in IoT networks. The true
positive rates reached 99.9% and with a minimal delay. In [20], the authors proposed a new
phishing detection system using SSA. They aimed to increase the classification performance
and reduce the number of features of the phishing system. Different transfer function (TF)
families: S-TFs, V-TFs, X-TFs, U-TFs and Z-TFs were used to generate a binary version
of the SSA. The results showed that BSSA with X-TFs obtained the best results. In [23],
the target of the proposed approach was to reduce the number of symmetrical features and
obtain a high accuracy after implementing three algorithms: particle swarm optimization
(PSO), the genetic algorithm (GA), and SSA. The used datasets are the Koirala dataset.
The proposed COVID-19 fake news detection model obtained a high accuracy (75.4%) and
reduced the number of features to 303. In [24], the authors introduced four optimizations
algorithms integrated with an MLP neural network, namely artificial bee colony (ABC-
MLP), grasshopper optimization algorithm (GOA-MLP), shuffled frog leaping algorithm
(SFLA-MLP), and SSA-MLP to approximate the concrete compressive strength (CSC) in civil
engineering. The results show that SSA-MLP and GOA-MLP can be promising alternatives
to laboratory and traditional CSC evaluative methods.

The main contributions can be summarized as follows:

• The integration of SSA with MLP assists it since it can professionally avoid local minima;
• The high speed of convergence of SSA helps reach the optimal MLP structure quickly;
• The proposed method achieves better results compared with other algorithms in terms

of accuracy, error rate, and convergence curve;
• The proposed method can deal with different scenarios with varying complexity.

This paper has the following sections: Section 2 reviews some of the previous studies
that investigate DF. Section 3 provides a description for MLP. Section 4 discusses the details
of the new MLPSSA-DF method. Section 5 discusses the dataset, experiments, and results.
Finally, Section 6 summarizes the findings of the whole paper.

2. Forensic’s Background

The initiation of the DF investigations depends on the presence of some indications on
the computer system. There are several indications that a computer system has experienced
suspicious incidents and is a victim of cybercrime [25]. Table 1 shows these indications.

137



Electronics 2022, 11, 1903

Table 1. DF indications.

Computer System Part Indication

Booting Slow
Turn-off Slow

Response Slow
Data Deleted or destroyed

Processes Unknown processes run
Disk space Low

Pop-up windows Many unexpected
Battery Drains quickly
Wi-Fi Unstable connection

Blue Screen Displayed many times

The goal of conducting DF investigations is to answer a range of questions as quickly
as possible. These include:

1. What are the motives for cybercrime?
2. Where is the cybercrime site?
3. When did the suspicious act happen?
4. What suspicious acts occurred on the computer that warrants the action Investigation?
5. What is the application program or tool that was used in the execution of the

cybercrime?

DF investigations rely heavily on system files because they provide accurate and
important information about the sequence of events involved in cybercrimes [26]. At the
end of the DF investigations comes the question about how the cybercrime occurred,
and this question depends on the answer to all the previous questions.

In the past, a general rule was devised regarding potential digital evidence based on
documentary evidence considered admissible in court [27]. These steps include earning,
identification, assessing, and admission. Years later, a specific methodology was developed
for cybercrime research [28]. This methodology is an approach to all the proposed models
that have been followed so far and includes the following steps:

1. Define;
2. Preserve;
3. Gather;
4. Test;
5. Analyze;
6. Present;
7. Check.

In [29], the authors expanded the model in [28] by including two additional steps,
which are set up and approach strategies. The new model was called the abstract DF model.
The additional two steps were carried out after the define step and before the preserving
step. The setup step involves the tools that are used to deal with the suspicious acts. On the
other hand, the approach step involves a formal strategy for investigating the effect on the
technology and viewers. The problem with this model is that it is quite generic, and there
is no clear method to test it.

Through the models that have been proposed in [27–29], we can say that the steps of
the DF are compatible with the steps of machine learning. In general, a DF investigation
relies heavily on reconstructing events and preparing accurate evidence.

In [30], the authors devised a new method that initially requires the collection of
evidence to reconstruct the acts, followed by the development of initial hypotheses. These
hypotheses are studied, analyzed, and examined. From here begins the actual process of DF
investigations. It ends with finding the outcomes of the electronic case. A new technique
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has been developed in [31] to reconstruct the latest acts. It is based primarily on defining
the condemnation of data objects and the relationships between them.

In [32], the authors used an ant system to take the place on Grid hosts. The Ant-
based Replication and Mapping Protocol (ARMAP) is used to spread resource information
with a decentralized technique, and its performance is assessed using an entropy index.
The authors in [33] developed a new method to reconstruct acts. It uses a finite state
machine. It shows the transition from one state to another based on some conditions put by
the evidence. In [34], the authors proposed ontology for reconstructing acts by representing
the acts as entities. The events are represented by developing a time model to show the
instance change in the state instead of using a period. The shellbag-based technique was
proposed in [35], which preserves information in the Windows Registry. This information is
about the files, folders, and windows that appear, such as deleted, modified, and relocated
files and folders.

Nowadays, many tools are used to collect acts and save them in a temporal repository.
However, it can be difficult to analyze the raw data.

In [36], Hall investigated the potential of EXplainable artificial intelligence (XAI) to
enhance the analysis of DF evidence using examples of the current state of the art as
a starting point. Bhavsar [37] pointed out the challenges in this forensics standard to
design the framework of the investigation process for criminal activities using the best
digital forensic instruments. Dushyant [38] discussed the advantages and disadvantages of
incorporating machine learning and deep learning into cybersecurity to protect systems
from unwanted threats. In [39], Casino conducted a review of all the relevant reviews in
the field of digital forensics. The main challenges are related to evidence acquisition and
pre-processing, collecting data from devices, the cloud, etc.

Unlike previous studies in the literature, where the proposed algorithm was trained
on general datasets or limited applications, the newly developed MLP-SSA is proposed for
the first time in the context of DF. Different evaluations are performed to test the viability
of the MLPSSA to be used as a robust classifier for DF.

3. DF Using MLP

The MLP neural network can be used for the classification of files that have been
accessed, manipulated, changed, and deleted by application programs. Once act depends
on using some features that are represented by footprints. Identifying the affected files by
specious acts facilitates the process of event reconstruction in the file system.

3.1. Dataset

The dataset used in the experiments is collected from three resources: the audit log, file
system, and registry. It ensures that if some features are missed in one resource, they may
be found in another resource. The dataset represents a database for the collected features of
the system file or the metadata. The record contains the values of the files’ features that
have been affected by a specific program. These are the footprints that are specific for each
application program. It describes the system events or acts or metadata. As in supervised
classification, the dataset has one column for class. In this dataset, the last column is the
application program.

The collection of the features related to the system file using an application program is
carried out using some programs such as the .Net program. This paper runs a program
called VMware, which is used for collecting the features and building a training dataset.
The main advantage of VMware is that it can get red from the useless programs and
reduce their effects. The operating system used in this experiment is Windows 7 as it is a
commonly used platform. The application programs used in the experiments are Internet
Explorer, Acrobat Reader, MS-Word, MS-Excel (Microsoft Office version 2007), and VLC
media player.
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These applications are performed in different ways. First, the applications are loaded
separately. Thus, if one application is completely loaded and then closed, the other program
is loaded after it. The main issue in this execution of programs is that they do not do
anything in the file system except loading and closing. Second, the applications also are
loaded and executed and then closed one by one. In this case, the first three applications
perform one act, which is saving a file. The last application visit (www.msn.com accessed
on 20 April 2022) website. Third, as the first and second execution, the applications are
loaded separately. However, different acts are executed by each application.

The acts of the first three applications include saving files, opening files, and creat-
ing new files. However, the last application performs a set of acts that include visiting
secured/unsecured websites and sending/receiving emails with/without attachments.
Fourth, in this execution, the applications are executed at the same time as opposed to pre-
vious executions. As in execution three, different acts take place. The number of examples
of records in a database is 23,887. Table 2 shows the features on the dataset that is used to
investigate the digital forensics.

Table 2. The features in a dataset.

Feature Number Feature Name Feature Value Example

1 Filename-length 255 characters
2 Filenamespace _user/
3 Object Id ObjId
4 Original-Volume-Id 94F8− 9C08
5 Domain-Id dds :: domain :: DomainParticipant(DOMAIN_ID, qos_provider.participantqos())
6 Original-Object-Id 40dff02fc9b4d4118f120090273fa9fc

3.2. Preparing a Dataset

The performance of a machine learning model is greatly affected by the dataset.
Therefore, preparing a dataset is an important stage for developing efficient and reliable
models. It enhances the generalizing process. Different issues have been applied to a
dataset to preprocess it before using it in the learning algorithm. First, restructuring of the
dataset by distributing the values into sets in such a way the feature’s states reduce.

Another important concern in this regard is that most machine learning algorithms
deal with numerical values instead of text values. Therefore, in the used dataset, there is a
need to assign numerical values to some feature values using the word2vect tool. Using
this tool, an index is assigned to each word. Second, cleaning the dataset and git-rid of
missing and outlier values. These have a positive impact on enhancing the generalization
and generating less biased models. Third, normalizing the dataset by scaling the values of
the features into a predefined range using the min-max method. This helps to deal with all
features equally instead of making one feature overwhelm the others.

3.3. Salp Swarm Algorithm (SSA)

The inspiration for the SSA algorithm is from the salp aquatic animals. They have
a specialized technique for obtaining food. The first salp in the swarm leads the other
members in the sequence. This implies that other swarm members change their positions
dynamically concerning the leader. Figure 1 shows a single salp on the right side and a
swarm of salps on the left side.
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Figure 1. Single salp (A) and the salps chain (B).

Algorithm 1 (SSA) is an evolutionary algorithm that was developed by Mirjalili [20].
The swarm S of n salps can be represented in Equation (1), where Foo is the source of
food. The population of salps is represented by a matrix. Each row is a salp or solution.
The length of the salp is the number of features in a dataset (d). The number of salps (n) is
the swarm’s size. The first row in the matrix is the leader salp, and the other rows are for
the follower salps.

Si =




s1
1 s1

2 · · · s1
d

s2
1 s2

2 · · · s2
d

...
...

...
...

sn
1 sn

2 · · · sn
d


 (1)

Equation (2) illustrates the location of the first salp

S1
j =





Fooj + cp1((up_boundj − low_boundj)cp2

+ low_boundj), cp3 > 0.5
Fooj − cp1((up_boundj − low_boundj)cp2

+ low_boundj) , cp3 < 0.5

(2)

where s1
j and Fooj are the locations of leader salp and the source of food in the jth dimension,

respectively. In Equation (3), cp1 gradually decreases and changes its value across cycles,
and curr and last are the current and the last cycles, respectively. The other parameters
cp2 and c3 in Equation (2) are randomly chosen from [0, 1]. cp2 and cp3 direct the next
location in the jth dimension to +∞ or −∞ and determine the step size. The up_boundj and
low_boundj are the limits of the jth dimension.

cp1 = 2e−(
4curr
last )2

(3)

Si
j =

1
2
(si

j + si−1
j ) (4)

In Equation (4), i > 2, and si
j is the location of the ith salp at the jth dimension.
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Algorithm 1 SSA

In_variables: n is the size_swarm, d is the no_dimensions
Out_variables: The best salp (Foo)
Initial_variables s_i (i = 1, 2, . . . , n), up_bound and low_bound
while (last cycle is not reached) do

Compute each salp’s fitness value
Determine Foo as the optimal salp
Update c1 by Equation (3)
for (each salp si) do

if l == 1 then
Change the location of the first salp by Equation (2)

else
Change the locations of the other salps by Equation (4)

end if
Change the locations of the salps using the lower and upper bound

end for
end while
Return (F)

3.4. Multi-Layer Perceptron Neural Networks (MLP)

MLP is a type of feed-forward NN, which is used for training the data and discovering
the hidden patterns in the training data. The pattern is then applied to the hidden instances
of the dataset to obtain the results. Three layers are in the architecture of MLP: the first,
the middle, and the last layers. Each layer consists of a set of computational nodes that
simulate the human neurons. The MLP’s complexity increases by adding more middle
layers. The standard MLP contains a single hidden layer. Figure 2 shows a standard MLP,
with a first layer that has n nodes, a single middle layer that has m nodes, and a last layer
that has k nodes.

Figure 2. MLP components.

The MLP can be visualized as a directed graph that connects the first layer with the
middle layer and the middle layer with the last layer. Each middle node is connected with
the first layer with n weights and with r weights with the last layer. In addition, there are
m biases. The main processes that take place in the hidden nodes are the summation as in
Equation (5) and the activation as in Equation (6). The output of Equation (5) of node m is
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performed using Equation (5). After computing the sum, a transfer function is applied to
the input as in Equation (6).

SumFunm =
n

∑
n=1

dnm ∗ Pn + cm (5)

where dnm is the weight between the first node Pn and the middle node hm, and cm is the
bias m that enters the middle node m.

om = Sig(SumFunm) (6)

where om is the output node m; m = 1, 2, . . . , s; Sig is the sigmoid function as in Equation (7)

Sig(SumFunm) =
1

1 + e−SumFunm
(7)

After collecting the results from all the m nodes, the final result Om can be generated
as shown in Equations (8) and (9).

SumFunm =
s

∑
n=1

dnm ∗ om + cm (8)

where dnm is the weight between the node n in the middle layer and the node m in the last
layer, and cm is the bias m that enters to the output node m.

Om = f (SumFunm) (9)

where Om is the final result m; m = 1, 2, . . . , r; Sig is the function applied in Equation (7).

4. SSAMLP-DF Model

MLP is a type of NN that uses the feed-forward NN architecture and backpropagation
method to propagate data from input nodes to hidden nodes to output nodes. The following
list shows the stages of the SSAMLP-DF model:

• Collecting data;
• Data pre-processing;
• MLP construction;
• MLP training phase;
• MLP testing phase.

There are many areas in which the MLP has been implemented. The main features
of MLP that helped it to be commonly used include the nonlinear structure, adaptive
update of its parameters, and the ability to generalize well compared with other algorithms.
Initially, the dataset is divided into three parts: 70% to train the model, 15% to validate
the model, and 15% to test the model and mitigate the overfitting problem. This is called
the “Hold-Out” validation method. Overfitting is a popular machine learning problem in
which the error rate in the training phase is too small, but it increases in the testing phase.
Of course, this is not what is required.

The main target of MLP is to build an accurate model with a minimum error achieved
in the testing phase. By applying the MLP to the training part of a dataset, the initial MLP
structure is constructed. These include the MLP’s layers and the number of nodes in each
middle layer. The weights of the MLP are set to nonzero values. MLP trains a model
until a specific condition is satisfied, such as reaching the maximum number of cycles or
achieving a threshold error rate. If the trainer achieves the stopping condition, then the
weight parameters of the generated model are kept. If the stopping condition is not met,
then the MLP structure is updated by changing the number of nodes in the middle layer.

The MLP structure has a large number of nodes in the middle layer and is then
progressively resourced across cycles until an acceptable performance is achieved. This
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method is called the punning method, and it is used to determine the number of nodes in
the middle layer that is suitable to generate the desired performance. After the model is
generated, the testing dataset is applied to this model, and the error rate is approximated.
The basic measurement is the accuracy, which is calculated by dividing the correctly
classified instances by the total number of instances in the testing part of the dataset. It is
computed as follows:

ACC-DF =
TP-DF + TN-DF

TP-DF + TN-DF + FP-DF + FN-DF
(10)

where (TP-DF) is the number of files that are predicted to have tampered with a specific
computer program, and it is tampered by a specific computer program. (FN-DF) is the
number of files that are tampered by a specific computer program and incorrectly predicted
that they are not tampered by a specific computer program. (FP-DF) is the number of
files that are not tampered by a specific program and incorrectly predicted to be tampered
by a specific program. (TN-DF) is the number of files that are not tampered by a specific
program and incorrectly predicted to be not tampered by a specific program. The generated
DF-model is trained using MATLAB.

This section presents the proposed DF model by integrating the SSA and MLP algo-
rithms. In this model, the SSA is used to train the MLP based on one hidden layer. Two
important issues must be taken into account: the representation of the solution in the SSA
and the fitness function. Each solution is represented as a one-dimensional array and
its values represent a candidate MLP structure. The solution in the SSA-MLP model is
partitioned into three parts: the weight parameters that connect the input nodes with the
hidden nodes, the weight parameters that connect the hidden nodes with the output nodes,
and the biases. The solution’s length equals the number of connection weights in addition
to the number of biases. Equation (11)

Solution′slength = (P×M) + (2×M) + 1 (11)

where P is the number of input nodes, and M is the the number of the hidden nodes.
The fitness value in the SSA-MLP model is the mean square error (MSE). This is calcu-

lated by subtracting the predicted value from the actual value by the generated solutions
(MLPs) for the training part instances of the dataset. MSE is shown in Equation (12), where
R is the actual value, R̂ is the value generated from prediction, and N is the number of
examples in the training dataset.

MSE =
N

∑
i=1

(R− R̂)2 (12)

The steps of the proposed SSA-MLP can be summarized as follows:

1. The candidate individuals of the SSA are initialized randomly. These represent the
possible solutions of the MLP.

2. Evaluating the fitness of solutions. In this step, randomly generated values are
assigned to the bits of solutions that represent the possible values of the connection
weights and biases. These solutions are then assessed by the MLP. MSE is a popular
function that is selected to evaluate the evolutionary-based MLP models. The main
purpose of the training stage is to obtain the best network structure of the MLP that
generates the minimum error rate or MSE value when implemented on a training part
of the dataset

3. Update each solution by changing the position of search agents in the SSA algorithm.
4. Steps 2 and 3 are repeated until the stopping condition is satisfied. The last stage of

the proposed model is generating the optimal MLP structure with the best weight
parameters and biases. This MLP structure is tested on the testing and validation
parts of the dataset. Therefore, the obtained error rate by MSE is the minimum.
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Figure 3 shows the assignment of a salp to MLP. Figure 4 shows the general steps of
the proposed DF-SSA-MLP model.

Figure 3. Assigning a salp to MLP.

Figure 4. DF-SSA-MLP flowchart.
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5. Experiments and Results

This section presents the classification results of the proposed SSAMLP versus other
metaheuristic algorithms in terms of accuracy. Twenty-four experiments were established
to evaluate the different algorithms in terms of the accuracy of results using different MLP
structures. Furthermore, an analysis of their convergence curves is illustrated. The pro-
posed approach is compared against seven metaheuristic algorithms integrated with MLP
using the same experiment specifications. These algorithms are: Particle Swarm Opti-
mization (PSO) [40], Ant Colony Optimization (ACO) [41], Genetics Algorithm (GA) [42],
Differential Evolution algorithm (DE) [43], and BackPropagation [44].

These experiments performed the proposed methods on 14 benchmark mathematical
functions used for minimization problems. Table 3 shows the values of the parameters for
the applied algorithms that will be used to validate the proposed SSAMLP model.

Table 3. The parameters’ values for the applied algorithms.

Algo Parameter Val

SSA c1 [0–1]
c2 [0–1]

GA
CrossProb 0.9
Mut-prob 0.1
SelecMeth Roulette wheel

PSO AccCons [2.1, 2.1]
InerWe [0.9, 0.6]

DE CrossProb 0.9
DiffWe 0.5

ACO

IniPh (τ) 0.000001
PhUpCons (Q) 20

PhCons (q) 1
GPhDec-rate (pg) 0.9
LPhDecRate (pt) 0.5

PhSen (α) 1
VisSen (β) 5

ES λ 10
σ 1

PBIL

LeRate 0.05
GPopMem 1
BadPoMem 0

EPara 1
MutProb 0.1

Table 4 shows the specification of the performed experiments. These include the
structure of the MLP related to the number of layers and the number of hidden nodes.
The target is to study the effects of different MLP structures on the performance of the
algorithms and determine the best MLP structure for all the studied algorithms.
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Table 4. Experiments specifications.

Experiment Number Number of Layers Number of Hidden Nodes

1 1 8
2 1 7
3 1 6
4 1 5
5 1 4
6 1 3
7 1 2
8 1 1

10 2 7,1
11 2 6,2
12 2 5,3
13 2 4,4
14 2 6,1
15 2 5,2
16 2 4,3
17 2 5,1
18 2 4,2
19 2 3,3
20 2 3,2
21 2 4,1
22 2 3,1
23 2 2,2
24 2 2,1
25 2 1,1

Table 5 and Figure 5 show the accuracy results of the proposed SSAMLP model versus
other algorithms that are integrated into the MLP algorithm.

Table 5. Accuracy results of the SSA-MLP against other algorithms based on different experi-
ment specifications.

Exp # SSAMLP BPMLP GAMLP PSOMLP ACOMLP DEMLP ESMLP PRILMLP

1 91.34 87.33 90.56 90.21 84.28 83.20 80.58 82.79
2 92.88 87.98 91.34 91.66 85.06 83.78 80.99 84.39
3 93.41 88.05 91.97 86.00 83.90 81.45 81.77 84.67
4 94.22 88.47 93.11 92.71 85.13 83.10 81.93 84.80
5 95.84 89.50 94.61 93.98 86.09 84.32 82.77 85.39
6 95.76 89.48 92.78 92.67 85.00 84.22 82.55 85.23
7 95.00 88.09 92.71 92.36 84.53 84.01 82.07 85.14
8 94.78 84.67 90.89 91.45 82.77 83.99 81.20 84.33
9 94.38 82.66 88.60 91.55 82.30 83.90 80.99 83.80

10 93.88 81.01 82.45 90.66 81.86 81.77 80.43 82.26
11 93.76 81.00 82.19 90.61 81.23 80.98 78.51 80.87
12 92.17 80.90 80.77 88.50 80.90 79.76 77.56 80.28
13 91.89 80.74 80.36 87.94 80.89 79.32 76.11 79.90
14 90.04 80.03 80.12 84.44 80.13 77.65 75.89 78.94
15 90.01 80.00 79.45 84.21 80.10 76.30 76.26 77.85
16 89.99 79.99 79.39 83.97 80.01 76.10 75.97 77.48
17 89.87 79.43 79.34 83.56 79.56 75.98 75.36 77.31
18 89.60 79.20 78.22 82.30 79.36 74.34 75.12 77.22
19 88.45 79.10 77.83 82.28 79.20 74.29 74.84 74.09
20 88.34 78.33 77.51 82.14 78.20 73.29 72.91 73.67
21 88.23 78.11 75.23 81.90 77.28 72.11 72.37 71.88
22 87.88 77.20 74.33 81.36 77.02 72.00 72.21 71.51
23 87.21 76.37 74.07 81.23 76.26 71.98 71.00 71.47
24 87.11 75.30 73.44 81.11 76.09 71.86 70.66 71.22
25 87.02 75.19 73.19 81.02 76.00 70.96 70.34 70.18
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Figure 5. Boxplot representation for the proposed SSAMLP and other algorithms in terms of classifi-
cation accuracy.

As can be seen in Table 5, the best MLP structure is achieved when the number of
hidden nodes is four and the number of layers is one. The results show that in the first three
experiments, the accuracy of all hybrid models increases dramatically by decreasing the
number of hidden nodes in the MLP’s structures. This can be explained because reducing
the complexity of computations enhances the performance of DF prediction. The accuracy
results increase until a specified limit, which is when the number of layers is one and the
number of hidden nodes is four. This structure represents the best MLP structure for all
algorithms in which the best DF prediction accuracy is achieved. After that, the accuracy
started to decrease linearly by decreasing the number of nodes in the middle layer. The
reason is that decreasing the number of nodes in the middle layer makes the model become
simple, and the computations are not sufficient to produce an efficient model. Hence, it is
not recommended to decrease the number of hidden nodes to less than four or increase it
to more than four.

Choosing a medium number of computational nodes in the middle layer can produce
the best classification model and achieve the best DF prediction performance. In the
remaining experiments, the number of layers in the MLP structure does not benefit the
prediction performance. Conversely, increasing the number of layers inversely affects the
classification performance. This can increase the complexity of the classification model and
cause a major machine learning problem, which is overfitting. This problem occurs because
complex models that are unable to produce a general prediction pattern in the learning
phase are generated. The produced model is complex and passes by a large number of
learning instances. This reflects badly on the testing phase and causes degradation in the
prediction performance. Figure 6 shows the convergence curves of the proposed SSAMLP
versus other algorithms. The Y-axes is the error rate in terms of MSE. The X-axis is the
number of iterations. It can be seen that SSAMLP achieved the best convergence curves, as
it obtains the least error rates in the final iterations.
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Figure 6. Convergence curves of the proposed SSAMLP and other algorithms.

Overall, the experiments confirm that MLP can be applied as a reliable prediction
model for DF. Furthermore, it can be revealed that the number of features is sufficient to
investigate the DF and identify the application programs that have affected the file system.
The best accuracy achieved is 95.84%, which is somehow high. This indicates that there is
about a 4.16 error rate. Although there is no recommended error rate threshold commonly
reported for the DF models, it can be explained that this small error rate comes from the
application programs that access the same files in the file system. This makes the extracted
features of the application programs overlap for several files.

6. Conclusions and Future Works

Recently, cybercrime has increased significantly and tremendously. This made the
need for DF urgent. The target of this paper is to propose the SSA in training MLPs.
The few parameters, fast convergence, and strong ability to avoid local minima motivated
our attempts to use SSA to train MLPs. This is a minimization problem in which the
main objective is to select the optimal structure of MLP (best connection weight and bias
parameters) to achieve the minimum MSE. The purpose is to apply the optimal MLP in
determining the growing evidence by checking the historical acts on the file system to
identify how the application programs affected these files.

The used dataset in the experiments has been collected based on applying for five
different application programs and checking the footprint on the system files that are
the results of system actions and log entries. There are four scenarios for applying the
application programs to the system files. These represent simple, medium, and complex
scenarios to access the file system. The dataset is used to train the hybrid MLP-SSA model
and determine the best structure of MLP that produces the minimum MSE. The results of
the experiments show that the proposed SSAMLP outperformed others compared with
hybrid meta-heuristic algorithms in terms of accuracy, error rate, and convergence scale.
Furthermore, SSAMLP proved its suitability to be used as a reliable model to investigate
DF, with an accuracy of 95.84% when the number of middle layers is one and the number
of hidden nodes is four.

To verify the proposed method, a set of meta-heuristic algorithms were applied to the
same dataset, and their results were compared with the SSAMLP. The comparison results
show the out-performance of the SSAMLP in the majority of cases.

For future works, it is worthy to train other types of MLPs using the SSA. The ap-
plications of the multiobjective SSA to train MLP in the context of DF are recommended
as well.
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Abstract: With the increasing use of mobile devices, malware attacks are rising, especially on Android
phones, which account for 72.2% of the total market share. Hackers try to attack smartphones with
various methods such as credential theft, surveillance, and malicious advertising. Among numerous
countermeasures, machine learning (ML)-based methods have proven to be an effective means of
detecting these attacks, as they are able to derive a classifier from a set of training examples, thus
eliminating the need for an explicit definition of the signatures when developing malware detectors.
This paper provides a systematic review of ML-based Android malware detection techniques. It
critically evaluates 106 carefully selected articles and highlights their strengths and weaknesses as well
as potential improvements. Finally, the ML-based methods for detecting source code vulnerabilities
are discussed, because it might be more difficult to add security after the app is deployed. Therefore,
this paper aims to enable researchers to acquire in-depth knowledge in the field and to identify
potential future research and development directions.

Keywords: Android security; malware detection; code vulnerability; machine learning

1. Introduction

In this technological era, smartphone usage and its associated applications are rapidly
increasing [1] due to the convenience and efficiency in various applications and the growing
improvement in the hardware and software on smart devices. It is predicted that there
will be 4.3 billion smartphone users by 2023 [1]. Android is the most widely used mobile
operating system (OS). As of May 2021, its market share was 72.2% [2]. The second highest
market share of 26.99% is owned by Apple iOS, while the rest of the 0.81% is shared
among Samsung, KaiOS, and other small vendors [2]. Google Play is the official app store
for Android-based devices. The number of apps published on it was over 2.9 million as
of May 2021. Of these, more than 2.5 million apps are classified as regular apps, while
0.4 million apps are classified as low-quality apps by AppBrain [3]. Android’s worldwide
popularity makes it a more attractive target for cybercriminals and is more at risk from
malware and viruses. Studies have proposed various methods of detecting these attacks,
and ML is one of the most prominent techniques among them [4]. This is because ML
techniques are able to derive a classifier from a (limited) set of training examples. The use
of examples thus avoids the need to explicitly define signatures in developing malware
detectors. Defining signatures requires expertise and tedious human involvement and for
some attack scenarios explicit rules (signatures) do not exist, but examples can be obtained
easily. Numerous industrial and academic research has been carried out on ML-based
malware detection on Android, which is the focus of this review paper.

The taxinomical classification of the review is presented in Figure 1. Android users
and developers are known to make mistakes that expose them to unnecessary dangers and
risks of infecting their devices with malware. Therefore, in addition to malware detection
techniques, methods to identify these mistakes are important and covered in this paper
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(see Figure 1). Detecting malware with ML involves two main phases, which are analyzing
Android Application Packages (APKs) to derive a suitable set of features and then training
machine and deep learning (DL) methods on derived features to recognize malicious
APKs. Hence, a review of the methods available for APK analysis is included, which
consists of static, dynamic, and hybrid analysis. Similar to malware detection, vulnerability
detection in software code involves two main phases, namely feature generation through
code analysis and training ML on derived features to detect vulnerable code segments.
Hence, these two aspects are included in the review’s taxonomy.

Figure 1. Taxonomy of the review.

The rest of this paper is organised as follows: Section 2 lays out the background to this
study. Section 3 provides a detailed description of the review methodology, while Section 4
discusses related previous reviews on the topic. Section 5 discusses static, dynamic, and
hybrid analysis techniques for Android malware detection and the application of ML
and DL methods as well as a comparison of the methods used in the individual studies.
Section 6 discusses ML methods to identify code vulnerabilities, with Section 7 exploring
the results and discussions thereof. Finally, Section 8 concludes the paper.

2. Background

This section provides a high-level overview of the Android architecture and its built-in
security as well as potential threat vectors for Android. It also provides an introduction to
the ML process as it would be useful for non-ML background readers to understand the
contents of this paper.

2.1. Android Architecture

Android is built on top of the Linux Kernel. Linux is chosen because it is open
source, verifies the pathway evidence, provides drivers and mechanisms for networking,
and manages virtual memory, device power, and security [5]. Android has a layered
architecture [6]. The layers are arranged from bottom to top. On top of the Linux Kernal
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Layer, the Hardware Abstraction Layer, Native C/C++ Libraries and Android Runtime,
Java Application Programming Interface (API) Framework, and System Apps are stacked
on top of each. Each layer is responsible for a particular task. For example, the Java API
Framework provides Java libraries to perform a location awareness application-related
activity such as identifying the latitude and the longitude.

Android-based applications and some system services use the Android Runtime
(ART). Dalvik was the runtime environment used before the ART. Both ART and Dalvik
were created for the Android applications-related projects. The ART executes the Dalvik
Executable (DEX) format and the bytecode specification [7]. The other aspects are mem-
ory management and power management since the Android-based applications run on
battery-powered devices with limited memory. Therefore, the Android operating system is
designed in a way that any resource can be well managed [5]. For instance, the Android
OS will automatically suspend the application in memory if an application is not in use
at the moment. This state is known as the running state of the application life cycle. By
doing this, it can preserve the power that can be utilised when the application reopens.
Otherwise, the applications are kept idle until they are closed [8].

Built-In Security

Android comes with security already built in. It is a privileged separated operating
system [9]. Sandboxing technique and the permission system in Android reduce some
risks and bugs in the application. Sandboxing technique in Android isolates the running
applications using unique identifiers which are based on the Linux environment [10].
Without having permissions granted from the user at the time of app installation or
reconfiguration, apps cannot access system resources. If some of the permissions are not
granted, then the application itself will not be usable. When a system update or upgrade
happens, several improvements happen in terms of security and privacy. For example,
Android 11, the latest stable Android version contains some changes related to security and
privacy such as scoped storage enforcement, one-time permissions, permissions auto-reset,
background location access, package visibility, and foreground services [11].

However, there are possibilities of malware attacks to exploit some vulnerabilities
in the applications developed by various users, because the Google Play Store will not
detect some vulnerabilities when publishing applications in the Play Store as in Apple App
Store [12].

2.2. Threats to Android

While Android has good built-in security measures, there are several design weak-
nesses and security flaws that have become threats to its users. Awareness about those
threats is also important to perform a proper malware detection and vulnerability anal-
ysis. Many research and technical reports have been published related to the Android
threats [13] and classified Android threats based on the attack methodology. Social engi-
neering attacks, physical access retrieving attacks, and network attacks are described under
the ways of gaining access to the device. For the vulnerabilities and exploitation methods,
man in the middle attacks, return to libc attacks, JIT-Spraying attacks, third-party library
vulnerabilities, Dalvik vulnerabilities, network architecture vulnerabilities, virtualization
vulnerabilities, and Android debug bridges and kernel vulnerabilities are considered.

The survey in [14] identified four types of attacks to Android; hardware-based attacks,
kernel-based attacks, Hardware Abstraction Layer (HAL) based attacks, and application-
based attacks. Hardware-based attacks such as Rowhammer, Glitch, and Drammer are
related to sensors, touch screens, communication media, and DRAM. Kernel-based attacks
such as Gooligan, DroidKungfu, Return-oriented Programming are related to Root Priv-
ilege, Memory, Boot Loader, and Device Driver. HAL-based attacks such as Return to
User and TocTou are related to interfaces for cameras, Bluetooth, Wi-Fi, Global Positioning
System (GPS), and Radio. Application-based attacks such as AdDetect, WuKong, and
LibSift are related to third-party libraries, Intra-Library collusion, and privilege escalations.
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Android applications are easily penetrable with proper knowledge of Android pro-
gramming if suitable security mechanisms are not in place. In addition, Android mar-
ketplaces such as Google Play are not following extensive security protocols when new
apps are published. For example, the Android game known as Angry Bird was hacked
and the hacker managed to get into its APK file and embed a malicious code that sent text
messages unknowingly by the user. The cost was 15 GPB to the user per message. More
than a thousand users were affected [15].

2.2.1. Malware Attacks on Android

Malware attacks are the most common case that can be identified as a threat to Android.
There are various definitions for malware given by many researchers depending on the
harm they cause. The ultimate meaning of the malware is any of the malicious application
with a piece of malicious code [16] which has an evil intent [17] to obtain unauthorised
access and to perform neither legal nor ethical activities while violating the three main
principles in security: confidentiality, integrity, and availability.

Malware related to smart devices can be classified into three perspectives as attack
goals and behaviour, distribution and infection routes, and privilege acquisition modes [18].
Frauds, spam emails, data theft, and misuse of resources can be mentioned as the attack
goals and behaviour perspective. Software markets, browsers, networks, and devices can
be identified as the distribution and infection routes. Technical exploitation and user manip-
ulation such as social engineering can be listed under the privilege and acquisition modes.
Malware specifically related to the Android operating system is identified as Android
malware [19] which harms or steals data from an Android-based mobile device. These are
categorised as Trojans, Spyware, adware, ransomware, worms, botnet, and backdoors [20].
Google describes malware as potentially harmful applications. They classified malware
as commercial and noncommercial spyware, backdoors, privilege escalation, phishing,
types of frauds such as click fraud, toll fraud, Short Message Service (SMS) fraud, and
Trojans [21].

App collusion also should be considered when studying malware. App collusion is
two or more apps working together to achieve a malicious goal [22]. However, if those
apps perform individually, there is no possibility of a malicious activity happening. It is a
must to detect malicious inter-app communication and app permissions for app collusion
detection [23,24].

2.2.2. Users and App Developers’ Mistakes

The mistakes can happen knowingly or unknowingly from the developers as well as
users. These mistakes may lead to threats arising to Android OS and its applications.

It has been identified that users are responsible for most security issues [25]. Some
common mistakes done by the users will lead to serious threats in an Android applica-
tion. At the time of installing Android applications, users will be asked to allow some
permissions. However, all the users may not understand the purpose of each permis-
sion. They allow permission to run the application without considering the severity of
it. Fraudulent applications might steal data and perform unintended tasks after getting
the required permissions. It is possible to arise threats to the Android systems due to the
mistakes performed by the app developers at the time of developing applications. In the
publishing stage of the Android apps, Google Play will have only limited control over the
code vulnerabilities in the applications. Sometimes developers are specifying unwanted
permissions in the Android manifest file mistakenly, which encourages the user to grant the
permissions if the permissions were categorised as not simple permissions [26]. Though
the app development companies and some of the app stores are advising about following
the security guidelines implemented at the time of development, many developers still fail
to write secure codes to build secured mobile applications [27].
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2.3. Machine Learning Process

ML is a branch of artificial intelligence that focuses on developing applications by
learning from data without explicitly programming how the learned tasks are performed.
The traditional ML methods make predictions based on past data. ML process lifecycle
consists of multiple sequential steps. They are data extraction, data preprocessing, feature
selection, model training, model evaluation, and model deployment [9]. Supervised
learning, unsupervised learning, semisupervised learning, reinforcement learning, and
deep learning are the different subcategories of ML [28]. The supervised learning approach
uses a labelled dataset to train the model to solve classification and regression problems
depend on the output variable type (continuous or discreet). Unsupervised learning is used
to identify the internal structures (clusters), the characteristics of a dataset, and a labelled
dataset is not required to train the model. A mix of both supervised and unsupervised
learning techniques are applied in semisupervised learning and used in a case of limited
labelled data in the used dataset [29]. The learning model and the data used for training
are inferred. The model parameters are updated with the received feedback from the
environment in reinforcement learning where no training data is involved. This ML
method proceeds as prediction and evaluation cycles [30]. DL is defined as learning and
improving by analysing algorithms on their own. It works with models such as artificial
neural networks (ANN) and consists of a higher or deeper number of processing layers [31].

3. Methodology

Android was first released in 2008. A few years later, the security concerns were
discussed with the increasing popularity of Android applications [2]. More attention
was received towards applying ML for software security in the last five years because
many researchers continuously identify and propose novel ML-based methods [9]. This
review was conducted according to the Preferred Reporting Items for Systematic reviews
and Meta-Analysis (PRISMA) model [32]. Based on the objective of this study, first we
formulated several research questions (see Section 3.1). Next, a search strategy was defined
to identify the conducted studies which can be used to answer our research questions.
The database usage and inclusion and exclusion criteria were also defined at this stage.
The study selection criteria were defined to identify the studies aiming to answer the
formulated research questions as the third stage. The fourth stage is defined as data
extraction and synthesis, which describes the usage of the collected studies to analyse for
providing answers to the research questions. We reviewed threats to the validity of the
review and the mechanism to reduce the bias and other factors that could have influenced
the outcomes of this study as the last step of the review process.

3.1. Research Questions

This systematic review aims to answer the following research questions.

RQ1: What are the existing reviews conducted in ML/DL based models to detect Android
malware and source code vulnerabilities?

RQ2: What are code/APK analysing methods that can be used in malware analysis?
RQ3: What are the ML/DL based methods that can be used to detect malware in Android?
RQ4: What are the accuracy, strengths, and limitations of the proposed models related to

Android malware detection?
RQ5: Which techniques can be used to analyse Android source code to detect vulnerabilities?

3.2. Search Strategy

The search strategy involves the outline of the most relevant bibliographic sources
and search terms. In this review, we have used several top research repositories as main
sources to identify studies. They were ACM Digital Libraries, IEEEXplore Digital Library,
Science Direct, Web of Science and Springer Link. Google Scholar, and Research Gate
were also used to identify research studies published in some quality venues. The search
string that we used to browse through research repositories contained the following search
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terms: (“android malware”) OR (“malware detection”) OR (“machine learning”) OR
(“deep learning”) OR (“static analysis”) OR (“dynamic analysis”) OR (“hybrid analysis”)
OR (“malware analysis”) OR (“android vulnerability analysis”) OR (“ML based malware
detection”) OR (“DL based malware detection”).

3.3. Study Selection Criteria

Since mobile malware detection using ML techniques related trends increased from
2016, we limit our review to study related work from 2016 to May 2021. Initially through
the research database search in the top research repositories, 109 research papers and from
another sources 11 research papers were identified. From these 120 papers, 5 were excluded
because of duplicate entries and another 5 were excluded because they were not available
in public from those 110 articles. Due to data analysis issues and experiment issues in the
given context, 4 articles were excluded though the full text is available. The remaining
106 articles were reviewed in this study. We performed the snowballing process [33],
considering all the references presented in the retrieved papers and evaluating all the
papers referencing the retrieved ones, which resulted in two additional relevant paper.
We applied the same process as for the retrieved papers. The snowballing search was
conducted in March 2021. Figure 2 shows a summary of the paper selection method for
this systematic review.

Figure 2. PRISMA method: collection of papers for the review.
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3.4. Data Extraction and Synthesis

We extracted data from 9 studies to answer the RQ1, which is about the existing
literature reviews related to Android malware detection using ML/DL models and Android
vulnerability analysis. To map with RQ2, related studies were identified related to Android
code/APK analysing techniques that can be used to analyse malware. The count for those
studies was 22. To answer the RQ3 about ML/DL based techniques which can be used
to detect malware, we extracted data from 18 different studies. Data from 36 research
studies were extracted to find answers for the RQ4, which is about detection model
accuracy, strengths, and weaknesses. The remaining 21 papers about Android source code
vulnerability analysis and detection methods were used to answer the RQ5.

3.5. Threats to Validity of the Review

This review was conducted in a systematic approach explained above. We tried
to minimise the bias and the other factors affecting the review study. Though we have
conducted our review comprehensively, still there can be good papers which were not
reviewed in this study since they are not available in the research repositories that we used.
The period we were considering for the paper selection is from 2016 to May 2021, as the
use of ML techniques for malware detection has increased significantly during this period
due to recent advances in artificial intelligence. Therefore, if comprehensive studies were
conducted before that, those studies were not captured in our work. When searching for
the papers we considered the research papers written in the English language. Because
of this limitation, our work may have overlooked some important works written in other
languages such as Chinese, German, and Spanish.

4. Related Work

Previous reviews in [9,13,17,34–37] discussed various ML-based Android malware
detection techniques and ways to improve Android security.

The review in [34] systematically reviewed the studies conducted in static analysis
techniques used for Android applications from 2011 to 2015. The tools that can be used
to perform Android code analysis using static analysis techniques were also summarised.
Abstract representation, taint analysis, symbolic execution, program slicing, code instru-
mentation, and type/model checking were identified as fundamental analysis methods.
Though this review correctly identified the most widely used approach to detect privacy
and security related issues, the applicability of static analysis techniques for malware
detection was not discussed. Apart from that, it did not take into account the recent re-
search where novel analysis methods and malware detection methods were suggested. The
study conducted in [35] provided a good systematic review mainly about static analysis
techniques that can be used in Android malware detection. Four methods were identified
as characteristic-based, opcode-based, program graph-based and symbolic execution-based.
After that, it evaluated the capabilities of static analysis based Android malware detection
methods on those four methods using the existing literature. The paper has identified ML
and statistical models as possible methods by which Android malware can be identified.
However, ML-based machine learning methods have not been thoroughly reviewed as the
main focus is only on the static analysis techniques.

In [13], a survey was carried out using existing literature up to 2017 to identify malware
detection techniques together with their advantages and disadvantages. Under static and
dynamic analysis, they have grouped several approaches that can be used to identify
Android malware. However, the analysis of this survey was not comprehensive as it
focused on a limited number of studies. Based on the previous studies, a systematic review
was conducted in [17]. According to it, there are five types of Android malware detection
techniques. They are static detection, dynamic detection, hybrid detection, permission-
based detection, and emulation based detection. They also summarised the reviewed work
with the model accuracy of malware detection, but the approach of those studies was not
discussed. The review conducted in [9] analysed several studies conducted until 2019
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related to ML models which can be used to detect Android malware. The malware and APK
analysis methods were not discussed in detail since the focus on identifying different ML
models was the priority in this review. It is better to analyse the accuracies of the identified
ML models. The novel ML/DL and other models which can be used to detect Android
malware were also not in the focus of this review. The review in [36] provides a good
analysis of static, dynamic, and hybrid detection techniques used in the existing research
studies for Android malware detection. Along with that possibility of using machine
learning models, several deep learning models are also discussed. However, this study
did not comprehensively analyse the model accuracy of the machine learning methods for
Android malware detection since this study focused more on discussing different malware
detection approaches instead of considering the accuracy of those approaches. Hence,
these works differ from our study.

In [37], a systematic review on DL-based methods for Android malware defence was
discussed. Malware detection, malware family detection, repackaged/fake app detection,
adversarial learning attacks and protections, and malicious behaviour analysis were identi-
fied as the malware defines objectives in this review together with the usage of DL models.
Though they have identified the possible DL models, it is still better to analyse the accuracy
and compare it with traditional ML methods and other hybrid approaches.

Apart from Android malware detection techniques, source code vulnerability analysis
is also important to address security concerns in Android. The survey in [38] analysed
several studies on ML-based and data mining approaches which can be used to identify
software vulnerabilities until 2017. Though this survey provides a good analysis, they
considered most of the research work in general software security. Therefore, the vulnera-
bility analysis in Android code was not discussed. However, findings such as ML models’
usage for vulnerability analysis are still beneficial for specific programming languages’
related analysis.

However, several limitations have been identified in the above works, such as not
covering recent proposals on ML methods to detect malware, narrow scopes, and lack
of critical appraisals of suggested detection methods. The lack of a thorough analysis of
ML/DL-based methods was also identified as a limitation of existing works. Android
malware detection and Android code vulnerability analysis have a lot in common. ML
methods used in one task can be customised for use in the other task. However, as
per our understanding, there are no reviews that cover these two areas together. These
shortcomings have been addressed in this work and therefore our work is unique.

5. Machine Learning to Detect Android Malware

Malware detection in Android can be performed in two ways; signature-based detec-
tion methods and behaviour-based detection methods [39]. The signature-based detection
method is simple, efficient, and produces low false positives. The binary code of the appli-
cation is compared with the signatures using a known malware database. However, there
is no possibility to detect unknown malware using this method. Therefore, the behaviour-
based/anomaly-based detection method is the most commonly used way. This method
usually borrows techniques from machine learning and data science. Many research studies
have been conducted to detect Android malware using traditional ML-based methods such
as Decision Trees (DT) and Support Vector Machines (SVM) and novel DL-based models
such as Deep Convolutional Neural Network (Deep-CNN) [40] and Generative adversarial
networks [41]. These studies have shown that ML can be effectively utilised for malware
detection in Android [9]. Most of these studies used datasets such as Drebin [42], Google
Play [43], AndroZoo [44], AppChina [45], Tencent [46], YingYongBao [47], Contagio [48],
Genome/MalGenome [49], VirusShare [50], IntelSecurity/MacAfee [51], MassVet [52],
Android Malware Dataset (AMD) [53], APKPure [54], Anrdoid Permission Dataset [55],
Andrototal [56], Wandoujia [57], Kaggle [58], CICMaldroid [59], AZ [60], and Github [61]
to perform experiments and model training in their studies.
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5.1. Static, Dynamic, and Hybrid Analysis

As mentioned earlier, analysing APKs to extract features is required to use some of
the proposed ML techniques in the literature. To this end, three analysis techniques are
identified as static, dynamic, and hybrid analysis method [62–64]. Static analysis can be
performed by analysing the bytecode and source code (or re-engineered APK) instead
of running it on a mobile device. Dynamic analysis detects malware by analysing the
application while it is running in a simulated or real environment. However, there is a
high chance of exposing the risks to a certain extent to the runtime environment in the
dynamic analysis since malicious codes will be executed which can harm the environment.
The hybrid analysis involves methods in both static and dynamic analysis.

Under the static analysis, four aspects were proposed [28] which are analysis tech-
niques, sensitivity analysis, data structure, and code representation. Under the analysis
techniques, Symbolic execution, taint analysis, program slicing, abstract interpretation,
type checking, and code instrumentation were identified. For the sensitivity analysis,
object, context, field, path, and flow were identified. For the data structure aspect, it is
possible to list call graph (CG), Control Flow Graph (CFG), and Inter-Procedural Control
Flow Graph (ICFG). Smali, Jimple, Wala-IR, Dex-Assembler, Java Byte code, or class were
listed under the code representation aspect. Kernel, application, and emulator can be taken
under inspection level aspect. Taint analysis and anomaly-based can be taken under the
dynamic analysis approaches.

The feature extraction methods available in the static analysis consist of two types:
Manifest Analysis and Code Analysis [65]. Features such as package name, permissions,
intents, activities, services, and providers can be identified in Manifest Analysis. In the code
analysis, features such as API calls, information flow, taint tracking, opcodes, native code,
and cleartext analysis can be identified as possible features to extract. For the dynamic
analysis, five feature extraction methods were identified. They were (1) Network traffic
analysis for features like Uniform Resource Locators (URL), Internet Protocol (IP), Network
protocols, certificates, and nonencrypted data, (2) Code instrumentation for features such
as Java classes, intents, and network traffic, (3) System calls analysis, (4) System resources
analysis for features such as processor, memory and battery usage, process reports, net-
work usage, and (5) User interaction analysis for features such as buttons, icons, and
actions/events. The study in [66] has explored the security of ML for Android malware
detection techniques using a learning-based classifier with API calls extracted from con-
verted smali files. Then a sophisticated secure learning method is proposed, which showed
that it is possible to enhance the security of the system against a wide range of evasion
attacks. This model is also applicable to anti-spam and fraud detection areas. This study
can be further improved by exploring the possibilities of identifying attacks that can alter
the training process.

5.2. Static Analysis with Machine Learning

Static analysis is the widely used mechanism for detecting Android malware. This is
because malicious apps do not need to be installed on the device as this approach does not
use the runtime environment [67].

5.2.1. Manifest Based Static Analysis with ML

Manifest based static analysis is a widely used static analysis technique. The model
proposed in SigPID [68] discussed an Android permission-based malware detection mech-
anism. This model has identified only 22 permissions out of all the permissions listed
in sample APKs that are significant by developing a three-level data purring method:
permission ranking with negative rate, support based permission ranking, and permission
mining with association rules. After that, the ML algorithms were employed to detect the
malware. To this process, a binary format dataset of permissions, which was created using
a database of malware and benign apps from Google Play was used. The support-vector
machine (SVM) outperformed the other studied ML algorithms (Naïve Bayes (NB) and
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(DT)) with over 90% accuracy. For the permission-based static analysis, this work was
conducted comprehensively. However, it is better to check the other variables which are
affecting the malware apart from permissions.

A malware detection method using Android manifest permission analysing was
proposed in [69] with the use of static analyser and decompilation support of APKTool
for the APK to code level extraction. AndroZoo repository was used as the dataset to
train four different ML algorithms. Random Forest (RF), SVM, NB, and K-Means were
used to perform the model validity process, and RF produced the highest accuracy for
this model with 82.5% precision and 81.5% recall. However, the accuracy of this model is
comparatively low with the other studies conducted in the same area. The close reason for
that would be that this approach compares the permissions only.

The proposed work in [70] checked the possibility of using reduced dimension vector
generating for malware detection. Based on that, malware detection using ML models
with permission-based static analysis was performed. In the feature selection stage of this
approach, the model removed the unnecessary features using a linear regression-based
feature selection approach. Therefore, the classification model can run in real-time since
the training time was decreased, with an accuracy of over 96%. The Multi-Layer Perception
Model (MLP) algorithm outperformed NB, Linear Regression, k-nearest neighbors (KNN),
C4.5, RF and Sequential Minimal Optimization (SMO). It is better to focus on hypermeter
selections to also increase the performance of the classification. The model proposed in [71]
performed a static analysis on Android apps. Android permissions and intents were used
as the basic static features of malware classification while URLs, Emails, and IPs were used
as the basic dynamic features. Initially, the APK files were decompiled using ApkTool. The
extractor module of this extracted different types of information related to malware. After
extracting the data through disassembling the dex files, the data were kept in a text files
and they were used to create the feature vector. Then the ML algorithms RF, NB, Gradient
Boosting (GB), and Ada Boosting (AB) were used to train and test the malware detection
model with the usage of Drebin dataset and Google Play Store. After performing ML
training and testing part for each of permission, intent, and network features individually it
has identified that the above ML algorithms were performing with different accuracies. For
permissions RF performed well with 0.98 precision and recall, for intents NB performed
well with 0.92 precision and 0.93 recall, and for network both RF and AB performed
similarly well with 0.97 precision and recall. Though this research concluded with such
accuracies for malware detection it is still lacking the study of some other features like API
calls, etc.

Android malware detection technique using feature weighting with join optimisation
of weight mapping and classifier parameters model is proposed in JOWMDroid Framework
in [72]. This model is a static analysis-based technique that selected a certain number of
features out of the extracted features from the app which were related to malware detection.
This process was done by decompiling the APK to manifest and class.dex files and prepared
a binary feature matrix. Initial weight was calculated using Random Forest, SVM, Logistic
regression (LR), and KNN ML models. Weight machine functions were designed to map
the initial weight with final weights. As the last step, classifiers and weight mapping
function parameters were jointly optimised by the Differential Evolutional algorithm.
Drebin, AMD, Google Play, and APKPure datasets were used to train the model. Finally,
it is identified that among weight unaware classifiers, RF performed better with 95.25%
accuracy and for weight-aware classifiers, KNN and MLP performed better. However, with
the integration of this JOWM-IO method, SVM and LR beat the RF with over 96% accuracy.
If the correlation between features is also considered, the model accuracy for detecting
malware will increase.

Table 1 comparatively summarises the above research studies related to manifest
analysis based methods.
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Table 1. Manifest based static Analysis with ML.

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2018 [68] Developing 3 level data
purring method and ap-
plying ML models with
SigPID

Manifest Analysis
for Permissions

Google
Play

NB,
DT,
SVM

SVM 90% High effectiveness
and accuracy

Considered only the per-
mission analysis which
may lead to omit other im-
portant analysis aspects

2021 [69] Analysing permission and
training the model with
identified ML algorithm

Manifest Analysis
for Permissions

Google
Play,
AndroZoo,
AppChina

RF,
SVM,
Gaussian
NB,
K-Means,

RF 81.5% The model was
trained with com-
paratively different
datasets

Did not consider other
static analysis features
such as OpCode, API
calls, etc.

2021 [70] Reducing dimension vec-
tor generation and based
on that perform malware
detection using ML mod-
els

Manifest Analysis
for permissions

AMD,
APKPure

MLP,
NB,
Linear
Regression,
KNN,
C.4.5,
RF,
SMO

MLP 96% Efficiency, applicabil-
ity and understand-
ability are ensured

Hyper-parameter selec-
tions are not made in the
use

2021 [71] Selecting feature using
dimensionality reduc-
tion algorithms and
using Info Gain method

Manifest Analysis
for permissions
and intents

Drebin,
Google
Play

RF,
NB,
GB,
AB

RF,
NB,
AB

RF-98%,
NB-92%,
AB-97%

Analysed the fea-
tures as individual
components and not
as a whole

Did not consider about
other features such as API
calls, Opcode etc.

2021 [72] Feature weighting with
join optimisation of
weight mapping with
proposed JOWMDroid
framework

Manifest Analysis
for permission,
Intents, Activities
and Services

Drebin,
AMD,
Google
Play
APKPure

RF,
SVM,
LR,
KNN

JOWM-IO
method with
SVM and LR

96% Improved accuracy
and efficiency

Correlation between fea-
tures were not considered

5.2.2. Code Based Static Analysis with ML

Code based analysis is the other way of performing the static analysis to detect An-
droid malware with ML. The model proposed in TinyDroid [39] analysed the latest malware
listed in the Drebin dataset. Instruction simplification and ML are used in the model. Using
the decompiled DEX files by converting APK to smali codes, the opcode sequence was
abstracted. Then using that, features were extracted through N-gram and integrated with
the exemplar selection method. In the exemplar selection method, for intrusion detection,
a good representative of data was generated through a clustering algorithm, Affinity Prop-
agation (AP). This is because in AP, the number of clusters determination or estimation is
not required before running the application. Then the generated 2,3, and 4-gram sequences
were fed into SVM, KNN, RF, and NB ML classifiers. RF algorithm was identified as the
optimal algorithm for this scenario with 0.915 True Positive Rate, 0.106 False Positive Rate,
0.876 Precision, and 0.915 Recall for 2-gram sequence. High accuracy rates for the other
3 and 4-grams were also achieved compared to the studied ML algorithms. However,
the proposed method still has issues such as using the malware samples taken only from
few research studies and some organisation and lack of metamorphic malware samples.
Therefore, some malware could remain undetected.

The approach proposed in [73] used the Drebin dataset with 5560 malware samples
along with 361 malware from the Contagio dataset and 5900 benign apps from Google Play
to propose another approach to detect malware by analysing API calls used in operand
sequences. For the malware prediction model, the package level details were extracted
from the API calls. The package n-grams were extracted from the package sequence, which
represents application behaviour. Then they were combined with DT, RF, KNN, and NB ML
algorithms to build a predictive model in this study and concluded that the RF algorithm
performed with an accuracy of 86.89% after training the model on 2415 package n-grams. It
is better to consider other information which contains in operands since it might affect the
overall model. The relationship of system functions, sensitive permissions, and sensitive
APIs were analysed initially in Anrdoidect [74]. A combination of system functions was
used to describe the application behaviours and construct eigenvectors using the dynamic
analysis technique. Based on the eigenvectors, effective methodologies of malware de-
tection were compared along with the NB, J48 DT, and application functions decision
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algorithm and identified that the application functions’ decision algorithm outperformed
the others. There are still some improvements to be performed to this approach.

In MaMaDroid [75] model, API calls performed by apps were abstracted using static
analysis techniques to classes, packages, or families. Then to determine the call graph of
apps as Markov chain, the sequence of API calls was obtained. Then using ML algorithms,
classification was performed using RF, KNN, and SVM and it was identified that RF had
the highest accuracy among these three. However, in this method, dynamic analysis was
not considered. The dynamic analysis is useful for an API calls analysis in a runtime
environment to detect malicious applications.

Android malware detection approach using the method-level correlation relationship
of application’s abstracted API calls was discussed in [76]. Initially, the source codes
of Android applications were split into methods, and abstracted API calls were kept.
After that, the confidence of association rules between those calls was calculated. This
approach provided behavioural semantic of the application. Then SVM, KNN, and RF
algorithms were used to identify the behavioural patterns of the apps towards classifying
as benign or malicious. Drebin and AMD datasets were used for this, and 96% accuracy
was received with the RF algorithm. This method does not address the problems such
as dynamic loading, native codes, encryptions, etc. though it has such high accuracy. If
the dynamic analysis methods are also used, the accuracy of this model will increase to a
further high level.

The model named SMART in [77] proposed a semantic model of Android malware
based on Deterministic Symbolic Automation (DSA) to comprehend, detect, and classify
malware. This approach identified 4583 malware that were not identified by leading anti-
malware tools. Two main stages were included in this approach; malicious behaviour
learning and malware detection and classification. In Stage 1, the model identified semantic
clones among malware, and semantic models were constructed based on that. Then mali-
cious features were extracted from DSA, and ML techniques were used to detect malware
in Stage 2 after performing static analysing activities with bytecode analysis. Random
Forest achieved the best classification results of 97% accuracy, and AB, C45, NB, and Linear
SVM provided lower accuracy. Therefore, this work identified that DSA is possible to use
for malware detection. DroidChain [78] proposed a static analysis model with behaviour
chain model. The malware detection problem was transformed to a matrix model using
the Wxshal algorithm to further analyse this approach. Privacy leakage, SMS financial
charges, malware installation, and privilege escalation were proposed as malware models
in this study using the behaviour chain model. In the static analysis part, using APKTool
and DroidChain, Smali codes were extracted. Then the API call graph was generated using
the Androguard [79] tool. After that, the incidence matrix was built, and the accessibility
of the matrix to detect malware was calculated. The average accuracy of this model was
83%. This method can be improved to detect malware more accurately and efficiently by
considering other static analysis features such as code analysis, permission analysis, etc.

The study conducted in [80] discussed testing malware detection techniques based on
opcode sequence and API call sequence. The Hidden Markov Model (HMM) was trained in
this and detection rates for models based on static, dynamic, and hybrid approaches were
identified and it was concluded that the hybrid approaches are highly effective without
performing static or dynamic analysis alone.

Tables 2 and 3 comparatively summarise the above research studies related to code
analysis based methods, while Table 2 listed studies with model accuracy below 90% and
Table 3 listed studies with model accuracy above 90%.

164



Electronics 2021, 10, 1606

Table 2. Code based static Analysis with ML (Model Accuracy is below 90%).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2016 [78] Transforming malware
detection problem to
matrix model using
Wxshall algo and ex-
tracting Smali codes
and generated the
API call graph using
Androguard

Code analysis for
API Calls and code
instrumentation
for network traffic

MalGenome Custom build
ML based
Wxshall algo-
rithm, Wxshall
extended algo-
rithm

Wxshall
extended
algorithm

87.75% Few false alarms Required to expand the
behaviour model and im-
prove the efficiency

2017 [74] Using the combination
of system functions to
describe the applica-
tion behaviours and
constructing eigenvec-
tors and then using
Androidetect

Code analysis for
API calls and Op-
codes

Google
Play

NB,
J48 DT,
Application
functions deci-
sion algorithm

Application
functions
decision
algorithm

90% Can identify the in-
stantaneous attacks.
Can judge the source
of the detected ab-
normal behaviour

High performance in
model execution

Did not consider some
important static analysis
features such as OpCode,
API calls, etc.

2018 [39] Using TinyDroid frame-
work, n-Gram methods
after getting the Opcode
sequence from .smali af-
ter decompiling .dex

Code Analysis for
Opcode

Drebin NLP,
SVM,
KNN,
NB,
RF,
AP

RF and
AP with
TinyDroid

87.6% Lightweight static
detection system

High performance
in classification and
detection

Malware samples were
taken only from few re-
search studies and some
organisations which lack
metamorphic malware
samples

2018 [73] Analysing Package level
information extracted
from API calls using
decompiled Smali files

Code Analysis for
API calls and Infor-
mation flow

Drebin,
Contagio,
Google
Play

DT,
RF,
KNN,
NB

RF 86.89% Model performs
well even when
the length of the
sequence is short

Other information con-
tained in operands were
not considered which af-
fect to the overall model

Table 3. Code based static Analysis with ML (Model Accuracy is above 90%).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2016 [77] Using Deterministic
Symbolic Automaton
and Semantic Modelling
of Android Attack

Code Analysis for
Opcode/Byte code

Drebin AB,
C4.5,
NB,
LinearSVM, RF

RF 97% Use a combined ap-
proach of ML and
DSA inclusion

Unable to detect new mal-
ware patterns since this
will not perform complete
static analysis

2017 [80] Training Hidden
Markov Models and
comparing detection
rates for models based
on static data, dynamic
data, and hybrid ap-
proaches

Code analysis for
API calls and Op-
code in static analy-
sis and System call
analysis

Harebot,
Security
Shield,
Smart
HDD,
Win-
websec,
Zbot,
ZeroAccess

HMM HMM 90.51% Check the difference
approaches available
to detect ML

Did not consider other
ML algorithms or other
important features

2019 [75] Determining the apps
call graphs as Markov
chain Then obtaining
API call sequences and
using ML models with
MaMaDroid

Code Analysis for
API calls

Drebin,
oldbenign

RF,
KNN,
SVM

RF 94% the system is trained
on older samples
and evaluated over
newer ones

Requires a high memory
to perform classification

2019 [76] Calculating confidence
of association rules be-
tween abstracted API
calls which provides
behavioural semantic of
the app

Code Analysis for
API calls

Drebin,
AMD

SVM,
KNN,
RF

RF 96% Efficient feature ex-
traction process

Better stability of
the system

Did not address the cases
such as dynamic loading,
native codes, encryption,
etc.

5.2.3. Both Manifest and Code Based Static Analysis with ML

Some studies used both manifest and code based static analysis approaches to detect
Android malware with ML. The implemented model in WaffleDetector [81], a static analysis
approach to detect malware, was proposed by using a set of Android program features,
sensitive permissions, and API calls with the utilization of Extreme Learning Machine
(ELM). Tencent, YingYongBao, and Contagio datasets were used to train the algorithms.
This method outperformed traditional binary classifiers (DT, Neural Network, SVM, and
NB) with 97.06% accuracy. This approach still needs a few improvements, such as refining
the combination of permissions and API calls.

The study conducted in [82] studied repackaged apps. The malware was identified
from these repackaged apps with code-heterogeneity features. The codes of the apps
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were partitioned into subsets. Then the subsets were classified based on their behavioural
features with Smalicode. Compared to the other nonpartitioning methods, this approach
provides high accuracy with a False Negative Rate (FNR) of 0.35% and a False Positive
Rate (FPR) of 2.97%. This method also used some Ensemble Learning mechanisms. It is
better if the method improves the code heterogeneity mechanisms by using context and
flow sensitivity.

Using the Drebin dataset, a method to detect Android malware using static analysis is
discussed in [83]. Using this method with high accuracy of 98.7%, it was possible to detect
malware using a sample of 10,865 applications. In this method, initially, the APK file was
downloaded using the extracted download link from the APKPure website by using web
mining techniques. Then the APK content was extracted using Apktool and generated
the AndroidManifest.xml and classes.dex files. The application features were extracted
from AndroidManifest.xml using the AAPT utility while decompiling classes.dex into a
jar file using the dex2jar tool. Then the number of lines of code feature was extracted after
extracting the java source files from the jar file using the jd-cmd tool. This static analysis
approach was evaluated using ten different ML algorithms; KNN, SVM, Bayes Net, NB, LR,
J48, RT, RF, AB, and BA. Out of them RF with 1000 decision trees outperformed the others
with 0.987 precision, recall, and F-measure [83]. Though the model has high accuracy, it is
better to study behavioural analysis of app behaviour by performing dynamic analysis.

In RanDroid [84] model, already classified malicious and benign apps were used to
train the SVM, DT, RF, and NB ML algorithms. Initially, the APK files were decompiled
using Androguard (a python-ased tool) [79]. Then the required features of permission, API
calls, is_crypto_code, is_dynamic_code, is_native_code, is_reflection_code, is_database
were extracted and transformed into binary vectors. Then it was trained using ML algo-
rithm and identified that the DT was the most suitable algorithm for this static analysis
approach with 97.7% accuracy. However, in this study, broadcast receivers, filtered intend,
Control Flow Graph analysis, deep native code analysis, and dynamic analysis are not
considered; they are identified as drawbacks.

In [85] a model named TFDroid has been proposed, which is a ML based malware
detection by topics and sensitive data flow analysis using SVM with an accuracy of 93.7%.
FlowDroid is a static analysis tool that was used in this approach to extract data flow in
benign and malicious apps. The permission granularity was transformed using the data
flow features. After that, a classifier was implemented for each category and performed
the validation process. Google Play and Drebin datasets were used to train the model in
this study. It is better to check the other possible ML algorithms’ performance also. Since
this study is related to data flow, it is better to perform dynamic analysis and introduce a
hybrid model to increase the accuracy of detecting Android malware.

The DroidEnsemble [86] analyses the static behaviours of Android apps and builds a
model to detect Android malware. In this approach, static features such as permissions,
hardware features, filter intents, API calls, code patterns, and structural features of function
call graphs of the application were extracted. Then after creating the binary vector, SVM,
KNN, RF, and ML algorithms were performed to evaluate the performance of the features
and their ensemble. The proposed methodology achieved detection accuracy of 95.8% and
90.68%, respectively, for static features and structural features. For ensemble of both types,
the accuracy was increased to 98.4% with SVM. Sting features like API calls and structural
features like function call graphs can be checked with dynamic analysis. Therefore, in this
model, the malware detection accuracy would be increased when both static and dynamic
analysis were integrated.

Table 4 comparatively summarised the above research studies related to both manifest
and code based static analysis methods with ML.
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Table 4. Both Manifest and Code based Static Analysis with ML.
.

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms
/Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [81] Using customized
method named Waffle
Director

Manifest Analysis
for Sensitive per-
missions and API
calls

Tencent,
YingY-
ongBao,
Contagio

DT,
Neural
Network,
SVM,
NB, ELM

ELM 97.06% Fast Learning speed
and Minimal human
intervention

Combination of permis-
sions and API calls are
not refined

2017 [82] Using a code-
heterogeneity-analysis
framework to classify
Android repackaged
malware by Smali code
intermediate representa-
tion

Manifest Analysis
for Intents, Permis-
sions and API calls

Genome,
Virus-
Share,
Benign
App

RF,
KNN,
DT,
SVM

RF with cus-
tom model
proposed

FNR-
0.35%,
FPR-
2.96%

Provide in-depth
and fine-grained
behavioural analysis
and classification on
programs

Detection issues can hap-
pen when the malware
use coding techniques
like reflection and cannot
handle if the encryption
techniques used in DEX

2018 [84] Extracting features and
transforming into binary
vectors and training us-
ing ML with RanDroid
Framework

Manifest Analysis
for Permissions

Code Analysis
for API calls, op-
code and native
calls

Drebin SVM,
DT,
RF
NBs

DT 97.7% Highly accurate to
analyse permission,
API calls, opcode an
native calls toward
malware detection

Broadcast receivers, fil-
tered intend, Control
Flow Graph analysis,
deep native code analysis
were not considered

2018 [86] Creating the binary vec-
tor, apply ML models,
evaluate performance
of the features and
their ensemble using
DroidEnsemble

Manifest analysis
for permissions,
code analysis for
API calls and sys-
tem calls analysis

Google
Play,
AnZhi,
LenovoMM,
Wandoujia

SVM,
KNN,
RF

SVM 98.4% Characterises the
static behaviours of
apps with ensem-
ble of string and
structural features.

Mechanism will fail if the
malware contains encryp-
tion, anti-disassembly, or
kernel-level features to
evade the detection

2019 [83] Extracting applications
features from mani-
fest while decompiling
classes.dex into jar
file and applying ML
models

Manifest Analysis
for permissions,
activities and
Code Analysis for
Opcode

Drebin,
playstore,
Genome

KNN, SVM,
BayesNet,
NB, LR, J48,
RT,
RF, AB

RF with
1000 deci-
sion trees

98.7% High efficiency,
Lightweight analysis
and fully automated
approach

Did not consider about
the API calls and other
important features when
analysing the DEX.

2019 [85] Using FlowDroid for
static analysis and
proposing TFDroid
framework to detect
malware using sensitive
data flow analysis

Manifest Analysis
for permission and
Code Analysis for
information flow

Drebin,
Google
Play

SVM SVM 93.7% Analysed the func-
tions of applications
by their descriptions
to check the data
flow.

Did not consider the im-
proving clustering tech-
niques and applicability
of other ML models

5.3. Dynamic Analysis with Machine Learning

The second analysis approach is dynamic analysis. Using this approach it is possible
to detect malware with ML after running the application in a runtime environment. An-
droid Malware detection using a network-based approach was introduced in [87]. In this
approach, a detection application was developed. It contained three modules: network
traces collection, network feature extraction, and detection. In the traces collection module,
network activities of running applications were monitored and recorded the network traces
periodically. The features extraction module extracted features of the network used by
the applications. Those features were Domain Name System (DNS) based features, Hy-
perText Transfer Protocol (HTTP) based features, Origin destination based features, and
Transmission Control Protocol (TCP) based features. DT, LR, KNN, Bayes Network, and
RF algorithm were used in the detection module. The RF algorithm provided the highest
accuracy (98.7%) among them. However, this approach used network-based analysis. If
the malware apps were using encrypted transfers, the malware detection accuracy would
decrease. Therefore, the model also should consider such factors.

The proposed model in 6th Sense [88], using Markov Chain, NB, Logistic Model
Tree (LMT) to detect malware using dynamic analysis is based on sensors available in a
mobile device. A context-aware intrusion detection system is studied in this approach by
collecting and observing changes in sensor data. This step happened when the applications
were performing activities that enhanced security. This model distinguishes malware and
benign applications. Three types of malware activities (triggering, leaking information, and
stealing data) were identified using this approach via sensors available in the device. The
collected data was divided as 75% for training and 25% for testing. For the Markov Chain-
based detection technique, a training dataset was used to compute the state transitions and
build a transition matrix. A training dataset was used with NB to determine the sensor
condition changing frequency. For the other ML algorithms, all the data were defined as
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benign and malware. In this study, LMT outperformed others with 99.3% precision and
99.98% recall. Though this study is a comprehensive one, it is better if the tradeoffs such as
frequency accuracy, battery frequency, etc. are considered.

The proposed method in [89] discussed dynamic analysis-based techniques which
extract a set of dynamic permissions from APKs in different sources and run them in an
emulator. Then it evaluates the model using NB, RF, Simple Logistic, DT, and K-Star ML
models. After that, it is identified that Simple Logistic performs well with 0.997 precision
and 0.996 recall. Some issues were in the dataset used in this model. For example, some
benign and malicious apps were using the same permissions, and some apps crashed when
running the application in an emulator. Therefore, if the dataset is fine-tuned more before
use, this model provides even more accuracy.

In [90], a framework called Service Monitor was proposed, which is a lightweight
host-based detection system that can detect malware on devices. This framework was
built using dynamic analysis. Service Monitor monitored the way of requesting system
services to create the Markov Chain Model. The Markov Chain is used as a feature vector
to perform the classification tasks with ML algorithms: RF, KNN, and SVM. The RF method
performed well with an accuracy of 96.7% after training the model with AndroZoo, Drebin,
and Malware Genome datasets. Some benign apps also requested the system services in a
similar way to malware. Therefore, this could lead to some misclassification of this model.
To avoid that and enhance the classification accuracy, signature-based verification to the
Service Monitor can be applied.

A mechanism named DATDroid was proposed in [91] which is a dynamic analysis
based malware detection technique with an overall accuracy of 91.7% with 0.931 precision
and 0.9 recall values with RF ML algorithm. As the initial stage, feature extraction was
performed by collecting system calls, recording CPU and memory usage, and recording
network packet transferring. Then in the feature selection stage, Gain Ratio Attribute
Evaluator was applied. After that, the model training and validation were performed as
the next stage to identify malicious and benign applications using APKPure and Genome
Project datasets. In addition to the features studied in this, there can be an impact from
features like HTTP, DNS, TCP/IP, and memory usage patterns towards identifying malware
which should be discussed.

In [92], a framework which is named as MEGDroid, using the dynamic analysis was
proposed to improve the event generation process in Android malware detection. In this
method, it automatically extracted and represented information related to malware as a
domain-specific model. Decompilation, model discovery, integration and transformation,
analysis and transformation, and event production were the steps included in this model.
The model was then used to analyse malware after training with the AMD dataset. This
model extracted every possible event source from malware code and was developed as
an Eclipse plugin. Based on the results, MEGDroid provides better coverage in malware
detection through generating UI, whereas system events and monitoring the system calls
are lacking in this approach.

Table 5 comparatively summarises the above research studies related to dynamic
analysis based methods.
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Table 5. Dynamic analysis based malware detection approaches.

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [87] Extracting the DNS,
HTTP, TCP, Origin based
features of the network
used by apps

Network traf-
fic analysis for
network protocols

Genome DT,LR,
KNN,
Bayes Network,
RF

RF 98.7% Work with different
OS versions, Detect
unknown malware,
and infected apps

If the malware apps using
encrypted, not possible to
detect malware properly

2017 [88] Using Markov Chain-
based detection tech-
nique, to compute the
state transitions and to
build transition matrix
with 6thSense

System resources
analysis for pro-
cess reports and
sensors

Google
Play

Markov Chain,
NB,
LMT

LMT 95% Highly effective and
efficient at detecting
sensor-based attacks
while yielding mini-
mal overhead

Tradeoffs such as fre-
quency accuracy, battery
frequency are not dis-
cussed which can affect
the malware detection
accuracy

2017 [89] Using Dynamic based
permission analysis us-
ing a run-time and detect
malware using ML calcu-
late the accuracy

Code instrumenta-
tion analysis Java
classes and dy-
namic permissions

Pvsingh,
Android
Botnet,
DroidKin

NB,
RF,
Simple Logistic,
DT
K-Star

Simple
Logistic

99.7% High Accuracy Need to address the app
crashing issue in the se-
lected emulators in dy-
namic analysis

2019 [90] Using dynamically
tracks execution be-
haviours of applications
and using ServiceMoni-
tor framework

System call analy-
sis

AndroZoo,
Drebin
and Mal-
ware
Genome

RF,
KNN,
SVM

RF 96.7% High accuracy and
high efficiency

Not detecting difference
in some system calls of
malware and benign apps
since signature based ver-
ification was not applied

2020 [91] Extracting the features
and permissions from
Android app. Perform-
ing feature selection and
proceed to classification
with DATDroid

System call anal-
ysis, Code instru-
mentation for net-
work traffic analy-
sis and System re-
sources analysis

APKPure,
Genome

RF,
SVM

RF 91.7% High efficiency Impact from features like
HTTP, DNS, TCP/IP pat-
terns are not considered

2021 [92] Using decompilation,
model discovery, integra-
tion and transformation,
analysis and transforma-
tion, event production

Code instrumenta-
tion for java classes,
intents

AMD ML algorithms
used in MEG-
Droid, Monkey,
Droidbot

MEGDroid 91.6% Considerably in-
creases the number
of triggered ma-
licious payloads
and execution code
coverage

System calls are not moni-
tored

5.4. Hybrid Analysis with Machine Learning

Hybrid analysis is the third approach which can be used in ML-based Android
malware detection. The review in [93] identified three approaches of malware detection,
which are the signature-based, anomaly-based, and topic modelling based approaches.
ML algorithms such as DT, J48, RF, KNN, KMeans, and SVM can be applied to all these
approaches. Signature-based malware was detected using ML algorithms after the feature
extraction process. After the feature extraction, sensitive API calls were also analysed before
applying ML algorithms. Documents were collected such as reviews, user documents,
and app descriptions before following a similar approach as the signature-based method,
initially in the topic modelling approach. It was identified that the behavioural based
approach is better than the signature-based approach. If the topic modelling is combined
with that approach, it was possible to achieve good results. The hybrid analysis method is
created when the dynamic analysis method is integrated with the static analysis method.
According to this study, the SVM classifier with the hybrid analysis method performed
better than the other ML algorithms.

The model proposed in [94] discussed a methodology of using ML algorithms with
static analysis and dynamic analysis. In the static analysis approach, malicious and be-
nign applications’ manifest data were taken as JSON files from MalGenome and Kaggale
datasets to train the ML model. The trending apps were taken from well-known app stores.
Androguard [79] was used to extract information from the APK files. After reverse engi-
neering, decompiling, testing, and training with SVM, LR, KNN based ML models, a JSON
file was prepared. According to this model, LR was identified as the most suitable ML
algorithm, which has 81.03% accuracy. Many improvements are required to the proposed
static analysis model since comparatively this has a low accuracy. However, the proposed
dynamic analysis approach outperformed the static analysis approach with high accuracy
of 93% of both precision and recall over the RF. In this approach, Droidbox was used to
run APKs obtained from MalGenome and Android Wave Lock in a sandbox environment.
Then a CSV file is obtained after converting the JSON file obtained by analysing the APK
and after that the key features are extracted. As the last step, DT, RF, SVM, KNN, and LR
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ML algorithms were used with extracted key features. Then accuracy and results were
checked and the particular app was labelled as malware or benign. It would be better if
this study explored the possibilities of using other ML algorithms also.

In [95], authors conducted an experiment using various ML technologies to analyse the
relative effectiveness of the static and dynamic analysis method towards detecting malware.
This study used the Drebin dataset and a custom dataset to train the ML algorithm to
classify malware and benign apps. Altogether the whole dataset contains 103 malware
and 97 benign apps. For the static analysis, the APK files were reverse-engineered by
a tool available in Virustotal and extracted the permissions using a custom XML parser.
Then binary feature vectors and permission vectors were created, and ML algorithms were
applied. For dynamic analysis, applications were executed on separated Android Virtual
Devices (AVDs). System calls and their frequencies were traced using the MonkeyRunner
tool since the frequency representation of system calls contained behavioural information
on apps. Usually, malware has higher frequencies compared to benign apps. After that, a
feature vector of system calls was created, and ML algorithms were applied. The RF, J.48,
Naïve Bayes, Simple Logistic, BayesNet Augmented Naïve Bayes (TAN), BayesNet K2,
Instance Based Learner (IBk), SMO PolyKernel, and SMO NPolyKernel algorithms were
used for both static and dynamic analysis. The best results of 0.96 for static analysis and
0.88 for dynamic analysis were achieved when RF with 100 trees was used. Permissions
extracted from the AndroidManifest.xml file were considered for static analysis, and system
calls extracted from the runtime were considered in the dynamic analysis.

The model proposed in [96] explained a hybrid analysis process to detect malware
using ML algorithms with the accuracy of 80% when using the permissions analysis in
static analysis approach and 60% accuracy when analysing by system calls. Malware
samples were collected using a honeypot and search repositories such as Androditotal to
train the model. However, this study lacks the consideration of other features’ which affect
malware detection that should also be considered to achieve a high accuracy model.

In [97], the model proposed a hybrid analysis-based efficient mechanism for Android
malware detection, which used the malware genome dataset and the Drebin dataset to
train the ML and DL models in the static analysis approach. CICMalDroid dataset for
the dynamic analysis approach and 261 combined features were extracted for the hybrid
analysis. To increase the performance, this model used dimension reduction using Principal
Component Analysis (PCA). SVM, KNN, RF, DT, NB, MLP, and GB were used to train and
test the model. Out of these ML/DL algorithms, GB outperformed the others in terms of
accuracy (96.35%), but it took a comparatively long training time. Forty-six features from
dynamic analysis results were also analysed. After performing combined hybrid analysis,
GB again performed well with an accuracy of 99.36% and efficiency compared to the
Random Forest and MLP. It is better to study the runtime environment and configuration
more because this does not cover some areas.

The model described in [98] proposed a Tree TAN based hybrid malware detection
mechanism by considering both static and dynamic features such as API calls, permissions,
and system calls. LR algorithms were trained for these three features. Drebin, AMD, AZ,
Github, and GP datasets were used in this and modelled the output relationships as a
TAN to detect if the given app is malicious or benign with an accuracy of 0.97. There is a
possibility of some malware remaining undetected from the model, which can be reduced
using Reinforcement Learning techniques.

Tables 6 and 7 comparatively summarise the above research studies related to hybrid
analysis based methods, where Table 6 listed studies with model accuracy below 90% and
Table 7 listed studies with model accuracy above 90%.
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Table 6. Hybrid analysis based malware detection approaches (model accuracy is below 90% or overall accuracy is not
available).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML algorithms/
Models

Selected ML
algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [96] Using a set of Python
and Bash scripts which
automated the analysis
of the Android data.

Manifest analysis
for permissions
and System call
analysis for dy-
namic analysis

Andrototal NB, DT DT 80% Model execution is
efficient

Consider system call ap-
pearance rather than fre-
quency and Lower num-
ber of samples used to
train

2018 [95] Using Binary feature vec-
tor and permission vec-
tor datasets were created
using the analysis tech-
niques and was used
with the ML algorithms

Manifest analysis
for permissions
and system call
analysis

Drebin RF, J.48, NB,
Simple Logistic,
BayesNet TAN,
BayesNet K2,
SMO PolyKer-
nel, IBK, SMO
NPolyKernel

RF Static-
96%,
Dynamic-
88%

Compared with sev-
eral ML algorithms

Accuracy depends on the
3rd party tool (Monkey
runner) used to collect
features.

2019 [94] Preparing a JSON file
after reverse engineer-
ing, decompiling, and
analysing the APK by
running in a sandbox en-
vironment and then ex-
tracting the key features
and applied ML

Manifest analysis
for permissions,
code analysis for
API calls and Sys-
tem call analysis

MalGenome,
Kaggle,
Andro-
guard
[79]

SVM,
LR,
KNN,
RF

LR for static
analysis
and RF for
dynamic
analysis

Static-
81.03%,
Dynamic-
93%

Dynamic analysis
performed was bet-
ter than the static
analysis approach in
terms of detection
accuracy

Did not perform a proper
hybrid analysis approach
to increase the overall ac-
curacy

Table 7. Hybrid analysis based malware detection approaches (model accuracy is above 90%).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [99] Using import term ex-
traction, clustering and
applying genetic algo-
rithm with MOCODroid

Code analysis for
API calls and in-
formation flow and
system call analy-
sis

Virus-total,
Google
Play

Genatic algo-
rithm, Mul-
tiobjective
evolutionary
algorithm

Multiobjective
evolutionary
classifier

95.15% Possible to avoid the
effects of the conceal-
ment strategies

Did not consider about
other clustering methods.

2020 [97] Extracted 261 combined
features of the hybrid
analysis with using the
support of datasets and
performed the ML/DL
models

Manifest analysis
for permissions
and system call
analysis

MalGenome,
Drebin,
CICMal-
Droid

SVM,
KNN,
RF,
DT,
NB,
MLP,
GB

GB 99.36% Hybrid analysis is
having higher accu-
racy comparing to
static analysis and
dynamic analysis
individually

Runtime environment
and configuration is not
considered

2020 [98] Using Conditional
dependencies among
relevant static and dy-
namic features. Then
trained ridge regu-
larised LR classifiers and
modelled their output
relationships as a TAN

Manifest analysis
for permissions,
code analysis for
API calls and sys-
tem call analysis

Drebin,
AMD,
AZ,
Github,
GP

TAN TAN 97% Highly accurate Possibility of some mal-
wares remain undetected

2021 [100] Using exploit static, dy-
namic, and visual fea-
tures of apps to predict
the malicious apps using
information fusion and
applied Case Based Rea-
soning (CBR)

Manifest analysis
for permissions
and System call
analysis

Drebin CBR,
SVM,
DT

CBR 95% Require limited
memory and process-
ing capabilities

Require to present the
knowledge representa-
tion to address some
limitations

5.5. Use of Deep Learning Based Methods

It is possible to use deep learning techniques also for detecting Android malware.
In MLDroid, a web-based Android malware detection framework [101] was proposed by
performing dynamic analysis. In this work, ML and DL methods were used with an overall
98.8% malware detection rate.

The model proposed in [102] disused a method to detect malware using a semantic-
based DL approach and implemented a tool called DeepRefiner. This approach used
the Long Short Term Memory (LSTM) on the semantic structure of Android bytecode
with two layers of detection and validation. This method used the LSTM over Recurrent
Neural Network (RNN) since RNN contains gradient vanish problem. Using this approach
with an accuracy of 97.4% and a false positive rate of 2.54%, it was possible to detect
malware. It was efficient and accurate compared with the traditional approaches. Since this
approach uses the static analysis approach, some limitations can arise based on the runtime
environment, which can be identified if this model uses the hybrid analysis approach.
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MOCDroid [99] model discussed a multiobjective evolutionary classifier to detect
malware in Android. It combined multiobjective optimisation with clustering to generate
a classifier using third-party call group behaviours. This method produced an accuracy
of 95.15%. Import term extraction, clustering, and applying a genetic algorithm were the
three steps included in this process. Initially, the DEX files were uncompressed from the
APK after using the decompression tool, and Java codes were obtained using the JADX
tool [103]. Then the document term matrix was transformed. As the next step, K-Means
clustering was applied since it was identified as the highest accuracy model for this, and
the genetic algorithm was also applied. The results were compared with a random set of
10,000 benign and malicious apps with different antivirus engines. It is possible to consider
other clustering methods to improve the accuracy of this method.

The work proposed in [104] discussed a method to detect Android malware using
a deep convolutional neural network (CNN). Raw opcode sequence from disassembled
Smali program was analysed using static analysers to classify the malware. The advantage
of this method is automatically learning the feature indicative of malware. This work was
inspired by n-gram based methods. To train the models Android Malware Genome project
dataset [49] and Intel Security/MacAfee Lab dataset were used. The classification system
of this provides 0.87 precision and recall accuracies. The accuracy of the malware detection
can be increased when the dynamic analysis is also performed.

A deep learning-based static analysis approach was experimented with an accuracy
of 99.9% and with an F1-score of 0.996 in [105]. This approach used a dataset of over
1.8 million Android apps. The attributes of malware were detected through vectorised
opcode extracted from the bytecode of the APKs with one-hot encoding. After performing
experiments on Recurrent Neural Networks, Long Short Term Memory Networks, Neural
Networks, Deep Convents, and Diabolo Network models, it was identified that Bidirec-
tional Long Short-Term Memory (BiLSTMs) is the best model for this approach. It is better
to analyse the complete byte code using static analysis and check the app behaviour with
dynamic analysis to build a more comprehensive malware detection tool based on deep
learning techniques.

The DL-Droid framework based on deep learning techniques [106] proposed a new
way of detecting Android malware with dynamic analysis techniques. This approach
was having a detection rate of 97.8% by only including dynamic features. When the
static features were also included in that, the detection rate would increase to 99.6%. The
experiments were performed on real devices in which the application can run exactly the
way the user experiences it. Further to this, some comparisons of detection performance
and code coverage were also included in this work. Traditional ML classifier performances
were also compared. This novel method outperformed the ML-based methods such as
NB, SL, SVM, J48, Pruning Rule-Based Classification Tree (PART), RF, and DL. In addition
to this work, seeking the possibilities to include intrusion detection mechanism in the
DL-Droid would be a valuable addition.

The AdMat model proposed in [107] discussed a CNN on Matrix-based approach
to detect Android malware. This model characterised apps and treated them as images.
Then the adjacency matrix was constructed for apps, and it was simplified with the size of
219 × 219 to enhance the efficiency in data processing after transferring decompiled source
code into call-graph of Graph Modelling Language (GML) format. Those matrices were
the input images to the CNN, and the model was trained to identify and classify malware
and benign apps. This model has an accuracy of 98.2%. Even though the model is highly
accurate, there are limitations to this work, such as performing static analysis only, and the
performance depends on the number of used features.

The model proposed in [108] discussed a DL-based method that uses CNN approach
to analyse API sequence call, opcode, and permissions to detect Android malware in a
zero-day scenario. The model achieved a weighted average detection rate of 91% and 81%
on two datasets Drebin and AMD after the model was trained. The model can further
improve if the dynamic analysis techniques are also considered.
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With an accuracy of 95%, a multimodal analysis of malware apps using information
fusion was presented in [100] which used hybrid analysis techniques. The study used CBR
for training and validation purposes. SVM and DT were compared with the proposed
model validation, but the classic ML algorithms were outperformed by the CBR-based
method. If the work can represent the knowledge representation, some of the limitations
can be addressed.

Tables 8 and 9 comparatively summarise the above research studies related to deep
learning based malware detection methods, where Table 8 listed studies with model
accuracy below 90% and Table 9 listed studies with model accuracy above 90%.

Table 8. Deep learning based Malware Detection Approaches (Model Accuracy is below 90% or overall accuracy is not
available).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML/DL Al-
gorithms/
Models

Selected DL
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [104] Using n-Gram methods
after getting the Opcode
sequence from .smali af-
ter dissembling .apk

Code Analysis for
Opcodes

Genome,
IntelSecurity,
MacAfee,
Google
Play

CNN,
NLP

Deep CNN 87% Automatically learn
the feature indicative
of malware without
hand engineering

Assumption of all APKs
are benign in Google Play
dataset while all are mali-
cious in malware dataset

2021 [108] Using DL based method
which uses Convolution
Neural Network based
approach to analyse fea-
tures

Code Analysis for
API calls, Opcode
and Manifest Anal-
ysis for Permission

Drebin,
AMD

CNN CNN 91%
and 81%
on two
datasets

Reduce over fitting
and possible to
train to detect new
malware just by col-
lecting more sample
apps

Did not compared with
other ML/DL methods

Table 9. Deep learning based malware detection approaches (model accuracy is above 90%).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML/DL Al-
gorithms/
Models

Selected DL
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2018 [102] Applying LSTM on se-
mantic structure of byte-
code with 2 layers of
detection and validating
with DeepRefiner

Code Analysis for
Opcode/bytecode

Google
Play,
VirusShare,
MassVet

RNN,
LSTM

LSTM 97.4% High efficiency with
average of 0.22 s to
the 1st layer and 2.42
s to the 2nd layer de-
tection

Need to train the model
regularly to update the
training model on new
malware

2020 [105] Detecting Malware at-
tributes by vectorised op-
code extracted from the
bytecode of the APKs
with one-hot encoding
before apply DL Tech-
niques

Code Analysis for
Opcode

Drebin,
AMD,
VirusShare

BiLSTM,
RNN,
LSTM,
Neural
Networks,
Deep Convents,
Diabolo Net-
work model

BiLSTMs 99.9% Very high accuracy,

Able to achieve
zero day malware
family without over-
head of previous
training

Did not analyse complete
byte code

2020 [106] Using DynaLog to select
and extract features from
Log files and using DL-
Droid to perform feature
ranking and apply DL

Code instrumen-
tation analysis for
java classes, in-
tents, and systems
calls

Intel Secu-
rity

NB,
SL,
SVM,
J48,
PART,
RF,
DL

DL 99.6% Experiments
were performed
on real devices

High accuracy

Could have implemented
the intrusion detection
part also to make it more
comprehensive malware
detection tool

2021 [101] Selecting features gained
by feature selection
approaches. Applying
ML/DL models to detect
malware

Code instrumenta-
tion for java classes,
permissions, and
API calls at the
runtime

Android
Permis-
sions
Dataset,
Computer
and se-
curity
dataset

farthest first
clustering, Y-
MLP, nonlinear
ensemble deci-
sion tree forest,
DL

DL with
methods in
MLDroid

98.8% High accuracy and
easy to retrain the
model to identify
new malware

Human interac-
tion would be re-
quired in some cases.

Can contain issues in
the datasets

2021 [107] Characterising apps
and treating as im-
ages. Then constructing
the adjacency matrix.
Then applying CNN to
identify malware with
AdMat framework

Code Analysis for
API calls, Informa-
tion flow, and Op-
code

Drebin
AMD

CNN CNN 98.2% High Accuracy and
efficiency

Performance is depend-
ing on number of used
features

6. Machine Learning Methods to Detect Code Vulnerabilities

Hackers do not just create malware. They also try to find loopholes in existing appli-
cations and perform malicious activities. Therefore, it is necessary to find vulnerabilities
in Android source code. A code vulnerability of a program can happen due to a mistake
at the designing, development, or configuration time which can be misused to infringe
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on the security [38]. Detection of code vulnerability can be performed in two ways. The
first method is reverse-engineering the APK files using a similar approach discussed in
Section 3. The second method is identifying the security flaws at the time of designing and
developing the application [109]. The study conducted in [110] has identified five main
categories of security approaches. They were secure requirements modelling, extended
Unified Modeling Language (UML) based secure modelling profiles, non-UML-based
secure modelling notations, vulnerability identification, adaption and mitigation, and
software security-focused process. Under these categories, 52 security approaches were
identified. All these approaches are used to identify software vulnerabilities at the time
of designing and developing the applications. Based on the findings of the surveys and
interviews conducted in [111] related to intervention for long-term software security, the
importance of having an automated code analysis tool to identify vulnerabilities of the
written codes has been identified. The empirical analysis conducted in [112] identified the
static software metrics’ correlation and the most informative metrics which can be used to
find code vulnerability related to Android source codes.

6.1. Static, Dynamic, and Hybrid Source Code Analysis

Similar to analysing APKs for malware detection, there are three ways of analysing
source codes. They are static analysis, dynamic analysis, and hybrid analysis. In static
analysis, without executing the source code, a program is analysed to identify properties by
converting the source to a generalised abstraction such as Abstract Syntax Tree (AST) [113].
The number of reported false vulnerabilities depends on the accuracy of the generalisation
mechanism. The runtime behaviour of the application is monitored while using specific
input parameters in dynamic analysis. The behaviour depends on the selection of input
parameters. However, there are possibilities of undetected vulnerabilities [114].

In hybrid analysis, it provides the characteristics of both static analysis and dynamic
analysis, which can analyse the source code and run the application to identify vulnerabili-
ties while employing detection techniques [115].

The study conducted in [116] performed an online experiment where Android devel-
opers were the participants. Vulnerable code samples containing hard-coded credentials,
encryptions, Structured Query Language (SQL) injections, and logging with sensitive data
were given to the participants together with the guidance of static analysis tools and asked
to indicate the appropriate fix. After analysing the experiment results, it has been identified
that automated code vulnerability detection support is required for the developers to
perform better when developing secure applications.

To analyse Android source code, Android Linters can be applied. Linters have been
proposed to detect and fix these bad practices and they perform a static analysis based
on AST or Universal AST (UAST) generation through written source codes [117]. The
study in [118] discussed several Linters such as PMD, CheckStyle, Infer, and FindBugs,
Detekt, Ktlint, and Android Lint discussed the usage of them. Android studio adopts
the Android Lint, which identifies 339 issues related to correctness, security, performance,
usability, accessibility, and internationalisation. In the proposed model in FixDroid [27],
security-oriented suggestions along with their fixes were provided to the developer once
the Android Lint identified security flaws. The FixDroid method can further be improved
by employing ML techniques to produce highly accurate security suggestions.

However, just warning the developer about security issues in the code is not sufficient.
There should be a mechanism to inform the developer about the severity level of the
security issue also. By using app user reviews, OASSIS [119] proposed a method to
prioritise static analysis warnings generated from Android Lint. Based on the review
analysis using sentiment analysis, it was possible to identify the issues in Android apps.
After receiving prioritised lint warnings, developers will able to take prompt actions. The
study in [120] proposed a mechanism named as MagpieBridge to integrate static analysis
into Integrated Development Environments (IDEs) and code editors such as Eclipse, IntelliJ,
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Jupyter, Sublime Text, and PyCharm. However, the possibility of extending this to the
Android platform should be discussed further.

In [121], using static and dynamic analysis, a vulnerability identification of Secure
Sockets Layer (SSL)/Transport Layer Security (TLS) certificate verification in Android
application was described. This experiment found that out of the analysed 2213 Android
apps, 360 apps contain vulnerable codes using the proposed framework of DCDroid.
Therefore, through SSL/TLS certificates, it is possible to identify some vulnerabilities.

6.2. Applying ML to Detect Source Code Vulnerabilities

It has been proven that ML methods can be applied on a generalised architecture such
as AST to detect Android code vulnerabilities [38]. Most of the research was conducted
using static analysis techniques to analyse the source code.

With the use of ML, vulnerability detection rules were extracted with static metrics
as discussed in [122]. Thirty-two supervised ML algorithms were considered for most
common vulnerabilities and identified that when the model used the J48 ML algorithm,
96% accuracy could be obtained in vulnerability detection. The model proposed in [123]
discussed an automated mechanism to classify well-written and malicious code using a
portable executable (PE) structure through static analysis and ML with an accuracy of
98.77%. The proposed methodology used RF, GB, DT, and CNN as ML models.

The study in [124] built a model to predict software vulnerabilities of codes using
ML before releasing the code. After developing a source code representation using AST
and intelligently analysing it, the ML models were applied. Popular datasets such as
NIST SAMATE, Draper VDISC, and SATE IV Juliet Test Suite, which contain C, C++, Java,
and Python source codes, were used to train the model. However, using this model, it
was not possible to locate a specific place of vulnerability. It is identified as a drawback,
and it has not proven that the same approach is possible to apply to other programming
languages and frameworks. However, there is a possibility of using this approach for
Android applications, which were developed using Java.

In [125], using C and C++ source codes, a vulnerability detection system was proposed
using ML and deep feature representation learning. Apart from using the existing datasets,
the Drapper dataset was compiled using Drebin and Github repositories with millions of
open-source functions and labelled with carefully selected findings. The findings of the
research were compared with Bag of Words (BOW), RF, RNN, and CNN models.

The study conducted in [126] developed a mechanism to classify subroutines as vul-
nerable or not vulnerable in C language using ML methods. The National Vulnerability
Dataset (NVD) was used to collect C programming code blocks and their known vulnera-
bilities. After preparing the AST and preprocessing the data, feature extraction, feature
selection, and classification tasks were performed and ML algorithms were applied.

The applicability of deep learning to detect code vulnerabilities was discussed in [127].
Comparison of using three DL algorithms CNN, LSTM, and CNN-LSTM were discussed
in this study. The proposed model has an accuracy of 83.6% when applying the DL models.
Using Deep Neural Networks, it was possible to predict vulnerable code components. The
model in [128] evaluated it using some Java-based Android applications. In this mechanism,
N-gram analysis and statistical feature selection for constructing features were performed.
This model can classify vulnerable classes with high precision, accuracy, and recall.

In [129], a model was proposed to detect zero-day Android malware using a distinctive
parallel classifier and a mechanism to identify oncoming highly elusive vulnerabilities in
the source code with an accuracy of 98.27% with the use of Ml algorithms; PART, Ripple
Down Rule Learner (RIDOR), SVM, and MLP.

ML-Based Vulnerability Detection Specifically for Android

There is less research conducted relating to Android vulnerability detection with
ML. The methodology of the studies, which were conducted on general programming
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languages, could apply to the Android code vulnerability detection after training the model
using specific code datasets and adjusting the generalisation mechanism.

The work conducted in [130] prepared a manually curated dataset that can be used
to fix vulnerabilities of open-source software. The possibility of automatically identifying
security-related commits in the relevant code repository has been proven since it has been
successfully used to train classifiers.

In [131] repository of Android security vulnerabilities was created named AndroVul,
which includes dangerous permissions, security code smells, and high-risk shell command
vulnerabilities. In [132], a study was conducted to predicatively analyse the vulnerabilities
in Internet of Things (IoT) related Android applications using statistical codes and applying
ML. In this study, 1406 Android apps were taken with various risk levels, and six ML
models (KNN, LR, RF, DT, SVM, and GB) were administered to examine security risk
prediction. It is identified that RF performs well in the intermediate risk level. GB performs
well at a very high-risk level compared to the other ML model-based approaches. The
study conducted in [133] proposed an ML-based vulnerabilities detection mechanism to
identify security flaws of Android Intents using hybrid analysis. Adaboost algorithm was
used to perform the ML based analysis.

Tables 10 and 11 summarise selected studies from above which are related to Android
vulnerability analysis. Table 10 lists the studies which have model accuracy below 90% and
Table 11 lists the studies which have model accuracy above 90%.

Table 10. Android vulnerability detection mechanisms (Model accuracy is below 90%).

Year Study Code Analysis Method Approach Used ML/DL Methods/
Frameworks

Accuracy of the
Model

2017 [127] Dynamic Analysis Collected 9872 sequences of function calls as features.
Performed dynamic analysis with DL methods

CNN-LSTM 83.6%

2017 [133] Hybrid Analysis Decompiled the apk file. Performed static analysis of the
manifest file to obtain the components/permissions.
Dynamic analysis and fuzzy testing were conducted and
obtained system status.

AB and DT 77%

2019 [115] Hybrid Analysis Reverse engineered the APK, Decoded the manifest files & codes
and extracted meta data from it. Performed dynamic analysis
to identify intent crashing and insecure network connections for
API calls. Generated the report.

AndroShield 84%

2020 [124] Hybrid Analysis Performed intelligent analysis of generated AST. Checked ML
can differentiate vulnerable and nonvulnerable.

MLP and a customised
model

70.1%

Table 11. Android vulnerability detection mechanisms (model accuracy is above 90%).

Year Study Code Analysis Method Approach Used ML/DL Methods/
Frameworks

Accuracy of the
Model

2017 [113] Static Analysis Generated the AST, navigated it, and computed detection rules.
Identified smells when training with manually created dataset.

ADOCTOR framework 98%

2017 [128] Static Analysis Combined N-gram analysis and statistical feature selection
for constructing features. Evaluated the performance
of the proposed technique based on a number of
Java Android programs.

Deep Neural Network 92.87%

2019 [129] Hybrid Analysis Decompiled the APK and selected the features and
executed the APK and generated log files with system calls.
Generated the vector space and trained with ML algorithms
as parallel classifiers.

MLP, SVM, PART, RIDOR,
MaxProb, ProdProb

98.37%

2020 [121] Hybrid Analysis In static analysis, vulnerabilities of SSL/TLS certification were
identified. Results from static analysis about user interfaces were
analysed to confirm SSL/TLS misuse in dynamic analysis.

DCDroid 99.39%

2021 [122] Static Analysis 32 supervised ML algorithms were considered for 3 common
vulnerabilities: Lawofdemeter, BeanMemberShouldSerialize,
and LocalVariablecouldBeFinal

J48 96%

2021 [123] Static Analysis Classified malicious code using a PE structure and a method for
classifying it using a PE structure

CNN 98.77%
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7. Results and Discussion

Based on the reviewed studies in ML/DL based methods to detect malware, it is
identified that 65% of studies related to malware detection techniques used static analysis,
15% used dynamic analysis, and the remaining 20% followed the hybrid analysis technique.
This is illustrated in Figure 3. This high attractiveness of static analysis may be due to the
various advantages associated with it over dynamic analysis, such as ability to detect more
vulnerabilities, localising vulnerabilities, and offering cost benefits.

Static Analysis

65%

Dynamic Analysis

15%

Hybrid Analysis

20%

Figure 3. Malware analysis techniques used in the reviewed studies.

Many ML/DL based malware detection studies used the code analysis method as
the feature extraction method. Apart from that, manifest analysis and system call analysis
methods are the other widely used methods. Figure 4 illustrates those feature extraction
methods used in the reviewed studies. It is possible to detect a substantial amount of mal-
ware after analysing decompiled source codes rather than analysing permissions or other
features. That may be the reason for the high usage of code analysis in malware detection.

By using the feature extraction methods, permissions, API calls, system calls, and
opcodes are the most widely extracted features. This is illustrated in Figure 5 along with the
other extracted features in the reviewed studies. Many hybrid analysis methods extracted
permissions as the feature to perform static analysis. It is easy to analyse permissions
when comparing with the other features too. These could be reasons for the high usage
of permissions as the extracted feature. Services and network protocols have low usage
in feature extractions. The reason for this may be it is comparatively not easy to analyse
those features.

The datasets used in ML/DL based Android malware detection studies to train the
algorithms are illustrated in Figure 6. Drebin was the most widely used dataset in Android
Malware Detection, and it was used in 18 reviewed studies. Google Play, MalGenome,
and AMD datasets are the other widely used datasets. The reason for the highest usage
of the Drebin dataset may be because it provides a comprehensive labelled dataset. Since
Google Play is the official app store of Android, it may be a reason to have high usage for
the dataset from Google.
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It is identified that the RF, SVM, and NB are at the top of widely studied ML models to
detect Android malware. The reason may be that the resource cost to run RF, SVM, or NB
based models is low. Models like CNN, LSTM, and AB have less usage because to run such
advanced models, good computing power is required, and the trend for DL-based models
was also boosted in recent years. Table 12 summarises widely used ML/DL algorithms
with their advantages and disadvantages. Figure 7 illustrates all of the studied ML/DL
models with their usage in the reviewed studies.

The majority of the studies used hybrid analysis and static analysis as the source code
analysis techniques in vulnerability detection in Android, as illustrated in Figure 8. To
perform a highly accurate vulnerability analysis, the source code should be analysed and
executed too. Therefore, this may be the reason to have hybrid analysis and static analysis
as the widely used source code analysis methods to detect vulnerabilities.
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Figure 4. Feature extraction methods used in the reviewed studies.
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Figure 5. Extracted features in the reviewed studies.
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Figure 6. Usage of datasets.

Table 12. Commonly used ML/DL algorithms for Android malware detection.

Algorithm Advantages Disadvantages

DT • Possible handle samples with missing values
• Easy to understand

• Might cause the overfitting problem

NB • Easily and quickly trainable • Need to calculate prior probability
• Not applicable if the feature variables are corelated

Regression Models • Widely used in statistics based studies
• Direct and Fast

• Not possible to deal well with high dimensional features

KNN • Suitable to solve multiclassification problems • Computation overhead is relatively high
• Issues with the skewness of data

SVM • Possible to solve high dimensional nonlinear small
scale problems

• High overhead in data processing
• Might face some issues when there are missing values

in the sample
K-Means • Easy to implement

• Fast and simple
• Sensitive to outliers

RF • Reduces overfitting
• Normalising of data is not required

• Requires much time to train
• Requires high computational power

Neural Networks • Highly accurate
• Strong fault tolerance

• Requires much time to train
• Require a large number of data to train the model

LSTM • Capable to remember facts for lengthy interval • Requires high computational resources

CNN • Reduce unimportant parameters by weight sharing
and downsampling

• High computational cost

Ensemble Learning • Accuracy is high • Overhead on model training and maintenance
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Figure 7. ML/DL models used in the reviewed studies.
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Static Analysis

40%

Dynamic Analysis

10%

Hybrid Analysis

50%

Figure 8. Android source code vulnerability analysis methods.

8. Conclusions and Future Work

Any smartphone is potentially vulnerable to security breaches, but Android devices
are more lucrative for attackers. This is due to its open-source nature and the larger market
share compared to other operating systems for mobile devices. This paper discussed the
Android architecture and its security model, as well as potential threat vectors for the
Android operating system. Based upon the available literature, a systematic review of the
state-of-the-art ML-based Android malware detection techniques was carried out, covering
the latest research from 2016 to 2021. It discussed the available ML and DL models and
their performance in Android malware detection, code and APK analysis methods, feature
analysis and extraction methods, and strengths and limitations of the proposed methods.
Malware aside, if a developer makes a mistake, it is easier for a hacker to find and exploit
these vulnerabilities. Therefore, methods for the detection of source code vulnerabilities
using ML were discussed. The work identified the potential gaps in previous research and
possible future research directions to enhance the security of Android OS.

Both Android malware and its detection techniques are evolving. Therefore, we
believe that similar future reviews are necessary to cover these emerging threats and their
detection methods. As per our findings in this paper, since DL methods have proven to be
more accurate than traditional ML models, it will be beneficial to the research community
if more comprehensive systematic reviews can be performed by focusing only on DL-based
malware detection on Android. The possibility of using reinforcement learning to identify
source code vulnerabilities is another area of interest in which systematic reviews and
studies can be carried out.
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Abstract: The risk of cyberattacks against businesses has risen considerably, with Business Email
Compromise (BEC) schemes taking the lead as one of the most common phishing attack methods.
The daily evolution of this assault mechanism’s attack methods has shown a very high level of
proficiency against organisations. Since the majority of BEC emails lack a payloader, they have
become challenging for organisations to identify or detect using typical spam filtering and static
feature extraction techniques. Hence, an efficient and effective BEC phishing detection approach is
required to provide an effective solution to various organisations to protect against such attacks. This
paper provides a systematic review and examination of the state of the art of BEC phishing detection
techniques to provide a detailed understanding of the topic to allow researchers to identify the main
principles of BEC phishing detection, the common Machine Learning (ML) algorithms used, the
features used to detect BEC phishing, and the common datasets used. Based on the selected search
strategy, 38 articles (of 950 articles) were chosen for closer examination. Out of these articles, the
contributions of the selected articles were discussed and summarised to highlight their contributions
as well as their limitations. In addition, the features of BEC phishing used for detection were provided,
as well as the ML algorithms and datasets that were used in BEC phishing detection models were
discussed. In the end, open issues and future research directions of BEC phishing detection based on
ML were discussed.

Keywords: business email compromise (BEC); email phishing; phishing detection; machine learning
(ML); systematic literature review

1. Introduction

The popularity of Internet-based public resources, such as cloud computing, social
networks and online money processing, has significantly raised the danger of cyberattacks
against enterprises. Since email has become one of the effective worldwide standards
for commercial communication, cybercriminals attack email networks to undertake cy-
berattacks against companies for financial gain [1]. A Business Email Compromise (BEC)
attack, often known as a CEO attack, is one of the most significant spear phishing attacks.
BEC attacks are defined as sophisticated email phishing schemes that target businesses
doing mundane tasks, such as money transfers [1]. Social engineering has shown to be a
highly effective component of BEC attacks, which are designed to deceive corporations and
their employees throughout the world. According to the Federal Bureau of Investigation
(FBI) [2], victims worldwide lost more than USD 26 billion to BEC attacks between June
2016 and July 2019. In 2018, almost AUD 60 million was reported lost in Australia using
this strategy. In addition, the United States (39%), the United Kingdom (26%), Australia
(11%), Belgium and Germany (3%), Canada, the Netherlands, Hong Kong, Singapore, and
Japan (2%), were the top 10 victim nations for BEC attacks in 2018–2019.

The reason why cyberattacks are becoming increasingly prevalent is that launching a
cyberattack is simpler, cheaper, and less dangerous than launching a physical attack. The
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only requirements for committing a cybercrime are an Internet connection and a computer.
In addition, the anonymity given by the Internet makes it difficult to trace and find attackers
and bring them to justice [3].

BEC attacks are prevalent and have not been detected by conventional defence strate-
gies, such as spam filters. Without a harmful payload, BEC attacks are difficult to detect
with conventional screening equipment. BEC attacks are gaining popularity due to their
effectiveness and difficulties in monitoring or detecting them [1]. Unlike other attacks
using banking trojans or other forms of criminal ransomware, which may require a higher
level of technical skill to execute, BEC attacks do not require an exceptionally high level of
technical skill to execute; other than having the first name, last name, and email address
of whoever they wish to address the email to, they do not need much analysis [2]. Hence,
more investigation on BEC attacks is required to identify possible solutions for them.

BEC is a relatively new and fast-evolving attack in the phishing domain with less
than ten years since its first identification in 2013 by the FBI. The novelty of this type of
attack has led to several challenges regarding how much of its attack pattern and structure
has been fully understood by experts to build an effective phishing detection model. In
addition, how to ensure the resources needed to identify a BEC attack and the measure
used to detect it do not become outdated due to the fast-changing pattern of this type
of attack is important. These challenges make detecting BEC attacks using conventional
defence strategies a very difficult task to achieve. To overcome these challenges, Machine
Learning (ML) has been proposed by various researchers as an effective way to detect BEC
attacks in a timely manner. Instead of using conventional phishing detection techniques
that detect and block emails based on their origin, as well as applying common block
listed locations which require significant time and effort to maintain, ML-based phishing
detection techniques can identify and even predict advanced attacks by analysing large
datasets to spot similarities, correlations, and trends. For instance, ML can be used to build
a phishing detection model based on profiles where ML can be used to build a profile by
analysing emails using features such as date, time, geo-location from where a person is
accessing emails, relation graph which captures with whom the person interacts, etc. Then,
the ML-based model will scan every incoming email against the profile and raise an alert
for BEC in case of any deviation. ML-based techniques leveraged by modern email security
platforms have become more effective, in which most techniques can detect around 98% of
advanced phishing attacks [4].

This paper aims to provide a comprehensive systematic literature review that in-
vestigates and evaluates the state of the art of BEC phishing attacks, one of the primary
attack domains that has a significant impact on organisations and has resulted in the loss
of billions every year. Based on the selected search strategy, 38 articles out of 950 were
chosen for further analysis. Out of the collected and analysed articles, articles were selected
based on the manner of detection using ML algorithms, and additional assessment was
obtained from the articles to comprehend what feature criteria were used for detection.
In addition, a summary of the selected papers’ contributions was provided. Compared
to other surveys, to the best of the authors’ knowledge, this is the first work to provide
a systematic literature review of BEC phishing attacks. Most existing surveys focus on
providing a general investigation and discussion of phishing attacks without focusing on
BEC attacks and how creating effective BEC phishing detection models is now a necessity
for various organisations around the world. This paper also provides a detailed discussion
of BEC phishing attacks to allow researchers to have a complete overview of this type of
attack, its detection methods, features, and challenges, which can allow them to develop
optimised and sustainable techniques for detecting it effectively.

The contribution of this paper can be summarised as follows:

• Investigating and reviewing recent research on BEC detection by highlighting the
merits of each study.

• Identifying common ML algorithms for the development of BEC phishing detection
models.
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• Determining common features used in BEC phishing detection models.
• Identifying common datasets used in BEC phishing detection models.
• Presenting challenges and future research directions of BEC phishing attacks.

The rest of the paper is organised as follows. Section 2 presents an overview of BEC
attacks; Section 3 describes the research methodology used to produce the systematic
literature review; Section 4 describes the analysis of data; Section 5 describes how this
systematic review answers suggested research questions; Section 6 presents challenges and
future research directions; and Section 7 is the conclusion.

2. An Overview of BEC Attack

Phishing is a type of email-based fraud and attack. Phishing happens when an attacker
sends a bogus email that seems to originate from a reputable and approved source. The
objective of the message is to deceive users into downloading malware on their devices and
divulging sensitive information. Spear phishing is a targeted kind of phishing. Phishing
and spear phishing both utilise email to target victims, but spear phishing delivers a
personalised message to a particular individual. Before sending the email, the criminal
searches the interests of the intended victim. It is important to understand that phishing
emails nowadays are mostly used to acquire credentials [3].

BEC is one of the most significant spear-phishing attacks. This section provides an
overview of this type of BEC attack to highlight the BEC lifecycle, types, and techniques
that are used for detecting it.

2.1. BEC Attack

BEC is a form of attack that has evolved over the years from a simply compromised
vendor email to requests for sensitive information, such as by targeting the real estate
sector, and fraudulent requests for large amounts of gift cards. For a BEC attack to be
successful, hackers first need to gain access to legitimate vendor email accounts. The
most common method for accomplishing this is via phishing emails sent to the company’s
staff. The credentials of a worker who unknowingly lets themselves be compromised are a
springboard for an attack [3].

The FBI created the term “business email compromise”, or in short BEC, in 2013 when
it first began tracking this issue. However, the strategy might be regarded as the natural
progression of huge spamming campaigns that came before it. These promotions originated
with what is now commonly referred to as Nigerian prince or lottery schemes. These email
frauds were noticeable for their lack of professionalism—misspellings, grammatical errors,
and implausible tales—and were easy to recognise and disregard. However, the offenders
swiftly acquired technological expertise and today deploy some extremely sophisticated
approaches [4].

2.2. BEC Lifecycle

BEC attacks are usually harder to spot than other phishing attacks, as they can play out
in various ways. Figure 1 shows common steps for performing a successful BEC attack [4].
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Figure 1. Common steps of performing a BEC attack.

The description of each step is as follows:

• Step 1—Research: Potential victims’ vulnerabilities and openings are scouted by
attackers.

• Step 2—Identify a target: Based on the research, the criminals decide what angle they
will try to exploit and which organisation they will target.

• Step 3—Build a Persona: Through a web search, the criminals can identify board
members in the target organisation.

• Step 4—Identify a victim: Next, they look for an individual at the target organisation
whom they want to trick.

• Step 5—Spoof the email: The attack starts with an email that appears to come from the
senior leader. The crooks first spearfish the executive to get their credential, then log
in as them to send their email.

• Step 6—Personalise the email: The attacker puts all their research and persona-building
work to good use, crafting an email that appears to come from the senior leader.

• Step 7—Isolate the Victim: Isolation is a popular technique to pressure the victim and
stop them from checking with others.

• Step 8—Avoid Follow-up: The attacker does not want the victim checking in with
the senior leader, so they discourage the victim by making the senior leader seem
unavailable, such as by saying they are out of the office.

• Step 9—Provide bank details: The bank account detail is one of the attacker’s biggest
expresses, so they will only share after they have hooked the victim with their spoofed
email.

• Step 10—Money transferred: The game is over; the money has been sent to the attacker
and will never be seen again. Soon, someone will notice a big hole in the bank account,
and that is when the alarm will go on.

2.3. Types of BEC Attacks

According to the FBI [4], there are five types of BEC attacks which include the
following:

1. Email Account Compromise: This attack is targeted at small firms that use email
to organise their financial transactions. The specifics of a recent transaction can
be gleaned by breaking into an employee’s email account and stealing the invoice.
Attackers call a vendor and explain the situation, persuading the vendor that the final
payment could not be processed. A new account, which the scammers would have
set up to steal the money, is gently requested by them [4].
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2. Lawyer Impersonation: This type of attack is fraud committed mostly against major
corporations and the law firms that serve them. Attackers pose as a lawyer for a
client of the company’s law practice and ask for a quick transfer for the payment of
an outstanding debt. To protect the transaction from being leaked, they convince the
employee that the subject is private by making clear that they are demanding that the
employee should not discuss it with anyone. Oftentimes, attackers plan it towards
the conclusion of the work week to put the employee under more pressure to respond
swiftly [4].

3. Data Theft: As part of a BEC attack, a top executive’s email account is compromised
and a request for critical company information is made. This is an example of a BEC
attack that does not include any money laundering. It is often a prelude to a far more
serious cyberattack, as this type of attack focuses on finance and human resources [5].

4. Vendor Email Compromise: It is common in businesses with overseas vendors. At-
tackers assume the role of vendors, demand payment for a fictitious invoice, and then
transfer the funds to a fake account [4].

5. CEO Fraud: Attackers pretend to be a company’s CEO or executive. As the CEO, they
ask a worker in the accounting or finance division to transfer money to an account
under the control of the attackers.

2.4. Phishing and BEC Techniques

This section highlights techniques of phishing attacks generally and BEC attack
specifically.

2.4.1. Phishing-Related Techniques

Typically, a phishing attack includes sending an email that contains a spoof URL link
that leads to a web page. The following are common phishing techniques:

• Direct Link: Links are usually accessible in the body of the email. In addition, they
may contain hidden links or image links that lead to phishing or another dangerous
website [6].

• PDF Files: Email attachments that include a PDF file are a typical phishing method
because they make the recipients believe that the attached document is essential, such
as an eye-catching business proposal or an urgent invoice. Even if the PDF file does
not include any malicious code, the material inside the PDF file might be crafted to
direct the recipients to phishing sites [7].

• HTML: The phishing email might also include a malicious HTML file. Even though
HTML files are rarely utilised in commercial transactions, these attachments can
nonetheless deceive unwary users. The target will be sent to a malicious URL if he or
she clicks and downloads the attachment [8].

• File-hosting Services: One of the most prevalent methods used by attackers to trick
users into visiting phishing sites is the misuse of file-hosting services [9].

• Malware-related Techniques: Keyloggers and Remote Access Tools (RATs) are the
most utilised malware for BEC. Malware, unlike phishing attempts, may grab all
computers’ saved login credentials before delivering them to the attackers. Hacking
forums are flooded with new keyloggers and RATs, offering cybercriminals easy access
to sophisticated yet undetectable malware. BEC attacks have been plagued by a wide
range of software, the most frequent of which being adware including AgentTesla,
CyborgLogger, DarkComet, DiamondFox, Dracula Logger, iSpy Keylogger, Knight
Logger, and LuminosityLink [10].

2.4.2. BEC Techniques

• Spoofed BEC Messages: The email domain may be manipulated to make the email
appear to be legitimate in this method. Email header spoofing is used by attackers to
produce fraudulent emails that appear to originate from a legitimate source. In the
“From” address area, they use the true domain of the target company [4].
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• BEC Basic Header Trickery: Another tactic adopted by attackers is to use a faked
organisation’s true domain in the “From” address box. Adding another domain to
the “Reply-To” address box tricks the users into thinking they have received a reply.
A reply to a field controlled by the attacker results in a reply being sent back to the
attacker [1].

• BEC Business Domain Similarity Attacks: The “From” domain used in this attack
is the same as the target domain. This gives the appearance that emails are coming
from a higher authority and are being sent to employees asking for a quick response.
To a foreign client or supplier, it may be necessary to make an immediate transfer of
funds [2].

• Executive Name Forgery: In an attack known as ID Spoofing, the hacker inserts a fake
executive name into the “From” box of an email. This title-spoofing technique takes
advantage of the display label to spoof the names of corporate executives (CxOs) [2].

• BEC Encoded Message Attack: To avoid being detected by email gateways, BEC
attackers sometimes utilise encoding ploys that alter the characters in the message.
When a BEC message is opened in the email account of a client, it seems to be a regular
email. A hex editor scan, on the other hand, reveals the real colours of the image [4].

• BEC Attacks using Long Scenario to Lure Victims: Using long, individualised emails
to request sworn confidentiality from recipients because of legal repercussions of a
vital business necessity is another typical practice. Law firms are frequently mentioned
in these emails to remind their receivers that they need to follow legal and commercial
requirements carefully in order not to divulge confidential information. The attacker
will next seek access to the company’s bank accounts and financial records, which they
will study to make further demands for money transfers [5].

• BEC Emails Demanding Gift Cards: Criminals request iTunes, Amazon, and Walmart
gift cards from their victims. Instead of requesting a wire transfer, this attack asks
for the credentials of a gift certificate that the victim has received in person. It uses a
standard message structure to demand first priority [4].

• BEC Attackers Targeting Schools and Academic Institutes: Emails from the school’s
principal or top management asking for wire transfers or gift vouchers from school
workers are another common BEC technique [4].

2.4.3. Feature Selection Techniques

When developing an ML-based phishing detection model in the real world, it is
usually never the case that all variables in the dataset are significant. Adding duplicate
variables diminishes the model’s capacity for generalisation and affects the overall accuracy
of the detection model. Additionally, when more variables are added to the model, its total
complexity grows. According to the Law of Parsimony of ‘Occam’s Razor,’ the optimal
answer for a problem is the one that requires the fewest assumptions. Thus, feature selection
becomes an essential component in ML-based model development [9].

Feature selection is the method of reducing the input variables of a ML-based model
by using only relevant data and getting rid of noise in the data. Its main goal is to clean
up a model by getting rid of irrelevant or unnecessary data. Due to the complexity of
some predictive modelling issues, considerable memory is often needed during model
creation and training. In addition, certain models’ functionality can deteriorate if the
input variables are not pertinent to the target variable. In ML, the strategies for feature
selection are categorised into two main categories: supervised and unsupervised. The
supervised feature selection methods are applied to labelled data to discover the most
important variables for improving the performance of supervised models. In other words,
they use the target variables to identify the variables which can increase the efficiency of
the model. Unsupervised feature selection methods are applied to unlabelled data in which
the outcome is not considered while making the feature selection [10]. Figure 2 shows the
categories of feature selection methods.
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Figure 2. Feature selection methods.

The supervised methods are further divided into three methods, including filter,
wrapper, and intrinsic methods [10,11].

• Filter Method: In this method, features are eliminated according to how they correlate
with the output. Correlation is used to determine if the features are positively or
negatively correlated to the output labels and then the features are dropped accord-
ingly. Examples include Fisher’s Score, Variance Threshold, Correlation Coefficient,
Chi-Square Test, etc.

• Wrapper Method: Wrappers need a way to explore the space of all possible subsets
of features, evaluating their quality by learning and evaluating a classifier with that
subset of features. The feature selection procedure is determined by a particular ML
algorithm that employs a greedy search strategy by comparing all potential feature
combinations to the evaluation criterion. Wrapper approaches often produce more
accurate predictions than filter methods. Wrapper methods include Forward Feature
Selection, Backward Feature Elimination, Exhaustive Feature Selection, etc. [12].

• Intrinsic Method: This method, also called the embedded method, combines the
advantages of wrapper and filter methods by including feature interactions while
retaining an acceptable computing cost. This approach is iterative in the sense that it
takes care of each iteration of the model training process and meticulously extracts
the features that contribute the most to training for each iteration. Examples include
Random Forest Importance and LASSO Regularisation (L1).

2.4.4. Evaluation Metrics for BEC Detection

Determining the effectiveness of BEC phishing detection models is significant to
compare different models and identify the most effective model for each context. Based
on numerous studies reviewed in the literature [5,9,10], the effectiveness of BEC phishing
detection models is computed based on four main evaluation metrics, including accuracy,
precision, recall, and F-measure. A description of how these evaluation metrics is computed
is discussed below:

• True Positive (TP): This represents the percentage of phishing emails in the training
dataset that are correctly classified by a phishing detection model. Formally, if the
number of phishing emails in the dataset is denoted by P and the number of correctly
classified phishing emails by the phishing detection model is denoted by NP, the
formula of TP is as follows:

TP =
NP
P

(1)

• True Negative (TN): This represents the percentage of legitimate emails that are
correctly classified as legitimate by a phishing detection model. If we denote the
number of legitimate emails that are correctly classified as legitimate as NL and the
total number of legitimate emails as L, the formula of TN is as follows:
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TN =
NL
L

(2)

• False Positive (FP): This is the percentage of legitimate emails that are incorrectly
classified by a phishing detection model as phishing emails. If we denote the number
of legitimate emails that are incorrectly classified as phishing as Nf and the total
number of legitimate emails as L, the formula of FP is as follows:

FP =
N f
L

(3)

• False Negative (FN): This represents the percentage of the number of phishing emails
that are incorrectly classified as legitimate by a phishing detection model. If we denote
the number of phishing emails that are classified as legitimate by the algorithm as Npl
and the total number of phishing emails in the dataset is denoted as P, the formula of
FN is as follows:

FN =
Npl

P
(4)

Using TP, TN, FP, and FN, the four evaluation metrics, including accuracy, precision,
recall, and F-measure, can be computed as follows:

• Accuracy: It represents the average number of successfully categorised emails through-
out the entire dataset using the following formula:

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

• Precision: It measures the exactness of a classifier, i.e., what percentage of emails that
the classifier has labelled as BEC phishing are actually BEC phishing emails, and it is
represented by this formula:

Precision =
TP

TP + FP
(6)

• Recall: It measures the completeness of a classifier’s results, i.e., what percentage of
phishing emails the classifier has labelled as phishing, and it is represented by this
formula:

Recall =
TP

TP + FN
(7)

• F-measure: This is also known as F1 score and is defined as the harmonic mean of
Precision and Recall, and it is calculated based on this formula:

F1− Score =
2TP

2TP + FP + FN
(8)

3. Research Methodology

The purpose of a systematic literature review is to define, analyse, and interpret all
available research relevant to a research topic, a specific subject, or a set of interesting
occurrences. While several experts have offered solutions to detecting BEC attacks, the
threat environment is expanding and becoming more dangerous despite their efforts. This
systematic literature review investigates existing BEC attack techniques and detection
methods, as well as various studies presented by researchers using different ML algorithms
employed in the detection process and these studies’ conclusions.

Conducting a systematic literature review consists of five stages, as shown in Figure 3.
The objective of the first stage is to formulate the research questions that the current review
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will answer. This is followed by determining the inclusion and exclusion criteria to ensure
that the selected articles are the best and most pertinent concerning the research objectives.
The third stage is to specify which research databases will be searched to find relevant
articles. In the fourth stage, the findings are analysed, and, in the fifth stage, the outcomes
of each study topic are discussed.

Figure 3. Stages of conducting a systematic literature review.

This methodology was utilised to allow readers to understand the stages used to
complete this literature review systematically. Before beginning to evaluate many sources,
we defined our research questions so that the review would be more focused. Next, the
selection criteria were used to narrow down the retrieved publications to those relevant
to the study’s objectives. The digital libraries that were used to compile these articles are
also offered as data sources. Article selection based on relevance was also covered. The
presented methodology offers various benefits to show the steps taken by researchers to
reach their study’s intended results.

Although this methodology has been used in several systematic literature studies,
there are some limitations, including the fact that it narrows the focus of the review/study
and, hence, may not provide readers with all the facts they need to fully understand the
subject matter at hand. In addition, data collection was limited to only six sources for
collecting relevant publications in our study, which could limit the number of publications
reviewed. Although these sources are the most reliable sources identified in various
systematic literature studies, this could be considered a limitation as not all sources were
investigated to identify relevant articles related to the study objectives. In addition, this
study reviewed only articles published between 2012 and 2022. Although this study
provides readers a review of state-of-the-art articles published in the last ten years, the
search methodology limits the number of publications that can be reviewed in the study.

3.1. Research Questions

This paper seeks to address the following research questions:

• RQ1: What is the most recent and peer-reviewed literature regarding BEC phishing
attacks?

• RQ2: What are the common ML algorithms used for developing ML-based BEC
detection models?

• RQ3: What are the common datasets used in creating BEC detection models?
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• RQ4: What are the conventional features used in developing an effective BEC detection
model?

3.2. Inclusion and Exclusion Criteria

Inclusion and exclusion criteria were used to choose the applicable research. The
primary purpose of these criteria was to answer the research questions and assure the
creation of an effective literature review. The inclusion criteria were as follows:

• Peer-reviewed and scientific papers.
• Relevant to the specific research questions.
• Topic mainly on BEC phishing attack.
• English-language articles.
• Published between 2012 and 2022.

The exclusion criteria were as follows:

• Article concerning all other phishing attacks, including clone attacks, whaling,
vishing, etc.

• Unpublished articles, non-peer-reviewed articles, and editorial articles.
• Articles that are not fully available.
• Non-English articles.
• Duplicates of already included articles.

3.3. Data Sources

Digital libraries were used to conduct the searches. The electronic databases used in
this systematic literature review included the following:

• IEEE Xplore.
• PubMed.
• Elsevier ScienceDirect.
• Google Scholar.
• ACM Digital Library.
• SpringerLink.

The papers pertinent to the subject and study questions were gathered using keyword
searches. The search terms used included the following:

• BEC phishing attack.
• Spoofed BEC messages.
• BEC basic header trickery
• BEC business domain similarity attacks.
• Executive name forgery.
• BEC encoded message attack.
• BEC emails demanding gift cards.

3.4. Selection of Relevant Articles

This step involved choosing relevant and recent studies on BEC phishing attacks
among the 950 articles gathered from various online digital libraries. The process of
selecting relevant publications was divided into three phases:

• Phase 1: Publications found during the search and those already in the collection
were sorted using the inclusion and exclusion criteria. The scope of the search was
narrowed to include only articles published between 2012 and 2022 that dealt with the
topic of BEC phishing attacks.

• Phase 2: The titles and abstracts of the articles collected from several digital libraries
were reviewed to determine how well they addressed the topic and the questions
posed in this research work.

• Phase 3: During this stage, we focused on eliminating duplicates among the six digital
libraries used for our publication collection.
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4. Analysis of Results

The inclusion and exclusion criteria were applied to the collected publications in three
phases, as indicated earlier. A total of 887 articles were removed based on the evaluation
by simply reading the titles and abstracts and their relevance to the research questions.
Furthermore, duplication across various online digital databases (25 publications) was
removed, as shown in Figure 4.

Figure 4. Flow diagram of the search.

The search that was executed in six different well-known online databases enabled
us to collect most of the publications that are relevant to BEC phishing attacks. The
results of the collected publications from each online database and the resultant number
of publications after applying the three selection phases are shown in Table 1. The results
show that Google Scholar and IEEE are the richest data sources of publications related to
BEC phishing attacks.

Table 1. The number of search results per database after applying the three selection phases.

Data Source Phase 1 Phase 2 Phase 3

Google Scholar 734 26 17
IEEE Xplore 90 15 10

PubMed 4 2 1
Elsevier ScienceDirect 42 4 2
ACM Digital Library 40 2 1

SpringerLink. 40 14 7

Total 950 63 38

Additionally, the number of publications related to BEC phishing attacks per year
is shown in Figure 5. The evidence suggests an upsurge in the study of BEC phishing
attacks since 2017. However, many scientists still consider this to be a frontier. Research
on BEC attacks has received consistent attention since 2017, as shown by the number of
publications in 2017, 2018, 2019, 2020, 2021, and 2022.
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Figure 5. Number of selected articles published per year from 2012 to 2022.

Furthermore, the papers on BEC phishing attacks that were retrieved are separated
by year and type (either as a journal or conference publication), as shown in Figure 6.
Conference and journal articles both yield similar numbers of outcomes that meet our study
objectives. In addition, Table 2 lists the ID, citation, publication category, and publication
year for each of the examined articles. All of the papers that were read and retrieved were
originally presented at academic conferences or published in scholarly publications.

Figure 6. Number of journal and conference publications per year from 2012 to 2022.

Table 2. Retrieved publications that are related to the research questions.

Publication ID Citation Publication Type Publication Year

1 Chakraborty and Mondal [11] Journal 2012

2 Qasem, Shamsuddin, and Zain [12] Journal 2012

3 Dhanaraj and Karthikeyani [13] Conference 2013

4 Shams and Mercer [14] Conference 2013

5 Laorden et al. [15] Journal 2014

6 Rathod and Pattewar [16] Conference 2015

7 Zhu, Dong, and Liu [17] Journal 2015

8 Daeef et al. [18] Journal 2015

9 Yasin and Abuhasan [19] Journal 2016

10 Zweighaft [20] Journal 2017
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Table 2. Cont.

Publication ID Citation Publication Type Publication Year

11 Rawal et al. [21] Journal 2017

12 Zeng [22] Conference 2017

13 Moradpoor, Clavie, and Buchanan [23] Conference 2017

14 Niu et al. [24] Conference 2017

15 Peng, Harris, and Sawa [25] Conference 2018

16 Baykara and Gurel [26] Conference 2018

17 Sahoo [27] Conference 2018

18 Hiransha, Unnithan, and Kp [28] Journal 2018

19 Singh, Pamula, and Shekhar [29] Conference 2018

20 El Aassal et al. [30] Journal 2018

21 Nidhin et al. [31] Journal 2018

22 George Fomunyam [32] Journal 2019

23 Oña et al. [33] Conference 2019

24 Maleki and Ghorbani [34] Journal 2019

25 Yang et al. [35] Journal 2019

26 Garces, Cazares, and Andrade [36] Conference 2020

27 Rendall, Nisioti, and Mylonas [37] Journal 2020

28 Alam et al. [38] Conference 2020

29 Alotaibi, Al-Turaiki, and Alakeel [39] Journal 2020

30 Salahdine, and Kaabouch [40] Conference 2021

31 Ripa, Islam, and Arifuzzaman [41] Conference 2021

32 Dutta [42] Journal 2021

33 Mughaid et al. [43] Journal 2021

34 Mridha et al. [44] Conference 2021

35 Li, Zhang, and Wu [45] Conference 2022

36 Butt et al. [8] Journal 2022

37 Magdy and Mikhail [46] Journal 2022

38 Dewis and Viana [10] Journal 2022

5. Discussion

Many researchers are still investigating BEC phishing attacks to identify better and
more effective ways to counteract this growing threat. This paper serves as an excellent
place for such researchers to begin understanding this paradigm by reviewing prior research
that may be relevant to their study questions. To demonstrate how the reviewed papers
have addressed our research questions, a discussion of the retrieved/analysed publications
is provided in this section.

RQ1: What is the most recent and peer-reviewed literature regarding BEC phishing
attacks?

To answer this research question, the retrieved/analysed publications that are related
to BEC phishing attacks will be discussed. Table 3 summarises the contributions of each
publication.

Table 3. Summary of recent studies in the literature regarding BEC phishing attacks.

Citation Summary of Contribution Limitations

Chakraborty
and Mondal
[11]

This paper analyses three DT classification algorithms
for BEC phishing mail filtration. Logistic Model Tree
classifier (LMT) produces the highest accuracy of 90%.

The accuracy achieved by the three DT classification
algorithms is still low, and the model needs to be
evaluated against a real-life dataset.
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Table 3. Cont.

Citation Summary of Contribution Limitations

Qasem,
Shamsuddin,
and Zain [12]

This paper proposes a new hybrid multi-objective
learning algorithm including MPPSON, MEPGAN, and
MEPDEN to achieve a compact RBFN model with good
prediction accuracy and prominent structure
simultaneously for the process of detecting BEC attacks.

The proposed algorithms still suffer from slow
convergence and long training times. There is a need
to develop a sophisticated solution to overcome it.

Dhanaraj and
Karthikeyani
[13]

This paper uses Bayesian filtering to verify the sender’s
ID. The paper employs basic methods to differentiate
humans from robot senders. The paper also creates new
filters to detect emails requesting payment. The paper
also uses N-gram language models, which assume that a
word’s location in a sequence depends on the previous
N-l words.

The accuracy achieved is still low. More
investigation into filtering methods is required to
improve the effectiveness and processing time of the
proposed models.

Shams and
Mercer [14]

This paper presents a unique BEC and spam
categorisation algorithm based on email content
language and readability. Although it only works for
English emails, it may be useful for other languages.

There is a need for additional testing to evaluate the
effectiveness of classifiers generated by stacking
multiple algorithms.

Laorden et al.
[15]

This paper presents a study on the effectiveness of
anomaly detection applied to BEC and phishing filtering
techniques. The study identifies that more than 85% of
received emails are BEC/spam/phishing.

The threshold selection needs to be automated to
improve filtering results.

Rathod and
Pattewar [16]

This paper presents a Bayesian machine learning
algorithm classification for accurately detecting BEC and
phishing emails in HTML format that have been
pre-processed to remove HTML tags, and stop words
are applied. The Bayesian classifier could categorise
real-world Gmail data with an accuracy of 96.46%.

Malicious URL detection needs to be incorporated to
improve the effectiveness of the proposed
content-based detection model.

Zhu, Dong, and
Liu [17]

This study find that the number of neighbours, the
distance measure, and the decision rule are the primary
factors influencing categorisation performance. Several
distance functions and other KNN parameters that were
examined in this research are integrated into a support
vector machine (SVM) and neural network, along with a
dimension reduction and closest-neighbour index
construction.

Feature selection, dimension, and class numbers
need to be investigated further to improve
classification effectiveness.

Daeef et al. [18]

In this paper, BEC and spare phishing are discussed as
major threats to stealing user data. The paper analyses
phishing email classifiers based on the email header and
body.

A dynamic phishing dataset is needed to test the
effectiveness of the proposed BEC phishing
detection model.

Yasin and
Abuhasan [19]

This paper presents an intelligent classification model
for detecting phishing emails using knowledge
discovery, data mining, and text processing techniques.
The model was built using an intelligent pre-processing
phase that extracts a set of features from the email’s
header, body, and term frequency.

The accuracy achieved by the proposed classification
algorithm is still low, and the model needs to be
evaluated against real-life datasets by considering
the email’s body and term frequency.

Zweighaft [20]

This paper presents the concept of BEC as a type of
spear phishing in which fake or fraudulent emails are
sent to employees of a specific business. The paper also
presents an approach to securing access to content with
multi-factor authentication and staff training.

The study provides some suggestions to detect BEC
phishing attacks without evaluating the effectiveness
of the suggested techniques.

Rawal et al.
[21]

This paper classifies BEC and phishing emails using a
SVM and a Random Forest (RF) classifier and achieves
an accuracy of 99. 87% with these algorithms.

The dataset used does not reflect real-life scenarios.
A new dataset of real-life and dynamic emails is
required.
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Table 3. Cont.

Citation Summary of Contribution Limitations

Zeng [22]
This paper provides a predictive analytical technique
that learns legitimate from harmful emails to overcome
BEC attacks using static analysis.

Additional discriminating features need to be added
to the predictive model to improve the accuracy of
the detection model.

Moradpoor,
Clavie, and
Buchanan [23]

This paper presents an Artificial Neural Network (ANN)
model algorithm classification for accurately detecting
BEC and phishing emails. The ANN model contains ten
hidden layers, five input features, one output layer, and
one output feature. Confusion matrix, receiver operating
characteristic (ROC), network performance, and error
histogram are used to record, portray, and analyse the
data. The ANN model achieves an accuracy of 96.46%.

Email word vectors are not enough to produce an
effective detection model. Word embedding
methods are required to vectorise full documents,
rather than email word vectors, to improve the
effectiveness of the detection model.

Niu et al. [24]

This paper proposes a novel SVM with Cuckoo Search
(CS) detection model. The proposed approach detects
more phishing emails than SVM with default
parameters.

The proposed model utilizes only a single ML
algorithm, so more algorithms are needed to
evaluate the effectiveness of the model.

Peng, Harris
and Sawa [25]

This paper presents attackers who pose as social
networks, banks, IT administrators, or e-commerce sites.
These emails may entice consumers to download
malware or input personal information on a dangerous
website. This study uses semantic analysis to check each
phrase in an attacker’s text.

The dataset used does not reflect the need for text
emails, not graphics. A new dataset of text emails is
required.

Baykara and
Gurel [26]

This paper builds an “Anti-Phishing Simulator” to
identify BEC attacks using various ML techniques.

This method needs a real-life scenario to evaluate the
effectiveness of the model.

Sahoo [27] This paper uses data mining approaches to examine
emails and avoid BEC phishing attacks.

The study provides some suggestions without
evaluating their effectiveness.

Hiransha et al.
[28]

This paper explains how to spot phishing emails
including BEC attacks and avoid falling into their traps
in a comprehensive manner.

The dataset used does not reflect real-life scenarios.
A new real-life dataset is required.

Singh, Pamula,
and Shekhar
[29]

This paper evaluates the performance of Non-Linear
SVM-based classifiers with two different kernel
functions (Linear Kernel and Gaussian Kernel) over the
SpamAssasin Public Corpus dataset.

The proposed model needs to be evaluated against
more ML algorithms and different datasets.

El Aassal et al.
[30]

This paper proposes a Multinomial Naive Bayes
(MNB)-based ML algorithmic classification model for
detecting BEC and phishing content in emails. The
proposed MNB models can classify BEC and phishing
emails with 96.8% accuracy.

The proposed model detects phishing only from the
email content without considering the email header.

Nidhin et al.
[31]

This paper proposes a supervised classifier for BEC
phishing and legitimate emails. The paper classifies
authentic and fraudulent emails using Naive Bayse
(NB), Logistic Regression (LR), Decision Tree (DT), RF,
Adaboost, and SVM.

A feature selection technique is not discussed as part
of the proposed classifiers. In addition, the dataset
used does not reflect real-life scenarios

George
Fomunyam
[32]

This paper identifies that ML algorithms are more
effective than traditional mechanisms in detecting and
categorising spam letters from internet fraudsters. This
study presents new ways to combat cybercriminals’
fraudulent BEC phishing attacks.

This study provides some suggestions to detect BEC
phishing without evaluating its effectiveness.
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Table 3. Cont.

Citation Summary of Contribution Limitations

Oña et al. [33]

This paper develops a new method for identifying BEC
attacks and countering them. The paper provides a
comprehensive discussion about how to integrate
autonomous learning, feature selection, and ANNs
using Scrum. This technique can identify and counteract
an email server-based phishing attack.

The proposed methods have been not evaluated
against either benchmark datasets or real-life data.

Maleki and
Ghorbani [34]

This paper proposes a K-means-based ML algorithmic
classification model for detecting BEC content in emails.
The proposed model can classify BEC attacks with 92%
accuracy.

Dynamic feature selection is not provided. In
addition, the dataset used does not reflect real-life
scenarios.

Yang et al. [35]

This paper provides a BEC detection model by
analysing email headers, URLs, and scripts. A total of
500 authentic and 500 phishing emails were used in the
experiments. The proposed method achieves 99% true
positive, 9% false positive, and 91.7% precision.

The dataset used does not reflect real-life scenarios.
A new dataset of real-life and dynamic emails is
required.

Garces et al.
[36]

The paper investigates phishing web attack anomalies
and how integrating ML techniques with data analytics
can be a very effective solution to detect BEC attacks
faster.

A real-life dataset is needed to check the
effectiveness of the model for taking proactive
decisions to minimise the impact of an attack.

Rendall,
Nisioti, and
Mylonas [37]

In this paper, the researchers investigate the use of a
multi-layered detection framework in which a potential
phishing domain is classified multiple times by models
using different feature sets.

The proposed framework lacks the use of a
sophisticated data fusion process as part of JDL level
2 (situation refinement).

Alam et al. [38] This paper provides a BEC phishing detection model
using the DT and RF techniques.

More ML-based algorithms are needed to evaluate
the effectiveness of their model.

Alotaibi et al.
[39]

This paper presents a convolutional ANN for BEC email
phishing detection. The approach can help enterprises
protect against phishing email attacks.

A feature selection technique is not discussed as part
of the proposed BEC phishing detection model.

Salahdine, El
Mrabet, and
Kaabouch [40]

This paper proposes utilising SVM, LR, and ANN
algorithms for detecting BEC and phishing content in
emails. The proposed models achieve an accuracy of
94.5%, 77.3%, and 92.9% in ANN, SVM and LR,
respectively.

The proposed models detect phishing only from the
email content without considering the email header.

Ripa, Islam,
and
Arifuzzaman
[41]

This paper proposes utilising RF, SVM, KR, KNN, and
DT algorithms for detecting BEC and phishing content
in emails. The proposed models achieve an accuracy of
96.8%, 96.6%, 92.28%, 94.09%, and 96.47% in RF, SVM,
LR, KNN and DT, respectively.

A dynamic and real-life phishing dataset is needed
to test the effectiveness of the proposed BEC
phishing detection models.

Dutta [42]

This paper proposes a recurrent ANN and short-term
memory algorithm for detecting BEC and phishing
content in emails. The proposed model achieves an
accuracy of 94.8%.

The accuracy achieved by the proposed algorithm is
still low, and a better accuracy is needed for the
detection model.

Mughaid et al.
[43]

This paper discusses ML methods and new
technological solutions for mitigating BEC attacks. This
study utilizes ML-based algorithms to classify emails as
BEC/phishing or non-BEC/non-phishing.

The feature selection algorithm needs to be refined
to keep up with attackers’ evolving toolkits.

Mridha et al.
[44]

This paper proposes RF and ANN-based algorithmic
classification models for detecting BEC and phishing
URLs accurately. The proposed RF and ANN models
can classify BEC and phishing URL legitimacy labels
with 99% accuracy.

The proposed model needs a GUI-based web
browser extension framework to provide better
precision for the detection model.
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Table 3. Cont.

Citation Summary of Contribution Limitations

Li, Zhang, and
Wu [45]

This paper proposes a BEC/phishing email detection
method based on the persuasion principle.

A feature selection technique is not discussed as part
of the proposed model.

Butt et al. [8]

This paper proposes utilising SVM, LSTM, RF, LR, ANN,
and NB algorithms for detecting BEC and phishing
content in emails. The proposed models achieve an
accuracy of 99.6%, 98%, 94.5%, 93.9%, 95%, and 97% in
SVM, LSTM, RF, LR, ANN and NB, respectively.

The proposed models detect phishing only from the
email content without considering the email header.

Magdy,
Abouelseoud
and Mikhail
[46]

This paper introduces a deep learning model to detect
BEC attacks. The proposed classifier is designed with an
eye on validation accuracy, achieving fast and
competitive performance, and promoting its use in
practical applications.

A mechanism for improving linguistic processing
with content-based features is needed to improve the
effectiveness of the detection model.

Dewis and
Viana [10]

This paper proposes a BEC/phishing responder as a
solution that uses a hybrid ML approach combining
natural language processing and deep learning to detect
phishing and BEC emails. It has achieved an average
accuracy of 99% with the LSTM model for text-based
datasets.

The dataset used does not reflect real-life scenarios.
A new dataset of real-life and dynamic emails is
required.

Table 3 provides a summary of the contributions of the retrieved publications that are
related to BEC phishing attacks. Looking at the various reviewed studies illustrates that
there are some similarities and differences among various researchers. Some researchers
presented a comparative study of various supervised and unsupervised ML techniques
to provide an effective BEC phishing detection model that provides the highest accuracy,
precision, recall, and F-measure to detect phishing emails. For example, Butt et al. [8],
Ripa, Islam, and Arifuzzaman [41], and Chakraborty and Mondal [11] created a compar-
ative study using various ML algorithms, including DT, SVM, LSTM, RF, LR, ANN, NB,
KR, and DT, to identify a ML algorithm that provides the highest accuracy on a specific
dataset. Other researchers provided hybrid ML-based techniques that combine two or
more algorithms with changes in variables to provide better accuracy for the BEC phishing
detection model. For instance, Dewis and Viana [10] proposed a hybrid ML-based approach
combining NLP and deep learning to detect BEC phishing emails. Their LSTM model
has achieved an average accuracy of 99% for text-based datasets. In addition, Qasem,
Shamsuddin, and Zain [12] proposed a new hybrid multi-objective learning algorithm
combining MPPSON, MEP-GAN, and MEPDEN to achieve a compact RBFN model with
good prediction accuracy and prominent structure while detecting BEC attacks.

Furthermore, some researchers focused more on the detection algorithm by investi-
gating the best ML algorithm to implement their BEC phishing detection model, while
other researchers focused more on the feature selection techniques to identify the best
features that ensure the creation of a high-accuracy BEC phishing detection model. For
example, Rendall, Nisioti, and Mylonas [37] used a multi-layered detection system where a
potential phishing domain is classified multiple times by models using different feature
sets, while the studies by Salahdine, El Mrabet, and Kaabouch [40] and Ripa, Islam, and
Arifuzzaman [41] focused more on identifying the best ML algorithm for the detection
model by comparing their effectiveness against various datasets.

Evaluating the proposed BEC phishing detection models by various researchers also re-
vealed another difference among the retrieved publications: some researchers utilised pub-
licly available datasets, while other researchers utilised real-world and dynamic datasets
that they created in specific circumstances to evaluate the effectiveness of their detection
models. For example, Garces and Cazres [36], Ripa et al. [41], Alam et al. [38], Dewis
and Viana [10], Mridha et al. [44], and Nidhin et al. [31] evaluated the effectiveness of
their phishing detection model using Kaggle dataset, one of the most common datasets
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in phishing detection domain, while other researchers created their own datasets, such as
Baykara and Gurel [26], Rawal et al. [21], etc.

RQ2: What are the common ML algorithms for developing ML-based BEC detection
models?

The technique used to identify a BEC attack is important to the process of identifying
such an attack. It is possible to utilise a wide variety of algorithms to guarantee accuracy,
although their detection effectiveness differs. This section lists various techniques that have
been used by various researchers to build a BEC phishing detection model, as shown in
Table 4. The most common techniques include the following:

• Naive Bayes (NB): This classifier uses the Bayes theorem to classify data samples.
The Bayes theorem asserts that, given a hypothesis H and some evidence E, the
probability of each category is computed, and then the highest probability category is
the output [47,48].

• Support Vector Machines (SVM): This classifier is a speedy and efficient supervised
approach for text classification algorithms. The input training set generates a hyper-
plane, a two-dimensional line that best separates categories. This hyperplane is the
decision boundary. In BEC detection, the input is a set of criteria, such as the presence
or absence of specified words; the output, 1 or −1, indicates whether the email is a
BEC attack. For instance, certain phrases can be used to detect whether an email is a
BEC attack [48,49].

• Logistic Regression (LR): A binary logistic model uses one or more predictor variables
to estimate the probability of a binary response (features). It allows stating that a risk
factor boosts the possibility of a specific consequence by a certain percentage [47].

• Decision Tree (DT): This technique utilises a tree-like model of actions and their
effects, including chance event outcomes, resource costs, and utility. It is one approach
to present a conditional-only algorithm. DT is used in operation research, especially
decision analysis, to discover the most probable method to attain a goal. It is also a
popular machine learning technique [50].

• Random Forest (RF): This technique blends many DT outputs to obtain a single out-
come. Its simplicity of use and versatility have spurred its popularity as a classification
and regression tool [51].

• Artificial Neural Network (ANN): This technique is a collection of algorithms that
attempt to replicate the way the human brain works to discover hidden patterns and
connections within a dataset. Neuronal systems, whether biological or synthetic, are
what we mean when we talk about neural networks [8].

• Natural Language Processing (NLP): This is a subfield of computer science and, more
specifically, a subfield of artificial intelligence (AI) that focuses on providing computers
with the capacity to comprehend written and spoken language [52].

From Table 5, we can see that DT, SVM, ANN, NB, and Logistic algorithms have
all been utilised in at least 10 of the 38 studies, indicating that researchers have found
their results to be consistent enough to justify reusing these algorithms. In addition, it is
important to highlight that certain algorithms, such as DT, SVM, NB, ANN, and Logistic
algorithms, have a broad user base and are widely utilised by researchers and data scientists.
As a result, they have well-updated libraries, and further enhancements are available to
make them more compatible with several datasets due to their continuous use [53,54].
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Table 4. List of algorithms used in the literature and their abbreviations.

Algorithm Abbreviation

Linear Regression Linear

Logistic Regression Logistic

Decision Tree DT

Support Vector Machine SVM

Naive Bayes NB

K-Nearest Neighbours algorithm KNN

Random Forest RF

Dimensionality Reduction Algorithm DRA

Artificial Neural Network ANN

Voted Perceptron VP

Natural Language Processing NLP

XGBoost Classifier XGB

Group Method of Data Handling GMDH

Probabilistic Neural Network PNN

Genetic Programming GP

Multilayer Perceptron MP

Principal Component Analysis PCA

Gaussian Kernel GK

These algorithms have been used extensively by various researchers due to their
effectiveness and accuracy in detecting BEC phishing attacks with various networks and
datasets. Identifying the effective algorithm within each communication network should be
the right course of action for an effective and successful BEC detection model. In addition,
creating a hybrid technique that integrates two or more of these algorithms can yield an
effective technique that can provide a better BEC phishing detection model.

In addition, if we look at supervised and unsupervised ML algorithms that have
been utilised by researchers to build BEC phishing detection models, we find that most
researchers prefer using supervised ML algorithms. For example, supervised ML algo-
rithms, including DT, SVM, NB, and Logistic algorithms, were used in at least 10 of the
38 reviewed articles, while unsupervised algorithms, such as PCA, were utilised in only
two of the 38 reviewed articles. Researchers prefer utilising supervised ML algorithms
in BEC phishing detection models since unsupervised learning typically uses clustering
algorithms to group email categories, such as BEC emails. However, a clustering algorithm
would typically categorise many common categories (e.g., social emails and marketing
emails), but since BEC emails are so rare, it results in low precision and many false positives.
Therefore, supervised learning algorithms are more suitable for detecting BEC attacks at
high precision.

It is also important to note that certain algorithms, such as GMDH, PNN, GP, MP, PCA,
and GK, were used less than other algorithms; these algorithms were used in only one or
two articles out of the 38 selected articles, making them less well known than the first group
of algorithms. These algorithms may still not be known for various researchers to try and
identify their effectiveness in various communication networks, but these algorithms can be
the basis for creating an effective hybrid BEC phishing detection model in the near future.

205



El
ec

tr
on

ic
s

20
23

,1
2,

42

Ta
bl

e
5.

M
L

al
go

ri
th

m
s

ut
ili

se
d

by
va

ri
ou

s
re

se
ar

ch
er

s
to

bu
ild

BE
C

ph
is

hi
ng

de
te

ct
io

n
m

od
el

s.

C
it

at
io

n
SV

M
R

F
N

LP
N

B
A

N
N

D
T

Li
ne

ar
Lo

gi
st

ic
V

P
X

G
B

D
R

A
PN

N
G

P
M

P
PC

A
G

K
K

N
N

G
M

D
H

Fo
m

un
ya

m
[3

2]
-

-
-

X
X

X
-

-
-

-
-

-
-

-
-

-
-

-
Pe

ng
an

d
Sa

w
a

[2
5]

-
-

X
X

-
-

-
-

-
-

-
-

-
X

-
-

-
-

Ba
yk

ar
a

an
d

G
ur

el
[2

6]
-

-
-

X
-

-
-

-
-

-
-

-
-

-
-

-
-

-
Sa

ho
o

[2
7]

-
-

-
X

-
-

-
-

-
-

X
-

-
-

-
-

-
-

G
ar

ce
s

an
d

C
az

re
s

[3
6]

-
-

-
-

X
-

-
X

-
-

-
-

-
-

-
-

-
-

O
ña

et
al

.[
33

]
-

-
-

-
X

-
-

-
-

-
-

-
-

-
-

-
-

-
Li

an
d

W
u

[4
5]

-
-

-
X

-
X

-
-

-
-

-
-

-
-

-
-

-
X

Sa
la

hd
in

e
et

al
.[

40
]

X
-

-
-

X
-

X
X

-
-

-
-

-
-

-
-

-
-

R
at

ho
d

et
al

.[
16

]
-

-
-

X
-

-
-

-
-

-
-

-
-

-
-

-
-

-
R

aw
al

et
al

.[
21

]
X

X
-

X
-

-
-

X
X

-
-

-
-

-
-

-
-

-
Z

en
g

[2
2]

X
X

-
X

-
-

-
-

-
-

-
-

-
-

-
-

-
-

R
ip

a
et

al
.[

41
]

-
X

-
-

-
-

-
X

-
X

X
-

-
-

-
-

X
-

H
ir

an
sh

a
et

al
.[

28
]

X
-

X
-

-
-

-
X

-
-

-
X

X
-

-
-

-
-

Bu
tt

et
al

.[
8]

X
-

-
X

-
-

-
X

-
-

-
-

-
-

-
-

-
-

R
en

da
ll

et
al

.[
37

]
X

-
-

X
-

X
-

-
-

-
-

-
-

X
-

-
-

-
A

la
m

et
al

.[
38

]
X

-
-

-
X

-
-

-
-

-
-

-
-

X
-

-
-

Si
ng

h
et

al
.[

29
]

X
-

-
-

-
-

X
-

-
-

-
-

-
-

-
X

X
-

El
A

as
sa

le
ta

l.
[3

0]
-

-
-

X
-

-
-

X
-

-
-

-
-

-
-

-
-

-
M

or
ad

po
or

et
al

.[
23

]
-

-
X

-
X

-
-

-
X

-
-

-
-

-
-

-
-

-
D

ut
ta

[4
2]

-
-

-
-

X
-

-
-

-
-

-
-

-
-

-
-

-
-

Ya
si

n
et

al
.[

19
]

X
X

X
X

-
-

-
-

-
X

-
-

-
-

-
-

-
-

M
ug

ha
id

et
al

.[
43

]
X

-
-

-
X

X
-

X
-

-
-

-
-

-
-

-
-

-
M

ag
dy

et
al

.[
46

]
-

-
-

-
-

X
-

-
-

-
-

-
-

-
-

-
-

-
D

ha
na

ra
je

ta
l.

[1
3]

-
-

-
X

-
-

-
-

-
-

-
-

-
-

-
-

-
-

C
ha

kr
ab

or
ty

et
al

.[
11

]
-

-
-

X
-

X
-

X
-

-
-

-
-

-
-

-
-

-
Z

hu
an

d
Li

u
[1

7]
-

-
-

-
-

X
-

-
-

-
-

-
-

-
-

-
X

-
Q

as
em

et
al

.[
12

]
-

-
-

-
X

-
-

-
-

-
-

-
-

-
-

-
-

-
Sh

am
s

et
al

.[
14

]
X

-
-

X
-

-
-

-
-

-
-

-
-

-
-

-
-

X
M

al
ek

ie
ta

l.
[3

4]
-

-
X

-
-

-
X

-
-

-
-

-
-

-
-

-
-

-
D

ew
is

an
d

V
ia

na
[1

0]
-

-
X

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
M

ri
dh

a
et

al
.[

44
]

-
X

-
-

X
-

-
-

-
-

-
-

-
-

-
-

-
-

D
ae

ef
et

al
.[

18
]

-
X

-
-

-
X

-
-

-
-

-
-

-
-

-
-

X
-

N
id

hi
n

et
al

.[
31

]
X

X
-

X
-

X
-

X
-

-
-

-
-

-
-

-
-

-
Ya

ng
et

al
.[

35
]

X
-

-
-

-
-

-
-

X
-

X
-

-
-

X
-

-
-

A
lo

ta
ib

ie
ta

l.
[3

9]
-

-
-

-
X

-
-

-
-

X
-

-
-

-
-

-
-

-
N

iu
et

al
.[

24
]

X
-

-
-

X
-

X
-

-
-

-
-

-
-

-
-

-
-

206



Electronics 2023, 12, 42

RQ3: What are the common datasets used in creating BEC detection models?

Building a ML-based technique requires having a dataset for training and testing
the suggested model to identify its effectiveness and accuracy. There are many common
datasets that have been used by various researchers to build BEC phishing detection
models. Table 6 summarises the datasets used by various researchers to build BEC phishing
detection models. This paper highlights the fact that many datasets were created previously
and get regular updates from their creators. For example, the Nazario dataset gets regular
updates with fresh sample data, with the latest being in 2021. Other examples are the Spam
email dataset, which was compiled in 2010, the Phishing corpus in 2005, the Enron spam in
2006, and the Spamassassin dataset in 2002, all of which get regular updates. The titles of
the datasets used by the 38 publications are further categorised in Table 6.

In addition, out of the 38 studies, more than half used customised datasets in their
study. In light of the ever-shifting nature of BEC attacks, most of the researchers acquired
email samples from actively running servers and organisations’ email systems. To keep up
with the latest trends and conduct an in-depth study of emerging BEC attack routes and
methodologies, a dynamic and continuously updated dataset that captures a wide range of
emails is required. This further supports the argument that new customised datasets from
working contexts are more widely utilised in research than the standard datasets provided.

RQ4: What are the conventional features used in developing an effective BEC detection
model?

There are three primary locations from which features used to detect BEC phishing
attacks are often extracted: header, body, and URLs. The URL is a subset of both the header
and the body; thus, it is not surprising that it is a frequently utilised detection feature.

• Header Features: The header of an email is the section of the message that includes
the sender’s and the recipient’s email addresses, as well as the message’s topic. The
technical details necessary for prompt email delivery are included in each message’s
unique header. Internet header refers to the part of an email that contains the sender’s
and the recipient’s email addresses, the topics, and the dates. An email’s header
also contains useful technical information including the sender’s email address, the
receiver’s email address, and a unique Message ID.

• Body Features: The body of an email is the key section of the message. Most features
for detection are crafted based on the text or are conceptually comparable to a defined
dictionary word search or a set bag of words.

• URL Features: These are features derived from the links in the body of an email and
the authorised sender domain, which are extracted to be analysed based on criteria
and defined structure and would serve as a good indicator for detecting BEC attacks.
Table 7 shows the features used by various researchers to build effective BEC detection
models.
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Table 7. Common features used by various researchers to build BEC detection models.

Citation Header Body URL

George Fomunyam [32] X X -

Peng, Harris and Sawa [25] X X -

Baykara and Gurel [26] X X X
Sahoo [27] X X X

Garces, Cazares, and Andrade [36] - X X
Oña et al. [33] X X -

Li, Zhang, and Wu [45] X - X
Salahdine, El Mrabet, and Kaabouch [40] X - X

Rathod and Pattewar [16] X X -

Rawal et al. [21] - X X
Zeng [22] X X -

Ripa, Islam, and Arifuzzaman [41] - - X
Hiransha, Unnithan, and Kp [28] X - X

Butt et al. [8] X X -

Rendall, Nisioti, and Mylonas [37] X - X
Alam et al. [38] X - X

Singh, Pamula, and Shekhar [29] - X -

El Aassal et al. [30] - X -

Moradpoor, Clavie, and Buchanan [23] - X X
Dutta [42] - X X

Yasin and Abuhasan [19] - X X
Mughaid et al. [43] - X -

Magdy, Abouelseoud, and Mikhail [46] - X -

Dhanaraj and Karthikeyani [13] X - -

Chakraborty and Mondal [11] X X -

Zhu, Dong, and Liu [17] - X -

Qasem, Shamsuddin, and Zain [12] - X -

Shams and Mercer [14] - X -

Laorden et al. [15] - X -

Maleki and Ghorbani [34] X X X
Dewis and Viana [10] - X X

Mridha et al. [44] X X -

Daeef et al. [18] X X -

Nidhin et al. [31] X - -

Yang et al. [35] X - -

Alotaibi, Al-Turaiki, and Alakeel [39] X X -

Niu et al. [24] X X X

From Table 7, there is a large number of researchers utilising the body and header
features, with a total of 28 researchers utilising the body and a total of 23 researchers utilising
the header feature for BEC phishing detection. Furthermore, a total of 14 researchers used
a combination of header and body features.
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Moreover, the body feature is utilised by various researchers, as BEC is mainly focused
on crafting a good email body to deceive corporations and their employees in which the
content used in the BEC attacks includes a good and official mode or tone of writing to
achieve the required level of deception. In addition, the header provides a good source
for determining the authenticity of emails as most of the information, such as the sender’s
email address, SCL, and other vital components, which can serve as a good indicator for a
malicious BEC email, will also be easily spotted from the header.

6. Challenges and Future Directions

BEC phishing attacks are particularly dangerous because they do not contain malicious
links or dangerous email attachments. They are used to impersonate or compromise
corporate or publicly accessible email accounts of executives or high-level employees, who
are involved in finance or who wire transfer payments, to conduct fraudulent transfers,
costing billions of dollars in damages. Detecting BEC phishing attacks is getting harder
since hackers change their tactics regularly to deceive email recipients and BEC detection
tools. There are several open issues and future research directions that still need to be
investigated to provide an effective BEC phishing detection model, including the following:

• Dynamic Feature Selection: Feature selection is a practical way for data visualisation
and a technique to increase the classification accuracy of classifiers. Feature selection
aims to find the smallest subset of features with the highest amount of information.
Applying dynamic feature selection for BEC phishing detection is significant to enable
the detection model to determine the appropriate set of features from the list of features
extracted for a specific situation in an automatic manner in order to build an effective
BEC phishing detection system. This creates an adaptive feature selection method that
dynamically selects features for prediction at any given time [55,56]. In some cases,
some essential features that have high weights when computing similarity distances
may not be beneficial to the detection outcome due to changes in users’ behaviour and
attack scenarios. Hence, allowing the phishing detection system to select appropriate
features dynamically will provide the missing piece to allow the creation of adaptive
and effective BEC phishing detection models [57]. Adopting dynamic feature selection
can solve many issues of current BEC detection models and provide higher accuracy
in BEC phishing detection.

• Dataset Availability: Datasets are designed to be used as a benchmark for ML-based
phishing detection systems. The availability and dependability of datasets is an-
other obstacle in utilising ML algorithms to build BEC phishing detection models.
The availability of datasets is crucial to the design and effectiveness of any ML de-
tector/classifier. Before developing a model, one must guarantee that appropriate
amounts of data are available [58]. In addition, ML algorithms are data-hungry in
which the more data are available, the better efficiency and performance it produces.
However, there are no available datasets that imitate real-life scenarios in the BEC
phishing detection domain. Although there are some datasets, such as Kaggle, Nazario,
and Phishing Corpus, these datasets are becoming nearly obsolete as they contain
static features that are no longer used in advanced BEC phishing attacks. There is a
need for creating large datasets that capture real-life scenarios of different systems,
corporations, and networks to enable researchers to evaluate their novel ML-based
BEC phishing models as well as to provide optimisation to existing techniques.

• NLP and Deep Learning: Deep learning is a subset of representation learning where
the model can automatically find the representations and features required for the
classification task from the raw data. Deep-learning algorithms can provide better
accuracy in BEC phishing detection by training on larger datasets, while traditional
ML algorithms tend to reach a performance plateau quite quickly. Deep-learning
algorithms are more effective in data classification processes because they have several
hidden layers. Since, in BEC phishing detection, email/URL pairs are intrinsically
made up of text elements, it is natural to use NLP techniques. The successful integra-
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tion of NLP with deep learning can develop better accuracy in BEC phishing detection
models [59]. More studies are required to investigate the integration of NLP with deep
learning that allows us to combine the best of both approaches to create a better BEC
phishing detection system.

• Explainable AI for BEC Phishing Detection: One of the major issues of most AI-
based models is that they are acting as a black box, where the input and output
data can be seen and observed but the processes and operations working in between
cannot be seen. Explainable Artificial Intelligence (XAI) enables the conversion of
black-box models to glass-box models by generating explanations. XAI-based models
outperform experts, and these models are more dependable and trustworthy. The
goals of XAI systems are not only to improve a task’s competence and accuracy but
also to provide explanations for how a specific decision is made [60]. Integrating ML
with XAI can provide more effective BEC phishing detection models where XAI can
be used for global and local interpretation to empower the AI-based system with trust
and reliability. Hence, more studies are required to investigate the development of
ML with XAI tools that can provide effective BEC phishing detection models that can
outperform existing models.

• Real-Time BEC Phishing Detection: One of the necessities in every corporation is
having the ability to provide real-time BEC phishing detection. Before disclosing
a user’s personal information on a phishing website, the prediction of a phishing
detection approach must be provided. The fraudulent email must be blocked by a
trustworthy phishing detection tool without disclosing the user’s credentials to the
hackers [61]. There is a need for more studies to develop a technique that can be easily
used by everyone to detect non-legitimate and BEC phishing emails accurately in
real time.

7. Conclusions

Research efforts have mostly focused on finding ways to stop basic phishing emails
that use text as their medium. In recent years, attacks have come up with new and creative
tactics to utilise BEC phishing emails to attack organisations and businesses. BEC phishing
email is a legitimate-looking email meant to trick the receiver. These emails may download
harmful software if the receiver clicks on dangerous links in the body. Tricking a user
involves telling them their business email user information have changed and asking them
to check in to evaluate the changes. Once users click on an obfuscated link, they are led to a
rogue site, which steals their information and redirects them to the corporate site. Although
there are some efforts made to create effective methods to detect BEC phishing emails, there
is still a need for more work to investigate this topic further and to provide better and more
effective solutions. This paper presents a systematic literature review and analysis of the
state of the art of BEC phishing attacks. This paper systematically analyses journal articles
and conference proceedings published between 2012 and 2022. Based on the selected search
strategy, 38 articles (out of 950 articles) were chosen for a closer examination in terms of
recent BEC phishing detection models, ML-based algorithms used to build these models,
common datasets used to develop these models, and common features utilised to detect
BEC phishing emails. The results provide a summarised version of selected articles to give
readers a basic view of the state of the art of BEC phishing attacks. The results indicate
that several researchers are interested in utilising ML-based techniques for detecting BEC
attacks, as the number of BEC attacks is increasing daily and the attacks’ measures are
changing and evolving daily, with DT, SVM, ANN, NB, and Logistic algorithms being the
most common techniques used by various researchers. In addition, there is a large number
of researchers who have utilised the body and header features to detect BEC phishing
attacks, with 28 articles utilising the body features, 23 articles utilising the header features,
and 14 articles using a combination of both header and body features. The paper also
presents challenges and future research directions related to BEC phishing detection based
on ML. There is a need for more research studies on dynamic feature selection, creating
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real-life datasets, integrating NLP with deep learning, and combining ML with XAI to
develop an effective and optimised BEC phishing detection system.
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