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Preface to ”Novel Hybrid Intelligence Techniques in

Engineering”

The focus of this book is the development of novel intelligence techniques for solving various

problems in engineering. These techniques, due to their ability to create complex relationships

between dependent and independent variables, can be implemented in a faster and more reliable

way. Such techniques utilise algorithms/approaches such as artificial neural networks, fuzzy logic,

evolutionary theory, learning theory, and probabilistic theory, making them a suitable and useful

fit for real-life complex problems. This book introduces the process of selecting, applying, and

developing such techniques in different engineering designs and applications. In addition, the

validation process of intelligence systems as an alternative is discussed in this book. Overall, this

book forms an excellent introduction to these systems for engineers who are not familiar with them.

Danial Jahed Armaghani, Yixia Zhang, Pijush Samui, Ahmed Hussein Kamel Ahmed Elshafie,

and Aydin Azizi

Editors
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Abstract: It is generally known that the two most crucial elements of concrete that depend on the
slump value of the mixture are workability and compressive strength. In addition, slump retention is
more delicate than the commonly used slump value since it reflects the concrete mixture’s durability
for usage in civil engineering applications. In this study, the effect of three water-reducer additives
was tested on concrete’s workability and compressive strength from 1 day to 28 days of curing. The
slump of the concrete was measured at the time of adding water to the mix and after 30 min of adding
water. This study employed 0–1.5% (%wt) water-reducer additives. The original ratio between water
and cement (wc) was 0.65, 0.6, and 0.56 for mixtures incorporating 300, 350, and 400 kg of cement.
It was lowered to 0.3 by adding water-reducer additives based on the additives type and cement
content. Depending on the kind and amount of water-reducer additives, w/c, gravel content, sand
content, crushed content, and curing age, adding water-reducer additives to the concrete increased
its compressive strength by 8% to 186%. When polymers were added to the concrete, they formed a
fiber net (netting) that reduced the space between the cement particles. As a result, joining the cement
particles quickly enhanced the fresh concrete’s viscosity and the hardened concrete’s compressive
strength. The study aims to establish mathematical models (nonlinear and M5P models) to predict
the concrete compressive strength when containing water-reducer additives for construction projects
without theoretical restrictions and investigate the impact of mix proportion on concrete compressive
strength. A total of 483 concrete samples modified with 3 water-reducer additives were examined,
evaluated, and modeled for this study.

Keywords: concrete; water-reducer contents; workability; compressive strength; slump retention

1. Introduction

Cement, fine, and coarse aggregates are combined with water to make a composite
material called concrete [1]. Concrete is a flexible material in a fresh condition that can be
quickly blended to fit a range of particular demands and molded into almost any shape.
Ordinary portland cement is the most often used cement for manufacturing concrete [2].
The study of concrete characteristics and their practical applications are covered by concrete
technology [3]. Floors, columns, beams, slabs, and other load-bearing components are
made of concrete in building construction [4–6].

Appl. Sci. 2023, 13, 1208. https://doi.org/10.3390/app13021208 https://www.mdpi.com/journal/applsci1
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Chemical admixtures known as water-reducer additives are added to concrete mix-
tures to lower the water content or slow the concrete setting rate while preserving the
mixture flowability. Several liquid and powdered water reduction additives are avail-
able [7,8]. Chemically, water-reducer additives fall into three groups. First, Sulfonate
Naphthalene Formaldehyde (SNF); then, Formaldehyde Sulfonate (SMF); and finally, sul-
fonate and carboxylic copolymers [9–11]. Polycarboxylate ether (PCE) (high-scale water
reduction) is one of the most common water-reducer additive types [12]. Through the
adsorption and dispersion of cement components, water-reducer additives are active in the
cement waterways network [13–15]. Water-reducer additives improve concrete flowability
by dispersing agglomerated cement particles [16].

Concrete compressive strength, a significant mechanical characteristic, is often mea-
sured using concrete specimens after a standard curing period of 28 days. Various factors
affect the strength of concrete, including cement strength, water content, w/c, and aggre-
gate quality. The conventional method for modeling the impact of these factors on the
concrete compressive strength begins with an assumed form of an analytical equation
and is followed by a regression analysis utilizing experimental data to identify the equa-
tion’s parameters [17]. Polymers are one of the chemical admixtures used to improve the
properties of fresh and hardened concrete [15–18]. Polymers affect cement setting times,
hydration, flowability, and strength. Many types of polymers are present in liquid and
powder forms. Polycarboxylate (PCE) (high-scale water reduction) is one of the most
common polymer types [19]. The currently available superplasticizers can be divided into
three categories according to the chemical compound. The first is condensed with Sulfonate
Naphthalene Formaldehyde (SNF), the second Formaldehyde Sulfonate (SMF), and the
last is made up of sulfonate and carboxylic copolymers, for example, Polycarboxylate
Superplasticizers (PC) in the Sulphonate group. Concrete quality and durability can be
significantly enhanced with PC superplasticizers [20]. Superplasticizers are activated in
the cement waterways network by adsorption and dispersion of cement parts. The main
way in which polymers increase the flowability of concrete is to disperse agglomerated
cement particles. The fluidity of superplasticizers depends mainly on their adsorption
on concrete surfaces [21–27]. The effects of polymers (Polycarboxylate–Superplasticizer)
in liquid form have been studied to enhance concrete’s mechanical properties, such as
compressive strength [12]. There are several methods for modeling the properties of ma-
terials, including computational modeling, statistical techniques, and recently developed
tools such as regression analyses and Artificial Neural Networks (ANN) [33]. Multilinear
regression analysis, M5P-tree, and ANN are techniques widely used to solve problems in
construction project applications [18–22].

Nonlinear regression, multilinear regression analysis, and M5P-tree are construction
problem-solving methodologies [28–30]. M5P-tree was initially introduced by [31]. This
tree technique adapts to each sub-location by classifying or dividing data into various
spaces. Error is estimated using each node’s M5P-tree tree division criterion. Variance
measures class mistakes. Any node function uses the attribute that minimizes errors. The
M5P-tree tree division criterion is the error computations per node. Node-class standard
deviation calculates M5P error. Node division reduces errors by evaluating each node’s
characteristics. Parent nodes have more StDev than child nodes (more significant nodes).
Choose the structure with the best error-reduction potential. This split is tree-like. Second,
linear regression functions replace the clipped sub-trees. Thus, the effect of numerous
parameters such as water-reducer content, w/c, and curing duration of 1 day to 28 days was
quantified using nonlinear regressions, multi-regression, and M5P-tree-based approaches
to forecast concrete compressive strength, utilizing 483 tested samples for each model.

Research Significance

The main objective of this study is to propose two systematic multiscale equations
to estimate the maximum stress of concrete modified with polymers. Thus, experimental
data of 483 tested samples using three different types of liquid polymer with polymer
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contents, mix proportion, curing period, and the water-to-cement ratio was considered
with different analysis approaches. (i) The effect of polymers on the slump retention
and compression strength of concrete is investigated and quantified in the early curing
period (ii) to guarantee the construction industry to use the proposed models without any
experimental work, and (iii) to quantify and propose a systematic multiscale model to
predict the compression strength of concrete containing small amounts of polymers (up to
1.5%) with various water-to-cement ratios and curing time up to 28 days.

2. Materials and Methods

2.1. Ordinary Portland Cement

This investigation used ordinary portland cement (OPC) from the Gasin Cement Com-
pany in Sulaimani, Iraq. Table 1 summarizes the chemical and mineralogical constitution
of the OPC.

Table 1. Composition of the ordinary portland cement.

Chemical composition

CaO 63.9%
SiO2 20.1%

Al2O3 4.08%
Fe2O3 5.10%
MgO 1.48%
SO3 2.20%
LOI 3.41%

Mineralogical composition

Ca3SiO5 66.3%
Ca2SiO4 7.67%

Ca3Al2O6 2.19%
Ca4Al2Fe2O10 15.5%

2.2. Aggregate

In this study, natural sand was used. Crushed stone was used as fine aggregate, and
gravel passing a sieve of 20 mm was used as coarse aggregate.

2.3. Additives

In this study, three additives were used to enhance the compressive strength of concrete.
SP62 is a liquid brown Polycarboxylic ether. It is a highly concentrated fluidizing admixture.
An admixture can obtain a homogeneous mixture with minimized frictional forces between
the mixed components. RC897 is a superplasticizer that produces high-quality ready-
mix and precast concrete with reduced water needs and high workability retention. This
water-reducer extends processing time and meets industry requirements. PC180 is a high-
performance superplasticizer that was purposefully designed for concretes having high
consistencies and low w/c ratios in precast applications. In this study, up to 1.5% of the
additives were used. The properties of the three types of additives are summarized in
Table 2.

Table 2. Properties of the additives.

Additives SP62 RC897 PC180

Color Brown Light yellow Amber

State Liquid Liquid Liquid

Density, (gm/cm3) 1.1 1.08 ± 0.02 1.07 ± 0.02

pH - 4.5 ± 1.0 5 ± 1

Chloride content 0.1% <0.10 mass-% <0.10 mass.-%

Alkali content
(Na2O equivalent) <8.5 mass-% <8.5 mass-% <8.5 mass-%

3
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2.4. Slump

In this study, the additives’ consistency and effectiveness on the concrete mixes’
flowability according to ASTM C143 and EN-12350 were assessed using a concrete slump
test (Figure 1a,b). The slump values of the modified concrete with additives and the control
sample ranged from 200 to 220 mm. In order to assess the effectiveness of the additives on
the workability of the concrete to the control sample, slump retention was also carried out.

  
(a) (b) 

 
 

(c) (d) 

Figure 1. Experimental work (a) concrete mixer, (b) slump test, (c) cubic molds, (d) compressive
strength test.

2.5. Compressive Strength

For this investigation, a cube sample (150 × 150 × 150 mm) was employed (Figure 1c).
There was a (0.5 MPa)/sec loading speed. Based on EN-12390-3 [8], the three-sample
average was chosen as the concrete strength for the analysis during a specific curing period
(Figure 1d).

2.6. Concrete Mix

The range of additive content was 0% to 1.5%. Due to the addition of the additives,
less water was used to make the mixture, and the w/c ratio was gradually lowered so that
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the slump value remained between 200 and 220 mm. The specimens were kept in water
with a humidity level of 95 percent and a temperature of 25 ◦C for the appropriate curing
age. Table 3 provides a summary of the concrete mixtures. The slumps were controlled
between 200 to 220 mm, and 0, 0.5, 0.75, 1, 1.25, and 1.5% of the three additives, such as
SP62, PC180, and RC897, were used (Table 4).

Table 3. Concrete mix design.

Materials Mix 1 Mix 2 Mix 3

Cement, kg 300 350 400
Coarse aggregate, kg 788 669 557

Crushed stone, kg 98 96 186
Sand, kg 1083 1145 1115
Water, kg 195.73 221 225.3

Table 4. Impact of the additives on the workability of concrete.

Slump Retention, mm

Cement, kg Additive, %
SP62 PC180 RC897

10 min. 30 min. 10 min. 30 min. 10 min. 30 min.

300

0 210 208 200 190 210 210
0.5 200 80 200 80 200 60
0.75 210 100 210 90 210 80

1 200 85 200 80 210 80
1.25 200 120 215 100 210 90
1.5 200 90 210 95 210 90

350

0 210 215 210 215 210 215
0.5 200 90 200 90 200 90
0.75 200 0 200 100 210 100

1 220 90 210 110 200 90
1.25 210 130 210 80 200 100
1.5 200 100 220 130 210 110

400

0 200 100 200 100 200 100
0.5 210 80 200 80 210 70
0.75 205 90 210 90 220 90

1 220 100 210 120 210 100
1.25 210 110 210 50 210 115
1.5 200 90 215 70 220 80

2.7. Modelling

A total of 483 datasets (161 samples for each polymer) containing tested results for
each modification were examined. The water–cement ratio (w/c), curing age (t, days),
cement content (C, kg), gravel content (G, kg), sand content (S, kg), crushed stone content
(CRS, kg), curing time (t, days), and the additives’ content (Add.,%) are all included in the
set of input data, with the tested compressive strength (MPa) of the concrete provided as
the target value.

2.7.1. Nonlinear Regression Model

To develop a nonlinear regression model, the following formula (Equation (1)) can be
considered a general form [2,8,12]. Equation (1) represents the interrelation between the
variables to estimate the compressive strength of the conventional and concrete components.

σc = β1 × w/cβ2 + β3 × Cβ4 + β5 × Sβ6 + β7 × CRSβ8 + β9 × Gβ10 + β11 × tβ12 + β13Pβ14 (1)
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2.7.2. M5P Model

One of the most significant advantages of model trees is their ability to efficiently
solve problems, dealing with many data sets with a substantial number of attributes and
dimensions. They are also noted for being powerful while dealing with missing data [31].
The M5P-tree approach establishes a linear regression at the terminal node by classifying or
partitioning diverse data areas into numerous separate spaces. It fits on each sub-location in
a multivariate linear regression model. The error is estimated based on the default variance
value inserted into the node. The general formula for the M5P-tree model is shown in
Equation (2).

σc = β1 ×
(w

c

)
+ β2 × (C) + β3 × (S) + β4 × (CRS) + β5 × (G) + β6 × (C.T) + β7 × (P) + β8 (2)

w/c: ratio of water-to-cement content
C: cement content
S: sand content
CRS: crushed stone content
G: gravel content
t: curing time
P.: additive (SP62 or PC180 or RC897) ranged from 0% to 1.5 and β1 to β14 are modeli

paramters (Tables 5 and 6).

Table 5. NLR model paramters.

Additive

Model Parameter SP62 RC897 PC180

β1 52.60 282.2 303.8
β2 −0.491 −0.13 −0.116
β3 652.5 298 273
β4 0.006 0.029 0.051
β5 2.018 2.017 2.01
β6 −1.33 −1.33 −1.36
β7 −33.1 69.07 124.8
β8 −0.125 0.008 −0.248
β9 1.297 1.467 1.467
β10 0.303 −0.37 −0.377
β11 −720 −712 −715
β12 −0.008 −0.009 −0.01
β13 0.209 2.229 2.120
β14 2.00 0.574 0.634

R2 0.89 0.92 0.94

RMSE (MPa) 4.220 3.867 3.556

Table 6. M5P-tree model paramters.

Additive

σc=β1×( w
c )+β2×(C)+β3×(S)+β4×(CRS)+β5×(G)+β6×(C.T)+β7×(P)+β8

LM
Number

β1 β2 β3 β4 β5 β6 β7 β8 R2 RMSE
(MPa)

SP62

1 78.4 0.0051 0 0 0 0.3114 5.491 −15.22

0.91 3.784

2 74.03 0.0051 0 0 0 0.3114 5.491 −13.45
3 51.98 0.0051 0 0 0 0.3114 5.967 −9.737
4 38.08 0.0127 0 0 0 0.888 5.499 0.2689
5 −7.795 −0.0006 0 0 0 0.331 3.6161 36.01
6 −7.795 −0.006 0 0 0 0.29 3.174 36.02
7 −58.81 0.0122 −0.0153 0 0 0.2877 0.4122 65.65
8 −50.1 0.0122 −0.0153 0 0 0.2877 0.4122 61.94
9 −61.61 0.0122 0 0 0 0.2877 0.4122 49.89
10 −77.31 0.0227 0 0 0 0.4121 0.4122 61.9
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Table 6. Cont.

Additive

σc=β1×( w
c )+β2×(C)+β3×(S)+β4×(CRS)+β5×(G)+β6×(C.T)+β7×(P)+β8

LM
Number

β1 β2 β3 β4 β5 β6 β7 β8 R2 RMSE
(MPa)

PC180

1 −77.311 0.0227 0 0 0 0.4121 0.4122 61.9

0.92 4.00
2 −98.45 0.052 0 0 0 0.278 0 61.51
3 −112.6 0.0261 0 0 0 0.3861 0 84.71
4 −93.21 0.0326 0 0 0 0.3681 0 64.14
5 −106.8 0.0335 0 0 0 0.4932 0 76.37

RC897

1 −60.77 0 0.0374 0 0 2.654 1.353 9.7022

0.96 2.846

2 −50.87 0 0.041 0 0 2.654 1.125 2.481
3 −49.95 0 0.0257 0 0 2.654 1.584 21.82
4 −60.34 0 0.0257 0 0 2.654 1.743 26.2
5 −73.07 0 0.0228 0 0 4.13 0.8277 31.23
6 −37.81 0 0.0629 0 0 0.4122 3.87 −20.7

2.8. Performance Evaluation and Model Criteria

To assess the accuracy and efficacy of the model predictions, the coefficient of determi-
nation (R2), root mean squared error (RMSE), and mean absolute error (MAE) were used.
The reliability of the suggested models and the effect of mix proportions on the concrete
compressive strength were investigated using the nonlinear and M5P models, which were
evaluated using several common assessment criteria. Their equations are as follows:

R2 =

⎡
⎢⎢⎣ ∑

p
p=1(yi − y)(xi − x)√[

∑n
n=1(yi − y)2

][
∑

p
p=1(xi − x)2

]
⎤
⎥⎥⎦

2

(3)

RMSE =

√
∑n

n=1(yi − xi)
2

n
(4)

MAE =
∑

p
p=1|(yi − xi)|

n
(5)

yi = laboratory-tested values; xi = estimated value; y = average of yi; x = average of xi,
and n is the number of datasets.

3. Results and Analysis

3.1. Water-Reducing Additives

In this research paper, three types of additives (SP62, PC180, and RC897) were used
to enhance the performance of the concrete. The additives content ranged from 0 to
1.5%. Adding the additives reduced the water in the mixture, and the w/c ratio gradually
decreased, thus keeping the slump value in the range of 200–220 mm. Regarding the
concrete mixture, which contains 300 kg of cement, an addition of 0.5% of SP62 reduced
the mixture’s water content by 12.6%, while it was reduced by 17.6% and 9.1% when
modified with 0.5% of PC180 and RC 897, respectively. Compared with 300 kg and 400
kg cement content in the mixture, the percentage of water-content reduction was higher
for the mixture containing 350 kg of cement for the three types of additives, as shown in
Figure 2. By increasing the content of the additive, the water-content reduction gradually
increased (Figure 2). Modified the concrete with the SP62, PC180, and RC897 decreased the
water content required to achieve the desired workability by 9.1% to 46.7%, based on the
types and content of additives and based on the cement content, as shown in Figure 2.
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Figure 2. Percentage of water reduction caused by the addition of 3 types of additives in concrete
mixes with (a) 300 kg, (b) 350 kg, and (c) 400 kg of cement.
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3.2. Slump Retention (ASTM C 143-90)

Fresh concrete loses its workability due to stiffening with time—a well-known phe-
nomenon called “slump loss”. The consistency changes because chemical and physical
factors brought about by early hydration gradually reduce the system’s free water and
build up the inner skeleton structure. It is well known that the workability of concrete in
the concrete industry faces slump loss, which is different for various grades of concrete.
Slump loss also varies with time. A study must determine the factors affecting slump loss
in the concrete mix. Factors such as cement content, water content, admixtures, weather,
and concrete volume influence the workability loss rate. The main objectives of this project
are to study the variation of a slump with the time of transportation, which is dependent
on the slump value of the concrete mixture.

Moreover, slump retention is the most sensitive compared to a well-known slump
value because it represents the durability of the concrete mixture for its applications in
civil engineering. Slump loss is the rapid stiffening of fresh concrete. Slump loss becomes
significant when polymers are used with cement. The stiffening of concrete becomes
accelerated under hot climates. This is due to the evaporation of mixing water, hydration of
cement, and even water absorption by the aggregates. Retarders lower the rate of hydration
of cement. The concrete compressive strength linearly increases with a mixing time of up
to 180 min. This increase was 10% after mixing for 180 min [3]. The dispersant remaining
in the aqueous phase can influence slump retention. Rapidly adsorbed dispersant from the
aqueous phase has a higher rate of slump loss than that was absorbed more slowly from
the aqueous phase [7]. The slump loss in the field can be regained by redosing the polymer
in the concrete. Besides enhancing the concrete compressive strength, monitoring the
slump retention of the fresh concrete modified with water-reducer additives is necessary.
In this study, slump retention of the fresh concrete modified with SP62, PC180, and RC897
was monitored when adding water to the mixture and after 30 min of adding water, as
summarized in Table 4. The slump of the fresh concrete with and without water-reducer
additives was controlled between 200 mm and 220 mm. After 30 min, the concrete modified
with water-reducer additives lost its workability (Table 4). Workability loss is affected
by cement, water, admixtures, weather, concrete volume, and other factors. The rapid
stiffening of fresh concrete is known as slump loss. A hot environment accelerates concrete
stiffening due to the evaporation of mixing water, cement hydration, and aggregate water
absorption [32]. There were many ways to control the slump loss of fresh concrete. One of
the methods was by adding retarder admixture to the mix. By slowing the cement’s rate of
hydration, retarding admixtures delay the setting. As a result, the water combined with
cement decreases due to the decreased hydration rate throughout a particular period. The
slump loss in such a mix for a specific period will be significantly lower than that without a
retarder [32,33].

Modifying the concrete with water-reducer additives enhances the concrete compres-
sive strength from 1 day up to 28 days of curing for 3 different contents of cement (300, 350,
and 400 kg), as shown in Figures 3–5. For the mixture containing 300 kg of cement at 1 day
of curing, the compressive strength was 11.41 MPa, while it was 16.52 MPa and 20.17 MPa
for 350 and 400 kg of cement, respectively. Regarding the mixture containing 300 kg of
cement, adding 1% of SP62, PC180, and RC897 enhanced the concrete compressive strength
by 104%, 150%, and 129%, respectively, as shown in Figure 2. While it was 97%, 141%, and
150%, the mixture contained 350 kg of cement (Figure 3). The growth percentage decreased
when the mixture contained 400 kg of cement modified with 1% water-reducer additives
(Figure 4).
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Figure 3. Additives’ impact on the concrete compressive strength using 300 kg cement (a) SP62,
(b) PC 180, and (c) RC 897.
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Figure 4. Additives’ impact the concrete compressive strength using 350 kg of cement (a) SP62, (b) PC
180, and (c) RC 897.
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σ

σ

Figure 5. Additives’ impact on the concrete compressive strength using 400 kg cement (a) SP62,
(b) PC 180, and (c) RC 897.
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3.3. Compressive Strength

After 28 days of curing, the concrete compressive strength was enhanced up to 74 MPa,
depending on the content of cement and the types and content of water-reducer additives.
In the case of polycarboxylate-based superplasticizers and naphthalene- or melamine-based
superplasticizers, electrostatic and steric repulsion mechanisms work together to weaken
the cohesiveness of the cement particles.

The compressive strength of concrete was predicted using nonlinear and M5P models
based on data from 483 tests using three distinct mixtures and three different water-reducer
additives, as shown in Figure 6. Additionally, it explores how mixed proportions affect
concrete compressive strength.

σ

σ

σ

σ

Figure 6. The mix proportions’ impact on the concrete compressive strength using (a) nonlinear and
(b) M5P models.
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3.4. Predicted and Measured Compressive Strength Relationships
3.4.1. The Nonlinear Regression Model (NLR)

The connection between the anticipated and actual compressive strengths of normal
concrete, including polymer content, is shown in Figure 6a. The most significant parameters
affecting compressive strength were curing time and cement content. The following formula
was derived for the NLR model with numerous changeable parameters (Table 5).

3.4.2. M5P-Tree Model

In this study, the M5P-tree model tree is utilized to forecast the compressive strength of
conventional concrete using 483 mix-design data. The coefficient of determination (R2), root
mean square error (RMSE), and goal were all employed to assess the suggested performance
of the model in this research. The M5P-tree technique, as seen in Figure 6b, divides the
input space (independent variables) into linear tree regression functions (marked LM1
through LM8). Y = bo + b1 × X1 + b2 × X2, where bo, b1, and b2 are linear regression
constants representing the model parameters. The model parameters are listed in Table 6.
The study dataset has a 25% and 35% error line, indicating that all measured values fall
within the 20% and −15% error line. The coefficient of determination R2 for this model
indicates that the model performance is better than the NLR.

Therefore, from the result of slump retention and compressive strength, SP62 (FM) can
be used to produce a precast concrete member. The admixture should maintain a liquid
consistency and good workability when used with concrete that has a low w/c and a high
quantity of mineral additives. High early strength developments are made possible by
the PCE-based superplasticizer even at low ambient temperatures and without additional
external heat. This might make it possible to shorten the stripping periods, which could
lead to a more effective production process. The compaction energy used to compact
concrete may be lessened with concrete admixture. Therefore, concrete producers, builders,
and installers may profit economically and technically. The three types of water-reducer
additives can be used to produce the precast concrete member.

A similar study was also conducted on the effect of two water-reducer polymers with
smooth and rough surfaces on the workability and the compression strength of concrete
from an early age (1 day) up to 28 days of curing. The polymer contents used in this study
varied from 0 to 0.25% (%wt.). The initial ratio between water and cement was 60%, and
it slowly reduced to 0.46 by increasing the polymer contents. The compression strength
of concrete was increased significantly by increasing the polymer contents by 24% to 95%
depending on the polymer type, polymer content, w/c, and curing age. Because of a fiber
net (netting) in the concrete when the polymers were added, which led to a decreased
void between the particles, binding the cement particles increased the viscosity of the
fresh concrete and the compression strength of the hardened concrete rapidly. This study
also aims to establish systematic multiscale models to predict the compression strength of
concrete containing polymers and to be used by construction projects with no theoretical
restrictions. For that purpose, 88 concrete samples modified with two types of polymer
(44 samples for each modification) have been tested, analyzed, and modeled. Linear and
nonlinear regression, M5P-tree, and Artificial Neural Network (ANN) approaches were
used for the qualifications. In the modeling process, the most relevant parameters affecting
the strength of concrete were polymer incorporation ratio (0–0.25% of cement’s mass), water-
to-cement ratio (0.46–0.6), and curing ages (1 to 28 days). Among the used approaches and
based on the training data set, the model made based on the nonlinear regression, ANN,
and M5P-tree models seem to be the most reliable. The sensitivity investigation concludes
that the curing time is the most dominating parameter for predicting concrete’s maximum
stress (compression strength) with this dataset [12].
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4. Conclusions

The following conclusions are drawn based on the tested data and the simulation
of the compression strength of concrete at 483 different ratios between the water and the
cement, polymer content, and curing ages.

1. The compression strength of cement increased from 84% to 250%, depending on the
mix proportion. Based on NLR parameters, polymer RC897 had the highest impact
on increasing the compression strength of concrete as compared to polymer SP62
and PC180. This improvement in compression strength was due to the dispersion of
cement particles and increasing the friction between the particles, reducing the void
ratio and increasing the density of concrete.

2. With a cement content of 300 kg, the polymer PC180 had the highest effect on reducing
the water content of the other two types of the polymer by 43.5%, while, at a cement
content of 400 kg, the polymer RC 897 had the highest effect on reduction in water
content compared with the other two polymers, by 46.7%.

3. The compressive strength of the concrete mixes was calculated using NLR and M5P-
tree models. The correlation of the coefficient (R2) and the root mean square error
(RMSE) are used as assessment criteria. The order of the models was M5P-tree and
NLR; the M5P-tree was the best model offered in this study, based on data obtained
from the experimental work, and provided a higher R2 and a lower MAE and RMSE.
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Abstract: Elevating the accuracy of streamflow forecasting has always been a challenge. This
paper proposes a three-step artificial intelligence model improvement for streamflow forecasting.
Step 1 uses long short-term memory (LSTM), an improvement on the conventional artificial neural
network (ANN). Step 2 performs multi-step ahead forecasting while establishing the rates of
change as a new approach. Step 3 further improves the accuracy through three different kinds
of optimization algorithms. The Stormwater and Road Tunnel project in Kuala Lumpur is the
study area. Historical rainfall data of 14 years at 11 telemetry stations are obtained to forecast
the flow at the confluence located next to the control center. Step 1 reveals that LSTM is a better
model than ANN with R 0.9055, MSE 17,8532, MAE 1.4365, NSE 0.8190 and RMSE 5.3695. Step
2 unveils the rates of change model that outperforms the rest with R = 0.9545, MSE = 8.9746,
MAE = 0.5434, NSE = 0.9090 and RMSE = 2.9958. Finally, Stage 3 is a further improvement with
R = 0.9757, MSE = 4.7187, MAE = 0.4672, NSE = 0.9514 and RMSE = 2.1723 for the bat-LSTM hybrid
algorithm. This study shows that the δQ model has consistently yielded promising results while
the metaheuristic algorithms are able to yield additional improvement to the model’s results.
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1. Introduction

The natural water movement on our planet is known as the hydrological cycle. Stream-
flow is one of the main components of this cycle. The streamflow characteristic is often
associated with climate and land use conditions [1]. Under-capacity rivers can trigger
frequent flooding in the surrounding catchment due to excess runoff. On the other hand,
water scarcity can also happen during dry weather. Therefore, the state of streamflow
can transpire in future events. Streamflow forecasting can optimize water resource alloca-
tion [2].

For this reason, researchers have been developing various methods to forecast stream-
flow [3]. The conventional approach relies on preserving mass, momentum and energy [4] to
retrieve broad basin information. However, data collection is time-consuming and costly as
the conventional method requires a wide range of parameters. As more and more flooding
occurs due to climate change, a more accurate forecasting model is required to pursue better
flood management and disaster preparedness [5]. Artificial intelligence is seen as a better
alternative to the conventional method. A study has shown that the adaptation of artificial
intelligence allows better river and drought management [1]. It can establish the association
of predictors and predictand variables without considering hydrological complexity.
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Although many studies have shown promising results, standalone models (e.g., arti-
ficial neural network) display specific drawbacks of overfitting due to large datasets. In
addition, past states of network retrieved from time-series data are not kept for the benefit
of information related to data sequence [6]. These drawbacks can be tackled through
the implementation of deep learning that can generate higher accuracy through better
extraction of obscure data with higher computing power and complex mapping ability.
This ability has contributed to significant developments in many fields, such as speech
recognition, language processing and hydrological studies, such as river flood forecasting,
runoff forecasting, streamflow forecasting and groundwater level forecasting [7].

Xiang and Demir (2020) proposed a study applying a deep recurrent neural network,
specifically the neural runoff model, to predict streamflow in the state of Iowa. The model
successfully incorporated multiple measurements and model results to produce long-
term rainfall–runoff modeling [7]. Ahmed et al. (2021) applied a deep-learning hybrid
model to forecast the monthly streamflow water level in the Murray Darling Basin that
yielded improved results when optimized with Boruta [1]. Lin et al. (2021) developed
three components of the hybrid DIFF-FFNN-LSTM model to forecast hourly streamflow,
which accomplished better results than statistical methods [6]. Granata et al. (2022)
performed a comparison study between the stacked model of random forest and the
multilayer perceptron algorithm with bidirectional LSTM. The bidirectional LSTM model
significantly outperformed the stacked model for low-flow prediction [8]. Elbeltagi et al.
(2022) developed a study comparing four machine learning algorithms, namely random
subspace, M5P, random forest and bagging, to predict streamflow in the Des Moines
watershed. The M5P algorithm yielded the best prediction [9].

Increasing accessibility to the latest research has triggered tremendous advancement in
science and technology. A modern measuring device can quickly secure physical hydrologi-
cal data with standard intervals. As more significant obscured knowledge is extracted, more
demands for complex engineering optimization start to the surface [10]. This requirement
comes with multiple purposes, multi-level conditions and numerous restrictions.

In response, more recent research has been integrating machine learning methods with
a metaheuristic algorithm to solve the optimization complexity [11]. This integration leads
to a more efficient, effective and robust search, resulting in faster convergence.

Khosravi et al. (2022) introduced an optimized deep learning model integrating a
convolutional neural network (CNN) with the BAT metaheuristic algorithm to predict daily
streamflow in the Korkorsar catchment in northern Iran. This model outperformed the
other algorithms [12].

Machine learning is a subset of artificial intelligence that exploits algorithms and
statistical methods to provide computers with learning ability [13]. It aims to optimize ex-
perimental arrangements for a data structure [14]. A continuous source of data from actual
observation is fed into the system, improving the learning over time. Artificial intelligence
closely resembles how human brains capture internal data relationship patterns [15]. The
acquired knowledge enriches the machine’s ability to generalize a real-world position [16].

Metaheuristics denote high-level computational intelligence algorithm frameworks that
are problem-independent and are employed to solve complex optimization demands [17].
A robust, iterative search process is involved in the metaheuristics algorithm to generate an
approximation that does not guarantee an optimum solution [18] but instead an adequately
good global solution within a reasonable computational time. The algorithm can self-tune the
global exploration and local exploitation to reach greater search abilities [19].

Metaheuristics can be categorized into nature-inspired and non-nature-inspired. The
nature-inspired category can be further classified into evolutionary algorithms [20] and
swarm intelligence. Evolutionary algorithms include genetic algorithms, genetic program-
ming, evolution strategy and differential evolution based on biological transformation.
Swarm intelligence includes artificial bee colony algorithm, ant colony optimization, crow
search algorithm, jellyfish search optimizer, firefly optimization and bat algorithm. The non-
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nature-inspired category consists of the Jaya algorithm, imperialist competitive algorithm,
simulated annealing, harmony search and forensic-based investigation algorithm.

All evolutionary and swarm intelligence algorithms involve proper tuning of standard
controlling parameters such as population size and generation boundary. In addition,
each algorithm has its algorithm-specific control parameters such as mutation probability,
crossover probability and selection operator for the genetic algorithm. Failure to properly
tune can decrease computational speed and entrap in local optimal. Swarm intelligence
algorithms are also subjected to slow convergence and are challenging to integrate with
a particular artificial intelligence model [21]. In order to avoid algorithm-specific non-
performance, the teaching learning-based optimization algorithm and the Jaya algorithm
can be implemented [22].

The bat algorithm is used in tuning residential HVAC controller parameters to op-
timize energy consumption and obtain thermal comfort. It is also used for controlling
illumination and air quality [23]. Other applications are wind power forecasting [24] and
transportation [25].

The firefly algorithm has been used in numerous fields to solve complex applications
such as breast cancer recognition, vehicle communication problem, path planning, privacy
protection and forecast power consumption. It can also be used in structural optimization
and image processing [26].

The Jaya algorithm has been developed for many engineering works such as structural
damage identification [27], welding optimization, heat exchangers optimization, path
selection for a wireless network, waterjet machines, dam monitoring [28], wind power
systems and cart position control [29].

From the authors’ observation, there is a lack of research in the area of optimization
for deep learning using hybrid models.

In order to fill this gap, this study aims to improve the deep learning model for better
streamflow simulation and forecasting using optimization algorithm hybrid models, which
will lead to a better early warning system.

The contributions of this paper can be simplified as follows:

1. Application of the LSTM model as a deep learning model for simulation and multi-
step ahead streamflow forecasting;

2. A new approach to using rates of change in the artificial learning model to minimize
input errors;

3. To improve the performance of LSTM models by introducing a novel method in deep
learning through metaheuristic algorithms to form hybrid models.

2. Methodology

This study involves numerous deep learning models and metaheuristic algorithms
such as the bat, firefly and Jaya algorithms. The study area and model development are
also discussed.

2.1. Long Short-Term Memory (LSTM)

LSTM is an improved version of a recurrent neural network (RNN) [30]. It is a deep
learning algorithm that has been set up to perform forecasting in the field of hydrology and
water resources [31]. It eliminates the issue of overfitting and can yield better generalization
than standalone models. The network captures long-term dependencies and deals with
vanishing gradient limitations that exist in the original RNN [32]. The LSTM network (see
Figure 1) comprises blocks of memory cells, an input gate, an output gate and a forget gate.
The network operates like a chain [33] and can deal with delays such as seasonal and trend
patterns [34]. The input gate manages the extra information added to the cell state.
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Figure 1. Architecture of LSTM blocks.

The forget gate eliminates information from the cell state. The ability of LSTM to
store or remove information outperforms other neural networks [35]. Information can be
carried over multiple time steps and provide for learning of sequential dependency in the
input data, making it relevant even for long time series [36]. This gives an advantage to
the LSTM when it comes to modeling time series, particularly hydrologic variables, which
employ common hyperparameters, such as precipitation, flow or water level, for streamflow
prediction, water quality modeling and flood forecasting [37]. Although the training process
is longer than other data-driven models, LSTM can yield higher accuracy [38].

2.2. Bat Algorithm

The bat algorithm (see Figure 2) is a swarm intelligence algorithm inspired by the
echolocation produced by bats when interacting with their surroundings [23]. The echolo-
cation starts with the emission of short and loud sound waves released by bats to identify
their prey, obstacles or resting cracks in the dark. The time-lapse for the emitted sound
to bounce back reveals the prey’s distance, direction and speed. All bats use echolocation
to measure distance and distinguish between targets and obstacles [39]. The algorithm
keeps a record of the bat’s velocity, position, frequency, varying wavelength, loudness and
pulse emission. The loudness is measured in the range between Amin and A0, while the
pulse emission is logged between 0 and 1, where 0 represents no pulse, and 1 refers to the
highest rate of the bat’s emission. The bat algorithm is suitable to handle both continuous
and discrete optimization matters. One of the advantages of this algorithm is the ability to
reach quick convergence at the initial stage and shift from exploration to exploitation when
optimality is near [40].

The mathematical equations that relate to the velocity and location can be defined as:

fi = f min + ( f max − f min)β (1)

νt
i = νt−1

i +
(

xt−1
i − x∗

)
fi (2)

xt
i = xt−1

i + νt
i (3)

where:
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β ∈ [0, 1] is the random vector from a uniform distribution;
fi is the initial frequency;
νt

i is the velocity at t iteration;
xt

i is location at t iteration in a d-dimensional search or solution space.
The loudness and pulse emission rates are represented below:

Figure 2. Bat algorithm flowchart.
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At+1
i = αAt

i (4)

rt+1
i = r0

i [1 − exp(−γt)] (5)

where:
0 < α < 1 and γ > 0 are constants;
α is the constant reducing loudness, and γ is the constant increasing pulse rate.

2.3. Firefly Algorithm

Bioluminescence refers to the biochemical process that provides the insects’ ability to
flicker. The flashing light is visible, particularly at night, to court potential mates and gives
a warning signal for potential predators nearby. The emission of the rays can be controlled
towards brighter or dimmer light [41].

The firefly algorithm (see Figure 3) is considered a swarm intelligence algorithm
that originated from the flickering behaviors of insects. It is a popular algorithm in the
swarm intelligence domain [42]. Flashlight without gender distinction is simulated to
entice fireflies with less brightness to draw toward the individual. Under this algorithm
(see Figure 3), two significant features are considered, mainly brightness and attractiveness.
The brightness echoes the firefly’s position and establishes the path of movement. At the
same time, the attraction indicates the distance the firefly travels. The algorithm’s goal is to
continuously update the brightness and attractiveness status [15].

 

Figure 3. Firefly algorithm flowchart.
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The light brightness will decrease as distance increases. Since the brighter fireflies attract
the dimmer ones, the latter will move toward the former position. The brightness indicates
the fitness value of the algorithm. The greater the brightness, the better will be the fitness
value. If two adjacent fireflies transmit similar brightness, the fireflies will move randomly.

The algorithm is set to adhere to the three following rules [43]:

(a) All fireflies are considered unisex, and therefore, they are attracted to others regardless
of their sex;

(b) Attractiveness is based on the brightness of the light. The dimmer one will move
towards the brighter one. If brightness is equal, movement will be random;

(c) The brightness is associated with the objective of the function.

When firefly i is attracted to j, then the new position of the firefly i will be computed
as follows:

xt+1
i = xt

i + β0e−γr2ij
(

xt
j − xt

i

)
+ αtε

t
i (6)

where:
xt+1

i is the new position of the firefly i;
xt

i is the original position of the firefly i;
β0 is the attractiveness parameter;
γ is the absorption coefficient;
αt is randomization parameter (0 to 1);
r is the distance between two fireflies;
εt

i is random number.

2.4. Jaya Algorithm

Jaya algorithm (see Figure 4) is a population-based algorithm that constantly searches
for the best solutions and avoids bad ones [29,44]. Two main parameters, the population
size and the maximum number of iterations, are used to define the framework of the algo-
rithm [45]. The iteration process will continue to be executed to find a better solution [46]
than the current state with the following equation:

X′
i,j,k = Xi,j,k + r1,j,k (Xi,best,k −

∣∣∣Xi,j,k

∣∣∣)− r2,j,k(
.

Xi,worst,k −
∣∣∣Xj,j,k

∣∣∣) (7)

where:
Xi,j,k is the current state;

r1,j,k (Xi,best,k −
∣∣∣ .
Xi,j,k

∣∣∣) is the best solution;

r2,j,k(
.

Xi,worst,k −
∣∣∣Xj,j,k

∣∣∣) is the worst solution.
The process will remain until the stopping criteria are met. Jaya algorithm is suitable

for controlled and unrestricted optimization [22].

2.5. Rates of Change

Rates of change (δQ) is introduced as a new model development method to replace
the conventional method of utilizing flow or water level as the prediction model output.
The current research on streamflow forecasting concentrates mainly on the prediction of the
flow or water level as the output variables of the forecasted value (Q f ). The mathematical
expression of a forecast flowrate is as follows:

Q f = Qi + δQ (8)

where:
Q f is the forecast flowrate;
Qi is the initial flowrate at the time, t;
δQ is the rate of change.
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Figure 4. Jaya algorithm.

A rate of change is proposed in this study based on the mathematical relationship
as follows:

δQ =
Qt − Qi

t − ti
(9)

where:
δQ is the rate of change;
Qt is the flowrate at current time, t;
Qi is the initial flowrate at a previous time interval;
t is the current time;
ti is the last time interval.
By applying the rates of change (δQ), the fluctuation can be controlled to improve the

model’s accuracy. For this research, the δQ will be based on 30 min.

2.6. Model Performance Evaluation

In this study, the performance of each model is evaluated based on four types of
performance indices. The evaluation includes both the absolute and relative aspects of the
errors, such as the root mean square error (RMSE), mean absolute error (MAE), correlation
coefficient (R), Nash–Sutcliffe efficiency (NSE) and mean absolute percentage error (MAPE).

2.6.1. Root Mean Square Error, RMSE

RMSE measures the deviations between predicted values and observed values. The
variations, also known as the prediction errors, are developed from computation performed
over out-of-sample data. RMSE is sensitive to maximum and minimum errors and can
better reflect the predicted results. However, it is not sensitive to linear offsets between the
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observed and simulated values resulting in a low RMSE value [47]. RMSE with a value
close to 0 indicates a higher level of prediction accuracy.

RMSE =

√
∑n

i=1(yi − xi)
2

n
, 0 ≤ RMSE < +∞ (10)

where:
xi are the observed values of the criterion;
yi are the simulated values of the criterion;
n = sample size.

2.6.2. Mean Absolute Error, MAE

MAE measures the significance of average error in a model with the same criteria [48].
The mathematical representation of MAE is as follows:

MAE =
∑n.

l=1
|yi − xi|
n

, 0 ≤ MAE < +∞ (11)

where:
xi are the observed values of the criterion;
yi are the simulated values of the criterion;
n = sample size.

2.6.3. Nash-Sutcliffe Efficiency (NSE)

NSE measures the relative differences between the observed and predicted values. A
higher value of NSE indicates the model’s superiority. When NSE is 1, it means a perfect
match of the observed and predicted. Otherwise, if NSE is 0, the predicted values are similar
to the average of the observed values [49]. The model accuracy can be categorized as very
good for 0.75 < NSE ≤ 1, good for 0.65 < NSE ≤ 0.75, satisfactory for 0.50 < NSE ≤ 0.65 or
unsatisfactory for NSE ≤ 0.50 [50].

The mathematical representation of NSE is as follows:

NSE = 1 − ∑n
i=0(Yi − Yt)

2

∑n
i=0
(
Yi − Y

)2 ,−∞ < NSE ≤ 1 (12)

where:
Yi is the predicted values of the criterion;
Yt is the measured value of the criterion variable (dependent) variable Y;
Y is the mean of the measured values of Y;
n = sample size.

2.6.4. Mean Absolute Percentage Error (MAPE)

MAPE is an error metric used to measure the accuracy of forecasting values. It denotes
the average absolute percentage deviation of each dataset entry between actual and forecast
values [51]. As absolute values are applied, the possibility of negative and positive errors
canceling each other out can be avoided. The lower the value of MAPE, the better the
model will forecast.

MAPE =
100%

n ∑n
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (13)

where:
At is the actual value;
Ft is the forecast value;
n = sample size.
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2.7. Study Area and Data Description

Malaysia’s climate is hot and with high humidity all year round. The country is
exposed to two major monsoon seasons, mainly the north-east monsoon from November
to February and the south-west monsoon from May to August. During the north-east
monsoon, a significant increase in rainfall occurrence can be detected in the eastern and
southern regions of the country. Moreover, the south-west monsoon and inter-monsoon
seasons of March to April and September to October can cause intense convective rainfall
on the country’s west coast.

Kuala Lumpur is Malaysia’s capital city, as shown in Figure 5. The city is highly urban-
ized and covers an area of 243 km2 with an estimated population density of 6696 residents
per square kilometer [52]. Changes in land use and land cover have been intense since the
1980s due to the economic boom. The city receives an average annual rainfall of 2600 mm
and is subjected to flash floods. It is situated in the middle of the Klang River basin with a
watershed area of 1288 km2. The Klang River flows through a 120 km distance [53], with
11 major tributaries flowing across Selangor state and Kuala Lumpur [54]. Batu, Gombak,
Ampang and upper Klang River at the upper catchment of Kuala Lumpur are the main
tributaries of Klang River that contribute significantly to the flow at the downstream point
of Masjid Jamek, which is a famous historical site and a tourist attraction.

 

Figure 5. Map of study location at the Klang River Catchment.
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The flash flood occurrence in 1971 that lasted for five days with massive damage of
RM36 million prompted the government to develop a comprehensive Kuala Lumpur Flood
Mitigation Plan (KLFM) [55]. The Stormwater Management and Road Tunnel (SMART)
project built in 2007 is part of the early plan to divert flow from the upper catchment of the
Klang River and Ampang River to the Kerayong River downstream [56].

SMART is a mega project to construct a 9.7 km tunnel that combines wet and dry
systems [52]. During a major storm, mode 2 is activated when the flow reaches more than
70 m3/s at the confluence of the Klang and Ampang rivers [57]. Moreover, Mode 3 is
activated when the flow at the confluence reaches 150 m3/s. Total storage of 3 million3

infrastructure is available to cater for the excess stormwater. During regular days, a total
length of 3 km is available for dual-deck motorway use [57].

Study Data

The SMART catchment has an area of 160 km2 equipped with a rain gauge and doppler
current meter at 28 hydrological stations. The sensors collect rainfall and flow data and
transmit the data to the control center using telemetry. Within the 28 hydrological stations,
data from 11 telemetry stations are used for modeling. The rest of the stations are meant
for observation only. This study collects historical data of 30 min interval rainfall at the
11 telemetry stations and the flow at the confluence of the Klang River and Ampang River
from January 2008 to August 2021. Seventy percent of the historical data from January 2008
to August 2019 are used for training, while the rest are used for testing. Normal flow at
the confluence of Ampang and Klang Rivers is generally within the range of 5 to 10 m3/s.
However, this flow can increase tremendously above 150 m3/s depending on the intensity
of the precipitation.

2.8. Model Development

As shown in Figure 6, the proposed artificial intelligence model is intended to
seek the best fit that yields the best results for deployment purposes. Input data for
the model consist of historical rainfall data from 11 telemetry stations at the upper
catchment of the Klang River basin taken from 1 January 2008 to August 2021 with
an interval of 30 min. Moreover, the target data consist of flow data at the confluence
between the Ampang–Klang rivers with equal intervals and similar time ranges. The
confluence is considered the point of interest in this study as the current flow will deter-
mine the mode of operation, as mentioned earlier. Three steps of model development
are introduced to pursue the best relationship between historical data and predictors.

Step 1 employs the LSTM model as the deep learning framework for streamflow
prediction, and ANN is the benchmark model. Several performance indices are performed
to compare the models.

Step 2 introduces the novel rates of change method and implements multi-step
ahead forecasting to analyze the results better. The models’ performance on fitness and
errors are checked.

Step 3 develops the novel optimization method for deep learning using meta-
heuristics to find the near-optimum weights and biases. Three optimization algorithms
were picked for this study: bat algorithm, firefly algorithm and Jaya algorithm. Af-
ter going through the optimization algorithm, the data are fed into the LSTM model.
Performances on fitness and errors are checked. The best model is deployed after the
three steps.

3. Results and Discussion

This section unveils the results acquired from the training and testing of various LSTM
models. There are three steps involved (refer to Figure 6). For Step 1, numerous LSTM
and ANN models are employed to perform streamflow prediction. The performance is
evaluated for the goodness of fit by executing several measures listed in Section 2.6. Table 1
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lists the best model results of the LSTM and ANN. Figures 7 and 8 show the graphs of
observed flow vs. forecast flow for the ANN model and LSTM model, respectively.

Figure 6. Model development flowchart.
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Table 1. Best LSTM and ANN models for prediction.

Best ANN Model

# of Neurons in Layer 1 R.Train R.Test MSE MAE NSE RMSE

10 0.4520 0.4254 78.4215 3.7135 0.1994 8.8556

Best LSTM Model

Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE

Simul. 0.9055 0.8586 17.8532 28.8315 1.4365 2.4208 0.8190 5.3695

 

Figure 7. Graph of ANN model observed flow vs. simulated flow.

 

Figure 8. Graph of LSTM observed flow vs. simulated flow.
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Step 2 introduces rates of change and executes multi-step ahead forecasting to facilitate
the flood mitigation operation better. LSTM models are performed on multiple conditions,
mainly simulation, 30 min ahead forecasting, 1 h ahead forecasting and rates of change δQ.
Table 2 lists the performance of this exercise.

Table 2. LSTM forecasting models.

Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE

0 min. 0.9055 0.8586 17.8532 28.8315 1.4365 2.4208 0.8190 5.3695
30 min. 0.9470 0.9476 10.2326 10.0042 0.5640 0.6935 0.8963 3.1629

1 h 0.8849 0.8677 21.4296 25.0978 0.9397 1.2829 0.7828 5.0098
δQ 0.9545 0.9214 8.9746 15.6981 0.5434 0.8108 0.9090 2.9958

0 min refers to simulation of the streamflow in real time.

Step 3 develops several new hybrids of artificial intelligence. Three metaheuristic
frameworks are selected for execution with the deep learning LSTM models: the bat
algorithm, firefly algorithm and Jaya algorithm. Table 3 shows the streamflow prediction
performance models for the hybrid model of the bat algorithm and LSTM. The parameters
set for these models consist of maximum iteration = 40, alpha = 0.95, gamma = 0.95, bat
numbers = 4, bat minimum frequency = 0, bat maximum frequency = 1 and maximum
epochs = 500.

Table 3. Performance of LSTM with bat algorithm models for streamflow.

Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE

0 min. 0.9237 0.8525 14.2629 29.9912 1.4419 2.5535 0.8529 3.7766
30 min. 0.9512 0.9355 9.5954 11.4159 0.6157 0.7815 0.9043 3.0976

1 h 0.8932 0.8473 19.5178 28.9255 0.9876 1.3884 0.7976 4.4179
δQ 0.9757 0.9046 4.7187 19.8966 0.4672 0.8565 0.9514 2.1723

Table 4 displays the performance of the LSTM model after integration with the firefly
algorithm. The parameters set for these models consist of maximum iteration = 40, alpha = 0.95,
betta = 1, gamma = 0.95, firefly numbers = 4 and maximum epochs = 500.

Table 4. Performance of LSTM with firefly algorithm models for streamflow.

Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE

0 min. 0.9491 0.8214 9.6326 43.8420 1.3235 2.5607 0.9006 3.1036
30 min. 0.9743 0.9291 5.0785 12.5037 0.5178 0.7324 0.9493 2.2536

1 h 0.9146 0.8447 15.8306 30.6191 0.8815 1.2835 0.8365 3.9788
δQ 0.9733 0.8990 5.1913 20.4748 0.4910 0.8525 0.9465 2.2784

Table 5 shows the performance of the LSTM model with the Jaya algorithm. The
parameters set for these models consist of maximum iteration = 30, population = 5 and
maximum epochs = 500.

Table 5. Performance of LSTM with Jaya algorithm models for streamflow simulation.

Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE

0 min. 0.9420 0.7773 10.9191 46.4891 1.4316 2.9865 0.8873 3.3044
30 min. 0.9741 0.9102 5.1395 15.7782 0.5536 0.8486 0.9487 2.2670

1 h 0.9401 0.7928 11.2678 38.2200 0.8736 1.5270 0.8836 3.3568
δQ 0.9738 0.9010 5.1252 20.5746 0.4766 0.8563 0.9475 2.2639

Figure 9 displays graphs of observed vs. forecast flow based on simulation, 30 min
ahead forecasting, 1 h ahead forecasting and rates of change model.
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A further check is performed on the hybrid optimization models to determine the
MAPE, MAE and maximum error values for the flows equal to or greater than 150 m3/s.
This ensures the accuracy of forecasting high flow values, which is important in a flood
mitigation operation.

3.1. Performance of Step 1

In Step 1, the LSTM and ANN algorithms were developed and compared. It was found
that LSTM performed much better than ANN. Several literature reviews also supported
this by identifying the LSTM as the best deep learning model for time series data due to its
ability to keep selective memory. LSTM algorithm could also filter the hydrological noise
and retrieve the intrinsic characteristics of the hydrological series for simulation and future
forecasting purposes.

Table 1 indicated that the ANN model had a regression of 0.4520, MSE 78.4215, MAE
3.7135 m3/s, NSE 0.1994 and RMSE 8.8556 m3/s. Furthermore, the best LSTM had regres-
sion 0.9055, MSE 17,8532, MAE 1.4365 m3/s, NSE 0.8190 and RMSE 5.3695 m3/s. Generally,
it had shown a double improvement in overall results.

When comparing the graphs between Figures 7 and 8 on peak-to-peak values between
the observed and forecast flows, it was evident that LSTM was much better than ANN
models. Therefore, LSTM was chosen as the primary research model for this study.

3.2. Performance of Step 2

Step 2 introduced rates of change as an innovative approach to the model develop-
ment. In addition, multi-step ahead forecasting was performed as a requirement for flood
mitigation operations. Table 2 revealed that the worst result was acquired for the 1 h ahead
forecasting, where the regression value for training was the lowest at 0.8849. However, it
had a better regression value for testing when compared to simulation. This trend was
applicable to MSE and MAE for having the worst values. The NSE value also turned out to
be the worst. Considering the longer forecasting time, the results of this study were still
regarded as logical and satisfactory. The longer the forecasting time, the more uncertainties
and missing information would appear.

 
Bat algorithm: observed vs. forecast—flow simulation 

Figure 9. Cont.
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Bat algorithm: observed vs. forecast flow—30 min ahead of forecasting 

 
Bat algorithm: observed vs. forecast flow—1 h ahead of forecasting 

Figure 9. Cont.
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Bat algorithm: observed vs. forecast flow—rates of change model 

Figure 9. Graphs of optimization-LSTM hybrid models.

The output from 30 min ahead forecasting turned out to be quite good as it had a
regression training value of 0.9470, and the regression value for testing was not far off,
which was 0.9476. The MSE and MAE values were low, which was good, with acceptable
values for NSE and RMSE.

However, the best performance of the model was discovered with the novel method
when applying rates of change as the target values. The regression value for training was
the highest, 0.9545, while the error values were the lowest. The NSE value was the highest,
0.9090, while the RMSE was the lowest at 2.9958 m3/s. The δQ model was the most superior
among the four models tested.

The study did not seek an experiment of more than 1 h forecasting as the lag time
determined was 30 min for this catchment. The results would deteriorate further as the
time of forecasting increased.

3.3. Performance of Step 3

Step 3 was one of the main contributions of this study. Current metaheuristics studies
mainly concentrate on developing a hybrid model with ANN or primary neural networks.
Therefore, this study initiated the hybrid models for the deep learning algorithm, mainly
the LSTM. Three metaheuristic frameworks, the bat algorithm, firefly algorithm and Jaya
algorithm, were selected for this study. The bat algorithm and firefly algorithm belonged to
swarm intelligence algorithms. They required trials on nature-based characteristics to find
the optimum yield. Jaya algorithm, on the other hand, was designed based on searching
for the best solutions. The effort to introduce numerous hybrid optimization algorithms
was intended to further enhance the model performance results from steps 1 and 2.

Tables 3–5 represent each of the selected optimization algorithms. From the three
tables, it was determined that all the hybrid models produced better results. However, the
best model identified was the bat-LSTM hybrid algorithm where the δQ model yielded
R.train 0.9757, R.test 0.9046, MSE.train 4.7187, MSE.test 19.8966, MAE.train 0.4672 m3/s,
MAE.test 0.8565 m3/s, NSE 0.9514 and RMSE 2.1723 m3/s.

The results also proved that the choice of metaheuristic algorithms did not significantly
impact the performance. The performance inclination is still the same as the LSTM-only
model in step 2, where 30 min ahead of forecasting yielded the best results. As the time of
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forecasting increased, the results deteriorated accordingly. δQ models consistently yielded
the best results by keeping the error values to a minimum.

This process was then followed by the plotting of a peak-to-peak flow graph between
the observed and the forecast values. Figure 9 indicated that the best graph with the highest
accuracy was the δQ models.

A further experiment was performed to seek high flow performance for each hybrid
model in terms of MAPE, MAE and maximum error. This study concentrates on the flows
equal to or greater than 150 m3/s, which was the high flow indicator to initiate modes 3 and
4 in the SMART control center’s standard operating procedure. The results are tabulated in
Table 6. From the results, it could be seen that δQ models again outperformed the rest with
the smallest error values, where the bat and Jaya algorithms yielded the best with MAPE
6.33%, MAE 12.2865 m3/s and maximum error 97.70% for bat-LSTM algorithm while
MAPE 6.22%, MAE 12.6687 m3/s and maximum error 97.70% for Jaya-LSTM algorithm.
The maximum error values could be ignored in this case as they could not represent the
overall performance of the models.

Table 6. Performance of LSTM-optimization algorithm models for streamflow forecasting.

MAPE MAE m3/s Max. Error

Bat-LSTM algorithm
0 min 26.41% 59.6951 64.71%
30 min 24.03% 55.7999 64.02%
1 h 37.63% 80.4564 83.81%
δQ 6.33% 12.2865 97.70%
Firefly-LSTM algorithm
0 min 15.11% 31.7240 56.92%
30 min 11.33% 22.8895 56.52%
1 h 27.55% 55.1539 86.05%
δQ 7.40% 14.6589 97.71%
Jaya-LSTM algorithm
0 min 17.29% 37.1065 61.75%
30 min 11.08% 24.7873 53.09%
1 h 16.98% 35.3379 78.41%
δQ 6.22% 12.6687 97.70%

4. Conclusions

The effectiveness of flood management and disaster preparedness is in tandem with
the ability to accurately forecast the immediate condition of streamflow in the catchment
area. This study intended to develop the best deep learning model for the SMART control
center in managing the river flow through streamflow forecasting. The aim was to create
a novel approach in using rates of change for model development and introduce new
metaheuristic algorithms with LSTM hybrid models to enhance the performance results.

This study employed LSTM models to develop and train historical data at the Ampang
River and Klang River. The task is to forecast river streamflow with simulation, 30 min
ahead, 1 h ahead and rates-of-change models. In order to ascertain the best performance
that can be achieved, three steps of the improvement process were introduced.

Step 1 is where the comparison of ANN and LSTM models is performed. The best
results come from the LSTM model with regression 0.9055, MSE 17,8532, MAE 1.4365 m3/s,
NSE 0.8190 and RMSE 5.3695 m3/s. ANN yielded weaker results, and therefore LSTM
model is the center of this research.

Step 2 introduces rates of change and performs multi-step ahead streamflow forecasting.
The best result comes from the δQ model with performance values of R (training) = 0.9545, R (test-
ing) = 0.9214, MSE (training) = 8.9746, MSE (testing) = 15.6981 , MAE (training) = 0.5434 m3/s,
MAE (testing) = 0.8108 m3/s, NSE = 0.9090 and RMSE = 2.9958 m3/s. The finding reveals
that a shorter forecasting time yields better performance results. The second finding shows
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that applying new rate changes in model development has significantly improved the
model results.

The last step of the experiment is to introduce new hybrid models between optimiza-
tion and LSTM algorithms. The bat algorithm, firefly algorithm and Jaya algorithm were
selected for this study. From the results, all hybrid models demonstrate better outcomes.
Therefore, the third finding shows that metaheuristic algorithms play a role in model
improvement. Under this study, it is also noticeable that the selection of an optimization
algorithm does not significantly affect performance.

δQ model for the bat algorithm with LSTM hybrid model yielded the best results with R
(training) = 0.9757, R (testing) = 0.9046, MSE (training) = 4.7187, MSE (testing) = 19.8966, MAE
(training) = 0.4672 m3/s, MAE (testing) = 0.8565 m3/s, NSE = 0.9514 and RMSE = 2.1723 m3/s.

Findings from this study are beneficial to improving the deep learning process so that
the performance can yield better results with higher precision. This knowledge also helps
elevate a new approach to flood mitigation operations. This study is significant as it has
presented several new steps to improve the learning process leading to a better relationship
between the input and output data. The current study is limited to a small catchment area
and several optimization models. The results may differ for bigger catchments and with
more optimization models. In order to further improve the experiment, it is suggested to
try reinforcement learning for future studies.
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Abstract: This study investigates the design and sizing of the second life battery energy storage
system applied to a residential building with an EV charging station. Lithium-ion batteries have an
approximate remaining capacity of 75–80% when disposed from Electric Vehicles (EV). Given the
increasing demand of EVs, aligned with global net zero targets, and their associated environmental
impacts, the service life of these batteries, could be prolonged with their adoption in less demanding
second life applications. In this study, a technical assessment of an electric storage system based on
second life batteries from electric vehicles (EVs) is conducted for a residential building in the UK,
including an EV charging station. The technical and energy performance of the system is evaluated,
considering different scenarios and assuming that the EV charging load demand is added to the
off-grid photovoltaic (PV) system equipped with energy storage. Furthermore, the Nissan Leaf
second life batteries are used as the energy storage system in this study. The proposed off-grid solar
driven energy system is modelled and simulated using MATLAB Simulink. The system is simulated
on a mid-winter day with minimum solar irradiance and maximum energy demand, as the worst case
scenario. A switch for the PV system has been introduced to control the overcharging of the second
life battery pack. The results demonstrate that adding the EV charging load to the off-grid system
increased the instability of the system. This, however, could be rectified by connecting additional
battery packs (with a capacity of 5.850 kWh for each pack) to the system, assuming that increasing
the PV installation area is not possible due to physical limitations on site.

Keywords: second life batteries; off-grid PV system; residential building; EV charging station

1. Introduction

Global concerns surrounding the decarbonization of energy systems have notably
increased over the past years [1]. Distributed energy generation systems such as PV panels
are one of the most promising technologies primarily contributing to the building service
industry [2]. However, the main improvement to the technology has been in connection
with the electrochemical efficiency of the PV cells [3]. Despite notable technological ad-
vancements, there are various technical challenges associated with their adoption in the
building sector including the mismatch in the supply and demand timing. One of the
possible solutions to address this challenge is to install electric storage systems (ESS) [4].
The ESS, integrated with the renewable energy systems equipped with PV panels, espe-
cially in the stand-alone (off-grid) systems, is used for peak shaving and power shifting
from day time to peak load hours (mostly evenings) [5]. In stand-alone renewable energy
systems in buildings, the total energy demand is supplied by solar or other renewable
energy sources [6], making the energy supply and demand management an integral part of
the system [7,8].

The energy storage systems although contributing positively to the energy manage-
ment solutions, have considerable environmental impacts [9]. This is mainly associated
with the extraction of raw materials such as Cobalt, Nickel, and Lithium, and energy
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intensive processes when manufacturing Lithium-ion batteries [10]. This impact, however,
could be reduced by prolonging the service life of the batteries retired from their first appli-
cation in EVs, to less demanding applications such as residential buildings [11]. The initial
state of health (SoH) of the second life batteries in such applications is generally around
75–80% of their nominal capacity [12]. Such second life applications are also expected to
provide financial benefits making renewable energy more affordable and desirable for the
end-users [13].

Lithium-ion batteries used in electric vehicles are considered second life when their
capacity reaches 80% of their initial value. The lithium-ion batteries can be used in less-
stressed applications such as buildings until their end of life. In order to achieve highest life
span of the SLBSs, the load stress applied to them should be minimized. For grid-connected
systems, it will be managed by the battery management system (BMS) which controls the
energy flow through the SLBs, and mostly the extra demand will be applied to the grid.
However, in stand-alone systems, the stress level and variations of the load applied to the
SLBs are higher than grid-connected systems. In addition, the size of the PVs and SLBs
plays a key role in the stand-alone system to find the optimum energy performance of
the system as well as achieving the highest life span for the SLBs. On the other hand, as
the number of electric vehicles increases, more buildings are equipped with EV charging
stations applying a significant extra load to the building energy storage system which
may directly affect the SLBs service life. This is the case especially when these systems are
designed to cover the building demands excluding EVCS.

Numerous studies have investigated the application of second life batteries for ESS
in residential buildings. Hart et al. [14] studied second life batteries in a micro-grid using
an equivalent circuit model (ECM) and validated the model against the experimental data.
Furthermore, the performance of the microgrid with different architectures was assessed.
The results demonstrated that the second life batteries could be successfully installed in
grid-connected or islanded microgrid applications uninterrupting the normal operation of
the system. Sun et al. [13] have introduced the integration of a 3 MW second life battery
ESS with the grid for peak shaving in China. The mathematical modelling of the system
as well as a cost-effective model for the BSS is developed. It has been demonstrated
that employment of second life batteries in the grid for peak shaving in China is cost
beneficial, especially for the grid companies. The impacts of the second life battery packs
with a different state of health (SoH) on the performance of the system was investigated
by Mathews et al. [15]. The semi-empirical degradation model was used for modelling
demonstrating that second life batteries are comparatively more profitable than first life
batteries in PV systems. Cusenza et al. [9] developed a mathematical model for the second
life battery sizing and optimization of a stand-alone PV system for a net zero energy
residential building. The second life battery sizing was performed to achieve the best load
match of the building and the results confirmed the optimum ratio of battery size to PVs
total power to achieve the best load match in the residential buildings.

Further, Uddin et al. [16], modelled a grid-connected residential building equipped
with PV and second life ESS considering building demand in various times during the
year. The ECM was used to predict the battery parameters at different times and estimated
the battery degradation parameters. The results of their work demonstrated that by
considering degradation effects on financial parameters, the second life batteries are no
longer cost effective for the customers. The technical assessment of integration of second
life batteries with grid-connected PV systems for a residential building is demonstrated in
Assuncao et al. [17], by considering a typical European residential building load demand.
MATLAB Simulink was used to model the proposed system for three scenarios: without
storage, large (Nissan Leaf), and small (Citroen C0) second life battery energy storage
system. In the first year, the employment of second life BSS resulted in a reduction of 82.1%
and 78.8% in energy exchange between the building and the grid for large and small BSS,
respectively. Tong et al. [18] has investigated the integration of second life batteries with an
off-grid EV charging station in the United States, where MATLAB SIMULINK has been
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applied for mathematical modelling of the proposed system. The charging station cost
was significantly reduced in some locations, along with the similar performance compared
to new batteries in other places. It was evident from the reviewed literature that the
integration of the second life battery ESS for a residential building with EV charging station
has not been investigated. The main contribution of this study is to reveal the impacts
of load increase on the sizing of the second life battery energy storage system. The load
applied to the second life battery storage system in this study is the residential building
electricity load plus EV charging station.The EV charging stations apply an extra load to
the residential building load demand [19].

Accordingly, in this study, the design and sizing of the second life battery ESS applied
to a residential building with an EV charging station is investigated. The proposed system
is modelled using MATLAB SIMULINK. The performance and stability of the system is
assessed in a day in the middle of the winter, with the lowest solar irradiance and highest
demand. The assessment considers the second life battery ESS with a different number of
packs. It is assumed that the roof area is fully covered with PVs, therefore, the energy supply
demand mismatch and the system stability maintenance is accomplished by adjusting the
ESS size. The energy assessment and SoH analysis are performed to compare the system
energy exchange, degradation, and energy supply demand mismatch in various scenarios.

2. System Description

The study is based on an off-grid PV system designed for the energy consumption
of a typical house located in Oxford, UK. The study assesses the impacts of adding EVCS
demand on the ESS technical parameters, energy exchange, and degradation. The proposed
off-grid renewable energy system with an EVCS component could be listed as PV panels,
DC-DC converter, second life battery packs, DC-AC inverter, residential building’ load,
and EVCS. The block diagram and components of the proposed energy system is shown in
Figure 1. According to the figure, the solar energy is converted to electrical energy by PV
panels and some of the generated electrical energy will be stored in the second life battery
packs, while the rest of the energy would be consumed directly by the AC consumers such
as the residential building electric consumers and EVCS. The load demand profiles are
presented in Figure 2 [20,21]. The demand profile represents the average UK household
load according to the CREST demand model for 15,000 households in the UK [21]. The red
line in Figure 2 indicates the building’s daily electricity load. The EV charging station daily
load applied to the system is also shown by the black line in Figure 2. The aggregate hourly
load is also calculated based on the building and EV charging station loads as presented in
Figure 2.

 

Figure 1. Schematic block diagram of the proposed off-grid energy system.
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Figure 2. Different load demands applied to system [20,21].

Figures 3 and 4 demonstrate the block diagrams of the solar system and the second
life battery pack. The SoC is monitored frequently during the solution of the model and
is used for controlling the switches in the PV system to prevent battery packs from over
charging. A MATLAB function is used to calculate the solar irradiance in different times
during the day, the details of which will be presented in the next section (see Figure 4).

Figure 3. Block diagram of the solar PV system in MATLAB SIMULINK.
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Figure 4. Block diagram of the 2nd life Nissan Leaf battery pack in MATLAB SIMULINK.

In this study, three scenarios for the off-grid PV system are defined and assessed as
presented in Table 1. For the base scenario, two 2nd life battery packs connected in parallel
are used, and only residential building demand is applied to the system. The second life
batteries and the solar PVs specifications are provided in Tables 2 and 3. There are 15 s life
modules in each battery pack (Figure 4) and the PV panels are connected with a 5 parallel
and 3 series configuration (Figure 3).

Table 1. The defined scenarios in this study.

Scenarios Number of Battery Packs Number of PVs Load Demand

Base 2 15 RB
EV-2P 2 15 RB + EVCS
EV-3P 3 15 RB + EVCS
EV-4P 4 15 RB + EVCS

Table 2. Second life battery pack specifications [22].

Parameter Value

Model Nissan Leaf
Number of modules in the pack 15

Modules configuration in the pack series
Module nominal voltage [V] 7.5

Module maximum voltage [V] 8.3
Module minimum voltage [V] 5

Initial state of charge [%] 60
Second life module initial capacity [Ah] 47.026
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Table 3. Solar PV panel specifications [23].

Parameter Value

Model Amerisolar-6 M 360 W
Voltage at maximum power [V] 38.7
Current at maximum power [A] 9.31

Open circuit voltage [V] 47.3
Panel efficiency [%] 18.55

Maximum power [W] 360
Cell number 72

3. Mathematical Modelling

As mentioned in the previous section, the mathematical modelling of the proposed
system is performed in MATLAB SIMULINK software using the Simscape toolbox. The PV
panel and batteries with other components are added to the SIMULINK environment and
connected to each other with the desired architecture.

3.1. Solar PV Panels

For calculation of the solar irradiance based on the geographic location (Oxford,
UK) and other technical parameters such as the tilt angle of the panel, a model has been
designed in MATLAB function in SIMULINK, which calculates the solar irradiance in
various simulation steps. For the calculation of beam radiation incidence angle on a surface
(θ), Equation (1) is employed [24]:

cos θ = sin δ sin ϕ cos β − sin δ cos ϕ sin β cos γ + cos δ cos ϕ cos β cos ω
+ cos δ sin ϕ sin β cos γ cos ω + cos δ sin β sin γ sin ω

(1)

where δ, ϕ, β, ω and γ are declination, latitude, slope, hour angle and surface azimuth
angle, respectively [24]. γ and β are assumed to be 0◦ and 30◦, respectively, since most of
the houses in the UK has 30◦ slope on their ceilings, where PV panels arebe installed. The
equation of Cooper is used for calculation of declination [24]:

δ = 23.45 sin
(

360
284 + n

365

)
(2)

where n is the number of days during the year. Further, the radiation on the tilted plane
(Go) could be calculated by Equation (3) [24,25]:

Go = Gsc

(
1 + 0.0033 cos

360n
365

)
(3)

where Gsc is extraterrestrial radiation and assumed as 1367 W/m2 in this study [1]. To
calculate the beam and diffuse radiations transmitted through a clear atmosphere, the
following equations are applied based on Hottel’s method [1,24]:

τb = a0 + a1exp
( −k

cos θz

)
(4)

τd = 0.271 − 0.294τb (5)

τb and τd are the atmospheric transmittance for beam and diffuse radiations, consecu-
tively. Further information about the parameters used in Equations (4) and (5) (such as k, a0
and a1) can be found in this reference [24]. Finally, the clear-sky radiation (Gc) is obtained
using Equation (6) [24]:

Gc = Go(τb + τd) (6)
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The output current of the PV panel is given by [26]:

Ipv = Iph − Is

(
e

V+I∗Rs
N∗Vt − 1

)
− Is2

(
e

V+I∗Rs
N2∗Vt − 1

)
− V + I ∗ Rs

Rp
(7)

where, Is and Is2 are diode saturation currents for diodes 1 and 2 shown in Figure 5,
respectively. Vt is the thermal voltage, N and N2 are diode emission coefficients and Iph
is solar-generated current, respectively. The mentioned PV parameters are obtained from
MATLAB SIMULINK Simscape library for Amerisolar PV panel the specifications of which
are provided in Table 3 [26].

 
Figure 5. Block diagram of the equivalent circuit used for modeling PV cell in MATLAB.

3.2. Second Life Battery Pack

Rint ECM [27] was used for modelling the second life batteries in this study. Besides,
the ECM model contains an ideal voltage source representative of OCV as the function of
SoC with resistors to calculate the internal ohmic losses [28]. The output of this systems is
calculated by the following Equation (8):

Vk = VOC,k − IkRs (8)

The experimental data for the parameters in this model is obtained from the litera-
ture [22,29–31]. In Nissan Leaf prismatic module, there are two cells integrated in a series
configuration. In the reference [22], the Nissan Leaf battery is aged using an accelerated
ageing profile (Figure 6) [22] in which the second life modules are put under constant
current-voltage charging (=1C) and constant current discharging (=1C) at 25 ◦C environ-
mental temperature. The reference performance test (RTP) is done every 25 cycles to
measure the module capacity fade and HPPC test [22]. The HPPC test results are used to fit
ECM Rint model parameters the results of which are shown in Figures 7–9.
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Figure 6. The accelerated ageing profile and RTP test for degradation analysis of the Nissan Leaf
second life battery.

Figure 7. Nissan leaf second life battery voltage variations in various SoCs [22,29–31].
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Figure 8. Nissan leaf second life battery capacity fade in various discharge cycles [22,29–31].

Figure 9. Nissan leaf second life battery voltage fade in various discharge cycles [22,29–31].

4. Results and Discussions

As the main aim of this study is to assess the impacts of second life battery sizing and
demand variations on the energy performance of the system, a two-way coupling between
the developed second life batteries and solar cells is performed. The operating voltage of
the solar cells will be affected by the variation of second life batteries voltage leading to
their efficiency variations which are considered in this paper. Accordingly, the solar system
modelling is also performed and the impacts of extra load addition and SLB size increase
on solar power generation are presented in Section 4.1. The energy exchange between
the components and battery operational parameters is demonstrated during the day in
Sections 4.2 and 4.3.
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4.1. Impacts on Solar Power Generation

The developed mathematical model has been solved for 24 h in a day (17 January) in
the middle of winter in Oxford, UK. In particular, the main reason for choosing a day at the
middle of winter is to assess the performance of the system and ESS when the energy input
(solar irradiance) is at its minimum values [4]. The solar irradiance is calculated using the
model presented in Section 3.1. In addition, the simulation has considered 3600s as the time
step. Figure 10 shows the aggregation of solar beam and diffuse radiations transmitted
through the atmosphere installed on the tilted plane (PV panels).

Figure 11 demonstrates the current output of the PVs to the system during the day
for different scenarios. As mentioned before, a switch, controlled by the batteries’ SoC
parameter is adopted to prevent the batteries from overcharging. Therefore, the switch will
break the connection between the PVs and the battery storage system when the batteries
are overcharged. The activation time of the switch can be figured out in Figure 11. For
the base scenario (black line), in which only residential building demand is applied to the
system, the switch is turned to active mode right after reaching the peak current value at
1 PM. The extra power generated by PVs would not be directed to the system afterward
resulting in a sharp increase in PV current flow through the system after 1 PM. An increase
of second life battery pack size by an increment of the number of modules from 2 to 4, when
extra EVCS load is applied, leads to an increased PV system current flow to the system
after reaching peak hours. This is due to an increase in the overcharging limit of the energy
storage system and higher amounts of stored energy. Accordingly, the switch activation
time is delayed by an increase in the number of packs.

Figure 10. Solar irradiance (clear-sky radiation) at various times during the day on 17 January.
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Figure 11. Second life battery SoC for different scenarios at various times during the day.

4.2. Impacts on Second Life Battery

Figures 12 and 13 show the current and the voltage of the second life battery packs
during a day under different scenarios. The addition of the EVCS load demand leads to a
decrease of the SLBs charging current peak up to approximately 10% as shown in Figure 12
due to the increment of the system demand. Furthermore, the peak discharge current is
also increased and when the EVCS load is applied to the system. Figure 12 also reveals
that the pack size increment will extend the charging capacity of the ESS as the integral of
the charging current curve for the orange and red lines (3 and 4 packs) are higher than the
curve representing the EV-2P scenario. This is due to the activation of the switch reaching
the maximum charge capacity of the batteries. The peak voltage of the second life battery
packs decreased with the increase in the number of packs as shown in Figure 13, primarily
due to the increase in the total capacity of the system and gaining a more stable operational
voltage. In Figure 13, reaching the maximum voltage of the ESS is delayed by an increase in
the number of SLB packs. The maximum voltage of the ESS on a full charge. By increment
of SLB size to 17.55 kWh and 23.4 kWh, in EV-3P and EV-4P scenarios, the peak voltages
dropped to 116 V and 111 V, respectively. This is due to an increase in capacity resulting in
a decrement in voltage variations of ESS and an extension of the SLB life span.
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Figure 12. Second life battery current for different scenarios during the day.

 
Figure 13. Second life battery voltage for different scenarios in various times during the day.

Figure 14 presents the SoC variations of the second life battery packs in transient
conditions during the day for different scenarios. In particular, the comparison of the base
and EV-2P scenarios (both with two battery packs) indicates that adding extra load demand
to the system (EV charging station load) results in a rapid discharge of the battery packs
from 00.00 to 01.00. Furthermore, the second life battery packs in the EV-2P scenario would
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be fully charged by approximately 1 h delay compared to the base scenario (which is fully
charged at around 14.00). The final SoC of the battery packs also decreased dramatically
from 60% (base scenario) to 26% (EV-2P scenario) by adding EVCS load to the system which
could result in a significant mismatch between load and energy generation for the next
day. To solve this issue the number of battery packs are increased in scenarios EV-3P and
EV-4P to 3 and 4 packs, by assuming that the number of PVs are constant. According to
Figure 10, by increasing the number of battery packs, the discharging curve between 10.00
to 12.00 is shifted upward by nearly 10%, and the SoC peak has decreased steeply due to
the increased capacity of the ESS. Furthermore, the final SoC has increased by escalating the
number of battery packs to nearly 53% for the EV-4P scenario. This suggests that increasing
the SLB EES size up to 23.4 kWh would be beneficial in gaining a stable energy exchange
between the components and reducing the energy generation-consumption mismatch in
the proposed system. The main drawback of the size increment of energy storage system
would be the increase in its cost, which might be solved by the employment of SLBs given
their relatively lower price when compared with brand new batteries.

 
Figure 14. Second life battery SoC for different scenarios in various times during the day.

4.3. Energy Exchange Analysis

In this section, the energy exchange between the main components of the system;
ESS, PVs, and the demand side is demonstrated. Table 4 presents the energy generated by
the solar system against the demand side’s consumption. For the base scenario, in which
the solar system is designed to cover only the residential building demand, a significant
difference is not observed between energy supply and demand. However, the aggregated
demand has overcome the supply energy value by adding an extra load to the solar system.
The difference between the energy supply and demand needs to be compensated by the
amount of energy available in the batteries (the initial SoC of the batteries equals 60% in the
simulations) in this scenario (EV-2P). This must be noted that the simulations are performed
by considering the worst-case scenario; the solar irradiance and residential building energy
demand are at their minimum and maximum rates during the year, respectively. The
mismatch between energy supply and demand is expected to be minimum in the warmer
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months of the year. Table 4 indicates that increasing the number of second life batteries
results in minimizing the difference between the energy supply and demand, which could
increase the stability of the proposed energy system. The hourly energy exchange rate
between the system components is shown in Figure 15a–d for different scenarios.

Table 4. Energy generation and demand for different scenarios for the proposed day.

Parameter
Availability of Input Energy

by PV Panels [kWh/day]
Demand Energy

[kWh/day]

Base 11.34 10.6
EV-2P 12.88 17.2
EV-3P 15.58 17.2
EV-4P 15.62 17.2

 

(a) 

 
(b) 

Figure 15. Cont.
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(c) 

 
(d) 

Figure 15. Proposed system hourly energy exchange for different components in (a) Base, (b) EV-2P,
(c) EV-3P and (d) EV-4P scenarios.

Table 4 presents the energy generation and demand for different scenarios in this
study. By adding extra EVCS load to the system in the EV-2P scenario, while the number
of SLB packs is kept constant (compared to the base scenario), the minimal increase in
PV panel power generation is seen due to variations of their operating voltage affected
by battery packs voltage variations shown in Figure 13. An increase in SLB packs’ size
to 17.55 kWh (EV-3P) and 23.4 kWh (EV-4P) leads to an increase in PV panel energy
generation by 21% and 21.27%, respectively, resulting from an increase in electricity storage
capacity which allows higher rates of energy storage and lowering variations of PV panels
operating voltage.
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4.4. Impacts of ESS’ SoH on Stability of the System

The SoH of the second life batteries would be decreased over time and reduce the
total capacity of the ESS system. This could directly affect the off-grid system stability
in terms of energy exchange between ESS and the other components. Additionally, the
difference between the initial charge of the SLBs and their state of charge at the end of the
day can be used as the indicator of energy storage system stability. If the SoC at the end of
the day would be much lower than SoC at the beginning of the day, it suggests that the
discharging rate of the SLBs is higher than their charging rate. Therefore, the ESS charging
and discharging stability depends on two parameters: storage size and generation rate.
The storage size is increased by the increment of the number of SLB packs; however, it
will be also affected by cycle ageing of the batteries leading to decrement in size withbthe
passing of time (also charging and discharging cycles). In this section, the impacts of SLBs
sizing and cycle ageing on ESS stability are investigated. The difference between the initial
and the final SoC is defined as the primary indicator of system stability in this study, which
could be expressed as:

SoCD = SoCi − SoCf (9)

where SoCD, SoCi, and SoCf are second life battery SoC difference, initial SoC and final
SoC, respectively.

The effects of second life batteries’ ageing on the system stability is illustrated in
Figures 16 and 17 for the scenarios with extra EVCS loads. When EVCS load is applied,
the stability of the system could be maintained by increasing the number of battery packs,
due to the reduction of SoC difference. This translates to 4 battery packs in this study to
hold the system stability at an acceptable level before reaching 2000 discharge cycles and
approximately 60% SoH, since the SoC difference remains almost constant until reaching
these points, as shown in Figures 16 and 17.

 
Figure 16. The SoC difference in different second life batteries discharge cycles for various scenarios.
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Figure 17. The SoC difference in different second life batteries SoHs for various scenarios.

The impacts of battery sizing on the energy flow in a stand-alone PV system equipped
with second life ESS is investigated while the system is designed based on the worst-case
scenario. The results of this study revealed the relation between SLB SoC and SoH which
can be used for programming battery management systems. Since most of the PVs in
residential buildings are connected to the grid, the effects of employment of different SLB
ESS sizes on the energy performance of such a system is not considered which can be
counted as the disadvantage of this study.

The experimental data for Nissan Leaf, collected from the literature, are obtained by
degradation analysis of the SLBs using accelerated ageing profile (charging and discharging
c-rates of 1C) and consequently the ESS model is not validated against the battery empirical
tests at various C-rates. Its impacts, therefore, on the degradation of the batteries is
neglected in this study.

5. Conclusions

In this paper, the battery sizing and technical assessment of an energy system with
a second life energy storage system and an off-grid PV energy system is performed. The
main aim of this paper is to investigate the effects of adding extra EV charging station
load on the ESS performance applied to a residential building. In addition, a parametric
study is performed to assess the SLBs’ size variations in the ESS when an extra load is
applied. The proposed case study residential building is located in Oxford. This paper
has developed a novel methodology for assessing the off-grid PV system stability and
minimizing the energy supply–demand mismatch. The proposed off-grid system with
second life ESS has been mathematically modelled in MATLAB SIMULINK. The system is
simulated considering the worst-case scenario on a day in the middle of winter, when the
solar irradiation and demand are at their minimum and maximum levels, respectively. The
configuration of the second life ESS is accomplished by utilizing Nissan Leaf retired battery
modules with an 80% SoH. The main conclusions drawn from the analysis can be listed as:

• An increase in SLBs size, when an extra EV charging load is applied, leads to a voltage
peak drop in the second life battery. The increase in the number of SLB packs to
4 resulted in a 7.5% voltage peak drop of ESS.
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• Adding EV charging station demand to the off-grid PV driven system, which has been
designed to cover residential building demand (with two second life battery packs),
expectedly resulted in instabilities in energy exchange between different components
of the system during the year. Assuming that there is no extra space left on the building
roof to add PV panels, increasing the number of second life battery packs was explored
with the findings suggesting that an installed capacity equivalent to 4 battery packs
for the studied residential building would minimize the energy mismatch between the
energy supply and demand. This occurs before reaching 2000 discharge cycles and
approximately 60% SoH (the final SoC of the ESS increased to nearly 53% for the case
with 4 battery packs).

• When EVCS load has been applied to the residential load demand, the stability of
the system could be improved by increasing the number of second life batteries due
to the minimal differences in the initial and final SoC of the second life ESS. This is
also beneficial in terms of cost, given that second life batteries have a lower price than
brand new batteries.
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Nomenclature

EV Electric vehicle
PV Photovoltaic panel
ESS Energy storage system
SoC State of charge
SLB Second life battery
SoH State of health
EVCS Electric vehicle charging station
CS Charging station
ECM equivalent circuit model
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Abstract: The design and performance optimization of fully electric trucks constitute an integral
goal of the transport sector to meet climate emergency measures and local air quality requirements.
Most studies in the literature have determined the optimum pack size based on economic factors,
without accounting for the details of pack behavior when varying the size. In this paper, the effect of
battery pack sizing and cargo capacity of a class 8, 41-ton truck on its overall energy performance and
technical parameters of its powertrain is investigated. For this purpose, the proposed electric truck is
designed and mathematically modelled using AVL CRUISE M software. The second-order equivalent
circuit model is developed to predict the battery packs’ parameters. The proposed battery pack
model is extracted from experimental analysis on SONY VTC6 lithium-ion batteries performed in the
lab. The weight changes due to adding the battery packs to the truck are also estimated and have
been taken into account. The mathematical model of the powertrain is simulated in the long-haul
driving cycle considering different cargo capacities and battery pack sizes. The results of this study
revealed that the battery pack voltage reached its minimum value when the maximum cargo capacity
was applied for the 399 kWh battery pack. In addition, increasing the occupied cargo capacity
from 10% to 100% resulted in an increase in the regenerative brake energy of up to 9.87 kWh, while
changing the battery size imposed minimal impacts on regenerative brake energy recovery as well as
energy consumption.

Keywords: battery electric; battery pack; energy performance; simulation

1. Introduction

As climate change becomes an increasingly pressing issue, the automotive industry is
shifting towards electrification of vehicles to reduce carbon emissions. EV sales rose by 68%
globally between 2017–2018 [1]. However, the heavy-duty vehicle industry has not seen
the same volume of electric vehicle sales [2–4]. In 2020, global sales of electric heavy-duty
trucks accounted for less than 1% of the total sales [5,6]. The trucking industry contributed
23% of transport GHG emissions in the US [7]. The low level of electrification of this space
presents a large opportunity for a reduction in carbon emissions.

A primary reason for the dependence of the truck manufacturing industry on fossil
fuels is the high energy demands compared to passenger cars [8]. Heavy-duty EVs require
larger energy storage due to their greater range, weight, and aerodynamic load demands
compared to passenger EVs [9–11]. Most heavy-duty trucks must travel long distances
between each stop. This requires large batteries to be installed [12] or electric roads, which
require large investments for infrastructure [13]. Since battery energy density is lower than
fuel tanks used in Internal Combustion Engine (ICE) trucks, the energy storage system in
heavy-duty vehicles becomes expensive and heavy due to electrification [9,14]. Accordingly,
the extra mass of the battery packs reduces the cargo capacity since the total weight of the
truck needs to remain constant during electrification [9,15].
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Various studies have analyzed the electrification of heavy-duty vehicles addressing
aforementioned challenges. Mauler et al. [9] conducted an economic analysis between
diesel, fuel cell, and battery electric long-haul trucks in the United States. Current battery
electric trucks were seen to be nearly competitive to diesel trucks for trips below 500 km.
For weight constrained cargo exceeding 500 km, fuel cells were nearly competitive to diesel.
The more volume constrained the cargo, the greater the advantage to the battery electric
truck, since the added mass of the battery pack does not limit cargo capacity. Energy and
fuel price had a large effect on all of the comparisons, and such comparisons do not consider
charging nor hydrogen refueling availability. Tanco et al. [16] also found that energy and
fuel price influence electric truck feasibility in Latin America, with upfront costs being
the largest barrier. Besides the cost of electricity, the cost of a battery pack influences the
economic feasibility of EV heavy-duty vehicles. Vijayagopal and Rousseau [14] determined
that the cost of battery pack depends on desired range and influences electric truck upfront
costs. Nykvist and Olson [17] proposed using smaller battery packs for heavy-duty trucks
and improving the fast charging network in order to reduce both the cost of battery electric
trucks and their weight, improving their weight carrying capacity. Optimizing heavy-
duty truck battery pack size would maximize the economic viability of such vehicles [18].
Baek et al. [18] were able to find an ideal battery pack size by factoring in charging costs,
battery costs, depreciation costs, and revenue. Large battery packs maximize range and
payload size, but unnecessarily increase the weight and require a larger initial investment.
On the contrary, a small battery pack limits the range and carrying capacity and relies
more on the charging network. The previously mentioned studies rely on economic
factors to determine the pack size, but details of pack behavior are not accounted for
when varying the size. The subject of this research is to perform the optimal pack sizing
considering the distance, power, weight, size of truck, and the volume of transported
goods in order to maximize efficiency and energy usage of a heavy-duty truck. Combining
cell parametrization through lab testing for a pack model to test various pack sizes of
electric truck provides detailed insight into pack behavior variation. Cell testing was
conducted using pulse discharges to obtain transient and steady-state behavior at various
SOC increments. This data was then parametrized using MATLAB Simulink R2022a with a
nonlinear least-squares optimization and a Trust-Region-Reflective algorithm. Error was
minimized using sum squared error. This parametrization yielded ECM parameters which
were used for the pack model. An AVL pack model was used with the cell parameters for
the sizing optimization. The pack model was used to evaluate various pack configurations
and capacities to optimize power, weight, range, and cell health for the 41-ton truck.

This article brings a new viewpoint to the existing literature in the battery electric
truck modelling and optimal pack sizing of batteries based on experimental data. Results of
the study inform an ideal pack configuration based on the truck weight, and how varying
truck parameters influences pack behavior.

This paper is organized as follows; Section 2.1 (battery electric powertrain mod-
elling) discusses the methodology used to mathematically model the proposed powertrain,
Section 2.2 (parametric analysis) contains the variables assigned in the model to determine
the impacts of cargo capacity and battery pack sizing on the model output parameters, and
Section 2.3 (battery cell characterization) describes the methodology used to parametrize
second-order ECM used for modelling of batteries using lab data. Sections 3.1 and 3.2,
located in the results section, discuss battery parametrization and parametric study results,
respectively.

2. Methodology

2.1. Battery Electric Powertrain Modelling

The battery electric powertrain of a heavy-duty class 8 truck is modelled using AVL
CRUISE M R2022.1 software [19]. The modelling process is indicated in Figure 1. The Mer-
cedes Benz Actros 41-ton truck, featuring 8 wheels and 4-wheel drive (8 × 4) is considered
as the case study with its technical parameters presented in Table 1. The battery electric
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powertrain components in AVL CRUISE M R2022.1 software are presented in Figure 2 with
the electric motor efficiency presented in Figure 3. The electrical network of the proposed
powertrain includes two electric motors and six packs of batteries. The battery packs are
sized and modelled based on specifications of Sony VTC6 lithium-ion battery. The battery
pack specifications are provided in Table 2.

Figure 1. Flow diagram of modelling process.

Table 1. Truck and trailer bodies technical parameters.

Component Parameter Value

Truck body dimensions

Distance from hitch to front axle [mm] 3450

support point height, bench test [mm] 1050

Wheel base [mm] 3900

Trailer body dimensions
Distance from hitch to axle [m] 7.7

Pitching moment coefficient 1

Truck nominal weight
Curb weight [kg] 8000

Gross weight [kg] 8500

Trailer nominal weight
Curb weight [kg] 19,000

Gross weight [kg] 32,500

Total carrying capacity
Truck [kg] 500

Trailer [kg] 13,500

Aerodynamic Properties
Frontal Area [m2] 8.48

Drag coefficient 0.6

Table 2. Battery pack parameters.

Component Parameter Value

Cell

Nominal voltage [V] 3.6
Current capacity [Ah] 3
Energy capacity [Wh] 10.8
Average weight [g] 46.6
Estimated energy density [Wh/kg] 232

Pack

Cells in series 176
Cells in parallel 35
Module energy capacity [kWh] 66.5
Number of Packs 6
Packs total energy capacity [kWh] 399
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Figure 3. The electric motor efficiency map.

The originally diesel Mercedes Actros truck is considered the case study in this paper.
Therefore, the weight change associated with the electrification of this truck is obtained
based on the weight of components exchanged. These values are presented in Table 3. The
transmission and drivetrain weight were assumed to be equal for the diesel and electric
powertrains. The mass loss from removing the fuel and fuel tank was estimated by using
50% of the full capacity tank weight for the Actros as a conservative estimate for the average
amount of fuel in the truck during long-haul driving. The electric vehicle weight addition
includes weight from the two motors, battery pack, inverter, and DC/DC converter. Dual
motors were used to obtain high efficiency compared to a single larger motor [20], and
permanent magnet motors were selected for their high specific torque [21]. In order to
determine the effect of pack size on weight, the required structural mass for a given energy
capacity was determined based on previous studies. The cell energy density was used
to calculate pack energy density, based on a 60% percentage weight of cells to total pack
weight. This value was chosen based on typical gravimetric energy densities achieved with
current battery packing methods [22–25]. The resulting pack gravimetric energy density
is 140 kg/kWh. The pack weight was then calculated for each pack size by dividing the
power capacity by 140 Wh/kg.

A long-haul driving cycle (Figure 4) was used in order to evaluate the transient
performance of the 41-ton truck at various pack capacities. The driving cycle represents a
typical trip of a heavy-duty truck, which undergoes brief accelerations and decelerations,
but generally cruises at highway speeds of approximately 85 kph. Inclination also varies
during this cycle to accurate modelling of real-life driving conditions [26,27].

Table 3. Weight of Diesel and Electric powertrain components.

Component Parameter Value

Diesel

Engine Weight [kg] 1240
Max engine power [kW] 460
Fuel tank weight at 50% capacity [kg] 382

Electric

Weight of two motors [kg] 680
Combined motor power [kW] 500
Total battery pack weight [tons] 1.73–2.54
Inverter weight [kg] 72
DC/DC converter weight [kg] 35
Total electric powertrain weight [tons] 3.64–6.49
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(a) 

(b) 

Figure 4. The (a) velocity profiles and (b) road inclination variations in the Long-haul driving
cycle [26,27].

2.2. Parametric Analysis

A parametric study is performed to size the battery packs and investigate their impacts
on technical parameters of the powertrain. The battery pack size is determined by changing
the number of cell rows in each pack and considering the variations in cargo capacity. Cells
in parallel were varied from 35 to 45, increasing the total pack energy from 399 to 513 kWh.
This was the primary variable of the study since pack size variation is a crucial design
choice for a heavy-duty vehicle. The occupied cargo capacity is also varied between 10%
and 100%. Different case scenarios considered in this paper are shown in Table 4.

2.3. Battery Cell Characterization

The second-order equivalent circuit model is used for the mathematical modelling
of each battery pack shown in Figure 2. For this purpose, the SONY VTC6 cylindrical
battery cells were tested in a High Voltage Energy Storage (HVES) lab at Oxford Brookes
University. The HPPC tests were performed for characterization of the battery cells in
the lab at a temperature of 25 ◦C. In HPPC tests, the battery cell underwent a discharge
test at 1.5 C, which provided a picture of voltage at various SOC, as well as the transient
response to current pulses. The cell has a maximum voltage of 4.2 V, and a capacity of
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3000 mAh. As an approximation, 1.5 C was chosen as a typical discharge rate seen for
commercial automobiles [17,18,28,29]. The cell was placed in a testing chamber to hold the
temperature constant (Figure 5). A clamping apparatus which utilizes spring force was
used to provide firm contact between the cell terminals and the power supply. Voltage
across the cell was measured by clipping leads to metal at each plate, while current was
recorded using an Arbin battery tester (ARBIN LBT21084). Thermocouples were used to
obtain the temperature of the cell, and the experiment was conducted at 25 ◦C to gain an
understanding of behavior at average ambient temperature.

Table 4. Case scenarios for parametric study performed.

Case Number of Cell Rows Cargo Capacity [%]

R35L10 35 10

R40L10 40 10

R45L10 45 10

R35L50 35 50

R40L50 40 50

R45L50 45 50

R35L100 35 100

R40L100 40 100

R45L100 45 100

After data was obtained from the HPPC tests, a second-order ECM was developed in
MATLAB Simulink to characterize the cell behavior for use in pack modelling with AVL
CRUISE M. The model uses a battery block, which is controlled by defining parameters
such as internal resistance, dynamic time constants and resistances, capacity, and cell
voltage. Current is controlled through the “Current Source” block, which received the same
input current as the experimental tests. The “Voltage Sensor” block outputs cell voltage,
while the “SOC” block outputs the state of charge (Figure 6). The model received parameter
values from a separate MATLAB workspace, and it sends outputs and input current to the
parameter estimate module as well as the workspace.

 

Figure 5. Sony VTC6 cell experimental setup.
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Each parameter can be expressed as an array of values, each value being defined at a
specific SOC. In this particular case, 16 discharge pulses were conducted experimentally to
take the cell from 4.2 V to 3.4 V, so all parameter arrays had 16 items.

Figure 6. MATLAB model used for cell parameter estimation.

Simulink’s built-in parameter estimator was used to determine parameter values
which matched experimental results. The varied parameters were voltage, first and second
dynamic resistances, first and second-time constants, and static resistance. The Levenberg–
Marquardt algorithm was used to iteratively find parameters that resulted in minimizing
the least-squares difference from the experimental results. The parametrization resulted in
closely matching voltage vs SOC graphs, with an R2 value of 99% (Figure 7).

(a) 

Figure 7. Cont.
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(b) 

Figure 7. Parametrization results for the second-order ECM compared to experimental results,
(a) applied current profile in HPPC test versus time and (b) cell voltage response in different times
calculated by model and obtained in HPPC tests.

3. Result and Discussion

3.1. Experimental Tests Results

The estimated parameters based on HPPC lab data for second-order ECM are shown
in Figure 8a–e. These parameters are used as the input of the battery pack model shown in
Figure 2 for simulation of lithium-ion battery behavior under the transient conditions of
the driving cycle.

(a) 

Figure 8. Cont.
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(b) 

 
(c) 

Figure 8. Cont.
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(d) 

(e) 

Figure 8. The estimated parameters for second order ECM using HPPC data: (a) open circuit voltage,
(b) static ohmic resistance, (c) dynamic constants resistances, (d) first time constant and (e) second
time constant in various state of charges.

3.2. Parametric Analysis

The effects of battery pack size variations on the cargo capacity of the proposed battery
electric truck are shown in Figure 9. Electrification of the truck resulted in a decrease in its
cargo capacity from 13.5 tons to 11.77 tons, 11.36 tons, and 10.96 tons by increasing the battery
pack size to 399 kWh (35 rows), 456 kWh (40 rows), and 513 kWh (45 rows), respectively.

The difference between the desired and actual velocity of the proposed battery electric
truck for different battery pack sizes at 100% cargo load is shown in Figure 10. The fluctu-
ations in actual velocity in cruising velocities (desired profile) are due to the existence of
road inclination, resulting in activation and deactivation of the brake pedal. The desired
velocity is caught in most of the points, and minor deviation is observed in sudden acceler-
ation point following from electric motor moment of inertia. Furthermore, Figure 10 also
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indicates that desired torque at various speeds is delivered by dual motors installed in the
battery electric powertrain.

Figure 9. Effect of battery pack size on cargo capacity.

Figure 10. Truck desired and actual velocity for different case studies in various times in proposed
driving cycle.

The battery pack voltage change during travel for different case scenarios is shown
in Figure 11. By increasing the battery size, the overall voltage of the pack increased,
while increment of occupied cargo capacity resulted in decrease of battery pack voltage
due to faster discharging of the pack leading to sharp fade of voltage. There are four
sharp increases in voltage during travel due to sharp changes in velocity as can be seen
in Figure 11. When the velocity decreases sharply, a drastic increase in voltage is also
observed. These sudden voltage jumps can be controlled by employing a programmed
battery management system. In the last period of travel, steep increase of voltage is seen for
R35L50, R35L100 and R40L100 due to reaching below 30% in SOC (Figure 12). As indicated
in Figure 8a, there is a fluctuation in open circuit voltage for SOCs between 20% and 30%.
The same trend is reflected in battery pack voltage, as is demonstrated in Figure 11. The
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most voltage fade belongs to R35L100 case scenario with lowest size of the battery and
highest cargo capacity. This led to a sharper decrease in the battery pack voltage due to
high power demand, resulting in a lower SOC being reached at the end of travel compared
to other scenarios.

Figure 11. The battery pack voltage variations during travel for different scenarios.

Figure 12. The battery pack SOC variations during travel for different scenarios.

The battery power change is shown in Figure 13 in various time steps of the driving
cycle for different scenarios. The discharging power increased during truck cruising speeds
due to the increase in the cargo load. The highest charging peaks are achieved in the
R45L100 scenario due to the existence of a larger battery and a large load (cargo) resulting
in higher values of regenerative brake energy. However, the charging sudden peaks should
be capped as well as discharging sharp peaks to prevent the battery from being damaged
due to high temperature.
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Figure 13. The battery pack power variations during travel for different scenarios.

The cumulated energy recovered by regenerative brakes and consumed energy during
travel for different scenarios is shown in Figure 14a,b. Regenerative brake energy increased
from 6.94 kWh to approximately 9.87 kWh due to the increment in the truck cargo capacity
between 10% and 100%. In addition, an increase in the battery cell rows in the packs from
35 to 40 and 45 resulted in energy recovery increases of 1.73% and 3.46% for 10% load,
0.98% and 2.2% for 50% load and 0.41% and 0.74% for 100% load, respectively. In addition,
there were negligible changes in the energy consumption due to the increase in battery size
since power demand remains constant.

 
(a) 

Figure 14. Cont.
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(b) 

Figure 14. (a)The regenerative brake energy recovery and (b) battery pack energy output during
travel for different scenarios.

4. Conclusions

In this paper, a parametric analysis is performed to assess the effect of battery pack
sizing and cargo capacity of a truck on its energy performance. As the case study, the
electrification of a class 8, 41 tons’ truck is performed by modelling and simulation of
its battery electric powertrain in AVL CRUISE M software. The experimental lab battery
testing data is used to parametrize the battery pack model in this study. Issues such as
weight changes due to the addition of battery packs to the truck are also addressed. A
parametric study is employed consisting of various case scenarios to evaluate the impacts
of the battery pack size and cargo capacity on truck performance and energy consumption.
The main conclusions drawn from this study can be listed as:

- Electrification of the Mercedes–Benz Actros 41-ton truck resulted in decreasing of its
cargo capacity from 13.5 tons to 12.27 tons, 11.86 tons, and 11.46 tons by increasing
battery pack size from 399 kWh to 456 kWh and 513 kWh, respectively.

- Employment of dual electric motors in the powertrain resulted in gaining desired
torque at various speeds during travel in long haul driving cycle.

- Increasing the battery size boosted the overall voltage of the pack, while an increment
in occupied cargo capacity resulted in a decreased battery pack voltage due to faster
discharging of the pack, leading to a sharp decrease in voltage.

- The greatest decrease in voltage was achieved in battery packs when the cargo capacity
was equal to 100% and the lowest size of battery pack was used. This leads to a sharper
decrease in the battery pack voltage due to high power demand, resulting in a lower
SOC at the end of travel compared to other scenarios.

- The highest charging peaks were achieved for the scenario with the biggest battery
pack size and full cargo capacity due to recovering higher values of regenerative
brake energy.

- Regenerative brake energy increased from 6.94 kWh to approximately 9.87 kWh by
incrementing the truck occupied cargo capacity up to 100%.

- Increase of total battery packs size from 399 kWh to 456 kWh and 513 kWh resulted in
energy recovery increases of 1.73% and 3.46% for 10% load, 0.98% and 2.2% for 50%
load and 0.41% and 0.74% for 100% load, respectively.
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As a limitation of this research, it can be mentioned that the employed second-order
ECM used to model the battery packs is not capable of predicting their capacity fade after
driving in various number of cycles, which should be addressed and solved in future
steps of this research. The developed methodology coupled with the experimental data
presented in this paper would assist the future research and development activities aiming
to truly optimize the performance of heavy-duty trucks to tackle the global net-energy
targets as well as the local air quality requirements.
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EV Electric Vehicle
ECM Equivalent Circuit Model
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HPPC Hybrid Pulse Power Characterization
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Abstract: Electric vehicles (EVs) have been progressing rapidly in urban transport systems given their
potential in reducing emissions and energy consumptions. The Shared Free-Floating Electric Scooter
(SFFES) is an emerging EV publicized to address the first-/last-mile problem in travel. It also offers
alternatives for short-distance journeys using cars or ride-hailing services. However, very few SFFES
studies have been carried out in developing countries and for university populations. Currently,
many universities are facing an increased number of short-distance private car travels on campus.
The study is designed to explore the attitudes and perceptions of students and staff towards SFFES
usage on campus and the corresponding influencing factors. Three machine learning models were
used to predict SFFES usage. Eleven important factors for using SFFESs on campus were identified
via the supervised and unsupervised feature selection techniques, with the top three factors being
daily travel mode, road features (e.g., green spaces) and age. The random forest model showed the
highest accuracy in predicting the usage frequency of SFFESs (93.5%) using the selected 11 variables.
A simulation-based optimization analysis was further conducted to discover the characterization of
SFFES users, barriers/benefits of using SFFESs and safety concerns.

Keywords: green campus; shared free-floating electric scooter; usage frequency prediction; decision
tree; random forest

1. Introduction

The advancement of information technology and sharing economy business models is
changing traditional models of ownership and transport services. New modes of travel are
emerging in urban areas, such as transport network company services, bike-sharing and
scooter-sharing, etc. Shared micro-mobility (SMM, the shared utilization of an e-/bicycle,
e-/scooter, or other low-speed modes) is a newly developed transportation mode [1]. SMM
provides users with a short-term access to a transportation service over an as-needed
basis [2].

Early documented impacts of SMM include increased mobility [3], decreased green-
house gas emissions [4], and decreased automobile use [5,6]. Since 2017, over USD 5.7 bil-
lion have been devoted to SMM start-up companies, mostly in China. A steady customer
pool has been established in the SMM market, which is two to three times faster than
ride-hailing or car-sharing services. The combined value of SMM start-ups is estimated to
exceed USD 1 billion [7].
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Shared Free-Floating Electric Scooters (SFFESs) have been altering travel in cities and
on university campuses. Though SFFESs have swiftly obtained popularity and approval
over the past couple of years, limited studies have been reported on their use. The analysis
of Berg Insight shows that the COVID-19 crisis lead to a lower shared-scooter ridership in
2021. However, in the long term, ridership is projected to reach over 4.6 million people in
2024 worldwide, with a base of 774,000 people in 2019 [8].

New mobility services, such as Uber/Lyft, have been changing the landscape of urban
mobility. SFFESs have become increasingly popular and utilized by communities given their
acceptable cost, zero-emission power and minimal environmental footprint. In addition,
given the present pandemic, city planners are looking for new methods, such as SFFESs,
to reconcile urban mobility need and social distance requirements. While SFFESs offer
promising opportunities, they also bring negative externalities, including safety and equity
issues for pedestrians, cyclists and disabled/elder citizens [6,9]. Many cities proscribed
SFFES services, particularly in the initial boom of SMM, due to vital vandalism and street
clutter, including Austin, Nantes, Amsterdam, Bordeaux, and recently Kuala Lumpur.
These cities revisited their decisions afterwards and devised novel regulation provisions
to optimize SFFES benefits while limiting their drawbacks. Some cities banned the usage
of SFFESs due to regulation requirements; for example, the New York State Department
of Motor Vehicles legislation requires the registration of any electric vehicle, which makes
SFFES service impossible.

Effective regulation faces two major setbacks emanating from the organizational
culture/climate mismatch between local authorities and service operators. The operators
need a high vehicle density to guarantee a high service quality and ultimately foster their
market [10,11]. However, local authorities are wary of street clutter and intend to limit
the fleet size. While technology and investments are essential for service implementation,
equally important is to signify the impact of shared micro-mobility on the urban mobility
ecosystem and its evolution trend over time, in order to better design and integrate it into
sustainable mobility as a whole [12]. However, very few studies examined SFFESs, and
in addition the existing studies were limited in the analysis approaches used, which may
fail to capture the complex nonlinear relationship between variables. In addition, most
studies on SFFES services were conducted in the United States, China and, most recently,
European cities, but are yet very limited in developing countries. It is presumed that this
study will be the first step taken to assess the adoption of SFFESs and usage behavior with
respect to a Malaysian context. The paper identifies public concerns, SFFES benefits and
barriers, and the choice and usage behavior of the university population (students and
non-/academic staff).

Choice behavior in new mobility services is usually assessed and modeled using
traditional statistical models, such as regression, mixed logit, multinomial and binary
logit models [13,14]. Recently, [15] used the Chi2 and Kruskal–Wallis tests to analyze
the frequency of e-scooter use. Given the strict assumptions of statistical models, they
have limited capabilities to capture the complex relationships between factors and choices,
nonlinear correlations among factors, and to deal with factors with various categories [16].
Machine learning (ML) methods have been widely utilized in civil engineering [17–23]
and transportation studies [24,25]. They can model the nonlinear associations between
independent and target variables as well as among independent variables [26,27]. Therefore,
it can be argued that the current study is one of the first attempts to predict SFFES usage
frequency and identify significant factors impacting its use by adopting ML techniques.

Malaysian universities are currently adopting new sustainable strategies in moving
their campuses towards becoming green campuses. Specifically, the management of the
University of Malaya is planning to launch SFFES service in the near future. This paper
aims to predict the usage frequency of SFFESs among the students and staff on the campus.
As a summary of above discussion, the main contributions are:
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1. This research study is one of the first efforts made to scrutinize the usage of SFFESs
on a large university campus. In addition, this is perhaps the first study on SFFES services
in “developing countries” such as Malaysia.

2. This research is one of the first studies which aims to predict the usage frequency of
SFFESs and pinpoint significant attributes affecting the use of SFFESs by adopting various
supervised and unsupervised machine learning techniques.

The remaining of the article is organized as follows: Section 2 concerns a literature
review on related works, followed by the survey design and data collection in Section 3.
Section 4 proposes the analysis methodology, including feature selection and model devel-
opment. Sections 5 and 6 present the model output, analysis results and simulation-based
optimization and discussion. The final part offers the obtained findings of the study and
suggests future directions.

2. Related Works

It is believed that, in terms of urban features and population, higher education or-
ganizations mirror smaller cities [28]. Moreover, there exist many activities occurring on
university campuses that exert both direct and indirect effects on the natural milieu [29].
Therefore, practitioners in these academic contexts need to apply green practices and
provide support in offering multidisciplinary green technical solutions to achieve sus-
tainable development on campuses [30]. The United States Green Building Council [31]
revealed that a green campus is a higher education community seeking to enhance its
resource conservation, energy efficiency, and ecological quality via training on healthy
living, sustainability, and convenience learning environments for all.

In the context of higher education, green practices are rising rapidly. However, achiev-
ing sustainability in Malaysian universities in this regard has yet remained an issue [32].
Malaysia has committed itself to buttress sustainability on university campuses after sign-
ing the Talloires Declaration. Thereafter, enthusiasm for focusing more on sustainable
development has increased in Malaysia. Nevertheless, many universities yet lag behind
in green practices in order to attain sustainability as an institutional policy. This runs
counter to the outline of higher education institutions since the 1992 Earth Summit in Rio.
Universities are facing pressure from non-/governmental organizations to incorporate
green practices in their activities following several sustainability declarations.

Shared micro-mobility (SMM)—the short-term rent of micro-mobility vehicles such
as (e-)scooters and (e-)bicycles—is regarded as a mobility (sub)system that can alter the
present transport system in terms of cars [2,33]. This technology was first presented in 2017
and has now become an important mode of transport emerging in more than 1000 cities
and college campuses worldwide. Such web-based SFFES services are managed by rental
networks and operated using smartphones.

Academic studies on SFFESs have been emerging. For example, ref. [34] examined
anonymized SFFES trip data and concluded that users ride SFFESs for about 8 min for
0.7 miles, with an average speed of 5.23 miles per hour. The SFFES service could be used
as an appropriate travel model for last-mile transport or short-distance trips. Ref. [35]
found considerable differences in temporal and spatial usage patterns between SFFESs
and docked bike-sharing ridership [36]. Ref. [37] assessed the behavioral determinants of
travelers’ purpose for using SFFESs and found that the perceived compatibility of SFFESs
significantly affected usage intention. Ref. [15] performed Kruskal–Wallis and Chi2 test
with e-scooter-associated survey data and pointed to the importance of sociodemographic
characteristics in affecting SFFES usage. Ref. [38] evaluated the API data of SFFES vendors
and found significant SFFES ridership variations between weekends and weekdays, but
not between morning and afternoon trips.

As mentioned before, most of the academic studies in this field were conducted in
the US. Surveys were conducted by a few cities to complement assessing the e-scooter
pilot programs. It was found that e-scooters were popular or generally considered to
present a respected service, even among non-users [15]. For example, the Portland report
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stated that over 30% of people had tried e-scooters. Over 70% of Portlanders riding an
e-scooter stated that they utilized e-scooters most commonly for transportation, but not
recreation. The reasons for use included reliability, speed, cost, convenience and fun [39].
Unequal adoptions between population groups were suggested by surveys. The gender
(female/male) splits were 64/34 and 70/30 for Portland and Denver. In total, 69% of e-
scooter users were aged 20–39 in Portland, while the figure was over 50% in Denver [39,40].

An online survey was performed by the [41] on 1250 individuals in the five largest
cities of Germany (Hamburg, Berlin, Frankfurt, Cologne, and Munich) in September 2019.
It explored their overall mobility behavior and utilization of SFFES systems. It revealed
that 42.7% of e-scooter users were aged between 18–25, and 28.8% between 26–35. The
SFFES service substituted 49.1% of walking trips and 64.5% of public transport trips. A
quantitative study was performed by the French [42]. They gathered 4382 user responses
after various semi-structured and exploratory interviews. It reported that e-scooter renters
were young (52% younger than 34), male (66%), highly educated (19% students, 53% work
executives), and with a significant share of non-locals (42%). For the modal shift, users
substituted walking (44%), public transport (30%), and bike trips (3% owned a bike; 9%
shared a bike).

Supervised learning algorithms learn correlation patterns from data (independent and
target variables) and make decisions/predictions based on a specific objective. Decision
trees (DT) are widely used in data-driven prediction analysis [43–46]. Decision trees have
been used for model evaluation and identifying important variables. Random forests (RF),
a derivation of decision trees, can work in both supervised and unsupervised modes. It can
handle continuous as well as categorical data in classification or regression tasks [47,48].
Random forests are prioritized over other techniques, as it can manage highly non-linear
data, and demonstrates many features, such as agility in locating noise in data and ad-
justability to parameters [49]. It has three main features: (i) estimating missing values
automatically, (ii) Weighted Random Forest (WRF) for balancing errors in imbalanced data,
and (iii) estimation of the significance of variables utilized for categorization [50]. Naïve
Bayes (NB) classifiers are also able to handle continuous and categorical variables and
quickly make real-time predictions [51].

Unsupervised learning is designed to analyze unlabeled data [52]. As the amount
of unlabeled data is exponentially rising, it is essential to explore unsupervised learning
to perform feature selection. Data clustering (feature selection) is an important problem
in knowledge discovery to improve the understandability, scalability and accuracy of
resulting models. The clusters correspond to hidden models and the resulting outcomes
represent data notions. In the context of supervised learning, feature selection refers to
predictions based on provided outputs, while in unsupervised learning the features are
clustered without any prior knowledge of the expected output. The importance of feature
clustering is to improve prediction performance and provide a deeper understanding of the
underlying process that produces the data. Examples of clustering algorithms are k-means,
partitioning around medoids (PAM) and hierarchical clustering. This paper uses both
supervised and unsupervised learning techniques for feature selections and predicting the
usage frequency of SFFESs on campus.

3. Methodology

3.1. Survey Design and Data Collection

The survey was designed to understand the adoption, choice behaviour and usage of
SFFES services on the university campus. The questionnaire consisted of 55 mandatory
questions covering the following aspects:

• Sociodemographic information, including information about age, gender, marital
status, residential area, highest level of education, employment status, race, household
monthly income, private vehicle ownership, shared mobility and membership and
frequency of usage of e-hailing services.
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• Commuting characteristics, including commuting mode to and from the campus, and
the travel mode, frequency, distance, time and cost on campus.

• Perceptions and choices regarding the SFFES service, including (1) perceptions regard-
ing using SFFESs and concerns of safety, equity, costs, comfort, and social distancing
due to COVID-19; (2) service attributes, such as accessibility, payment methods, and
the advantages and disadvantages of shared e-scooters compared to other transport
modes; and (3) infrastructure and built environment, such as separated lanes for
scooters, green spaces, quality of road surfaces and connectivity.

• Usage frequency of the SFFES service, including four levels of response: (1) not
using an e-scooter at all; (2) using an e-scooter as a mode of transport occasionally
(sometimes but infrequently); (3) using an e-scooter frequently; and (4) using an e-
scooter regularly as a main mode of transport. (Table 1 presents the information on
the data and attributes used in this study).

Table 1. Variables used in this study for analysis.

Attribute Description Values

Sociodemographic
Age Age (1) 18 to 29; (2) 30 to 44; (3) 45 to 60; (4) Over 60
Gender Gender (1) Male; (2) Female

Education Highest education level (1) Secondary; (2) Diploma; (3) Bachelor’s degree; (4) Master’s
degree; (5) Doctorate degree

Position Job position (1) Undergraduate student; (2) Postgraduate student;
(3) Academic staff; (4) Non-academic staff

Status Employment/education status (1) Full-time; (2) Part-time
Race Race (1) Chinese; (2) Malay; (3) Indian; (4) Other

Monthly Income Monthly household income
(1) Less than RM 2000; (2) Between RM 2000 RM 4000;
(3) Between RM 4000 and RM 6000; (4) Between RM 6000 and
RM 12,000; (5) More than RM 12,000

Private vehicle Private vehicle ownership (1) Yes; (2) No

E-hailing Usage of e-hailing services per week (1) Not using at all; (2) Less than 3 times; (3) 3 to 6 times;
(4) More than 6 times

SMS Membership Membership of shared mobility services (1) Yes; (2) No
Travel characterization

Travel mode Usual travel mode for going to campus (1) E-hailing taxi; (2) Private car; (3) Private motorcycle;
(4) Public transportation; (5) Walking/cycling

Camp.Hrs/d Hours usually spent on the campus per
day (1) 1 to 3 h; (2) 3 to 5 h; (3) 5 to 8 h; (4) More than 8 h

Camp.Tra/d Number of journeys onto or to outside of
the campus per day

(1) Less than 2 journeys; (2) 2 to 4 journeys; (3) 4 to 6 journeys;
(4) More than 6 journeys

Camp.mod/d Travel mode on the campus (1) E-hailing taxi; (2) Private car; (3) Private motorcycle;
(4) Public transportation; (5) Walking/cycling

Camp.tra.time/d Duration of daily travel on the campus (1) Less than 10 min; (2) 10 to 20 min; (3) 20 to 30 min; (4) More
than 30 min

Camp.tra.cost/d Daily travel cost on the campus (1) Less than RM 5; (2) Between RM 5 and RM15; (3) Between
RM15 and RM 25; (4) More than RM25

Attitudinal factors: impact of infrastructure

Sep.lane Bike/scooter lane separate from road
traffic

(1) Strongly discourage; (2) Discourage; (3) Encourage;
(4) Strongly encourage

On-road.Lane Bike/scooter lane on the road with traffic (1) Strongly discourage; (2) Discourage; (3) Encourage;
(4) Strongly encourage

No-Lane Road with no bike/scooter lane (1) Strongly discourage; (2) Discourage; (3) Encourage;
(4) Strongly encourage

Greenery Green Space (e.g., road-side trees,
greenery, water)

(1) Strongly discourage; (2) Discourage; (3) Encourage;
(4) Strongly encourage

Smooth.Surf A smooth road surface (1) Strongly discourage; (2) Discourage; (3) Encourage;
(4) Strongly encourage

Connectivity Pathways/roads connectivity (1) Strongly discourage; (2) Discourage; (3) Encourage;
(4) Strongly encourage

e-scooter Usage
(Target variable) Shared e-scooter frequency of usage (1) Not using at all; (2) Sometimes/infrequently; (3) Frequently;

(4) Regularly as the main mode of transport.

The survey was carried out on students and staff of the University of Malaya (UM).
The UM is situated in the southwest of Kuala Lumpur. It has a 373.12-hectare campus
and houses around 20,000 students and 6000 staff. In addition to these numbers, many
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daily operations, activities, and events require continuous mobility access to different
transportation modes. Consequently, integrated transportation system management on the
university campus is pivotal. The current transportation services on the UM campus include
bus services (campus and traditional buses), a bicycling facility, and car and pedestrian
accessibility. Figure 1 shows the University Campus Map and the road line map.

Figure 1. University of Malaya campus map.

The online Google questionnaire survey was disseminated to over 30,000 faculty, non-
academic staff and university students in December 2020. The survey was estimated to take
10 min to complete. The survey link was active for a period of three weeks. We received
1023 responses and 1000 surveys were valid for further analysis (response rate: 1.7%).

Table 2 captures the sociodemographic characteristics of the sample, the UM popu-
lation and the overall university populations in Malaysia. For the university population,
we used the data statistics of 2020. The gender distribution in the sample is overall rep-
resentative, with the female population slightly overrepresented. Shares for occupation
composition are comparable. Given the similarities of gender and occupation, we believe
that the sample sufficiently reflects the socioeconomic features of the targeted population.

Table 2. Comparison between the survey sample and the university population in percentage.

Socio-Demographics Total Sample (n = 1000) UM University
All Universities in
Malaysia

Gender
Male 45.6 49.0 47.0
Female 54.4 51.0 53.0
Occupation
Undergraduate
students 51.5 51.7 48.5

Graduate students 36.5 27.6 33.5
Part-time graduate
students 2.1 6.3 6.3

Faculty and staff 9.9 16.3 11.7
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3.2. Feature Selection

Feature selection is an option in statistics to detect significant factors that use measures
of confidence intervals as well as hypothesis testing. After conducting model evaluation,
the elements (independent variables) must be examined further to see how they lead to
measurement accuracy. Hence, machine learning algorithms are built-in with the feature
selection technique to analyze the variables or features in the input data. The distribution
of these features contributes to the prediction of the final outcome using machine learning
models. Feature selection helps to understand the model better by focusing only on the
important variables. This statistical technique eliminates variables which are insignificant or
highly correlated with any other variable. Based on significance score, the order of variables
can be illustrated to realize the accuracy of prediction. The reliability of important variables
depends on the accuracy of a specific algorithm. The objectives of feature selection in
machine learning are to reduce the complexity of the mode and to promote the performance
of the model. Feature selection evaluates the relationship between the input variables and
target variable.

The supervised and unsupervised feature selection methods vary considering the target
variables. While the supervised learning model requires a target variable to specify the impor-
tant variables, the unsupervised learning model disregards the target variable and chooses
important variables using correlation. Figure 2 shows the study methodology workflow.

Clustering

The unsupervised learning model clusters the input variables based on correlation
between each other, and without considering the target variable. The important variables
obtained from the random forest feature selection are used to perform clustering. There
are two steps in clustering: (a) determination of the optimal number of clusters, and
(b) hierarchical clustering.

To determine the optimal number of clusters:
The optimal number of clusters is specified using the Gap Statistics method. The

fviz_nbclust() function in factoextra R package is employed to compute the optimal number
of clusters. The Gap Statistics algorithm works as follows [53]:

• The observed data of 1000 samples with n variables is analyzed by changing the
number of clusters from k = 1, . . . , kmax, and the total within intra-cluster variation
Wk is computed.

• B reference datasets with a random uniform distribution is generated. Each refer-
ence dataset is clustered with varied number of clusters k = 1, . . . , kmax, and the
corresponding total within intra-cluster variation Wkb is computed.

• The estimated gap statistic is computed as the deviation of the observed Wk value
from its expected value, Wkb under the null hypothesis: Gap(k) = 1B∑b = 1Blog(W ∗ kb)
− log(Wk). The standard deviation of the statistics is also computed.

• The number of clusters is chosen as the smallest value of k such that the gap statistic is
within one standard deviation of the gap at k + 1: Gap(k) ≥ Gap(k + 1) − sk + 1.

The optimal number of clusters is used to perform hierarchical clustering using the
hclust R package. Hierarchical clustering is an agglomerative clustering algorithm, which
can be cut at a chosen height to produce the desired number of clusters [54,55]. The clusters
produced in a dendrogram are joined together in order of their closeness measured by
dissimilarity. The steps of hierarchical clustering are as follows:

• Divide n variables into k groups by cutting at a desired similarity level.
• Calculate the dissimilarity matrix between variables using function dist () in hclust package.
• Plot the dendrogram using fviz_dend () function in factoextra package with dissimilarity

matrix as the input.

Correlation analysis is performed using R corrplot function to assess the relationship
between the variables.
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Figure 2. Methodology workflow.

3.3. The Optimal Model Design

The model assessment is performed using the important variables selected through
supervised (random forest, decision tree and Naïve Bayes) and unsupervised learning
methods. After selection of significant variables, the random forest classifier is used to
assess the model performance using the test and out-of-bag errors by changing the total
number of trees (ntree) and predictors at each split (mtry). The best ntree and mtry are
obtained using the measures of the mean squared error and variance, calculated using the
out-of-bag errors. A total of 2/3 of the data is used for training and 1/3 for validating the
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trees. The final model is developed using the best ntree and mtry. Random forest algorithm
is a joint and collaborative learning algorithm that is derived from decision trees. It follows
the rules of decision trees but constructs numerous decision trees during training time and
outputs the class with maximum vote. For example, the random forest algorithm constructs
trees of different classes using the similar input data. The tree structures can be explained
using subset matrices as shown in Figure 3. Three random subsets are created during the
training process. Three different trees are explained using three subsets (S1, S2 and S3).
Different samples are grouped into different subsets based on the correlation between input
features (independent variables). Decision trees are built based on the subset values. The
decisions or the final predicted output from each decision tree is considered a class. The
class, which receives maximum votes from the total number of trees, will be chosen as
the final output. Class 1 has two votes whereas class 2 has one vote in Figure 3, therefore
class 1 is the final predicted output. This class 1 will be used to rank the variables based on
importance score.

 

Figure 3. Random forest algorithm workflow.

The R package random-forest is used to perform feature selection for n variables, and
the number of important variables is determined in three stages: initial, threshold and
prediction. The most important variables are selected from the final prediction stage.
Random forest considers a random subset of predictors, p, each time when splitting the
training set. The trees find all the predictors while performing a split and select the best
amongst them. The total number of predictors at each split is calculated using the formula
mtry =

√
n. The default number of trees used in random forest feature selection is ntree = 500

and the total number of predictors used to construct the trees is
√

n.

3.4. Model Evaluation

Model evaluation in machine learning is an alternative to the assessment of effect
size in conventional statistics [56]. It is a key step in machine learning, as the ability of
the model to make predictions on unseen or future samples will enhance the trust on the
model to be used in a particular dataset. The measurement for model evaluation is accuracy
in percentage (estimate of generalization of a model on future data). The most popular
model evaluation technique is cross-validation. Cross-validation divides the data into
test (independent dataset) and training (subset of data used to train the model for future
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predictions) sets; 5-fold cross-validation was performed. The accuracy is assessed based on
the overall error estimation comparing the test and training sets. An interchange of test
and training sets reduces bias and variance in the method. Cross-validation can be used to
compare the performance of different machine-learning algorithms on the same data, as
this will make it easier to select the best algorithm to perform further analyses. A confusion
matrix is the most common interpretation of model performance in supervised learning. A
confusion matrix can produce model accuracy, precision, recall and F1 score. In this study,
the total number of samples (n = 1000) was divided into 80% of the training set and 20%
of the testing set. The model evaluation was performed using three different algorithms:
decision tree, random forest and Naïve Bayes, and the accuracy measures based on the
confusion matrix were recorded.

4. Results

4.1. Descriptive Analysis (Encouragement and Discouragement Factors)

This section presents the results of the last part of the survey, which measured encour-
agement and discouragement factors for using SFFESs. In other words, after predictions
of SFFES usage, important factors and levels of acceptance between different groups of
respondents, this section was designed to answer the following questions: 1—Why will
certain respondents never use SFFESs (8% of total respondents according to Figure 4)?
2—What are their main concerns? 3—What are the benefits of the SFFES service from our
respondents’ point of view?

 

Figure 4. Percentage of SFFES use frequency based on four categories.

Survey participants were asked to express their perceptions and feelings regarding
the encouragement and discouragement factors of using SFFES services. In the first part,
we asked the participants about the benefits and advantages of SFFESs. Figure 5 presents
the overall responses to questions about the benefits/advantages of using SFFESs.
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Figure 5. Participants’ perceptions about the advantages/benefits of using SFFESs.

According to Figure 5, most of the respondents were almost agreed on all mentioned
benefits of SFFESs, except for “speed” and “physical/mental health”. A considerable
number of participants used a private vehicle as their main mode of transport on the
campus. This could be one of the reasons why most of the participants selected a neutral
option about the speed. The second, less-important advantage of the SFFES was health
benefits, based on participants’ responses. Indeed, the physical and mental benefits of
e-scooters are not well investigated. However, using an e-scooter obviously requires less
physical activity comparing to walking and cycling. Interestingly, social distancing during
the pandemic was selected as the most important benefit of SFFESs. Recently, the COVID-19
virus hit Malaysia badly, and the number of new positive cases reached 4500 per day. This
was the main concern of the current situation and people were seeking safe ways to go
about their daily activities. 47% of survey participants indicated that they would not have
car park issues by using SFFESs, and 45% believed that the environmental benefits (no
pollution) of SFFESs were extremely important. In addition, “saving time” and “no traffic
congestion” were indicated as extremely important benefits of SFFESs by 42% and 44% of
participants, respectively.

The next series of questions were designed to ask respondents about their concerns
about SFFESs, and what factors would prevent them from using this service, as presented
in Figure 6. Safety was indicated as an extremely important concern of using SFFESs
by 59% of respondents, moderately important by 26% of respondents, and not at all an
important concern by only 4% of respondents. Surprisingly, the cost of riding SFFESs
was selected as the second most important concern by 75% of respondents. In total, 53%
and 22% of respondents indicated the “cost” as an extremely important and moderately
important preventative factor, respectively. Due to the hot and humid tropical weather
of Malaysia throughout the year, which is also interspersed with tropical rain showers,
“adverse weather” is always a significant concern. Accordingly, almost 55% of respondents
indicated the weather as an important preventative factor.
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Figure 6. Participants’ opinions about what reasons would prevent them from using the SFFESs.

As explained above, safety was indicated as the most important concern by almost 85%
of the survey participants. Therefore, we decided to further explore this concern to gain
better insights for policy making discussions and recommendations. Figure 7 illustrates
SFFES users’ perception of safety concerns based on their willingness to use the service
in future. Respondents who would never ride e-scooters had the highest level of safety
concern. Almost 40% of participants who belonged to this category specified that safety
was an extremely important preventative factor to riding an e-scooter on campus, and 30%
stated that it was moderately important.

 

Figure 7. Safety concerns based on SFFES usage categories.

In addition, over 80% of respondents who indicated safety as an extremely preventa-
tive concern also stated that they were extremely afraid of hitting somebody or being hit
while riding an e-scooter. One of the chief causes of worry about accidents was the road
features. Almost 60% of respondents who were extremely worried about safety indicated
that separated scooter/bicycle lanes would strongly encourage them to ride an e-scooter.
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In addition, almost 67% of them specified that no separated lanes for e-scooters would
strongly discourage them from riding an e-scooter. The impact of other road features such
as road connectivity, the quality of the surface and the availability of water and green
spaces on their willingness to ride an e-scooter is shown in Figure 8.

 

Figure 8. Impact of road features on the perceptions of respondents who believed safety was an
extremely preventative factor for riding an e-scooter.

4.2. Policy Recommendation

In line with the intentions of the Malaysian government to develop green university
campuses in the country, a number of universities in Malaysia have begun carrying out
different green practices in an effort to improve sustainability. Accordingly, Malaysian
academic centers, especially those at the higher education level, are dedicated to supporting
the 40% reduction of carbon dioxide (CO2) emissions vowed by the government at the
1992 Earth Summit in Rio [57]. Nevertheless, scholars such as [58] argue that, in Malaysian
university management, practitioners and stakeholders are oblivious to green campus
paradigms, which has caused most universities to ignore green practices. Currently, re-
search on sustainability is initiated and socially certified by experts in higher education
institutions [59]. However, there is still a lack of a proper method for interdisciplinary
communication and cooperation among these sustainability practitioners to compile inte-
grated data gleaned based on green indicators, which should be considered when achieving
sustainability within Malaysian university campuses [60,61].

Nowadays, various sustainability practitioners in different areas of expertise work
collaboratively to reach sustainability in the context of universities. However, interdisci-
plinary communication and collaboration is still absent among sustainability practitioners
at higher education levels [62,63]. As [64] put, there is an urgent need for an interdisci-
plinary approach that is able to provide higher education institutions with a green campus
paradigm toward accomplishing socio-economic and environmental sustainability. This is
echoed by [65], who declared that there was insufficient harmonization and cooperation
among practitioners from dissimilar domains that work jointly to obtain sustainability. The
green campus concept aims to introduce engineering features including waste treatment,
water treatment, and air pollution control, alongside personal aspects, such as promoting a
laissez-faire outlook.

To develop a green campus, it is essential to assess the present data, information, and
reports while focusing on enhancement. Generally, the aspects assessed in terms of green
campus valuation instruments for higher education covers site and planning management,
waste management, energy efficiency, sustainable transportation, water efficiency and
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conservation, indoor environmental quality, material and resource management, green
education, and green innovation. In this regard, electricity, waste generation, and trans-
portation were chosen as targets considering their higher influences on CO2 emission.
Promoting active and novel modes of transportation can be an effective approach to re-
duce carbon emissions, as future transport will probably be dominated by electric vehicles
(EVs). These vehicles offer several environmental benefits, which can lead to sustainability
in urban transportation. More specifically, battery electric vehicles (BEVs) are gaining
worldwide popularity. With their light weight, they could be well integrated into urban
transport systems.

Electric scooters are emergent vehicles that could be used as an alternate transportation
mode in campus and urban areas. These scooters have the potential to improve mobility
and can be used in place of short car and ride-hail journeys. On the other hand, scooters
have introduced some new challenges, which include safety, negative effects on disabled
people, walkway clutter, etc. It is important for cities to evaluate the benefits that may be
gained by using Shared Free-Floating Electric Scooter (SFFES) systems. SFFES services have
the potential to introduce a number of environmental/social benefits, e.g., saving expenses
and time (since they are generally faster than walking and even driving on crowded roads),
lessening traffic blocking, enhancing multimodal transport connections, and decreasing
the emissions of greenhouse gas (GHG). However, all these benefits are deeply dependent
on adopted policies. For instance, based on our study results, most of the respondents
specified the SFFES as an expensive transportation mode for campus usage. Making reliable
decisions on this issue can be of great support to the expansion of e-scooter share programs
in both campuses and cities.

4.3. Selection of Significant Variables through Unsupervised Clustering

Hierarchical clustering produced a dendrogram, which divided the 22 variables into
2 different clusters—13 variables in cluster one and 9 variables in cluster two. The variables
in each cluster are shown in Figure 9.

 

Figure 9. Cluster dendrogram of 22 variables.

The correlation between the variables was assessed using the dissimilarity matrix. The
y-axis in the dendrogram in Figure 9 can be explained using the terms clade and leaves. The
clusters were formed at a particular cluster cutoff value based on the number of clusters
specified. As the analysis on determining optimal number of clusters regarding the dataset
used in this study produced the result k = 2, the number of clusters was set as two. The
specified number of clusters returned vectors containing features in each cluster. The lines
showing the variables (number 1–22) are the leaves, whereas clusters 1 and 2 are clades
1 and 2 respectively. Leaves 17, 18, 5 and 14 are more similar to each other than they are
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to other leaves in clade 1. Leaves 3 and 22 are more similar to each other than they are to
other leaves in clade 1. Leaves 12, 1, 9, 8, 15, 4 and 7 are more similar to each other than
they are to other leaves in clade 1. The x-axis in the dendrogram represents the clusters.
The y-axis in the dendrogram represents the closeness of the leaves/variables. For example,
leaves 4 and 7 were correlated before they joined 15, 8, and the following leaves together in
one clade.

The distance between two clusters was measured using the linkage method. The
complete linkage method used in this study displayed the distance between clusters 1 and
2 using the longest distance between two points in each cluster. The point refers to the line
height in the dendrogram (Figure 9). The similarity between the features were assessed
using the dissimilarity matrix index, whereas the important variables were determined
using the line height. The heights of the lines in each leaf represent the importance score of
the variables. In cluster 1, the most important features were Sep.lane, On-road.Lane, Status
and Camp.mod/d with similar line heights. In cluster 2, the most important features were
Gender, Race and Travel mode. To further assess the correlation between the independent
variables, correlation analysis was performed. Figure 10 shows the correlation between the
22 independent variables.

Figure 10. Correlation between the 22 independent variables.

The blue color represents positive correlation and the red color displays negative
correlation. Based on the correlation analysis, two combinations are highly positively
correlated, which are Position and Age and Connectivity and Smooth Surf. Moderately
positively correlated combinations are Monthly Income and Age, and Camp.mod.d and
travel.mode. Next, the lowly positively correlated combinations are Education and Age,
Position and Education, Position and Monthly income, Monthly Income and Education,
Private Vehicle and travel.mode, and Private Vehicle and Camp.mod.d.
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4.4. Selection of Significant Variables Using Supervised Learning Models

The variables’ importance rank of the 22 independent variables based on RF, DT and
NB techniques are shown and compared in Figure 11. The present study takes advantage
of various feature selection methods to pick only the important variables and design the
prediction model according to selected variables. The core motive behind decreasing the
number of variables (based on their level of importance and correlations) is to diminish the
complexity and promote the applicability of our final model. Therefore, after implementing
unsupervised clustering and identifying the correlation of the variables, we also compared
the variables’ importance based on three different tree-based supervised machine learning
techniques. Table 3 presents the variable weights using outputs of RF, DT and NB. The
mutually important variables were detected. For example, monthly income, age and private
vehicle ownership were variables with high weights in all three methods.

 

Figure 11. Importance score (weight) of variables based on three ML methods.

Furthermore, to make a more vivid conclusion from the three feature selection methods,
the weight values of each variable were summarized and compared, as shown in Figure 12.
Next, the amassed weight values were ranked from highest to lowest. According to
Figure 12, there was a significant drop in weight values after the “Gender” variable.
Therefore, we drew a line and deselected variables whose weights were below the line. The
results of the selected most important variables based on three different ML techniques is
summarized in Table 4.

Further random forest modelling was performed using these 11 variables. Moreover,
all these variables have a threshold of MeanDecreaseGini higher than 30.
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Table 3. Importance score (weight) of variables based on three ML methods.

RF DT NB

No. Attribute Weight Attribute Weight Attribute Weight

1 Camp.mod/d 0.1825 Camp.mod/d 0.14634 Private vehicle 0.059752
2 Smooth.Surf 0.1409 Age 0.10431 Greenery 0.058748
3 Greenery 0.1151 Greenery 0.09712 Connectivity 0.056134
4 Cam.tra.time/d 0.0777 Cam.tra.cost/d 0.08648 Gender 0.04504
5 Cam.tra.cost/d 0.0547 Monthly income 0.06964 Monthly income 0.041161
6 Travel mode 0.0538 Cam.tra.time/d 0.06434 Cam.tra.time/d 0.040235
7 Age 0.0534 Travel mode 0.0588 Travel mode 0.037877
8 Monthly income 0.0509 Connectivity 0.05861 Age 0.037555
9 Gender 0.0498 Gender 0.05055 Camp.mod/d 0.032029
10 Private vehicle 0.0490 Private vehicle 0.04992 Sep.lane 0.025078
11 Camp.Hrs/d 0.0477 e-hailing 0.04938 Cam.tra.cost/d 0.022726
12 on-road.Lane 0.0469 Camp.Hrs/d 0.04726 e-hailing 0.021732
13 No-Lane 0.0429 Race 0.0454 on-road.Lane 0.021263
14 Connectivity 0.0415 Sep.lane 0.04247 No-Lane 0.020533
15 Race 0.0376 on-road.Lane 0.04189 Camp.Hrs/d 0.019974
16 Education 0.0374 Position 0.03798 Capm.Tra/d 0.016223
17 Position 0.0366 Smooth.Surf 0.03751 Status 0.015691
18 Capm.Tra/d 0.0351 Education 0.0374 SMS Membership 0.011859
19 Status 0.0308 Status 0.03386 Position 0.010624
20 e-hailing 0.0280 Capm.Tra/d 0.03175 Race 0.010495
21 SMS membership 0.0268 SMS Membership 0.02767 Smooth.Surf 0.010309
22 Sep.lane 0.0248 No-Lane 0.02676 Education 0.0082

 

Figure 12. Accumulated weights of variables.
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Table 4. Importance of 11 selected variables based on feature selection criteria.

No. Attribute Accumulated Weight Mean Decrease Gini

1 Camp.mod/d 0.360867959 72.26206
2 Greenery 0.270941347 62.26634
3 Age 0.195234017 61.92460
4 Smooth.Surf 0.188729931 60.28623
5 Cam.tra.time/d 0.182241979 59.64285
6 Cam.tra.cost/d 0.16393153 57.96135
7 Monthly income 0.161725573 57.71634
8 Private vehicle 0.158708056 53.55493
9 Connectivity 0.156257276 51.93130
10 Travel mode 0.150511383 44.97282
11 Gender 0.145347998 44.94371

4.5. Model Assessment and Evaluation

Having reduced the number of variables by a comprehensive feature selection method
(through both unsupervised clustering and supervised models), the random forest algo-
rithms were conducted using eleven selected variables. The model performance of random
forest is reported as below:

Call:
Number of trees: 500
No. of variables tried at each split: 3
Mean of squared residuals: 0.07049505
% Var explained: 93.02

The default ntree used was 500 and mtry was 3. The accuracy was 93.02% and the Mean
of squared residuals was 0.07049505. The error vs number of tree graphs in Figure 13 shows
that the error rate remained constant from 390 to 470. Model assessment was repeated nine
times using a different number of trees from 390 to 470, and the results are presented in
Table 5.

 
Figure 13. The error vs number of tree graphs for 11 important features.
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Table 5. Random forest model.

No Number of Trees Accuracy (%)

1 390 93.42
2 400 93.26
3 410 93.28
4 420 93.19
5 430 93.29
6 440 93.51
7 450 93.14
8 460 93.15
9 470 93.28

The best ntree was 440 as shown in Table 6, since it produced the highest accuracy
compared to other values. The ntree = 440 was used to assess the test error and OOB error,
as shown in Figure 14.

Table 6. Model assessment for decision tree, random forest and Naïve Bayes.

Model Algorithm

Accuracy (%) Precision Recall F1 Score

11
Variable

22
Variable

11
Variable

22
Variable

11
Variable

22
Variable

11
Variable

22
Variable

Decision tree rpart from
“caret” 54.13 57.130 0.29 0.318 0.38 0.4000 0.32 0.325

Random Forest rf from “caret” 93.51 99.49 0.85 0.890 0.82 0.850 0.72 0.760
Naïve Bayes nb from “e1071”

package 61.00 64.50 0.51 0.530 0.45 0.480 0.52 0.540

 

Figure 14. Test error and out-of-bag (OOB) error rate of the predicted model.

The red line represents the out-of-bag error estimates, and the blue line represents the
error calculated on test set. Both curves are relatively smooth, and the error estimates are
also correlated. The error inclines are reduced at around mtry = 3. Hence, the final model
with the 11 most important variables produced an accuracy of 93.51%, with ntree = 440
and mtry = 3. The model performance comparison among the random forest, decision
tree and Naïve Bayes methods are shown in Table 6 for both models with 22 variables and
11 variables.
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4.6. Simulation-Based Optimization Analysis

To obtain deeper insights into the factors influencing SFFES usage, optimization
analysis was carried out based on four different scenarios: a group of respondents who are:
(1) most likely to “always” use SFFESs, (2) most likely to “frequently” use SFFESs, (3) most
likely to “occasionally” use SFFESs, and (4) less likely to, or “never”, use SFFESs. The
scenarios were based on the target variables’ response categories, as described in Table 1.
The simulation-based optimization analysis was conducted on 11 significant variables (as
described in the feature selection section) using RapidMiner Studio Educational Software
version 9.8.001. All the figures in this section are outputs of the RapidMiner Software. The
optimization was carried out and determined the best input factors to fit with our targets
under the specified constraints. Additionally, the simulation-based sensitivity analysis was
considered appropriate for evaluating and responding “What if” questions. For example,
what if our target group is male youngsters who are between 18 to 23 years old and who
use public transportation as their mode of transport on the campus (how frequently they
will use SFFESs)? Table 7 presents the optimized value of attributes based on four scenarios.

Table 7. Optimized value of attributes based on four scenarios.

Attribute Always Frequently Occasionally Never

Gender Female Female Male Male
Age 18 to 29 30 to 44 45 to 60 45 to 60

Monthly income Between RM 4000 and
RM 6000

Between RM 6000 and
RM 12,000

Between RM 2000 RM
4000

Between RM 6000 and
RM 12,000

Travel mode Walking/cycling Public transportation Private car Private car
Private vehicle No Yes Yes Yes
Camp.mod/d Walking/cycling E-hailing Public Transport Private car

Cam.tra.cost/d Between RM 5 and
RM15

Between RM 15 and
RM 25 Less than RM 5 Less than RM 5

Cam.tra.time/d 20 to 30 min Less than 10 min 10 to 20 min Less than 10 min
Greenery Encourage Strongly encourage Strongly discourage Encourage
Smooth.Surf Encourage Discourage Encourage Encourage
Connectivity Encourage Encourage Discourage Encourage

In the first scenario, the simulation model was adjusted to optimize the target variables
on respondents who are most likely to always use SFFESs. According to the results, females
between 18 and 29 years old with a monthly income between RM 4000 and RM 6000 (which
is a higher-than-average income in Malaysia), whose primary mode of transport is walking
or cycling, are the most likely to change their mode of transport to SFFESs. This group of
respondents does not own a private vehicle and they spend RM 5 to RM 15 for their travels
around the campus per day.

According to Figure 15, 95% of respondents described above will always use SFFESs
as their main mode of transport on the campus, 3% will use SFFESs occasionally, 1.5% will
never use it, and less than 1% will use it frequently. In addition, gender, age, and cost
of travel per day are the most important factors affecting SFFESs choice and usage. The
simulation model was adjusted to optimize the attributes based on the second scenario
and determine the characterization of the SFFES service’s frequent users. Frequent usage
of the SFFES service has been defined as usage between two and five times per week,
or replacing at least half of the user’s current mode of transport with the SFFES service.
According to Table 7, most of the frequent users of SFFESs will be women, as in the previous
scenario. However, frequent users are most likely to be older users (30 to 40 years old) with
a higher monthly income. While they most likely own private vehicles, they mostly use
public transportation for arriving on campus and use e-hailing services to travel around
the campus. According to Figure 16, 77% of described students/staff are willing to use
the SFFES service frequently. In addition, road features such as connectivity and quality
of road surface can strongly impact their usage. Travel mode and travel costs are other
important factors for this group, according to Figure 16.

96



Appl. Sci. 2022, 12, 9392

 

Figure 15. Optimization results and importance of variables based on the first scenario: Always
use SFFESs.

 

Figure 16. Optimization results and importance of variables based on the second scenario: Frequently
use SFFESs.
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In the third scenario, the simulation model optimized target variables on the group
of users who will most likely use SFFESs occasionally (less than three times per week).
Interestingly, men between 45 and 60 years old with an average monthly salary (RM 2000
to RM 4000 is considered an average monthly income in Malaysia) are most likely to
use SFFESs occasionally. In addition, they own private vehicles and mostly use public
transportation for their daily travels around the campus. According to Figure 17, 82% of
users who are described in the third scenario will use SFFES services occasionally or less
than three times per week. Moreover, travel mode, age and daily travel time are important
factors which support their SFFES mode choice.

 

Figure 17. Optimization results and importance of variables based on the second scenario: Occasion-
ally use SFFESs.

Respondents who are not interested in SFFESs and will never use the service were our
target in the fourth scenario. According to the last column of Table 7, the sociodemographic
characterization of respondents in this scenario is almost the same as the third scenario
(users who will use SFFESs occasionally), with the difference being that their monthly
income is much higher. In addition, their average daily travel time is significantly shorter,
and they prefer to use their own car. As shown in Figure 18, 89% of users described in the
fourth scenario are most likely to never use SFFESs. Moreover, road features such as green
roads and smooth surfaces are the most important factors which are in contrast with the
“Never” usage scenario. In other words, road features are significantly important factors
that may encourage them to consider SFFES services for their future travels around the
campus (as shown in Figure 18).
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Figure 18. Optimization results and importance of variables based on the second scenario: Never
use SFFESs.

5. Discussion

This study is designed to deeply explore the attitudes and perceptions of students and
staff towards SFFES usage on campus. Various attributes were considered for this propose,
such as the sociodemographic information of respondents, characterization of trips, road
features, concerns/barriers, and benefits of riding SFFESs. In addition, this study is one
of the first to predict the likelihood of usage frequency of SFFESs by employing various
machine learning techniques and the first study on SFFESs in Malaysia. Previous studies
have been mostly conducted in the US, China, and recently European cities. Moreover, for
the first time we have employed different feature selection methods and machine learning
algorithms to deeply evaluate the weight of important factors that affect the mode choice
and usage of SFFESs between university students and staff. The campus of University of
Malaya (UM) was selected for conducting this study because:

• Shared micromobility is new in Malaysia, and most people have limited knowledge
about it. The university community is a natural laboratory to test new mobility services.

• The shared e-scooter companies such as BEAM, TRYKE and Myscooter are very
interested in providing their services to university campuses in this initial stage.

• UM is the biggest university in Malaysia, with more than 30,000 students and staff.
In addition, more than 5000 international students and staff are on UM campus of
different races, ethics, nations and generations. The diversity of the population fits the
study requirements well.

A comprehensive feature selection was conducted before developing machine learning
predictive models. The main propose of this step was to accurately recognize the signifi-
cant factors and importance by adopting supervised and unsupervised machine learning
techniques. In addition, it decreased the complication of the final model by decreasing
the number of variables based on their significance. Although decreasing the number of
variables may reduce the accuracy of the final model, this reduction can be minimized
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by adopting proper and accurate feature selection techniques. In other words, adopting
accurate feature selection methods will promote the complexity and practicality of the
final model, while the accuracy remains adequately high. In this study, the initial models
were developed using all 22 variables. After implementing feature selection methods, the
number of variables reduced to 11.

According to the feature selection results, daily travel mode inside the campus
(Camp.mod/d) was the most effective factor in determining SFFES usage frequency. Other
travel characterizations, such as daily travel cost and time/duration, were among the
most influential factors. Sociodemographic attributes such as age, gender, monthly income
and private vehicle ownership, played significantly important roles in mode choice and
SFFES usage, as also proved by previous studies [33,66]. In addition, based on the outputs
of all three supervised feature selection models, road features such as greenery and the
connectivity of roads influenced the mode choice significantly. The initial RF model (with
22 variables) outperformed DT and NB models with 99.45% accuracy. Therefore, we se-
lected the RF model for further analysis and developing the final model using the 11 most
important variables. As expected, reducing the number of variables caused a reduction in
accuracy by 6%. However, the authors believe that the final model is a much more valuable
model with acceptable accuracy and less complexity.

To unpack and shed light on the attitudes of the survey participants towards SFFES
usage, a simulation-based optimization was developed. Interesting results have been
gained which could be useful for future works, recommendations and policy-making. Four
optimization scenarios were defined based on the four categories of possible SFFES users:
always, frequently, occasionally and never. According to the optimization results, there was
a strong relationship between gender and the frequency of usage of SFFESs. Surprisingly,
respondents who were more likely to ride e-scooters always and frequently were mostly
young to middle-aged females. This result is in contrast with previous studies [15,67] and
further exploration is needed to discover the reasons for this gender gap in SFFES usage.
However, this result may be biased by our survey participants’ characterization, who were
mostly young and highly educated.

Indeed, many interesting facts can be unveiled by adopting simulation-based opti-
mization analysis. According to Table 6, respondents who would change their travel mode
to SFFESs were mostly daily cyclists or pedestrians. The same result was observed by
previous studies [15,33,68]. On the other hand, respondents who used their own private
vehicle for daily trips were not interested in riding an e-scooter. These two facts can be
considered as significant disadvantages of SFFES services. Undoubtedly, walking and
cycling are more desirable and sustainable modes of transportation in several different
aspects. Walking and cycling are healthier modes, since they require much more physical
activity [69]. Moreover, while walking and cycling are the greenest possible modes of
transport, the environmental impact of e-scooters is still not well-investigated [70].

Strength, Limitations and Next Steps

Before indicating the limitations, the authors would like to mention the significant
strengths of this study. To the authors’ knowledge, this is the first study of SFFESs on a
university campus. A large number of students and staff with various sociodemographic
backgrounds and undertaking different types of activities on the campus helped to shed
some light on the future of SFFESs launches on other university campuses and even urban
areas. Furthermore, this was the first study on SFFESs undertaken in Malaysia and one the
first to employ various machine learning algorithms to predict the use frequency of SFFESs.
There are also a number of limitations. One of the key limitations of this study was sample
size. We forwarded the Google Form (the survey) to more than 30,000 university students
and staff, and only 1.7% responded completely. The number of respondents was limited,
and there must also be principal differences between respondents and non-respondents.
In addition, the method of survey distribution and focus group was limited to academic
and highly educated people. Undoubtedly, further studies should consider larger sample

100



Appl. Sci. 2022, 12, 9392

sizes which are more random and representative of potential SFFES riders. Moreover,
we have not provided some specific scenarios for using SFFESs on the campus, such as
estimated travel time, costs, proposals and external factors like weather. Therefore, the
answers to some questions were based on the experience of respondents, which would
influence the results.

Future studies should consider larger sample sizes to predict a better model with
higher accuracy, which also represents all SFFES users in Malaysia. Moreover, future
studies should incorporate the available information from SFFES companies, such as travel
distance, travel time and proposals for travel. In this study, we have only focused on tree-
based machine learning algorithms (RF, DT and NB) for predicting SFFES usage frequency.
We propose that future studies should consider other types of machine learning techniques,
such as neural networks and support vector machines, to clarify which technique has the
best performance. Finally, off-campus and on-campus students have different requirements,
and in turn, travel behaviors. Future studies can consider these differences.

6. Conclusions

This study predicts SFFES use on a university campus using supervised and unsu-
pervised machine learning techniques. A comprehensive feature selection analysis was
conducted using k-means and hierarchical clustering, decision tree, random forest and
Naïve Bayes techniques. The 11 most important attributes were identified, including daily
travel modes around the campus, the presence of green spaces and water, age, quality
of the road surface, daily travel time and cost around the campus, monthly income, pri-
vate vehicle ownership, connectivity between roads, modes of transport to/from campus,
and gender.

The random forest algorithm was developed to predict the usage frequency of SFFES
using the identified important attributes. Simulation-based sensitivity analysis was con-
ducted to gain deeper insights into the characterization and specification of SFFES users.
Young females between 18 and 29 years old with an average monthly income were the most
likely to always use SFFESs for their travels on campus. Males between 45 and 60 years
with a high monthly salary were less likely to use SFFESs. The safety concerns and cost of
renting e-scooters were the most important discouragement factors, while road features
and suitable infrastructure, such as green spaces and separated lanes for scooters, were the
most important encouragement factors. In addition, social distancing during the pandemic
and no parking issues were the most considerable benefits of riding e-scooters from the
respondents’ perspective.

The responsibility of the service providers and authorities is to provide all residents
(especially people with limited transportation access) with accessible, equitable, safe, af-
fordable, and sustainable transportation options. SFFES services are capable of helping to
fill transportation gaps through providing an efficient, affordable alternative to cars for
urban journeys. Scooters can have several benefits such as health, safety, and congestion
opening, as well as some social/environmental equity benefits. To make an effective deci-
sion regarding whether and how SFFESs should be implemented in transportation systems
of future cities, decision makers must first determine the definite role of these vehicles in
the city. This can be determined through finding out the involved actors’ visions of the
future urban transport. As a result, to guarantee sustainable mobility, there is a need for
not only technology and investment, but also fundamental research into related issues.
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Abstract: Ground vibration is one of the most unfavourable environmental effects of blasting activ-
ities, which can cause serious damage to neighboring homes and structures. As a result, effective
forecasting of their severity is critical to controlling and reducing their recurrence. There are several
conventional vibration predictor equations available proposed by different researchers but most of
them are based on only two parameters, i.e., explosive charge used per delay and distance between
blast face to the monitoring point. It is a well-known fact that blasting results are influenced by
a number of blast design parameters, such as burden, spacing, powder factor, etc. but these are
not being considered in any of the available conventional predictors and due to that they show a
high error in predicting blast vibrations. Nowadays, artificial intelligence has been widely used in
blast engineering. Thus, three artificial intelligence approaches, namely Gaussian process regression
(GPR), extreme learning machine (ELM) and backpropagation neural network (BPNN) were used
in this study to estimate ground vibration caused by blasting in Shree Cement Ras Limestone Mine
in India. To achieve that aim, 101 blasting datasets with powder factor, average depth, distance,
spacing, burden, charge weight, and stemming length as input parameters were collected from the
mine site. For comparison purposes, a simple multivariate regression analysis (MVRA) model as well
as, a nonparametric regression-based technique known as multivariate adaptive regression splines
(MARS) was also constructed using the same datasets. This study serves as a foundational study
for the comparison of GPR, BPNN, ELM, MARS and MVRA to ascertain their respective predictive
performances. Eighty-one (81) datasets representing 80% of the total blasting datasets were used
to construct and train the various predictive models while 20 data samples (20%) were utilized for
evaluating the predictive capabilities of the developed predictive models. Using the testing datasets,
major indicators of performance, namely mean squared error (MSE), variance accounted for (VAF),
correlation coefficient (R) and coefficient of determination (R2) were compared as statistical evalua-
tors of model performance. This study revealed that the GPR model exhibited superior predictive
capability in comparison to the MARS, BPNN, ELM and MVRA. The GPR model showed the highest
VAF, R and R2 values of 99.1728%, 0.9985 and 0.9971 respectively and the lowest MSE of 0.0903. As a
result, the blast engineer can employ GPR as an effective and appropriate method for forecasting
blast-induced ground vibration.

Keywords: artificial intelligence; backpropagation neural network; blast-induced ground vibration;
Gaussian process regression
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1. Introduction

Ground vibration is one of the main adverse blasting outcomes that has received
significant attention in the mining and civil industries [1,2]. Ground vibration is known to
have a lot of adverse impacts on the environment (cracks on building structures) and the
stability of pit walls. It is worth mentioning that several factors contribute to the occurrence
of these blast-induced ground vibrations. These factors can be categorized into controllable
factors and uncontrollable factors [3,4]. The controllable factors are those that the blast
engineer has control over and can change. These include the blast design parameters of
stemming length, hole depth, spacing, burden, hole inclination and explosive parameters
of delay timings, a maximum charge per delay, and total charge. The uncontrollable
factors are those the blast engineer has no control over, and they include both geotechnical
and geomechanical parameters such as rock strength, faults, and folds [5–9]. The peak
particle velocity (PPV) is the index for assessing ground vibration induced by blasting [10].
When detonation of explosives takes place, high energy is released in the blast hole which
fractures the rock surrounding the blasthole [11]. Some of the energy released is used to
fragment and displace the rock mass. The rest of the energymove through the ground as
ground vibration andimpacts surrounding structures.

Due to the adverse impact of blast-induced ground vibration, it has always been in the
interest of the blast engineer to model and predicts its occurrence to minimize vibration level
as much as possible. In that regard, a lot of research has been conducted since the 1950s [12]
to develop models for predicting ground vibration arising out of blasting operations. These
models have been developed using empirical techniques through to the use of artificial
intelligence (AI) techniques [13]. These AI techniques have been found to produce more
accurate results than the empirical techniques and hence have received worldwide attention
due to their unique capabilities [14]. AI techniques that have been developed and used in
the prediction of blasting outcomes (ground vibration, air overpressure, and flyrock) are
outlined in Table 1. It is worth noting that all abbreviations used in this work are presented
in the Abbreviations Section.

Table 1. AI Models developed and applied to predict ground vibration, air overpressure and flyrock.

References Methods Application

[3,15–28] FL, SVR, ANFIS, ANN, CART, GPR, ICA,
SVM, ELM, GEP, PSO, BN Ground Vibration Prediction

[29–33] PSO-ANN, FIS, ANN, ICA_ANN,
BIENN, GP, M5DT, SVM, KNN, CHAID Air Overpressure Prediction

[34–39] PSO-ANN, RF, BN, BBO-ELM, ORELM,
ELM, WOA-SVM, GP Flyrock

More recently in ground vibration studies, other researchers have applied evolutionary
and metaheuristic optimization algorithms to optimize simple AI techniques. Some of
these works are presented in Table 2.

Table 2. Hybrid Models developed and applied to predict ground vibrations.

References Hybrid Models

[40–54]

PSO-ANN, ICA-ANN, ABC-ANN, PSO-ANFIS, ICA-FIS,
FFA-ANN, GA-ANFIS, PSO-ANFSI, PSO-XGBoost, GA-SVR,

PSO-SVR, FFA-SVR, GA-ANN, GWO-RVR, BAT-RVR, HHOA-RF,
ICA-XGBoost, ICA-M5DT, HHOA-ELM, GOA-ELM

Table 3 provides a detailed summary of some research on ground vibration prediction.
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Table 3. Input parameters, size of data and AI techniques for prediction of ground vibration.

References Technique
Input Parameters No. of

Datasets
R2

Rock Mass Blast Design Explosives Other

[55] ANN ν, BI, E, Pv HD, B, S VOD, Q H 154 0.9864

[15] FIS - - Q H 33 0.92

[56] ANN HD Q H 162 0.9493

[57] SVM, ANN - - Q H 37 SVM = 0.89,
ANN = 0.85

[16] FIS - B, S, ST Q H 120 0.95

[58] ANN - - Q H 20 0.93

[40] ANN-PSO RD B, S, N, HD,
SD Q H 44 0.94

[59] ANN ST, HD Q H 69 0.957

[60] ANN - HD, ST Q H 115 0.98

[28] ANN-PSO RQD ST, BS, SD PF, Q H 88 0.89

[61] GA-ANN,
ANFIS - - Q H, RD 70 GA-ANN = 0.988,

ANFIS = 0.92

[62]
WNN,

GMDH,
ANN

- HD, NH PF, Q H 210
WNN = 0.712,

GMDH = 0.684,
ANN = 0.729

[63] GP, RSM,
MARS Q H 200

GP = 0.7864,
RSM = 0.7832,

MARS = 0.8056

[64] ANFIS - - Q H 90 0.983

[65] ANN - - Q H 68 0.955

[66] ANN PF, Q H 88 1

[22] GPR, ANN - HD, NH PF, Q H 210 GPR = 0.695,
ANN = 0.688

[49] SaDE-ELM,
ELM, ANN - HD, NH PF, Q H 210

SaDE-ELM = 0.759,
ELM = 0.728,
ANN = 0.729

[67] MARS, ANN - HD, NH PF, Q H 210 MARS = 0.7074,
ANN = 0.6879

[68] LSSVM,
ANN - HD, NH PF, Q H 210 LSSVM = 0.73,

ANN = 0.729

Nevertheless, the application of single AI techniques is still of interest in this ever-
growing technological world. ANN has been developed by [69] to predict the earth surface
deformation. Thus, the predictive capacities of three artificial intelligence algorithms,
backpropagation neural network (BPNN), ELM, and GPR, are investigated in this study
using blasting data from a quarry (Ras Limestone Mine of Shree Cement) in India to
estimate PPV values. A multivariate adaptive regression spline (MARS) approach, as
well as a multivariate regression analysis (MVRA) model, was developed and used for
comparison purposes. Studies have been made to compare the GPR and BPNN [22], MARS
and BPNN [67], ELM and BPNN [70], GP and MARS [63], GPR and MVRA [71] and BPNN
and MVRA [55]. However, little has been done in the literature to compare the predictive
performance of GPR, MARS, BPNN, ELM and MVRA in ground vibration prediction
studies. In that regard, this study is exploratory. It is worth mentioning that the empirical
models developed for predicting blast-induced ground vibration were not considered
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in this study. The reason is that studies done by [17,40,53,57,59,72,73] have proved that
these empirical models do not produce accurate results. The models used in this study
consider seven effective parameters, namely the average depth, a maximum charge per
delay, powder factor, spacing, burden, distance and stemming length, because, as shown
in [5–7], they significantly affect the intensity of ground vibration.

2. Study Site and Data Description

The Ras Limestone Mine of Shree Cement is located 30 km from Beawar City, Ajmer
District, Rajasthan, India. The mining concession of 750.0 ha lies between longitude
E 74◦10′5.96′′ to E 74◦11′9.62′′ and latitudes N 26◦16′57.13′′ to N 26◦15′36.23′′, on toposheet
No. 45 J/3 & 45 J/4 of the survey of India.

The projected production capacity of the mine is 25.3 million tons of limestone per
year. The mining area is generally rocky with no overburden. A general strike of limestone
at Ras Mine is North-South direction and dips in the eastern direction. Limestone has four
major folds and one reverse fault. Limestone strata are massive, blocky and fractured in
different portions of the deposit. HRB 150 (INDUS Make) drills are used for drilling hole
diameter of 165 mm. ANFO with cast booster/slurry explosives and nonel detonators
are used as explosives for blasting limestone. Figure 1 shows a blasting round view with
Figure 2 showing the close-up view of blasted limestone at Shree Cement Ras Limestone
Mine in India.

 

Figure 1. Blasting Round View.

 

Figure 2. Close-up View of Blasted Limestone at Shree Cement Ras Limestone Mine in India.

As a part of this study, for the establishment of the various models described therein,
a total of 101 sets of data were collected from the Ras limestone mine. The data collected
consisted of parameters such as average depth (m), spacing (m), burden (m), powder factor
(t/kg), the distance between the blasting point and the monitoring station (m), stemming
length (m), a maximum charge per delay (kg) and PPV (mm/s). In the creation of the
various models, the input parameters were average depth (m), spacing (m), burden (m),
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powder factor (t/kg), the distance between the blasting site and the monitoring station (m),
stemming length (m), and maximum charge per delay (kg), while the output parameter
was PPV. Table 4 shows the statistical description of the dataset collected.

Table 4. Description of dataset parameters.

Parameter Category Symbol Units Minimum Average Maximum
Standard
Deviation

Average depth

Inputs

AD m 7.76 11.88 14.46 1.64
Burden B m 4.5 4.54 5.5 0.15
Spacing S m 5.5 6.02 7 0.31
Distance D m 250 1356.44 4150 906.21

Powder factor PF t/kg 5.38 6.30 7.83 0.44
Stemming length SL m 3 3.48 4 0.29

Maximum charge per Delay MC kg 73 129.49 180 22.94

Peak Particle Velocity Output PPV mm/s 0.7 4.08 15.19 3.16

The values for the maximum charge per delay, stemming length, powder factor,
spacing, burden, and average depth as statistically described in Table 2 were obtained from
the daily blast plans of the mine. The distance values were calculated using the coordinates
of the blasting face and monitoring locations obtained using a Global Positioning System
(GPS). As shown in Figure 3, the PPV values were monitored using an Instantel Micromate
ISEE Std/XM seismograph [74].

Figure 3. Instantel Micromate ISEE Std/XM seismograph.

It is worth mentioning that the mine has no permanent monitoring location due to
different blasting positions. Thus, in monitoring the ground vibration due to blasting, the
seismograph is positioned using pegs with an arrow on the geophone pointing towards
the blast site. Figure 4 shows the portable monitoring station used by the mine. It is worth
noting that the terrain of the Ras Limestone Mine is generally hilly.

The correlation coefficient matrix shows how strong the interaction between the input
parameters (average depth, burden, spacing, distance, powder factor, stemming length,
and maximum charge per delay) and the measured PPV is, as shown in Table 5.
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Figure 4. Portable ground vibration monitoring station in realistic conditions (at Shree Cement Ras
Limestone Mine in India).

Table 5. Matrix of Correlation Coefficients Between Input Parameters and PPV Measured.

AD B S D PF SL MC PPV

AD 1
B 0.1697 1
S 0.3347 0.8330 1
D 0.1407 −0.0467 −0.0201 1
PF −0.1046 0.5294 0.4905 −0.1069 1
SL 0.7702 −0.1507 −0.0235 0.0595 −0.1329 1

MC 0.9301 0.3514 0.4996 0.1617 −0.2019 0.6145 1
PPV −0.0016 0.1492 0.2160 −0.7503 0.0789 −0.0837 0.0293 1

3. Methodology

In this section, the mathematical description of the different methods applied in this
study will be briefly outlined. Furthermore, the procedure followed to develop the various
models as well as the models’ performance indicators will be outlined.

3.1. Study Steps

A systematic methodology was utilized in this study. First, the data collected were
prepared by removing all outliers and then were partitioned into two sets (training set
and testing set) and normalized into the interval [–1,1]. Then the various models were
built by selecting the model’s hyperparameter. The models were then trained using the
training dataset. Finally, the model’s results were assessed based on the test dataset by some
performance indicators. The performance results were then analyzed to either finetune the
model’s hyperparameter or select the model as optimum. Figure 5 shows the flowchart
applied in this study.
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Figure 5. A Systematic Flowchart for Prediction of Blast-Induced Ground Vibration.

3.2. Mathematical Description of the Different Methods
3.2.1. GPR
Gaussian Process (GP)

GP is a nonparametric Bayesian technique that is used in regression modelling [75].
This GP process can be described as a finite assemblage of a set of arbitrary parameters
that follow a multivariate Gaussian (normal) distribution [76]. That is, for every given
input point from a set of input vectors r = (r1, r2, r3, . . . , rm), the probability distribution
over its function h(r) follows a Gaussian distribution. Thus, a GP h(r) is precisely shown in
Equation (1) as:

h(r) ∼ GP
(
b(r), g

(
r, r′
))

(1)

From Equation (1) it can be deduced that a GP is fully characterized by a covariance
function g(r, r′) and a mean function (MF) b(r) as expressed in Equation (2).

{
b(r) = E[h(r)]
g(r, r′) = E[(b(r)− h(r))(b(r′)− h(r′))] (2)

For the basic GPR, the MF is normally set as 0, however, there many other MFs which
can be applied in building the GPR model [77]. The noted MFs in literature have been
categorized into two kinds, namely: simple and composite. The simple MFs include zero,
one, constant, linear, polynomial, nearest neighbor MFs etc. whereas the composite ones
include: the scaled version, sum, product, power and warped MFs [77]. It is worth noting
that this study adopted an MF with a constant, b.

The covariance function on the other hand is the main component in the development
of the GPR model. The best covariance function is dependent on the data being modelled.
Literature is replete with a number of these covariance functions [70]. However, the notable
ones include: the rational quadratic, matérn class, squared exponential and the exponential
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covariance functions. The most often used covariance function is the squared exponential
covariance function [77,78].

Prediction Using GP

In the case of a regression modelling problem, an output variable q can be approxi-
mated, given function h(r) with an additive noise εi component inherent in the dataset as
shown in Equation (3).

qi = h(ri) + εi (3)

Assuming this noise component εi has a zero mean and variance σ2
n , the prior on the

noisy data is expressed in Equation (4) as:

cov(q) = g
(
r, r′
)
+ σ2

n In (4)

where In is a matrix of the n-dimensional unit.
The GP h(r) (see Equation (1)) is then precisely considered in Equation (5) as:

h(r) ∼ GP
(

b(r), g
(
r, r′
)
+ σ2

n I
)

(5)

It should be emphasized that the GP model training, seeks to ascertain the best possible
hyperparameter set Θ =

[
β, χ, υ2

s , σ2
n
]

that best fits the data sets. This can be done by the
use of a maximum possible method [69] in which the log-likelihood function is maximized
(Equation (6)).

log(p(q|r, Θ )) =
1
2

log
(

det
(

g
(
r, r′
)
+ σ2

n I
))

− 1
2

qT
(

g
(
r, r′
)
+ σ2

n I
)−1

q − n
2

log2π (6)

Of all the maximum likelihood functions available, the conjugate gradient method is
the most widely used [79] and hence was used in this study. It finds the optimal hyperpa-
rameter sets by using the partial differential of the log-likelihood function (Equation (6)) in
relation to the hyperparameter set, Θ as shown in Equation (7).

∂
∂Θi

log(p(q|r, Θ )) = 1
2 qTG−1 ∂G

∂Θi
G−1q − 1

2 tr
(

G−1 ∂G
∂Θi

)
= 1

2 tr
((

ββT − G−1) ∂G
∂Θi

) (7)

where β = G−1q and G = g(r, r′).
Given the joint prior distribution of the training output variable, q at point a and the

value q∗ to be predicted at the test point r∗ expressed in Equation (8), the GPR model is
able to predict q∗ by calculating the posterior distribution p(q∗|r, q, r∗ ) (Equation (9)).

[
q
q∗

]
∼ GP

([
b(r)
b(r∗)

]
,
[

g(r, r) + σ2
n I g(r, r∗)

g(r∗, r) g(r∗, r∗)

])
, (8)

p(q∗|r, q, r∗ ) ∼ GP(q∗, cov(q∗)), (9)

Here q∗ (Equation (10)) is the mean value which is the estimation of q∗ and cov(q∗)
(Equation (11)) is the predictive variance matrix of the test data, which reveals the credibility
of the prediction values [79].

q∗ = b(r∗) + g(r∗, r)
[

g(r, r) + σ2
n I
]−1

(q − b(r)) (10)

cov(q∗) = g(r∗, r∗)
[

g(r, r) + σ2
n I
]−1

g(r, r∗) (11)
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3.2.2. BPNN

BPNN is a widely used AI technique that was developed to mimic the human brain.
In this, there is an input layer that takes impulses from the outside environment as inputs
to the network. These inputs xk are weighted by connecting weights wk and relayed to the
hidden layer. The hidden layer contains processing units called neurons which transform
the weighted input by a transfer function, t. It is noteworthy that biases b are added
to the transfer function before the transformation process. The hidden layer’s output is
subsequently conveyed to the output layer, which is transformed by a transfer function
operating inside the hidden layer. The network’s predicted values are then derived from
the output, ŷ from the output layer as shown in Equation (12).

ŷ = t

(
m

∑
k=1

wkxk + b

)
(12)

In training the BPNN, a training algorithm is used in updating weights and biases
based on the backpropagation error, e (divergence in true and predicted value) as shown in
Equation (13) so as to produce a network with a minimum propagation error.

e = y − ŷ (13)

Several training algorithms have been developed for such purposes. However, the
Levenberg–Marquardt algorithm [80] is the widely used training function due to its high
convergence speed and accuracy and thus was used in this study.

3.2.3. MARS

The MARS algorithm is a non-parametric algorithm developed by [81] to estimate the
complex nonlinear correlation between model inputs and output. This estimating process is
achieved by automatically building a series of linear piecewise regression models through
the use of basis functions, to fit the given data pair.

In the general, the MARS model is of the form precisely considered in Equation (14):

f̂ (z) = β0 +
N

∑
k=1

βkλk(z) (14)

where f̂ (z) signifies the estimated output parameter value, β0 is constant, λk(z) is the
kth basis function, βk signifies the kth basis function’s coefficient and z signifies the input
variable. The basis function act as a hinge function to split the data into separate sections,
which can be modelled individually. Each basis function can be precisely considered in
Equation (15) as:

λk(z) =
Ik

∏
i=1

[
sik ·
(

zv(i,k) − hik

)]
+

(15)

where Ik is the quantity of splits that formed λk(z), sik is the selected sign with value ±, v(i, k)
labels the predictor variable and hik is the knot value on the corresponding input variables.

The MARS algorithm adopts two main steps namely: the forward selection process and
the backward deletion process; to develop its model. In the forward selection process, the
model is initially constructed with a constant basis function. New pairs of basis functions
are thereafter iteratively included in the model to reduce the training residual sum-of-
squares error; to improve the model. However, as many basis functions are added in the
forward process; the model built becomes overfit and cannot generalize well with unseen
data. The backward deletion process is then introduced to remove all redundant basis
functions. It employs the generalized cross-validation (GCV) Equation (16) to evaluate the
performance of individually created models as it eliminates the unwanted basis functions.
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The individually created model with the least value of GCV is then chosen as the optimal
MARS model.

GCV(Q) =

1
H

H
∑

j=1

(
yj − f̂Q

(
zj
))2

(
1 − C(Q)

H

)2 (16)

where yj and f̂Q
(
zj
)

denotes the actual output and predicted values of the training samples,
and H represents the total number of training samples. As shown in Equation (17), C(Q) is a
penalty for model complexity that is proportional to the model’s number of basis functions.

C(Q) = (Q + 1) + pQ (17)

where p is the penalty cost for the optimization of every single basis function which works
as a smoothing variable. The details of MARS as well as the selection of the p are in [76].

3.2.4. MVRA

MVRA is a statistical tool applied to fit a model to establish a linear relation between
a set of input parameters (independent variables) and an output parameter (dependent
variable) [82]. This fitted model can then be used to make predictions on new data. MVRA
works by studying the correlation between the various input parameters and output
parameters to construct simultaneous equations so as to acquire the best-fit equation. It
uses an ordinary least squares fit on the dataset to find the best-fit equation. It forms a
regression matrix in the process of solving simultaneous equations. The regression matrix
is then solved using the backslash operator to obtain the regression coefficient as well as
the intercept [83]. Generally, the MVRA is mathematically expressed in Equation (18) as:

Y = β0 + β2X2 + β3X3 + . . . + βkXk (18)

where β1, . . . , βk are the regression coefficients, β0 is the intercept X1, X2, . . . , Xk is the
independent variable and Y is the dependent variable.

3.2.5. ELM

In 2004 Huang introduces the mathematical model of ELM. The ELM’s basic principle
is based on a single hidden layer feed-forward neural network (SLFN) (Figure 6). Because
of its improved generality, simplicity, and efficient forecasting nature, the ELM has been
employed in a variety of application areas [84].

Figure 6. ELM Architecture.
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The basic premise of ELM is as follows: Given N as the number of hidden units, K as
the number of training samples, and the activation function f ( ) in the hidden units, the
output of the ELM om for the mth training sample is depicted in Equation (19) as:

om =
N

∑
i=1

βi f (wk, bi, xm) m = 1, . . . , K (19)

where bi is the hidden neurons’ bias factor, xm denotes the number of inputs, βi denotes
the output weight vectors and wk denotes input weight vectors. The sigmoid function is
used as an activation function. The sigmoid function’s output is essentially in a range of 1
to 0. To determine the output weights, the linear equation (Equation (20)) is employed.

β = H†Y (20)

where H denotes the output matrix of the hidden layer, H† the Moore–Penrose generalized
inverse [85] of H, and Y denotes the ELM output targets. In Equation (21), Equation (20) is
written as:

Hβ = Y (21)

Equation (22) can be used to define H, β, Y as follows:

H =

⎡
⎢⎣

p(x1)
...

p(xK)

⎤
⎥⎦ =

⎡
⎢⎣

f (w1, b1, x1) · · · f (wN , bN , x1)
... · · · ...

f
(
w1, b1, xj

) · · · f
(
wN , bN , xj

)
⎤
⎥⎦

N×K

, β =

⎡
⎢⎣

βY
1
...

βY
N

⎤
⎥⎦ and Y =

⎡
⎢⎣

yY
1
...

yY
K

⎤
⎥⎦ (22)

In this case, the hidden layer’s feature mapping is p(x). H is the ELM’s output.

3.3. Procedures for Model Construction
3.3.1. Data Selection and Division

In modelling the various approaches presented in this study, the hold-out cross-
validation technique was employed to partition the entire 101 datasets. The datasets were
split into the 80:20 ratio. The first 80% of the total datasets were used as the training set
(representing 81 training datasets). The remaining 20% (representing 20 datasets) were
used as the test set. This strategy was adopted because [86,87] have proved that a ratio of
80:20 or 70:30 will produce accurate prediction results and will not cause overfitting.

3.3.2. Data Normalization

In the data preparation phase, it is expedient that the input parameters be normalized.
This is because the input parameters have different input ranges order and those with
the higher values have the potential to skew the prediction results to themselves. Thus,
to avoid this predicament and give equal chances to each input parameter to influence
the prediction outcome, the input parameters defined in Table 1 were normalized into the
interval [–1,1] [88,89] utilizing Equation (23).

Fi = Fmin +
(Ei − Emin)× (Fmax − Fmin)

(Emax − Emin)
(23)

where Ei signifies the actual data, Emax and Emin refer to the maximum values and minimum
of the actual data, Fi are the normalized data and Fmin and Fmax being the min-max values
of −1 and 1 in that order.

3.3.3. Model Development

For the development of the GPR model, five different models based on the squared
exponential (Equation (24)), exponential (Equation (25)), rational quadratic (Equation (26)),
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matérn 3/2 (Equation (27)), and matérn 5/2 (Equation (28)), covariance function as well as
the functions were developed. Each model had a constant MF.

g
(
r, r′
)
= υ2

s exp
[−‖r − r′‖

2χ2

]
(24)

g
(
r, r′
)
= υ2

s exp
[−‖r − r′‖

χ

]
(25)

g
(
r, r′
)
= υ2

s exp
[−‖r − r′‖

2βχ2

]−β

(26)

g
(
r, r′
)
= υ2

s exp

[
1 +

√
3‖r − r′‖

χ

]
exp

[
−
√

3‖r − r′‖
χ

]
(27)

g
(
r, r′
)
= υ2

s exp

[
1 +

√
5‖r − r′‖

χ
+

5‖r − r′‖2

3χ2

]
exp

[
−
√

5‖r − r′‖
χ

]
(28)

where β is the rational quadratic covariance’s shape parameter, χ is the length scale, and υ2
s

is the covariance function’s signal variance.
The model with the lowest mean squared error and highest correlation coefficient on

the test dataset was chosen as the optimum GPR model. For the BPNN model, a three-
layered architecture was chosen—the first with the input layer, the second with a hidden
layer and the thirdly with an output layer. A single hidden layer was used because it has
been established to be a reliable predictor for any prediction problem [90]. Furthermore,
in the case of hidden and output layers, hyperbolic and linear transfer functions were
selected and used. The Levenberg–Marquardt algorithm was used to train this BPNN
model. According to the suggested values by the previous researchers, a range of 1 to 40 for
neurons was tried and the optimum number was the one that gives the lowest MSE on the
test dataset [91,92]. The optimum number of neurons in the hidden layer that resulted in the
lowest MSE on the test dataset was determined using a sequential experimental procedure
in the construction of the ELM model. In that regard, 1 to 20 neurons were tried. It is worth
stating that, the building of the MARS model, entails the choice of the highest number of
basis functions to be used in the forward selection stage as well as the maximum degree of
interaction. These serve as constraints in the development process. Based on their levels of
interaction, three independent MARS models were built in this study–zero-degree, first
degree and second-degree. Furthermore, a maximum of 20 basis functions were selected
for the forward selection stage. The model with the highest correlation coefficient and
lowest mean squared error (MSE) was chosen as the optimum MARS model. The MVRA
model was developed using the same dataset for the development and testing of the GPR,
BPNN, ELM and MARS models. The MVRA solves the multilinear regression equations
established for the various input parameters and PPV using the least square technique in
order to find the regression coefficient (Equation (18)) for each input parameter as well as
the intercept.

3.3.4. Performance Indicators

The performance of the various models constructed in this study was assessed using
performance measures such as variance accounted for (VAF), correlation coefficient (R),
coefficient of determination (R2) and mean squared error (MSE). These indicators are
precisely shown in Equations (29)–(32) as:

MSE =
1
p

[
p

∑
i=1

(si − qi)
2

]
(29)
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R =

p
∑

i=1
(si − s)(qi − q)√

p
∑

i=1
(si − s)2 ×

√
p
∑

i=1
(qi − q)2

(30)

R2 =

⎡
⎢⎢⎢⎢⎣

p
∑

i=1
(si − s)(qi − q)√

p
∑

i=1
(si − s)2 ×

√
p
∑

i=1
(qi − q)2

⎤
⎥⎥⎥⎥⎦

2

(31)

VAF =

(
1 − var(si − qi)

var(si)

)
(32)

where q represents the mean of the estimated values, qi represents the estimated values,
si represents the measured values, p is the number of observations, while s denotes the
average of the measured values.

4. Results and Discussion

4.1. Developed Models
4.1.1. Gaussian Process Regression

As shown in Table 6, the optimum GPR model that produced the MSE of 0.0903 and
the highest R-value of 0.9986 for the testing dataset, had a matérn 3/2 covariance function
with a noise variance of 0.06434, a length scale of 3.6019, and a signal variance of 7.0339.
This indicates that the GPR-matérn 3/2 can generalize well with unseen datasets relative to
the other GPR models. Hence, GPR-matérn 3/2 model was selected as the best GPR model
in this study.

Table 6. Results of the Five different GPR Models.

Covariance Functions
Training Testing

R MSE R MSE

Matérn 3/2 0.9961 0.0798 0.9986 0.0903
Matérn 5/2 0.9978 0.0452 0.9956 0.1546

Squared exponential 0.9978 0.0458 0.9942 0.1812
Rational quadratic 0.9978 0.0458 0.9942 0.1812

Exponential 1.0000 0.0000 0.9850 0.3008

4.1.2. BPNN

As shown in Table 7, the optimal BPNN model has one neuron in the hidden layered
network. Thus, having an architecture [7-1-1] which means seven input parameters and
one neuron in the hidden layer, and an output layer. This is because it has the lowest MSE
value on test datasets.

Table 7. Results of BPNN for Different Architectures.

Architecture
Number of Neurons

in Hidden Layer

Training Testing

R MSE R MSE

7-1-1 1 0.9929 0.1453 0.9924 0.1714
7-2-1 2 0.9956 0.0902 0.9909 0.2085
7-4-1 4 0.9680 0.6452 0.8312 3.8234
7-5-1 5 0.9247 1.4831 0.9699 0.5622
7-6-1 6 0.9995 0.0105 0.4489 156.8569
7-7-1 7 1.0000 0.0007 0.9830 0.3294
7-8-1 8 1.0000 0.0002 0.9536 0.9092
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Table 7. Cont.

Architecture
Number of Neurons

in Hidden Layer

Training Testing

R MSE R MSE

7-10-1 10 1.0000 1.0244 × 10−21 0.2794 83.2970
7-15-1 15 1.0000 1.97866 × 10−22 0.9293 2.2797
7-20-1 20 1.0000 5.7607 × 10−24 0.9008 2.4538
7-24-1 24 1.0000 1.5760 × 10−23 0.8714 5.0448
7-28-1 28 1.0000 4.9485 × 10−25 0.7352 6.7391
7-30-1 30 1.0000 3.6328 × 10−26 0.7831 5.6888
7-34-1 34 1.0000 5.7972 × 10−20 0.8136 8.5761
7-38-1 38 1.0000 9.7338 × 10−26 0.5893 7.7243
7-40-1 40 1.0000 1.6407 × 10−25 0.6707 16.7280

4.1.3. MARS

As shown in Table 8, the developed MARS model with the first order of interaction
had the highest R values as well as the lowest MSE values on both the training and test
datasets. Hence it was chosen as the optimum MARS model in this study.

Table 8. Results of Different MARS Models.

Interaction Order
Training Testing

R MSE R MSE

Zero Order 0.9924 0.1548 0.9895 0.2605
First Order 0.9944 0.1145 0.9953 0.1038

Second Order 0.9940 0.1220 0.9923 0.1506

In the developmental process of the selected first order of interaction MARS model,
only eight basis functions after the backward elimination stage were used out of the 20 basis
functions employed in the forward selection stage. The eight basis functions of the selected
MARS model and their respective equations are shown in Table 9.

Table 9. The Relationship Between Basis Functions and their Related Equations.

Basis Function Equation

BF1 max (0, D – 850)
BF2 max (0, 850 – D)
BF3 max (0, D – 550);
BF5 max (0, MC – 96.764);
BF6 max (0, 96.764 – MC)
BF7 max (0, D – 1750) × BF5;
BF10 max (0, MC – 119) × BF3;
BF11 max (0, 119– MC) × BF3;

The developed optimum MARS model for predicting ground vibration as a result of
blasting is provided in Equation (33).

PPV = −2.85717 − (0.0211305 × BF1) + (0.0270673 × BF2) + (0.0190881 × BF3)
+(0.033926 × BF5)− (0.0570272 × BF6) +

(
5.46015 × 10−5 × BF7

)
+
(
3.56504 × 10−5 × BF10

)
+
(
2.79304 × 10−5 × BF10

) (33)

4.1.4. ELM

With respect to the experimental results shown in Table 10, the optimum ELM model
developed had 12 neurons in the hidden layer with a sigmoid activation function. Thus,
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having a structure [7-12-1] that represents seven inputs with 12 neurons in the hidden layer
and one output.

Table 10. Training and Testing R and MSE Results for ELM.

Architecture
Number of Hidden

Neurons

Training Testing

R MSE R MSE

7-1-1 1 0.6989 5.2395 0.8328 2.9447
7-2-1 2 0.7562 4.3848 0.8797 2.3808
7-5-1 5 0.9371 1.2477 0.9877 0.4775
7-8-1 8 0.9441 1.1130 0.9624 0.7056

7-10-1 10 0.9910 0.1832 0.9948 0.1832
7-12-1 12 0.9958 0.0870 0.9957 0.1384
7-15-1 15 0.9950 0.2181 0.9930 0.1521
7-18-1 18 0.9836 0.3341 0.9914 0.1989
7-20-1 20 0.9848 0.3080 0.9862 0.2530
7-25-1 25 0.9919 0.1656 0.9738 0.7639

4.1.5. MVRA

The developed MVRA model hsa an R-value of 0.7909 for the training dataset and
0.8310 for the test dataset. With respect to the MSE, the developed MVRA model had a
value of 3.8341 for the training dataset and 3.2456 for the test dataset. Thus, the developed
MVRA model using the training datasets for this study is shown in Equation (34).

PPV = 7.237178 + 0.714419AD − 2.80436B + 3.443905S − 0.02705MC
−2.33861SL − 0.67419PF − 0.00284D

(34)

4.2. Assessment of Models Performance

In evaluating the prediction capabilities of the five predictive models presented in the
study, the statistical performance outcomes of the testing samples are outlined in Table 11.

Table 11. PPV Prediction Results of Various Models.

Model MSE R R2 VAF (%)

GPR 0.0903 0.9985 0.9971 99.1728
MARS 0.1038 0.9953 0.9906 98.8692
ELM 0.1381 0.9957 0.9915 98.5469

BPNN 0.1714 0.9924 0.9848 98.2273
MVRA 3.2456 0.8310 0.6906 66.0603

Notionally, a predictive model is said to be accurate if R and R2 are 1, MSE is 0 and VAF
is 100%. In that regard, it can the seen that the GPR with the MSE value of 0.0903 closest to
0, R values of 0.9985 closest to 1, R2 values of 0.9971 closest to 1 and VAF value of 99.1728%
closest to 100% outperformed all the techniques applied in this study. This shows the
reliability of the GPR in predicting ground vibration. The MARS performed better than the
ELM by having had MSE value of 0.1038 and a VAF value of 98.5469% with the ELM having
an MSE value of 0.1381 and a VAF value of 98.2273%. The ELM also performed better than
the BPNN with MSE and VAF values of 0.2178 and 98.1919%. It is worth mentioning that the
GPR, MARS, ELM and BPNN were superior in predicting ground vibration to the simple
MVRA model which had an MSE of 3.2456, R-value of 0.8310, the R2 value of 0.6906 and
VAF value of 66.0603%. Figure 7 depicts the interpretation of the obtained results.
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Figure 7. Comparison of Predicted and Measured PPV for: (a) BPNN (b) GPR (c) ELM (d) MARS
(e) MVRA.

As ground vibration is one of the most unfavorable environmental effects of blasting
operations which can cause serious damage to neighboring residences and structures, a
precise prediction of its severity is critical to managing and lessening its incidence. The R,
R2 and VAF values for the GPR, MARS, BPNN, and ELM may not vary significantly, but
any predictive model that delivers the most accurate prediction is of paramount relevance
to the blast engineer. Hence the need to develop different models. This study found that
the GPR is more accurate in forecasting ground vibration than the MARS, BPNN, ELM and
MVRA and that it can be used by blast engineers to predict blast-induced ground vibration.

4.3. Sensitivity Analysis

To determine the most and least effective parameters, sensitivity analysis is performed
to examine how the model responds to changes in the input variables with respect to PPV.
Hence, in this study, a sensitivity analysis approach implemented in [93] was adopted.
Here, while keeping the ranges of all other parameters fixed, the mean value of one of the
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input variables is increased (i.e., New mean = Old mean + 5% Old Mean) and subsequently
the amount of changes in the predicted PPV using the GPR model is recorded. The obtained
results are graphically illustrated in Figure 8.
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Figure 8. The Input Parameters and PPV Relationship’s Strength.

As can be seen in Figure 8, increasing the mean values of spacing and maximum
charge per delay, increases PPV. Furthermore, increasing the mean values of distance and
stemming length decreases PPV. Increasing burden slightly increased PPV. Nevertheless,
increasing values of powder factor and average hole depth did not significantly impact the
values of PPV. It can thus be said that the most influential parameters that can affect PPV
greatly are spacing, a maximum charge per delay, distance and stemming length.

5. Conclusions

In this paper, three AI models of GPR, ELM and BPNN were developed and applied to
predict blast-induced PPV. In showing the predictive capabilities of these AI techniques, a
MARS and MVRA model were also developed. In developing and evaluating these models,
101 datasets obtained from Ras Limestone Mine of Shree Cement, India were utilized. Out
of the 101 datasets, 81 were utilized to create the various models, while the remaining
20 were used as test sets for the models that were developed. The input parameters in
the creation of the various models were average depth (m), burden (m), spacing (m),
powder factor (t/kg), the distance between the monitoring station and the blasting site (m),
stemming length (m), and maximum charge per delay (kg), while the output parameter
was PPV. The various developed models were then evaluated using performance metrics of
R, R2, MSE and VAF. The results obtained showed that the GPR model had the lowest MSE
of 0.0903, and the highest R, R2, and VAF values of 0.9985, 0.9971 and 99.1728% respectively,
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indicating that it was superior to the other models in predicting blasting-induced ground
vibration. This was followed by MARS which had MSE, R, R2 and VAF values of 0.1038,
0.9953, 0.9906 and 98.8692% respectively. Then ELM had an MSE of 0.1381, R-value of
0.9957, R2 value of 0.9915 and VAF value of 98.5469. Then the BPNN with an MSE, R,
R2 and VAF of 0.1714, 0.9924, 0.9848 and 98.2273% respectively. The MVRA performed
very poorly as it had, with the highest MSE of 3.2456, and lowest R-value of 0.8310, the R2

value of 0.6906 and the VAF value of 66.0603%. The results obtained show that the GPR
model can be utilized to forecast blast-induced ground vibration in the mining industry.
The sensitivity analysis of the dataset found that spacing, a maximum charge per delay,
distance and stemming length had a great influence on PPV whereas burden, powder factor
and average depth had slight to no influence on PPV.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviations Explanations

ABC Artificial bee colony
ANN Artificial neural network
BA Bat-inspired Algorithm
BN Bayesian network
BBO Biogeography-based optimization
BI Blastability index (compressive strength/tensile strength)
BIENN Brain-inspired emotional neural network
B Burden
BS Burden spacing ratio
CHAID Chi-square automatic interaction detector
CART Classification and regression tree
H Distance between blasting face and monitoring point (m)
XGBoost Extreme gradient boosting machine
ELM Extreme learning machine
FFA Firefly algorithm
FIS Fuzzy inference system
FL Fuzzy logic
GPR Gaussian process regression
GEP Gene expression programming
GA Genetic algorithm
GP Genetic programming
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GOA Grasshopper optimization algorithms
GWO Grey wolf optimization
GMDH Group method of data handling
HHOA Harris hawk optimization algorithm
HD Hole depth
ICA Imperialistic competitive algorithm
KNN K-nearest neighbors
LSSVM Least square support vector machine
M5DT M5′ decision tree
Q Maximum charge per delay
MARS Multivariate adaptive regression splines
ANFIS Neuro-fuzzy inference system
NH Number of holes
N Number of rows
ORELM Outlier robust ELM
PSO Particle swarm optimization
V Poisson’s ratio
PF Powder factor
Pv P-wave velocity
RF Random forest
RVR Relevance vector regression
RSM Response surface methodology
RD Rock density
RQD Rock quality designation
SaDE Self-adaptive differential evolution
S Spacing (m)
ST Stemming length
SD Subdrilling
SVM Support vector machines
SVR Support vector regression
VOD Velocity of detonation
WNN Wavelet neural network
WOA Whale optimization algorithm
E Young’s modulus
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Abstract: Due to the different challenges in rock sampling and in measuring their thermal conductiv-
ity (TC) in the field and laboratory, the determination of the TC of rocks using non-invasive methods
is in demand in engineering projects. The relationship between TC and non-destructive tests has not
been well-established. An investigation of the most important variables affecting the TC values for
rocks was conducted in this study. Currently, the black-boxed models for TC prediction are being
replaced with artificial intelligence-based models, with mathematical equations to fill the gap caused
by the lack of a tangible model for future studies and developments. In this regard, two models
were developed based on which gene expression programming (GEP) algorithms and non-linear
multivariable regressions (NLMR) were utilized. When comparing the performances of the proposed
models to that of other previously published models, it was revealed that the GEP and NLMR models
were able to produce more accurate predictions than other models were. Moreover, the high value of
R-squared (equals 0.95) for the GEP model confirmed its superiority.

Keywords: thermal conductivity; geothermal systems; gene expression programming (GEP);
non-linear multivariable regression (NLMR); P-wave; porosity

1. Introduction

Due to the increase in energy prices and energy demand, energy conservation and
management play a significant role in human lives and governmental policies. Heat as
a form of energy is transferred more rapidly in solid mediums than in gas and liquid [1].
Therefore, knowing the ability of solid materials to transfer heat can aid in conserving
energy more efficiently. Three main indices were introduced for the evaluation of the
thermal behavior of solid materials [2,3] as the following:

• Thermal conductivity (TC, λ), which refers to the material’s heat conduction property;
• Thermal diffusivity (TD, κ), which refers to the material’s heat diffusion property;
• Specific heat capacity (Cp), which links TC and TD using density (ρ), i.e., Equation (1):

κ =
λ

ρ. Cp
(1)

The determination of rocks’ TC is of great importance in geothermal, environmental,
mining, and civil engineering applications [1]. This parameter is critical for the man-
agement of geothermal reservoirs, designing power-saving walls and powerhouses, CO2
sequestration, and underground waste disposal wells [2–6]. It can be measured using heat
input and the temperature gradient of the host rock [7].

The physical and mechanical properties of rocks have a direct relation with TC as
the mineral content [8–10], bulk density (ρ) [3,11], porosity (∅) [2,12], P-wave (pressure-
wave) velocity (Vp) [2,4,13], uniaxial compression strength (UCS) [2,14], saturating fluid
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characteristic [15], quality and geometry of the contact between the grains [16–18], disconti-
nuities [19], temperature [20–23], and atmospheric pressure [24].

In situ measurements of TC need specialized equipment, which is very expensive and
can be time-consuming [25]. However, due to the scale effect, even if the effects of the stress
level, pore fluid pressure, temperature, and permeability of rocks can be considered, the
laboratory values may substantially differ from those of the in situ measurements [24,26,27].
Therefore, in recent years, several researchers proposed methods to estimate the in situ TC by
measuring a rock’s effective properties (e.g., [2,28–31]). Measuring the uniaxial compressive
strength (UCS), density, porosity, and P-wave velocity of a rock is not as difficult as measuring
in situ TC. These properties can also be obtained by laboratory or indirect methods, such as
using the Schmidt hammer for the determination of the UCS [24]. In this case, the following
items can be found without performing TC core experiments at several depths [30]:

• Predicting and/or in-time monitoring of the heat flux;
• Extracting the temperature profile;
• Evaluating the saturation content of the formation.

Özkahraman, Selver, and Isık [2] conducted tests on rock samples that are mostly
used in building constructions. They investigated the relationship between TC and rock
properties, specifically for the P-wave velocity, UCS, density, and porosity. They proposed
equations for the prediction of the TC regarding each of the four above-mentioned parame-
ters, but not by simultaneously considering all parameters (multivariable equation). They
found that TC has a direct relation to P-wave, UCS, and density, whereas it has an inverse
relation to porosity. In another study, Yaşar, Erdoğan, and Güneyli [4] performed laboratory
tests on 12 different rock samples. They found that the type of a rock’s mineral composition
could also affect its TC to a high degree.

In recent years, modeling using machine learning (ML) methods to better fit with
actual measurements has become more popular with scientists than other modeling meth-
ods [32–37]. ML methods are applied to different issues in geotechnical engineering [38–41].
A methodology combining physical modeling and ML was proposed by Assouline et al. [42]
to estimate the apparent ground thermal diffusivity at the national scale. In this methodology,
a model is built with random forests (RF) using the output values from previous diffusivity
estimations, as well as geological, elevation, and temperature features. The model, which
exhibited an acceptable test error of 16.5%, is then used to estimate the apparent diffusivity
across Switzerland. Singh, Sinha, and Singh [3] applied two ML techniques, including arti-
ficial neural networks (ANNs) and adaptive neuro-fuzzy inference (ANFIS), to predict TC
by some series of datasets on rock properties (P-wave velocity, UCS, density, and porosity).
The proposed models had a strong correlation coefficient between the measured and the
predicted TC. Sargam et al. [43] used a multilayer perceptron (MLP) model to study con-
crete’s thermal conductivity. A high degree of prediction accuracy was achieved by MLP.
In this regard, Khandelwal [24] conducted an analysis using a feed-forward backpropaga-
tion neural network and found that the ANNs presented more accurate results than other
techniques did. To predict the TC of Jalore granite, Verma et al. [44] used artificial neural
networks (ANNs), linear regression, support vector regressors (SVRs), and decision tree
regressors (DTRs). According to their analysis, TC was strongly correlated with density,
S-wave velocity, and P-wave velocity. Moreover, it was validated by different AI tools that
thermal conductivity is highly sensitive to rock’s physical properties [44]. In the study done
by Wang et al. [45], TC was analyzed using a convolutional neural network (CNN) and
datasets of temperature fields from lattice Boltzmann method (LBM) simulations based on
three-dimensional sphere-packed porous media. CNN and LBM acquired relative errors for
the effective thermal conductivity of sphere-packed porous media (0.7–22.8%) and irregular
porous media (3.1–16.0%). According to them, CNN is promising for the prediction of the
heat transport properties of porous media with variable boundary conditions and different
morphologies. For predicting geothermal gradient, thermal conductivity, the heat productiv-
ity of rocks, and the crustal/mantle heat flow, He et al. [46] used generalized linear models
(GLM), deep neural networks (DNN), and gradient-boosted regression trees (GBRT). Their
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results showed that the DNN model, with a number of neurons multiplied by the features,
performed better than the other models. The average relative prediction errors for SVM
and DNN were 13.3 and 12.7%, respectively. In a hybrid SVM–DNN approach, the average
relative prediction error decreased to 12.2%. Hajihassani et al. [47] developed an ANFIS and
a linear multivariable regression (LMR) model using 44 datasets that were collected from the
literature. Kang et al. [48] measured the thermal conductivity of various rocks in the Songliao
Basin (China). The correlation between porosity, moisture content, density, P-wave velocity,
and thermal conductivity were investigated. Seven prediction models were developed using
extreme learning machine (ELM), support vector regression (SVR), and backpropagation
neural network (BPNN) algorithms. The results demonstrated that the ELM-based model
had better performance, speed, and accuracy for predicting rock thermal conductivity.

The above-developed computer-aided models (ANNs and ANFIS) are black-box
methods. Some pitfalls remained in these studies [49,50]:

• The relationship among the parameters was not determined, and the most critical
parameters could not be identified [51].

• These models are not usable for field uses or future studies [51].
• The possibility of over-training or over-fitting in the training stages of ANNs and

ANFIS is higher than it is when using white-box methods [51,52].

In order to overcome the disadvantages discussed above and bridge the gap be-
tween ANNs and conventional experimental models, we developed mathematical equa-
tions/models using computer programs that have high confidence compared with other
studies conducted in a similar field. Using multiple related inputs in this study, we devel-
oped functional relationships that can predict a specific output. Two models were proposed
using a gene expression programming (GEP) algorithm and a non-linear multivariable
regression (NLMR). As shown in the numerical experiments by Ferreira [53], the GEP
approach can be seen as an efficient alternative to traditional machine learning approaches.
The developed models were validated using statistical indices, and they were compared
with the results of previously developed models.

2. Establishment of Dataset

In rock mechanics, each test induces costs, and a long period is needed for each phase
of the experimental process. Therefore, it is crucial to reach the desired accuracy by testing
a minimum number of samples [54]. Yamaguchi [55] sought to analyze this problem
using a statistical technique called the “decision of the sample number”. He tested three
different kinds of igneous rocks to evaluate their compressive strength and found that
a 90% confidence level could be acquired by using only ten samples. This study showed
that, due to the high similarity in their physical properties, the mechanical properties of
each primary type of rock (i.e., sedimentary, metamorphic, and igneous) could be similar
to each other. Therefore, testing a small number of samples would be sufficient to obtain
results with a high confidence level [55].

In our study, 50 datasets, including TC, UCS, density, porosity, and P-wave velocity,
were taken from the literature [2–4,24]. The type of these samples was not reported, but
most of them were sedimentary rocks (i.e., by referring to their P-wave velocity and porosity
values). The basic descriptive statistics of the datasets are presented in Table 1.

Table 1. Descriptive statistical distribution of datasets.

Variable Max Min Mean Median St. Deviation

TC (W/m K) 3.01 0.186 1.395 1.2628 0.762
UCS (MPa) 116.9 3.43 61.32 63.258 24.151
P-wave (m/s) 6300 1800 4486.436 4457.5105 1096.66
Density (kg/m3) 2970 500 2508.30 2575.3305 422.851
Porosity (%) 84 0.83 5.91 2.354 12.755
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2.1. Input Parameters for Models

During the preliminary steps of the analysis, using polynomial and power functions,
a series of single-variable regressions were conducted to obtain more details about the
relationship between TC and the independent rock properties. Table 2 summarizes the
results of the single-variable regressions. As seen, the P-wave velocity and density had the
highest and the lowest effects on the TC, respectively.

Table 2. Correlation coefficients of the simple regression models between the TC and the indepen-
dent variables.

P-Wave Porosity Density UCS

Polynomial (1st order) 0.8249 −0.1717 0.3517 0.5463
Polynomial (2nd order) 0.8597 −0.2841 0.5058 0.5928

Power (one term) 0.8587 −0.5912 0.5113 0.5621
Power (two term) 0.8602 −0.614 0.5113 0.5942

To avoid redundancy in the future model generation, the relationships between the
independent variables were investigated. As shown in Table 3, there were no redundancies
between the independent parameters, and the relationships between porosity and density
as well as between UCS and P-wave velocity were significant.

Table 3. Correlation coefficients of the relationships between the independent variables.

P-Wave Porosity Density UCS

P-wave 1 −0.2441 +0.3876 +0.4911
Porosity 1 −0.8094 −0.2578
Density 1 +0.4295

UCS 1

2.1.1. P-Wave Velocity

Interpreting the relationship between P-wave velocity and TC requires considering
the parameters that influence P-wave velocity. Among the most-cited variables that affect
P-wave velocity, mineral composition, lithology, porosity, and confining stress are cited
as the main factors. Gegenhuber and Schoen [56] studied the relationship between TC
and the P-wave velocity for different rock types. They found that TC and P-wave velocity
had a positive and robust correlation coefficient. The mineral composition was the most
effective parameter influencing their relationship. Figure 1 shows the relationship between
TC and P-wave and the mineral composition of rocks. There was no information found
about the mineral composition of samples in the current study. As a result, the curve fitted
to TC versus P-wave velocity did not include this factor (Figure 2).The effect of lithology on
seismic wave velocity in rocks was well-established by Domenico [57]. According to him,
a higher seismic velocity can indicate higher quartz content, which can result in higher
UCS. In addition, more significant confining stress can close microcracks in samples and
improve P-wave transmission. As porosity decreases, P-wave and TC values increase.
Table 3 also demonstrates this phenomenon by showing that P-wave velocity has an inverse
relationship with porosity. As a result, P-wave velocity can inherently represent the most
influential parameter for TC as it has a direct relationship with TC.

Furthermore, according to Freund [58], the type of pore fluid influences P-waves in
porous rocks. In our study, the samples were completely dry. However, this method can be
used in future studies to evaluate TC in saturated conditions.

130



Appl. Sci. 2022, 12, 9187

Figure 1. The points show the measured values, and the curve shows the relationship between TC
and P-wave velocity. The grey arrow indicates the increase of the porosity.

Figure 2. Measured values and relationship between TC and P-wave velocity.

2.1.2. Porosity of Rocks

As shown in Table 2, the porosity had an inverse and significant relationship with
TC, which represented the more effective parameter for the TC of sedimentary rocks [59].
The void ratio of sedimentary rocks (from 1% up to 80%) could be higher than that of the
volcanic and metamorphic ones (at most 1%). The wide range of substances that could
fill the void spaces, such as air, water, chemical sediments, or organic matters, was the
other parameter controlling TC. However, the reported datasets of the TC rocks, which
were used in our study, were obtained in the laboratory, considering dry conditions and
the ISRM standards.
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2.1.3. Density of Rocks

Birch [60] obtained a direct relationship between P-wave and density. Horai [61]
examined 166 rock-forming minerals to find an empirical equation for the TC prediction.
They found an analogous relationship between increasing TC and increasing the density,
as well as increasing the P-wave velocity. In our study, in addition to the results obtained
by Horai (1971), another important issue was observed. Figure 3 shows the TC–density
plot for silica minerals by Horai [61], whereas Figures 2 and 4 present the TC–density and
TC–P-wave plots obtained in this study. The trend line of these plots reached a density of
about 2500 kg/m3, showing that there was a low gradient, while it increased for greater
values of density. As observed in Figure 5, the density of rocks increased with the porosity
decrease, while both of them had an extreme effect on the TC and P-wave velocity.

Figure 3. TC versus density for silica minerals.

Figure 4. Measured values of and the relationship between TC and density.
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Figure 5. Measured values of and the relationship between porosity and density.

2.1.4. Uniaxial Compressive Strength

The strength of rocks is affected by their mineralogy, grain size, and porosity. Rocks
with larger grain sizes and considerable porosity have lower UCS than that of other dense
rocks [2]. Furthermore, an increase in quartz content will increase the strength of rocks as
well as the TC (Clauser and Huenges [59] and Figure 6). Hence, the greater the UCS is, the
larger the rocks’ TC is (Figure 7). Sargam, Wang, and Cho [43] found that concrete mixtures
with higher quartz content had higher TC and compressive strength.

Different groups of researchers (Pimienta et al. [62]; Esteban, Pimienta, Sarout, Delle,
Piane, Haffen, Geraud, and Timms [30]; and El Sayed and El Sayed [12]) proposed models
for TC prediction using only the P-wave velocity and porosity. Although their models had
an acceptable degree of accuracy, the discussions on the role of the rock properties in TC
prediction indicated that these properties were not enough. Other rock properties can also
be interesting and give accurate predictions of TC (rock type, TC, UCS, density, saturating
fluid characteristic, quality, and geometry of the contact between the grains).

Figure 6. Thermal conductivity of basic rock-forming minerals and their compositional relationship
with rocks for volcanic and sedimentary rocks.
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Figure 7. Measured values and relationship between TC and UCS.

3. Gene Expression Programming (GEP)

The genetic algorithm (GA) introduced by J. Holland [63] as a new stochastic opti-
mization technique was utilized in this study, in which Darwin’s theory of “survival of
the fittest” was also used. This algorithm attempts to use genetic operators and a fitness
function in each round of processing to optimize and classify the set of parameters that are
the best solutions for the problem. Whenever the output requirements (e.g., the required
proportion between measured and predicted values) are met, the algorithm is stopped [64].
A newer developed version of GA is genetic programming (GP). It was first introduced by
Koza [65]. GP finds a solution for problems using variable-length sets of parameters, includ-
ing mathematical functions, algebraic operators (function sets), and numbers (terminal sets).
Ferreira [53] introduced gene expression programming (GEP) as a newer version of GP in
which individuals are characterized as linear strings. The five central units that constitute
a GEP algorithm are terminal sets, function sets, fitness functions, operators, and stop
conditions [66]. Moreover, expression trees (ETs) were used to demonstrate fixed-length
solutions in tree shape structures.

The fixed-length chromosome is the most obvious difference between the GEP and
GP. The genomes or chromosomes are linear, symbolic strings of one or more genes with
a fixed length. The genes themselves are composed of primitives (mathematical functions
or variables), which are all fixed-length strings.

As shown in Figure 8, in the initial step, GEP randomly generated a series of chro-
mosome sets that were potential solutions for the problem. In the second step, a set of
chromosomes was expressed as ET. Meanwhile, ETs are interpretable as mathematical
equations. Afterward, a fitness function (which is responsible for calculating the errors in
predictions) evaluated the fitness of each set of parameters. If the expected results were not
met, the best solutions would be selected by a selector function, and the genetic operators
would combine them to generate a better set of parameters. In the following paragraphs,
we will describe the most common operators.

Mutation: Since it enables immediate changes to the program output, the mutation
operator is the most crucial one in the GEP algorithm. To put it another way, it changes
a terminal node into a functional node and vice versa. By choosing two distinct subtrees,
switching them, and then choosing another subtree, two distinct subtrees from different
chromosomes are swapped. Gene inversion: Using this operator, a specific set of genes
in the chromosome’s head is inverted. Transposition: With the help of this operator,
a chromosome’s chosen portion is moved to a different location. Among the different types

134



Appl. Sci. 2022, 12, 9187

of transposition operators, there are the (1) insertion sequence transposition (IS), (2) root
insertion sequence transposition (RIS), and (3) gene transposition.

Figure 8. Flowchart of the GEP algorithm employed in our study.

Finally, if the newly created set of parameters did not have the expected fitness, the
process would be repeated to reach the stopping conditions [67].

4. Results

Two empirical equations were developed in our study to predict TC using the physi-
comechanical properties of rocks (i.e., P-wave, porosity, density, and UCS). The first model
was developed using non-linear multivariable regression (NLMR), and another model
was developed using gene expression programming (GEP). To avoid overfitting during
the training stages, 65% of all datasets were randomly selected for training, and the rest
were used for testing the developed models. The testing results of the developed models
showed how much these models could be generalized for other datasets. Furthermore,
statistical indices (i.e., the coefficient of determination (R2) and the root mean square error
(RMSE)) were used to evaluate the robustness of the developed models for prediction.
The R-square (Equation (2)) showed how reliable a model was for future forecasts, and
the RMSE (Equation (3)) showed how much the standard deviation of the residuals was
(prediction errors).

R2 = 1 −
∑
(

yact − ypre

)2

∑
(
yact − yact

)2 (2)

RMSE =

√√√√∑n
i=1

(
ypre − yact

)2

n
(3)

where ypre is the predicted value, yact is the measured (actual) value, and yact is the average
of the measured values.
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4.1. NLMR Model

Unlike linear regression, the NLMR model could use a wide variety of mathematical
functions to find the best fitting equation between the input and output parameters [54].
However, to avoid model complexity, only polynomial and power functions were used
for the model development. Based on Table 2, the NLMR functions were generated by
combining non-linear single variable equations for each parameter. An optimization
algorithm was used to optimize the NLMR function to achieve the best TC prediction
model. The NMLR model was developed and optimized by a genetic algorithm (GA) using
MATLAB software [68]. GA’s general procedures are similar to GEP’s, which generate
random coefficients for parameters, enhance them by their operators, and try to reach
a higher degree of accuracy. In order to determine the most suitable setting for the GA run,
a series of trial-and-error tests were conducted. As a result, with NLMR functions, the most
accurate TC prediction model was found to be Equation (4). Table 4 shows the performance
indices of this model.

λ = 0.122 × Vp
−0.033 + 0.0013 × Vp − 0.024 × φ−0.18 − 0.0177 × ρ−0.0213 − 0.1171 × UCS0.13 + 0.02153 (4)

Table 4. Resulting performance indices’ values of the proposed NLMR model.

Model Data Status
R2 RMSE

Training Testing Training Testing

NLMR 65% of all for training
35% of all for testing 0.86 0.83 0.27 0.31

4.2. GEP Model

The GEP model was developed through the GenXPro Tools software. This soft-
ware extracts the significant features of datasets, including a high number of variables,
and finds relationships among them with high accuracy. Similar to the process used in
Section 4.1, the same training and testing subsets were used for the GEP model’s devel-
opment. To develop a model for TC prediction by GEP, a simple equation in the form of
TC = f (P-wave, porosity, UCS, density) was first proposed. To acquire the best setting
for the GEP model generation in the initial step, function sets and fitness functions were
then chosen from the study of Zare Naghadehi et al. [69]. Afterward, several trial-and-error
procedures were carried out to obtain the best settings. Having utilized these settings, the
GEP-developed models obtained minimal error percentages. Table 5 presents the GEP soft-
ware settings for the model generation during this study. The procedure of GEP modeling
was illustrated in Section 3.

Table 5. Parameters of the GEP model.

Parameter Value

Number of chromosomes 30
Head size 8

Number of genes 4
Linking function Addition
Fitness function RMSE
Mutation rate 0.044
Inversion rate 0.1

One-point recombination rate 0.3
Two-point recombination rate 0.3

Gene recombination rate 0.1
Insertion sequences transposition rate 0.1

Root insertion sequence transposition rate 0.1
Gene transposition rate 0.1

Function set +,−,×, ÷,
√

x, ex, sin, cos
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The prediction of the GEP performance models was evaluated by both R-square and
RMSE. Several models were developed to find a better model with the lowest RMSE and
highest R-square. Table 6 gives the prediction performance of the selected GEP model.

Table 6. Resulting performance indices’ values of the proposed GEP model.

Model Data Status
R2 RMSE

Training Testing Training Testing

GEP
65% of all for training
35% of all for testing 0.95 0.90 0.17 0.22

The developed models are presented in terms of expression trees (ETs) or as computer
codes. However, these presentations should be interpreted as a form of a mathematical
equation. The extraction of the mathematical equation from ETs is an easy task. The ETs are
read from left to right and bottom to the top. The ET of each gene of the GEP model is shown
in Figure 9a–d, and the mathematical equation of each gene is presented as Equations (5)–(8).
The genes’ equations were linked, and the GEP model was generated using Equation (9).

SubET1 = cos 3

√
φ× cos

(
ρ+ UCS − Vp

10.61 − ρ

)2
(5)

SubET2 = (cos (cos(0.973 − Vp + UCS
ρ−φ

)))
2

(6)

SubET3 =
1

3
√

φ2
+

1
φ3 (7)

SubET4 = cos(cos(−1 − 3
√

tan(2ρ)− UCS + 1.71)) (8)

λ = SubET1 + SubET2 + SubET3 + SubET4 (9)

(a) 

Figure 9. Cont.
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(b) 

(c) 

(d) 

Figure 9. (a) Expression tree of each gene of the GEP model for TC prediction (Equation (5)).
(b) Expression tree of each gene of the GEP model for TC prediction (Equation (6)). (c) Expression
tree of each gene of the GEP model for TC prediction (Equation (7)). (d) Expression tree of each gene
of the GEP model for TC prediction (Equation (8)).
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A better illustration of the predicted values of TC by the GEP model against the
measured TC for training and testing subsets are shown in Figures 10 and 11, respectively.

Figure 10. The correlation coefficient of the GEP model for the 65% training subsets.

Figure 11. The correlation coefficient of the GEP model for the 35% testing subsets.

4.3. Verification and Discussion of the Results

To evaluate the prediction reliability of the developed models, the corresponding
performance indices were compared with those of previously published studies. For the
prediction of the TC using the same parameters and datasets as those used in our study,
two multivariable equations were developed by Khandelwal [24] (Equation (10)) and
Hajihassani, Marto, Khezri, and Kalatehjari [47] (Equation (11)); hence, these two models
were chosen for the verification of the newly developed models. It is noteworthy that there
are also some other efforts in the literature to predict TC by computer-aided methods using
the same datasets [3,24,70,71].

λ = −1.1864 + 0.006 UCS + 0.1493 × ρ+ 0.0134 φ+ 0.0004 Vp (10)

λ = 0.00037 Vp − 0.01653 φ− 0.00058 ρ+ 0.02053 UCS − 0.06072 (11)

139



Appl. Sci. 2022, 12, 9187

These studies used some kinds of methods called black boxes, but these methods
did not have the practical potential to be utilized in applications. In the meantime, as is
evident from Equations (10) and (11), in the developed mathematical equations, only simple
functions are used, but to represent the effect of parameters on TC, complex non-linear
functions are needed. To avoid any confusion made by the selection of training and testing
subsets, the performance indicators of all models were calculated again by substituting
the input variables using all 50 datasets. Thus, the accuracy of the previous model could
be compared exactly to the proposed one in this study. The results of the performance
indicators of the proposed models for all 50 datasets are listed in Table 7.

Table 7. Performance indices and ranking of the new and the previous TC predictor models calculated
for all 50 datasets.

Model R2 RMSE Rank

New GEP model (Equation (9)) 0.92 0.21 1
New NLMR model (Equation (4)) 0.82 0.32 2

MVRA [47] (Equation (10)) 0.74 0.39 3
MVRA [24,71] (Equation (11)) 0.35 0.62 4

Comparing the performance indices of the proposed models and the previously pub-
lished model revealed that the GEP and NLMR models produced more accurate predictions
than the MVRA model did. The high value of R-square (equal to 0.95) and the low value of
RMSE (equal to 0.17) confirmed the higher accuracy of the proposed GEP model. The GEP
was more accurate since it used longer terms and a wider variety of mathematical functions
than the NLMR one did. The existing MVRAs in the literature [24,47,71] were developed
using simple non-linear variables that were regulated using commercial software. Based
on the low correlation coefficients of these models, we concluded that they could not
capture the complexity of the problem and the relationship between TC and the influential
parameters. The NLMR model and the GEP model developed in our study were developed
not only using non-linear mathematical terms to represent each parameter but also via an
extensive trial and error process; thus, a soft computing approach was used to enhance the
accuracy of predictions.

5. Conclusions

In our study, a literature survey was performed to the establishment of the dataset
for estimating the thermal conductivity of rock via several rock properties, including the
UCS, density, porosity, and P-wave velocity of rocks. Several simple variable regressions
were conducted among the rocks’ properties and TC. As a result of simple regressions,
we found that the P-wave velocity and density had the highest and the lowest effect
on the TC, respectively. Further, the relationships between porosity and density and
between UCS and P-wave velocity were then considered significant and meaningful. To
estimate TC via rock properties, two empirical equations were developed. First, a model
was developed using NLMR, and then a second model was developed by GEP. The two
statistical indices R2 and RMSE were utilized to evaluate the robustness of the developed
models in order to predict TC. While the GEP model had a higher value of the R2 (0.95) and
a lower value of RMSE (0.17), a low R2 (0.82) and RMSE (0.32) were obtained for NLMR.
A comparison of the performance indices of the proposed models and of the previously
published models revealed that the GEP and NLMR models were able to produce more
accurate predictions. As a result, the developed model can be used for estimating the TC
of rocks, since performing TC-related tests might be time-consuming and cost-restrictive.
Additionally, despite the fact that our study proposed methods and mathematical models
that significantly increased prediction accuracy, there are some associated limitations. As
mentioned in previous sections, a limited number of datasets were used in our study
because data collection in geosciences is challenging. As a result, we recommend that
future studies focus on rocks and parameter ranges that overlap only slightly with those
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of this study. Our study and similar studies have not quantified the texture of the rocks,
which is one of the most important parameters. The data collection and analysis stages of
future studies should incorporate this parameter.
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Abstract: The seepage parameters of the dam body and dam foundation are difficult to determine
accurately and quickly. Based on the inverse analysis, a Gray Wolf Optimizer (GWO) was introduced
into this study to search the target hydraulic conductivity. A novel approach for initialization, a
polynomial-based nonlinear convergence factor, and weighting factors based on Euclidean norms
and hierarchy were applied to improve GWO. The practicability and effectiveness of Improved Gray
Wolf Optimizer (IGWO) were evaluated by numerical experiments. Taking Kakiwa dam located on
the Muli River of China as a case, an inversion analysis for seepage parameters was accomplished by
adopting the proposed optimization algorithm. The simulated hydraulic heads and seepage volume
agree with measurements obtained from piezometers and measuring weir. The steady seepage field
of the dam was analyzed. The results indicate the feasibility of IGWO in determining the seepage
parameters of Kakiwa dam.

Keywords: inverse analysis; hydraulic conductivities; Gray Wolf Optimizer

1. Introduction

In hydraulic engineering, seepage parameters of dams and dam foundations change
with operating time and loading conditions. The changes in seepage parameters weaken
the strength of the structure and lead to failure. Seepage analysis is commonly used to
monitor the working conditions of dams and dam foundations for the safety of hydraulic
projects [1–5]. The hydraulic conductivity, a key parameter in seepage analysis, is closely
related to the accuracy of the analysis results. Minimized error between the simulated
and actual values of hydraulic conductivity could improve the reliability of the analysis.
In-situ tests have been proven to be helpful in determining the hydraulic conductivity of
dams and dam foundations. The hydraulic conductivity determined by in-situ testing
agrees with the actual value when the test samples are small. However, this method is
time-consuming and costly when there are large quantities of models. Another method
to solve this problem is inverse analysis. The inverse research based on monitoring data
and numerical simulation results demonstrates economy and efficiency. The essence of the
inverse analysis is to determine the hydraulic conductivity by measurements and simulated
results. In the inversion analysis, optimization algorithms are widely applied for iterative
search over a range of hydraulic conductivity values. The optimal hydraulic conductivity
is determined by iteration while minimizing the objective function.

Considering the repetition of the iterative process, optimization algorithms are widely
used to improve efficiency and accuracy in the searching process of the inverse problem.
For example, on the basis of the Radial Basis Function (RBF) neural network optimized
by Particle Swarm Optimization (PSO), Chi et al. [6] constructed an inverse model for the
permeability coefficient of a high core rockfill dam; Combining error Back-Propagation
Neural Network (BPNN) and Genetic Algorithm (GA), Deng and Lee [7] proposed an
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inverse analysis method for determining the displacements. This method was successfully
applied in the displacement identification of the lock profile of the Three Gorges Project,
which led to reasonable results. Zhao et al. [8] developed the differential evolution (DE)
algorithm to determine soil parameters in the field of deep excavation, which improved
the stability of the backtracking parameters. Simulated annealing [9–12] and ant colony
optimization [13–17] have also been extensively used in the inverse problem. Significantly,
much progress has been made in the research field of seepage because of optimization
algorithms [18–25]. Tan et al. [26] proposed a biological immune mechanism-based quan-
tum particle swarm optimization (IQPSO) algorithm to solve the inversion problem of
seepage parameters. Based on back propagation neural network (BPNN) and genetic
algorithm (GA), Zhou et al. [27] developed a new approach for inverse modeling of the
transient groundwater flow in dam foundations, which improved the uniqueness and
reliability of the inversed results and made tractable the large-scale inverse problems in
engineering practices. Zhang et al. [28] proposed an inverse analysis model by using
the genetic algorithm (GA) and finite element analysis technology, to solve the calcium
leaching problems.

Although optimization algorithms are frequently employed for inverse problems,
they suffer from low accuracy, slow convergence, and poor robustness. The Gray Wolf
Optimizer (GWO) proposed by Mirjalili [29] has been shown to be efficient and intelligent
in engineering optimization. Mirjalili [29] compared the performance of GWO with Particle
Swarm Optimization (PSO), Gravity Search Algorithm (GSA), Differential Evolution (DE),
Evolutionary Programming (EP), and Evolutionary strategy (ES). The results demonstrate
that the GWO can provide very competitive results compared to these well-known meta-
heuristics. It has been extensively adopted in various fields due to its simple structure, fewer
parameters, and easy coding implementation. However, it tends to converge to locally
optimal solutions. In addition, suboptimal values could result from completely randomized
initial populations. Therefore, strategies of improvement are proposed as necessary.

Generally, there are three main strategies to improve the GWO, including adjust-
ments of initial populations, convergence factor, and formula of a location update [30].
Pradhan et al. [31] combined the concept of opposition with GWO, initially providing a
uniform population for the algorithm. Long et al. [32] introduced the theory of good point
set to population initialization, which improved the homogeneity of the population. Based
on this, Long et al. [33] considered the dynamics of the iterative process and proposed an
equation of the convergence factor based on the number of iterations. This exponential
function simulates the iterative process and balances the local and global search to a certain
extent. Mittal et al. [34] described the decay process of the parameter by an exponential
function, which leads to improved accuracy for GWO. Salgotra et al. [35] applied the
spiral property from the whale optimization algorithm (WOA) to the GWO, which solves
the premature convergence in the evolutionary algorithm. Mostafa et al. [36] introduced
variational operators to update the location of the individual in GWO and improved the
algorithm’s performance. Gupta and Deep [37] adopted a random wandering strategy to
enhance the accuracy of the algorithm.

A great deal of research has been conducted on the improvement of GWO. However,
local and global search, along with homogenization and randomization, cannot be relatively
balanced by these improvements. GWO based on these strategies is still limited in terms
of efficiency and accuracy. Therefore, there remains potential for improvement across
these dimensions.

Based on the evolution of the GWO, three strategies are proposed to ensure the accu-
racy and efficiency of the algorithm. Initial populations of semi-uniform and semi-random
were proposed for rational initialization. A polynomial-based nonlinear convergence factor
was applied to maintain a balance between global and local search. Weighting factors based
on Euclidean norms and hierarchy were given to dynamically update the wolves’ positions
for jumping out of the local optimum at the late stage of the iterative search [38,39]. The
Improved Gray Wolf Optimizer (IGWO) has been proven to be effective through numerical
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experiments. This algorithm was applied for the inversion model of the Kakiwa Dam
located in Sichuan Province, China. The fitness function is constructed by measurements
of piezometers and measuring weir. The finite element method was used to simulate
the seepage process under the assumption of steady flow. The free tetrahedral grid is
used to construct the two-dimensional mesh of the dam. The finite element calculation is
carried out in COMSOL Multiphysics, while the iterative control and data extraction are
implemented in MATLAB. The objective hydraulic conductivity and the corresponding
fitness value were determined when the maximum number of iterations was achieved. The
seepage field at the dam site was also presented.

2. Improved Gray Wolf Optimizer

2.1. Overview of Gray Wolf Optimizer

The Gray Wolf Optimizer (GWO) is a new group intelligence algorithm considering
gray wolves’ hierarchy and group hunting. There is a strict hierarchy in the gray wolf
population. The population is classified into four levels of status in accordance with the
fitness values of individuals. Wolves in the first level of the population are responsible
for making decisions and leading the group in hunting. Wolves in the second level take
responsibility for helping to manage the group. Wolves in the third level of the group obey
the orders of the first two levels of gray wolves. All the remaining populations are set at
the fourth level.

The hunting process tends to be taken as group action in gray wolf populations, which
could be summarized by tracking, encircling, and attacking. The rank in the wolf pack
changes dynamically with the individual fitness value in the hunting process. The fitness
value can be considered the distance between a wolf and its prey. This means that the closer
the distance to the target, the higher the level of the wolf.

Let α, β, and γ represent the three dominant wolves in rank order. The mathematical
model of gray wolf hunting is established as described in Equation (1).

{
d =
∣∣C·Xp(t)− X(t)

∣∣
X(t + 1) = X(t)− A·d (1)

where d is the perceived distance between the gray wolf and the prey; t represents the
number of iterations. C denotes the coefficient vector; Xp(t) and X(t) are the positions
of the wolf and the prey, respectively; X(t + 1) means the position of the wolf after the
iteration; A stands for the coefficient vector.

The expressions for A and C are shown in Equation (2).
{

A = a·(2m1 − 1)
C = 2m2

(2)

where a is the convergence factor; m1 and m2 are both random numbers between 0 and 1.
It is assumed that the first three levels of gray wolves have a better perception of the

location of the prey. The populations in the fourth layer decide the direction and distance
of the next movement according to the positions of the three dominant wolves. The wolf’s
position in the fourth rank is updated according to Equation (3).

X(t + 1) =
1
3

3

∑
i=1

Xi (3)

where X(t + 1) denotes the position of the wolf ϕ after update; Xi(i = 1, 2, 3) represent the
position vectors of the wolf α, β, and γ, respectively.
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The position vectors of α, β, and γ are expressed by Equation (4).

⎧⎨
⎩

X1 = |Xα − A1·d1|
X2 =

∣∣Xβ − A2·d2
∣∣

X3 = |Xγ − A3·d3|
(4)

where Xi(i = 1, 2, 3) stand for the position vectors of the wolf α, β, and γ, respectively;
Xj(j = α, β, γ) represent the prey position perceived by α, β, and γ, respectively. Ai(i = 1, 2, 3)
are the coefficient vectors; di(i = 1, 2, 3) mean the distance between the three dominant wolves
and the prey.

di(i = 1, 2, 3) could be expressed as Equation (5) follows.

⎧⎨
⎩

d1 = |C1·Xα − X(t)|
d2 =

∣∣C2·Xβ − X(t)
∣∣

d3 = |C3·Xγ − X(t)|
(5)

where Ci(i = 1, 2, 3) are the coefficient vectors; X(t) is the wolf’s position in the t-th iteration.

2.2. Strategies of Improvement
2.2.1. Initial Populations of Semi-Uniform and Semi-Random

The instability of the solution could be increased by completely randomized initial
populations, which leads to unstable results. A novel approach for initializing populations
was presented to balance uniformity and randomness. The solution range is divided into
intervals equidistantly according to the population size. The j-th interval can be expressed
by Equation (6).

Δj =

[
lb +

ub − lb
S

(j − 1), lb +
ub − lb

S
j
]
(j = 1, 2 . . . , S) (6)

where Δj is the j-th interval; lb and ub are the upper and lower bounds of the solution set,
respectively; S is the population size.

Generate a random initial solution in each interval to ensure randomness. The initial
populations are uniformly distributed in the solution space without losing randomness.
The expression of the initial solution is given in Equation (7).

Rj = lb +
ub − lb

S
j + rand()·ub − lb

S
(j = 1, 2 . . . , S) (7)

where Rj is the initial solution of the j-th interval; lb and ub are the upper and lower bounds
of the solution set, respectively; S is the population size; rand() is a random real number
between 0 and 1.

2.2.2. Polynomial-Based Nonlinear Convergence Factor

The way to search for prey is determined by the coefficient vector A. The gray wolf can
be in any position between the current individual and the prey at the next moment when
|A| < 1, indicating that the next position of the wolf will be closer to the location of the prey.
This is considered a local search. When |A| > 1, the next location of the wolf will be further
away from the prey than the current location. Gray wolves tend to search over a wider
area, which is considered a global search. The positions of gray wolves change with a rapid
convergence speed. In this case, the search step size of the gray wolf becomes smaller, thus
achieving a refined search. A varies dynamically with convergence factor a. Considering
good symmetry and smoothness, a function based on a third-degree polynomial was used
to fit the convergence factor a. The expression for a is shown in Equation (8).

a(t) = r1(
t
T
)

3
+ r2(

t
T
)

2
+ r3

t
T
+ r4 (8)
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where a is the convergence factor; ri(i = 1, 2, 3, 4) denote the real-valued parameters. t
represents the number of iterations. T is the maximum number of iterations.

The constraints are given here, as presented in Equation (9).
{

a(0) = 2, a(T) = 0, a
(

T
2

)
= 1

a′(0) < 0, a′(T) < 0
(9)

Thus, a could be indicated by Equation (10).

a(t) = 4+2r3
T3 t3 − 6+3r3

T2 t2 + r3
t
T + 2

−3.0 × 10−3 < r3 < 0
(10)

Figure 1 shows the nonlinear convergence factor evolution at different values of r3.
The maximum number of iterations is set to 500. The three values of r3 are −2 × 10−3,
−1× 10−3, and −2× 10−4. The convergence factor values for the three curves decrease with
the number of iterations. With the increase of iterations, the cut-off point between global
and local search is reached when T0 = 250. Global and local searches could be equally
divided and effectively balanced in this condition. In addition, the curve corresponding
to r3 = −2 × 10−3 is lower than the other two curves at the early search stage and higher
at the late search, indicating its focus on local search and adequate step size. Considering
the drawback of converging to the local optimum in GWO, the curve corresponding to
r3 = −2 × 10−3 was chosen to ensure the property of jumping out of the local optimum in
the study.

Figure 1. Nonlinear convergence factor based on third-degree polynomials.

2.2.3. Weighting Factors Based on Euclidean Norm and Hierarchy

In the GWO strategy, the position of the gray wolf is updated by the average formula.
One limitation of this strategy is that the leadership of the wolf located in the first rank
is not considered. Another weakness is that the weighting factors are kept constant as
the iteration proceeds. Weighting factors based on Euclidean norms and hierarchy are
proposed to overcome this problem, as shown in Equation (11).

⎧⎪⎪⎨
⎪⎪⎩

ρ1 = ‖X1‖
‖X1‖+‖X2‖+‖X3‖

ρ2 = ‖X2‖
‖X1‖+‖X2‖+‖X3‖

ρ3 = ‖X3‖
‖X1‖+‖X2‖+‖X3‖

(11)

Here ρi (i = 1, 2, 3) are the weighting factors of the first-three level wolves, respec-
tively; Xi (i = 1, 2, 3) are the Euclidean norms of the first three levels, respectively.
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The weights of the wolf α, β, and γ are multiplied by 0.6, 0.3, and 0.1 to reinforce
the wolf pack hierarchy. The formula for updating the location of the gray wolf can be
improved, as Equation (12) states.

X(t + 1) =
6ρ1·X1 + 3ρ2·X2 + ρ3·X3

10
(12)

where ρi (i = 1, 2, 3) are the weighting factors of the first-three level wolves, respectively;
Xi (i = 1, 2 , 3) represent the position vectors of the wolf α, β, and γ respectively.

2.3. Numerical Experiment of Algorithm Performance

A numerical experiment was performed to verify the effectiveness of IGWO. Six typical
functions were selected for simulation in the experiments, including Sphere, Rosenbrock,
Quartic, Rastrigin, Ackley, and Griewank. Table 1 shows the mathematical expressions,
dimensions, and search ranges of these typical functions. Sphere, Rosenbrock, and Quartic
are single-peak functions. Especially Quartic is a multidimensional flat bottom function
with random disturbances. The single-peak functions are mainly applied to determine
the accuracy of IGWO. Rastrigin, Ackley, and Griewank are multi-peaked functions that
tend to cause the algorithm to converge to a locally optimal solution. The performance
to jump out of the local optimum could be tested reasonably for IGWO. In addition, the
experimental results of IGWO, SGWO [33], and GWO are compared in the simulation.

Table 1. Test functions in the numerical experiment.

Test
Function

Mathematical
Expression

Dimension
Search
Range

Sphere D
∑

i=1
x2

i
30 [–100, 100]

Rosenbrock D−1
∑

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

30 [−30, 30]

Quartic D
∑

i=1
ix4

i + random[0, 1] 30 [−1.28, 1.28]

Rastrigin D−1
∑

i=1

[
x2

i − 10cos(2πxi) + 10
] 30 [−5.12, 5.12]

Ackley −20exp

(
−0.2

√
1
30

D
∑

i=1
x2

i

)
− exp

(
1

30

D
∑

i=1
cos2πxi

)
+ 20 + e 30 [−32, 32]

Griewank 1
4000

D
∑

i=1
x2

i −
D
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600]

To ensure a fairness, the population size is 30, and the maximum number of iterations
is 500 for IGWO, SGWO, and GWO. The three algorithms were performed 30 times inde-
pendently for each function, and the average values were taken as the simulation results.
The results of the numerical experiments are given in Table 2. The optimal values simulated
by IGWO are closer to the theoretical optimal solution than the results of the other two
algorithms. Among them, the simulation results of Sphere, Rastrigin, and Griewank are
equal to the theoretical values, revealing the high accuracy of IGWO.

Figure 2 presents the convergence curves of the six test functions with IGWO, SGWO,
and GWO. The convergence curves of all three algorithms continue to decrease as the
number of iterations increases. In particular, the convergence curve of IGWO decreases
significantly faster than the corresponding curves of the other two algorithms, indicating
the progress of IGWO in terms of running time. Furthermore, for the multi-peaked test
function, the convergence curve of IGWO continues to decrease while the search of the
other two algorithms converges to a local optimum solution. This result demonstrates the
ability to jump out of the local search and converge to the global optimum value in IGWO.
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Table 2. Results of the numerical experiments.

Test
Function

Optimization
Algorithm

Simulated Optimum
Value

Theoretical
Optimum Value

Sphere
IGWO 0

0SGWO 6.45 × 10−33

GWO 1.34 × 10−26

Rosenbrock
IGWO 2.89 × 10

0SGWO 2.70 × 10
GWO 2.72 × 10

Quartic
IGWO 2.04 × 10−4

0SGWO 2.83 × 10−4

GWO 1.40 × 10−3

Rastrigin
IGWO 0

0SGWO 5.68 × 10−14

GWO 1.71 × 10−12

Ackley
IGWO 4.44 × 10−15

0SGWO 1.51 × 10−14

GWO 1.11 × 10−13

Griewank
IGWO 0

0SGWO 1.16 × 10−2

GWO 2.84 × 10−2

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure 2. Convergence curves of the test function with the three optimization algorithms: (a) Sphere;
(b) Rosenbrock; (c) Quartic; (d) Rastrigin; (e) Ackley; (f) Griewank.
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3. Inverse Model of Seepage Parameters

3.1. The Objective Function

The aim of the inverse model is to determine the hydraulic conductivity for each
partition while minimizing the value of the objective function. The objective function was
constructed by hydraulic head and leakage in this paper, improving the reliability of the
simulation results. Suppose that the hydraulic conductivity of each medium is isotropic.
Denote by K = [k1, k2, . . . , kn] the combination of hydraulic conductivity, in which ki
represents the hydraulic conductivity of the ith media. The number of piezometers and
measuring weirs are indicated by m and n, respectively. H = [H1, H2, . . . , HM] is expressed
as a sequence of hydraulic head measurements. Similarly, Q = [Q1, Q2, . . . , QN ] is a series
of leakage volume measurements. Hi(K) and Qj(K) are the simulated hydraulic head and
leakage volume by finite element method. The mathematical model for the inverse problem
is established, as shown in Equation (13).

min f =

(
M
∑

i=1

‖Hi(K)−Hi‖2
2

‖Hi‖2
2

) 1
2

+ w
(

N
∑

i=1

‖Qj(K)−Qj‖2
2

‖Qj‖2
2

) 1
2

s.t. Kmin ≤ K ≤ Kmax

(13)

Here Kmin and Kmax are the lower and upper bounds of hydraulic conductivity values,
respectively. The range of hydraulic conductivity can be roughly determined by geological
data and engineering experience. w is a weight factor for balancing the hydraulic head and
the leakage volume. In this paper, the simulated leakage value is estimated by the flow
rate and area of the overwater cross-section. It is suggested that the value of the weighting
factor is set small considering an error between the simulated value and the measurement
at the shoulder part of the dam. Zhou [23] compared the relative errors of hydraulic head
and leakage volume at different weights. The results show that the simulated values are
in good agreement with the measurements, and the minimum value of relative error is
reached at the condition of w = 0.02. The finding was applied in this paper.

The objective combination of hydraulic conductivity was obtained by the searching
process. The search process was accelerated by IGWO. The objective combination of hy-
draulic conductivity was applied to simulate the seepage field of the dam during operation.

3.2. Procedure of the Inversion Model

The procedure of the inversion model could be summarized by specific steps. The
steps are as follows.

Step 1: Set initial parameters of IGWO. The number of search agents S, the maximum
number of iterations T, and the bounds of hydraulic conductivity values, Kmin and Kmax,
are determined initially.

Step 2: Initialize the population. Equation (1) is applied for initialization, ensuring
that the initial populations are uniformly distributed in the solution space.

Step 3: Calculate the fitness of individual gray wolves. The three gray wolves with the
top fitness values are selected as α, β, and γ.

Step 4: Update the position. Determine the distance of the gray wolf from the three
dominant wolves, respectively. Orient the location and calculate the weighting factors of
the three wolves. The position of the gray wolf at the fourth level is updated according to
Equation (12).

Step 5: Iterative Judgment. Determines whether the maximum number of iterations
has been achieved. If not, skip to the third step. Otherwise, end the iterative procedure.
Output the objective hydraulic conductivity and the corresponding fitness value.

Step 6: Positive verification. The combination of the target hydraulic conductivity
is substituted into the finite element model for positive verification. Compare the cal-
culated and monitored values of hydraulic head and leakage volume and evaluate the
reasonableness of the simulation.

Figure 3 presents the flow chart of the model.
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Figure 3. Flow chart of the inverse model based on IGWO.

4. A Casebook Study

4.1. Project Overview

Located on the Muli River in the Sichuan Province of China, the Kakiwa Hydropower
Station is a project focused on power generation and ecological preservation. The location
of the Kakiwa Dam is indicated in Figure 4.

  

Figure 4. The location of the Kakiwa Dam.

A concrete panel rockfill dam is selected as the barrage in the pivot project, with a
maximum height of 171 m. The crest width of the dam is 11 m. The dam mainly consists of
a concrete face slab, blanket area, cushion area, transition area, rockfill area, drainage area,
ballast area, and grout curtain. The normal storage level is 2850.00 m, the calibration flood
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level is 2852.20 m, and the dead water level is 2800.00 m. Figure 5 shows the maximum
cross-section of the dam body.

Figure 5. The max cross-section of the dam body.

A total of 37 piezometers were installed for seepage monitoring of the dam body
and dam foundation. Among them, the piezometer PDB−13 is located downstream of the
curtain. PDB−24 − PDB−27 are installed near the original ground line. Figure 5 presents the
locations and elevations of these piezometers. The water measuring weir is installed at the
downstream cofferdam axis of the dam.

The hydraulic conductivities of the five media, including the grout curtain, the top
cover layer, the second cover layer, the moderately weathered zone, the slightly weathered
zone, and the fresh bedrock zone, are limited to reasonable ranges and needed to be
optimized. The parameter ranges are given in the results of the simulation. In addition, the
hydraulic conductivities of other media are indicated in Table 3.

Table 3. Hydraulic conductivity of stationary medium.

Material
Hydraulic Conductivity

(m/s)

Upstream face slab 1.00 × 10−6

Bedding material 9.90 × 10−4

Transition material 7.50 × 10−2

Main rock-fill zone 8.70 × 10−1

Secondary rock-fill zone 9.80 × 10−1

Upstream blanket 1.00 × 10−5

4.2. Analysis of Monitoring Data

Figure 6 shows the monitoring data of the piezometers around the grout curtain
and the water measuring weirs during the operation period. The hydraulic head on the
downstream side of the curtain is relatively consistent with the upstream water level. The
hydraulic head measured by the piezometer lags behind the upstream head, which is called
the hysteresis effect. The measured hydraulic head rises less than the upstream water
level. In addition, the value of the piezometer PDB−24 is approximately 2776 m, and the
difference among the values of piezometers PDB−24 to PDB−27 is not significant, indicating
the efficiency of the impermeable curtain.

154



Appl. Sci. 2022, 12, 8519

  
(a) (b) 

Figure 6. Measurements of hydraulic head and seepage discharge during storage period: (a) hydraulic
head; (b) seepage volume.

Similarly, the seepage volume is consistent with the upstream water level. The value
of seepage volume at the dam body is relatively small, with a stable value of 0.41 m3/s in
the operation period.

It is assumed that the seepage field is stable for simplicity. A period with a slight
variation of upstream and downstream reservoir levels and long duration was selected for
the inverse model, which could minimize the seepage lag effect to a certain extent. As seen
in Figure 6, the upstream pool level is relatively stable from 10 July 2017, to 27 October
2017, with values between 2849.55 m and 2850.06 m. Therefore, this period was chosen for
the inversion model.

4.3. Computation Model

IGWO was used for iterative search. The maximum number of iterations is 200, and
the initial population size is 30. The simulation is performed 20 times independently
by IGWO, and the average values of simulated hydraulic conductivity are taken as the
target results.

The multi-physics field simulation software COMSOL Multiphysics was applied in
this simulation. A two-dimensional finite element mesh was created for inverse modeling
each medium’s hydraulic conductivity. The seepage properties of the dam body and
foundation were analyzed. The free tetrahedral grid is applied to build the mesh, composed
of 11,635 domain elements and 14,400 vertices. The maximum and minimum widths of the
cells are 20 m and 5 m, respectively. A right-hand cartesian coordinate system is constructed
with the x-axis pointing to the downstream reservoir and the z-axis pointing to the sky
vertically. The upstream and downstream are both extended by 2.5 times the dam’s height
on the x-axis. The depth of the foundation is taken as 400 m. In addition, the upstream and
downstream water levels are, respectively, set at 2850 m and 2702 m. The two-dimensional
finite element mesh is presented in Figure 7.

Figure 7. 2D FE mesh of Kakiwa dam.
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4.4. Results of the Simulation
4.4.1. Hydraulic Conductivity

The hydraulic conductivity of each medium was determined by IGWO. The hydraulic
conductivity of each medium at the dam site is given in Table 4. All the results are within
the corresponding search range.

Table 4. Hydraulic conductivity of each medium determined by IGWO.

Material
Hydraulic Conductivity

(m/s)
Search Range

(m/s)

Grout curtain 3.00 × 10−5 1.00 × 10−6–1.00 × 10−4

The top cover layer 5.33 × 10−2 1.00 × 10−3–1.00 × 10−1

The second cover layer 2.67 × 10−3 1.00 × 10−4–1.00 × 10−2

Moderately-weathered zone 5.50 × 10−4 1.00 × 10−5–1.00 × 10−3

Slightly weathered zone 1.10 × 10−4 1.00 × 10−5–1.00 × 10−3

Fresh bedrock zone 3.10 × 10−5 1.00 × 10−6–1.00 × 10−4

4.4.2. Hydraulic Head

The results of hydraulic conductivity were substituted into the finite element model
for positive analysis to verify the reasonableness of this simulation. The simulated values
of the hydraulic head and leakage volume at the monitoring points were obtained and
compared with the corresponding measurements. Absolute and relative errors of hydraulic
head and leakage were calculated. A contour of the hydraulic head in the dam site area
was also predicted.

The mathematical expression for the relative error of the hydraulic head is given
in Equation (14):

δH =
|Hi − H|

ΔH
× 100% (14)

where δH is the relative error of the hydraulic head; Hi and H represent the simulated and
measured values of the hydraulic head, respectively. ΔH denotes the difference in water
level between the upstream and downstream sides, taken as 148 m.

Table 5 compares the calculated and measured hydraulic head values at the monitoring
points. The calculated values at the monitoring points are relatively close to the measure-
ments. Among them, the simulated values at the piezometers PDB−24 − PDB−27 show a
very high consistency with the corresponding measurements. The maximum value of the
absolute error −1.41 m, and the maximum value of the relative error is 0.95%. Meanwhile,
the value of the hydraulic head decreases with the increase of seepage distance.

Table 5. Comparison between the calculated and measured hydraulic head values.

Monitoring
Points

Measured
Hydraulic Head

(m)

Simulated
Hydraulic Head

(m)

Absolute Error
(m)

Relative Error
(%)

PDB−13 2736.17 2735.74 −0.43 0.29
PDB−24 2718.67 2717.51 −1.16 0.78
PDB−25 2718.28 2717.16 −1.12 0.76
PDB−26 2718.21 2716.80 −1.41 0.95
PDB−27 2716.61 2716.24 −0.37 0.25

4.4.3. Leakage Volume of the Dam Foundation

The seepage volume is estimated by the flow velocity and the overflow surface. The
formula for calculating leakage volume is given in Equation (15).

Qi =
�

vBdxdz (15)
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where Qi is the simulated seepage volume; v means the flow rate at the vertical spillway
surface; B represents the length of the dam taken as 355 m.

The relative error for the leakage volume is determined by Equation (16).

δQ =
|Qi − Q|

Q
× 100% (16)

where δQ is the relative error of the dam body leakage; Qi and Q are the simulated and
measured values of the dam body leakage, respectively.

Table 6 shows the comparison of the calculated and measured values of the dam body
leakage during the stable upstream water level. The simulated leakage values are in good
agreement with the actual measurements, showing the accuracy of the IGWO strategy and
the reliability of the simulation.

Table 6. Comparison between the simulated and measured values of the dam body leakage.

Leakage
Measured

Values
(m3/s)

Simulated
Values
(m3/s)

Absolute Error
(m3/s)

Relative Error
(%)

Dam body 0.40 0.38 −0.02 5.00

The leakage measurements are averaged over the simulation period. The relative
error of the calculated seepage volume is 5.00%, demonstrating the positive performance
of IGWO in the simulation.

Figure 8 presents the contour map of the hydraulic head at the dam site. The dis-
tribution of contours is in accordance with seepage characteristics. The results show the
accuracy of the simulation and the reasonableness of the calculated hydraulic conductivity.

Figure 8. Distribution of seepage contours at the maximum section of the dam.

5. Discussion

The hydraulic conductivities of the dam and dam foundation change with operation
and loading, affecting the effectiveness and safety of the hydraulic project. An Improved
Gray Wolf Optimizer for solving the problem that hydraulic conductivity is not easily
determined, is introduced in this paper.

The objective hydraulic conductivity was determined based on IGWO. The obtained
hydraulic conductivities of the dam and dam foundation were applied in the finite element
positive analysis. The results show the effectiveness of IGWO in determining hydraulic
conductivity. It is suggested that IGWO could be used to obtain reasonable simulation
results in similar inverse problems.
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The hydraulic conductivity of each medium in the dam body and dam foundation
simulated in this paper was obtained with a stable upstream water level. In fact, the
upstream water level of a reservoir varies continuously with the operating conditions and
purpose. The hydraulic conductivity will also change with the monitored values. It is
worth noting that IGWO is still applicable under this condition.

6. Conclusions

Aiming at balancing the local and global search of GWO, along with uniformity and
stochasticity, IGWO was proposed in this paper. The improvement of IGWO in accuracy
and running time was indicated in numerical experiments. IGWO was used in the inverse
modeling of the hydraulic conductivity of the Kakiwa dam. The hydraulic head and
leakage were used to set up the objective function. Errors in the hydraulic head and leakage
were calculated. The steady seepage field was analyzed in the application case. The main
conclusions of this paper are given as follows.

(1) The performance of IGWO is improved due to the three strategies. A novel
approach for initialization contributes to populations of semi-uniform and semi-random.
The polynomial-based nonlinear convergence factor is selected to keep the equilibrium of
the local and global search. Weighting factors based on Euclidean norms and hierarchy
helps to update the position of the wolf dynamically.

(2) A numerical experiment was conducted to demonstrate the performance of IGWO.
The optimal values obtained by IGWO are closer to the theoretical solution than the results
of the other two algorithms. The results of the experiment demonstrate the feasibility and
efficiency of IGWO.

(3) The target combination of hydraulic conductivity was obtained by IGWO. The
values of hydraulic conductivities were substituted into the finite element model. The
values of the hydraulic head and leakage quantity at the corresponding measurement
points were obtained. The maximum values of absolute and relative errors of the hydraulic
head were—1.41 m and 0.95%, respectively. The absolute and relative errors of the seepage
volume were—0.02 m3/s and 5.00%, respectively. The results of the application case show
that the inversion model and the algorithm are reliable and efficient.
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Abstract: False messages sent by malicious or selfish vehicle nodes will reduce the operation effi-
ciency of the Internet of Vehicles, and can even endanger drivers in serious cases. Therefore, it is
very important to detect malicious vehicle nodes in the network in a timely manner. At present, the
existing research on detecting malicious vehicle nodes in the Internet of Vehicles has some problems,
such as difficulties with identification and a low detection efficiency. Blockchain technology cannot
be tampered with or deleted and has open and transparent characteristics. Therefore, as a shared
distributed ledger in decentralized networking, blockchain can promote collaboration between trans-
actions, processing and interaction equipment, and help to establish a scalable, universal, private,
secure and reliable car networking system. This paper puts forward a block-network-based malicious
node detection mechanism. Using blockchain technology in a car network for malicious node identi-
fication algorithm could create a security scheme that can ensure smooth communication between
network vehicles. A consensus on legal vehicle identification, message integrity verification, false
message identification and malicious vehicle node identification form the four parts of the security
scheme. Based on the public–private key mechanism and RSA encryption algorithm, combined
with the malicious node identification algorithm in the Internet of Vehicles, the authenticity of the
vehicle’s identity and message is determined to protect the vehicle’s security and privacy. First, a
blockchain-based, malicious node detection architecture is constructed for the Internet of vehicles.
We propose a malicious node identification algorithm based on the blockchain consensus mechanism.
Combined the above detection architecture with the consensus mechanism, a comprehensive and ac-
curate verification of vehicle identity and message authenticity is ensured, looking at the four aspects
of vehicle identification, accounting node selection, verification of transmission message integrity
and identification of the authenticity of transmission messages. Subsequently, the verification results
will be globally broadcast in the Internet of Vehicles to suppress malicious behavior, further ensure
that reliable event messages are provided for the driver, improve the VANET operation environment,
and improve the operation efficiency of the Internet of Vehicles. Comparing the proposed detection
mechanism using simulation software, the simulation results show that the proposed blockchain-
based trust detection mechanism can effectively improve the accuracy of vehicle node authentication
and identification of false messages, and improve network transmission performance in the Internet
of Vehicles environment.

Keywords: blockchain technology; intelligent technology; internet of vehicles; malicious nodes;
identification algorithm

1. Introduction

Establishing an intelligent transportation system using the Internet is a wise choice.
This kind of intelligent system is used in the field of transportation: using the real-time
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interactions between cars, trains and boat vehicles to coordinate data on their trajectory
and running state can to help alleviate the frequent road safety accidents, improve the ro-
bustness of network security, etc. As a more advanced system in the field of transportation,
the intelligent transportation system has good prospects for the future development of
intelligent transportation. The intelligent transportation system could combine computer
science, sensors, the Internet of Things and AI technology and be applied to the delivery
of goods, service management and vehicle production. This would further strengthen
the relationship between vehicles, roads and users, accelerate improvements in driving
safety, reduce road jams and reduce the energy losses caused by the construction of a new
transportation management system. The connection of the vehicle, the driver and the road
is the core role of the intelligent transportation system. At the same time, the intelligent
transportation system can also provide the corresponding service management agency.
According to the analysis of relevant research conclusions, the use of intelligent transporta-
tion system can provide more intelligent road information for locomotives, and can also
promote the vehicles can easily obtain the state information in front of any road, and make
more effective use of road infrastructure and other resources. A large number of scholars
in the field have shown that, with the use of intelligent transportation system technology,
traffic jams in the next 20 years will be reduced to 40%, the existing road blockage problems
will be effectively solved, the traffic accident rate could be reduced by 8%, and the resulting
accident deaths would be reduced by 30~70%, which is of great significance for the healthy
growth in domestic transportation and stable economic development. In recent years, the
safety problems with Internet of Vehicles systems have gradually become a research hotspot.
The Internet of Vehicles has the characteristics of complex dynamic topology changes, rapid
vehicle movement, and unreliable transmission, which means that both the internal and
external network are faced with security threats, such as malicious attacks. This means
that solving the network security problems has become a great challenge. In recent years,
VANET has been proposed as the basis of ITS to improve traffic efficiency and ensure the
safety of vehicles and drivers. As VANET is characterized by its dynamic topology, high
mobility, and variability, it is vulnerable to various attacks originating from malicious nodes.
Malicious nodes in the Internet of Vehicles will broadcast and forward false traffic warning
messages for selfish purposes, which will lead to traffic congestion, threaten people’s lives,
damage the entire VANET network function and affect its performance. They also discard
received messages or refuse to help other vehicle nodes to forward messages. To enable
the vehicle to operate normally and communicate on the road, it is necessary to detect
false information in a timely fashion. Therefore, ensuring VANET security has become a
pervasive area of research, and issues related to identifying malicious nodes and creating
messages remain the focus of VANET security research.

2. Application of Regional Chain Technology in the Internet of Vehicles

The deep integration of the Internet of Things, computers, mobile communication and
other technologies with intelligent transportation promotes the wide application of vehicu-
lar communication and computing equipment in vehicles. This also transforms vehicles
from traditional vehicles to mobile devices with computing communication abilities. This
makes communication between vehicles possible, leading to the birth and rapid rise of
Internet of Vehicles technology. The Internet of Vehicles is essentially a dynamic commu-
nication system for communication between vehicles and mobile public networks. The
Internet obtains the data that are shared with the vehicle, and analyzes data on the vehicle
and road, vehicle and the driver, the driver and the driver, and the relationship between
the driver and the third-party service providers. According to the analysis, the existence of
the above relationship can be used to solve the urban traffic problems, and thus help to
manage the urban intelligent transportation. In recent years, the safety problem of Internet
of Vehicles systems has gradually become a research hotspot. The Internet of Vehicles
has the characteristics of complex dynamic topology changes, fast vehicle movement, and
unreliable transmission; therefore, both the internal and external network are faced with
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security threats such as malicious attacks, which mean that solving the network security
problems has become a great challenge.

The network environment of the Internet of Vehicles is very complex and changeable.
The authentication and trust detection methods of on-board and network (VANET) technol-
ogy are not applicable to the Internet of Vehicles network environment, because this can only
handle a small number of simple event requirements, and cannot effectively store, query
and trace big data on vehicles. With the development of blockchain technology as a new
technology solution, the problems regarding storing and querying big data on the Internet of
Vehicles can be solved. The blockchain core technology consensus mechanism can ensure the
security and reliability of data transmission in the network. In actual intelligent transporta-
tion applications, recording transactions’ traceability through the blockchain can effectively
and strongly ensure behavior traceability and responsibility backtracking, achieve fairness
and justice, and promote the efficient operation of various affairs. In practice, the security
risks in the Internet of Vehicles are still very large, so we need to pay closer attention to the
harm caused by malicious node attacks. The rational use of blockchain technology is of
great significance to the process of detecting malicious nodes in the Internet of Vehicles. The
vehicle status can be globally broadcast to fundamentally suppress malicious behavior, thus
ensuring that the driver is provided with reliable event messages.

Therefore, to reduce the security threat problem and network security problems,
and protect the security and privacy of vehicles, it is necessary to improve the malicious
node identification of the Internet of Vehicles, as well as to reasonably determine vehicle
identity and the authenticity of the information. Based on this, this research chose to use a
malicious node identification algorithm, focusing on the implementation of malicious node
identification algorithms in the Internet of Vehicles under regional chain technology, and
judge the main value of malicious node identification algorithms in the Internet of Vehicles.

3. Research Status Quo

Many domestic and foreign researchers have put forward corresponding detection
and identification methods to resolve network security problems in the Internet of Vehicles.

This paper applies blockchain technology to the Internet of Vehicles to detect and
identify malicious nodes, and solve the problems in the traditional Internet of Vehicles
trust model. Abboud, K., Omar, H.A., et al. [1] proposed a method using RFID technology,
which is implemented by verifying the vehicle’s interactions with the cloud while driving
on the road. According to the statistics, the vehicle will use electronic tags to send the data
requiring authentication to the cloud storage, and the cloud storage will authenticate the
vehicle data after receiving the information, and broadcast the information in the cloud
network. Lu Zhongmei, Chen Wei, et al. [2] proposed a vehicle privacy protection method
that combines the certificates issued to a vehicle by a trusted agency and pseudonyms
authorized by a trusted agency to build an intelligent privacy authentication system to
jointly authenticate a vehicle’s identity. However, due to the frequent communication
problems in the Internet of vehicles, the certification requirements cannot be met efficiently
and in a timely manner. These schemes enable the vehicle to communicate on the road
according to the pseudonym produced by the authority, and authenticate the identity of the
vehicle through interaction with the RSU. However, these schemes are relatively dependent
on the RSU, which leads to the problem of excessive RSU workload [3–5].

The application of blockchain in the Internet of Vehicles derives from the following
research conclusions. VANET traditional certification and trust detection methods have
many problems, which make it difficult to adapt them to the complex networking network
environment. Traditional security mechanisms can only deal with a few simple events,
cannot store vehicle big data, and struggle with problems regarding queries and traceability.
The rise of blockchain technology means that it could be a way to solve the problems with
new technology for networking security [6]. Arushi A, Kumar YS, et al. [7] propose a certified
and secure data transmission algorithm to ensure that real information is communicated
between nodes. The authors also introduced blockchain to some of the connected car
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services to improve efficiency. However, the vehicle needs to be registered at a centralized
authority, and the system still has a single-point-of-failure problem. Wagner M, Mcmillin B,
et al. [8] proposed a new blockchain architecture with local, physically verified transactions.
With this new architecture, they proposed a protocol that protects vehicle self-organized
networks (VANET) that do not regularly communicate with the RSU or other infrastructure
components. In addition, they proposed a way to overcome the real-time challenges of
applying Bitcoin’s blockchain to disconnection by changing the transaction validation
mechanism and blockchain management process, and adding a trusted CA.

In sum, the security risks in the Internet of Vehicles are great, and the harm caused
by malicious node attacks cannot be ignored. Existing methods to reduces these risks
in the Internet of Vehicles have been effective in their target applications, but they also
face several technical challenges, including the need to improve detection accuracy and
enhance privacy protection. Some scholars have applied blockchain technology to the
Internet of Vehicles to solve these security and trust problems. Blockchain technology leads
to decentralization and means that information cannot be tampered with, and the existing
blockchain technology is used to detect malicious nodes. However, the accuracy of security
messages and the malicious node detection rate need to be further improved. Therefore,
the reasonable use of blockchain technology to detect malicious nodes in networks requires
further research and exploration [8].

4. Application of Blockchain Technology in the Internet of Vehicles

4.1. Blockchain Technology

Blockchain technology is essentially a distributed database that stores a large amount
of data, with specific transactions on each block, and notes the time when messages occur.
They are connected in chronological order to form a chain structure [9]. A block in a
blockchain is simply called a list of records, while a blockchain can be regarded as a record
chain composed of many blocks, forming a public ledger that records a lot of encrypted
data. The ledger is publicly shared among individual users. Each transaction is recorded
into a new block, in which the recorded data are unchangeable and time-linked [10].
Finally, together, these new blocks form a complete blockchain in chronological order. The
blockchain provides secure shared databases, ledgers, and transaction logs without being
managed by central trusts [11–13]. The consistency and synchronization of the data in a
blockchain are achieved through a consensus mechanism, in which a group of participants
in a distrust peer network collaborate in a fully transparent way and only accept valid
transactions [14]. However, Bitcoin was originally designed without taking privacy into
consideration. By viewing the ledger, any public key can be used to trace back to one’s real
identity [15].

4.2. Structure of the Malicious Node Identification Algorithm

The ways in which vehicles communicate with each other using VANET can be divided
into the following three main categories of message transmission: beacon messages, early
warning messages, and entertainment messages [16–19]. Warning messages have the highest
priority level among the three messages, mainly because they may threaten the performance
of the Internet of Vehicles, and even affect the personal safety of drivers and passengers.
In essence, the main function of early warning messages is to send road safety warning
messages to the vehicle as soon as possible when an emergency occurs, making them is very
important for safe driving [20]. This study mainly focuses on the authenticity of traffic early
warning messages in VANET. The warning message report table is shown in Table 1.
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Table 1. Warning message report form.

Event ID Event Type
TTLEvent (Lifecycle of
the Warning Message)

Ranmsg (Transmission
Range of the Alert Message)

I Traffic congestion Tht-I Thd-I
II Traffic accident Tht-II Thd-II
III Road construction Tht-III Thd-III
IV Road icing Tht-IV Thd-IV

Emergencies are divided into the following four categories: traffic jams, traffic ac-
cidents, road construction, road icing [21]. The lifetime and transmission range of the
alert message for each emergency are recorded. After the analysis, different types of early
warning messages were found to have different life cycles and transmission ranges for
the four categories of traffic jams, traffic accidents, road construction and road icing. The
scheme structure diagram expression is shown in Figure 1.

Figure 1. Schematic structure diagram.

4.3. Authentication Algorithm

There are several authentication algorithms: authentication based on shared key, au-
thentication based on biological features, and public key encryption algorithm. Different
authentication methods also have different security levels. This paper adopted the authen-
tication method based on the shared key, which means that the server side and the user
share one or one set of passwords. When the user requires authentication, the user submits
a password that is jointly owned by the user and the server, either by entering the password
or through a device that holds the password.

A set of vehicles in the Internet of Vehicles are set to V, obtaining:

V =
{

V1, V2, V3, . . . Vi, Vj . . . Vn
}

In the above formula, any vehicle source sending a message node is represented by
Vj (source sending message node), and Vi (target receiving message node) represents the
target receiving the message node. After Vj sends a message to Vi, Vi carefully verifies the
integrity of the message, and then produces a series of interactive behaviors with other
entities in the network [22,23]. If the alert message issued by Vj is acquired by Vi, then V
sends out the collected messages. The information is sent to the nearest roadside unit (RSU)
in the communication range, and the RSU must identify the information and determine
whether the information is legal. After the data package sent by Vi is received by RSU, the
first step in judging the message’s credibility is make an accurate judgment of whether
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Vi has a legal identity [24–29]. When combined with CA (authentication center in the
network), the detailed authentication verification process is as follows:

Step 1. For the RSU within the vehicle communication range, vehicle Vi transmits the
request, based on which the message received from vehicle Vj is recognized [30].

Step 2. After the RSU receives the request, a pseudonym containing vehicle Vi is sent
with a PIDv instead. A random number (L) is reported to the nearest surrounding CA for
authentication. L is randomly produced by a linear congruence generator (LCG). The LCG
calculation is described as follows [30]:[

L0 = d
Lr+1 = (A × Lr + Z)mod(M)

In this formula, d represents the seed value, the current system time is its set initial
value, the increment value is Z, multiplier is A, modulus size is M, and Z and M are prime.
Generally, M will take the power square of 2.

Step 3. If the CA receives information from the RSU, the RSU will conduct a traceability
search of the real situation of vehicle Vi using vehicle mapping, according to the pseudonym
of vehicle Vi in the first step, and obtain the real vehicle identity information accordingly.
An audit result (report) is produced after the search. In the audit results, if the false vehicle
information is backed up in the results, then vehicle Vi is legal; if there is no record, then
vehicle Vi is an illegal vehicle. Then, a random key, L, is encrypted using a private key
(PRCA) to generate a session key Kn. After the encryption of a random key L, a private
key (PRCA) is used to generate a session key, Kn. After using Kn for report encryption,
EKn [report] is obtained. After completing the above work, the RSU receives an encrypted
message. By taking the result of the public key (PKj) encryption under the RSU, the
corresponding generating encryption function is as follows (E represents the encryption
function, and the encrypted ciphertext is C):

E : C = EPBRSU [EPBRSU [Kn]‖Ekn [report]]

Step 4. When the inspection results after CA encryption are transmitted to the RSU, the
RSU uses the private key (PRRSU) to decrypt the generated ciphertext C, corresponding to
EPBRsu [Kn] and EKn [report]. Based on the above, the RSU key is used to decrypt EPBRsu [Kn],
and the obtained session key is Kn. After the same operation, the report views the audit
results of CA, to make the final judgment on whether vehicle Vi is legal. The detailed
decryption function is as follows (D represents the decryption function):

D : [EPBRSU [Kn]‖Ekn [report]] = DPBRSU [C]

After completing the above four steps, the RSU can make an accurate judgment
regarding the legitimacy of vehicle Vi.

4.4. POS Consensus Algorithm Improvement

Compared with other traditional consensus algorithms, the main purpose of the
nodes in BCIR is to fake the message verification using computer technology. Therefore,
this study set up a new consensus mechanism POS1 algorithm for VANET: (1) If RSU
wants to participate in the selection of bookkeeping node, it will register with CA the first
time the selection of a new bookkeeping node is initiated, and will submit a part of the
deposit according to the standard. This can become a candidate and enter the next step of
bookkeeping selection. (2) All RSU applications are accepted by the CA, and the full energy
value of the RSU will be updated. The algorithm updates are as follows:

Part 1. No matter which RSU has its own initial energy value in the blockchain
network, in VANET, the RUS performs the very diverse work. For example, it actively
participates in campaign billing nodes; assists CA in verifying vehicle identity information;
forwards packets and assists in verifying vehicle messages; broadcasts messages; etc. Due
to the differences the behavior of the participating network, the energy value of the RSU
will also change. For example, in VNAET, when RSU broadcasts information, the energy
will undergo a changing consumption trend. To give RSU enough encouragement, RSU
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needs to receive enough energy return, and the reward should be greater more than the
amount of energy consumed to continue smoothly.

Part 2. The size of the RSU registration number needed to participate in the accounting
node election is the variable, where any RSU corresponds to ITS own k value (energy value).
If the number is 0, then k = 0.

Part 3. In the new round with several bookkeeping choices, CA records any registered
RSU as Rn; the corresponding k is added 1 on the original basis to obtain the energy value
of (k + 1).

Part 4. If the energy value before Rn registration is set to Egy0− l , then the deposit
corresponding to Rn registration is ΔEgy0− l , corresponding to the energy value that is to
be reduced. The calculation is as follows:

ΔEgy0− l =
k

2(k + 1)
Egy0− l

Part 5. The latest RSU energy value Egyn−1 obtained after successful registration and
deposit is as follows:

Egyn− l = Egy0− l − ΔEgy0− l

Part 6. As long as the RSU is registered, the above steps should be followed before
updating the latest energy value.

(3) For the latest energy values of all current RSU candidates, CA needs to create
energy value statistics. According to the set threshold ThEgy, if the latest energy value
Egyn−1 is lower than ThEgy, then CA will eliminate the RSU that should have been Egyn−1
the first time, and the RSU will withdraw from the election. If the latest energy value
Egyn−1 is greater than ThEgy, then the RSU continues and accepts the next election.

(4) The equity value corresponding to the RSU that is already owned in the election
lineup should be calculated at this stage. The equity essentially refers to the assets or energy
owned by the node. In other words, if the RSU behavior is very active, more interest will
be obtained. If the behavior of the RSU is very negative, fewer benefits will arise.

Part 1. Based on the blockchain conditions, we set the exit time of the equity proof
mechanism (POS) as ΔTPOS. At every period of exit time, the accounting function will be
stimulated accordingly. If the RSU needs to select the accounting node but the interval
ΔTPOS time has not met the standard, then, during this process, the RSU will submit the
application to the CA the first time, and the application content will immediately trigger a
bookkeeping election immediately. At this time, the CA in the network will be the first to
elect a new accounting node.

Part 2. As there are obvious differences between the network behaviors in which each
RSU participates, the corresponding energy values also show a constantly changing trend.
CA needs to record each RSU, that is, to record the energy value corresponding to the RSU
in each stage from the first round to the last round. The energy value corresponding to
the RSU of each round is set to Egyx, and the energy value of the RSU differs at different
moments. Therefore, the energy value of RSU cannot be uniformly estimated for a certain
round, that is, the energy value does not have a certain value. In the current study, the
energy value of the RSU in each round was considered as the energy value of the last
moment corresponding to the RSU in this round.

Part 3. While participating in the election, each RSU is counted by CA from the
first registration election. RSU participates in and initiates many elections in the latest
election, and the number of elections is recorded as J. Following the above steps, CA
will calculate the energy value corresponding to the RSU in round J. In addition, the
corresponding equity value in each RSU election is recorded as StakeR−l, and StakeR−l’s
calculation formula is as follows (in the formula, a represents the return growth rate in the
POS algorithm mechanism, and the constant a generally takes a value of 0.05; Egyx means
the corresponding energy value for each round of RSU, which is set to Egyx):

167



Appl. Sci. 2022, 12, 8362

StakeR−l =
J

∑
x=1

Egyx × (1 + a%)J

Part 4. If round F is set as a particular number, five rounds are generally selected during
the calculation process, and the energy value of the corresponding RSU is in a stable state.
Then, in the process of RSU equity value calculation, we the J value corresponding to RSU is
chosen as zero. The corresponding J value should not be considered until the corresponding
energy value of RSU changes. This is because, if the RSU does not participate in the network
transaction for a very long time, the corresponding energy value will be in a stable and
constant state; in other words, the energy value does not change. The F round is set as a
specific round, and the equity value and J value are considered, aiming to stimulate RSU
activity, and stimulate RSU to more actively participate in the election and network behavior.

Part 5. Following the above steps, CA calculates the equity value of all candidate
RSU candidates and determines that the accounting node of this round is the maximum
equity value corresponding to RSU. After determining the new accounting node, CA will
immediately update the energy value corresponding to the RSU. By setting the energy value
of the RSU after the J election as EgyJ, the energy value of the RSU after the (J − 1) election
is recorded as EgyJ−1; the refund proportion of the deposit is expressed by Pr; the reward
issued by the successful RSU accounting node is recorded as ΔEgyreword; the attenuation

coefficient is e
1

ΔTJ−1− J . The correct update process is as follows:

EgyJ = EgyJ−1 · e
1

ΔTJ−1− J + ΔEgyconsume.Pr + ΔEgyreword

To express the RSU revenue in the form of an increased energy value, the actual reward
is calculated as follows:

ΔEgyreword =
1 − ΔEgyJ−1

2
CA will also reset the J value of the accounting function RSU. After this round, the J

value of the RSU is counted again. When the RSU obtains the bookkeeping function, CA will
also reset ITS J value, and the J value of the RSU will start counting again after this round.
The following algorithm details the incentive consensus mechanism (see Algorithm 1).

Algorithm 1 Consensus mechanism POS-I

Input: Egy0, k, ThEgy, ΔTPOS, a, J, Pr;
Output: committer peer;
1: RSU sends a request to CA:
2: BCCA initializes an election for selecting committer peer;
3: for all RSU participating in the election do
4: Rl submITS ΔEgyconsume−l =

k
2(k+1) Egyo−l as deposit;

5: Calculate Egye−l = Egyo−l − ΔEgyconsume−l;
6: if Egye−l < ThEgy Then;
7: Rl cannot participate in the election;
8: else

9: Rl is regarded as a candidate;
10: end if

11: Calculate StakeR−1 =
J

∑
x=1

Egyx × (1 + a%)J ;

12: end for

13: Selecting the node whose has Maxstake as the committer peer;
14: Calculate ΔEgyreword =

1−EgyJ−l
2

15: Calculate EgyJ = EgyJ−1 × e
1

ΔTJ−1−J + ΔEgyconsume × Pr + ΔEgyreword,
16: Output committer peer.
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5. Results Analysis of the Malicious Node Identification Algorithm
of Blockchain Technology

5.1. Simulation Software Setting

The experimental simulation verifies the performance of the false message detection
mechanism on the ONE simulation platform. ONE is a discrete-time engine open-source
simulation platform written in the Java language. It is a simulation software that is mainly
used to design and evaluate the routing mechanisms of data forwarding and message
communication in the Internet of Vehicles. The ONE simulation platform contains a variety
of simulation modules, which will be updated during each simulation process to realize the
whole simulation function. The main functions of the ONE simulation platform include:
mobile modeling of nodes, sending, receiving and processing routing messages, node
communication, visual representation of results, etc. This platform has various different
communication protocols to simulate the process of message transmission and generate
the trajectory information during the transmission process. All ONE’s components are
independent of each other. ONE simulates the network simulation environment to test
and optimize the security scheme performance. In the simulation experiments, a motion
model based on the shortest path map was used in the ONE to simulate vehicle behavior
on the road. The model initially places nodes in random locations, but selects a specific
destination for all nodes in the map. Vehicle nodes are not arbitrary and include various
types: emergency vehicles (police cars and ambulances), vehicles with fixed lines (buses
and trams), and randomly distributed vehicles (private cars and taxis). There are two
scenarios in the simulation experiments: low flow density and high flow density. Each
simulation was run 20 times on average. In the experiment, the number of malicious
vehicles that sent forged or forged messages in VANET ranged from 10% to 45%. When
malicious vehicles exceed 45%, VANET’s efficiency will dramatically decline, and it will be
unable to provide any reliable services.

• Suppose an attacker cannot attack more than half the vehicles on the network.
• Authorities and the RSU are equipped with customized hardware with high comput-

ing abilities.
• Certification bodies and RSU are equipped with custom hardware, with a much higher

computing power than general computers.
• As long as the public or private keys are not stolen, encryption technology can be used

to provide secure communication channels between entities.

5.2. Evaluating Indicator

According to the requirements of the Internet of Vehicle malicious node identification
algorithm, we selected the following indicators to verify the performance and results of
the algorithm.

The first indicator is the false alarm rate (FAR), detecting the number of messages
identified as false using the Ni representative, and detecting the number of false messages
identified as true information using the Nj representative, from which FAR can be obtained:

FAR =
Ni
Nj

The second indicator is the missed detection rate (MDR), where the number of detected
true messages identified as false messages is replaced by Nmiss, while the number of detected
messages identified as true messages is N. From this, the MDR is obtained:

MDR =
Nmiss

N
Simulation experiments were carried out to verify the results of the malicious node

identification algorithm of the Internet of Vehicles, and FAR and MDR were used to evaluate
the results of the Internet of Vehicles’ trust evaluation algorithm. The independent variable
taken by the experiment is the proportion of malicious vehicle nodes in all vehicle networks,
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and the results of the malicious vehicle node identification algorithm are evaluated for
low-traffic-density and high-traffic-density conditions.

Whether the traffic density is low or high, the malicious node identification algorithm
is less than 20%, and the FAR decreases as the percentage increases. At the same time, a
significant trend towards decreased MDR also occurs with increasing percentage. Details
are shown below. In the presence of a false information attack and black hole attack, the
anti-attack performance of the malicious message detection algorithm is analyzed using
several details: delivery rate (Dr), average end-to-end delay (Ad), and network overhead (Or).

First, Dr is calculated. The actual meaning of Dr is the ratio of the number of messages
that are successfully sent to the target node or the designated location to the total number
of messages that are generated and sent by the source vehicle nodes in the network. The
calculation formula is as follows:

Dr =
Na

Nt

In the formula, the total number of messages generated and sent by the source vehicle
node is Nt, the number of messages successfully sent to the target vehicle or designated location
is Na, and there is a proportional relationship between the communication quality between
the nodes and Dr. In other words, the higher the Dr, the higher the communication quality,
meaning that the overall network performance is very good. If the Dr is lower, then the
communication quality is lower, meaning that the overall network performance is very poor.

Second, Ad is calculated. Ad is a very important indicator when evaluating the anti-
attack performance of malicious message detection algorithms; by using the Ad evaluation
method, how the additional overhead of security measures increases latency in the routing
process can be described. The actual meaning of Ad is the average time taken to pass a
message between two nodes

Ad =

N
∑

n−1
Tn

N
In this formula, the total number of sent messages is recorded as N; the total time taken

to send each message during N messages is
N
∑

n−1
Tn. After analysis, an inverse relationship

was found between Ad and the overall simulation performance; that is, if Ad is shorter, the
corresponding performance is better, and if Ad is longer, the corresponding performance is worse.

Finally, Or is calculated. Or is another very important indicator when evaluating the
anti-attack performance of the malicious message detection algorithm. This refers to the
ratio of the total number of nodes involved showing the target node the total number of
nodes involved in forwarding the message to the nodes required for transmission. The
calculation formula is as follows:

Or =
Numrelay

Numtotal

In the formula, the number of nodes involved in forwarding the packet is recorded as
Numrelay; the number of all nodes required during the transmission is recorded as Numtotal .
After analysis, an inverse relationship was found between Or and performance. That is, the
smaller Or, the better the network performance of the corresponding algorithm, the fewer
network resources that are occupied and the lower the number of additional nodes that
are occupied. However, the larger the Or, the worse the corresponding algorithm network
performance, indicating that more network resources are occupied and more additional
nodes are occupied.

5.3. Simulation Software and Simulation Environment
5.3.1. Simulation Software

Simulation software: the ONE
The ONE is a discrete-time engine open-source simulation platform written in the Java

language. This is a simulation software, which is mainly used to design and evaluate the
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routing mechanism of data forwarding and message communication in the Internet of Vehicles.
The real-time interactive graphical interface of the ONE simulation is shown in Figure 2.

 

Figure 2. Interactive graphical interface of the emulator.

The emulator involves the classification and number of node types in the network, the
path model of node movement, and the number of messages generated by the interaction,
which are all displayed in real time in the interface. The ONE simulation platform contains
a variety of simulation modules, which will be updated in each simulation process to
realize the whole simulation function. The main functions of the ONE simulation platform
include: mobile modeling of nodes, sending, receiving and processing routing messages,
node communication, visual representation of results, etc. In this simulation platform,
various different communication protocols simulate message transmission, and generate
the trajectory information during the transmission process. All of ONE’s components
are independent of each other. The main structure and modules of the ONE simulation
platform are shown in Figure 3.

 
Figure 3. Simulation platform architecture.
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5.3.2. Simulation Environment

ONE is used to simulate the network simulation environment to test and optimize the
performance of the security scheme. In simulation experiments, a motion model based on
the shortest map path was used in ONE to simulate vehicle behavior on the road. The model
initially places nodes at random locations, but selects a specific destination for all nodes
in the map and generates the shortest path from the start to end point using the Dijkstra
algorithm. This experiment was implemented on the Helsinki city map, and a scene size of
4500 m × 3400 m was selected for the simulation experiments, as shown in Figure 4.

 

Figure 4. City map of Helsinki, Finland.

In the simulation experiment, the vehicle nodes communicate messages through the
IEEE 802.11p communication protocol. The specific experimental simulation parameters
are shown in Table 2.

Table 2. Experimental simulation parameters are set.

The Parameter Name Parameter Values

Simulation Scene Range (m2) 4500 × 3400

Simulation Time (s) 0–43,200

Vehicle mobility model Shortest path movement model

Vehicle node type grouping (group) 11

Total number of vehicle nodes (individual) 200–600

Vehicle communication range (m) 10

Node speed (m/s) 2

RSU quantity (s) 10

Vehicle Cache Size (M) 40

Packet lifecycle (min) 15

There are two scenarios in the simulation experiments: low flow density and high flow
density. Each simulation was run 20 times on average. In the experiment, the number of the
malicious vehicles that sent forged messages or forged messages in VANET ranged from
10% to 45%. When malicious vehicles exceed 45%, VANET’s efficiency will dramatically
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decline, and it will be unable to provide any reliable services. Therefore, this extreme case
is not considered in this paper.

The locations of all nodes are shown in Figure 5.

Figure 5. The location of all nodes.

To smooth the simulation experiment, some necessary assumptions in the theoretical
algorithm and simulation experiments are presented as the basis of the proposed scheme.

• Suppose that an attacker cannot attack more than half of the vehicles in the network.
• Authorities and the RSU are equipped with customized hardware with high comput-

ing abilities.
• Certification bodies and RSU are equipped with custom hardware with a much higher

computing power than general computers.
• As long as the public or private keys are not stolen, encryption technology can be used

to provide secure communication channels between entities.

5.4. Simulation Results

To objectively and effectively analyze the malicious node detection mechanism algo-
rithm based on blockchain, the simulation experiment is divided into two groups, looking
at the number of vehicles for low-flow-density and high-flow-density scenarios. The re-
sults of each experiment are the average of the data obtained from 20 simulations. The
simulation experiment takes the proportion of malicious vehicle nodes in the network as
the independent variable and analyzes the algorithm’s performance under low and high
traffic flow densities. The experimental simulation results are as follows (See Table 3).

Overall, high-density scenarios outperform low-density scenarios using this algorithm.
The proposed algorithm has a low FAR at both high and low densities. This is because
this algorithm uses the blockchain to jointly verify the legitimacy of the sending nodes,
determine the integrity and reliability of the VANET transmission messages, and greatly
improve the identification rate of malicious messages.

Dr, Ad and Or were used to evaluate and analyze the performance, and each experi-
ment was the average of the data obtained from 20 simulations. The simulation experiment
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also takes the proportion of all vehicles of malicious vehicle nodes in the network as the
independent variable and analyzes the algorithm’s performance in the case of low traffic
density and high flow density, respectively. The experimental simulation results are as
follows (See Table 4).

Table 3. The FAR versus MDR comparison results.

Number of Malicious Vehicle
Nodes in the Network

FAR MDR

Low Flow
Density

High Flow
Density

Low Flow
Density

High Flow
Density

15% 0.156 0.112 0.100 0.105

25% 0.168 0.125 0.125 0.119

35% 0.171 0.135 0.129 0.120

45% 0.182 0.152 0.130 0.125

Table 4. Comparative results of the D, A, and O.

Number of Malicious
Vehicle Nodes in the

Network

Dr (%) Ad (s) Or (KB/S)

Low Flow
Density

High Flow
Density

Low Flow
Density

High Flow
Density

Low Flow
Density

High Flow
Density

10% 70.02 94.25 0.102 0.118 29.52 129.20

15% 69.52 90.21 0.161 0.156 40.20 134.56

20% 68.65 88.68 0.175 0.167 43.25 142.30

25% 67.25 86.98 0.201 0.210 50.20 149.52

30% 66.82 86.70 0.214 0.234 53.29 150.29

35% 66.30 84.02 0.226 0.301 58.63 167.98

40% 65.48 80.20 0.238 0.365 61.30 165.32

45% 65.00 78.68 0.262 0.402 67.05 172.02

In general, comprehensive experimental performance analysis can conclude with an
increase in experimental simulation time and the gradual increase of malicious nodes in the
network. If faced with the experimental simulation time and the high density of malicious
vehicle nodes, the above algorithm can still play a significant role, and it has been verified
by many scholars.

6. Conclusions

After a series of performance tests and verification of the results of the malicious node
identification algorithm based on blockchain technology, the algorithm proposed in this
paper can identify vehicle information in either low- or high-density vehicle scenarios.
Based on the judgment of FAR, MDR and other indicators, the Internet of Vehicles’ malicious
node identification algorithm based on blockchain technology has a very significant false
alarm rate and missing detection rate when identifying vehicle information. In this paper,
Dr, Ad, Or and other indicators were selected to reveal malicious node identification
algorithm’s performance in the Internet of Vehicles. In general, the computing system
based on blockchain technology is feasible, and ITS network performance is superior to
other algorithms.

In the face of the increasingly prominent security needs and the complex diversity
of malicious node attacks in the Internet of Vehicles, to further improve the detection of
malicious nodes, the following perspectives could be the focus of future research work. First,
the malicious node recognition algorithm model could be optimized to improve the system
availability. The algorithm presented here is a result of the limited experimental conditions.
A transportation service platform should be considered to evaluate the performance of this
plan in real-world transportation networks. Second, the evaluation indicators should be
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increased to improve system comprehensiveness. The application of blockchain technology
in car networking applications is relatively low at present. Although the application of
blockchain technology in the field of car networking has shown a good effect in this paper,
the article used in the network evaluation index is not comprehensive. In future, other
security metrics will need to be performance evaluated to integrate blockchain technology
more comprehensively with automotive networks. Third, traffic scenarios should be
enriched to improve the robustness of the system.

This blockchain, car networking, malicious-node-detection mechanism used a ONE
simulation platform simulation experiment, looking at high-density and low-density sce-
nario car scenarios to analyze the networking and malicious node identification algorithm
performance. The malicious node detection performance of FAR and MDR, for algorithm
models Dr, Ad, Or were also looked at, to conduct a comparative analysis of the algorithm
performance. The final experimental results show that the proposed trust detection mecha-
nism is feasible, and the ITS network performance is superior to that of other algorithms.

The blockchain-based malicious node detection mechanism proposed in this paper
has a very significant application effect. The aim was build a model in more diversified
traffic scenarios to test the security and trust mechanism, which can further improve the
detection rate of malicious nodes and optimize the algorithm performance. In the future, this
mechanism can be applied to richer traffic scenarios to improve its expansion and robustness.
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Abstract: In this study, three different models were developed to predict the compressive strength of
SCC, including the nonlinear relationship (NLR) model, multiregression model (MLR), and artificial
neural network. Thus, a set of 400 data were collected and analyzed to evaluate the effect of seven
variables that have a direct impact on the CS, such as water to cement ratio (w/c), cement content
(C, kg/m3), gravel content (G, kg/m3), sand content (S, kg/m3), fly ash content, (FA, kg/m3),
superplasticizer content (SP, kg/m3), and curing time (t, days) up to 365 days. Several statistical
assessment parameters, such as the coefficient of determination (R2), root mean squared error (RMSE),
mean absolute error (MAE), and scatter index (SI), were used to assess the performance of the
predicted models. Depending on the statistical analysis, the median percentage of superplasticizers
for the production of SCC was 1.33%. Furthermore, the percentage of fly ash inside all mixes ranged
from 0 to 100%, with 1 to 365 days of curing and sand content ranging from 845 to 1066 kg/m3. The
results indicated that ANN performed better than other models with the lowest SI values. Curing
time has the most impact on forecasts for the CS of SCC modified with FA.

Keywords: SCC; compressive strength; fly ash; statistical analysis; modeling

1. Introduction

Self-consolidating concrete or self-compacting concrete (SCC) is a concrete mix that
has low yield stress, high deformability, good segregation resistance (prevents separation
of particles in the mix), and moderate viscosity (necessary to ensure uniform suspension
of solid particles during transportation, placement (without external compaction), and
until the concrete sets). In everyday terms, when poured, SCC is an extremely fluid mix
with the following distinctive practical features: it flows very easily within and around the
formwork, can flow through obstructions and around corners (“passing ability”), is close
to self-leveling (although not self-leveling), does not require vibration or tamping after
pouring, and follows the shape and surface texture of a mold (or form) very closely once
set. As a result, pouring SCC is much less labor-intensive than standard concrete mixes.
Once poured, SCC is usually similar to standard concrete in terms of its setting and curing
time (gaining strength) and strength. SCC does not require a high proportion of water
to become fluid and SCC may contain less water than standard concretes. Instead, SCC
gains its fluid properties from an unusually high proportion of fine aggregate, such as sand
(typically 50%), combined with superplasticizers (additives that ensure particles disperse
and do not settle in the fluid mix) and viscosity-enhancing admixtures (VEAs) [1,2]. The
introduction of SCC represents a major technological advance, leading to a better quality
of concrete produced and a faster and more economical concrete construction process [3].
When there is a lot of reinforcement in the structure members, using an SCC is the perfect
choice for structural components. A superplasticizer and other mineral admixtures can
increase the SCC’s high flowability and stability [4].
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Fly ash (FA) is a siliceous or aluminosilicate particle that has been finely divided.
When moisture is present, it chemically combines with the calcium hydroxide generated
when Portland cement hydrates to create a compound with cementing properties [5]. As a
byproduct of burning pulverized coal, FA is a finely split residue produced in coal-fired
power plants. The coal is crushed and blown into the burning chamber, where it burns
right away to heat the boiler tubes. Regarding the influence of fly ash on self-compacting
concrete (SCC) properties, a study indicates that a high volume of fly ash can be used in
SCC to produce high-strength and low-shrinkage concrete. Subhan Ahmad et al. compared
hardened properties of normal concrete (NC) and self-compacting concrete (SCC) [6]. While
most of the impurities deposited in coal during its formation, such as clay, shale, quartz, and
feldspar, typically fuse and stay suspended in the flue gas, the volatile matter and carbon
are burned off. The importance of a low water–cement ratio for enhancing the durability of
concrete has long been accepted. Low water content leads to low workability of the fresh
concrete; if this concrete is not properly compacted, the durability of the structures will be
impaired. In the mid-1970s, superplasticizers were introduced to the market to produce
rhinoplastic concretes [7,8]. The flaming material is swiftly transferred to cooler regions,
where it is formed into sphere-shaped particles. Lighter ash particles (FA) stay suspended
in exhaust gases while heavier ash particles fall to the bottom of the burning chamber.
Mechanical separators, electrostatic precipitators, or bag filters are used to remove these FA
particles [9]. Previous research has shown that using mineral admixtures such as fly ash
in concrete mixes can improve the slump without increasing expense while lowering the
amount of superplasticizer needed to achieve equal slump flow when compared to concrete
prepared only with Portland cement, and the presence of the fly ash lessens the heat of
hydration and increases the durability [10]. Due to its finer and more rounded particles than
cement, fly ash can be used to replace cement in the creation of self-compacting concrete.
Fly ash could operate as a filler to cover the inter-particle spaces that cement is unable to
occupy by making use of these physical features [11].

SCC consists of similar components to conventionally vibrated concrete: cement,
aggregates, water, mineral, and chemical admixtures. The passing ability and segregation
resistance of SCC are achieved by the decrease in coarse aggregate content and increases in
the powder quantities. The superplasticizers (high-range water reducers) are responsible
for the high fluidity of the concrete mix, while the powder and viscosity-modifying agents
lead to better stability and cohesion, reducing bleeding and segregation of the mix.

Mineral admixtures are used as extra-fine material; the most used is the limestone
filler which represents a chemically inert by-product of limestone crushers. The addition of
limestone powder improves the particle packing by filling the small pores between cement
grains and augmenting the water retention of fresh mixes. The compressive strength is
calculated by the failure load divided by the cross-sectional area resisting the load and
reported megapascals (MPa). Concrete hardens and acquires strength as it hydrates. This
process occurs rapidly at first and slows down as time goes by; it continues over a long
period.. This study investigated the compressive strength at 28 days, an age considered
for design purposes when a substantial percentage of hydration has taken place. The cube
and cylinder strength of SCC and conventional vibrated concrete was determined at the
same w/c ratio and cement content [12,13]. To ascertain the compressive strength of SCC
modified with FA, several cylindrical or cubical specimens are currently produced and
tested over various curing times in the practice field. Generally speaking, work on the
construction site should not continue until the results of the compressive strength test
at a given age, particularly 28 days, are available. Due to this, testing takes longer than
expected and is more expensive [14]. Construction sites are also delayed as a result. Fly
ash can replace 40% of the cement in self-compacting concrete to increase its strength to
65 MPa [10]. The term “binder content” refers to the cement and any additional pozzolanic
elements that may be included in the mixture to enhance specific SCC characteristics. FA is
additionally one of the most reactive pozzolanic materials. With an increase in cement or
binder content, the compressive strength of SCC was typically noticeably enhanced [4,15].
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When the amount of cement was increased from 360 to 450 kg/m3 at the same water
content, the compressive strength of SCC increased from 48 and 52 MPa to roughly 52 and
60 MPa at 28 and 90 days, respectively [16–18].

The w/c or w/b ratio, similar to normal concrete, is one of the key factors affecting
the CS of SCC at different curing ages. Compared to regular concrete, SCC frequently
has a lower w/b ratio. When the w/b ratio is lower, a higher percentage of cement and
binder ingredients produces a higher CS and a more homogeneous matrix [4]. The w/c
or w/b ratio, similar to normal concrete, is one of the key factors affecting the CS of SCC
at different curing ages. Compared to normal concrete, SCC frequently has a lower w/b
ratio. When the w/b ratio is lower, a higher proportion of cement and binder ingredients
produces a higher CS and a more homogeneous matrix. When the w/b ratio was decreased
from 0.45 to 0.35 up to 56 days of curing, the CS of SCC was significantly improved at all
curing ages [19]. The w/b ratio affects the CS of regular concrete more so than it does the
CS of SCC [20].

One of the main advantages SCC has over other special concrete varieties is that it
does not need any special curing procedures. Similar to regular concrete, SCC is cured
using the same procedure. According to earlier studies [4,21], the most crucial factor
affecting the CS of SCC is the age of the concrete samples after the examination. Longer
curing times produced better compressive strength for the same mix proportions because
of the faster rate of hydration. The CS of SCC was increased from 13 MPa to 54 MPa
by extending the curing time from one day to 28 days, as demonstrated by Corinaldesi
and Moriconi [22]. According to Sahmaran et al. [23], the 7-day CS of SCC was 55.9 MPa.
However, when the curing age of SCC was raised to 180 days, this value increased to
71 MPa. SP’s high cement and binder contents make it impossible to make SCC without
it. The presence of SP improves workability. Although SP is added to SCC to enhance its
rheology, different dosages can also affect compressive strength. The CS of SCC increased by
30% after 28 days of curing as the SP dosage increased from 5.5 kg/m3 to 8.25 kg/m3 [24].
Aggregates comprise 60 and 70 percent of SCC’s volume, significantly impacting the
material’s rheological and hardened performance. Compared to conventional concrete,
SCC typically contains less coarse material [4]. According to earlier studies, the CS of SCC
was less affected by the fine aggregate content than the coarse aggregate content.

Additionally, compared to coarse aggregates with a maximum size of 10 mm, those
with a maximum size of 20 mm had a higher CS of SCC [25]. Artificial neural networks have
been widely used in many studies, such as predicting the piezoelectric effect of the plate of
engineering structures in vibration and noise reduction. This study employed an artificial
neural network (ANN) model to explore the piezoelectric patch size and thickness’s effect
on a plate’s first-order natural frequency and displacement amplitude. With the finite
element method (FEM), a rectangular plate actuated by a piezoelectric patch was analyzed
with various patch sizes. The FEM data were later used to build an ANN model. The
dynamic response of the plate was predicted by the ANN model and validated with FEM
in terms of first-order natural frequency and displacement amplitude. Case studies showed
that the ANN model could accurately predict both natural frequency and displacement
amplitude with patch length, width, and thickness input. When the information of the
ANN model was simplified to patch size and thickness or the patch’s volume, the accuracy
worsened. The patch size and thickness’s influences on the first-order natural frequency
were coupled, and the maximal and minimal values were predicted based on the ANN
model. The purpose of this research is to develop and apply the artificial neural network
(ANN) with an extreme learning machine (ELM) to forecast the gross domestic product
(GDP) growth rate. The economic growth forecasting was analyzed based on the value
of agriculture, manufacturing, industry, and services added to GDP. The results were
compared with the ANN with the backpropagation (BP) learning approach since BP could
be considered a conventional learning methodology. The reliability of the computational
models was assessed based on simulation results and several statistical indicators. The
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results showed that the ANN with ELM learning methodology could be applied effectively
in applications of GDP forecasting [23–27].

Since compressive strength depends on various characteristics and mixture propor-
tions, more sophisticated methodologies should be used to lessen the need for laboratory
experiments and provide engineers with more convenient tools and numerical equations
for predicting experimental results. An excellent strategy is to use soft computing tech-
niques. The main benefit of using these techniques is the development of workarounds
and solutions for linear or nonlinear problems where mathematical models cannot readily
show the relationship between the pertinent factors in the problem [27–30]. A methodical
multiscale model was developed to calculate the CS of concrete made with significant
amounts of fly ash [28]. Four hundred fifty different experimental datasets were used to
create a model. M5P trees, linear, nonlinear, and multilogistic regression were developed
as five distinct qualification modeling methods. It was concluded that the ANN, M5P tree,
and multilogistic regression models could predict the CS of large-volume fly ash concrete
wells based on higher R2 and lower RMSE and MAE values [29].

Despite the wide use of FA in SCC mixes in the earlier studies, an accurate model
could not be identified for effective use by the construction industry. As a result, it was
attempted in this study to analyze and quantify the effects of a wide range of mixture
proportions, including FA content, cement content, w/b ratio, SP content, fine aggregate
content, and coarse aggregate content, on the CS of SCC up to 365 days of curing. Different
model approaches, such as nonlinear regression, multiregression, and ANN models, were
used to predict the CS of SCC modified by FA using 400 data samples from the literature.
The main goals are to (i) conduct statistical analysis and assess how mixture compositions
such as FA content, C content, G content, w/c ratio, SP content, and curing time affect the
CS of SCC; (ii) examine and design a reliable model for estimating the CS among all models
(NLR, MLR, and ANN models) using appropriate statistical measures; and (iii) reduce the
overall cost by designing mixes with any necessary specifications without the need for
trail mixes.

2. Materials and Methods

The collected data from various literature for this paper were 400; inserting all data
into an Excel sheet, they were sorted into two groups. The largest group comprised two-
thirds of the collected data and was named as the training dataset and used to develop the
models. The other group, one-third of the dataset, was used to test the proposed models.
As mentioned earlier, the main objective of this study is to design models to predict the
compressive strength of SCC. Table 1 includes the detailed ranges and information about
each variable studied in the paper, which was water to cement ratio (w/c), cement content
(C, kg/m3), gravel content (G, kg/m3), sand content (S, kg/m3), fly ash content, (FA,
kg/m3), superplasticizer content (SP, kg/m3), and curing time (t, days). All mentioned
independent parameters were used to evaluate and estimate the compressive strength and
compare the results with the measured strength. The procedure of the current study is
simply designed in Figure 1.

Table 1. Datasets used in the modeling process.

Ref.
Fly Ash,
FA (%)

Cement
(kg/m3)

Water/Cement
Ratio
(%)

Curing
Time (Days)

Superplasticizer
Content (%)

Fine Aggregate
(kg/m3)

Coarse
Aggregate

(kg/m3)

Slump Flow
Diameter

(mm)

Compressive
Strength

(MPa)

[1] 0–40 365–468 0.4–0.6 14, 28, 56 2.2 803–918 778–879 652–772 35.7–69

[3] 35–90 183–317 0.38–0.72 7, 28, 90 0.2–1 476–1066 837 555–790 6.2–74.2

[5] 15–35 355–465 0.41–0.44 7, 28, 356 1.8–2 910 590 603–673 22.7–61.2

[28] 0–60 161–326 0.35–0.5 1, 7, 28 0.5–1.9 650–866 155–251 570–650 6.1–48.3

[31] 0–30 420–600 0.33–0.46 7, 28, 90 2 900 750 650–720 65.6–85.3

[32] 0–30 315–480 0.4, 0.45 7, 28 1.5–2.8 890 810 650–695 39–52
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Table 1. Cont.

Ref.
Fly Ash,
FA (%)

Cement
(kg/m3)

Water/Cement
Ratio
(%)

Curing
Time (Days)

Superplasticizer
Content (%)

Fine Aggregate
(kg/m3)

Coarse
Aggregate

(kg/m3)

Slump Flow
Diameter

(mm)

Compressive
Strength

(MPa)

[33] 0–60 180–550 0.33, 0.44 7, 28, 91 1 640–890 780–924 600–806 9.6–77.5

[34] 0–55 225–500 0.35 3, 7, 28 1.5,1.6 908–967 652–694 630–700 40–78

[35] 50–70 221–369 0.29 7, 28, 90 2–3.33 579 703 650–780 10.4–27

[36] - 160–280 0.33–0.42 1, 7, 28 0.1–0.6 808–1066 900 570–770 5–52

[37] 0–70 150–500 0.28–0.35 7–365 1.33 902–967 597–639 665–775 14.9–75.6

[38] 0–60 180–550 0.32, 0.44 28, 90 0.78–3 686–826 829–935 670–730 30–91.1

[39] 15–75 355–465 0.41–0.62 28–365 1.2–2 640–910 590 590–690 18–59.4

[40] - 375 0.47 28 1 779–825 700–746 - 22.8–31.46

[41] 0–60 161–336 0.35–0.50 1, 7, 28 0.4–3.8 739–866 843–1118 570–650 4.9–48.3

[42] 60 180,450 0.37 1, 7, 28, 90 0.1–0.48 827–850 827–850 561 2.67–70.8

[43] 0–75 142–570 0.33 28 - 765–835 765–835 - 30–66

[44] 0–80 100–500 0.36 1, 7, 28, 56 0.7 751–874 876 657–712 4.55–84

[45] - 310–622 0.38 28 0.56–1 780 720 - 38–59

[46] 0–100 115–539 0.33–0.72 7, 28, 90, 120 0.65–1.1 743 924 700–730 16–84.1

Remarks
Ranged

from
0–100%

Ranged from
100–620 kg/m3

Varied from
0.28–0.72

Varied from
1–365 days

Ranged from
0.1–3.33%

Varied from
476–1024 kg/m3

Ranged from
590–1118 kg/m3

Varied from
561–806 mm

Ranged from
2.67–91.1 MPa

Figure 1. Current study methodology flowchart diagram.
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3. Statistical Evaluation

This part of the paper is about the statistical analysis of the dependent and independent
variables separately to determine whether a strong relationship exists between each variable
and the compressive strength of SCC modified with FA or not (Figure 2). Thus, the plot of
all considered parameters, including water to cementitious material ratio, cement content,
gravel content, sand content, fly ash content, superplasticizer content, and curing time with
compressive strength, was prepared and analyzed (Figures 2–4). The detail of the analysis
results for each variable is explained as follows.

 

Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. Marginal plot for compression strength with (a) w/c, (b) cement content, (c) gravel content,
(d) sand content, (e) fly ash content, (f) superplasticizer content, and (g) curing time.

Figure 3. The self-compacting concrete’s compressive strength histogram after being modified with
fly ash.
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1.07*103 
1.1*10

Figure 4. Boxplot for model input parameters.

3.1. Water/Cement Ratio

The w/c ratio of SCC mixtures ranged from 0.28 to 0.72, with a median of 0.42,
according to the total amount of data gathered. According to the statistical analysis, the
other variables had the following values: 0.0075 for variance, 0.088 for standard deviation,
0.59 for skewness, and 0.24 for kurtosis. Figure 2 illustrates the connection between
compressive strength and w/c ratio using the w/c ratio histogram (a) (Table 2).

Table 2. The statistical analysis of the collected datasets.

Variable St. Dev Variance Minimum Median Maximum Skewness Kurtosis

w/c 0.088 0.00775 0.28 0.42 0.72 0.59 −0.24

C, (kg/m3) 108.76 11,828.96 100 258 622 0.66 −0.35

G, (kg/m3) 196.06 38,441.25 590 837 1118 −1.20 2.21

S, (kg/m3) 106.3 11,298.6 476 845 1066 −0.93 1.18

FA, (kg/m3) 189.98 36,092 0 160 905 2.00 4.16

SP, (kg/m3) 1.461 2.1346 0 1.33 12.5 2.76 13.07

t, (days) 86.74 7524.2 1 28 365 2.69 6.73

CS, (MPa) 18.61 346.6 2.67 34.9 91.1 0.48 −0.38

3.2. Cement Content

According to the data gathered, the cement content of SCC mixtures ranged from
100 to 622 kg/m3, with a median value of 258 kg/m3. Based on the statistical analysis, the
other variables had the following values: variance of 11,828.96, the standard deviation of
108.76, skewness of 0.66, and kurtosis of −0.35 (Figure 2b) (Table 2).
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3.3. Gravel Content

Based on the total collected data, the SCC mixtures’ gravel content ranged from 590 to
1118, with an average of 837. The other variables’ values were as follows: variance of
38,441 standard deviation of 196.06.34, and skewness and kurtosis of −1.20 and −2.21,
respectively. The relationship between compressive strength and gravel content with the
histogram of gravel content is reported in Figure 2c (Table 2).

3.4. Sand Content

Sand content varied from 476 to 1066 kg/m3, with an average value of 845 kg/m3.
According to the statistical analysis, the other variables had the following values: a variance
of 11,298 a standard deviation of 106.3, and skewness and kurtosis values of −0.93 and
1.18, respectively (d) (Table 2).

3.5. FA Content

The FA content of SCC mixtures ranged from 0 to 905 kg/m3, with a median of
160 kg/m3, according to the complete dataset. According to the statistical analysis, the
other variables had the following values: variance of 36,092 standard deviation of 189.98,
skewness of 2, and kurtosis of 4.16. Figure 2 reports the relationship between compressive
strength and FA content (e) (Table 2).

3.6. SP Content

The SP contents ranged from 0 to 12.5 kg/m3, with a median value of 1.33 kg/m3.
According to the statistical analysis, the other variables had the following values: variance
of 2.134, standard deviation of 1.46, skewness of 2.76, and kurtosis of 13.07 (Figure 2f)
(Table 2).

3.7. Curing Time

The median curing time in the data was 28 days, and the curing time ranged from
1 to 365 days. The statistical analysis revealed the following values for the other variables:
variance of 7524 the standard deviation of 86.74, skewness, and kurtosis values of 2.69 and
6.73, respectively (Figure 2g) (Table 2).

3.8. Compressive Strength

The compressive strength of SCC mix modified with FA ranged from 2.67 to 91.1 MPa,
with a median of 34.9 MPa, according to the total amount of data gathered. According to
the statistical analysis, the other variables had the following values: variance of 346.64, the
standard deviation of 18.61, skewness of 0.48, and kurtosis of −0.38. Figure 3 displays the
SCC compressive strength histogram.

4. Modeling

From the results of the analyzed data in Section 3, no direct relationship was obtained
according to the correlation matrix (Figure 5). Therefore, three models were predicted to
evaluate each parameter’s influence on the strength of self-compacting concrete modified
with FA. All models were assessed using several standard evaluation criteria to compare
all models and select the most accurate ones, such as highest R2, lower MAE, RMSI, and SI
values. The models proposed in this study are used to predict the compressive strength of
FA-self-compacted concrete and select the best model, which gives a better estimation of
compressive strength than the measured compressive strength from the experimental data.
The collected datasets were randomly split into training, testing, and validating [34]. The
training dataset was used to train the LR, NLR, and MLR models and obtain the optimal
weights and biases, while the testing dataset was used to confirm the fulfillment of the
proposed models. The comparison among model predictions was made based on the
following assessment criteria: the model should be scientifically valid, and it should give
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less error between the measured and predicted data, a lower RMSE, OBJ, and SI, and a
higher R2 value.

Figure 5. Correlation matrix for the model input parameters and target.

4.1. Nonlinear Model (LR)

This study is focused on developing a model that assesses the impact of the greatest
number of parameters on the compressive strength of SCC modified with FA, as was previ-
ously mentioned. This study’s general technique for assessing compressive strength [47–49]
is nonlinear regression.

CS = a ∗
(w

c

)b ∗ (C)c ∗ (G)d ∗ (S)e ∗ (FA)f ∗ (SP)g ∗ (t)h + i ∗
(w

c

)j ∗ (C)k ∗ (G)l ∗ (S)m ∗ (SP)n ∗ (t)o + p (1)

where w/c denotes the water to cement ratio (percent), C is the cement content (kg/m3),
G represents the gravel content (kg/m3), S is the sand content (kg/m3), SP is the superplas-
ticizer content (kg/m3), FA is the fly ash content (kg/m3), t is the curing time (days), and a
to p are model inputs.

4.2. Multimodel (MLR)

MLR is used when the criterion variable has more than two phases. Since it may reveal
the relationship between a nominal dependent variable and two or more independent
variables (Equation (2)), MLR is comparable to multiple linear regression [50].

CS = a ∗ (w
c
)

b
(C)cGdSeFAfSPgth (2)

A limitation of Equation (2) is that it cannot be used to predict the compressive strength
of SCC in the absence of FA. In this model, the FA content ought to be greater than 0 (the
constraint of Equation (2) is FA content larger than 0 percent). The (a, b, c, d, e, f, g, and h)
are model parameters.

4.3. Artificial Neural Network (ANN)

A feed-forward neural network (FNN) is the opposite of an ANN [51–53]. Its input,
output, and hidden layers are displayed in Figure 6. The input layer receives the signal
to be evaluated. The input layer predicts and sort’s output. Data travel from input to
output, much like an ANN’s feed-forward network. Trial and error iterations assisted in
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determining the model’s optimal number of hidden layers to lower error and boost R2. In
order to obtain the lowest RMSE, MAE, and R2 values, a single hidden layer with six neural
networks was selected through trial and error due to the complexity of the equation for
multiple hidden layers.

βn = an(w/c) + bn(C) + cn(G) + dn(S) + en(FA) + fn(SP) + gn(t) + in (3)

CS =
Node1

1 + e−β1 +
Node2

1 + e−β2 + · · ·+ Noden

1 + e−βn + Threshold (4)

Figure 6. The ideal ANN structure has six hidden neurons and one hidden layer.

5. Assessment Criteria for the Developed Models

The coefficient of determination (R2), root mean squared error (RMSE), mean absolute
error (MAE), and scatter index (SI) was used to assess the accuracy and efficacy of the
proposed models. Their equations are:

R2 =

⎡
⎢⎢⎢⎢⎣

∑
p
p=1
(
tp − t′

)
(yp − y′)√[

∑
p
p=1
(
tp − t′

)2][
∑

p
p=1

(
yp − y′

)2
]
⎤
⎥⎥⎥⎥⎦

2

, (5)

RMSE =

√√√√∑
p
p=1

(
yp − tp

)2

p
, (6)

MAE =
∑

p
p=1

∣∣∣(yp − tp)
∣∣∣

p
, (7)
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SI =
RMSE

t′ . (8)

The predicted and measured path pattern values are denoted by yp and tp, respectively,
and the average value of the measured and predicted values is denoted by y′ and t′. The
terms tr and tst, which stand for training and testing datasets, denote the number of
patterns (collected data) in each set. When evaluating any equation or model, one is the
ideal value for R2, but the lowest value is preferable for other parameters (MAE and RMSE),
and zero is the ideal SI value. However, the SI parameter has several limitations, and when
it is greater than 0.3, it indicates that the models are performing poorly.

6. Analysis and Output

Slump Flow Diameter

The test that is most frequently used to gauge SCC flow performance is the slump flow
test. During this test, the slump flow diameter of the SCC mix is measured. When using
the EFNARC SCC criterion, the slump flow diameter should meet one of the classifications
listed in the standard. A slump flow diameter of 550 to 650 mm is considered in slump flow
class 1, 650 to 750 mm is considered in slump flow class 2, and 750 to 850 mm is considered
to be in slump flow class 3 [54]. Any slump flow diameter that is both less than 550 mm
and more than 850 mm cannot be classified as SCC, according to EFNARC guidelines.
With a median slump flow diameter of 672 mm and minimum and maximum slump flow
diameters of 550 mm and 850 mm, respectively, all of the mixes can be regarded as SCC,
per 401 data (Table 1) from prior studies. Figure 7 depicts the relationship between the
slump flow diameter and the CS of self-compacted concrete [4].

Figure 7. The relationship between the SCC mixture’s compressive strength and slump flow diameter.

7. Nonlinear Regression Model

Figure 8 depicts the relationship between SCC’s measured and anticipated compressive
strength modified with FA for training and the testing dataset. The sum of error squares
and the least square method was optimized to determine the value of each parameter in
the existing model. The outcome of every experiment is represented by Equation (9).
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CS = 0.11
(w

b

)−1.196
(C)0.109 (G)0.628 (S)0.068 (FA)−0.007 (SP)0.006 (t)0.104 − 41.608

(w
b

)−1.682
(C)−0.239 (G)0.79 (S)−0.812 (t)−0.015 + 0.0001. (9)

Figure 8. Comparison between measured and predicted compressive strength for NLR model.

According to the equation above, S has the least impact on the compressive strength
of SCC modified with FA, while W has the greatest. As shown in Figure 9, the SI values for
the developed model are 0.158 and 0.175 for the training and testing datasets, respectively.
The values for assessment parameters such as R2, RMSE, and MAE are 0.90, 5.39 MPa, and
4.35 MPa for the testing dataset.

Figure 9. Comparison between measured and predicted compressive strength for the ANN model.
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8. Multiregression Model (MLR)

Figure 8 uses training and testing datasets for SCC modified with FA to compare the
predicted compressive strength to the actual compressive strength. Following this model,
the w/c ratio and sand content concentration are the most important factors affecting the
compressive strength of SCC. Equation (10) can be used to represent the multi regression
model with various variable parameters (Figure 10):

CS = 4.56 ∗ 10−6
(w

b

)−0.642
(C)−0.487 (G)0.624 (S)1.146 (FA + 0.0001)−0.011(SP)0.008 (t)0.224. (10)

Figure 10. Comparison between measured and predicted compressive strength for MLR model.

9. Artificial Neural Network (ANN)

The network was fed both training and test data to predict the compressive strength
values for the appropriate input parameters (Figure 10). An ANN model was created
iteratively (such as the number of hidden layer neurons, learning rate, momentum, and
iteration). Nineteen neural nets were used in this study’s hidden layer system. The training
period is 50,000 s, the learning rate is 0.1, and the momentum is 0.1. The quantity of epochs
is a hyperparameter that controls how frequently the learning algorithm may process the
training dataset. The higher the R2, the lower the RMSE and, the lower the MAE is as
the error is reduced, the more epochs there are. Figure 10 illustrates the basic idea of
producing data using an ANN model by plotting the projected compressive strength vs.
the actual value.

192



Appl. Sci. 2022, 12, 8161

w/b

−0.516 −2.554 −5.391 −4.137 −5.155 0.837 −3.108 −3.38946 C β1

−2.950 −2.648 −2.776 −3.033 −9.037 −1.516 −0.625 −5.86885 G β2

30.737 −11.951 −10.236 −19.384 −13.954 32.126 2.856 47.38619 × S = β3

−0.507 0.047 −7.706 −5.574 −5.971 5.024 2.979 8.12332 FA β4

61.384 −198.964 183.340 104.406 804.041 67.087 −278.128 570.3129 SP β5

0.730 −0.299 −1.200 −0.649 −0.729 0.452 32.931 34.86496 t β6

1

CS =
−1.112

1 + e−β1
+

0.601
1 + e−β2

− 0.222
1 + e−β3

+
0.529

1 + e−β4
− 0.179

1 + e−β5

1.801
1 + e−β6

− 2.071 (11)

The R2, RMSE, and MAE values for this model are, respectively, 0.95, 4.03 MPa, and
3.04 MPa.

10. Comparison between Developed Models

As mentioned in earlier sections, the effectiveness of the suggested new models was
evaluated using four statistical parameters (R2, MAE, RMSE, and SI). Compared to the NLR
and MLR models, the ANN model had the lowest RMSE and MAE values and the highest
R2 values. The coefficient of determination for all models using training and test sets is
shown in Figure 9. Figure 9 demonstrates that the ANN model’s predicted and measured
compressive strength values are much more comparable, demonstrating the ANN model’s
superior performance to other models.

The SI assessment parameter values for the proposed models during the training and
testing phases are shown in Figure 9. The SI values for all models and phases (training
and testing), as displayed in Figure 9, were less than 0.2, indicating excellent performance
for all models. Additionally, the SI values for the ANN model and the other performance
parameters are lower compared to other models. The ANN model has smaller SI value
values across all phases compared to the NLR model, for instance, 208 percent lower in
training and 68 percent lower in testing datasets.

11. Sensitivity Investigation

The most important factor affecting the CS of SCC combinations was identified and
evaluated using a model sensitivity test. As a quick method, the ANN model was used
to examine sensitivity. Sensitivity analysis was performed, with each training dataset
having only one input variable extracted. Each training dataset’s evaluation criteria, such
as R2, RMSE, and MAE, were developed separately. According to the data, the curing
time, cement content, and the proportion of water to cement are the factors most strongly
influencing SCC compressive strength. The CS was thus greatly improved by lengthening
the curing time and cement content. Figure 11 depicts the effect of mixed proportions on the
CS of SCC. The capacity of models to predict the compression strength of SCC with FA for
the training and test dataset was thoroughly evaluated by the following metrics: coefficient
of determination (R2), root mean square error (RMSE), scatter index (SI), and mean absolute
error (MAE). However, the R2 value, also known as the coefficient of determination, has
been observed to be the best for model assessment [4]. R2 values from 0.70 to 0.80 indicate
satisfactory results, values from 0.80 to 0.95 indicate good model prediction, and values
above 0.95 indicate excellent prediction, while values below 0.60 indicate unsatisfactory
results [4,13]. In addition, sensitivity analysis was also carried out. The results of these
analyses are presented in detail in the text (Figure 12).
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Figure 11. Cont.
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Figure 11. The developed models based on (a) coefficient of determination, (b) root mean squared
error, (c) mean absolute error, (d) scatter index.

195



Appl. Sci. 2022, 12, 8161

 

13.83

14.69

10.93

11.8011.18

11.28

26.29
w/c

C

G

S

FA

SP

t

Figure 12. Sensitivity analysis to investigate the effect of input variables on the CS of CSS using the
ANN model.

12. Conclusions

Based on the analysis and simulation of data from earlier studies to forecast the
compressive strength of SCC for 400 different mix proportions, the following conclusions
were made:

1. Based on data collected from the literature, the fly ash enhanced the compressive
strength of normal concrete as a partial replacement for cement. Depending on the
statistical analysis, the median percentage of superplasticizers for the production
of SCC was 1.33%. Furthermore, the percentage of fly ash inside all mixes ranged
from 0 to 100%, with 1 to 365 days of curing and sand content ranging from 845 to
1066 kg/m3.

2. This study developed the NLR, MLR, and ANN models to predict the compressive
strength of SCC mixes. The ANN model outperformed other models in the training
and testing datasets, with higher R2 values, and lower RMSE, MAE, and SI values.

3. The SI values for all models and phases (training and testing) were less than 0.2,
indicating good performance. Furthermore, compared to the NLR model, the ANN
model has smaller SI values in all phases, for example, 60% lower in training and 35%
lower in the testing dataset.
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4. Using several evaluation criteria, including the root mean square error (RMSE), the
coefficient of determination (R2), the SI, and the mean absolute error (MAE). The
sequence of ANN models was the best model provided in this research based on data
acquired from the literature and produced a higher R2 and lower MAE and RMSE.

5. The sensitivity analysis test was performed in order to check the most effective
dependent variables on independent variables’ output performance. The results
indicated that the most effective parameters causing the output result were curing
time and fly ash content.

6. The box plot for the proposed models indicated that the ANN model had better
centered mean square error and standard deviation performance.

7. The NLR model as a reliable mathematical model can predict the compressive strength
of self-compacted concrete with a high coefficient of determination value.

8. The overall findings and analysis showed that it was possible to effectively modify
SCC’s strength and other properties by producing replacement SCC with cement
containing 35% fly ash. However, percentages more than 35% might be detrimental to
SCC’s performance.

9. The sensitivity analysis showed that the curing time is the key input parameter that
influences the improvement rate and forecasts the compressive strength of SCC.
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Abstract: Brittleness plays an important role in assessing the stability of the surrounding rock
mass in deep underground projects. To this end, the present study deals with developing a robust
evolutionary programming paradigm known as linear genetic programming (LGP) for estimating
the brittleness index (BI). In addition, the bootstrap aggregate (Bagged) regression tree (BRT) and
two efficient lazy machine learning approaches, namely local weighted linear regression (LWLR)
and KStar approach, were examined to validate the LGP model. To the best of our knowledge,
this is the first attempt to estimate the BI through the LGP model. A tunneling project in Pahang
state, Malaysia, was investigated, and the requirement datasets were measured to construct the
proposed models. According to the results from the testing phase, the LGP model yielded the best
statistical indicators (R = 0.9529, RMSE = 0.4838, and IA = 0.9744) for modeling BI, followed by LWLR
(R = 0.9490, RMSE = 0.6607, and IA = 0.9400), BRT (R = 0.9433, RMSE = 0.6875, and IA = 0.9324), and
KStar (R = 0.9310, RMSE = 0.7933, and IA = 0.9095), respectively. In addition, the sensitivity analysis
demonstrated that the dry density factor demonstrated the most effective prediction of BI.

Keywords: rock brittleness; linear genetic programming; bagged regression tree; lazy machine
learning method

1. Introduction

The brittleness of rock should be measured as the main property of rock mass in any
ground excavation project. It is important to properly consider the brittleness of the rock to
design structures of geotechnical engineering, particularly structures constructed on the
rock mass. For example, engineers can use the information on rock brittleness to assess the
wellbore performance quality and stability of a hydraulic fracturing job [1–3]. Furthermore,
such information can be used to regulate the mechanical properties of shale rocks well.
Meanwhile, Young’s modulus and strength of these properties can be defined using certain
parameters such as the volumetric fraction of strong minerals [4–6].

One of the reasons for different disasters due to rock mechanics, such as rock bursts, is
brittleness [7–9]. The literature shows that brittleness can be an effective and significant
factor that can predict tunnel boring machines (TBMs) and road header performance [10,11].

Appl. Sci. 2022, 12, 7101. https://doi.org/10.3390/app12147101 https://www.mdpi.com/journal/applsci201



Appl. Sci. 2022, 12, 7101

Moreover, this property can effectively define the excavation effectiveness of drilling
as a parameter highly affecting coal mining processes [3,12]. Therefore, measuring rock
brittleness is necessary for any ground excavation project [7]. Although all of the above facts
had been explained, Altindag [13] argued that there was no consensus on measurement and
definition of standards for this brittleness. On the other hand, Yagiz [12] argues that rock
brittleness is affected by different properties of the rock. Some researchers have described
the relationship between brittleness and ductility inversion or the lack of ductility [14].
Ramsey [15] defined brittleness as the lack of cohesion in rock particles. Brittleness was
defined by Obert and Duvall [16] as the inclination of a material, such as rock or cast iron,
to split. There are normally six characteristics of highly brittle rock: a large compressive-
to-tensile strength ratio, a large interior friction angle, the production of small particles,
failure under an insignificant force, high firmness, and producing completely developed
characteristics after hardness lab experiments [16].

The relationship between the rock’s uniaxial compressive and tensile strengths is a
significant subject in rock brittleness index (BI) studies [17–19]. Nevertheless, the rela-
tionship between BI and other rock properties such as Poisson’s ratio, internal friction
angle, hardness, elasticity modulus, etc. is limited in the literature [20,21]. There has not
enough capability to estimate BI in these models due to them using one or two dependent
parameters [12,22].

Rock brittleness can be approximated using empirical formulas proposed by several
studies [20,23,24]. Alternatively, multi-input and single-input predictive methods such as
multiple and simple linear regression can be used to predict the BI value of rock [22,24].
However, despite a higher accuracy than the existing simple regression [17,25], they some-
times cannot accurately describe complex systems’ behavior since they are not always
robust enough [26]. Furthermore, rock BI cannot be predicted due to the insufficient
accuracy level of these models [22]. Recently, many researchers have applied machine
learning (ML) methods and metaheuristic algorithms to solve engineering and science
problems [27–33].

Despite some researchers confirming that ML techniques could be used to solve prob-
lems in engineering fields, studies with a focus on the prediction of rock BI have not used
different ML techniques yet. Kaunda and Asbury [34] used Poisson’s ratio, velocity, and
elastic modulus to apply a neural network (NN) method. Yagiz and Gokceoglu [17] formed
a fuzzy system and conducted a multiple regression method to estimate rock BI by using
different input parameters such as Brazilian tensile strength (BTS). Their findings demon-
strated the effective application of the fuzzy system to estimate BI. Koopialipoor et al. [25]
suggested some models that predict rock BI value. The proposed equations were developed
by hybridizing the firefly and ANN algorithm into a single model. Another study by
Khandelwal et al. [22] tested the feasibility of a genetic programming model to predict the
brittleness level of intact rocks. Multiple input variables such as unit weight, BTS, and UCS
were employed to estimate the rock mass BI. Jahed Armaghani et al. [3] offered different
support vector machine methods for BI prediction. In their study, different kernels were
used to implement SVM methods. They indicated the effectiveness of proposed SVM meth-
ods in the BI prediction field. In another study, Yagiz et al. [28] predicted BI values through
a differential evolution (DE) algorithm using 48 datasets. With this aim, they employed
DE to develop linear and nonlinear models. They demonstrated an acceptable application
of the DE algorithm in predicting BI. Recently, comprehensive study was conducted by
Sun et al. [8] to predict BI using several efficient machine learning methods such as SVM
and Chi-square automatic interaction detector methods. According to their results, the
proposed models could predict BI with good performance.

This study aims to assess the applicability of a novel evolutionary programming
paradigm (LGP) for estimating BI to enhance the accuracy of BI simulation compared to
the previous study [3]. Three advanced machine learning methods (bootstrap aggregate
(Bagged) regression tree (BRT), local weighted linear regression (LWLR), and KStar models)
were implemented for evaluation of the predictive performance of the LGP approach.
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To the best of our knowledge, all implemented models have not yet been used in rock
mechanics-based soft computing research. Here, as the novelty, best subset analysis was
employed to identify the best input combination, and the results of obtained models
were validated using several metrics, a graphical tool, and error analysis. In addition, an
efficient sensitivity analysis was conducted to determine the most influential features in
BI modeling.

2. Materials and Methods

2.1. Materials
2.1.1. Field Investigation

A tunneling project in Pahang state, Malaysia, was used to extract the data used
in this study. Additional information regarding the field study can be found in Jahed
Aramaghani et al. [3]. Three tunnel boring machines (TBMs) were used to excavate 35 km
of the tunnel, and drilling and blasting techniques were used to excavate the rest of
the tunnel [3]. Although most of the excavated rocks consisted of granite (based on
the mentioned techniques), there were metamorphic and some sedimentary rocks in the
geological units. The research team collected a total of 120 granite block samples from the
tunnel face at different tunnel distances and several locations, and the tests were performed
by transferring these block samples to the rock mechanics laboratory. Then, the procedure
suggested by the ISRM [35] was applied to prepare the block rock samples for each planned
test. Laboratory tests—including UCS, point load, density, the Schmidt hammer, BTS, and
p-wave—were planned and conducted on the samples in the experimental program. Then,
to model this study, the obtained results were considered. As mainly suggested by the
literature, the BI values were calculated as BI = UCS/BTS, and then set as the output. The
related inputs of the model included the p-wave velocity (Vp), point load strength index
(Is50), dry density (D), and Schmidt hammer rebound number (Rn). In Figures 1 and 2, BTS
and UCS tests were conducted on the samples and their failures, respectively.

 
Figure 1. Failure of a sample under a BTS test [3].

In this study, 85 data points were collected to model the BI; 75% (64 data points)
of the data was allocated for the training dataset, with the rest for the testing dataset.
The descriptive statistics of all features and target variables are tabulated in Table 1. The
skewness ([0.116, 0.7339]) and kurtosis ([−0.76, 0.3369]) range of variables demonstrate
that both criteria fall in an acceptable range ([−2, 2]) [36,37]. Thus, it can be inferred that
all datasets have a fairly normal distribution, which is a good indication for modeling rock
brittleness with data-driven methods.
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Figure 2. UCS test (a) before and (b) after failure [3].

Table 1. Descriptive statistics of all variables used in the modeling.

Parameters Rn Vp (m/s) Dry Density (g/cm3) Is50 (MPa) BI

Minimum 20 2910 2.38 0.8722 10.12

Maximum 59 7943 2.75 6.59 16.75

Mean 37.16 4975 2.536 3.441 12.61

Std. Deviation 10.12 1199 0.079 1.118 1.554

Range 39 5033 0.37 5.718 6.626

Skewness 0.3951 0.2449 0.1161 0.1294 0.7339

Kurtosis −0.76 −0.605 −0.3473 0.3369 0.2216

The predictive and target parameters for decreasing the computational cost and com-
plexity of prediction, normalized in range of [0, 1], are expressed in the following formula:

xnor =
x − xmin

xmax − xmin
(1)

where the xnor is the normalized value and xmax, xmin, and x are the maximum, minimum,
and original values of the modeling dataset, respectively.

2.1.2. Feature Selection Process

Best feature selection is one of the most crucial stages for building a predictive model
based on a data-driven model; it has a key role in the accuracy and reliability of developed
models. Best subsect regression analysis [38] is one of the most popular schemes for
identifying the best input features based on linear regression modeling. In this approach,
six metrics (mean square error (MSE), correlation coefficient (R), adjusted R2, Mallows
coefficient (Cp) [39], Akaike (AIC) [40], and Amemiya (PC) [41]) have been computed
for choosing the best input combination [38] (see Table 2). The possible tree combination
demonstrates that the last case includes all input parameters and has the highest R2 (0.817)
and lowest Mallows, Akaike, and Amemiya (MSE = 0.463, Cp = 5 AIC = −60.552, and
PC = 0.21); as such, this case can be identified as the best combination for modeling BI.
Thus, the functional relationship between the chosen features and target can be expressed
as follows:

BI = f(Rn, Vp, D, IS50) (2)
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Table 2. Best subset analysis for selecting the optimum input combination.

Number of
Variables

Variables MSE R2 Adjusted R2 Mallows’ Cp
Akaike’s

AIC
Amemiya’s

PC

2 Vp/D 0.652 0.736 0.730 36.387 −33.419 0.276
3 Vp, D, IS50 0.530 0.788 0.781 15.611 −50.109 0.227
4 Rn, Vp, D, IS50 0.463 0.817 0.808 5.000 −60.552 0.201

2.2. Methods
2.2.1. Linear Genetic Programming (LGP)

The LGP is a novel variant of the GP model proposed by Koza [42]. The LGP model is
a version of the tree-based GP model with linear instruction. A comparison between the
structure of the LGP and GP models is displayed in Figure 3. In the LGP, each program is
described by using a parameter-length sequence of C language instructions. The instruc-
tions of LGP model include arithmetic operations (+, −, ÷, ×), conditional branches (if
x[i] ≤ y[l]), and function calls (exp(x), x, sin, cos, tan) [43]. Each function consists of an
assignment to a parameter x[i], which simplifies the utilization of multiple outputs in the
LGP model. Table 3 reports the functional set and operation parameters employed in the
GP. The main steps of the LGP can be described as follows:

A. Initialization: Creating the initial population randomly (programs), and then calcu-
lating the fitness function of each program.

B. Main operators:

(1) Tournament selection: This operator randomly selects several individuals
from the population. Two individuals with the best fitness functions are
chosen from these individuals, and two others as the worst solutions [43].

(2) Crossover operator: This operator is applied to combine some elements of
the best solutions with each other to create two new solutions (individuals).

(3) Mutation operator: Mutation is used to create two new individuals by trans-
forming each of the best solutions.

C. Elitist mechanism: The worst solutions are replaced with transformed solutions
based on this mechanism.

Figure 3. Comparison between (a) GP and (b) LGP structure.
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Table 3. The characteristics and setting parameters of proposed AI-based approaches.

Models Setting of Parameter

LG
P

Function set +, −, ×, ÷,
√

, power, sin, cos

Population size 300

Mutation frequency % 85

Crossover frequency % 50

Number of replication 10

Block mutation rate % 20

Instruction mutation rate % 20

Instruction data mutation rate % 60

Homologous crossover % 90

Program size 64–256

LWLR • μ = 4

KStar • Global blend = 30

BRT • Function: “Bag”, Learning cycles = 50, MinLeafSize = 1

2.2.2. Local Weighted Linear Regression (LWLR)

The LWLR method is an advanced version of the multiple linear regression (MLR)
model developed by Atkeson et al. [44]. LWLR is able to improve MLR performance
significantly. To illustrate the LWLR model, consider the following model:

zmk = αko +
M

∑
m=1

αkmxkm + εk (3)

In the above model, zmk is a dependent variable that can be calculated based on at least
two independent variables (xk). α is the regression coefficient calculated by the least-squares
(LS) method, M is the number of data, and ε is the random error.

In the LWLR method, a weight function describes the relationship between input and
output data. The fitness function of the LWLR model can be expressed by the following
equation [44–46]:

F =
1

2M

M

∑
m=1

wm(zom − zm)
2 (4)

where w is the regression weight, zo is the observed data, and z is the data obtained from
the model. The above equation can also be expressed in the form of the following matrix:

F = (Xα − Z)TW(Xα − Z) (5)

By solving the above equation for α, we obtain

α =
(

XTWX
)−1

XTWZ (6)

where X is the matrix of input training dataset, W denotes the weight matrix, and Z is
the vector of data obtained from the model. A kernel function can be used instead of the
weight matrix in the LWLR model [47,48]. In the present study, the RBF function was used
as the kernel in the LWLR model. The RBF kernel equation is defined as follows:

wik = exp
(
−μ(xi − xk)

2
)

a (7)
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where μ is a positive number as a kernel variable and (xi − xk) is the difference between
point i and k [49]. It should be mentioned that the main setting parameter of LWLR model
can be optimized by a trial and error procedure.

2.2.3. KStar Model

The KStar algorithm is a lazy learner method introduced by Machine [50]. This
method is an instance-based (IB) algorithm with a fast learning capability. Generally, the IB
requires only one instance for each group to create successful estimations. In this method,
the distance between various instances is considered by the complexity of transforming
an instance into another [51]. The KS employs an entropy-based distance function for
the regression.

Considering a transformation and instance as V and I, respectively, the instance maps
to other instances utilizing i : I → I which belong to V (i ∈ V). For mapping instances
to themselves, a parameter called the distinct member (μ) is used, where μ(α) = α. This
parameter is used to determine all prefix codes from V∗. V∗ comprises members which
describe a one-to-one transformation to V. Provided that the P f is a probability function
on V∗, the probability of all paths from n to m is defined as

P∗
(m

n

)
= ∑ P(v) (8)

where v is the value of set V. Then, the K∗ function can be expressed as

K∗
(m

n

)
= − log2 P∗

(m
n

)
(9)

If the examples are real numbers, then it is possible to demonstrate that P∗(m
n
)

is
dependent solely on the absolute difference between m and n. Therefore, it can be defined as

K∗
(m

n

)
= K∗(i) = 1

2
log2

(
2e − e2

)
− log2(e) + i

[
log2(i − e)− log2

(
1 −
√

2e − e2
)]

(10)

where i = |m − n| and e denotes the model parameter, whose possible values range from 0
to 1. As a result, the distance between two points is equivalent to their absolute difference.
Furthermore, for real numbers, the assumption is that the real space is underlain by a
discrete space with extremely short distances between discrete instances. The first thing
that has to be done is to evaluate those expressions in their limit as the variable e becomes
closer and closer to 0. Thus, we obtain

P∗(i) =
√

e/2 · e−i
√

2e (11)

The likelihood of generating an integer with a value between i and I + i can be
expressed as a probability density function (PDF) as follows:

P∗(i) =
√

e/2 · e−i
√

2e · Δi (12)

To obtain the PDF over the real numbers, x/x0 = i
√

2e can be adjusted in aspects of a
real value x.

P∗(x) =
1

2x0
e
−x
x0 dx (13)

where x0, the mean predicted value for x across the distribution P, must be suitable for
practical purposes. A number between no and N is picked in the KStar method, which
selects x0 as the training instance with the lowest distance from m. It should be noted that
the KS model was developed in this study by utilizing open-source WEKA software. The
main parameter of the KS model is the global blend (GB: n), which is determined by using
the trial-and-error method.
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2.2.4. Bootstrap Aggregate (Bagged) Regression Tree (BRT)

Bagging (bootstrap aggregating) is one of the learning methods of the ensemble
learning model [52]. In this method, the training data series is divided into N new training
data series by the bootstrap sampling method, and a weak learner is used to train N datasets.
In the bootstrap sampling method, random sampling is performed by replacement, which
means that some of the training series data may be repeated, and some may be omitted. In
the bagging regression tree (BRT) method, each of the N training data series is learned by a
tree regression model. The final result is obtained by averaging the output of the N tree
models (Figure 4). In the tree regression method, the results of each tree individually have
high variance and low bias. Averaging the results of N trees reduces the variance of the
model, increases the accuracy, and prevents overfitting of the model. The performance of
the BRT method depends on the correct choice of the number of trees (N). To determine
the optimal value of N, out-of-bag (OOB) error estimation curves can be used. Usually,
two-thirds of the data series are used in model training by bootstrapping. One-third of the
remaining data that does not enter the training phase in each tree is called out-of-bag (OOB)
observations. OOB observations are used to estimate the prediction error. The error value
of the obtained OOB observations is a good criterion for model error validation. In the
present study, the fit ensemble function in MATLAB software was used to build a bagged
regression tree model.

 

Figure 4. Training procedure of bagged regression tree (BRT).

3. Statistical Criteria for Evaluation of Models

To check the precision of the proposed models, different statistical criteria including R,
root mean square error (RMSE), mean absolute percentage error (MAPE), Scatter Index (SI),
and Willmott’s agreement Index (IA) were employed [53–66].

1. Correlation coefficient (R) can be expressed as

R =
∑N

i=1
(
BIp,i − BIp

)
.
(
BIo,i − BIo

)
√

∑N
i=1
(
BIp,i − BIp

)2
∑N

i=1
(
BIo,i − BIo

)2 , 0 < R < 1 (14)
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2. Root mean square error (RMSE) can be expressed as

RMSE =

(
1
N ∑N

i=1

(
BIo,i − BIp,i

)2)0.5
(15)

3. Mean absolute percentage error is defined as

MAPE =
100
N ∑N

i=1

∣∣BIo,i − BIp,i
∣∣

BIo,i
(16)

4. Scatter Index can be expressed as

SI = RMSE/BIo (17)

5. Willmott’s agreement Index [49] can be expressed as

IA =
∑N

i=1
(
BIo,i − BIp,i

)2
∑N

i=1
(∣∣BIo,i − BIo

∣∣+ ∣∣BIo,i − BIo
∣∣)2 , 0 < IA < 1 (18)

where BIo is observed value; BIp is predicted value; BIo and BIp are average values of
observed and predicted data, respectively; and N is the number of data.

4. Results and Discussion

The LGP model is provided based on free software called “Discipulus”; its setting
parameters are listed in Table 3. In addition, to provide the BRT model, the “bag” method
of the “fitresemble” function of the Machine Learning Toolbox of MATLAB 2019 was
implemented. The setting parameters for the BRT model are tabulated in Table 3, which
were optimized to avoid overfitting by using a trial-and-error procedure [67,68]. The kernel
variable in the LWLR model was adopted through a trial-and-error process, leading to
a value of 0.4. To provide the KStar model, the global blend—as a crucial parameter of
the model—was optimized using a grid search scheme, leading to a value of 30. Figure 5
demonstrates the road map of predicting the procedure of BI parameters using provided
AI models.

Figure 5. The road map of predicting BI using machine learning approaches.

This paper examines the LGP approach to predict the brittleness index (BI) based
on four input variables: Rn, Vp, D, and Is50. Also, two lazy machine learning models
(namely LWLR and KStar) and a tree decision-based model (BRT) were measured to eval-
uate the outcome of the LGP approach. Figure 6 depicts the regression tree constructed
from the BRT model, in which the terminal nodes or leafs identify the response of pre-
diction. Table 4 presents the modeling results obtained by all models in the training
and testing phases. The quantitative results in the training phase indicate that the KStar
model (R = 0.9984, RMSE = 0.0865, MAPE = 0.2564, and IA = 0.9992) is superior to the BRT
(R = 0.9459, RMSE = 0.5297, and MAPE = 3.1569), LWLR (R = 0.9252, RMSE = 0.5960, and
MAPE = 3.4088), and LGP (R = 0.9248, RMSE = 0.5867, and MAPE = 3.6279) models. Testing
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results show that the LGP approach exhibits the best efficiency for BI prediction by having
the highest correlation coefficient (R = 0.9529) and lowest metrics error (RMSE = 0.4838 and
MAPE = 3.2155), followed by LWLR (R = 0.9490, RMSE = 0.6607, and MAPE = 4.1549), BRT
(R = 0.9433, RMSE = 0.6875, and MAPE = 4.3884), and KStar (R = 0.9310, RMSE = 0.9733, and
MAPE = 5.0573), respectively. A scatter plot of each model, as a powerful graphical tool, is
depicted in Figure 7 for comparison between predicted and observed values of BI. Careful
examination of the scatters indicates that the LGP approach—due to the closest distribution
of predicted points to the 1:1 line—demonstrates better performance than the other AI
methods for whole data. The LWLR and BRT models, with acceptable accuracy and similar
predictive performance, are ranked as the second and third best models, respectively. KStar,
despite the remarkable performance in the training phase (R = 0.9984), is identified as the
weakest method due to the highest dispersion of testing predicted points.
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Vp IS50

15.615.5
VpIS50

13.26Vp

12.4212.86

RnIS50

10.511.5 IS5011.41
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Figure 6. Decision trees of BRT model for prediction of BI.

Table 4. Quantitative evaluation of AI base approaches for predicting BI.

Metrics LGP K-Star BRT LWLR

Tr
ai

ni
ng

R 0.9248 0.9984 0.9459 0.9252
RMSE 0.5867 0.0865 0.5297 0.5960

MAPE% 3.6279 0.2564 3.1569 3.4088
SI 0.0463 0.0068 0.0418 0.0470
IA 0.9560 0.9992 0.9628 0.9531

St.D 1.3339 1.5195 1.2640 1.2828

Te
st

in
g

R 0.9529 0.9310 0.9433 0.9490
RMSE 0.4838 0.7933 0.6875 0.6607

MAPE% 3.2155 5.0573 4.3884 4.1549
SI 0.0389 0.0638 0.0553 0.0532
IA 0.9744 0.9095 0.9324 0.9400

St.D 1.5059 1.0861 1.1116 1.1686
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Figure 7. Comparison of four soft computing approaches and observed BI using scatter plot.

In the next graphical validation stage, half violin plots for all datasets are featured to
show the distribution of quantitative data across several predicted values levels compared
to observed ones. The underlying distribution of the models has been estimated using
a smooth kernel density function by showing attractive benchmark points, namely the
median and quartiles depicted in Figure 8. It is abundantly clear that KStar and BRT
have closer Q25% values (11.366 and 11.562, respectively) to the observed values (11.395)
compared with the LWLR and LGP approaches, whereas the LGP and LWLR Q75% values
(13.251 and 13.146, respectively) exhibit better agreement with the observed values (13.21).
Given the arrangement of the datasets, it is evident that the first Q25% is filled into the
training data. Regarding KStar, the remarkable performance in training and disappointment
in the testing phase implies that overfitting occurred in this paradigm.

The trend variation of BI plots in both training and testing modes is shown in Figure 9.
The results indicate that the LGP model can properly capture the nonlinear behavior
of BI in both triaging and testing datasets, and is capable of demonstrating promising
predictive performance compared to other models. Complete error analysis was performed
to evaluate the performance of the proposed predictive methods in BI estimation. According
to Figure 10, the KStar (RDB = 5.52%) and LWLR (RDB = 21.51%) models are identified
as having the best and worst predictive performance, as indicated from the lowest and
highest relative deviation bands in the training stage, respectively. Furthermore, LGP with
the lowest RDB (14.40%) and KStar with the highest RDB (23.41%) have yielded the most
promising and weakest results in forecasting BI in testing mode, respectively.
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Figure 8. Performance assessment of predicted and observed BI values using half violin plots.

As a final error assessment, the cumulative distribution function (CDF) of the absolute
percentage of relative error (APRE) for the testing dataset was considered. Figure 11
indicates that for more than 80% of testing datasets in predicting BI values, the APRE values
of LGP, BRT, LWLR, and KStar are less than 5%, 7.01%, 7.65%, and 7.80%, respectively.
Eventually, it can be inferred that the LGP model, as the main novelty of this research,
is superior to all proposed AI models for accurately predicting BI. The KStar approach,
despite its amazing performance in the training phase, yielded the weakest results in the
test phase among all models, which means that this method may not work properly for
unseen data. The KStar model cannot be identified as an efficient predictive method for BI
prediction due to overfitting. Thus, LGP and LWLR were identified as the best and second-
best predictive models. The BRT model—ranking third, with predictive performance
close to LWLR—yielded the admitted results for the prediction of BI values. It is worth
noting that although KStar in this study showed unfavorable performance in testing mode,
the accuracy of its results is far better than the results of previous research [3]. In the
literature, some studies have predicted BI by using different machine learning methods.
Yagiz et al. [69] used the genetic algorithm (GA) and particle swarm optimization (PSO) to
predict BI. According to their results, the values of R2 ranged between 0.851 and 0.932. In
another study, Koopialipoor et al. [25] predicted BI through a combination of ANN and
firefly algorithm, yielding prediction results with an R2 of 0.896. In the present study, BI has
been predicted with better performance (R2 of 0.953) from the LGP model. This indicates
the effectiveness of the model proposed in this study compared to aforementioned models
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used in the literature. According to the objectives of this study, the uncertainty of the
data has not been investigated. Given great importance, uncertainty of data and results
of machine learning-based methods could be considered as the subject of future research.
Also, the models presented in the current study generally suffer from a lack of laboratory
data. Therefore, in the future, it is necessary to examine the accuracy of presented methods
with a greater number of datasets.
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Figure 9. The trend physical plot for comparison between the observed and predicted BI values.
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Figure 10. Box plots for the relative deviation (%) distribution of all predictive models in testing
and training.
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Figure 11. The cumulative frequency percentage versus the relative absolute error (%) for LWLR,
BRT, KStar, and LGP models for the testing dataset.

5. Sensitivity Analysis

For more effective use of the AI methods, recognizing the effective parameters is
an essential issue. One of the most widely used techniques for sensitivity analysis (SA)
is consecutive elimination of the input variables and executing the AI model for all cre-
ated situations. This research used the LGP model as the best model to implement the
SA. Table 5 lists the SA results for five modes of combining inputs. The results demon-
strate that Dry Density, with the lowest R (0.9081) and highest RMSE (0.8027) and MAPE
(5.4642), is the most efficient input variable to estimate the brittleness index (BI). In addition,
the Vp (R = 0.9163 and RMSE = 0.7944) ranks second, followed by Is50 (R = 0.9169 and
RMSE = 0.7861) and Rn (R = 0.9273 and RMSE = 0.6959). A spider plot based on the six
statistical criteria for all combining inputs is displayed in Figure 12. According to this
figure, the combination with eliminating the dry density variable (i.e., all-dry density),
showing the lowest R and IA and highest RMSE and MAPE, has the greatest impact on the
accuracy of predicting BI. It should be mentioned that some feature selection methods such
as Boruta-random forest can be utilized to specify the influential parameters, which has
great ability to capture the non-linear interaction between the predictors and target. This
aim can be considered as an alternative of classical sensitivity analysis.
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Table 5. The sensitivity analysis results for all possible situations.

Metric All-Rn All-Vp All-Dry Density All-Is50 All

R 0.9273 0.9163 0.9081 0.9169 0.9433
RMSE 0.6959 0.7944 0.8027 0.7861 0.6875
MAPE 4.4592 5.1695 5.4642 5.0433 4.3884

SI 0.0560 0.0639 0.0646 0.0633 0.0553
IA 0.9318 0.9018 0.9004 0.9049 0.9324

St.D 1.6277 1.6277 1.6277 1.6277 1.6277
Rank 4.0000 3.0000 1.0000 2.0000 -

Figure 12. The influence input variables ranking for estimation of BI value.

6. Conclusions

Precise estimation of BI is necessary for any ground excavation project, and this
issue requires the application of appropriate prediction models. With this in view, several
advanced ML methods, including LGP, BRT, LWLR, and KStar models, were proposed
to estimate BI. In this regard, a database collected from a tunneling project in Pahang
state, Malaysia, was used, using four input parameters (Vp, Is50, D, and Rn) and BI as the
output parameter. In the modeling processes, 64 and 21 datasets, respectively, were used
for training and testing phases. Finally, the models’ accuracy was compared using several
statistical criteria such as R and RSME. The findings of this study can be summarized
as follows:

1. Based on the results, all developed models’ performance capacity was suitable and
acceptable. Accordingly, all proposed models can be used with confidence for future
research on predictions of other issues in the field of rock mechanics.

2. Among the proposed models, the KStar (R = 0.9984 and RMSE = 0.0865) model pre-
dicted BI with the best performance in the training phase, while the best performance
for the testing phase was achieved by the LGP (R = 0.9529 and RMSE = 0.4838) model.
In addition, both LWLR (R = 0.9490 and RMSE = 0.6607) and BRT (R = 0.9433 and
RMSE = 0.6875), ranking second and third, respectively, lead to desired results for
modeling BI values.
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3. The authors recommend increasing the accuracy of BI modeling as a possible future
study, examining the ensemble of stacked models to integrate the advantages of
standalone data-driven models.

4. Sensitivity analysis demonstrated that dry density (D) was the most influential pa-
rameter with respect to BI.
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Abstract: Based on the salp swarm algorithm (SSA), this paper proposes an efficient metaheuristic
algorithm for solving global optimization problems and optimizing two commonly encountered
geotechnical engineering structures: reinforced concrete cantilever retaining walls and shallow spread
foundations. Two new equations for the leader- and followers-position-updating procedures were
introduced in the proposed adaptive salp swarm optimization (ASSA). This change improved the
algorithm’s exploration capabilities while preventing it from converging prematurely. Benchmark
test functions were used to confirm the proposed algorithm’s performance, and the results were
compared to the SSA and other effective optimization algorithms. A Wilcoxon’s rank sum test was
performed to evaluate the pairwise statistical performances of the algorithms, and it indicated the
significant superiority of the ASSA. The new algorithm can also be used to optimize low-cost retaining
walls and foundations. In the analysis and design procedures, both geotechnical and structural limit
states were used. Two case studies of retaining walls and spread foundations were solved using the
proposed methodology. According to the simulation results, ASSA outperforms alternative models
and demonstrates the ability to produce better optimal solutions.

Keywords: salp swarm optimizer; spread foundation; retaining structures; economic design

1. Introduction

The objective function in most engineering problems is non-convex and discontinuous,
with a large number of design variables. As a result, traditional deterministic optimization
techniques based on mathematical principles may struggle to find a global optimum
solution due to local optima trapping. The use of powerful metaheuristic optimization
algorithms for obtaining a global optimum to overcome this limitation is of interest, and
metaheuristic algorithms have proven to be an excellent alternative for solving complex
problems in recent decades [1–6].

The most common geo-structures in practical application are reinforced concrete
retaining walls and spread footings, which have received considerable attention in recent
studies [7,8]. These structures are commonly used and typically involve a large volume of
material. In the past, the initial anticipated dimensions of retaining structures were tested
for stability and other building code requirements. If the dimensions were insufficient
to meet the constraints, they were adjusted until all the requirements were met. During
this time-consuming, iterative process, the cost of construction was not taken into account.
In the optimum design of these structures, the dimensions that provide the lowest cost
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and weight of construction while meeting all the design requirements are automatically
determined.

Several metaheuristic algorithms for geotechnical engineering problems have recently
been developed and are widely used. Despite the fact that metaheuristic methods can pro-
duce acceptable results, no algorithm outperforms another in solving all the optimization
problems. Furthermore, the objective function in most geotechnical engineering optimiza-
tion problems, such as shallow foundations, retaining structures, and pile optimization,
is discontinuous and has a large number of design variables. As a result, several research
projects have been launched in order to improve the performance and efficiency of the
existing metaheuristics. Some of these are modified particle swarm optimizations [9,10],
modified harmony search algorithms [11], modified gravitational search algorithms [12],
modified sine cosine algorithms [13], improved salp swarm algorithms [14], modified ant
colony optimizations [15], modified teaching–learning-based optimizations [16], improved
tunicate swarm algorithms [17], and modified wild horse optimizations [18]. According to
the effectiveness of the metaheuristics and their modified versions, these methods have
been widely used to solve several geotechnical engineering problems, as presented in
Table 1.

Table 1. Application of metaheuristic algorithms for geotechnical engineering problems.

Author, Year Reference Optimization Method Application

Goh, 2000 [19] Genetic algorithm Locate the critical circular slip surface in
slope stability analysis

Zolfaghari, Heath, and
McCombie, 2005 [20] Genetic algorithm Search for critical noncircular failure

surface in slope stability analysis

Cheng et al., 2007 [1] Particle swarm optimization Analyze two-dimensional slope stability

Cheng et al., 2008 [11] Improved harmony search algorithm Analyze slope stability

Chan, Zhang, and Ng, 2009 [21] Hybrid genetic algorithms Optimize pile groups

Kahatadeniya, Nanakorn, and
Neaupane, 2009 [22] Ant colony optimization Determine the critical failure surface of

earth slope

Khajehzadeh et al., 2011 [23] Modified particle swarm optimization Optimize design of spread footing and
retaining wall

Camp and Akin, 2012 [24] Big bang–big crunch optimization Optimize design of retaining wall

Camp and Assadollahi, 2013 [25] Hybrid big bang–big crunch algorithm Optimize CO2 and cost of reinforced
concrete footings

Khajehzadeh et al., 2013 [26] Hybrid firefly algorithm Multi-objective optimization
of foundations

Kang, Li, and Ma, 2013 [27] Artificial bee colony algorithm Locate the critical slip surface in slope
stability analysis

Khajehzadeh, Taha, and Eslami,
2014 [12] Hybrid adaptive gravitational search

algorithm
Multi-objective optimization of

retaining walls

Kashani, Gandomi, and Mousavi,
2016 [28] Imperialistic competitive algorithm Locate the critical slip surface of earth

slope

Gordan et al., 2016 [29] Particle swarm optimization and neural
network Predict seismic slope stability

Gandomi and Kashani, 2017 [7]

Accelerated particle swarm
optimization, firefly algorithm,

Levy-flight krill herd, whale
optimization algorithm, ant lion
optimizer, grey wolf optimizer,

moth–flame optimization algorithm,
and teaching–learning-based

optimization algorithm

Minimize construction cost of shallow
foundation

Aydogdu, 2017 [30] Biogeography-based
optimization algorithm Optimize cost of retaining wall
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Table 1. Cont.

Author, Year Reference Optimization Method Application

Gandomi et al., 2017 [31]
Genetic algorithm, differential evolution,

evolutionary strategy, and
biogeography-based optimization

Analyze slope stability

Mahdiyar et al., 2017 [32] Monte Carlo simulation technique Assess safety of slope

Gandomi, Kashani, and Zeighami,
2017 [2] Interior search algorithm Optimize retaining wall

Chen et al., 2019 [33] Hybrid imperialist competitive
algorithm and artificial neural network

Predict safety factor values of retaining
walls

Koopialipoor et al., 2019 [34]

Imperialist competitive algorithm,
genetic algorithm, particle swarm

optimization, and artificial bee colony
combined with artificial neural network

Predict slope stability under static and
dynamic conditions

Yang et al., 2019 [35] Neural network system Design retaining wall structures based
on smart and optimal systems

Xu et al., 2019 [36] Hybrid artificial neural network and ant
colony optimization

Assess dynamic conditions of retaining
wall structures

Himanshu and Burman, 2019 [37] Particle swarm optimization Determine critical failure surface
considering seepage and seismic loading

Kalemci et al., 2020 [38] Grey wolf optimization algorithm Optimize retaining walls

Kaveh, Hamedani, and
Bakhshpoori, 2020 [39] Eleven metaheuristic algorithms Optimize design of cantilever retaining

walls

Kashani et al., 2020 [4]
Differential algorithm, evolution

strategy, and biogeography-based
optimization algorithm

Optimize design of shallow foundation

Sharma, Saha, and Lohar, 2021 [40] Hybrid butterfly and symbiosis
organism search algorithm Optimize retaining wall

Kaveh and Seddighian, 2021 [41]
Black hole mechanics optimization,

firefly algorithm, evolution strategy, and
sine cosine algorithm

Optimize slope critical surfaces
considering seepage and seismic effects

Temur, 2021 [42] Teaching–learning-based optimization Optimize retaining wall

Li and Wu, 2021 [43] Improved salp swarm algorithm Locate critical slip surface of slopes

Khajehzadeh, Keawsawasvong,
et al., 2022 [44] Hybrid tunicate swarm algorithm and

pattern search Seismic analysis of earth slope

Arabali et al., 2022 [45] Adaptive tunicate swarm algorithm Optimize construction cost and CO2
emissions of shallow foundation

Khajehzadeh, Keawsawasvong,
and Nehdi, 2022 [46] Artificial neural network combined with

rat swarm optimization

Predict the ultimate bearing capacity of
shallow foundations and their optimum

design

Khajehzadeh, Kalhor, et al., 2022 [47] Adaptive sperm swarm optimization Optimize design of retaining structures
under seismic load

Kashani et al., 2022 [48]

Multi-objective particle swarm
optimization, multi-objective multiverse
optimization and Pareto envelope-based

selection algorithm

Multi-objective optimization of
mechanically stabilized earth retaining

wall

A new meta-heuristic algorithm called the salp swarm algorithm (SSA) simulates
salp fish swarming in deep waters [49]. Section 2 contains more information on the SSA’s
motivation and mathematical modelling. The SSA in its basic model can be extended or
hybridized with another algorithm to produce better answers for future problems, similar
to other metaheuristic approaches [14,43,50].

This paper presents an adaptive salp swarm algorithm (ASSA) for optimization by
introducing new position-updating equations for leader and follower salps. This change
significantly improves the algorithm’s performance and convergence speed. A set of
well-known standard benchmark functions from the literature is used to validate the
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effectiveness of the proposed approach. Furthermore, numerical geotechnical structure op-
timization tests are used to investigate the proposed method’s performance and efficiency.

2. Salp Swarm Algorithm

A salp is a type of marine animal in the Salpidae family. It has a cylindrical structure
with apertures at the ends similar to those of a jellyfish, which move and eat by pumping
water through internal feeding filters in their gelatinous bodies. The salp swarm algorithm
(SSA), a population-based optimization technique, was developed by Mirjalili et al. [49].
The salp chain can be used to calculate the SSA’s behavior while hunting for optimal
feeding sources (i.e., the target of this swarm is a food position in the search space called
FP). To mathematically model salp chains, they are sampled into two groups: followers
and leaders. The salp at the head of the chain is known as the leader, while the others are
known as followers. The swarm is led by the leader of these salps, and the followers follow
in his footsteps. The chain begins with a leader, who is followed by the followers to guide
their movements.

Similar to other swarm-based algorithms, the salp location is specified in a n-dimensional
search space, where n is the number of variables in a given problem. As a result, the posi-
tions of all the salps are recorded in a two-dimensional matrix known as X, as shown in
Equation (1):

Xi =

⎡
⎢⎢⎢⎣

x1
1 x1

2 . . . x1
d

x2
1 x2

2 . . . x2
d

...
... . . .

...
xn

1 xn
2 . . . xn

d

⎤
⎥⎥⎥⎦ (1)

The fitness of each salp is then determined in order to define which salp has the
best fitness. It is also supposed that the swarm’s goal is a food position called FP in the
search area.

The following equation can be used by the leader salp to change positions:

x1
i =

{
FPi + r1((ubi − lbi)r2 + lbi) r3 ≥ 0
FPi − r1((ubi − lbi)r2 + lbi) r3 < 0

(2)

where x1
i denotes the first salp’s position in the ith dimension, and FPi denotes the food

position in the ith dimension. The lower and upper bounds of the ith dimension are
represented by lbi and ubi, respectively, and the coefficient r1 is calculated with Equation (3):

r1 = 2e−( 4t
tmax )

2

(3)

In addition, the random numbers r2 and r3 are between 0 and 1. The maximum
number of iterations is tmax, and the current iteration is t. It is worth noting that the r1
coefficient is critical in a SSA because it balances exploration and exploitation throughout
the search. The following equations are used to change the positions of the followers:

xj
i =

1
2

(
xj

i + xj−1
i

)
(4)

where j ≥ 2. In case some agents transfer outside of the search area, Equation (6) shows
how to move salps back into the search area if they leave it:

xj
i =

⎧⎪⎨
⎪⎩

lbi i f xj
i ≤ lbi

ubi i f xj
i ≥ ubi

xj
i otherwise

(5)

The pseudocode of the SSA is shown in Algorithm 1.
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Algorithm 1. Salp swarm algorithm

Initialize the salp population xi (i = 1, 2, . . . , n) considering lbi and ubi
while t ≤ tmax

Calculate the fitness of each search agent (salp)
Put the best search agent as FP (Food position)
Update r1 by Equation (3)

for each salp (xi)
if i = 1

Update the position of the leading salp by Equation (2)
else

Update the position of the follower salp by Equation (4)
end

end

Amend the salps based on the upper and lower bounds of variables
Calculate the fitness of each search agent FP

Update the food position
t = t + 1
end

return the food position FP and its best fitness

3. Adaptive Salp Swarm Algorithm

Even though the SSA has the capability to generate acceptable results in comparison
to other well-known techniques [49], the obtained results of the SSA are prone to becoming
stuck in a local optimum, making it unsuitable for very complex problems with multiple
local optima [43].

The leading salp adjusts its location in the SSA in response to the food situation (i.e.,
the position of the best salp in the whole population), as observed in Equation (2). The SSA
algorithm updates the location of the leader salp around a single point at each incarnation
pass, and other salps (followers) follow the leader. If the algorithm fails to recover because
it lacks knowledge of the food position (FP), the algorithm fails. In other words, once an
algorithm converges, it loses its ability to explore and then becomes inactive. As a result
of this mechanism, the SSA algorithm becomes locked at local minimum points. In light
of these circumstances, an adaptive version of the SSA (ASSA) is proposed to address the
aforementioned flaw, while also increasing the algorithm’s search capability and flexibility.

In the proposed ASSA, half of the population is considered as leaders, and the re-
maining salps are followers, which improves the algorithm’s performance and exploring
capabilities. The following equation is then used to update the position of the leader salps:

xj
i =

⎧⎨
⎩

xj
i + r1

(
FPi − xj

i

)
r3 ≥ 0.5

xj
i − r1

(
FPi − xj

i

)
r3 < 0.5

(6)

The leaders adjust their positions in response to the state of the food source, as well as
their previous position, as shown in Equation (6).

This process increases exploration while also allowing the SSA to conduct a more
powerful global search across the entire search space. To improve the proposed ASSA’s
search efficiency, the followers update their positions according to the following equation:

xj
i = rand2

(
xj

i + xj−1
i

)
(7)

In addition, in the suggested ASSA, at each iterative process, the worst salp with the
highest objective function value is replaced with a completely random salp. The flowchart
of the proposed ASSA is shown in Figure 1.
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Figure 1. Flowchart of ASSA.

4. Model Verification

A set of numerical reference test functions was used in this section to compare and
confirm the achievement and effectiveness of the proposed adaptive salp swarm algorithm
(ASSA). In the empirical evidence literature, these functions have commonly been used to
determine the performance of optimizers [51,52].

The mathematical models and characteristics of these test functions are shown in
Tables 2 and 3. This standard set was divided into two categories: (1) unimodal functions
with a single global best for testing the algorithm convergence pace and enslavement
ability and (2) multimodal functions with multiple local minimums and a global ideal for
testing an algorithm’s local optima avoidance and exploratory capacity. MATLAB R2020b
was used to create the suggested algorithms. All these functions should be minimized.
Furthermore, all the functions had dimensions of 30. Three-dimensional drawings of these
benchmark functions are illustrated in Figures 2 and 3.
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The proposed ASSA was compared to the original SSA, as well as to some well-known
optimization methods, such as the genetic algorithm developed by [53], the particle swarm
optimization (PSO) proposed by [54], the firefly algorithm (FA) introduced by [55], the
multiverse optimizer (MVO) developed by [56], and the tunicate swarm algorithm (TSA)
introduced by [52]. For all methodologies, the sizes of the solutions (N) and the maximum
number of iterations (tmax) were set to 30 and 1000, respectively, in order to make fair
comparisons between them.

Because the results of a single run of a metaheuristic method are stochastic, they may
be incorrect. As a result, statistical analysis should be performed in order to provide a fair
comparison and evaluate an algorithm’s efficacy. To address this issue, 30 runs for the
mentioned methods were performed, with the results presented in Tables 4 and 5.

Table 2. Description of unimodal benchmark functions.

Function Range fmin n (Dim)

F1(X) = ∑n
i=1 x2

i [−100, 100]n 0 30

F2(X) = ∑n
i=1|xi|+ ∏n

i=1|xi| [−10, 10]n 0 30

F3(X) = ∑n
i=1

(
∑i

j=1 xj

)2
[−100, 100]n 0 30

F4(X) = max
i

{|xi|, 1 ≤ i ≤ n } [−100, 100]n 0 30

F5(X) = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30]n 0 30

F6(X) = ∑n
i=1([xi + 0.5])2 [−100, 100]n 0 30

F7(X) = ∑n
i=1 ix4

i + random[0, 1) [−1.28, 1.28]n 0 30

Table 3. Description of multimodal benchmark functions.

Function Range fmin n (Dim)

F8(X) = ∑n
i=1 −xi sin

(√|xi|
)

[−500, 500]n 428.9829 × n 30

F9(X) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n 0 30

F10(X) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e

[−32, 32]n 0 30

F11(X) = 1
4000 ∑n

i=1 x2
i − ∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]n 0 30

F12(X) =
π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+∑n

i=1 u(xi, 10, 100, 4)

yi = 1 + xi+4
4 u(xi, a, k, m) =

⎧⎨
⎩

k(xi − a)m xi > a
0 a < xi < a
k(−xi − a)m xi < −a

[−50, 50]n 0 30

F13(X) = 0.1
{

sin2(3πx1)

+∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]}
+∑n

i=1 u(xi, 5, 100, 4)

[−50, 50]n 0 30
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Figure 2. 3-D versions of unimodal benchmark functions.
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Figure 3. 3-D versions of multimodal benchmark functions.
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Table 4. Comparison of different methods in solving unimodal test functions.

F Index ASSA SSA GA PSO FA MVO TSA

F1 Mean 2.23 × 10−227 3.29 × 10−7 1.95 × 10−12 4.98 × 10−9 7.11 × 10−3 2.81 × 10−1 8.31 × 10−56

Std. 0.00 5.92 × 10−7 2.01 × 10−11 1.40 × 10−8 3.21 × 10−3 1.11 × 10−1 1.02 × 10−58

F2 Mean 5.96 × 10−105 1.911 6.53 × 10−18 7.29 × 10−4 4.34 × 10−1 3.96 × 10−1 8.36 × 10−35

Std. 1.91 × 10−104 1.614 5.10 × 10−17 1.84 × 10−3 1.84 × 10−1 1.41 × 10−1 9.86 × 10−35

F3 Mean 3.27 × 10−180 1.50 × 103 7.70 × 10−10 14.0 1.66 × 103 43.1 1.51 × 10−14

Std. 0.00 7.07 × 102 7.36 × 10−9 7.13 6.72 × 102 8.97 6.55 × 10−14

F4 Mean 1.56 × 10−104 2.44 × 10−5 91.7 6.00 × 10−1 1.11 × 10−1 8.80 × 10−1 1.95 × 10−5

Std. 3.47 × 10−105 1.89 × 10−5 56.7 1.72 × 10−1 4.75 × 10−2 2.50 × 10−1 4.49 × 10−4

F5 Mean 2.56 × 10−1 1.36 × 102 5.57 × 102 49.3 79.7 1.18 × 102 28.4
Std. 4.78 × 10−1 1.54 × 102 41.6 38.9 73.9 1.43 × 102 8.40 × 10−1

F6 Mean 3.76 × 10−7 5.72 × 10−7 3.15 × 10−1 6.92 × 10−2 6.94 × 10−3 2.02 × 10−2 3.67
Std. 1.23 × 10−7 2.44 × 10−7 9.98 × 10−2 2.87 × 10−2 3.61 × 10−3 7.43 × 10−3 3.35 × 10−1

F7 Mean 2.71 × 10−6 8.82 × 10−5 6.79 × 10−4 8.94 × 10−2 6.62 × 10−2 5.24 × 10−2 1.80 × 10−3

Std. 2.33 × 10−6 6.94 × 10−5 3.29 × 10−3 2.06 × 10−2 4.23 × 10−2 1.37 × 10−2 4.62 × 10−4

Table 5. Comparison of different methods in solving multimodal test functions.

F Index ASSA SSA GA PSO FA MVO TSA

F8 Mean –1.21 × 104 –7.46 × 103 –5.11 × 103 –6.01 × 103 –5.85 × 103 –6.92 × 103 –7.89 × 103

Std. 4.89 × 102 6.34 × 102 4.37 × 102 1.30 × 103 1.61 × 103 9.19 × 102 599.2
F9 Mean 0.00 55.45 1.23 × 10−1 47.2 15.1 1.01× 102 151.4

Std. 0.00 18.27 41.1 10.3 12.5 18.9 35.87
F10 Mean 8.88 × 10−16 2.84 5.31 × 10−11 3.86 × 10−2 4.58 × 10−2 1.15 2.409

Std. 0.00 6.58 × 10−1 1.11 × 10−10 2.11 × 10−1 1.20 × 10−2 7.87 × 10−1 1.392
F11 Mean 0.00 2.29 × 10−1 3.31 × 10−6 5.50 × 10−3 4.23 × 10−3 5.74 × 10−1 7.7 × 10−3

Std. 0.00 1.29 × 10−1 4.23 × 10−5 7.39 × 10−3 1.29 × 10−3 1.12 × 10−1 5.7 × 10−3

F12 Mean 2.31 × 10−5 6.82 9.16 × 10−8 1.05 × 10−2 3.13 × 10−4 1.27 6.373
Std. 2.46 × 10−5 2.72 4.88 × 10−7 2.06 × 10−2 1.76 × 10−4 1.02 3.458

F13 Mean 1.44 × 10−4 21.31 6.39 × 10−2 4.03 × 10−1 2.08 × 10−3 6.60 × 10−2 2.897
Std. 1.95 × 10−4 16.99 4.49 × 10−2 5.39 × 10−1 9.62 × 10−4 4.33 × 10−2 6.43 × 10−1

Tables 4 and 5 show that, for all the functions, the ASSA could provide better solutions
in terms of mean value of the objective functions than the conventional SSA, as well as
the other optimization techniques. The results also showed that the mean and standard
deviation of the ASSA were significantly lower than those of the other strategies, indicating
that the algorithm was stable. The ASSA outperformed both the standard method and
alternative optimization approaches, according to the findings.

In order to obtain significant effectiveness between two or more algorithms, a nonpara-
metric Wilcoxon’s rank sum test is often used [57]. In this study, a pairwise comparison was
performed using the best results from 30 runs of each algorithm. The Wilcoxon’s rank sum
test returned the p-value, the sum of the positive ranks (R+), and the sum of the negative
ranks (R−). Table 6 shows the results of the Wilcoxon’s rank sum test for all the benchmark
functions. The p-value is the smallest level of significance for detecting differences. In
this study, the level of significance was set at 0.05 (α = 0.05). If the p-value was smaller
than 0.05, it meant that the better result achieved by the best method in each pairwise
comparison was statistically significant and was not obtained by chance. However, there
was no significant difference between the two examined methods if the p-value was greater
than 0.05. Such a result is indicated with “NA” in the “win” rows of Table 6. In addition, if
the R+ was greater than the R−, the ASSA had a better performance than the alternative
technique. Otherwise, the ASSA had a poor performance, and the other approach had a
better performance [58].
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Table 6. Results of Wilcoxon’s rank sum test for benchmark functions.

Fun. Index ASSA vs. SSA ASSA vs. GA ASSA vs. PSO ASSA vs. FA
ASSA vs.

MVO
ASSA vs. TSA

F1

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F2

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F3

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F4

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F5

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F6

p-val. 6.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 453 465 465 465 465 465
R− 12 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F7

p-val. 6.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 453 465 465 465 465 465
R− 12 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F8

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F9

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F10

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F11

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F12

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 0.0 465 465 465 465
R− 0.0 465 0.0 0.0 0.0 0.0
Win ASSA GA ASSA ASSA ASSA ASSA

F13

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

Superior
/Inferior/NA 13/0/0 12/1/0 13/0/0 13/0/0 13/0/0 13/0/0

According to the findings of the Wilcoxon’s rank sum test in Table 6, the pairwise com-
parison of the ASSA and the SSA in the optimization of thirteen test functions demonstrated
that the new approach outperformed the original method in all thirteen cases. Similarly,
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in the other pairwise comparisons, the ASSA provided better results for the majority of
the test suite. As a result of the nonparametric statistical analysis, the ASSA created much
better answers and performed significantly better than the other techniques.

5. Foundation Optimization

A shallow spread foundation, as an essential geotechnical structure, must safely and
reliably support the superstructure, guarantee stability against soil-bearing capacity failings
and excessive settlement, and reduce concrete stresses. Aside from these design criteria,
spread footings must meet a number of other criteria: they must have enough shear and
moment capacities in both the long and short dimensions; the load-carrying capacity of
the foundation must not be surpassed; and the reinforcing steel configuration must meet
all building code criteria [59]. The foundation optimization problem requires determining
the objective function, layout constraint, and design variables, which are discussed in the
following subsections.

5.1. Objective Function

The total cost of the spread footing was the study’s objective function, which can be
expressed mathematically as follows:

f (X) = CcVc + CeVe + CbVb + Cf A f + CsWs (8)

In Equation (8), Cc, Ce, Cb, Cf, and Cs are the unit costs of concrete, excavation, backfill,
formwork, and reinforcement, respectively. The unit costs considered here are listed in
Table 7 [60].

Table 7. Spread footing assembly unit cost [60].

Item Symbol Unit Unit Cost (USD)

Excavation Ce m3 25.16
Formwork Cf m2 51.97

Reinforcement Cs kg 2.16
Concrete Cc m3 173.96
Backfill Cb m3 3.97

5.2. Design Variables

Figure 4 depicts the design features for the given model. The design variables were
divided into two categories: those that described geometric dimensions and those that
described steel reinforcement. As shown in Figure 4, there were four spatial design variables
that reflected the foundation dimensions: the foundation’s length (Y1), the width (Y2), the
thickness (Y3), and the embedment’s depth (Y4). The steel reinforcement also had two
design variables: the longitudinal reinforcement (Y5) and the transverse reinforcement (Y6).

5.3. Design Constraints

While optimizing and designing a reinforced concrete footing, both structural and
geotechnical limit states should be considered. Two different geotechnical limit states are
the bearing capacity of the surrounding geo-material and the permitted settlement of the
footing. The shear capacity of the footing (one- and two-way shear), flexural capacity,
and reinforcement limitation are all structural limit states. The structural limit states are
investigated using ACI 318-11 specifications [59]. Service loads are commonly used to
satisfy geotechnical limit states. Even so, factored loads can be used for structural limit
states. Table 8 provides a list of both structural and geotechnical limit states.
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Figure 4. Design variables of the footing.

Table 8. Design constraints of spread footing.

Failure Mode Constraint

Bearing capacity qmax ≤ qall
FS

Settlement of foundation

δ ≤ δall

δ =
P(1−μ2)
kz E

√
Y1Y2

kz = −0.0017
(

Y2
Y1

)2
+ 0.0597

(
Y2
Y1

)
+ 0.9843

Eccentricity e ≤ Y1/6

One-way (wide beam) shear Vu ≤ 1
6∅v
√

f ′cbd

Two-way (punching) shear
Vu ≤

min
{(

1 + 2
βc

)
/6,
(

αsd
b0

+ 2
)

/12, 1
3

}
∅v
√

f ′cbd

Bending moment Mu ≤ ∅M As fy
(
d − a

2
)

Minimum and maximum reinforcements ρminbd ≤ As ≤ ρmaxbd

Limitation of depth of embedment 0.5 ≤ Y4 ≤ 2

All the parameters presented in Table 8 are defined in Table 9.

Table 9. Definition of parameters of Table 7.

Parameter Definition

qult ultimate bearing capacity of the foundation soil

qmax
maximum contact pressure at the interface between the bottom of a foundation and
the underlying soil

δall allowable settlement of foundation
δ immediate settlement of foundation
φV shear strength reduction factor equal to 0.75
f′c compression strength of concrete
b0 perimeter of critical section taken at d/2 from face of column
b width of the section
βc ratio of long side to short side of column section
αs is equal to 40 for interior columns
Mu bending moment
φM flexure strength reduction factor equal to 0.9
As cross-sectional area of steel reinforcement
fy yield strength of steel
ρmin minimum reinforcement ratio
ρmax maximum reinforcement ratio
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6. Retaining Structure Optimization

Reinforced concrete retaining walls are structures that are built to withstand lateral soil
pressure as the land elevation changes. The retaining structure design process necessitates
several considerations, such as structural dimensions, material characteristics, and needed
reinforcement. Generally, the designer’s experience plays a critical role in the cost-effective
and safe design of these structures. However, the optimum design of retaining walls is
independent of user experience, and the results satisfy both safety and economy.

6.1. Objective Functions

In the case of retaining structure optimization, the total construction cost of the retain-
ing wall was considered as an objective function that incorporated the cost of materials, as
well as labor and installation costs, that could be represented as follows:

f (X) = CcVc + CeVe + CbVb + Cf A f + CsWs (9)

In Equation (9), Cc, Ce, Cb, Cf, and Cs are the unit costs of concrete, excavation, backfill,
formwork, and reinforcement, respectively. Table 10 presents the unit construction of a
retaining structure [61].

Table 10. Basic prices considered in the analysis.

Item Unit Unit Cost (USD/m)

Excavation m3 11.41
Foundation formwork m2 36.82

Stem formwork m2 37.08
Reinforcement kg 1.51

Concrete in foundations m3 104.51
Concrete in stem m3 118.05

Backfill m3 38.10

6.2. Design Variables

Figure 5 depicts the retaining wall model’s cross-section, design variables, and external
load. As shown in this diagram, the dimensions of the retaining wall are represented by
five geometric design variables: the heel width, represented by X1; the top stem thickness,
represented by X2; the bottom stem thickness, represented by X3; the toe width, represented
by X4; and the base slab thickness, represented by X5. Three additional design features are
included in the steel reinforcement of the various sections of the retaining wall. The vertical
steel reinforcement in the stem is designated as X6, the horizontal steel reinforcement in the
toe is designated as X7, and the horizontal steel reinforcement in the heel is designated as
X8. B is the foundation’s base width, H is the wall’s total height, and H′ is the stem’s height.
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Figure 5. Design variables of the retaining structure.

6.3. Design Constraints

Figure 6 depicts the general forces acting on the retaining wall. Table 11 summarizes
and presents the various design constraints that were taken into account when optimizing
the concrete retaining wall.

Figure 6. Forces acting on the retaining wall.
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Table 11. Failure modes of retaining wall.

Failure Mode Constraints

Sliding stability FSS ≤ (ΣFR/ΣFd)

Overturning stability FSO ≤ (ΣMR/ΣMO)

Bearing capacity FSb ≤ (qult/qmax)

Eccentricity failure e ≤ (B/6)
e = b

2 − ∑ MR−∑ MO
∑ V

Toe shear Vut ≤ Vnt

Toe moment Mut ≤ Mnt

Heel shear Vuh ≤ Vnh

Heel moment Muh ≤ Mnh

Shear at bottom of stem Vus ≤ Vns

Moment at bottom of stem Mus ≤ Mns

Deflection at top of stem (1/150) × H′ ≤ δmax

All the parameters presented in Figure 6 and Table 11 are defined in Table 12.

Table 12. Definition of parameters of Figure 6 and Table 10.

Parameter Definition

β backfill slop angle
D depth of soil in front of the wall
Q distributed surcharge load
Pa active earth pressure
Pp passive earth pressure
FSS required factor of safety against sliding
FSO required factor of safety against overturning
FSb required factor of safety against bearing capacity
∑FR sum of the horizontal resisting forces
∑Fd sum of the horizontal driving forces
∑MR sum of the moments of forces that tends to resist overturning about the toe
∑MO sum of the moments of forces that tends to overturn the structure about the toe
∑V sum of the vertical forces due to the weight of wall
Vut ultimate shearing force of toe
Vuh ultimate shearing force of heel
Vus ultimate shearing force of stem
Vn nominal shear strength of concrete
Mut ultimate bending moment of toe
Muh ultimate bending moment of heel
Mus ultimate bending moment of toe stem
Mn nominal flexural strength of concrete
δmax maximum deflection at the top of the stem

In addition to the constraints mentioned above, the design variables had practical
lower and upper values [62]. Table 13 summarizes the lower and upper boundaries of the
design variables.
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Table 13. Upper bound and lower bound for design variables of retaining wall.

Description Lower Bound Upper Bound

Width of footing Bmin = 0.4 H Bmax = 0.7 H

Thickness of base slab X5min = H/12 X5max = H/10

Width of toe X4min = 0.4 H/3 X4max = 0.7 H/3

Stem thickness at top X2min = 20 cm -

Steel reinforcement ratio ρmin = max
{

1.4
fy

, 0.25
√

f ′c
fy

}
ρmax = 0.85β1

f ′ c
fy

(
600

600+ fy

)

7. Design Examples

This section investigates numerical problems of geotechnical structures in order to
evaluate the ASSA performance. To address the current inquiry, a MATLAB code was
developed to computerize the design approach based on the ACI 318-11 specifications, as
stated earlier [59].

In order to consider the constraints and transform a constrained optimization to an
unconstrained problem, a penalty function method was used in this paper:

F(X) = f (X) + r
p

∑
i=1

max{0, gi(X)}l (10)

where F(X) is the penalized objective function, f (X) is the problem’s original objective
function presented in (8) and (9), and g(X) is the problem’s constraints presented in
mboxcreftabref:applsci-1718195-t007,tabref:applsci-1718195-t010 for the spread footing and
retaining wall, respectively. r is a penalty factor considered equal to 1000, l is the power of
the penalty function considered equal to 2, and p is the total number of constraints.

To demonstrate the efficacy of the proposed technique, the findings were compared
to state-of-the-art algorithms such as particle swarm optimization (PSO) and the firefly
algorithm (FA) in the following cases. The maximum number of iterations in any algorithm
was assumed to be 1000. Because of the stochastic behavior of the metaheuristics in the
following experiments, all the algorithms were run 30 times, and the best results of the
analyses for the minimum cost obtained by each method are reported.

7.1. Spread Footing Optimization

The first two design examples were concerned with the best design for a dry sand
inner surface spread footing. Table 14 lists the other input parameters for such case studies.

Table 14. Input parameters for design examples 1 and 2.

Parameter Unit Value for Example 1 Value for Example 2

Effective friction angle of base soil degree 35 30
Unit weight of base soil kN/m3 18.5 18.5

Young’s modulus MPa 50 35
Poisson’s ratio − 0.3 0.3

Vertical dead load (D) kN 2000 4200
Vertical live load (L) kN 1000 2100

Moment (M) kN-m 0.0 850
Concrete cover cm 7.0 7.0

Yield strength of reinforcing steel MPa 400 400
Compressive strength of concrete MPa 30 28

Factor of safety for bearing
capacity − 3.0 3.0

Allowable settlement of footing m 0.04 0.04
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The presented procedure solved the problem by combining all the previously men-
tioned algorithms. Tables 15 and 16 show the best results of the analyses for the lowest cost.

Table 15. Optimization results for design example 1.

Design
Variable

Unit
Optimum

Values
ASSA

Optimum
Values

SSA

Optimum
Values

FA

Optimum
Values

PSO

(Y1) cm 169.5 158.3 155.3 169.4
(Y2) cm 218.8 248.5 253.1 219.2
(Y3) cm 57.5 58.1 58.2 60
(Y4) cm 200 158.2 200 200
(Y5) cm2 39.58 48.2 49.65 37.75
(Y6) cm2 25.13 21.74 20.94 23.91

Objective
function USD 1091 1098 1162 1108

Table 16. Optimization result for design example 2.

Design
Variable

Unit
Optimum

Values
ASSA

Optimum
Values

SSA

Optimum
Values

FA

Optimum
Values

PSO

(Y1) cm 153 153.1 159.3 153.2
(Y2) cm 833.4 833.2 819.1 837.6
(Y3) cm 80.6 80.6 82.4 80.8
(Y4) cm 200 200 200 200
(Y5) cm2 277.1 277.2 256.8 278.1
(Y6) cm2 20.54 21.1 24.7 20.6

Objective
function USD 4512 4520 4650 4544

Tables 15 and 16 show that the optimization findings computed by the proposed ASSA
were lower than those calculated by the conventional SSA and other approaches, indicating
that the new method was effective. Table 15 shows that, contrary to popular belief that
the best shape for a footing under vertical load is square, a rectangular footing provided a
more cost-effective design.

7.2. Retaining Structure Optimization

The optimal design of two retaining walls with heights of 4 and 6 m was the subject of
this section. Table 17 lists the other parameters that were required for this example.

Table 17. Input parameters for design examples 3 and 4.

Parameter Unit Value for Example 3 Value for Example 4

Height of stem m 4.0 6
Internal friction angle of retained soil degree 36 36

Internal friction angle of base soil degree 0.0 34
Unit weight of retained soil kN/m3 17.5 17.5

Unit weight of base soil kN/m3 18.5 18.5
Unit weight of concrete kN/m3 23.5 24

Cohesion of base soil kPa 125 100
Depth of soil in front of wall m 0.5 0.75

Surcharge load kPa 20 30
Backfill slop degree 10 15

236



Appl. Sci. 2022, 12, 6749

Table 17. Cont.

Parameter Unit Value for Example 3 Value for Example 4

Concrete cover cm 7.0 7.0
Yield strength of reinforcing steel MPa 400 400
Compressive strength of concrete MPa 21 28

Shrinkage and temporary
reinforcement percent - 0.002 0.002

Factor of safety for overturning
stability - 1.5 1.5

Factor of safety against sliding - 1.5 1.5
Factor of safety for bearing capacity - 3.0 3.0

Tables 18 and 19 show the results of the assessments for the examples with the
lowest cost.

Table 18. Optimization results for design example 3.

Design
Variable

Unit
Optimum

Values ASSA
Optimum

Values SSA
Optimum
Values FA

Optimum
Values PSO

(X1) m 0.7233 0.6947 0.6948 0.6436
(X2) m 0.2 0.2 0.2 0.25
(X3) m 0.4674 0.5 0.5 0.55
(X4) m 0.7778 0.7778 0.7778 0.7778
(X5) m 0.2727 0.2727 0.2723 0.2727
(X6) cm2/m 6.67 6.66 6.66 6.66
(X7) cm2/m 6.75 6.75 6.75 6.75
(X8) cm2/m 6.75 6.75 6.75 6.75

Objective
function USD/m 822.73 827.02 860.42 848.17

Table 19. Optimization results for design example 4.

Design
Variable

Unit
Optimum

Values ASSA
Optimum

Values SSA
Optimum
Values FA

Optimum
Values PSO

(X1) m 1.423 1.391 1.459 1.444
(X2) m 0.25 0.25 0.246 0.249
(X3) m 0.531 0.532 0.466 0.517
(X4) m 0.755 0.772 0.773 0.774
(X5) m 0.331 0.374 0.352 0.339
(X6) cm2/m 25.38 25.64 32.21 27.52
(X7) cm2/m 6.78 6.75 6.75 7.02
(X8) cm2/m 7.94 7.47 7.57 8.39

Objective
function USD/m 1631.2 1643.1 1668.4 1653.9

Tables 18 and 19 show that, when compared to the traditional SSA and other methods,
the ASSA may be able to provide a better solution by calculating lower values of the
objective functions. It can be observed that the ASSA’s best price was relatively lower than
that of the SSA and significantly lower than that of the PSO and FA. However, additional
experiments revealed that increasing the maximum number of iterations reduced the
distinctions between the algorithm results. The fact that the best solution was found in the
first iteration was due to the effective modification of the algorithm proposed in this study.
The modified algorithm demonstrated a much-enhanced efficacy.

In order to determine the statistical significance of the comparative results between
the considered algorithms in all the design examples, a nonparametric Wilcoxon’s rank
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sum test was performed between the results. In this regard, utilizing the results obtained
from 30 runs of each method, a pairwise comparison was conducted. According to the
results of the Wilcoxon’s rank sum test in Table 20, the pairwise comparison between the
ASSA and the SSA revealed that, in the optimization of four design examples, the new
method had superior performances in three cases. In addition, for design example 3, both
methods were statistically equivalent. Similarly, in the other pairwise comparisons, the
ASSA provided better results. Therefore, the nonparametric statistical analysis proved
that the ASSA generated significantly better solutions and, comparatively, had a superior
performance over the other algorithms.

Table 20. Results of Wilcoxon’s rank sum test for design examples.

Example No. Index ASSA vs. SSA ASSA vs. FA ASSA vs. PSO

Ex. 1

p-val. 6.0 × 10−6 1.73 × 10−6 1.73 × 10−6

R+ 453 465 465
R− 12 0.0 0.0
Win ASSA ASSA ASSA

Ex. 2

p-val. 0.012 1.73 × 10−6 1.73 × 10−6

R+ 354 465 465
R− 111 0.0 0.0
Win ASSA ASSA ASSA

Ex. 3

p-val. 0.106 1.73 × 10−6 1.73 × 10−6

R+ 311 465 465
R− 154 0.0 0.0
Win NA ASSA ASSA

Ex. 4

p-val. 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R+ 465 465 465
R− 0.0 0.0 0.0
Win ASSA ASSA ASSA

Superior
/Inferior/NA 3/0/1 4/0/0 4/0/0

8. Conclusions

The primary objective of this study was to introduce an adaptive version of the
salp swarm algorithm (ASSA). Two new equations for the leader- and follower-updating
positions were introduced to improve the proposed ASSA’s search and discovery abilities.
In the standard SSA, the leading salp modifies its position based on a single point, which is
the food location. However, due to a lack of knowledge about the real position of the food
location, the algorithm may be locked at the local optimum. To overcome this weakness
and to improve the exploration ability of the algorithm, in the proposed ASSA, half of
the population was considered as leaders, which adjusted their positions not only based
on the food location but also based on their previous positions. In addition, instead of
the constant value considered in an SSA for follower-position-updating, in the ASSA, a
random value was proposed. In addition, at each iteration of the optimization process, the
ASSA replaced the worst salp, yielding the highest fitness value with a randomly generated
salp. A statistical analysis was carried out in order to make an accurate assessment of the
new algorithm’s performance. The proposed method was shown to perform admirably in
terms of accuracy, stability, and robustness when tested on some well-known unimodal
and multimodal test functions. The paper’s second goal was to automate a cost-effective
design process for spread foundations and retaining walls. A computer program in Matlab
was developed to reduce the cost of retaining structures and spread footings. On four case
studies of these structures, the proposed method was compared to a classical SSA and some
state-of-the-art metaheuristic algorithms. Given the final results, it was demonstrated that
the ASSA outperformed the other techniques and should be able to provide better optimal
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results. The new method concurrently satisfied geotechnical and structural limit states
while simultaneously providing a cost-effective design.
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10. Delice, Y.; Aydoğan, E.K.; Özcan, U.; İlkay, M.S. A modified particle swarm optimization algorithm to mixed-model two-sided
assembly line balancing. J. Intell. Manuf. 2017, 28, 23–36. [CrossRef]

11. Cheng, Y.; Li, L.; Lansivaara, T.; Chi, S.; Sun, Y. An improved harmony search minimization algorithm using different slip surface
generation methods for slope stability analysis. Eng. Optim. 2008, 40, 95–115. [CrossRef]

12. Khajehzadeh, M.; Taha, M.R.; Eslami, M. Multi-objective optimisation of retaining walls using hybrid adaptive gravitational
search algorithm. Civ. Eng. Environ. Syst. 2014, 31, 229–242. [CrossRef]

13. Ji, Y.; Tu, J.; Zhou, H.; Gui, W.; Liang, G.; Chen, H.; Wang, M. An adaptive chaotic sine cosine algorithm for constrained and
unconstrained optimization. Complexity 2020, 2020, 6084917. [CrossRef]

14. Hegazy, A.E.; Makhlouf, M.; El-Tawel, G.S. Improved salp swarm algorithm for feature selection. J. King Saud Univ. Comput. Inf.
Sci. 2020, 32, 335–344. [CrossRef]

15. Gao, W. Modified ant colony optimization with improved tour construction and pheromone updating strategies for traveling
salesman problem. Soft Comput. 2021, 25, 3263–3289. [CrossRef]

16. Duan, D.; Poursoleiman, R. Modified teaching-learning-based optimization by orthogonal learning for optimal design of an
electric vehicle charging station. Util. Policy 2021, 72, 101253. [CrossRef]

17. Li, L.-L.; Liu, Z.-F.; Tseng, M.-L.; Zheng, S.-J.; Lim, M.K. Improved tunicate swarm algorithm: Solving the dynamic economic
emission dispatch problems. Appl. Soft Comput. 2021, 108, 107504. [CrossRef]

18. Ali, M.H.; Kamel, S.; Hassan, M.H.; Tostado-Véliz, M.; Zawbaa, H.M. An improved wild horse optimization algorithm for
reliability based optimal DG planning of radial distribution networks. Energy Rep. 2022, 8, 582–604. [CrossRef]

19. Goh, A. Search for critical slip circle using genetic algorithms. Civ. Eng. Environ. Syst. 2000, 17, 181–211. [CrossRef]

239



Appl. Sci. 2022, 12, 6749

20. Zolfaghari, A.R.; Heath, A.C.; McCombie, P.F. Simple genetic algorithm search for critical non-circular failure surface in slope
stability analysis. Comput. Geotech. 2005, 32, 139–152. [CrossRef]

21. Chan, C.M.; Zhang, L.; Ng, J.T. Optimization of pile groups using hybrid genetic algorithms. J. Geotech. Geoenviron. Eng. 2009,
135, 497–505. [CrossRef]

22. Kahatadeniya, K.S.; Nanakorn, P.; Neaupane, K.M. Determination of the critical failure surface for slope stability analysis using
ant colony optimization. Eng. Geol. 2009, 108, 133–141. [CrossRef]

23. Khajehzadeh, M.; Taha, M.R.; El-Shafie, A.; Eslami, M. Modified particle swarm optimization for optimum design of spread
footing and retaining wall. J. Zhejiang Univ. Sci. A 2011, 12, 415–427. [CrossRef]

24. Camp, C.V.; Akin, A. Design of retaining walls using big bang–big crunch optimization. J. Struct. Eng. 2012, 138, 438–448.
[CrossRef]

25. Camp, C.V.; Assadollahi, A. CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch
algorithm. Struct. Multidiscip. Optim. 2013, 48, 411–426. [CrossRef]

26. Khajehzadeh, M.; Taha, M.R.; Eslami, M. A new hybrid firefly algorithm for foundation optimization. Natl. Acad. Sci. Lett. 2013,
36, 279–288. [CrossRef]

27. Kang, F.; Li, J.; Ma, Z. An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis. Eng. Optim.
2013, 45, 207–223. [CrossRef]

28. Kashani, A.R.; Gandomi, A.H.; Mousavi, M. Imperialistic competitive algorithm: A metaheuristic algorithm for locating the
critical slip surface in 2-dimensional soil slopes. Geosci. Front. 2016, 7, 83–89. [CrossRef]

29. Gordan, B.; Jahed Armaghani, D.; Hajihassani, M.; Monjezi, M. Prediction of seismic slope stability through combination of
particle swarm optimization and neural network. Eng. Comput. 2016, 32, 85–97. [CrossRef]

30. Aydogdu, I. Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based
optimization algorithm with Levy flights. Eng. Optim. 2017, 49, 381–400. [CrossRef]

31. Gandomi, A.; Kashani, A.; Mousavi, M.; Jalalvandi, M. Slope stability analysis using evolutionary optimization techniques. Int. J.
Numer. Anal. Methods Geomech. 2017, 41, 251–264. [CrossRef]

32. Mahdiyar, A.; Hasanipanah, M.; Armaghani, D.J.; Gordan, B.; Abdullah, A.; Arab, H.; Majid, M.Z.A. A Monte Carlo technique in
safety assessment of slope under seismic condition. Eng. Comput. 2017, 33, 807–817. [CrossRef]

33. Chen, H.; Asteris, P.G.; Jahed Armaghani, D.; Gordan, B.; Pham, B.T. Assessing dynamic conditions of the retaining wall:
Developing two hybrid intelligent models. Appl. Sci. 2019, 9, 1042. [CrossRef]

34. Koopialipoor, M.; Jahed Armaghani, D.; Hedayat, A.; Marto, A.; Gordan, B. Applying various hybrid intelligent systems to
evaluate and predict slope stability under static and dynamic conditions. Soft Comput. 2019, 23, 5913–5929. [CrossRef]

35. Yang, H.; Koopialipoor, M.; Armaghani, D.J.; Gordan, B.; Khorami, M.; Tahir, M. Intelligent design of retaining wall structures
under dynamic conditions. Steel Compos. Struct. Int. J. 2019, 31, 629–640.

36. Xu, C.; Gordan, B.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.; Zhang, X. Improving performance of retaining walls under
dynamic conditions developing an optimized ANN based on ant colony optimization technique. IEEE Access 2019, 7, 94692–94700.
[CrossRef]

37. Himanshu, N.; Burman, A. Determination of critical failure surface of slopes using particle swarm optimization technique
considering seepage and seismic loading. Geotech. Geol. Eng. 2019, 37, 1261–1281. [CrossRef]
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Abstract: Blasting is one of the primary aspects of the mining operations, and its environmental
effects interfere with the safety of lives and property. Therefore, it is essential to accurately estimate
the environmental impact of blasting, i.e., peak particle velocity (PPV). In this study, a regular random
forest (RF) model was developed using 102 blasting samples that were collected from an open granite
mine. The model inputs included six parameters, while the output is PPV. Then, to improve the
performance of the regular RF model, five techniques, i.e., refined weights based on the accuracy of
decision trees and the optimization of three metaheuristic algorithms, were proposed to enhance
the predictive capability of the regular RF model. The results showed that all refined weighted RF
models have better performance than the regular RF model. In particular, the refined weighted RF
model using the whale optimization algorithm (WOA) showed the best performance. Moreover, the
sensitivity analysis results revealed that the powder factor (PF) has the most significant impact on
the prediction of the PPV in this project case, which means that the magnitude of the PPV can be
managed by controlling the size of the PF.

Keywords: blasting; ground vibration; PPV prediction; random forest; whale optimization algorithm

1. Introduction

Blasting is an economical method of rock excavation in mining and civil engineering,
and produces a series of adverse environmental effects such as blasting vibration [1–3],
flying rocks [4–6], and back beak [7–9]. Among these adverse effects, the harm caused
by blasting vibration is quite serious. For example, the surrounding structures can be
damaged or fail because of excessive structural vibration produced by ground vibration
during blasting [10,11]. Therefore, it is indispensable to predict the magnitude of blast
vibration accurately.

The standard base parameter for assessing the magnitude of the blast-induced ground
vibration is the peak particle velocity (PPV) [12]. Many studies on PPV prediction have
been implemented, such as the proposed empirical formulas, multiple linear and nonlinear
regression methods, and machine learning (ML) methods. Among these methods, the
empirical formulas for the PPV prediction are easy to construct, but these formulas do
not have enough accuracy since few factors are considered to implement the prediction
task [13,14]. Moreover, some empirical formulas are usually designed for a given location
with distinct geological parameters and field morphology, indicating that these formulas are
limited and unable to predict the PPV at other blasting locations [15] accurately. Concerning
the multiple linear and nonlinear regression methods, several scholars have demonstrated
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that these methods are capable of handling high-dimensional problems, which means
that the effects of multiple factors can be considered simultaneously when predicting
PPV [15,16]. However, many studies prove that the accuracy of statistical models is inferior
compared to the ML methods [17–20].

In recent years, a large number of ML techniques have been applied in different areas of
geotechnics, such as tunnel construction and risk assessment [21–28], soil classification [29],
pile technology [30,31], materials properties [32–35], slope stability [36,37], blasting environ-
mental issues [38,39], pillar stability prediction [40], and rock material properties [41–44],
which reveal the favorable application prospects of the ML techniques. Similarly, as for the
research on PPV prediction, to compensate for the shortcomings of empirical formulas and
statistical models, there has been a strong inclination toward using the ML techniques in
predicting the PPV because of their feasible ability to handle multidimensional nonlinear
problems. For instance, Zhang et al. [1] used five machine learning techniques (i.e., classifi-
cation and regression trees (CART), chi-squared automatic interaction detection (CHAID),
random forest (RF), artificial neural network (ANN), and support vector machine (SVM) to
predict the PPV caused by mine blasting. Their research utilized five parameters, including
maximum charge per delay (MC), stemming (ST), distance from the measuring station to
the blast face (DI), powder factor (PF), and hole depth (HD), to develop the ML models.
The results showed that the RF had a superior capability in predicting PPV compared with
the other four techniques. Lawal [45] developed an ANN-based formula to predict the
PPV using two inputs, i.e., the distance from the monitoring point to the blast face and
the explosive charge per delay. This study attempts to construct an interpretable formula
through the ANN to identify the effect of inputs on the PPV. Rana et al. [46] compared the
performance of two AI techniques (e.g., ANN and decision tree (DT)) for forecasting the
blast-induced PPV. In the study, eight input parameters, i.e., total charge, number of holes,
hole diameter, distance from blasting face, hole depth, tunnel cross section, the maximum
charge per delay, and charge per hole, were used to design the ML models. The results
indicated that the precision of the DT model performed better than the ANN model. Some
relevant studies for predicting the PPV are shown in Table 1.

Table 1. Research on blast-induced PPV prediction.

Techniques Input Variables Number of Samples Studies

RF, CART, CHAID, SVM, ANN MC, HD, ST, PF, DI 102 Zhang et al. [1]
ANN DI, MC 100 Lawal, A.I. [45]
GEP, ANFIS, SCA-ANN DI, MC, ρ, SRH 100 Lawal, A.I. et al. [47]
MPSO-ANN DI, MC 137 BUI Xuan-Nam et al. [48]
ANN, DT TC, A, MC, NH, H, DI, HD, CPH 137 Rana et al. [46]
ANFIS DI, MC 44 Iphar et al. [49]
ANN HD, ST, DI, MC 182 Monjezi et al. [50]
FIS B, S, ST, N, MC, DI 120 Ghasemi et al. [51]
ICA-ANN BS, ST, MC, DI, Vp, E 95 Hajmassani et al. [52]
ICA MC, DI 73 Jahed Armaghani et al. [53]
ANN, FIS MC, DI 162 Mohamed [54]

Note: MC—maximum charge per delay; HD—hole depth; ST—stemming; PF—powder factor; DI—distance from
the measuring station to the blast face; ρ—rock density; SRH—Schmidt rebound hardness; TC—total charge;
A—tunnel cross section area; NH—number of holes; H—hole diameter; CPH—charge per hole; B—burden;
S—spacing; N—number of raw; BS—burden to spacing; E—Young modulus; Vp—p-wave velocity; CART—
classification and regression trees; CHAID—chi-squared automatic interaction detection; RF—random forest;
ANN—artificial neural network; SVM—support vector machine; MPSO—modified particle swarm optimiza-
tion; GEP—gene expression programming; ANFIS—adaptive neuro-fuzzy inference system; SCA—sine cosine
algorithm; DT—decision tree; ICA—imperialist competitive algorithm; FIS—fuzzy logic.

In light of the above, the good performance and adaptability of the ML models in
predicting the PPV have been proven gradually, and hence a large number of studies of
ML models for predicting the PPV emerged. Furthermore, the ML models with better
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adaptability and higher prediction accuracy used for the prediction of blast-induced PPV
need to be further developed and improved.

In the present study, we utilized a classic ML model termed the RF to conduct the PPV
prediction task. After designing the regular RF model using the datasets collected from a
quarry mine, we proposed five categories for modifying the regular RF model’s weights
and, as a result, making better predictions. The designed weighting frameworks include
the improved weighted RF model based on the prediction accuracy of decision trees, as
well as the optimized weights of decision trees obtained by three metaheuristic algorithms,
i.e., whale optimization algorithm (WOA), gray wolf optimization (GWO), and tunicate
swarm algorithm (TSA). Subsequently, four evaluation metrics were used to validate the
performance of the developed models. Finally, a sensitivity analysis was conducted to
identify the predominant factors for PPV prediction in this engineering case.

2. Project Description and Data Collection

In the present study, a granite mine in Penang state, Malaysia, was selected as the
subject to research PPV prediction, and thus its blasting operations were investigated.
Granite is the most common rock type found in the study area. The top layer is generally
less than three feet thick and consists mostly of sandy clay with humus and tree roots.
Explosive operations are rather common in this mine, and these operations are repeated at
various intervals. Blasting at this location aims to create aggregates for various building
projects with annual capacity ranging from 500–700 thousand tons per year, and large
quantities of explosives are used in explosive operations. For example, in holes with sizes
ranging from 76 mm to 89 mm, explosives weighing 856 kg to 9420 kg are commonly
utilized. Concerning the present study, 102 blasting operations were recorded, including
the design details of the blast parameters and the PPV values obtained by the Vibra ZEB
seismographer. The measured and recorded blast parameters involve the number of holes,
hole diameter, hole depth, burden, spacing, stemming length, subdrilling, total charge,
powder factor, the maximum charge per delay, and distance from the blast-face to the
measuring points. Among them, six parameters were selected as the inputs that will
be used to implement the ML modeling, which is in accord with previously published
works [1,48,49]. The simple statistics of the six parameters are shown in Table 2, including
their max/min values, mean values, and standard deviations. It can be seen from Table 2
that the distance from the seismograph to the explosion site was about 285 m–531 m, and
the range of the PPV is between 0.13 and 11.05 mm/s.

Table 2. Statistic of the data collected from the study area.

Parameters Symbol Unit Type Max Min Mean Std. Dev.

Burden to spacing BS - Input 0.92 0.7 0.819 0.004
Hole depth HD m Input 23.17 5.23 14.115 15.973
Stemming ST m Input 3.6 1.9 2.630 0.157
Powder factor PF kg/m3 Input 0.94 0.23 0.654 0.034
Max charge per delay MC kg Input 305.6 45.8 179.623 4246.587
Distance DI m Input 531 285 379.520 5100.269
Peak particle velocity PPV mm/s Output 11.05 0.13 5.337 9.267

3. Methods

3.1. RF

The RF approach is a machine learning model proposed by Leo Breiman in 2001 [55].
Because of its special algorithmic mechanism and efficient performance, the RF model has
attracted much attention from researchers in various research fields. The RF model is an
approach that integrates many base learners (also called decision trees) through integrated
learning. It uses bagging and bootstrap techniques to train the decision trees, which solves
the problem of insufficient performance of individual decision trees when dealing with
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complex data. At the same time, the RF is also a nonparametric classification or regression
method, so it does not require prior knowledge when processing data.

The schematic diagram of the design of the RF and improved RF models is depicted in
Figure 1. In the process of building decision trees, the RF model generates more randomness
as the number of decision trees in the forest increases. Instead of selecting the optimal
value step by step like a decision tree, the RF uses its ability of random selection and the
voting mechanism of the decision tree to find the optimal value quickly. This property
allows the RF model to have better classification or regression performance and a strong
generalization ability of the learning system. For the regression task, when predicting the
unknown output value, every single decision tree yields a predicted value, and the final
value is the average of all decision trees, as shown in Equation (1). In this process, each
decision tree occupies the same weight:

ypre =
t

∑
i=1

weighti × Treei(x) (1)

where x is the input variable, ypre denotes the predicted value corresponding to the input x,
t is the amount of the constructed decision trees, {Tree1, Tree2, . . . , Treet} represent the set of
decision trees in a forest, and weighti is the weight of each decision tree. In the current case
(i.e., for the regular RF model), the value of weight is obtained as follows:

weighti =
1
t

(2)

Figure 1. Schematic diagram of the RF model.

In light of the above, it can be inferred that the number of decision trees is a crucial
hyperparameter that governs the predictive capability of the RF model. Therefore, a key
task in this paper is to determine the optimal number of decision trees. Moreover, to avoid
possible overfitting of the RF model, another hyperparameter termed the maximum depth
of decision trees must also be tuned. These two critical steps will be discussed in more detail
in a later section. In addition, the datasets used for constructing the RF model are randomly
split into two parts; that is, 80% of datasets are used for training the RF model, and 20%
of datasets are used for validating the performance of the built models. Simultaneously,
a fourfold cross-validation procedure is applied in this work when implementing model
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training procedures. Note that fourfold cross-validation means that the datasets are divided
into four equal parts, one of which is used to test the model, and the rest are used to train
the model in each modeling session. A total of four modeling sessions are performed, and
the average of the four modeling sessions is used as the final result.

3.2. GWO

The gray wolf optimization (GWO) algorithm is a new swarm intelligence optimization
algorithm proposed by Mirialili et al. in 2014, which is based on the simulation of the
hierarchical mechanism and predatory behavior of the gray wolf population in nature.
Moreover, the optimization of the GWO algorithm is achieved through the process of wolf
stalking, encircling, chasing, and attacking prey [56]. Gray wolves are top carnivores, and
their lifestyles are mostly gregarious, thus constituting a hierarchical pyramid in the gray
wolf population, with a strict hierarchical management system, as shown in Figure 2.

Figure 2. Hierarchy of wolf in GWO algorithm.

The first level of the pyramid is the head of the population, called α, which is mainly
responsible for all the decision-making matters of the population. The second pyramid
level is called β, which assists α in making management decisions. The third level of the
pyramid is δ, which is mainly responsible for scouting, sentry, hunting, and guarding.
Furthermore, the bottom level of the pyramid is called ω, which is mainly responsible for
coordinating the relationship within the population. The hierarchy of gray wolves plays
a crucial role in achieving prey hunting. The predation process is led by α. At first, the
wolves search, track, and approach the prey in a team pattern; then, the wolves encircle
the prey from all directions, and when the encirclement is small enough and perfect, the
wolves will attack from β and δ, which are closest to the prey, under the command of α.
The mathematical models of this process are explained below.

First, the encirclement of the prey by the gray wolves during predation can be charac-
terized by the following equation:

D =
∣∣C × Xp(t)− X(t)

∣∣ (3)

where Xp(t) and X(t) denote the position of the prey and the position of the wolves dur-
ing the t-th iteration, respectively, and C is the coefficient, which is computed by the
following equation:

C = 2r1 (4)

Here r1 is the random value in the interval [0, 1].
Then, the equation for updating the position of the gray wolf in search space is

as follows:
X(t + 1) = Xp(t)− A × D (5)

where A is the convergence factor. A can be computed by the following equation:

A = 2a × r2 − a (6)
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a =

(
2 − 2 ×

(
t

tmax

))
(7)

where r2 is the random value in the interval [0, 1], and tmax denotes the maximum iterations.
After that, when the gray wolf determines the position of the prey, the wolf α will lead

β and δ to initiate the pursuit behavior. In the wolf pack, α, β, and δ are the closest to the
prey. The positions of these three wolves can be used to determine the location of the prey.
The mathematical description is as follows:

Dα = |C1 × Xα(t)− X(t)| (8)

Dβ =
∣∣C2 × Xβ(t)− X(t)

∣∣ (9)

Dδ = |C3 × Xδ(t)− X(t)| (10)

X1 = Xα − A1 × Dα (11)

X2 = Xβ − A2 × Dβ (12)

X3 = Xδ − A3 × Dδ (13)

Xp(t + 1) =
X1 + X2 + X3

3
(14)

Using Equations (8)–(13) can obtain the distance between the prey and the α, β, and
δ, and then using Equation (14) identifies the direction of movement of individual gray
wolves toward the prey.

3.3. WOA

The whale optimization algorithm (WOA) is a novel swarm intelligence optimization
algorithm proposed by Mirjalili and Lewis in 2016 [57]. The WOA is based on the simulation
of the hunting behavior of humpback whales in nature, and it optimizes the searching
process by mimicking the behavior of searching, encircling, pursuing, and attacking the
prey by the humpback whales. Whales are considered the largest mammals globally, with
adults growing up to 30 m long and weighing 180 tons. Whales have a unique feeding
behavior, which is the bubble-net method, as shown in Figure 3. The method is divided into
two stages: upward spiral and double circulation. Based on this special foraging behavior,
the WOA algorithm is obtained.

Figure 3. Bubble-net attacking method of whales.

In the WOA, it is assumed that the number of populations is N and the dimension of
the search space is d, and the position of the i-th whale in the dimensional space can be
expressed as Xi =

(
Xd

1 , Xd
2 , Xd

3 , . . . , Xd
N

)
. The position of the prey in the search space

corresponds to the optimal global solution. Whales can identify the position of the prey
and then encircle it since there is no a priori knowledge of the position of the optimal
global solution in the search space before solving the optimization problem. Therefore, in
the WOA, assuming that the whale at the optimal position in the current population is
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the prey and all other whale individuals in the population encircle the optimal whale, the
mathematical model of the process is as follows:

X(t + 1) = Xp(t)− A × ∣∣C × Xp(t)− X(t)
∣∣ (15)

where t is the current iteration, X(t) denotes the position of whales, Xp(t) denotes the
position of prey, and A and C are the coefficients that can be defined as follows:

A = 2a × rand1 − a (16)

C = 2 × rand2 (17)

Here rand1 and rand2 represent the random values in the interval [0, 1], and a is the
convergence factor that decreases linearly from 2 to 0 as the number of iterations increases.

To describe the bubble-net attacking behavior of whales with a mathematical model,
two different methods were designed in the WOA, namely, the shrinking encircling mecha-
nism and the spiral updating position. Among them, the shrinking encircling mechanism
is implemented by the linear reduction in the convergence factor a in Equation (16). In the
method of spiral updating position, the spiral motion of the whale is simulated to capture
the prey, and its mathematical model is shown as follows:

X(t + 1) = D′ × ebl × cos(2πl) + Xp(t) (18)

where D′ =
∣∣Xp(t)− X(t)

∣∣ denotes the distance between the prey and the i-th whale, b
signifies a constant for controlling the shape of the logarithmic spiral, and l is a random
value in the interval [−1, 1]. Noted that, the whales move within a constricted circle and
simultaneously follow a spiral path towards their prey.

In addition to the bubble-net attacking method, whales will also randomly search
for prey. Individual whales search randomly according to each other’s position, and the
mathematical model can be expressed as follows:

X(t + 1) = Xrand(t)− A × |C × Xrand(t)− X(t)| (19)

where Xrand represents a position vector of an individual search agent randomly chosen
from the current population.

3.4. TSA

The tunicates are small, net-like organisms that are found throughout the sea. They
live solitary or parasitic lives and can locate food in the ocean. Based on the biological
inspiration of the predatory behavior of tunicates, Kaur et al. proposed a swarm intelligence
optimization algorithm termed tunicate swarm algorithm (TSA), which is inspired by the
jet-propelled migration mechanism and the intelligent foraging behavior of tunicates in the
ocean [58]. The mathematical models of this algorithm are explained below.

(1) Initialization

Similar to most metaheuristic algorithms, the TSA starts to execute the optimization
process by initializing the tunicate population, i.e., by initializing the positions of every

tunicate (
→
A0) in the search space, as shown in the following equation:

→
A0 =

→
Amin + rand

( →
Amax −

→
Amin

)
(20)

where
→

Amin and
→

Amax denote the upper and lower limits of the search space, respectively,
and rand() signifies the random value in the interval [0, 1].

(2) Avoid conflicts between search agents
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To avoid conflicts between the individuals when implementing the searching task,

the TSA utilizes vector
→
A to calculate the position of new search agents, which can be

illustrated by the following equations:

→
A =

→
G
→
M

(21)

→
G = c1 + c2 −

→
F (22)

→
M = �Pmin + c3 × Pmax − Pmin (23)

where
→
A denotes the new positions of the search agents,

→
G denotes the gravity,

→
M denotes

the interaction forces between the tunicates,
→
F signifies the current advection in the deep

sea, and
→
F = 2c3, c1, c2, and c3 are the random value in the interval [0, 1].

(3) Move to the best neighbor

After avoiding conflicts between the individuals, the search agents will move towards
the position of the best neighbor, which the following equation can interpret:

→
Pd =

∣∣∣∣→Fs − r × →
Pp(t)

∣∣∣∣ (24)

where
→
Pd denotes the distance between the food and the search agents,

→
Fs represents

the position of the food,
→
Pp(t) signifies the positions of the search agents during the t-th

iteration, and r is the random value in the interval [0, 1].

(4) Move towards the best individual

The mathematical description of the movement of the tunicate population towards
the position of the optimal search agent is as follows:

→
Pp(t∗) =

⎧⎨
⎩

→
Fs +

→
A × →

Pd, r ≥ 0.5
→
Fs −

→
A × →

Pd, r < 0.5
(25)

where
→
Pp(t∗) is the position of the search agent closest to the target food.

(5) Swarm behavior

TSA is implemented to mimic the tunicates’ swarm behavior by saving the first
two optimal solutions and updating the other tunicates’ positions according to the first
two optimal solutions. The swarm behavior of the tunicates is mathematically described as
follows:

→
Pp(t + 1) =

→
Pp(t) +

→
Pp(t + 1)

2 + c1
(26)

where
→
Pp(t + 1) denotes the positions of the search agent when implementing the (t + 1)-th

iteration.

3.5. Improved RF Models

Although the RF model has good performance and has been applied in many areas,
there is still some room for improvement. For the random forest approach, in addition
to sampling with the replacement for constructing training datasets, a random number
of features are picked each time to lower the degree of correlation between individual
produced decision trees. The end outcome is a simple average computed by each created
decision tree of the forest [55]. Although the RF shows remarkable performance in some

250



Appl. Sci. 2022, 12, 5019

regression or classification tasks, it seems that some improvements for the combined way
of the base learners (i.e., decision trees) can be made to achieve a better prediction of the RF.
Decision trees exhibit different predictive capabilities because of the bootstrap replicates
and random feature picking. However, in the regular RF, each decision tree is assigned
with the same weights, which seems unreasonable and can be further improved. Therefore,
some techniques such as weighting the decision trees based on their predictive capabilities
are proposed to optimize the regular RF. The accuracy of decision trees is considered the
indicator that can amend the weights of decision trees instead of using the same weight
for each tree [59]. In this paper, two indicators, i.e., the coefficient of determination (R2)
and the root mean squared error (RMSE) of decision trees, are used as benchmarks for
improving the weights of decision trees. For example, the first category is that decision
trees with higher R2 will be assigned relatively higher weights, and vice versa. Another
case is that decision trees with lower RMSE will be assigned relatively higher weights, and
vice versa. Furthermore, we also put forward using three metaheuristic algorithms (i.e.,
GWO, WOA, and TSA) to search for the best weights of decision trees and then compare
the effect of their improvements on the regular RF model.

To sum up, there are a total of five methods that are leveraged to refine the weights
of decision trees in a forest. Before applying these methods, the first task that needs to be
carried out is the parameter tuning of the RF model, which is to establish the optimal RF
model based on the training dataset. Subsequently, the task is to use the five categories
mentioned above to amend the weights of decision trees. This part will be elaborated
hereinafter. Moreover, the schematic diagram of the design of the RF and improved RF
models is depicted in Figure 4.

3.5.1. Improved Weights Based on the Accuracy

First, let {Tree1(x), Tress2(x), Tree3(x), · · · , Treet(x)} represent the set of decision
trees. For the regular RF model, the final predicted values can be obtained through
Equation (27), which indicates that the weight of every single decision tree is equal to
1/t.

ypre =
t

∑
i=1

1
t
× Treei(x) (27)

where t is the number of decision trees in a forest.
For the improved weights based on R2, the weight of every single decision is obtained

through Equation (28), and the final predicted values can be obtained using Equation (29).
The key step of this approach is to compute the weights of decision trees. After constructing
the optimal RF model based on the training sets, the accuracy (i.e., R2) of each decision
tree can be obtained. Then, according to Equation (28), all decision trees will be assigned a
normalized weight, and the larger the term R2, the larger the weight assigned, which means
that these decision trees with large weights will have a greater role in the final prediction.
Equations (28) and (29) are:

weight_R2
i =

R2
i

∑t
i=1 R2

i
(28)

ypre =
t

∑
i=1

weight_R2
i × Treei(x) (29)

Similarly, for the improved weights based on the RMSE, the weight of every single
decision is obtained through Equation (30), and the final predicted values can be obtained
using Equation (31). The weights of the decision trees are obtained by first taking the
inverse of the RMSE and then performing a normalized calculation, which means that the
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larger the RMSE of a decision tree, the smaller the weight it is assigned to, and vice versa.
Equations (30) and (31) are:

weight_RMSE i =
1

RMSEi

∑t
i=1

(
1

RMSEi

) (30)

ypre =
t

∑
i=1

weight_RMSE i × Treei(x) (31)

Figure 4. Flowchart of the design of the RF and improved RF models.

3.5.2. Improved Weights Based on Three Metaheuristic Algorithms

In this section, we consider the weights of decision trees in a forest as an unknown
space of high dimensionality to be solved. After determining the number of trees in a
forest, the dimension of the space to be solved is equal to the number of trees. Then, the
GWO, WOA, and TSA algorithms are used to capture the optimal weights in the unknown
space. To achieve this goal, it is assumed that the independent variables to be solved
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are set to {x1, x2, x3, · · · , xt}, where t is the number of trees and the range of x is in the
interval [0, 1], and then the standardized weights are computed as follows:

weight_optmizationi =
xi

∑t
i=1 xi

(32)

where weight_optmizationi represents the weights of decision trees optimized by the
metaheuristic algorithms, and it is clear that ∑t

i=1 weight_optimizationi = 1.
After that, the RMSE is considered the criteria used to evaluate each result’s perfor-

mance. In other words, the fitness function that needs to be solved by the metaheuristic
algorithms is the RMSE function. Moreover, the L2 regularization (also named penalty
terms) is also incorporated in the RMSE function, which avoids overfitting. Therefore, the
fitness function consists of two parts: the RMSE function and the L2 regularization, which
is presented by Equation (34):

ypre =
t

∑
i=1

weight_optmizationi × Treei(x) (33)

Fitness function =

√
1
m

m

∑
i=1

(
yi − ypre

)2
+ γ ×

√√√√ t

∑
i=1

weight_optmizationi
2 (34)

where ypre denotes the predicted PPV computed by the improved RF model based on
optimization algorithms, m is the number of training samples, and γ is the coefficient of the
L2 regularization, whose value is set to 0.08 in this paper according to the trial-and-error
method.

For the GWO, WOA, and TSA, the parameters that need to be set are the swarm sizes
and the number of iterations. The appropriate selection of these parameters can effectively
and quickly lead to optimal results. Therefore, after constructing the model several times,
the swarm sizes set to each optimization algorithm are 50, 100, 150, and 200, respectively,
and the number of iterations is set at 1000.

The GWO, WOA, and TSA optimization techniques can be used to improve the RF
model in the following way:

(1) Data preparation: randomly divide the raw data into a training set (80% of raw data)
and a testing set (20% of raw data);

(2) Initialization: Initialize the swarm size, iterations, as well as some necessary parame-
ters of the three optimization algorithms;

(3) Fitness evaluation: Calculate the fitness value of the population, evaluate its fitness,
and then save the best fitness value before starting the next iteration;

(4) Update parameters: Update the fitness value based on the outcome of each iteration,
which aims to capture the ideal solutions;

(5) Suspension conditions check: When the optimal fitness value no longer changes, or
the maximum number of iterations is reached, the optimal solutions of the weights of
decision trees are obtained.

3.6. Criteria for Evaluation

An important task to be conducted after the modeling is to evaluate each model’s
accuracy and generalization ability. As mentioned previously, in this work, 80% of the
data samples were assigned as training that was used to train the RF and improve the RF
models, while the rest 20% of the data samples were assigned as testing data to verify the
performance of the RF and improved RF models. To evaluate the performance of the built
models, four metrics were used in this work, i.e., the coefficient of determination (R2), the
root mean squared error (RMSE), the mean absolute error (MAE), and the variance account
for (VAF). These evaluation indicators are defined below.
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The square of the correlation between the predicted and measured values is repre-
sented by R2. The RMSE characterizes the standard deviation of the fitting error between
the predicted values and the measured values. The MAE indicates the mean absolute error
between the predicted values and measured values. The VAF describes the prediction
performance by comparing the standard deviation of the fitting error with the standard
deviation of the actual value. The following equations were utilized to calculate the R2,
RMSE, MAE, and VAF values:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (35)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (36)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (37)

VAF =

(
1 − var(yi − ŷi)

var(yi)

)
× 100 (38)

where yi, ŷi, and y denote the measured, predicted, and mean values of the PPV, respectively.
When the predicted and measured PPV values are precisely the same, R2 is 1, the RMSE is
0, the MAE is 0, and the VAF is 100 (%).

4. Results and Discussion

4.1. Parameter Tuning of the RF Model

The main purpose of this section is to determine the optimal hyperparameters of the
RF model, including the number of decision trees and the maximum depth of decision trees.
In addition, before conducting the model training, the original dataset was standardized
to eliminate the negative effect of magnitude between the data and speed up the model’s
training. The formula for standardization of data is given as follows:

X∗
i =

Xi − μi
σi

, i = 1, 2, . . . , 6 (39)

where Xi denotes the data samples belonging to feature i, μi and σi denote the mean and
standard deviation of Xi, respectively, and Xi

* signifies the standardized datasets that are
prepared for constructing the RF model.

The parameters tuning of RF consist of two steps. First, the scale of the RF is optimized
to determine the number of decision trees in a forest. In this regard, the number of trees
increases from 1 to 200 with 1 increment each time. Meanwhile, other parameters are set
to default values. Figure 5 shows the performance of the RF model with respect to the
number of trees. Intuitively, it can be seen that the mean squared error decreases when the
number of trees increases from 1 to 50, and then with the increase in the number of trees,
the mean squared error only shows small fluctuations. The results show that the minimum
mean squared error is reached when the number of trees is 51. Consequently, the scale
of the RF model is set to 51 decision trees. Furthermore, using the testing set to validate
the performance of the RF model when the number of trees is 51, the results show that
the R2, RMSE, MAE, and VAF values on the testing set are 0.915, 0.275, 0.224, and 93.504,
respectively.
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Figure 5. MSE with respect to the number of trees in a forest.

After that, the optimal maximum depth of decision trees was determined. The number
of the maximum depth increases from 1 to 10 with 1 increment each time, while the
number of decision trees is 51 currently. Figure 6 depicts the performance of the RF model
concerning the maximum depth of decision trees. It can be found that the minimum mean
squared error is reached when the maximum depth is set to 7. When the maximum depth
values are larger than 7, there is no apparent decrease in the mean squared error. At the
same time, the performance evaluation results of the current RF model on the testing set
are R2 of 0.923, the RMSE of 0.262, the MAE of 0.209, and the VAF of 93.994, respectively.
Thus, according to the aforementioned results, the maximum depth is set to 7. Now, the
RF model has been successfully constructed, and the later work uses five techniques to
optimize the weights of decision trees, aiming to improve the performance of the current
RF model.

Figure 6. MSE with respect to the maximum depth of trees in a forest.

4.2. Improved RF-Based Models

In this section, five methods were used to optimize the regular RF model, namely the
refined weights of decision trees based on their predictive capabilities that are characterized
by R2 and the RMSE, and the refined weights of decision trees based on the optimization
solution of three metaheuristic algorithms (i.e., GWO, WOA, and TSA). The main goal of
the five techniques is to obtain the optimal weight set of decision trees that can minimize
the generalization error of the improved RF models. Moreover, to validate the models’
performance, each model’s accuracy and error on the training set and testing set are both
utilized. In this way, the optimal improved RF model can be effectively obtained.
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Figure 7 presents the calculation results of the three metaheuristic algorithms on the
training set. It can be seen that there are some differences in the calculation results due
to the swarm sizes. For example, for the RF-WOA model, the final fitness value is 200
swarms sizes < 150 swarm sizes < 100 swarm sizes < 50 swarm sizes; for the RF-GWO
model, the final fitness value is 100 swarm sizes < 200 swarm sizes < 150 of swarm sizes
< 50 swarm sizes; and for the RF-TSA model, the final fitness value is 150 of swarm sizes
< 200 swarm sizes < 50 of swarm sizes < 100 swarm sizes. It should be noted that the above
results are obtained based on the training set. For a clearer identification of the performance
of each model, it should be combined with its performance on the testing set. For this
purpose, a scoring evaluation method was employed to select the best model [60]. The
principle of this method is that the higher the score, the better the performance, and vice
versa. Consequently, the final scoring of the RF-WOA, RF-GWO, and RF-TSA models with
different swarm sizes on both training and test sets is obtained in Tables 3–5. According to
the results in Tables 3–5, it can be concluded that the best RF-WOA model with a total score
of 26 is obtained when the swarm sizes are set to 100, the best RF-GWO model with a total
score of 28 is obtained when the swarm sizes are set to 200, and the best RF-TSA model
with a total score of 27 is obtained when the swarm sizes are set to 50.

 

Figure 7. Various RF-based metaheuristic models based on different swarm sizes.
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After obtaining the best model for individual metaheuristic algorithms in their respec-
tive model comparisons, the next step is to perform further comparative analysis of them
and the two previously mentioned improved weighting methods based on the accuracy (i.e.,
R2 and the RMSE) to identify the optimal improved RF model. Concerning the improved
weights based on the R2 and RMSE of every single decision tree, the weights of the decision
trees are computed through Equations (28) and (30), respectively. For the metaheuristic
algorithms, the RF-WOA with 100 swarm sizes, the RF-GWO with 200 swarm sizes, and
the RF-TSA with 50 swarm sizes are chosen because of their best performance. At the same
time, the regular RF model is also used for comparative analysis in this section. Then, the
results of the performance of these six models are tabulated in Table 6. As can be seen from
Table 6, the model with the highest score is the RF-WOA, whose scoring is 46, followed
by the RF-GWO and RF-TSA, whose scorings are both 41. As for the RF-RMSE and RF-R2,
their scores were 30 and 22, respectively, which indicates the performance of the RF-RMSE
is slightly better than that of the RF-R2. In general, these five models all outperform the
regular RF model with a scoring of 14. Moreover, the ranking of these five models is as
follows: RF-WOA > RF-GWO = RF-TSA > RF-RMSE > RF-R2 > RF.

To intuitively observe the differences among these models, we divide the four evalua-
tion metrics into two groups, one for the VAF and R2 × 100, where larger values indicate
better model performance, and the other one for the RMSE and MAE, where smaller values
indicate better models. As depicted in Figure 8, for the group of the VAF and R2 × 100 (the
left one in Figure 8), the accuracies of the RF-GWO, RF-WOA, and RF-TSA are quite close
and are all better than the other three models (i.e., RF-RMSE, RF-R2, and RF), whereas, for
the group of the RMSE and MAE (the right one in Figure 8), the error of the RF-GWO is
slightly lower than those of the RF-WOA and RF-TSA. Likewise, the errors of the three
metaheuristic-based RFs are all lower than those of the RF-RMSE, RF-R2, and RF. Moreover,
it can be concluded that all of the refined weights RF models have a good performance on
the training set compared with the regular RF model. As for the testing set, the results are
shown in Figure 9. For the group of the VAF and R2 × 100 (the left one in Figure 9), the
ranking of the accuracy of these six models is shown as RF-WOA > RF-TSA > RF-GWO
> RF-RMSE > RF-R2 > RF. The same situation occurs in the group of the RMSE and MAE
(the right one in Figure 9), which indicates the ranking of error of these six models is
RF-WOA < RF-TSA < RF-GWO < RF-RMSE < RF-R2 < RF. Therefore, it can be inferred that
the RF-WOA has a better generalization ability than other models, which can be verified as
it has a better performance on the testing set. Additionally, we can also conclude that all
of the refined weights RF models have a good performance on the testing set compared
with the regular RF model, which means the refined techniques proposed in this paper can
effectively enhance the performance of the regular RF model.

Figure 8. Results of the evaluation metrics of the developed models on the training set.
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Figure 9. Results of the evaluation metrics of the developed models on the testing set.

In a different way, the Taylor diagram is presented in this work, which may be used to
graphically summarize how closely a set of patterns fits observations [61]. The similarities
between the patterns and observations are quantified by utilizing their correlation coefficients,
centered root-mean-square errors, and standard deviations, as shown in Equation (40) [62]:

E
′2 = σ2

p + σ2
a − 2 × σp × σa × R (40)

where E′ is the centered root-mean-square error between the predicted and measured
values, σ2

p and σ2
a are the variances of the predicted and measured values, respectively, and

R is the correlation coefficient between the predicted and measured values.
Figures 10 and 11 depict how closely the six developed models match the training and

testing sets, respectively, as references. In the Taylor diagram, the standard deviation is
shown by the distance between the circles representing the models and the origin point
on the x-axis, and the ticks on the clockwise arc represent the correlation coefficient. The
actual PPV values are shown by the star-shaped point ‘REF’ on the x-axis, and the distance
between the other circles and the point ‘REF’ reflects the centered RMSE (i.e., the grey arc).

Figure 10. Taylor diagram of the training results for the six developed models.
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Figure 11. Taylor diagram of the testing results for the six developed models.

In Figure 10, it can be found that the standard deviations of all six models are less
than the standard deviations of the measured values, and the standard deviations of the
RF-WOA model, RF-GWO model, and RF-TSA model are closer to the standard deviation
of the actual values compared with the models of the RF, RF-R2, and RF-RMSE. Moreover,
the same applies to the correlation coefficient, i.e., the correlation coefficients of the RF-
WOA model, RF-GWO model, and RF-TSA model are closer to that of the actual values,
but they differ little from each other. For the centered RMSE, the results indicate that the
RF-WOA model, RF-GWO model, and RF-TSA model have smaller errors than those of
the RF, RF-R2, and RF-RMSE models. From a holistic perspective, the calculation results of
the three metaheuristic algorithms on the training set are closer to the actual PPV values,
while the RF-R2 and RF-RMSE models perform slightly better on the training set than the
RF model.

In Figure 11, it can be inferred that the standard deviations of the three metaheuristic
algorithms on the testing set are close to the standard deviation of the actual PPV and
slightly greater. With regard to the centered RMSE and correlation coefficient, the calcu-
lation results of the RF-WOA models are better than that of the RF-TSA and RF-GWO
models. Overall, based on the distance between these circles and the point ‘REF’, it can be
determined that the ranking of the model’s superiority on the testing set is as RF-WOA >
RF-TSA > RF-GWO > RF-RMSE > RF-R2 > RF. Compared with the results on the training
set, the results on the testing set can more clearly reflect the performance differences among
these models, especially for the results obtained by the metaheuristic algorithms.

To sum up, the RF-WOA is the optimal model that is recommended for refining the
weights of decision trees of the RF model in this study. Compared with the regular RF
model, for the training set, the RF-WOA model increases the R2 value of the RF from 0.973
to 0.986 and the VAF of the RF from 97.298 to 98.603 and simultaneously reduces the RMSE
of the RF model from 0.164 to 0.118 and the MAE of the RF from 0.123 to 0.093. For the
testing set, the RF-WOA model increases the R2 value of the RF from 0.923 to 0.932 and the
VAF value of the RF from 93.994 to 95.032 and simultaneously reduces the RMSE of the RF
model from 0.262 to 0.246 and the MAE of the RF from 0.209 to 0.188. Finally, the measured
and predicted PPV by the RF-WOA model on both training and test sets are depicted in
Figures 12 and 13, respectively.
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Figure 12. Measured and predicted PPV of the RF-WOA model on the training set.

Figure 13. Measured and predicted PPV of the RF-WOA model on the testing set.

4.3. Sensitivity Analysis of Predictor Variables

Owing to the possible hazards of the PPV that are caused by blasting operations, it is
indispensable to clarify the major factor affecting the PPV. Therefore, in this section, further
analysis is conducted to identify the significant correlation of predictor variables that are
used to predict the PPV. As previously stated, six variables, i.e., BS, HD, ST, PF, MC, and
DI, were used to develop the RF models in this study. Based on the attribute of the RF
model, a significant correlation of each input variable can be obtained. The (normalized)
total decrease in the criterion brought by a feature is used to calculate the input variable’s
relevance with the target variable, which is also known as the Gini importance [56,57]; the
higher it is, the more significant the input variable. In this way, the significant correlation of
the input variables with PPV can be determined, as shown in Figure 14. It can be revealed
that the most significant predictor variable is the PF, followed by the BS, DI, and HD. The
least significant parameters include ST and MC. Accordingly, we will focus more on the
relationship between the PF and PPV.
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Figure 14. Significant correlation of the input variables with PPV.

To obtain a clearer picture of how the PF affects the PPV, partial dependency plots
(PDPs) are utilized to achieve this goal. The PDPs illustrate the intuitive relationship
between the target response and an input feature of interest and simultaneously marginalize
the values of other input features. The PDPs visualize the average influence of the input
feature on the target response, which can reveal a homogeneous connection between the
feature and the target response [63]. Figure 15 shows the partial dependence between the
PPV and PF. From an overall perspective, as the PF gradually increased from 0.23 to 0.94,
the PPV gradually increased from 3.13 to 6.94. The process of the PF causing the PPV
changes can be divided into three stages. The first stage is that when PF increases from 0.23
to 0.46, there is no significant change in the PPV, and the PPV reaches a minimum value
when the PF equals 0.46. The second stage is that when the PF increases from 0.46 to 0.63,
the PPV shows a dramatic increase from 3.01 to 6.27 in an exponential-like trend. The third
stage is when the PF increases from 0.63 to 0.94, and the PPV increases from 6.27 to 6.94,
but the amplification is significantly smaller compared with that in the second stage. From
this, managing the PPV through curbing the size of the PF is a potentially effective means.

Figure 15. The partial dependency between the PPV and PF.
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4.4. Comparision with the Published Works

As for the datasets used in the present paper, it has also been used in several published
articles, e.g., references [1,64,65]. This section aims to compare the superiority of the model
proposed in this paper with the existing models in the published papers.

Reference [64] proposed two models used for the PPV prediction, i.e., the nonlin-
ear multiple regression (NLMR) and the gene expression programming (GEP). Likewise,
102 datasets of blasting operations were randomly divided into 80% for the training set and
20% for the testing set. The input parameters, including BS, HD, ST, PF, MC, and DI, are the
same as the input parameters used in the present study. The results of the GEP and NLMP
models are presented in Table 7. Reference [1] also used the same datasets to research the
PPV prediction. In the research, a special case is that a feature selection technique was used
to filter out unimportant input parameters before conducting the modeling. In this way,
five variables except for BS, including HD, ST, PF, MC, and DI, were chosen as the input
parameters, which is the main difference from the current paper. In their study, five ML
models, i.e., CART, CHAID, RF, ANN, and SVM, were developed using the new datasets
after feature selection. Furthermore, the datasets used for developing the models were
randomly split into two parts, i.e., 70% of datasets for training the models and 30% of
datasets for validating the performance of the models. The performance results of these
five models are presented in Table 7. Reference [65] also utilized the same datasets to
develop two ML models, i.e., RF and Bayesian Network (BN). Similar to Reference [1],
feature selection was also used to filter features of low importance before building the ML
model. After that, the input parameters that have been identified consist of DI, PF, HD, ST,
and MC, in addition to BS.

Moreover, the datasets were randomly split into two parts, i.e., 70% of datasets for
training the models and 30% of datasets for validating the performance of the models. The
performance results of these two models are presented in Table 7. Overall, according to
the results in Table 7, the improved RF model (i.e., the RF-WOA) proposed in this paper
can significantly outperform the models proposed in the published papers, which proves
the improved RF model is good enough and robust to predict the PPV caused by mining
blasting. Likewise, this shows that it is reasonable and feasible to amend the weights of the
decision trees of the RF model as proposed in this paper.

Table 7. Results of the evaluation metrics of the models that used the same datasets.

Reference Models
Training Testing

R2 RMSE MAE VAF R2 RMSE MAE VAF

Present
paper RF-WOA 0.986 0.118 0.093 98.603 0.932 0.246 0.188 95.032

[64]
GEP 0.914 0.920 0.755 91.304 0.874 0.963 0.851 87.107
NLMR 0.829 1.365 1.125 80.878 0.790 1.498 1.221 69.261

[1]

RF 0.940 0.770 0.620 92.970 0.830 1.460 1.190 82.170
CART 0.670 1.670 1.320 67.030 0.560 2.390 1.840 54.600
CHAID 0.910 0.860 0.540 91.300 0.680 1.900 1.470 67.790
ANN 0.890 0.960 0.750 89.140 0.840 1.410 1.130 83.710
SVM 0.880 1.020 0.770 88.480 0.850 1.500 1.170 84.540

[65]
RF 0.930 - - - 0.903 - - -
BN 0.930 - - - 0.871 - - -

5. Conclusions

This paper utilized the RF and improved weighted RF models to predict the blast-
induced PPV. Thus, a dataset of a total of 102 samples collected from an open granite mine
was used to develop the target regular RF model. The input parameters used for modeling
included BS, HD, ST, PF, MC, and DI, while the output was the PPV. Then, five techniques,
i.e., refined weights based on the accuracy (R2 and the RMSE) of decisions trees as well
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as the optimization results of three metaheuristics algorithms (WOA, GWO, and TSA),
were employed to enhance the performance of the regular RF model by reassigning the
new weights of decision trees. The results concluded that the optimal hyperparameters
of the regular RF model are 51 decision trees and 7 of maximum depth. Subsequently, the
performance evaluation results of the five weighted RF models showed that all improved RF
models outperformed the regular RF model. Moreover, the RF-WOA model shows the best
performance among these five models, as evidenced by the fact that the RF-WOA model
has the R2 values of 0.986 and 0.932, the RMSE values of 0.118 and 0.246, the MAE values
of 0.093 and 0.188, and the VAF values of 98.603 and 95.032 for the training and testing
sets, respectively. Additionally, compared with the models developed in published articles
that also used the same dataset, the RF-WOA model still shows the best accuracy, proving
that the RF-WOA model developed in this study has better performance, adaptability,
and robustness. Furthermore, the sensitivity analysis revealed that the PF model shows a
great significant correlation with the PPV prediction, and the results of the PDPs indicated
that when the PF is less than 0.46, the PPV maintains a small fluctuation. At the same
time, when the PF exceeds 0.46, there is a significant increasing trend of PPV, and when
the PF exceeds 0.63, the increasing trend of the PPV gradually shrinks, which suggests
that governing the magnitude of the PPV by managing the PF is an effective and practical
measure for the case of this project.
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Abstract: In this paper, an ultra-scratch-resistant, hydrophobic and transparent coating was fabricated
by the sol–gel method using (3-Glycidyloxypropyl) triethoxysilane (GPTES) and curing agents.
When the silanol was condensated, the ring-opening reaction of the epoxy groups also took place,
which formed a double-cross-linked network (Si–O–Si and R3N). This network structure restricted
the molecule chains from being twisted or dislocated, resulting in a great improvement of the
abrasion resistance of the coating. A pencil hardness grade up to 8H was obtained. The coating
also showed excellent stability after being soaked in pH = 2 and pH = 12 solutions, seawater and
acetone, respectively. In addition, a water contact angle of 121◦ was obtained by post-treatment
with hexamethyldisilazane (HMDS). The average transmittance of the coating reached to 90% in the
wavelength range of 400~800 nm, nearly identical to the glass substrate. With multiple desirable
properties and a simple fabrication process, this low-cost coating shows great potential in many
practical applications.

Keywords: scratch-resistant; hydrophobic; GPTES; transparent; sol–gel

1. Introduction

Multifunctional transparent coatings are closely related to our lives and are categorized
as one of the hot topics of many researchers [1,2]. While maintaining transparency, the coating
is also endowed with multiple properties, such as self-cleaning [3,4], anti-fogging [5,6], oil–
water separation [7], anti-corrosion [8–10], anti-reflection [11,12] and self-healing [13–15].
There are usually two ways to achieve self-cleaning, the super-hydrophilic surface and the
super-hydrophobic surface. When water droplets come into contact with the coating, they
will immediately be spread over the entire surface to form a continuous water film, thereby
taking away the dirt on the surface [16]. The smooth surface that reduces the scattering of
light makes the coating transparent and anti-fogging [5]. On the other hand, when the water
droplets come into contact with the coating with low surface tension, the water droplets
will keep their spherical shape and roll off quickly from the surface [17]. The preparation
of superhydrophobic surfaces often relies on two factors, micro or nano-scaled hierarchical
structures [18] and low surface energy materials [19]. In addition, a transparent coating is
often used as a protective coating to protect metallic substrates from corrosion, because the
dense and inert coating separates the metal from the environment [20]. Furthermore, anti-
reflective coatings are often used in solar cells [12]. The refractive index of the antireflective
coatings is lower than that of the substrate. Through the interference of light, it effectively
reduces the reflection loss of incident light and improves the efficiency of solar cells [21].
What is more, the damaged structure can be recovered spontaneously by self-healing
materials with external stimuli [15]. Self-healing coatings repair damage in two ways,
inherent reversible noncovalent interactions [22–27] and dynamic covalent bonds [28–32].
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However, these coatings are often soft and susceptible to scratches and abrasion.
Scratches may make the surface rough, which will greatly cause the scattering of light,
thereby reducing the transparency of the coating [33]. In addition, self-cleaning, anti-
corrosion and other functions may also be affected, which severely restricts its application
in daily life. Although the self-healing coating can relieve the effects of scratches to a certain
extent, it cannot totally eliminate the damage of scratches [15]. Therefore, scratch resistance
is also an important point for transparent coatings. Zhang et al. prepared a bilayer
antireflective coating with the top layer of ultra-low refractive index from fully dispersing
nano-silica particles by mixing HMDS and achieved an average transmittance of 99.90%
in the visible region [34]. However, the coating with an ultra-low refractive index was
usually rather soft, easily scratched. Mousavi et al. fabricated a transparent scratch-resistant
coating through the direct oxidation of Al-coated glass [35]. After annealing at 600 ◦C, the
pencil hardness of the coating increased to 9H due to the hard Al2O3 particles. However,
the transmittance of the coating declined from 90% to 75%. Hua Zhou et al. prepared
durable and superhydrophobic fabric coatings through simple mixtures of fluorinated
silica nanoparticles and polydimethylsiloxane (PDMS) and showed that the water contact
angle only decreased from 170◦ to 150◦ after 28,000 cycles of abrasion under 12 kPa [36].
However, the transparency of the coating was not mentioned.

In general, the epoxy resin needs to be solidified to increase its hardness [37–39] through
a ring-opening reaction to form an organic network. (3-Glycidyloxypropyl) Trimethoxysi-
lane (GLYMO) and (3-Glycidoxypropyl) Triethoxysilane (GPTES) contain epoxy groups,
as silane coupling agents, often used as surface hardening agents [37]. Zhi et al. provided
a method to fabricate a durable superhydrophobic antireflection coating via introducing
an organic network from KH560 and octadecylamine (ODA) [40]. In detail, the coating
resisted scratches of a 4H pencil and the transmittance was 93%, which represented a 3%
improvement of the uncoated substrate. Omer Kesmez et al. reported a hybrid organic–
inorganic photocatalytic nanocomposite film, composed of Ce-doped TiO2 nanoparticles
and TEOS, GPTES, 1H, 1H, 2H, 2H-perfluorooctyl triethoxysilane [41]. This coating exhib-
ited good transparency and the pencil hardness was >9H. Therefore, silane coupling agents
containing epoxy groups can enhance mechanical damage resistance.

In this work, we prepare an ultra-scratch-resistant and hydrophobic polymer coating,
based on a double-cross-link structure from GPTES and a curing agent, diethylenetriamine
(DETA) or m-Xylylenediamine (MXDA). It protected the substrate from the scratches of
an 8H pencil without deteriorating its transparency. The fabrication process of the coating,
sol–gel method, is a simple and cost-effective thin film preparation method. It can be found
that the coating was relatively durable after being soaked in different corrosive liquids.
From the results of thermogravimetric analysis, it is also demonstrated that this polymer
coating with a wide working temperature and hydrophobicity provided the possibility for
practical applications on metal and/or wood surface.

2. Experimental Procedure

2.1. Materials

(3-Glycidyloxypropyl) Triethoxysilane (GPTES), hexamethyldisilazane (HMDS), tetraethyl
orthosilicate (TEOS), methyltriethoxysilane (MTES), diethylenetriamine (DETA),
m-xylylenediamine (MXDA) and ammonia (25~28%) were purchased from Shanghai Al-
addin Biochemical Technology Co., Ltd., Shanghai, China. Anhydrous ethanol (EtOH),
acetone, sodium hydroxide (NaOH) and sodium chloride (NaCl) were purchased from
Tianjin Zhiyuan Chemical Reagent Co., Ltd., Tianjin, China. All the reagents used in this
work were not purified further. High purity water was prepared by a Purescience water
purification system.
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2.2. Preparation of Coatings
2.2.1. Preparation of the DETA-Organosilicon-Epoxy-Resin (DETA-OSER) Coating and
MXDA-Organosilicon-Epoxy-Resin (MXDA-OSER) Coating

GPTES (5.5 mL) was mixed with the EtOH (43.0 mL) with stirring for 30 min. Then,
high purity water (1.0 mL) and DETA (0.8 mL) or MXDA (1.3 mL) were added to the
solution and the mixture was stirred for 4 h. After stirring, the solution was transferred to
a cool place to age for 7 days. After 7 days, the solution formed a sol. Then, EtOH (50 mL)
was added to dilute the sol for later dip-coating.

Glass and silicon wafer were used as substrates to prepared samples for transmittance
and refractive index measurement directly. The glass substrates were cleaned in an ultra-
sonic bath with high purity water, ethanol and acetone, respectively. After that, they were
dried in the baker at 60 ◦C prior to dip-coating. The DETA-OSER coatings were dip-coated
on glass substrates with a withdrawal rate of 1.5 mm/s. Then, the samples were immersed
in HMDS for 3 days to obtain hydrophobic surface. Finally, the DETA-OSER-coated glasses
were annealed in a muffle furnace at 160 ◦C for 1.5 h, and the MXDA-OSER-coated glasses
were annealed in a muffle furnace at 155 ◦C for 1.5 h.

2.2.2. Preparation of the NH3-Organosilicon-Epoxy-Resin (NH3-OSER) Coating

GPTES (5.5 mL) was mixed with the EtOH (43.0 mL) with stirring for 30 min. Then,
high purity water (1.0 mL) and ammonia (0.9 mL) were added to the solution and the
mixture was stirred for 4 h. After stirring, the solution was transferred to a cool place to
age for 7 days. After 7 days, the solution formed a sol. Then, EtOH (50 mL) was added to
dilute the sol for later dip-coating.

The NH3-OSER coatings were dip-coated on the cleaned glass substrates at the with-
drawal rate 1.5 mm/s. Then, the samples were immersed in HMDS for 3 days to obtain
a hydrophobic surface. Finally, the coated glasses were annealed in a muffle furnace at
160 ◦C for 1.5 h.

2.2.3. Preparation of the TEOS/MTES (TM) Coatings

TEOS (tetraethyl orthosilicate) (2.5 mL) and MTES (methyltriethoxysilane) (7.3 mL) were
mixed with the EtOH (36.0 mL) with stirring for 30 min. Then, high purity water (1.3 mL)
and ammonia (0.9 mL) were added to the solution and the mixture was stirred for 1 h. After
stirring, the solution was transferred to a cool place to age for 7 days. After 7 days, the
solution formed a sol. Then, EtOH (50 mL) was added to dilute the sol for later dip-coating.

The TM coatings were dip-coated on the cleaned glass substrates at the withdrawal rate
1.5 mm/s. Then, the samples were immersed in HMDS for 3 days to obtain a hydrophobic
surface. Finally, the coated glasses were annealed in a muffle furnace at 160 ◦C for 1.5 h.

2.3. Characterization

The optical transmittance spectra of the coated glasses were measured by using a
UV–VIS-NIR spectrophotometer (Hitachi U-4100, Tokyo, Japan) at room temperature.
The refraction index and film thickness were measured by a spectroscopic ellipsometry
(SENTECH SE800PV, Berlin, Germany). The surface morphologies and Young’s modulus
of the coatings were determined by atomic force microscope (Dimension Fastscan, Bruker,
Billerica, MA, USA). The scratch resistance was evaluated by the pencil hardness test. The
pencil hardness test was operated according to ASTM D 3363-2005. The optical micro-
scope images of the scratches were taken by metallurgical microscope (LEICA DM2500M).
FTIR spectra were recorded on the infrared spectrometer (Vertex70 Hyperion3000, with a
diamond crystal plane (single reflection) Attenuated Total Reflection (ATR) attachment),
with a resolution of 4 cm−1 and range of 4000~400 cm−1, to measure the possible groups
on the coatings. Thermogravimetric analysis was performed by using thermogravimetry
(TG209F1 libra) from 30 ◦C to 710 ◦C at a rate of 10 ◦C/min in the air to measure the
decomposition temperature of the coating. The water contact angles were measured at
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room temperature by an optical contact angle system (OCA 20, Dataphysics) with a droplet
volume of 5 μL.

3. Results and Discussion

3.1. Formation Mechanism of the Double-Cross-Link Structure

The simple fabrication process of the coatings is schematically illustrated in Figure 1.
For convenience, GPTES, DETA and MXDA are replaced by simple graphics in Figure 1a.
In general, Si–O–C2H5 can be catalyzed by acids and alkalis to hydrolyze and produce
silanol. At the same time, silanol can also be catalyzed to condense and produce Si–O–Si [4].
Aliphatic polyamine can also catalyze the hydrolysis and condensation of Si–O–C2H5,
as discussed in the next section. Low-temperature epoxy groups ring-opening reaction
and organic network formation can be achieved by the use of amine curing agents. In
principle, each active hydrogen in an amine is capable of opening and linking to one epoxy
groups [42]. That is, 1 mol of DETA react with 5 mol of GPTES and 1 mol of MXDA react
with 4 mol of GPTES. Therefore, as shown in Figure 1b, DETA and MXDA not only catalyze
the hydrolysis of Si–O–C2H5 and the condensation of silanol, but react with GPTES to form
the double-cross-link network. As the reaction proceeds, the molecular chains gradually
expand to achieve the much larger networks in Figure 1c,d (both amorphous from XRD,
not present).

Figure 1. Schematic illustration of the OSER coating. (a) Simplification of reactant. (b) Reaction
process. (c) DETA-OSER network. (d) MXDA-OSER network.

For the sake of verifying whether the cross-linked network was achieved, the FTIR
spectrum was applied to infer the possible groups in coatings. Figure 2 shows FTIR spec-
trums of NH3-OSER, MXDA-OSER, DETA-OSER and GPTES. Absorption peaks at ~2920,
~2853 and ~1457 cm−1 were observed corresponding to the C–H asymmetric, symmet-
rical stretching vibration and the in-plane deformation vibration, respectively [43]. This
indicated that all the samples contained methylene. Moreover, the characteristic peak
shown at ~3292 cm−1 could be attributed to the stretching vibration of hydroxyl [44],
including hydrogen bonds, which indicated that the Si–O–C2H5 in three coatings have
hydrolyzed, whereas GPTES have not. Since the characteristic peak of O–H is very close
to N–H, this might also suggest the existence of –NH2. The characteristic peak shown
at ~910 cm−1 could be attributed to the vibration of epoxy. This indicated incompletely
reacted epoxy groups. In addition, in terms of the characteristic peak shown at ~1094 cm−1,
which represented the Si–O stretching vibration [45], it could be confirmed that GPTES
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contained unhydrolyzed Si–O–C2H5 and this peak corresponds to the cross-link networks
of Si–O–Si in the other three samples. Furthermore, the presence of amino was observed
at ~1649 and ~1025 cm−1, and was assigned to the symmetric N–H bending modes of
–NH2 groups and C–N stretching modes of R3N, respectively [45]. In other words, the
open-ring reaction occurred between the GPTES and DETA or MXDA. On the contrary,
GPTES was only catalyzed by ammonia to hydrolyze, but not ring-open. In summary,
GPTES achieved the single Si–O–Si cross-link with the help of ammonia, but DETA and
MXDA both catalyzed hydrolysis and condensation, and reacted with epoxy groups to
produce the double cross-links Si–O–Si and R3N.

Figure 2. FTIR spectra of NH3-OSER, MXDA-OSER, DETA-OSER and GPTES.

3.2. Mechanical Property of Coatings

Scratch resistance is an important property of coatings, especially the ones for optical
applications. The hardness of the coatings was assessed by a pencil hardness test on the
basis of the ASTM D3363 standard [46], using pencils ranging from 6B (the softest) to
9H (the hardest). As shown in Figure 3f, with MTES as the silane coupling agent, the
TM coating had the softest pencil hardness < 6B, due to its low refractive index and high
porosity. In fact, the hydrogen bonds among the methyl-embedded particles are weakened
and the extent of cross-link is greatly reduced, leading to a high porosity [33]. The NH3-
OSER coating, using GPTES as the silane coupling agent, was also soft, which showed a
pencil hardness < 3B, as Figure 3e. That means the single Si–O–Si cross-link is not strong
enough to achieve ultra-scratch resistance. However, as shown in Figure 3a, there were only
minor scratches on DETA-OSER, caused by an 8H pencil, yet it suffered evident scratch
damage by 9H in Figure 3b. What is more, MXDA-OSER was also ultra-scratch resistant,
absolutely none scratches on its surface as Figure 3c showed. In summary, owing to the
double cross-links, the hardness of coatings is greatly enhanced to 8H. GPTES achieved the
cross-link structure of Si–O–Si through hydrolysis and condensation because of ammonia,
but this single cross-link was not very strong. The extent of the cross-link between the
molecular chains is relatively weak, and there are still the possibility of slippage and
dislocation under external force tearing. When introducing the curing agent, molecular
chains are double cross-linked to each other, which strengthens the stability and robustness
of the network and increases the relative molecular mass. Macroscopically, these make
the polymer coatings rather hard, up to 8H. In fact, the extension of the double cross-link
decides the hardness of the coating. As mentioned, each mole of active hydrogen in the
amines react with one mole of epoxy group (H:epoxy = 1:1), theoretically. However, there
is always a dynamic equilibrium in organic reaction, that is, not every epoxy group goes
through a ring-opening reaction. In order to improve the conversion of epoxy groups,
excessive curing agent is supposed to be added to the solution. According to Table 1, when
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the proportion of hydrogen increased, the pencil hardness of both coatings also increased,
proving that the excessive curing agent made the ring-opening reaction more thorough,
and then the double cross-link network was strengthened. In detail, when the curing agent
was less (≤1:1), the curing efficiency of DETA was higher, and the hardness reached to 5H.
In other words, most GPTES was cured by DETA with a low concentration. As for MXDA,
its small amount had a small increase in hardness. When H:epoxy = 2:1, the hardness of
two coatings increased to 8H. However, the sol soon becomes a gel because of excessive
curing in about 8 days. This is because the size of the cross-linked networks continues to
expand as the aging time increases. Macroscopically, the fluidity of the sol is continuously
weakened, and finally becomes a gel, making it impossible to go through the dip-coating
process. So, the sol (epoxy:H = 1:2) needs to be diluted to slow down the growth of the
cross-linked networks to prolong its life. According to experiments, when the concentration
of sol was diluted to half, the sol was kept in a fluidized condition after 180 days.

 

Figure 3. Optical microscope images of the scratches on various coatings. (a) DETA-OSER, scratched
with an 8H pencil. (b) DETA-OSER, scratched with a 9H pencil. (c) MXDA-OSER, scratched with
an 8H pencil. (d) MXDA-OSER, scratched with a 9H pencil. (e) NH3-OSER, scratched with a 3B pencil.
(f) TM, scratched with a 6B pencil.

Table 1. Pencil hardness of DETA-OSER and MXDA-OSER in different molar ratios: H:epoxy.

0.5 1.0 1.5 2.0

DETA-OSER 2H 5H 7H 8H
MXDA-OSER 3B H 6H 8H

3.3. Morphology and Optical Property of Coatings

In order to confirm the hardness quantitatively and figure out the surface morphologies
of the coatings, the coatings’ Young’s modulus and surface roughness were determined
by atomic force microscope. Young’s modulus describes the ability of a solid material to
resist deformation. That is, the higher Young’s modulus of the coating, the stronger its
ability to resist bending and the greater its hardness. The black lines marked in Figure 4 are
the center line average, which represents the average of Young’s modulus of the coatings.
The results shown in Figure 4 revealed that MXDA-OSER obtained the highest value of
~10.8 GPa, while TM obtained a minimum value of ~1.5 GPa. This result was approximately
consistent with the scratch-resistance observation shown in Figure 3. The stability of the
double cross-links structure was verified. Figure 5 showed the surface morphologies of
the coatings. The corresponding root-mean-square deviation roughness (Rq) is given in
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Figure 5. Spherical clusters on the surface could be observed as shown in Figure 5c,d. The
roughness of NH3-OSER and TM (Rq = 2.024, 7.651 nm) was much higher than that of
the DETA-OSER and MXDA-OSER (Rq = 0.316 nm, 0.274 nm). The result reflects that the
DETA-OSER and MXDA-OSER had extremely smooth surfaces, which was attributed to
their tightly linked molecular chains with double-cross-link structures. The smooth surface
also greatly reduced the light scattering, resulting in a high transmittance of visible light. It
is noticed that the scratch resistance of TM and NH3-OSER was much weaker. Therefore,
the further investigation on these two coatings will not be carried out.

 
Figure 4. Histograms of the Young’s modulus distribution of the coatings. (a) DETA-OSER.
(b) MXDA-OSER. (c) NH3-OSER. (d) TM.

Figure 5. The 3D surface morphology of the coatings. (a) DETA-OSER. (b) MXDA-OSER.
(c) NH3-OSER. (d) TM.

According to Figure 6, the transmittance of the DETA-OSER was a little higher than
that of bare glass. This slightly difference is caused by the refractive index. The refractive
index and thickness of the coatings and glass, measured by spectroscopic ellipsometry, are
given in Table 2. The result indicates that DETA-OSER can also be used as an antireflective
coating. However, when using MXDA as a curing agent, phenyl was introduced into
the molecular chains, which increased the density of particles in the molecular chains to
a certain extent. Nevertheless, the large phenyl enhances the rigidity of the molecular
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chains. Consequently, chains are more difficult to deform, curl and shift, which makes
the coating extremely hard and ultra-scratch-resistant. Back to Figure 3c, there were no
scratches, scratched with an 8H pencil, whereas in DETA-OSER, without phenyl, there
were minor scratches on it. In a word, MXDA-OSER was more scratch resistant than
DETA-OSER, but at the cost of a slight decrease in transmittance.

 
Figure 6. Transmittance spectra of the DETA-OSER, MXDA-OSER and bare glass.

Table 2. Refractive index and thickness of the DETA-OSER, MXDA-OSER and bare glass.

Refractive Index (±0.003) Thickness

DETA-OSER 1.493 103 nm
Bare glass 1.512 700 μm

MXDA-OSER 1.525 114 nm

3.4. Durability in Different Environments of Coatings

The transmittance of coatings often decreases because of dust in practical applications.
The coating with self-cleaning ability can effectively reduce the influence of dust on transmit-
tance. Owing to being soaked in HMDS, the coating got the self-cleaning ability. Si–CH3 in
HMDS was transferred to the surface of the coating, making the surface hydrophobic. When
the water droplet was dropped on the surface, the contact angle was up to 121◦, which is
shown in Figure 7b. However, in Figure 7a, the contact angle of the unsoaked DETA-OSER
was just 69◦, which was lower than the soaked one. It indicated that the hydrophobic groups
were successfully grafted onto the surface. Additionally, this happened to MXDA-OSER.
Generally, being soaked in the HMDS reduces the surface energy and increases the contact
angle of water droplets, which endows the coating with self-cleaning ability.

The durability of the coating is a key technical concern. In order to study its chem-
ical stability in different environments, DETA-OSER and MXDA-OSER were soaked in
pH = 2 and pH = 12 solutions, seawater (3.5% NaCl aqueous solution) and organic solvent
(anhydrous acetone), respectively. According to Tables 3 and 4, DETA-OSER and MXDA-
OSER showed to be insoluble in acetone because their polarity was weak owing to the large
molecular chains. Besides, DETA-OSER and MXDA-OSER, to a certain extent, could resist
the erosion of the acid and seawater, but the hardness of DETA-OSER decreased slightly.
The possible reason is that the molecular chains with phenyl are more inert due to the steric
hindrance of phenyl. In addition, both DETA-OSER and MXDA-OSER could be soaked in
an aqueous alkali only for a short time. The reason for hardness decline is that the Si–O–Si
framework reacts with NaOH to produce the soluble Na2SiO3. Gradually, the corrosion of
strong alkali destroyed the cross-link structure.
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Figure 7. Contact angle of a water droplet on the surface of (a) DETA-OSER, before being soaked
in HMDS. (b) DETA-OSER, after being soaked in HMDS. (c) MXDA-OSER, before being soaked in
HMDS. (d) MXDA-OSER, after being soaked in HMDS.

Table 3. The pencil hardness grade of DETA-OSER being soaked in different solutions.

1 Day 3 Days 5 Days 7 Days

pH = 2 8H 8H 8H 7H
pH = 12 8H <6B <6B <6B
Seawater 8H 8H 8H 6H
Acetone 8H 8H 8H 8H

Table 4. The pencil hardness grade of MXDA-OSER being soaked in different solutions.

1 Day 3 Days 5 Days 7 Days

pH = 2 8H 8H 8H 8H
pH = 12 8H 3B <6B <6B
Seawater 8H 8H 8H 8H
Acetone 8H 8H 8H 8H

To study the thermal behavior of materials, the thermal-oxidative decomposition
processes of samples were investigated. According to the DTG curves shown in Figure 8,
a maximum value with 160 ◦C and 13.4 min was observed. When the temperature was
lower than 160 ◦C, the water adsorbed on the surface and started to evaporate, and the
free Si–OH and the unreacted C2H5–O–Si also began to condense to produce a Si–O–Si
cross-link structure, which reduced the mass during this time. In other words, annealing at
160 ◦C made the cross-link more thorough and then increased the hardness of the coating.
When the temperature was higher than 160 ◦C, the rate of mass decrease began to increase,
which meant that the polymer coating began to decompose intensely. Therefore, the DETA-
OSER coating has the highest working temperature of 160 ◦C. Similarly, a maximum value
of 155 ◦C was obtained at 12.7 min for MXDA-OSER coating. Meanwhile, it is observed
that the DTG curves fluctuated greatly in the high-temperature region (>160 ◦C). This was
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due to the fact that the coatings begun to thermal decompose, producing gases such as
COx, NOx, NH3 and alkanes with a different decomposition temperature and time.

 

Figure 8. TGA and DTG curves of the samples of DETA-OSER and MXDA-OSER in air. The samples
were made of the aged sol after drying the solvent at 60 ◦C, and they were not cured at a high temperature.

3.5. The Coating on Different Substrates

OSER can be applied on various substrates to protect the surface. The influence of
the substrate on the scratch resistance was investigated. As shown in Figure 9, there were
evident scratches on the coatings with a 9H pencil, but no scratches with an 8H, which
meant that both DETA-OSER and MXDA-OSER were still ultra-scratch-resistant, even
on iron substrates with a rough surface. Besides, owing to their inert and hydrophobic
properties, OSER could be used as a protective coating to prevent the substrate from being
scratched or becoming wet. Additionally, due to its high transparency, it had almost no
effect on the pattern of the substrate.

 

Figure 9. Surface morphologies of the OSERs on iron substrates after pencil hardness test.
(a) DETA-OSER, scratched with an 8H pencil. (b) DETA-OSER, scratched with a 9H pencil.
(c) MXDA-OSER, scratched with an 8H pencil. (d) MXDA-OSER, scratched with a 9H pencil.

4. Conclusions

In summary, we demonstrated a robust, hydrophobic and transparent coating based
on organosilicon-epoxy resin (OSER). Aliphatic polyamines, as catalysts and reactants at
the same time, make GPTES hydrolyze and condense as well as react with epoxy groups,
thereby forming a double-cross-link structure. The double cross-links allow the coatings to
resist scratching, macroscopically. The coating shows excellent scratch resistance and good
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transparency. Besides, its durable and hydrophobic properties prevent the substrate from
becoming wet by many solutions. The cost-effective coating exhibits great potential value
in commercial applications.
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Abstract: The advantage of the piezocone penetration test is a guarantee of continuous data, which
are a source of reliable interpretation of the target soil layer. Much research has been carried out for
several decades, and several classification charts have been developed to classify in situ soil from
the cone penetration test result. Even though most present classification charts or methods were
developed on the basis of data which were compiled over many countries, they should be verified
to be feasible for local country. However, unfortunately, revision of those charts is quite difficult
or almost impossible even though a chart provides misclassified soil class. In this research, a new
method for developing soil classification model is proposed by using soft computing theory—fuzzy
C-mean clustering and neuro-fuzzy theory—as a function of 5173 piezocone penetration test (PCPT)
results and soil boring logs compiled from 17 local sites around Korea. Feasibility of the proposed
soil classification model was verified from the viewpoint of accuracy of the classification result by
comparing the classification results not only for data which were used for developing the model but
also new data, which were not included in developing the model with real boring logs, other fuzzy
computing classification models, and Robertson’s charts. The biggest advantage of the proposed
method is that it is easy to make the piezocone soil classification system more accurate by updating
new data.

Keywords: piezocone; soil classification; fuzzy C-means clustering; neuro-fuzzy

1. Introduction

Underground information is a main factor to be considered during the construction
and design phases. In particular, stratigraphy is essential for economical design of a foun-
dation because most construction projects are carried out at the deposit layer on bedrock.
Boring logs from subsurface exploration at a constant interval along the project area are
the only source of data. They are drawn from some resources such as the penetration rate,
soil color, and driller’s experience, which is dependent upon their career and, thus, may
could not always reflect the nature of the ground. Therefore, penetration tests, such as the
cone penetration test (CPT), piezocone penetration test (PCPT), and standard penetration
test (SPT), have been used together. PCPT has an advantage in the view of continuity and
standardization, even when evaluating interbedded thin layers from thick deposit layers.
Research on soil classification from CPT results was commenced by Begemann [1]. Further-
more, Douglas and Olsen [2] developed a new soil classification chart using electric cone
penetration test results. After introducing the piezocone which can measure pore pressure
readings, many researchers including Robertson et al. [3], Robertson [4], and Jefferies and
Davis [5] developed various types of soil classification charts and/or techniques. However,
most classification charts provide only soil behavior type, while local engineers who are
familiar with Unified Soil Classification System (USCS) have trouble with understanding
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relevant results. In addition, the adopted charts and methods sometimes give different
soil classification results for the same input parameters, and even two charts developed by
one researcher may lead to different soil types. To complement the weakness of the chart
type soil classification method, and considering the fuzziness of the ground, there has been
progress in studies on soft computing. Pradhan [6] developed fuzzy membership functions
on the basis of Robertson et al.’s chart [3], and Zhang and Tumay [7] suggested a fuzzy
soil classification method according to Douglas and Olsen’s chart [2]. On the other hand,
Hegazy and Mayne [8] introduced a clustering method as a function of normalized cone
resistance, Qt, and pore pressure ratio, Bq. Clustering methods can give soil classifications
between upper and lower soil data but not the soil type of each soil datum. On the other
hand, soil classification by fuzzy theory can provide soil type to each soil datum and has
the advantage of simply being updated for newly acquired soil data. However, it also
has a problem that the classification result is highly dependent on the fuzzy membership
function. As described before, Pradhan [6] and Zhang and Tumay [7] developed fuzzy
membership functions on the basis of charts such as those proposed by Robertson et al.,
and Douglas and Olson, respectively. Therefore, these fuzzy classifications seemingly
remain unable to reflect local soil type. Recently, machine learning has been used to classify
soils from CPT data [9–13] and to successfully estimate soil and design parameters [9,13].
Rauter and Tschuchnigg [14] suggested a machine learning classifier based on a support
vector machine, artificial neural network, and random forest to predict soil classes accord-
ing to Oberhollenzer et al. [15] and soil behavior types according to Robertson [16–18].
They showed that machine learning algorithms can classify soils on the basis of grain size
distribution and the updated soil behavior classification from Robertson (i.e., SBT, SBTn,
ModSBTn). However, since they used cone tip resistance qc, sleeve friction fs, total vertical
stress σv, and static pore pressure uo as input variables, their model can still be improved
by adopting pore pressure parameters such as Bq.

In this study, a new soil classification method was developed using the neuro-fuzzy
technique, in which the membership function was developed by a neural network and not
adjusted by the trial-and-error method to present classification charts. Moreover, input
variables and relevant soil types were determined on the basis of proximity between
compiled soil data using the fuzzy C-mean clustering (FCM) method and not by the
developer’s experience. To show the feasibility of the proposed model, new PCPT results
which were not included in the soil database were classified using the proposed neuro-
fuzzy model and compared with Robertson et al.’s chart classification, Pradhan’s fuzzy
classification, Zhang and Tumay’s fuzzy classification, and the Unified Soil Classification
System (USCS).

2. Soil Classification Method for CPT and PCPT

2.1. Soil Classification Charts

Figure 1 shows Robertson et al. [3]’s classification charts as a function of qt, R f , and
Bq. Their definitions are as follows:

qt = qc + (1 − a)ubt, (1)

R f =
fs

qc
× 100(%), (2)

Bq =
(ubt − uo)

(qt − σvo)
, (3)

where qt is the corrected cone tip resistance, qc is the measured cone tip resistance, ubt is
the penetration-induced pore pressure measured behind the cone tip, a is the unequal area
ratio, R f is the friction ratio, fs is the sleeve friction, Bq is the pore pressure ratio, uo is the
static pore pressure before cone penetration, and σvo is the total stress. Robertson’s charts
have been widely used, and their feasibility was verified by several researchers.

282



Appl. Sci. 2022, 12, 4023

Figure 1. Soil classification charts by Robertson et al. [3].

2.2. Soil Classification Using Fuzzy Theory

Natural phenomena are known not to be decided in absolute terms such as 0 or
1. Zadeh [19] introduced “soft computing”, the concept of fuzzy theory to describe nature’s
ambiguousness. This theory can present intermediate values using the fuzzy membership
function. Various soft computing methods have been suggested after Zadeh [19], and stud-
ies on soil classification from CPT and PCPT using soft computing are summarized below.

2.2.1. Pradhan’s Study

Pradhan [6] suggested a soil classification method using fuzzy theory. He developed
fuzzy membership functions for input variables qt, Fr(= fs/qt), and Bq according to Robert-
son et al. [2]. However, soil types were only classified into “clay”, “silt”, and “sand”. The
maximum grade for membership functions was limited to 0.8 when considering uncertainty
in soil classification. Figure 2 shows the membership functions of three soil sets in terms of
qt, Bq, and Fr respectively. The reader is referred to Pradhan [6] for the detailed expression
of fuzzy membership functions.

Figure 2. Fuzzy membership functions of soil sets for three parameters, qt, Fr, and Bq.

Three soil fuzzy sets for clay, silt, and sand were named CL, SI, and SA, as defined in
Equation (4). μCL, μSI , and μSA represent the summation of membership function values
from each chart for clay, silt, and sand, respectively.

Clayey soil : CL = ∑ μCL(ai)/ai(i = 1, 2, 3),
Silty soil : SI = ∑ μSI(ai)/ai(i = 1, 2, 3),

Sandy soil : SA = ∑ μSA(ai)/ai(i = 1, 2, 3),
(4)

where a1 = qt, a2 = Fr, and a3 = Bq.

2.2.2. Zhang and Tumay’s Study

Zhang and Tumay [7] grouped soil into three types, i.e., HPC (highly probable
clay), HPM (highly probable mixed soil), and HPS (highly probable sand) on the ba-
sis of the Unified Soil Classification System (USCS) and used qc and R f as input variables.
They suggested new fuzzy membership functions μC(U), μm(U), and μs(U) as shown in
Figure 3, with an intermediate soil classification index (U) empirically based on Douglas
and Olsen [2]’s chart.
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U =
(a1X − a2Y + b1)(c1X − c2Y + d1)

(c1X − c2Y + d1)
2 + (c2X + c1Y + d2)

2 − (a2X + a1Y + b2)(c2X + c1Y + d2)

(c1X − c2Y + d1)
2 + (c2X + c1Y + d2)

2 , (5)

where X = 0.1539R f + 0.8870 log qc − 3.35, and Y = −0.2957R f + 0.4617 log qc − 0.37.

Figure 3. Fuzzy membership functions developed by Zhang and Tumay [7].

Since Pradhan [6] and Zhang and Tumay [7] developed fuzzy membership functions
using a trial-and-error method according to the charts of Robertson et al. [3] and Douglas
and Olsen [2], respectively, their method may result in very similar results to the soil
classification result presented in the original chart. To overcome this, in this study, fuzzy
memberships were determined using a neural network process.

3. Fuzzy Clustering and Neuro-Fuzzy Modeling

3.1. Database

The database for this study was built from 17 local sites of South Korea, as shown in
Figure 4, along the coastal line, and six sites were used for verification of the model. The
closed circle indicates the location where training data for training the fuzzy membership
function were extracted, and the open square indicates the location where the verification
data for verifying the completed fuzzy soil classification system were obtained. Table 1
summarizes the site location, number of PCPTs, and soil type classified by USCS. The
measured values from piezocone penetration tests—qc, fs, ubt—were averaged within the
interval of 5 to 10 cm and picked up at the same depth where SPT and undisturbed samples
were taken. The database contained 5173 data points in total. Table 2 shows the classification
results of the database into six categories following USCS. A huge number of clayey soil
(CH, CL) samples were, included while the number of silty soil and sandy soil samples was
relatively small due to the difficulty in soil sampling with a thin wall tube sampler.

Figure 4. Seventeen local sites for this study.
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Table 1. Included number of PCPTs and USCS classes for each site.

Sites Nos. Soil Type by USCS

Gyeonggi

Pyeongtaek 2 CL, SP, SW

Siheung 3 CL, SM, SP

Ilsan 1 SM, SP

Incheon 3 CL, ML

Chungnam
Seocheon 4 CL, SM, SP

Asan 1 CL, SM

Jeonnam
Yeongam 1 CH, SP, SW

Gwangyang 1 CL, CH, ML, SP

Jeonbuk Kunjang 9 CH, CL, ML

Gyeongnam

Yangsan 4 CL, SM

Tongyeong 2 CH

Hadong 2 CL, CH, MH, SP

Ulsan 2 SM, SP-SC

Yongwon 4 CH

Cheonseong 4 CH

Gaduk 4 CH

Kangwon Naegok 2 CL, MH, SP, SW

Table 2. Number of soil data points and corresponding PCPT data range.

USCS Nos. qt (MPa) fs (MPa) ubt (MPa)

CH 2746 0.108 to 1.250 0.0001 to 0.030 0.051 to 0.683

CL 1861 0.028 to 6.520 0.0001 to 0.052 0.002 to 1.088

MH 36 0.608 to 1.640 0.003 to 0.028 0.018 to 0.255

ML 284 0.436 to 6.818 0.004 to 0.096 −0.092 to 0.562

SM, SP-SC 148 0.217 to 160.328 0.006 to 5.740 −0.960 to 3.256

SP, SW 98 1.232 to 36.263 0.005 to 0.857 −0.168 to 0.528

3.2. FCM (Fuzzy C-Means) Clustering Algorithm

Before developing the neuro-fuzzy model for PCPT-based soil classification, a group-
ing procedure was carried out to establish the unique structure between soil behavior
type and PCPT input parameters, as well as to determine the appropriate number of soil
types in the database and the input variables. Generally, some techniques exist to find
structures in the database and divide them into small groups. An unsupervised learning
strategy, clustering, can be used for that purpose, with the FCM (fuzzy C-means) algorithm
being most widely used. This algorithm searches for fuzzy divisions F =

{
F1, F2, · · ·, Fc

}
to

minimize the function, as expressed in Equation (6), when a dataset composed of n items is
divided into c clusters.

Jm(U, V : X) =
c

∑
i=1

n

∑
k=1

(μik)
m‖Xk− Vi‖2, (6)

where V = {V1, V2, · · ·, Vc} is the set of c central vectors, and ‖Xk − Vi‖ is the geometric
distance between data Xk and the center of the ith cluster. In addition, μik is the grade of

285



Appl. Sci. 2022, 12, 4023

cluster Fi including data Xk and satisfies Equation (7) in the element of the fuzzy partition
matrix U = [μij] with the size of (c × n).

μik ∈ [0, 1],
c

∑
i=1

μik = 1 (7)

The procedure of the FCM clustering algorithm is summarized below.

1© Assume partition number c (2 ≤ c ≤ n) and fuzziness of partition m.
2© Select initial values of fuzzy partition matrix, U(t). Random values are assumed for

satisfying Equation (6).
3© Calculate the center of cluster V using Equation (8).

Vi
(t+1) =

c
∑

i=1
(μik

(t))
m

Xk

c
∑

i=1
μik

(t)
, m > 1, i = 1, · · ·, c (8)

4© Recompose fuzzy partition matrix using Equation (9).

μik =
1

c
∑

j=1

(
|Xk−Vi |2
|Xk−Vj|2

)1/(m−1)
, i = 1, · · ·, c, k = 1, · · ·, n (9)

5© Complete the procedure if |U(t + 1)− U(t)| < δ. Otherwise, repeat phase 4©. Here, δ

is assumed to be 10−3.
6© Repeat phases 1©to 5©and decide optimized partition number, as well as c and m values.

To determine the substructure of the compiled database and optimized input parameters,
the success rate of any clusters and input parameters was evaluated after combining PCPT
parameters, hydrostatic pressure, and total vertical stress, as shown in Table 3. First, the
database was divided into 3–6 clusters to determine the optimized clusters of soil type
according to combined parameters. Outputs were clay (CH, CL), silt (MH, ML), and sand (SM,
SP, SP-SC, SW) for three clusters, clay (CH, CL), silt (MH, ML), sand with fine grained soil
(SM, SP-SC), and relatively coarse sand (SP, SW) for four clusters, clay (CH, CL), silt with high
liquid limit (MH), silt with low liquid limit (ML), sand with fine grained soil (SM, SP-SC), and
coarse sand (SP, SW) for five clusters, and CH, CL, MH, ML, sand with fine grained soil (SM,
SP-SC), and coarse sand (SP, SW) for six clusters. A total of 5 (input parameters) × 4 (clusters)
were considered. The success rates of FCM clustering were evaluated as presented in Table 3.
When all data points were concentrated in a specific cluster and appropriate clustering was
not possible, is the success rate was regarded as “bad”. According to the results, the maximum
success rate was 74% when qt, R f , and Bq were used as input parameters and three output
clusters were selected. Furthermore, the m value representing the fuzziness of the partition
was optimized, as given in Figure 5. Success rates were increased to m = 4 and seemed to
converge after m = 4. Thus, m = 4 was adopted for this study.

Table 3. Success rate of FCM clustering for selected input parameters and specified clusters.

Input Parameters
Success Rate (%)

Three Clusters Four Clusters Five Clusters Six Clusters

qt, fs, ubt 71 61 46 Bad

qt, R f , Bq 74 60 48 42

qt, fs, Δu ∗ 70 60 69 42

qt, fs, ubt, σvo 71 53 Bad 52

qt, fs, ubt, R f , Bq, σvo 70 58 48 Bad

* Δu = ubt − uo .
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Figure 5. Change in success rate with respect to m value.

3.3. Neuro-Fuzzy Algorithm

After the FCM clustering described in Section 3.2, a neuro-fuzzy model was developed
on the basis of the optimum number of clusters (three, i.e., clay, silt, and sand) and input
variables (qt, R f , Bq). The fuzzy technique has the advantage of presenting data or events
which cannot be numerically expressed, whereas the selection of the fuzzy membership
function for inference is not always objective and precise. The decisions of fuzzy member-
ship functions by Pradhan [6] and Zhang and Tumay [7] were dependent upon subjective
trial-and-error methods or experimental methods. Thus, any revision or supplement con-
sidering local characteristics may not be easily considered even though it is necessary.
However, the neuro-fuzzy method combining a neutral network and the fuzzy method has
the merits of both techniques and is expected to overcome the previously mentioned defects.
The neural network has the advantage of facing variations of data, but the input data are
in numeric form. On the other hand, the fuzzy technique allows presenting numeric data
using a membership function. Thus, the techniques are complementary. Moreover, the
neuro-fuzzy technique can objectively decide membership functions and can be easily
updated if needed through determining the optimized membership functions using the
neural network algorithm. Figure 6 shows a schematic diagram of the ANFIS neuro-fuzzy
model with two input parameters.

Figure 6. Procedure of ANFIS neuro-fuzzy model.

The general neuro-fuzzy model uses membership functions in the input and output
phases. In this case, more time is required to complete calculation and convergence. Thus,
the ANFIS (adaptive network-based fuzzy inference system) adopts a first-order function
in the output instead of a membership function. The relevant procedure of the ANFIS
model is summarized below.
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1© The neuro-fuzzy output shown in Figure 6 is defined as a first-order function as shown
in Equation (10) if two input parameters are assumed. Here, p, q, and r are constants to
be decided after neural network training, while x and y are input parameters, which
are PCPT indices.

f1 = p1x + q1y + r1,

f2 = p2x + q2y + r2, (10)

f = f1 + f2

2© Total outputs in the system considering weighting factors w1 and w2 are given by
Equation (11). Weighting factors are calculated using Equation (12) after evaluating
each fuzzy membership function for given input parameters. Here, μA1 corresponds
to the finalized fuzzy membership function of x, while μB1 corresponds to the finalized
fuzzy membership function y.

f =
w1 f1 + w2 f2

w1 + w2
. (11)

w1 = μA1μB1, w2 = μA2μB2. (12)

3© The training procedure is completed after optimizing the parameters (p, q, and r)
of the first-order function and of membership functions to minimize output error, e,
defined by output fk and estimation Tk.

e =
1
2∑ ( fk − Tk)

2. (13)

Commercial soft computing package, Matlab was used to complete the training pro-
cedure when the least square error in Equation (13) was within the target error value,
ε = 0.01 or when the maximum training loop attained 200. If any of the predetermined
conditions were not satisfied, is the outcome was regarded as “bad”. Figure 7 shows the
commonly used candidate membership functions for the input process—i.e., triangular,
Gaussian, bell-shapes, and sigmoidal (S-shaped) membership functions.

Figure 7. Shapes of fuzzy membership functions for input parameters.

Tables 4–7 show the various neuro-fuzzy analysis results to find the best combination
of fuzzy membership functions for input variables. The success rate for each class, which is
defined by the match with the soil type in the database, and the averaged success rates per
each combination are presented. As shown in the tables, the success rate generally ranged
from 70% to 79%. Among the results, the maximum success rate was 79.09% when the tri-
angular membership function, Gaussian membership function, and sigmoidal membership
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function were selected as the membership functions for qt, R f , and Bq respectively. The
optimized shapes of each membership function after training are shown in Figure 8.

Table 4. Success rate when using a triangular membership function for qt.

Selected Fuzzy Membership Functions Success Rate (%)

qt (MPa) Rf Bq Clay Silt Sand Average

Triangular

Triangular Triangular 99.88 60.31 75.61 78.60

Triangular Gaussian 99.43 57.19 72.76 76.46

Triangular Bell 99.58 55.31 76.83 77.24

Triangular Sigmoidal 99.63 57.81 75.61 77.68

Gaussian Triangular 99.85 55.06 80.49 78.80

Gaussian Gaussian 99.43 57.19 73.58 76.73

Gaussian Bell 99.63 54.38 77.24 77.08
Gaussian Sigmoidal 99.58 57.19 80.49 79.09

Bell Triangular 99.38 58.44 73.98 77.27

Bell Gaussian 99.48 55.94 75.61 77.01

Bell Bell 99.63 54.06 78.46 77.38

Bell Sigmoidal 99.60 55.94 80.89 78.81

Sigmoidal Triangular 99.43 57.5 73.98 76.97

Sigmoidal Gaussian 99.48 56.25 75.61 77.11

Sigmoidal Bell 99.58 53.13 77.24 76.65

Sigmoidal Sigmoidal 99.58 55.31 80.89 78.59

Table 5. Success rate when using a Gaussian membership function for qt.

Selected Fuzzy Membership Functions Success Rate (%)

qt (MPa) Rf Bq Clay Silt Sand Average

Gauss

Triangular Triangular 99.60 57.19 73.98 76.92

Triangular Gaussian 99.65 56.25 73.98 76.63

Triangular Bell 99.43 51.25 72.36 74.35

Triangular Sigmoidal 99.48 57.19 71.95 76.21

Gaussian Triangular Bad Bad Bad Bad

Gaussian Gaussian 99.65 57.50 76.42 77.86

Gaussian Bell 99.43 52.50 76.02 75.98

Gaussian Sigmoidal 99.48 55.63 78.05 77.72

Bell Triangular 99.13 54.69 72.36 75.39

Bell Gaussian 99.65 57.50 76.83 77.99

Bell Bell 99.43 52.50 74.80 75.58

Bell Sigmoidal 99.50 55.63 78.05 77.73

Sigmoidal Triangular 99.13 55.63 67.07 73.94

Sigmoidal Gaussian 99.58 55.63 76.02 77.08

Sigmoidal Bell 99.48 51.88 72.76 74.71

Sigmoidal Sigmoidal 99.50 55.31 76.42 77.08
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Table 6. Success rate when using a bell-shaped membership function for qt.

Selected Fuzzy Membership Functions Success Rate (%)

qt (MPa) Rf Bq Clay Silt Sand Average

Bell

Triangular Triangular 98.93 53.13 63.41 71.82

Triangular Gaussian 99.60 55.00 72.76 75.79

Triangular Bell 99.50 53.13 73.58 75.40

Triangular Sigmoidal 99.43 57.19 69.51 75.38

Gaussian Triangular Bad Bad Bad Bad

Gaussian Gaussian 99.73 57.50 77.64 78.29

Gaussian Bell 99.58 55.31 78.46 77.78

Gaussian Sigmoidal 99.45 55.31 77.24 77.33

Bell Triangular 99.80 54.06 80.89 78.25

Bell Gaussian 99.60 55.94 75.61 77.05

Bell Bell 99.50 54.69 75.61 76.60

Bell Sigmoidal 99.48 54.38 76.42 76.76

Sigmoidal Triangular 98.98 55.63 65.04 73.22

Sigmoidal Gaussian 99.58 54.06 76.83 76.82

Sigmoidal Bell 99.45 50.31 71.14 73.63

Sigmoidal Sigmoidal 99.48 54.69 72.36 75.51

Table 7. Success rate when using a sigmoidal membership function for qt.

Selected Fuzzy Membership Functions Success Rate (%)

qt (MPa) FR Bq Clay Silt Sand Average

Sigmoidal

Triangular Triangular 99.50 59.38 74.39 77.76

Triangular Gaussian 99.63 52.81 73.17 75.20

Triangular Bell 99.58 47.81 75.20 74.20

Triangular Sigmoidal 99.53 53.75 75.20 76.16

Gaussian Triangular 99.50 60.31 76.42 78.74

Gaussian Gaussian 99.60 53.44 74.80 75.95

Gaussian Bell 99.58 51.88 76.42 75.96

Gaussian Sigmoidal 99.55 52.81 76.83 76.40

Bell Triangular 99.53 59.06 78.46 79.02

Bell Gaussian 99.55 53.44 74.39 75.79

Bell Bell 99.58 52.50 74.80 75.63

Bell Sigmoidal 99.55 52.81 75.61 75.99

Sigmoidal Triangular 99.55 59.06 78.05 78.89

Sigmoidal Gaussian 99.60 52.50 77.24 76.45

Sigmoidal Bell 99.55 53.75 74.80 76.03

Sigmoidal Sigmoidal 99.55 52.81 73.98 75.45
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Figure 8. Optimized Shapes of fuzzy membership functions after training.

4. Verification of Suggested Neuro-Fuzzy Model

Verifications were performed with additional PCPT results which were not included in the
training data, and the prediction results were compared to relevant boring logs. Piezocone tests
for verification were carried out at Busan, Gyeongnam, and Jeonnam along the southern coast of
Korea, Ulsan on the eastern coast of Korea, and Incheon on the western coast of Korea, as shown
in Figure 4. Representative soil layers were three sites for clay, one for silt, and one for sand. For
comparison, predictions from Pradhan’s [6] and Zhang and Tumay’s [7] methods using fuzzy
theory and Robertson et al.’s chart [3] are also presented with the results of the newly suggested
neuro-fuzzy model in this study. Soil classification results by Robertson et al. [3] were mainly
related to soil behavior type, and their zones on the two charts were revised for the simplicity,
i.e., clay for zone 3, silt for zones 4 and 5, sand for zones 8 and 9, and silt or sand for zones 6 and
7. Other zones not mentioned here are seldom found in South Korea (Kim et al., [20]). Indices
for the results were as follows: 1 for clay, 2 for silt, and 3 for sand. In addition, zones 6 and 7 on
Robertson’s charts were marked as 2.5 and 0 for unclassified types.

4.1. Busan New Port Site

This site is located on the sea, and two PCPT penetrations were carried out. Soil layers
were clay and a mixture of clay, sand, and gravel from the top of seabed. Thin silt lenses
were found at the upper part of the deposit due to variations in seawater level. Laboratory
test results from the undisturbed sample revealed the clay layer as highly compressible
“CH”. Water contents ranged from 51.5% to 75.3%, liquid limits ranged from 67.8% to
101.9%, and plastic limits ranged from 27.4% to 34.8%. Piezocone test results, boring logs,
passing #200 sieve, water contents, and Atterberg limits are shown in Figures 9 and 10.
From the results, Pradhan’s method misclassified upper clay to some depth as silt, while
Zhang and Tumay’s method gave a better prediction of the narrow silt layer between clay
at GL-16–17 m in Figure 9, but failed to predict the lower clay layer in Figure 10 as silt.
Robertson’s qt − Bq chart also provided satisfactory prediction when compared to boring
logs, but had unclassified zones at the upper clay in both cases. On the other hand, the
proposed neuro-fuzzy model from this study successfully classified the interbedded silt
layer in Figure 9 and the clay layer in Figure 10. From the results, it was found that the
proposed model provided more consistent classification with boring logs than others.

Figure 9. Verification results at Busan new port site-1.
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Figure 10. Verification results at Busan new port site-2.

4.2. Yangsan Site

According to the boring log, silty sand was distributed from surface to G.L-2.4 m and
was layered by clay to G.L-11.7 m. A silt layer was interbedded in the clay layer at GL-5 m.
A piezocone test was performed up to G.L-10.0 m. USCS results from undisturbed samples
showed upper silty sand “CH” or “CL”. Water contents ranged from 38.6% to 72.7%,
liquid limits ranged from 36.0% to 68.6%, and plastic limits ranged from 17.0% to 26.9%.
The classification results from every method are shown in Figure 11. Zhang and Tumay’s
method misclassified the silt layer and interbedded silt layer as clay due to the negative
pore pressure measured at these layers. Kim et al. [20] reported this phenomenon whereby
the precision of Zhang and Tumay’s method is relatively low when negative pore pressure
is measured because it does not incorporate the pore pressure index. Pradhan’s method
predicted the upper silty sand and mid-silty layer well, but failed to classify some upper
clay right below the silty sand (circled zone) into silt. Robertson et al.’s estimation showed
an unexpected result that it gave mainly unclassified points in the Bq chart. However, the
proposed method succeeded in classifying the upper silty sand and mid-silty layer, as well
as the clay layer.

Figure 11. Verification results at Yangsan site.

4.3. Busan New Port Support Area Site

An 8 m thick intentional sand embankment above the clay layer was performed as a
preloading for the purpose of accelerating consolidation as shown in Figure 12. Piezocone
tests were performed to identify the bottom of the sand layer during the consolidation.
Embanked sand was classified as “SM” from USCS. According to the results, Zhang and
Tumay’s method and the proposed neuro-fuzzy model yielded good agreement with the
boring log. However, Robertson et al.’s classification from the Bq chart gave unclassified
points from 3 m to 7 m, as seen for the Yangsan site. Pradhan’s method also revealed low
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applicability when the pore pressure by PCPT was similar to hydrostatic pressure because
its membership functions were derived from Robertson et al.’s charts.

Figure 12. Verification results at Pusan new port support area site.

4.4. Jeonnam Dojang Port Site

This site is located on the southwestern coast of Korea on the sea. The top of the
seabed was covered by silty sand up to G.L-1.8 m and layered by clay up to the depth of
G.L-9.8 m as shown in Figure 13. A mixture of gravel and sand was distributed below clay.
A casing tube was initially driven to G.L-0.5 m, and a piezocone test was carried out up
to G.L-10 m. Soil classification results according to USCS from undisturbed samples in
the clay layer were mainly “CH” or “CL”. Water contents ranged from 29.59% to 65.27%,
liquid limits ranged from 36.1% to 76.2%, and plastic limits ranged from 20.8% to 30.8%.
Zhang and Tumay’s method misclassified top silty sand mainly as clay because it did not
consider negative pore pressure, as explained previously. Furthermore, Pradhan’s method
misclassified the upper part of “CH” or “CL” by USCS as silt. However, the neuro-fuzzy
model classified clay and silty sand except at about 1 m thickness, but this may have
occurred during the ground investigation considering the 1 m interval of SPT. The two
charts proposed by Robertson et al. [3] failed to correctly detect silty sand. Moreover, the Rf
chart and Bq chart gave different soil types in silty sand, which could confuse engineers.

Figure 13. Verification results at Jeonnam Dojang new port site.

4.5. Incheon Trade Center Site

Incheon is located on the northwestern coast of Korea, where strong tidal action
exists. The maximum tide difference is almost 9 m, and fine-grained soil is almost “ML”.
According to the boring log, fill reclaimed up to G.L-8.5 m and was layered by clayey silt
up to G.L-19 m. Sandy silt and silty sand existed below the clayey silt. A piezocone test
was performed to a depth of G.L-18.6 m through a fill into a casing tube. Soil classification

293



Appl. Sci. 2022, 12, 4023

results according to USCS from undisturbed samples in the clayey silt layer were mainly
“ML” due to tidal action, except for “CL” at around G.L-17 m to 18 m. Water contents
ranged from 28.2% to 32.8%, liquid limits ranged from 34.2% to 38.9%, and plastic limits
ranged from 21.9% to 29.5%. According to the results shown in Figure 14, Zhang and
Tumay’s method uniformly estimated all layers as silt and sand. The Bq chart proposed by
Robertson et al. [3] also classified clayey silt into silt or sand. Some misclassification was
observed when considering the classification of USCS as “ML” or partially “CL”. Pradhan’s
method estimated the mixture of clay, silt, and sand with depth and did not show any
difference in detecting the thin clay layer at GL-17 m. The suggested neuro-fuzzy model
also classified the clayey silt layer into mainly silt and succeeded in detecting the thin clay
layer at around 17 m with “CL”.

Figure 14. Verification results at Incheon trade center site.

4.6. Ulsan Southern Breakwater Site

This site is located on the southeastern coast of Korea, where the seawater depth is
approximately 30 m. Clay was distributed to G.L-17.0 m and layered by sand or gravel.
A casing tube was initially driven to G.L-3.7 m, and a piezocone test was carried out to
G.L-16.7 m. The soil classification results of clay layer according to USCS from undisturbed
samples were mainly “CH” through all depths, except for “CL” at G.L-16.0 to 16.8 m.
Water contents of “CH” ranged from 70.1% to 90.8%, liquid limits ranged from 76.7% to
96.4%, and plastic limits ranged from 31.9% to 36.4%, whereas the water content of “CL”
was about 38.1%, with a liquid limit of 41.2% and plastic limit of 21.9%. According to
the classification results shown in Figure 15, all methods correctly classified the clay layer.
However, Zhang and Tumay’s method seemed to misclassify sand/gravel into silt since it
did not appropriately reflect the variation of pore pressure, as mentioned above.

Figure 15. Verification results at Ulsan southern breakwater site.
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5. Conclusions

A new soil classification system using FCM clustering and the neuro-fuzzy tech-
nique with piezocone test results was developed, and the main findings are summarized
as follows:

(1) FCM clustering of the local database suggested that three input parameters of qt, Rf,
and Bq combined with three soil groups, i.e., clay, silt, and sand presented the highest
success rate of 74.0%, and the m value representing the partition was optimized as 4.

(2) The neuro-fuzzy model was developed on the basis of the FCM clustering results
with three input parameters qt, Rf, and Bq and three output classes, i.e., clay, silt, and
sand. The training procedure was performed with a total of 5173 data points using
various combinations of fuzzy membership functions. As a result, a maximum success
rate of 79.09% was shown when the triangular membership function for qt, Gaussian
membership function for Rf, and sigmoidal membership function for Bq were applied.

(3) Zhang and Tumay’s method revealed low applicability when the penetration pore
pressure by piezocone was negative or the same as the hydrostatic pressure since this
method does not consider the pore pressure as an input parameter. The two charts
presented by Robertson et al. sometimes failed to classify the upper reclaimed sand
layer and interbedded sand or silt layer. Since Pradhan’s method was adjusted to
best match Robertson’s diagram, both methods tended to yield essentially similar
soil classification results. However, since Pradhan’s method expressed a single soil
classification using the overlapping fuzzy membership in Robertson’s two diagrams
and limited the maximum value of the fuzzy membership to 0.8, the soil classification
result from Pradhan did not always match that of Robertson et al.

(4) The suggested neuro-fuzzy model matched well with boring logs and provided a
better agreement with the classification in Korea. In addition, it has strong advantages
in terms of revising or updating the model when the database is supplemented with
new data.
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10. Reale, C.; Gavin, K.; Librić, L.; Jurić-Kaćunić, D. Automatic classification of fine-grained soils using CPT measurements and
Artificial Neural Networks. Adv. Eng. Inform. 2018, 36, 207–215. [CrossRef]

11. Wang, H.; Wang, X.; Wellmann, J.F.; Liang, R.Y. A Bayesian unsupervised learning approach for identifying soil stratification
using cone penetration data. Can. Geotech. J. 2019, 56, 1184–1205. [CrossRef]

12. Kurup, P.U.; Griffin, E. Prediction of Soil Composition from CPT Data Using General Regression Neural Network. J. Comput. Civ.
Eng. 2006, 20, 281–289. [CrossRef]

13. Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of undrained shear strength using extreme gradient boosting and
random forest based on Bayesian optimization. Geosci. Front. 2021, 12, 469–477. [CrossRef]

14. Rauter, S.; Tschuchnigg, F. CPT Data Interpretation Employing Different Machine Learning Techniques. Geosciences 2021, 11, 265.
[CrossRef]

15. Oberhollenzer, S.; Premstaller, M.; Marte, R.; Tschuchnigg, F.; Erharter, G.H.; Marcher, T. Cone penetration test dataset Premstaller
Geotechnik. Data Brief 2021, 34, 106618. [CrossRef] [PubMed]

16. Robertson, P.K. Interpretation of cone penetration tests—A unified approach. Can. Geotech. J. 2009, 46, 1337–1355. [CrossRef]
17. Robertson, P.K. Soil Behaviour Type from the CPT: An Update. In Proceedings of the 2nd International Symposium on Cone

Penetration Testing, Huntington Beach, CA, USA, 9–11 May 2010.
18. Robertson, P. Cone penetration test (CPT)-based soil behaviour type (SBT) classification system—An update. Can. Geotech. J. 2016,

53, 1910–1927. [CrossRef]
19. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
20. Kim, C.H.; Im, J.C.; Kim, Y.S. Study on Applicability of CPT Based Soil Classification Chart. J. KSCE 2008, 28, 293–301. (In Korean)

296



Citation: Yeom, C.-U.; Kwak, K.-C. A

Design of CGK-Based Granular

Model Using Hierarchical Structure.

Appl. Sci. 2022, 12, 3154. https://

doi.org/10.3390/app12063154

Academic Editor: Vincent A. Cicirello

Received: 17 February 2022

Accepted: 18 March 2022

Published: 19 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Design of CGK-Based Granular Model Using
Hierarchical Structure

Chan-Uk Yeom 1 and Keun-Chang Kwak 2,*

1 Center for IT-Bio Convergence System Agriculture, Chonnam University, Gwangju 61186, Korea;
walt18@naver.com

2 Department of Electronics Engineering IT-Bio Convergence System, Chosun University,
Gwangju 61452, Korea

* Correspondence: kwak@chosun.ac.kr; Tel.: +82-062-230-6086

Abstract: In this paper, we propose context-based GK clustering and design a CGK-based granular
model and a hierarchical CGK-based granular model. Existing fuzzy clustering generates clusters
using Euclidean distances. However, there is a problem in that performance decreases when a cluster
is created from data with strong nonlinearity. To improve this problem, GK clustering is used. GK
clustering creates clusters using Mahalanobis distance. In this paper, we propose context-based
GK (CGK) clustering, which adds a method that considers the output space in the existing GK
clustering, to create a cluster that considers not only the input space but also the output space. there is.
Based on the proposed CGK clustering, a CGK-based granular model and a hierarchical CGK-based
granular model were designed. Since the output of the CGK-based granular model is in the form
of a context, it has the advantage of verbally expressing the prediction result, and the CGK-based
granular model with a hierarchical structure can generate high-dimensional information granules,
so meaningful information with high abstraction value granules can be created. In order to verify
the validity of the method proposed in this paper, as a result of conducting an experiment using
the concrete compressive strength database, it was confirmed that the proposed methods showed
superior performance than the existing granular models.

Keywords: granular model; incremental granular model; interval-based fuzzy c-means clustering;
coverage; specificity; performance index

1. Introduction

In In the field of artificial intelligence, an inference engine is a system component
that applies logical rules to a knowledge base to infer new information, where the first
inference engines are expert systems. Conventional expert systems comprise knowledge
bases and inference engines. A knowledge base stores information about the actual world,
and an inference engine applies logical rules to the knowledge base and new inferred
knowledge. In this process, each piece of new information in the knowledge base can
generate additional rules from the inference engine. These expert systems include fuzzy
inference systems. Fuzzy inference systems are the core units of fuzzy logic system, which
perform decision making as a basic task and employ logical gates such as “OR”, “AND”,
and “IF-THEN” rules to generate the required decision rules.

Fuzzy inference systems are broadly divided into Mamdani and Sugeno types. Mamdani-
type inference systems are created by combining a series of language control rules obtained
from experts, and the output of each rule has a fuzzy set form. Because they have an
intuitive and easily understood rule base, they are suitable in fields that employ expert
systems that are created from the expert knowledge of humans, such as medical diagnoses.
Sugeno-type inference systems are also called Takagi-Sugeno-Kang inference systems, and
they use single output membership functions, which are a form of linear function, of a
constant or an input value. Sugeno-type inference systems include a defuzzification process,
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and rather than calculating the center of a 2D region, they adopt a weighted average or
weighted sum of several data points; hence, they have the advantage of exhibiting a higher
computational efficiency than Mamdani-type inference systems. These fuzzy inference
systems are used in various forecasting fields and are actively being studied [1–9]. A
previous study [10] proposed a Fuzzy convolutional neural network (F-CNN) that combines
fuzzy inference with a CNN to predict traffic flow, which is a core part of predicting traffic
volume. Yeom [11] proposed adaptive neuro-fuzzy inference system (ANFIS), which has an
incremental structure and adopts context-based fuzzy clustering. Parsapoor [12] proposed
brain emotional learning-based fuzzy inference system (BELFIS) to predict solar activity.
Kannadasan [13] proposed an intelligent prediction model for predicting performance
indices such as surface roughness and geometric tolerance in computer numerical control
(CNC) operations, which plays an important role in machine product manufacturing.
Guo [14] proposed a model called backpropagation-based (BP) kernel function Granger
causality, which adopts symmetry geometry to embed dimensions and fuzzy inference
systems for time-series predictions; in addition, this model was utilized to examine the
causal relationships between brain regions. Hwang [15] proposed a motion cue-based fuzzy
inference system to predict the normal walking speeds of sudden pedestrian movements at
the initial walking stage when the heel is lifted.

Neural network expert systems are expert systems that mimic human intelligence by
combining artificial neural networks (ANNs) and expert systems. In conventional expert
systems, human inference methods are designed using decision trees and logical inferences,
while ANNs focus on the structure and learning capacity of the human brain and reflect
this in their knowledge expression. If these two systems are combined, the process of
deriving results can be confirmed by the expert system, while learning can be performed
by the ANN without user intervention. Accordingly, it is possible to create a system that
is capable of more effective inferences than existing individual systems. The following
studies on such neural network expert systems have been conducted [16–20]. Liu [21]
proposed recurrent self-evolving fuzzy neural network (RSEFNN), which adopts online
gradient descent learning rules to solve brainwave regression problems in brain dynamics,
to predict driving fatigue. Dumas [22] proposed prediction neural network (PNN), which
is based on fully connected neural networks and CNNs, and is used for internal image
prediction. Lin [23] proposed an embedded backpropagation neural network comprising
two hidden layers for earthquake magnitude prediction.

The aforementioned fuzzy inference systems and ANNs have different processes and
solve various prediction problems. In addition, studies are being conducted on solving
problems by combining two or more different methods, rather than using one method.
Inference systems that combine different methods are called hybrid systems, and the
granular computing (GrC) [24,25] method is adopted as a method for constructing hybrid
systems. GrC is a computing theory related to the processing of information objects, called
“information granules” (IG), that occur during the process of extracting knowledge from
data and information, as well as abstractifying the data.

In the computing performed in general-used fuzzy inference systems, ANNs, and
deep learning methods, the model output appears in a crisp form or as numbers. If the
model output is in a crisp form or a number with a clear value, the numerical error relative
to the actual output value can be calculated; however, difficulties occur when the difference
between the model and actual output is expressed linguistically. However, in GrC, the
model output is expressed in a soft form or as a fuzzy set; hence, GrC is effective at
handling and processing data and information that are uncertain, incomplete, or with
vague boundaries. In the actual world, people mainly use linguistic expressions rather than
numerical expressions, and the brain, which makes inferences in uncertain and incomplete
environments, utilizes linguistic values instead of numerical values to perform inferences
and make decisions. Accordingly, GrC can represent the process by which humans think
and make decisions. The following studies on GrC have been conducted [26–29]. Zhu [30]
proposed a novel approach that develops and analyzes a granular input space and designed
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a granular model accordingly. Truong [31] proposed fuzzy possibilistic C-means (FPCM)
clustering and a GrC method to solve anomalous value-detection problems. Zuo [32]
proposed three types of granular fuzzy regression-domain adaptative methods, to apply
GrC to transfer learning. Hu [33] proposed a method that adopts GrC to granularize fuzzy
rule-based models and assess the proposed models. Zhao [34] made long-term predictions
about energy systems in the steel industry by designing a granular model based on IGs
created via fuzzy clustering. By analyzing the aforementioned research, it has become
possible to create IGs that are generated via GrC, and to use these to design a granular
model (GM), as well as calculate soft form output and express it linguistically. In addition,
performance evaluation methods are proposed to evaluate the prediction performance of
soft form output. However, studies are required to improve the prediction performance of
granular models by creating optimal IGs, including methods for generating IGs and setting
their form and size.

Conventional fuzzy clustering creates circle-shaped clusters starting at the cluster’s
center in the input space. However, when the input space’s data exhibits geometric features,
a problem emerges in which the clustering is not properly performed. To address this
problem, Gustafuson-Kessel (GK) clustering is employed, as it can generate clusters while
considering the geometric features of the data. This study proposes context-based GK
(CGK) clustering, which considers both the input space and also the output space during
existing GK clustering to generate geometrically-shaped clusters. This study also designed
a CGK-based granular model that utilizes the proposed context-based GK clustering to
generate context-shaped IGs in the output space and geometrically-shaped IGs in the input
space. In addition, to resolve the problem of geometric increases in the numbers of rules
when large amounts of data are adopted, this study proposes a CGK-based granular model
with a hierarchical structure that combines the CKG-based granular model and the normal
prediction model into an aggregate structure, such that meaningful rules can be generated.
The remainder of this paper is organized as follows. Section 2 describes fuzzy clustering
and GK clustering, while Section 3 describes IGs, existing granular models, the proposed
context-based GK clustering, and the CGK-based granular model. Section 4 describes the
hierarchical CGK-based granular model that is combined into an aggregate structure, and
Section 5 verifies the validity of the proposed method by analyzing its performance using
prediction-related benchmarking data. Finally, Section 6 presents this paper’s conclusions
and future research plans.

2. Data Clustering

Clustering is the task of placing data sets into clusters, such that the data in the same
cluster are more mutually similar than data in other clusters. It is mainly used in data
search and analysis, and as a data analysis method, it is adopted in various fields such
as image analysis, bioinformatics, pattern recognition, and machine learning. Because
the concept of clustering cannot be precisely defined, various clustering algorithms exist.
These include connectivity based clustering, centroid based clustering, distribution based
clustering, density based clustering, and grid based clustering, while a typical clustering
method is fuzzy clustering.

2.1. Fuzzy Clustering

Fuzzy clustering is a method that was developed by Dunn and improved by Bezdek [35],
which exhibits the feature of allowing the given data to belong to two or more clusters.
In non-fuzzy clustering, the given data can only belong to exactly one cluster; hence, it
is divided into separate clusters. In fuzzy clustering, data can belong to two or more
clusters according to the membership values. For example, a banana can be yellow or
green (non-fuzzy clustering criteria, or it can be yellow and green (fuzzy clustering criteria).
Here, certain parts of the entire banana can be yellow, and they can be green. The banana
can belong to green (green = 1), and it can belong to yellow (yellow = 0.5) and green
(green = 0.5), which is not yellow (yellow = 0). The membership values can be between
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zero and one, while the sum of the membership values is 1. Membership values are
assigned to the given data. These membership values numerically indicate the extent to
which the data belongs to each cluster. If the data has a low membership value, it can be
known that it is on the edge of the cluster; conversely, if it has a high membership value, it
can be deduced that it is in the center part of the cluster.

Fuzzy clustering can be generalized by the following formulas.

Jm = ∑N
i=1 ∑c

k=1 um
kid

2(xi, vk) (1)

∑c
k=1 uki = 1, ∀i ∈ {1, 2, . . . , N} (2)

where X = {x1, x2, . . . , xN} ∈ RN×D and xi ∈ R1×D represents the data and data items,
respectively. N denotes the number of data items, and c is the number of clusters, which is
2 ≤ c ≤ N. uki ∈ R represents the membership value of the kth xi, and m ∈ Z+ is the
fuzzification coefficient for the fuzzy membership values.

The cluster center and fuzzy membership function are obtained via an iterative process
by minimizing Equation (1) according to the constraint conditions defined in Equation (2).
Therefore, the objective function is modified using Lagrange multipliers and expressed as:

Jm = ∑N
i=1

(
∑c

k=1 uki
md2(xi, vk) + λi

(
1 − ∑c

k=1 uki

))
(3)

where λi denotes the Lagrange multiplier. Therefore, the clustering problem involves
identifying the cluster center set v∗ = {vk

∗, ∀k ∈ {1, 2, . . . , c}} and the fuzzy member-
ship function set U∗ = {uki

∗, ∀k ∈ {1, 2, . . . , c}, ∀i ∈ {1, 2, . . . , N}} by minimizing
Equation (3). The minimization of cluster centers vk

∗ can be obtained via Equation (4), and
the minimization of the fuzzy membership functions can be obtained using Equation (5),
which are expressed as:

vk
∗ = ∑N

i=1 uki
mxi

∑N
i=1 uki

m
(4)

uki
∗ = 1

∑c
j=1 (

d2(xi , vk)

d2(xi , vj)
)

1
(m−1)

(5)

Equations (4) and (5) are computed repeatedly to obtain the final cluster centers and
fuzzy membership functions.

2.2. Fuzzy Clustering That Considers the Output Space

The aforementioned fuzzy clustering is a clustering that considers the features of the
data in the input space. A fuzzy clustering that considers the output space generates clusters
by considering both the features of the data in the input space and also the similarity and
features of the data in the output space. This clustering type includes context-based fuzzy
C-means (CFCM) clustering and interval-based fuzzy C-means (IFCM) clustering [36],
which differ according to how the output space is divided. Figure 1. illustrates the fuzzy
clustering that considers the output space. In Figure 1a. triangle-shaped contexts (fuzzy
sets), which are IGs, are created in the output space, while clusters that correspond to each
context are created in the input space. In Figure 1b interval-shaped IGs are created in the
output space, and clusters that correspond to each interval are created in the input space.
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(a) (b) 

Figure 1. Context-based fuzzy clustering and interval-based fuzzy clustering concept: (a) context-
based fuzzy clustering; (b) interval-based fuzzy clustering.

In normal fuzzy clustering, clusters are created using only the Euclidean distance
between the cluster centers and the data in the input space, without considering the
features of the data in the output space. However, in context-based fuzzy clustering,
triangle-shaped contexts (fuzzy sets) are created in the output space using the method
proposed by Pedrycz [37,38], while clusters are created via fuzzy clustering in each context;
hence, clusters can be created in a more sophisticated manner than in conventional fuzzy
clustering. Figure 2a presents normal fuzzy clustering, and Figure 2b shows clusters
that were created in context-based fuzzy clustering by considering the features of the
output space.

 
(a) (b) 

Figure 2. Comparison of clusters created in fuzzy clustering and context-based fuzzy clustering:
(a) presents normal fuzzy clustering; (b) context-based fuzzy clustering.

As illustrated in Figure 2, fuzzy clustering creates clusters using the distance between
the cluster centers and the data in the input space without considering the properties of
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the data in the output space. In contrast, context-based fuzzy clustering creates clusters by
considering the properties of the data in the output space; hence, it can create clusters more
efficiently than conventional fuzzy clustering.

The context of the data in the output space can be expressed as D : T → [0, 1] . D
represents all of the data in the output space. Here, it is assumed that the context for the
given data can be adopted. fk = T(dk) represents the extent to which the kth data belongs
in the context created in the output space. fk can be a value between zero and one, and
the requirements for the membership matrix are as expressed in Equation (6) owing to the
aforementioned properties.

U( f ) =
{

eqalignuik ∈ [0, 1] | ∑c
i=1 uik = fk ∀ k and 0 < ∑N

k=1 uik < N
}

(6)

uik =
fk

∑c
j=1 (

‖xk − ci‖
‖xk − cj‖ )

2
m−1

(7)

The membership matrix U updated by Equation (6) can be expressed as Equation (7).
Here, m is the fuzzification coefficient, and m = 2 is generally used. For the contexts, the
output space is uniformly divided into fuzzy set forms, while the degree of membership
fk is obtained. Usually, the output space is divided uniformly; however, it can be divided
flexibly according to a Gaussian probability distribution according to the features of the data.
The sequence in which the context-based fuzzy clustering is performed is presented below.

[Step 1] Select the number of contexts that can be expressed linguistically and the
number of clusters that can be created in each context, and then initialize the membership
matrix U with arbitrary values between zero and one. The numbers of the contexts and
clusters can be set as the same number, or different values can be set by the user.

[Step 2] Divide the output space uniformly into fuzzy set forms and create fixed-sized
contexts that can be expressed linguistically. In addition, a Gaussian probability distribution
can be used to flexibly divide the output space and create contexts of different sizes.

[Step 3] Use Equation (8) to calculate the centers of the clusters in each context.

ci =
∑N

k=1 uik
mxk

∑N
k=1 uik

m
(8)

[Step 4] Use Equations (9) and (10) to calculate the objective function. Here, the
calculated value is compared to the previous objective function value, and the above
process is repeated, provided it is greater than the threshold value that was set, or the
process ends if it is less than the threshold value.

J = ∑c
i=1 ∑N

k=1 uik
mdik

2 (9)

∣∣∣Jh − Jh−1
∣∣∣ ≤ ε (10)

where dik denotes the Euclidean distance between the kth data and ith cluster center, and h
repress nets the number of iterations.

[Step 5] Equation (7) is adopted to update the membership function U, and Step 3
is performed.

2.3. GK Clustering

Regardless of the data in the input space belonging to a cluster, the cluster is normally
determined by the distance between the data and the center of each cluster. As described in
Section 1, fuzzy clustering adopts Euclidean distance to create clusters. Euclidean distance
is primarily used when circle-shaped clusters are created, and it has the problem of being
unable to create clusters that are not circle-shaped. To resolve this problem, GK clustering
was proposed [39–41], as it can create geometrically-shaped clusters. GK clustering employs
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Mahalanobis distance, rather than Euclidean distance, to calculate the distance between
cluster centers and data. Figure 3 illustrates clusters that were created in fuzzy and GK
clustering, and Equation (11) presents the Mahalanobis distance.

dGK
2(xk, vi) = ‖ xk − vi ‖Ai

2 = (xk − vi)
T Ai(xk − vi) (11)

where dGK
2 denotes the square of the distance between the ith cluster’s center vi and the

kth data xk, while Ai is the variance matrix of the ith cluster. In GK clustering, Equation
(12) is used to calculate the variance matrix Ai in Equation (11).

Ai =
∑N

k=1 uik
m(xk − vi)(xk − vi)

T

∑N
k=1 uik

m
(12)

 
(a) (b) 

Figure 3. Comparison of clusters created with fuzzy and GK clustering: (a) fuzzy clustering;
(b) GK clustering.

The variance matrix that is calculated using Equation (12) is adopted when calculating
the distance between the cluster center and the data in Equation (13):

DGK
2 = (xk − vi)

T [ρi det(Ai)
1
N Ai

−1](xk − vi) (13)

where ρi denotes the volume of each cluster. When Ai is calculated in Equation (13), the
matrix may become zero if the number of data is insufficient; hence, the minimum value is
limited using Equation (14).

(1 − γ)Ai + γ det(Ai)
1
N I → Ai (14)

where Ai is the variance matrix that is calculated using all data, while I and γ denote the unit
matrix and weight value constant, respectively. The eigen value and eigen vector can be cal-
culated from the variance matrix. The calculated maximum eigen value is used to limit the
minimum eigen value, such that the shape of the cluster can be maintained geometrically.

3. IG Creation and Granular Model Design

3.1. Creating Rational IG

Computing and inferences in GrC are centered on IGs, which are considered funda-
mental concepts and algorithms, rather than being centered on numbers. IGs are a core
element in GrC because they play an important role in knowledge representation and
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processing [42–44]. Although IGs created using various types of clustering are relatively
limited, they can reflect the general structure of some original data. Original data com-
prising numbers cannot depict the features and connections in the data, but IGs make this
possible. Rational IG creation is focused on using the original data to create meaningful
IGs. To create rational IGs, two requirements must be satisfied: coverage and specificity.
Figure 4. Presents the coverage and specificity in IGs.

(a) (b) 

Figure 4. Concepts of coverage and specificity for creating rational IGs: (a) concept of coverage;
(b) concept of specificity.

Coverage refers to whether the target data is included in the formed IG. In other
words, it shows how much of the overall target data has accumulated within the IG’s range,
including the extent of the accumulation. The more data that accumulates in the IG, the
higher the coverage value. This can verify the validity of the IG, and the model may be
better in terms of modeling functions. incl, which is the degree of inclusion and is specified
according to the form in which the IG Yk is created. When Yk is in context form, incl has a
value close to one when yk is included in Yk = [yk

−, yk
+], and it has a value close to zero

when it is not included. In other words, coverage can be adopted to count the number that
includes the data yk in the granularized output of the granular model, while an average
value can be calculated for all data. Ideally, the coverage has a value that is close to one,
and all data is included in the granular model’s output.

Coverage =
1
N

N

∑
k=1

incl (yk, Yk) (15)

Specificity represents how specifically and semantically the IG Yk can be described. In
general, the specificity of a given IG Yk must satisfy Equation (16). In other words, the IG
must be created with as much detail as possible, and each IG must have a meaning that can
be described. When an IG is in context form, the specificity becomes higher as the interval,
i.e., the distance between the upper and lower bounds, becomes narrower. If the IG Yk is
reduced to point form, the specificity arrives at a value close to one.

if Yk ⊂ Yk
′ then speci f icity(Yk) � speci f icity

(
Yk

′), and speci f icity({y}) = 1 (16)

Speci f icity =
1
N ∑N

k=1 exp
(−∣∣yk

+ − yk
−∣∣) (17)

A continuous decreasing function of the interval length can be considered instead of
the exponential function used in Equation (17). Coverage and specificity can be adopted
to evaluate the IG’s validity and the granular model’s prediction performance. In other
words, the granular model can be evaluated by considering the coverage and specificity of
the IG, and a method that can simultaneously maximize coverage and specificity should
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be determined. These two properties have a trade-off relationship. This implies that the
higher the coverage value, the lower the specificity value. Rational IGs can be represented
by Equation (18), and this is called the PI.

The PI plays an important role in evaluating the model’s accuracy and clarity, and
various methods for evaluating model performance have been developed. General per-
formance evaluation methods include root-mean-square error (RMSE) and mean absolute
percentage error (MAPE). RMSE evaluates performance by subtracting the model’s pre-
dicted values from the actual predicted values, calculating the mean of the squares, and
squaring the obtained value. MAPE evaluates performance by subtracting the model’s
predicted value from the actual output value and dividing by the model’s predicted value.
These performance evaluation methods are mainly used when the model’s output value
is a numerical value. However, in the case of granular models comprise IGs, the model
output is not a numerical value but an IG; hence, it is difficult to evaluate the model using
general performance evaluation methods. To address this issue, studies are actively being
conducted on adopting coverage and specificity as performance evaluation methods for
granular models [45–49]. The higher the PI, the more meaningful the IG, and granular
models with excellent performance can be designed.

Performance index = coverage(ε) · speci f icity(ε) (18)

The PI value obtained from a granular model can be adopted to represent the re-
lationship between coverage and specificity as coordinates, and the changes in model
performance, which are related to changes in the PI value, can be observed. Figure 5
illustrates the trade-off relationship between coverage and specificity. If coverage ap-
proaches zero, specificity approaches one, and the shape of the IG approaches a point.
It can be observed that as the coverage increases, the size of the IG increases, but the
specificity decreases.

Figure 5. Trade-off relationship between IG coverage and specificity.

3.2. Fuzzy-Based Granular Model

Because the inference values of fuzzy rule-based inference systems used in various
real-world fields of application are numeric values, there are limitations to describing these
results linguistically. Fuzzy granular models, which are designed based on IGs that are
created using fuzzy clustering, can express and process knowledge because their output
values are IGs. Fuzzy granular models are created by granularizing a predetermined level
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of information in the data included in A. Owing to the granular properties of the data,
granularized output is created from the variables of an existing fuzzy model with numerical
input and output. This is based on the rational IG creation method described in Section 3.2.
The IGs used in the fuzzy granular model exhibit the shapes of the fuzzy sets. The IG’s
level of granularization is assumed to be ε(ε ∈ [0, 1]). The granularization level creates
the IG ai0 with a fuzzy set shape by allowing IGs of the given level ε(ε ∈ [0, 1]), which
can be described as shown below, due to ai0, ai1, ai2, . . . , aiN , which represent the data in
each rule’s output space.

G(ai0) =
[
min(ai0(1 − e), ai0(1 + e)), max(ai0(1 − e), ai0(1 + e))] = [ai0

+, ai0
−] = Ai0 (19)

Using the same method, the IGs Ai1, Ai2, . . . , AiN are created by granularizing
ai1, ai2, . . . , aiN , which represent the data in the output space. A general fuzzy granular
model divides the output space uniformly to create triangle-shaped contexts and clusters
in each context. The fuzzy granular model’s output value Y is expressed in context form,
and each fuzzy rule regarding the input xk creates the following IG output:

if xk ∈ Ωi, then Yik = fi(xk, Ai) = Ai0 ⊕ Ai1 ⊗ xk1 ⊕ Ai2 ⊗ xk2 ⊕ . . . ⊕ AiN ⊗ xkN (20)

The following method is used to calculate Yk, which is the IG output in context form
that was created based on all fuzzy rules.

Yk = ∑c
i=1 Ωi(xk) ⊕ Yk (21)

where ⊕, ⊗ represent the completed addition and multiplication operations for each IG,
respectively. Figure 6. Presents the structure of the fuzzy granular model.

Figure 6. Structure of a fuzzy-based granular model.
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3.3. CGK Clustering

CGK clustering is a clustering method that considers the output space. It creates
clusters based on the correlations between the data in the input and output spaces by
considering the output space in conventional GK clustering. It is assumed that there are
data with two features. The data above can be depicted in red and blue according to the
dependent variable. Figure 7. Presents the data with two features.

Figure 7. Data set with two features in the output space.

Figure 8a presents clusters created via normal GK clustering. In Figure 8a, it can be
observed that the features of the data in the input space were considered when creating the
clusters; however, the features of the output space were not considered. Figure 8b presents
clusters created via CGK clustering that consider the output space. As illustrated in this
figure, clusters are created by considering both the input and output spaces; hence, the
features of the data in the output space can be preserved, and more efficient clusters can
be created than in normal GK clustering. Figure 9. Illustrates the concept of CGK that
considers the output space.

 
(a) (b) 

Figure 8. Comparison of clusters created in GK and CGK clustering: (a) general GK clustering;
(b) context-based GK clustering.
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Figure 9. CGK clustering concept.

The context regarding the data in the output space can be expressed as expressed
in Equation (22). Here, D denotes the data in the output space. If it is assumed that a
context-shaped IG is adopted for the given data in the output space, fk = T(dk) represents
the degree to which the context created in the output space belongs to the kth data.

D : T → [0, 1] (22)

Fuzzy clustering adopts Euclidean distance to create clusters, while GK clustering
improves upon this by creating clusters with Mahalanobis distance using Equation (11).

Where Ai is a matrix with det(Ai) = ρi, which is a fixed constant for each i. Because
fuzzy clustering uses Euclidean distance, it exhibits excellent performance for only prob-
lems that create circle-shaped clusters. To circumvent this disadvantage, GK clustering
adopts dGK

2(xk, vi) to extend the Euclidean distance of fuzzy clustering, such that clusters
with various geometric shapes can be created, and it allows the distance standard to adapt
to local areas. The objective functions are expressed in Equations (23)–(25).

Jm
GK(μ, v) = ∑n

k=1 ∑c
i=1 μik

mdGK
2(xk, vi) (23)

vi =
∑n

k=1 μik
mxk

∑n
k=1 μik

m (24)

μik =
‖ xk − vi ‖Ai

−2
(m−1)

∑c
j=1 ‖ xk − vj ‖Aj

−2
(m−1)

(25)

Equations (23)–(25) are repeated in each context generated in the output space to create
geometrically-shaped clusters. Below is the sequence in which context-based GK clustering
is performed.

[Step 1] The number of contexts that can be expressed linguistically and the number
of clusters that are created in each context are selected, as well as E. Here, E sets the degree
of the geometric shape, and a value greater than zero must be selected. The membership
function U is initialized with values between zero and one. The numbers of contexts and
clusters can be set to be the same, or they can be set differently.
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[Step 2] Context-shaped IGs with fixed sizes can be created by uniformly dividing
the output space, while context-shaped IGs with different sizes can be created by via a
Gaussian probability distribution.

[Step 3] Equation (24) is adopted to calculate the centers of the clusters in the contexts
in the output space and a membership matrix.

[Step 4] Equations (23) and (26) are adopted to calculate an objective function, and
the aforementioned process is repeated if the calculated value is greater than the previous
objective-function value. Conversely, if the calculated value is less than the previous
objective-function value, the above process ends.

‖ μt − μt−1 ‖ ≤ ε (26)

3.4. CGK-Based Granular Model Design

GK granular models are designed to adopt CGK clustering that considers the output
space, to create context-shaped IGs in the output space and create geometrically-shaped
clusters in each context. Figure 10. presents the structure of a GK granular model in which
three contexts are created in the output space and three clusters are created in each context.
As illustrated in the figure, there are conditional and conclusion variables. The conclusion
variables represent the context-shaped IGs that are created in the output space, while the
conditional variables represent the centers of the clusters that are created in each context,
i.e., IGs that are created in the input space. As mentioned above, a uniform creation method
and a flexible creation method can be adopted to create the contexts in the output space.
The GK granular model’s final output value Y is calculated using Equation (27).

Y = ∑⊕ Wt ⊗ zt (27)

Figure 10. CGK-based granular model structure.
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Here, the addition and multiplication symbols ⊕, ⊗ represent the completed addition
and multiplication operations for the IGs, respectively. Fuzzy sets are created during the
process of handling the GK granular model conditions. At this point, the clusters created
via CGK clustering can be represented by the GK granular model’s hidden layer. The
area between the hidden and output layers is expressed as a context that can be described
linguistically. The sum, which is the GK granular model’s final output, can be expressed
using all contexts as expressed in Equation (28):

Y = (z11 ⊗ A1 ⊕ z12 ⊗ A1 ⊕ . . . ⊕ z1n1 ⊗ A1) ⊕ (z21 ⊗ A2 ⊕ z22 ⊗ A2 ⊕ . . . ⊕ z2n2 ⊗ A2)
⊕ . . . (zc1 ⊗ Ac ⊕ zc2 ⊗ Ac ⊕ . . . ⊕ zcnc ⊗ Ac)

(28)

The GK granular model’s final output is expressed as a triangle-shaped context, and it
can be expressed as a fuzzy set:

Yi =
(
yi

−, yi, yi
+
)

(29)

where yi
−, yi, and yi

+ denote the GK granular model’s lower bound, model, and upper
bound values, respectively, and they refer to each of the triangle-shaped context’s points.
The lower bound, model, and upper bound values can be expressed by Equations (30)–(32):

yi
− =

(
z11a1 + z12a1

− + . . . + z1n1a1
−) + . . .

(
zc1ac

− + zc2ac
− + . . . + zcncac

−) (30)

yi = (z11a1 + z12a1 + . . . + z1n1a1) + . . . (zc1ac + zc2ac + . . . + zcncac) (31)

yi
+ =

(
z11a1 + z12a1

+ + . . . + z1n1a1
+
)
+ . . .

(
zc1ac

+ + zc2ac
+ + . . . + zcncac

+
)

(32)

When CGK clustering is performed, the membership matrix U can be expressed as val-
ues between zero and 1, while the membership matrix’s requirements can be expressed as:

U( f ) =
{

eqalignuik ∈ [0, 1] | ∑c
i=1 uik = fk ∀ k and 0 < ∑N

k=1 uik < N
}

(33)

Here, the contexts are created by uniformly or flexibly dividing the output space into
fuzzy set shapes. The GK granular model’s structure is as follows. In the input layer, data
is received and enters the GK granular model. The activation layer is the cluster activation
step in which clusters that correspond to the contexts that were created in the output space
are created in the input space. The conditional layer performs conditional clustering in
each context. The activation and conditional layers are connected, and the data information
is adopted in GK clustering when a context is provided. The GK granular model is focused
on the activation and conditional layers. The contexts are connected to the GK clustering
in the conditional layer, and fuzzy sets are created by considering the features of the data
in the input space. A specified number of clusters is created in each context, and the total
number of nodes in the output layer is the same as the number of contexts. The final output
values that are added up in the output layer are represented as a triangle-shaped context.

4. Granular Model Design with a Hierarchical Structure

4.1. CGK-Based Granular Model Design with a Hierarchical Structure

As the number of input variables for a fuzzy system and granular model increase, the
number of rules increase geometrically. Large rule bases have the problem of reducing
the computation efficiency of fuzzy systems and granular models. In addition, they make
it difficult to understand the action of granular models, and complicate the adjustment
of rules and membership functions. The possibility of generalizing fuzzy systems and
granular models with large rule bases is minimized because various prediction-related
fields of application provide limited amounts of data. To resolve these problems, rather
than using a single fuzzy system and a single granular model, it is possible to design
a granular model with a hierarchical structure in which these are mutually connected.
Because the granular model is arranged in a hierarchical tree structure, the tree is called
the hierarchical structure. The output of the low-level granular models in the hierarchical
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structure is adopted as the input for the high-level granular models. Granular models with
hierarchical structures are computationally more efficient than single granular models with
the same number of inputs, and are also designed with a simple structure [50–52].

Hierarchical structures that can be used in various prediction-related fields of applica-
tion include incremental, aggregated, and cascaded structures. Figure 11. Presents each
type of hierarchical structure. In incremental structures, input variables are combined
in several stages, while output values are calculated at several levels. As illustrated in
Figure 11, the granular model GMi

n is built with a 3-stage structure. Here, i is the nth
level’s granular model. In an incremental granular model, when i is one, it means that there
is one fuzzy inference system on each level. The nth level’s ith granular model’s jth input is
called xij

n, while the nth level’s ith granular model’s kth output is called yik
n. When the

input variables on each of the levels of an incremental granular model are selected, their
ranks are determined according to their degrees of contribution to the final output value.
The input variable with the highest degree of contribution is usually used on the lowest
level; conversely, the input variable with the lowest degree of contribution is adopted on
the highest level. In other words, low-rank input values depend on high-rank input values.

Figure 11. Granular model with a hierarchical structure.

In an aggregate structure, the original data’s input variables are used on the lowest
level, and the output of the low-level granular model that receives each input variable
as the input is inputted in the high-level granular models, and the obtained results are
combined. For example, the granular model GMin

n is built with two stages as, illustrated
in Figure 11. in is the index of the granular model on the nth level. The input variables
in aggregated granular models are grouped for performing specific decision making. For
example, an autonomous robot’s search task combines two tasks: searching while avoiding
collisions with obstacles, and arriving at the goal. To perform the search task, the granular
model adopts input variables related to obstacles. To perform the task of arriving at the
goal, input variables related to the robot’s current position and movement direction are
employed. Aggregated granular models can be modified to design parallel aggregated
granular models that directly add up the outputs of low-level granular models to calculate
their final output.

A cascaded structure is a structure that combines the aforementioned incremental
structure with the hierarchical structure, and it is suitable for systems that include both
correlated input variables and non-correlated input variables. It has a form in which the
correlated input variables are grouped into an aggregated structure and the non-correlated
input variables are added as an incremental structure.
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4.2. CGK-Based Granular Model Design with an Aggregated Structure

This paper presents a design for a granular model that adopts an aggregated structure.
When an aggregated structure is built, rather than using low-level and high-level granular
models, the low level comprises LR (LR) models, neural network models, and radial basis
function networks, and each prediction model’s output is adopts as the input for the
high-level fuzzy granular model to calculate the final output.

An LR model [53] models the linear correlations between input and output variables.
Figure 12 shows the concept of linear regression. Simple linear regression models are based
on explanatory variables, while multiple linear regression models are based on two or more
explanatory variables. Linear regression models estimate unknown parameters in the data.
A linear regression model can be expressed as:

yi = β1xi1 + . . . + βpxip + ei = xi
T β + ei, i = 1, 2, . . . , n (34)

where βi and p denote each independent variable’s coefficient and the number of param-
eters estimated by the linear regression model, respectively. T indicates transposition,
while xi

T β represents the inner product of xi and β. Furthermore, ei is the error term,
and it represents the error variables. This refers to the error between the dependent and
independent variables.

Figure 12. Linear regression model concept.

Neural networks [54] are algorithms that are created with inspiration from biologi-
cal neural networks in cognitive science and machine learning. These models can solve
problems by altering the strength of the connections between synapses via the learning per-
formed by the nodes that constitute the neural network by combining synapses. Figure 13.
Presents the structure of a simple neural network. A simple neural network consists of an
input layer, hidden layer, and output layer. The input layer inputs the data’s input variables
into the neural network, and the number of input variables must equal the number of
input layer nodes. Usually, no calculation is performed in the input layer, and the layer
simply performs the role of passing the values on. The hidden layer is between the input
and output layers. If there are two or more hidden layers, it is called a multi-layer neural
network. The output layer calculates the neural network’s output. To achieve this, it adopts
an activation function that is suitable for the problem to be solved.
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Figure 13. Neural network structure.

A radial basis function network [55,56] is a neural network that adopts a radial basis
function, instead of a sigmoid function, as the activation function in a conventional neural
network structure. Figure 14. Presents the structure of a radial basis function network.
A radial basis function network has a simple structure because there is only one hidden
layer and the form of the output is linear; therefore, weight value calculations can be
performed efficiently.

Figure 14. Radial basis function network structure.

The outputs from a linear regression model, neural network, and radial basis function
network are combined and adopted as the input of a high-level fuzzy granular model.
The high-level fuzzy granular model determines the number of contexts created in the
output space and the number of clusters created in the input spaces, and then creates the
IGs. Accordingly, the final output of the hierarchical structure is calculated. Existing fuzzy
granular models are limited in creating meaningful IGs in the input and output spaces
when processing large-scale data, and they have the problem of long computation times.
In contrast, the fuzzy granular model with a hierarchical structure proposed in this study
has the advantages of being able to create meaningful IGs from large-scale data and reduce
processing times by taking the data created by combining the output from the low-level
linear regression model, neural network, and radial basis function network, as well as
adopting it as the input of the high-level fuzzy granular model. Here, if the clustering used
by the granular model is context-based fuzzy clustering, the model is a fuzzy granular
model with a hierarchical structure, and if the clustering is context-based GK clustering,
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the model is a GK granular model with a hierarchical structure. Figure 15. Presents the
structure of a granular model with a hierarchical structure.

Figure 15. Structure of a CGK granular model with an aggregated structure.

5. Experiment and Results Analysis

To examine the validity of the CGK-based Granular Model (CGK-GM), which is the
method proposed in this study, as well as the CGK granular model with an aggregated
structure (AGM), the experiments were performed through a concrete compressive strength
database [57] which are benchmarking databases used in the field of forecasting. For
convenience in the experiments and the results analysis, the two proposed granular models
are labeled CGK-GM, AGM. The databases used in the experiments are presented as
follows. The concrete compressive strength database was collected by Tsinghua University
in Taiwan, and it comprises 1030 instances and 9 variables. The input variables include the
cement, fly ash, blast furnace slag, water, superplasticizer, coarse aggregate, fine aggregate,
and time. The output variable is the concrete’s compressive strength.

Experimental Method and Results

In this study, the prediction performance of the granular model was evaluated by the
Performance Index (PI) method, which is a performance evaluation method that is suitable
for IGs and granular models, rather than the generally used evaluation methods. As
expressed in Equation (18). The experiment method is presented as follows. Each database
was divided into 50% learning data and 50% validation data, normalized to values between
zero and one and then used in the experiments. The numbers of contexts (P) and clusters
(C) in conventional GM, the proposed CGK-GM, and AGM were increased from 2 to 6 in
increments of 1 during the experiments, while the fuzzification coefficient was fixed at 2.
In addition, the experiments were performed using the uniform and flexible method of
creating contexts.

The following shows the results of the concrete compressive strength prediction
experiment. Table 1 shows the prediction performance of the existing GM that created the
context uniformly, and Table 2 shows the prediction performance of the GM that created
the context flexibly. Figure 16 shows the output value and actual output value of the
existing GM, and Figure 17 shows the performance index value of the existing GM for the
verification data. In Figure 16, the x-axis represents the number of verification data for the
concrete compressive strength, and the y-axis represents the concrete compressive strength
value. The black solid line is the actual concrete compressive strength value, and the red
dotted line shows the output value of the existing GM. As shown in the figure, it can be
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confirmed that the GM output value predicts a large change in the actual output value, but
does not predict a small change. In Figure 17, the x-axis represents the number of clusters
created in the input space, and the y-axis represents the number of contexts created in the
output space. The z-axis shows the performance index values for the verification data. As
shown in the figure, it can be seen that when the number of contexts is 6 and the number of
clusters is 6 when the contexts are created equally, the performance index value is 0.4276,
which is the best.

Table 1. Performance index of GM that created context evenly.

P C 2 3 4 5 6

2 0 0 0 0 0
3 0 0 0 0 0
4 0.3165 0.3175 0.3191 0.3184 0.3191
5 0.4039 0.4184 0.4223 0.4175 0.4204
6 0.4031 0.4136 0.4183 0.4159 0.4276

Table 2. Performance index of GM that created context flexibly.

P C 2 3 4 5 6

2 0 0 0 0 0
3 0.0097 0.0093 0.0097 0.0093 0.0090
4 0.2931 0.2947 0.2953 0.2945 0.2948
5 0.3897 0.3962 0.3962 0.3946 0.3960
6 0.4022 0.4120 0.4183 0.4212 0.4230

Figure 16. Comparison of the output value of the existing GM with the actual output value (context
is created equally, the number of contexts = 6, the number of clusters = 6).
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Figure 17. GM’s performance index for validation data (context equally generated, number of
contexts = 6, number of clusters = 6).

Table 3 lists the prediction performance of the CGK-GM in which the contexts are
uniformly generated, and Table 4 lists the prediction performance of the CGK-GM in which
the contexts are flexibly generated. Figure 18 shows the output and actual output values of
CGK-GM, and Figure 19 shows the predictive performance of CGK-GM using performance
indicators. As shown in Figure 18, it can be seen that the CGK-GM output value predicts
only a large change in the actual output value, but predicts the actual output value more
similarly than the conventional GM output value. Figure 19. Shows the performance index
values of CGK-GM for the verification data. As shown in the figure, when the number
of contexts is 6 and the number of clusters is 4 when the contexts are equally created, the
performance index value is 0.4700, which is the best.

Table 3. Performance index of CGK-GM that created context evenly.

P C 2 3 4 5 6

2 0 0 0 0 0
3 0.0204 0.0204 0.0204 0.0205 0.0206
4 0.3328 0.3315 0.3308 0.3295 0.3315
5 0.4409 0.4379 0.4350 0.4350 0.4300
6 0.4618 0.4629 0.4700 0.4618 0.4606

Table 4. Performance index of CGK-GM that created context flexibly.

P C 2 3 4 5 6

2 0 0 0 0 0
3 0.0295 0.0241 0.0282 0.0259 0.0233
4 0.3060 0.3070 0.3084 0.3070 0.3052
5 0.4182 0.4254 0.4183 0.4178 0.4162
6 0.4662 0.4640 0.4569 0.4466 0.4449
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Figure 18. Comparison of the output value of the existing CGK-GM with the actual output value
(context is created equally, the number of contexts = 6, the number of clusters = 4).

Figure 19. CGK-GM’s performance index for validation data (context equally generated, number of
contexts = 6, number of clusters = 4).
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Table 5 lists the prediction performance of the AGM in which the context is equally
generated, and Table 6 lists the prediction performance of the AGM in which the context
is flexibly generated. Figure 20 shows the output value and actual output value of AGM,
and Figure 21 shows the predictive performance of AGM using performance indicators. As
shown in Figure 20 it can be confirmed that the output value of AGM similarly predicts the
actual output value with strong nonlinear characteristics. Figure 21 shows the performance
index values of CGK-GM for the verification data. As shown in the figure, when the number
of contexts is 6 and the number of clusters is 4 when the contexts are created equally, the
performance index value is 0.5208, which is the best.

Table 5. Performance index of AGM that created context evenly.

P C 2 3 4 5 6

2 0 0 0 0 0
3 0.0201 0.0204 0.0203 0.0202 0.0203
4 0.3194 0.3221 0.3302 0.3315 0.3295
5 0.4548 0.4587 0.4548 0.4488 0.4637
6 0.5125 0.5149 0.5208 0.5184 0.5196

Table 6. Performance index of AGM that created context flexibly.

P C 2 3 4 5 6

2 0 0 0 0 0
3 0.0481 0.0437 0.0446 0.0391 0.0451
4 0.3071 0.3023 0.3136 0.3187 0.3129
5 0.4344 0.4348 0.4380 0.4471 0.4418
6 0.4884 0.4981 0.4921 0.5074 0.5028

Figure 20. Comparison of the output value of the existing AGM with the actual output value (context
is created equally, the number of contexts = 6, the number of clusters = 6).
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Figure 21. AGM’s performance index for validation data (context equally generated, number of
contexts = 6, number of clusters = 6).

Table 7 shows the experimental results of concrete compressive strength prediction.
As shown in the table, it can be seen that the existing GM creates the contexts equally and
the performance index value for the verification data is 0.4276 when the context is 6 and
the cluster is 6. In this paper, it was confirmed that the proposed methods, CGK-GM and
AGM, show better prediction performance than the conventional GM when the contexts are
created equally. As an additional experiment, a house price prediction experiment using the
Boston house price database [58] was performed. Table 8 shows the experimental results
of Boston house price prediction. As a result of the experiment, the existing GM created
the context equally in the output space, and when there were 6 contexts and 4 clusters,
a value of 0.5431 was obtained. It was confirmed that the proposed method, CGK-GM,
generates contexts evenly and shows better performance at 0.5502 when there are 6 contexts
and 5 clusters. It can be seen that AGM flexibly creates a context in the output space and
shows better prediction performance than the previous model at 0.5870 when there are
3 contexts and 6 clusters. As a result of conducting an experiment using two databases,
it was confirmed that the shape of the context created in the output space affects the
performance according to the characteristics of the data.

Table 7. Experimental Results of Predicting Concrete Compressive Strength.

Model Types IG Type Num. of Contexts Num. of Clusters Training PI Testing PI

GM Uniform 6 6 0.4311 0.4276

CGK-GM Uniform 6 4 0.4743 0.4700

AGM Uniform 6 4 0.5287 0.5208
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Table 8. Experimental Results of Predicting Boston Home Price.

Model Types IG Type Num. of Contexts Num. of Clusters Training PI Testing PI

GM Uniform 6 4 0.5410 0.5431

CGK-GM Uniform 6 5 0.5476 0.5502

AGM Flexible 6 3 0.5842 0.5870

6. Conclusions

In this paper, we proposed a CGK-based particle model using context-based GK
clustering and a CGK-based particle model with a hierarchical structure. Conventional
fuzzy clustering generates clusters by calculating the distance between the center of the
cluster and each data using the Euclidean distance. However, there is a problem in that
the performance decreases when the data has geometric characteristics. To improve this
problem, GK clustering is used. GK clustering uses Mahalanobis distance to calculate the
distance between the center of the cluster and each data to generate a geometrical cluster.
This paper proposes context-based GK clustering that considers the output space in the
existing GK clustering and creates a cluster that considers not only the input space but also
the output space. Using the proposed CGK clustering, we designed a CGK-based particle
model (CGK-GM) and a CGK-based particle model with aggregated structure (AGM). The
advantages of the proposed CGK-based particle model can be summarized as follows.

First, unlike the existing new network, it is possible to automatically generate an
explanatory meaningful fuzzy IF-THEN rule that can be expressed verbally by generating
information particles in the input space and output space from numerical input and output
data. Second, unlike the existing fuzzy clustering, it is effective to process numerical
input/output databases with geometric features because it is possible to create a geometri-
cal cluster. Third, meaningful information particles with high abstraction values can be
generated by combining the general prediction models, such as linear regression model,
neural network, and radiative basis function neural network, with the CGK-based particle
model proposed in this paper.

To verify the feasibility of the proposed method, an experiment was conducted using
the concrete compressive strength data, a benchmarking database. To evaluate the per-
formance of each particle model, we used a performance index using the scalability and
specificity that we consider when generating rational information particles. As a result of
the experiment, it was confirmed that the proposed methods were superior to the existing
particle models.

In the future, based on the rational information particle generation principle, we plan
to conduct research on generating various types of information particles and optimally
allocating information particles created in the input space and output space.
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Abstract: This study proposes a method for assistant environments to integrate 3D bridge model
information and engineering document fragments. The engineering document content varies depend-
ing on the process. Therefore, we accept a loose coupling concept to support the independence of
each information set instead of using a specific data model for effective integration. The engineering
document is translated into an Extensible Markup Language (XML)-based structured format based
on the explicit and apparent semantic structure of the document. An extended industry foundation
classes (IFC) schema is proposed to manage the bridge information model, as well as document
fragments. An information document (iMapDoc) is proposed to manage interim data to connect a
3D digital model, an IFC model, and engineering document fragments. Document fragments on
a specific component in the 3D bridge model are retrieved to validate the developed integrated
assistant module.

Keywords: 3D bridge model; IFC-based bridge model; engineering document; document fragment;
integrated operation

1. Introduction

A certain level of knowledge is required to understand and use construction infor-
mation presented in the form of engineering documents, such as structural calculation
documents. Therefore, an environment that can provide information regarding various
types, such as documents or 3D digital models, depending on the intended purpose must
be established; this is because completing a construction project is achieved through the col-
laboration of participants with various knowledge backgrounds. Tatum [1] emphasized the
role of a three-dimensional (3D) model-based environment in promoting efficiency in the
communication of all architect, engineering, and construction (AEC) project participants,
and we agree with his opinion. Building information modeling (BIM) is a specialized appli-
cation field of 3D model-based integration from an information point of view; furthermore,
it is expected to be one of the most important applications for the integrated operation of
BIM and document-type information in the AEC field. Data in BIM and documents must
be managed, as well as linked or aligned, appropriately to achieve an effective integration
of BIM and engineering documents in a system or environment.

The information of model objects is managed internally by the tool itself in the case of
closed BIM, which generates a model in a proprietary format using BIM authoring tools.
Access to model data is possible within the software or within an application programming
interface (API) scope. End-users in the practical field often base their preference on closed
BIM from the perspective of information management because model visualization and
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object generation/editing are performed within one platform [2]. However, this method
may cause reliability issues, owing to restriction to full data access, platform dependency,
and non-guaranteed transparency of internal processes [3]. In open BIM represented by
industry foundation classes (IFC), access to all model object information and modification
is enabled [4] according to the standard data access interface (SDAI) standardized by the
International Organization for Standardization (ISO) [5]. This method, however, requires
advanced programming knowledge to control the IFC physical file (IPF) directly for modi-
fying geometries, and there are instability issues in the process of importing the IPF from
the BIM tools.

No standardized method is available for data access, unlike in BIM, because the
content included in the construction engineering document is in a denormalized form;
hence, various relevant studies are being conducted. Marking-up on contents can be
interpreted by a machine, although semi-automatic or manual preprocessing is required
for generating mark-up [6]. BIM-based automated compliance checking (ACC), the core
task of which is to identify the semantic meaning of codes or regulations [3], proceeds
in a similar manner to that of BIM construction document connection. To identify the
semantic meaning from documents, specific rules were assigned to the plain documents
to extract the content [7,8], or an ontology model was used [9–11]. Recently, research
that extracts meaning from regulations through natural language processing or machine
learning has been actively conducted [12–14]. These studies focus on the “latent semantic
structure” categorized by Wang et al. [15]. The connection between BIM and regulation
focuses on mapping the attributes extracted from each model (BIM and document), rather
than document fragments or elements from the ACC perspective [16–18]. This results
in relatively high costs for extracting the required information, as well as inefficiency if
the documents are used as non-geometric reference information instead of a regulatory
review. If engineering documents are used as references, then the approach is effective
when the “explicit or apparent semantic structure” is used to reconstruct construction
documents [19–21].

Choi et al. [22] has performed BIM-document integration by adding the necessary
rules to the IFC entities or properties. Opitz et al. [23] linked document contents stored
in a repository with an IFC model via separate link elements. As summarized in Table 1,
however, previous research mainly focuses on the perspective of document information
extraction, and so do not consider the information connection considering the IFC schema
or do not pay much attention to the relationship with the 3D object.

Herein, we studied methods that can link engineering documents as reference infor-
mation with the bridge information model, and subsequently developed an integrated
open-assistant environment. Furthermore, we developed a structuralizing method using
the explicit and apparent semantic structure of unstructured plain document contents by
improving the work of Kim et al. [20]. We adopted the extended IFC schema proposed by
Park et al. [24] for bridge information modeling and described how to manage document
information based on IFC. An Autodesk Revit-based add-in module was developed to
generate and manage a bridge information model using the adopted IFC schema. An in-
terim mapping document (iMapDoc) generated during the process can serve as an excellent
bridge for a seamless interface between the closed and open BIM, as well as providing
relevant document fragments for each model component, even when the 3D model objects
are modified.
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Table 1. Overview of related research.

Previous Study
Extraction of 3D
Model Info.

Extraction of
Doc. Info.

Integration, Mapping
Method

Limitation

Hjelseth and
Nisbet [6] X RASE 1

methodology
Not proposed

Integration method between
3D model and doc. Info. was
not proposed.

Zhong et al. [9] X CQIEOntology 2

(Manual)
Not proposed

Integration method between
3D model and doc. Info. was
not proposed.

Choi et al. [22] IFC X IFC user-defined property
sets (PSETs)

Regulation codes must be mapped
into IFC PSETs manually.

Opitz et al. [23] IFC schema X SQL and BIMfit Model
Query

The document content should
already be stored in DB in a
fragile state.

Beach et al. [7] IFC Extended RASE
(RASE + XML tag)

Experts performed the
mapping between the code
fragments and IFC entities.

Mapping was performed
manually.

Zhou and
El-Gohary [10] IFC Rule-based OBIE 3

algorithm
IFC–SIE 4–logic facts
transformation

OBIE algorithm highly depends on
specific knowledge domain
(building energy conservation
codes).

Sydora and
Stroulia [8] IFC Rule Language

(manual)
IFC-based automatic
mapping

The information should be
organized to interpret into rule
language manually.

1 RASE: requirement, applicability, selection, and exceptions. 2 CQIEOntology: quality inspection and evaluation
ontology. 3 OBIE: ontology-based information extraction. 4 SIE: semantic information element.

2. Document Analysis and Translation to Structured Format

2.1. Translation Process from Unstructured Engineering Document to XML Document

An engineering document saved as a plain text file is used as an input file to eliminate
errors that may occur when recognizing letters from visualized documents. Figure 1
illustrates the entire process of generating a structured Extensible Markup Language
(XML) document from a text document referred to by Kim et al. [20]. As depicted in
Figure 1, the input engineering document is translated into an XML document through
three main steps, according to the subtitle structure. The first step in performing translation
to the structured XML document is to store each sentence of the contents sequentially
by classifying strings for the types of heading symbols, headings, subtitles, content, and
references into a temporary table based on the engineering document model. The types
of heading symbols are used to identify the hierarchy of the contents. The temporary
table is rearranged after identifying the sentence structure using the existing data stored in
the temporary table. The hierarchical information of the contents is identified using the
rearranged data connected to the types of heading symbols and the tree structure of the
document. Finally, the XML file is generated using the information saved in the temporary
table and hierarchical information.

2.2. Content Analysis of Engineering Documents

We defined several notations to describe the content of the engineering documents
efficiently, as follows:

1. The string S = s1, s2, · · · , sn represents a set of characters with a finite sequence; here,
sk ∈ Ψ, 1 ≤ k ≤ n, and Ψ is the set of all the characters, including space, in a given
document;

2. In A ::= B, the symbol ‘::=’ implies that A can be expressed as B;
3. The symbol ‘|’ represents ’or’.
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The text information comprising an engineering document can be separated using
finite string sets with sequences; the string set Si of the ith row can be expressed as
Equation (1), referring to Kim et al. [20].

Si ::= Hi|Ci|HiCi|HiRi|CiRi|HiCiRi (1)

where Hi is a string set for the subtitle, Hi = s1, s2, · · · , sl ; Ci is a string set for the document
content, Ci = sl+1, sl+2, · · · , sm, Ri(= sm+1, sm+2, · · · , sn) represents the string set for
reference, and 0 ≤ l ≤ m ≤ n.

Figure 2 depicts the content analysis algorithm for extracting the document structure
based on Equation (1). More definitions and processes are available in the previous research
by Kim et al. [20].

Figure 1. Document translation process for text information.

Figure 2. Algorithm for content analysis to extract document structure.

326



Appl. Sci. 2022, 12, 2510

2.3. Identification of Bullet-Form Text Strings

To identify the syntax’s meaning, which comprises the text string of the engineering
documents, the temporary table constructed through the component extraction algorithm
of the document is used, as described in Section 2.2. TSi, the string set of a random ith row,
can be expressed as shown in Equation (2).

TSi =
{

HSi
ID, hsi, hci, Ci, Ri

}
(2)

where HSi
ID is the unique group number including the heading hsi; hci is the string for

the title except the heading symbol; and Ci and Ri are text strings for the content and
reference, respectively, as defined in Equation (1). We regarded the ith row to i + nth row
of the temporary table contents, when they satisfy all conditional expressions shown in
Equation (3a), as the bullet-form text strings. Here, n = 1, 2, 3, · · · .

HSi
ID = HSi+n

ID (3a)

hsi+α ∈ BSd (α = 0, 1, 2, · · · ≤ n) (3b)

Ci = ∅ ∧ Ci+n = ∅ (3c)

In Equation (3b), BSd is the set of heading symbol groups with the depth d, where d is a
natural number exceeding 1, as defined by users. In Equation (3c), ∅ means the set with no
elements and ∧ logical conjunction or meeting in a lattice. The identified bullet-form text
strings according to Equation (3a) are assigned to the i − 1th document content (C) using
Equation (4); subsequently, the contents in the temporary table are rearranged.

Ci−1
new = Ci−1

old +
n

∑
j=1

(
nl + hsj + hcj

)
(4)

where Ci−1
new is the text string for the newly updated i − 1th document content, Ci−1

old is the
string text for the i − 1th document content before rearranging the content, and nl is the
character that represents a new line.

2.4. Identification of Hierarchical Structure of Subtitles

The problem of translating unstructured document contents into a tree-shaped hier-
archical structure can be described by estimating the depth of the headings of the corre-
sponding contents. The hierarchical information of the headings is identified by comparing
the number of heading symbol groups. We used the results from a previous study that
provided a generalized solution to this problem [20]. Using the algorithm described above,
the unstructured document content was regenerated into a structured document format
(Figure 3) using the developed translator, as shown in Figure 4. The tags of the XML
element indicate the content items describing the function of the sentence, and the heading
symbols identified for hierarchical classification are expressed as the header attributes of the
element. If the element should refer to other documents or codes, the references appear in
the reference attribute of the element. The text data are expressed as parsed character data
(PCDATA) of XML. The core functions of the translator shown in Figure 3 are combined
into the integrated module to manage the bridge and document model, which will be
explained later.
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Figure 3. Mapping relationship between a plain and XML document.

Figure 4. Module developed to translate plain document to XML document.
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2.5. Performance Evaluation of Document Translation Module

We used precision and recall, which are widely used in the information retrieval
field for a performance evaluation of the component extraction algorithm of a document.
Precision and recall use the number of true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) values; TP means that the extracted title sentence is correct,
TN means that the extracted content sentence is correctly recognized, and FP means that
the algorithm misrecognizes a sentence as a title. FN means that the title sentence is not
recognized as the title sentence. The equations used to measure the precision and recall are
as follows.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

The hierarchies recognized by the proposed algorithm in this study are relative classi-
fication among heading symbols; the recognized results of the hierarchical classification of
the preceding items affect the following items. Therefore, the module performance of this
part was checked following these equations:

GAH =
CG

TP
(7)

PAH =
CP

TP
(8)

where GAH means ‘generalized accuracy for hierarchy labeler’ and PAH means ‘precise
accuracy for hierarchy labeler’. CG is the number of results from which relative hierarchical
classification was performed correctly among TPs, and CP is the number of results from
which absolute hierarchical classification was performed correctly among TPs. Therefore,
GAH and PAH represent ratio values corresponding to CG and CP, respectively.

The proposed algorithm performance, including the content extracting and hierarchi-
cal classification processes, was evaluated as the following equations.

GAA =
CG

TP + FN
(9)

PAA =
CP

TP + FN
(10)

where GAA means ‘generalized accuracy for application module’ and PAA means ‘precise
accuracy for application module’.

Figure 5 shows the results of applying Equations (5)–(10) to 20 bridge engineering
documents with an average number of sentences of 4814 and the number of title sentences
to be extracted as 433. The lowest and mean values of PAA are 97.36% and 99.47%,
respectively, so it can be judged that the performance as a content item extraction algorithm
for BIM-based integration is sufficient.
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Figure 5. Performance evaluations based on precision, recall, GAH, PAH, GAA, and PAA.

3. IFC-Based Bridge Information Modeling with Document Metadata

3.1. IFC Schema for Bridge Model and Document Information

The most recent official IFC released by buildingSMART International (bSI) is version
IFC4.0.2.1 [25]. IFC4.0.2.1 has opened up the possibility of future extensions for civil infras-
tructures (IfcCivilElement), although they will be removed in a future version. The unofficial
version currently being developed (IFC4.3RC4) includes alignments (IfcAlignment), roads
(IfcRoad), railways (IfcRailway), ports (IfcMarineFacility), and bridges (IfcBridge). Regarding
the bridge structure, IFC4.3RC3 includes the IfcBridge entity in order to represent the spatial
information of the bridge as a subtype of IfcFacility. IfcBridge has an enumeration type to
embody a spatial function for the subspace of the bridge [26]. More specific spatial compo-
nents constituting the bridge structure can be managed using the IfcBridgePartTypeEnum
type of IfcFacilityPart. The representation of the physical element of the bridge can be used
in the subtypes of IfcBuiltElement.

We used the schema developed by Park et al. [24] instead of IFC4.0.2.1 or IFC4.3RC4
for the following reasons:

• IFC4.3RC4 is a schema under development that has not yet been officially released.
Therefore, current BIM authoring tools, such as Autodesk Revit, cannot handle the
information generated by IFC4.3RC4;

• Information on the bridge structure components covered by IFC4.3RC4 is limited; it
does not define bridge-specific and bridge-related attributes that should be treated as
entity and attribute level.

IfcBridgeAddMeshfree, proposed by Park et al. [24], extends additional entities focusing
on the bridge structure and bridge components (see Figure 6). The detailed elements of
bridges regarded as enumeration types in IFC4.3RC4 are also defined as entities.

In the IfcBridgeAddMeshfree schema, IfcBridge is used to manage the spatial information
of the bridge structure itself, IfcBridgeSpan is used to segregate the spatial information based
on the bridge’s along the road, and IfcBridgeSpacePart is used for the transverse direction of
the bridge. In order to represent the physical object of the bridge, it was categorized into
girder part, slab part, abutment and pier part, and detailed member component part. Each
of these contain enumeration types for detailed types or functions.
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External document-related information can be managed through the IfcDocumentInfor-
mation entity in the IFC schema. The IfcDocumentInformation can capture metadata, such
as the document name, document purpose, and/or revision information of an external
document, but not the document content. We linked each content fragment of a document
corresponding to a model component rather than linking an entire document for an entire
3D model because IfcDocumentInformation can be associated with all IFC objects through
the IfcRelAssociatesDocument entity. The implementation of IfcDocumentInformation-related
information will be described later.

Figure 6. EXPRESS-G diagram to manage bridge model and document meta data; the shaded boxes
denote extended entities for the bridge structure.

3.2. Assistant Module for Integrated Management of Bridge Model and Document Information

We developed a module to manage 3D model information, reflect the extended IFC-
based bridge, and enable information retrieval for engineering documents related to bridge
segments. The module was based on the Revit API provided by Autodesk [27], a represen-
tative BIM authoring tool. This enabled the integration of the extended IFC and engineering
document retrieval in the Revit environment. We used the original functions provided by
Revit to generate a 3D geometric model (Figure 7a). We modeled the components using
general or building elements corresponding to bridge components referred by the concept
of Park et al.’s [2] previous research for bridge components, such as bridge piers, that
Revit cannot provide. As a note, to connect with the extended IFC entities for the bridge
structure, each component should be created as one object. As a preliminary procedure,
the user should directly generate spatial objects suitable for bridge and bridge components
to apply IFC entities (see Figure 7b). This module suggests an appropriate IFC entity by
parsing the EXPRESS files of the extended IFC schema for the spatial object, as depicted
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in Figure 7c. All 3D physical objects of the bridge collected automatically through the
Revit API can be mapped with an appropriate IFC entity using the interface shown in
Figure 7d. The appropriate IFC entity can be suggested through the basic information
included in the object, such as the object’s family name and description. If the object infor-
mation has a specific code or words included in the product breakdown structure (PBS)
document developed in this study, then the physical object can be mapped precisely with
the corresponding IFC entity using this PBS document. The PBS document comprises ab
element code (value attribute), name (label attribute), IFC entity of the extended IFC-based
bridge schema (IfcEntityName attribute), the IFC4 entity (Ifc4EntityName attribute), and the
description (description attribute). Figure 8 shows a part of the PBS document developed in
this study. In this module, the model object can be connected to not only the IFC schema
entities developed for bridges, but also to the IFC4 entities, such that other commercial BIM
authoring tools can utilize the IFC data generated through this module. Figure 9 shows a
part of the iMapDoc containing essential information for the conversion to an extended
IFC-based IPF, as well as for connecting a 3D object, IFC, and document fragments. We
have designed the iMapDoc based on XML that can generate a relationship between bridge
components, as well as connect attributes on the corresponding components. Various tested
computer libraries related to the use of XML enable us to skip the verification process of
the designed XML schema (iMapDoc).

The Project element in line 2 of Figure 9 stores the entire project-related information in-
cluded in Revit, and is an element that is mapped with the IfcProject entity and its attributes
of the IFC schema. The child elements of the StructuralElement in line 3 are mapped with
the physical/spatial entities of the IFC. We used the IfcSite entity as the topmost element of
all of the spatial elements. The spatial objects generated by the user, shown in Figure 7b, are
arranged as IfcSite’s sub-entities. The spatial element representing the entire bridge itself is
mapped to IfcBridge as an extended schema entity and IfcBuildingStorey as an IFC4 entity
(line 7 of Figure 9). In this case, the IfcBuilding entity can be substituted for IfcBuildingStorey.
Since no entities support bridge structures in IFC4, it is not essential to consider which
entities of the IFC4 are used in this study. The entity just needs to be a spatial entity. The
spatial objects constituting the entire bridge, such as the bridge section and the upper and
lower structures, are mapped with each IFC entity, as shown in lines 11–17 of Figure 9. Line
19 of Figure 9 shows one of the physical elements of the bridge structure, i.e., Concrete_Pier,
which includes not only the IFC entities (IfcEntityName, Ifc4EntityName), but also the object
number (OidInSWDB) managed in Revit and the classification number (PBSCode) defined
in the PBS. These data can serve as insights for linking information between the Revit
objects and the IFC entity software independently, as well as between the IFC entities and
engineering documents described in the following sections. The 3D geometries generated
in the Revit are represented in the form of boundary representations (B-rep) in the IPF in
this study. The vertex and edge information of the B-rep are composed of a separate file,
as shown in Figure 10. The iMapDoc can manage this information through the identifier
shown in line 24 of Figure 9. The CompNo attribute points to the ID of the vertex and triangle
data, as shown in Figure 10. The iMapDoc can be converted to the IPF using subtypes of
the IfcRelationship entity to connect “spatial object–spatial object,” “spatial object–physical
object,” and “physical object–physical object” while sequentially reading elements of the
iMapDoc. Property sets (lines 26–33 of Figure 9) in each element are connected to the parent
object using the IfcRelDefinesByProperties entity in the IFC.

The structure of the document contents can be represented via the tree view, list view,
or plain view features provided by the .NET framework, since the engineering document
has been translated to the XML format (see Figure 7e). The document content query process
is discussed in the next section.
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Figure 7. Module developed for connecting 3D model, IFC objects, and engineering document: (a) 3D
bridge model, (b–d) user-interfaces for the IFC-based bridge modeling, and (e) user-interface for
document fragment retrieved based on query.

Figure 8. PBS document (shown partially) for mapping between 3D geometry object and IFC entity.
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Figure 9. iMapDoc (shown partially) connecting 3D model object, IFC data, and engineering docu-
ment fragment.

Figure 10. Geometric information to represent the 3D object in IPF.
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4. Experimental Verification via Retrieval of Document Fragments Related to the 3D
Model Object

4.1. Process of the Experimental Verification for Connected Document Fragments and 3D
Model Object

The contents in the XML-formatted structured engineering document can be retrieved
using the information included in the selected object of the bridge components via the
interface shown in Figure 7a or Figure 7b. XML element tags, attributes of the element, and
text data (PCDATA of an XML element) are used as keywords to match a specific segment
in the document fragments. The query, response, and management of the XML data process
are performed by combining the document object model (DOM) to treat XML data for
language independently adopted as standard by W3C [28], regular expression to search
string patterns introduced by Kleene [29], and XPath defined by W3C as a standard XML
data query language [30]. Figure 11 shows the conceptual process for retrieving document
fragments from structured engineering documents. The entire document retrieval process
occurs in the Revit environment, as shown in Figure 11. Information on the 3D model
can use both the iMapDoc developed according to the process described in Section 3.2
and the data included in the IPF. Figure 12 illustrates the process that occurs during the
Query process shown in Figure 11. Exact word matching is prioritized; however, if an exact
matching element does not exist, then the module matches semantically similar words
using the Dictionary for synonyms shown in Figure 11. The Dictionary for synonyms database
was developed in this study to increase the accuracy of word matching; it comprises the
attributes of ID, Korean Word, English Word, Abbreviation, Symbol, and Synonym.

Figure 11. Process for retrieving document fragments from structured document in 3D model view.
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Figure 12. Query process for extracting specific nodes from structured engineering document in 3D
model view.

4.2. Connection Review of the Retrieved Document Fragments and the 3D Model Objects

Figure 13 shows a part of the data of the retrieved structured engineering document
related to the Concrete_Pier object under Pier_2-4. These data are presented in Figure 7e,
where the results are shown in a list view ( 1© of Figure 14). Pier_2-4, as well as its parent and
children elements, can be used to retrieve Concrete_Pier-related elements and information
because the object selected in Figure 7b is synchronized with iMapDoc (see line 19 of
Figure 9 and 2© of Figure 14). The Dictionary for synonyms database was also used to
retrieve the related content. The results selected by the user among the retrieved document
contents are integrated with the IPF. The connection information between the 3D object and
document content is stored in the Doc element in iMapDoc, as shown in line 23 of Figure 9
( 3© of Figure 14). The connection information indicates the location of the related document
content translated into XML format according to the method described in Section 2 using
XPath; line 23 of Figure 9 represents ./pier_design[@header = 9.]. The Doc element can be
added to all children elements of StructureElements of iMapDoc. The selected object from
the 3D model or iMapDoc can be connected to the IFC entity mutually through the element
name and the GlobalId attribute of the iMapDoc. Figure 15 shows a part of the IPF generated
using a developed converting module including the Pier_2-4 object. The Pier_2-4 object
was implemented as the IfcBridgeSpacePart entity, and its attributes are consistent with
the attributes of GlobalId and Data in line 17 of Figure 9. Concrete_Pier was implemented
as the IfcBridgePier entity, as shown in #2976952 in Figure 15, corresponding to line 19
of Figure 9 ( 4© of Figure 14). The elements of iMapDoc and the entities of IPF share the
entity name and global ID; the IFC and Revit are connected through the information of
OidInSWDB and PBSCode stored in iMapDoc. The Representation attribute representing the
shape information of the IfcBridgePier entity uses a subtype of the IfcProductRepresentation
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entity, and the IfcProductDefinitionShape entity is used for the representation, as shown
in #1273678. The actual data are implemented using the IfcShapeRepresentation entity
(#1274058), which utilizes the information in line 24 of Figure 9 ( 5© of Figure 14). The
IfcBridgeSpacePart (#2971755) and IfcBridgePier (#2976952) were connected through the
IfcRelContainedInSpatialStructure entity (#1268533) since they are spatial and physical entities
defined by the extended IFC, respectively. The pier_design-related information (line 23 of
Figure 9) of the engineering document connected to the object of Concrete_Pier (line 19 of
Figure 9) represents the IfcDocumentInformation entity (shown in #4852759 in Figure 15).
Among the 17 attributes of the IfcDocumentInformation entity in the IFC4 schema, we
generated values for attributes Identification, Name, Description, Location, ElectronicFormat,
and Status automatically based on iMapDoc. The Identification attribute is used to identify
documents, and the value data (pier_design-pSMyBLhGB06HLAvQv7x8RA) combined with
the name (pier_design) of the connected document fragment and the GlobalId attribute
data (pSMyBLhGB06HLAvQv7x8RA) of the parent element (Concrete_Pier) are used ( 6© of
Figure 14). The document fragment name (pier_design) is used for the Name attribute, and
the file name of the XML-formatted construction document (Jaenaechon.xml) is represented
in the Description attribute. The Location attribute specifies the location of the document in
the form of a uniform resource identifier (URI); it (Jaenaechon/pier_design[@header = 9.])
is represented as using XPath, combining the path of the root element (Jaenaechon) of the
construction document and the attribute data in the Doc element in Figure 9 to specify a
concrete path for querying the document fragment. We specify application/xml according
to the XML Multipurpose Internet Mail Extension (MIME-type) as the attribute data of
ElectronicFormat for the type of media. The Status attribute indicates the document’s status
represented by the IfcDocumentStatusEnum type, and we designated the .FINAL. value
by default.

This example verifies that 3D models, engineering documents, and IFC can be run
together using the proposed integrated approach. In particular, the document files were not
deliberately reconstructed and were used as they were created in the bridge design work.
Furthermore, we can map information objects from different sets of information using the
names of the sub-bridges and components. The same names for subsystems and bridge
components are typically used in bridge design drawings and documents. Therefore, it
is believed that this method can facilitate the establishment of an integrated information
environment for 3D bridge models and engineering documents.

Figure 13. Data (shown partially) of retrieved structured engineering document related to Con-
crete_Pier object.
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Figure 14. Information flow among BIM authoring tool–IFC–engineering document.

Figure 15. IPF (shown partially) generated using integrated assistant module related to Pier_2-4 object.

5. Conclusions

Providing appropriate information in a valid and accessible format to construction
participants with various knowledge backgrounds is the most important consideration for
successful construction and management activities. Research pertaining to the efficient
interconnectivity between 3D models and engineering records stored in documents is still
in its infancy, whereas research for providing pertinent information based on the visibility
of 3D model applications has been actively conducted in recent decades. As one of the meth-
ods to effectively deliver information used in the construction and management of bridge
structures to users, we focused on integrating the bridge information model and engineer-
ing documents, which serve as references throughout the lifecycle. To achieve this, we first
proposed a structuralizing method to transform unstructured plain text-typed engineering
documents to XML documents by classifying titles and contents, defining hierarchies, and
reconstructing them using explicit and apparent semantic structures. Second, an extended
IFC schema that can handle bridge structure information was adopted, and IFC entities that
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can connect IFC and document information were selected. Finally, a Revit-based add-in
module was developed to assist in the integrated operation of bridge information models
and engineering documents. The module includes the functions of generating IFC spatial
objects, placing physical objects into spatial objects, and interconnecting XML document
contents related to model objects. Furthermore, it generates an extended IFC-based IPF
that retains hierarchical object relationships and document connection information.

The main contribution of this study was the proposal of a new approach toward achiev-
ing an interconnected and integrated operation of the BIM authoring tool–IFC–engineering
document using an interim information document named iMapDoc beyond the IFC–
engineering document linkage. Each specialized engineering process evolves continuously
as new engineering techniques and design philosophies are developed, which can naturally
support the process conducted in each independent engineering domain. We expect the
proposed process in this study to serve as a reference for future studies as follows:

• Document content management using the IFC: Although the IFC contains most of
the information that needs to be dealt with during the entire lifecycle of a facility, few
studies suggest a technical process to control the document fragments. This study
explained how IFC manages document fragments with examples;

• Smart infrastructure: The successful adaptation of BIM for buildings promotes the
growth of BIM for infrastructure for operating smart infrastructure. Interoperability,
as well as data mapping between physical and digital models, are considered to be
some of the essential keys of successful BIM for infrastructure [31,32]. The integrated
operation process of the BIM authoring tool–IFC–engineering document proposed in
this study can be a good reference.

Several issues should be addressed to implement the proposed integrated approach
more comprehensively in practical working environments. The proposed approach uses the
names of instances and type objects (e.g., types of cross-section, material, and connection) to
map different information sets. Therefore, a systematic naming rule should be established
to identify bridge components and object types based on the consensus of the project
participants. Another drawback is that the developed module cannot process contents in
figures or tables. However, the text information contained in the tables can be handled
using a specific element node in a structured document. This indicates that the figures and
tables can be correctly provided with subtitles.
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Abstract: Slope stability analysis allows engineers to pinpoint risky areas, study trigger mechanisms
for slope failures, and design slopes with optimal safety and reliability. Before the widespread usage
of computers, slope stability analysis was conducted through semi analytical methods, or stability
charts. Presently, engineers have developed many computational tools to perform slope stability
analysis more efficiently. The challenge associated with furthering slope stability methods is to
create a reliable design solution to perform reliable estimations involving a number of geometric
and mechanical variables. The objective of this study was to investigate the application of tree-
based models, including decision tree (DT), random forest (RF), and AdaBoost, in slope stability
classification under seismic loading conditions. The input variables used in the modelling were
slope height, slope inclination, cohesion, friction angle, and peak ground acceleration to classify safe
slopes and unsafe slopes. The training data for the developed computational intelligence models
resulted from a series of slope stability analyses performed using a standard geotechnical engineering
software commonly used in geotechnical engineering practice. Upon construction of the tree-based
models, the model assessment was performed through the use and calculation of accuracy, F1-score,
recall, and precision indices. All tree-based models could efficiently classify the slope stability status,
with the AdaBoost model providing the highest performance for the classification of slope stability
for both model development and model assessment parts. The proposed AdaBoost model can be
used as a screening tool during the stage of feasibility studies of related infrastructure projects, to
classify slopes according to their expected status of stability under seismic loading conditions.

Keywords: classification; slope stability; tree-based models; random forest; AdaBoost; decision tree

1. Introduction

Geotechnical engineers often employ analytical and empirical methods in order to
estimate the safety factor, based on design parameters and engineering properties, of soil or
rock material. It is a challenging task to develop an adequate model to efficiently simulate
site specific engineering geological conditions and follow the appropriate design approach
in order to eliminate the possibility of failure and propose the most cost-effective design.
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Slope stability analysis is a standard practice in geotechnical engineering employed for the
estimation of the stability of natural or man-made slopes such as embankments of highways,
railways, earth dams, tailings, etc. The analysis of slope stability mainly involves the
calculation of the factor of safety (FOS), which is defined as the ratio between shear strength
and the acting shear stress. The key parameters that define the geometry of the slope
(i.e., height and slope inclination) and the material properties (i.e., angle of internal friction,
cohesion, and pore water pressure) influence the evaluation of stability of slopes [1–3].
Many sources of uncertainties, such as soil properties and loading, contribute to the stability
of a slope [4–6]. The slopes can be classified as stable slopes (SS) or unstable slopes (US),
depending on whether their FOS is greater or less than one [7]. The assessment of slope
stability is usually performed using analytical techniques, such as the limit equilibrium
method (LEM) and finite element methods.

The challenge associated with further development of slope stability analysis methods
is to create a reliable generic design tool in order to perform precise evaluations of slope
performance. Before the advent of computers, slope stability analysis was conducted using
semi-graphical solutions, using manual calculations, or using stability charts [8]. Presently,
engineers have developed many computational tools to perform slope stability analysis
more efficiently. Geotechnical software based on analytical methods such as the limit
equilibrium method (LEM) are widely used by engineers although this method is known to
be inadequate when analysing complex slope conditions, requiring more efficient designs,
where more sophisticated tools like finite element methods are used [9].

Statistical methods for slope stability classification are based on mathematical formu-
las that are used in the statistical analysis of research. Multiple regression is a statistical
analysis method that can predict the nature of relationship among independent variables
and dependent variables. Multiple regression is able to predict the relationship of multi-
ple independent variables against an output variable. This technique is widely used in
analysing slope stability problems [10]. For instance, Erzin and Cetin [11] used multiple
regression to predict the FOS of homogeneous slopes. The cohesion of soil (c), angle of
internal friction (φ), unit weight of soil (γ), and seismic coefficient (k) were used as input
parameters, and the output parameter was FOS. It was concluded that the predictions
made by the multiple regression model were acceptable. In a similar study, Chakraborty
and Goswami [12] used the height of cut or slope height H, material properties, cohesion
(c), friction (φ), slope inclination (β), unit weight (γ), and dimensionless parameter (m)
as input parameters to predict the status of stability. They also reported a very similar
conclusion to the study by Erzin and Cetin [11]. However, the analyses performed by
statistical models are only statistical-based, and they are not able to provide a clear view to
researchers and designers [13].

Artificial intelligence (AI) and machine learning (ML) techniques have been success-
fully implemented in the area of engineering and sciences [14–32] for the last 25 years.
The same models were used to solve the slope stability problems [3,11,33–37]. Algorithms
like ANFIS, (Adaptive Neuro-Fuzzy Inference System), were applied by Mohamed and
Kasa [38] to predict the FOS of slopes and they compared their results from the LEM
method. The predictions made by the ANFIS model were acceptable for applications in
slope stability prediction. In another study, Kalatehjari et al. [39] utilized particle swarm
optimization (PSO) to estimate the FOS of 3D slopes in comparison with a 3D finite element
method (FEM) model using material properties (cohesion (c) and friction (φ) and unit
weight (γ) as input variables. They confirmed a successful application of PSO for 3D slope
stability conditions but lower performance for 2D slope stability analysis. Artificial neural
network (ANN) as a basic and benchmark AI model was used by Sakellariou and Ferenti-
nou [36], Ferentinou and Sakellariou [37], and Lu and Rosenbaum [40], and its performance
was studied to estimate slope stability compared to the LEM slope stability analysis. The
results produced by the ANN model were found to concur with the results obtained by the
LEM and allowed for the classification of sample observations according to the anticipated
failure mechanism. In another study, Samui [41] proposed a support vector machine (SVM)
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technique for the prediction of FOS and compared it with the ANN results. He found
that the SVM was able to receive a slightly higher accuracy in comparison with the ANN
technique. In addition, the same SVM model with different kernels, including polynomial,
radial basis and spline, was proposed by Samui [35] to classify the FOS of slopes. The
accuracy of the model was proven to be very high as it showed 100% similarity when
compared to the expected slope stability classification results. It was concluded that the
classifications made by the SVM model were acceptable for applications in slope stability
predictions; however, when the size of the dataset and/or the dimension of the input vector
were high, the performance of the developed models was poor. In a study carried out
by Tien Bui et al. [42], decision tree (DT) was used to predict the FOS of slopes and was
compared with the results obtained by some other ML/AI techniques such as SVM. The
accuracy of the DT model was proven to be acceptable, but it was lower than the SVM
model. It is clear that the AI/ML models have enough potential in classifying/predicting
slope failure or FOS. Table 1 presents some of the classifications/prediction studies in the
areas of slope stability using AI/ML models. In these studies, FOS was set as model output
where the model performance was assessed using the coefficient of determination (R2)
and accuracy.

Table 1. Some of the classifications/prediction studies in the areas of slope stability using
AI/ML models.

Reference Model Input Data Size R2 Accuracy
(%)

Amit and Geman [43] DT H, C, φ, β, rainfall and
water level data 118 - 80

Sakellariou and
Ferentinou [36] ANN, SOM H, c, ϕ, β, ru and γ, kmax 45 0.94

Ferentinou and
Sakellariou [37] ANN H, c, ϕ, β, ru and γ 46 0.95

Lu and Rosenbaum [40] ANN H, c, φ,ru and γ 30 datasets - 99

Samui [41] SVM H, c, φ, ru and γ 46 datasets 0.875 -

Hwang et al. [44] DT H, c, φ, β and γ 6828 datasets - 72

Das et al. [7] ANN H, c, φ and γ 46 datasets 0.982 -

Samui [35] SVM H, c, φ, ru and γ 32 datasets 1.0 -

Mohamed and Kasa [38] ANFIS H, c, φ and γ 300 datasets 0.980 -

Gelisli et al. [45] ANN H, c, φ and γ 100 datasets 0.99 -

Tao et al. [46] SVM H, c, φ, γ, rainfall data 20 datasets - 88

Fattahi [47] ANFIS H, c, φ, β and γ 67 datasets 0.952 -

Qi and Tang [48] ANN H, β, γ,c 168 datasets - 96

Hidayat et al. [49] ANFIS H, c, φ, γ, and γ 53 datasets 0.96 -

Ray et al. [10] ANN H, c, φ and γ - 0.958 -

Sari et al. [50] ANFIS H, c, φ and γ 30 datasets 0.954 -

H: Height of cut, c: Cohesion of soil, φ: Angle of internal friction, β: Slope inclination, ru: Pore water pressure
ratio, kmax: seismic coefficient.

In the light of the above discussion, it is clear that ANN and ANN-based models are
the main body for the previous investigations. On the other hand, some other techniques,
namely, tree-based, performed well in the areas of geotechnics and civil engineering [51–54].
In this study, different classification systems are proposed for slope stability using decision
trees (DT), random forest (RF), and AdaBoost tree-based techniques. As presented in
Table 1, many researchers used key parameters (i.e., height (H), cohesion (c), friction (φ),
and unit weight (γ)) for the classification of slope FOS under static conditions. According to
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our review, there is a limited number of studies aimed at FOS estimation or status of stability
classification under dynamic conditions. In the current study, the horizontal component
of peak ground acceleration (PGA) is included in the input parameters. Therefore, the
contribution of this study concerns, firstly, the use of tree-based models in slope stability
classification, and secondly, the inclusion of a component related to dynamic conditions in
slope stability. This allows for a more reliable slope stability classification under dynamic
loading conditions. The rest of this paper is outlined as follows:

Concepts of earthquake on soil slopes will be discussed in Section 2. Then, Section 3
describes the used models’ concepts and fundamental facts. In addition, the same section
will provide the needed information about data preparation used for modelling to the
readers. Tree-based model developments for slope stability classifications will be provided
in Section 4. The results of the study are evaluated and discussed in Section 5. In addition,
the best tree-based model to classify slope stability will be discussed in the same section.
Future work directions and the conclusion will offer some valuable input to the readers in
Section 6.

2. Effect of Earthquake on Soil Slopes

If a slope is situated in a region subject to earthquakes, the design must satisfy these
adverse conditions. The effect of the shaking depends on whether the shear strength of the
soil material remains adequate during cyclic loading or shaking results in a significant loss
of strength. Since deformation is the result of shearing or sliding movement, slope stability
analysis is necessary to ensure that the factor of safety is adequate to satisfy dynamic loading
and minimize the resulting deformation. In the case of loose, saturated, cohesionless
material, the total lack of strength due to cyclic loading might induce liquefaction, which is
when a cohesionless saturated or partially saturated soil loses structural strength as a result
of an applied stress (such as trembling during an earthquake or another abrupt change
in stress condition), and a material that is normally a solid acts as a liquid. Liquefaction
assessment requires a more complex analysis and additional data, such as pore water
pressure measurements, and is beyond the scope of this paper.

The susceptibility of a slope to failing due to a seismic event is also determined
through the critical acceleration coefficient ky. The coefficient of critical acceleration ky is an
appropriate measure of a soil or rock mass’ resistance to earthquake induced sliding. The
value of the coefficient depends on the slope inclination β. Essentially, ky is as important for
the sliding block model method [55], as the static safety factor is for the limit equilibrium
method; these two variables are linearly related [56]. According to Sarma and Bhave [57], ky
is a measure of safety factor, and is the yield acceleration of the slope. Sarma and Bhave [57]
proposed a method to relate these two coefficients which is independent of the assumed
failure mechanism and the material properties. The coefficient of critical acceleration ky is
unique for each slope and is calculated when the safety factor is equal to one.

3. Material and Methods

3.1. Data Preparation

During the training process of developing a mathematical model to predict a parameter
value as a function of a number of other variables, most researchers tend to focus on
computational aspects, while at the same time paying less attention to the database being
used for the training and development of the mathematical model.

However, we firmly believe that the main emphasis should be on the database to be
used, as it is the database itself that describes the behaviour of the problem being modelled.
The database, whether based on experimental or analytical data, is the available knowledge
which must be properly utilized during the training process of the development of the
mathematical model. In this regard, the database must be reliable with a sufficient amount
of data to adequately describe the problem under study.

It should be noted that the phrase “sufficient amount of data” does not necessarily
imply a high amount of data, but rather datasets that cover a wide range of combinations
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of input parameter values, thus assisting in the model’s capability to simulate the prob-
lem. The demand for a reliable database is particularly crucial in the case of experimental
databases, which are databases compiled using experimental results. In this case, significant
deviations between experimental values are frequently noticed, not only between experi-
ments conducted by different research teams and laboratories, but even between datasets
derived from experiments conducted on specimens of the same synthesis, produced by
the same technicians, cured under the same conditions, and tested implementing the same
standards and testing instruments.

In light of the above discussion, in this study, in order to develop a comprehensive
database for FOS classification under dynamic conditions, a series of models were con-
structed to calculate FOS using a standard geotechnical software. Figure 1 illustrates a
generic limit equilibrium model for the simulated slope. In fact, many slope stability
analysis tools use various versions of the methods of slices, such as Bishop simplified.
The simplified Bishop method uses the method of slices to discretize the soil mass and
determine the FOS. These methods were used in this research, the ordinary method of slices
(Swedish circle method/Petterson/Fellenius), Spencer, Sarma, etc. Sarma and Spencer are
called “rigorous methods” because they satisfy all three conditions of equilibrium: force
equilibrium in both horizontal and vertical directions and moment equilibrium condition.
Rigorous methods can provide more accurate results than non-rigorous methods. Bishop
simplified or Fellenius are non-rigorous methods, satisfying only some of the equilibrium
conditions and making some simplifying assumptions [58,59]. Some of these approaches
are discussed below. Finally, slope stability analysis using Bishop simplified is a static or
dynamic, analytical, or empirical method to evaluate the stability of earth and rock-fill
dams, embankments, excavated slopes, and natural slopes in soil and rock. Slope stability
refers to the ability of inclined soil or rock slopes to withstand or undergo movement.

Figure 1. Limit equilibrium model for the stability analysis, (W: weight, τ: shear strength, kh: seismic
coefficient, g: acceleration due to gravity, β: is slope inclination, H: slope height).

The contribution of seismic loading is considered in the current slope stability analysis
through the application of a horizontal force component of peak ground acceleration (PGA),
that characterizes the amplitude of shaking within the sliding mass. Namely, the slope is
assumed to be subjected to a force defined by

Fh = khW (1)

where W is the weight of the sliding mass and kh is a dimensionless coefficient defined by

kh = PGA/g (2)

The process was carried out in several phases to achieve a representative database.
Boundary conditions, model dimensions, material properties, and seismic motion were
the parameters considered in modelling. To do this, multiple homogeneous slopes with
different conditions were modelled. Slopes with heights of 15, 20, 25, and 30 metres and
inclinations of 20◦, 25◦, 30◦, and 35◦ were produced. In terms of rigid behaviour, all of the
models were placed on top of bedrock.
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The failure criterion used in this method was the Mohr–Coulomb failure criterion

τ = c + σtanϕ (3)

where c: cohesion, ϕ: friction angle, σ: normal stress for slopes with soils with cohesion and
internal friction, for a slope subjected to circular failure. The parametric values used were
cohesion of 20, 30, 40, and 50 kPa and internal friction angle of 20◦, 25◦, 30◦, 35◦, and 40◦.
The effect of earthquake motion on slope behaviour was considered in the current analysis.
For the purposes of this analysis, the soil unit weight was assumed to be 18 (kN/m3). The
amplitudes were defined as 0.1, 0.2, 0.3, and 0.4 g. On all of the slope models, thirty slices
were used as slip surfaces. To achieve FOS values in this analysis, a grid and radius slip
surface were used. The calculated FOS should be almost in the centre of the grid by using
the grid and radius method. The FOS from the dataset was then separated manually into
groups of safe slope or SS and unsafe slope or US in order to meet the objective of analysing
and classifying all the slope stability cases in the dataset. Table 2 shows the input and
output parameters used in the database development.

Table 2. Input and output variables for slope stability classification.

Property

Variable

Slope Height (m)
Angle of

Inclination (◦)
Cohesion (kPa) Friction Angle (◦)

Peak Ground
Acceleration

Factor of
Safety

Symbol H β c φ PGA (m/s2) FOS

Category Input Input Input Input Input Output

Min 15 20 20 20 0 0.78

Max 30 35 50 40 3.92 2.46

Average 22.33 25.18 35.3 34.07 1.18 1.20

Std. Deviation 5.6 5 11.18 5.88 1.07 0.35

Variance 31.37 26 124.96 34.59 1.15 0.12

In this study, 700 homogeneous slopes were simulated using GeoStudio which utilizes
the LEM method shown in Figure 1, along with the most critical FOS parameters. In these
700 slopes, different values of the mentioned parameters in Table 2 were used and their FOS
values were recorded. Based on a literature review conducted, the parameters presented
in Figure 1 are considered to be the most important. The best relationships between these
input parameters and the output (i.e., FOS) were calculated. In this way, simple regression
analysis (one to one relationship) was employed. The highest R2 value was achieved by
the PGA parameter through a polynomial trend-line (as the best trend-line among applied
linear, exponential, logarithmic, and power) as follows:

FOS = 0.0612(PGA)2 − 0.3512(PGA) + 1.4545 (4)

A value of R2 equal to 0.305 was reported for the above equation. Besides PGA, the
parameter φ showed the best relationship with FOS values with R2 = 0.122 through an
exponential trend-line.

To determine the relative effect of each input parameter on the output parameter,
a sensitivity analysis was performed. The following equation was used to perform the
same analysis:

rij =
∑m

k=1 xikxjk

∑m
k=1 x2

ik ∑m
k=1 x2

jk
(5)

where, rij is the strength of relation between each input and output, xik is the ith sample
of input k, j is the number of each sample in the output set, and m is the total number of
data samples. Table 3 shows the strengths of the relations (rij values) between the inputs
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and output (FOS). The sensitivity analysis results showed that the input parameters have a
great influence on the FOS. Parameter φ had the highest impact on FOS values followed by
H, β, C, and PGA. The results obtained were in line with previous studies [60,61].

Table 3. Sensitivity analysis of input and output variables.

Input Parameter H β C φ PGA

rij 0.930 0.924 0.915 0.962 0.616

3.2. Overview of Research Methodology

A review of past related studies that utilize AI in slope stability methods was first
conducted in order to choose the parameters to be used in the dataset required for training
and testing the DT, RF, and AdaBoost models. The review revealed an absence of studies
considering the PGA as a parameter in the performance of slope stability analysis. Subse-
quently, the FOS values were estimated using intelligent techniques. For this purpose, DT,
RF, and AdaBoost were utilized based on the most influential parameters for slope stability
performance as mentioned before for the input parameters. The results of the DT, RF, and
AdaBoost model were compared to the results from the GeoStudio software to observe
the performance of the DT, RF, and AdaBoost methods. Results of both methods were
evaluated using performance indicators and the best model was selected and introduced
for the problem of this study. Figure 2 presents a flowchart of the research methodology
followed in this study.

Figure 2. Procedure flowchart for FOS classification.
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3.3. Decision Tree (DT)

DT is an AI technique that uses conditional judgement rules to divide predictor
variables into homogeneous categories. The aim of DT specification is to find a set of
decision rules for predicting an outcome from a set of input boundaries [62]. The DT is
referred to as a predictive data mining tree depending on whether the target variables are
objective or subjective [63]. Classifying the FOS of slopes from multiple input parameters is
possible because modelling complex relationships between multiple input variables with an
output variable is possible with a DT model as it will have both categorical and continuous
variables without making any conclusions about the distribution of the provided data [64].
Furthermore, DT models are simple to implement, and the prediction results are simple
to understand. The findings of the DT model revealed the relative significance of input
parameters to the output parameter [65].

A root node, internal nodes, and leaf nodes make up a DT structure. All of the input
variables are stored in the root node. A decision function is connected with an internal node,
which may have two or three branches. The output of a given input vector is represented by
a leaf node [42]. Figure 3 shows the flowchart of procedures conducted for the modelling
of a DT model. The procedure of modelling a DT model is governed by two steps: tree
building and pruning.

Figure 3. Methodology flowchart for DT modelling.

In the first step, the root node of the DT is defined by determining the input vector
with the maximum gain ratio. The dataset is then divided into sub-nodes depending on the
root values. For discrete input variables, each potential value is represented by a sub-node
of the tree [66]. The gain ratio is then calculated for each of the sub-nodes separately in
the second process, and the process is replicated until all of the instances in a node are
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classified the same way. Leaf nodes are such nodes, and their names are the class values.
Since the tree produced during the design process will have a large number of branches, it
will be vulnerable to over-fitting [67], it must be pruned in order to improve the prediction
performance for new data. Tree pruning can be divided into two categories: pre-pruning
and post-pruning. In the case of pre-pruning, the tree’s development will be halted before
another criterion is true; in the case of post-pruning, the whole tree will be grown first,
and then the finished subtrees will be replaced by leaves based on the tree’s flaw relation
before and after eliminating sub-trees. More explanations regarding DT models can be
found in [54].

3.4. Random Forest (RF)

RF, also known as random decision forest, is an ensemble modelling technique for
grouping, regression, and other tasks that works by training a vast group of DTs and then
outputting the category that is the average approximation (regression) of the individual
trees [68]. The values of an independent random variable are used to develop the individual
DTs. On the basis of voting, classification models estimate the value yielded by individual
trees [69]. The basic RF algorithm utilizes the random subspace method. RFs are often used
in industries as “black box” models because they provide accurate estimates over a broad
variety of data with no configuration [70].

The DTs in the RF model recognize rules and patterns from the input data. The
output parameter (FOS) can be easily measured using these rules and patterns for any
new collection of results. The gain ratio formula can be used to rank the most important
parameters of slope failures. To solve the issue of over-fitting, mathematical methods
such as conservative pruning are used subsequently [71]. Figure 4 shows the flowchart of
procedures for RF modelling.

Figure 4. Methodology flowchart for RF modelling.
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3.5. AdaBoost Algorithm

Adaptive Boosting, also known as AdaBoost, is a boosting algorithm that attempts
to use weighted derivatives of the same testing dataset rather than sub-samples [72]. The
benefit of this approach is that the algorithm does not need a large amount of data because
it uses the same training dataset twice [73]. The algorithm is well-known for producing
good results when constructing ensemble classifiers [74]. To get a classification model of
the ensemble prediction function H:X → (−1, +1) shown in Equation (6), the AdaBoost
machine learns using a series of weak learners or classifiers.

H(x) = sign

(
M

∑
m=1

am Hm(x)

)
(6)

where H(x) is the output of the developed ensemble classifier, a1...., am, are a set of weights,
and Hm(x) is the performance of the weak learners m∈(1, ..., M) that are combined to
get H(x). In each round of the algorithm, the weights allocated to the training dataset
are determined by how previous classifiers behaved. The algorithm then works on the
specimens or data sets that have already been mistakenly classified in this case. Figure 5
shows the flowchart of procedures for AdaBoost modelling. More information on the
AdaBoost concept can be found in the other studies ([75,76]).

Figure 5. Methodology flowchart for AdaBoost modelling.

3.6. Performance Indicators

To measure the performance of the results obtained from the DT, RF, and AdaBoost
models against each other and the expected results obtained from the GeoStudio software,
a few performance indicators were used. These performance indicators were accuracy, pre-
cision, recall, F1-score, and ROC curve. All the models were subjected to the performance
indicators to observe their effectiveness. Accuracy is the ratio of the number of correctly
classified predictions divided by the total number of projections. It ranges from 0 to 1.
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Equation (7) shows the calculation of accuracy where True Positive and True Negative are
correct predictions made by the model.

Accuracy =
TruePositive + TrueNegative

Total number of samples
(7)

Precision is the measurement of positive class predictions that actually belong to the
positive class, which in turn calculates the accuracy of the minority class. This calculation
is expressed in Equation (8) where the False Positive represents the false positive prediction
made by the model.

Precision =
TruePositive

TruePositive + FalsePositive
(8)

Recall is a statistic index that measures how many accurate positive assumptions were
made out of all possible positive expectations. Unlike precision, which only considers true
positive predictions out of all predictions, considering the positive predictions that were
wrong. This calculation is expressed in Equation (9) where the False Negative represents
the false negative prediction made by the model.

Recall =
TruePositive

TruePositive + FalseNegative
(9)

F1-score is a method for combining precision and recall into a single measure that
encompasses both. Neither precision nor recall can provide the full picture on their own.
We may have excellent precision but poor recall, or vice versa, poor precision but good
recall. With the F1-score, all issues with a single score can be expressed (Equation (10)).

F1 − score = 2 × Precision × Recall
Precision + Recall

(10)

ROC curve or receiver operating characteristic curve is a graph of the false positive rate
(x-axis) vs. the precision (y-axis) with a variety of candidate thresholds ranging from 0.0 to
1.0. The false positive rate is determined by dividing the total number of false positives by
the total number of false positives and true negatives. With all the performance indicators
mentioned above, the area under the ROC curve could be obtained for each model. This
value will represent the effectiveness of each model.

4. Development of Tree-Based Techniques

In order to develop the models implemented in this study, the hyperparameters of
each model were optimized. A parametric analysis was performed on the parameters of
each model because the models needed to be adjusted for each problem and dataset. Here,
three types of DT, RF, and AdaBoost models were implemented, each of which had specific
parameters related to its structure. In each section, these parameters were defined, and
various values of their parameters were analysed in order to find the optimal structure.
The details of each model are presented in the following.

4.1. DT Model

To obtain the most effective DT model, several models were developed using different
numbers of parameters. Table 4 reports the parameters used for modelling in this study.
Upon experimenting with the values of the number of instances in leaves, minimum limit
of the split subset, and maximal tree depth, the most effective DT model with the optimal
value of these parameters was obtained. In addition, Figure 6 shows the tree flowchart of
the proposed DT model for classifying slope stability.

351



Appl. Sci. 2022, 12, 1753

Table 4. The optimal parameters obtained by the DT model.

DT Parameter Value

Minimum number of instances in leaves 7

Minimum limit of the split subset 5

Maximal tree depth 7

Figure 6. The optimal DT model for FOS classification.

In the training phase, 75% of the dataset was used (525 slope cases), which is similar
to a study conducted by Piryonesi and El-Diraby [70]. The data was selected randomly,
and the input parameters were inserted into the model. In the testing phase, 25% of the
dataset was used, which corresponds to 175 slope cases. Figure 7 shows the results of the
DT model in the classification of the FOS for training and testing sets. According to the
training set, the DT model classified 300 safe slopes and 162 unsafe slopes accurately, while
classifying 12 safe slopes and 21 unsafe slopes, wrongly. In addition, in the case of the
testing set, the DT model classified 109 safe slopes and 47 unsafe slopes accurately, while
classifying 3 safe slopes and 16 unsafe slopes, wrongly. Later, the results of the DT from
both phases were observed using the performance indicators accuracy, precision, recall,
F1-score, and ROC curve.

Figure 7. The DT model results for FOS classification: (A) Training and (B) Testing.

4.2. RF Model

A similar modelling process was completed for the RF technique aiming at classifica-
tion of slope stability considering FOS values of more than one as safe (SS) and less than one
as unsafe (US). After experimenting with different numbers of trees and the minimum limit
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of split subsets, the most effective RF model with optimal values was obtained (Table 5).
The same portions of DT model were used for the training and testing phases. Figure 8
displays the results obtained by the RF technique for the classification of slope stability for
the training and testing phases. Considering the training phase, the RF technique classified
344 safe slopes and 169 unsafe slopes accurately, while classifying 5 safe slopes and 7 unsafe
slopes, wrongly. In the case of the testing phase, the RF model was able to classify 116 safe
slopes and 44 unsafe slopes accurately, while wrong classification of 9 safe slopes and
6 unsafe slopes, was reported. As with the DT model, the results obtained by the RF model
are assessed and discussed later.

Table 5. The optimal parameters obtained by the RF model.

RF Parameter Value

Number of trees 7

Minimum limit of the split subset 5

Figure 8. The RF model results for FOS classification: (A) Training and (B) Testing.

4.3. AdaBoost Model

The same data with five input parameters under seismic condition was used to classify
slopes as safe and unsafe. As with the previous parts, it was important to obtain the optimal
parameters of the model, which was AdaBoost in this sub-section. Several parametric
studies were conducted to get the most accurate AdaBoost model. The optimal AdaBoost
parameters for the expressed aim are presented in Table 6. It should be mentioned that a
different base model could be selected for the modelling of AdaBoost where DT was the
best among them for solving the defined problem. As a result, the proposed AdaBoost
model was able to classify 351 safe slopes and 174 unsafe slopes accurately, with no wrong
classification results by AdaBoost in the training or model development phase (Figure 9).
However, during the testing or model evaluation part, there were several wrong cases. An
accurate value of 120 safe slopes and 43 unsafe slopes were reported for the testing part,
while 7 safe cases and 5 unsafe cases were obtained wrongly (Figure 9). It seems that the
classification results obtained by the AdaBoost model are slightly better than those obtained
by the RF and DT techniques. It is important to mention that the evaluation of the proposed
models was not the aim of this section and this will be reported in the following section.

Table 6. The optimal parameters obtained by the AdaBoost model.

AdaBoost Parameter Value

Base Parameter DT

Number of estimators 6
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Figure 9. The AdaBoost model results for FOS classification: (A) Training and (B) Testing.

5. Results and Discussion

This section presents the comparison of results obtained from the DT, RF, and AdaBoost
models. The results obtained from these models were subjected to several performance
indicators: namely, accuracy, precision, recall, F1-score, and the area under ROC curve or
AUC (area under curve) to determine which method was the most accurate and effective
for slope stability classification. Here, the testing phase of the datasets was considered for
the validation of each tree-based model. This is a common method of evaluation or model
assessment to understand the level of accuracy during training/model development. On
the other hand, the training stage results showed that the proposed AdaBoost model could
be considered as perfect, and therefore, there is no need to discuss further about this stage
and have any comparison between models. Table 7 shows the comparison of the testing
stage results obtained by the indicators: i.e., accuracy, precision, recall, F1-score, and AUC
of ROC. In addition, the ranking procedure proposed by Zorlu et al. [77] was applied in
this table. The ranking system is very easy to understand. In this system, the most accurate
performance index receives the highest rank. According to Table 7, the model that showed
the highest accuracy was AdaBoost as it obtained the highest rank value, which was 13.
The second most accurate model was the RF, which obtained a total rank value of 10. The
lowest accurate model was the DT model, with a total rank value of 7. Except for the AUC,
AdaBoost achieved better accuracy and performance compared to the RF and DT models.
It is important to note that the RF also received a high degree of accuracy, and it can be
used for slope stability classification by the other researchers or engineers. For a better
comparison, Figure 10 shows the classification results of the DT, RF, and AdaBoost models
from the testing phase compared to the FOS results obtained with the GeoStudio software.
As stated earlier, 175 data samples, which constituted 25% of the whole data, were used
for each model in the testing phase. It is clear from Figure 10 that the AdaBoost technique
was able to record an outstanding performance with the lowest number of unmatched
answers (i.e., 11). The number of matched and unmatched for RF and DT were 160 and 15,
and 156 and 19, respectively, confirming the RF model’s superiority over the DT in slope
stability classification. Overall, the error rate during the testing phase was very low, which
reflected the high-performance level of the model development during the training phase.
It was concluded that the best performing model for slope stability classification was the
AdaBoost, and that it could be used in this field for the same purpose to minimize the
associated risk.
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Table 7. Modelling results for the testing datasets of DT, RF, and AdaBoost for slope stability classification.

Model
Performance Indicators Rank

AUC Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall Total

DT 0.968 0.891 0.895 0.908 0.891 3 1 1 1 1 7

RF 0.961 0.914 0.915 0.916 0.914 2 2 2 2 2 10

AdaBoost 0.910 0.931 0.931 0.931 0.931 1 3 3 3 3 13

Figure 10. Chart of results obtained from the models compared to expected results.

6. Conclusions and Future Works

To achieve the aim of this study, tree-based models including DT, RF, and AdaBoost
were developed to classify the stability of 700 slopes (464 safe slopes and 236 unsafe slopes)
under seismic condition, which were modelled and analysed in GeoStudio software. The
variables of H, β, C, φ, and PGA were set as model inputs for the classification of slopes
where FOS ≥ 1 and FOS < 1 was considered for safe and unsafe slopes, respectively. To
measure the performance of the DT, RF, and AdaBoost models, accuracy, precision, recall,
F1-score, and AUC as performance indices were calculated for both stages of training and
testing. After conducting modelling procedures of classification, the best technique was
selected based on the performance indices’ results. From the training part, it was found that
the AdaBoost was a perfect technique capable of achieving the highest possible performance
compared to the other employed models. Additionally, a higher degree of classification
performance for the testing phase was reported for all calculated indices except AUC.
Values of 0.910, 0.931, 0.931, 0.931, and 0.931; 0.961, 0.914, 0.915, 0.916 and 0.914; and 0.968,
0.891, 0.895, 0.908 and 0.891 were obtained for AUC, Accuracy, F1, Precision, and Recall
of AdaBoost, RF, and DT models, respectively. These values confirmed the successful
use of tree-based models in classifying slope stability. However, the better performance
and higher capability for classification purpose goes to the proposed AdaBoost technique.
Therefore, it can be introduced as a new technique for slope stability classification with the
largest number of matched cases.

It is well established that to propose a new method for classifying slope stability cases
using AI techniques, extensive investigation is required. Therefore, in order to develop a
model for classifying slope stability, a comprehensive database comprising real cases must
be gathered and utilized. Yet, collecting such database is very difficult and time consuming.
By providing the mentioned data, slope stability classifications can be conducted using new
(hybrid) AI techniques, such as RF or AdaBoost, combined with metaheuristic algorithms.

Moreover, the use of real slope stability data based on different types of soils consider-
ing other properties, such as unit weight, permeability, and ground water table, would be
of interest and importance to geotechnical engineers. In this regard, model generalization
as an important issue in classification and prediction problems can be considered, with the
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developed models covering a wider range of input parameters, as well as a larger number
of effective problem variables.
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Featured Application: The proposed models in this paper can be used to estimate the cutter life

index for estimation of cutter wear and life where the actual index is not available.

Abstract: The wear of cutting tools is critical for any engineering applications dealing with mechanical
rock excavations, as it directly affects the cost and time of project completion as well as the utilization
rate of excavators in various rock masses. The cutting tool wear could be expressed in terms of the life
of the tool used to excavate rocks in hours or cutter per unit volume of excavated materials. The aim of
this study is to estimate disc cutter wear as a function of common mechanical rock properties including
uniaxial compressive strength, Brazilian tensile strength, brittleness, and density. To achieve this
goal, a database of cutter life was established by analyzing data from 80 tunneling projects. The data
were then utilized for evaluating the relationship between rock properties and cutter consumption
by means of cutter life index. The analysis was based on artificial intelligence techniques, namely
artificial neural networks (ANN) and fuzzy logic (FL). Furthermore, linear and non-linear regression
methods were also used to investigate the relationship between these parameters using a statistical
software package. Several alternative models are introduced with different input variables for each
model, to identify the best model with the highest accuracy. To develop these models, 70% of the
dataset was used for training and the rest, for testing. The estimated cutter life by various models
was compared with each other to identify the most reliable model. It appears that the ANN and FL
techniques are superior to standard linear and non-linear multiple regression analysis, based on the
higher correlation coefficient (R2) and lower Mean square error (MSE).

Keywords: rock excavation; soft computing; cutter life index; rock strength; brittleness

1. Introduction

The wear of rock drilling and cutting tools in mining, tunneling, and civil construction
has always been a predominant factor for the costs of hard rock excavation. This fact is not
only related to material and labor costs arising from cutting tools maintenance and replace-
ment but also because of the direct and negative impact of wear on the drilling/cutting
performance of worn cutters and bits [1]. Tool wear in hard rock drilling can be defined as a
process of continuous loss of material from the surface of the cutting tool or drill bit due to
mechanical contact and relative movement of the bit over the rock surface [2]. The potential
of a rock or rock mass to cause wear on a rock-engaging tool can be described by abrasive-
ness. Disc cutter wear is the result of the rock–machine interaction in tunneling by tunnel
boring machine (TBM). Indeed, the replacement of the disc cutter is a time-consuming and
costly activity that can significantly reduce the TBM utilization (U) and advance rate (AR)
and has a major effect on the total time and cost of TBM tunneling projects. Hence the
importance of predicting the cutter life precisely can never be neglected. The abrasivity of
rocks and the accompanied wear of cutting and drilling tools are commonly determined by
simple and fast laboratory tests such as Cerchar abrasivity index (CAI) test; however, it

Appl. Sci. 2022, 12, 1446. https://doi.org/10.3390/app12031446 https://www.mdpi.com/journal/applsci359



Appl. Sci. 2022, 12, 1446

has disadvantages in extreme cases such as soft or very hard rocks [3,4]. Over the years,
several different indices have been developed to offer reasonable quantitative measures
for rock abrasivity. Abrasivity value or “AV” and Abrasivity value of steel “AVS” were
introduced by the Norwegian University of Science and Technology (NTNU) as a part
of their suite of rock tests for quantifying the boreability of rocks [5]. These indices are
used for estimating the life of rock cutting tools as bit wear index (BWI) as well as cutter
life index (CLI). Plinninger et al. [2] developed a new composite index as rock abrasivity
index (RAI) calculated by multiplying the uniaxial compressive strength with percentage
of quartzite content. Schimazek and Knatz [6] introduced an index for rock abrasivity, espe-
cially for use in roadheader application. This index uses grain size and percent of quartzite
to estimate the index (F) to represent the hardness of rock. The other index introduced in
the mid-1980s [7] for abrasivity measurement of rock is CAI. The test is relatively simple
and portable and useful to estimate the tool consumption in rock excavation. There are
many publications about CAI test procedures and classifying the rock abrasivity. This test
has also been standardized by ASTM and ISRM [8,9]. It is known that the cutter wear is not
only related to CAI but also other rock properties and mineralogical features of the rocks.
Meanwhile, several brittleness indices have been introduced in the past few decades [10–13]
and they represent how well the rock will fracture and break. At present, the CAI is often
used to estimate cutter consumption in the CSM model for TBM performance and cutter
life estimation. Similarly, CLI is one of the main input parameters to estimate cutter wear
in the NTNU TBM performance prediction model for hard rock [5,14–20].

Plinninger et al. [1] illustrated that “Abrasive wear” is the predominant wear process
in excavation operation in most rock types. They stated that the abrasive wear leads to the
removal of material from the tool surfaces while it is moving against the rock. Deketh [21]
noted that according to the studies when the ratio of abrasiveness of two interacting
materials exceeds 20% of their Vickers hardness, abrasive wear increases dramatically.
Atkinson et al. [22] suggested that various factors affect the rock abrasiveness, and those
factors can be evaluated and categorized as mineral composition, hardness of mineral
constituents, grain shape and size, type of matrix material, and physical properties of rocks
including strength, hardness, brittleness, and toughness. However, in the literature, most
of the cutter consumption models were developed based on rock abrasivity and testing
such as BWI that is part of the NTNU testing system, RAI, and CAI. The complex nature
of the tool wear process leads to a vast number of factors that can dramatically influence
tool wear. A summary of the field geology tools logistics and some of the main factors
influencing the rate of penetration and type of tool wear are provided in Table 1.

Table 1. Summary of the main factors influencing cutting tool life and wear [1].

Geology Tools Logistics

Rock properties
(mineral composition, rock

strength, grain size, grain shape)

Tool characteristics
(carbide composition, button

shape, button number,
steel composition)

Maintenance

Joint features
(spacing, orientation,
aperture, roughness)

Flushing
(fluid, number and geometry of

flushing holes and flutes,
flushing pressure)

Tool handling

Weathering/alteration of rock Feed and rotating velocity
temperatures Supporting methods

water situation
composition of rock

mass(homogenous/inhomogeneous)
stress situation

(stress direction, stress level)
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2. Background

Norwegian University of Science and Technology (NTNU) developed a model to
evaluate the drillability of percussion drilling in the 1960s. This model has been used in
major international mechanized underground construction projects and is considered as
one of the most recognized and widely used methods for estimation of TBM performance
and cutter life [5]. The NTNU rock drillability testing suite consists of a set of laboratory
tests and different indices which are briefly introduced herein. A classification of the
NTNU drillability indices Drilling Rate Index (DRI), CLI, and BWI has been available since
1998 [23]. In this study, CLI is examined in more detail, and some models are introduced to
estimate CLI from more common mechanical rock properties.

2.1. Cutter Life Index

The CLI is computed based on the Sievers’ J-value and the abrasion value of steel anvil
or in short, AVS. The index can be used to estimate the lifetime of the TBM cutter discs, in
the number of hours of cutter running on the face as the machine is excavating in the given
rock type [5].

2.1.1. The Sievers’ Miniature Drill Test

In order to evaluate the surface hardness of the rock, the Sj test was developed by H.
Sievers in the 1950s. The Sievers’ J-value is the depth of the drilled hole after 200 revolutions
of the drill bit which is measured in 1/10 of mm. This test should be repeated 4 to 8 times
and the mean value should be used as the final number [24]. The test showing a schematic
view of the test is performed on a sawn sample (Figure 1).

Figure 1. The Sievers’ miniature drill test [24].

2.1.2. The Abrasion Value Steel

In abrasion value steel (AVS), rock powder in the size range of less than 1 mm is used
to abrade the worn piece made of steel from a new cutter ring. The wear piece is under
10 kg dead load to increase the friction and contact pressure between rock grains and steel
anvil. AVS is the weight loss of the worn piece after 20 rounds (1 min) of turn table rotation,
which is measured in milligrams. Figure 2 shows the abrasion test and equipment [23,24].
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Figure 2. Outline of abrasion value (AV) and abrasion value cutter steel (AVS) [24].

2.1.3. Calculation of Cutter Life Index

After measurement of the AVS and SJ values, CLI can be calculated using the following
formula. This formula is based on the real field data on actual cutter lifetime and related
tested rock parameters.

CLI = 13.84 ·
[

SJ
AVS

]0.3847
(1)

From CLI,
CL = CLI · ROP · A (2)

Cutter life (CL) can be computed as a function of CLI, rate of penetration (ROP), and
cross section area of the opening (A) within m3/cutter. The cutter life index intervals are
given in Table 2 as suggested in the literature [24].

Table 2. Category of intervals for cutter life index in NTNU Model [24].

Category CLI

Extremely low <5
Very low 5.0–5.9

Low 6.0–7.9
Medium 8.0–14.9

High 15.0–34
Very high 35–74

Extremely high ≥75

2.2. Cerchar Abrasivity Index (CAI)

Abrasivity is a good indicator of the wear life of cutting tools in any rock excavation
operation. CAI is used for estimating the cutting tool life in the TBM performance prediction
model of the Colorado School of Mines (CSM). Various rock abrasivity measurements have
been introduced throughout the years to allow engineers to estimate cutting tool life. CAI
is commonly utilized to characterize the abrasivity of rocks for estimation of cutting tool
life and wear in various mining, civil and tunneling applications. The CAI [7] test has been
introduced in the 1970s by the Centre d’Etudes et Recherches des Charbonages (CERCHAR)
de France for abrasivity testing in coal-bearing rocks in mining industries while gradually
being adopted for application in the tunneling industry [15,25–27]. Different generations of
testing devices and the impact of various testing parameters on the test results have been
discussed in the literature [15,18,28–33]. A typical CAI device is given in Figures 3 and 4. A
typical rock sample and surface used for CAI is given in Figure 5.
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Figure 3. Setup of a first-generation Cerchar testing device [7]. (1) Weight, (2) pin chuck, (3) steel pin,
(4) specimen, (5) vice, and (6) hand lever [1].

Figure 4. Setup of a second-generation Cerchar testing device [28].

Figure 5. Example of rock surface conditions with rough surface (left over from BTS test) used for
CAI test.

The CAI should be calculated as:

CAI = d · 10 (3)

where d is the wear tip surface measured to an accuracy of 0.01 mm. The dimensionless
CAI value is reported as the arithmetic mean of five or more test replications together with
standard deviation as suggested by [9]. While the original formal standard of the test was
the French standard NF P 940-430-1 [34], recently an ASTM [8] and ISRM [9] standards
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for Cerchar testing were published. An effect of some Cerchar test parameters, including
Cerchar pin properties, loading condition, and test length on the rock surface, on the values
of CAI are given in Table 3.

Table 3. Effect of some Cerchar test parameters on the measured values of CAI [35].

Testing Factors Effect on CAI Value

Test length

About 70% of wear occurs in the initial first millimeter of the scratch length,
approximately 85% of after 2 mm of test slide, and only 15% of the wear flat is

produced by the remaining 8 mm length [1,29,36,37]. In cases of harder and more
abrasive rocks the CAI value length [38,39].

Static load The CAI value increases linearly by changing static loads on the stylus [40,41].

Testing speed

The testing speed does not affect the CAI values significantly and commonly
higher when conducted with 43 HRC pins at slow testing speeds [2,41]. The

standardized testing speed is 10 mm/s for articulated hand lever type machine
and 1 mm/s for hand-crank types [7,9].

Stylus hardness Higher CAI values are obtained with soft CERCHAR test styli and
vice versa [36,38,41–45].

Stylus metallurgy No considerable effect on CAI value is observed by changes in the metallurgy of
the stylus keeping regular hardness [43].

Rock abrasivity could be also examined based on the weighted average abrasivity
of the constituent minerals. In this method, the percentage of each mineral in the rock
is calculated and multiplied by its hardness or abrasivity, based on different available
scales [21]. Abrasive mineral content (AMC), equivalent quartz content (EQC), and Vickers
hardness number for rock (VHNR) are the most common methods to compute the abrasivity
of rocks. AMC uses Mohs scratch hardness, while EQC uses Rosiwal [46] grinding hardness
and VHNR benefits from Vickers indentation hardness (an indentation test in which the
ratio of the force to the area of the indentation is considered as an index for abrasivity of
the material) [21]. In the EQC method, constituent minerals of the rock would be identified
either by microscopic or macroscopic mineral examination. Common methods utilized for
abrasion measurement of rocks are given in Table 4.

Table 4. Common methods utilized for abrasion measurement and classification [47].

Method Remarks Advantage Disadvantage Ref.

Mohs scale Mineral comparative scratch test Simple to use It is just a qualitative measure [48]

Vickers hardness
number rock (VHNR)

Based on indentation hardness (the
ratio of force to the area of

indentation) using a diamond tipped
micro-indenter (Vickers)

Simple method to rate rock
wear capacity based on

available charted mineral
VHNR values

Limited experience for TBM rock cutting [40]

Rock abrasive index
(RAI) RAI = UCS × EQC Simple method Presence of a

chart for conical pick life No chart for disc cutter life prediction [30]

Abrasive mineral
content Uses Mohs scratch hardness Simple to use Limited experience for TBM rock cutting [21]

Equivalent quartz
content Uses Rosiwal rating Simple to use Limited experience for TBM rock cutting [21]

Wear index-F

F = Q × D.z.10 = equivalent quartz
percentage, D—mean quartz grain

size in mm, z—Brazilian tensile
strength in MPa

Is developed for drag
tool cutting

Specimen mean quartz grain size has high
importance in the formula. In coarse grained

metamorphic and igneous rocks, this index may
lead to highly misleading results

[6]

Rosiwal mineral
abrasivity rating

Rosiwal = 1000 × volume loss
corundum/volume loss

mineral specimen
Simple to use Limited experience for TBM rock cutting [46]

NTNU cutter life index
(CLI)

CLI is obtained from AVS and
Siever’s J tests

Large database and presence
of disc cutter life
prediction charts

Correct tests can only be performed in SINTEF
and the replicated testing equipment may show

results with high discrepancy
[49]

Cerchar abrasivity
index (CAI)

Steel pin tip diameter in 1/10th mm
after 1 cm scratch test under 70N

normal load

Widely used test in tunneling,
simple, low cost, low
sample requirement

Good only for rough surfaces, variability in the
test results due to its sensitivity to method of tip

reading, the rock surface condition, the
non-constant cross-section of pin tip during

the test

[50]
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2.3. Mechanical Properties of Rocks

Both intact rock and rock mass properties are used as the main parameters for esti-
mating the project time and cost for a tunneling project. Tool consumption and machine
advance rate in any rock mass are very closely related to the rock parameters such as
strength, brittleness, density, abrasivity, mineral content. In this paper, several common
rock properties were examined to estimate cutter consumption based on rock properties.

2.3.1. Rock Strength

The uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) are two
of the most important and commonly measured rock properties for rock excavation projects
since those strengths are related to both, porosity, density, and brittleness behavior of
rock under the indenter/cutter. Due to the importance of the strengths, both the BTS and
UCS values of the rocks are measured according to the standards [8,9] and recorded in
the database.

2.3.2. Density and Porosity

Density (D) and porosity of rocks are both crucial parameters and hence are commonly
utilized for estimating the cutter consumption and machine performance. The density and
porosity of rocks could be measured using standard procedures (either [8] or [9]). In this
study, density is used as one of the input parameters to estimate the CLI.

2.3.3. Rock Brittleness

The brittleness (BIi) value is another fundamental rock property that should be con-
sidered for the assessment of boreability and cutter consumption; however, there are no
universally accepted standards to measure brittleness. Yagiz (2009) discussed various
approaches to represent rock brittleness directly from the punch penetration test (PPT).
However, the PPT test is not a commonly used and available test. Several alternative rock
brittleness based on rock strength ratios introduced in the literature [10,11,13] are as follow:

B1 =
σc

σt
(4)

B2 =
σc − σt

σc + σt
(5)

B3 =

√
σc · σt

2
(6)

where σc is the compressive strength, σt is the Brazilian tensile strength and B1, B2, B3 are
brittleness indexes. As seen from the equations, all of them are different functions of the
ratio of UCS to BTS. Although the BI is a function of the different combinations of rock
properties rather than only ratios of the strength, there is no agreement on the measurement
of the BI at the present time. Yagiz [13] has also introduced the BI value based on PPT and
published equations that could be used for computing BI as follow:

BIo =
Fmax

Pmax
(7)

where, Fmax is the max force and Pmax is the corresponding penetration

BIp = 0.19 × σc − 2.174 × σt + 0.913 × ρ− 3.807 (8)

He stated that the brittleness of a rock cannot be only identified based on the strengths
of a rock, but also related to density or porosity as well. It should be mentioned that the BI
used herein is directly measured from the laboratory PPT and computed as suggested by
past studies [13].
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3. Database Development

In this paper, 80 tunnel cases are used to examine the effect of rock properties including
UCS, BTS, density (D), brittleness (BIi) that is measured from the punch penetration tests
(PPT), Cerchar abrasivity index of rocks on the disc cutter consumption. Unpublished
data obtained from various sources [51] were utilized for this purpose. Rock types range
from sedimentary, igneous, and metamorphic, to volcanic rocks. Rock strength, (UCS
and BTS), density, and CAI was conducted in accordance with ISRM standards; however,
punch penetration tests were performed according to the Colorado School of Mines testing
procedure [13]. The PPT test is conducted, examined and the brittleness value was calcu-
lated directly from the tests based on Yagiz’s Method [13,16]. To examine the effect of rock
properties on the CLI, first CLI is computed as a function of CAI as follows [5]:

CLI = 2.87 · CAI2 − 35.62 · CAI + 112.9 (9)

In the dataset UCS of rock ranges from 9.5 to 317 MPa with averaged UCS values of
rocks are 135 MPa. According to the ISRM classifications [52], the rock ranges from weak
to very strong rock types. The BTS ranges from 2.5 to 17 with an average of 8.2 MPa. The
density of rock ranges from 18 to 29.5 kN/m3; however, most of the rock samples had a
density of around 25–28. The BI values range from 46 (very high brittle rock) to ductile rock
according to the classification recently published [32]. The qualitative statistical evaluation
of the data is summarized in Table 5.

Table 5. Summary of rock properties and data ranges used for this paper [32].

Variables N Minimum Maximum Mean Std. Dev. Variance

D 80 17.69 29.53 25.70 2.03 4.14
UCS 80 9.50 327.00 131.24 54.91 3015.40
BTS 80 2.30 17.80 8.17 2.85 8.14
BI 80 9.68 46.00 27.78 8.55 73.09

CAI 80 0.66 6.40 3.52 1.27 1.62
CLI 80 2.49 90.64 27.68 22.32 498.02

Valid N 80

CAI is dependent on rock strength and other properties such as quartz content, and
brittleness. The CAI values in the database varied from 6.4 (extremely abrasive) to 0.66 (low
abrasivity) according to the ISRM classification [9]. Furthermore, the cutter consumption
rate is represented by CLI and estimated by examining different approaches [5,14,15,37].
CLI was computed as suggested by past studies [5,26].

4. Development of CLI Models

The established dataset is used to experiment with a series of models with different
input parameters to obtain the best reliable model to estimate the CLI on the basis of the
rock properties. The SPSS Statistics [53] program was used as a statistical tool for this
research together with other artificial intelligence techniques including artificial neural
network (ANN) and fuzzy logic (FL) developed in the Matbal program [54]. A simple
regression analysis was first performed between a single variable and CLI in order to
evaluate the influence of each individual parameter on that. Multiple linear (MLRM) and
non-linear models (NLMRM) were subsequently run in order to obtain the most accurate
equations from the datasets. In order to examine empirical correlations between variables
methods, statistical software packages such as Excel or SPSS are commonly utilized.

4.1. Regression Analysis of Data
4.1.1. Simple Regression Analysis (Univariate)

In this study, non-linear (y = axb) simple regression analyses were performed among
rock properties to find the best inputs to estimate the CLI. This means that CLI was used as

366



Appl. Sci. 2022, 12, 1446

a dependent, while other rock properties were used as independent variables to develop
pertinent models. This resulted in several simple regression relations among the possible
input variables and CLI. Plots of CLI as a function of individual parameters are shown in
Figures 6–9.

Figure 6. Relations between the density and CLI.

Figure 7. Relations between the UCS and CLI.
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Figure 8. Relations between the BTS and CLI.

Figure 9. Relations between the BI and CLI.

4.1.2. Linear and Non-Linear Multi-Variable Regression Analysis

The prediction of CLI based on other rock properties can be carried out either using a
linear or non-linear model. However, it is known that one of the common CLI estimation
models from CAI [5] is polynomial a function. In this study, both linear and non-linear
multivariable regression analyses were performed. While running the SPPS program, data
were divided into two sets including: a training set (70%) and a testing set (30%). Table 6 is
the summary of bi-linear multiple regression together with input variables of each model
and statistical indices (#).
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Table 6. Summary of multi-variable statistical analysis of database using linear functions. Statistical
indices (#).

# 1 2 4 4 5 6 7

R 0.84 0.82 0.73 0.77 0.65 0.77 0.78
R2 0.71 0.67 0.53 0.60 0.42 0.59 0.62

MSE 135.97 148.57 212.52 171.47 289.83 201.65 159.59
RMSE 11.66 12.19 14.58 13.09 17.02 14.20 12.63

Inputs: 1 UCS, BTS, D, BI; 2 UCS, D, BTS; 3 UCS, BTS; 4 UCS, D; 5 UCS, BI; 6 BTS, BI; 7 D, BI.

In this study, 7 different models were developed using both linear and non-linear
regression as shown in Table 6. The results are very close to each other which means each
rock property has some effect on CLI; hence, the models and related equations are listed in
Table 7. The best model obtained via MLRM is given in Figures 10 and 11.

Similarly, multi-variable non-linear regression output equations and related perfor-
mance indices are given in Tables 8 and 9, respectively, for each alternative model developed
using the other rock properties. It could be stated that each rock property has some weight
on CLI.

Table 7. Results of multi-variable linear regression of CLI as function of other rock properties.

# Inputs Equations for CLI

1 D, UCS, BTS, BI CLI = −4.425 × D + 0.079 × UCS − 3.408 × BTS − 0.735BI + 180.855
2 D, UCS, BTS CLI = −4.928 × D − 0.005 × UCS − 3.24 × BTS + 183.232
3 UCS, BTS CLI = −0.048 × UCS − 4.601 × BTS + 74.176
4 D, UCS CLI = −6.055 × D − 0.108 × UCS + 198.304
5 UCS, BI CLI = −0.106 × UCS − 1.01 × BI + 70.595
6 BTS, BI CLI = −3.991 × BTS − 0.761 × BI + 83.729
7 D, BI CLI = −5.858 × D − 0.824 × BI + 201.505

Figure 10. Relations between the measured CLI and predicted CLI for training (model 1-MLRM).
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Figure 11. Relations between the measured CLI and predicted CLI for testing (model 1-MLRM).

Table 8. Summary of non-linear multi-variable statistical analysis of CLI.

Non-L 1 2 4 4 5 6 7

R 0.85 0.83 0.79 0.76 0.69 0.81 0.79
R2 0.72 0.69 0.62 0.58 0.47 0.66 0.62

MSE 124.88 138.22 154.67 167.51 235.07 159.15 154.71
RMSE 11.18 11.76 12.44 12.94 15.33 12.62 12.44
VAF 72.33 68.86 62.39 57.58 47.30 66.01 62.07

Table 9. Results of multi-variable non-linear regression of CLI as function of other rock properties.

Inputs Equations for CLI

1 D, UCS, BTS, BI −4.099 × D + 9.771 × Ln(UCS)− 30.94 × Ln(BTS)− 0.006 × BI2

−0.361 × BI + 166.102
2 D, UCS, BTS −3.938 × D + 2.251 × ln(UCS)− 32.179 × ln(BTS) + 185.433
3 UCS, BTS −3.38 × ln(UCS)− 40.63 × ln(BTS) + 128.817
4 D, UCS −5.741 × D − 10.418 × ln(UCS) + 225.352
5 UCS, BI −13.933 × ln(UCS) + 0.025 × BI2 − 2.258 × BI + 136.543
6 BTS, BI −35.366 × ln(BTS) + 0.018 × BI2 − 1.604 × BI + 131.049
7 D, BI −6.344 × D − 0.018 × BI2 + 0.256 × BI + 199.683

The results of the analysis for both linear and non-linear multi-variable regression
show that models with three inputs can offer a reliable estimate of CLI with a coefficient of
correlation of 0.82. This is very close to the correlation coefficient obtained from model 1
for training and testing data, respectively (Figures 12 and 13).
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Figure 12. Relations between the measured CLI and predicted CLI for training (model 1-NLMRM).

Figure 13. Relations between the measured CLI and predicted CLI for testing (model 1-NLMRM).

It should be noted that the linear regression analysis approach has clear advantages
over the black box models provided by AI systems, simply by offering equations for use
by everyone.

5. Soft Computing Techniques

Artificial intelligence (AI) is a common modeling technique for developing models to
estimate an unknown parameter from knowing variables in rock engineering and tunneling
as well as other engineering practices. In this research, two common artificial intelligence
methods including artificial neural network (ANN) and fuzzy logic (FL) were utilized to
estimate the CLI as a function of common rock properties including strength, density, and
brittleness. Several alternative models with alternative input variables were developed and
the best one among those models is highlighted herein.
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5.1. Artificial Neural Networks (ANN)

The MATLAB environment [53] has a built-in application, neural net fitting tool, which
is a computational tool that was used for developing an ANN model in this study. To set
up input data for ANN analysis, it is required to set a portion of data for testing, validation,
and training. In our case of 70% of input data was used for training purposes, another
15% was used for validation, and 15% was for testing [55]. ANN uses the Levenberg–
Marquardt optimization algorithm due to its advantages, such as high speed of training
on feed-forward networks of moderate size [56]. Moreover, the MATLAB environment
has an efficient built-in function of the Levenberg–Marquardt algorithm with very efficient
performance [57].

In this study, the ANN models were developed by using one hidden layer. Baheer and
Hecht-Neilsen [58,59] claimed that neural networks with one hidden layer, in general, are
enough for addressing the majority of issues. ANN models developed in the neural net
fitting tool use a two-layer-forward network with linear output neurons, where one layer is
the hidden layer and one is the output layer. This type of network is capable of solving
multi-dimensional mapping issues with sufficient accuracy if ANN has reliable data for
training and enough number of neurons for the hidden layer. The next step for the ANN
model development is to define the number of neurons, which was considered to be the
most crucial question in the process of determining the ANN structure [60]. If the number
of hidden neurons is lower than needed, it will undergo the “under-fitting” problem in
both generalization and training. Nevertheless, an excess number of hidden neurons can
result in the problem of overfitting, which means the neural network overestimates the
target problem’s complexity [61]. This can cause a large variance in prediction results, and
the generalization capacity drops considerably. Without performing a try-and-test during
training and calculating the generalization error, determining the best number of hidden
units is difficult. The number of hidden layers and hidden neurons, that is optimal to
certain cases, is determined by the following factors: (a) network design complexity; (b) the
number of input and output units; (c) the number of training samples; (d) the level of noise
in the sample dataset; (e) the training algorithm [62]. In this regard, determining the correct
number of hidden neurons to avoid overfitting or underfitting is crucial in the prediction
process. The heuristic parameters suggested for this purpose are listed in Table 10.

Table 10. The heuristics proposed for optimal number of neurons.

Heuristic References

≤ 2 ∗ Ni + 1 [59]
3Ni [63]

(Ni + No)/2 [64]
2+No ∗ Ni+0.5No ∗ (N2

o+Ni)−3
Ni+No

[65]
2Ni

3 [66]√
Ni ∗ No [67]
2Ni [68]

In Table 10, Ni refers to the number of input neurons and No refers to the number
of output neurons, respectively. According to Table 10, the number of hidden neurons
must be 1, 2, 5, or 6 for two inputs, while for a set of four input parameters, the number
of hidden neurons was suggested to be between 2 and 12. However, the work of Ke and
Liu [61] suggested that for 80 input samples and one hidden layer, the optimal number of
neurons is 12. The trial-and-error approach is currently used to calculate the number of
hidden neurons. This begins with a small number of neurons and progressively increasing
the number till optimal performance is achieved. The downside is that it takes time and
there is no assurance that the hidden neuron would be fixed [62].

To determine the number of hidden neurons, suggested heuristics in Table 10 were
employed. Then, from 1 to 14 hidden neurons were used to establish the models, which
were run at least 25 times to obtain the best output. This was followed by evaluating the
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performance of developed ANN models on the basis of average performance obtained,
in terms of the R-value and MSE. The optimal number of hidden neurons was chosen as
indicated in Table 11. An illustration of the ANN structure corresponding to four inputs
with one hidden layer and 10 neurons is given in Figure 14.

Table 11. Number of hidden neurons for 80 sample inputs.

Input Parameters # of Hidden Neurons

Density, UCS, BTS, BI 10
Density, UCS, BTS 8

UCS, BTS 9
Density, UCS 6

UCS, BI 8
BTS, BI 10

Density, BI 7

Figure 14. Generalized structure of ANN used in this study.

Developed ANN structures with a given number of inputs involve another component
of the structure that is established and run to obtain average values of the model outputs.
The results from each model are examined using several statistical indices such as coefficient
of determination (r2), correlation (r), and variance account for (VAF); root means square
error (RMSE) and mean square error (MSE). A summary of the results for performance
of various models is given in Table 12. It appears that each input rock property has some
influence on the CLI and the output of model 7 is better than others. The best ANN model
to estimate CLI is a function of the density and brittleness of rocks. The best results from
various ANN models are given in Table 12, as a function of density and brittleness (BI) as a
combination of rock properties (Figures 15 and 16).

Table 12. Statistical indices of the ANN models for calculation of CLI from other rock properties.

ANN 1 2 3 4 5 6 7

R 0.75 0.83 0.76 0.80 0.73 0.73 0.84
R2 0.57 0.68 0.57 0.64 0.54 0.53 0.71

MSE 168.89 137.79 173.64 186.01 193.45 301.09 145.67
RMSE 13.00 11.74 13.18 13.64 13.91 17.35 12.07
VAF 56.78 68.12 57.31 64.12 53.75 51.36 69.99
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Figure 15. Relations between the actual and estimated CLI by ANN model 7 for training.

Figure 16. Relations between the actual and estimated CLI by ANN model 7 for testing.

5.2. Fuzzy Logic (FL)

In this research, another artificial intelligence model that was developed is based on
Fuzzy Logic (FL). FL model requires special rules to control data behavior. To obtain these
rules and membership functions, the Matlab built-in function “genfis2” was used. This
function uses provided input and output data in separate matrices as input arguments.
It also requires radii to be selected for input and output arguments, which specifies the
center of cluster range of influence for each of the dimensions used in the data set. The
data was then used to estimate the amount of membership functions and rules for the
antecedents and consequents. The extracted rules were stored in a special FIS format
variable, that later could be used to obtain predicted output for certain input variables.
Similar to Section 5.1, different input rock characteristics were used as inputs for the fuzzy
logic model and 70% of data was used for training, and the remaining 30% was used
for testing to estimate the CLI. The FL model was also performed for seven different
combinations of rock properties, and the output of the models is discussed in this paper.
The generated FIS file contains membership functions that define to what degree a certain
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input belongs to a given set. The following figures are a representation of the fuzzy logic
model created by the “genfis2” command, where input parameters are density and UCS
with the output of CLI. These membership functions are based on gbellmf (generalized
bell-shaped membership function), which is a function with a specific shape suitable for
this analysis. This function was chosen automatically by the genfis2 command. The “anfis”
function in MATLAB software uses the adaptive neuro-fuzzy inference system (ANFIS) to
tune the FIS file obtained from “genfis2” and its use was recommended in the literature [69].
This approach is especially useful in engineering fields where traditional methods fail
or are too difficult to use [70]. The ANFIS technique is effective for nonlinear system
interpretation [71]. The “Anfis” command in the MATLAB environment provided some
improvement in the modeling results as shown by higher correlation factors and MSE. The
results of the FL analysis of CLI are presented in the next section of this paper. The final
visualization of rules for the FIS file after the “anfis” tuning command is used can be seen
in Figure 17 with two input cases for the dataset.

Figure 17. Fuzzy logic rules for 2 inputs and 1 output.

Given that the MATLAB [54] fuzzy logic designer tool is not capable of extracting
rules that control the behavior of data, it had to be carried out with the built-in command
“genfis2”. To do so, input and output data were defined from the dataset, and then by using
“dividerand” that sets what fraction of data can be used in training, testing, and validation;
it randomly selects which samples of the dataset go to which part. The “genfis2” function
is used on that randomly chosen 70% of data to be trained, then the “evalfis” command
is used to check the model by predicting results on training and testing samples. It is
performed inside of the loop where the variable “i” defines the radius of the cluster from
0.1 to 1 with 0.05 steps. Cluster radii is a scalar value, which is multiplied by the width of
the data space. The “mse” code determines the MSE of models, while “mseALLtraining”
collects these MSE measurements for finding optimal. After developing the rules and model
structure for 80 tunneling cases to estimate the CLI as a function of rock properties, models
run until they produce reliable and accurate results. To achieve the desired performance,
seven different alternative input combinations were used and the results of the models
were examined to find the best model among them. The initial steps involve evaluating the
influence of each rock variable using the FL surface map as shown in Figures 18–21.
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Figure 18. Fuzzy logic surface view for inputs (UCS and BTS) and CLI.

Figure 19. Fuzzy logic surface view for inputs (D, UCS) and CLI.
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Figure 20. Fuzzy logic surface view for inputs (BI, UCS) and CLI.

Figure 21. Fuzzy logic surface view for inputs (BTS, BI) and CLI.

As mentioned earlier, the FL models were run for various inputs as given in Table 13
and the best model was Model#1; model 7 was also very promising with two instead of
four input parameters. Overall observation indicates that model 7 with input parameters
including density and brittleness is also valid and offers acceptable results for practical ap-
plications.
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Table 13. Statistical indices of the FL models obtained for each model.

FL 1 2 4 4 5 6 7

R 0.82 0.79 0.70 0.77 0.68 0.75 0.79
R2 0.68 0.63 0.48 0.60 0.47 0.57 0.63

MSE 170.22 195.74 272.03 212.35 280.70 226.94 197.14
RMSE 13.05 13.99 16.49 14.57 16.75 15.06 14.04
VAF 67.71 62.87 48.39 59.72 46.75 56.95 62.60

It was also observed that the FL modeling technique is a powerful tool to estimate
CLI from other rock parameters. The plots of predicted and measured CLI of model 1 for
testing and training are shown in Figures 22 and 23, respectively.

Figure 22. Relations between the actual CLI and estimated CLI by FL model 1 for training.

Figure 23. Relations between the actual CLI and estimated CLI by FL model 1 for testing.

In summary, various combinations of input parameters were used to examine the
ability to predict CLI from other rock parameters and those models do not always produce
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reliable results, and the accuracy of the models depends on rock properties and the range
of data in the original dataset used for modeling purposes.

6. Discussions

In this paper, four different methods were used to predict CLI from rock mechanical
properties including UCS, BTS, density, and brittleness. For this purpose, a database
of measured CLI and other rock mechanical properties was established and used in the
analysis leading to the development of predictive models. These models were subsequently
compared to each other via statistical indices. The analysis showed that the models offered a
reasonable estimate of CLI, which can be used for the estimation of disc cutter consumption
in the NTNU model. Table 14 presents the comparative statistical indices for the four
methods used for developing the models.

Table 14. Comparison of accuracy of the models based on obtained statistical performance indices.

Inputs

BI

UCS UCS

BTS BTS UCS D UCS BTS D

D D BTS UCS BI BI BI

Linear 1 2 4 4 5 6 7

R 0.84 0.82 0.73 0.77 0.65 0.77 0.78
R2 0.71 0.67 0.53 0.60 0.42 0.59 0.62

MSE 135.97 148.57 212.52 171.47 289.83 201.65 159.59
RMSE 11.66 12.19 14.58 13.09 17.02 14.20 12.63
VAF 70.53 67.48 53.26 59.74 42.03 58.56 61.62

Non-L 1 2 3 4 5 6 7

R 0.85 0.83 0.79 0.76 0.69 0.81 0.79
R2 0.72 0.69 0.62 0.58 0.47 0.66 0.62

MSE 124.88 138.22 154.67 167.51 235.07 159.15 154.71
RMSE 11.18 11.76 12.44 12.94 15.33 12.62 12.44
VAF 72.33 68.86 62.39 57.58 47.30 66.01 62.07

ANN 1 2 3 4 5 6 7

R 0.75 0.83 0.76 0.80 0.73 0.73 0.84
R2 0.57 0.68 0.57 0.64 0.54 0.53 0.71

MSE 168.89 137.79 173.64 186.01 193.45 301.09 145.67
RMSE 13.00 11.74 13.18 13.64 13.91 17.35 12.07
VAF 56.78 68.12 57.31 64.12 53.75 51.36 69.99

FL 1 2 4 4 5 6 7

R 0.82 0.79 0.70 0.77 0.68 0.75 0.79
R2 0.68 0.63 0.48 0.60 0.47 0.57 0.63

MSE 170.22 195.74 272.03 212.35 280.70 226.94 197.14
RMSE 13.05 13.99 16.49 14.57 16.75 15.06 14.04
VAF 67.71 62.87 48.39 59.72 46.75 56.95 62.60

Since the output of the models, CLI, is sensitive to each rock property, obtained models
give very similar results and it is not easy to choose the best among them. However, some
of the models offer superior predictions compared to others depending on the number
of input variables. For example, the models having two inputs including D and BI can
offer reasonable results with only two parameters, however, BI requires punch penetration
testing that is not very common. Yet, most of the models produced acceptable estimates
of CLI.
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7. Conclusions

In this paper, cutter consumption for TBMs as represented by CLI was examined and
estimated as a function of several common rock properties to be used in practice. Datasets
from several projects including uniaxial compressive strength, Brazilian tensile strength,
density, and rock brittleness indices were compiled in a database and analyzed by various
modeling techniques with different sets of input parameters. Statistical analysis (SPSS 26.0)
software and MATLAB were used for the development of models based on regression
and artificial intelligence models, respectively. The proposed models could estimate CLI,
however, some of the models offered superior predictions.

Following are the the summary of findings in this study:

- Rock properties including strength, UCS, BTS, density, and brittleness indices have
some influence on the CLI.

- Density and brittleness of rock are very important variables for estimating CLI and
offer a better prediction of CLI compared to other variables. Moreover, while these
two variables could be used for estimating the CLI when other parameters are not
available, it is not recommended since density and BI do not reflect the abrasivity of
the rock.

- Brazilian tensile strength of rock is the significant input when it is used with BI
(Model 6, non-linear model).

- When comparing the variable for prediction of CLI on an individual basis, BTS shows
a better correlation with CLI, perhaps since BTS is directly related to rock breakage
and brittleness behavior of rock under the disc or indenter.

The dataset used in this study is based on real-world projects and proposed models
could be valuable and applicable to practice; however, the output of the study should
be improved by adding more rock data and inputs such as equivalent quartz content to
the models.
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Abstract: The investigation of travel mode choice is an essential task in transport planning and
policymaking for predicting travel demands. Typically, mode choice datasets are imbalanced and
learning from such datasets is challenging. This study deals with imbalanced mode choice data
by developing an algorithm (SVMAK) based on a support vector machine model and the theory of
adjusting kernel scaling. The kernel function’s choice was evaluated by applying the likelihood-ratio
chi-square and weighting measures. The empirical assessment was performed on the 2017 National
Household Travel Survey–California dataset. The performance of the SVMAK model was compared
with several other models, including neural networks, XGBoost, Bayesian Network, standard support
vector machine model, and some SVM-based models that were previously developed to handle the
imbalanced datasets. The SVMAK model outperformed these models, and in some cases improved
the accuracy of the minority class classification. For the majority class, the accuracy improvement
was substantial. This algorithm can be applied to other tasks in the transport planning domain that
deal with uneven data distribution.

Keywords: imbalanced data; travel mode choice data; hybrid support vector machine-based model

1. Introduction

A considerable amount of people’s daily trips is associated with their work. Transport
planners and engineers attempt to discover work-related travel behaviors and establish
strategies for reducing the adverse impacts of motorized transport on traffic, health, and
the environment. One of these important behaviors is work mode choice which refers to the
process where an individual chooses a certain mode for his/her trip to work. According
to the literature, a variety of factors influence the work mode choice. Socioeconomic
factors [1–3], household attributes e.g., [4], trip characteristics e.g., [5], job e.g., [6–9], and
built environment [2,10,11] are some of these factors [3,11].

Mode choice data include a wide range of variables and samples. Typically, these data
are complex and incomplete [12]. Furthermore, since motorized transport is dominant in
most parts of the world, the travel surveys yield unbalanced mode choice classes; that is,
there are more people who use cars than people who use other commute modes.
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To date, many studies investigated the choice of travel mode to work (Table 1). These
methods employed both traditional statistical methods and machine learning (ML) tech-
niques. However, the former is criticized because of its linearity assumptions concerning
mode choice data [13–15]. Thus, the employment of ML techniques has receieved more
attention recently [16–23]. The classification of the new cases established concerning the
existing samples is an essential task in ML models. If at least one of the categories com-
prises a smaller number of samples than other categories, the classification process becomes
complex [24]. The class imbalance issue is simply an uneven data distribution amongst
the different categories of the target. The precision of the classification algorithms will be
unreliable when they are influenced by the majority class. In this case, the new samples
are distributed to the majority category since the classification model tends to predict the
minority category with less accuracy, which is an undesirable consequence [25].

Support vector machine (SVM) is a renowned ML technique for classification [26]. This
algorithm also was used as a base to cope with imbalanced data. Batuwita and Palade [27]
developed the fuzzy SVM model and dealt with imbalanced data in the presence of noises
and outliers. Wang and Japkowicz [28] suggested boosting-SVMs with asymmetric cost.
Their model runs by adjusting the classifier utilizing cost assignation, though it compen-
sates the bias presented with adjustment through utilizing a combination system that is
comparable, in effect, to adjust the distribution of data. Wu and Chang [29] suggested
the class-boundary alignment algorithm to augment the SVM model to deal with imbal-
anced data. They modified the class boundary by converting the kernel function if data is
represented in a vector space. This modification can also be performed by adjusting the
kernel matrix if the data do not possess a vector-space representation. To enhance forecast
performance, Liu, et al. [30] suggested consolidating an integrated sampling system, which
mixes both over-sampling and under-sampling, with an ensemble of SVM. These studies
investigated the binary classification problem based on the SVM model; however, less
examinations have been done concerning multiclass imbalanced classification based on
this model.

Many studies in other domains, including medicine, economy, crash severity, and so
on, tried to reduce the issues of imbalanced data, e.g., [31–33]. However, to the best of
the authors’ knowledge, a very small number of studies have investigated the issues of
imbalanced travel mode choice data and proposed a solution for it [33].

So far, many scholars have provided useful strategies to manage the issue of class
imbalance. These strategies have been helpful and competent in explaining the issue
partially through enhancing classifiers’ performance. The majority of models developed for
binary category imbalance issues are improper for the multiclass imbalanced datasets like
work mode choice. In addition, rare studies have provided a solution for the imbalanced
mode choice datasets. The shortcomings mentioned above prompted the authors to cope
with the multiclass imbalance mode choice data issue and contribute to the body of research
on this topic. Thus, this study developed the adjustable kernel-based SVM classification
algorithm (SVMAK) that is suitable for handling multiclass imbalanced data. Initially, the
estimated hyperplane is obtained employing the regular SVM model. Subsequently, the
parameter function and the weighting factor concerning each support vector in every
iteration is determined. The likelihood-ratio chi-square test is utilized to estimate these
parameters. Following this, the kernel transformation or the new kernel functions are
determined. The unequal boundaries of class are enlarged, and data skewness is adjusted,
thanks to this function of kernel conversion. Consequently, the estimated hyperplane is
remedied through the developed model, and it also solves the problem of performance
degradation.

The rest of this paper is structured as follows. In Section 2, the source of data, dataset
characteristics, and methodology used for improving the performance of the SVM model
for classification of imbalanced data are presented, and evaluation metrics are provided.
Section 3 presents the results obtained with the model as well as a series of comparisons
against other ML models and SVM-based models for classifying imbalanced datasets.
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Section 4 describes the sensitivity analysis method and its outcomes. Finally, a conclusion
of the paper is presented in Section 5.

Table 1. Some investigation on work mode choice.

Author Main Factors Used Modelling Method

Lu and Kawamura [34]
Mode preferences and

responsiveness to
level-of-service

Multinomial logit

Badoe [4] Households (two-workers) Multinomial logit

Xie et al. [35] Sociodemographic and
Level-of-service attributes

Multinomial logit, Decision
trees (DT), and Neural

Networks (NN)

Patterson et al. [36] Gender Multinomial logit

Al-Ahmadi [37]
Cultural, socioeconomic,

safety, and religious
parameters

Disaggregate models and
utility maximization

Gang [1] Socioeconomic Multinomial logit

Vega and Reynolds-Feighan
[5]

Travel time, travel cost, and
employment destinations Binary logit and GIS

Vega and Reynolds-Feighan
[38]

Central and non-central and
suburban employment

patterns.

GIS and Cross-Nested Logit
(CNL)

Day, Habib and Miller [6]

Commuter trip timing,
occupation groups, labor rates,
work hour rules, free parking

availability, and the spatial
distribution of work locations

Multinomial logit

Habib [7] Work start time and work
duration Multinomial logit

Heinen, Maat and van Wee [8] Office culture and colleagues’
and employers’ attitudes Binary logit

Hamre and Buehler [9]

free car parking, public
transportation benefits,

showers/lockers, and bike
parking at work

Multinomial logit

Heinen and Bohte [39] Attitudes Toward Mode
Choice Multinomial logit

Tran, Zhang, Chikaraishi and
Fujiwara [10]

Neighborhood and travel
preferences, land use policy,

land use diversity and
population density

Multinomial logit

Kunhikrishnan and
Srinivasan [40] Contextual heterogeneity Binary logit

Franco [41] Downtown parking supply Spatial general equilibrium
model

Simons, De Bourdeaudhuij,
Clarys, De Geus,

Vandelanotte, Van
Cauwenberg and Deforche [2]

Gender, socio-economic-status
(SES) and living environment

(urban vs. rural)

Zero-inflated negative
binomial (ZINB) regression

Indriany et al. [42] Risk and uncertainty Binomial logit

Irfan et al. [43] Econometric Modeling Multinomial logit

Hatamzadeh et al. [44] Gender Binary logit
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2. Methods and Data

2.1. Data

This study employed the 2017 National Household Travel Survey (NHTS)–California
dataset. These data are provided by the US Federal Highway Administration and the
California Department of Transportation and are freely available to all researchers and
practitioners [45]. The NHTS is the definitive source on public travel behavior in the United
States. It is the only national source of data that lets researchers and practitioners look at
patterns in personal and household travel. This data comprises non-commercial travel
information by all modes on a daily basis and the characteristics of the people who travel,
their households, and their transport means. It appeared that 26,095 household samples of
California were involved in this dataset. This research eliminated records that contained
incomplete or inaccurate data. Additionally, the dataset included 458 variables. Thus,
based on the literature, the authors selected those variables that linked to work mode
choice. Finally, the dataset included 151,597 samples (based on the individuals’ records),
26 inputs, and one target variable (mode choice to work). However, at the same time, it
was found that the target variable included uneven distribution of classes, which is called
imbalanced data. Table 2 shows the composition of the dataset used in this study. The work
mode choice had nine classes, and as expected, “car” is the majority class. The imbalance
ratio is large (777.5). A list of variables used in this study is provided in Table 3.

Table 2. Description data.

2017 National Household Travel Survey–California Dataset

Total sample size 151,597
Number of inputs 26
Number of classes 9
Number of samples in each class
Walk 345
Bicycle 2091
Car 108,885
SUV 12,582
Van 2998
Pickup truck 22,188
Motorcycle/moped 14
Public or commuter bus 2454
Private/charter/tour/shuttle bus 40
Imbalance ratio 777.5

Table 3. Variables included in the final dataset.

Variable Description Type Mean/Mode

Sociodemographic
age Age of respondent Continuous 36.947
educ Highest education level Categorial 3.00
gt1jblwk More than one job Flag 2.00
flextime Flexibility of work start time Flag 2.00
race Race Nominal 1.00
sex Gender Flag 1.00
wkftpt Full-time or part-time worker Flag 1.00
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Table 3. Cont.

Variable Description Type Mean/Mode

Household information

drvrcnt Number of drivers in household Continuous 3.003

hh_ontd Number of household members on trip
including respondent Continuous 1.884

hhfaminc Household income Categorial 7.00
hhsize Count of household members Continuous 4.576
hhvehcnt Count of household vehicles Continuous 3.647

numadlt Count of adult household members at least
18 years old Continuous 3.194

vehowned
wrkcount Owned vehicle longer than a year Flag 1.00

youngchild Number of workers in household Continuous 0.25

Trip characteristics

bikemore Reason for not biking Nominal 7.00
timetowk Trip time to work in Continuous 22.97
walkmore Reason for not walking Nominal 5.00
Health
health Opinion of health Categorial 2.00

medcond Any condition or handicap that makes it
difficult to travel outside of the home? Flag 2.00

medcond6 Medical condition, how long? Categorial 2.00

Living environment

urbansize Urban area size where home address is located Categorial 6.00
urbrur Household in urban/rural area Categorial 1.00

homeloc Home location/reason to chose your current
home location? Nominal 1.00

wrktrans * Mode to work Nominal 3.00
* Target variable.

2.2. Proposed Approach

The algorithm proposed in this study aims at dealing with the imbalanced mode choice
data effectively. The theory of adjusting the kernel scaling method [46] is behind the model
developed in this research to manage the multi-category imbalanced data. This study
combines the SVM classification algorithm with the adjusting kernel scaling technique,
which is named SVMAK.

2.2.1. Standard Support Vector Machine Model

Support Vector Machine (SVM) is a broadly employed and praised ML technique for
classifying data [26]. The principal purpose of creating this model was to draw the input
data into high dimensional space with the aid of the kernel function in such a way that the
categories can be linearly divisible [47–49]. For the binary class issue, the greatest boundary
that can divide the hyperplanes is as follows:

w·a + l = 0 (1)

The decision function for SVM based on the optimal pair (w0, l0) is expressed by:

f (a) = ∑
i∈SV

λiyi〈a, ai〉+ l (2)

where, λi stands for support vector, ai denotes data sample and i = 1, 2, . . . , K. Concerning
greater dimensional feature space, the value of 〈a.ai〉 is substituted by the kernel function
Q 〈ai.aj〉, that is:

Q
〈

ai.aj
〉
=
〈

ai.aj
〉

(3)
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From the regular SVM, the kernel function was selected for estimating the boundaries’
space. In the beginning, the dataset S is divided into different samples, which are S1, S2, S3,
. . . , Si, and subsequently, the kernel transformation function is implemented (Equation (4)).

f (a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−z1h(a)2, i f a ∈ S1

e−z2h(a)2, i f a ∈ S2

.

.

.
e−zKh(a)2, i f a ∈ SK

(4)

where, ha = ∑
i∈SV

λiyi〈a, ai〉 + l (where, λi signifies support vector), Si refers to the ith

sample of the training dataset, zi is calculated using likelihood-ratio chi-square, which is
described in the following sections.

2.2.2. Likelihood-Ratio Chi-Square

Likelihood-ratio chi-square (G2) is a renowned non-parametric test which assesses
the target-input independence and is suitable for categorial attributes. G2 ascertains a
frequency distribution-based relationship among the categorical attribute assortments. To
put it another way, it can be said that this technique should be employed to assess the
association between the groups. The importance of determining the G2 is to ascertain the
connection amongst the samples of every class and parameter zi. Equation (5) presents the
analytical formulation for estimating G2.

G2 = 2 ∑ Dolog
(

Do

De

)
(5)

where, Do and De signify observed and expected frequencies, respectively.

2.2.3. Calculating the Factor of Weighting

Ascertaining the factor of weighting is a challenging and vital task while handling an
imbalanced category because finding a suitable weight is comparatively complicated. A
practical technique to manage such issues is to assign smaller weight to the mainstream
category and larger weight to the minority category through fulfilling the weight condition
zi ∈ (0,1). For dealing with the multi-category imbalance issue in the SVMAK algorithm,
this study employed Equation (6).

wi =
N

ni ∑K
i=1

N
ni

(6)

where, C and N express class and training sample sizes, respectively. ni symbolizes the size
of each class when i = 1, 2, ..., K.

For computing the parameter zi, let S denotes the dataset that comprises the N number
of samples and K classes. The zi parameter is estimated employing Equations (2) and (3).
The G2 value in optimal distribution can be calculated as follows:

G2 = 2
K

∑
i=1

nilog
(

ni
N/K

)
(7)

Let Xi = nilog
(

ni
N/K

)
.

Then,

G2 = 2
K

∑
i=1

Ai (8)
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Hence, the parameter Zi can be characterized as

Zi = wi × Ai
G2 (9)

In Equation (8), place the G2 value

Zi = wi × Ai

2 ∑K
i=1 Ai

(10)

where, ni is the size of the sample in the ith class and I = 1, 2, . . . , K.

2.3. Model Development Steps

In the beginning, the NHTS data was prepared and cleansed. Later, these data were
used for achieving the primary partition. Then, the authors determined the weighting
factor (wi) value as well as Zi parameters for all support vectors in every iteration. The
Zi value was estimated using the likelihood-ratio chi-square test. The kernel conversion
function was estimated in the next step. Eventually, utilizing the newly estimated kernel
matrix Kmt, the model was retrained. Figure 1 indicates the flowchart of the suggested
algorithm.

Figure 1. Developed algorithm flowchart.

2.4. Evaluation Metrics

This study employed four evaluation criteria to evaluate the performance of the
models developed in this study. These criteria included accuracy, precision, recall, and
F1 score. The formulas for calculating these criteria are shown in Equations (11)–(14).
Accuracy refers to the ratio of the precisely forecasted class across the whole experiment
class. Precision indicates the proportion of the true positive class over the whole number
of an actual positive and false-positive category. Recall refers to the quantity of forecasted
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positive categories that fall out of whole positive cases in the data. F1 score shows the
equilibrium between recall and precision.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 score =
2 × (precision × recall)

precision + recall
(14)

where, TP, TN, FP, and FN denote the number of true positives, true negatives, false
positives, and false negatives, respectively.

3. Models’ Development and Evaluation

The authors of this study present the results of the SVMAK model as well as other
classification models, including the standard SVM model, BN, ANN model, and some
SVM-based models in literature proposed for handling the imbalance data.

It is a challenging task to determine the most suitable classification model for han-
dling imbalance data issues. The travel mode choice dataset was taken for the empirical
investigation. Figure 2 shows the nine classes plotted on the x-axis, and the size of samples
in each class plotted on the y-axis. As can be seen in this figure, it is obvious that the NHTS
dataset includes uneven category distribution; practically, it is called imbalance. Hence, it
grows to be more complicated to manage such a circumstance through regular classification
techniques. The category-wise distributions of the dataset based on the sample size are: The
car category contains 108,885 samples, the pickup truck category consists of 22,188 samples,
the SUV class contains 12,582 samples, the van category consists of 2998 samples, the
public or commuter bus class includes 2454 samples, the bicycle class category comprises
2091 samples, walk contains 345 samples, the private/charter/tour/shuttle bus category
consists of 40 samples, and finally the motorcycle/moped category holds 14 samples. The
class imbalance ratio of the dataset is 777.5.

Figure 2. Category wise distribution of NHTS dataset.
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The principal intention of this study is to discover the most competent classification
technique that can examine the imbalanced class. Periodically, various scholars had pro-
posed useful techniques to handle class imbalance issue. The majority of the proposed
methods were for binary category imbalance issues, which were not fit for the multi-
category imbalance issue. These shortcomings urged authors to adjust the algorithm which
can effectively handle binary category and multi-category imbalance issues without jeop-
ardizing the performance of algorithms. The classification mentioned above will further
assist in attaining the desirable answer toward urban transport planning and prediction
of travel mode choice. This study employed four renowned conventional classification
techniques and SVM-based models proposed in the literature along with the SVMAK model
suggested in this study for the empirical assessment. The model applied in this study
was compared with other models to ascertain effectiveness, fitness, and precision. This
study evaluated the performance of the models developed using six criteria. Moreover, the
authors employed a 10-fold cross-validation procedure as the validation scheme.

Four criteria, including accuracy, F1 score, precision, and recall were used to evaluate
the outcomes of the classification algorithms applied in this study. The authors validated
the classification techniques using the accuracy of classification. As is known, the NHTS
dataset includes imbalanced category distribution, which may influence the performance
of classification techniques. The overall performance of the models developed in this part
of the study is shown in Table 4. All models achieved an overall accuracy above 80%.
However, the SVMAK outperformed other models. The worst model was BN. Regarding
other evaluation criteria, SVMAK again had the best values. It is worth mentioning that the
SVMAK improved the performance of the SVMS model, which shows the capability of the
proposed model of this study to handle the imbalanced mode choice data and enhance the
performance of the typical SVM model for dealing with such data.

Table 4. Models’ overall performance.

Accuracy (%) Precision Recall F1 Score

SVMAK 99.81 0.99 1.00 0.99
SVMS 93.18 0.87 0.89 0.88

XGBoost 85.4 0.20 0.28 0.21
NN 83.06 0.37 0.43 0.39
BN 80.54 0.71 0.86 0.77

An evaluation of the models developed by each class also is provided in Figure 3. For
the class of car, which had the largest sample size, the SVMAK improved the prediction ac-
curacy from 82.33% (BN model) to 99.81%. Concerning the category of motorcycle/moped,
which had the smallest sample size, the models developed yielded almost a similar accuracy.
For other classes, the SVMAK model almost achieved better accuracy.

As previously mentioned, the performance of the SVMAK model was compared with
some existing SVM models, which tried to alleviate the severe effects of using imbalanced
data. In these methods the SVM model was hybridized with some techniques, including
boosting [28], fuzzy [27], and class-boundary alignment [29], and ensemble [30]. The
outcomes of the mentioned comparison are presented in Table 5. As can be seen, the
SVMAK obtained the highest overall accuracy among all models developed.
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Figure 3. Models’ performance by each class: (a) accuracy (%); (b) precision; (c) recall, (d) F1 score; CLASS 1 = Walk; CLASS
2 = Bicycle; CLASS 3 = Car; CLASS 4 = SUV; CLASS 5 = Van; CLASS 6 = Pickup truck; CLASS 7 = Motorcycle/moped;
CLASS 8 = Public or commuter bus; CLASS 9 = Private/charter/tour/shuttle bus.

Table 5. The overall accuracy of SVM-based models and the SVMAK model.

Model Accuracy (%)

Wang and Japkowicz [28] 83.33
Batuwita and Palade [27] 92.99

Wu and Chang [29] 93.89
Liu, Yu, Huang and An [30] 90.16

SVMAK 99.81

4. Sensitivity Analysis

Many factors impact the travel mode choice; however, their effects are not the same.
Thus, it is necessary to ascertain the magnitude of these impacts and identify the most
influential factors on travel mode choice. For this purpose, the authors employed the
mutual information (MI) test method [50], which computes the importance of the inputs.
MI means a filtering system that captures the random association between inputs and
the target. MI examines the dependence among variables and confirms the strength
of the connection among them. The MI size among inputs is measured employing the
information gain:

Gain(C, D) = Ent(C)−
H

∑
h−1

∣∣∣Ch
∣∣∣

|C| Ent
(

Ch
)

(15)

where, h denotes the number of all probable values of D, Ch is the set of C when D takes
the value Ds, and Ent(C) signifies the information entropy. The larger the value of Gain
(C, D), the better the relationship between D and C.

Ultimately, the importance magnitude of each attribute for predicting travel mode
choice was achieved based on the scores obtained in the MI test. The outcomes of this
analysis are shown in Figure 4. The most important attributes were reason for not walking
(walkmore), number of drivers in household (drvcnet), and count of adult household
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members at least 18 years old (numadlt). On the other hands, the lowest scores belonged
to flexibility of work start time (flextime), owned vehicle longer than a year (vehowned),
and gender (r_sex).

Figure 4. Outcomes of sensitivity analysis.

Reasons for not walking among respondents included unsafe street crossings, heavy
traffic, and insufficient night lighting. It is clear that any improvement in these street
conditions can encourage people to shift from motorized transport to walking. Thus, it
makes sense that this factor is among the most influential travel mode choice factors to
work [51–53]. The significance of the number of drivers in households can be attributed
to its influence on the usage of vehicles and the generation of more trips. In practice, the
likelihood of choosing active transportation options reduces as the number of drivers in a
family grows [54]. As the number of adults in a family increases, the need for independent
trips rises. Because of the different responsibilities that each adult in the family has, it is
not easy to consolidate trips into one trip. This can be easily one of the principal sources of
more trip generation and use of motorized transportation.

The flexibility of work start time was among the least important factors. This could be
attributable to work culture of the respondents in the US. However, several previous studies
showed that the flexibility of work start time influences the mode choice e.g., [54,55]. The
possession of a vehicle for longer than a year was also an unimportant factor for predicting
the choice of travel mode to work. A possible reason for this is that people usually look for
flexible and convenient travel options to work. Usually, they are reluctant to replace their
private cars with healthy travel modes unless they face new challenges. These challenges
can be health problems, heavy traffic, so on. Thus, it is sensible that this factor does not
influence the mode choice substantially.

5. Conclusions

In this research, the authors offered a novel method for learning from imbalanced
mode choice data by the adjustable kernel based SVM classification model (SVMAK).
The likelihood-ratio chi-square test and weighting measures were used in this suggested
method for selecting the kernel function. The aforementioned kernel transformation
function makes it possible to increase the class limits and offset the irregular class limits.
The authors also performed a sensitivity analysis which showed that the reason for not
walking (walkmore), the number of drivers in the household (drvcnet), and the count of
adult household members no less than 18 years old (numadlt) were the most influential
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factors. On the other hand, the lowest scores found for flexibility of work start time
(flextime), owning a vehicle longer than a year (vehowned), and gender (r_sex) were the
most influential factors on travel mode choice.

The outcomes of this model were compared with those of various SVM-based models
and ML models. The authors employed four criteria, including accuracy, F1 score, precision,
and recall to perform this comparison. The results of this study showed that the SVMAK
model achieved the best results and outperformed other models. The results also showed
that this model improved the classification accuracy of most categories, especially the car
class that had the largest samples.

Prediction of travel mode choice is an essential component of transport planning and
traffic engineering. An accurate prediction is viable only if the data are precisely classified.
Therefore, precise mode choice classification utilizing the algorithm suggested in this study
would be efficacious for enhancing the current transport systems and further boosting the
capacities for an efficient response to the worst traffic and transport scenarios.

The classes of choice of travel mode to work in the NHTS dataset are distinct from
other mode choice datasets since this dataset considered the “SUV” category as different
from the “car” category. However, future studies could combine these two classes and
create a new class of travel mode to work. In the US, private motorized transport is
dominant. Thus, the NHTS and, in turn, the result of this study is affected by this issue.
Future studies can employ the method developed in this study to predict choice of travel
mode to work in different environments, such as those in which walking, cycling, and
public transport are dominant.
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Abstract: The ultimate strength of composite columns is a significant factor for engineers and,
therefore, finding a trustworthy and quick method to predict it with a good accuracy is very important.
In the previous studies, the gene expression programming (GEP), as a new methodology, was trained
and tested for a number of concrete-filled steel tube (CFST) samples and a GEP-based equation was
proposed to estimate the ultimate bearing capacity of the CFST columns. In this study, however, the
equation is considered to be validated for its results, and to ensure it is clearly capable of predicting
the ultimate bearing capacity of the columns with high-strength concrete. Therefore, 32 samples with
high-strength concrete were considered and they were modelled using the finite element method
(FEM). The ultimate bearing capacity was obtained by FEM, and was compared with the results
achieved from the GEP equation, and both were compared to the respective experimental results. It
was evident from the results that the majority of values obtained from GEP were closer to the real
experimental data than those obtained from FEM. This demonstrates the accuracy of the predictive
equation obtained from GEP for these types of CFST column.

Keywords: confinement of concrete; CFST composite column; artificial intelligence; gene-expression
programming; hybrid techniques; finite element method (FEM)

1. Introduction

Analysis of previous experimental tests reveals that there are some key parameters
impacting both performance and strength of concrete-filled steel tube (CFST) columns
which are length to diameter ratio, wall thickness, and the interaction between steel
tube and concrete [1–3]. In recent years, applying artificial intelligence (AI) techniques
such as artificial neural network (ANN), genetic programming (GP), and gene expression
programming (GEP) to predict and optimize engineering problems, has become very
popular. Usually, this is because the AI approaches are faster and with less complexity in
comparison with the finite element analysis (FEA). The external and local imperfections,
boundary conditions, and residual stresses could be perfectly simulated by FEA. It provides
load-deflection curves and determines the strain and stress at each stage; however, the
accuracy of prediction by FE models is highly impacted by input elements, some of which
cannot be modelled thoroughly [4]. Artificial intelligence (AI) techniques and particularly
the gene expression programming (GEP) trump the FEA methods in terms of ease and
speed of analysis, and better accuracy in predictions and optimizations specifically in
obtaining the ultimate bearing capacity of CFST columns [5–7].

In CFST columns, concrete provides a radial lateral pressure to the steel tube. Besides,
the steel tube supports concrete from spalling by means of confinement. In addition, the
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concrete core avoids inward buckling of the steel. Therefore, ductility and strength of these
columns are usually high. Furthermore, the confinement of concrete in circular columns
is more efficient compared to other types of sections which results in a better interaction
and less slip between steel tube and concrete. It is consequently can lead to a higher axial
strength and a better structural integrity [8,9].

There is a few research which focused on the analysis of the CFST composite columns
using artificial intelligence (AI) techniques. In the previous study [10] an extensive data col-
lection was performed and they were analyzed by GEP. A valuable equation was generated
to estimate the ultimate strength of the CFST columns and it was optimized afterwards [1].
Most studies in civil engineering are based on experimental work and numerical analysis
using the finite element method (FEM). Normally, using an equation-based analysis is less
time consuming and less costly than the laboratory tests and computational modelling and
analysis. Therefore, this study tried to ensure that the proposed GEP-based equation could
be reliable to be used in prediction of the bearing capacity of CFST composite columns.
Furthermore, in order to show fidelity of the results from the GEP equation, in addition
to comparison of them with the finite element analysis (FEA), the outcomes were also
compared with the experimental ones in the literature.

In previous research [1,10], 303 samples of CFST columns were collected from literature
and they were trained and tested using GEP. The assessment was performed five times
and each time led to an equation. The equations were classified based on the coefficient of
determination (R2) and the one with the closest R square to 1 was picked up for the further
analysis. Then the GEP prediction equation has been optimized using AI optimization
techniques. In this research, however, 32 different samples of those were collected in the
previous research are considered with high-strength concrete but still within the range of
the previous study. They are numerically modelled and analyzed to obtain their ultimate
bearing capacity for the comparison purpose

FEM is a tool for numerical analysis which can model different types of composite
columns. It could be a useful method in many of such cases specifically in the prediction
of ultimate bearing capacity. However, after applying AI techniques for the composite
columns [11–14], these novel methods were presented more promising results compared
with the results of the FEA. Recently, AI techniques such as ANN and GEP are widely being
used in the civil engineering to predict and optimize various criteria in this regard [15–21].
Following this, conventional mechanical calculations and also numerical analysis can be op-
timized by these intelligent methods following trends observed from recent reports [22–37].
Nevertheless, there is lack of research in the prediction of load bearing capacity or the com-
pressive strength of composite columns specifically CFST columns with the AI approaches.

2. A Brief Background of Gene Expression Programming (GEP) and Finite Element
Analysis (FEA)

Recently, GEP has gained recognition among civil engineers. In fact, it has shown
a good capability in prediction of some engineering problems with an acceptable accu-
racy [38]. Table 1 indicates a list of recent studies using AI approaches together with
the numbers of samples and the analyzed parameters. In solving structural engineering
problems, AI has become quite popular recently, specifically in prediction of the ultimate
bearing capacity of composite columns [39–41].

GEP benefits from two main chromosomes, and the expression tree (ET) provides
solutions for removing the limitations of two older algorithms. The codifications are
shown in the form of a string in GEP, which is in fact obtained from Karva programing
language and can present a behavior like ETs. One of the interesting functions of GEP is
that it can present its own models using mathematical equations. In fact, mathematical
equations create relation between independent parameters. The GEP modeling process
begins with the random creation of chromosomes for determined numbers, which follows
Karva language (Karva is a symbolic language to introduce chromosomes). These symbolic
chromosomes should be then defined as trees with different size and shapes (expression
trees). These points are investigated by the functions that are responsible for controlling

400



Appl. Sci. 2021, 11, 10468

models and their adaptability. These functions have different types that can be defined by
different criteria [10,19,38].

Table 1. Review studies for application of artificial intelligence (AI) for the composite columns.

Technique Input Output Description Reference

GEP D, t, fy, fc, L, tf,ff, Ef P 92 FRP-CFST columns [39]
ANN D, t, fy, fc, L P 633 CCFST columns [40]
GEP D, t, fy, fc, L P 314 CCFST columns [21]
ANN D, t, fy, fc, L P 272 CCFST columns [33]
ANN D, t, fy, fc, L P 205 CFST columns [42]
SVM B, t, fy, fc, L, Ec, Es P 180 SCFST columns [34]

ANFIS-GA; ANFIS-PSO D, t, tp, fy, fc, L P 57 steel Y-section columns [35]
ANN fc, L, D, tf, Ef, εfu, εcc P 465 FRP-CCFST columns [36]

GP fc, L, D, tf, Ef P 832 FRP-CCFST columns [37]

D:diameter; t: thickness; fy: yield stress of steel tube; fc: concrete compressive strength; L: length; tf: thickness of ply multiplied by FRP
layers; ff: tensile strength of FRP; Ef: modulus of elasticity for FRP, B: width; Ec: concrete modulus of elasticity; Es: steel modulus of
elasticity; tp: thickness of the plate εfu: ultimate strain of FRP sheet; εcc: strain of confined column; GEP: gene expression programming;
ANN: artificial neural network; SVM: support vector machine; ANFIS: adaptive neuro-fuzzy inference system; GA: genetic algorithm; PSO:
particle swarm optimization.

On the other hand, a lot of scholars applied numerical methods to model and assess
the mechanical behavior of CFST columns since experimental investigations are costly and
time-consuming, and also have some limitations such as materials preparation [4,43–45].
In some of these studies, comparisons were made between the results of ultimate bearing
capacity achieved from the FEA and the outcome reached by the experimental tests. They
indicated a good agreement with the results obtained by FEA methods [46,47]. Neverthe-
less, it is believed that the GEP equation, generated from the previous study [10], is able to
predict the maximum strength of CFST columns with a better accuracy compared to the
FEA. Therefore, this study presents a valuable comparison between the methods which
can be beneficial for the engineers to calculate the ultimate load bearing capacity faster and
more accurately.

3. Prediction of Bearing Capacity of Concrete-Filled Steel Tube (CFST) Columns by
Finite Element Analysis (FEA)

3.1. Brief Introduction

The accuracy of prediction from FEA is significantly impacted by input parameters,
specifically selection of appropriate concrete model [4]. Moreover, there could be slip
between two connected materials with different properties although a fully shear connec-
tion has to be assumed and simulated. In order to demonstrate the superior accuracy of
predictions based on the GEP equation (Equation (1)) [10], 32 CFST columns were collected
from recent literature and numerically modelled using FEA. Figure 1 shows a summary
of the process of this modelling. As is evident, first of all, the data were collected for
modelling and then, in order to achieve trustworthy results, convergence and mesh studies
were performed for each column separately and after that the models were analyzed using
ABAQUS [48].

Pexp = (
√

d0 × (2 × d1) + (d4 × (
√

d1 − (6.219 − d3))) + [(8.078 × d4) + (0.626 × d2)]/tanh(−2.831) (1)

where: d(0) = fC(MPa), d(1) = D (mm), d(2) = L (mm), d(3) = t (mm),d(4) = fy (MPa).
Even though tremendous effort was previously made to model concrete-filled steel

tubular column using FEA, this methodology may not be helpful in specific cases, par-
ticularly while assuming quick development and usage of thin-walled steel tube or the
high-strength concrete [4,49,50]. FEA is performed according to the circular CFST (CCFST)
specimens from the numbers of studies [51–56] which carry different geometries, material
properties, boundary and support conditions, and loading functions. However, for the AI
investigation, all of them were considered to be in the range of selected parameters. For the
ultimate strength of the CFST columns, 1242.2 kN to 9187 kN was considered and, 36.2 MPa
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to 193.3 MPa was chosen for the concrete compressive strength. For the columns’ length
and diameter, 200 mm to 756 mm and 114.3 mm to 219.1 mm were considered respectively.
In addition, the range of 2.5 mm to 10 mm was selected for the thickness, and the yield
stress of steel tube is considered as 227 MPa to 428 MPa.

 

Figure 1. Diagram of finite element analysis (FEA) of the concrete-filled steel tube (CFST) columns.

3.2. FE Modelling and Analysis

Thirty-two CFST samples from literature [51–60] were collected and their specifications
summarized in Table A1 (Appendix A). As is obvious from Table A1, different parameters
such as diameter (D), length (L), thickness (t), length to diameter ratio (L/D), diameter
to thickness ratio (D/t), yield stress of the steel tube (fy), and the concrete compressive
strength (fc), the modulus of elasticity of concrete (Ec), the modulus of elasticity of the
steel tube (Es), and the Poisson’s ratio (υ) were considered. Developing new techniques to
analyze, assess, and predict the behaviour of composite columns is usually challenging for
the engineers [51,61]. For the modelling purpose in FEA, different types of elements were
used; in order to model concrete, a 3D deformable solid element and for the steel tube,
the shell element, were applied. Furthermore, for the end plates, a solid element C3D8R
was applied. For the plastic behaviour of concrete, concrete damage plasticity model is
considered and the specifications are assumed according to the previous similar studies
which led to acceptable results in analysis [43–47,56]. For simulation of the boundary
conditions of models, the reference point was pinned which means the displacement
assumed zero but rotation was free (U1 = U2 = U3 = 0). In addition, for the bottom
end plate, it was assumed that there is no movement in x and y direction (U1 = U2 = 0).
However, in the z direction the column was free to move upwards or downwards to
simulate the loading condition.

In the FE modelling and in order to achieve better simulation of the interaction
between the steel tube and the concrete, the gap element was applied to achieve more
accurate results. This is an element in ABAQUS software which can be inserted and
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adjusted for a better simulation of interaction specifically between two different materials.
The gap element allows the simulation of slip in the way that it prevents the penetration
of one node into the node next to it. The shear stress can be simulated through a friction
coefficient assigned to the gap element [58,59]. Therefore, in order to simulate more
accurately, the interaction between materials was introduced to the system using the
option of “allow separation after contact” and for this purpose, three different contacts
were applied; (1) contact between steel tube and concrete with free normal and tangential
separation; (2) contact between endplate and concrete, which is considered as normal
interaction; and (3) contact between endplate and steel tube, which was applied as the tie
connection to act like solid welding. Considering all processing data, boundary conditions,
interaction between concrete and steel, and the modelling procedures, the final results were
obtained and verified; afterwards they were compared with the artificial intelligence (AI)
results generated from Equation (1).

3.3. The Results of FE Simulation

Some of the CFST samples which were modelled by the finite element method (FEM)
are indicated in Figure 2a,b. In all of the cases, the column was subjected to axial loading
in the center of the column along the Y axis. In this study, different columns with various
L/D and D/t were modelled and their ultimate bearing capacity was obtained accordingly.
The results were compared to the corresponding experimental results and the outcome
is summarized in Table 2. The Pexp shows the experimental load-bearing capacity of the
circular CFST columns while the PFE indicates the result of the FE analysis for the ultimate
bearing capacity of the column. The last column of Table 2 is a comparison between
the experimental results and the finite element results which is reported as an error in
percentage. In some cases, such as model Nos. 4, 5, 10–12, 14–18, 20–24, and 32, the bearing
capacity predicted by FE was less than the measured experimental value of the bearing
capacity. As is evident from Table 2, the ultimate bearing capacity from the experimental
tests and those obtained from the numerical analysis are in good agreement and acceptable
range with the maximum difference equal to or less than 15%.

In the model Nos. 3, 9, 19, 26, 27, the error is equal or even less than 5%; nevertheless,
in the model Nos. 1, 2, 4–6, 8, 10, 12, 13, 15, 17, 21–24, 28, 30–32, the error is between
10–15% which are still in the acceptable range based on previous studies in the literature.
In addition, Figures 3–8 show the axial strength of each finite element model versus the
time which is 1 h for the model numbers 1–31 as they are normal columns and reacted to
loading earlier, and 10 h for the Model No. 32 as it is considered as a huge, tall column
which was taken more time to start reactions. As is evident from Figures 3–8, the maximum
bearing capacity of each model is less than 10,000 kN; however, the running time to reach
the ultimate bearing capacity is different for each model. The 32 FE models were divided
into different groups based on the range of axial load bearing capacity of the column, the
modes of failure, and the running time of the operation of the analysis. For this reason,
model numbers 1–9 have been categorized as one group; model numbers 10–12 and 14
have been put as another group; model numbers 15–20, model numbers 21–25, and model
numbers 26–28 have been categorized as three separated groups. This is due to a different
running time and different range of ultimate axial strength which were resulted from each
model. Nevertheless, the results of the above groups were taken into consideration on a
1-hour basis while the model number 13 and model numbers 29–32 have been indicated in
a separated group and their performance was analyzed within 10 h of running as shown in
Figure 8.
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(b) 

Figure 2. (a) FE modelling of Model No. 1 with PFE 3171 kN; Model No. 2 with PFE 2640 kN; (b) FE modelling of Model
No. 3 with PFE 7919 kN; Model No. 4 with PFE 7928 kN.
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Table 2. Comparison of the experimental results and FE results.

No. Pexp (kN) PFE (kN) Error (FE) (%)

1 2866 3171 11
2 2314 2640 14
3 7837 7919 1
4 9085 7928 13
5 9187 7994 13
6 6915 7946 15
7 7407 8032 8
8 6838 7791 14
9 7569 7890 4

10 1771 1554 12
11 3339 3037 9
12 3501 3050 13
13 4837 4320 11
14 4216 3850 9
15 4330 3812 12
16 4751 4313 9
17 4930 4379 11
18 5254 4738 10
19 2160 2184 1
20 2250 2092 7
21 1242.2 1100 11
22 1425.3 1225 14
23 1637.9 1432 13
24 1943.4 1672 14
25 2866 3088 8
26 2550 2642 4
27 3150 3195 1
28 3400 3926 15
29 3850 4073 6
30 5400 5993 11
31 3338 3854 15
32 8648 7694 11

Figure 3. Axial strength versus time for model numbers 1–9.
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Figure 4. Axial strength versus time for model numbers 10–12 and 14.

Figure 5. Axial strength versus time for model numbers 15–20.
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Figure 6. Axial strength versus time for model numbers 21–25.

Figure 7. Axial strength versus time for model numbers 26–28.
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Figure 8. Axial strength versus time for model numbers 13, 29–32.

4. Results, Comparison, and Discussion of the GEP Equation Outcomes with the
FEA Results

In this section, the data of those 32 samples were input into Equation (1) and the
results were compared with those obtained from the FEA and the outcome summarized in
Table 3. The last two columns in Table 3 present the error between the bearing capacity
obtained from the FEA and the GEP equation with the experimental results. As is evident,
in most of the cases, the ultimate bearing capacity achieved from the GEP equation is
closer to the real data obtained from the experimental test. In five samples (3, 9, 23, 27,
30), FE results were manifest a better prediction of the maximum bearing capacity which
could be due to specific conditions of the composite columns such as lower L/D ratio,
slenderness rate, and the strength of the materials. Therefore, in these special cases, the
prediction from the GEP equation may not be good enough due to wide ranges of input
datasets. Nevertheless, more than 85% of the predictions by Equation (1) showed very
good agreement with the experimental results. This proves the feasibility of this equation
and the GEP approach for estimation of the maximum bearing capacity of such composite
columns. If the maximum and minimum strength of the CFST columns resulting from
the experimental work and their corresponding values from FEA and GEP are taken into
consideration, it can be seen that the column sample No. 5 with the maximum experimental
bearing capacity of 9187 kN has the closest predicted value of 8929.05 kN from the GEP
equation. On the other hand, the column No. 21 with the minimum experimental bearing
capacity of 1242.2 kN also has the most accurate value of 1242.01 kN from its corresponding
GEP equation result. Therefore, the GEP-based equation yields very good results compared
to those from the FEA.

Furthermore, according to the Table 3, model numbers 3, 9, 23, 27, and 30 presented a
closer value of ultimate bearing capacity to the corresponding experimental outcome in the
FEA instead of AI analysis using the GEP equation. In fact, this is because these models
are short columns, stub columns, or composite column with a low or a very high strength
materials, or they are the columns subjected to a kind of impact loading; Therefore, the
prediction by the GEP equation led to less accuracy compared to the FEA. Nevertheless, as
can be clearly inferred, the GEP equation results for 27 models out of 32 models indicated
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more accurate prediction and this shows that the generated prediction equation from GEP
is sufficiently capable to predict the ultimate bearing capacity of such columns.

Table 3. Comparison of the GEP equation results and the FEA results with the experimental
test results.

No. Pexp (kN) PFE (kN) PGEP (kN) Error (FE) (%) Error (GEP) (%)

1 2866 3171 3151.69 11 9.9
2 2314 2640 2113.89 14 8.6
3 7837 7919 6894.05 1 12.0
4 9085 7928 8798.49 13 3.2
5 9187 7994 8929.05 13 2.8
6 6915 7946 6637.38 15 4.0
7 7407 8032 6849.84 8 7.5
8 6838 7791 6391.7 14 6.5
9 7529 7890 6834.93 4 9.7
10 1771 1554 1815.07 12 2.5
11 3339 3037 3086.68 9 7.6
12 3501 3050 3331.11 13 4.9
13 4837 4320 4438.7 11 8.2
14 4216 3850 4098.37 9 2.8
15 4330 3812 4549.91 12 5.1
16 4751 4313 4587.73 9 3.4
17 4930 4379 4808.45 11 2.5
18 5254 4738 5756.6 10 9.6
19 2160 2184 2160.52 1 0.0
20 2250 2092 2143.02 7 4.8
21 1242.2 1100 1242.01 11 0.0
22 1425.3 1225 1625.42 14 14
23 1637.9 1432 2022.22 13 23
24 1943.4 1672 2213.29 14 13.9
25 2866 3088 3077.52 8 7.4
26 2550 2642 2465.14 4 3.3
27 3150 3195 2852.55 1 9.4
28 3400 3926 3031.56 15 10.8
29 3850 4073 3672.81 6 4.6
30 5400 5993 4703.31 11 12.9
31 3338 3854 3569.71 15 6.9
32 8648 7694 8870 11 2.6

5. Concluding Remarks

Prediction of the bearing capacity of CFST columns is always important for the
engineers. Due to some limitations in analysis by means of FEA, much efforts have been
expended in attempts to find some other feasible and less time-consuming methods for
prediction of the maximum capacity that CFST columns can withstand, and among them
using AI techniques are widely being considered. This is because AI approaches such
as GEP in most of the cases have shown better results in comparison with the FEA. In
this study, 32 CFST columns, in the acceptable specification range of the AI-GEP analysis,
were modeled and analyzed using the FEM. The results obtained from ABAQUS software
were compared with the outcomes achieved from the GEP-based equation (Equation (1)).
According to the results:

• A very good agreement is evident between the experimental outcomes and the GEP
equation results with a less than 14% difference of the estimated bearing capacity for
the majority of the cases;

• More than 85% of the results from Equation (1) were in accordance with the experimen-
tal results which proves the suitability and workability of this GEP-based equation for
the prediction of the ultimate bearing capacity of the CFST columns;

• Only five models showed considerable differences in predicted values by GEP com-
pared to the experimental data which could be because of the specific conditions of
the composite columns such as low L/D ratio, slenderness rate, use of very high or
very low strength for materials and the application of heavy loads to the columns.
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It is possible to further study the CFST columns with the special conditions as ex-
plained above and find a more suitable GEP-based equation for those columns by training
and testing more data. For this reason, it is recommended to set limitations on the specifi-
cations of the CFST columns to provide an equation with better prediction in comparison
with the experimental results.
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Appendix A

Table A1. Specification of the samples for the FEA.

No.
Ref.
No

D (mm) L (mm)
t

(mm)
L/D D/t

fy

(MPa)
Es

(GPa)
f’c

(MPa)
Ec

(GPa)
υ

1 [25] 114.3 210 6.3 1.84 18.14 428 209 173.5 63 0.3
2 [25] 114.3 250 3.6 2.19 31.75 403 213 184.2 63 0.3
3 [25] 219.1 600 5 2.74 43.82 380 205 185.1 66 0.3
4 [25] 219.1 600 10 2.74 21.91 381 212 185.1 66 0.3
5 [25] 219.1 600 10 2.74 21.91 381 212 193.3 67 0.3
6 [25] 219.1 600 6.3 2.74 34.78 300 202 163 62 0.3
7 [25] 219.1 600 6.3 2.74 34.78 300 202 175.4 58 0.3
8 [25] 219.1 600 6.3 2.74 34.78 300 202 148.8 54 0.3
9 [25] 219.1 600 6.3 2.74 34.78 300 202 174.5 56 0.3
10 [6] 168.6 645 3.9 3.83 43.23 363 206 36.2 33 0.3
11 [6] 168.6 645 3.9 3.83 43.23 363 206 95.8 33 0.3
12 [6] 164.2 652 2.5 3.97 65.68 377 206 158.46 33 0.3
13 [6] 189 756 3 4.00 63.00 398 206 158.46 33 0.3
14 [6] 168.6 648 3.9 3.84 43.23 363 206 165.49 33 0.3
15 [6] 169 645 4.8 3.82 35.21 399 206 167.87 33 0.3
16 [6] 168.7 645 5.2 3.82 32.44 405 206 158.75 33 0.3
17 [6] 168.8 650 5.7 3.85 29.61 452 206 151.91 33 0.3
18 [6] 168.1 645 8.1 3.84 20.75 409 206 158.75 33 0.3
19 [6] 165 500 2.81 3.03 58.72 350 212 67.94 67 0.3
20 [6] 165 500 2.76 3.03 59.78 350 212 67.94 67 0.3
21 [6] 114.3 342.9 3.35 3.00 34.12 287.33 212 86.21 67 0.3
22 [6] 114.3 342.9 6 3.00 19.05 342.95 212 56.99 67 0.3
23 [6] 114.3 342.9 6 3.00 19.05 342.95 212 86.21 67 0.3
24 [6] 114.3 342.9 6 3.00 19.05 342.95 212 102.43 67 0.3
25 [6] 114.3 200 6.3 1.75 18.14 428 212 164.35 67 0.3
26 [7] 200 600 1.945 3.00 102.83 227 212 52.7 67 0.3
27 [7] 200 600 1.945 3.00 102.83 227 212 67.7 67 0.3
28 [7] 200 600 1.945 3.00 102.83 227 205 74.4 58 0.3
29 [7] 260 780 1.945 3.00 133.68 227 205 52.7 58 0.3
30 [7] 260 780 1.945 3.00 133.68 227 205 85.4 58 0.3
31 [14] 299 848 1.68 2.84 177.98 267.5 205 47.2 58 0.3
32 [26] 273 4195 10 15.37 27.30 412 205 180 58 0.3
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Abstract: With the widespread availability and pervasiveness of artificial intelligence (AI) in many
application areas across the globe, the role of crowdsourcing has seen an upsurge in terms of impor-
tance for scaling up data-driven algorithms in rapid cycles through a relatively low-cost distributed
workforce or even on a volunteer basis. However, there is a lack of systematic and empirical ex-
amination of the interplay among the processes and activities combining crowd-machine hybrid
interaction. To uncover the enduring aspects characterizing the human-centered AI design space
when involving ensembles of crowds and algorithms and their symbiotic relations and requirements,
a Computer-Supported Cooperative Work (CSCW) lens strongly rooted in the taxonomic tradition of
conceptual scheme development is taken with the aim of aggregating and characterizing some of
the main component entities in the burgeoning domain of hybrid crowd-AI centered systems. The
goal of this article is thus to propose a theoretically grounded and empirically validated analytical
framework for the study of crowd-machine interaction and its environment. Based on a scoping
review and several cross-sectional analyses of research studies comprising hybrid forms of human
interaction with AI systems and applications at a crowd scale, the available literature was distilled and
incorporated into a unifying framework comprised of taxonomic units distributed across integration
dimensions that range from the original time and space axes in which every collaborative activity
take place to the main attributes that constitute a hybrid intelligence architecture. The upshot is
that when turning to the challenges that are inherent in tasks requiring massive participation, novel
properties can be obtained for a set of potential scenarios that go beyond the single experience of a
human interacting with the technology to comprise a vast set of massive machine-crowd interactions.

Keywords: conceptual framework; crowd-machine hybrid interaction; design implications; hybrid
intelligence; survey; taxonomy

1. Introduction and Context

Crowd-centered design is far from a trivial undertaking, and this is even more challeng-
ing when trying to implement hybrid intelligence models incorporating human cognition
into algorithmic-crowdsourcing workflows [1]. In fact, crowd-algorithm interaction has
recently reached a certain level of maturity, and a vast range of crowd-powered algorithms
have successfully been applied in areas like medical image segmentation [2] and games with
a purpose (GWAP) [3]. In these instances, crowds of untrained (non-expert) online workers
have proved to provide similar results in terms of detection accuracy when compared to
other groups such as domain knowledge experts, medical students, and experienced crowd
workers. Further investigations in this burgeoning domain have also shown that the use of
crowd-algorithm hybrids can outperform crowd-only techniques in accomplishing tasks
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like examining protein interactions and chemical reactions that are very common in the field
of network biology [4]. Nonetheless, the taxonomic rationale behind the mass interaction
efforts between crowds and machines as an integrated and complex socio-technical system
is not completely understood, and there is a need to find novel ways of characterizing
this body of work in its whole range. To mitigate this brittleness, a review of the main
activities and contexts in which such crowd-AI ensembles have been investigated was
carried out to develop a taxonomic scheme as comprehensive as possible to capture the
nuances that are unique in comparison with other types of interactions between humans
and computational systems.

For more than three decades, taxonomy development has been seen as a crucial part of
socio-technical research within the field of CSCW [5]. To some extent, taxonomies provide
a useful guide and theoretical foundation for assessing technological developments due to
their capability to organize complex concepts and knowledge structures into understand-
able formats [6]. By going back in the course of time, one may find several taxonomic
approaches that formed the basis for the understanding of the task types that are currently
present in many crowdsourcing systems. For a review of prior taxonomic proposals, the
reader is referred to Harris and co-authors [7]. In retrospect, McGrath [8] proposed a cir-
cumplex model of group tasks intended to characterize their nature (e.g., decision-making)
into four quadrants that reflect the processes involved in their execution (i.e., generate,
choose, negotiate, and execute). When moving even further back in history, Shaw [9]
asserted the importance of aspects like task difficulty and intrinsic interest which are seen
as foundational in several conceptual frameworks proposed to characterize the broader
crowdsourcing phenomena (e.g., [10,11]). According to some authors, Johansen’s [12]
time-space matrix is a landmark in the field of CSCW and inspired the development of
descriptive models such as the Model of Coordinated Action (MoCA) [13], which frames
each collaborative work arrangement on a continuum of synchronicity (synchronous vs.
asynchronous), physical distribution, scale (i.e., number of participants), number of com-
munities of practice involved, nascence and planned permanence of coordinated actions,
and turnover. More recently, Renyi and colleagues [14] executed a set of data collection
and processing procedures involving structured interviews in order to create a taxonomic
scheme covering the components related to the collaboration technology support in home
care work, while other authors have devoted most of their efforts to the design of inno-
vative taxonomic interfaces [15]. In addition, there is now an emerging body of research
documenting the different levels of hybrid intelligence in human-algorithm interactions.

From a more generic view, the concept of hybrid intelligence has been defined as
the “combination of human and machine intelligence, augmenting human intellect and
capabilities instead of replacing them and achieving goals that were unreachable by either
humans or machines” [16]. Stemming from this definition, experiments have shown that
the time is now appropriate to develop a new taxonomic proposal that can be used for
planning and assessing activities among humans (crowds) and algorithms in a hybrid
mode. To the best of the authors’ knowledge, no other previous work has specifically
focused on crowd-AI interaction, although there are some research works addressing
the particularities of hybrid human-AI intelligence at a taxonomic level. For example,
Pescetelli [17] stressed the role of algorithms as assistants, peers, facilitators, and system-
level operators. On the other hand, Dellermann and associates [18] characterized the design
space of hybrid intelligence systems and recalled the importance of the task itself and its
characteristics as a central aspect of collaboration among humans and machines. In the
same vein, Dubey et al. [19] proposed a taxonomy of human-AI teaming comprised of
task properties, trust-related aspects, teaming characteristics (e.g., shared awareness), and
the learning paradigm involved. However, these taxonomies have hitherto not yet fully
explored the particularities of hybrid crowd-AI systems and their use cases in real-world
applications. Through a qualitative inspection of conceptual frameworks, artifacts, case
studies, and empirical results comprising some type of human-AI hybrid interaction at a
massive scale, this article’s contribution lies in systematically structuring a set of attributes

416



Appl. Sci. 2023, 13, 2198

and characteristics into an integrated taxonomy that arises as a continuum of co-evolving
crowd-algorithmic partnerships intended to solve complex problems that neither humans
nor machines can solve separately.

The article is set out as follows. After a discussion of background work in Section 2, a
description of the methodological steps follows until the development of a taxonomy for
hybrid crowd-AI systems is provided in Section 3. The resulting taxonomic framework is
then presented and discussed in detail in Section 4, while Section 5 is concerned with the
validation of the taxonomy proposed. Finally, possible extensions of this work are suggested
in the Section 6 by looking toward the future of hybrid systems from a socio-technical view
of human-centered systems design.

2. Background and Scope

The point of departure for building the taxonomy presented in this article was the
existing work found on the intersectional space between human-computer interaction (HCI)
and AI from a crowdsourcing perspective. Although the coining of the term ‘crowdsourcing’
took place in the mid-2000s, some may argue that its origin is rooted in the seminal
work of the physicist and astronomer Denison Olmsted, who used news media as a
crowdsourcing strategy for obtaining accurate observations on the Leonid meteor shower
that was witnessed across the United States in 1833 [20]. What is interesting to note is
that the sequential steps and general techniques used by Olmsted about nineteen decades
ago constitute the basis for most of the current crowdsourcing applications. Aligned with
this goal, a variety of taxonomies and conceptual frameworks have been developed to
better characterize the way as information technology (IT)-enabled crowdsourcing operates.
Among the known classifications of crowdsourcing activities, Corney and co-authors [21]
were some of the first to frame this phenomenon from a taxonomic point of view by
incorporating the nature of the crowd, the payment mechanisms or lack thereof, and
the type of task into an integrated framework. In line with this, Rouse [22] proposed a
taxonomy that comprises the different forms of intrinsic and extrinsic motivation that can
lead to a successful crowdsourcing experience (e.g., social status, altruistic behavior, and
personal achievement). This taxonomic proposal also addresses a set of aspects that are
specific to the nature of the crowdsourcing task being undertaken by encompassing the
expertise and complexity that are directly or indirectly involved in such initiatives. On
the basis of insights from the history of group support systems, one would notice similar
points to McGrath’s [8] task circumplex taxons taking into consideration the different
task types that can be executed by individuals in a group structure, which may include
decision-making, idea generation and information gathering to name just a few examples.

To an extent, this research strand led to the proliferation of several taxonomies incor-
porating task-related elements (e.g., [23–30]). Consistent with the task properties discussed
in most of these studies, a cursory look at the literature reveals certain commonalities
related to crowd attributes (e.g., reputation), requester features (e.g., incentivization), and
platform facilities such as aggregation and payment mechanisms [29]. Other research
works have focused specifically on internal forms of crowdsourcing [31] or even on the use
of crowdsourcing as a taxonomy development strategy by itself [32]. On a more generic
level, Modaresnezhad and colleagues [10] made a clear distinction between the IT-enabled
crowdsourcing requirements in business and non-business contexts by basing their pro-
posal on the four collective intelligence “genes” proposed by Malone et al. [23]. However,
these taxonomies fail to fully account for the hybrid nature of crowd-AI interaction and
thus are unable to capture the variety of interactions and relations that occur when using a
hybrid intelligence system.

During the last few years, the advances in the development of AI technologies have
been silently leveraging the capacity of a large pool of crowd workers worldwide who
provide data on a daily basis and thus contribute to the improvement of several models
on a scale that had never been seen before. In fact, this intertwinement of algorithms
with crowdsourcing workflows brought important advantages in a multiplicity of set-
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tings. Prior work has employed these principles and proved to be effective in detecting
accessibility problems on public surfaces (e.g., sidewalks) through the use of street-level
imagery [33]. In the same vein, Zhang and associates [34] proposed a system for identifying
urban infrastructure damages, such as fallen street signs, when AI-based solutions fail
to recognize them. These architectures have also been applied in the context of video
object segmentation [35], cultural heritage damage identification [36], endoscopic image
annotation [37], and historical portrait identification [38]. In addition, weaving together
crowd- and AI-powered techniques has also resulted in positive outcomes in real-time and
remote on-demand assistance [39]. In the literature, there are also examples of sensing
systems embedded in real-world environments (e.g., domestic spaces) that resort to built-in
cameras and crowdsourcing interfaces for dynamic image labeling [40]. That is, crowd-AI
hybrid systems are now able to engage humans and machines through a massively collabo-
rative joint action that spans research fields and temporal and geographical boundaries [41].
Drawing from previous studies on the characterization of hybrid intelligence systems from
a taxonomic viewpoint [18], the work conducted herein expands upon what has been
previously investigated by examining the many facets of crowd-machine hybrid systems
and thus identifying key thematic elements derived from the literature.

3. Methodological Approach

Drawing on a literature review of extant studies on human-AI interaction with a crowd-
in-the-loop, this article outlines a particular set of arrangements in which the research on
this burgeoning area can inform the development of future hybrid intelligence systems
while contributing to understanding the socio-technical practices that require humans
and machines working together towards a common goal. To this end, this work takes a
human-centered AI approach [42] guided by the evidence-based taxonomy development
method proposed by Nickerson and colleagues [6], as depicted in Figure 1. Synoptically,
the practice of taxonomic classification can be described as a full-fledged endeavor in
fields like astrophysics [43] and genetics [44] that usually consists of a formal semantic
model with empirically or conceptually derived dimensions and characteristics that are
exhaustive and mutually exclusive by nature [6]. At their structural level, taxonomies may
have hierarchical or non-hierarchical configurations [45] and be constantly subjected to
updating revisions [15]. Building on these methodological elements, the present study
draws on the HCI body of literature to create a taxonomy of crowd-AI hybrids and thus aid
researchers, practitioners, and anyone concerned with the understanding and development
of these technologies. With this in mind, a step forward is made by distilling a variety and
breadth of conceptual units from studies that seek to address the complementary way in
which human crowds interact with AI systems. Essentially, this study sheds light on the
socio-technical dimensions of crowd-AI integration by acknowledging that both social and
technical aspects must be taken into account to understand the functioning of a hybrid
system as a whole.

In this study, a novel set of heuristics and theoretical aspects are proposed as a founda-
tional structure for future research based on a scoping review that follows the guidelines
of evidence-based practice [46]. From a methodological perspective, this approach seeks
to systematically categorize research into a classification scheme that is then used as a
foundation for taxonomy construction and validation. To operationalize the taxonomic
process, a phenetic approach [47] was used throughout a set of iterative cycles until the
ending conditions were met. To this end, this article explores the vast space covered by the
literature on hybrid crowd-AI systems grounded in case studies, ethnographic fieldwork,
conceptual frameworks, surveys, semi-structured interviews, experimental work, mixed
methods, and technical artifacts (e.g., algorithms). The taxonomy-building process followed
the formal definition of Nickerson et al. [6] to create a taxonomy T with “a set of n dimen-
sions Di (i = 1, . . . , n), each consisting of ki (ki ≥ 2) mutually exclusive and collectively
exhaustive characteristics Cij (j = 1, . . . , ki) such that each object under consideration has
one and only one Cij for each Di, or T = {Di, i = 1, . . . ,n|Di = {Cij, j = 1, . . . , ki; ki ≥ 2}}”.
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It is worth noting that the guidelines provided by Nickerson and associates [6] represent
one of the most well-established methodological approaches for taxonomy development
in the field of information systems (IS), as reported in a recent literature review [48]. In
this vein, these guidelines were systematically applied in an effort to make the proposed
taxonomy clear, concise, robust, comprehensive, explanatory, and extendible as nearly as
possible to attend to the conditions advocated by Gerber [49] when addressing the creation
of classification artifacts.

 

Figure 1. Iterative taxonomy development process flow (a) and methodological details underlying
the work undertaken in this study (b). Adapted from Nickerson and co-authors [6].

The first phase of taxonomy development consisted of a descriptive literature analy-
sis [50] to identify rationales for the use of crowd-AI hybrids. This was followed by a sys-
tematic examination of the insights extracted and further categorized into a literature clas-
sification scheme. In fact, this empirical-to-conceptual methodological approach has been a
common procedure for data collection in the taxonomy-building activity (e.g., [51–53]), in-
volving a set of systematic processes that range from a literature search to data filtering and
classification. For taxonomic validation, a conventional approach for corpus construction
was used as previously described in [54]. Essentially, the sample used in this study is an
expanded version of that used in [41]. This was achieved by following a living systematic
review protocol [55], where the search strategy is maintained and updated in a continuous
manner as new studies become available. For the purpose of this review, a simplistic
Boolean query formulation was applied using the following sequence of terms:

((“crowd*-AI” OR “AI-crowd*” OR “crowd*-machine” OR “machine-crowd*” OR “crowd*-computing”) AND (“interact*”))

This study expanded upon a previous corpus to accommodate a new set of possible
settings in which crowd-AI interaction occurs. This was done due to two main reasons.
First, a more recent picture of the state-of-the-art in this domain was needed. To this end,
only papers published in the last five years (2018–2022) as of 17 December 2022 were
inspected. Second, most of the studies considered for taxonomy validation in [41] com-
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prised human-AI interaction at an individual level, while here, the focus is on evaluating
arrangements involving crowds mixed with AI. The present work is also more restrictive in
terms of peer-reviewed studies since this contribution only considered journal articles and
conference papers. From a systematic search for publications indexed by the Dimensions
database, which contains records from diverse digital libraries such as ACM Digital Library,
IEEE Xplore, SpringerLink, and Science Direct with large coverage when compared to
Web of Science and Scopus [56], content types such as adjunct/companion proceedings,
panels, tutorials, book reviews, correspondence articles, introductions to special issues,
doctoral colloquiums and student research competitions, keynote talks, commentaries, and
course summaries were disregarded to ensure high-quality results. The search returned
593 publication records. After initial scrutiny of the titles and abstracts, along with the
removal of papers that did not meet the inclusion criteria, a total of 138 studies were
selected for further appraisal. To be eligible for inclusion, studies had to describe original
research from primary or secondary literature addressing the broader domain of human-
centered AI with a focus on crowd-AI interaction. As can be perceived from Figure 1,
this selection resulted in 25 research studies published in English-written, peer-reviewed
manuscripts (see Appendix A for details). The final set of papers chosen provided a reliable
source of information for testing the taxonomic proposal since they presented a diverse set
of scenarios.

As an integral part of the iterative taxonomy development process proposed in [6], the
meta-characteristic of the taxonomy was determined to be its focus on functional properties
and attributes of hybrid crowd-AI systems. Through a socio-technical lens grounded on the
foundational aspects of crowd computation [57] and its embodiment in hybrid human-AI
systems [58], the definition of this meta-characteristic allowed to frame and guide the
taxonomy development process until the subjective ending conditions previously mentioned
at the level of robustness, comprehensiveness, conciseness, extendibility, and explanatory
nature of the taxonomy were fulfilled. Following the taxonomic work of Landolt and
co-authors [59] on the use of deep neural networks in natural language processing (NLP)
applications, this contribution also tried to meet objective ending conditions to ensure that
each dimension and characteristic within the dimension were exclusive and no new charac-
teristics or dimensions were added in the final iteration. Therefore, the original dimensions
of the taxonomic proposal were validated within a literature matrix in order to verify
whether these dimensions and characteristics are present in the final sample of studies
addressing crowd-machine hybrid interaction. To some degree, the empirical validation of
the taxonomy proposed here is inspired by the work of Straus [60], who took McGrath’s [8]
group task circumplex as the object of evaluation.

4. ‘Inside the Matrix’: In Pursuit of a Taxonomy for Hybrid Crowd-AI Interaction

The availability of crowdsourcing platforms has led many organizations to adopt
them as continuous and highly available sources of data upon which the paradigm of
open innovation [61] is founded and continues to develop. On its most generic level, these
solutions are leveraged by a 24/7 digital workforce and represent a problem-solving and
innovation-driven approach able to shorten the entire product lifecycle [62]. As novel
AI-infused products and features become more and more prevalent and integral to many
everyday life pursuits, the need to incorporate hybrid intelligence in highly complex and
volatile scenarios (e.g., early warning and prompt response) become even more evident
since the complementarity [63] and adaptivity [64] of human and AI-based systems co-
evolving over time “as coequal partners” [65] can be of particular value to suppress each
other’s failures. In this vein, crowdsourcing has been applied to executing tasks such
as obtaining ground-truth human labels [66], gathering ratings for data to be used in
supervised machine learning [67], or even managing portfolio information [68]. In general
terms, Kittur and associates [57] reported that crowd intelligence could be particularly
useful in supervising, training, or even supplementing automation, while AI techniques
can make the crowd more accurate while augmenting human capabilities and interactions
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through machine intelligence. This constitutes the point of departure for the proposal of a
taxonomic framework for crowd-AI interaction, whose dimensions are shown in Figure 2
and briefly described in the following subsections.

 

Figure 2. Taxonomy of hybrid crowd-AI systems. This taxonomic proposal integrates key conceptual
dimensions of the human-centered AI framework introduced in [41] to characterize the configurations
in which crowd-AI interaction occurs within the interplay between human and machine intelligence.

From a taxonomy-building methodological standpoint, the taxonomic design ap-
proach was largely inspired by the Work System Theory as depicted by Alter [69] and
further explored by Venumuddala and Kamath [70], who conducted an ethnographic work
grounded on a set of observations retrieved in an AI research laboratory. In addition, some
elements from the Activity Theory [71] inspired model for assessing CSCW in distributed
settings [72] were also introduced. As a result, a previous human-centered AI frame-
work [41] was revised and extended to highlight the importance of agency and control,
explainability, fairness, common ground, and situational awareness in the design space of
hybrid crowd-AI systems.

4.1. Temporal and Spatial Axes of Crowd-AI Systems

Crowdsourcing can be seen as a gateway to obtain reliable solutions to problems of
varying levels of difficulty when there is an urgent need for quick and prompt action or
even when the development of a game, big-scale application, software module, sketch, etc.,
is required without the strict rigidity to be situated physically close [73]. At the interaction
level, hybrid crowd-AI systems can be able to support real-time crowdsourcing activities
involving chatting and live tracking services, and also those occurring asynchronously, such
as post-match soccer video analysis. In framing this discussion within the time-space matrix
originally described in the context of groupware applications [12], this article concentrates
on the spatio-temporal patterns of human-AI partnerships at a crowd scale. Thus, one
can argue that the notion of space has been reshaped to incorporate the provision of
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localization and navigation information into crowdsourcing settings as a way of exploring
the full potential of local-and-remote on-demand real-time response in tasks like road data
acquisition [74] and local news reporting [75]. That is, crowd workers can be physically or
virtually distributed in a dispersed or co-located manner or even “synchronize in both time
and physical space” [76]. As some scholars noted, the level of engagement in both paid
and non-profit crowdsourcing communities can also be evaluated, taking into account the
daily-devoted time of participants, periodicity of interactions, and activity duration [77]. In
this regard, the contribution time and availability of the crowd constitute key information
sources in crowd-AI hybrid settings.

4.2. Crowd-Machine Hybrid Task Execution and Delegation

The rapid progress of AI-based technology has led to novel ways of motivating
humans to delegate tasks to AI for further fulfillment. Bouwer [78] proposed a four-
quadrant taxonomic model for AI-based task delegation and stressed the importance of
emotional/affective states as key deterministic factors for task delegation. In line with this,
Lubars and Tan [79] mentioned the relevance of trust, motivation, difficulty, and risk as
influential determinants of human-AI delegation decisions. In particular, trust and reliance
assume a special significance in terms of delegation preferences. The strategic line behind
most of the tasks that are commonly crowdsourced in current digital labor platforms is
still grounded in microtask design settings [80], although some recent attention has been
given to macrotasking activities (e.g., creative work) which involve crowd-powered tools
designed to support computer-hard tasks that need specialized expertise and thus cannot
be executed by AI algorithms in an effective manner [81]. By focusing on the task properties
and attributes in crowdsourcing, Nakatsu and co-workers [27] introduced a taxonomy that
classifies the structure (well-structured vs. unstructured) and level of interdependence
(independent vs. interdependent) together with a third binary dimension involving the
degree of commitment (low vs. high) required to accomplish a task.

Going back to the levels of complexity that may be present in crowdsourcing tasks,
Hosseini et al. [29] briefly divided them into two main categories: simple and complex.
Using this rationale, microtasks have been largely described as being simple for crowd
workers to perform well and easily in the sense that they involve a lesser degree of context
dependence [82]. Furthermore, these self-contained tasks are usually short by nature and
take little time to finish. Zulfiqar and co-authors [83] go even further by underlining that
microtasks do not require specialized skills, which enable any worker to contribute in
a rapid and cognitive effortless manner. Extrapolating to more complex crowdsourcing
processes, many forms of advanced crowd work have emerged throughout the years, and
there is now a renewed focus on task assignment optimization involving algorithmically-
supported teams of crowd workers acting collaboratively [84,85]. While the possibilities
for optimization are manifold across a number of different task scenarios, robust forms of
hybrid crowd-machine task allocation and delegation are needed to yield accurate results
and reliable outcomes not only for crowd workers acting at the individual level but also in
terms of team composition and related performance.

4.3. Contextual Factors and Situational Characteristics in Crowd-Computing Arrangements

Any crowd-machine hybrid interaction has its own contextual characteristics and
specificities. Dwelling on this issue, one may wish to claim that crowdsourcing settings are
highly context-dependent and situational information is particularly critical to achieving
successful interactions in a crowd-AI working environment since a crowd can be affected by
contextual factors such as geo-location, temporal availability, and surrounding devices [86].
Considering the context from which a crowd worker is interacting with an intelligent system
can help to personalize the way the actions are developed and thus improve processes, such
as task assignment [87] while providing resources and contextually relevant information
tailored to the needs of each individual based on content usage behaviors [42] and other
forms of context extraction. This involves a set of environmental, social, and cultural
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contexts [88] that come with fundamental challenges for hybrid algorithmic-crowdsourcing
applications in terms of infrastructural support for achieving efficient and accurate context
detection and interpretation. When designing a crowd-AI hybrid system, user-generated
inputs must be handled adequately in order to filter the relevant information and better
adapt the interaction elements and styles to each particular case [89]. In hindsight, this
is also somewhat related to the notions of explainability and trust in AI systems [90]
since the trustworthy nature of these interactions will be affected by the quality of the
contextual information provided and the degree to which a user perceives the AI system
they are interacting with as useful for aiding their activities. In such scenarios, aspects
like satisfaction shape the internal states of the actors [72] and can constrain the general
performance of the crowd-AI partnerships if the system does not meet the expectations of
the users.

4.4. Deconstructing the Crowd Behavior Continuum in Hybrid Crowd-Machine
Supported Environments

To some extent, both paid and non-paid forms of crowdsourcing have served as
“Petri dishes” for many behavioral studies involving experimental work [91]. A crowd
can differ in terms of attention level, size, emotional state, motivation and preferences,
and expertise/skills, among many other characteristics [86]. In this vein, Robert and
Romero [92] found a considerable impact of diversity and crowd size on performance
outcomes while testing the registered users of a WikiProject Film community. As such,
online crowd behaviors are volatile by nature and vary given the contextual factors and
situational complexity of the work, along with the surrounding environment of its members.
Neale and co-authors [72] briefly explained the importance of context for creating a common
ground which can be understood as the shared awareness among actors in their joint
activities, including their mutual knowledge. That is, sustaining an appropriate shared
understanding can constitute a critical success factor for achieving a successful interaction
when designing intelligent systems [93]. This also applies to the range of crowd work
activities that involve self-organized behaviors and transient identities [94], which imply a
reinforced need for effective quality control mechanisms (e.g., gold standard questions) in
crowd-AI settings [40]. Furthermore, some crowds are arbitrary, while others are socially
networked or organized into teams that coalesce and dissolve in response to an open call
for solutions where the nature of the task being crowdsourced is largely dependent on
collective actions instead of individual effort only. In some specific cases, these tasks are non-
decomposable and involve a shared context, mutual dependencies, changing requirements,
and expert skills [95,96]. In this vein, some prior research has revealed the presence of “a
rich network of collaboration” [97] through which the crowd constituents are connected
and interact in a social manner, although there are many concerns about the bias introduced
by these social ties. Seen from a human-machine teaming perspective, imbalanced crowd
engagement [98], conflict management [99], and lack of common ground [100] are also key
aspects that must be taken into account in such arrangements.

4.5. Hybrid Intelligence Systems at a Crowd Scale: An Infrastructural Viewpoint

As AI-infused systems thrive and expand, crowdsourcing platforms continue to play
an active role in aggregating inputs that are used by companies and other requesters around
the globe toward the ultimate goal of enabling algorithms with the ability to cope with com-
plex problems that neither humans nor machines can solve alone [101]. However, designing
for AI with a crowd-in-the-loop includes a set of infrastructure-level elements such as data
objects, software elements, and functions that together must provide effective support
for actions like assigning tasks, stating rewards, setting time periods, providing feedback,
evaluating crowd workers, selecting the best submissions, and aggregating results [102].
To realize the full potential of these systems, online algorithms can be incorporated into
task assignment optimization processes for different types of problems involving simple
(decomposable), complex (non-decomposable), and well-structured tasks [85]. By show-
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ing reasonable results in terms of effectiveness, some algorithms have been proposed to
organize teams of crowd workers as cooperative units able to perform joint activities and
accomplish tasks of varying complexity [95,96,103]. From an infrastructural perspective
fitted into the taxonomy proposed in this article, the contribution of this study builds
on Kamar’s [104] work to stress the importance of combining both human and machine
capabilities in a co-evolving synergistic way.

Taken together, crowd and machine intelligence can offer a lot of opportunities for
predicting future events while improving large-scale decision-making since online algo-
rithms can learn from crowd behavior using different integration and coupling levels.
In many settings, hybrid intelligence systems can help to draw novel conclusions by in-
terpreting complex patterns in highly dynamic scenarios. In line with this, many have
studied novel forms of incorporating explainable AI approaches, such as gamification [105],
for enhancing human perceptions and interpretations of algorithmic decisions in a more
transparent and understandable manner. Due to their scalability, crowd-AI architectures
can constitute an effective instrument for handling complexity, and thus more research
is needed to explore how to best develop hybrid crowd-AI-centered systems taking into
account the requirements and personal needs of each crowd worker. In particular, this
domain raises some questions about the use of AI to enhance the quality of crowdsourcing
outputs through high-quality training data [67] and related interaction experiences, as
seen from a human-centered design perspective [106]. To summarize, crowd-powered
systems can present a wide variety of opportunities to train algorithms “in situ” [107] while
providing learning mechanisms and configuration features for customizing the levels of
automation over time.

4.6. ‘Rebuilding from the Ruins’: Hybrid Crowd-Artificial Intelligence and Its Social-Ethica Caveats

There is a clarion call for an investigation on the ethical, privacy, and trust aspects
of human-AI interaction from several causes. For instance, Amershi and colleagues [88]
raised a set of concerns related to the need to avoid social biases and detrimental behav-
iors. To tackle those issues, it is necessary to dive deep into the harms provided by AI
decisions in a contextualized way to ensure fairness, transparency, and accountability in
such interactions [108]. This can be realized by materializing human agency and other
strategies that can provide more control over machine behaviors [109–111]. From diversity
to inclusiveness—and subsequently justice—there is still a long way until these goals are
accomplished within the dynamic frame of human-AI interaction and hybrid intelligence
augmentation. To address these shortcomings, system developers can play a critical role by
considering the potential effects of AI-infused tools on user experiences.

Extrapolating to the crowdsourcing settings, Daniel and co-workers [112] reported
a concern with the ethical conditions, terms, and standards aligned with the compliance
towards regulations and laws that are sometimes overlooked in such arrangements. When
considering crowd work regulation, aspects of intellectual property, privacy, and confi-
dentiality in terms of participant identities constitute pivotal points [113]. A look into
previous works (e.g., [114]) shows multiple concerns regarding worker rights, ambiguous
task descriptions, acknowledgment of crowd contributions, licensing and consent, low
wages, and unjustified rejected work. Such ethical and legal issues are even more expressive
in the context of hybrid crowd-AI systems where there are not only online experiments
and other human intelligence tasks (HITs) running on crowdsourcing platforms but also
machine-in-the-loop processes within the entire hybrid workflow. In a particular setting,
strategies like shared decision-making and informed consent can be particularly helpful
to mitigate the threats of bad conduct and malicious work if based on a governance strat-
egy where the guidelines, rules, actions, and policies are socially organized by the crowd
itself [115]. In this vein, the potential impacts of the aforementioned socio-ethical concerns
surrounding crowd-powered hybrid intelligence systems must be further elucidated and
investigated from several lenses to draw a realistic picture of the current situation.
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5. Validation and Assessment of the Proposed Taxonomy

This study proposes a taxonomic framework aimed at accommodating a diverse set of
infrastructurally supported crowd-algorithm interactions that occur in a certain time and
space within two separate orders of intelligence, which, therefore, can be combined in a hy-
brid model architecture. The interactions occurring in this hybrid space have a set of unique
contextual and situational aspects and must be guided by ethical guidelines, rules, and
principles in order to combine crowd and machine workflows effectively and transparently.
To validate the proposed taxonomy and demonstrate its utility, this contribution examined
the applicability of the taxonomy in a total of twenty-five studies presenting some type of
crowd-machine interaction. This is in line with the need for a methodologically rigorous
inspection of the possible effects of hybrid intelligence in practical settings. For instance,
substantial literature on human-AI interaction has developed quickly across different ar-
eas [116], but few attempts have been made to gather evidence about this intersectional
space at a crowd scale and thus understand the uses and limitations of hybrid crowd-AI
systems from a socio-technical design viewpoint. The results of the taxonomy-based review
are provided in Figure 3, accompanied by an example of a scheme used to explain the ratio-
nale behind the taxonomic classification (Figure 4). Further details regarding the 14 journal
articles and 11 conference papers selected for taxonomy-based literature analysis are given
in Tables A1 and A2 in the Appendix A. In order to determine whether each category of
the taxonomy was either present or absent, the following levels were considered:

 

Figure 3. Synthesis of the literature analysis based on the taxonomy proposed.
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Figure 4. Example of a taxonomic scheme used to classify a crowd-AI interaction scenario [39].

Fully addressed: The manuscript clearly emphasizes the specific elements underlying
the taxonomic category by addressing one or more of its unique attributes, with a potential
experiment, solution, or case study demonstrating applicability. For instance, Mohanty and
co-authors [38] make explicit reference to the contextual information (e.g., biographical
details) provided to the user about each portrait in Photo Sleuth, a crowd-AI-enabled face
recognition platform where a crowd of both expert and non-expert volunteers can tag a
picture using this supplementary piece of contextual data to aid the decision process.

Not addressed: The work does not directly address any of the aspects that are inherent
to the category under consideration.

Partially addressed: The study provides details that can be used to address the par-
ticular taxonomic category, even if not explicitly mentioned in the manuscript. By way
of example, Kobayashi et al. [117] do not directly provide details about the contextual
information required in the natural disaster response setting used for demonstrating the
proposed method, but the situational awareness and subsequent timely information re-
quired to manage the rapidly evolving scenarios toward well-informed and up-to-date
decision-making are implicitly stated.

On the basis of insights from previous analytical work, this taxonomically grounded
literature review process has been adopted in areas like business intelligence and ana-
lytics [118] as a way of iteratively developing and refining taxonomic dimensions and
characteristics while pinpointing areas requiring further investigation.

As can be seen from Figure 3, the taxonomy presented in this article is far from
comprehensive enough to accommodate all types of possible scenarios involving crowd-AI
interaction. Instead, the goal is to facilitate a cohesive understanding as a basis for further
scrutiny of crowd-computing hybrids in real-world applicative contexts. Note that there are
some categories that can co-exist, taking into account the specificity of each situation or use
case. As such, the first taxonomic unit contains the spatio-temporal elements (T1) that frame
crowd-AI interaction in relation to the original time-space matrix proposed by Johansen [12].
In brief terms, this classification model categorizes interactions as follows: same place/time,
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different places/same time, same place/different times, or different places/different times.
To a broad extent, crowd-AI interactions can occur in asynchronous or real-time settings
where the individuals that constitute the crowd can be physically and virtually co-located
or geographically dispersed (remote). In addition, the worker location and task duration
time [11] were also considered, as the latter is intimately connected to the time frame or
limit that is set to complete a task. In the example provided in Figure 4, a nearly real-time
on-demand crowd-powered system is proposed to collect responses from crowd workers
that can be at any location but need to be available to provide contributions in real-time due
to the quickly changing contextual requirements underlying the type of tasks performed.
Looking at the results of the taxonomy-based literature review in detail, a total of 84%
(n = 21) of included papers have reported temporal and/or spatial aspects of crowd activity.
As a brief example, Chan and colleagues [119] introduced a mixed-initiative system with
an annotation time of 1 min per paper on average in analogy matching tasks. In terms
of real-time crowd-AI settings, some primary studies (e.g., [36,39,40,98,120]) presented
synchronous interactions between crowd members, although most of the crowdsourcing
systems relied on an asynchronous model.

Consistent with the previous literature, the most addressed taxonomic unit is related
to task design, assignment, and execution (T2), with a total of 25 primary studies. In
crowdsourcing experiments, task design is seen as a cornerstone to achieving the goals of
a project or campaign since the characteristics and configuration of crowdsourced tasks
influence the general outcomes obtained from the crowd [91]. In general, different types of
tasks were found in the selected sample. As mentioned before, tasks differ both in terms
of attributes, complexity, and granularity [11]. For instance, Scalpel-CD [121] generates
label inspection microtasks in a dynamic way, while Evorus [39] focuses on classification
tasks in the form of voting. A slightly different task specification is employed in Photo
Sleuth [38], where crowd workers are invited to perform person identification/recognition
tasks that are therefore augmented with visual tags to allow portrait seeking. Moreover,
CollabLearn [36] is based on crowd query tasks where human processing is needed to
highlight damaged areas from cultural heritage imagery. A somewhat related body of
work (e.g., [34]) has sought to support the execution of crowd-in-the-loop interactive image
labeling tasks with the ultimate goal of enhancing AI-powered damage scene assessment
algorithms. All in all, the task-related aspects discussed in the growing literature on the
interplay between crowdsourcing and AI systems have been playing an indispensable
role in explaining complex relationships among crowd inputs and further integration into
hybrid workflows.

Extrapolating to the ethical principles and standards in crowd-AI settings (T3), the
review only identified nine papers (36%) that explicitly discuss ethical behaviors from
a requester-, crowd- or even AI-centered standpoint. Despite the recognized need for
fair payment and long-term career building in online crowd work platforms [122], this
study shows that the ethical concerns underlying the interaction-centric crowd-AI activity
are often overlooked from a practical perspective, despite some examples of strategies
presented in the crowdsourcing literature such as ensuring fair compensation by paying
crowd workers in conformity with the complexity of the task being performed [123].
Based on the findings from the chosen sample, Palmer and co-authors [124] provide one
of the few examples of studies calling attention to possible unethical actions associated
with the disclosure of sensitive information from images and videos. In a similar way,
only 20% of primary studies (n = 5) fully describe machine and human (crowd) agency,
governance practices, or control (oversight) (T4), although extensive research has been
conducted about the potential risks and unintentional harms associated with the lack of an
effective governance strategy able to regulate algorithmic actions [125]. In this regard, trust
building [126,127] appears among the most critical factors affecting technology acceptance
when considering human-AI interaction at a massive scale.

One enduring taxonomic unit that has been largely addressed since the very beginning
of the field of CSCW is concerned with the contextual and situational information (T5) that
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is then used to support awareness about the environment in which the interaction takes
place. This includes what goes on in the environment, who is available, who leaves, and
how individuals “remain sensitive to the conduct of others so that an event or action, which
may have some passing significance, can be displayed to each other without it necessarily
gaining interactional or sequential import” [128]. If the entire sample is considered, 48%
of studies (n = 12) mentioned some kind of contextual or situational issues. For instance,
Huang et al. [39] proposed a crowd-machine hybrid system where the conversation context
is used to provide response candidates using recorded facets and previous chat conversa-
tion logs. In particular, the task-specific contextual data is captured with the help of the
crowd (by using chat logs) to improve the quality of responses based on current and past
conversations. Moreover, Park and associates [129] used self-adapting mechanisms based
on reinforcement learning (RL) and contextual features extracted to increase crowdsourcing
participation over time, while Guo and co-workers [40] considered the lack of context as a
determining factor for failure in smart environments.

Turning to the role of infrastructural support (T6) in interactive human-AI practices
at a crowd level, the review disclosed a total of 20 studies (80%) where infrastructure or
the characteristics of a crowd-computing platform are reported. In CSCW, the concept
of ‘infrastructure’ and its ecological nature [130] has developed over the years to charac-
terize socio-technical assemblages “that underpins and enables action, engagement, and
awareness” [131]. On the basis of their research review, Hosseini and colleagues [29] gave
a detailed description of the features that are commonly found in crowdsourcing platforms.
In line with this, Santos and co-authors [102] stressed that a crowdsourcing system must
provide functions and components able to support workflows involving actions such as
task assignment, pre-selecting crowd workers, stating rewards, and selecting contribu-
tions. From payment mechanisms to result aggregation, a crowd-computing platform
must combine crowd-, requester-, task- and platform-related information and facilities
(i.e., infrastructural elements) that act in unison to carry out tasks in accordance with the
different requirements. From an infrastructural perspective, Huang and associates [39]
described the conversational worker interface used for chatting and real-time response
modeling along with the automatic response voting and generating algorithms deployed
to operate in a continuous manner as the conversation continues. Using a crowd-AI hybrid
intelligence lens, the results showed a total of 14 studies addressing algorithmic reasoning,
inference, explainability, and interpretability (T7). For instance, human-AI decision-making
processes are complex by nature, and AI-infused systems require a certain level of explain-
ability [132] and interpretability [133] to provide insights about the algorithmic actions
taken during the AI-enabled experience. However, several studies agree that these explana-
tions must manifestly be comprehensible, transparent, and actionable (i.e., how humans
use or find the explanations useful) to ensure traceability and trust in AI-advised crowd
decision-making [134]. Moreover, incorporating reasoning capabilities into hybrid intel-
ligence systems at a massive scale can provide support for better decisions since RL and
related algorithms can learn from crowd behavior [104] while offering a lot of possibilities
to improve decision-making at a large scale.

This points to the notions of scalability and adaptability (T8) and their importance in
highly dynamic and unpredictable environments. Due to their flexibility, hybrid crowd-
algorithm methods represent a means of handling complexity and gathering high-quality
training data. From the entire sample, 17 studies (68%) addressed scalability and/or crowd-
AI adaptability. As an example, Anjum et al. [135] stressed the value of scalable image
annotation, while Trouille and co-authors [136] have drawn attention to scalable application
programming interfaces with the ability to quickly configure a citizen science campaign. A
further focus of the taxonomic-based review presented here is on the learning and training
processes (T9) behind the current AI models. In crowd-machine settings, humans may
“feed” the algorithm to act in situ in an automatic fashion based on data inputs that can work
as training samples [137]. On this point, 96% of included studies (n = 24) addressed aspects
related to this taxonomic unit. For instance, Kaspar and colleagues [35] proposed a crowd-
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AI hybrid workflow in which the training data is generated through video segmentation.
Further expanding the scope, a related important question is how to train the crowd
itself when an AI output is used [117]. Accordingly, Zhang and associates [36,120] call
for more research into aspects like AI bias mitigation and the detection of imperfect or
biased inputs from the crowd as factors that may compromise the system’s reliability. A
look at the work conducted by Huang et al. [39] denotes that the machine learning model
that works behind the conversational assistant proposed is fed with training data from
past up/down votes given by crowd workers. This continuous learning approach allows
optimization of the entire automatic voting process based on the assessment of the quality
of the human responses.

Stemming from the literature of social and behavioral sciences, the extraction of
behavior features from crowd activity (T10) has been particularly relevant to unravel
the complexities of crowdsourcing practice and improving the synergistic interaction
between humans (crowds) and algorithms. However, the results from this scoping review
show that only 40 percent of the literature sample (n = 10) focused on aspects of crowd
activity from a behavioral standpoint. Building on the collective intelligence genome [23],
the understanding of what, why, who, how, and the circumstances under which such
interaction takes place can be enhanced through the behavioral analysis of traces of past
activity [138,139]. In hybrid crowd-algorithm interactive settings, user activity tracking
involving keystroke, eye tracking, time duration, and mouse click recording (e.g., window
resizing) can contribute to the cognitive, physical, and perceptual augmentation of the
crowd with practical implications for improving task assignment, performance estimation,
and worker pre-selection and/or recommendation based on reliability measures [140–143].
From a behavioral point of view, identifying active workers can play a critical role in systems
such as Evorus [39] since the model strongly depends on human inputs, while capturing
crowd members’ meta-information is important to personalize the experience to the user
in more intelligent ways. Although the development of AI systems supported by online
interfaces able to log user actions has a great capacity to conduct behavior analysis [144],
recent research works (e.g., [145]) have shown that there are a lot of resources required to
realize the effective capture of these behavioral traces from an infrastructural lens.

A closely related line of investigation involves the quality control mechanisms (T11)
that are used in crowdsourcing systems to reduce the occurrence of inaccuracies and biased
inputs provided by malicious (or poorly motivated) crowd workers. Empirically, this
work shows that there were only five papers (20%) that did not explicitly report strategies
for ensuring quality control and modeling crowd bias. In general terms, quality control
strategies for detecting low-quality work can vary from input and output agreement
to majority voting/consensus, ground truth (e.g., gold standard questions), contributor
evaluation, expert review, real-time support, or even fine-grained behavioral traces [146].
Yet, as pointed out by Daniel and co-authors [112] and further developed by Jin et al. [86],
a quality assessment process can be performed computationally (e.g., task execution log
analysis), collaboratively (e.g., peer review), or even individually (e.g., qualification test).
Regarding the latter, worker pre-selection has been used by requesters as a common
approach to filter unqualified workers by taking into consideration factors like reputation
and credentials. In the example of the scenario shown in Figure 4, the system has a high
error tolerance for imperfect automated actions from voting algorithms and chatbots since
the oversight is done by the (human) crowd.

Throughout the last decades, several scholars have stressed the importance of moti-
vational factors (T12) as a quality assurance determinant and also a catalyst for sustained
participation in crowdsourcing [147]. Briefly, the taxonomy-based review identified 20
primary studies (80%) addressing motivation and incentive mechanisms regarding the
use of algorithmic systems powered by crowdsourcing techniques. This includes extrin-
sic incentives (e.g., immediate payoffs) and also intrinsic (hedonic) motives like inherent
satisfaction and entertainment [112]. For example, Evorus [39] provides a continuously up-
dated scoreboard that displays the reward points given to each crowd worker according to
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his/her performance on a particular task, where the value is automatically converted into a
monetary bonus. As Truong et al. [148] have noted, crowdsourcing contests are also consid-
ered intuitive ways for incentivizing crowd workers and are frequently used in macrotask
crowdsourcing for solving problems with an elevated degree of complexity [81,149]. In
general terms, the incentives reported in the literature range from monetary rewards to
gifts and gamification strategies [112]. Concerning the former, the review presented here
also provides a summary of the primary studies from the sample that presented experi-
mental work based on monetary rewards. As Table 1 depicts, 60% of the papers included
in the taxonomy-based literature review (n = 15) have reported paid experiments in remote
settings. For paid crowdsourcing experiments where the crowd had to execute the whole
experiment remotely, this part of the analysis considered the time allotted, pre-selection
mechanism(s), crowd size, platform(s) used, and reward in terms of cost per HIT in US
Dollars ($). This is in line with previous studies (e.g., [91]) reporting aspects related to the
several stages of experimental design in crowdsourcing settings.

Table 1. Methodological remarks extracted from primary studies reporting paid crowdsourcing
experiments conducted remotely.

ID Experimental Settings
Pre-Selection
Mechanism(s)

Cost per HIT and
Platform(s)

Time Allotted

P1 5-month-long deployment and testing
with real users (n = 80 crowd workers) -

$0.142 (Phase-1 deployment);
$0.211 (Control Phase);
MTurk; Hangoutsbot

~10 min (per
conversation)

P2

Ensemble method combining multiple
results on individual frame

segmentations and crowd-based
propagated segmentation results

(n = 70 crowd workers)

-
$0.90 (Segmentation);

$0.15 (Scribble);
MTurk

142.6 s (per frame
segmentation); 2.5 s (per

method scribbles)

P3
4-week testing (n = 17 participants),

with an unspecified number of
crowd workers

>95% assignment approval
rate; Gold standard question

sensor instances

~$10/hour ($0.02 for each task
performed on MTurk)

~3 s (per labeled
question sensor

instance)

P5
Classification of potential studies for a
systematic literature review (n = 147

crowd workers)

>70% overall accuracy; Worker
screening based on two

test questions

$10/hour;
MTurk -

P6

Purpose-mechanism annotation
analogical search (n = 3 crowd workers

per document), with an unspecified
number of crowd workers

>=95% acceptance rate;
Training step based on a gold
standard example before the

task execution

$30/hour (Upwork-worker 1);
$20/hour (Upwork-worker 2);
$10/hour ($0.70 for each task

performed on MTurk)

1.3 min (per document
annotation); 4 min

(overall task
completion)

P9

Contextual bandit algorithm and agent
deployment powered by AI-based

request strategies for visual question
answering, with an unspecified

number of crowd workers

Training step using examples
and a qualifying task

$12/hour;
MTurk -

P13

Performance evaluation of a crowd-AI
hybrid framework through real-world

datasets (n = 3 crowd workers per
image in a crowd query) with an

unspecified number of crowd workers

>95% overall task approval
rate; >=1000 HITs completed

$0.20 for each worker
per-image annotation;

Labelme; MTurk
-

P14

A method for AI worker evaluation
that uses a “divide-and-conquer”

strategy for dynamic task assignment
with an unspecified number of

crowd workers

No strategies were deployed
to target malicious workers

240$ for 2 h of labor;
MTurk -

P16

Evaluation of hybrid
crowd-algorithmic workflows for
image annotation based on time
completion and quality, with an

unspecified number of crowd workers

>92% approval rate; >500 HITs
completed

$9/hour ($0.20 for each task
performed on MTurk)

80 s (per HIT
completion)
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Table 1. Cont.

ID Experimental Settings
Pre-Selection
Mechanism(s)

Cost per HIT and
Platform(s)

Time Allotted

P17

Evaluation of crowd responses and
computational performance in

identifying damages from urban
infrastructure imagery data (n = 2 to
5 crowd workers per query), with an

unspecified number of crowd workers

>95% overall task approval
rate; >=1000 HITs completed

$0.05 for each worker per
image classification;

MTurk

0.0227 (average time
taken to accomplish

each streaming urban
monitoring task using a
hybrid crowd-AI model)

P18

Evaluation of model performance to
re-query or not crowdsourced

initializations for bounding-box
annotations (n = 26 crowd workers

located in the United States)

A gold standard for
identifying inattentive

workers; Annotators with
more than 15% incorrect

annotations were disregarded

~$12/hour ($0.06 for each
bounding-box annotation);

MTurk
-

P19

Randomized online experiments
comparing the performance of a

computer vision model and a crowd of
15,016 individuals in tasks related to

the detection of authentic vs. deepfake
videos (n = 5524 participants:

Experiment 1; n = 9492 participants:
Experiment 2)

-

$7.28/hour plus bonus
payments of 20% to the top

participants; Experiment
hosted on an external website

(i.e., Detect Fakes);
304 participants recruited

from Prolific

15 min (per task
completion)

P20

Performance evaluation of a dynamic
optimal neural architecture searching

framework that leverages
crowdsourcing for handling disaster

damage assessment problems with an
unspecified number of crowd workers

>95% overall task approval
rate; >=1000 HITs completed

$0.20 for each crowd worker
per-image labeling;

MTurk

0.0198 s (average time
with varying crowd

query frequency);
0.0201 s (average time
with varying numbers

of crowd workers)

P21

Evaluation of a hybrid framework
combining expert and crowd

intelligence with explainable AI for
misinformation detection

(n = 3 crowd workers per HIT plus
5 experts), with an unspecified number

of crowd workers

>=95% task acceptance rate
Unspecified amount above the

minimum requirement on
MTurk ($0.01 per assignment)

61 s (average time of
task completion); 21.4 h

(total waiting time to
collect and aggregate

contributions from
crowd

workers)

P25

Development of a crowd-AI system for
optimizing smart urban sensing

applications (n = 3 to 7 crowd workers
per task), with an unspecified number

of crowd workers

>95% overall task approval
rate; >=1000 HITs completed

$0.05 for each crowd worker
per image classification;

MTurk
-

Regarding the filtering mechanisms used for early pre-selection of crowd workers, the
review of the literature showed five studies where the HIT acceptance rate was set to more
than 95%. Moreover, this contribution also identified four studies where the number of
tasks completed by a potential crowd worker had to be at least 1000. From this scoping
review, a total of five experiments involved some type of ground truth in the form of
a gold standard or test question. The selected sample also contained cases in which no
pre-selection strategies were applied, while one of the experiments disregarded crowd
workers with more than 15 percent of incorrect answers. It is also worth noting that one of
the primary studies contained workers located in the United States only. Taken all together,
the utilization of these pre-selection techniques can be useful to specify the characteristics
of potential contributors improve the likelihood that only skilled, high performing, and/or
trustworthy crowd workers are allowed to participate. When considering the platforms
used to recruit participants, the results show a clear preference for the use of MTurk
(n = 14). Although some tasks were paid up to $0.20, some workers only received $0.05
per task performed. Going back to the payment imbalances and unfair compensation that
challenge ethical norms in crowdsourcing marketplaces [150,151], a lens into the literature
has revealed that there is an increasing awareness of the crowd worker’s conditions and that
the monetary compensation must be set in a fair manner when adopting crowdsourcing
for tasks such as data collection and analysis. Overall, this study also revealed different
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average times of HIT completion in accordance with the complexity and requirements of
each task, while a remarkable number of primary studies (n = 10) did not mention the total
number of crowd workers involved in the experiment. Nonetheless, some studies involve
both crowd workers and experts in their experimental settings, with a crowd size ranging
from 2 to 7 crowd workers per task and a maximum size of 147 paid online workers in a
single experiment.

6. Concluding Discussion and Challenges Ahead

Owing to the difficulty in handling problems of increasing complexity involving
noisy and complex data streams, hybrid crowd-machine interactive workflows have been
implemented to efficiently scale training data and parameter models in order to produce
insights and support decision-making processes in a way that was not possible using
conventional methods. In various problem domains, new patterns can be identified from
complex decision rules for further verification in a human-in-the-loop basis encapsulated
in crowd-AI systems and architectures able to support tasks like content regulation and
medical diagnosis. Considering the latter, machine learning skills are now increasingly
crowdsourced in the form of contests or competitions running on predictive modeling
and analytics services where both monetary and non-monetary incentives are used to
aggregate crowd knowledge and thus help to better streamline the early detection and
treatment processes that are critical in healthcare settings. However, building trust in
crowd-machine interaction while making AI more efficient and adaptable are among the
prevalent challenges in crowdsourcing and are usually seen as hindering factors for the
successful adoption and use of these systems in practice.

In this study, an initial taxonomy of crowd-AI hybrid interaction was proposed as
a guiding framework for system developers, public and private health professionals,
scientists, and other stakeholders worldwide interested in this emerging area. Despite
the contribution towards a comprehensive scheme to explain how crowd-machine hybrid
interaction has been addressed in various scenarios presented in the literature, this article
constitutes only one piece of a much larger puzzle. In other words, the information obtained
from work presented here is considered a basis for further expansions and testing scenarios
in real-world contexts in the form of continuous observation of the co-evolving relations
between humans and algorithms with the goal of informing the design of intelligent
systems adequately and cohesively. Framing a territory in constant expansion like crowd-
AI hybrids is a challenging task. Overall, the taxonomy-based review found a gap in terms
of understanding, both empirically and conceptually, the role of ethical principles and
perceived fairness in building and deploying AI responsibly and with adequate governance
strategies. This study also shows that more experimentation and additional investigative
steps will be needed to cope with inconsistent records from crowd workers. Moreover,
there are also a number of directions for future work that should be beneficial to extend in
the near future for new types of research practices involving crowd-computing hybrids
so that scientific institutions, companies, and the general public can all benefit from the
knowledge generated from this convergence and therefore better respond to the volatile
nature and changing demands of the current environments.
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Appendix A

Table A1. List of primary studies included in the taxonomic validation process.

ID Author(s) Year Title

P1 Huang et al. 2018 Evorus: A crowd-powered conversational assistant built to automate itself over time

P2 Kaspar et al. 2018 Crowd-guided ensembles: How can we choreograph crowd workers for video
segmentation?

P3 Guo et al. 2018 Crowd-AI camera sensing in the real world

P4 Nushi et al. 2018 Towards accountable AI: Hybrid human-machine analyses for characterizing
system failure

P5 Krivosheev et al. 2018 Combining crowd and machines for multi-predicate item screening

P6 Chan et al. 2018 SOLVENT: A mixed initiative system for finding analogies between research papers

P7 Yang et al. 2019 Scalpel-CD: Leveraging crowdsourcing and deep probabilistic modeling for
debugging noisy training data

P8 Trouille et al. 2019 Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with
human-machine systems

P9 Park et al. 2019 AI-based request augmentation to increase crowdsourcing participation

P10 Kittur et al. 2019 Scaling up analogical innovation with crowds and AI

P11 Mohanty et al. 2020 Photo Sleuth: Identifying historical portraits with face recognition and
crowdsourced human expertise

P12 Zhang et al. 2020 Crowd-assisted disaster scene assessment with human-AI interactive attention

P13 Zhang et al. 2021 CollabLearn: An uncertainty-aware crowd-AI collaboration system for cultural
heritage damage assessment

P14 Kobayashi et al. 2021 Human+AI crowd task assignment considering result quality requirements

P15 Palmer et al. 2021 Citizen science, computing, and conservation: How can “Crowd AI” change the
way we tackle large-scale ecological challenges?

P16 Anjum et al. 2021 Exploring the use of deep learning with crowdsourcing to annotate images

P17 Zhang et al. 2021 StreamCollab: A streaming crowd-AI collaborative system to smart urban
infrastructure monitoring in social sensing

P18 Lemmer et al. 2021 Crowdsourcing more effective initializations for single-target trackers through
automatic re-querying

P19 Groh et al. 2022 Deepfake detection by human crowds, machines, and machine-informed crowds

P20 Zhang et al. 2022 On streaming disaster damage assessment in social sensing: A crowd-driven
dynamic neural architecture searching approach

P21 Kou et al. 2022 Crowd, expert & AI: A human-AI interactive approach towards natural language
explanation based COVID-19 misinformation detection

P22 Guo et al. 2022 CrowdHMT: Crowd intelligence with the deep fusion of human, machine, and IoT

P23 Wang et al. 2022 Graph optimized data offloading for crowd-AI hybrid urban tracking in intelligent
transportation systems

P24 Gal et al. 2022 A new workflow for human-AI collaboration in citizen science

P25 Zhang et al. 2022 CrowdOptim: A crowd-driven neural network hyperparameter optimization
approach to AI-based smart urban sensing

433



Appl. Sci. 2023, 13, 2198

Table A2. Distribution of publications per venue.

Conference Proceedings

AAAI Conference on Artificial Intelligence
AAAI Conference on Human Computation and Crowdsourcing (4)

ACM Conference on Human Factors in Computing Systems (3)
ACM Conference on Information Technology for Social Good

ACM Web Conference
International Joint Conference on Artificial Intelligence

Journal/Transactions

ACM Transactions on Interactive Intelligent Systems
Human Computation (2)

IEEE Internet of Things Journal
IEEE Transactions on Computational Social Systems

IEEE Transactions on Intelligent Transportation Systems
Knowledge-Based Systems

Proceedings of the ACM on Human-Computer Interaction (3)
Proceedings of the ACM on Interactive, Mobile, Wearable, and Ubiquitous Technologies

Proceedings of the National Academy of Sciences (3)
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