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Preface to “Remote Sensing of Night-Time Light”

Satellite measurements of night-time lights are one of the most widely recognized

remotely-sensed indicators of human activity on Earth. The amount of light that is emitted from Earth

at night and that is captured by sensors on board satellites that orbit Earth can provide meaningful

information related to the distribution and characteristics of urban areas, urbanization processes,

socio-economic dynamics, local and regional GDP, the economic impacts of conflicts, the impacts of

epidemics on economic activity, the impacts of shocks such as natural or man-made disasters, and

more.

With the increased availability of remotely-sensed measurements of night-time lights, which

are captured, for example, by the Defense Meteorological Satellite Program’s Operational

Linescan System (DMSP-OLS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors,

new possibilities emerge in understanding how Earth is changing, allowing improvements in

decision-making, guiding policy and improving governance. Today, remotely sensed observations

of night-time lights provide a key instrument for understanding almost every aspect of human

activity on Earth across space and time. Advances in the availability and the quality of night-time

light data, together with improvements in data storage capabilities and the development of new

analytical methods and workflows for analyzing the data, are accompanied with an ongoing increase

in the number of scientific applications that exploit remotely sensed night-time lights in almost every

academic discipline.

This book includes 16 articles that were published in the Remote Sensing Special Issue “Remote

Sensing of Night-Time Light” and that highlight novel research on the remote sensing of night-time

lights. The book aims to stimulate progress in the remote sensing research domain related to the

utilization of night-time lights in a wide range of multidisciplinary and interdisciplinary domains,

including urban studies, ecology, economics, engineering, oceanography, sociology, epidemiology,

and more.

As the Guest Editors of this Special Issue, we appreciate the professionalism and support from

all contributors, editors, and reviewers for their dedication and efforts toward the publication of this

book. We would like to thank the Managing Editor of this Special Issue, Ms. Darcy Zhang, for her

continuous support and assistance which helped make this SI a success.

Ran Goldblatt, Steven Louis Rubinyi, and Hogeun Park

Editors
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The Dimming of Lights in China during the
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Abstract: A satellite survey of the cumulative radiant emissions from electric lighting across China
reveals a large radiance decline in lighting from December 2019 to February 2020—the peak of the
lockdown established to suppress the spread of COVID-19 infections. To illustrate the changes,
an analysis was also conducted on a reference set from a year prior to the pandemic. In the reference
period, the majority (62%) of China’s population lived in administrative units that became brighter
in March 2019 relative to December 2018. The situation reversed in February 2020, when 82% of
the population lived in administrative units where lighting dimmed as a result of the pandemic.
The dimming has also been demonstrated with difference images for the reference and pandemic
image pairs, scattergrams, and a nightly temporal profile. The results indicate that it should be
feasible to monitor declines and recovery in economic activity levels using nighttime lighting as
a proxy.

Keywords: VIIRS; Day-night band (DNB); Nighttime lights; COVID-19; Pandemic

1. Introduction

During the first half of 2020, the world experienced economic collapse due to the COVID-19
pandemic since the Great Depression in the late 1920s [1]. It is well established that low-light imaging
satellite sensors are able to detect the dimming and loss of lighting after disaster events [2–4], wars [5,6],
and economic collapse [7]. In order to explore the possibility that satellite observation can be used
to track the decline and recovery of economic activity worldwide associated with the COVID-19
pandemic, we conducted an analysis of lighting changes in China, the first country that experienced
the pandemic. Large portions of the Chinese economy shut down, as the government imposed a
national lockdown forcing most people to remain at home [8]. Previous satellite studies indicate
that the nighttime lights of China have been growing for several decades [9]. For this study, we use
specialized low-light imaging satellite data collected by the NASA/NOAA Visible Infrared Imaging
Radiometer Suite (VIIRS) day-night band (DNB). The DNB light intensification was designed to detect
moonlit clouds in the visible band [10]. With a million-fold amplification in the signal, the DNB also
detects electric lighting present at the Earth’s surface.

Because clouds can block the detection of surface lighting, many scientists interested in
using satellites to observe nighttime lights choose to work with cloud-free temporal composites.
Annual cloud-free composites have sufficient temporal leverage to fill in seasonal data outages
from sunlight and to filter out ephemeral features unrelated to electric lighting [11]. These include
biomass burning and energetic particle hits from the aurora and the South Atlantic Anomaly. In some
cloud-prone areas, such as Java Island, it takes a full year to get a sufficient number of cloud-free

Remote Sens. 2020, 12, 2851; doi:10.3390/rs12172851 www.mdpi.com/journal/remotesensing
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observations to generate a sharp and clear image of nighttime lights. However, in cases where the user
wishes to study short–term changes in lighting, the phenomena of interest are averaged away and
cannot be seen clearly in an annual average. In such a case, monthly and nightly data products are
available and can be considered for use. Studies conducted with nightly images are well suited for
small geographic extents, where an analyst can select sets before and after images that are cloud-free.
Another way to work with nightly data is to assemble temporal profiles for individual locations and
then filter out clouds or cloud plus moonlight. The monthly composites differ from the annual VIIRS
nighttime lights products, in that they are not filtered to remove ephemeral events, like biomass
burning. In addition, background areas having no detectable lighting are not zeroed out in the monthly
composites. It is left to the user to perform filtering based on their use case.

This analysis is based primarily on two pairs of monthly cloud-free composites and the sum of the
light brightness for 300+ level 2 administrative units [12] in each of four months. For the subject pair,
we used the composites of December 2019 and February 2020 and calculated the percentage change
in brightness in February relative to that in December 2019. The composites in December 2019 were
selected, because December 2019 is the last full month prior to the public recognition of the outbreak in
January. We intentionally skipped over January 2020 to avoid lighting changes associated with the
Chinese New Year (CNY), which fell on 25 January 2020. During the CNY, many institutions close
for two weeks centered on the New Year date, and many people return to their provinces. To avoid
any possible CNY effects, we selected the February 2020 composite set for the analysis, corresponding
to the peak lockdown period. To provide a reference, the same analysis was performed on a pair of
months from the previous year: December 2018 and March 2019. The February 2019 composite was
skipped in favor of March 2019, because the CNY in 2019 was on February 5.

The monthly composites include a pair of images—the average radiance and the tally of cloud-free
coverages. Radiance difference images were calculated and used to produce colorized maps for
specific cities. In addition, we calculated the percentage change in brightness for more than 300 level
2 administrative units [12]. The grid cell set used for the four months in the % change calculation
was standardized by blocking grid cells having low cloud-free coverages or extremely low radiances.
Then, the radiances were summed for each administrative unit. These sums were then differenced,
and a percent difference was calculated.

In addition, we examined the evidence of dimming in a nightly temporal profile to show how the
exact start dates of dimming and the level of recovery can be derived as well as an assessment of the
lighting recovery level.

2. Materials and Methods

We presented results from three different styles of DNB data products: filtered monthly composites,
temporal profiles from monthly composites, and a nightly temporal profile. The one we spent the most
time on were the two monthly pairs (December 2018 to March 2019 and December 2019 to February 2020).
Here, we filtered the composites to extract a consistent set of lit grid cells for the comparison of the
pre-pandemic brightness levels and the dimming of lights during the pandemic. The percent of
dimming during the pandemic was then checked against the report confirming COVID-19 infections
published by the Harvard Dataverse [13]. We then presented results from the entire time series of
cloud-free composites to check whether the pandemic dimming was unique. Finally, we presented a
nightly temporal profile to identify dates for the onset of dimming and recovery, plus the recovery
level relative to the pre-pandemic brightness level.

Preparation of the two monthly pairs: The methods used to generate monthly cloud-free average
radiances were described by Elvidge et al. [11]. These were rough composites; in that they were not
filtered to remove background or biomass burning. The key to using the monthly products to analyze
the dimming of lights across administrative units was to mask out background and poor-quality data,
focusing the analysis on a consistent set of lit grid cells from each of the four focus months. In this case,
we filtered the composites based on low cloud-free coverages, low radiance levels, and snow cover.
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Filtering on low cloud-free coverages: We visually examined the cloud-free coverage grids for
China and found there were data gaps with zero cloud-free coverages in every month (Figure 1).
In addition, we decided to filter out grid cells having single cloud-free coverages and focused the study
on areas having larger numbers of usable observations. For each month, a binary on-off mask was
generated for grid cells having less than two cloud-free coverages. The final mask for low cloud-free
coverages was set, so that a grid cell was excluded from the study if it dipped below two cloud-free
coverages in any of the four months.

 

Figure 1. Marking of grid cells having less than two cloud-free coverages in each of the four study months.

Filtering based on low average radiance: We filtered out grid cells that dipped below one
nW/cm2/sr in any of the four months. This filtering had two primary purposes. The first was to zero
out background areas, where no lighting was detected. Although the average radiance in background
areas was quite low, it varied both spatially and temporally (Figure 2). In many of China’s western
provinces, the areas of lighting are dwarfed by the spatial extent of the background. If the background
radiances are summed with the lights, the result will be dominated by the temporal variations in
the background. The other reason to filter based on low average radiance was to eliminate biomass
burning. Fires are quite bright in the DNB; however, they typically occur in background areas lacking
electric lighting detectable by VIIRS. Biomass burning was filtered from the four study months by
filtering out grid cells that dipped below one nW in any of the four months.

Filtering of snow cover: The high visible wavelength reflectivity of snow increased the brightness
of lighting observed by satellite. Figure 3 shows an example of snow–induced brightening along a
transect through Harbin, China, where snow was absent in December 2018 but consistently present
during the December 2019 compositing period. The December 2018 radiance was consistently
dimmer than the December 2019 levels. At present, there is no technique for removing snow effects.
Therefore, grid cells having snow cover in any of the four months were excluded from the change
detection analysis. A snow cover mask was produced for each of the four months using NOAA
Advanced Microwave Sounding Unit-A (AMSU-A) daily snow cover product [14], tallying the number
of times snow cover was detected for the same set of days used in the DNB cloud-free composites
(Figure 4). Monthly snow cover tallies of one and two were filtered out to remove false detections.
This removed a narrow rim of AMSU-A detections surrounding the consistently snow-covered areas.

3



Remote Sens. 2020, 12, 2851

Then, the four monthly snow products were added together to generate a mask used to zero out
lighting affected by snow cover in any of the four months.

Figure 2. Average radiance transect across background areas in Western China.

 

Figure 3. Radiance transect across Harbin, China showing the brightening effect of snow cover
present in December 2019. The December 2018 radiances were consistently dimmer than the December
2019 ones.

Sum-of-lights (SOL) calculation: After masking, the radiances of the remaining grid cells
were multiplied by the surface area of 15 arc-second grid cells prior to summing inside the level
2 administrative units. This “latitude adjustment” was necessary, because the ground footprint of
the grid cells declined with latitude (Figure 5). The grid cells at the equator covered 0.857 km2 and
decreased with latitude, following a cosine function [15]. China spans latitudes from 18 to 53◦N.
Therefore, in the south, the grid cells cover 0.204 km2, and in the far north they only cover 0.129 km2.
The SOL was calculated by summing the grid cell radiance inside the level 2 administrative units after

4
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the latitude adjustment. These sums were then differenced, and a percent difference was calculated.
The population of the administrative units was tallied with the Landscan population grid from 2018 [16]
along with a latitude adjustment.

Figure 4. Advanced Microwave Sounding Unit-A (AMSU-A) snow cover tallies matched to the dates
used in the day-night band (DNB) monthly cloud-free composites.

Figure 5. Dependence of grid cell size on latitude. Ground footprint sizes for 15 arc-second grid cells
were largest at the equator and declined moving in either direction away from the equator.
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3. Results

Colorized difference images: To consider initial COVID-19 effects, we examined the change in
brightness between the two monthly pairs for several major urban areas in China. By coloring gains in
brightness as cyan and declines in brightness as red, it was possible to compare the color patterns for
the pre-pandemic pair (December 2018 and March 2019) and the pair that straddled the pandemic
lockdown (December 2019 and February 2020). Figure 6 shows results for five major urban areas:
Wuhan, Beijing, Guangzhou, Shanghai, and Xi’an. It can be seen in all five areas that there was
generally a mix of dimming and brightening in each monthly pair. Brightening dominates in the
pre-pandemic pair. In contrast, the lockdown pairs showed extensive areas experienced a decline
in brightness in February 2020. For Wuhan, there was a relatively even mix of increase and decline
in brightness for February 2020. This qualitative observation was confirmed by the quantitative
analysis results in Table 1, which shows Wuhan lighting increased by 8% in the pre-pandemic pair
and declined by 3% during the lockdown period. The decline in lockdown lighting appeared much
more substantial in Beijing (Figure 6), and this was confirmed by the results in Table 1, where the city’s
lighting increased by 3% in the reference pair but declined by 24% during the lockdown. Shanghai and
Guangzhou fell between Wuhan and Beijing in terms of the diming of lights, both witnessing a 12%
decline during the lockdown. Xi’an also showed extensive areas of dimming during the lockdown
period. The quantitative results in Table 1 showed Xi’an’s light brightness grew by 23% during the
reference period and declined by 19% during the lockdown.

Table 1. Percent difference in brightness for the pre-pandemic and pandemic monthly pairs in seven of
China’s major urban areas.

Name

% Difference (The
Brightness in March 2019
Minus the Brightness in

December 2018)

% Difference (The
Brightness in February

2020 Minus the Brightness
in December 2019)

Population

Beijing 3.13 −24.08 20,389,641

Chongqing 3.57 −16.41 29,924,960

Guangzhou 12.24 −8.78 13,146,601

Shanghai −4.77 −12.96 24,058,784

Tianjin −0.89 −12.95 13,569,917

Wuhan 8.47 −3.03 10,076,555

Xi’an 23.52 −19.42 8,856,884

Percent change maps with population: A pair of maps were created to spatially visualize the
change in brightness across the entire country in reference to population numbers (Figures 7 and 8).
The maps show the outlines of the subnational units and have circles with different sizes based on
population and color coded to five classes of change in brightness. There were three color-coded classes
for increased brightness: yellow, light green, and dark green. There were two color-coded classes for
declines in brightness: orange and red. The pre-pandemic reference (Figure 7) set showed that the
heavily populated areas in Central China had yellow and green circles predominating, indicating that
growth in lighting was widespread. In contrast, the pandemic map (Figure 8) shows the predominance
of orange and red circles, indicating the prevalence of declines in lighting.
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Figure 6. Examples of February 2020 dimming in five of China’s major cities.

Histograms of percent differences versus population: Figure 9 shows population tallies versus
percent difference in brightness for the two pairs of months. In the pre-pandemic reference set, 61%
of the population was located in administrative units, where the brightness of lighting increased.
In contrast, 82% of China’s population lived in administrative units in February 2020, where the
brightness of lighting decreased.

7
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Figure 7. Map of the % changes in brightness for the reference period (brightness in December 2018
minus brightness in March 2019). The administrative unit boundaries are shown in black, and population
size classes of each are indicated with circles with five diameters placed at the administrative unit’s
centroid. Administrative units, where lighting was completely masked out, are gray. There were
three classes for increased brightness in March 2019, indicated by yellow, light green, and dark green.
The orange and red classes indicated declines in brightness in February 2020. Yellow and green classes
predominated in the central core of China’s densely populated heartland. (The tabular data used to
generate the maps see Supplementary Materials).

Figure 8. Map of the % changes in brightness for the study pair spanning the pandemic (the brightness
in December 2019 minus the brightness in February 2020). Decline in brightness, indicated by orange
and red circles, predominated in the central core of China’s densely populated heartland. (The tabular
data used to generate the maps see Supplementary Materials).

8
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Figure 9. Population histograms for a gradation of brightening and dimming levels for the reference
period (blue) and study period (orange). The population numbers shift between the two periods. In the
reference period, the majority (62%) lived in administrative units that became brighter in March 2019
relative to in December 2018. The situation reversed in February 2020, when 82% of the population
lived in administrative units where lighting dimmed as a result of the pandemic.

Beijing scattergrams: Another way to see the magnitude of the dimming was using the comparison
between pre-pandemic and pandemic scattergrams. Figure 10 shows scattergrams made with all of the
grid cells in Beijing. The pre-pandemic scattergram was on the left, and the pandemic scattergram was
on the right. In both cases, December is on the X axis. The slope of the regression line for December
2018 and March 2019 was 1.002, indicating no significant change in radiance levels between these
two months. The slope dropped to 0.713 in the pandemic scattergram due to substantial dimming in
February 2020.

Figure 10. Pre-pandemic and pandemic scattergrams of the monthly average radiances for grid cells
in Beijing.

9
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Correlation with confirmed cases: The percent change in SOL from the pandemic monthly pair
was matched to the number of confirmed COVD-19 cases per million people from January 15 to the
end of February 2020 [13]. The results (Figure 11) indicated that dimming occurred in many cities with
few confirmed cases.

Figure 11. Percent change in monthly sum-of-lights (SOL) from the pandemic study pair versus
confirmed COVID-19 cases per million people.

Is the February 2020 dimming unique? To examine whether the February 2020 dimming is unique,
we constructed a data cube with 96 monthly cloud-free composites of Beijing, spanning from April
2012 to March 2020. In examining the monthly temporal profiles for individual grid cells, it was
possible to see a radiance dip in February 2020 relative to those in the previous two months and March
2020 (Figure 12). However, there were other dips along the profiles in magnitude comparable to
that in February 2020. To determine if the additional dimming events were isolated geographically
or spatially extensive, we constructed a temporal slice along a north-south transect across the data
cube (Figure 13). Spatially extensive dimming showed up as dark vertical lines. There were two
black vertical lines during the early part of the record and three month-wide data gaps centered on
the summer solstice caused by the exclusion of stray light contamination prior to the advent of the
“stray light correction” [17]. However, there were additional dark vertical lines indicating widescale
dimming of lights. Regardless of where the transect was taken, the same set of months appeared
as dark vertical lines. The most prominent of these were February 2014, July and November 2015,
July 2018, and February 2020. December 2019 was bright with sharply defined features (Figure 14).
To investigate the cause of the dimming, average radiance images in each of these months were
compared to that in December 2019 (Figure 14). The December 2019 contrast enhancement was applied
to each of the other monthly images. It can be seen that December 2019 has the brightest features and
the details were sharp. The February 2020 geographic feature details were comparable to those in
December 2019, but the radiance levels were dimmed. The other months exhibited dimming with the
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blurring of spatial details. The examination of the cloud-free coverages revealed that the pre-pandemic
dimmed months were short with cloud-free coverages and had multiple data gaps with zero cloud-free
coverages (Figure 15).

Figure 12. Temporal profile of monthly average radiances from the DNB cloud-free composite time
series for a grid cell in Beijing. Dimming during the pandemic is expressed by a shard dip in radiance
in February 2020. Similar dips were found in other months.

 
Figure 13. A temporal slice from a north-south transect across Beijing showing dark vertical stripes in
months, where dimming was spatially extensive.

11



Remote Sens. 2020, 12, 2851

 

Figure 14. Comparison of Beijing DNB monthly composite images having spatially extensive dimming
relative to that in December 2019.

 

Figure 15. November 2015 cloud-free coverages. This is one of the months showing spatially extensive
DNB dimming. A large part of Eastern China had low numbers of cloud-free coverages. Zero cloud-free
coverages are in red, and one cloud-free coverage is in green.

Examination of dimming and recovery with a nightly temporal profile: One of the grid cells with
the sharpest decline in lighting during February 2020 covered the entrance to Shanghai Disneyland.
The site closed on 25 January 2020 and partially reopened on 9 March 2020 [18]. A nightly temporal
profile of the entrance is shown in Figure 16, only filtered to remove cloud observations. The start
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dates of dimming and recovery exactly matched the reported closure dates. The dimmed state was
42% of the pre-closure radiance level. However, the recovery state brightness through 6 June 2020 was
81% of the pre-closure level.

Figure 16. Nightly temporal profile of DNB radiances for the grid cell covering Shanghai Disneyland.

4. Discussion

The decline in the brightness of lighting in China during the COVID-19 lockdown was in the
3–24% range and was observed in four different ways. The simplest way to see the dimming was by
comparing radiance difference images for two selected pairs of monthly composite images, matching
seasonally and avoiding the Chinese New Year. We used the brightness in December 2018 minus the
brightness in March 2019 as the pre-pandemic pair (reference set) and the brightness in December
2019 minus the brightness in February 2020 as the pair impacted by the lockdown (pandemic set).
The reference and pandemic difference images were density-sliced to enhance the visual interpretation
of dimming and brightening. Major cities in China readily showed dimming in the difference images.

Another way to see the dimming is by using full province SOL tallies for more than 344 level 2
administrative units. The difference between the reference and pandemic set tallies made it possible
to see the prevalence of dimming in February 2020. We conducted a t-test of unequal variances
to ascertain whether the difference of the mean between the pre-pandemic and pandemic pair was
significant or not. The t-test of unequal variances at a 0.05 significance level was associated with a
significant effect t (649) of −9.60 and p of 1.77 × 10−20. Thus, the pandemic difference pair had a larger
statistically significant mean than the pre-pandemic pair (Table 2).
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Table 2. t-test for the difference pairs.

Difference (201903–201812) Difference (202002–201912)

Mean −460.85 835.54

Variance 2,393,271.83 3,885,643.08

Observations 344.00 344

Hypothesized Mean Difference 0.00

df 649.00

t Stat −9.60

P(T<=t) one-tail 8.83 × 10−21

t Critical one-tail 1.65

P(T<=t) two-tail 1.77 × 10−20

t Critical two-tail 1.96

Radiance scattergrams offer another way to visualize the dimming. In the reference set,
the scattergram data cloud was aligned with the diagonal, indicating no systematic dimming or
brightening between the two months of the reference set. In contrast, the scattergram of the pandemic
set shows the entire data cloud shifted to lower radiance levels in February 2020 relative to in
December 2019.

The fourth approach used to see the dimming is with nightly temporal profiles. Here, it was
possible to see the precise date when dimming started, the radiance level of the lighting during the
dimming period, the date range of recovery, and the recovery level.

An important aspect of this study is the filtering to exclude grid cells impacted by snow cover,
low numbers of cloud-free coverages, and background areas, where lighting was detected.

5. Conclusions

During the first half of 2020, nearly the entire population of the world lived under some form of
human contact restrictions aimed at reducing the transmission of COVID-19. The restrictions in China
began with a lockdown in Wuhan on 24 January 2020, and these were quickly extended across China.
The lockdown featured the closures of schools, restaurants, travel, and many factories and commercial
centers. People were required to stay at home. The associated economic impacts are significant and are
still being tallied.

China’s lighting and electricity demand have long been on an upward trajectory, tracking the
expansion in construction and economic activity levels. This pattern went in reverse during the
COVID-19 lockdown, resulting in dramatic declines in the brightness of electric lighting observed by
satellite. The declines can be seen clearly in multiple cities with the difference image calculated by the
brightness in December 2019 minus the brightness in February 2020. While brightness declines were
prevalent, it was common to find patches with lighting increase mixed with the areas having decline.
The situation was reversed in the pre-pandemic difference images, where brightening prevailed amid
a patchwork pattern of dimming and brightening. The brightness decline in February 2020 lighting
levels can also be seen in scattergrams formed with the December 2019 radiances.

With nightly DNB radiance profiles, it is possible to identify the start dates of dimming and
recovery, plus the recovery level relative to the pre-pandemic condition. This was demonstrated for
the grid cell containing the Shanghai Disneyland entrance. This site was chosen, because it is one of a
few facilities having precise closure and partial reopening dates published. The dimming and onset
dates of recovery observed by VIIRS exactly matched the closure and reopening dates. The level of
lighting recovery following the reopening was 81% of the pre-pandemic lighting level.

In exploring the DNB monthly composite time series, we found several issues that other researchers
should be aware of. First, the background radiance levels varied both spatially and temporally. If the
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focus of an analysis is electric lighting, it is important to zero out the background using a radiance
threshold. In nearly every monthly composite, there were data gaps, where zero cloud-free observations
were available. These should be excluded from multitemporal analyses in a way to avoid corrupting
change detection results. Snow cover resulted in increased brightness of light, which can also lead to
erroneous conclusions on brightness changes. Finally, we found the evidence that there were cases,
where undetected clouds resulted in the blurring and dimming of lighting features. This suggested
that a lighting sharpness index could be used in conjunction with cloud detections to improve both the
annual and monthly DNB composites.

This study confirms that satellites are able to detect the dimming of lighting associated with the
current pandemic lockdowns. We found no correlation between the percent dimming in February 2020
and COVID-19 confirmed case numbers. This suggested that the dimming of lights was primarily
associated with “stay-at-home” lockdowns designed to slow the virus transmission. It is possible that
the recovery pattern of lighting can be used as an indicator of the economic recovery. Disaster and
conflict lighting outages are typically due to damage to generation or distribution systems. In the case
of COVID-19, the power generation and distribution systems remain intact. Therefore, in theory, if the
lights dim, they could return to normal shortly after government lockdowns are lifted. If the lighting
fails to return to pre-lockdown levels, this is an indication that the economic damage continues to affect
lighting. The results from this study indicate that the dimming and recovery of lights can be effectively
monitored from space and that recovery levels can be rated relative to pre-pandemic radiance levels.

Supplementary Materials: The tabular data used to generate the maps shown in Figures 7 and 8 are available
online at http://www.mdpi.com/2072-4292/12/17/2851/s1.
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Abstract: The COVID-19 pandemic has infected almost 73 million people and is responsible for over
1.63 million fatalities worldwide since early December 2019, when it was first reported in Wuhan,
China. In the early stages of the pandemic, social distancing measures, such as lockdown restrictions,
were applied in a non-uniform way across the world to reduce the spread of the virus. While such
restrictions contributed to flattening the curve in places like Italy, Germany, and South Korea, it
plunged the economy in the United States to a level of recession not seen since WWII, while also
improving air quality due to the reduced mobility. Using daily Earth observation data (Day/Night
Band (DNB) from the National Oceanic and Atmospheric Administration Suomi-NPP and NO2

measurements from the TROPOspheric Monitoring Instrument TROPOMI) along with monthly
averaged cell phone derived mobility data, we examined the economic and environmental impacts of
lockdowns in Los Angeles, California; Chicago, Illinois; Washington DC from February to April 2020—
encompassing the most profound shutdown measures taken in the U.S. The preliminary analysis
revealed that the reduction in mobility involved two major observable impacts: (i) improved air
quality (a reduction in NO2 and PM2.5 concentration), but (ii) reduced economic activity (a decrease
in energy consumption as measured by the radiance from the DNB data) that impacted on gross
domestic product, poverty levels, and the unemployment rate. With the continuing rise of COVID-19
cases and declining economic conditions, such knowledge can be combined with unemployment
and demographic data to develop policies and strategies for the safe reopening of the economy
while preserving our environment and protecting vulnerable populations susceptible to COVID-19
infection.

Keywords: COVID-19; earth observation data; nitrogen dioxide (NO2); night light imagery (VIIRS);
mobility; environmental impacts

1. Introduction

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-
19) was first reported in Wuhan, China, in early 2020 by human-to-human transmission [1–4],
which became a global pandemic by early March 2020 and affected more than 150 countries
within weeks. The World Health Organization declared a global health emergency related
to COVID-19 on 30 January 2020 and a worldwide pandemic on 11 March 2020 [5]. As of
November 2020, COVID-19 has infected over 73 million people worldwide and over 16
million people in the US, causing more than 1.63 million and almost 301,000 mortalities
worldwide and in the US, respectively, as of 15 December 2020 [6].

Remote Sens. 2021, 13, 5. https://dx.doi.org/10.3390/rs13010005 https://www.mdpi.com/journal/remotesensing17
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Because the health effects of COVID-19 are unknown and the virus has a high mor-
tality rate, precautionary measures like wearing face coverings, social distancing, and
handwashing have been suggested, while clinical studies are underway to develop vac-
cines and potential cures. Social distancing, which includes full lock down (stay at home),
partial lock down (travel if there is a need), quarantine (isolation for certain duration), and
maintaining a minimum separation distance while in public, is considered an effective
measure to curb the spread of a pandemic, as was seen during the 1918 flu pandemic [7].
Lockdown restrictions (full to partial) within the US were first implemented in early March
and were lifted by end of May. During this time frame, only essential businesses (e.g.,
hospitals, gas stations, grocery stores) were operational.

An immediate impact of lockdown restrictions was on mobility and its reduction,
which not only curtailed the infection rate of COVID-19 but also reduced pollution level [8]
and resulted in a 4.8% drop in GDP [9]. Since the beginning of the lockdown, several studies
have examined the economic effects of the lockdown measures. Bonaccorsi et al. [10], in
their study of the economic impacts of the lockdown in Italy, reported that the lockdown not
only reduced national and state level fiscal revenues but also caused a segregation effect in
municipalities with high inequality and high concentration of low-income population due
to the mobility reduction, such that the municipalities were at a higher risk of experiencing
poverty and slower recovery. Chen et al. [11] also reported that mobility restrictions in
areas experiencing high COVID-19 deaths had an increase in unemployment insurance
claims and reduction in economic activity both in the US and Europe; a similar trend was
also reported in China [12]. Although the extent of the economic disruption due to the
COVID-19 pandemic is still unknown, it is evident that GDP growth is declining because
of the pandemic.

Not surprisingly, the most polluted regions of the globe saw improved air quality
during the lockdown. Several studies have reported that lockdown measures contributed
to emission reduction as measured by the concentration of nitrogen dioxide (NO2), carbon
monoxide (CO), sulphur dioxide (SO2), PM10, and PM2.5 (particulate matter in ug/m3 for
particles smaller than 10 and 2.5 μm in median diameter, respectively). It is important to
note that there is a direct relationship between NO2 and population density [13], as it is an
indication of economic activity. This can be a byproduct of industrial activity (e.g., power
plants, industrial plants) as well as from combustion due to the operation of vehicles (cars,
trucks, buses, trains, etc.).

During and following the lockdown in China, many cities experienced a drop in NO2
concentration by 40–60%, an increase in mean ozone concentration by a factor of 1.5–2, and a
35% drop in PM2.5 [14–16]. Similar trends regarding concentrations of NO2, CO, PM10, and
PM2.5 were reported for Delhi and Mumbai in India and several cities in Europe [17–19].
Even NASA and the European Space Agency (ESA) have been using satellite imagery to
monitor the environmental conditions resulting from COVID-19 response measures due
to the reduced fuel emission (https://eodashboard.org/). Evidently, lockdown measures
have contributed to a reduction in different gasses which contribute to the creation of
photochemical smog along with other pollutants hazardous to human health. Long-term
exposure to NO2 and PM2.5 have been linked to respiratory diseases that have been
identified as a contributing factor to fatality from COVID-19 [20]. The linkages between
prior exposure to PM2.5 and mortality due to infection caused by COVID-19 were presented
by a Harvard study (Wu et al., 2020 [21]).

The purpose of this study was to determine if the locations of NO2 as well as the
decrease in power consumption, as measured by the radiance from the Visible Infrared
Imaging Radiometer Suite (VIIRS) Day/Night Band, aligned with economic activity centers
and to understand how the underlying population density related to these locations. Using
three case study locations (Los Angeles, CA; Chicago, IL; Washington, DC), we examined
how NO2 concentration and economic activity (VIIRS Day/Night Band imagery was used
as a proxy) changed due to change the reduction in mobility patterns during February,
March, and April of 2020. This preliminary study demonstrates how satellite-derived
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information (e.g., NO2 concentration and light intensity—a proxy for energy consumption)
can be used to explore variation in economic activities in near real-time resulting from a
global pandemic or an isolated, local incident (weather or attack on infrastructure) that
causes a reduction or shutdown of the power grid, etc.

2. Data and Methodology

This study focused on three major metropolitan areas in the United States: Chicago,
IL; Los Angeles (LA) County, CA; Washington DC, where similar “stay at home” measures
were implemented on 12th, 19th, and 20th of March 2020, respectively. The lockdown
measures ensured that only essential businesses and services were open in the three cities.
The other reason for choosing these cities was the availability of mobility data at a high
confidence level.

Each metropolis has a unique economy. LA County is the third largest metropoli-
tan area in the United States with an estimated GDP of $1.05 trillion in 2018 [9], and
an estimated population of about 10 million as of July 2019 (US Census Bureau 2020)
(Figure 1a). Its economy includes a variety of industries ranging from entertainment to
shipping to software, which require long commutes over the vast highway system. The
Chicago metropolitan area has an estimated 2018 GDP of $689 billion [9] and an estimated
population of 2.7 million in 2019 (US Census Bureau 2020) (Figure 1b). While the majority
of Chicago’s economy includes financial and professional service sectors concentrated in
the downtown part of the city requiring lengthy commutes, there is a heavy manufacturing
presence in the Chicago metropolitan area. The Washington DC metropolis is primarily
focused on businesses and the support of the federal government and had an estimated
2018 GDP of over $540 billion [9] and an estimated population of 9.81 million in 2019 (US
Census Bureau 2020) (Figure 1c).

 

(a) (b) 

Figure 1. Cont.
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(c) 

Figure 1. Population density distribution in 2020 for California and LA County (a), Chicago, IL (b), and Washington, District
of Columbia (c).

In the three metropolises, there is a heavy reliance on long home-to-work commutes,
which is a factor for heavy pollution. According to the American Lung Association’s
2020 “State of the Air” report, LA, Chicago, and Washington DC (are ranked 1, 16th, and
20th among the 25 most ozone-polluted cities in the US [22]. While each of these regions
contain numerous small-to-medium coal/gas power-generating facilities, the largest power-
generating facilities in Chicago and Washington DC are nuclear power plants, which do
not emit any NO2 or greenhouse gases. The city of LA has four natural gas-fired generating
stations within city boundaries, which are medium in size. The city primarily receives
power from Utah, Arizona, and Nevada.

In the three metropolises, there is heavy commercial traffic (trucks), particularly in
the port and heavy industry regions of the city as well as a wide range of age and type of
vehicles. In addition, all three cities have large mass transportation infrastructure (buses,
subways, trains) which are relied upon by the population, particularly in the downtown
areas. The largest difference between the three study cities is that the type of fuel utilized
in the Los Angeles area. For many decades, California has had a unique blend of gasoline
which was developed to help reduce the amount of smog, particularly in the LA basin.

In terms of climatology, as observed from the National Oceanic and Atmospheric
Administration’s (NOAA) National Climatic Data Center (NCDC), the three sites do have
varying climatology. Being in the northcentral part of the United States, Chicago is by
far the coldest and snowiest location of each of the study regions. It has an average
monthly snowfall of 9.1” in February to an average of 1” of snow in April, with an average
temperature ranging from −1.6 ◦C to roughly 5 ◦C over the three months of study. In
general, this would translate to an increase in activity. Similarly, in the Washington, DC
metropolitan area, the average temperature is roughly from 4 ◦C to 15 ◦C over the three
months of study. As one would expect, the LA basin is much warmer than both Chicago
and Washington, DC. However, all of the areas generally have precipitation including both
rain and snow during the study period. While the temperature and primary precipitation
are different, all three study locations observe an increase temperatures and increased

20



Remote Sens. 2021, 13, 5

precipitation, typically in the form of rain, during the three-month study period. This
would generally lead to an overall increase in movement.

Materials and Methods

For the study, we used tropospheric column NO2 data from Sentinel 5P TROPOspheric
Monitoring Instrument (TROPOMI) from the ESA datahub (https://scihub.copernicus.eu/)
to examine the environmental effects of the lockdowns, VIIRS Day/Night Band (DNB)
data to capture changes in energy consumption using light intensity (a proxy for economic
activity), surface PM2.5 data from the AirNow monitoring network (airnow.gov), cell phone
derived mobility data from BlueDot software company under academic agreement to use
the data for research purposes, and 2020 population distribution data from WorldPop
(https://www.worldpop.org/). To maintain consistency among datasets, monthly aver-
aged data were used for the time period studied. A discussion of the datasets and analytics
used to examine the impact of the lockdowns on economic activities and environmental
conditions is presented below.

Sentinel-5P TROPOMI

The Sentinel-5 Precursor (Sentinel-5P) satellite is a low-earth orbiting satellite devel-
oped by the ESA as part of the Copernicus Programme. It flies in a sun-synchronous
ascending node orbit at roughly 824 km in altitude. The primary instrument onboard
the satellite is TROPOspheric Monitoring Instrument (TROPOMI), a spectrometer de-
signed to sense ultraviolet (UV, 270–320 nm), visible (VIS, 310–500 nm), near (NIR, 675–775
nm). and short-wavelength infrared (SWIR, 2305–2385 nm) radiation [23], and monitor
trace gases (O3, CH4, CO, NO2, SO2) as well as aerosol index and layer height. The S5P
TROPOMI is an air quality mission that observes air quality related to trace gases and
aerosols at high spatial resolution. The NO2 product used in this study was available at a
3.5 km × 5 km spatial resolution. For our analysis, we remapped the pixel level TROPOMI
data to 0.25◦ × 0.25◦ resolution.

Suomi NPP VIIRS

The Suomi National Polar-Orbiting Partnership (S-NPP) and NOAA-20 satellites are
polar orbiting environmental satellites launched in a sun-synchronous 1330 local time
ascending node orbit. The S-NPP and NOAA-20 are spaced one-half orbit apart (~50 min)
from each other. Each satellite orbits the Earth at a roughly 834 km altitude and completes a
single orbit in ~101 min. Both satellites carry the VIIRS instrument, which collects both vis-
ible and infrared imagery spanning from 0.4–12 μm, combining key capabilities of several
legacy instruments. The VIIRS includes a DNB capable of sensing visible/near-infrared
(500–900 nm) during both day- and nighttime (low-light) conditions. At night, it is sensitive
to small amounts (~7 orders of magnitude fainter than daylight) of light present in its band
pass and is capable of detecting from its orbital altitude the light emitted from a single
isolated streetlamp [24–27]. The DNB data have been used for a wide range of applications
such as fire detection, meteorological phenomena, observations of anthropogenic light
sources, like ship tracking and fishery monitoring [28,29], as well as to estimate electrical
usage and power outage, industrial output, and economic activities [30–33].

VIIRS DNB Radiance Data Creation

To discern trends in human activity and mobility, monthly composites of city light
intensity from S-NPP were created. The measured DNB radiances from the nights where
there was little to no moonlight (roughly the day after last quarter to the day after the first
quarter phase of the moon, or approximately 14 consecutive nights of each lunar cycle)
were cloud-cleared using the NOAA’s Interface Data Processing Segment (IDPS) VIIRS
Cloud Mask to create a nightly screened image [34]. These images were then remapped
to a common 15 arc second grid and combined into a single monthly composite of the
brightest radiance for each pixel in the grid.

A key point to note is the need to account for the stray light which occurs in the DNB.
Stray light arises from flaws in the light shielding of the satellite, where non-earth-scene
light enters from either the VIIRS scan cavity or through the nadir door and solar diffuser
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openings. This results in a “gray” haze in the data, which can extend as far south as the
southern United States in the summer months due to the tilt of the earth and exists in the
DNB for both S-NPP and NOAA-20. A post-processing correction is applied to the data
to remove this stray light [35], allowing for a more consistent radiance across as the stray
light region is traversed.

Mobility Data

Human mobility was approximated using anonymized, population-aggregated, near
real-time, mobile device GPS location data provided by Veraset (Veraset, San Francisco, CA,
USA, 2020), a data-as-a-service vendor. The location data were used to calculate median
maximum distance, i.e., the distance between farthest check-in and home location in km
(mean daily median by census tract). “Home” was defined as the location (~0.6 square
km grid cell) where a device was primarily located between 12 am and 5 am local time.
Maximum distances from home were calculated daily for each device, and a daily median
value was assigned at the census tract level. This data were averaged over the course of a
given month to correlate with the analysis of the DNB as well as to filter the day-to-day
noise in mobility patterns and discern over all trends in human activity. Census tracts
with less than 5 daily devices were excluded from the analysis. This type of data has been
utilized to study the effectiveness of “stay-at-home” orders during COVID-19 [36] as well
as by emergency management agencies to help determine the likely areas for COVID-19 to
spread. Due to the fact of privacy laws in other countries, this study used the data available
for cities in the United States.

Population Distribution Data

Population data sets were obtained from WorldPop [37], which provides high-resolution,
open, and contemporary data about human population distribution across the world. We
obtained the 2020 population data for the three study sites as GeoTiff files at a spatial reso-
lution of 100 m × 100 m (3 arc seconds). The gridded population data were created using
a top-down approach [37], which was adjusted to match the United Nations Population
estimate. Using the census tract boundaries (the spatial scale at which mobility data were
generated) and the gridded population data, we determined the population density at the
tract level for the implementation of the spatial data mining approaches.

Spatial Data Mining

The following spatial statistics methods were used to examine the spatial variation
of mobility, energy usage, the NO2 concentration over the three months, and also to
understand the relationship among the variables, while the underlying population density
did not change during February–April.

Hotspot Analysis, also known as the Getis–Ord (Gi*) spatial statistic, was used to
identify the spatial clusters of hotspots (i.e., features of high values) and coldspots (i.e.,
features of low values). The Gi* spatial statistic estimates the spatial dependency effect
of an attribute based on a specified spatial relationship among the features. The spatial
relationship can be based on identifying features within a certain distance from a feature
or assigning a weight to features based on their distance from a feature. This statistic
identifies statistically significant clusters of high and low values represented by a z-score
and p-values (more details about the statistical method can be found in References [38,39]).

To identify the variation in mobility and energy consumption (using DNB radiance
values), an optimized hotspot analysis was implemented. The Optimized Hot Spot Analysis
tool in ArcGIS Pro [40] implements incremental spatial autocorrelation that performs Global
Moran’s I for a series of distances to measure the intensity of clustering at each distance.
The intensity of clustering represented by a z-score identifies the optimal distance that
allows for pronounced clustering. This peak optimal distance was used as the threshold
distance for identifying clusters in the hotspot analysis. This tool automatically aggregates
data and identifies the significant distance threshold to aid with cluster identification.

Spatial Autocorrelation: Evidently, mobility and energy consumption dropped as a
result of lockdown across the study sites. Because of the spatial variation of high and low
population density clusters in the study site, Moran’s I was used to identify the spatial
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autocorrelation in the parameters (mobility, DNB intensity and NO2 concentration) using
Moran’s I. While Global Moran’s I describes the spatial dependency and association across
the study site, Local Moran’s I (Local Indicator Spatial Association (LISA)) identifies the
degree of association between a census tract and its neighbors (more details about these
statistics can be found in References [41–43]).

Visualization: The visualization of GIS data throughout this paper were created using
ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and
are used herein under license. Copyright Esri©. All rights reserved. For more information
about Esri® software, please visit www.esri.com.

3. Results—Effects of Lockdown

3.1. Population Density

Before exploring the effects of the lockdowns in our three case study cities, we explored
the population density distribution at the census tract level (the administrative boundary
that was used to generate mobility data). The main purpose was to identify the high–low
density clusters to understand the effects of lockdown on subsequent changes in mobility
patterns, nitrogen dioxide concentrations as well as power usage due to the change (i.e.,
drop) in economic activities. Figure 2a,b depict the population density distribution for
LA County at the census tract level. These data show that the highest density tracts
were clustered in the south-central part of LA County (specifically, surrounding LA city,
highlighted by the square in Figure 2a), and this area was surrounded by high to moderate
density tracts (hotspots in Figure 2b). The northern half, southwestern part, and southern-
most part of the county were occupied by very low-density census tracts (coldspots in
Figure 2b). Essentially, the southern half of the county is densely populated with high
spatial variability, while the northern half of the county is sparsely populated.

 
(a) (b) 

Figure 2. Population density distribution at the census tract in LA County (population/square KM) (a) and high- and
low-density census tract clusters in LA County (b).
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In the city of Chicago, moderate to heavily populated tracts are clustered in the
northern and northeastern part of the city (Figure 3a). While the sparsely populated tracts
were clusters in the southern and northwestern part of the city; the low population density
tracts were spread out across the city. From the hotspot analysis output, it was clear that
the heavy density tracts were clustered along the north-eastern part of the city (hotspots
with high significance in Figure 3b), along the lake shore, while the low population density
clusters were located in the southern and northwestern parts of the city (coldspots in
Figure 3b). There was a random distribution of moderate to low density tracts across the
entire city (Figure 3b).

  
(a) (b) 

Figure 3. Population density distribution at census tract in Chicago (population/square KM) (a) and high- and low-density
census tract clusters in Chicago (b).

The majority of Washington, DC population is concentrated in the central part of the
city, with a few clusters of low and very low-density tracts are spread out across the entire
city (Figure 4a,b). It was clear from the hotspot analysis that the densely population tracts
were clustered in the center of Washington, DC with few clusters of low-density population.
The remainders of the tracts were less densely populated.
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(a) (b) 

Figure 4. Population density distribution at census tract in DC (population/square KM) (a) and high- and low-density
census tract clusters in Washington, DC. (b).

3.2. Variations in Mobility Patterns

The immediate impact of lockdown measures in the cities was a reduction in mobility
due to the tele-working and shutdown of all businesses except essential businesses and
services. Because stay-at-home measures were in place by March 2020 in all three cities, we
explored the change in mobility (distance and pattern) at the census tract level. Figures 5
and 6 show the mobility distribution in LA County during February through April. The
data indicate that mean travel distance dropped from 268 km in February to 50 km in
March and 42.6 km in April. In February, the high mobility areas were concentrated in the
downtown area of LA City as well as in the northeast and northwest part of LA County,
which has a very sparse population (Figures 5a and 2a).

Evidently, the highest distance traveled dropped by more than 75% in the entire county.
While more than 50 km distance on average was traveled in the northwestern part of the
county, mobility was no more than 20 km in the downtown area of the county (central
part of the county closer to LA City (red box in Figure 5a)). Essentially, the lock-down-
induced telecommuting appears to have impacted on the reduction of mobility in LA city
by more than 90%. Moderate mobility was still observed in March near Malibu, Long
Beach, and Santa Monica (southwestern part of the county represented by black boxes in
Figure 5b). Although there were some pockets of high mobility in the high-density areas
of LA County, mobility appeared to have dropped in areas surrounding the downtown
LA (central part of the County) but was still higher in sparsely populated counties of
LA along the northeast and northwestern part of the county. The maximum distanced
traveled in LA County by April was approximately 42 km (Figure 5c). Nevertheless, the
areas experiencing moderate mobility remained the same as they were in March, and these
areas included the low-density tracts of the county as well as Santa Monica, Long Beach,
and Malibu. Preliminary analysis of the income data from the US Census (2018 American
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Community Survey) revealed that the mobility reduced significantly in the impoverished
part of LA County.

  
(a) (b) 

 
(c) 

Figure 5. Mean mobility distribution in LA in February (a), March (b), and April (c).
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(a) (b) 

Figure 6. Mean mobility percentage difference in LA between February and March (a) and between March and April (b).

Although mobility was reduced by 50–100% by March in many parts of LA County,
including closer to LA City (Figure 6a), majority of LA experienced a drop in mobility by
50–100% by April (Figure 6b). During February–April, mobility increased significantly only
in few census tracts of LA. A future analysis of the tracts experiencing mobility increase
will be conducted to explore the effects of the underlying socio-economic characteristics as
well as businesses that might have contributed to the mobility increase.

Before the lockdown, travel in Chicago in February appears to have been concentrated
near the downtown area (black box in Figure 7a), near the Chicago Midway International
Airport (northwestern part of the City), Whiting (southern part), and near the Chicago
Midway International Airport (red box in Figure 7a). It also appears that travel in Chicago
was not concentrated in the high-density tracts that are located in the northeastern part of
the metropolis (Figure 3a).

Following the lockdown, by March, the maximum distance traveled dropped by 50%
(81 km to 44.6 km) (Figure 7b). However, the moderate to very high mobility clusters were
still located near the downtown area of Chicago, near the airports, and Whiting (Figure 7b,
red and black boxes). Mobility dropped by another 50% in April in Chicago (Figure 7c),
but like February and March, high to moderate mobility areas were present in the central
Southern and Southwestern part of Chicago (Figure 7c). Evidently, mobility was still higher
near O’Hare International Airport (northwestern part of Chicago. Figure 7a–c).

Figure 8a,b depict the percent change in mobility in Chicago during February through
April. Immediately after the lockdown, mobility dropped by more than 50% in many tracts
across Chicago, while it also increased by more than 100% in the northeastern part of the
City (black box in Figure 8a) near Uptown—a residential neighborhood. By April, mobility
reduced by more than 75% (Figure 8b) across the entire city. The mobility reduction was
evident in the central, northeastern, northwestern (near O’Hare International Airport),
and southern (near Whiting) part of the City. Although the mobility reduction near the
airports was approximately 25%, the reduction in residential neighborhoods of the city
(high density tracts, Figure 3a) appeared to be due to the fact of tele-commuting.
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(a) (b) 

 
(c) 

Figure 7. Mean mobility distribution in Chicago in February (a), in March (b), and April (c).

28



Remote Sens. 2021, 13, 5

  
(a) (b) 

Figure 8. Mean mobility percent difference in Chicago between February and March (a) and between March and April (b).

The densely populated tracts in Washington DC were clustered near the central and
southeastern part (Figure 4a). The central part of DC was also where White House is located.
Therefore, it is no surprise that mobility was higher in February in the central part of DC
(near the White House and the downtown area) (Figure 9a). In March, after the beginning
of the lockdown, mobility dropped in Washington DC by almost 50% from about 73 km
to 38 km (Figure 9a,b), but the highest mobility was reported to be near the White House,
Capital Hills, and the Washington, DC downtown. Residential neighborhoods surrounding
the central part of DC exhibited low mobility. In comparison to March, mobility dropped
by almost 50% from in April. However, the clusters of high to moderate mobility were
still concentrated near White House, downtown DC, and Capital Hills (central part of DC,
Figure 9c) where most of the policy makers were meeting regularly to address the spread
of the pandemic. Mobility appeared to have dropped significantly in the residential areas
of DC (surrounding areas of White House and downtown), which could be attributed to
tele-working.

Between February and March, mobility dropped by more than 50% in few places
across DC, but mobility was higher near the White House in March (Figure 10a). By April,
however, mobility dropped by at least 16% percent across DC, and it was higher than 90% in
a few locations (Figure 10b). Even the central part of DC (near White House and downtown
areas) experienced a 25–50% reduction in mobility by April. While mobility reduced in
high-density tracts (nearer to downtown area) immediately after the lockdown in March,
by April, all across DC significant reductions in mobility were observed. However, unlike
LA and Chicago, DC did not experience an increase in mobility in March or April. This
could be attributed to the fact that LA County has sparsely populated census tracts as
opposed to DC and Chicago, which are mainly occupied urban tracts.
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(a) (b) 

 
(c) 

Figure 9. Mean mobility distribution in Washington, DC in February (a), in March (b), and April (c).
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(a) (b) 

Figure 10. Mean mobility percentage difference in Washington DC between February and March (a) and between March
and April (b).

3.3. Analysis of NO2

NO2 is one of many byproducts of industrial processes that are considered hazardous
to the health of humans and the environment (EPA, 2015). From the NO2 trends observed
by TROPOMI over Los Angeles (Figure 11), it can be seen that there was a large reduction
in the monthly average total tropospheric column NO2 from February to March, and the
reduction continued through April.

More than half of the signal was due to the lockdown, with only the highest concentra-
tions of NO2 (due to industrial activity) remaining near the LA Port region, where most of
the refinery and industrial capability in Los Angeles is located, as well as the Inland Empire
(San Bernardino Valley), which is a major shipping hub. A recent study [44] showed that
while total NO2 reduction in Los Angeles during 15 March 15 to 30 April 2020 compared
to the same time period in 2019 (Business as Usual, BAU) was about 66%, NO2 reduction
due to the lockdown measures was 35% and with the remaining 31% being due to the
fact of seasonality. Even during the lockdown, it would be expected that there would be
some industrial activity to support essential services. The trend in NO2 is correlated to
the mobility pattern observed during the lockdown. In Figure 12, the left image (a) is a
histogram of the total column NO2 for February, March, and April 2020, and the right
image (b) is the distribution of distance a given cellphone travelled during the daytime
period (i.e., when most movement occurs) for each corresponding month. As can be seen
from Figure 12, February and March exhibited a wider range of mobility compared to April.
The curve shifted to the left with high concentrations (tails of the curves), nearly 50% lower
than the values observed in February and May.
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(a) (b) 

 
(c) 

Figure 11. Distribution of NO2 concentrations in Los Angeles, CA during February (a), March (b), and April (c).

 
(a) (b) 

Figure 12. Histogram of NO2 concentration in California (a) and mobility distribution (b).
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Chicago, Illinois had an earlier lockdown than Los Angeles. As discussed previously,
the economy is focused around the downtown region by Lake Michigan in the financial
and professional services sectors. However, there is a heavy manufacturing presence in the
Chicago metropolitan area, particularly close to the southeastern part of Lake Michigan
and into the western part of Indiana.

As one might expect, the areas where people commute to on a regular basis showed
a dramatic decrease in NO2 in the downtown region, while the areas of heavy industry,
such as powerplants and refineries, remained at elevated (though reduced) NO2 levels
(Figure 13). A recent study [44] reported that reductions in NO2 as observed by TROPOMI
due to the lockdown were ~14% for 15 March to 30 April 2020 compared to the same time
in 2019.

  
(a) (b) 

 
(c) 

Figure 13. Distribution of NO2 concentration in Chicago in February (a), March (b) and April (c).

While there was a similar trend in decreased mobility with Los Angeles, the spread of
the total column of NO2 was much narrower in Chicago (Figure 14). This is partially due
to the fact that the area observed was much smaller than the Los Angeles basin. The other
notable difference was that that the average distance for commuting was much shorter for
Chicago than Los Angeles.
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(a) (b) 

Figure 14. Histogram of NO2 concentration in Chicago (a) and mobility distribution (b).

The Washington, DC metropolitan area is heavily driven by businesses and federal
agencies. However, unlike Los Angeles and Chicago, there is no heavy industry. Maryland
and the DC area implemented their lockdown on 17 March. The primarily I-95 travel
corridor in Maryland, Delaware, and southern New Jersey can easily be seen in Figure 15,
which is the total tropospheric NO2 column density for February.

  
(a) (b) 

 
(c) 

Figure 15. Distribution of NO2 concentration in Washington DC in February (a), March
(b) and April (c).
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(a) (b) 

Figure 16. Histogram of NO2 concentration in Washington, DC (a) and mobility distribution (b).

Table 1 shows the comparison between the monthly averaged NO2 concentrations
and mobility information distance over the entire region of each study site. As can be
seen, the average mobility distance was at its lowest in the April 2020 peak distance, which
corresponds with the lowest average NO2 concentrations in all three sites.

Table 1. Monthly average distribution of NO2 (μmoles/m2) concentration and mobility (km).

NO2 (μmoles/m2) Mobility (km)

City February March April February March April

Washington, DC 89.6 62.7 36.1 13.3 10.1 5.4

Chicago 123.9 102.7 82.1 12.4 9.2 5.4

Los Angeles 108.8 65.6 51.3 24.1 17.6 11.5

There were some variations between each of the sites that can be seen in Table 1.
Los Angeles, for example, had a significant drop in movement between February and
March, which was accompanied by a significant drop in NO2 density. The leveling off in
mobility did not directly correlate to the steady decrease in the rate of NO2 density. There
are a number of factors which could be a reason for this, including the time it takes to turn
off various industrial processes or the number of cars on the highway.

In the case of Chicago, their lockdown was not as abrupt (only 17% drop in NO2 for
26% drop in mobility between February and March), but even so, the decrease in movement
resulted in a decrease in NO2 density. The Washington DC metropolitan area is notable in
that the shutdown did not occur until late March, meaning that the largest drop in mobility
would have occurred in late-March. Even then, the NO2 density decreased by 30% between
February and March while the drop in NO2 between March and April is quite significant,
at 42%. The mandatory telework is continuing in the Washington, DC area and the trend in
NO2 for the whole year (2020) will shed light on how policy makers can introduce work
schedules to the federal employees in the area to minimize air pollution.

The photochemical smog that leads to poor air quality is a chemical soup of noxious
gases (NOx = NO+ NO2) among other volatile organic compounds (VOCs) that lead to
ozone and PM2.5 formation. Ozone is harmful to humans as well as plants, whereas PM2.5
is harmful to humans. Both are pollutants that were declared as criteria pollutants by
the United States Environmental Protection Agency (EPA). While NO2 and VOCs are
precursors for ozone and secondary aerosol formation, PM2.5 can also be directly emitted
(soot from cars) or photochemically formed from NO2, SO2, and VOCs which are precursors.
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Because of the extreme reductions in the SO2 emissions beginning in the 1970s to curb
acid rain, SO2 is no longer a main source for secondary aerosol formation. NO2 and VOCs
remain the main precursors leading to the formation of secondary nitrate and organic
aerosols. Figure 17 shows PM2.5 concentrations in February, March, and April of 2020
decreased compared to the same months in 2019 with the exception of February 2020
in Los Angeles which was higher than the values observed in February 2019. Note that
the lockdowns did not start until March and the differences could be due to the unique
seasonal differences between the two years. Of the three cities, Chicago saw the largest
reduction in PM2.5.

Figure 17. Distribution of surface PM2.5 in Washington, DC, Chicago, and LA during February–March.

3.4. Distribution of Nighttime Lights (NTL)

The Day/Night Band (DNB) on S-NPP (and NOAA-20) has the ability to detect
visible/near-infrared (500–900 nm spectral response) imagery for both day and nighttime
conditions. The instrument is sensitive enough to detect not just the light emitted from a
single isolated streetlamp but also emitted light from the mesosphere reflected off cloud
features as well as density perturbations within the mesosphere itself. While it has a
wide range of applications, the DNB was used here as a proxy of power usage (economic
activities). Because the DNB is only able to observe electrical light at night, generally
around 1–2 a.m. local time, this means that it is only a measurement of nighttime/early
morning activity. Despite this limitation, there is significant activity at night like traffic
movement that is captured by the DNB imagery.

Immediately after the lockdown measures were in place, businesses were shut down
and the majority of the economic activities stopped in LA as is evident from Figure 18b,
except for some activities that were still ongoing near downtown LA and the Long Beach
area. The reduction in activities in March aligns with the reduction in mobility seen in
LA County, except for the downtown area and near Long Beach where probably the port
activities were still underway to some extent (Figure 5). The limited traffic movement
in March (Figure 18b) could be due to the travel to essential businesses, such as grocery
stores and hospitals. Although the lockdown measures were still active in April, economic
activities appear to have resumed in LA in April (Figure 18c). The highest NTL intensity
values (nWatts·cm−2·sr−1) in February, March and April were 7610, 5730, and 3569 respec-
tively. Evidently, the April NTL intensity was 53% lower than February radiance and ~38%
lower than March radiance. However, it is clear that the economic activities and associated
mobilities in April were concentrated in the downtown LA area, near the port in Long
Beach, and along the LA-San Bernardino and LA–San Fernando corridors as evident from
Figure 18d,e, where the blue indicates a measured increase in light intensity, while red
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indicates a measured decrease in intensity (radiance). This color scheme has been used in
other studies regarding DNB radiance differences [29–32,45].

  
(a) (b) 

 
(c) 

Figure 18. Cont.
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(d) (e) 

Figure 18. Nighttime light (NTL) intensity distribution from VIIRS for Los Angeles in February (a), March (b), April (c);
change in NTL intensity in LA between February and March (d) and between March and April (e).

Not surprisingly a similar pattern was observed in Chicago in March after the lock-
down measures were in place in Illinois, particularly in the Chicago Metropolitan area.
Economic activities dropped in Chicago region except for the downtown Chicago area
near Millennium Park (Figure 19). Some activities are also observed near Rosemont area
(O’Hare International Airport) and Clearing (Chicago Midway International Airport). Com-
parison of the light intensity between February and March (892 and 839 nWatts·cm−2·sr−1,
respectively) indicates that the reduction in economic activities was not that drastic as was
the case in LA (Figure 19d). By April, economic activities and traffic movement started in
the Chicago region (Figure 19c), but the comparison of light intensity between March and
April (839 and 1207 nWatts·cm−2·sr−1, respectively) (Figure 19e) indicates that economic
activities and mobility increased way more than what was observed in February in certain
parts of Chicago rather than the broader region. In fact, the radiance dropped by 6% in
March, but increased by ~44% in April. This is corroborated by PM2.5 observations in April,
which showed very limited reduction in April 2020 as compared to April 2019, whereas
March 2020 showed substantial reductions in PM2.5 compared to March 2019 (Figure 17).
The activities are concentrated in the Chicago metropolis rather than beyond the metropolis
in the suburbs as was the case in February.
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(a) (b) 

 
(c) 

Figure 19. Cont.
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(d) (e) 

Figure 19. Nighttime light (NTL) intensity distribution from VIIRS for Chicago in February (a), March (b), April (c); change
in NTL intensity in Chicago between February and March (d) and between March and April (e).

The pattern of reduced economic activities and mobility in March followed by an
increase in activities in April was observed in DC and its surrounding urban areas of Pitts-
burgh, Maryland, etc. Although the radiance values dropped by 22% in DC (Figure 20d,
from 490 to 383 nWatts·cm−2·sr−1), there was an increase in activity (lighting was bright)
in the neighboring areas of DC in Arlington and Bethesda. An obvious decline in activ-
ity in College Park was also observed due to the closure of the university campus and
federal buildings near the campus. The drop in central DC in March was concentrated in
the downtown area where businesses closed down immediately following the lockdown
orders. By April, though economic activities increased to some extent (radiance increased
by 7% than what was observed in March, Figure 20e), economic activities in the DC area
beyond the downtown and White house area reduced in April as most employees started
working remotely. This drop in radiance aligns with what was observed with regard to
mobility change during March and April in the broader DC region. By contrast to DC
metro area, economic activities and traffic movement appear to have resumed by April in
the Baltimore, Columbia, MD areas.
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(a) (b) 

 
(c) 

Figure 20. Cont.
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(d) (e) 

Figure 20. Nighttime light (NTL) intensity distribution from VIIRS for Washington DC in February (a), March (b), April (c);
change in NTL intensity in DC between February and March (d) and between March and April (e).

4. Discussion and Conclusions

This paper presented an initial study of the impacts of lockdown measures in response
to the novel coronavirus disease 2019 (i.e., COVID-19) on economic activities and envi-
ronmental conditions in three cities across the US. The study revealed that the lockdown
measures have two conflicting effects: (i) first, a reduction in mobility contributed to a
decrease in economic activity that subsequently impacts rise of poverty, and (ii) second, a
mobility reduction also reduced pollution, specifically, the concentration of NO2, which
is a key precursor for photochemical smog production. Long-term exposure to NO2 and
PM2.5 have been linked to respiratory diseases that have been identified as a contributing
factor in fatality from COVID-19 (Ogen 2020, [20]). The linkages between prior exposure to
PM2.5 and mortality due to infection from COVID-19 was presented by a Harvard study
(Wu et al. [21]). A recent study [46] observed the effects of lockdown measures as a result
from COVID-19 in four major metropolis areas, including Los Angeles. Connerton et al. [46]
stated that they utilized air quality data from local air monitoring agencies for the study
areas. For LA, Connerton et al. [45] NO2 concentration was taken from the South Coast Air
Quality Monitoring District dataset for a single month of data (March) from 2 locations:
Central Los Angeles and North Orange County. While this provides a high temporal
dataset, it is not necessarily representative of the entire LA basin. This study utilized
satellite-based observation from the TROPOMI instrument on Sentinel-5P, which covers the
entire LA basin at the expense of finer scale temporal changes. Both Connerton et al. [46]
and this study showed a net decrease in NO2 concentration over both Los Angeles and
New York city areas. However, the rate of decrease was different for LA, which was 38%
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(Table 2 in [46]) verses 25% for Wu et al. [21], which utilized satellite-based observations.
Furthermore, while Connerton et al. [46] only looked at the change in a single month (i.e.,
March), as previously noted, while Wu et al. [21] explored the changing trend for three
months. There is a natural variability of NO2 that occurs with the changing of temperatures
through the various months. However, the rate of change shown in this study as well as
others [21,46] is larger than what naturally would occur.

Following the lockdown in February, mobility, economic activities, and NO2 concen-
tration dropped in LA, Chicago, and DC. While the reduction in economic activities (as
seen from DNB data) in LA in March appears to be a result of the complete shutdown of
all businesses; this was not the case in Chicago and DC. In fact, unlike LA, where some
activities were underway in the LA downtown area and Long Beach, in Chicago and DC,
economic activities and mobility were continuing in March in the broader metro areas
surrounding the downtown as well as seaports and airport facilities. This supports the
findings by Elvidge et al. (2020) [45], namely, that the reduction in nighttime lights was
not due to normal variability. Rather they were the result of the “stay at home” orders
implemented by the various cities in this study.

By April, economic activities and travel to essential businesses had resumed in LA,
Chicago, and DC. It appears that economic activities resumed in downtown areas with
high population densities, and mobility (observed from mobility data and VIIRS data)
resumed along corridors connecting to high-density areas in LA and broader DC region
as well. Preliminary analyses of median household incomes in the study sites from the
US Bureau of Economic Analysis dataset appears to reveal that the mobility reduction
was more pronounced in low-income and poor neighborhoods of LA and Chicago rather
than in the affluent areas, which probably were occupied by service sector employees.
Given that businesses, specifically, those catering to the service sector were not fully
functional and employees started tele-commuting, it is not surprising that despite an
increase in mobility and economic activity (related to travel to points of interest like
grocery stores, hospitals etc.) in April, both NO2 and PM2.5 concentration were reduced
in LA, Chicago, and DC during March–April. A major takeaway from this study is that
while the lockdown measures helped reduce the transmission of the disease, they also
reduced mobility, thereby disrupting economic activities and improving air quality. This
study demonstrates how satellite imagery can be used to examine the change in economic
activities and resulting air quality in near real-time as well as to examine the change in
energy usage (a proxy for economic activities). It is also obvious that reduction in NO2
concentration is a result of reduction in overall mobility irrespective of the economic
activity centers and underlying population density distribution. The study also revealed
that lockdown measures ensured limited mobility and economic activity in the business
districts as well as in high density neighborhoods with essential businesses and corridors
connecting major activity centers and high-density areas. This study also revealed that low-
income neighborhoods experienced the brunt of the lockdown where mobility was lower
as opposed to affluent areas. This information could be combined with demographic data,
COVID-19 cases and energy consumption information to identify potential areas for disease
spread and test site locations and explore the varying patterns of energy consumption such
that strategies can be developed to address energy supply–demand relationships as well as
reduce disease spread and NO2 concentration while resuming economic activity. Research
is currently underway to further explore the correlation between information provided
by the Day\Night Band, as shown in this study, and various economic indicators, such as
unemployment numbers, GDP statistics, and mobility patterns. Future research will also
explore the relationships from different cities with varying population densities and across
time.
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Abstract: The importance of tourism for development is widely recognized. Travel restrictions
imposed to contain the spread of COVID-19 have brought tourism to a halt. Tourism is one of the
key sectors driving change in Africa and is based exclusively on natural assets, with wildlife being
the main attraction. Economic activities, therefore, are clustered around conservation and protected
areas. We used night-time light data as a proxy measure for economic activity to assess change
due to the pandemic. Our analysis shows that overall, 75 percent of the 8427 protected areas saw
a decrease in light intensity in varying degrees in all countries and across IUCN protected area
categories, including in popular protected area destinations, indicating a reduction in tourism-related
economic activities. As countries discuss COVID-19 recovery, the methods using spatially explicit
data illustrated in this paper can assess the extent of change, inform decision-making, and prioritize
recovery efforts.

Keywords: VIIRS; night-time lights; COVID-19; pandemic; protected areas; wildlife tourism

1. Introduction

Travel and tourism are vital economic sectors closely tied with socio-economic progress
and recognized for their potential to contribute to poverty reduction and development.
This sector accounts for 10.3 percent of global GDP, making it larger than agriculture. In
2019 alone, it created one in four new jobs. In Africa, the tourism sector employs around
24.6 million people and contributes $169 billion to the continent’s economy combined,
representing 7.1% of Africa’s GDP [1]. Over 30 African countries have identified tourism
as a national priority within the Enhanced Integrated Framework (EIF), a multilateral
partnership dedicated to providing trade-related assistance to less developed countries [2].
Tourism in the majority of African countries is centered around their protected area (PA)
systems. Africa’s 8400 protected areas (PAs) produce approximately US$48 billion in rev-
enue [3]. Tourism revenue is also the primary source of funding for PA agencies on the
continent. The impact of COVID-19 on conserved and protected areas have been estimated
to range from economic, social, and ecological to management and enforcement [4–6].

Protected areas, initially envisioned to protect iconic landscapes, seascapes, and
wildlife, now cover 15% of the earth’s land surface [7]. Besides the traditional functions of
habitat and biodiversity protection, PAs today are directly linked to supporting human
livelihoods and well-being, providing ecosystem services, and contributing to climate
change mitigation and adaptation [8]. Protected areas are hotspots of biodiversity conser-
vation and often overlap with areas of poverty and underdevelopment. Tourism revenues
provide the vital means to address both conservation and socio-economic development
objectives of communities living in and around PAs and beyond. A recent study found
how households around PAs with tourism also had higher wealth levels (by 17%) and
a lower likelihood of poverty (by 16%) compared to similar households living far from
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protected areas [9]. Empirical evidence also suggests that nature-based tourism can be
positive for people and wildlife [10–12].

COVID-19, which started around December of 2019, drew significant impacts on the
travel industry with travel restrictions that began in January 2020. The World Health
Organization (WHO) declared it a pandemic on 11 March 2020. Immediately countries
across the world introduced movement restrictions and confinement policies ranging
from voluntary compliance to complete ban on non-essential travel for effective control
of the pandemic. The tourism sector (non-essential travel) is the most directly impacted
by lockdown measures but also offers the opportunity to examine the effectiveness of
confinement measures including controlling the spread of COVID-19 and its broader
impacts.

By the end of April 2020, all tourist destinations worldwide have imposed travel
restrictions, out of which 72% have completely closed their borders for international
tourism [13]. The World Tourism Organization (WTO) has stated that international tourism
could decline by 60–80% in 2020. This decline could mean a total collapse of the tourism
sector in Africa, jeopardizing the progress made in recent years and threatening the survival
of millions.

The impact of infectious diseases on the travel and tourism industry has been recog-
nized during the 2014 Ebola outbreak in West Africa. The effect of that outbreak extended
beyond the Ebola zone and was felt across the continent [14]. Travel and tourism in
Africa took a massive hit, with broader macroeconomic and social impacts, as per studies
conducted a few years later after the outbreak ended [15].

At the date of this paper, we cannot estimate the socio-economic impacts of the
COVID-19 pandemic due to the scarcity of socio-economic data, travel restrictions, and
persisting uncertainty about the pandemic duration and about how recovery will take
place. In this scenario, remote sensing approaches can be a useful first step to assess
the extent of change induced by this pandemic. Few studies recently have used remote
sensing data to demonstrate the impact of the pandemic on economic activities and the
environment [16–18].

Night-time light data have been successfully used as a proxy measure for economic
activity and combined with other data to assess economic growth and development in
various contexts and scales [19–21]. Using night-time light data as a proxy indicator,
studies have estimated economic activities on global, national, and subnational levels
in developing economies [22–24], the spatial distribution of GDP [20,25], and mapped
urbanization dynamics [24,26,27]. Recent studies in China [17,28], Germany [29] and
India [18] have shown how nighttime lights can be used as a proxy to monitor change and
recovery in economic activity levels due to lockdown imposed by the pandemic. Studies
have shown that night-time lights do provide a reliable indicator to capture economic
activity. However, the relationship seems to be statistically more robust for developing
economies than developed ones [19]. Developed economies are less dependent on physical
infrastructure, and the services sector contributes more to the overall economic output.

In this paper, we use the night-time lights as a proxy indicator to compare the changes
in economic activities before and during the pandemic around PAs in Africa to assess
change patterns.

This study has two main objectives:

1. Demonstrate the application of NTL to capture the changes in economic activities
around PAs before and during the COVID-19 pandemic.

2. Assess the changes and patterns and how are they related to other contextual condi-
tions.

The study looks at the economic activities around a five-kilometer buffer of protected
areas in Africa because most economic and tourist activities occur within that zone. This
study includes 8427 PAs, of which 7763 were terrestrial protected areas, whereas 443
were coastal and marine, and 221 only marine PAs. These protected areas have different
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protection levels and include international designations such as UNESCO World Heritage
sites, Ramsar sites, and UNESCO-MAB reserves.

We compared the night-time lights data for April 2020 with the data from April
2019. We choose April 2020 to observe the change in economic activities due to COVID-19
because all tourist destinations worldwide have imposed travel restrictions by then [13],
and mobility around national parks in Africa was also at its lowest (Figure 1).

 
Figure 1. Google mobility trends for parks in Africa. As per the Google mobility data, parks typically
refer to official national parks and not the general outdoors found in rural areas.

The results are presented to highlight COVID-19 pandemic-induced travel restrictions
on economic activities around PAs in Africa. Future research could include large socio-
economic datasets and site-specific data gathered through surveys and interviews with
selected PA and tourism stakeholders.

2. Materials and Methods

We used two globally available data sets for this study, the World Database on Pro-
tected Areas (WDPA) downloaded from the protected planet website [30], and daily VIIRS
VNP46A1 product, the source of night-time light data.

World Database on Protected Areas: We used the April 2020 version of the WDPA,
which provides boundaries, designation, and other information. The WDPA is the most
comprehensive database on protected areas and provides unified standards and unique
opportunities for large-scale conservation studies [31].

The WDPA contains both the boundary and point locations for the sites that do not
have precise boundaries. We did not include Libya and Somalia data as they do not have
boundary information in the WDPA. We also did not include any regional or country-
level PA database because the WDPA is the only authoritative dataset following globally
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consistent standards and is regularly validated and updated to maintain the highest data
qualities.

Following the WDPA best practice guidelines [32], we used the higher and stricter
IUCN designation for overlapping areas.

The WDPA also classifies PAs by IUCN management categories and governance types,
as reported by the data provider. Sixty-six percent of protected areas in the WDPA had an
IUCN Management Category, and 88 percent had a governance type as of May 2019 [33].

Night-time lights data: The Day/Night Band (DNB) sensor of the Visible Infrared
Imaging Radiometer Suite (VIIRS) provides global daily measurements of nocturnal visible
and near-infrared (NIR) light that is sensitive in lowlight conditions. It also allows for the
generation of new science-quality night-time products. We used the daily VIIRS VNP46A1
product as the source for night-time light change observation [34]. DNB radiance band
(DNB_At_Sensor_Radian ce_500 m) was used to create average night-time observation
composition for April 2019 and April 2020. We used quality flag bands QF_Clound,
QF_Cirrus, and QF_DNB to filter low-quality pixels. Moon illumination fractions were
also adjusted using moon illumination information from the Moon_Illumination_Fraction
band. We used the Moon_Illumination_Fraction layer included in the level-3 VNP46A1
data and subtracted moon illuminated fraction from radiance values to reduce the lunar
effect. See Figure 2a,b below for a visual comparison between processed vs. unprocessed
VIIRS night-time data.

  
(a) (b) 

Figure 2. (a) Luanda city area in Angola is seen in unprocessed VIIRS night-time data acquired on 16 April 2020; (b) the
image shows the same location in the processed VIIRS night-time data corrected for moon illumination and bad pixels using
quality flags and then compositing for the entirety of April 2020.

Limitations with Night-Time Light: We only have 30 days of observations for each
year—so ephemeral lights are not corrected.

We used level-3 VNP46A1 data available at LAADS DAAC [35]. Products such as
black marble are not available; that is why level 3 data were used to demonstrate its utility
despite some limitations. Future studies may consider using more advanced data products
as they become available.

Median or mean: In theory, mean should be used to capture light values by sporadic
activities in camps. However, mean values can be significantly affected by ephemeral lights.
Median, however, can remove the effects of outliers and remove the signals from temporal
activities. In light of these limitations, we report both the statistics.

Night-time light trend comparison: Changes in the NTL trend for the PAs and their
surrounding areas were identified and then validated using high-resolution satellite im-
agery to identify the tourist camps, parking lots, and lodges. These are the most common
locations where tourism-related activities take place captured through night-time lights
data. We also performed the paired Wilcox test between the pair of median night-time
light values between April 2019 and April 2020 at the African continent’s protected areas
to confirm the changes in the night-time lights that we observed as statistically significant.
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Research [36,37] shows that transition to LEDs may produce a reduction of the ra-
diance on VIIRS, and therefore reduction in NTL intensity may not be solely due to the
lockdown. However, studies [37] also suggest that transition to LED is least in Africa and
that kerosine to dry-cell battery LED usage is more prevalent [38]. The Global Energy
Review 2020 [39] has also indicated an overall reduction in electricity demand due to the
pandemic. Therefore, it is unlikely that the observed changes in nighttime light within
a span of one year (April 2019–April 2020) in and around the protected areas were due
to LED transition. However future studies could explore the role of LED transition and
observed NTL changes during the pandemic around protected areas in Africa.

3. Results

3.1. Change in Light Intensity in African PAs

The results show an overall decrease in the mean and median light intensity between
the two years. The mean intensity for April 2019 was 0.37, whereas it decreased to 0.34 in
April 2020, about an 8 percent decrease. Similarly, the median values also reduced from
0.32 to 0.28, a decline of about 12.5 percent. The paired Wilcox test reveals that the test’s
p-value is < 2.2 × 10−16, which is less than the significance level alpha = 0.05. We can
conclude that the median light intensity for 2020 is significantly less compared to 2019
(Figure 3).

Figure 3. Comparison of night-time lights intensity between 2019 and 2020.

Overall, 75 percent of the 8427 protected areas saw a decrease in light intensity in
varying degrees. There is considerable heterogeneity in the changes captured in percentage
values for the overall PAs, and the PAs showing the highest reduction in light intensity.
The difference could be due to various factors, including differences in funding allocations
for PAs, the enforcement of curfews, types of businesses around PAs, access to electricity,
and the kind of mass tourism or proximity to urban areas.

Results indicate that fifty percent of PAs have about a 12 percent decrease in the mean
light intensity, and 25 percent have seen a reduction of 23 percent or more in the studied
period. The median decline in all the PAs was 13 percent overall, 13 percent in terrestrial,
4 percent in coastal and marine, and 8 percent decrease in the marine-only PAs.

An analysis of the proportion of PAs with decreased light intensity for each country
reveals that almost all the PAs in all the countries saw a decrease in the light intensity by
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varying degrees (Figure 4). The map in Figure 4 below, based on an equal interval, reveals
that 80–100 percent of PAs saw a reduction in night-time light intensity in most African
countries. These include PAs in Botswana, Kenya, Namibia, and South Africa, heavily
dependent on tourism revenues.

 

Figure 4. Map showing the proportion of protected areas (PAs) with decreased light intensity.

Less than 20% of PAs in Sierra Leone, Rwanda, and Burundi show a reduction in
light intensity. It should be noted that rural access to electricity (% of rural population) in
Burundi and Sierra Leone is less than 8% [40], which may explain why those countries see
low change rates in light intensity.

Except for a few places, the light intensity has decreased overall for the same countries;
for example, in Kenya and South Africa (Figure A1a,b in Appendix C). Minor increase in
light intensity was observed in and around some of the coastal and marine protected areas
in South Africa likely due to businesses catering to domestic customers to stay afloat.

3.2. Protected Areas with Maximum Decrease in Light Intensity

For the analysis, we have two subgroups—terrestrial and the other two, which in-
cluded coastal and marine, and marine only PAs. The top 20 PAs within each of these two
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categories (Figure A2a,b). Seven of the top 20 terrestrial PAs that have seen the highest
decrease in light intensity are from South Africa, followed by PAs in Nigeria and Kenya
(Figure A2a). Similarly, eleven of the top 20 coastal and marine PAs that have seen the
highest decrease in light intensity are also in South Africa (Figure A2b).

The Merja Zerga Biological Reserve in Morocco (Figure 5a), which has experienced
the maximum drop in the light intensity, is also a Ramsar Site. It is a permanent hunting
reserve known for intensive tourism activities, bird watching, fishing, grazing, and rush
harvesting. High-resolution images of the area show decreased movement and economic
activity, as demonstrated through the number of boats in the harbor and vehicles in the
area (Figure 5a,b).

(a) (b) 

Figure 5. Decrease in tourism activity can be seen in the decreased numbers of vehicles in the parking area at Merja Zerga, a
Ramsar Site. (a) Before the pandemic in April 2019; (b) during the pandemic in April 2020. (Image© 2021 Digital Globe,
NextView License).

3.3. Change in Night-Time Light Intensity by IUCN PA Management Categories

We looked at the light intensity changes in the protected areas for the different IUCN
PA Management Categories (Table A1 in Appendix B). The IUCN categories help the
countries classify protected areas based on their primary management objectives [33,41].

All the protected areas across the IUCN management categories show a decrease in
the median value of light intensity in April 2020 (Figure A3a).

In terms of the proportion of total PAs showing a decrease irrespective of the intensity,
more than 65 percent PAs across all management categories showed a decline in light
intensity where 72 percent PAs under high protection saw a reduction in light intensity
(Figure A3b).

The WDPA database also consists of protected areas that are Ramsar sites or World
Heritage Sites (WHS). In total, there were 337 sites with international designations, which
included 245 Ramsar Sites and Wetland of International Importance, 39 UNESCO-MAB
Biosphere Reserves, and 53 World Heritage Sites (natural or mixed). All the WHS sites saw
a decrease in the median and mean values (Table A2 in Appendix D). A similar trend was
also seen in the Ramsar Sites.

In Kenya, Lake Nakuru saw the highest decrease by 56 percent, followed by Mejen
Djebel in Tunisia by 50 percent. Among the MABs, the Zembra Zembretta IIes biosphere
reserve in Tunisia saw the most decline in light intensity, by 49 percent. Among WHS, the
Kenyan rift valley and the Okavango Delta in Botswana saw the maximum decrease by 45
and 38 percent, respectively.

In terms of the total proportion, 87 percent of Ramsar sites saw a decrease in light
intensity, followed by 77 percent of the UNESCO MABs and 67 percent of the WHS
(Figure 6).
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Figure 6. The proportion of PAs with decreased light intensity across international designations.

3.4. Change in Night-Time Light Intensity by Governance Type

Protected areas exist under the authority of diverse actors, including governments,
indigenous peoples and local communities, private actors, and combinations of these.
The IUCN governance categories help classify PAs according to who holds authority,
responsibility, and accountability for them [33,42]. Besides assessing change in light
intensity in PAs by the IUCN management categories, we also looked at the changes in the
light intensity in PAs by IUCN governance types.

All PAs across all governance categories show decreased light intensity (median value)
in 2020 (Figure 7a). In terms of the proportion of total PAs showing a reduction in light
intensity, more than 70 percent of PAs across all governance categories showed a decrease
(Figure 7b). PAs managed by non-profits showed a smaller decline in light intensity.

  
(a) (b) 

Figure 7. (a) Comparing light intensity across governance types; (b) proportions of PAs with decreased light intensity across
governance types.

The difference across these categories could be due to differences in funding sources,
availability of emergency resources to maintain essential services, sustaining minimum
operational requirements, and closing the protected areas.

3.5. Status in Popular PA Destinations

We chose three popular, biodiverse, and often-visited PA destinations in Africa—
Serengeti, Masai Mara, and Hell’s Gate National Park to examine the decrease in light
intensity. Overall, night-time light intensity decreased around all three national parks—
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Serengeti (−11 percent), Masai Mara (−23 percent), and HGNP (−23 percent), indicating
a decrease in economic activity sparked by the pandemic induced lockdown and travel
restrictions (Figure 8a–c).

 
(a) 

(b) 

 
(c) 

Figure 8. On the left part of each panel, satellite images show the popular tourist lodges, camp settlements, and markets
around the three parks. The NTL data for these same sites, showing before (in the middle part of each panel) and after
(right part of each panel), indicate that the locations have undergone a decrease in the light intensity. (a) Serengeti National
Park; (b) Masai Mara; (c) Hell’s Gate National Park.

Appendix A provides contextual information about these three parks and travel
restrictions in the countries where they are located. In the absence of ground verification,
the additional information helps explain the changes observed through the analysis of NTL
data.
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4. Discussion

The study demonstrates one of the many applications of NTL used as a proxy indicator
for economic activities and highlights how the level of economic activity in its entirety
has gone down around protected areas during the pandemic. This study also illustrates
the utility of NTL as a low cost and efficient way of assessing impact when the traditional
approaches could be challenging, posed by movement restrictions and time constraints.
The findings reinforce what we are beginning to understand as the impact of lockdown
and stay-at-home order on many economic sectors. The findings also indicate lockdown
measures have been largely effective even in remote areas while highlighting the trade-off
between controlling the pandemic and economic losses. Our study is the first to apply NTL
to assess the change in economic activities around PAs in the context of COVID-19. The
main challenge in using NTL for such rapid assessment is the lack of real-time analysis-
ready data. We overcame this challenge by creating a monthly composite based on daily
data, which was time-consuming. Future studies that focus on creating such a dataset
could concentrate on providing analysis-ready datasets with lunar illumination correction.
Such datasets would pave the way for rapid multitemporal analysis to trace change and
the impact of economic recovery over time. As socio-economic data on the impacts of the
lockdown become available, future studies can use these data sources for validation of the
findings.

5. Conclusions

Protected areas can positively impact poverty reduction in developing countries, and
nature-based tourism has been the critical strategy of conservation and development inter-
ventions to create a win–win situation for both nature and people. Long-term conservation
and poverty reduction efforts around the protected and conserved areas depend on the
tourism sector. Electrification in Africa has grown over the decades and has been used to
assess economic activities. The method presented here shows how earth observation can be
used to understand the extent of change in economic activities and provided a quick way
to assess the reduction in economic impact and its spatial distribution. Future studies could
also use NTL and traditional statistics to understand the pandemic’s impact in specific
areas and PAs.

As governments and agencies discuss post COVID-19 recovery and focus on rebuild-
ing their economies, spatially explicit data illustrated in this paper can be used to target
alternative livelihoods, enterprise development, and conservation. The method can be
further applied to identify the areas most affected in terms of economic loss, conservation
value, and loss of livelihoods. Furthermore, remote sensing methods with selections of
relevant indicators, as travel and mobility data become available at various scales, can be
used to assess the efficacy of compliance measures, including restrictions on non-essential
travel to control the pandemic.

Resuming tourism activities will be gradual, and reopening parks and facilities will
be challenging. Most settlements around PAs are small and lack the necessary health care
infrastructure, and could be overwhelmed by an influx of cases after reopening. Spatially
explicit data can be used to monitor and plan in these areas, including around tourism
facilities, and targeted for further research, and collection of microdata and perception data
as part of the medium to long-term recovery efforts.
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Appendix A. Additional Information on Three National Parks and Travel Restrictions

Appendix A.1. Serengeti National Park, Tanzania

In Tanzania, tourism is one of the fastest-growing sectors and has contributed 17.5%
of the GDP and 30% of the foreign exchange earnings in 2014/15. It is the second-highest
employer after agriculture. Tanzania’s Serengeti National Park is well-known for its wildlife
migration tourism and as its oldest protected area. It is both a World Heritage Site and
a Biosphere Reserve. The Serengeti contributes substantially to the country’s revenue. It
is a significant employment source centered on nature-based tourism activities, such as
game viewing, safaris, bush meals, and visits to cultural and historical sites. The park
accepts visitors throughout the year. However, the best season is between mid-May and
mid-October. Available visitor records show that domestic and foreign tourists’ arrival has
steadily increased with the highest number of visitors (1,196,284) in 2018/2019 in the past
ten years. Tourist Facilities park includes nine public campsites, 140 seasonal campsites
operated by private tour operators, two rest houses, six lodges, one youth hostel, bandas
(thatched-roof huts), and tented lodges. COVID-19 containment measures in Tanzania have
been markedly less strict than many neighboring states, with the government expressing
the need to protect the economy rather locking the country down.

Appendix A.2. Maasai Mara Nature Reserve, Kenya

The Maasai Mara Nature Reserve, established as a world heritage site in 1989, is north
of the Serengeti National Park. It is one of the world’s most famous tourist attractions
and contributes significantly to Kenya’s economy. The Maasai Mara ecosystem is home to
approximately 25% of Kenya’s wildlife. It is estimated that there are 200,000 visitors per
year to the Maasai Mara [43]. Since the establishment of the first tourist lodge, Kekorok,
in 1963, the Maasai Mara has seen more than 60 lodges open. Kenya is enforcing strict
lockdown measures. Reports from Mara conservancies indicate no tourists in March–April
2020—the likelihood is that there will be next to no tourists in the ensuing year [44].

Appendix A.3. Hell’s Gate National Park, Kenya

Established in 1984, Hell’s Gate National Park is small and covers 68.25 square km. It
is located in the northwestern part of Kenya around Lake Naivasha, approximately 100 km
from Nairobi, 56 km from Nakuru, and 10 km from Naivasha town [45]. It is a popular
destination for weekend getaways and retreats because of its proximity to urban areas.
Explorers Fisher and Thomson in 1883 named it after a narrow opening in the cliffs, once a
tributary of a prehistoric lake that fed early humans in the Rift Valley. The park also has a
geothermal spa nearby, which is the only one of its kind in East and Central Africa [46]. It
is home to a variety of savanna mammals and birds, including zebras and gazelles. The
diverse topography and geological setting with towers and cliffs, trails, hot springs, and
gorges offer a range of outdoor activities inside the Park. There are three campsites in the
National Park—Endachata Campsite, Naiburta Campsite, and Oldubai Campsite. Park
visitation dropped by 99 percent in national parks in Kenya at the height of the Covid-19
pandemic [47].
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Appendix B

Table A1. Protected area management categories’ definitions from IUCN 1.

IUCN Category Description

Ia Strict Nature Reserve

Strictly protected: human visitation, use, and impacts are strictly controlled
and limited to ensure the protection of the conservation values
Protect biodiversity and geological/geomorphic features
Can serve as reference areas for scientific research and monitoring

Ib Wilderness Area
Unmodified or slightly modified areas without permanent or significant
human habitation
Protected and managed to preserve their natural condition

II National Park

Large natural or near natural areas
Protect large-scale ecological processes, along with the complement of
species and ecosystems characteristic of the area
Provide a foundation for environmentally and culturally compatible,
spiritual, scientific, educational, recreational, and visitor opportunities

III Natural Monument or Feature

Protect a specific natural monument, which can be a landform, sea mount,
submarine cavern, geological features such as a cave, or even a living
feature such as an ancient grove
Generally, quite small, protected areas and often have high visitor value

IV Habitat Species Management Area
Protect particular species or habitats and management reflects this priority
Can need regular, active interventions to address the requirements of
specific species or to maintain habitats

V Protected Landscape/Seascape

Interaction of people and nature over time has produced an area of distinct
character with significant, ecological, biological, cultural, and scenic value
Safeguarding the integrity of this interaction is vital to protecting and
sustaining the area and its associated nature conservation and other values

VI Protected area with sustainable use of
natural resources

Conserve ecosystems and habitats together with associated cultural values
and traditional natural resource management systems
Most of the area in a natural condition, where a proportion is under
sustainable natural resource management and where low-level
non-industrial use of natural resources compatible with nature
conservation

1 Source: https://www.iucn.org.

Appendix C

 
(a) (b) 

Figure A1. (a) Change in night light intensity in South Africa; (b) change in night light intensity in Kenya.
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(a) (b) 

Figure A2. (a) Percentage decrease in light intensity in Terrestrial PAs with the highest decrease in the light intensity;
(b) percentage decrease in light intensity in coastal and marine PAs with the highest decrease in the light intensity.

(a) (b) 

Figure A3. (a) Comparison of light intensity across IUCN categories; (b) proportion of PAs with decreased light intensity
across IUCN categories.

Appendix D

Table A2. The decrease in mean and median (light intensity) for PAs with international designations.

Sites Mean Percentage Decrease Median Percentage Decrease

Ramsar −17.925 −15.236
UNESCO-MAB −10.694 −10.207
World Heritage −14.93 −12.12
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Abstract: Nighttime lights are routinely used as a proxy for economic activity when official statistics
are unavailable and are increasingly applied to study the effects of shocks or policy interventions
at small geographic scales. The implicit assumption is that the ability of nighttime lights to pick
up changes in GDP does not depend on local characteristics of the region under investigation or
the scale of aggregation. This study uses panel data on regional GDP growth from six countries,
and nighttime lights from the Defense Meteorological Satellite Program (DMSP) to investigate
potential nonlinearities and measurement errors in the light production function. Our results for high
statistical capacity countries (the United States and Germany) show that nightlights are significantly
less responsive to changes in GDP at higher baseline level of GDP, higher population densities,
and for agricultural GDP. We provide evidence that these nonlinearities are too large to be caused
by differences in measurement errors across regions. We find similar but noisier relationships in
other high-income countries (Italy and Spain) and emerging economies (Brazil and China). We also
present results for different aggregation schemes and find that the overall relationship, including the
nonlinearity, is stable across regions of different shapes and sizes but becomes noisier when regions
become few and large. These findings have important implications for studies using nighttime lights
to evaluate the economic effects of shocks or policy interventions. On average, nighttime lights pick
up changes in GDP across many different levels of aggregation, down to relatively small geographies.
However, the nonlinearity we document in this paper implies that some studies may fail to detect
policy-relevant effects in places where lights react little to changes in economic activity or they may
mistakenly attribute this heterogeneity to the treatment effect of their independent variable of interest.

Keywords: nighttime lights; GDP; nonlinearity; panel data; MAUP; aggregation

1. Introduction

A growing literature in economics and other fields uses nighttime lights as a proxy for
economic activity when data on gross domestic product (GDP or GDP per capita) are un-
available. Nightlights have been used to compare economic activity across geographic units
at a variety of scales, from seminal work at the country level [1–3], over states/provinces [4],
down to the level of cities [5], villages [6,7], and grid cells [2]. An increasingly common
application of nightlights is to measure regional or local economic impacts of shocks (such
as floods [8], sanctions [9], or transportation cost shocks [5]) or spatially-targeted policies
(such as a rural employment scheme [10], federal transfers to a state [11], or regional
favoritism by political leaders [4]). However, little is known about whether the nightlights-
GDP relationship at smaller geographic scales is constant across locations. Note that
while we focus on the relationship between nightlights and GDP, other studies have used
survey data to study the correlation with income or income proxies when GDP data are
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unavailable [6,12,13]. Beyond GDP, nightlights have been used to as a proxy for population
density [7,14], electrification [15], and infrastructure [16].

Interpreting how changes in nightlights reflect unmeasured changes in economic activ-
ity requires having a reliable estimate from settings where both nightlights and economic
activity are measured. Recent work has explored how the relationship between growth
in nightlights and economic activity varies across contexts, both at national scale [17] and
at smaller geographies [7]. Some studies conclude that the subnational nightlights-GDP
relationship is not stable in emerging and advanced economies [18]. Others find that
luminosity is ineffective as a proxy for economic activity in less densely populated counties
in the United States and may be a poor predictor of GDP in areas where agriculture plays a
crucial role in the economy [19]. Given that physical features underlying economic activity
usually vary by economic sector (across agriculture and industry, for example) and by
population density, it seems plausible that the relationship between changes in nightlights
and economic growth varies across contexts. However, it is often overlooked that the
presence of measurement errors in nighttime lights and GDP complicates the interpretation
of such findings and makes it difficult to separate the influence of measurement errors
from heterogeneity in the data generating process. As a result, little is known about how
stable this relationship is at finer levels of spatial disaggregation and what this potential
heterogeneity might imply for studies using nightlights as a proxy for economic activity.
Unfortunately, this raises the potential of incorrect inference regarding the economic effects
of a policy, investment or shock. If, for example, nightlights are not associated with changes
in economic activity over some range of GDP or population density, then a policy interven-
tion or public investment in these kinds of areas might be incorrectly labeled as ineffective
if researchers estimate its economic impacts solely through nightlights. Similarly, variation
in the nightlights-GDP relationship might lead researchers to conclude that a policy had
heterogeneous impacts on economic activity across locations, even when the true economic
impact does not vary.

This paper makes three contributions. First, we compile subnational economic data
from several high and middle income countries together with data on nighttime lights and
discuss the sources of measurement errors in both. Second, we estimate the nightlights-
GDP elasticity—the percentage change in nightlights associated with a one percent change
in economic activity—in two different ways: (i) unconditionally for different income groups
to gauge whether the relative attenuation factors consistent with a constant elasticity are
plausible, and (ii) by conditioning the elasticity on population density. Our results illustrate
significant nonlinearity at subnational scale. The estimated elasticities tend to fall with
higher levels of GDP, higher population densities, and the size of the agricultural sector. We
find that the required variation in measurement errors would have to be implausibly large
and follow an improbable pattern to explain these findings, which implies that the structural
elasticity likely varies. Finally, we study changes in the nightlights-output relationship at
various configurations of geographic aggregation. We find that the average relationship and
the evidence in favor of nonlinearity is remarkably stable across geographies of different
shapes and sizes, even though the influence of measurement errors in lights and GDP
should decrease as units become larger. Simultaneously, the variation of estimates around
the average increases as the number of units falls. Given the previous evidence, this suggests
that in addition to sampling variation, spatial correlation in industrial composition and
population density contributes to this pattern.

2. Materials and Methods

Applied researchers typically use nighttime lights as a proxy for GDP when data on
income or production are unavailable. In the canonical regression equation setup, GDP
would be on the left hand side, if it were observed, and some policy intervention or other
variable of interest on the right hand side. The researcher is interested in the treatment
effect of the policy on GDP. Replacing GDP by nighttime lights (whether as a sum or density
per unit area) implies that the policy parameter of interest is not statistically identified.
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Instead, the researcher obtains a product of the policy effect on GDP, say τ, multiplied
by the elasticity of nighttime lights with respect to GDP, say β. To see this, let the policy
equation of interest be yG

i = τdi + ei while the structural relationship between lights and
GDP is yL

i = βyG
i + εi, where yG is GDP, yL is nighttime light output and di is the variable

for the policy being evaluated. Both quantities are in logs and could be measured in per
capita terms. Since GDP is not observed, the researcher actually estimates yL

i = θdi + εi.
In this case, it is straightforward to show that the probability limit of θ̂ is βτ. This is
precisely why the literature typically multiplies the policy parameter by an estimate of
the inverse elasticity of lights with respect to GDP, in order to relate their estimates back to
changes in aggregate income [3]. The elasticity of lights with respect to output is typically
assumed to be constant. In fact, usually an estimate of 0.3 [3,4] is used in order to back out
the effect of the policy on GDP. However, if there is heterogeneity in how nightlights react
to GDP, then this has an important implication: any systematic variation in the elasticity of
nightlights with respect to GDP will translate into differences in the estimated effect of the
policy across locations, even when the true effect of the policy is constant.

Unfortunately, both nighttime lights and GDP data are subject to measurement error.
The DMSP nighttime lights that are used in most of the literature suffer from four sources
of error: (1) bottom-coding as a result of filtering and limited detection of low lights,
(2) topcoding as a result of sensor saturation in bright areas, (3) blooming or overglow as a
result of atmospheric scattering and “pollution” from adjacent light sources, exacerbated
by geolocation errors, and (4) a lack of inter-annual calibration which makes it impossible
to convert the recorded digital numbers into a physical quantity such as radiance [5,20–23].
Moreover, as we discuss below, measuring subnational GDP in all countries often involves
assumptions about the location of certain economic activity, or interpolations of baseline
year surveys for industrial or agricultural output conducted infrequently [24]. GDP data
in developing countries are particularly error-prone and could be subject to outright
manipulation [25]. The presence of measurement error on both sides of the equation has
long been recognized in the economics literature focused on estimating the relationship
between nighttime lights and GDP, or optimal combinations of both [2,3,17,26].

The newer VIIRS day-night band solves many of the legacy technology issues of the
DMSP system. The sensor has a smaller ground footprint, better ability to detect lights
at both ends of the spectrum, and is radiometrically calibrated. This paper focuses on
DMSP for two reasons. First, most applications of nightlights in economics research have
used DMSP given the longer time series (VIIRS data are only available from 2012 onward,
resulting in short panels with GDP). Second, VIIRS satellites observe nighttime lights much
closer to midnight when most production and consumption have ceased. Nevertheless,
evidence suggests that the VIIRS data vastly outperforms the DMSP system when it comes
to predicting GDP [19]. While the number of studies using VIIRS is undoubtedly on the
rise, we use the DMSP data in this analysis to speak to the existing literature and leave a
similar exercise with VIIRS for future work.

In our setting, the key implication of measurement error in both variables is that
we cannot simply take estimates obtained from regressions on subsamples, or nonlinear
regressions, at face value and definitively conclude that there is nonlinearity in the structural
elasticity. Differences in the elasticity could be due to structural differences in how light
reacts to GDP (e.g., higher densities in cities combined with economies of scale in light use
or differential light consumption by different economic sectors) or due to differences in
measurement error (e.g., due to greater informality or difficulty measuring the activity of
some regions). To circumvent this issue, we calculate how large the measurement error
would need to be in order to fully explain the observed variation in the elasticity. We
can then ask if the implied measurement error is plausible in countries where we expect
these errors to be small and constant across units, and then use these estimates to assess
the variation in countries where measurement errors should play a larger role. We study
what the literature calls the structural relationship (how lights react to GDP), as opposed
the predictive relationship (how lights predict GDP), but make no attempt to estimate the
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structural relationship net of measurement error. Other work focuses on the country level
and proposes a method of identifying the elasticity under the presence of very general forms
of measurement error using proxies for the statistical capacity of each country [17]. We use
subnational data where variation in statistical capacity is not helpful for identification.

Our article examines the nightlights-GDP relationship in Brazil, China, Germany, Italy,
Spain and the United States, spanning a range of quality in national accounts (and by
extension subnational accounts) in order to gauge variation in the structural relationship in
both higher and lower measurement error contexts. In addition, these countries are large
and diverse in terms of their geography and economic structure, have subnational GDP
data available for a suitable number of years, and have a large number of second-level
administrative units (county/municipality/district) to ensure sufficient statistical power
for estimation. These countries also vary in terms of quality grades for their national
accounts, which we take as a proxy for the quality of their subnational accounts. For
example, if we take quality grades from the 1994 Penn World Table 5.6 and 2008 Penn
World Table 6.1 in order to reflect data quality during years corresponding to our study
period, then the United States and Germany have an A grade, Italy an A−, Spain a B+,
Brazil a B and China a C [27,28].

2.1. Empirical Strategy

We study the potential heterogeneity in the income elasticity of lights across subna-
tional units using two different but related approaches. Both take the constant elasticity
model underlying most of the applied literature as the benchmark and then set up different
conditions which would lead us to reject this model. We focus on GDP (as opposed to
other measures such as GDP per capita) because the economics literature studying the
relationship between nightlights and economic activity or employing nightlights as a proxy
focuses on GDP instead of GDP per capita. The implicit assumption is that growth in
nighttime lights increases equally in population growth and growth in per capita incomes.
Secondly, GDP per capita is not always positively correlated to total economic activity.

First, we specify single variable regressions of the observed nighttime lights (yL
it) on

GDP per area (yG
it ), both in logarithms, for samples split according to quartiles of average

GDP. More formally, for each subsample we specify

yL
it = βyG

it + μi + ψt + εit (1)

where μi and ψt represent geographic unit and year fixed effects, respectively, and εit is an
idiosyncratic error.

Together with the specification in logarithms, the inclusion of unit fixed effects implies
that we are relating a region’s growth in nighttime lights to growth in GDP. The inclusion
of time fixed effects allows for country-specific factors that vary over time but influence
every administrative unit in the same way (such as differences in the ability of sensors to
pick up nighttime lights, due to satellite changes or orbital or sensor degradation). We
are therefore estimating the relationship of changes in nightlights and economic activity
within a geographic unit over time, and not how the level of nightlights is associated
with economic activity across geographic units. This is the relevant estimation to inform
empirical exercises studying the impact of a shock, policy or investment at subnational level.

Our parameter of interest, β, is the income elasticity of nighttime lights, a unitless
measure indicating the percentage luminosity increase in response to a one percent change
in GDP. We estimate this parameter separately for subsamples split according to quartiles of
average GDP to obtain four coefficients (β̂k for k = 1, 2, 3, 4). These four groups of different
average GDP are a proxy for subnational differences in statistical capacity. Under the
conditional mean independence assumptions typically made in the related literature [2,3,26]
the resulting estimates will converge to the true coefficient times an attenuation factor.
If the true relationship were constant across all subsamples of the data and the variance
of the measurement error in GDP were constant, then the estimated elasticities should be
very similar in each partition of the data (with some expected sampling variation). More
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formally, β̂k p→ βλ. If the true relationship is constant but the GDP error variance differs
across subsamples, then the estimated coefficients will be attenuated differently, such that

β̂k p→ βλk. In this case, it is plausible that the highest GDP category would have the smallest
measurement error in GDP, resulting in the least attenuation of the coefficient. However,
our analysis does not presume any particular pattern of attenuation. Appendix A derives
these results and provides details on the required assumptions.

We use this relationship to study whether the differences in elasticities and the implied
attenuation factors are plausible. If the true structural elasticity is assumed constant,
the ratio of any two point estimates indicates how different measurement errors must be in
order explain the variation in the estimated elasticities across the two subsamples. For each
country, we estimate and report the ratios θk = βk/β1 comparing the quarter k to the data
up to the first quartile. If, for example, the variance of measurement errors in GDP falls
with higher incomes, then the sequence of coefficient estimates would be rising and we
would interpret a ratio of, say, θ̂4 = 0.5/0.25 as ‘the income elasticity of nighttime lights
has to be twice as attenuated in the lowest GDP quartile than the highest GDP quartile for
the constant elasticity model to be true’. The pattern would be reversed if the variance of
measurement errors in GDP increases with income. If we cannot reject the hypothesis that
the ratio is different from one, then we conclude that their attenuation factors could have
been the same.

Going one step further, we interpret values of θk statistically different from 1 in
countries with high statistical capacity as evidence against the constant elasticity model
typically assumed in the applied literature. Of course, it is plausible that the variation in
measurement errors of subnational GDP is substantial in developing countries, where there
may be more variation in informality across regions, or in the capacity of the statistical
apparatus to collect economic data. However, in developed countries with uniformly
high statistical capacity, we should not observe significant differences in the signal-to-
noise ratio of GDP across regions, and, in fact, expect the estimated θ̂s to be close to
one. Even if the signal-to-noise ratio in the best measured part of the data were, say, 0.8,
then a doubling or halving of this ratio for some regions would imply implausibly large
differences in measurement error in high capacity countries. This is why our sample of
countries deliberately spans highest quality subnational accounts (the US or Germany) and
countries where regional GDP is estimated with less precision (China or Brazil). We use the
estimates from developed economies to better understand the relative roles of “structural”
nonlinearities and measurement errors in the light-output relationship in developing
economies, where nighttime lights are most often used as a proxy for local GDP.

Note that our assumptions measurement errors in GDP and lights also imply that the
standard errors of the estimated coefficients are biased. While the sign is indeterminate, it
can be shown that the resulting t-statistics are underestimated. The standard errors of the
estimated relative attenuation factors are also affected by measurement errors. We leave
potential solutions to these issues for future research and note that our estimates of the
uncertainties are not free of large sample biases.

Our second approach to studying heterogeneity in the income elasticity models the
variation along a third variable:

yL
it = (β + γzi)yG

it + μi + ψt + eit = βyG
it + γ(yG

it zi) + μi + ψt + εit (2)

where zi is the logarithm of population density in the first year of the data and all other
variables are defined as before. We focus on population density since the light-GDP
relationship could vary along this dimension for several reasons. For example, fixed costs
of light infrastructure can be large at low population densities, while at high densities,
economies of scale and vertical city growth may decrease the responsiveness of lights to
changes in GDP.

Given that both light and GDP per area are in logarithms, taking the derivative of
Equation (2) with respect to yG

it results in an elasticity that varies with initial population
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density. For this specification, we are no longer interested in ratios of these elasticities
at different points in the distribution but instead focus on the sign and significance of
γ̂. It is important to note that all coefficient estimates in specifications with multiple
independent variables, of which at least one is measured with error, are biased in unknown
directions. However, if we are willing to assume that population density in the initial year
is measured without error and make additional independence and linearity assumptions,
then γ̂ converges to zero in probability if the constant elasticity model is correct (see
Appendix A for details on these results). Moreover, β̂ will still be attenuated by the same
signal-to-noise ratio as in Equation (1). Hence, we may compare the estimates of β̂ across
the long and short regressions and, with some caveats, interpret a significant result on γ̂ as
further evidence against the constant elasticity model.

Another likely source of structural differences in the nightlight-economic output re-
lationship are differences in industrial composition. For example, if nighttime lights fail
to pick up changes in agricultural GDP [29,30], then differences in sectoral composition
across regions are sufficient to generate variation in the measured light-output relationship.
Given that agricultural areas are typically less densely populated than regions with large
manufacturing or service hubs, this would also imply some variation of the light-output
elasticity with respect to population density. Moreover, it is an open question whether
lights primarily respond to value-creation in industry or services and whether the elasticity
is constant within each economic sector. Light in densely populated urban areas with a high
concentration of services, for example, might not scale linearly in output. To explore this in
our data, we run regressions of nightlights on GDP separately for agricultural, industry
(including construction), and service sector GDP, with and without interactions with popu-
lation density. Just as with aggregate output, we cannot simply compare the coefficients for
different sectors to gauge whether structural elasticity varies because measurement errors
are likely to vary across sectors. Instead, maintaining the same assumption from above, we
again ask if the implied relative measurement errors are plausible and check whether the
interaction with population density is significant.

Finally, we analyze whether aggregation to geographic units of different shapes and
sizes changes the pattern of the resulting estimates. This may occur for two reasons
related to our analytical framework. First, aggregating smaller units to larger units could
reduce measurement errors in both GDP and lights. For example, county GDP errors
due to downscaling state data or workplace versus place of residence mismatches are
offset when small regions are grouped together. Similarly, overglow of nightlights into
neighboring regions becomes internalized when analyzing larger areas, and the relative
importance of topcoding decreases as the size of units increases. A second reason for
why aggregation could affect the pattern of elasticities is the grouping of smaller units
(with potentially different structural elasticities) into larger, more economically mixed units.
Regardless, assessing how geographic scale affects the observed elasticities can help explain
the disparate findings documented in the literature, which typically finds large variation
in elasticities across countries and across different levels of aggregation within the same
country [18,19].

Previous research on the Modifiable Areal Unit Problem (MAUP) in urban economics
suggests that size and shape of administrative units matters little in comparison to other
specification issues but also finds that aggregating to large units can distort the underlying
relationship [31]. No study has systematically examined this problem in the context of
nighttime lights and GDP.

We use methods from the literature on the MAUP [31,32] to study whether the de-
sign of regions creates variation in sectoral composition and population density, which,
in turn, generates differences in the structural nightlights-economic output relationship.
Specifically, we use disaggregated data on local GDP for the continental United States
(3080 counties) and Brazil (5569 municipalities) to create many alternative administrative
divisions of varying shapes and sizes. We construct simulated partitions for a given number
of administrative units, k, using the following random-seed-and-grow algorithm [31]. We
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start out with the finest level of aggregation into n units. First, we randomly pick one
seed unit. Second, we identify the unit’s closest neighbor before merging these two units
so that now there are n − 1 units remaining. We repeat these steps until n = k. The re-
sulting partition is geographically contiguous. We run the algorithm 1000 times for every
200th number of units from k = 50 to some country-specific maximum k̄. We take 50
as a lower bound since this is the number of US states and then simulate the result for
k ∈ {50, 200, 400, 600, . . . , k}, where k is 3000 for the US and 5400 for Brazil. This results
in thousands of alternative divisions of the Unites States and Brazil over which we can
aggregate nighttime lights, GDP and population, and estimate the specifications given
in Equations (1) and (2). A persistence of nonlinearity in simulations with high levels of
aggregation (where measurement errors become less severe) would provide additional
evidence that the structural elasticity varies.

2.2. Data

We compile data on subnational GDP, sectoral composition, and population from
a variety of sources. For each country, Table 1 lists the smallest geography for which
subnational GDP data are available, the number of units, years for which the data are
available, the industrial classification used (if available), and the primary source. We deflate
current local currency units by the national GDP deflator from the World Development
Indicators if the data are not provided in real (constant price) quantities. In the case of the
U.S. and European countries, we compute the GDP in each industrial sector by aggregating
all NAICS or NACE sectors to a three-sector classification (agriculture, manufacturing and
construction, and services). We also obtain high-quality vector geometries representing
the geographical units within each country from national statistical offices or other public
databases. Data for China is not widely available, which is why we use GDP (in USD) for
299 prefectures from the Economist Intelligence Unit and supplemented this data with
information from annual yearbooks and the CEIC’s China Economic Database for the
30 missing prefectures, four municipalities and nine county-level cities.

Measuring economic activity at small geographic scale can be challenging in any
country. In addition to the usual data collection and processing errors that arise for
national accounts, subnational accounts are particularly prone to non-statistical errors.
These include imputations, conceptual differences, index construction, sectoral definitions,
and the scope of the exclusions (such as home production, subsistence farming, illegal
activity and smuggling) [33]. Often, subnational estimates of GDP require triangulating
with multiple data sources, or downscaling data collected for higher-level administrative
regions. This is true even in high statistical capacity countries. In the United States,
the Bureau of Economic Analysis relies on the income approach to measure GDP at state
and county level, computed as the sum of compensation of employees, taxes on production
and imports minus subsidies, and gross operating surplus (capital income). This method
has the potential to underestimate capital-intensive industries whose production relies
heavily on physical or financial capital [34]. It measures GDP at people’s place of work,
as opposed to place of residence. Interpolation between benchmark years and downscaling
from state-level data introduce other sources of measurement error. For example, years
when the Economic Census is available (every 5 years) are used as benchmark years,
with other years interpolated using sales data from the National Establishment Time Series
(NETS) database. In addition, some state-level data on OIC (income payments other than
employees and proprietors) are distributed among counties using NETS, the Quarterly
Census of Employment and Wages (QCEW), Economic Census data, and industry-specific
data from various sources [35].

Similar methodological challenges exist in the European Union, although analysis
on revisions suggest that estimation errors are small (when countries undergo revisions
they constitute less than 1% of GDP). However, there are likely to be larger errors in
the historical series. Regional GDP is calculated as regional Gross Value Added plus
taxes on products minus subsidies. GVA, in turn, is calculated using the production
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approach (value of output minus intermediate inputs) or the income approach (similar
to the U.S.) depending on the member state [36]. Ongoing work in the European Union
is tackling methodological questions for regional GDP such as recording foreign direct
investment, non-market services, incorporating global production and integrated global
accounts, the digital economy and other price and volume measures for intellectual property
products [37,38].

Table 1. Sources of subnational GDP data.

Country Geography Units Availability Industrial Class. Source

USA Counties 3080 2001–2019 NAICS BEA
Germany Districts 401 1992–2018 NACE Rev. 2 ADERCO
Italy Provinces 110 1992–2018 NACE Rev. 2 ADERCO
Spain Provinces 58 1992–2018 NACE Rev. 2 ADERCO
Brazil Municipalities 5569 2002–2018 Primary to tertiary IBGE
China Prefectures 342 1999–2018 n/a EIU

Notes: Data on counties in the United States are from the Bureau of Economic Analysis (BEA), which publishes
data on real GDP by NAICS industry and population at the county level. We define all NAICS codes starting
with 11 as agriculture, 21–33 as industry and 42–92 remaining codes as services. Data on German districts (Kreise),
Italian provinces, and Spanish provinces (Provincias, islas, and Ceuta y Melilla) are from the Annual Regional
Database of the European Commission’s Directorate General for Regional and Urban Policy (ADERCO). ADERCO
publishes data on real GDP by NACE industry and population at the NUTS-3 (rev. 2016) level. We define all
NACE codes starting with A as agriculture, B–E as industry and F as services. ADERCO includes historical
estimates and projections for the most recent years. We only use data until 2018 which matches the availability of
actual GDP figures reported by the relevant national offices. Data on Brazilian municipal GDP is from the Instituto
Brasileiro de Geografia e Estatística (IBGE). GDP data exist for all 5570 municipalities, however 1 municipality
had zero nightlights over the period (Marajá do Sena) and was dropped when taking logarithms. Data on Chinese
prefecture-level GDP is available from the Economics Intelligence Unit (EIU) for 289 prefectures, and augmented
with data for 53 more prefectures from Provincial Yearbooks or the CEIC Database.

Less is known about the quality of subnational accounts in Brazil and China. Brazilian
municipal GDP is based on Gross Value Added calculated at state level with the production
approach, where state GDP is distributed among municipalities using various methods
depending on the good or service [39]. China officially uses both the production and income
methods for national accounts; value-added of agriculture, forestry, animal husbandry and
fishery is calculated by the production method, while the current value-added of other
industries is calculated using the income method. Regional GDP is measured by local gov-
ernments using the production approach from major surveys on large industrial firms, large
service sector firms, and some construction firms. These data are supplemented by surveys
of smaller firms and administrative data from government departments. In addition, they
estimate expenditure by household surveys and investment project surveys. Since local
Chinese governments are rewarded for meeting growth targets, the Chinese National
Bureau of Statistics revises local GDP estimates in computing national GDP [40,41].

We obtain nighttime lights within each geography from 1992 until 2013 from the
Defense Meteorological Satellite Program (DMSP) Operation Line Scan (OLS) sensors.
Specifically, we use annual composites which report yearly average “stable lights” as a 6-bit
digital number (DN) from 0 to 63, after observations affected by cloud cover, background
noise and other disturbances have been removed. We follow common practice to delete
gas flares from the annual composites. Gas flares are disproportionately bright in relation
to the change in output they represent and create significant overglow into neighboring
pixels. Like Henderson et al. [3], we also set all pixels that are not on land to zero. For each
region-year pair, we calculate the sum of lights and total area of all pixels. Our outcome of
interest is the logarithm of lights per area (ln DN/km2). Table 2 provides the distribution
of nightlight density values across subnational regions by country.

Physical detection limits of the DMSP sensors and the difficulty of separating back-
ground noise and transient lights from permanent light sources effectively impose a bottom-
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coding threshold where pixels with DNs of 1–2 and small clusters of pixels with values of
less than 4 DN are removed in the stable lights composite. Solutions to this problem range
from adding the minimum detection threshold to recorded lights in a region [5] to using
auxiliary data to distinguish background noise from “human lights” [42]. The problem is
most severe in Sub-Saharan Africa, where a lack of consistent electrification implies that
mid-sized settlements can be missed. Rural electrification rates are close to 100% in Brazil
and China today—the two emerging economies in our data—so we consider this source of
error to be less important in our study than others. In fact, very few observations record
zero light (see Table 2).

Table 2. Distribution of nightlight density values across subnational regions.

Lights/Area USA Germany Italy Spain Brazil China

0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 367 (0.6%) 0 (0%)
0–1 4179 (10.4%) 0 (0%) 0 (0%) 0 (0%) 25,551 (39.8%) 889 (18.5%)
1–5 10,192 (25.5%) 42 (0.5%) 10 (0.41%) 224 (17.3%) 24,567 (36.8%) 1873 (39.0%)
5–10 9354 (23.4%) 346 (3.9%) 125 (5.2%) 393 (30.3%) 7809 (11.7%) 894 (18.6%)
10–20 8779 (21.9%) 2888 (32.7%) 759 (31.4%) 323 (24.9%) 4271 (6.4%) 756 (15.7%)
20–50 5676 (14.2%) 3040 (34.5%) 1316 (54.4%) 290 (22.3%) 2249 (3.4%) 335 (7.0%)
>50 1859 (4.6%) 2506 (28.41%) 210 (8.7%) 68 (5.2%) 952 (1.4%) 55 (1.2%)

Notes: Lights/area refers to the sum of nighttime lights in a subnational region in a given year in the sample
divided by the region’s area. Values refer to the number of region-years with the given level of nightlights per
area, and the percentage in parentheses is the percentage of all observations from that country with that level of
nightlight density.

A potentially serious issue in subnational analyses is that the DMSP data are heavily
topcoded. Topcoding primarily occurs in city centers as the sensor gradually reach its
saturation limit and affects values well below 63 DN in the yearly averages [21,23]. The
intensity of topcoding is correlated with our variables of interest, such as average GDP,
density, and industrial structure. To deal with this issues, one of our tests uses topcoding
corrected data [23] which applies a Pareto-correction to the stable lights composites (and
builds on the radiance-calibrated data available in selected years [21]).

The DMSP data exhibit overglow or blurring effects for a variety of reasons. The nomi-
nal resolution of the data provided by the National Centers for Environmental Information
(NCEI) is 30 arc seconds. However, the effective instantaneous field of view (EIFOV)
expands from 2.2 km to about 5.4 km at the edge of the scan and the system “smoothes”
these data on-board by forming pixel blocks that are 2.7 km by 2.7 km (with different
location offsets for each nightly image [22]). As a result, the same light source will show
up in several 30 arc second pixels. On-board processing also magnifies the blur effect
for brighter light sources [22]. Geolocation errors which displace lights by about 3 km
exacerbate this problem [20]. We discuss the biases introduced by overglow within adminis-
trative units when presenting the results and allow for spatial correlation across units in a
robustness check.

A final challenge in using the DMSP data is that the recorded DN cannot be mapped
to a physical quantity (radiance). This occurs because the sensors dynamically adjust their
low-light detection ability over the lunar cycle but the sensor’s ‘variable gain’ settings
are not stored [21]. Efforts have been made to calibrate using light emitted from islands
(such as Sicily) and using active targets for some nights [43]. However, there are simply no
permanently constant light sources on Earth that can unequivocally solve this problem in
the historical data, while ad hoc calibration adjustments have the potential to introduce
more noise. Another source of variability across years is that the orbit of the DMSP satellites
slowly degrades over time, recording lights at a slightly earlier time each day. This feature
has recently been used to extend the DMSP data from 2012 to 2019 using pre-dawn data
from older satellites that crossed back into a dawn-dusk orbit [44]. We do not use the
extended series as the orbital shift to pre-dawn hours introduces an additional source of
measurement error. Following the economics literature [3], we average the data whenever
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two years are available and include year fixed effects in all regressions. This accounts for
differences in average sensor settings in each year which affect all regions in the same
manner. If all pixels were illuminated and topcoding did not exist, then a constant shift in
each year would fully account for this problem. However, since differences in gain settings
also imply that some pixels cross the detection threshold and others become topcoded
before on-board averaging occurs, there is likely to be some residual region-year specific
error which cannot be accounted for.

As motivation, Figure 1 illustrates the raw correlations between light density and
economic density. We observe a strong degree of nonlinearity whenever the correlation is
based on highly disaggregated data (as in the case of US counties, municipalities in Brazil,
and, to a lesser extent, districts in Germany) and less nonlinearity when the data are more
aggregated (provinces and prefectures in Italy, Spain and China).

(a) (b) (c)

(d) (e) (f)

Figure 1. Raw correlation of nighttime lights with real GDP, in logarithms. (a) USA, (b) Germany,
(c) Italy, (d) Spain, (e) Brazil, (f) China.

3. Results

3.1. Analysis of Estimates by Income Group

We begin by investigating potential heterogeneity in the light-output relationship using
regressions estimated on samples split according to quartiles of average GDP. For each
country in our data set, Figure 2 shows the estimated income elasticities of nightlights
using four equal-sized groups of the data, with β1 referring to the coefficient for regions up
to the lowest GDP quartile, and β4 for the regions above the highest quartile.

The results in Figure 2a,b show the patterns for the U.S. and Germany, the countries
with the highest statistical capacity in our sample. Rather than estimates which are constant
or rise with average incomes, we observe the highest elasticities among regions in lowest
quartile (β̂1 = 0.482 for the United States and β̂1 = 0.499 for Germany) followed by a
steady decline as we move up in the distribution of average incomes which matches the
raw correlations presented in Figure 1. In fact, the estimates for the group with the highest
incomes are either approaching zero in the case of the United States (β̂4 = 0.158) or cannot
be distinguished from zero in the case of Germany (β̂4 = 0.050). Of course, the presence of
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measurement errors implies that we cannot take this evidence at face value. However, it is
difficult to rationalize this pattern with measurement errors alone since it implies that the
errors in GDP would have to be increasingly severe as incomes rise if the constant elasticity
model were correct.

(a) (b) (c)

(d) (e) (f)

Figure 2. Income elasticity of nightlights for samples split by quartiles of average GDP. (a) USA,
(b) Germany, (c) Italy, (d) Spain, (e) Brazil, (f) China.

Figure 2c,d report the results for Italy and Spain which, like Germany, use EU reporting
standards but had somewhat lower statistical capacity and a larger informal sector in the
1990s. For Italy, the estimated elasticities are lower at every split of the data (consistent with
greater attenuation throughout) but they also show a decreasing pattern as incomes rise.
For Spain, we find elasticities that are indistinguishable from zero for the first two GDP
quartiles and even negative in the highest quartile. While some of the lack of statistical
significance is likely due to having few cross-sectional units for Italy and Spain, the pattern
is consistent with the findings for the United States and Germany.

Figure 2e,f present the estimates for the two emerging economies in our data set where
measurement error in GDP likely plays a larger role. The estimates for Brazil suggest that
the relationship is approximately constant (with estimates around 0.2) until we reach the
highest quartile of aggregate income (where we estimate a negative elasticity of −0.119).
Somewhat remarkably, the estimates for Chinese prefectures follow the same decreasing
pattern of the US counties or German districts, and even have comparable magnitudes
(β̂1 = 0.386 and β̂4 = 0.132).

Figure 3 plots the implied relative attenuation effects and their 95% confidence inter-
vals, or more specifically, the ratio of the coefficient (βk) estimated for each GDP quartile to
the coefficient estimated in the data up to the first quartile (β1). The first ratio θ1 is equal to
one by construction, and we are interested in substantively large and statistically significant
deviations from one in the other three quarters of the data.

Figure 3a,b show the results for the United States and Germany. As a result of
the similar coefficient estimates up to the median of average GDP, we find no evidence
suggesting that the signal-to-noise ratios differ in these two quarters of the data (see
θ̂2s). However, we estimate large differences the more we move up in the distribution
of average GDP. For the United States, the coefficient in the third (fourth) GDP quarter
would need to be more than two (three) times as attenuated as the coefficient estimated
up to the first GDP quartile. For Germany, the ratio of coefficients in the third to the first
quartile implies that the former is about 1.5 times more attenuated than the latter, while
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our estimate of θ̂4 is about 0.1, suggesting that the coefficient in the highest quartile is
10 times more attenuated than that of the lowest quartile if the structural elasticity were
truly constant. Given the high quality of the GDP data in these two countries and the fact
that we have sufficient units in each group to estimate the uncertainties of these ratios
relatively precisely, we consider these implied differences in measurement errors across
income groups too large to be plausible. We are not aware of studies suggesting that
such differences in measurement errors across subnational units are likely, especially since
regional accounts in the United States and Germany are developed by a single federal
authority (the Bureau of Economic Analysis for United States and the Federal Statistical
Office of Germany). Moreover, the suggested pattern of increasing measurement error with
higher incomes appears unlikely. Instead, these results strongly suggest that the structural
elasticity declines as GDP rises.

(a) (b) (c)

(d) (e) (f)

Figure 3. Estimates of relative measurement errors for samples split by quartiles of average GDP.
(a) USA, (b) Germany, (c) Italy, (d) Spain, (e) Brazil, (f) China.

Figure 3c–f repeat this exercise with data from Italy, Spain, Brazil and China. The es-
timates for Italy and Spain also suggest that measurement errors rise with GDP but the
confidence interval of these ratios are comparatively wide. For Italy the upper bound of
the 95% confidence intervals for θ̂4 is 0.546 and the confidence intervals for Spain always
include one. We find near constancy in Brazil up to the third quartile but then the estimate
of θ̂4 falls below zero which cannot be meaningfully interpreted in terms of relative attenu-
ation factors that are theoretically bounded by zero from below. The estimates for China
mirror the results for the United States and Germany. They suggest that if the constant
elasticity model were correct, measurement errors would have to be strictly increasing in
average GDP. Moreover, the coefficient in the highest quarter would have to be close to
three times more attenuated than that in the first.

An important robustness check, given that we observe this decreasing pattern of
elasticities, is whether these differences are simply driven by topcoding in the lights data.
If topcoding is severe, then changes in GDP do not translate into changes in observed lights
beyond some threshold of GDP and this effect might gradually become more pronounced as
more pixels in a region reach the topcoding threshold [21]. Figure S1 in the Supplementary
Materials repeats this analysis using the topcoding corrected data [23]. While this somewhat
moderates the steep decline of the estimated elasticities in the last quarter of the data, we
still observe the same pattern of declining coefficients across all four quarters and estimate
relative measurement errors that too large to be plausible. For example, θ̂4 is around 0.485
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in the United States and 0.500 in Germany, suggesting that the coefficients would still need
to be twice as attenuated in the fourth quartile of GDP than in the first for the constant
elasticity model to be correct.

Another concern is that overglow and geolocation errors lead to light being recorded
in pixels adjacent to a light source, which can cause significant measurement errors when
regions are small. This is more likely in urban areas since they generate more overglow
and cities are often their own (geographically small) administrative region. Since we are
studying changes in light intensities within regions and control for year fixed effects, higher
baseline levels of overglow in urban regions are not a concern. Bias would arise if the
change in overglow over time rose differently in regions with higher GDP. However, this
bias would work in the opposite direction of the nonlinearity we observe (by driving up
the change in observed light in periurban regions for the same change in GDP). Spillovers
in light to adjacent regions, however, do create spatial correlation in the error terms even
after netting location and time fixed effects. Figure S2 in the Supplementary Materials
re-estimates the relative attenuation factors allowing for spatial correlation in the error
terms up to 500 km (and arbitrary correlation within units over time). Only some of the
confidence intervals increase marginally and none of our substantive findings are affected.

3.2. Analysis of Interactions with Population Density

We now move to investigate the nonlinearity in the relationship using the regression
framework in Equation (2). Panel A in Table 3 shows the income elasticity of nightlights
by country, using nightlight density per square kilometer and GDP density per square
kilometer. Regressions in Panel B show the variation in the elasticity across levels of popu-
lation density in the initial year. The logarithm of population density has been normalized
such that the average for each country is set to zero, meaning that the coefficients on GDP
represent the elasticities at the mean population density for the country.

The results in Panel A show a statistically significant association between GDP and
nightlights in four of the six countries, with the highest elasticity in the U.S., followed by
Germany and China, and Brazil having the lowest significant coefficient at 0.1. The U.S.
elasticity of 0.4 indicates that a 10% increase in a county’s GDP is associated with a 4%
increase in nightlights. Italy and Spain have insignificant coefficients with the largest
standard errors (notably, these countries have the smallest number of subnational regions,
a point we will return to in Section 3.4). Of course, these estimates are biased downward
by measurement errors in GDP and we make no attempt to assess the absolute size of these
errors. The results in Panel B show that the income elasticity at the mean population density
is similar (though slightly smaller) than the uninteracted estimates in Panel A. In the case
of US counties and German districts, the income elasticity of nightlights is around 0.3
at the mean population density. In all countries, the interaction with population density
is negative and significant, indicating that the effect of increasing GDP on nightlights
becomes smaller at higher population densities. The magnitudes of the coefficient on
the interaction term suggests that the effect of GDP changes on nightlights approaches
zero at population densities around 3–4 times higher than the mean (for the U.S. and
China), and around double the population density mean in Germany and Brazil. While the
interaction terms are significant in the case of Italy and Spain, the noisy estimates of the
baseline GDP coefficient makes interpretation difficult over the upper half of the population
density domain. For the two emerging economies in our sample, Brazil and China, we
find lower elasticities (0.06 and 0.2, respectively) at the mean population density but they
also exhibit variation in the elasticity across levels of population density that is statistically
significant at all conventional levels. In sum, the evidence in Panel B suggests that there is
some cross-country variation in the elasticity of nighttime lights with respect to GDP at
mean population density (as would be expected when measurement error differs across
countries) but also strong evidence that this elasticity varies with population density within
all six countries.
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Table 3. Income elasticity of nighttime lights by population density.

(1) USA (2) Germany (3) Italy (4) Spain (5) Brazil (6) China

Panel A: Real GDP density without interaction

GDP 0.405 *** 0.348 *** 0.096 −0.092 0.100 *** 0.292 ***
(0.043) (0.034) (0.081) (0.124) (0.015) (0.042)

Regions 3080 392 110 58 5569 342
Observations 40,039 8624 2420 1276 66,398 4802

Panel B: Real GDP density interacted with Pop Dens

GDP 0.278 *** 0.291 *** 0.072 −0.037 0.061 *** 0.195 ***
(0.026) (0.025) (0.058) (0.126) (0.013) (0.037)

GDP × PopDens −0.094 *** −0.206 *** −0.275 *** −0.165 *** −0.108 *** −0.058 ***
(0.019) (0.015) (0.032) (0.031) (0.007) (0.009)

Regions 3080 392 110 58 5569 342
Observations 40,039 8624 2420 1276 66,398 4802

Notes: Nightlights, GDP, and population density are all in logarithms. GDP refers to GDP density (GDP divided
by region area) in constant prices. All regressions use the sum of lights divided by region area as the dependent
variable. Panel A shows the constant elasticity model, while Panel B interacts GDP with the population density
in the first year that region is included in the regression. All regressions include region and year fixed effects.
Standard errors in parenthesis are clustered at the region level, and significance levels are denoted at conventional
levels *** p < 0.01.

The implied difference in the elasticity across the observed range of population den-
sity is economically significant. In the case of the United States, the elasticity at the 10th
percentile of population density is 0.489 (95% CI is 0.387–0.587) while the elasticity at the
90th percentile is 0.09 (0.006–0.175). The elasticity in Germany at the 10th percentile of pop-
ulation density is 0.531 (0.465–0.598) while at the 90th percentile it is −0.053 (−0.115–0.008).
These estimates are very close to the estimates by the income group reported earlier, sug-
gesting that average incomes and initial population density capture similar variation across
groups of regions.

Figure S3 in the Supplementary Materials shows the income elasticity by population
density. The elasticity declines in all countries as population density rises, reaching zero at
the highest population density levels (it rarely becomes negative and negative estimates
are supported by very few observations). Table S1 shows that the patterns are the same
when using the topcoding corrected lights, indicating that topcoding in the DMSP data is
not driving the variation in the relationship we are documenting here.

3.3. Analysis by Economic Sector

Having documented variation in the income elasticity of nighttime lights across initial
levels of population density, we proceed to explore whether the elasticity varies systemati-
cally by economic structure. Measurement errors still bias these elasticities downwards, so
that we continue to give more weight to the results from the United States and Germany
where statistical capacity and reporting quality is highest. We also note that this analy-
sis cannot be run for China given that we do not have data on sectoral composition for
all prefectures.

We first estimate the overall elasticities by sector without explicitly allowing for
variation across regions. We note that the number of regions in the United States decreases
from those in Table 3 and varies across sectors because some counties do not report the share
of GDP across economic sectors (for privacy reasons if the sector is too small). The results
are shown in Table 4. We find that the income elasticity of nightlights is smallest for
agricultural activity (Panel A), higher for industrial and construction activity (Panel B),
and highest for the service sector (Panel C) in the United States, Germany, and Brazil. In the
case of the United States, for example, the elasticity for agricultural GDP is close to zero
(0.01), 0.15 for industrial GDP, and 0.46 for the service sector. Italy follows this pattern for
the first two sectors but not services (where the estimate has a wide 95% confidence interval
which includes 0 but also elasticities up to around 0.18). As above, Italy and Spain result in
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the noisiest estimates, likely for reasons we will explore in the next section. The difference
in magnitudes across economic sectors is also telling: if the constant elasticity model were
correct, the 45-to-1 difference in magnitude between the service and the agricultural sector
in the United States would have to be due to differences in measurement error between
sectors. In unreported results, the estimates change somewhat when we include all sectors
at the same time but the differences in magnitudes across sectors remains similar. While
variation in measurement error across sectors is plausible even in high statistical capacity
countries, such high ratios in the United States or Germany suggest that the structural
elasticity varies by sector.

Table 4. Income elasticity of nighttime lights across economic sectors.

(1) USA (2) Germany (3) Italy (4) Spain (5) Brazil

Panel A: Agricultural GDP density

GDP 0.008 *** −0.039 *** 0.006 0.069 ** 0.012 **
(0.002) (0.011) (0.020) (0.030) (0.005)

Regions 2982 392 110 58 5567
Observations 31,428 8624 2420 1276 66,372

Panel B: Industrial GDP density

GDP 0.146 *** 0.157 *** 0.073 * 0.014 0.058 ***
(0.017) (0.016) (0.037) (0.077) (0.006)

Regions 2939 392 110 58 5569
Observations 30,681 8624 2420 1276 66,363

Panel C: Service sector GDP density

GDP 0.458 *** 0.315 *** 0.034 −0.085 0.140 ***
(0.065) (0.035) (0.078) (0.121) (0.015)

Regions 2872 392 110 58 5569
Observations 27,608 8624 2420 1276 66,396

Notes: Nightlights and GDP are in logarithms. All regressions use the sum of lights divided by region area as
the dependent variable. Panel A uses GDP in the agricultural sector (multiplying regional GDP by the share of
agriculture in GDP) in constant prices, divided by region area to produce a GDP density. Panel B uses real GDP
density in the industrial and construction sectors, and Panel C uses real GDP density in the service sector. All
regressions include region and year fixed effects. For all regressions, standard errors in parenthesis are clustered
at the region level. Significance levels denoted at conventional levels *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5 shows the results from adding an interaction with initial population density.
The regressions are based on same specification in Equation (2) above, now separating out
the analysis for agricultural GDP (Panel A), industrial GDP including construction (Panel B),
and service sector GDP (Panel C). The results show that the variation in the elasticity across
population density is evident in all countries and nearly all sectors. The United States and
Germany exhibit curvature in all three sectors, while four of five countries show curvature
in industrial GDP. The curvature tends to be strongest in the services sector, where the size
of estimated interaction terms is at least half of the elasticity at mean population density
but often considerably larger and statistically significant for all countries. The results for
the service sector most closely approximate the results in Table 3, which is not surprising
given that services are the dominant sector in all of these economies.

3.4. Spatial Aggregation in the United States & Brazil

Our results so far illustrate that the structural relationship between nighttime lights
and GDP varies with level of GDP, population density, and industrial composition. Since
nightlights are used to proxy for economic activity at multiple subnational scales, we
proceed to explore how the structural relationship between nightlights and GDP varies
according to the size and number of subnational partitions in a country. Specifically, we test
whether partitioning a country into subnational regions of different shapes and sizes affects
how nightlights respond to increases in economic activity. We use disaggregated data
from two countries, the United States and Brazil, that are at opposite ends of the income
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spectrum covered by our sample but are physically large and exhibit a varied pattern of
regional economic specialization. Figure 4 shows an example of how we randomly partition
the United States and Brazil into 50 administrative units.

Table 5. Income elasticity of nighttime lights by population density and by economic sector.

(1) USA (2) Germany (3) Italy (4) Spain (5) Brazil

Panel A: Agricultural GDP density

GDP 0.006 *** −0.011 0.001 0.028 0.011 **
(0.002) (0.012) (0.022) (0.036) (0.005)

GDP × PopDens −0.005 *** −0.035 *** 0.054 ** 0.033 ** −0.007 *
(0.001) (0.009) (0.023) (0.013) (0.004)

Regions 2982 392 110 58 5567
Observations 31,428 8624 2420 1276 66,372

Panel B: Industrial GDP density

Real GDP 0.113 *** 0.159 *** 0.088 ** 0.064 0.045 ***
(0.012) (0.016) (0.042) (0.072) (0.005)

GDP × PopDens −0.045 *** −0.046 *** 0.043 −0.084 *** −0.033 ***
(0.012) (0.013) (0.042) (0.019) (0.004)

Regions 2939 392 110 58 5569
Observations 30,681 8624 2420 1276 66,363

Panel C: Service sector GDP density

Real GDP 0.232 *** 0.237 *** 0.036 −0.038 0.105 ***
(0.032) (0.031) (0.047) (0.122) (0.013)

GDP × PopDens −0.115 *** −0.197 *** −0.231 *** −0.167 *** −0.118 ***
(0.029) (0.013) (0.022) (0.026) (0.007)

Regions 2872 392 110 58 5569
Observations 27,608 8624 2420 1276 66,396

Notes: Nightlights, GDP and population density are all in logarithms. All regressions use the sum of lights
divided by region area as the dependent variable. Panel A uses GDP in the agricultural sector (multiplying
regional GDP by the share of agricultural share in GDP), divided by region area to produce a GDP density. Panel B
uses real GDP density in the industrial and construction sectors, and Panel C uses real GDP density in the service
sector. PopDens refers to the population density in the first year that region is included in the regression. All
regressions include region and year fixed effects. For all regressions, standard errors in parenthesis are clustered
at the region level. Significance levels denoted at conventional levels *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure 5 shows the distribution of estimates of Equation (2) for 16,200 simulations of
partitions of the United States and 28,000 simulations of partitions of Brazil over which we
aggregate nighttime lights, GDP, and population. For a given number of total units (ranging
from 50–3000 for the United States and 50–5400 for Brazil), we simulate 1000 partitions in
which the spatial aggregation of original units is based on a unique random starting seed in
each iteration. We report results for the elasticity at the mean of population density (β̂) and
the interaction with population density (γ̂) for the United States in Figure 5a,b and Brazil
in Figure 5c,d. We observe that the overall average elasticity (at mean population density)
is around 0.3 in the case of the US and 0.053 in the case of Brazil. Both of these values
are close to the regression results presented in columns (1) and (5) of Table 3. For the US,
almost every single estimated value using simulated partitions is larger than zero (99.97%
of simulations) and does not contain zero in its 95% confidence interval (98.23%), while we
estimate elasticities below zero only in 4.1% of the sampled partitions in the case of Brazil.

We find strong evidence of nonlinearity in nearly all simulated partitions. Figure 5b,d
illustrate that the average of all simulated interaction coefficients is −0.104 for the US and
−0.11 for Brazil (again close to Table 3). Less than 1% of the US estimates are positive and
only 8.7% of the estimates include zero in their 95% confidence interval. Similarly, only
9 out of 28,000 simulations for Brazil yield a positive interaction coefficient and only about
1% cannot be distinguished from zero.
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(a)

(b)

Figure 4. Examples of spatially contiguous random partitions. (a) USA: Partition 1 for 50 administra-
tive units, (b) Brazil: Partition 1 for 50 administrative units.

Figure 6 presents results conditional on the scale of spatial aggregation, that is, the num-
ber of administrative units. The random aggregation is simulated 1000 times for each total
number of administrative units. We present the regression results as box-and-whisker plots
(outliers outside the lower and upper adjacent values are indicated as red dots). Several
features stand out. The elasticity at the mean of population density, shown in Figure 6a,c, is
remarkably stable in both countries (a result which carries over to specifications without an
interaction term, see Figure S4 in the Supplementary Materials). The conditional means
fluctuate only moderately around the overall means documented above. While the mean is
stable, the variance of the estimates increases markedly as the number of partitions become
smaller and the average size of each unit increases. For relatively coarse levels of spatial
aggregation, it is not difficult to find partitions at which we observe no relationship between
nighttime lights and GDP over time. For example, at 50 artificial US “states”, large parts
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of the distribution of estimates cross zero and around 31% of the underlying coefficients
contain zero in their 95% confidence interval, while almost every single draw for partitions
of size 200 and more yields a coefficient for which we can reject the null hypothesis of zero.
We observe a similar relationship in the data for Brazil, where around 89% of all estimated
coefficients with partitions using 50 units have zero in their 95% confidence intervals but
this figure drops to less than 10% at 2800 units and less than 1% at 3400 units.
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Figure 5. Unconditional distribution of estimates across partition simulations. (a) USA: Elasticity at
average (β̂), (b) USA: Interaction (γ̂), (c) Brazil: Elasticity at average (β̂), (d) Brazil: Interaction (γ̂).

The interaction effects in Figure 6b,d follow the same pattern of stable mean and
increasing variance as the number of administrative units falls. A total of 59.7% of the
partitions of the United States into 50 “states” yield estimates of the interaction term that
cannot be distinguished from zero. This is particularly interesting in light of an estimate
of −0.23 (with a standard error of 0.05) which we obtain when running our baseline
regression on data aggregated to the actual US states. This value sits at the 10th percentile of
the distribution of simulated results for partitions into 50 units and is more than 2.5 times
larger than the average elasticity across all simulations. At 200 units, 37.4% contain zero in
their 95% confidence interval, and at 800 units, this falls to 5.5%.

Taken together, these simulations demonstrate a robust association of lights with GDP
and provide strong evidence of nonlinearity across different geographic scales. As aggre-
gation reduces measurement errors, we take this as another indication that measurement
errors are not the driving force behind this nonlinearity. Moreover, we show that it is easy
to obtain insignificant results at high levels of aggregations, where the estimated elasticities
depend on how larger regions align with the spatial structure of production and density.
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Figure 6. Distribution of estimates across partition simulations, by number of units. (a) USA: Elasticity
at average (β̂), (b) USA: Interaction (γ̂), (c) Brazil: Elasticity at average (β̂), (d) Brazil: Interaction (γ̂).

4. Discussion

This article investigates whether the ability of the nighttime lights to pick up changes
in GDP varies across subnational regions and their characteristics. We show theoretically
that any variation in the structural light-output relationship spills over into estimating
policy-relevant parameters in applied work using nightlights as an outcome. Measurement
errors in both nightlights and economic activity complicate inference about this relationship.
We develop a framework for assessing the implied, relative magnitude of measurement
errors across subnational regions, and apply it to study heterogeneity in the light-output
relationship in several countries with varying degrees of statistical capacity.

Our findings document significant variation in the relationship between economic
activity and nightlights at the subnational level which cannot be explained by variation
in measurement errors alone. Variation in the elasticity persists whether we estimate
the elasticities by income group, economic sector, or specify interactions with population
density. Moreover, the elasticities with respect to industry and service GDP declines as
population density rises. The elasticity in the agricultural sector is much smaller (in the
United States it is 20 times smaller than the industry elasticity and over 50 times smaller than
the service sector elasticity) and less consistent across countries. Since services dominate
the economies we study, pooling across sectors results in the nonlinearity by population
density exhibited in the service sector. The evidence favoring these nonlinearities is most
robust in countries with the highest statistical capacity. However, the relationship follows a
similar, albeit noisier, pattern in the other countries in our sample.

The second contribution of our study is on the stability of the nonlinear nightlight-
GDP relationship over different levels of spatial aggregation. We find that the nonlinear
relationship is remarkably stable over many alternative administrative divisions of varying
shapes and sizes. However, our estimates of the GDP elasticities are more stable under
random partitions where the total number of regions is large (keeping their size small).
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At the same time, these smaller regions exhibit stronger nonlinearity since smaller units
are more homogeneous in terms of population density, economic activity, and economic
structure. At larger geographies, estimates are less stable, and there is a higher likelihood
of drawing statistically insignificant estimates. This may help explain why other studies
have failed to find significant relationships between nightlights and economic activity at
some levels of aggregation [18]. It is also worth noting that the less precise estimates for
Italy and Spain in our analysis are consistent with these two countries having the fewest
number of regions.

We note that our findings provide a framework for reconciling other empirical re-
search. Papers documenting the relationship between nightlights and economic activity at
subnational scale have not found a consistent statistical relationship [18], and at smaller
scales there is evidence for nonlinearity as well [2,7]. Our work helps scholars adjudicate
between measurement error and structural nonlinearity in explaining observed nonlinearity
in the NTL-GDP elasticity. We offer observable covariates such as population density, GDP
density, and economic structure as predictors for the local NTL-GDP elasticity. We also
show that larger subnational scales exhibit larger variation in the estimated elasticity.

Researchers using nightlights as a proxy for economic activity at small geographies,
for example, to study the effects of conflict or measure economic inequality, need to be
conscious of the variation we find in this paper. The income elasticity of nighttime lights
may be considerably smaller in agricultural regions, regions with higher GDP, and regions
with high population density. Changes in economic activity in such areas may result
in small changes in nightlights that are, perhaps, not distinguishable from zero. As a
result, a researcher may erroneously conclude that a policy or investment did not affect
economic growth or inequality because the change in nightlights is insignificant (a null
finding, of course, which includes a wide range of potential effects sizes in addition to
zero). Moreover, even when the policy has an effect, additional analyses of treatment effect
heterogeneity across regions may be driven solely by the heterogeneity of the light-output
elasticity we document in this paper. The nonlinearity also implies that large changes in
nightlights might occur in some contexts despite little change in economic activity.

In addition, our results suggest caution in taking estimates from other contexts to
infer how changes in nightlights in a particular location translate into changes in GDP.
The presence of a nonlinear relationship between nightlights and economic activity across
subnational regions of different population densities, GDP levels, or economic structures
means that researchers should consider whether taking an elasticity from the literature and
applying it to a specific empirical context is appropriate. While such an elasticity might
reflect the average relationship between nightlights and changes in economic activity over
many subnational units, research focused on one or a small number of regions should
rely on nightlights-GDP elasticities estimated from regions with similar characteristics and
have some sense of the scale of measurement errors in their context. Moreover, research on
agricultural, high GDP, or high population density settings may want to examine alternative
proxies of economic activity and not make inferences only from nightlights.

While our work documents significant variation in the nightlights-income relationship,
it has some fundamental limitations. First, we can only explore the relationship in countries
with a sufficiently long panel of subnational GDP data. Our work considers a set of high-
income and middle-income countries. It would have been ideal also to have data from
low-income countries with robust statistical capacity that report subnational GDP because
the research we are trying to inform is most often conducted in low-income settings where
nightlights are one of the few available proxies for subnational GDP.

A second challenge is that the actual degree of measurement error in GDP at the
subnational level is unknown. We use the elasticities across regions in countries with the
highest statistical capacity—Germany and the United States—to conclude that the range
is too wide to be explained by differences in measurement errors in GDP across regions.
However, we can only infer this from the high statistical capacity of these countries and
have no way to verify the true differences in measurement error in subnational GDP in any
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country. Moreover, we know very little about the scale of errors introduced by standard
approaches to calculating (and usually scaling up) estimates of local GDP.

Finally, our study uses data on nighttime lights derived from a system with many
known limitations. The main advantage of the dated DMSP-OLS system over the newer
VIIRS data is that it allows us to study changes within regions over one or two decades,
depending on the availability of GDP data. While we use a topcoding corrected version of
this data to shut down one of the most likely sources of nonlinearity (which correlates with
population density and GDP), we cannot entirely rule out that unfortunate features of the
data generating process contribute to our findings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14051190/s1, Table S1: Income elasticity of topcoding corrected nighttime lights by popula-
tion density. Figure S1: Estimates of relative measurement errors using topcoding corrected nighttime
lights. Figure S2: Estimates of relative measurement errors using spatially correlated standard errors.
Figure S3: Income elasticity of nighttime lights by log population density. Figure S4: Unconditional
and conditional distribution of estimated elasticities across simulated partitions.
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Appendix A. Analytic Background

This section derives in detail some of the equations used in the main text and provides
the relevant background for our estimation strategy. All true (unobserved) quantities are
denoted by ‘*’ and all observed variables are demeaned across units and time.

Appendix A.1. Estimating the Relative Sizes of the Measurement Errors Using Single Regressions

We first formalize the set up described in the main text. Both observed lights and GDP
are observed with error:

yG
it = yG∗

it + eG
it (A1)

yL
it = yL∗

it + eL
it (A2)

In both equations, we assume that the the measurement errors are mean independent
conditional on the values of the latent variable(s) and that there is no systematic bias in
observed GDP or lights, such that E[eG

it |yG∗
it ] = E[eL

it|yL∗
it ] = 0,

Our structural model of interest is the constant elasticity model:

yL∗
it = βyG∗

it + εit (A3)

which is the relationship that is typically assumed in the related literature on measurement
error in the light-output relationship and applied papers using a constant elasticity to
translate their effects from changes in nighttime lights to changes in GDP. By the same logic
of the assumptions made above, we require E[eG

it εit|yG∗
it ] = E[eL

itεit|yG∗
it ] = 0.

In addition, a key assumption in our analysis is that the error term of GDP is not corre-
lated with the error term in lights conditional on unobserved GDP, i.e., E[eG

it eL
it|yG∗

it ] = 0.
This assumption has been made in virtually all of the related literature on measurement
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errors in nighttime lights [2,3,26] but is not innocuous. While lights and GDP are quantified
in very different ways (satellites vs. subnational accounting), their errors could still be
correlated if, for example, topcoding in urban areas is (inversely) correlated with measure-
ment errors in GDP. We use topcoding corrected data as a robustness check to rule out one
potential source of such a correlation.

Substituting observed for unobserved quantities yields:

yL
it = βyG

it − βeG
it + eL

it + εit (A4)

which we estimate as

yL
it = βyG

it + υit (A5)

where the composite error υit = εit − βeG
it + eL

it does not satisfy the usual assumptions for
consistency. Instead, it is well known that

β̂
p−→ β

σ2
yG∗

(σ2
yG∗ + σ2

eG )
= βλ (A6)

where σ2
yG∗ is the variance true output and σ2

eG the variance of the error in GDP. λ is known
as the signal-to-noise ratio or the attenuation factor and, since 0 < λ < 1, the bias is
towards zero.

If we additionally assume that σ2
eG behaves like a decreasing step-function in yG∗, then

we should also observe decreasing attenuation factors if we group the data by observed
GDP. This assumption mirrors the good data country and bad data country samples used
in [3] but conjectures that the variance of these errors varies across subnational units (and
indicates statistical capacity). If the constant elasticity assumption is correct, then the true β
is the same in different sub-samples of the data. Therefore, any ratio of coefficients where
each coefficient is estimated separately on ordered samples of yG∗, say high GDP and low
GDP, identifies the relative size of the measurement errors:

β̂h

β̂l

p−→
(σ2

yG∗ + σ2
eG

l
)

(σ2
yG∗ + σ2

eG
h
)
=

λh

λl = θh. (A7)

In the main text we present estimates of these ratios and their standard errors for
samples split along quartiles of average GDP, denoted as θk = λk/λ1 for k = 1, 2, . . . , 4.
In fact, the precise shape of the conditional heteroskedasticity in σ2

eG (yG∗) is not important.
Any difference in the error variance across different subsamples of GDP will translate into
differences in the estimated θs. If we observe large and statistically significant deviations in
these relative signal-to-noise ratios within countries with uniformly high statistical capacity,
then we can interpret this as evidence against the constant elasticity model and in favor of
variation in the structural elasticity.

Appendix A.2. Estimating the Coefficients in the Interacted Model

Suppose that instead of Equation (A3), the structural model of interest is

yL∗
it = βyG∗

it + γyG∗
it zit + εit (A8)

where zit is observed without error. In our application, zit is population density in the
initial year, which is considerably easier to observe than GDP. Of course, with γ = 0 we are
back to the constant elasticity model assumed earlier.

Substituting observed for unobserved quantities results in

yL
it = βyG

it − βeG
it + γyG

it zit − γeG
it zit + eL

it + εit (A9)
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which we estimate as

yL
it = βyG

it + γyG
it zit + υit (A10)

where the new composite error is υit = εit − βeG
it − γeG

it zit + eL
it.

In general, estimates of coefficients in models with more than one independent variable
where one or more of these variables are measured with error are biased in an unknown
direction. To see this, consider the formulae for the regression coefficients estimated on the
basis of Equation (A10):

β̂ =
var(yG

it zit)cov(yL
it, yG

it )− cov(yG
it zit, yG

it )cov(yL
it, yG

it zit)

var(yG
it )var(yG

it zit)− (cov(yG
it zit, yG

it ))
2

(A11)

γ̂ =
var(yG

it )cov(yL
it, yG

it zit)− cov(yG
it , yG

it zit)cov(yL
it, yG

it )

var(yG
it )var(yG

it zit)− (cov(yG
it , yG

it zit))2
(A12)

Typically, both β̂ and γ̂ depend on the true β, γ and several (co)variances, so that the
direction of the bias is indeterminate.

In our case, however, it could be plausible that cov(yG
it , yG

it zit) = 0, if we are willing to
make the stronger assumptions that eG

it is independent of yG∗
it , z and the structural error,

and cov((yG∗
it )2zit) = 0 (which restricts the relationship between population density and

unobserved GDP to be linear).
It is straightforward to see that under these conditions

β̂
p−→ β

σ2
yG∗

(σ2
yG∗ + σ2

eG )
(A13)

which is the same as Equation (A6) and does not depend on the value of γ.
Similarly, we have

γ̂
p−→ γ

σ2
yG∗z

(σ2
yG∗z + σ2

eG σ2
z )

(A14)

which is attenuated by the signal-to-noise ratio in the product of observed GDP with

population density. In the constant elasticity case, γ = 0, so γ̂
p−→ 0. Hence, any evidence

rejecting the null of γ = 0 suggests that the constant elasticity model is incorrect (or that
one or more of the assumptions made here is violated). Again, it is important to note that
these results rely on substantially stronger assumptions than the single regression estimates
presented above. We only view the resulting estimates as additional (and weaker) evidence
on the whether the constant elasticity model is empirically supported.
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Abstract: Urbanization level is a key indicator for socioeconomic development and policy making,
but the measurement data and methods need to be discussed further due to the limitation of a
single index and the availability and accuracy of statistical data. China is urbanizing rapidly, but the
urbanization level at the county scale remains a mystery due to its complexity and lack of unified
and effective measurement indicators. In this paper, we proposed a new urbanization index to
measure the Chinese urbanization level at the county scale by integrating population, land, and
economic factors; by fusing remote sensing data and traditional demographic data, we investigated
the multi-dimensional unbalanced development patterns and the driving mechanism from 1995 to
2015. Results indicate that: The average comprehensive urbanization level at the Chinese county scale
has increased from 31.06% in 1995 to 45.23% in 2015, and the urbanization level in the permanent
population may overestimate China’s urbanization process. There were significant but different
spatial and temporal dynamic patterns in population, land, and economic levels as well as at a
comprehensive urbanization level. The comprehensive urbanization level shows the pattern of being
high in the south-east and low in the north-west, divided by “Hu line”. The urbanization of registered
populations presents high in the northern border and the eastern coastal areas, which is further
strengthened over time. Economic urbanization based on lighting data presents high in the east and
low in the west. Land urbanization based on remote sensing data shows high in the south and low in
the north. The registered population urbanization level is lower than economic and land urbanization.
County urbanization was driven by large population size, reasonable industrial structure, and strong
government capacity; 38% and 59% of urbanization levels can be regarded as the key nodes of the
urbanization process. When the urbanization rate is lower than 38%, the secondary industry plays
a strong role in powering urbanization; when the urbanization rate is higher than 38% but less
than 59%, the promotion effect of the tertiary industry is more obvious, and the secondary industry
is gradually weakened. When the urbanization rate exceeds 59%, the tertiary industry becomes
the major driver.

Keywords: county urbanization; population urbanization; land urbanization; economic urbanization;
comprehensive urbanization; China

1. Introduction

Urbanization has developed rapidly in the 20th and 21st centuries and has been
regarded as an important development strategy [1]. With increasing global urbanization,
the Earth is gradually becoming an urban planet [2,3]. The proportion of the global urban
population has increased from 33% in 1950 to 55% in 2018, and urban land expanded at twice
the rate of population growth [4]. Rapid urbanization in China requires more attention
from the world. Stiglitz, a Nobel laureate in economics, once predicted that China’s
urbanization was one of the two major engines driving world economic development in the
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21st century [5,6]. However, due to the complexity and comprehensiveness of urbanization,
the development and change of urbanization have always been a hot issue for governments,
scholars, and the public [7,8]. So, how to measure the level of urbanization development
accurately has strong theoretical and practical significance [9].

The measurement of urbanization level is particularly important in the stage of rapid
urbanization development. Northam believes that urbanization development presents
an “s”-shaped curve and can be divided into three stages and that the rapid urbanization
stage is when the urbanization level is between 25% and 70% [10]. At this stage, one of
the research objectives in China and abroad is how to measure the level of urbanization
scientifically. Right now, China is at this stage [7–9]. As the fastest growing economy in
the world, China’s urban population increased from 200 million in 1980 to 800 million in
2018 [11]. In 2019, the urbanization rate in China exceeded 60%, and the urbanization rate
of household registration reached 44.38% [12]. However, scholars have certain disputes
over the current level of urbanization [13] and believe that the current level of urbanization
is overestimated [14,15]. Therefore, how to evaluate the level of urbanization in China
scientifically is an important issue [16–18].

Through a literature review, the selection of indicators is an important issue in the
study of urbanization. The existing studies are mainly based on a single indicator or
composite indicator system, which cannot reflect the urbanization process comprehensively
and truly. In terms of a single indicator, the research on measuring the level of urbanization
based on population data is the most used and the most representative. As early as
the 1930s, the “Hu Huanyong Line” showed the characteristics of the spatial pattern of
China’s population was extremely dense in the east and sparse in the west. Although
these findings are from a population density map, they also reflects the differentiation
of urbanization levels to a certain extent [19]. Since then, the research on population
urbanization has gradually increased [20–22]. Moreover, there is also much research on
India, Central Asia, and other countries and regions using population data [23–25]. With the
intensification of population mobility, the measure data also changes [26]. Qi believed that
the urbanization rate of registered populations could more scientifically reflect the quality
of China’s population urbanization, so he used the data of the sixth population census
to measure the urbanization rate of the permanent resident population and registered
population at the county and city scales in China [27].

It is also the content of single index research to analyze the urbanization process
from the dimension of land use. With the rapid development of urbanization, it is not
only manifested in the increase of urban population but also manifested in the disorderly
expansion of out of control urban construction land in space. Important resources such
as arable land and water are overconsumed, the environment is seriously polluted, and
urban infrastructure is greatly wasted. Therefore, in 2007, Mr. Lu proposed to use land
urbanization for the first time in China and pointed out that the speed of land urbanization
was too fast and much faster than population urbanization [28]. The research on land
urbanization has become a hot spot. Some scholars [29–31] proposed that the land-use
area of urban built-up areas in a country or region reflects the local urbanization level.
Moreover, other scholars believed that the proportion of industrial and mining land in
urban areas could better reflect the process of land urbanization and propose that the ratio
of urban and rural construction land to urban construction land can be used to express the
land urbanization rate [32–34]. Furthermore, Asabere pointed out that the spatial change
process caused by urbanization can be better revealed by analyzing the change in regional
land use and cover quantity, quality, and structure [35]. Vogler conducted a case study of
the United States and showed that per capita land change could be a new spatial index
for measuring urbanization [36]. In addition, the use of per capita GDP, the proportion
of secondary and tertiary output values and composite economic indicators to measure
economic urbanization, is also one of the focuses of urbanization research [37–41].

Although the single index measure has strong brevity, it cannot fully reveal the
connotation of urbanization, and there are certain errors in judging the development

90



Remote Sens. 2022, 14, 2268

stage of urbanization [42–44]. To solve these problems, scholars have constructed a multi-
standard comprehensive evaluation index system to measure the level of urbanization
(i.e., population and land, population and economy, land and economy, population-land
and economy) [5,6,45–52]. Furthermore, although the multi-dimensional index system is
more scientific than a single index in measuring urbanization, the data source of the multi-
dimensional index system is still mainly the traditional social and economic statistical data,
while the traditional data has many limitations (data quality is relatively low; temporal
continuity is weak; spatial scale is limited, etc.) [1,53]. With the digital wave sweeping the
world, using remote sensing images to do urbanization research has gradually become a
new research direction [54,55], and the fusion of social economy, satellite remote sensing,
social media, and other multi-source data is the mainstream trend of future research [56,57].
Among them, lighting data is the most widely used and provides a good opportunity
to monitor annual urbanization activities. The light data provided by Operational Line-
scan System (OLS) on the Defense Meteorological Satellite Program (DMSP) can detect
city lights with a low-light detecting capability [58–60]. Due to the advantages of rich
historical archived data and wide spatial coverage [61,62], lighting data has been widely
used in socio-economic estimation [63,64] and urban agglomeration development [65]. For
example, Sutton et al. [66] estimated the global human population using the statistical
relationship between nighttime lighted areas and the urban population.

In order to solve the limitation of a single index and the data traditionally attributed to
the composite index system based on the connotation of urbanization, we combine multi-
dimensional (population, land, and economy) and multi-source data (population statistics,
land use, and night light), and propose a new urbanization measurement indicator—
comprehensive urbanization. Meanwhile, China is urbanizing rapidly, but the urbanization
level at the county scale remains a mystery due to the complexity and lack of unified and
effective measurement indicators. Therefore, we take China’s counties as the research
object and use the newly constructed comprehensive urbanization index to answer three
questions: What is the level of county urbanization in China from 1995–2015? What are the
characteristics of geographical imbalance? What are the driving forces and mechanisms?
By answering these questions, we try to provide new ideas and methods for urbanization
measurement, and we try our best to show the real and comprehensive process of county
urbanization in China so as to provide guidance for future development of urbanization.

2. Research Methods and Data Sources

2.1. Method of Urbanization Measurement

Population urbanization: Human behavior is generally regarded as one of the di-
rect driving factors affecting and changing urbanization. Non-agricultural population
refers to the population engaged in the secondary and tertiary industries and the part
of the population supported by them. Due to the small population flow in the early
years, the high urban-rural dual barrier and the large difference in treatment between the
non-agricultural population and agricultural population, the ratio of the non-agricultural
population to the total population can better reflect the population urbanization rate in
China. After 2000, the ratio of the permanent urban population to total permanent popu-
lation was used to represent the urbanization rate, which was better reduced to the error
effect caused by population flow. However, the permanent population statistics include
the floating population that has not really achieved the process of settling down [21,67].
Therefore, after considering the availability of data, this paper uses the urbanization rate
of the registered residence population to show the urbanization development pattern of
the county population in China. The urban rate of registered population is the ratio of
the non-agricultural population to the total registered population of a county, explained
in Formula (1).

Urbanpop =
popnon_agri

popall
∗100% (1)
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In Formula (1), Urbanpop represents the urbanization rate of the registered population;
popnon_agri represents the non-agricultural population of a county; and popall represents
the total registered population of the county.

Land urbanization: Land is the carrier of urbanization and the basis of human activities.
Land urbanization is the process of transforming agricultural land into non-agricultural
land. In China, due to the existence of ecological protection red line, permanent basic
farmland protection red line, and urban development boundary, all the areas of a region
cannot be completely transformed into urban land. At the same time, it is reasonable to use
the land urbanization index and land non-agricultural index to construct the county land
urbanization rate [34]. Therefore, this paper uses the ratio of urban land, industrial and
mining land, and transportation land to the total size of urban and rural construction land
to reflect the land urbanization Formula (2).

Urbanland =
ul + il + tl

ul + il + tl + rl
∗100% (2)

In Formula (2), Urbanland represents land urbanization rate; ul represents urban land
area; il represents industrial and mining land area; tl represents transportation land area;
and rl represents the rural residential land area.

Economic urbanization: Industry plays a crucial role as the internal driving force
of urbanization [68]. Due to the close relationship between lighting data and economic
development [69,70], light data provided a valuable data source for elucidating the dy-
namics of China’s urbanization [71–73]. Referring to land urbanization and population
urbanization models, “economic activity area” and “economic activity intensity carried
by land” are incorporated into the economic urbanization model. Based on the existing
studies, this paper constructs a model reflecting economic urbanization from two aspects
of night light: (a) the intensity attribute of regional average light; (b) the area attribute of
regional lighting [74–77]. Finally, the model of economic urbanization is constructed by
combining the two indexes in a linear way, shown in Formula (3).

Urbaneco =

(
TDN

N ∗ 63
∗W1 +

AreaN

Area
∗W2

)
∗100% (3)

In Formula (3), Urbaneco represents the economic urbanization rate; TDN represents
the total value of bright elements in a certain county; N represents the number of bright
elements; and 63 represents the maximum value of a single bright element. The first
formula of the model represents the intensity attribute of regional average light, that is, the
ratio of the actual total value of the light element in a county to the theoretical maximum
value of the light element in that county. AreaN refers to the total area with a pixel value
greater than 0 in a region, and Area refers to the area of a county. The second formula in the
model represents the area attribute of regional lighting, the ratio of the total area of all light
elements in the county to the total area of the county. By verifying the weight combination,
it is finally determined that W1 is 0.5 and W2 is also 0.5.

Comprehensive urbanization: The urban-rural system contains three important el-
ements: population, land, and industry [41]. Urbanization is usually used to refer to
three related but different processes, including the transformation of an agricultural pop-
ulation into a non-agricultural population, an agricultural region into a non-agricultural
region, and agricultural activity into non-agricultural activity [42,78]. Therefore, this pa-
per studies urbanization from the perspective of population, land, and industry [47]. By
comprehensively considering population urbanization, land urbanization, and economic
urbanization, the comprehensive urbanization rate is constructed by assigning the three
weights, respectively, expressed in Formula (4).

T = α ∗ Urbanpop+β ∗ Urbanland +X ∗ Urabneco (4)
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In Formula (4), T represents the comprehensive urbanization rate. A, β, and X are
the undetermined coefficients of population urbanization rate, land urbanization rate, and
economic urbanization rate, respectively. Since population, land, and economic urbanization
are equally important, the three are assigned the same weights in this paper, which are all 1/3.

2.2. Fixed Effects Panel Regression Model

This paper selects four indicators from three aspects of population size, industrial
structure, and government capacity, namely population density, the proportion of primary
industry in GDP, secondary and tertiary industrial structure, and the level of fiscal transfer
payments (Table 1). Specifically, first, as the core element of urbanization, population
size provides basic conditions for the development of urbanization. Secondly, economic
development is an important driving force of urbanization, and industrial structure is an
important representation of economic development. As a largely agricultural country, the
development of primary industry may restrict the development of urbanization in China.
At the same time, the tertiary industry has a stronger employment absorption capacity
than the secondary industry, and its development may promote the rapid increase of the
urbanization rate. Therefore, the proportion of primary industry in GDP and the structure
of secondary and tertiary industries are selected as the indicators of industrial structure.
Thirdly, China has a unique administrative system, and the government has played a strong
role in the development of urbanization. The level of fiscal transfer payments can better
characterize the government’s ability. The panel regression model is constructed based on
the selection of variables, and the expression is as follows:

Tit= αi,t+β1lnpdi,t+β2ppii,t+β3tosi,t+β4govi,t+εit (5)

Table 1. Index selection of influencing factors of county comprehensive urbanization.

Primary Index Secondary Index Indicator Description

Population size Pd Population size/county area

Industrial structure
Ppi Primary industry value/GDP

Tos Tertiary industry
value/Second industry value

Government capacity Gov (Expenditure-Revenue)/GDP

In Formula (5), T stands for comprehensive urbanization; pd is the population density;
ppi is the proportion of primary industry in GDP; Tos represents secondary and tertiary
industrial structure; and gov represents the level of fiscal transfer payments (Table 1). αi,t
is the individual fixed effect; β1~β4 is the regression coefficient of each variable; εi,t is the
random disturbance term; and i and t represent region and time, respectively.

In order to ensure the accuracy of the regression results, the model is processed and
tested as follows: (a) In order to ensure the data stability and weaken the influence of
collinearity and heteroscedasticity of the sequence on the estimation results, some indexes
of the model are treated with logarithm; (b) through F-test and Hausman test, it is found
that the chi-square p value in the model is less than 0.05. Therefore, this paper selects the
fixed effect as the estimation method of the model.

2.3. Threshold Regression Model

We take population urbanization, land urbanization, and economic urbanization as
threshold variables to test the threshold effect of Tos on comprehensive urbanization. Then
determine how secondary industry and tertiary industry contribute to urbanization at
different stages of urbanization.

Yit= β1xI,tI(I ≤ γ1)+β2Ii,tI(γ1< I ≤ γ2) + Ixi,tI
(

I < gi,t ≤ γn

)
+β4coItroli,t+εit (6)
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In Formula (6), i stands for the county, and t stands for the year; Yit is the dependent
variable (comprehensive urbanization), xit is the explanatory variable (tos); β1, β2, and
β3 are the corresponding coefficient variables; git is the threshold variable; population
urbanization rate, land urbanization rate, and economic urbanization rate are selected as the
threshold variables respectively; γ1, γ2, and γn are the specific threshold values; and I is the
index function. When the conditions in parentheses are met, I is 1, otherwise, it is 0; control
is the set of control variables (pd, ppi, and gov); and εit is the random disturbance term.

2.4. Data Sources

Due to the long research period, in order to facilitate the analysis and research, the
administrative division of 2015 is taken as the standard, and the data of each year are uni-
fied to the administrative unit of that year. The research data mainly includes five aspects:
(a) China’s provincial, municipal, and county-level administrative units are China’s 1:250,000
basic geographic data provided by the Resources and Environment science data of the
Chinese Academy of Sciences (http://www.resdc.cn/, accessed on 16 July 2020). Exclud-
ing Hong Kong, Macao, and Taiwan, there are 31 provincial-level administrative units
and 2851 county-level units in the study area; (b) the registered population data of each
county in the calculation of population urbanization come from the National Population
Statistics of Counties and Cities of the People’s Republic of China in 1995, 2000, 2005,
and 2010. Since the data source only counted until 2012 and the division of “agricultural
and non-agricultural” household registration was canceled in 2015, this paper used the
“agricultural and non-agricultural” population data from 2014 to replace 2015. The data
are from the official websites of statistical bureaus of all provinces, cities, and counties;
(c) the land use data for 1995, 2000, 2005, 2010, and 2015 are obtained from the Data Center
of Resources and Environmental Sciences, Chinese Academy of Sciences, with a resolution
of 30 m (http://www.resdc.cn/); (d) the social statistics for regression are obtained from
the statistical yearbook. (e) the stable night light data for economic urbanization calcula-
tion is provided by the NGDC website (https://ngdc.noaa.gov/eog/dmsp, last accessed
on 16 July 2020), including 34 stable night light images without radiation calibration
(1992–2013) from six DMSP satellites: F10, F12, F14, F15, F16, and F18. Background noises
of the stable night data were identified and replaced with values of zero, and the final DN
values for lit pixels ranged from 1 to 63. Since the data source is only updated to 2013, this
paper uses the 2013 night light image to replace the 2015 data.

Due to the insufficient accuracy of the original noctilucent image (discontinuous
problem and multi-sensor problem), we used the existing methods to correct it [56,57].
Firstly, the obtained global light images were extracted according to the Chinese regional
boundaries, and then we obtained the Chinese light image data from 1992 to 2013. Secondly,
the projection of light data was defined as the Lambert Azimuthal Equal projection, and
data were resampled to a pixel size of 1 km. Thirdly, we chose “the method of invariant
target region”. The core idea of this method is to use a small area with a wide range of light
values (0–63) but little change over the years to correct all images. Moreover, this method
mainly consists of three steps: intercalibration, intra-annual composition, and inter-annual
series correction. The specific operation is as follows: (a) Selection of the invariant target
region. Of all the areas examined, Hegang City of Heilongjiang Province was selected as
the “constant target area” due to its characteristics mentioned above. (b) Intercalibration.
In order to solve the continuity problem, we chose the F16-2006 light image of Hegang City
as the reference image and corrected all the images by constructing a quadratic equation of
one variable. However, we found that the change in Hegang City from 1992 to 2013 was
slightly larger, and the fitting degree of lighting value in 1992 and 2013 was only 0.78, less
than 0.80. Therefore, after completing the whole process and comparing it with Lu, we
thought that the coefficients provided by Lu might be more scientific, so we finally chose
it (Table 2). (c) Intra-annual composition. Light data for some years will be provided by
two sensors (F14-2000 and F15-2000; F15-2005 and F16-2005). In order to make full use
of the images of the same year obtained by multiple sensors and ensure the stability and
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continuity of night light image data, we averaged the two-image data of the same year.
(d) Series correction. In order to solve the problem of individual pixel value mutation, we
assumed that the DN value of a pixel in the DMSP/OLS lighting image should not be small
in the following year DN value of the pixel in the previous year. According to the operation,
we obtained the final Chinese lighting data set from 1992 to 2013.

Table 2. Parameters of a quadratic equation with one variable provided by Lu [79].

Sensor Year a b c R2

F12 1995 0.034 0.513 0.485 0.851
F14 2000 0.024 0.606 0.346 0.873
F15 2000 0.028 0.578 0.485 0.878

2005 0.026 0.872 0.123 0.855
F16 2005 0.022 0.919 0.096 0.887
F18 2010 0.021 0.510 0.901 0.851

2013 0.016 0.271 0.680 0.850

3. Temporal and Spatial Pattern Evolution of County Urbanization in China

3.1. Characteristics of Spatio-Temporal Differentiation of Population-Land-Economy Urbanization

In order to describe the urbanization development pattern of China’s counties in detail,
the data of registered populations, nighttime lights, and land use were used to show the
pattern of the registered population urbanization rate, economic urbanization rate, and
land urbanization rate of 2851 counties in China during 1995–2015 (Figure 1).

 

Figure 1. Spatial distribution of population-economy-land urbanization rates in China from 1995 to 2015.

County urbanization was represented by registered population data (Figure 1a–c). The
average urbanization rate of the registered population of 2851 counties was 27.49% in 1995,
34.31% in 2005, and 38.62% in 2015, with an average annual growth rate of 2.19%. From the
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perspective of spatial pattern, the urbanization rate in 1995 was generally low. Counties
with high urbanization rates were mainly concentrated in Northern Xinjiang, border areas
of Inner Mongolia, and Northeast China. The prototype of a high urbanization belt on the
northern border had basically appeared. In addition, the eastern coastal areas of Beijing-
Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta also had small-scale high
urbanization agglomeration areas with Beijing, Shanghai, and Guangzhou as the core. It
could be seen that the dot high urbanization areas with provincial capitals and municipal
districts as the core were also more prominent. In 2015, the Beijing-Tianjin-Hebei region,
the Yangtze River Delta, and the Pearl River Delta along the eastern coast spread rapidly,
forming a large area with a high urbanization rate. At the same time, high urbanization rate
areas also appeared in the Shandong Peninsula, Jiangsu, Fujian, and other places. The high
urbanization belt along the eastern coast had been basically formed, and a “herringbone”
pattern had been formed with the high urbanization belt along the northern border, which
is consistent with Liu’s research results [21].

Economic urbanization was represented by light data (Figure 1d–f). The average
urbanization rate of 2851 counties was 31.22% in 1995, 39.68% in 2005, 46.68% in 2015, and
the average annual growth rate was 3.10%. From the perspective of spatial pattern, in
1995, the distribution of counties with high urbanization rate showed a pattern of “three
points and one side”, that was, ultra-high urbanization rate concentration points with
Beijing, Shanghai, and Guangzhou as the core, and high urbanization rate areas along the
eastern coast mainly with Shandong, Hebei, and Jiangsu. Moreover, the point regions with
provincial capitals and municipal districts as the core were also areas with high economic
urbanization rates. There was a significant difference in the rate of economic urbanization
between the east and the west. In 2015, the difference in economic urbanization rate
between east and west was more significant. In the east, three high-rate areas of Beijing-
Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta with Beijing, Shanghai, and
Guangdong as the core had been formed. Furthermore, North China Plain was also a
high-value concentration area of China’s economic urbanization.

Land urbanization was represented by land-use data (Figure 1g–i). The average land
urbanization rate of 2851 counties was 34.46% in 1995, 39.16% in 2005, and 50.37% in 2015,
with an average annual growth rate of 2.63%. From the perspective of spatial pattern,
in 1995, counties with a high land urbanization rate mainly were concentrated in the
eastern coastal Yangtze River Delta, Fujian, Guangdong, and other places. Chongqing and
Guizhou in southwest China formed concentrated and continuous high-value areas, and
small high-value areas appeared in western Xinjiang, Qinghai, and Gansu. The difference
between the north and the south in land urbanization was obvious. In 1995, the average
land urbanization rate of counties was 35.51% in the east of the “Hu Line”, while in the
west, it was 28.49%, with a difference of 7.02%. However, the average land urbanization
rate in the southern and northern counties was 38.68% and 29.90%, respectively, with a
difference of 8.78%. In 2015, the gap between the north and the south in land urbanization
rate is more significant, which is consistent with Gao’s research results [34]. The difference
in the average land urbanization rate between east and west counties of “Hu line” was
0.11%, and the difference between North and South was 18.58%. The southwest high-value
area with Chongqing as the core was connected with the southeast coastal high-value area.
Only some counties in western Jiangxi and central Guangxi had low land urbanization
rates. The land urbanization rate of the county in the south had reached a high level, while
the northeast plain and north China Plain in the north formed a wide range of low land
urbanization rate regions.

In terms of spatial pattern, the urbanization of the registered population presents
a “herring-shaped” pattern composed of high-value areas in the northern border area
and high-value areas in the eastern coastal area, which further strengthens over time.
The pattern of economic urbanization is “high in the east and low in the west”. Land
urbanization presents a pattern of “high in the south and low in the north”, which is more
obvious than the differentiation between the east and the west. In terms of development
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level, the urbanization rate from highest to lowest is land, economy, and population. In
terms of development speed, the urbanization rate from high to low is economy, land, and
population. In general, the development level of population urbanization is the lowest, and
the development rate is the slowest. However, urbanization is a development process with
people as the core, so in the future, we must pay attention to the urbanization of “people”.

3.2. Characteristics of Spatio-Temporal Differentiation of Comprehensive Urbanization

Based on the population, land, and economic development, a comprehensive ur-
banization rate index is constructed to show the spatio-temporal pattern of urbanization
development at the county level in China (Figure 2). The spatial and temporal dynamics of
the comprehensive urbanization level at the county level in China are significantly different,
and the overall distribution still follows the “Hu Line”. However, with the development,
the comprehensive urbanization rate in western inland areas gradually increased. Three
high-value areas of Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta, with
Beijing, Shanghai, and Guangdong as the core have been formed along the eastern coast.
BesidesIn addition, in 1995, the average comprehensive urbanization rate in 2851 counties
was 31.06%. In 2015, it was 45.23%, with an average annual growth rate of 2.67%. It showed
that the high-value areas with provincial capitals and municipal districts as the core form a
multi-point distribution throughout the country.

Figure 2. Spatial distribution of comprehensive urbanization rate of China’s counties from 1995 to 2015.

In 1995, the overall comprehensive urbanization rate of counties in China was low. The
average urbanization rate of 2851 counties was 31.06%, with obvious regional differences.
A total of 41% of the 2851 counties in China had a comprehensive urbanization rate of
15–30%, followed by the total number of counties with an urbanization rate of 0–15% (685),
indicating that China’s county urbanization rate was extremely low. First, counties with
a high urbanization rate were mainly concentrated in the eastern coastal areas, forming
the high-value belt in the eastern coastal areas, among which Beijing, Shanghai, and
Guangzhou were the three high-value points of urbanization rate. Furthermore, provincial
capitals and municipal districts were the areas with high urbanization rates and scattered
in points. There were also some counties in the western inland areas with relatively
high comprehensive urbanization rates. Second, the areas with a low comprehensive
urbanization rate were mainly concentrated in the western inland and other rough terrain
areas, as well as non-provincial capitals and non-municipal districts.
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In 2015, the average comprehensive urbanization rate of counties in China was 45.23%.
Among the three core regions, the Pearl River Delta and Yangtze River Delta had achieved
better development, followed by the Beijing-Tianjin-Hebei region. The urbanization rate
in the inland areas of central and western China was growing rapidly, such as counties in
Hubei, Chongqing, and Henan. The comprehensive urbanization rate of most counties was
concentrated in the range of 30–50%. There were only 67 counties with a comprehensive
urbanization rate of 0–15%, accounting for only 3% of the total number of counties in China.
The number of counties with a comprehensive urbanization rate of 15–30% accounted for
22%. The number of counties with a comprehensive urbanization rate of 30–50% increased
rapidly to 1291, accounting for 45% of the total number of counties in China. The number of
counties with a comprehensive urbanization rate of 50–100% was also gradually increasing,
accounting for 30%, indicating that China’s county urbanization had reached the above
medium level.

4. Results

4.1. Fixed Effects Panel Model Regression Results

After answering the first three questions mentioned above: “How high is the level of
county urbanization in China? How to measure the level of urbanization? What are the
characteristics of geographical imbalance?”, we will further answer the question “What are
the driving forces and mechanisms of county urbanization in China?”. We selected four
indicators to explain this problem, including population density, the proportion of primary
industry in GDP, secondary and tertiary industrial structure, and the level of fiscal transfer
payments. The regression results are shown in Table 3.

Table 3. Regression results of comprehensive urbanization.

All East Mid West

Pd 6.42 *** 5.97 *** 2.76 *** 9.31 ***
(0.58) (0.99) (0.91) (0.97)

Ppi −0.31 *** −0.41 *** −0.28 *** −0.28 ***
(0.01) (0.02) (0.01) (0.01)

Tos 0.08 * 1.19 *** 0.13 * −0.01
(0.05) (0.28) (0.07) (0.07)

Gov 6.59 *** 23.84 *** 15.88 *** 5.04 ***
(0.37) (1.85) (0.99) (0.46)

Constant 4.00 6.10 18.49 *** −5.39 **
(2.90) (5.84) (4.98) (3.99)

F-value 12.80 *** 12.77 *** 13.01 *** 12.05 ***
R2 0.37 0.44 0.43 0.38

Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1

In order to explore the development mechanism of urbanization, the full sample is
incorporated into the model and regression analysis is conducted on each factor. At the
same time, there is a large difference among different counties with strong heterogeneity.
Therefore, the counties are divided into eastern, central, and western regions according
to their geographical location, and the regression results are shown in Table 3. Overall, a
large population scale, reasonable industrial structure, and strong government capacity
play a good role in promoting the development of county urbanization. Specifically,
(a) When all counties are included in the model, the regression coefficients of pd and
gov are 6.42 (p < 0.01) and 6.59 (p < 0.01), respectively, indicating that population size
and government capacity have promoted the improvement of the county urbanization
rate. In terms of industrial structure, the regression coefficient of ppi is −0.31 (p < 0.01),
indicating that the development of primary industry may inhibit the improvement of
county urbanization rate. However, the regression coefficient of Tos is 0.08 (p < 0.1),
indicating that the tertiary industry could better promote the development of urbanization
than the secondary industry. (b) In the eastern region, the regression results are similar
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to those at the national level. The regression coefficients of pd, ppi, Tos, and gov are
5.97 (p < 0.01), −0.41 (p < 0.01), 1.19 (p < 0.01), and 23.84 (p < 0.01), respectively. Among
them, Tos has a stronger significance and a larger regression coefficient, indicating that the
tertiary industry plays a greater role in improving the urbanization rate in eastern China.
(c) In central China, the regression coefficients of pd, proportion of primary and secondary
industries, proportion of secondary and tertiary industries, and government capacity were
2.76 (p < 0.01), −0.28 (p < 0.01), 0.13 (p < 0.1), and 15.88 (p < 0.01), respectively. (d) In the
western region, Tos shows particularity, and its regression coefficient is −0.01, which does
not pass the significance test. It shows that the development of the tertiary industry cannot
contribute to the improvement of county urbanization rate in western inland areas, while
the development of the secondary industry may be more conducive to the development
of urbanization.

China is a vast country with complex and diverse landforms. Different types of
county urbanization may have different driving mechanisms. Therefore, according to the
terrain and geomorphology, the counties are divided into plain counties, hill counties, and
mountain counties, and regression is conducted respectively (Table 4). Whether in a plain
county, hill county, or mountain county, the population scale and government capacity
can promote the urbanization rate of the county, while the development of the primary
industry will limit the urbanization development. However, Tos shows differences among
the three types. In plain counties, the Tos regression coefficient is 0.07, but it does not
pass the significance test, indicating that its promotion effect on the urbanization rate is
not obvious. In hilly counties, Tos regression coefficient is −0.45 (p < 0.01), indicating
that it inhibits the development of urbanization. It shows that the development of the
tertiary industry cannot contribute to the improvement of the county urbanization rate in
hill countries, while the development of the secondary industry may be more conducive
to the development of urbanization. In mountainous counties, Tos regression coefficient
is 0.12 (p < 0.1), indicating that the development of the tertiary industry will significantly
promote the improvement of the urbanization rate.

Table 4. Regression results of different types of areas.

Plain County Hill County Mountain County

Pd 6.86 *** 6.82 *** 6.71 ***
(0.99) (1.17) (0.90)

Ppi −0.34 *** −0.27 *** −0.30 ***
(0.01) (0.01) (0.01)

Tos 0.07 −0.45 *** 0.12 *
(0.08) (0.15) (0.07)

Gov 9.23 *** 18.73 *** 5.61 ***
(1.27) (1.42) (0.42)

Constant 0.33 −0.80 4.28
(5.60) (6.09) (3.96)

F-value 11.48 *** 13.39 *** 13.08 ***
R2 0.37 0.37 0.40

Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

Finally, based on t from the official documents published by each Chinese province,
we divide the counties into different functional zones, including key development zones,
optimized development zones, main grain-producing areas, and ecological protection zones,
and then carry out regression for the four types (Table 5). In the four subregions, both
population size and government capacity play a significant positive role in the improvement
of urbanization, while the development of the primary industry significantly inhibits the
improvement of the urbanization rate. However, Tos shows great differences in different
functional zones, specifically: in the key development zone and ecological protection area;
Tos regression coefficients are 0.50 and 0.03, respectively, which both fail the significance test,
indicating that Tos has no significant promoting effect on urbanization. In the optimized
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development zone, the Tos regression coefficient is 5.66, and through the significance test
of 1%, which shows that the good development of the tertiary industry will better promote
the increase of urban rate. In the main grain-producing areas, Tos also shows a positive
effect, and its regression coefficient is 0.14 (p < 0.1).

Table 5. Regression results of different functional zones.

Key Development Zone
Optimized

Development Zone
Major Grain-Producing Zone Ecologic Protection Zone

Pd 9.09 *** 12.30 *** 5.78 *** 4.70 ***
(1.28) (2.45) (0.89) (0.97)

Ppi −0.46 *** −0.62 *** −0.28 *** −0.25 ***
(0.02) (0.09) (0.01) (0.01)

Tos 0.50 5.66 *** 0.14 * 0.03
(0.34) (1.67) (0.08) (0.06)

Gov 14.97 *** 27.40 * 13.35 *** 5.45 ***
(1.74) (15.50) (0.84) (0.43)

Constant −9.71 −29.95 * 2.77 12.46 **
(7.31) (16.00) (4.81) (3.92)

F-value 12.16 *** 9.75 *** 10.95 *** 13.34 ***
R2 0.46 0.47 0.44 0.33

Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

In conclusion, a large population size and strong government capacity will promote the
rapid improvement of county urbanization rate in China, but a high proportion of primary
industry will inhibit the development of urbanization. In different types of counties,
the performance of Tos is quite different, which shows that relying solely on the tertiary
industry or the secondary industry cannot promote the development of urbanization
effectively. Each county should adjust its industrial structure reasonably according to local
conditions. For example, an optimized development zone should vigorously develop the
tertiary industry, while the development of the secondary industry in hilly counties may be
more conducive to the development of urbanization.

4.2. Threshold Model Regression Results

The empirical results of the panel model have shown that there are great differences in
the impact of the Tos on urbanization in different regions, which preliminarily shows that
the tertiary industry plays a stronger role in promoting the urbanization rate in developed
regions, while the secondary industry plays a greater role in relatively developing regions.
However, can the regression results of different regions show that with the increase in
urbanization rate, the promotion effect of the tertiary industry increases while the pro-
motion effect of the secondary industry decreases? This paper then uses the threshold
model to test the threshold effect of Tos on comprehensive urbanization by taking the
population urbanization rate, land urbanization rate, and economic urbanization rate
as threshold variables.

In Table 6, when population urbanization is used as the threshold variable, within the
95% confidence interval, the whole sample passes the double threshold test, and the double
threshold values are 38.56% and 58.73%, respectively; when land urbanization is used as
the threshold variable, within the 95% confidence interval, the whole sample passes the
double threshold test, and the double threshold values are 0.18% and 38.14%, respectively;
when economic urbanization is used as the threshold variable, within the 95% confidence
interval, the whole sample passes the double threshold test, and the double threshold
values are 32.27% and 59.06%, respectively. Based on this, this paper takes population
urbanization (Model 1), land urbanization (Model 2), and economic urbanization (Model 3)
as threshold variables for regression, and the estimation results are shown in Table 7.
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Table 6. Threshold estimates and test results.

Threshold Variable Threshold Test Threshold Value p Value 95% Confidence Interval

Pop_urban Single threshold test 38.56 0.00 [38.135, 38.958]
Double threshold test 58.73 0.00 [57.657, 60.185]
Triple threshold test — — —

Land_urban Single threshold test 0.18 0.00 [0.000, 1.851]
Double threshold test 38.14 0.00 [37.621, 38.313]
Triple threshold test — — —

Eco_urban Single threshold test 32.27 0.00 [29.369, 32.430]
Double threshold test 59.06 0.00 [58.617, 60.480]
Triple threshold test — — —

—indicates that there is no triple threshold.

Table 7. Threshold panel model estimation results.

Variable Model 1 Model 2 Model 3

Tos (γ1) −0.02 −0.45 *** −0.21 ***
(0.05) (0.08) (0.05)

Tos (γ2) 2.55 *** −1.24 *** 0.74 ***
(0.20) (0.10) (0.09)

Tos (γ3) 6.49 *** 0.84 *** 4.75 ***
(0.34) (0.06) (0.30)

Pd 6.79 *** 6.00 *** 5.13 ***
(0.57) (0.57) (0.58)

Ppi −0.31 *** −0.29 *** −0.30 ***
(0.01) (0.01) (0.01)

Gov 6.19 *** 6.48 *** 6.61 ***
(0.36) (0.36) (0.36)

_cons 1.73 5.98 *** 9.60 ***
(2.85) (2.84) (2.89)

F-test 11.16 *** 11.20 *** 12.16 ***
_cons 1.73 5.98 *** 9.60 ***

Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

According to the results of the three models, there is an obvious nonlinear relationship
between the Tos and the comprehensive urbanization in the process of urbanization. In
the early and middle stages of urbanization, the secondary industry plays a strong role in
promoting the urbanization rate. With the development, the role of the secondary industry
is gradually weakened, and the tertiary industry occupies a dominant position. Specifically:
(a) Taking population urbanization as the threshold variable, when it is at the first threshold
(pop_urban ≤ 38.56%), the Tos regression coefficient is −0.02, indicating that the urban-
ization rate will not increase with the increase of Tos, and the indicator Tos has a negative
correlation with the secondary industry and a positive correlation with the tertiary industry,
so the secondary industry has an obvious effect on the urbanization rate; when it is in the
second threshold range (38.56% < pop_urabn ≤ 58.73%), the Tos regression coefficient is
2.55 (p < 0.01), indicating that the comprehensive urbanization rate will increase with the
increase of Tos, and the promotion effect of the tertiary industry will gradually exceed
that of the secondary industry; when crossing the second threshold (58.73% ≤ pop_urban),
Tos is still positively correlated with the comprehensive urbanization rate (the correlation
coefficient is 6.49), and the tertiary industry promotes the urbanization rate more obviously.
(b) Taking land urbanization as the threshold variable, when it is in the first threshold
interval (land_urban ≤ 0.18%) and the second threshold interval (0.18% < land_urabn
≤ 38.14%), the Tos regression coefficients are −0.45 (p < 0.01) and −1.24 (p < 0.01) re-
spectively, indicating that there is an obvious negative correlation between Tos and the
comprehensive urbanization rate, and the development of the secondary industry will
greatly promote the improvement of the comprehensive urbanization rate; when cross-
ing the second threshold (38.14% ≤ land_urban), the regression coefficient of Tos is
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0.84 (p < 0.01). The comprehensive urbanization rate will increase with the increase of
Tos, and the tertiary industry will begin to play a stronger role in promoting it. (c) Taking
economic urbanization as the threshold variable, when it is at the first threshold (eco_urban
≤ 32.27%), the Tos regression coefficient is −0.21 (p < 0.01), indicating that the secondary
industry can better promote the improvement of the comprehensive urbanization rate;
when it is located in the second threshold range (32.27% < eco_urban ≤ 59.06%) and crosses
the second threshold (59.06% ≤ eco_urban), the Tos regression coefficients are 0.74 (p < 0.01)
and 4.75 (p < 0.01) respectively, indicating that the role of the tertiary industry in promoting
the urbanization rate has exceeded that of the secondary industry.

Generally, when the urbanization rate is lower than 38%, the role of the secondary
industry in promoting the urbanization rate is very obvious, and the role of the tertiary
industry is weak; when the urbanization rate exceeds 38%, the role of the tertiary indus-
try is gradually enhanced, while the role of the secondary industry is gradually weak-
ened; when the urbanization rate exceeds 59%, the role of the tertiary industry in pro-
moting the urbanization rate is more obvious, and its role is far more than that of the
secondary industry.

5. Discussion

This study comprehensively reveals the temporal and spatial dynamic pattern of
county urbanization in China from 1995 to 2015. We answered four questions: “How
to measure the level of urbanization?”; “How high is the level of county urbanization
in China?”; “What are the characteristics of geographical imbalance?”; and “What is the
driving mechanism of urbanization?”.

5.1. The Rationality of Index Construction

The comprehensive urbanization index we constructed can more scientifically measure
the real urbanization development level. On the one hand, closely adhering to the defini-
tion of urbanization, we combined multi-dimensional (population, land, and economy)
and multi-source data (population statistics, land use, and night light), which solved the
limitations of single indicators [22,79] and the traditional attribute of comprehensive indi-
cators [80] in the existing literature, and finally provided a new urbanization measurement
index. On the other hand, in order to test the objectivity of comprehensive urbanization
constructed, the indexes of permanent resident population urbanization [81,82] commonly
used in scholar and government statistics are selected and compared with comprehensive
urbanization to reflect the differences between the two measurement methods.

In 2000, the average permanent resident urbanization rate of China’s 2851 counties was
37.80 %. In 2010, it was 46.65%, with an average annual growth rate of 4.03%. According
to the comprehensive urbanization rate measurement, the average urbanization rate of
2851 counties was only 33.54% in 2000, 41.39% in 2010, and the average annual growth rate
was 2.80%. As can be seen from Figure 3, the urbanization rate of permanent residents
was higher than the comprehensive urbanization rate in both 2000 and 2010. At the same
time, in the permanent population statistics, the northwest border area belonged to the
area with a high urbanization rate. However, in the comprehensive urbanization based on
the combination of population, land and economy, the urbanization rate of the northwest
border region declined to a certain extent, and the “false high urbanization error” in
the northwest border region was reduced. In addition, the comprehensive urbanization
measurement method highlighted the core status of the Beijing-Tianjin-Hebei region, the
Yangtze River Delta, and the Pearl River Delta.

In order to make a more detailed distinction between the two types of urbanization,
the urbanization rate is divided into five intervals, and the number of counties in each
interval is counted (Figure 4). In 2000, the number of counties with a resident population
urbanization rate of 15–30% was 884, accounting for 31% of the number of counties in
China; the number of counties with a comprehensive urbanization rate of 15–30% was
1246, accounting for 44% of the number of countries in China. The number of counties
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in the urbanization rate of 70–100% also had a large difference between the two calibers.
Among them, the number of counties in the ordinary population statistics caliber and the
comprehensive caliber were respectively 573 and 306. This showed that the urbanization
rate of permanent residents in 2000 was higher than the comprehensive urbanization
rate. In 2010, the number of counties with a resident population urbanization and a
comprehensive urbanization rate of 30–50% were respectively 1072 (accounting for 37.6%)
and 1016 (accounting for 35.6%). However, the number of comprehensive urbanization
counties with an urbanization rate in the range of 50–100% was 750, which was less than
936 counties with a permanent population. It further indicated that the urbanization rate
of a permanent resident population overestimated the urbanization process at the county
level in China.

 

Figure 3. Comparison between permanent resident population urbanization and comprehensive
urbanization.

Figure 4. Number of counties with permanent population urbanization and comprehensive urban-
ization in different urbanization rates.
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The measurement results of the two methods are similar. However, the comparison
results show the urbanization level of the permanent population may overestimate China’s
urbanization process, which is also consistent with existing research results [14,15,27].

5.2. The High-Quality Development of Urbanization

First, narrowing regional differences is the primary task for achieving high-quality
urbanization development. Our study found that there are obvious regional differences in
population, economy, land, and comprehensive urbanization [83,84]. Although China has
adopted regional strategies (such as the western development strategy and rising strategy
in the central region), the regional gap is still large. On the basis of the difference between
east and west, the widening of the difference between north and south has become a new
regional development problem in China [85,86]. In the future, in-depth analysis of the
formation mechanism of regional differences is an important research direction.

Second, “people” urbanization should be the core of high-quality urbanization, but it is
still underestimated. By measuring the rate of population, economy, and land urbanization,
respectively, it is found that the rate of population urbanization is lower than that of
economic urbanization and land urbanization both in terms of development level and
speed. Overemphasis on economic and land development and neglect of population
urbanization will easily cause great pressure on the environment [87] and even widen the
gap between the rich and the poor [17,66]. In the future, the government should continue
to firmly promote the “three hundred million” policy, promote the settlement of 100 million
agricultural transfer population in cities and towns, improve the living conditions of
100 million people, and guide 100 million people to urbanize nearby in the central and
western regions.

Third, the optimization of industrial structure is one of the necessary ways to realize
high-quality urbanization. The government promoted the development of early urban-
ization [88,89]. With economic development and marketization, the government’s role in
promoting urbanization has gradually weakened, and county economic development and
industrial structure have become important factors for the improvement of urbanization.
At the same time, there is an obvious nonlinear relationship between the impact of Tos on
urbanization, and 38% and 59% can be used as important nodes of urbanization [90]. Each
county at different stages of development should adjust its industrial structure reasonably
according to local conditions. Therefore, in the early and middle stages of urbanization, we
should vigorously develop the secondary industry; with the increase in urbanization rate,
counties should gradually pay attention to the development of the tertiary industry [91,92].

5.3. Application of Night Light Data

Due to the close relationship between lighting data and economic development [69,70],
light data provided a valuable data source for elucidating the dynamics of China’s urban-
ization [71–73,93]. At the same time, due to the attributes of a long time scale and high
spatial resolution, light data can not only estimate the urbanization development at the
national, regional, and city scales but also play a role at the county and grid scales. For
example, Amaral [94] used DMSP/OLS data to estimate the population of the Amazon
region and realized the population estimation in the areas lacking statistical data, which
showed that light data has strong application at the regional scale; Yu [95] used light data to
build a 500-m population grid, proving that light data can also be applied on a microscopic
scale. Through the literature review, the research on using light to represent urbanization is
mainly divided into two aspects. On the one hand, based on the area attribute of light data,
by distinguishing between bright cities and dark villages, the information on the urban
boundary is extracted [96], and finally, the study of urbanization is realized. For example,
Yang [97] proposed a method to measure land urbanization level based on DMSP/OLS
nighttime light data of long time series and takes the Bohai Rim region as an example
to study the spatio-temporal measurement of land urbanization level from 1992 to 2010.
Liu [98] explored the urbanization process of Shanxi, Shaanxi, and Mongolia by using the
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area attribute of lighting. On the other hand, the intensity attribute of light data is used to
reflect the urbanization process. For example, Gao [76] constructed urbanization indicators
through lighting brightness attributes and analyzed the dynamics of urbanization levels in
China from 1992 to 2012. However, due to the simple information contained in light data,
it cannot fully reflect the information of the research object, and its advantages cannot be
fully utilized, but multi-source data fusion can solve these problems [99]. Therefore, we
use multi-source data fusion for research, which not only makes full use of the advantages
of lighting data but also can more comprehensively and scientifically reflect the process of
urbanization in China.

Although light data has advantages in reflecting urbanization development, the short-
comings of the data weaken the accuracy of the nighttime light data in quantitative analysis.
The first problem is the time scale of the data. Although DMSP/OLS provided a long time
data set, it was only updated to 2013; NPP/VIIRS data are dated, but the earliest data date
is only 2012, which makes it difficult to carry out research on a long time scale. The second
problem is the spatial scale of data. The grid size of DMSP/OLS data is about 1 km, while
the grid size of NPP/OLS data is about 500 m, so the fusion of the two kinds of data is
limited to some extent. At the same time, DMSP/OLS with a 1 km grid size will have large
errors when studying small scales. The third problem is the brightness value of the light.
Due to sensor problems, the maximum value of DMSP/OLS data is only 63, which will
lead to large errors in estimating economic and urbanization development.

In the future, solving the problems of lighting data is a research focus. The first is
the fusion of DMSP/OLS data and NPP/VIIRS data. In order to construct light data at a
longer time scale, it is of great significance to combine the two data sources scientifically
and effectively in future research on urbanization. The second is light data correction. A
good solution to the data quality problem (the value range of DMSP/OLS data) can reduce
the error in the application research. The third is the fusion of multi-source data. The
nighttime light data information is relatively simple. Compared with single lighting data,
the fused data can give full play to the respective advantages of multi-source data (such as
statistical data and lighting data, vector data and lighting data) to expand the application
scenarios of data.

5.4. Limitations and Future Work

This study still had some limitations. Firstly, due to the limitation of data availability,
the time period for this study was from 1995 to 2015, and the development of county
urbanization in China after 2015 was not measured and analyzed. Secondly, in the process
of using social statistics, night light, and land use remote sensing data to construct compre-
hensive urbanization indicators at the county level in China, the weights of all three are
set at 1/3, which may cause errors in some regions. Thirdly, because of the difficulty of
obtaining population data, this paper uses registered residence populations to construct a
comprehensive urbanization rate. However, the number of floating populations in China
has increased over the past years, and the use of registered residence populations may
cause some errors. Further, in addition to the transformation of population, land, and
economy, the transformation of rural culture and urban culture is also an important symbol
of the process of urbanization. Limited by the data, we do not measure the transformation
of cultural elements. Finally, since DMSP lighting data is only updated to 2013, we used
2013 data instead of 2015, which would also cause some errors. In future research, the
extension of the time scale, the acquisition of population data and the scientific determi-
nation of weight are the key points. For the measurement of urbanization, incorporating
more elements such as culture and society into the model will more comprehensively and
truly reflect the process of urbanization. For lighting data, it is also one of the key points to
integrate DMSP data and NPP data more scientifically to form a set of longer time data sets
and apply it to the research of social and economic activities.
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6. Conclusions

In order to measure and characterize the county urbanization in China from 1995 to
2015 in detail, this paper constructs a comprehensive urbanization index by fusing the
demographic statistics, nighttime lights data, and land use remote sensing data. Moreover,
we use the regression model to analyze the factors affecting the county urbanization level.
Finally, the following conclusions could be drawn:

(a) In 1995, the average urbanization rate of 2851 counties of the registered population
urbanization rate, economic urbanization rate, and land urbanization rate was 27.49%,
31.22%, and 34.46% respectively, and in 2015, they reached 38.62%, 46.68%, and 50.37%,
respectively. The urbanization of registered populations presented a “herring-shaped”
pattern consisting of the high-value areas on the northern border and the high-value areas
in the eastern coastal areas, and it would further strengthen as time went on; economic
urbanization presented a pattern of “high in the east and low in the west”; and land
urbanization presented a pattern of “high in the south and low in the north”, which
was more obvious than the differentiation between the east and the west. In terms of
development level, population urbanization rate was lower than economic urbanization
rate, while economic urbanization rate was lower than land urbanization rate. In terms of
development speed, the economic urbanization rate was faster than the land urbanization
rate, and the land urbanization rate was faster than the population urbanization rate.

(b) By integrating the three elements of population, economy, and land, the compre-
hensive urbanization rate was constructed and calculated. The average comprehensive
urbanization rate of 2851 counties in China was 31.06% in 1995 and 45.23% in 2015. The
spatial and temporal dynamics of comprehensive urbanization level at the county level in
China were significantly different, and the overall distribution still followed the “Hu Line”.
The comprehensive urbanization rate east of the line was higher, while the comprehensive
urbanization rate west of the line was lower. However, with the passage of time, the
comprehensive urbanization rate in western inland areas gradually increased. Counties
with high urbanization rates were mainly concentrated in the eastern coastal areas, forming
a high-value belt along the eastern coastal areas. Beijing, Shanghai, and Guangzhou were
the top three.

(c) The urbanization rate of permanent resident populations overestimates the urban-
ization process at the county level in China. In 2000, the average permanent urbanization
rate of 2851 counties was 37.80%, and the comprehensive urbanization rate was 33.54%. In
2010, the two types of urbanization rates were 46.65% and 41.39%, respectively.

(d) Large population size, reasonable industrial structure, and strong government
capacity can play a positive role in promoting urbanization. In the industrial structure, the
primary industry will limit the development of urbanization, but the promotion effect of
secondary and tertiary industries on urbanization is different in different counties

(e) There is an obvious nonlinear relationship between urbanization rate and Tos.
When the urbanization rate is lower than 38%, the role of the secondary industry in
promoting the urbanization rate is obvious; when the urbanization rate exceeds 38%, the
role of the tertiary industry is gradually enhanced, and the secondary industry is gradually
weakened; when the urbanization rate exceeds 59%, the role of the tertiary industry is more
obvious and far more than that of the secondary industry.

Through the research of this paper, we found it was feasible to use the multi-source
data fusion of demographic statistics, night lights, and land use remote sensing to con-
struct a comprehensive urbanization index, as well as meaningful to comprehensively and
truly reflect China’s urbanization at the county scale and guide the future development
of urbanization.
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Abstract: There is a great need to study the decadal long-term time series of urban night-light changes
since the launch of Suomi NPP, NOAA-20, to future JPSS-2, 3, and 4 in the next decades. The recently
recalibrated and reprocessed Suomi NPP VIIRS/DNB dataset overcomes a number of limitations in
the operational data stream for time series studies. However, new methodologies are desirable to
explore the large volume of historical data to reveal long-term socio-economic and environmental
changes. In this study, we introduce a novel algorithm using convolutional neural network similarity
index (CNN/SI) to rapidly and automatically identify cloud-free observations for selected cities. The
derived decadal clear sky mean radiance time series allows us to study the urban night light changes
over a long period of time. Our results show that the radiometric changes for some metropolitan
areas changed on the order of 29% in the past decade, while others had no appreciable change.
The strong seasonal variation in the mean radiance appears to be highly correlated with seasonal
aerosol optical thickness. This study will facilitate the use of recalibrated/reprocessed data, and
improve our understanding of urban night light changes due to geophysical, climatological, and
socio-economic factors.

Keywords: Suomi NPP VIIRS; recalibrated/reprocessed historical radiance data; CNN/SI; urban
night light long-term time series; urban growth; aerosols

1. Introduction

The launch of the Suomi NPP satellite with the Visible Infrared Imaging Radiometer
Suite (VIIRS) has inspired many novel studies in both geophysical and social economic re-
search. In particular, the VIIRS Day/Night Band (DNB) enabled unprecedented capabilities
in low light imaging at night, with the ability to detect faint lights emitted from the atmo-
sphere or the so-called air glows at a radiance level on the order of 1.0 × 10−10 W/(cm2-sr).
Recent studies also suggest that it might be able to detect bio-luminescence if the instrument
is well calibrated [1]. This is in addition to the well-publicized fishing boat detection [2],
light outages [3], and night fires which are at higher radiance levels. It can also be used to
detect the internal waves and possibly other oceanic surface features under sun and moon
glint [4]. For social economic applications, numerous published results have correlated eco-
nomic activities with night lights. Ten years of valuable global observations of night light
from Suomi NPP VIIRS/DNB have been accumulated at the NOAA CLASS archive. Recent
efforts at NOAA Center for Satellite Applications and Research (STAR) have recalibrated
and re-processed the Suomi NPP sensor data records (or level 1b) which is made available
currently through the NOAA cooperative institute at University of Maryland, and will be
made available on the NOAA CLASS later [5]. In addition, NOAA-20 VIIRS was launched
in November 2017 and has been operating successfully for 4+ years, and it will be followed
by JPSS-2, 3, and 4 in the next decades, all equipped with VIIRS. Therefore, the night light
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observation data will grow significantly and greater opportunities will exist to use the night
light data for geophysical, environmental, climatological, and social economic studies.

Despite the tremendous progress, the use of VIIRS DNB data is still somewhat limited
for scientific research and great potential exists. There are several known challenges. First,
most social economic studies use the NOAA NGDC-produced monthly composite clear
sky average radiances. While this dataset works well for correlation studies with social
economic variables where there is no stringent need for stability in the time series, it
has drawbacks when used for time series analysis, because the NGDC data was created
based on operationally produced VIIRS SDRs at NOAA operations which had a number of
inconsistencies, and that makes it difficult for time series studies where stable calibration is
a prerequisite. In addition, extracting time series data for a small urban area from a large
global dataset can be challenging. Second, for studies using the VIIRS SDR data, obtaining
clear sky images is a major challenge. This is because the traditional method relies on
using the cloud masks generated from other channels of VIIRS, which is a downstream
product produced separately in the data production. Applying the VIIRS cloud mask to
DNB requires some skills in spatial matching especially at high scan angles since the spatial
resolution difference between DNB and other bands grows with scan angle. Unfortunately,
a large percentage of the satellite observations always have cloud coverage. As a result,
time series analysis using the VIIRS DNB data becomes difficult. Another challenge for
data access is that NOAA NGDC has ceased the production of the monthly mean VIIRS
night light data as of 15 October 2019, and the follow-on effort has been transferred to the
academic sector at the Colorado School of Mines (https://ngdc.noaa.gov/eog/index.html,
accessed on 21 June 2022).

In this study, we present an Artificial Intelligence CNN/SI method for separating
clear sky from cloudy DNB images automatically so that a time series can be generated for
analyzing the long-term urban night light changes, and we demonstrate its use for selected
metropolitan areas. The recalibrated/reprocessed Suomi NPP VIIRS/DNB data used in
this study has much improved data quality, stability, and accuracy, and allows us to detect
long term urban night light changes. It is known that urban night lights are affected by a
number of other factors, such as moon light which varies greatly for a given urban area,
clouds and aerosols which may attenuate and/or diffuse urban lights. In the following
sections, we present the methodology and data, followed by applications for selected cities.
The time series for these cities are analyzed with concluding remarks and recommended
future studies.

2. Methodology and Data

The Suomi NPP and NOAA-20 satellites have an equator crossing time of ~1:30 a.m.
descending local time, or near mid-night. There are advantages and disadvantages for
this observation time. At midnight, the night lights are more stable compared to early
evening when there would still be varying light changes due to daily human activities.
Therefore, the observations from the VIIRS/DNB would be mainly for late night lights
which are mostly lit overnight, including street lights. On the flip side, the late-night light
does not capture the range of human activities and most likely would underestimate the
light intensity over the areas of study because of the observation time at mid-night.

This study addresses two major issues in time series analysis using VIIRS DNB datasets.
The first is long-term calibration stability, achieved by using recalibrated VIIRS/DNB SDR,
and the second is the development of a method to perform rapid identification of clear
sky images using the AI CNN/SI approach for night time images. The traditional cloud
mask-based approach is rather complex since it requires a separate data set (cloud mask
product), and the pixel by pixel matching is not straightforward since VIIRS DNB has a near
constant spatial resolution across scan while the cloud mask is based on radiometric band
observations (also known as VIIRS M-bands) which have a growing pixel size towards
the high scan angles from nadir, from 750 m to 1.6 km to the edge of the scan [6]. In
addition, the cloud mask is a separate product with a latency in production which means
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one would have to find the matching data files from the archive. There are also issues
related to different versions of the cloud masks with different algorithms that make the
task more complex.

To address these challenges, we present a novel methodology using artificial intelli-
gence. In our study, we experimented with two separate AI based approaches. The first
approach is an atypical method, in which image similarity comparisons are performed
between a known clear sky image of a given city and all candidate images, which produces
a similarity index (SI) for each pair of images based on CNN/SI. The clear sky images
are found based on the similarity index in the subsequent classification, much like face
matching based on photographs from a database of photographs, or genetic identification
based on DNAs.

The second approach uses the typical procedure of training the CNN model to learn
cloudy vs. clear night light images of selected cities. The model is then validated and used
to predict whether a given night light image is clear or cloudy within a certain accuracy.
Based on experiments comparing the two approaches, we found that the second approach
has greater potential because once it is well trained, it is able to find clear sky images of
any city; however, the current results show that the prediction accuracy is not ideal (<64%)
for cloudy images. In contrast, the CNN/SI image similarity approach is more accurate
although it has to be done for each city separately and with georeferencing. As a result, in
this study, the CNN/SI approach is used.

The AI CNN/SI model used in this study is the popular Tensorflow/Keras with
Python. The MobileNet V2 CNN [7] is used for image identification and similarity analysis
between VIIRS DNB images. Images with high SI similarity are clustered and grouped
together. A simpler explanation of this process is that a clear sky night light image of a
city has a distinct spatial pattern, while cloudy images have a different, blurred pattern;
therefore, the similarity index (SI) between the clear sky and cloudy images are lower than
those between clear sky images. In addition, since cloud patterns are usually random,
cloudy night light images typically do not have high similarities to other night light
observations, either clear sky or cloudy. However, exceptions do exist, in which two
cloudy night light images could be very similar. Therefore, in this study we introduce the
known “seed” clear sky night light image as a reference in comparisons based on similarity
index (SI). Similarly, lunar-contaminated night light images would have a different pattern
than clear sky images acquired during the new moon, although we found that clear sky
images during the new moon may have higher similarities to those during full or partial
moon. Therefore, another criterion is used to screen out lunar-illuminated images, which is
based on the minimum radiance within the study area (typically over large water bodies).
If the minimum radiance is lower than a threshold value, then the image is considered
unaffected by the lunar light. We have experimented with a threshold value between 0.5
and 1.0 nW/(cm2-sr), and choose to use 0.6 nW/(cm2-sr), which is the same value used by
Elvidge [8] as the DNB noise floor in their study.

Figure 1 provides an overview of the method and procedure used in this study. First,
a time series of near nadir VIIRS/DNB night light images over a particular city is collected
from the reprocessed database. In our case, the reprocessed VIIRS SDR (or level 1b) is
used, as discussed earlier. Second, the CNN/SI model is applied to the areas of interest
for the city selected to generate a unique identification called “feature vector” for each
image, with multiple dimensions. Third, based on the unique identification of the images,
a similarity index (SI) is computed between every pair of images in this multi-dimensional
space. Fourth, our algorithm then searches for images with high similarity to the known
clear sky “seed” image based on similarity scores recursively. Finally, the mean radiances
for the selected clear sky images are computed for the area of interest, which becomes the
time series for analysis of urban night light changes.
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Figure 1. Algorithm Flowchart for Urban Night Light Long-Term Time Series Analysis (blue = developed
by the authors; orange = adopted and integrated).

While the procedure and methodology are relatively straightforward, as presented
in Figure 1, the key component of CNN/SI requires further explanation. In this study, we
leverage several state-of-the-art key components that have become available in the field of
artificial intelligence in the last few years, which includes Tensorflow, Keras, MobileNet V2,
image feature vector, and ANNOY as discussed below:

Tensorflow is an end-to-end open-source platform for machine learning developed by
Google. It has tools, libraries, and community resources that let developers easily build
and deploy machine learning applications. Keras is a deep learning API written in Python,
running on top of the machine learning platform Tensorflow. TensorFlow Hub provides
many reusable machine learning models online. It makes transfer learning very easy, as it
provides pre-trained models for different problems and tasks, such as image classification
and segmentation. In this study, it is used as the basis and interface to the MobileNet V2 as
discussed later.

A key concept in the AI/CNN/SI approach used in this study is the image feature
vector which is a unique list of numbers or identifiers that represents a particular image,
used for image similarity calculations or image classification tasks. An analogy of image
feature vector or signature to an image would be the DNA to a human. It more closely
resembles DNA than a signature, because each feature vector has categorical or inheritance
information embedded. Low-level image features are minor details of the image, such as
lines, edges, corners, or dots, while high-level features are built on top of low-level features
to detect objects and larger shapes in the image. Both types of features can be detected
using CNN. Some convolutional layers can capture low-level features, while the later layers
learn to recognize common shapes and objects.

In this study, the CNN MobileNet V2 which is available on the Tensorflow Hub is
used to extract features of VIIRS/DNB night light images. In searching for the CNN model
among a number of candidates, we found that this model works well for VIIRS/DNB
images with a general-purpose laptop, instead of relying on high power computers as
many AI applications require. The spatial resolution of a VIIRS DNB image is 750 × 750 m2,
compared to the area of a typical large city <100 × 100 km2. Therefore, a large city can
be covered by a VIIRS DNB image with approximately 100 × 100 pixels. This works well
with MobileNet V2 which allows array size up to 224 × 244. In this study, MobileNet V2 is
essential in generating the image feature vector for each of the VIIRS/DNB images.

MobileNet V2 is widely used for computer vision applications in many real-world
applications, including object detection, fine-grained classifications, face attributes, and
localization. It is a deep neural network architecture suitable for mobile and resource
constrained applications. Therefore, we envision that the methodology presented here can
be implemented in cell phones or PDA devices in the future to tell whether a city is clear or
cloudy in near real time. MobileNet V2 is 16 blocks (96 layers) deep. It features depth-wise
separable convolution with kernel size of 3 × 3, with 3.4 million parameters (Figure 2).
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Benchmark testing shows that its accuracy is comparable to other state-of-the-art CNN
models such as VGG 16.

Figure 2. MobileNet V2 Architecture and Workflow.

Another key component in this AI approach is the ANNOY (Approximate Nearest
Neighbor Oh Yeah), which is an open-source library for approximating nearest neighbor
based on the image feature vector and similarity indices generated in the previous step.
ANNOY can quickly compute the similarity index in the multidimensional space between
a given pair of images based on their image feature vectors.

The following are detailed procedures for our AI/CNN/SI-based algorithm:

1. The VIIRS/DNB night light images for a city of interest are obtained from the re-
processed VIIRS/DNB dataset [5]. Only the observations near nadir for the city of
interest are included in this study to avoid scan angle-dependent observation issues.
Typically, there are two nadir passes near the city, one on the left side of the city center,
and one on the right side. Given the orbital repeating cycle of 16 days, there are
two qualified observations for each cycle within the selected area, which amounts
to ~45 images per year. For the time period from 2012 to 2020, we typically obtained
about ~365–380 images, which are re-projected or georeferenced onto a common grid
with a constant 750 × 750 m2 resolution for the given city with nearest neighbor resam-
pling of the radiance pixels (without interpolation to preserve the radiance values).
The reprojection makes it easier to perform quantitative radiometric comparisons
between images and further facilitates the AI/CNN/SI similarity-based image feature
vector comparisons.

2. The image feature vectors are generated for each image using Tensor-flow/Keras/
MobileNet V2 so that each image has a unique feature vector ID based on the charac-
teristics or “Image DNA”. Then a cluster analysis is performed based on the similarity
index (SI) of the feature vector.

3. The image pairs are grouped together based on similarity index (SI). A similarity
of 1.0 means the two images are identical. All other image pairs have similarities
less than 1.0, typically between 0.6 and 0.98. We found that images with the highest
similarities are typically clear sky images near new moon days. This is because clear
sky night light images for a given city have a fairly fixed pattern, while cloudy and
lunar illuminated ones typically vary (Figure 3). Therefore, using the similarity index
can effectively filter out the images contaminated by cloud and lunar illumination.
However, we also found that there are cases where two cloudy images may have high
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similarities in cases where the cloud is spatially uniform over the city, or the cloud
optical depth is large enough to obscure the urban night lights significantly. Therefore,
we introduced a step to identify a known clear sky image as the “seed” image for the
clustering so that images with high similarities to the “seed” image are identified as
clear sky images. The algorithm searches for images with similarity to those with
clear sky recursively with a given threshold value of similarity.

4. To validate the results from the AI based algorithm, sample data are taken to compare
with the traditional cloud-mask based method, which relies on a separate product
generated using cloud-mask algorithms. The errors of commission vs. omission
are estimated.

5. The next step is to compute the total radiance for the city of interest for the selected
images in the time series. Then the total radiance change over time can be plotted
as a time series, and statistical analysis using the Python and R statistical package
is performed.

6. As an option, a movie loop of the selected images can be made to confirm the clear
sky images selected in the study visually.

Figure 3. Clear vs. cloudy VIIRS/DNB night light image samples over Los Angeles show dissimilar
patterns (unit: km).

The metropolitan areas used for this study to demonstrate our methodology included
Los Angeles, Beijing, and Delhi (Figure 4). These cities are chosen based on a combination
of cloud frequency, urban growth, and climate types. We believe that the methodology is
applicable to all major metropolitan areas with a size greater than 50 × 50 km2 in area, given
the spatial resolution of VIIRS DNB of 750 × 750 m2. The metropolitan areas of interest
(AOI) in this study are somewhat arbitrary but selected based on several considerations.
(1) The exact same area (based on latitude/longitude coordinates) is used for long term time
series analysis by projecting the VIIRS DNB pixels onto the same fixed grid with cell size of
750 × 750 m2 as discussed previously (Figure 4). (2) The AOI covers the downtown areas
as well as adjacent suburbs where bright lights are observed from the VIIRS/DNB. (3) The
AOI typically do not coincide with the administrative or political boundaries (which might
change over time), compared to the fixed grid, which is based on latitude/longitude; also,
the aerosols and night light distributions are not likely to follow administrative/political
boundaries. (4) AOI should include dark areas such as water bodies or dark forest areas in
order to exclude lunar-illuminated pixels using the minimum radiance threshold algorithm.
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Figure 4. Sample VIIRS/DNB nightlight images (color indicates light intensity, unit: nW/cm−2-sr).

3. Results and Discussion

In this section, we first evaluate the accuracy of the AI/CNN/SI method for identifying
clear sky VIIRS DNB night time images in terms of error of commission vs. omission. Then
the clear sky mean radiance time series from VIIRS DNB over selected cities are analyzed in
relation to social-economic and environmental factors. Finally, the suitability of VIIRS DNB
for urban night time aerosol monitoring, based on a combination of its spectral response
and the active light spectral characteristics, is analyzed.

3.1. Assessing the Accuracy of the Algorithm Separating Clear from Cloudy Images

To assess the accuracy in separating clear sky from cloudy images, we performed
two tests on the Los Angeles dataset. The first is visual inspection of the movie loops and
images for the processed images. By comparing the results with the original images, we
found that most images are identified correctly, although some images identified as clear
may have scattered clouds in the peripheral areas of the city (or typically suburbs).

The second is a quantitative test where we took random samples of the images from
the time series and obtained their corresponding VIIRS cloud masks. The cloud masks
coded each pixel of the image into four categories: 0 = confidently clear; 1 = probably
clear; 2 = probably cloudy; 3 = confidently cloudy. It is known that a given image may
contain a mixture of these four categories, and it is difficult to obtain totally clear images
over a study region because there are always some clouds in any part of the world at a
given time. As a result, we developed a mean cloudiness index (MCI) which takes the
mean value of the cloud mask code of the pixels for the area of study. For example, a
MCI of <1.05 is considered clear, while MCI > 1.05 is considered cloudy in this study. We
evaluate the results based on the error of commission vs. error of omission. Here, errors of
commission are those cloudy images (with MCI > 1.05) that are mistakenly identified as
clear sky images. In contract, error of omission are those clear sky images (with MCI < 1.05)
that are mistakenly identified as cloudy images. Since our objective is to use clear sky VIIRS
DNB images, the error of commission is more significant than the error of omission. In
other words, skipping some clear sky images in the time series is not as critical as including
some cloudy images.

Our results show that among the 65 random samples from the 380 images (17%), the
error of commission is ~3.1%, in which two cases were identified as clear but they were
probably cloudy according to the cloud mask test (with MCI scores of 1.4 and 1.7). Put
another way, 96.9% of the selected VIIRS DNB images are truly clear sky. We found that
cloud optical thickness may play a role here. Night lights can penetrate optically thin
clouds, so the image may appear clear but the cloud mask may report it as cloudy. In
comparison, 14 were labeled as cloudy but were actually clear sky (error of omission 21.5%).
Overall, 32 (or 75.4%) are fully identified correctly as clear. However, this is assuming that
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the cloud mask represents the truth, which may not necessarily be the case, especially for
urban areas, due to limitations of the cloud mask algorithm [9].

Further inspection of the error of omission cases suggest that these were affected by
two factors: one is the reference seed image used for the similarity analysis. In this test,
images on days 21 February 2012, (#7) and 15 April 2020 (#375) were used as seed images,
and were both identified as clear in both cloud mask and visual inspection tests. It is
likely that if more seed images are used in the analysis, the accuracy rate could further
increase, although increasing the number of seed images would reduce the efficiency of the
AI method. The other factor is the cutoff threshold for the similarity scores, for which there
is a trade-off between number of samples selected vs. the degree of similarity. In our study,
the SI index ranged from 0.5 to 0.99 (on a scale of 0–1.0) for all samples, and we narrowed
it down to the 0.90 to 0.95 range. We found that for SI >0.95 (only limit to highly similar
data), there will be too few samples remaining, while SI <0.90 (which includes more less
similar data), the time series becomes noisy. The SI acts as an AI tuning parameter in this
study and as a result, 0.90 was used in the final analysis. Nevertheless, the result ensured
that the vast majority of the images (96.9%) were correctly identified as clear sky and for
the purpose of clear sky VIIRS DNB images time series in this study, we believe that the
AI/CNN/SI method is successful.

In the early phases of testing the algorithm presented in Section 2, we found that
there were a few pairs of images with similarity of 1.0 which was unexpected. After
visual inspection of those images, we were positively surprised that they were either
duplicated images or blank images due to human errors in the data collection process. This
is encouraging because this method could be used for data quality assurance of satellite
images. It is also worth noting that the quantitative accuracy evaluation using cloud masks
took significant effort and some of the cloud masks had to be regenerated because they were
not all available in the archive. This is also the same reason that a more rapid method of
clear sky image identification algorithm is much more desirable, as developed in this study.

3.2. Long-Term Time Series Analysis and Potential for Aerosol Monitoring

Using the AI-based clear sky image identification method presented in the previous
section, we found that the data processing is relatively fast as it takes approximately five
minutes to process each city with about 350 to 400 images for the time series from 2012 to
2021 (about 2 GB in storage space for each city). The clear sky images are identified, and
a time series of the mean radiances for those are plotted and compared for all images in
the time series for the city. Figure 5 compares the mean radiances between the identified
clear sky vs. all images for Los Angeles. It shows that the time series, without applying
the AI algorithm, would produce results with data points so scattered that an erroneous
downward trend in the time series would result. However, after applying the AI algorithm,
the identified clear sky image radiances form a very distinct pattern in the time series, and
a slight positive trend emerges.

Further examination of the clear sky time series in Figure 5 suggests two interesting
patterns: the first pattern is that there appears to be an annual oscillation (hormonic fit
curve in Figure 5) with a high mean radiance (22 nW/(m2-sr)) in the winter months, and a
low (17 nW/(m2-sr)) in the summer months or a variability of approximately 26% which
has far exceeded the calibration uncertainties documented in previous studies [5,10,11].
Since all observations are near nadir and scan angles are nearly identical with 16 days
orbital repeating cycles, the scan angle effect [12,13] can also be ruled out. This pattern
is especially clear from 2017 to 2020 but also identifiable for other years. An analysis of
the climatology in Los Angeles and other possible causes suggest that this is likely due
to seasonal changes in the aerosol optical depth (AOD). In the winter months the AOD is
lower than in the summer months. We have also investigated other possible factors, such
as residual moon lights, seasonal changes in night-time human activities, daylight saving
time changes, and orbital variations, but none of them can explain this seasonal pattern.
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Figure 5. Suomi NPP VIIRS/DNB Observed Urban Mean Radiance Time Series (9 years from 2012
to 2020) before (blue cross with linear fit) and after (red cross with linear fit) applying AI based
algorithm for Los Angeles (lunar-contaminated images are also screened out). Green curve shows
hormonic fit to the time series. Each data point in the plot is the mean radiance value within the AOI
calculated from the VIIRS/DNB image for that day.

Previous aerosol studies have shown similar seasonal patterns in AOD for selected
areas and cities. In study [14] (Figure 3), when comparing MODIS and VIIRS daytime
retrieved aerosols over land, it was shown that a strong seasonal change in the AOD at
550 nm exists and is in very good agreement between MODIS Terra, Aqua, and Suomi
NPP VIIRS retrievals. The peak values in AOD appear to be in the summer months
around June, while the trough occurs in later fall to early winter months, although the
exact time varied from year to year between 2012 to 2019. Similarly, in a study comparing
aerosol retrievals from CALIPSO and MODIS, study [15] (Figure 5) showed strong seasonal
variations in AOD over several regions including S.E. Asia, Sahara, N.W. China, and
S. America. Although the seasonal cycles are not synchronized among all the areas, there
appears to be a pattern with a low AOD in the winter months and high AOD in the summer
months in most of the regions presented in their study. Of course, the study period [15]
(2006–2011) does not overlap with our current study; nonetheless, this seasonal pattern
appears to be persistent, according to their study. Another study [16] (Figure 3) also shows
a seasonal pattern in AOD over north India, although it is not always lowest in the winter
months. Finally, AERONET [17] measurements in Beijing show that the peak AOD appears
in summer month (Figure 6), and the troughs occur in winter months, although the AOD
values can have a large dynamic range for any given month. It should be noted that AOD
and PM2.5 are not the same. AOD measures the total column aerosol between the ground
light source and the satellite, while PM2.5 measures the aerosol near the surface. These two
quantities have a complex relationship depending on many factors for a particular location.
It is also noted that many of the AERONET stations have data gaps for months or even
years, such as Los Angeles, and India, probably due to instrument issues.

Studies using VIIRS DNB observations to retrieve night AOD under lunar illumi-
nation have shown good agreement with those from daytime retrievals using other VIIRS
bands [18,19]. If the method presented in this study can monitor aerosols at night, it would
be a significant complement to global aerosol monitoring over urban areas because the
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VIIRS/DNB data has been available since 2012 on Suomi NPP, and has been succeeded by
NOAA-20 (J1), as well as the followon satellites on J2, J3, and J4 well into 2040 time frame.

Figure 6. In situ measurements of Aerosol Optical Depth (AOD, daily average) at the NASA
AERONET Beijing station shows high AOD in summer months and lower AOD in winter months [20].

The second pattern in Figure 5 is that for Los Angeles, there was a minor increase of
0.13%/year over time in the mean radiance in this time series during the period, based on
the trend from linear regression. The increasing trend is clearer from 2016 and onward,
which represents urban growth (population increased from 3.9 M to 4 M or 2.5% during the
period), while before 2016 this was not the case, in fact, a downward trend may be observed
from 2012 to 2016 (with a slope of −0.06/year in linear trend). However, one caveat in
interpreting this light intensity change is that there are two opposing effects affecting light
change: urbanization which would make it brighter [21]; while aerosol increase would
make it dimmer. In other words, in the VIIRS/DNB observations of nightlight intensity,
the following equation might apply:

L = f (NL, −AOD) (1)

where L is the mean radiance observed by VIIRS/DNB over the city; NL is the light
intensity of the urban night lights; AOD is the aerosol optical depth. Note here that NL and
AOD have opposite effects. A high AOD would attenuate more NL which would make
L smaller. In other words, the radiance increases if more light is radiated. However, if
there is significant increase in AOD, the VIIRS/DNB observed radiance would decrease.
Similarly, if NL is constant over time, a decrease in AOD would lead to an increase in
L. Unfortunately, these two factors cannot be easily separated, except for cities that have
known unchanging nightlight intensity in the time series.

There is also an additional factor that might impact the time series of night radiance:
the type of night lamp or light bulb used. There has been a change from the traditional HPS
(High Pressure Sodium Lamp) to LED (Light Emitting Diode) during this time period [22]
in US cities and abroad. As a result, the downward trend in VIIRS/DNB observed radiance
could also be affected by changing light sources which would affect the nightlight intensity.

The same approach presented earlier for the Los Angeles time series is extended to the
analysis for Beijing and Delhi. The nightlight time series for these three cities is presented
in Figure 7. Note that the absolute mean value differences between different cities are
affected by the area of interest selected for each city, so their absolute value differences
are not critical; therefore, this study focuses on the time series analysis of selected cities to
investigate the light intensity changes over time.

120



Remote Sens. 2022, 14, 3126

Figure 7. Urban night light mean radiance (L) time series (2012–2020) for Los Angeles [centered
at: 34.05◦N, 118.24◦W] (blue: L + 12), Delhi [28.7◦N, 77.1◦E] (yellow, L + 9), and Beijing [39.9◦N,
116.41◦E] (red, L). Each data point in the plot is the mean radiance value within the AOI calculated
from the VIIRS/DNB image for that day.

We found that all three cities have an annual variation in the light intensity. For Delhi,
the amplitude of the oscillation appears to be larger than for the other two cities, and the
peak appears more often in spring than in winter. Compared to the time series of Los
Angeles, the nightlight radiance time series of Beijing has similar seasonal oscillations,
with a high in the winter when the AOD is lower and a low in the summer months
when the AOD is higher, similar to the AERONET data shown in Figure 6. However, the
oscillation for the Beijing time series appears to become stronger (~50%) in recent years
after 2019, having been weaker pre-2016 (~25%). This could be due to the fact that in the
early years, pollution was much more severe and aerosol optical thickness was high all
year round (e.g., maximum AOD before 2015 was >4, while it was <3 in 2019), according
to AERONET measurements (https://aeronet.gsfc.nasa.gov/cgi-bin/data_display_aod_
v3?site=Beijing-CAMS&nachal=2&level=3&place_code=10, accessed on 21 June 2022), a
UN Environment report (https://wedocs.unep.org/bitstream/handle/20.500.11822/27645
/airPolCh_EN.pdf?sequence=1&isAllowed=y, accessed on 21 June 2022), as well as Beijing
AOD studies [23]. As the air became cleaner in recent years, the seasonal variation became
stronger. In other words, the aerosol optical depth and PM2.5 have changed due to the
cleaner air initiatives in recent years.

The other obvious trend is that the Beijing’s mean radiance has increased signifi-cantly
from 2012 to 2020, from ~9.97 to ~12.89 nW/(cm2-sr), an increase of 29.3% for the time
period (or ~3.66%/year). This is likely due to urban growth and urbanization. Population
statistics show that the Beijing population has grown from 17.3 M to 20.5 M (or 18%)
from 2012 to 2020 (https://worldpopulationreview.com/world-cities/beijing-population,
accessed on 21 June 2022).

A summary of the time series data used in this study is listed in Table 1. In this study
we only analyzed the near nadir observations, and the total number of images would be
significantly increased if off nadir data are also included. However, as discussed earlier,
the off-nadir effect would also become a variable which would require future studies. The
clear sky images without moon were selected in the final time series plot in Figure 7. In this
study, the same CNN/SI threshold is used for all three cities, and future studies should
explore a city-specific threshold which might further improve the results.
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Table 1. SNPP/VIIRS/DNB images used in this study.

Total # of Images in the Time Series Clear Sky without Moon

Los Angeles 380 161

Delhi 380 151

Beijing 364 123

3.3. Physical Basis for Using VIIRS/DNB as Active Light Source for Aerosol Monitoring

The idea of using the VIIRS DNB night light as an active light source for monitoring
aerosols is not new. In [24], a preliminary study of VIIRS/DNB calibration identified
the need for a ground-based calibration light source to improve the calibration accuracy,
and recognized the potential for aerosol monitoring. In [11], a ground-based LED point
light source with a well-constructed integrating sphere as a calibration source for VIIRS
DNB was developed to establish NIST traceability in a NOAA SBIR project, and a second
objective of that study was to explore its use for aerosol monitoring, for which comparisons
with AERONET measurements at a site near South Dakota were performed, together
with radiative transfer simulations. Results showed that the ground-based light source
radiance agreed with that of NOAA-20 measurements better than 11% of the faint light,
and approximately half of the difference was likely due to the atmosphere, including
aerosols (the other half was due to measurement differences between ground and satellite).
Therefore, aerosol is a significant contributor to the radiometric measurements by the
VIIRS/DNB of the ground-based light source. Previous studies have also explored the
measurements of aerosols with satellite observations of night lights [21]. The theoretical
basis has also been studied with models from light pollution perspectives [25–27]

It is known that the VIIRS DNB spectral response covers a wide range from 0.4 to
0.9 um, in which aerosol, water vapor, and oxygen absorptions can all have an impact on
the measured radiances. However, as Figure 8 shows, the urban night light spectra are
dominated by HPS (High Pressure Sodium Lamp) and LED (Light Emitting Diode), which
have a much narrower spectral range concentrated between 0.4 and 0.65 um [22,24], and
therefore are largely unaffected by water vapor and oxygen absorptions. Therefore, the
absorption and scattering from aerosol become a major factor affecting the light intensity
of night light measurements from VIIRS/DNB. Effectively, the center spectra in the VI-
IRS/DNB measurement of nightlights are in the 0.45 to 0.6 um spectral region as shown in
Figure 8, which is appropriate for aerosol measurements.

Figure 8. VIIRS/DNB spectral response (red), HPS (yellow) and LED (purple) spectra, and Atmo-
spheric Spectral Transmittance (blue).
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Using urban night light to monitor aerosols has distinct advantages and is a unique
type of active remote sensing. At night, the anthropogenic aerosols are more stable, and
using night light to detect aerosols over land is largely free from background noise. The
approach complements the traditional approach of aerosol retrievals with solar bands
during daytime under solar illumination over land, where a number of challenges still exist,
such as background noise, landcover reflectance, volumetric large particle-size scattering, as
well as the reliance on climatology information. It is noted that there is a growing scientific
community using VIIRS/DNB for nightlight research. In addition to the social-economic
and geophysical studies discussed earlier, there is also the astronomy community for the
study of light pollution at night (https://lighttrends.lightpollutionmap.info/, accessed
on 21 June 2022), where aerosol is also a major factor. Finally, the CNN/SI approach
presented in this study focuses on city specific analysis, which distinguishes it from the
traditional cloud mask-based approach, as discussed earlier. It complements the latter for
night-time aerosol studies with rapid identification of clear sky images for specific cities,
and its applicability to large scale studies require further exploration.

4. Summary and Future Studies

In this paper we presented an artificial intelligence (CNN/SI)-based algorithm for
finding clear sky night light VIIRS/DNB images for urban areas. Since the urban night
light pattern is relatively stable at local midnight, and many observations are contaminated
by clouds, a high similarity index compared to a seed clear sky night image allows us
to identify and search for clear sky images for a given city. The algorithm is based on
similarity calculations using CNN with MobileNet V2 module in Tensorflow which works
efficiently on personal laptop computers without the need for intensive computation. We
demonstrated that using this algorithm, a time series of night light images can be developed
for a given city. Examples are provided for selected cities including Los Angeles, Delhi, and
Beijing, which show distinct seasonal variations, as well as long-term increases in the night
light mean radiances. We found that the long-term changes in the night light intensity and
seasonal variations are likely caused by a combination of urban development and changes
in aerosol optical depth.

Future studies will expand the analysis to additional world-wide cities using the
reprocessed Suomi NPP VIIRS night light images to study the time series for those cities, as
well as the possible relationship with aerosols and urban growth trends. Further tuning
of the CNN/SI threshold for specific cities may also improve the results. Using VIIRS
observed night lights as an active light source to monitor aerosol optical depth is very
promising. We also plan to expand the AI-based clear sky image identification algorithm to
other satellite data for more applications.
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Abstract: Effectively monitoring the size of a city in real time enables the scientific planning of urban
development. Models that utilize the distribution and variations in city size generally use population
data as inputs, which cannot be obtained in a timely and rapid manner. However, night-time light
(NTL) remote sensing may be an alternative method. A case study was carried out on the Yangtze
River Delta (YRD) in China, and the rank–size rule, the law of primate cities, and the Gini coefficient
were employed to monitor the variation in city size in the study area. The urban areas extracted
based on NTL remote sensing were utilized instead of the traditionally used population data to
evaluate the variations in city size from 2012 to 2017. Considering the empiricism and subjectivity of
the thresholding method, urban areas were extracted from NTL data combined with the normalized
differential vegetation index and land-surface temperature data based on the artificial neural network
algorithm. Based on the results, the YRD did not fit the distribution of the primate cities from 2012 to
2017. However, this region satisfied the rank–size rule well, which indicated that the development
of medium–small cities was more prominent than that of larger cities, and the dispersed force was
larger than the concentrated force. Notably, the city size reached a relatively balanced level in the
study area. Further, sensitivity analysis revealed that the relatively low extraction accuracy of urban
areas of few small cities had little effect on the results of city size variations. Moreover, the validation
of city size computed from statistical population data and its comparison with results calculated
based on the statistical data of urban areas aligned with the results of this study, which indicates the
rationality and applicability of monitoring the variations in city size using the urban areas extracted
from NTL remote sensing instead of population data.

Keywords: night-time light data; extraction of urban areas; rank–size rule; law of primate city

1. Introduction

Dramatic urbanization has occurred globally, and is mainly due to rapid economic
development and population growth [1]. According to statistical data, more than 54% of
land is populated by humans worldwide. In fact, the total population in urban areas is pre-
dicted to exceed 2 billion by 2050 [2]. Rapid urbanization can lead to several environmental
issues, including air pollution, urban heat islands, climate change, shortage of resources,
and pressure for sustainability worldwide [3–6]. Rapid urbanization may also result in
unhealthy development in urban systems, especially developing countries. For instance,
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the development of big cities was better than that of small and medium cities. Accordingly,
the development of city size in an urban system was recognized to be unbalanced. A
comprehensive understanding of variations in city size is thus useful for urban planning
and decision making, and monitoring the distribution and variations in city size, which
is also helpful for understanding the development model and rational planning of urban
systems, is of great significance.

Several popular measurement methods for analyzing the distribution and variations
in city size include the rank–size rule [7], the law of the primate city [8], and the Gini
coefficient [9]. Briefly, the urban population or urban area is input into the above mod-
els [10], and the distribution and variation trends of city size are analyzed based on the
calculated indices. Although the most direct and effective monitoring method is population
data, there are some problems with this method [11–13]. First, the statistical standards
for population data vary among countries. For instance, population statistics in China are
mainly based on administrative units, as urban and rural areas are divided according to the
administrative boundaries of urban districts and towns. Socioeconomic units in other coun-
tries are generally based on functional areas, such as metropolitan areas in the United States.
Moreover, considerable time and labor are required to obtain population data. Night-time
light (NTL) remote sensing, which has emerged in recent years, has enabled new directions
for research on city monitoring, as it can provide real-time information about the earth with
the same observation standard. Several studies employed remote-sensing data to monitor
the urbanization of cities and assess socioeconomic activities [14–16]. Nitsch [17] showed
that urban area and population have similar distribution trends when measuring urban size
distribution. Therefore, in this study, urban areas extracted from NTL remote sensing were
used to replace the traditionally used population data in these city size analysis models to
monitor the distribution and variations in city size.

Many satellite images of different resolutions can be used to extract urban areas for
cities that are suitable for different scenarios. High- and medium-high-resolution images,
such as Landsat series [18], are suitable for exploring urbanization at the city scale, but
are not suitable for large scales, such as urban and global levels. Mapping urban areas
on a large scale requires several high-resolution images with cloud-free images, which
also requires significant time and labor for processing. Coarse-resolution satellite images,
such as MODIS and NTL data, are suitable for large-scale urban area extraction [1,19,20].
However, NTL data can be utilized to monitor human activities, as it captures city light at
night, which separates urban areas from the surrounding suburbs [21,22]. According to
prior studies, the NTL value has a highly close connection with population, gross domestic
product, and built-up areas [23,24]. Thus, this value is more suitable for selecting NTL data
for the analysis of variations in city size compared to other optimal satellite images.

Currently, commonly used NTL data are obtained from two NTL satellites, the Defense
Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) and Suomi
National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-
VIIRS). NPP-VIIRS has better quality than DMSP-OLS, as it decreases the problem of the
saturation effect that exists in DMSP-OLS [25–27]. Thus, NPP-VIIRS is better choice for
extracting urban built-up areas. Recently, methods for extracting urban areas based on NPP-
VIIRS data mainly include two types: thresholding and classification. The thresholding
method has been used by many researchers, as it is simple and easy to conduct [28–32].
Nevertheless, this method is too subjective and empirical to determine the thresholds
for extracting urban areas, owing to considerable uncertainty among cities at different
development levels [33]. To resolve such limitations of the thresholding method, some
researchers have utilized machine learning methods for the extraction of urban areas. For
instance, Jing et al. [34] applied four machine learning algorithms to extract urban areas
of eastern China. Based on their results, the machine learning methods achieved good
accuracy and lower sensitivity than the thresholding method. Xu et al. [35] extracted
urban areas from NTL data by utilizing an artificial neural network algorithm, which led
to a more accurate quality result than the thresholding method. Hence, extracting urban

128



Remote Sens. 2022, 14, 3403

areas based on machine learning is better than extraction achieved with the traditional
thresholding approach. The selection of training samples is another technical problem in
urban area extraction using a classification method based on machine learning. Extracting
training samples from NTL data alone may lead to the overestimation or underestimation of
urban areas. To improve the extraction of urban areas, some researchers have added other
remote-sensing data for sample selection, including normalized differential vegetation
index (NDVI) and land-surface temperature (LST) data [34,35]. Notably, a better extraction
result was achieved when the NTL data were combined with multi-source remote-sensing
data to select training samples to extract urban areas based on the machine learning method.

The objectives of this study were to extract urban built-up areas in the study region
using a combination of NTL data and NDVI and LST data based on the machine learning
algorithm, and to monitor the distribution and variations in city size in the study area
by utilizing the models of rank–size rule, the law of primate city, and the Gini coefficient,
using extracted urban areas instead of the traditional population data.

2. Methodology

2.1. Study Area

The Yangtze River Delta (YRD) is located in eastern China and is adjacent to the East
China Sea (Figure 1). This region has a subtropical monsoon climate, with an annual mean
temperature of 16.9 ◦C. The region also has three provinces, namely Jiangsu, Zhejiang, and
Anhui, and one international city, Shanghai city, with a total of 26 cities. The YRD covers an
area of 217,700 km2 and has a population of 150 million. Owing to its unique geographical
location and natural resources, the YRD urban agglomeration has become the most devel-
oped and largest economic zone in China, and it is one of six metropolitan agglomerations
in the world. Further, this area has experienced tremendous urban expansion over the past
few decades.

Figure 1. Location of the YRD in China and demarcation of the study area.

2.2. Data Collection and Preprocessing

Multiple datasets were used in this study (Table 1), including NTL data and four
MODIS datasets. Version 1 NPP-VIIRS NTL data, on a monthly basis from 2012 to 2017,
were obtained from the National Oceanic and Atmospheric Administration (NOAA) (https:
//ngdc.noaa.gov/eog/viirs/download_dnb_composites.html (accessed on 11 November
2020)). Additionally, the four MODIS data from the same time series, which were 16-day
Normalized Differential Vegetation Index (NDVI) product (MOD13A1), 8-day MODIS land-
surface temperature (LST) product (MOD11A2), annual global land water mask product
(MOD 44w), and annual MODIS Land Cover Type product (MCD12Q1), were obtained
from National Aeronautics and Space Administration (NASA) (https://ladsweb.modaps.
eosdis.nasa.gov/search/ (accessed on 17 November 2020)). The NPP-VIIRS, MOD 13A1
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NDVI, and MOD 11A2 LST data were used to select samples for urban area extraction for
the study area. MCD12Q1 land-cover data were used to determine the optimal combination
of coefficients for urban area extraction. The MOD 44w data were employed to remove
the light intensity of water bodies from the NPP-VIIRS images. In this study, all remote-
sensing data were reprojected to the Albers Conical Equal Area projection and resampled
to a resolution of 500 m for consistency with the NTL and land-cover data. The annual
NPP-VIIRS and LST data were reproduced by the mean value composition in this study,
while the annual NDVI data were reproduced based on the maximum value composition
to decrease the influence of cloud contamination [36]. The population and actual urban
area data from 2012 to 2017 were obtained from the statistical yearbooks of provinces and
cities. The population data were utilized to calculate the indices for city size analysis, and
the statistical urban areas were used for comparison with urban areas extracted using our
NTL remote-sensing-based method. In this study, the permanent urban population at the
end of the year was regarded as the urban population of each city in the study area.

Table 1. Data used in this study.

Data Description Resolution Time

NPP VIIRS Night-time light 500 m/Month
MOD 13A1 Normalized Differential Vegetation Index 500 m/16 Days 2012–2017
MOD 11A2 Land-surface temperature 1 km/8 Days
MOD 44w Global land water mask 250 m/Year 2012–2017
MCD 12Q1 Land-cover type 500 m/Year 2012–2017
Population Year 2012–2017

Statistical urban areas 0.01 km2 2012–2017

2.3. Monitoring of the Distribution and Variations in City Size

In this study, the rank–size rule, the law of the primate city, and the Gini coefficient
were employed to analyze the distribution and variations in city size for the study area.
The rank–size rule is usually represented by Zipf’s index, and the law of the primate city is
calculated using the urban primacy index. Zipf’s index, the urban primacy index, and the
Gini coefficient were calculated from the acreage of the extracted urban areas. The three
indices were also computed from the population data to validate the results obtained from
the extracted urban areas. If the variation trend of the three indices calculated from both
data sources is the same, urban areas extracted from NTL remote sensing can replace the
population to analyze the variation in the differences in city size.

2.3.1. Rank–Size Rule

The rank–size rule was utilized to reveal the size distribution in an urban system
based on the relationship between the size of cities and the rank of city sizes, which can
also reflect the development level of a country or an urban system. In 1949, Zipf provided
a theoretical foundation [7], which can be expressed as follows:

lgPi = lgP1 − qlgRi (1)

where lg is the basic logarithm with base 10, Ri is the rank of city i according to city size
among all cities, P1 is the city size of the largest city, Pi is the city size of city i, and q is
Zipf’s index.

The ideal Zipf index should be 1, indicating balanced urban development within the
urban system. However, in general, Zipf’s index is not equal to one. An index greater
than 1 indicates that the development of big cities is prominent, while that of small and
medium-sized cities is underdeveloped. On the contrary, an index lower than 1 indicates
that the development of big cities is not prominent, whereas that of small- and medium-
sized cities is better. An increasing trend in Zipf’s index indicates that the concentrated
force in the distribution of city size is larger than the dispersed force, which means that
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the development of city size in large cities is faster than that in small cities. Conversely,
a decrease in Zipf’s index indicates that the dispersed force in the urban system is larger
than the concentrated force, and the development of city size in small cities is faster than in
big cities.

2.3.2. Law of Primate City

The urban primacy index was utilized to describe the extent of concentration of the
urban population in the primate city in an urban system, which can largely reflect the
development features of the urban system. This index was proposed by Mark [8], which
indicates that the size of the largest city is markedly greater than that of other cities in an
urban system. The index is equal to the ratio of the population of the largest city to that of
the second largest city in the study area, which can be described by the following formula:

S2 = P1/P2 (2)

where S2 is a 2-city index and P1 and P2 are the populations of the largest and second-largest
cities, respectively.

According to some researchers, a 2-city index is too one-sided. Thus, the 4-city index
and 11-city index were proposed, and can be calculated as follows:

S4 = P1/(P2 + P3 + P4) (3)

S11 = 2P1/
11

∑
i=2

Pi (4)

where S4 and S11 are the 4-city index and 11-city indices, respectively, P1 is the population
of the largest city in the urban system, and P2 to P11 is the population of the second to the
eleventh city based on city size.

The threshold of the 2-city index should be 2, while the thresholds of the 4-city and
11-city indices should be 1. The greater the number of cities involved in the calculation of
the urban primacy index, the more reliable the results. Accordingly, the 11-city index was
selected to compute the urban primacy index for the study area. In this study, the urban
primacy index was calculated from the age of the extracted urban areas and the population
in the study area.

2.3.3. Gini Coefficient

The Gini coefficient was originally used to measure the income gap between residents
in a country or region, as proposed by Gini in 1912 [9]. Marshall applied the Gini model to
cities to analyze city development based on differences in size by analyzing the degree of
population aggregation on the whole urban agglomeration, and proposed the concept of
the city Gini coefficient for the first time, which can be calculated as follows:

G = T/2S(n − 1) (5)

where n is the total number of cities in the urban system, S is the total population of these
cities in the urban system, and T is the sum of the absolute differences in population size
among these cities in the urban system.

As an indicator of the relative difference, the Gini coefficient can reflect the balance
degree of the population distribution in various cities, ranging from 0 to 1. The closer
the Gini coefficient to the value of 0, the more dispersed the city size, while the closer the
coefficient to the value of 1, the more concentrated the city size. The value range of the Gini
coefficient can be divided into five groups: values below 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, and
greater than 0.5. These groups represent the absolute balance of city size, relative balance
of city size, relative reasonable city size, significant difference in city size, and abnormal
disparity, respectively.
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2.4. Urban Area Extraction

In this study, NPP-VIIRS NTL, NDVI, and LST data were utilized to extract the urban
areas of the study area based on an artificial neural network (ANN) algorithm. The main
steps for extracting urban areas are described below. First, the pixels occupied by water
bodies were removed using global land water mask data, and potential urban areas were
regarded as pixels with NTL values greater than 1, according to Yang et al. [37].

The thresholds of the three datasets utilized to select samples were subsequently
determined based on the standard deviation from the mean value. Notably, urban areas
were extracted city by city in the study area, as the development and economic levels
markedly vary in the study area, and the accuracy of the extracted results may be low if
urban areas of different cities are extracted as a whole. The equations are as follows:

⎧⎪⎨
⎪⎩

TVIIRS
j = MeanVIIRS

j + aStdVIIRS
j

TNDVI
j = MeanNDVI

j + bStdNDVI
j

TLST
j = MeanLST

j + cStdNDVI
j

(6)

where TVIIRS
j , TNDVI

j , and TLST
j are the thresholds of the NPP-VIIRS, NDVI, and LST data

for city j, respectively; MeanVIIRS
j , MeanNDVI

j , and MeanLST
j are the mean values of the

three datasets for city j; StdVIIRS
j , StdNDVI

j , and StdNDVI
j are the standard deviations of

these data for city j; and a, b, and c are coefficients, which are normally set to −1, −0.5,
0, 0.5, and 1, respectively. Different values of TVIIRS

j , TNDVI
j , and TLST

j can be obtained
according to the values of a, b, and c.

Based on the features of high NTL values, high temperatures, and low vegetation
coverage in urban areas, the training samples of urban and non-urban areas were selected
based on the following formulas:

Sample(i, j) =

{
VIIRS(i, j) > TVIIRS

j &NDVI(i, j) < TNDVI
j &LST(i, j) > TLST

j , Urban
VIIRS(i, j) < TVIIRS

j &NDVI(i, j) > TNDVI
j &LST(i, j) < TLST

j , Non − urban
(7)

where Sample(i, j) represents the selected samples of pixel i of city j, and VIIRS(i, j),
NDVI(i, j), and LST(i, j) are the pixel values of the NPP-VIIRS, NDVI, and LST data for
pixel i of city j, respectively.

Therefore, there are 125 combinations of coefficients a, b, and c. The optimal set of
combinations was selected based on the following standard:

min|Sk − S0|&max{g_meank} (8)

where Sk and S0 are the number of total pixels of the extracted urban areas based on
the NTL data and the number of total pixels of the urban areas in the land-cover data,
respectively, and g_meank is the geometric mean precision, which is introduced below.

Based on the optimal set of coefficients confirmed above, the optimal thresholds for
the three datasets used to select samples for urban area extraction were determined in the
third step. Thereafter, the samples were selected and randomly divided into approximately
10% training samples and 90% test samples. An ANN algorithm was employed to extract
the urban areas of the study area based on the training samples.

ANN is a type of machine learning model that has been widely utilized in many studies
owing to its self-adapting, self-organizing, and self-learning advantages. A feedforward
network structure composed of an input layer, a hidden layer, and an output layer was
utilized in this study [35]. The input layer consists of three nodes: NTL, LST, and NDVI.
Based on a sensitivity analysis, the number of hidden nodes was set to five. The output
nodes have two possible results: urban and non-urban areas. The pixels that met the
expectations of urban and non-urban areas were outputted as (1, 0) and (0, 0), respectively.

After training, the test samples were utilized to validate the accuracy of urban area
extraction for the study area. In this study, in addition to the Kappa coefficient used, the
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geometric mean accuracy was also used [38]. The geometric mean accuracy was calculated
as follows:

g_mean =
√

d
m+d × d

n+d (9)

where g_mean is the geometric mean accuracy, d is the number of matched urban area
pixels between NTL data and land-cover data, m is the number of urban area pixels for
which NTL data do not match the land-cover data, and n is the number of urban area pixels
for which the land-cover data do not match the NTL data.

3. Results and Discussion

3.1. Urban Expansion of the YRD
3.1.1. Accuracy Assessment of Urban Area Extraction

In this study, the kappa coefficient and geometric mean accuracy were used to validate the
accuracy of the urban area extraction of the YRD. Table 2 shows the average geometric mean
accuracy and kappa coefficient for the YRD. As depicted in the table, the urban area extraction
of YRD based on the method proposed in this study achieved high accuracy, with an average
geometric mean accuracy and kappa coefficient ranging from 79.21% to 84.88% and 0.761 to
0.828, respectively. The geometric mean accuracy of all years was between 82% and 85%, except
for 2015, which had a value of 79.21%. In 2012 and 2015, the Kappa coefficients were 0.793
and 0.761; however, in other years, this value was approximately 0.82. Figures 2 and 3 show
the distribution of geometric mean accuracy and Kappa coefficient of urban area extraction for
all cities in the YRD from 2012 to 2017. This result indicates that most cities in the YRD have
a high geometric mean accuracy and Kappa coefficient for six years, with values above 90%
and 0.80, respectively. However, the accuracy of several medium- and small-sized cities, such
as Anqing, Chizhou, Xuancheng, and Chuzhou of the Anhui province, which had relatively
lower economic development, was relatively low, with a geometric mean accuracy and Kappa
coefficient of less than 60% and 0.60, respectively.

3.1.2. Spatial–Temporal Variations of Urban Areas

Figure 4 displays the distribution of the extracted urban areas of the study area from
2012 to 2017 and highlights an obvious spatial discrepancy in urban areas. This finding
indicates that most urban areas within the study area were distributed in international
metropolises (Shanghai, China), metropolitan circles (Suzhou, Changzhou, and Wuxi,
China), and provincial capitals (Nanjing, Ningbo, Hangzhou, and Hefei, China) during
the six years. On the contrary, only a small proportion of urban areas were scattered in
medium- and small-sized cities. As shown in Figure 5, the acreage of all cities in the study
area increased gradually from 2012 to 2017. The urban areas of all cities in the study area
extended along the central urban areas to the surrounding suburbs (Figure 4). However,
the increase in the urban areas of big cities was small, such as Shanghai, Suzhou, Wuxi, and
Nanjing, the urban areas of which increased from 2012 to 2014. In contrast, the extension
force of the urban areas of medium- and small-sized cities, such as Xuancheng, Shaoxing,
and Nantong, increased in recent years, especially from 2015 to 2017.

Table 2. Mean accuracy of urban area extraction in the YRD.

Accuracy 2012 2013 2014 2015 2016 2017

g-mean (%) 82.10 84.88 83.06 79.21 83.94 84.10
Kappa 0.793 0.828 0.805 0.761 0.816 0.817
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Figure 2. Geometric mean accuracy for urban area extraction in the YRD.

Figure 3. Kappa coefficient for urban area extraction in the YRD.
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Figure 4. Urban expansion of the study area from 2012 to 2017.
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Figure 5. The increase in urban areas in all cities in the study area from 2012 to 2017.

3.2. Variations in City Size in the YRD
3.2.1. Variations in Rank–Size

Table 3 shows the fitting results of the double logarithm of the rank–size model in the
YRD from 2012 to 2017. These results indicate that both the urban areas extracted from
remote-sensing data and the population data can fit the model well, with R2 values of
approximately 0.79 and greater than 0.83 from 2012 to 2017, respectively. Although the
value of R2 fitted from urban areas was lower than that fitted from population size, the
value met the requirements of the rank–size model. Therefore, a subsequent analysis of the
variations in rank size of the YRD from 2012 to 2017 was performed.

Table 3. Fitting results of rank–size in the YRD from 2012 to 2017 (y represents Zipf’s index; x in the
left and right columns represent urban area and urban population, respectively).

Year
Urban Areas Population

Fitting Equations R2 Fitting Equations R2

2012 y = −1.048x + 3.782 0.796 y = −0.884x + 3.347 0.840
2013 y = −1.034x + 3.784 0.801 y = −0.880x + 3.352 0.838
2014 y = −1.019x + 3.784 0.795 y = −0.875x + 3.357 0.835
2015 y = −1.008x + 3.788 0.798 y = −0.856x + 3.351 0.860
2016 y = −1.010x + 3.793 0.797 y = −0.852x + 3.357 0.860
2017 y = −0.982x + 3.791 0.789 y = −0.845x + 3.361 0.858

Zipf’s index was calculated from urban areas and the population size of the YRD from
2012 to 2017, respectively; the values are shown in Figure 6. The Zipf’s index calculated
from the extracted urban areas from 2012 to 2017 was below the value of one, which
indicates that the development of big cities in the YRD was not prominent, while that of
small- and medium-sized cities was better. In addition, a decreasing Zipf’s index trend
calculated from the extracted urban areas was found, with a value of 0.704 in 2012, which
decreased to 0.651 in 2017. Such findings indicate that the dispersed force in the YRD was
larger than the concentrated force. Thus, the development of the city size of small cities
is faster than that of big cities in the YRD. However, from 2010 to 2013, the urban area in
the Yangtze River Delta expanded rapidly, while the resident population increased slowly,
especially in small and medium-sized cities. Thus, the Zipf’s index calculated from urban
area is bigger than that calculated by population.
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Figure 6. Variations in Zipf’s index for the extracted urban areas and the statistical population data
of the YRD from 2012 to 2017.

The Zipf’s index calculated from the population data of the YRD displayed the same
distribution as that calculated from the extracted urban areas, which indicates the feasibility
of analyzing the variation in rank–size by utilizing NTL remote sensing.

3.2.2. Variations in Primate City

In this study, the 11-city index of urban primacy was utilized to analyze the variations
in urban primacy in the study area. Figure 7 shows the distribution of the YRD urban
primacy index from 2012 to 2017. As depicted in the figure, the urban primacy index
calculated from the extracted urban areas of the YRD was lower than one from 2012 to
2017, which indicates that the YRD agglomeration did not belong to the distribution of the
primate city during this period. Additionally, the urban primacy index of the study area
decreased gradually, declining from 0.506 in 2012 to 0.471 in 2017. Such a decrease indicates
that the size distribution of the primate city in the YRD economic region had a relatively
decreasing trend compared with other cities, and the status and function of the primate city
in the study area gradually reduced during this period. Such findings indirectly illustrate
that the size of medium- and small-sized cities in the study area increased gradually during
this period.

The urban primacy index computed from population data also displayed a similar
distribution and variation trend to that calculated from the extracted urban areas, which
was also below the value of one and decreased gradually from 2012 to 2017. This finding
indicates that the application of NTL remote sensing for the analysis of variations in urban
primacy is a feasible method.
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Figure 7. Variations in urban primacy index for extracted urban areas and the statistic population
data of the YRD from 2012 to 2017.

3.2.3. Variations in the Gini Coefficient

In this study, the Gini coefficient for cities was used to analyze the degree of balance
in city development in the study area. Figure 8 shows the variations in the Gini coefficient
computed from the extracted urban areas using NTL remote-sensing and population data
from 2012 to 2017. The value of the Gini coefficient calculated from the extracted urban
areas ranged from 0.2 to 0.3, which indicates that the development of the city size in the
study area occurred at a relatively balanced level during this period. Furthermore, the Gini
coefficient displayed a gradually decreasing tendency from 2012 to 2017, with the value
declining from 0.226 in 2012 to 0.215 in 2017. Such a decrease indicates that the city size
of the YRD displayed a scattering trend from 2012 to 2017. Thus, the dispersed force in
the study area was greater than the concentrated force, implying that the development of
medium- and small-sized cities was faster than that of big cities, and the development of
big cities reached saturation in the study area during this period.

Figure 8. Variations in the Gini coefficient for extracted urban areas and the statistic population data
of YRD from 2012 to 2017.
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The Gini coefficient calculated from the population data was used to validate the value
computed from the extracted urban areas of the study area. The value of the Gini coefficient
calculated from population data also ranged from 0.2 to 0.3, and displayed a decreasing
tendency from 2012 to 2017 (Figure 8), aligning with the variations in the Gini coefficient
computed from the extracted urban areas. This result also highlights the feasibility of using
extracted urban areas instead of population data to study the distribution and variation in
city size.

3.3. Sensitive Analysis

In the accuracy assessment of urban area extraction presented in Section 3.1.1, five
small to medium-sized cities with lower levels of economic development, namely Chizhou,
Xuancheng, Anqing, Chuzhou, and Yancheng, were found to have relatively low accuracy,
with Kappa coefficients and geometric mean accuracy below 60% and 0.6, respectively.
This finding was mainly due to cities with lower levels of economic development having
relatively lower signals of NTL and LST images, which may affect the urban extraction
results. However, the purpose of this study was to prove that urban areas extracted using
remote-sensing technology can be utilized to analyze variations in city size instead of
statistical population data. Whether the extraction accuracy can affect the results of the
city size in the study area must be determined. Therefore, we adjusted the urban areas
of the five cities by increasing or decreasing 5% of the extracted urban areas to explore
the effect of extraction accuracy on city size monitoring. When the urban areas of one
city were adjusted, those of the other four cities remained unchanged. Zipf’s index, the
urban primacy index, and the Gini coefficient were computed from the originally extracted
urban areas; the urban areas increased by 5%, and urban areas decreased by 5%. The top
11 cities ranked by the acreage of urban areas remained unchanged regardless of whether
they decreased or increased by 5%, which caused very slight changes in the Gini coefficient
(between 0.0001–0.0003). Thus, only Zipf’s index and the Gini coefficient were calculated
(Figure 9a–e) and (Figure 10a–e).

As depicted in Figure 9a–e, the Zipf’s index calculated from the urban areas increasing
by 5% or decreasing by 5% was consistent with that computed from the original urban
areas, with values below 1.0 from 2012 to 2017, presenting a gradually decreasing tendency.
This finding indicates that the development of small and medium-sized cities was more
prominent than that of big cities in the YRD, and the dispersed force was larger than the
concentrated force in the YRD. Further, as depicted in Figure 10a–e, the Gini coefficient
calculated from both urban areas increasing by 5% or decreasing by 5% was consistent
with that computed from the original urban areas, with all values ranging from 0.2 to 0.3,
highlighting a gradually decreasing tendency from 2012 to 2017. This finding indicates
that the development of YRD has reached a relatively balanced level. Further, the city size
of YRD tended to be scattered from 2012 to 2017. Regardless of a decrease or increase by
5% in the extracted urban areas, the difference between the two indices calculated from
the original urban areas and the adjusted urban areas was very small, with values below
0.001 (the three lines of the two indices calculated from the original and adjusted urban
areas were very close). Consequently, the relatively low accuracy of urban area extraction
of some cities has little effect on the monitoring of variations in city size in this study.
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Figure 9. Variations in the Zipf’s index of the YRD from 2012 to 2017; the “Inc_urban” and
“Dec_urban” represent the results calculated from urban areas of five cities that increased by 5% and
decreased by 5%, respectively.

Figure 10. Cont.
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Figure 10. Variations in the Gini coefficient of the YRD from 2012 to 2017; The “Inc_urban” and
“Dec_urban” represent the results calculated from urban areas of five cities that increased by 5% and
decreased by 5%, respectively.

3.4. Comparison with Other Results

In this study, Zipf’s law, the urban primacy index, and the Gini coefficient were com-
puted from the statistical urban areas, and the distribution and variations in city size were
compared with those calculated from the urban areas extracted from NTL remote sensing
(Figures 11–13). As shown in Figure 11, Zipf’s index calculated from statistical urban areas
was consistent with that computed from the urban areas extracted from remote-sensing
technology, with values ranging from 0.6 to 0.72 and a gradually decreasing tendency.
Moreover, in Figure 12, the urban primacy index calculated from the statistic urban areas
showed a decreasing trend, with values ranging from 0.41 to 0.51, thereby aligning with
the values calculated from the extracted urban areas. The Gini coefficient calculated from
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statistical urban areas and extracted urban areas also showed some variation tendency in
Figure 13, with values ranging from 0.2 to 0.3. Therefore, all three indices calculated from
statistics and extracted urban areas revealed that the YRD did not fit the distribution of
the primate city, the dispersed force was stronger than the concentrated force in the study
area, and the development of the YRD reached a relatively balanced level. Consequently,
the city size analyzed from the extracted urban areas had the same variation trend as that
analyzed from the statistical urban areas, which proved the feasibility of utilizing NTL
remote sensing to analyze the distribution and variation of city size instead of statistics.

Figure 11. Variations in the Zipf’s index for extracted urban areas, statistic urban areas, and popula-
tion data of the YRD from 2012 to 2017.

Figure 12. Variations in the urban primacy index for extracted urban areas, statistic urban areas, and
population data of the YRD from 2012 to 2017.
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Figure 13. Variations in the Gini coefficient for extracted urban areas, statistic urban areas, and
population data of the YRD from 2012 to 2017.

4. Conclusions

The YRD of China was selected as the study area for this assessment and multi-source
remote-sensing data based on an ANN algorithm were employed to extract urban areas
for the analysis of variations in city size from 2012 to 2017 in the study area, instead of the
traditional approach of using population data. The main conclusions are as follows.

By combining NTL data with land-surface temperature and normalized differential
vegetation index data, the method employed in this study could be used to efficiently extract
the urban areas of the study area based on the ANN algorithm. The geometric mean accuracy
and Kappa coefficient ranged from 79.21% to 84.88% and 0.761 to 0.828, respectively. In
addition, the urban areas of the study area expanded gradually from 2012 to 2017, with the
entire region and all cities in the region undergoing expansion. Moreover, the rank–size
rule, urban primacy index, and Gini model were utilized to assess the development of city
size in the study area from 2012 to 2017. Based on the results, the study area did not fit the
distribution of the primate city, and the status and function of the primate city in the YRD
gradually decreased during this period. The development of big cities was not prominent
compared with that of small and medium-sized cities, and the dispersed force was greater
than the concentrated force in the study area. The development of city size in the YRD
urban agglomeration reached a relatively balanced level during this period. Additionally, the
sensitivity analysis revealed that the relatively low extraction accuracy of urban areas for a few
small cities had little effect on the results of city size in this study. The three indices calculated
from the statistical population data and the statistical urban areas also displayed the same
distribution and variation tendency as those computed from the extracted urban areas via
NTL remote sensing. These findings indicate the applicability and feasibility of analyzing the
variation in city size using NTL remote sensing.
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Abstract: Using toponym data, population data, and night-time light data, we visualized the devel-
opment index of the Yi, Wa, Zhuang, Naxi, Hani, and Dai ethnic groups on ArcGIS as well as the
distribution of 25 ethnic minorities in the study area. First, we extracted the toponym data of 25 ethnic
minorities in the study area, combined with night-time light data and the population proportion data
of each ethnic group, then we obtained the development index of each ethnic group in the study area.
We compared the development indexes of the Yi, Wa, Zhuang, Naxi, Hani, and Dai ethnic groups with
higher development indexes. The results show that the Yi nationality’s development index was the
highest, reaching 28.86 (with two decimal places), and the Dai nationality’s development index was
the lowest (15.22). The areas with the highest minority development index were concentrated in the
core area of the minority development, and the size varied with the minority’s distance. According to
the distribution of ethnic minorities, we found that the Yi ethnic group was distributed in almost the
entire study area, while other ethnic minorities had obvious geographical distribution characteristics,
and there were multiple ethnic minorities living together. This research is of great significance to the
cultural protection of ethnic minorities, the development of ethnic minorities, and the remote sensing
mapping of lights at night.

Keywords: night-time light remote sensing; ethnic minorities; core ethnic minority areas; develop-
ment index; toponym data

1. Introduction

Ethnic minorities refer to ethnic groups other than the main ethnic group in a multi-
ethnic country. The proportion of their population is smaller than that of the main ethnic
group. There are currently more than 2000 ethnic groups in the world, and the total number
of Asian ethnic groups is more than 1000, accounting for about half of the total number of
ethnic groups in the world. Among them, the total number of ethnic groups in China, India,
the Philippines, and Indonesia exceeds 50. There are about 170 ethnic groups in Europe, and
there are about 20 basically single-ethnic countries. There are 55 ethnic minorities in China
except for the main ethnic group. The distribution of ethnic minorities in China is relatively
wide, mainly showing the distribution of “large mixed residences and small settlements”.
The indicators to measure the development level of a region include education level [1],
regional GDP [2–4], population [5,6], poverty index [7], etc. Among them, the most direct
and quantifiable one is economic development. The most direct connection between a
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nation and a country is the consistency of economic interests [8]. The distribution of
ethnic minorities is different, their ecological environment, cultural diversity (such as
living habits, languages, religious beliefs, etc.), the technology used in production, the
allocation of resources is different, so their economic development is also different [9]. The
economic development of ethnic minorities is part of the country’s economic development
and contributes to the economic development of the entire country. If there is a problem
with the economic development of ethnic minorities, it will directly affect the country’s
economic development to a certain extent. Due to differences in living environment and
life concepts, there are different economic development models in economic development,
leading to better ethnic development in some places and poorer ethnic development in
other places. However, the economic development of China’s ethnic minority areas is
generally unbalanced. China is a multi-ethnic country, and the common development and
mutual assistance of all ethnic groups can make our country stronger and more prosperous.
However, due to the different levels of economic development of different ethnic groups,
studying the development of ethnic minorities plays an important role in formulating
and adjusting corresponding policies. It is very important to understand and discover the
development status of each ethnic group. This study helps to understand the development
status of ethnic minorities through a simple and quick method.

At present, it mainly studies the economic development index of ethnic minorities
from gross domestic product (GDP). A study of the economic development status of the
five western ethnic autonomous regions in Inner Mongolia, Guangxi, Tibet, Ningxia, and
Xinjiang found that the GDP of the five ethnic minorities regions lagged behind the national
level, and there were also significant differences in the economic development level of
ethnic minorities in the prefectures regions. The urban–rural per capita income ratio
exceeded 2.5:1, and the highest urban–rural per capita income ratio reached 5.6:1, which far
exceeded the international standard (according to the general international situation, the
per capita GDP is between US$800 and US$1000, and the urban–rural per capita income
ratio is 1.7:1 or so) [10]. Li [11] found that the income gap between urban and rural areas in
ethnic minorities regions is large, as was the gap between GDP and the national level. The
absolute difference in the per capita GDP of the ethnic minorities in Northwest China is
gradually expanding, and the absolute difference in the economic development level of the
ethnic minorities is expanding [12,13]. Zheng [14] pointed out in his research that both in
terms of innovation and economic development, ethnic minority areas lagged behind the
national level, and there were large differences in economic development among ethnic
minority areas. Luo and Zhuang [15] conducted research on the economic development of
the two provinces of Guangxi and Yunnan in the past 15 years, and found that the higher
the proportion of the minority population in the total population, the lower the economic
development level of the county-level region. Although there are many studies on the
development of ethnic minorities, there are very few studies on the development index of
ethnic minorities, and the research on the GDP of ethnic minorities only stays at the level
of statistical yearbook research and qualitative analysis. The use of more scientific methods
to study the development index of ethnic minority regions is of reference significance for
understanding the development of ethnic minority regions, the development differences of
various ethnic minorities, and the state’s formulation of corresponding policies.

Night-time light data refer to the capture of town lights, fishery lights, etc. at night
without clouds [16]. The currently widely used night-time light data include: (1) The
Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS)
satellite, which provides data from 1992 to 2013; (2) The Suomi National Polar-Orbiting
Partnership’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), which provides data
from 2012 to the present; and (3) China’s first professional night-time light remote sensing
satellite “Luojia-1”, jointly developed and produced by the Wuhan University team and
related institutions, which provides data from 2018 to the present.

The level of human activities and economic development can be better reflected
by night-time light remote sensing data, so it is widely used in social and economic
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fields [17–19] such as economic activity monitoring [20] and economic development re-
search [21]. Doll et al. [22] used night-time light data to assess socio-economic development
and found that it was highly correlated with GDP on a national scale (R2 = 0.85, when
R2 is greater than 0.8, it can be considered that the two variables are highly correlated),
and simulated the spatial distribution of GDP. Elvidge et al. [23] used DMSP-OLS data
to analyze the relationship between night lighting area and GDP in 200 countries and
found that there was a good linear relationship between night-time light area and GDP.
Henderson et al. [24] used a DMSP stabilized light source and radiometric correction
images, which correctly reflected the differences in the social and economic development
levels of San Francisco, Beijing, and Lhasa. Henderson et al. [25] found that the brightness
of night lights in a country had an obvious linear relationship (R2 = 0.8) with the coun-
try’s GDP development level. Michalopoulos et al. [26] used a similar method (similar
to Henderson et al.) to study the correlation between night-time light data and GDP in
Africa, and got good results. Wu et al. [27] used DMSP-OLS data to estimate GDP and
the results were satisfactory. Jiang et al. [28] used DMSP-OLS data and NPP-VIIRS data to
perform regression simulations on multiple socio-economic parameters, and found that
using NPP-VIIRS night-time light data to regress with the whole city’s GDP, R2 reached
0.9102. This proves that night-time light data have a good linear correlation with GDP and
power consumption, and found that NPP-VIIRS had higher accuracy and more advantages.
Zhu et al. [29] found that compared with traditional socio-economic indicators (GDP, oil
and gas production, etc.), night light data are more sensitive and more intuitively reflects
social and economic development.

Some scholars have also used night-time light data to study the poverty index of a
region. This method can also reflect the development status of the region to a certain extent.
Li et al. [30] used the method of machine learning, combined with the robust features of the
night light image spatial characteristics to identify China’s high-poor counties. The overall
accuracy of the results was greater than 82%, and the user accuracy was greater than 63%.
Andreano et al. [31] used DMSP-OLS data to perform spatial classification and continuous
time estimation of poverty gap, number of people, and Gini index in 20 Latin American
and Caribbean countries. It was found that combining night-time light data helped to
better understand poverty and its temporal and spatial dynamics. Pokhriyal et al. [32] used
environmental data and call data records to accurately predict the global multidimensional
poverty index. This method has high accuracy in predicting health, education, and living
standards (Pearson’s correlation coefficient is 0.84–0.86). Li et al. [33] used the principal
component analysis method to establish a comprehensive multi-dimensional poverty
index, and showed the temporal and spatial heterogeneity of multi-dimensional poverty
in 2311 counties in China. It was found that the mountainous areas of Southwest, North
China, Northwest China, and the plateau areas of Southeast China had higher levels of
economic development.

A large number of studies have proven that the night-time light data reflect the
development level of a region, so it is feasible to use it to construct a development index.
Compared with traditional statistical yearbook research and qualitative analysis, this paper
used night-time light data to construct the development index of ethnic minority areas,
which is more accurate and saves resources.

2. Materials and Methods

2.1. Materials
2.1.1. Study Area

Yunnan Province is located on the border of southwestern China. Its geographic
location is between 21◦8′–29◦15′ N and 97◦31′–106◦11′ E. Yunnan Province is the province
with the largest number of ethnic minorities in China. According to the statistics of the sixth
national census in 2010, there are 25 ethnic minorities in Yunnan Province, among which
the population of Yi, Bai, and Dai are larger. Among the 25 ethnic minorities in Yunnan
Province, 15 ethnic minorities are unique to Yunnan such as the Bai, Hani, Lisu, Dulong, etc.
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The development of ethnic minorities in Yunnan Province has made great contributions
to the socio-economic development of the entire Yunnan Province. Yunnan Province is a
mountainous plateau. Compared with provinces in plain areas, its topographic features are
unfavorable for its development. However, at the same time, Yunnan Province is located
on the border of southwest China and is a key area for the development of the “Belt and
Road” initiative. There are 16 prefecture-level administrative regions in Yunnan Province
including eight prefecture-level cities, eight autonomous prefectures, 17 county-level cities,
and 129 county-level districts. Among the 16 prefecture-level administrative regions, there
are eight ethnic minority core areas. The administrative division and specific geographical
location of Yunnan Province are shown in Figure 1.

 

Figure 1. Geographical location and administrative boundaries of Yunnan Province.

2.1.2. Data Sources

The data used in this article are as follows (Table 1): (1) NPP-VIIRS composite data;
(2) toponym data; (3) Yunnan Province census statistics; (4) Yunnan Province county level
Administrative division boundaries; and (5) Yunnan Statistical Yearbook Data.

Table 1. Details of the data sources in this study.

Data Data Information Year Source

NPP-VIIRS NPP-VIIRS cloudless DNB compound
monthly average data 2018

Earth Observation Group (EOG)
(https://eogdata.mines.edu/download_dnb_

composites.html, accessed on 28 May 2020)

Toponym Results of the Second National
Toponymic Census of China 2019

China National Geographical Names Database
(http://dmfw.mca.gov.cn/, accessed on 20

May 2020)

Statistics of Yunnan Province
Census

Data from the Sixth Census of Yunnan
Province 2010

China Social Big Data Research Platform
(http://data.cnki.net/, accessed on 14 June

2020)
Boundaries of county-level

administrative divisions in Yunnan
Province

County-level vector data in Yunnan
Province 2017

National Basic Geographic Information Center
(http://www.ngcc.cn/ngcc/, accessed on 13

May 2019)

Yunnan Statistical Yearbook Data Socio-economic indicators of Yunnan
Province 2013–2018 People’s Government of Yunnan Province

(www.yn.gov.cn, accessed on 2 May 2021)
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The NPP-VIIRS night-time light data adopt the monthly average data of the global
cloudless Day–Night Band (DNB) composite data in 2018, and the spatial resolution of
NPP-VIIRS data is 500 m. Studies have shown that the DNB of the NPP satellite system
is widely used to estimate social and economic parameters, and the in-orbit radiation
correction can improve data quality [34,35]. Finally, monthly average data were used to
synthesize annual average data for research. The data were downloaded from the Earth
Observation Group (EOG) (https://eogdata.mines.edu/download_dnb_composites.html,
accessed on 28 May 2020).

The toponym data used in the study come from the results of the second national
toponym data census, which mainly includes the meaning of toponyms, that is, the ethnic
types of toponyms, the feature type of toponyms, the historical sources of toponyms, the
spatial location, and other information, which can be downloaded from the China National
Geographical Names Information Database (http://dmfw.mca.gov.cn/, accessed on 20
May 2020).

The census statistics of Yunnan Province use the data of the sixth national census, and
the data can be downloaded from the sixth census data of Yunnan Province on the China
Social Big Data Research Platform (http://data.cnki.net/, accessed on 14 June 2020). In the
data, detailed statistics are made on the population of all ethnic groups in the county-level
regions of Yunnan Province.

The county-level administrative divisions of Yunnan Province are derived from the
1:4 million vector data provided by the National Basic Geographic Information Center. In
order to make the research more convenient, all the data in this paper were converted into
the Lambert projection (Asia_Lambert_Conformal_Conic) based on WGS_1984. In order to
make the research more accurate, combined with the geographic location of the study area,
the central meridian was set to 102◦, the first standard latitude was 22◦, and the second
standard latitude was 28.3◦.

The statistical yearbook data contain a large amount of socio-economic data such as
regional GDP per capita, regional total GDP, and regional employees. The development
data and production methods of a region can be obtained from the statistical yearbook.
The statistical yearbook data of Yunnan Province from 2013 to 2018 was used to verify the
feasibility of the method in this paper.

2.2. Methods

Using the 2018 NPP-VIIRS night-time light data to construct the Yunnan Minority
Development Index requires the following three steps. First, preprocess the downloaded
NPP-VIIRS cloudless DNB composite monthly average data to obtain stable night light
data. Second, extract the toponym data that contain minority information in the toponym
data to obtain the Yunnan Province minority toponym dataset, and conduct a kernel density
analysis on each type of ethnic minority toponym data in Yunnan Province. Calculate the
minority development index using the results of kernel density analysis combined with the
results of the minority population proportion grid results and the NPP-VIIRS night-time
light data. Finally, in order to more clearly reflect the distribution of ethnic minorities,
combine the toponym data and the results of the minority development index to obtain the
research area distribution of 25 ethnic minorities. The specific process is shown in Figure 2.

2.2.1. NPP-VIIRS Data Preprocessing

In order to avoid the influence of grid deformation, sensors, and other factors on
the research results, first, geometric correction was performed on the 2018 NPP-VIIRS
monthly cloudless DNB composite data using the geometric correction tool in ENVI. Since
the geographic coordinate system of the acquired NPP-VIIRS data is WGS_1984, set the
projection parameter to the WGS_1984 geographic coordinate system, set the output pixel
size to 1000 m, and select the cubic convolution method as the resampling method. The
NPP-VIIRS night-time light data obtained include fires, aurora, and other noises. Therefore,
it needs to be radiated to eliminate the influence of background noise. The process of
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radiant correction can be referred to in [36]. Load the data to be corrected in ENVI and use
the RPC orthorectification workflow tool for correction. First, select the average radiance
value of the cloud in the low reflectivity area of the sea surface as the calibration value for
removing scattered light, and then subtract the calibration value from the entire image to
remove the cloud scattering. Second, using the method of adjacent aberrations, a threshold
was set to obtain a stable surface area, and the obtained stable surface area was used as a
mask, and the radiation value of the mask area was statistically analyzed. Finally, three
times the average radiation value of the statistical analysis was taken as the confidence
interval to remove the surface scattered light. After radiant correction, effective night-time
light data can be obtained. Then, use the data after geometric correction and radiometric
correction to synthesize the 2018 annual average data. The calculation formula is:

DNj =

12
∑

i=1
DNi

12
, (1)

where DNi represents the light brightness value in month i, and DNj represents the average
light brightness value in year j.

 

Figure 2. Flowchart of the methodology.

After synthesizing the 2018 NPP-VIIRS annual data, we used the administrative
divisions of Yunnan Province as a mask to trim the night-time light data to obtain the study
area. In order to make subsequent research more convenient, the coordinates were unified
into the Lambert projection based on WGS_1984. Finally, using the cubic convolution
interpolation method to resample the NPP-VIIRS data to a grid size from the original pixel
size of 500 m × 500 m to 1000 m × 1000 m, and obtained stable night light data in 2018.
The results are shown in Figure 3.
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Figure 3. Data processing results of NPP-VIIRS in 2018.

2.2.2. Construction of the Development Index of Various Ethnic Minorities

Gelling stated that toponyms are “road signs to understand the past” [37] as toponyms
are used to indicate the names of specific geographic areas and contain rich information
such as the ethnic type of the local residents and the interpretation of the geographical en-
vironment by local people at the time of naming [38,39]. Studying toponyms is the basis for
understanding the national culture and local characteristics of a region [40]. From toponym
data, the ethnic types, language and culture, and religious beliefs of a region [41], spatial
location, and the environmental evolution process related to history [42,43], environment,
and landforms [44] can be extracted. This is of great significance for understanding ethnic
minority settlements and the distribution of ethnic minorities.

The national census is a census about the population of the whole country. The
contents of the census mainly include gender, age, ethnicity, etc. The subjects of the census
are mainly natural persons living in the People’s Republic of China (except Hong Kong,
Macau, and Taiwan). From the census data, information about ethnic minorities can be
extracted such as the place of residence of the ethnic minority population, and information
about the proportion of the ethnic minority population can also be further extracted.

The distribution of ethnic minorities in China mainly shows the distribution of “large
mixed residences and small settlements”. Therefore, the toponym of ethnic minorities will
be unevenly distributed, and the toponym data obtained are discrete measured values.
Kernel density estimation (KDE) is used to calculate the unit density of the measured value
of point and line elements within a specified area. It can intuitively reflect the distribution
of discrete measured values in a continuous area. Kernel density estimation can obtain the
weighted average density of all data points in the study area [45]. The weight assigned
is related to the distance of the center point of the data point. The farther away from
the center point, the smaller the weight is assigned, and vice versa [46]. The formula for
calculating the kernel density Pi at any point i in space is:

Pi =
1

nπR2 ×
n

∑
j=1

Kj

(
1 −

D2
ij

R2

)2

, (2)

where R is the search radius (bandwidth) of the selected area (Dij < R); Kj is the weight of
the research data point j; Dij is the distance between the space point i and the research data
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point j; and n is the number of research data points j within the search radius R. The search
radius R has a direct impact on the results of kernel density analysis [47].

In this study, 25 ethnic minority geographic names were used for kernel density
analysis. Because the area of an ethnic minority gathering area in the study area is about one
square kilometer. According to this feature, through comparative analysis, the search radius
of kernel density estimation is constantly changed, and finally, it was found that when
the search radius was 1000 m, the effect was better, and can distinguish ethnic minority
gathering areas. Considering that there are places with ethnic minority toponyms, but no
ethnic minorities living in them, this paper used census data to calculate the proportion
of 25 ethnic minorities in the study area, and obtained a grid map of the proportion of
25 ethnic minorities for future use.

The development of a region or a nation is often affected by many factors such as pop-
ulation, economy, environment, geographical location, etc. In addition, there are differences
in the development of different regions of the same ethnic group and between different
ethnic groups in the same region. Therefore, it is necessary to construct a development
index that can reflect this difference in order to quantitatively analyze the development
of ethnic minorities. This article used population, toponym data, and NPP-VIIRS data
combined with the literature [48,49] as well as the formula form of the spatialization of
population data to propose a method to calculate the development index of various ethnic
minorities. The calculation formula is shown in Equation (3):

CPSi =
√

PRi × KDEi × NPPi (3)

where CPSi is the development index of minority i; PRi is the population proportion of
minority i; KDEi is the kernel density analysis result of minority i; and NPPi is the night
light radiance value of minority i.

2.2.3. Distribution of Ethnic Minorities

In order to clearly understand the distribution of each ethnic group, we used the
obtained ethnic development index combined with ethnic toponym data. We used the
2018 NPP-VIIRS data as a base map, and used the point method to show the distribution
of 25 ethnic minorities. Due to the large number of ethnic minorities, it was difficult to
distinguish between ethnic groups using only different colors. This paper applied the
literature [50] on the classification of language affiliation, and used the language branches of
different ethnic minority languages to classify 25 ethnic minorities into 13 categories. Since
the 13 categories were difficult to distinguish on the map, the 13 categories were merged
into six categories based on the language branch classification. The specific classification is
shown in Table 2.

Table 2. Language branch classification.

Branch Ethnic Minority

Yi Branch Yi, Lisu, Naxi, Bai, Lahu, Hani, Jinuo
Zhuang and Dai Branch Zhuang, Buyi, Dai

Tibetan Branch Tibetan
Jingpo Branch Jingpo, Dulong

Chinese Branch Hui, Manchu

Other Languages

Achang (Burmese branch), Shui (Dong Shui branch),
Pumi; Nu; Mongolian, Deang (Undecided language),
Miao (Miao branch), Yao (Yao branch), Wa; Bulang

(Benglong language branch)

Since the development index of the Yi nationality was the highest, but less than
30, the 0–30 was divided into five categories by the equal interval: higher development
index, high development index, medium development index, low development index,
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and lower development index. According to the development index range of each type of
development level, 25 ethnic minority development indexes were classified.

3. Results and Accuracy Verification

3.1. Ethnic Minority Development Index

In order to better reflect the development index of ethnic minorities, this article
selecteed the Yi, Wa, Zhuang, Naxi, Hani, and Dai, six ethnic minorities with higher
development indexes, for cartographic analysis. By comparing the development index
calculated by Equation (3), and reference [49], the natural fracture method can most
appropriately group similar values and maximize the difference between each class, so we
compared the three methods of using the natural breaks method, average classification
method, and manual breaks method, and found that the method using natural breaks
method worked the best. This article divided the development index into five categories.
The first category indicates areas with extremely poor development of the ethnic minorities,
which are directly regarded as areas without the distribution of ethnic minorities. The
second category indicates areas with poor development of the ethnic minority. The third
category indicates areas with a moderate development. The fourth category indicates areas
where the ethnic minority has developed well. The fifth category indicates areas with
excellent development of the ethnic minority. The results are shown in Figures 4–9.

Figure 4. Yi nationality development index classification results.

It can be seen from Figures 4–9 that among the six ethnic minorities with high develop-
ment indexes in Yunnan Province, the development indexes from high to low were: Yi, Wa,
Zhuang, Naxi, Hani, and Dai. Moreover, the development index of Hani and Dai, Zhuang
and Naxi were not much different. In other words, among the six ethnic minorities, the Yi
ethnic group had the best development (the Yi ethnic group had the highest development
index, and there were many areas with high development indexes), and the Dai ethnic
group had the worst development compared to the other five ethnic minorities.

It can be seen from Figure 4 that the Yi nationality was distributed almost throughout
Yunnan Province. The areas with higher Yi development index were: (1) the northeast
area of Nanjian Yi County in Dali Bai Prefecture and the east area of Weishan Yi Hui
County; (2) the eastern part of Chuxiong City, Chuxiong Yi Prefecture; (3) the junction of
Wuhua District, Xishan District, Guandu District, and Panlong District of Kunming City,
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the western part of Shilin Yi County, and the southern part of Luquan Yi and Miao County;
(4) the southeast area of Eshan Yi County, Yuxi City, and the east area of Yuxi City; and
(5) the northern area of Mile County, the western area of Kaiyuan City, the western area of
Mengzi County, and the eastern area of Gejiu City in Honghe Hani and Yi Prefecture.

Figure 5. Wa nationality development index classification results.

Figure 6. Zhuang nationality development index classification results.

158



Remote Sens. 2021, 13, 2129

Figure 7. Naxi nationality development index classification results.

Figure 8. Hani nationality development index classification results.

It can be seen from Figure 5 that the distribution of the Wa nationality had regional
characteristics, mainly in Cangyuan Wa County in Lincang City and Ximeng Wa County in
Pu’er City. Between them, the Wa development index was the highest in the southern area
of Cangyuan Wa County.

It can be seen from Figure 6 that the Zhuang nationality was mainly distributed in
Wenshan Zhuang and Miao Prefecture. The areas with higher Zhuang development index
were: (1) Qiubei County and the central area of Yanshan County; (2) the northern part of
Funing County; and (3) the northwestern part of Guangnan County.

159



Remote Sens. 2021, 13, 2129

Figure 9. Dai nationality development index classification results.

It can be seen from Figure 7 that the Naxi nationality was mainly distributed in the
western region of Lijiang City. The development index of the Naxi nationality was higher
in the southern area of Lijiang urban and the southern area of Yulong Naxi County.

It can be seen from Figure 8 that the Hani nationality was mainly distributed in
Xishuangbanna Dai Prefecture, southwest of Honghe Hani and Yi Prefecture, and southeast
of Pu’er City. The areas with higher Hani development index were: (1) the western area of
Jinghong City and the eastern area of Menghai County; (2) the central area of Hani and Yi
County in Jiangyu; and (3) Honghe County, Yuanyang County, and Luchun County. It has
the characteristics of not being concentrated and more scattered.

It can be seen from Figure 9 that the Dai nationality was mainly distributed in Dehong
Dai Jingpo Prefecture, Lincang City, Xishuangbanna Dai Prefecture, Pu’er City, Baoshan
City, and the western area of Yuxi City. The areas with higher Dai development index were:
(1) Yingjiang County and Ruili City’s southern area, and Mang City’s central area; (2) the
central area of Menghai County and Jinghong City; (3) Lincang city center and the central
area of Gengma Dai and Wa County; (4) the central area of Yuanjiang County; and (5) the
central areas of Menglian County, Lancang County, and Jinggu County.

3.2. Ethnic Minority Distribution Results

We used the method of in Section 2.2.3 to obtain the distribution results of 25 ethnic
minorities in Yunnan Province (Figure 10).

It can be seen from Figure 10 that the coverage of the Yi ethnic group was the widest,
involved the most counties, and was concentrated in Chuxiong Prefecture, the southeastern
area of Qujing City, and the northern area of Kunming. The Jingpo branch is mainly
distributed in Dehong Prefecture and Gongshan County. Zhuang Dai language branch was
mainly distributed in Wenshan Prefecture, Dehong Prefecture, Xishuangbanna Prefecture,
and Lincang Prefecture. The Chinese branch was mainly distributed in Zhaotong City and
Baoshan City. Other language branches were mainly distributed in the east of Zhaotong
and the north of Zhaotong, the east of Wenshan Prefecture, Nujiang Prefecture, Lijiang City,
Dehong Prefecture, Xishuangbanna Prefecture, and the south of Lincang Prefecture.
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Figure 10. Distribution of ethnic minorities in Yunnan Province.

From the perspective of development index, the higher developed ethnic minority
was the Yi. The high-developed index ethnic minorities included the Naxi, Zhuang, and
Wa. The medium-developed ethnic minorities included the Hani, Bai, Lahu, Lisu, Dai, and
Tibetan. The low-developed ethnic minorities included the Jingpo, Jinuo, Buyi, Achang,
Nu, and Shui. The lower-developed ethnic minorities included Dulong, Bulang, Pumi,
Miao, Hui, Manchu, De’ang, Yao, and Mongolian.

From the perspective of the language branch, the overall development index of ethnic
minorities in the Yi, Zhuang, Dai, and Tibetan branch was relatively high, which may be
related to the inheritance and development of these language branches.

Several ethnic minorities lived together in most areas. Among them, the mixed living
of ethnic minorities in Dehong Prefecture was more obvious. Areas where the phenomenon
of multi-ethnic mixed living was more obvious were: (1) Zhaotong City has mixed living
of Yi branch, Chinese Branch, and other languages; (2) Funing County and Guangnan
County in Wenshan Prefecture had mixed living of the Zhuang and Dai branch, and
other languages; (3) Fumin County in Kunming City had mixed living of the Yi branch,
Chinese Branch, and other languages; (4) Mengla County in Xishuangbanna Prefecture
had mixed living of the Zhuang and Dai branches and other languages. (5) Jinghong City
in Xishuangbanna Prefecture has mixed living of Zhuang and Dai branches and other
languages, Yi branch, and Jingpo branch; (6) Longchuan County in Dehong Prefecture
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had mixed living of Zhuang and Dai branches, other languages, and Jingpo branch; (7)
Yingjiang County in Dehong Prefecture had mixed living of Zhuang and Dai branches,
other languages, Yi branch, and Jingpo branch; and (8) Lushui County in Nujiang Prefecture
had mixed living of other languages and the Yi branch.

There are currently 25 ethnic minorities in Yunnan Province, among which the Yi
nationality is the most widely distributed and relatively scattered. Among the six selected
ethnic minorities with the highest development index, from the perspective of each de-
velopment index, the Yi nationality’s development index was the highest, reaching 28.86
(to two decimal places). The Wa nationality had the second development index, reaching
19.60, but was far from the Yi nationality, which had the highest ranked development
index. The Zhuang nationality had the third development index, reaching 18.38. The Naxi
nationality had the fourth development index, reaching 18.11. The Hani nationality had
the fifth development index, reaching 15.28. The Dai nationality’s development index was
the lowest at 15.22.

From the perspective of the relationship between the development index of each ethnic
group and the geographic location of the ethnic group: the six areas with higher develop-
ment indexes of ethnic minorities were located in the corresponding ethnic minority states,
counties, or the city center of each city. Ethnic minorities had the highest development
index in their corresponding minority prefecture or county, and the further the distance
from the minority prefecture or county, the smaller the development index. The minority
development index decreased as the distance between the minority nationality and its core
development zone increased.

From the perspective of the relationship between each ethnic development index
and the corresponding ethnic minority prefecture and county, areas with a higher ethnic
development index were concentrated in the ethnic minority prefecture or county, but the
development of the ethnic minority in the prefecture was better than that in the county.

3.3. Accuracy Verification

In order to verify the correctness of the development index calculated by the method
used in this article, the method used in this article was compared with the method of the
traditional research statistical yearbook. Considering that the development of a region is
affected by many factors such as rural population, urban population, employment rate,
average resident salary, etc., it is difficult to verify the correctness of the results of this
article by selecting only one indicator. Comprehensively referenced in [51–53], this article
selected eight indicators for the study area from 2013 to 2018. These were the total output
value of agriculture, forestry, animal husbandry, and fishery in each county, and the per
capita disposable income of rural residents in each county. County GDP per capita, GDP
index of each county, rural employees in each county, rural population in each county,
average salary of employees in each county, and number of employees in each county.
Since the magnitudes of the eight indicators were different, the indicators were normalized
first. The normalized formula is shown in Equation (4):

X =
x − min

max – min
, (4)

where X is the standardized result of the index; x is the original value of the index; max is
the maximum value of the sample data; and min is the minimum value of the sample data.

After obtaining the normalized results of the indicators, a comprehensive development
index was established according to the method of establishing a comprehensive poverty
index in the literature [53,54]. First, the entropy method was used to determine the weight
of the eight indicators. In the entropy method, the larger the amount of information,
the smaller the uncertainty of the information, and the smaller the entropy value, so the
greater the weight. Using the entropy method to calculate the weight of each indicator, we
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can obtain the comprehensive development index. The calculation formula is shown in
Equations (5)–(8):

Z =
n

∑
i=1

wj ∗ Xi, (5)

fij =
yij

m
∑

i=1
yij

, (6)

Hj = −(1/lnm)
m

∑
i=1

fij ln fij, (7)

wj =
(1 − Hj)

n
∑

j=1
(1 − Hj)

, (8)

where fij is the index value weight of the i evaluation object under the j index; m is
the 129 counties included in the study area; n is the eight indicators to construct the
comprehensive development index; Z is the comprehensive development index; Xi is the
standardized result of i evaluation object; Hj is the entropy value of the j index; and wj is
the weight of the j index.

The weights of the eight indicators in 2013–2018 calculated by the formula are shown
in Table 3 (with four decimal places).

Table 3. The calculation results of the weight of each indicator from 2013 to 2018.

Indicators
Year

2013 2014 2015 2016 2017 2018

GDP per capita 0.1446 0.1401 0.1350 0.1304 0.1321 0.1330
GDP Index 0.0419 0.0152 0.0252 0.0183 0.0144 0.0277

Number of employees 0.3597 0.3630 0.3752 0.3732 0.3755 0.3716
Average salary of employees 0.0057 0.0059 0.0052 0.0086 0.0090 0.0093

Per capita disposable income of rural
residents 0.0171 0.0239 0.0232 0.0230 0.0225 0.0222

Total output value of agriculture, forestry,
animal husbandry and fishery 0.1569 0.1503 0.1456 0.1453 0.1444 0.1438

Rural population 0.1636 0.1646 0.1649 0.1667 0.1641 0.1665
Rural workers 0.1520 0.1507 0.1507 0.1526 0.1523 0.1533

According to the calculation results of the weight of each index, the comprehensive
development index of each county in the study area was obtained, as shown in Table 4.

Table 4. The results of the comprehensive development index of each county from 2013 to 2018.

County
Year

2013 2014 2015 2016 2017 2018

Wuhua 0.5565 0.4184 0.4553 0.5595 0.5919 0.5626
Panlong 0.4935 0.5719 0.4175 0.5943 0.4999 0.5973
Guandu 0.4058 0.5501 0.5886 0.5818 0.5571 0.5577
Xishan 0.4362 0.5920 0.3979 0.3641 0.5711 0.3423

Dongchuan 0.2069 0.1855 0.1970 0.1763 0.1263 0.1595
Chenggong 0.1706 0.2412 0.3289 0.5510 0.5790 0.5906

Jinning 0.2200 0.1880 0.1278 0.1258 0.1740 0.1603
Fumin 0.0309 0.1454 0.1275 0.0793 0.0285 0.1881
Yiliang 0.0802 0.1650 0.1813 0.2292 0.2224 0.2432
Shilin 0.1635 0.3860 0.0723 0.1983 0.1256 0.1756

Songming 0.2307 0.1250 0.1700 0.1531 0.2550 0.2424
Luquan 0.1190 0.0354 0.0404 0.2198 0.0635 0.0625
Xundian 0.0482 0.0228 0.1243 0.1005 0.0759 0.0975
Anning 0.1812 0.0925 0.1538 0.2232 0.2606 0.2492

163



Remote Sens. 2021, 13, 2129

Table 4. Cont.

County
Year

2013 2014 2015 2016 2017 2018

Qilin 0.2941 0.2193 0.2126 0.3072 0.2386 0.2395
Malong 0.1123 0.1928 0.1693 0.0839 0.1293 0.2136
Luliang 0.1289 0.1170 0.0310 0.0507 0.1856 0.0680
Shizong 0.0929 0.0283 0.1104 0.0220 0.0602 0.1154
Luoping 0.0533 0.0200 0.1049 0.1091 0.1217 0.1467
Fuyuan 0.1455 0.1421 0.1275 0.1070 0.1327 0.1951
Huize 0.1337 0.1262 0.0275 0.0728 0.0610 0.0458
Zhanyi 0.1868 0.1564 0.1065 0.0506 0.0582 0.1565

Xuanwei 0.1228 0.1014 0.1931 0.0926 0.1288 0.1064
Hongta 0.3898 0.2574 0.2017 0.2177 0.3029 0.2844

Jiangchuan 0.2124 0.2147 0.1954 0.1948 0.2097 0.2263
Chengjiang 0.2890 0.2553 0.2037 0.1633 0.2272 0.2198

Tonghai 0.1425 0.0818 0.1842 0.2408 0.2071 0.2459
Huaning 0.0806 0.0789 0.1427 0.0529 0.1255 0.1587

Yimen 0.0270 0.1556 0.1092 0.0388 0.0239 0.1186
Eshan 0.1073 0.1150 0.0641 0.1003 0.0377 0.1089

Xinping 0.0507 0.1436 0.0201 0.0203 0.1204 0.1154
Yuanjiang 0.0563 0.0205 0.0623 0.0751 0.0713 0.1310
Longyang 0.0422 0.0615 0.1098 0.0220 0.0541 0.0646

Shidian 0.0196 0.0898 0.0342 0.0203 0.0542 0.1068
Tengchong 0.0290 0.0575 0.0766 0.0439 0.0550 0.1588
Longling 0.1197 0.0751 0.0888 0.0423 0.0244 0.0209

Changning 0.0450 0.0403 0.0283 0.0782 0.0783 0.1131
Zhaoyang 0.1454 0.0551 0.1440 0.1380 0.1399 0.1832

Ludian 0.0938 0.1802 0.1376 0.1312 0.1831 0.2062
Qiaojia 0.1017 0.0723 0.0385 0.0712 0.0211 0.1004
Yanjin 0.0391 0.0204 0.0759 0.0422 0.1075 0.1131

Daguan 0.1040 0.0895 0.0613 0.1594 0.1380 0.1172
Yongshan 0.1071 0.1135 0.0575 0.1412 0.0964 0.0843
Suijiang 0.1458 0.0706 0.0896 0.0864 0.0877 0.0756

Zhenxiong 0.0600 0.0408 0.0878 0.0424 0.0297 0.0558
Yiliang 0.1195 0.1198 0.1100 0.0821 0.0885 0.1049
Weixin 0.0859 0.0209 0.0809 0.1667 0.1223 0.0757
Shuifu 0.0223 0.0302 0.0634 0.0380 0.0706 0.1554

Gucheng 0.0924 0.0613 0.0887 0.0946 0.1542 0.1332
Yulong 0.0197 0.0201 0.0578 0.0211 0.0302 0.0342

Yongsheng 0.0447 0.0215 0.0626 0.0393 0.0251 0.0568
Huaping 0.0271 0.0917 0.0322 0.0201 0.0556 0.0243
Ninglang 0.0247 0.0216 0.0632 0.0393 0.1433 0.0790

Simao 0.0651 0.0913 0.0317 0.0801 0.0302 0.0564
Ning’er 0.0214 0.0308 0.0895 0.0216 0.0480 0.1134
Mojiang 0.0253 0.0327 0.0297 0.0344 0.0605 0.0199
Jingdong 0.0474 0.1037 0.0204 0.1062 0.1195 0.0205

Jinggu 0.1055 0.1084 0.0374 0.0449 0.0464 0.0528
Zhenyuan 0.0360 0.0397 0.0409 0.0687 0.0601 0.0623
Jiangcheng 0.0264 0.0302 0.0202 0.0435 0.1008 0.0237
Menglian 0.0294 0.0202 0.0457 0.0207 0.0453 0.0267
Lancang 0.0671 0.0458 0.0204 0.0510 0.0640 0.1807
Ximeng 0.0813 0.0196 0.0208 0.0767 0.0207 0.2507
Linxiang 0.0295 0.0204 0.1297 0.0450 0.0535 0.0206
Fengqing 0.0199 0.1145 0.0513 0.0888 0.0207 0.1274
Yunxian 0.0334 0.0656 0.0211 0.0209 0.0321 0.0962
Yongde 0.0273 0.0264 0.0206 0.0403 0.1061 0.1245

Zhenkang 0.1196 0.0242 0.1059 0.0640 0.0198 0.0520
Shuangjiang 0.0833 0.0486 0.0206 0.0440 0.0528 0.0883

Gengma 0.0389 0.0459 0.0480 0.0325 0.0205 0.0563
Cangyuan 0.0317 0.0201 0.0312 0.0276 0.0352 0.0569
Chuxiong 0.0251 0.0231 0.1089 0.0338 0.2816 0.1152
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2013 2014 2015 2016 2017 2018

Shuangbo 0.0299 0.0536 0.0210 0.1057 0.0997 0.0580
Mouding 0.1196 0.0204 0.1000 0.1567 0.2166 0.1957
Nanhua 0.0581 0.0204 0.1086 0.0968 0.1148 0.1205
Yao’an 0.0496 0.0685 0.0392 0.0620 0.0336 0.0608
Dayao 0.0471 0.0208 0.0578 0.0443 0.0625 0.0219

Yongren 0.0384 0.0339 0.0499 0.0897 0.0200 0.0800
Yuanmou 0.0200 0.0208 0.0824 0.0914 0.0456 0.0410
Wuding 0.0621 0.0281 0.0825 0.0366 0.0553 0.2346
Lufeng 0.0287 0.0322 0.0937 0.0561 0.1170 0.1709
Mengzi 0.0761 0.0203 0.0214 0.0760 0.1079 0.0890
Gejiu 0.0284 0.1278 0.1015 0.0870 0.1264 0.1201

Kaiyuan 0.0455 0.1137 0.1624 0.1265 0.1662 0.1792
Mile 0.0906 0.1955 0.1257 0.1705 0.1895 0.1721

Pingbian 0.0353 0.0507 0.0206 0.0807 0.1048 0.0269
Jianshui 0.0201 0.0705 0.0245 0.0418 0.1063 0.0564
Shiping 0.0199 0.0380 0.1395 0.0611 0.1143 0.0946

Luxi 0.1447 0.0652 0.0994 0.0891 0.0717 0.0992
Yuanyang 0.0199 0.0638 0.0708 0.0309 0.0922 0.0706
Honghe 0.0230 0.1195 0.0217 0.0256 0.0238 0.1657
Jinping 0.0509 0.0202 0.0208 0.0207 0.0317 0.0206
Luchun 0.0477 0.0621 0.0290 0.0359 0.0618 0.0369
Hekou 0.0678 0.0488 0.0540 0.0390 0.0466 0.0206

Wenshan 0.1196 0.0734 0.0784 0.0527 0.1758 0.1454
Yanshan 0.0590 0.0655 0.0204 0.0804 0.0204 0.1157
Xichou 0.1082 0.0495 0.0737 0.0613 0.0949 0.1313
Malipo 0.1195 0.1039 0.0898 0.0211 0.1296 0.2052

Maguan 0.0538 0.0537 0.0206 0.0208 0.0878 0.1211
Qiubei 0.0212 0.0522 0.0347 0.0264 0.0746 0.0210

Guangnan 0.1195 0.0275 0.0352 0.0208 0.0579 0.0204
Funing 0.0200 0.0202 0.0390 0.0370 0.0244 0.0225

Jinghong 0.0339 0.0985 0.1048 0.1219 0.1242 0.0996
Menghai 0.0286 0.0216 0.0309 0.0324 0.0738 0.0533
Mengla 0.0546 0.1012 0.1310 0.1316 0.0516 0.1163

Dali 0.2015 0.1204 0.2399 0.2192 0.1301 0.1922
Yangbi 0.0202 0.0489 0.0407 0.0577 0.1129 0.0841

Xiangyun 0.0971 0.0307 0.0752 0.0860 0.1438 0.1869
Binchuan 0.0358 0.1710 0.0278 0.0977 0.1210 0.0878

Midu 0.0577 0.1017 0.0822 0.1511 0.0946 0.1239
Nanjian 0.0218 0.0967 0.0246 0.0510 0.1526 0.0868
Weishan 0.0534 0.1220 0.0705 0.1026 0.0599 0.0919

Yongping 0.0740 0.0848 0.0351 0.0952 0.0422 0.0622
Yunlong 0.0422 0.1352 0.0734 0.1527 0.1387 0.2176
Eryuan 0.0214 0.0419 0.0310 0.0206 0.0202 0.1260

Jianchuan 0.0379 0.0366 0.0211 0.0832 0.1196 0.0851
Heqing 0.0715 0.0213 0.0658 0.0636 0.0688 0.0851

Mangshi 0.0200 0.1012 0.1463 0.1428 0.1542 0.0607
Ruili 0.0626 0.1126 0.0557 0.0518 0.1487 0.2090

Lianghe 0.0343 0.1255 0.0221 0.0202 0.1423 0.1570
Yingjiang 0.1195 0.0694 0.1095 0.0374 0.2701 0.0613

Longchuan 0.0256 0.0949 0.0204 0.0198 0.0495 0.1184
Lushui 0.0209 0.0219 0.0874 0.1034 0.0254 0.0943
Fugong 0.0289 0.0288 0.0217 0.0427 0.0465 0.0644

Gongshan 0.0204 0.0498 0.0332 0.1214 0.0707 0.0924
Lanping 0.0272 0.0383 0.0282 0.0199 0.0686 0.0912

Shangri-La 0.3128 0.4385 0.2572 0.4639 0.4023 0.4179
Deqin 0.0506 0.0309 0.0282 0.0950 0.0798 0.0859
Weixi 0.0772 0.0261 0.0730 0.1198 0.0490 0.0460
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Using the method developed in this article to calculate the comprehensive develop-
ment index of all ethnic minorities and Han nationality in the study area from 2013 to 2018,
we performed district statistics on the development index of each county on ArcMap, and
took the average value of the development index of each county as the statistical value.
The development index of each county from 2013 to 2018 is shown in Table 5.

Table 5. The development index result calculated by the method in this paper.

County
Year

2013 2014 2015 2016 2017 2018

Wuhua 2333.1825 2339.1373 2376.7834 2394.4854 2415.8620 2448.1288
Panlong 2470.0052 2554.7521 2333.1047 2404.9305 2504.0174 2511.2501
Guandu 2170.9487 2259.7741 2353.8594 2381.0156 2449.4958 2561.8397
Xishan 1621.7904 1784.9426 1598.3018 1565.5310 1597.4138 1602.9692

Dongchuan 960.6572 994.8467 742.9193 836.3549 854.5164 934.8275
Chenggong 943.5753 1076.5617 1205.3264 2298.8631 2363.8025 2420.8939

Jinning 595.8789 627.4076 688.4572 711.8920 830.7505 850.9899
Fumin 612.8931 695.4732 746.5198 784.6463 789.6833 897.2893
Yiliang 625.2049 761.7744 830.1322 886.5681 962.0898 996.5625
Shilin 766.8347 789.6061 794.6279 825.1524 891.7881 985.6760

Songming 899.6777 927.3485 946.6784 973.7795 1107.7790 1056.7363
Luquan 320.2183 364.9809 400.2450 438.9507 448.5508 576.7864
Xundian 517.4374 522.8907 539.6836 574.8628 601.3995 746.0349
Anning 945.3103 955.8508 957.5187 1008.2649 1050.5527 1084.9657

Qilin 1069.2507 1084.1809 1090.9449 1116.4519 1172.8232 1240.0189
Malong 649.2351 693.1274 712.2659 729.2838 757.7143 860.7674
Luliang 543.4304 554.4877 576.5027 589.5539 595.1228 638.4553
Shizong 483.0773 485.1854 500.8513 519.5551 526.3722 657.7111
Luoping 491.1515 417.1506 518.5569 531.6147 554.2872 672.6678
Fuyuan 633.7029 641.5798 652.7819 663.3065 674.2953 782.7485
Huize 617.1130 647.3857 481.3886 507.0445 558.0216 605.9378
Zhanyi 600.3138 635.8879 660.7369 673.4620 696.3811 843.4202

Xuanwei 623.7029 656.5798 662.7819 673.3065 684.2953 796.7485
Hongta 1276.6486 1310.7777 1255.3083 1207.8354 1358.3035 1377.4974

Jiangchuan 897.7480 912.4791 947.5681 952.9043 1104.6690 1133.9384
Chengjiang 1004.5388 1031.805437 1047.223082 1074.157544 1149.89266 1157.818511

Tonghai 883.0552 919.5813 957.5814 990.6898 1062.5763 1117.2477
Huaning 585.7714 595.2825 640.7928 658.2505 715.3348 811.3422

Yimen 494.4001 511.3989 532.8776 551.4176 555.8165 693.6572
Eshan 489.2267 549.9414 580.4157 593.6294 615.8568 664.5724

Xinping 260.6868 421.3788 415.0625 415.7112 453.7176 537.3233
Yuanjiang 486.8459 539.9640 559.4845 596.8433 624.0441 689.0722
Longyang 433.3167 507.6858 521.9453 535.2050 590.8690 664.5847

Shidian 297.5054 455.6399 417.2362 473.0716 502.3391 582.7547
Tengchong 381.8499 569.4589 552.5687 604.0656 669.7669 753.0422
Longling 283.7437 472.8197 460.4084 499.1058 498.2598 612.5852

Changning 299.6858 441.3997 467.5553 447.8070 469.2807 565.8577
Zhaoyang 803.7647 813.1024 880.7033 856.9120 885.1878 954.2087

Ludian 640.0504 697.3706 741.4808 756.5885 772.3398 868.5031
Qiaojia 461.1212 479.4775 498.7038 540.6888 592.3084 670.8998
Yanjin 427.3850 495.8935 540.4706 557.9826 565.5458 616.2725

Daguan 529.7191 622.5744 655.1364 689.8198 755.0185 767.3721
Yongshan 696.0273 684.1769 741.3797 744.1170 810.3069 884.5728
Suijiang 626.3479 600.9896 614.0467 641.6444 706.0032 718.7469

Zhenxiong 448.4068 454.1750 578.5055 497.7722 473.2344 564.0579
Yiliang 455.5056 426.6301 535.4907 578.2334 588.6284 642.6751
Weixin 649.2141 576.1327 623.3148 665.7798 808.1880 817.0238
Shuifu 477.7044 536.3990 554.4428 565.6362 624.9817 672.7901

Gucheng 715.5696 656.3005 791.5617 844.6705 659.9559 730.8966
Yulong 249.8526 278.7471 289.6164 322.6217 348.7171 434.7898

Yongsheng 306.8789 315.7225 339.0830 358.6972 367.6797 455.4456
Huaping 398.2136 435.1668 448.9292 465.1374 473.1283 529.3849
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Ninglang 483.3725 499.1192 503.1318 532.7423 568.5116 556.7700
Simao 262.0737 378.4076 411.3063 423.9178 428.7674 515.5211

Ning’er 205.7700 345.3506 377.4181 363.9567 380.2126 492.3221
Mojiang 294.4344 320.0161 345.7805 360.6149 368.5020 492.5927
Jingdong 285.6620 323.7440 442.4544 445.8952 451.9286 557.7185

Jinggu 204.1723 204.5097 286.7719 300.7873 279.4673 347.8470
Zhenyuan 316.8741 345.1779 366.7534 369.0427 369.2104 463.5557
Jiangcheng 259.2867 353.5767 385.5516 390.8240 468.7765 490.3128
Menglian 214.4475 261.5678 354.3153 353.2323 388.4604 440.2223
Lancang 111.0612 131.2043 226.3668 288.6047 273.7476 333.1441
Ximeng 112.9200 172.0400 326.1849 337.2044 349.1749 407.7943
Linxiang 306.9635 462.6050 515.0650 507.7827 502.8663 588.0734
Fengqing 380.4210 587.8980 589.8904 608.2613 611.0447 714.5013
Yunxian 315.0365 499.6152 461.8195 532.8510 521.2354 619.7606
Yongde 226.1955 423.5674 434.0769 478.3543 459.3394 528.0003

Zhenkang 297.1114 355.5066 364.0461 370.0390 376.3777 433.9040
Shuangjiang 227.5567 287.2707 326.3009 387.4047 401.0221 468.4001

Gengma 217.7960 347.9124 396.2941 372.3042 356.5077 406.0964
Cangyuan 160.4840 309.5874 338.4399 339.9750 354.0869 416.7235
Chuxiong 433.2826 645.2557 653.4692 657.8736 681.1811 837.8980
Shuangbo 252.8526 303.8850 379.6348 390.3115 407.8300 520.8493
Mouding 310.4608 560.9061 615.7034 638.1917 696.1406 832.3970
Nanhua 480.4072 505.4462 609.2866 625.6880 638.3771 782.9123
Yao’an 209.0912 390.8838 467.7279 486.7033 523.6015 651.2314
Dayao 252.5988 349.5919 369.2466 413.5369 424.8047 538.7005

Yongren 345.9574 362.8734 373.2791 374.4745 446.5159 482.9805
Yuanmou 339.6947 476.3847 520.1060 529.2911 571.1880 670.1142
Wuding 247.2879 375.7019 384.2886 436.3690 459.5321 573.1000
Lufeng 478.5784 580.9119 586.9430 591.4193 655.7322 748.1127
Mengzi 457.9591 464.1473 470.5014 506.2215 511.0077 613.6647
Gejiu 572.3553 600.1590 591.4074 642.3799 690.1944 748.6155

Kaiyuan 668.0048 673.1953 604.3685 624.1396 766.4539 826.0011
Mile 671.0291 722.1276 726.0442 747.2656 792.8220 868.9230

Pingbian 305.4681 375.1979 417.6111 443.0900 444.3564 572.0882
Jianshui 399.9278 458.7829 479.0721 504.5566 511.8208 618.5614
Shiping 321.6694 424.4328 438.0587 446.9695 470.7730 563.0486

Luxi 592.6135 609.4124 631.0997 645.3875 709.2802 801.2388
Yuanyang 333.5136 363.3037 451.0659 478.7271 523.0667 617.0672
Honghe 258.5071 372.6793 447.6026 464.3542 490.1732 609.1840
Jinping 204.2935 221.5390 339.2894 356.5964 360.8186 465.1307
Luchun 91.9753 243.7047 264.9559 309.4107 322.8647 434.3615
Hekou 272.5834 350.7499 384.7263 391.4023 396.9577 475.4815

Wenshan 474.0788 490.4182 499.7623 533.9054 594.8506 672.3611
Yanshan 421.5922 437.0946 445.0354 464.4252 494.4376 596.4948
Xichou 508.0878 515.4572 575.0413 617.1873 628.6801 727.9660
Malipo 266.5631 402.8942 460.5780 461.5752 485.8210 588.7415

Maguan 293.9284 356.8797 399.5391 404.3396 448.7799 523.6682
Qiubei 331.6157 347.3116 384.0514 401.5665 404.9738 504.4938

Guangnan 266.2608 293.2710 311.7878 352.7943 359.1112 454.3619
Funing 240.5025 324.5929 340.5920 348.3029 363.3480 485.1750

Jinghong 399.9671 410.0248 452.5865 539.5053 556.8493 620.9858
Menghai 229.7981 276.6386 298.5195 306.0052 308.7728 339.3909
Mengla 562.3500 597.2580 617.6430 697.8365 700.8417 782.5778

Dali 894.2742 929.0856 952.3336 972.2778 1017.5021 1054.9061
Yangbi 409.4086 504.7738 535.1718 541.4113 592.4125 669.4222

Xiangyun 521.8522 635.7725 637.0776 639.2351 659.8403 773.7537
Binchuan 477.8487 515.6735 532.8143 547.7162 554.5976 662.9385

Midu 515.8058 614.6749 661.6881 669.8814 676.4856 796.9106
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Table 5. Cont.

County
Year

2013 2014 2015 2016 2017 2018

Nanjian 410.8299 532.0153 545.4751 554.5118 581.0947 724.9630
Weishan 495.9411 521.2475 521.6193 521.8876 559.1663 680.8504

Yongping 440.5821 478.1848 494.3199 528.8982 518.7397 631.0074
Yunlong 598.6572 619.4169 655.4769 698.7190 716.7159 765.8410
Eryuan 365.9509 434.7853 446.9512 463.0531 471.9941 590.1621

Jianchuan 312.4686 377.2469 403.1285 427.2047 436.7856 538.2106
Heqing 398.3198 406.8919 437.4106 440.9969 508.3256 571.2813

Mangshi 568.9163 643.5718 655.0890 658.2708 709.8286 727.3277
Ruili 585.2299 621.4004 640.0733 722.0235 729.4622 804.0055

Lianghe 343.3566 495.8395 512.3878 525.5199 542.1922 656.7071
Yingjiang 361.4221 362.8221 365.1339 366.4192 386.2395 472.1552

Longchuan 396.3737 424.4385 447.7375 450.1162 503.5420 574.8163
Lushui 338.0632 425.1091 511.3545 528.6956 621.6195 678.0960
Fugong 281.9702 301.0313 317.7124 378.3484 428.1135 499.3321

Gongshan 449.5138 542.8045 564.2108 653.6538 657.6125 728.4643
Lanping 379.1665 394.9759 399.0575 403.1246 427.0084 492.5050

Shangri-La 1421.7904 1484.9426 1498.3018 1568.5310 1588.4138 1616.9692
Deqin 491.5996 556.1296 606.6776 630.9152 639.8685 696.2319
Weixi 378.2066 389.1270 389.1924 403.1409 415.1711 494.6600

Then, we performed linear regression analysis on the comprehensive development
index calculated by the traditional method and the development index calculated by the
method in this paper to obtain the regression analysis result, as shown in Equation (9) and
Figure 11.

y = 3294.3x + 275.43 (9)

where x is the development index calculated by the traditional method; y is the development
index calculated by the method in this paper; and R2 is the correlation coefficient of
the regression.

 

Figure 11. Linear regression results.
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It can be seen from Figure 11 that the regression coefficient R2 of the development
index calculated using the method of this article and the development index calculated
using the traditional method was 0.8116. When R2 is greater than 0.8, it can be considered
that the two variables are highly correlated. Therefore, the correctness of the method in
this paper was proven.

4. Discussion

4.1. Significance to the Development of Ethnic Minorities

There are obvious differences in the development of different ethnic minorities and
the development of the same ethnic minorities in different regions. This paper used the
relationship between night-time light remote sensing data, economy, and population to
establish the development index of ethnic minorities. The results can be analyzed by
(1) the size of development differences among different ethnic minorities; (2) differences of
the same minority in different minority prefectures and counties; and (3) the relationship
between the development index of various ethnic minorities and geographical location. The
factors in the ethnic development index model constructed in this paper can be changed,
and more factors can be added according to different research purposes. This lays the
foundation for the future development direction of ethnic minorities and the formulation
of development policies.

Compared with the traditional research on statistical yearbooks, the method in this
paper was faster, saved time, and could obtain the long-term national development status
in time. In this way, we can quickly understand the development of each nation in time and
space. For a multi-ethnic country, timely access to the development status of each ethnic
group is conducive to adjusting policies on ethnic population, economic, and other fields to
achieve coordinated and balanced development of all ethnic groups to the greatest extent,
thereby reducing ethnic conflicts. The method studied in this article can not only target
different ethnic groups, but can also be extended to different races and special groups (for
example, using the method of this article to study the development of Blacks and Whites,
and make a spatial distribution map), or different species. This is of great significance for
the sustainable development and coordinated development of the world.

We used the method described in this article to calculate the development index of all
ethnic groups in Yunnan Province, and used the natural discontinuity method to divide the
development index into five categories. The first category was excellent-developed areas,
the second category was well-developed areas, the third category was medium-developed
areas, the fourth category was poor-developed areas, and the fifth category was very
poor-developed areas. The classification results are shown in Figure 12.

4.2. The Relationship between National Development and Government

It can be roughly seen from the figure that the areas with higher national development
index were mainly concentrated in the center of the county. We then counted the average
distance from each type of grid to the nearest government by county. The average distance
from each type of grid to the nearest government is shown in Table 6.

Table 6. The relationship between the level of national development and its average distance to the
nearest government.

National Development Level
Average Distance to the Nearest Government

(Unit: m)

Excellent-Developed 3352.28
Well-Developed 4695.77

Medium-Developed 6043.98
Poor-Developed 8728.84

Very Poor-Developed 12,411.90
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Figure 12. Yunnan Province nationality overall development index.

It can be seen from Table 6 that the area with excellent ethnic development is the
closest to the local government. The farther the ethnic development zone is from the local
government, the smaller the development index. The area with excellent ethnic develop-
ment is about 3 km away from the local government, because in China, the development
circle of a region is basically centered on the government and spreads around that. With the
government as the center and a radius of 3 km, the higher the level of national development.
With the continuous increase in the radius, the lower the level of development. There-
fore, the government’s assistance has played a very important role in the development of
the nation.

First, we carried out regional statistics on the development index of each county, se-
lected the average development index of each county as the benchmark, and classified the
overall development index according to the county level. A grid map of the development
of each county was obtained. Then, we extracted the best-developed grid center in each
county, and calculated the distance between the grid center and the nearest local govern-
ment. Finally, the development of each county and the distance between the best-developed
areas of each county and the local government are shown on a map in Figure 13.

Generally speaking, the better-developed areas were closer to the local government.
However, there were two situations on the map. First, the development of the region is bet-
ter, but far from the government. The reason for this phenomenon is that the development
strength of these regions is relatively strong, and the role of the government is not the main
one relative to the development of the region. Second, the development of the region is
poor, but is closer to the government. This phenomenon occurs because the government
has not maximized its leading role in the development process of the region. In future
development, we should pay attention to government assistance.
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Figure 13. The development status of each county and the distance from the area with the highest development index of
each county to the local government.

In the future development of nationalities, we must pay attention to giving play to the
leading role of the government, mobilize the strength of all nationalities, and unite and
assist each other in order to achieve better development.

4.3. Influence on Night-Time Light Remote Sensing Mapping

Night-time light remote sensing images have been widely used in economic mon-
itoring, population mobility, environmental protection, and other fields, but there are
relatively few studies [52] on night-time light remote sensing and the development of
ethnic minorities. There is basically no literature on the study of ethnic minorities com-
bined with night-time light data. This article fills this research gap to a certain extent.
This paper combines toponym data, population data, and night-time light remote sensing
data, considering the development of ethnic minorities from multiple perspectives. This
mapping method provides a reference for subsequent similar studies. Special thematic
mapping for ethnic minorities is also not common. The establishment of the ethnic minority
development index plays a supporting role in dynamically monitoring the development of
ethnic minorities and narrowing the development differences between ethnic minorities in
various regions.

However, there are many development indexes that affect a region such as topography,
population, and production patterns. Using the method in this article cannot reflect the
importance of multiple variables, but can only be reflected by the brightness of night
light illumination of night-time light data. The method in this article is more efficient for
calculating the overall development index of a nation, but is not suitable to reflect the
importance of each variable.

4.4. Significance of Cultural Protection of Ethnic Minorities

Due to industrialization and continuous economic development, people’s production
and lifestyles have undergone great changes, which has also caused many ethnic minority
cultures to face crises. Therefore, we need to find the point of convergence between
ethnic minority culture and economic development [55]. This article can understand the
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development of ethnic minorities by establishing the minority development index, which
is conducive to summarizing the development laws of ethnic minorities, and has a positive
effect on the protection and inheritance of ethnic minority cultures. It also responds to the
call of General Secretary Xi Jinping to pay attention to the protection and inheritance of
ethnic minority cultural heritage.

5. Conclusions

This article used ethnic toponym data, population data, and NPP-VIIRS night-time
light data to obtain the development index of each ethnic group, and analyzed the six ethnic
minorities with high development index as examples. The results showed that among
the six ethnic minorities, the Yi nationality had the highest development index (28.86),
and the Dai had the lowest development index (15.22). After in-depth analysis, we found
the relationship between the minority development index and the minority prefecture,
county, and geographic location, that is, the minority development index decreased as
the distance between the minority nationality and its core development prefecture and
county increased. According to the obtained development indexes of ethnic minorities,
combined with the toponym data of ethnic minorities, the 25 ethnic minorities were divided
into 13 categories according to the language branch classification method. Each ethnic
minority was classified according to the level of the development index, and a map of the
distribution of ethnic minorities in Yunnan Province was obtained. The Yi were distributed
in almost the entire study area, and the distribution of other ethnic minorities had obvious
regional characteristics. The overall development index of ethnic minorities in the Yi,
Zhuang. and Dai, and Tibetan branch was higher, and the overall development index of
ethnic minorities in other language branches was lower. In most areas, multiple ethnic
minorities lived together. Among them, this phenomenon was most obvious in Dehong
Prefecture, which may be related to the geographical location and cultural precipitation of
Dehong Prefecture. In Yunnan Province, the two ethnic minorities, Yi and Dai, live together
more often with other ethnic minorities.

All in all, this paper constructed a method to calculate the development index of
ethnic minorities based on NPP-VIIRS night-time light data. This method is faster and
more intuitive than other qualitative analysis methods that have focused on research and
statistical yearbooks. On one hand, this method makes up for the lack of corresponding
economic data in rural areas and ethnic minority areas to a certain extent. On the other
hand, this article provides a new idea to study the mapping of ethnic minorities and
night-time light remote sensing data. This is of great significance to the development of
ethnic minorities and the protection of ethnic minority culture.
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Abstract: Accurate information on port shipping activities is critical for monitoring global and local
traffic flows and assessing the state of development of the maritime industry. Such information is
necessary for managers and analysts to make strategic decisions and monitor the maritime industry
in achieving management goals. In this study, we used monthly night light (NTL) images of the
Suomi National Polar-Orbiting Partnership (Suomi NPP) Visible Infrared Imaging Radiometer Suite
(VIIRS) Day/Night Band, between 2012 and 2020, to study the night lights emitted by ships in
ports’ anchorage areas, as an indicator for shipping activity in anchorage areas and ports. Using a
dataset covering 601 anchorage areas from 97 countries, we found a strong correspondence between
NTL data and shipping metrics at the country level (n = 97), such as container port throughput
(Rs = 0.84, p < 0.01) and maximum cargo carried by ships (Rs = 0.66, p < 0.01), as well as a strong
correlation between the number of anchorage points and the NTL values in anchorage areas across
the world (Rs = 0.69, p < 0.01; n = 601). The high correspondence levels of the VIIRS NTL data with
various shipping indicators show the potential of using NTL data to analyze the spatio-temporal
dynamic changes of the shipping activity in anchorage areas, providing convenient open access and
a normalized assessment method for shipping industry parameters that are often lacking.

Keywords: VIIRS/DNB; nighttime lights; shipping; spatial analysis; anchorage area

1. Introduction

The global rise in the standards of living, consumption volumes, as well as the devel-
opment and use of marine resources, are leading to an increase in global shipping, despite
a temporary slowdown in maritime trade growth in 2018 as a result of trade tensions,
protectionism, Brexit [1], and shipping restrictions following the COVID-19 outbreak [2].
According to estimates of the United Nations Conference on Trade and Development
(UNCTAD), the volume of international trade by sea accounts for approximately 80% of the
volume of world trade [3]. The general trend points to a steadily increasing and developing
rate of maritime transport over the past two decades [1]. Ports are important centers of
trade between countries, and their cargo handling capacities (loading and unloading of
goods) are one of the most basic and important indicators for measuring the development
status of ports [4–6]. The port anchorage area (PAA) is a place where ships wait for their
turn to enter the port outside the port areas. The PAA is an important part of the shipping
and port management segment [5]. Accurate statistical information on the number of ships
and cargo loaded and unloaded over a certain period in the port is of decisive importance
for monitoring the movement of ships, assessing the state of development of the port, the
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country’s economy, as well as assessing global trends [6–8]. To date, periodical statistics
on port activity are published by various global organizations such as UNCTAD [9], as
well as by the ports authorities themselves. Statistical data in frequent comparisons are
difficult to access (Lloyd’s List Intelligence) [10], varied, and rarely published, making
it difficult to analyze data consistently or in near real-time. The recent development of
automatic identification systems (AIS), which show the exact location of ships in almost
real-time and with an average update of one minute, as well as additional parameters (ship
dimensions, etc.) and dynamics (location, direction, speed, etc.), are expensive and complex
in processing [11]. While the effects of some anthropogenic activities in marine areas are
examined in detail, for example, oil spills from shipping [12,13], our understanding of
the spatial and temporal trends of artificial night-time light (NTL) in port anchoring areas
remains limited [14].

Conventional methods for monitoring ships at sea from space include optical and
synthetic aperture radar (SAR) images obtained using remote sensing. Daytime optical
sensors allow the detection of ships; however, their sensors are usually not sensitive enough
for detecting low light levels as emitted at night-time [15]. While SAR images have all-
weather and day and night capabilities, this approach for detecting ships at sea requires the
processing of large amounts of data, and at the moment, there is no operational product
offering vessel detection from SAR data [16–18]. Thus, there are still many gaps in the
monitoring of ships at daily, monthly and annual time scales. Recent studies have promoted
the use of VIIRS low light imaging data for monitoring ships that are using artificial lights
within the fisheries industry [19,20]. In this study, we propose the use of night light data
to monitor shipping activity in anchorage areas, thereby filling the research gap with a
new method for assessing statistical parameters of shipping activities at the port level.
This study provides a new approach based on monthly/annual NTL values at different
geographic levels (port and country). The challenges we faced included variability in NTL
emitted from different ships, the low sensitivity of satellite sensors (VIIRS) to small and
weak light sources, and the need for correcting NTL data to minimize the influence of
natural light, light from cities, and persistent cloud cover in certain areas [21,22], to measure
the magnitude of NTL emitted by ships in the anchorage area.

Research Question and Objectives

Our main objective in this paper was, therefore, to determine to what degree can we
use NTL as a proxy for shipping activities in anchorage areas, with the following two
specific aims:

1. To what extent can night-time lights in anchorage areas serve as an indicator of ship-
ping activity in port anchorage areas? To do this, we will examine the correspondence
between the night-time lights and shipping data at the port level and the country level.

2. Which variables at the country level can explain the intensity of lighting in anchorage
areas? To do this, we will examine various variables that represent economic activities
such as GDP, exports, etc. and their correspondence with NTL.

2. Materials and Methods

An anchorage area is a place where boats and ships can safely drop anchor. Anchorage
areas vary by the types of anchoring which are allowed (size of boat, type of anchor, vessel
size, and type) and the authority in charge of the anchorage area (local government, county
government, or state government) [23].

2.1. Process of Creating the Anchorage Polygons

To examine port activities, we created polygons of anchorage areas using the anchorage
points (the offshore location where ships can lower anchors while waiting to be allowed in
the ports) dataset of the Global Fishing Watch (GFW) (https://globalfishingwatch.org/data-
download/datasets/public-anchorages:v20200316) (v1_20191205) (accessed on 2 August
2020). The anchorage points represent the centers of the anchorage circle (Figure 1). In
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different weather conditions, the ship moves radially around the anchor center, so as not to
interfere with other ships and the movement of other ships in the port.

Figure 1. An anchorage area at the southern entrance to the Suez Canal. Circles provide anchoring
places for different types of vessels, following their size and type (Tanker, Cargo, etc.). In the center
of each circle is marked the “anchor”, where the ship drops the anchor (source: openseamap.com,
(accessed on 10 November 2021)). Colored symbols represent navigation buoys.

To extract the NTL values from VIIRS over the anchorage areas globally, we created a
polygonal database of anchorage areas (Figure 2, showing as an example the anchorage
areas of Fujairah, United Arab Emirates) covering most of the world’s ports. To extract
the polygons from the point layer of GFW, first, we transformed the point data to raster
format with a cell size of 1 km, using an equal-area projection. We filled the gaps inside
each polygon using spatial closing filters with a 7 × 7 moving window. We included in
our analysis only anchorage areas with at least 10 anchorage points (Figure 2) and which
were not close to the coastline so that night-time lights within them will be less affected
by coastal urban lights. The night lights emitted by a coastal city can reach offshore areas
via scattering by the atmosphere [24]. Moreover, this glow distance varies not only as
a result of the density of light sources and the type of lighting but also via atmospheric
scattering conditions. The purpose of the following section is to demonstrate the glow of
urban coastal night lights into offshore areas.
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Figure 2. Astronaut photography (ISS038–E–16344) of the Eastern part of the Persian Gulf, 2013 (a).
The average NTL values for 2019 at the vicinity of Fujairah port (b), UAE (black dots represents
centers of anchorage circles for vessels, based on the dataset of Global Fishing Watch), whereas the (c)
image shows an image of the same area acquired by Sentinel 1 (9 June 2019). The anchorage area of
the port is about ten kilometers from the coastline. Coastal NTL does not affect the anchorage area of
the port. The main type of vessel operating in the Fujairah port is tankers.

As can be seen from Figure 2, the urban and coastal areas of Fujairah were much
more illuminated by artificial night-time lights (more than 50 nW cm−2 sr−1) compared
with the anchorage area in which the radiance values of night-time lights ranged between
2–7 nW cm−2 sr−1. Despite the strong night illumination of the city, it did not affect the
amount of light in the area of the anchorage area since the influence of city lights from
Fujairah ended about 6–7 km from the coastline.

The resulting anchorage polygons which we created included 601 anchorage polygons
belonging to 97 countries. Finally, these anchorage areas included 44,570 anchorage points
out of a total of 119,478 anchorage points in the original dataset of GFW.

2.2. VIIRS Night–Time Light Data (Response Variables)

The VIIRS DNB data are more sensitive to low light levels than the DMSP/OLS and
have a higher spatial resolution of 742 m × 742 m footprint from nadir out to the edge
of scan [25]. The monthly VIIRS products are gridded to a 15 arc-second grid, which is
slightly finer than the original pixel footprints [26]. In this study, we used VIIRS DNB
monthly cloud–free average data products for the period between April 2012 and March
2020 provided by the NOAA service (https://ngdc.noaa.gov/eog/viirs/download_dnb_
composites.html, (accessed on 20 June 2021)). The dataset includes radiance data and
cloud-free coverages (the number of cloud-free acquisitions available for a given month
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for calculating night-time brightness in each pixel). The DNB radiance data excluded data
impacted by stray light, lightning, lunar illumination, and cloud cover before averaging,
while some temporal lights from auroras, fires, boats, etc., are reserved [27]. Two configura-
tions of the VIIRS composites are available: “vcmcfg” excludes any data contaminated by
stray light (typically solar illumination) and “vcmslcfg” excludes data impacted by stray
light are corrected but not removed. We selected the “vcmslcfg” products as they offer
greater temporal and spatial coverage [28]. Moreover, we calculated the annual sum of
lights within each anchorage area by multiplying the polygon area with the average values
of NTL. We used the equal–area Mollweide projection to calculate anchorage areas and to
calculate the sum of lights (SOL) of anchorage areas. To extract NTL values of anchorage
areas data, we used the Google Earth Engine (GEE) platform [29]. We extracted and merged
both data configurations: ‘VCMSLCFG’ for the period of January 2014–March 2020 and
‘VCMCFG’ for the period of April 2012–December 2013, of two available bands:

• “Avg_rad”—value represents the monthly average value of NTL.
• “Cf_cfg”—cloud–free days (this was important to interpolate monthly radiance values

for months that were too cloudy, as detailed below).

We used the correction coefficients provided by Coestfield [22] for correcting the
temporal variation of natural light sources such as airglow and thus corrected the monthly
time series of NTL using their published coefficients, which are especially important in
areas with low levels of NTL.

In various anchorage areas, NTL values were underestimated in certain months due to
high cloud cover for most of the month. We used a threshold of an average of at least one
day without cloud cover per month within the anchorage area as the minimum threshold in
which we accepted NTL values for a specific month that would be “valid” for our analysis
of the anchorage areas. According to our dataset of NTL for 96 months and 601 anchors,
almost 95% of the months in all ports had sufficient cloud–free data (Table 1). In the majority
of cases, cloudy months (with cloud–free days below 1) were usually isolated (3.1% of all
months; Table 1). More than 50% of all anchorage areas experienced at least one event of
two consecutive months with persistent cloud coverage (cloud–free days below 1; Table 1).

Table 1. Distribution of the number of months without sufficient NTL data measurements due to high
cloud cover. The left–hand column shows the number of consecutive months without sufficient cloud–
free measurements (average cloud–free days < 1). Our dataset included 96 months and 601 anchorage
areas (96 × 601 = 57,696). The first group, “0 = Zero”, indicates months with no missing data.

Number of
Consecutive Missing
Months with Cloud

Free Days (CFD)
Value < 1

Sum of Months in
Each Group across all

Anchorage Areas

% of the Sum of
Months in Each
Group across all

Anchorage Areas (out
of 57,696)

Number of Anchorage
Areas in Each Group
of Missing Months

% Number of
Anchorage Areas in

Each Group of Missing
Months (out of 601)

0 54,589 94.6% 113 18.8%
1 1772 3.1% 488 81.2%
2 731 1.3% 344 57.2%
3 375 0.6% 235 39.1%
4 149 0.3% 126 21.0%
5 56 0.1% 53 8.8%
6 24 0.04% 24 4.0%

To fill the monthly gaps in NTL values, we interpolated NTL values for months with
average cloud–free days of less than one day, based on the six months before and after
the missing month. Based on this method, the missing values were filled in, and the
original values for months with CFD ≥ 1 were not changed (see example in Figure 3 for
the anchorage area of Punta Arenas, Chile).
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Figure 3. Interpolation of NTL values for cloudy months (for the anchorage area of Punta
Arenas, Chile).

Finally, to estimate the impact of the interpolation method of “Interpolating NTL for
cloudy months” on the average NTL values in all anchorage areas, we performed a 2-tails
t-test. The test was used to determine if there was a significant difference between the
means of the original NTL values vs. the interpolated values for each of the anchorage
areas. Running a t-test between the NTL time series of each anchorage before and after the
interpolation of months in which the number of the cloud–free day was less than one, we
found that the null hypothesis (H0—no difference between the original monthly values
and the interpolated ones) could not be rejected (see example Figure 3 for Punta Arenas
anchorage area) for any of the anchorage areas (i.e., the average NTL values before and
after the interpolation were not different).

2.3. Explanatory Variables

We collected a range of quantitative information on maritime activities at the port level,
as well as various parameters (economic, environmental, etc.) at the country level, using
data sourced from the United Nations Conference on Trade and Development (UNCTAD)
(https://unctad.org/statistics, accessed on 12 October 2021), the World Bank (https://
data.worldbank.org, accessed on 12 October 2021), and www.trademap.com (accessed on
12 October 2021) at the port and country–level (Table 2). The UNCTAD “Port calls/Port
performance” parameters group is one of the main sources of maritime shipping data
and is part of a suite of port call and performance statistics that provide an overview
of the characteristics of ships and the time they spent in a country’s ports over a given
period [30,31]. Together, the “Port calls/Port performance” includes statistics for up to eight
parameters, covering: Median time in port—the median time vessels spent within port
limits (in days); Average size of the vessel—the average gross tonnage of the vessels that
have called in the country’s ports during the year, as well as the “Maximum” parameters of
the largest ships that have called during the period, the maximum cargo carrying capacity
and the maximum container carrying capacity of container ships; Average cargo carrying
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capacity—the average deadweight tonnage of the vessels that have called in the country’s
ports during the year; Average container carrying capacity per container ship—the average
capacity to carry the 20–foot equivalent units (TEU) of the container ships. Another data
source from the UNCTAD is the container port throughput (CPT)—measurements of the
container flow from land to sea transport modes, and vice versa, in 20–foot equivalent
units (TEUs), a standard–size container [32]. Data refer to coastal shipping as well as
international shipping. Trans–shipment traffic is counted as two lifts at the intermediate
port (once to off–load and again as an outbound lift) and includes empty units. The liner
shipping connectivity index (LSCI) represents the country’s integration level into global
liner shipping networks [33,34]. The LSCI is an index set at 100 for the country with the
maximum value of country/port connectivity in the first quarter (Q1) as of 2006, which was
then China. From the Wordlbank, we have downloaded the following data at the state level:
Electric power consumption—electric power consumption per capita (kWh), which are
the main indicators of the size and level of development of the country’s economy; Fossil
fuel consumption (% of total)—comprises coal, oil, petroleum, and natural gas products by
country; Population—a country population based on national population censuses. Most
of the explanatory variables used in the study represent the average values over a certain
period (Table 2). Since the NTL data we used covered a wider time range (2012–2020), we
calculated, for each of the explanatory variables, the mean over the period corresponding
to the response variable (NTL data) or the widest time range that could be extracted, for
example, TSC data were available for 2016–2020. Most of the explanatory variables were
only available at the country level and only a few at the port level. These data describe
various aspects directly or indirectly related to maritime ship activity in the ports at the
country level and thus may explain the number of ships in the anchorage areas.

Table 2. List of explanatory (independent) variables at the country and port level.

Parameter

C
—

C
o

u
n

tr
y

P
—

p
o

rt

Years Data Source

Number of anchorage points C/P 2019 [35]

Average cargo carrying capacity C 2018–2020 [31]

Average container carrying capacity C 2018–2020 [31]

Average size of vessel C 2018–2020 [31]

Average CO2 emissions C 2016 [36]

Container port throughput (CPT) C 2016–2019 [37]

Electric power consumption C 2013–2014 [38]

Fossil fuel consumption C 2013–2015 [39]

Gross domestic product (GDP) C 2016–2020 [40]

GDP growth (annual %) C 2016–2020 [41]

Import C 2016–2020 [42]

LSCI C 2016–2020 [31]

Maximum cargo carrying capacity of vessels C 2018–2020 [31]

Maximum container carrying capacity of vessel C 2018–2020 [31]

Maximum size of vessels C 2018–2020 [31]

Median time in port (days) C 2018–2020 [31]

Population growth (%) C 2016–2020 [43]

Population total C 2016–2020 [44]

Monthly average number of vessels in the PAA of Santos P 2016–2020 Sentinel 1

Santos port statistics (Import/Export, ship numbers by class and by waiting time) P 2016–2020 [45]
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Data collection on Vessel Numbers in Anchorage Areas from Sentinel 1

To further examine the potential of using NTL as a measure of temporal changes
in ship activity in ports, we collected data on the number of ships anchored in the port
anchorage area. Using Sentinel 1 (SAR) satellite images (which offer all–weather capabilities
and enable ship detection; [46]) from January 2016 to March 2020 in the port of Santos
(Brazil’s largest port), the average number of vessels sighted in the anchorage area was
calculated based on 4–5 images per month. The port of Santos was chosen because it is
a relatively large port with a remote anchorage area. Such a large anchorage area can
accommodate more than 50 ships at any given time, which can create a large amount of
night–time light that will not be affected by city lights. Thus, a port such as Santos is a
good place to test the hypothesis that night lights may serve as an indicator of temporal
changes in shipping activity in the anchorage area.

To perform a detailed analysis at the port level for Brazil’s largest port (the port of
Santos), the following statistical data from the port’s website (http://www.portodesantos.
com.br/informacoes-operacionais/estatisticas/mensario-estatistico/ (accessed on 1 Febru-
ary 2022)) were also used: monthly volumes of imports and exports, the monthly number
of ships waiting (total and those waiting >72 h) in the anchorage area, and the number of
ships from different segments (general cargo, bulk solids, bulk liquids [tankers], passengers,
etc.) that visited the port of Santos.

2.4. Analysis

We conducted a correlation analysis at two levels: at the port level and the country
level. We chose to include a country–level analysis as well, as it is useful in our view to
conduct between–countries comparisons, which is also common practice in other studies of
economic activities using night lights [28,47,48]. For each spatial level, various explanatory
and response variables were prepared (average NTL and Sum of Lights). For the country–
level analysis, we calculated the mean values of the explanatory parameters and the mean
value of the NTL of all anchorage areas of that country. At the port level, a comparison
was made between the monthly average NTL and the average number of vessels, using
the example of the port of Santos, Brazil. Spearman’s rank correlation coefficient (denoted
here by Rs) was calculated using SPSS to examine the correspondence between the average
annual NTL 2012–2020 and the explanatory variables (Table 2). The use of NTL was proven
to be effective for the study of large areas, such as at the country, state, county, or city
level [49].

3. Results

Overall, we identified and analyzed 601 anchorage areas representing 97 countries with
a temporal coverage of 96 months (April 2012–March 2020). In this study, an assessment
was made of the level of the correlation between the average values of VIIRS (monthly,
annual) sum of lights (SOL) both at the level of a single anchorage and at the country level.

The map of the distribution of the average annual NTL value for 2012–2020 (Figure 4)
indicates high concentrations of anchorage points per port along the coasts of China
(Figure 4c), the Persian Gulf (Figure 4b), the Mediterranean Sea (Figure 4a), Gulf of Guinea,
the Southern Coast of Brazil, and the Southern Caribbean, which indicates high shipping
activity in these regions during the study period. The spatial distribution of ports by their
number of anchorage points varies greatly, with the highest number of anchorage points
found along the coast of China. The anchorage area of the port of Xingang (China) had the
highest number of anchorage points (1197), followed by the port of Fujairah (United Arab
Emirates) with 725 anchorage points. The port of Shanghai had several anchorage areas,
which combined included more than 1300 anchorage points; The port of Lome (Togo), with
620 anchorages, was the largest of any African port. Of the European ports, Malta had the
largest number of anchorage points (498). The Brazilian port of Santos was the leading port
in the number of anchorage points (449) within the Americas.
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Figure 5 show a map of the anchorage area and their average annual sum of lights
(SOL) values for 2012–2020. On overage, the ports of the Persian Gulf (Figure 5b) were
among the most brightly lit (112 nW/cm2cr). Anchorage areas located in Asia (especially
in the East China Sea, Figure 5c) had significantly lower average values (43 nW/cm2cr).
The anchorage areas of the American continent, especially the northern part, were much
less lit, with an average of 39 nW/cm2cr. Of the seas of the European continent, the
anchorage areas of the Mediterranean Sea (Figure 5a) were the most lit with an average
of 48 nW/cm2cr, with Malta’s being the most lit with 443 nW/cm2cr. The average NTL
values of the anchorage areas of European ports in the Atlantic Ocean and the Northern
Sea had lower SOL values (23 nW/cm2cr), while the most lit anchorage area (Rotterdam)
was ranked globally as 23rd most lit anchorage area with an average SOL of 187 nW/cm2cr.
China’s anchorage areas had relatively low SOL values (average of 45 nW/cm2cr based
on 87 areas, with only 10 anchorage areas with SOL values higher than 100 nW/cm2cr),
despite a high average number of anchorage points of 155 per anchorage area (n = 87). The
anchorage areas of Xingang and Ningbo (China), with an average of 354 and 328 nW/cm2cr,
respectively, were the most lit among Chinese ports regarding anchorage areas. Anchorage
areas along the East Coast of Africa were less lit (37 nW/cm2cr) than those of the West Coast
of Africa (59 nW/cm2cr) and the Southern Coast of the Mediterranean Sea (57 nW/cm2cr).
The port areas of Luanda (Angola) and Lome (Togo) were the most lit on the African
continent, 252 nW/cm2cr and 240 nW/cm2cr, respectively. The anchorage area of the port
of Kandla was the most lit (523 nW/cm2cr) among all the investigated anchorage areas in
India. The Port of Kandla had the largest number of anchorage points among all ports in
India (178 anchorage points) and was ranked 53rd out of all anchorage areas in terms of its
number of anchorage points.

Figure 4. Map of anchorage areas (ports) symbolized by their number of anchorage points (source of
anchorage points: www.globalfishingwatch.org, accessed on 5 October 2020). Enlarged maps show
the following areas: (a) The Mediterranean Sea; (b) The Persian Gulf; (c) The Yellow Sea region.
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Figure 5. Map of anchorage areas and their average annual sum of lights (SOL) intensity for the
period of April 2012–March 2020. Enlarged maps show the following areas: (a) The Mediterranean
Sea; (b) The Persian Gulf; (c) The Yellow Sea region.

3.1. General Patterns of NTL as an Indicator of Shipping Activity

In this section, we present the results of the correlation analysis obtained at the global
level. The purpose of this section is to assess the correlation between two fundamental
parameters, NTL and the number of anchorage points at different geographical levels

Figure 6 show a statistically strong and significant (Rs = 0.69, p < 0.01) correlation
between the number of anchorage points per area and the average annual value of NTL
sum of light (SOL) for 2012–2020 based on 601 anchorage zones. This result indicates a
strong relationship between the total number of anchorage points for ships within the
anchorage area and the average SOL reflected from anchorages at sea. A higher number of
anchorage points increases the amount of NTL lights measured by the satellite sensors.

Figure 7 present the correlation between the total number of anchorage points in the
ports of each country (97 in total) and the average NTL value for 2012–2020. Despite the
similarity of the two graphs (6 and 7), a higher correlation was obtained at the country level
(Rs = 0.84, p < 0.01) between anchorage points and NTL than at the port level. In countries
with a developed maritime industry such as China, Japan, Turkey and the USA, a large
number of anchorage areas exist, and as a result, they emit high levels of NTL.

Figure 8 show a scatter plot of the correlation analysis between the annual average SOL
and the signal to noise ratio (SNR = Average/Standard Deviation) for the period 2012–2020.
We obtained a significantly strong correlation (Rs = 0.49, p < 0.01) between the annual
average SOL value and the SNR over the investigated period of 2012–2020. Anchorage
areas with SNR values below one indicate high variability in monthly NTL values. Out
of 601 anchorage areas, 33 (5%) had SNR values below 1, while China had 12 (13% of all
Chinese anchorage areas) and Germany had 5 and 7 anchorage areas. Anchorage areas
with SNR values above 2 represent are areas with more stable monthly/annual NTL. The
most stable NTL values were obtained in the anchorage areas of the port of Tenerife, Spain
(Average/Stdv 258.37/19.9 nW/cm2sr, SNR = 13), Valencia, Spain (166.45/13.7 nW/cm2sr,
SNR = 12.2), and Kuwait (164.56/15.5 nW/cm2sr, SNR = 10.6), while the most unstable of
the highly active ports (with average NTL above 150 nW/cm2sr) was the anchorage area of
Khalifa Bin Salman, Bahrain (153.9/484.8 nW/cm2sr, SNR = 0.3).
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Figure 6. Spearmen correlation between the number of anchorage points per anchorage area and
averages of annual SOL from 2012 to 2020 (Rs = 0.69, p < 0.01), N = 601.

Figure 7. Logarithmic scatter plot of Spearmen correlation between the total number of anchorage
points by country and averages of annual NTL sums, from 2012 to 2020 (Rs = 0.84, p < 0.01), based on
N = 97.
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Figure 8. Scatter plot of all anchorage areas’ average SOL and the signal to noise ratio
(SNR = Average/Standard deviation) for the period of 2012–2020. (Rs = 0.49, p < 0.01), based on
N = 601.

3.2. Temporal Analysis of NTL Values within Anchorage Areas

Figure 9 and Table 3 present the results of a correlation analysis between the NTL
values within the port of Santos, Brazil and different statistical parameters of the port and
the number of ships counted from Sentinel 1 images. The purpose of this section is to
assess the feasibility of using the monthly average of NTL values as an indicator of the port
shipping activity by estimating the number of ships in an in anchorage area on a monthly
basis. The port of Santos is a relatively large port with a large anchorage area in which,
during the study period, the average daily number of ships in the anchorage area was 60
with a standard deviation of 16 ships per month. The average monthly number of ships
waiting for more than 72 h was 110 with a standard deviation of 23.

Over most of the study period, the five parameters in Figure 9 show statistically
significant correlations, with corresponding peaks and lows. In the first half of 2019, the
NTL values had a local peak which was not present in the number of ships as counted from
Sentinel 1; however, this peak was found in the variables of total exports and ships waiting
for more than 72 h.

VIIRS monthly sum of light values were moderately correlated with the number of
ships counted from Sentinel 1 images (Rs = 0.51), the number of ships carrying bulk solids
(Rs = 0.41), and the number of ships that waited for more than 72 h in the anchorage
area (Rs = 0.41) (Table 3). Strong correlations (Rs ≥ 0.72; Table 3) were found between all
combinations of the following pairs of variables: the number of ships waiting, the number
of ships waiting for more than 72 h (being on average 29% of all ships waiting), bulk solids
ships (being on average 26% of all ships), and exports. Moreover, the number of bulk solids
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ships correlated with several other parameters: ships counted from Sentinel 1 (Rs = 0.5)
as well as with exports (Rs = 0.87), while for the imports, a weaker correlation was found
(Rs = 0.39). We also observed good correlations between the total monthly number of ships
(based on the port’s official statistics) and monthly exports (Rs = 0.74), the monthly number
of bulk solid ships (Rs = 0.72), the number of ships counted from Sentinel 1 (Rs = 0.48), and
with the monthly number of general cargo ships (Rs = 0.47) (Table 3).

Figure 9. Time series presenting the correspondence between the average number of vessels counted
from Sentinel 1, total exported goods, number of vessels waiting for more than 72 h in anchorage
area, number of ships carrying bulk solids and average NTL over the anchorage area of Santos port,
Brazil. All variables were normalized between their respective minimum and maximum values from
Jan 2016 to Mar 2020 to ease the visual comparison between them.

Extending the temporal analysis to all anchorage areas, Figure 10 show a global
map of temporal trends in NTL within anchorage areas for the period 2012–2020. In 219
(36%) of the anchorage areas, temporal trends were not significant (p-value > 0.05), with a
relatively even distribution across continents. Of the 382 anchorage areas in which we found
statistically significant results, in 112 (18%) of the anchorage areas, there was a decrease
in NTL, while in 270 of the anchorage areas, there was an increase in NTL values. In the
Mediterranean region (Figure 10a), the temporal trend of the NTL value of anchorage areas
showed an increase (avg. Rs = 0.31, p < 0.01, Stdv = 0.38) based on 67 observations, while
only 13 anchorage areas recorded a decrease. The NTL values growth in the Mediterranean
region was mainly due to Turkey’s anchorage areas, where 12 anchorage areas had a
statistically significant and strong temporary trend of increase (avg. Rs = 0.6, p < 0.01). On
the African continent, a significant difference in temporal trends was obtained between
the Eastern part (avg. Rs = 0.34, p < 0.01, Stdv = 0.33) and the Western part (avg. Rs = 0.8,
p < 0.01, Stdv = 0.53). The anchorage area of Mogadishu (Somalia) presented the highest rate
of increase in NTL during the study period 2012–2020 with (Rs = 0.94, p < 0.01), probably
reflecting its slow recovery from the long civil war. On the South American continent, on
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average, there was a downward trend in NTL with (Rs = −0.18, p < 0.01, Stdv = 0.41). In
Northern America, NTL values increased with an average value of Rs = 0.27, p < 0.01, Stdv
= 0.27. The NTL values in the Persian Gulf (Figure 10b) increased similarly to those in
North America (Rs = 0.25, p < 0.01) but with a wider deviation between anchorage areas
(Stdv = 0.47), mainly due to a decrease in the Qatar anchorage areas. The NTL values in
China (Figure 10c) increased on average by Rs = 0.32, p < 0.01 and Stdv = 0.32, with only
Turkey surpassing China. In Australia, there was a relatively stable neutral trend in NTL
values. Among the countries, the decrease in NTL values occurred mainly in the anchorage
areas of Japan (nine anchorage areas), Brazil (seven), Chile (seven), India (seven), while
in the ports of Venterminals and Guanta (Venezuala), Capetown (South Africa) the most
significant decrease occurred within the investigated period with a negative correlation
below than Rs = −0.72, p < 0.01. A significant increase in NTL values also occurred in
the anchorage areas of the ports of Huanghua (China) Rs = 0.91, p < 0.01, Izmir (Turkey)
Rs = 0.88, p < 0.01, Taman (Ukraine) Rs = 0.86, p < 0.01, Poti (Georgia) Rs = 0.83, p < 0.01,
Lagos (Nigeria) Rs = 0.82, p < 0.01, and Basrah (Iran) Rs = 0.78, p < 0.01.

Table 3. Matrix of Spearmen correlation coefficients of monthly statistical parameters for the port
of Santos (Brazil) and VIIRS monthly values for the period of January 2016–March 2020 (n = 51).
Positive correlation coefficients greater than 0.4 are highlighted.
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VIIRS monthly sum 1

Ships counted Sentinel 1 0.51 1

Exports 0.37 0.59 1

Imports 0.24 0.34 0.42 1

Ships waiting 0.17 0.44 0.82 0.45 1

Ships waiting > 72 h 0.41 0.68 0.78 0.25 0.72 1

General cargo ships −0.20 0.03 0.23 0.20 0.54 0.06 1

Bulk solid ships 0.41 0.50 0.87 0.39 0.85 0.80 0.18 1

Tankers −0.07 0.15 0.21 0.38 0.34 0.19 0.05 0.12 1

Passenger ships 0.09 −0.12 −0.48 −0.29 −0.62 −0.38 −0.34 −0.54 −0.31 1

Roll–on/roll–off ships −0.19 −0.06 0.20 −0.15 0.23 0.26 −0.10 0.13 0.28 −0.36 1

Others ships 0.03 0.03 −0.10 0.29 −0.11 −0.13 0.05 −0.14 0.05 0.12 −0.16 1

Total number of ships 0.22 0.48 0.74 0.38 0.85 0.67 0.47 0.72 0.33 −0.22 0.10 −0.02 1
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Figure 10. Global map of anchorage areas and their temporal trends over the 2012–2020 period. The
temporal trends were assessed using the Spearmen correlation. The number in brackets represents
the number of anchorage areas in each group of temporal trends. Enlarged maps show the following
areas: (a) The Mediterranean Sea; (b) The Persian Gulf; (c) The Yellow Sea region.

3.3. Statistical Analysis at the Country–Level

At the country level, we found statistically significant correlations for 10 of the ex-
planatory variables (Figure 11). The annual average values of NTL were very strongly
correlated with the CPT (Rs = 0.84, p < 0.01), and strongly correlated with the country’s
population (Rs = 0.68, p < 0.01), maximum cargo capacity of the vessels (Rs = 0.66, p < 0.01),
average import of the country (Rs = 0.62, p < 0.01), GDP (Rs = 0.61, p < 0.01), and LSCI
(Rs = 0.6, p < 0.01). Moderate correlations were found for maximum container carrying
capacity (Rs = 0.55, p < 0.01), maximum vessel size (Rs = 0.51, p < 0.01), and port calls
Rs = (0.42, p < 0.01).

Figure 12 provide a scatter plot of the correlation between CPT and NTL values at
the country level. As shown in Figure 11, NTL data were most strongly and significantly
correlated with “CPT” at the state level (Rs = 0.84, p < 0.01). China ranked first among
the countries in terms of CPT (223,809,105 TEU), was four times higher than the USA
CPT (52,716,134 TEU), and its average annual SOL was also four times higher (3876 and
943 TEU).
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Figure 11. Spearmen correlation coefficients at the country level (* p < 0.05, ** p < 0.01; n = 97) for the
response variable of average annual SOL values. Variables are ordered by the magnitude of their
correlation coefficient with the SOL at the country level.

Figure 12. Scatter diagram of the correspondence (Rs = 0.84, p < 0.01) between the average Container
Port Throughput (CPT) 2016–2020 by country and averages annual SOL for the period of 2012–2020,
N = 97.
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4. Discussion

To track global and local traffic flows and assess the state of development of the
maritime industry, accurate data on port shipping activities is essential. Information of this
nature is crucial for managers and analysts to make strategic decisions and monitor the
maritime industry’s progress towards its management goals.

Sources of artificial lights in the marine realm vary and include coastal cities, oil
rigs, harbor lighting, fisheries, and anchoring ships [50]. The use of night–time remote
sensing data for ship surveillance is a relatively new research field. Night light remote
sensing technology has a unique night vision capability that can overcome the problem
that traditional optical daytime remote sensing images cannot track targets at night. In
existing studies, the VIIRS data on night illumination is widely used in the socio–economic
sphere [28,51,52], the development of algorithms and applications for monitoring fishing
vessels [19,53,54], assessment of the airport’s throughput of traffic flow [51], assessment
port economics scores [55], as well as assessment of countries’ economic situation during
the crisis [56]. Using VIIRS night light data, we showed that it is possible to assess shipping
activities at the port level for which there is little or no consistent information at the
global level. The NTL data on port anchorage areas are therefore a vital source of data
for calibration and validation of, for example, the port collaborative decision making
(PortCDM) concept [57], UNCTAD maritime and shipping parameters [33,58], and country
economic assessments. Shipping activity in the water area near the port (anchorage area)
proceeds without respite around the clock. To ensure normal operation at night–time,
similarly to daytime, electricity is used on the ship, including for lighting the ship. This
study is based on large data sets (601 anchorage areas) covering most of the anchorage areas
of the world’s major ports over the period from April 2012 to March 2020, thus providing a
method for estimating both the average monthly number of ships in the anchorage area and
various shipping and trade variables. Eight of the explanatory variables presented in Table 2
were significantly correlated (Rs > 0.50, p < 0.01) with the annual average (2012–2020) SOL
values of VIIRS at the country level. The CPT index, which provides information on the
number of unloaded and loaded containers by the port, was strongly correlated (Rs = 0.84,
p < 0.01) with the NTL values. A possible reason might be that in most of the ports there is
infrastructure for loading and unloading containers from ships as well as from container
trucks (IMO, 2021). Moreover, based on other independent UNCTAD parameters (Table 2),
a high correlation was obtained for the annual shipping parameters related to the aspects
of “maximum” (instead of average): the maximum cargo carrying capacity (dwt) of vessels
(Rs = 0.66, p < 0.01), the maximum container carrying capacity (TEU) of container ships
(Rs = 0.55, p < 0.01), and the maximum size (GT) of vessels (Rs = 0.51, p < 0.01). A similar
assessment of the use of night–time lighting data as an indicator has also been provided in
studies of evaluating port economics comprehensive scores (PECS), based on UNCTAD,
1987 [59], with a correlation of (R2 > 0.85) in the case of Shanghai port [55] and even an
assessment of airport throughput (represent the annual number of aircraft movements
or passengers [60]) with a significant correlation of (R2 > 0.85) [51]. The domination of
“Maximum metrics” and their higher correlation with NTL could be the result of port
prioritization and commercial considerations by operating companies [61] in the entrance
of large ships carrying high amounts of cargo [62]. Such prioritization leads to the long
waiting time of smaller ships that wait for their queue to enter the port in the anchorage
area [63,64]. Moreover, we also found significant correlations of NTL with countries’ socio–
economic parameters such as: country’s average population 2016–2020 (Rs = 0.68, p < 0.01),
average import 2016–2020 (Rs = 0.62, p < 0.01), and average GDP (Rs = 0.61, p < 0.01) [65],
despite the relative decline in the importance of cities with large populations in global
traffic [66]. Countries with large populations and high GDP often require high levels of
imports and a large number of different ship segments that serve a high standard of living
a large country’s population. This conclusion is supported by the strong correlation of the
LCSI parameter with NTL (Rs = 0.60, p < 0.05), which indicates the variability level of the
country’s integration into the global liner transportation networks [33,58]. The use of fossil
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fuels for energy (Rs = 0.27, p < 0.05) and CO2 emission (Rs = 0.19) were not found to be
strongly correlated with NTL, probably because the ships are not a significant factor [67] or
are not counted in the overall balance of the country for each of these parameters. Thus,
NTL data is an indicator of shipping that can be used to accurately estimate a wide range
of activity (port, maritime, country, economy) parameters of ports and country, which
is also confirmed by the results Liu (2019), where the researchers show that NTL data
is a proxy indicator of economic assessment ports of China, despite high variability of
port pixels and light interference around the port area [68]. The results obtained are of
applied importance for assessing the dynamics of the development of seaports and the
socio–economic parameters of the country, similar to how Bennet, 2017 [69] shows the
correlation of NTL with socio–economic parameters on various spatio–temporal scales,
thereby compensating for the lack of statistical data on the activities of ports and country
parameters. On a local level, the observed negative temporal trend in the Venezuelan
anchorage areas (five out of six anchorage areas having a temporal decrease of Rs < −0.3,
and three with a decrease of Rs < −0.6) is confirmed by the results of a study conducted by
Zhang et al. 2020 [56]; they assessed the economic crisis in Venezuela using NTL data for
April 2012–December 2018, based on 12 cities, finding high correlations (R2 > 0.8) between
the sum of urban lights and several economic parameters (crude oil production, USD
exchange rate and the number of asylum seekers), thus demonstrating the use of NTL data
as an indicator of the economic state of Venezuela during the crisis. At the port level, results
of statistical analysis showed lower correlations than at the country level, but the results
of a detailed analysis we conducted for the Port of Santos, Brazil, (Table 3) shed light on
some of the correspondence between NTL and the number of ships counted in Sentinel
1. In 2019, when we observed a discrepancy between the NTL value and the number of
ships counted on Sentinel 1 images, only the parameter “number of ships waiting for more
than 72 h” showed a similar trend. The bulk ship segment constitutes the majority of
those waiting in the anchorage area of the Santos port (Rs = 0.85) and those that are over
72 h (Rs = 0.67), which are mainly dedicated to exports (Rs = 0.87). Hence, when there
is a decrease in exports via bulk ships, fewer ships will be waiting in the anchoring area.
Perhaps this is the reason for the discrepancy between the NTL value and the number of
ships counted on Sentinel 1 flights in 2019. Although Sentinel 1 SAR data is not affected by
cloud cover (whereas cloud cover hampers the detection of night lights by VIIRS), VIIRS
acquires night–time imagery every night, whereas the revisit time of Sentinel 1 is lower
(six days; [70]). Hence, the two sensors did not acquire their images at the same dates and
time of day, which may explain some of the discrepancies between the data from these
two sensors. Therefore, the proposed method using night lights as an indicator of ship
activity is particularly suitable for assessing spatial and temporal trends in the maritime
industry, complementing other methods of tracking ships (AIS, SAR images), especially
where official statistics are not available.

A detailed analysis of the causes of temporal variations makes it possible to improve
the sensitivity of DNB to changes in illumination [68]. In this study, we developed and
implemented several correction methods for VIIRS data to better analyze the light emitted
from anchorage areas, although VIIRS significantly improved quality over DMSP/OLS in
terms of spatial resolution, dynamic range, quantization, calibrations, and spectral range
availability over DMSP–OLS [25]. First, to minimize the influence of temporal variation
of natural light such as airglow, we used the method proposed by Coesfeld, 2020 [22].
Thus, fluctuations in natural light sources that limit the ability of night light sensors to
detect changes in small artificial light sources have been minimized, increasing the ability
to analyze the light emitted by ships. Moreover, city lights also represent an important
factor that influences scattering over the marine environment, as light from brightly lit
coastal cities can reach considerable distances at sea (Figure 2) by scattering through the
atmosphere [24]. As of today, there is no method of amendment developed to minimize the
influence of city lights over adjacent coastal waters (to assess the amount of NTL emitted
from the coastal waters themselves), and thus we focused on anchorage areas that were too
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close to the coast. Secondly, due to the high cloudiness in some areas of the earth, monthly
data from VIIRS are often underestimated. To fill in the gaps, we applied an interpolation
method for calculating the monthly values for the underestimated months based on the
VIIRS values of 12 adjacent months. Results of the t-test showed that the interpolation
method filled the data in cloudy months and did not affect the original data.

The use of VIIRS data has certain limitations. Among the limitations is the coarse
spatial resolution of 742 m [25], which does not allow a more detailed analysis of small
dense areas and objects. Cloudiness, which is in principle a frequent occurrence near
coastal areas, and in some regions (e.g., the tropics) a frequent occurrence, does not allow
information to be collected on a large percentage of the days of the year. Moreover, the
coastal light emitted by cities and ports themselves is much stronger than the light emitted
by ships, which in some cases makes this approach ineffective [71] if an anchorage area is
located too close to a brightly lit city. Additional sources of variation in emissions of NTL
from ships are associated with the types of ships in anchorage areas and their night lights
used. In this study, we did not have data on ship types (e.g., oil tankers, cargo ships, etc.),
which lowered our ability to explain the variability in NTL between anchorage areas. AIS
data can be a suitable source for replenishing knowledge about the types of ships in future
studies. In the case of comparison between the anchorage areas, there may be variations
in the volumes and powers of lighting permitted by local port authorities. Moreover, this
difference can also exist between the ports of the same country, and even the policy of the
port about the use of night light can change over time, which can lead to temporal changes.
The VIIRS sensor is panchromatic and does not measure night light in the blue channel,
thereby losing the night light emitted by ships in blue wavelength (which is a significant
component of light emitted by LED lightings) [72]. Finally, due to the wide coverage on
the ground by a single image, VIIRS imagery is mostly not acquired at nadir [22,73], and
changes in the zenith and azimuth view angles may affect the amount of light received by
the sensor from the ships, as was documented for light emissions from cities [74].

The ability of NTL data to serve as a proxy for shipping activity also depends on the
number of anchorage points and their density, the type of ships entering the port, and
waiting times in the anchorage area. The world’s standards for the construction of ships as
well as the rules on movement at sea, require ships to be equipped with a variety of lights,
most of which are standardized [75,76]. Consequently, more sensitive sensors will enable
measurement and distinguish the NTL values for different types of shipping segments [54].
For example, fishing vessels are the most illuminated ships at night–time. Depending on
the type of fishing, fishery vessels have different types and directions of night–time lights,
both for fishing and for working onboard [77]. Generally, fishing is prohibited in the harbor
area and at most anchorages; therefore, their night–time light should not affect the light
emitted from anchorage areas. Moreover, in ports with long queues, a ship that waits for
more than one night will increase its night signature compared with ships or anchorage
areas with short anchorage time (without anchorage during night–time hours). All these
factors affect the ability of satellite sensors to capture night light produced by ships and
to be used as an indicator for shipping activity. For example, the ports of Fujairah and
Malta are mostly hosting tankers [78]. Their anchorage areas are located a few kilometers
from the city coast and the light they emit, which makes it possible to measure mainly the
light emitted by one sector of the maritime industry, while such an assessment is almost
impossible inside the port due to the strong light emitted by the port infrastructure [68].
Thus, for remote ports that are not exposed to coastal lights, it is maybe easier to use night
light values as a proxy for shipping activities, considering additional parameters such as
ship size, anchorage point density, etc. In ports with a small number of anchorage points
and with a small number of vessels in the anchorage area, the proposed method of using
night lights may be limited in its ability to assess shipping activities, as not enough lights
will be emitted that can be captured by the VIIRS sensor, as also found for other small scale
economic activities [79].
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5. Conclusions

In this study, we carried out a global assessment of shipping activity using the VIIRS
satellite data by measuring the night lights emitted from ships at anchorage areas. The
analysis was carried out at three geographic levels: overtime at the anchorage level using
the example of the port of Santos (Brazil), overall anchorage areas at the country level
(n = 97), and across all anchorage areas globally (n = 601).

The main conclusion of this study is that monthly/annual VIIRS data can serve as
a good proxy for estimating the number of vessels as well as various shipping metrics
(such as CPT, LSCI) in anchorage areas at the port and country levels. The estimation of
the number of ships in anchorage areas with a small number of ships is probably limited
due to the low energy of night light emitted by a small number of ships, and in such cases,
VIIRS data cannot be used as an indicator. VIIRS NTL data can be implemented in a wide
global range of studies of shipping and for assessing the economic development of ports
and country parameters. Moreover, this method allows analyzing shipping, ports, and
countries parameters, for which we have obtained a significant correlation with NTL data,
for example, container port throughput. As a result, we conclude that NTL data can be
used as an indicator for a wide range of assessments of ports, countries, and the shipping
industry in general, and is applicable for ports and countries that do not share information,
as well as for tracking spatial and temporal trends.

Finally, the results should be useful to international maritime organizations, gov-
ernments, policy–makers, and stakeholders in formulating effective strategies for devel-
oping tools to assess shipping activities in the anchorage area and their use in overall
port operations.
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Abstract: The emission of greenhouse gases, especially CO2, is the main factor causing global warm-
ing. Due to incomplete statistical data on energy consumption at and below the urban scale of
Beijing-Tianjin-Hebei (BTH), in this study, Defense Meteorological Satellite Program Operational
Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Visible Infrared Imag-
ing Radiometer Suite (NPP-VIIRS) data were combined, and a neural network model and weighted
average method based on DN (Digital Number) value were used to obtain CO2 emissions at the mu-
nicipal and county scales with a resolution of 1 km × 1 km from 2000–2019. Next, a spatial-temporal
analysis model and spatial econometric model were used to study the CO2 emissions at different
scales of BTH. This study also solved the problem that STIRPAT analysis cannot be carried out due to
insufficient urban statistical CO2 emissions data. The results show that the energy CO2 emissions
in BTH present a distribution pattern of “East greater than West”, with a trend of first rising and
then slowing down. Moreover, the rapid growth areas are mainly located in Chengde and Tianjin.
The degree of regional spatial aggregation decreased year by year from 2000–2019. Population,
affluence and technology factors were positively correlated with CO2 emissions in Tianjin and Hebei.
For Beijing, in addition to foreign investment, factors such as urbanization rate, energy intensity,
construction and transportation factors all contributed to the increase in CO2 emissions. Among
them, the growth of population is the main reason for the increase of CO2 at the urban scale in BTH.
Finally, based on the research results and the specific situation of the cities, corresponding policies
and measures are proposed for the future low-carbon development of the cities.

Keywords: CO2 emission; integration of two nighttime light datasets; spatial-temporal dynamics;
STIRPAT; policy

1. Introduction

In recent years, global warming has become an indisputable fact. Greenhouse gas
emissions, especially CO2 emissions, have been proven to be one of the main causes of
global warming [1]. However, for densely populated urban areas, CO2 from the burning of
fossil fuels from human activities is the main source of global CO2 emissions [2]. Urban
regions utilized 75% of the world’s energy and emitted 80% of global greenhouse gas emis-
sions, even though they cover less than 3% of the Earth’s surface [3]. Over the past century,
CO2 emissions have significantly increased due to the ongoing rise in energy consumption
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brought on by the process of global economic development [4]. China, a significant devel-
oping nation, since 2006, has ranked first in the world for CO2 emissions [5]. China’s CO2
emissions have increased significantly due to the country’s increasing industrialization
and urbanization. According to the energy statistics provided by the International Energy
Agency (IEA), China accounted for 28.13% of global CO2 emissions in 2015, exceeding
the combined emissions of the United States and the European Union [6]. China is facing
serious environmental problems and pressure to deal with climate change. Thus, under-
standing the spatial and temporal distribution of CO2 emissions at different administrative
levels is crucial for China’s future development [7].

In September 2020, China proposed the “dual carbon” goal. That is, China will work
to peak its CO2 emissions before 2030 and to become carbon neutral before 2060 [8]. In
order to achieve this goal, China has clearly put forward the main implementation paths
and policy proposals in many aspects. Due to the vast territory and uneven economic
development level, the BTH region, as the key area of the Bohai economic circle, is the most
energy-intensive region in China. Despite accounting for only 2.3% of China’s total land
area, the BTH contributed almost 15% of China’s CO2 emissions in 2018 [9]. As a result,
the region must transition to low-carbon development to meet China’s carbon reduction
targets. However, there are huge differences amongst cities in terms of economic and social
growth. Therefore, the analysis of CO2 distribution and driving forces in different scale
regions can contribute significantly to the formulation of urban development strategies and
the future planning of BTH.

A detailed spatio-temporal analysis of carbon emissions can provide a basis for CO2
emission strategies in different regions. Many previous studies have assessed energy
consumption in different countries and regions at different scales [10–12]. However,
most of the studies on CO2 emissions in the BTH region concentrated on the munici-
palities (Beijing, Tianjin) and provinces (Hebei), and most of them were based on statistics
from the national and provincial energy administrations, which only provided a digital
record of CO2 emissions by administrative units, but did not reveal their spatial distribu-
tion characteristics. According to numerous earlier studies, nighttime lighting data is a
valuable indicator for assessing human activities and social economy, such as estimating
regional populations [13,14], urban expansion [15], economic development [16], power
consumption [17], gas combustion [18], etc. Based on DMSP-OLS data, many scholars have
conducted regression analyses on the nighttime stable light (NSL) and CO2 emission index,
and confirmed that nighttime lighting data at the national, provincial and municipal levels
and CO2 emissions are significantly correlated [19,20]. Therefore, using nighttime light data
opens a new perspective for dynamic monitoring of energy consumption. The studies of
Zhang [20] and Zhao [21] showed that two types of nighttime light data both have benefits
at different scales, and their combination can be used to investigate the spatial patterns of
CO2 emissions in long time series. Lv [22] integrated and analyzed the spatio-temporal
dynamics of CO2 emissions in China by using two nighttime lighting datasets, and her
research results proved that DMSP-OLS and NPP-VIIRS data could be effectively combined
to study CO2 emissions. Meng [23] used linear equations to fit night light data and CO2 data
based on DMSP-OLS data. Considering that there is a nonlinear relationship between CO2
emission and light value, conventional econometric methods may produce large errors [24].
The majority of the studies mentioned above were conducted on large-scale regions, such
as national and provincial levels, lacking detailed studies on city and county scales, and
are based on a single satellite. It is more necessary to meet the high accuracy of fitting the
CO2 emission and nighttime light values for the investigation of small-scale areas.

Previously conducted research on the influencing factors of CO2 emissions primar-
ily included logarithmic average weight, the Divisia decomposition method, the LMDI
decomposition method, IPAT theory and the STIRPAT model, the factor decomposition
method, Kuznets curve theory and the spatial econometric model and other methods
and theories [25–28]. The IPAT model is widely used as a classical model to study CO2
emissions [29,30]. Since this model cannot make assumptions on variables, York [31] pro-
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posed an improved model, the STIRPAT model, based on the IPAT model, which removed
the influence of the same proportion change. The model comprehensively considers the
impact of population, affluence and technology on the environment, and is widely used
in various fields. But they are mostly used at the national and provincial levels, and few
studies have been conducted at the city level, where data on CO2 emissions are lacking.
Therefore, in order to overcome the drawback that STIRPAT cannot be utilized to examine
urban carbon emissions due to a lack of data, this study combines the two kinds of nighttime
lighting data (DMSP-OLS and NPP-VIIRS) to get municipal carbon emission data.

The remainder of this paper is organized as follows. Section 2 describes the study area
and data sources. Section 3 outlines the integration of DMSP-OLS with NPP-VIIRS data, as
well as the estimation of CO2 emissions at the city and county scales and the assessment of
the characteristics of spatial and temporal changes in carbon emissions and the analysis
of driving forces. Section 4 analyzes the main results obtained in this paper. Section 5
discusses the results. Finally, Section 6 lists the main conclusions and puts forward some
strategies for the future low-carbon development of BTH.

2. Study Areas and Data Sources

The study area includes Beijing, Tianjin and the Hebei Province, which are located in
the North China Plain, accounting for 2.27% of the total land area of China. The area is
the center of Chinese politics, culture, economy, science and technology, and it is also the
area where Chinese steel production is most concentrated. The analysis process involved
13 cities, 199 counties and other administrative units (Figure 1).

Figure 1. Geographical location of Beijing–Tianjin–Hebei.

DMSP-OLS nighttime lighting data was obtained from the National Oceanic and
Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC) website
(https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html (accessed on 1 March
2022)). The product spans from 1992–2013, and the image is generated by six separate
sensors, these being F10 (1992–1994), F12 (1994–1999), F14 (1997–2003), F15 (2000–2007),
F16 (2004–2009), and F18 (2010–2013). Four sensor data, F14, F15, F16 and F18, were
used in this study. The illumination area is large, but there is an obvious saturation
problem, and the DN value ranges from 0–63. Annual data from version four of DMSP-OLS
from 2000–2013 was used in this study. NPP-VIIRS, which was launched in 2011, is an
Earth observation satellite NPP equipped with a visible/infrared radiation imager (VIIRS)
which obtains remote sensing images of ground light at night in the DNB (Day/Night
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Band) band. This study selected monthly data from 2012–2019, obtained from the website
(https://eogdata.mines.edu/products/vnl/ (accessed on 5 March 2022)).

All statistical data were obtained from the China Energy Statistical Yearbook, the
China Urban Statistical Yearbook and local statistical yearbooks, the Beijing Statistical
Yearbook, the Tianjin Statistical Yearbook, and the Hebei Statistical Yearbook.

3. Methodology

3.1. Integration of Two Kinds of Night Light Data

The integration of the two kinds of night light data is mainly divided into three steps
(Figure 2):

1. DMSP-OLS data were corrected by sensor, within year and between years;
2. Annual synthesis and denoising of NPP-VIIRS data;
3. Using a model to integrate the former two datasets to obtain the stable nighttime

lighting data from 2000–2019.

Figure 2. Flowchart of Beijing–Tianjin–Hebei carbon emission technology.

Because NPP-VIIRS are the monthly average data and are polluted by stray light, the
light data from May to July in the middle and high latitude areas of summer in China are
seriously distorted, and the pixel value is 0. Therefore, the missing months were eliminated
and the other months were synthesized to obtain the annual comprehensive data. The
images and DMSP-OLS images were then resampled to 1 km × 1 km and projected onto
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the Albers equal area projection. The invariant region method was selected to carry out
sensor correction, annual correction and inter-annual correction for DMSP-OLS data, and
then the continuity was improved. For the specific method, we referred to the study of
Elvidge [18]. After viewing the distribution of the data, it was found that approximately
99% of the pixel values were low (DN < 0.3). In order to remove the weak light in the
NPP-VIIRS data (usually regarded as noise), the threshold method was used to correct it,
and 0.3 × 10−9 W·cm−2·sr−1 was used as the empirical threshold, while values less than
0.3 in the NPP-VIIRS data was assigned as 0 [32]. Because there were abnormally high light
values in NPP-VIIRS images, the method of Zhao [33] was adopted in this paper. The pixel
values higher than those of China’s three megacities (Beijing, Shanghai and Guangzhou)
(DNMAX) in other regions were considered as outliers caused by oil, gas or fire. Each outlier
was iterated to the maximum value in its respective 3 × 3 neighborhood raster DN until no
value exceeded DNMAX.

Because of the dispersion of the two groups of data, it is difficult to fit the data directly,
so the coefficient of variation (cv) method was used to deal with this problem [34]. The
NPP-VIIRS data in 2012 was only available for six months, so the cv values of all pixel 3 × 3
windows in NPP-VIIRS and DMSP-OLS data of 2013 were chosen to be calculated. The cv
value is calculated using the following formula:

cv =
S
x

(1)

where S and x are the standard deviation and average value of the image radiation
value, respectively.

Subsequently, the NPP-VIIRS data were log-transformed to reduce the difference be-
tween the two datasets and make the brightness range consistent with the DMSP-OLS data.

Log_Vi = Ln(Vi + 1) (2)

where Vi is the original radiation value of NPP-VIIRS, and Log_Vi is the result after loga-
rithmic transformation. In order to make the logarithmic transformation valid, we added
the constant 1 to the equation.

According to previous studies, the two groups of cv values show an S-shape after
fitting (Figure 3), and ordinary function curves are difficult to fit accurately. In this study,
the S-type function model BiDoseResp was adopted to integrate the two kinds of night
lights. Meanwhile, in order to ensure its accurate application in the Beijing-Tianjin-Hebei
region, unary linear regression, binary linear regression and the DoseResp function model
were used for comparison. Finally, the results showed that the BiDoseResp model worked
best among the four models. The order of R2 was BiDoseResp (0.8836) > DoseResp (0.8833)
> binomial (0.8378) > unary linear (0.8359), and the RSS of the BiDoseResp model was
the smallest, which was 3.4687 × 105. Its model parameters are shown in Table 1. The
BiDoseResp formula can be expressed as follows:

y = A1 + (A2 − A1)
[

p
1 + 10(LOGx01−x)h1

+
1 − p

1 + 10(LOGx02−x)h2

]
(3)

where A1 and A2 are the minimum and maximum of the function, respectively, p represents
the weight of Logistic, LOGx01 and LOGx02 respectively represent the average value of
the independent variables of the two curves, and h1 and h2 represent the curve slope 1
and slope 2, respectively. Finally, the obtained NPP-VIIRS data was processed by Gaussian
low-pass filtering to obtain a smooth image.
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Figure 3. Image of the fitted Bidoseresp model in 2013.

Table 1. BiDoseResp model coefficients.

A1 A2 LOGx01 LOGx02 h1 h2 P

−35.4269 64.19793 0.36666 −1.98149 2.24954 0.41862 0.47464

3.2. Estimating CO2 Emissions According to IPCC

The United Nations’ Intergovernmental Panel on Climate Change (IPCC) provided
the internationally agreed standard for assessing emissions of the greenhouse gas CO2.
This study used the IPCC method to calculate the CO2 emissions of each province and city
from 2000–2019. The formula is as follows:

YCO2 =
44
12

×
n

∑
i=1

KiEi (4)

where i is the type of energy, n represents the quantity of energy, Ei represents the con-
sumption of energy type i (calculated by standard coal), and Ki represents the carbon
emission coefficient of energy i, the original data unit is J, and in order to keep the data unit
consistent, it is converted into standard coal (SCE); the conversion coefficient is: 1 × 104 t
standard coal is equal to 2.93 × 105 GJ. 44/12 is the amount of carbon dioxide produced by
the complete combustion of one ton of carbon in oxygen. Table 2 lists the conversion of
carbon emission coefficient and standard coal of different fossil fuels. These energy sources
account for about 85% of China’s total emissions.

Table 2. Fossil energy emission factors.

Energy Type SCE Conversion Factor (tSCE/t) CO2 Emission Factor (t/SCE)

Raw coal 0.7143 0.7559
Coke 0.9714 0.855

Crude oil 1.4286 0.5857
Gasoline 1.4714 0.5538
Kerosene 1.4714 0.5714

Diesel fuel 1.4571 0.5921
Fuel oil 1.4286 0.6185

Natural gas 13.3 0.4483
Electricity 1.229 0.272

Note: The conversion of natural gas into standard coal is standard coal/10,000 m3, and the conversion of electricity
into standard coal is standard coal/10,000 kWh.
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3.3. Estimating CO2 Emissions at Municipal and County Levels

Regression modeling can be used to determine the association between CO2 emissions
and NSL. Due to the nonlinear relationship between CO2 emissions and NSL, the tradi-
tional methods may lead to relatively high errors, especially for Beijing. Artificial neural
networks can effectively solve this problem. It is a kind of machine learning, which is
a nonlinear, dynamic and complex information processing system connected by a large
number of neurons. Bp-neural networks are a kind of multi-layer feedforward neural
network which is trained according to the error back propagation method (Figure 4), which
generally includes three layers: the input layer, the hidden layer and the output layer, and
each layer has multiple nodes. Therefore, we chose the BP-neural network method to fit
NSL and CO2 emission data. x = [x1, x2, . . . , xn]

T was selected as the DN value of NSL,
y = [y1, y2, . . . , ym]

T was selected as the CO2 emission data as the output value, and Wij
was the weight parameter. Considering the accuracy of the BP-neural network, 70% of the
samples were used as the training set, and 30% of the samples were used as the test set and
validation set. Since the types of economic development in Hebei Province, Beijing and
Tianjin are quite different, Hebei Province was chosen to be fitted separately.

Figure 4. Three-layer BP neural network model.

The relationship between input and output during forward propagation is as follows:

yj =
m

∑
i=1

ωijxi + bj (5)

xj = f
(
yj
)
=

1
1 + e−yj

(6)

The gradient descent method is adopted for reverse error propagation, and the loss
function is:

E =
1
2

p

∑
j=1

(
xj − yj

)2 (7)

The revised weight value and threshold calculation formula are:

Wij = wij + Δwij (8)

Bj = bj + Δbj (9)

Δwij = −η1
∂E

∂wij
(10)

Δbj = −η2
∂E
∂bj

(11)
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where xi is the input value of node i, xj is the output value of node j, yj is the net output
value of node j, ωij represents the weight between nodes i and j, and bj represents the
threshold of node j, f is the transfer function of the node, p is the number of iterations; Wij
and Bj are the weight correction amount and the threshold between the i node and the j
node, respectively.

In order to obtain CO2 emission data at the city, district and county level, the weighted
average method based on DN value was used in this study. The formula is as follows:

Ci = DNi × ym

∑n
i=1 DNi

(12)

where i stands for different cities (i= 1,2,3...n), m represents the province where city i is
located, Ci represents the CO2 emissions of city i, ym represents the CO2 emissions of
province m.

3.4. Analysis of Spatio-Temporal Pattern
3.4.1. Linear Propensity Estimation (Slope)

The linear propensity estimation method was used to obtain the propensity values
of each county in different years from 2000–2019 so as to analyze the changing trends
and types of carbon emissions. With the change of time, energy emissions will show a
significant increase, a significant decline, or no obvious change. The area with a tendency
value less than 0 is classified as having a downward trend, while the area with a tendency
value greater than 0 is classified as having one of four growth speeds: slow, medium, faster,
and rapid. It is calculated as follows:

SLOPE =
n × ∑n

i=1 xiCi − ∑n
i=1 xi∑n

i=1 Ci

n × ∑n
i=1 Ci

2 − (∑n
i=1 Ci)

2 (13)

where n is the total number of years, which is 20; Ci is the CO2 emissions in the year i, xi is
the year i.

3.4.2. Global Autocorrelation

The global Moran’s I index can judge the spatial distribution pattern of carbon emis-
sions in Beijing-Tianjin-Hebei by reflecting the similarity or correlation degree of carbon
emissions in the spatially adjacent regions. The specific formula is as follows:

I =

n
n
∑

i=1

n
∑

j=1
wij(xi − x)

(
xj − x

)
n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
(xi − x)2

(14)

where I is the global Moran’s I index, xi and xj represent the CO2 emission values of county
i and county j, n is the total number of units in the districts and counties, and wij is the
standardized spatial weight matrix.

When the Moran index is greater than 0, it indicates that there is a positive correlation
between regions; otherwise, there is a negative correlation. The Z-value size can judge the
significance level; if |Z| ≤ 1.96 and p ≥ 0.05, it means that there is no correlation in the
region; if |Z| ≥ 1.96, p < 0.05, it means that there is significant spatial autocorrelation in
the region.

3.4.3. Hot Spots Analysis

The “Getis-Ord G*” indicator can be used to determine the spatially clustered locations
of carbon emissions, which obey the standard normal distribution. It identifies statistically
significant hot and cold spots using local General G index statistics given a set of weighted
elements. When the “Getis-Ord G*” statistic passes the significance test and is positive, it
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means that carbon emissions are clustered in space, that is, hot spots; otherwise, it means
discrete, that is, cold spots. The “Getis-Ord G*” can be expressed as follows:

G∗
i =

∑n
j=1 Wi,jxj − X∑n

j=1 wi,j

S

√[
n∑n

j=1 wi,j
2 −

(
∑n

j=1 wi,j

)2
]

/(n − 1)

(15)

where G∗
i is the Z-score, Wi,j represents the spatial weight between space units i and j

(adjacent is 1, non-adjacent is 0); n is the number of space units, xj is the carbon emission
value of the space unit; X represents the Mean, S the standard deviation.

3.5. Spatial Econometrics Models

The modified STIRPAT stochastic extensible model based on IPAT proposed by
York [31] was selected. Because of its flexibility, the model has been widely used in
various fields [35,36].

CO2 emission from energy consumption can reflect regional environmental pressure, so
STIRPAT can better explore the driving factors of CO2 emission. The formula is as follows:

I = aPb AcTde (16)

where I is an environmental factor; P is the demographic factor, A is the wealth factor, and
T is the technology factor; a is a constant term; e is an error; and b, c, and d are indices that
need to be evaluated. Logarithm transformation was performed on both sides of the model
(16) at the same time, and it is expressed as:

(LnI)i = Lnai + bi(LnP)i + ci(LnA)i + di(LnT)i + Lnei (17)

where i is the city i. The model was then extended based on the actual situation and existing
data. bi, ci, and di are elastic coefficients, which means that when P, A, and T change by
1%, bi%, ci%, and di% of I will change respectively. Table 3 shows the selected influencing
factors. Since data on energy consumption per unit GDP and coal share were not available
for cities in Hebei Province, these two terms were removed from the driving force analysis.

Table 3. STIRPAT model variable selection.

Variable Factor Symbol Indicator Unit

dependent variable Environmental CO2 emissions CE Urban carbon emissions 104 tons

independent variable

population factor

total population p Year-end total population 104 people

Urbanization rate UR
The proportion of urban

population to
total population

%

Wealth factor
GDP per capita PP GDP per capita Yuan

Foreign investment FAI foreign investment Ten thousand dollars

technical factors
Secondary industry TI2

Proportion of added
value of secondary

industry in GDP
%

Industrial added value LAV Annual industrial
added value billion

4. Results

4.1. NSL Mutual Correction Results

The radiation characteristics of a certain area in Beijing-Tianjin-Hebei (including rural
areas, urban areas and suburbs) in the nighttime light data and Google Earth image were
selected for cross-sectional examination, as shown in Figure 5. It can be seen that the
distribution of BDR (BiDoseResp) NPP (adjusted NPP-VIIRS) data is consistent with that of

207



Remote Sens. 2022, 14, 4799

DMSP-OLS data. Figure 6 displays the nighttime stable light data (NSL) of the time series
from 2000–2019 after the final continuous correction.

Figure 5. Profile distribution of radiation value of light images at different nights in 2013.

Figure 6. Night light values before and after correction.

4.2. Accuracy Evaluation of CO2 Emission Estimation

The bp-neural network was used as a tool to fit the relationship between CO2 emissions
and nighttime lighting data. The predicted value was then compared with the actual
statistical value, and other functions were also used for comparison in order to verify the
accuracy. Table 4 shows the fitting results of different functional models on the DN value
and CO2 emissions. In comparison to other functional models, the BP-neural network was
superior in every way. RMSE is the root mean square error, which measures the error rate
of the regression model. The measurement’s accuracy is indicated by the average relative
error (RE), which is the difference between the absolute error and the real value. It can be
seen that the accuracy of fitting night light and CO2 emissions by the BP-neural network
was good, so the model can be used to fit CO2 emissions in BTH.
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Table 4. Comparison of different function models.

Model R2 RMSE RE

Beijing

Linear 0.5600 1186.443 0.0753
quadratic fit 0.6129 1387.492 0.0902

Exponential function 0.5231 2094.901 0.1294
Power function 0.5934 1169.759 0.0754

bp-neural network 0.9799 260.061 0.0158

Tianjin

Linear 0.8674 1741.121 0.0793
quadratic fit 0.9327 2799.401 0.1281

Exponential function 0.7828 2503.933 0.1081
Power function 0.8483 1846.445 0.0768

bp-neural network 0.9978 314.669 0.0146

Hebei

Linear 0.8497 9870.159 0.1334
quadratic fit 0.9574 10281.500 0.1341

Exponential function 0.7357 14073.120 0.1645
Power function 0.8179 11682.530 0.1306

bp-neural network 0.9963 2455.139 0.0269

4.3. Spatio-Temporal Dynamics of CO2 Emissions
4.3.1. Temporal Variations

The total CO2 emissions in BTH changed significantly, increasing from 525.26 million
tons in 2000 to 1381.01 million tons in 2019, with an average growth rate of 4.952%. The
upward trend from 2000–2012 gradually stabilized after 2012 and showed a downward
trend in 2014, 2016 and 2017 (Figure 7). The CO2 emissions of Hebei Province were basically
consistent with the total CO2 emission trend of Beijing-Tianjin-Hebei, from 61.5% in 2000 to
75.31% in 2017, and the growth rate has slowed since 2012.

Figure 7. Beijing–Tianjin–Hebei carbon emissions from 2000–2019.

At the municipal level, as shown in Figure 8, the CO2 emissions of Tianjin have been
significantly higher than those of other cities since 2010. Since 2004, the CO2 emissions
of Tangshan have steadily ranked first in Hebei Province, followed by Baoding. At the
county level, the faster developing areas in the eastern portion of the Beijing-Tianjin-Hebei
region were where CO2 emissions were highest (Figure 9). Over the past 20 years, the CO2
emissions in BTH cities have changed significantly. Since 2000, Tianjin’s Binhai New Area
has consistently ranked first among all districts in terms of CO2 emissions.
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Figure 8. Beijing–Tianjin–Hebei municipal-level energy CO2 emissions from 2000–2019.

Figure 9. County-level CO2 emissions in the Beijing–Tianjin–Hebei region in 2000, 2006, 2012
and 2019.

As shown in Figure 10, according to the county-level SLOPE results, the southern
BTH region had the majority of the regions with significant tendencies. According to
the classification standard, there were seven counties with a downtrend, concentrated in
the center of Beijing and Tianjin, accounting for 0.89% of the total area; 96 slow growth
areas; 69 medium growth areas; 24 faster growth areas; and three rapid growth areas,
accounting for 71.79%, 22.95%, 4.28% and 0.084% of the total area, respectively. The places
with faster growth were primarily spread out southeast of Beijing-Tianjin-Hebei, and the
rapid growth areas were distributed in the Yingshouyingzi mining area of Chengde, the
Hongqiao District, and the Heping District of Tianjin.
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Figure 10. 2000–2019 Beijing–Tianjin–Hebei energy CO2 emission trends.

4.3.2. Spatial Variations

The global Moran’s I index was calculated in 2000, 2006, 2012 and 2019, which was
0.4501, 0.4023, 0.3938 and 0.3763 respectively (p < 0.01). This indicated that there was a
positive correlation between county-level energy CO2 emissions distribution in BTH during
the past 20 years, and the correlation was gradually weakening. Over a 20-year period,
CO2 emissions became spatially dispersed.

Figure 11 shows that the southern and western counties of Hebei Province are the areas
where the cold spot region mainly gathers. In 2019, the area of cold spot areas decreased,
and the reduced cold spot areas were all converted into sub-cold spot areas. Beijing, Tianjin
and surrounding areas were the main hot spots, and with the passage of time, the scope of
hot spots gradually decreased and turned into sub-hot spots. The transformation of hot
spots in Beijing was the most obvious, from the hot spots (16) in 2000 to the sub-hot spots
(12) and sub-cold spots (4) in 2019, which indicates that the carbon reduction measures in
Beijing have been very effective in recent years. Tianjin, as the economic center around the
Bohai Sea, was also an international transportation hub, and has always remained in the
hot spot.

4.4. Analysis of Driving Force

First, a Pearson analysis was performed on the data to remove insignificant factors
and determine the influencing factors to be used. The least squares method was then used
for regression to calculate the variance inflation factor (VIF) of the respective variables.
The results demonstrated that most variables’ VIF values were above 10, which confirmed
the existence of multicollinearity. To eliminate the effects of multicollinearity, the data
was re-regressed using ridge regression analysis with biased estimation. It is an improved
method based on the least square method. In order to obtain more realistic and reliable
regression coefficients, it loses part of the information and reduces the accuracy [37]. When
K = 0, it is the ordinary least squares estimate.
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Figure 11. Aggregation of energy CO2 emissions in Beijing-Tianjin-Hebei in 2000, 2006, 2012 and 2019.

Because energy CO2 emissions were normally distributed in Beijing from 2000–2019,
only population and wealth factors were significantly correlated with energy CO2 emissions
in the Pearson test. To explore the causes of energy CO2 emissions in Beijing, it was neces-
sary to decompose the technical factors. Therefore, on the original basis, three independent
variables of building, transportation and energy intensity were added. The formula can be
expressed as:

LnI = Lna + bLnP + cLnA + dLnT + mLnU + nLnR + tLnE + Lne (18)

where U is the construction factor (CI), expressed by the number of construction enterprises;
R is the transportation factor (PC), expressed by the number of private cars (10,000 vehicles);
E is the energy intensity (GC), expressed by the unit GDP carbon dioxide consumption
Quantity representation. Ridge regression analysis with biased estimation was conducted
on the STIRPAT model, and the final regression results of Beijing are shown in Table 5, and
the results of other cities are shown in Table 6.
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Table 5. Ridge Regression Estimation Results of Beijing.

Variables Ln(UR) Ln(FAI) Ln(GC) Ln(CI) Ln(PC) Constant Sig F R-Squared K

coefficient 1.090 ***
(0.258)

−0.029 *
(0.016)

0.037 **
(0.013)

0.246 ***
(0.044)

0.025 ***
(0.007)

2.938 *
(1.069) 0.0000 0.858 0.15

Note: “()” is the standard error; ***, **, * indicate significance at the 1%, 5% and 10% levels, respectively.

Table 6. Ridge regression estimation results of Tianjin-Hebei.

Tianjin Shijiazhuang Tangshan Qinhuangdao Handan Xingtai

Ln(P) 0.249 *** (0.038) 1.711 *** (0.529) 1.941 *** (0.218) 0.323 *** (0.106) 0.436 ** (0.181)
Ln(UR) 1.418 *** (0.088) 0.572 *** (0.154) 0.406 *** (0.097) 0.258 ** (0.115) 0.282 *** (0.046) 0.339 *** (0.044)
Ln(PP) 0.132 *** (0.012) 0.092 ** (0.042) 0.149 *** (0.013) 0.151 *** (0.019) 0.129 *** (0.010) 0.134 *** (0.009)
Ln(FAI) 0.037 ** (0.017) 0.106 *** (0.017) 0.081 *** (0.019) 0.027 ** (0.012)
Ln(TI2) 0.265 *** (0.086)

Ln(LAV) 0.142 *** (0.012) 0.297 *** (0.055) 0.177 *** (0.020) 0.235 *** (0.029) 0.142 *** (0.015) 0.216 *** (0.021)

Constant −2.32 *** (0.682) 3.731 *** (0.401) −7.706 **
(3.447)

−7.598 ***
(1.485) 3.136 *** (0.757) 1.999 * (1.125)

Sig F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R-squared 0.980 0.9541 0.963 0.939 0.943 0.961

K 0.03 0.05 0.26 0.24 0.4 0.25

Baoding Zhangjiakou Chengde Cangzhou Langfang Hengshui

Ln(P) 1.501 *** (0.223) 4.195 *** (0806) 2.425 *** (0.820) 1.409 *** (0.317)
Ln(UR) 0.258 *** (0.050) 0.432 *** (0.063) 0.639 *** (0.085) 0.634 *** (0.085) 0.741 *** (0.083) 0.330 *** (0.055)
Ln(PP) 0.115 *** (0.015) 0.142 *** (0.010) 0.166 *** (0.016) 0.199 *** (0.022) 0.114 *** (0.019) 0.100 *** (0.018)
Ln(FAI) 0.053 ** (0.025) 0.028 ** (0.013) 0.100 *** (0.026)
Ln(TI2) 0.412 *** (0.076)

Ln(LAV) 0.163 *** (0.030) 0.190 *** (0.019) 0.251 *** (0.029) 0.069 ** (0.029) 0.153 *** (0.022) 0.176 *** (0.034)

Constant −5.056 *** (1.622) −21.436 ***
(4.898)

−11.487 **
(4.676) 4.236 *** (0.185) 1.089 ** (0.433) −3.430 * (1.945)

Sig F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R-squared 0.933 0.943 0.988 0.985 0.990 0.900

K 0.33 0.48 0.08 0.04 0.05 0.37

Note: “()” is the standard error; ***, **, * indicate significance at the 1%, 5% and 10% levels, respectively.

Tables 5 and 6 show that the significance test of 10% was passed by all of the chosen
independent variables. Ridge regression results showed that R2 was greater than 85%, F
significance test Sig F = 0.0000 < 0.01, passed the significance level test. Therefore, it can be
concluded that the relationship between CO2 emissions and their respective variables in
Beijing-Tianjin-Hebei cities can be well explained by models (17) and (18).

The urbanization rate (UR) promoted CO2 emissions in all of the 13 cities, and the total
population (P) of each city had a promoting effect on energy CO2 emissions to a certain
extent. The increase in the population and the migration of rural people to cities have led
to the increase in urbanization rate and the change of industrial form, which are among
the reasons for the increase in energy consumption. For Tianjin and some cities in Hebei,
foreign investment (FAI) played a promoting role in CO2 emission. Foreign investment
promoted the level of industrialization and economic growth and improved the energy
intensity of infrastructure construction and the mechanized production process. Therefore,
a large amount of investment can produce higher CO2 emissions [38].

The ratio of secondary industry to GDP (TI2) was only significantly correlated with
CO2 emissions in Tianjin and Langfang, indicating that the industrial structure had a
stimulating effect on CO2 emissions in these two cities during 2000–2019, and the effective
adjustment of industrial structure could restrain CO2 emissions. Except for Beijing, the
increase of industrial added value (LAV) will lead to the increase of CO2 emissions in the
other 12 cities because the continuous increase of industrial added value will stimulate
social demand and increase production intensity, resulting in more CO2 emissions. For
Beijing, urbanization rate (UR) was the most critical positive factor affecting its energy CO2
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emissions, and its elasticity value was the highest. For every 1% increase in the urbanization
rate of Beijing, its energy CO2 emissions will increase by 1.09%. Increased foreign invest-
ment (FAI) will curb CO2 emissions in Beijing, as a large amount of investment is often
accompanied by advanced technologies that use clean energy in the production process.

5. Discussion

5.1. Accuracy Assessment of CO2 Emissions

The lack of energy statistics and inconsistent statistical standards in prefecture-level
cities bring some difficulties to the analysis of the spatio-temporal CO2 emissions dynamics.
In this study, the method of using night light (NSL) to assess carbon dioxide proved to be
effective. In order to assess the reliability of the findings, linear equations, quadratic terms,
power functions and exponential functions were also used for comparison. Coefficient
of determination (R2), relative error (RE), and root mean square error (RMSE) were used
to assess the precision of the spatial distribution of CO2 emissions. Among them, the
coefficient of the neural network model is better than that of other function models, as
shown in Table 4. However, this method is relatively dependent on the accuracy of NSL
data. Due to some shortcomings of night light data, such as supersaturation and low
accuracy, how to simulate CO2 emissions more accurately through night light needs to be
studied further.

5.2. The Role of Influencing Factors

The results of the spatial econometric model show that all the factors selected in this
study have an effect on CO2 emissions, especially the population factor, which is in line
with the research findings of Wang [39]. Since 2010, there seems to be no direct correlation
between Beijing’s carbon emission curve and its economic development curve, because
the rapid economic growth accompanied by the use of advanced technology and clean
energy has slowed the growth of CO2 emissions [40]. The impact of foreign investment
(FAI) on CO2 emissions in the BTH region is different, with Beijing being negative and the
other 12 cities being positive. For Beijing, with high GDP, advanced technologies can be
transferred to domestic enterprises through foreign investment, and technology transfer
can help domestic enterprises adopt new technologies and improve the energy efficiency
of energy use [41]. For Tianjin and the cities in Hebei Province, a large amount of foreign
capital inflow is responsible for the regional economic growth, but it inevitably leads to
environmental pollution, thereby increasing carbon emissions [42]. Many scholars have
analyzed different areas of the environmental stress factors, but most of the studies focused
on large scale regions and ignore the regional internal differences, and this research solved
this problem. However, the selection of influencing factors needs to be discussed further.
Different scholars choose different influencing factors, which might have an effect on the
study’s findings. At the same time, due to the high scalability of the STIRPAT model, the
factors affecting energy consumption are complex. This study was conducted on the basis
of available urban statistics, which did not include all of the influencing factors, especially
the technical factor indicators. The establishment and improvement of the statistical index
system of different scales will make the driving force research results more accurate. The
detailed decomposition of the influence of each variable from a small-scale perspective is a
direction for future research on regional environmental stress.

5.3. Compared with Previous Studies

Research on carbon emissions has become a hot topic in recent years. Previous studies
have had a large scope and rarely involve city and county levels. For example, Shi [19] and
Chen [43] chose China as their research area and studied China’s carbon emissions through
single satellite data. The method proposed in this study has obvious advantages. By
integrating two kinds of nighttime light data, long-term carbon emission data at different
administrative levels in different cities can be obtained with certain accuracy. This study
focused on the Beijing-Tianjin-Hebei region, which can more specifically analyze the driving
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principles behind the carbon emissions of cities and counties. Compared with previous
studies, most of the carbon emissions and NSL fitting studies adopted the traditional linear
method [22,23], in which Lv obtained the fitting RE of Beijing, Tianjin and Hebei to be
6.64%, 0.45% and 38.86%, respectively, while the fitting RE of this study was 1.58%, 1.46%
and 2.69%, respectively. The errors of Beijing and Hebei are much smaller than the results
of Lv. Therefore, the neural network method proposed in this study is superior to some
other studies to a certain extent, and the final results are more accurate. Finally, in the
analysis of driving factors, this study added some factors on the basis of previous studies.
For example, traffic and building factors are added to the study of Beijing. Compared with
the study of Wen [44], this research has a smaller scale and is accurate to each city, so it has
more advantages.

6. Conclusions and Policy Implications

To some extent, the low-carbon development strategies formulated by the BTH can
provide some references for other cities. However, the accurate analysis of small-scale
regional carbon emissions is limited by the lack of statistical data in some cities. In order to
resolve this issue, this work employed the integration of two kinds of nighttime lighting
data to fit the CO2 emissions of Beijing, Tianjin, and Hebei, and obtained the CO2 emissions
at different scales. Then, spatial analysis technology was used to examine spatial and
temporal changes, and the driving force of CO2 emissions was analyzed by the STIRPAT
model with biased estimation ridge regression. The results show that the distribution
pattern of energy CO2 emission in Beijing-Tianjin-Hebei is “greater in the east than in
the west” and is mainly concentrated in the eastern coastal cities and the cities with
higher population density and higher GDP. There were variances in CO2 emission levels
across cities, and most displayed a pattern of first growing and then slowing down. With
the exception of the Hongqiao District and Heping District, carbon emissions in central
urban areas of Beijing and Tianjin showed a general decreasing trend. Tangshan, Baoding,
Cangzhou and Shijiazhuang, which are the industrial, economic and political centers, are
the areas with high carbon emissions in Hebei Province, and the CO2 emissions of some
counties in the south and northwest of Hebei Province show an increasing trend. The
aggregation degree of carbon emissions in each district was weakened, and most of them
showed a slowing trend.

According to the spatial econometric model’s findings, carbon emissions in Tianjin
and Hebei are positively affected by population, wealth, and technology. In addition to
the negative impact of foreign investment in Beijing, other factors are also positive. In the
Beijing-Tianjin-Hebei region, population is the most significant factor determining CO2
emissions. The weight of the same influence factor is different in different cities, and the
difference is obvious within cities.

This study offers some policy suggestions for controlling CO2 emissions based on
the above discussion and conclusions. First, we should control the size of the population,
optimize the population structure and alleviate the problem of high population density.
At the same time, we should improve the quality of the population, and guide people’s
environmental awareness and consumption concepts. Second, strictly controlling the
approval of foreign investment and energy-intensive projects and raising the investment
threshold to develop low-carbon industries can effectively control CO2 emissions. Third, we
should adjust the industrial structure and reduce the proportion of industries that consume
large amounts of fossil energy. We need to encourage high-tech industries and establish
a green and ecological industrial development model, especially in Tianjin, Shijiazhuang,
Chengde and Langfang. For regions with underdeveloped economic development, such as
Zhangjiakou and Hengshui, CO2 emissions should be reduced by saving energy, improving
energy utilization efficiency and actively cultivating low-carbon and green concepts. In
addition, for Beijing, besides controlling the population size, the proportion of clean energy
in total energy consumption can be increased, the consumption of fossil energy can be
reduced, and public transportation can be advocated. Local governments should improve
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regional industrial guidance, encourage foreign investment in high-tech industries, and
introduce resource-saving investments. At the same time, we need to develop low-carbon
buildings and green buildings, and improve the relevant technical norms and standards.
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Abstract: Urban agglomerations, such as Beijing-Tianjin-Hebei Region, Yangtze River Delta and Pearl
River Delta, are the key regions for energy conservation, carbon emission reduction and low-carbon
development in China. However, spatiotemporal patterns of CO2 emissions at fine scale in these
major urban agglomerations are not well documented. In this study, a back propagation neural
network based on genetic algorithm optimization (GABP) coupled with NPP/VIIRS nighttime light
datasets was established to estimate the CO2 emissions of China’s three major urban agglomerations
at 500 m resolution from 2014 to 2019. The results showed that spatial patterns of CO2 emissions
presented three-core distribution in the Beijing-Tianjin-Hebei Region, multiple-core distribution in
the Yangtze River Delta, and null-core distribution in the Pearl River Delta. Temporal patterns of CO2

emissions showed upward trends in 28.74–43.99% of the total areas while downward trends were
shown in 13.47–15.43% of the total areas in three urban agglomerations. The total amount of CO2

emissions in urban areas was largest among urban circles, followed by first-level urban circles and
second-level urban circles. The profiles of CO2 emissions along urbanization gradients featured high
peaks and wide ranges in large cities, and low peaks and narrow ranges in small cities. Population
density primarily impacted the spatial pattern of CO2 emissions among urban agglomerations,
followed by terrain slope. These findings suggested that differences in urban agglomerations should
be taken into consideration in formulating emission reduction policies.

Keywords: carbon emission; energy conservation; genetic algorithm; nighttime light data;
urban agglomerations

1. Introduction

Global cities only account for 2% of the Earth’s area, but produce more than 70% of
the world’s anthropogenic CO2 emissions [1,2]. The extent and intensity of global climate
change will be strengthened in the next few decades, according to the sixth assessment
report of the Intergovernmental Panel on Climate Change (IPCC). CO2 emissions are
increasing at an unprecedented rate due to the energy consumption related to human
activities [3–6]. The urbanization rate of China increased to 59.6% in 2018 [7]. Rising
energy consumption due to the rapid development of urbanization and industrialization
has increased China’s CO2 emissions significantly [8,9]. A study reported that China’s
35 largest cities accounted for 40% of the country’s CO2 emissions [10]. The huge amount
and rapid growth rate of CO2 emissions have made China face huge pressure to bal-
ance economic growth and sustainable development [11,12]. Therefore, exploring the
patterns of carbon emissions in urban agglomerations are crucial for formulating carbon
reduction policies.
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Satellite nighttime light information at high resolution may provide accurate estima-
tion of spatial and temporal patterns of CO2 emissions [13]. The relationships between
statistical energy consumption and nighttime light data can be obtained by a variety of
regression models [14–16]. However, the conventional regression method is not effec-
tive due to the fixed model parameters [17]. Back propagation neural networks allow a
high variance model without suffering from overfitting, which can provide more accu-
rate regression models than traditional regression models. Jasiński (2019) used artificial
neural networks to model electricity consumption based on nighttime light images [18].
Yang et al. (2020) proposed a structure-based neural network ensemble to analyze the
nonlinear relationship between nighttime light data and CO2 emissions [17]. Genetic neural
networks integrated with the satellite nighttime light data at high resolution and local
statistical CO2 emissions data may improve estimation accuracy of CO2 emissions.

Fine-scale information of national and regional scale CO2 emissions is essential for
the design of emissions mitigation policies [19–21]. Nighttime light data from satellite
information is highly associated with the footprint of human activities, and can provide
an effective proxy for estimating energy consumption and CO2 emissions [14,15]. The
Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS)
data have been commonly used for the estimation of carbon emissions [16]. For example,
Doll et al. (2000) first found a strong relationship between DMSP/OLS nighttime light data
and CO2 emissions [22]. Wang and Liu (2017) utilized DMSP/OLS data from 1992 to 2013
to analyze regional inequalities and spatial agglomeration of urban CO2 emissions [23].
Shi et al. (2018) combined DMSP/OLS images and statistical energy consumption data to
explore spatiotemporal variations of CO2 emissions from urban agglomeration to national
scales [13]. Soon afterwards, the Suomi National Polar-Orbiting Partnership (NPP) Visible
Infrared Imaging Radiometer Suite (VIIRS) using nighttime light data with high spatial
resolution and wide radiometric detection proved to be better than DMSP/OLS data in
simulating CO2 emissions [24,25]. Shi et al. (2014) analyzed the correlation between
nighttime light, gross domestic product (GDP) and electric power consumption, and
found that NPP/VIIRS data were powerful tools to model socioeconomic indicators [26].
Zhao et al. (2018) modelled CO2 emissions in residential sectors at the urban scale and
found that the performance of NPP/VIIRS data in simulating residential carbon emissions
were better than DMSP/OLS data [25].

Beijing-Tianjin-Hebei, the Yangtze River Delta and the Pearl River Delta are the most
populated urban agglomerations with the highest comprehensive strength in China. By
2019, the GDP of the three urban agglomerations accounted for 39.65% of the national
GDP, while their population accounted for only 23.79% of the national population. Here,
spatiotemporal variations of CO2 emissions among urban agglomerations and the profiles
of CO2 emissions along urbanization gradients were explored using NPP/VIIRS nighttime
light datasets at 500 m resolution from 2014 to 2019 based on a back propagation neural
network with genetic algorithm optimization (GABP). Our aims were to: (1) integrate
multi-source data to estimate fine-scale carbon emissions of three urban agglomerations;
(2) analyze the spatial and temporal dynamics of carbon emissions among urban agglomer-
ations and the profiles of CO2 emissions along urbanization gradients within cities; and
(3) reveal the main influencing factors of carbon emissions.

2. Materials and Methods

2.1. Study Area

Beijing-Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta regions are
China’s three major economic growth poles. These urban agglomerations, located on the
eastern coast of Mainland China, are focus areas for energy conservation and emission
reduction (Figure 1). Beijing-Tianjin-Hebei consists of two municipalities, Beijing and
Tianjin, as well as 11 cities in Hebei province. The Yangtze River Delta consists of 26 cities
(i.e., Shanghai, Hangzhou, Nanjing, etc.). The Pearl River Delta is composed of nine cities
in Guangdong province. Furthermore, Beijing-Tianjin-Hebei is dominated by temperate
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continental monsoon climate [27], while the Pearl River Delta and Yangtze River Delta
are dominated by subtropical/tropical monsoon climates [28] and maritime monsoon
subtropical climates [29], respectively.

 
Figure 1. Locations of three urban agglomerations such as Beijing-Tianjin-Hebei Region, Yangtze
River Delta, and Pearl River Delta.

2.2. Data Sources

Datasets consisted of NPP/VIIRS nighttime light data, fossil fuel combustion data,
socioeconomic data, and basic geographic information data. Monthly NPP/VIIRS nighttime
light data (vcmsl version) at 500 m resolution during 2014–2019 were obtained from Colorado
School of Mines (https://payneinstitute.mines.edu/eog, accessed on 11 October 2019). The
radiation value of pixels in this data represents the intensity of the light. The fossil fuel
combustion data and socioeconomic data were obtained from China Statistical Yearbook,
China Regional Statistical Yearbook, and statistical yearbooks of each city. The details of
these data are listed in Table 1.

2.3. Methods

The flowchart of this study is summarized in Figure 2. Three key steps are included:
(1) estimating the statistical carbon emissions using the IPCC method; (2) estimating CO2
emissions using GABP neural networks coupled with satellite data and statistical carbon
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emissions; (3) exploring the spatiotemporal dynamics of CO2 emissions at 500 m resolution
and their influencing factors.

Table 1. Data used in this study.

Data Name Data Description Source

Nighttime light
NPP/VIIRS nighttime light at
a spatial resolution of 500 m
for 2014–2019

Colorado School of Mines
(https://payneinstitute.
mines.edu/eog/, accessed on
11 October 2019)

Fossil fuel combustion data

Annual total data of ten
energy types, such as raw coal,
coke, crude oil, gasoline,
kerosene, diesel oil, fuel oil,
natural gas, heat and
electricity, during 2014–2019

China Statistical Yearbook,
China Regional Statistical
Yearbook, China Energy
Statistical Yearbook and
statistical yearbooks of
each city

Socioeconomic data

Annual statistical data of six
types, such as permanent
population, GDP, per capita
GDP, primary industry GDP,
secondary industry GDP and
tertiary industry GDP, during
2014–2019

China Statistical Yearbook,
China City Statistical
Yearbook, China Regional
Statistical Yearbook, and
statistical yearbooks of
each city

Administrative boundaries Vector files of provinces,
prefectures in China

National Catalogue Service
For Geographic Information

Population density

Annual data with a spatial
resolution of 30 arc-seconds
(approximately 1km at
the equator)

WorldPop
(https:
//www.worldpop.org/,
accessed on 13 August 2021)

Terrain slope Spatial resolution of 90 m
Geospatial Data Cloud
(http://www.gscloud.cn/,
accessed on 16 July 2021)

Temperature
Annual mean temperature
unit with a spatial resolution
of 1 km

Resource and Environment
Science and Data Center
(https://www.resdc.cn/,
accessed on 3 September 2021)

Urban area Redefined data in 2016 Beijing City Lab Database [30]

2.3.1. Correction of NPP/VIIRS Nighttime Light Data

The NPP/VIIRS nighttime lights were not filtered to remove light detections associated
with fires, gas flares and background noise [8,26]. First, a few additional outliers caused
by lights from the flaring of oil and gas wells should be eliminated [31]. Because Beijing,
Shanghai and Guangzhou are major cities in each urban agglomeration, nighttime light
digital number (DN) values in these cities should be the largest compared to that in other
cities. The largest DN value in Beijing, Shanghai and Guangzhou was used as a threshold
to correct the outliers. The 8-neighbor denoising method was used to remove high value
noise in the image [32]. These pixels where the DN value was larger than the threshold
were assigned a new value, which equaled to the maximal DN value within the eight direct
neighbors of the pixel [33]. Secondly, we removed the background noise of nighttime light
data. Referring to Google Earth images, large-scale water areas were selected to set as the
sample area, and the radiation value was averaged to be used as the minimum threshold.
The pixels where the DN value was smaller than this minimum threshold were changed
to zero [34]. Finally, monthly NPP/VIIRS nighttime light data were averaged to annual
nighttime light images for the periods 2014–2019.
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Figure 2. The flowchart of this study.

2.3.2. Estimating the Statistical Carbon Emissions Using the IPCC Method

The IPCC guidelines recommended a unified standard method to evaluate CO2 emis-
sions from greenhouse gases [35]. This study used the IPCC method to calculate the
statistical CO2 emissions of energy consumptions [36]. The energy sources selected in this
study were raw coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, natural gas,
heat, and electricity. The conversion formula is:

CO2 =
44
12

×
10

∑
i =1

KiEi (1)

While i represents the types of energy; Ei represents the standard coal consumption
of energy type i; and Ki represents the effective CO2 emission factor of each energy type.
According to the IPCC guidelines, various types of fuel consumptions should be converted
to a standard coal consumption based on the calorific value of each fuel type.

2.3.3. Estimating CO2 Emissions by GABP Neural Networks and Nighttime Light Data

GABP neural networks have a strong ability to construct nonlinear relationships and
overcomes the shortcomings of the traditional neural networks. A BP neural network is
multi-layer feedforward neural network based on the error back propagation algorithm,
composed of an input layer, hidden layer and output layer [37]. Genetic algorithm op-
timization of BP neural network mainly obtains the optimal weights and thresholds to
substitute into the BP neural network for prediction [38]. Previous studies have shown that
there were positive correlations between CO2 emissions, GDP and population, indicating
that GDP and population have large impacts on CO2 emissions [13,39]. As result, major
socioeconomic factors related to human activities were selected as the input layer of GABP
model to explore the effect of human activity on environment. Therefore, we used a GABP
to establish the relationships between NPP/VIIRS nighttime light data, socioeconomic
data, and statistical carbon emissions in three urban agglomerations. Firstly, we used DN,
permanent population, GDP, per capita GDP, primary industry GDP, secondary industry
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GDP, and tertiary industry GDP to determine the input layers of GABP. Variables such as
DN, permanent population and primary industry GDP with the strongest ties to statisti-
cal carbon emissions were finally selected as the input layer. In detail, statistical carbon
emissions have the highest correlation with DN (r = 0.893, p < 0.05), followed by primary
industry GDP (r = 0.796, p < 0.05) and permanent population (r = 0.758, p < 0.05). In terms of
parameter settings, we then reduced the model training error through multiple trainings by
the GABP neural networks, and finally determined the optimal parameters for constructing
the carbon emission model estimation. The datasets during 2014–2018 were utilized for
training and the data in 2019 was used for validation. The GABP neural networks in this
study were divided into three layers. In detail, the input layer node was 3, the hidden layer
node was 5, and the output layer node was 1.

CO2 emissions estimated from GABP neural networks were validated with the city-
level statistical CO2 emissions (Figure 3). Three indicators of root mean square error (RSME),
mean absolute percentage error (MAPE) and determination coefficient (R2) were used to
verify the fitting performance. The RMSE, MAPE and R2 of CO2 emissions estimated from
GABP neural networks and the statistical data in this study were 1386.23 × 104 t, 11.01%
and 0.977, respectively, indicating that the GABP neural networks method showed a good
performance in estimating regional energy carbon emissions [17].

 
Figure 3. Scatter plots of total CO2 emissions calculated from statistical energy consumption data
and simulated CO2 emissions by GABP neural networks of three agglomerations in 2019.

The NPP/VIIRS nighttime light was used to allocate the city-level carbon emissions to
500 m pixel. Radiance values of all pixels belong to a region were summed, and the original
value at each pixel was normalized by the regional sum. The CO2 emission intensity at
a pixel was scaled by multiplying the normalized radiance with the annual total emissions
of a country or a region [40]. Therefore, we obtained energy carbon emissions at 500 m
resolution for three urban agglomerations in China from 2014 to 2019.

2.3.4. Spatiotemporal Dynamics of CO2 Emissions Based on GIS-Based Buffer Analysis,
Kernel Density Estimation and Linear Regression Analysis

Kernel density estimation (KDE) is a nonparametric density estimation method to
estimate the probability density of random variables. In this study, we used KDE to estimate
the continuous probability density curves of carbon emissions to capture the kernel density
maps of carbon emissions in three urban agglomerations [41].
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The city areas in urban agglomerations adopted for the GIS-based buffer analysis were
divided into three urbanization gradients. We designed two buffer zones around urban
areas. Two kinds of buffer zones were established: first-level urban circle was the buffer
zone with a width of 500 m outside the urban area, while second-level urban circle was the
buffer zone with a width of 1 km outside the first-level urban circle [42]. Two circular buffer
systems (first-level urban circle and second-level urban circle) were built by creating buffer
zones to compare the characteristics of CO2 emissions between urban areas and sub-urban
areas in urban agglomerations.

We calculated the variation slope (Sslope index) of energy consumption CO2 emissions
from 2014 to 2019 by establishing linear regression model between CO2 emissions and
years [43].

Sslope =
∑n

i=1 xiti − 1
n ∑n

i=1 xi ∑n
i=1 ti

∑n
i=1 t2

i − 1
n (∑

n
i=1 ti)

2 (2)

where n is the total number of years; xi is the serial number of year i; ti is the CO2 emission
amount in the i year. When Sslope index was larger than 0, it meant that CO2 emissions
showed an increasing trend. Significant trends of CO2 emissions in three urban agglomera-
tions were divided into four levels. The first level was a high-decline region where Sslope
was less than −0.16 and the second level was named as a low-decline region where Sslope
was greater than −0.16 and less than 0. The third levels (0 < Sslope < 0.16) were named
low-growth regions, and the last one (Sslope > 0.16) was called a high-growth region.

Profiles of CO2 emissions along urbanization gradients were investigated using the
section line that passed through the city center. Cities with high CO2 emissions and low
CO2 emissions were selected, respectively, in each urban agglomeration. We chose Beijing
and Langfang in Beijing-Tianjin-Hebei, Shanghai and Chizhou in Yangtze River Delta,
Guangzhou and Zhaoqing in Pearl River Delta as case studies.

2.3.5. Statistical Analysis on the Influencing Factors of CO2 Emissions among
Urban Agglomerations

Population density, annual mean temperature and terrain slope excluding the predic-
tors of the carbon emission model were selected as potential influencing factors of spatial
pattern of CO2 emissions among urban agglomerations. First, population density was an
important socioeconomic factor, which was often found to positively correlate with energy
consumptions and CO2 emissions [44]. Second, climate was considered as a determinant of
energy consumption and CO2 emissions due to heating and cooling [45,46]. Meanwhile,
annual mean temperature was different among three urban agglomerations. Third, topog-
raphy, for example, terrain slope, was a crucial natural factor because CO2 emissions of
the car increased with the increase of terrain slope. In order to analyze the realistic factors
affecting CO2 emissions, the strength of correlation between CO2 emissions and population
density, annual mean temperature and terrain slope were estimated using the Pearson’s
correlation coefficient. All influencing factors, such as population density, annual mean
temperature and terrain slope, were resampled to 500 m resolution.

3. Results

3.1. Spatiotemporal Variations of CO2 Emissions

The spatial distribution of CO2 emissions appeared as different patterns in three urban
agglomerations (Figures 4 and 5). CO2 emissions in Beijing-Tianjin-Hebei Region presented
a three-core distribution, such as Beijing, Tianjin and Tangshan. CO2 emissions in the
Yangtze River Delta showed a multiple-core distribution, such as Nanjing, Zhenjiang, Wuxi,
Suzhou, Shanghai and Ningbo. CO2 emissions in Pearl River Delta appeared as a null-core
distribution (Figure 5).
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Figure 4. Spatial distribution of annual CO2 emissions in three urban agglomerations averaged from
2014 to 2019.

Figure 5. Kernel density estimation maps of CO2 emissions of three urban agglomerations in 2019.

The Yangtze River Delta has the largest total CO2 emissions, followed by Beijing-
Tianjin-Hebei region and the Pearl River Delta (Figure 6). CO2 emissions per unit in cities
of the three agglomerations showed that the city with the lowest carbon emissions per unit
in Beijing-Tianjin-Hebei was Langfang, while the highest was Tangshan. CO2 emissions
per unit of Tangshan were 8.29 times that of Langfang. In the Yangtze River Delta, the city
with the lowest carbon emissions per unit was Jinhua, while the highest was Maanshan.
CO2 emissions per unit in Maanshan were 4.39 times that of Jinhua. In the Pearl River
Delta, the city with the lowest carbon emissions per unit was Zhongshan, and the highest
was Shenzhen. CO2 emissions per unit of Shenzhen was 2.46 times that of Zhongshan.
Consequently, Beijing-Tianjin-Hebei Region have the largest variations in carbon emissions
at city level, while the Pearl River Delta have the smallest variations.

Temporal patterns of CO2 emissions showed that th 28.74%, 43.99% and 43.45% of
the areas appeared to have significant upward trends of CO2 emissions in Beijing-Tianjin-
Hebei Region, Yangtze River Delta, and Pearl River Delta during 2014–2019, respectively
(Figure 7). Meanwhile, the percentages of regions with significant downward trends of
CO2 emissions were 15.43%, 13.47% and 15.31% in Beijing-Tianjin-Hebei, Yangtze River
Delta, and Pearl River Delta during study period, respectively. In general, the areas with
downward trends of carbon emissions were concentrated in southern Beijing, southern
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Tianjin, northern Tangshan, and western Handan in Beijing-Tianjin-Hebei, while these were
dispersed in the Yangtze River Delta and Pearl River Delta. Moreover, the percentages
of high-growth regions and low-growth regions in the upward trend regions were 2.88%,
5.46%, 3.44% and 4.75%, 3.97%, 2.22% in Beijing-Tianjin-Hebei, the Yangtze River Delta,
and Pearl River Delta, respectively.

 
Figure 6. CO2 emissions per unit in cities of three urban agglomerations.

Figure 7. Temporal trends of CO2 emissions in three urban agglomerations from 2014 to 2019. The
white area was not passed the significance test (p > 0.05). High-decline: Sslope < −0.16; Low-decline:
−0.16 < Sslope < 0; Low-growth: 0 < Sslope < 0.16; High-growth: 0.16 < Sslope.

3.2. Carbon Emissions within Cities

Urban areas have a larger amount of CO2 emissions than first-level urban circle and
second-level urban circle (Figure 8a–c). In detail, the Sslope of carbon emissions in urban
areas of the Yangtze River Delta was the largest, reaching 0.270, while that of Beijing-Tianjin-
Hebei Region was the smallest, at only 0.018. The slopes of CO2 emissions in urban areas
of Yangtze River Delta and Pearl River Delta were both larger than those in the other two
urban circles.

On the contrary, CO2 emissions per unit in urban areas, first-level urban circles and
second-level urban circles in Beijing-Tianjin-Hebei were the highest among three urban
agglomerations (Figure 8d–f). The temporal trends of CO2 emissions per unit in three
urban circles of Yangtze River Delta and Pearl River Delta have increased significantly.
The temporal slopes of CO2 emissions per unit in first-level urban circle and second-level
urban circle of Yangtze River Delta were larger than that of Pearl River Delta, respectively
(Figure 8d–f).
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Figure 8. CO2 emissions and CO2 emissions per unit within cities. The fitting curve indicated the
temporal trend of CO2 emissions in three urban circles for each urban agglomeration and Sslope

indicated the slope of energy CO2 emissions from 2014 to 2019. The star behind Sslope value mean the
significance test of trend was passed (p < 0.05).

In order to further investigate the pattern of CO2 emissions along urbanization gradi-
ents, the section line that passed through the city center was used to obtain profile lines,
which represented the structure of CO2 emissions along the distance away from urban
centers. In this study, cities with high CO2 emissions and low CO2 emissions were selected
respectively in each urban agglomeration (Figure 9). Profiles of CO2 emissions along urban-
ization gradients behaved as a radiation peak pattern with a high peak and a wide range in
big cities (Figure 9a–c). Correspondingly, profiles of CO2 emissions showed an independent
peak pattern with a low peak and a narrower range in small cities (Figure 9d–f).

3.3. Influencing Factors of Spatial Pattern of CO2 Emissions

Significant positive relationships between CO2 emissions and population density can
be observed in each urban agglomeration (rBTH = 0.486; rYRD = 0.470; rPRD = 0.535; all
p < 0.05) (Figure 10). Meanwhile, there were significant negative correlations between
terrain slope and CO2 emissions in three agglomerations (rBTH = −0.178; rYRD = −0.156;
rPRD = −0.335; all p < 0.05), which meant that CO2 emissions were generally decreasing
when terrain slope increased. Furthermore, CO2 emissions have weak correlations with
annual mean temperature in each agglomeration (rBTH = 0.172; rYRD = 0.004; rPRD = −0.124;
all p < 0.05). It indicated that population density was the primary influencing factor of CO2
emissions in all urban agglomerations. Meanwhile, the Pearl River Delta was one of the
three urban agglomerations which CO2 emissions most affected by terrain slope.
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Figure 9. Profiles of CO2 emissions along urbanization gradients in: (a) Beijing; (b) Langfang of
Beijing-Tianjin-Hebei (BTH); (c) Shanghai; (d) Chizhou of Yangtze River Delta (YRD); (e) Guangzhou;
and (f) Zhaoqing of Pearl River Delta (PRD).

 
Figure 10. Correlations between CO2 emissions and influencing factors, such as population density,
annual mean temperature and terrain slope, in three major urban agglomerations. BTH: Beijing-
Tianjin-Hebei; YRD: Yangtze River Delta; PRD: Pearl River Delta.

In general, there were significant positive correlations between carbon emissions
and population density among three urban circles (Table 2), which indicated that CO2
emissions were increasing when population density increased. In detail, the correlations
between CO2 emissions and population density in urban areas were more robust than other
two urban circles, expect for Pearl River Delta, where CO2 emissions in second-level urban
circle has largest correlations with population density. Meanwhile, CO2 emissions in urban
areas of three urban agglomerations have the smallest correlation with the terrain slope,
compared to other two urban circles. Additionally, temperature has the smallest impact on
CO2 emissions (Table 2).
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Table 2. Relationships between CO2 emissions and population density, annual mean temperature
and terrain slope among urban circles, such as urban area, first-level urban circle and second-level
urban circle.

Factor Urban Agglomeration Urban
First-Level

Urban Circle
Second-Level
Urban Circle

Population
density

Beijing-Tianjin-Hebei 0.209 * 0.184 * 0.152 *

Yangtze River Delta 0.257 * 0.087 * 0.188 *

Pearl River Delta 0.333 * 0.172 * 0.384 *

Annual mean
temperature

Beijing-Tianjin-Hebei −0.013 −0.062 −0.012

Yangtze River Delta −0.020 * −0.047 −0.016

Pearl River Delta −0.283 * −0.122 * 0.025

Terrain slope
Beijing-Tianjin-Hebei −0.026 * −0.070 * −0.091 *

Yangtze River Delta −0.060 * −0.101 * −0.113 *

Pearl River Delta −0.062 * −0.178 * −0.175 *
* Means significant at confidence level 5%.

4. Discussion

4.1. NPP/VIIRS Nighttime Light Integrated Genetic Neural Network Showed a Good Performance
in Estimating CO2 Emissions

Remote sensing nighttime light data can distinguish human urban areas with artificial
lights from the dark background at night [14], and have a high correlation with the energy
consumptions and carbon emissions [20]. One the one hand, the county-level statistical car-
bon emissions based on published energy use data were limited to coarse spatial/temporal
resolution and short period [47]. Remote sensing nighttime light data were often selected
as a good indicator to downscale the county-level statistical CO2 emissions [13,26]. Be-
cause the nighttime light data have wide time-span and coverage [48]. On the other hand,
a range of methods, including linear regression model [26], power regression model [24]
and log-log regression model [32] have been used in modeling spatiotemporal patterns of
CO2 emissions based on nighttime light data and statistical energy consumption. How-
ever, traditional regression methods were not effective to track the nonlinear relationship
between statistical CO2 emissions and nighttime light data due to fixed parameters [17].
Genetic neural networks have higher feasibility and reliability than traditional regres-
sion models. Jasiński (2019) modeled total electricity consumption based on nighttime
light images with artificial neural networks, and found that the results achieved by ar-
tificial neural networks has higher precision than that using linear regressions [18]. For
three northeastern provinces in China, Yang et al. (2020) found that the performance of
a neural network model was superior to traditional regression models in analyzing the
nonlinear relationship between nighttime light data and statistical carbon emissions [17].
For central and western regions of China, Lin et al. (2022) confirmed that a deep neural
network ensemble model was the best method to establish the relationship between the
multi-dimensional data characteristics and carbon emissions [49]. Our study demonstrated
that genetic neural network can estimate the spatiotemporal patterns of CO2 emissions by
integrating multiple datasets.

However, some limitations of nighttime light data will lead to uncertainty of CO2
emissions regardless of the linear function, power function or even complex methods. To
a certain extent, over-estimation of CO2 emissions may exist in urban areas due to the
limitation of nighttime light data. For example, some factories without any nighttime lights
were likely to have intensive human activities and CO2 emissions during the day [50]. In
general, the statistical carbon emissions consisted of whole urban CO2 emissions during
the day and night. Many studies have reported that nighttime light data have a high
correlation with energy consumptions and carbon emissions [17,35]. It indicated that
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brighter the nighttime lights, more daytime human activities in urban areas. For example,
nighttime light data was commonly used as an indicator of overall energy use in urban,
though electricity was often considered as the primary source of energy used for producing
artificial light [51]. Therefore, remote sensing nighttime light data can still be considered as
a good proxy of CO2 emissions in large-scale areas.

4.2. Three Urban Agglomerations Exhibited Diverse Spatial Patterns of CO2 Emissions

Beijing-Tianjin-Hebei Region behaved as three-core, Yangtze River Delta showed
multiple-core and Pearl River Delta presented null-core structure in CO2 emissions, re-
spectively (Figures 4 and 5). The differential spatial patterns of CO2 emissions may be
ascribed to various development modes in three urban agglomerations. Beijing-Tianjin-
Hebei Region is one of China’s heavy industrial bases, which consists of a large number of
high-energy-consuming enterprises, such as thermal power, steel and cement manufactur-
ing. A Study indicated that energy was wasted in most cities in the Beijing-Tianjin-Hebei
region [52]. Yangtze River Delta has low variations in urban development levels within
agglomerations [53]. Shanghai, Zhejiang and Jiangsu Provinces in Yangtze River Delta
could be classified as high development level regions, where CO2 emissions are relatively
high and concentrated. As a hotspot for investment in the manufacturing industry, Pearl
River Delta is making efforts on promoting green energy and building the national green
development [54]. For example, cities like Shenzhen has witnessed great progress in cleaner
production [55]. Therefore, diverse spatial patterns of carbon emissions among urban
agglomerations reflected differences in socioeconomic structure.

4.3. Population Density Versus Terrain Slope Featured Opposite Effects on Spatial Pattern of
CO2 Emissions

Positive relationships between population density and CO2 emissions while nega-
tive correlations between terrain slope and CO2 emissions were observed in three urban
agglomerations (Figure 10). A study using STIRPAT model with panel data of China’s
30 provinces from 1997 to 2012 indicated that population size has a strong explanatory
power on CO2 emissions [56]. The expansion of population scale directly leads to the extru-
sion of individual living space, posing a huge threat to population and environment [39].
Meanwhile, previous studies found that topographical factors were important limiting
factors that influence population distribution and economic development [57]. Generally,
the terrain of urban areas which less restricted the development of human activities is flat.
But, in areas with complex terrain, such as mountainous areas and forest areas, human
activities are greatly affected by slope, and the paving of roads and railways is also af-
fected by natural environment. Therefore, inclination of terrain slope may decrease CO2
emissions. In addition, CO2 emissions decreased gradually with the increase of distance
away from urban center in each urban agglomeration (Figures 8 and 9). Decrease in effects
of population density while increase in effects of terrain slope on CO2 emissions were
found along the gradients from urban areas to first-level urban circles then to second-level
urban circles (Table 2). So, differences in urban circles should be taken into consideration in
formulating emission reduction policies.

5. Conclusions

Urban agglomerations, such as Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl
River Delta are the most developed regions in China, which are playing leadership roles in
low-carbon development. We proposed a neural networks model based on nighttime light
data to estimate CO2 emissions of three major urban agglomerations from 2014 to 2019.
The results indicated that spatial distribution of CO2 emissions exhibited diversity among
urban agglomerations. The areas appearing upward temporal trends of CO2 emissions
were larger than that with downward temporal trends in each urban agglomeration. The
total amount of CO2 emissions in the urban areas was largest among three urban circles,
followed by first-level urban circle and second-level urban circle. In addition, population
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density had the greatest impact on spatial pattern of CO2 emissions, while temperature
had the least impact. Urban agglomerations should coordinate development strategies in
economic growth versus carbon reduction.
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Abstract: Persistent global urbanization has a direct relationship to measurable artificial light at
night (ALAN), and the Defense Meteorological Satellite Program has served an important role in
monitoring this relationship over time. Recent studies have observed significant declines in insect
abundance and populations, and ALAN has been recognized as a contributing factor. We investigated
changes in nightlight intensity at various spatial scales surrounding insect traps located in Orbroicher
Bruch Nature Reserve, Germany. Using a time series of global nighttime light imagery (1992–2010),
we evaluated pixel-level trends through linear regressions and the Mann–Kendall test. Paired with
urban land cover delineation, we compared nightlight trends across rural and urban areas. We
utilized high-resolution satellite imagery to identify landscape features potentially related to pixel-
level trends within areas containing notable change. Approximately 96% of the pixel-level trends had
a positive slope, and 22% of pixels experienced statistically significant increases in nightlight intensity.
We observed that 80% of the region experienced nightlight intensity increases >1%, concurrent with
the observed decline in insect biomass. While it is unclear if these trends extend to other geographic
regions, our results highlight the need for future studies to concurrently investigate long-term trends
in ALAN and insect population decline across multiple scales, and consider the spatial and temporal
overlaps between these patterns.

Keywords: nighttime lights; DMSP-OLS; data fusion; urbanization processes; insect decline; artificial
light at night

1. Introduction

A decline in insect abundance and populations has been observed across many regions
in recent decades [1,2]. Previous studies measuring insect biomass through insect traps
have found significant declines in biomass through long-term, multiyear observations [2–4].
Owens et al. [1] suggest that the combination of climate change, habitat loss, chemical
pollutants, invasive species, and artificial light at night (ALAN) are key factors driving
insect decline. Approximately 30% of vertebrates and 60% of invertebrates across the world
are nocturnal [5]. Light is an important factor for many key behavioral and biological
processes of insects. They rely on nocturnal light for navigation, avoiding predation,
foraging, reproduction, and regulating their biological clocks [1,2], and ALAN has been
observed to affect these biological processes (Owens et al., 2020). ALAN has been identified
as a factor directly contributing to declines in moth populations and other insects with
strong phototactic responses [5,6]. Additionally, ALAN has been observed to influence the
community composition of aquatic primary producers [2].

The increases in ALAN have been primarily attributed to human settlements and the
process of urbanization. ALAN is widespread and has been increasing over the last decades
worldwide at an annual rate of 2–6%, imposing an unprecedented alteration of natural
light regimes [2,5]. The impacts of ALAN are not limited to the immediate surroundings
of the light source. More remote areas can be affected by light pollution [1,2] through

Remote Sens. 2022, 14, 3876. https://doi.org/10.3390/rs14163876 https://www.mdpi.com/journal/remotesensing235



Remote Sens. 2022, 14, 3876

skyglow [7,8], which can reach dozens of kilometers beyond the original source [9,10] and
the effects are amplified by overcast skies [11]; therefore, even nature reserves and other
protected areas are not always shielded from ALAN pollution [12]. Given the average
increasing rate of ALAN worldwide, the effects of ALAN on declining insect populations
should be further investigated at local and regional spatial scales [7].

The Defense Meteorological Satellite Program Operational Linescan System (DMSP-
OLS) satellites detect low levels of electromagnetic radiation emitted at night at wavelengths
within the visible and near-infrared (VNIR) portion of the electromagnetic spectrum, span-
ning 0.5 nm–0.9 nm [13–15]. Documented sources of nightlight emission include city lights,
gas flares, and wildfires [13–15]. Previous studies have found that nightlight imagery can
be used to map urban areas since spatiotemporal patterns in nightlight intensity corre-
spond to patterns in modern human settlements [13,15,16]. Artificial lights at night have
also been used to develop indicators of economic productivity [17]. In Europe, trends in
ALAN over time captured by DMSP-OLS satellites have been related to specific landscape
changes [18]; increases in ALAN have generally been attributed to suburban and industrial
development, and decreases related to energy efficiency improvements and periods of
economic decline [18].

Increases in ALAN at different scales can impact trophic interactions [19], ecological
functions [2,20], and alter biodiversity [20,21]. Some studies have emphasized the need
to consider and manage ALAN within protected areas [12,22]. The impacts of ALAN on
populations, communities, and ecosystems vary across regions and spatial scales. Previous
studies utilizing remotely sensed imagery and landscape ecology concepts have found
that ALAN has significantly reduced the areas considered to be suitable habitat (lacking
nighttime light pollution) and has negatively impacted biodiversity within natural re-
serves [12]. ALAN impacting protected nature reserves is a globally observed phenomenon.
Fan et al. [23] suggest that biodiversity data should be paired with nightlight satellite im-
agery to investigate the effects of light pollution and optimize buffer distances surrounding
protected areas. The impacts of lighting on ecosystems vary based on the economic and
social contexts, suggesting that the optimal buffer distance around protected areas differs
for each unique scenario [23,24]. There is not a one-size-fits-all solution for optimizing the
configuration of light pollution, anthropogenic structures, and their proximity to nature
reserves, presenting the need to consider all relevant factors in landscape planning.

In this study, we investigated changes in nightlight intensity captured by satellite
imagery at varying radii (1, 2, and 10 km) surrounding the two insect trap locations in the
Orbroicher Bruch Nature Reserve in Germany utilized by Hallmann et al. [4]. First, we
tested trends in ALAN between 1992 and 2010, using global nightlight intensity satellite
imagery to investigate pixel-level changes using linear regressions and the Mann–Kendall
test. Paired with an urban land cover designation from CORINE (2012) and high-resolution
satellite imagery, we compared trends of nightlight intensity through time across rural and
urban areas. Within areas where we identified significant changes in nightlight intensity,
we attributed the specific alterations on the land surface as potential causes or contribut-
ing factors to the change using a combination of aerial imagery, historical records, and
expert knowledge. By pairing the timeframe of change with specific surface features, we
outline a methodology that highlights specific landscape changes to consider as potential
contributors to insect decline in future investigations. We present a novel investigation of
observed insect decline and nightlight satellite imagery corresponding to the time period
and geographic region [4]. These methods have the potential to be further developed
and refined to assess the efficacy of nightlight mitigation efforts, identify structures with
significant impacts on nightlight pollution, consider the effects of changes from smaller
intense light and wider area diffuse light, and further support landscape management
decisions in the context of insect conservation.
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2. Materials and Methods

2.1. Study Area and Time Period

Within North Rhine-Westfalia, Germany we examined the landscape within a 10 km
radius surrounding two insect trap locations (Figure 1) to investigate changes in nightlight
intensity between 1992 and 2010. The total area spans roughly 318 km2, and overlaps with
11 municipalities, although the majority of the study area is comprised of Krefeld, Kempen,
Rheurdt, Tönisvorst, Kerken, and Neukirchen-Vluyn. The traps are located near Krefeld
within Orbroicher Bruch, which is a nature reserve. Nature reserves are a class of protected
areas under Germany’s Federal Nature Conservation Act primarily used to facilitate species
conservation. Orbroicher Bruch covers roughly 1 km2 of protected forest, wet grasslands,
and marshes. The surrounding region is comprised of cropland, forest, grasslands, and
urban areas. The population of North Rhine-Westphalia has grown from approximately
17.1 million in 1989 (source) to 17.9 million in 2010 (retrieved from data commons timelines
based on Europa.eu, measurement method = Eurostat regional population data). Previous
studies using satellite imagery to model land cover have estimated that impervious surfaces
from urban development have increased by roughly 30% (1670 km2) between 1985 and
2017 in North Rhine-Westphalia [25].

Figure 1. Study area spanning a 10 km radius around insect trap locations near Krefeld in Orbroicher
Bruch Nature Reserve in North Rhine-Westphalia, Germany.
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2.2. Remote Sensing Data (DMSP-OLS Nighttime Lights Time Series)

We gathered a time series of satellite images between 1992 and 2010 of Global Night-
Time Light intensity [Version 4] captured by the DMSP-OLS at a 30 arc-second spatial
resolution (roughly 1.5 km × 0.9 km at 51.4◦ N) (Figure 2) (data retrieved from https:
//ngdc.noaa.gov/eog/dmsp/downloadV4composites.html, accessed on 20 April 2022).
We selected the DMSP-OLS satellite imagery since it provided global data measuring
nightlight intensity corresponding to our time period of interest. Images covering the
10 km radius region surrounding the Orbroicher Bruch Nature Reserve were acquired
from seven DMSP-OLS satellites (F10, F11, F12, F14, F15, F16, and F18) to capture the full
19-year period. This dataset contains annual, cloud-free composites of light intensity at
night and has been processed to remove sunlit images, moonlit images, images containing
glare, as well as any light features from the aurora in the Northern hemisphere [15,26].
In years where two annual composites were available because two satellites collected
overlapping data, we selected a single composite collected by one satellite for the given
year to maintain consistency with the years with only one composite. We selected the stable
lights average band within this dataset, which covers cities, towns, and other regions with
perpetual light emission; these data are provided in digital numbers and have been filtered
for background noise from other sources of VNIR emissions (e.g., gas flares) [15,26]. Since
the DMSP-OLS does not have on-board calibration, it is not feasible to compare digital
numbers across multiple years without additional processing [27]. Therefore, we performed
an intercalibration of DMSP-OLS images using the software GRASS GIS (Version 7.4) based
on the coefficients and approach of Wu et al. [27].

 

Figure 2. Methodological workflow for processing DMSP-OLS data, analyzing pixel-level trends
using linear regressions and the Mann–Kendall test, and refining the CORINE dataset to reflect urban
and rural land cover. Combining the trend analyses with the urban/rural land cover classes served
as the basis for investigating temporal and spatial trends at various scales. Further integrating aerial
imagery, expert knowledge, and historical records provided a framework for attributing local changes
in nightlight intensity to specific landscape features.

2.3. Remote Sensing Trend Analysis

We assessed spatial and temporal trends in nightlight intensity values from the cali-
brated DMSP-OLS time series at the individual pixel scale to identify significant changes in
nightlight intensity over time (Figure 2). To identify trends, we estimated linear regressions
on a pixel-level basis and examined the regression slope within each pixel. We selected the
Mann–Kendall statistical test for use in this analysis as a non-parametric test for environ-
mental time series data, to measure the direction and strength of monotonic, pixel-level
trends. We used R [V 3.4.3] to estimate linear regressions and apply the Mann–Kendall
test using the “Kendall” package [V 2.2] [28–31]. The results from the Mann–Kendall
test include Kendall’s tau statistic, which indicates trend strength and direction, as well
as a two-sided p-value to determine the statistical significance of the monotonic trends.
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Kendall’s tau statistic ranges from –1 to 1, where positive or negative values closer to zero
are less significant, and values closer to −1 or 1 exhibit stronger trends, with the sign
indicating the directionality of the trend.

We applied this methodology to the full time period (1992–2010) as well as the early
(1992–1999) and late (2003–2010) time periods we defined to analyze the differences between
the beginning and end of the investigation period. For the subset of annual images captured
within both the early and late time periods, the median nightlight intensity value was
calculated for each pixel. Additionally, we calculated the relative difference between the
early and late time periods for each pixel to identify substantial changes in nightlight
intensity in areas where values did not fall on the extreme ends of the spectrum. The full
time period of interest captured the overall trend, whereas the comparisons between the
early and late time periods allowed us to compare regional changes in nightlight intensity.

2.4. Urbanization Analysis

In order to explore potential causes of change in nightlight intensity, we first character-
ized land use and land cover (LULC) across our study area, since urbanization coincides
with increasing nightlight intensity (Figure 2). We utilized the CORINE land cover dataset
from 2012 (data retrieved from https://land.copernicus.eu/pan-european/corine-land-
cover/clc-2012, accessed on 4 May 2022) to delineate urban and rural areas within the
full study area. We selected all areas defined as continuous (1.1.1) and discontinuous
urban fabric (1.1.2), construction sites (1.3.3), dump sites (1.3.2), as well as industrial or
commercial units (1.2.1) to represent urban land cover. Port areas (1.2.3) and airports (1.2.4)
were not present within the study region, while green urban areas (1.4.1) and sport and
leisure facilities (1.4.2) were not included in the urban areas we defined since they contain
vegetation cover. All areas that did not meet these criteria were classified as rural (i.e., not
urban); rural areas included farmland, water, forests, and other land cover classes, although
many of these areas may contain sparse or patchy developed areas (human features).

To connect this classification with the nightlights time series imagery, a grid represent-
ing the individual pixels of the nightlight’s dataset was intersected with the rural/urban
land cover classification, and pixels were designated as urban or rural based on the majority
type (≥50% of the given pixel). We summarized the total area of pixels classified as rural
and urban across the full study area for 2012. In addition, we compared the pixel-level
trends in nightlight intensity (from linear regressions based on the early and late time
periods and the Mann-Kendall test across the full study period) between the pixels clas-
sified as urban and rural to characterize patterns occurring within these contrasting land
cover types.

2.5. Change Attribution

We utilized pixel-level statistics to identify temporal and spatial trends in nightlight in-
tensity indicative of landscape feature changes, and to describe potential agents or features
contributing to the pixel-level trend (Figure 2). Within the full time period (1992–2010), we
used the Mann–Kendall test to identify pixel-level instances of relative, significant local and
regional changes in nightlight intensity within 1, 2, and 10 km radii around the insect trap
locations. Within the 1 and 2 km radii, we considered all pixels at each scale, and identified
all potentially relevant features that had changed; we chose to examine all surrounding
features at these scales due to the effects that direct lighting can have on insect habitats and
nature preserves. We also examined the 10 km radius (full study area) to identify regional
changes in nightlight intensity; it is important to consider this scale based on the range
of insect movement, insect metapopulation dynamics, and because nightlight pollution
(indirect effects) can span many kilometers, especially with overcast skies. Within the 10 km
radius, we selected two subsets of pixels that met specific criteria to further explore local,
feature-based changes. The first group of pixels (ID’s 1–10) had a slope > 0 and R2 > 0.3
based on the linear trend analysis; they also had a relative early to late difference (between
1992–1999 and 2003–2010) > 0 and statistically significant change (α < 0.1). The second
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group of pixels that was further investigated (ID’s 11–17) had high slope values >0.86.
These pixels were not selected based on any level of alpha significance or any particular
R2 value.

At each spatial scale considered, we utilized historical aerial imagery to investigate sub-
pixel features (Figure 2). Historical imagery collected through the North Rhine-Westphalia
aerial photography catalog was provided by the District Government of Cologne, and
captured in 1989 (start of the study period) at a 40 × 40 cm spatial resolution and in 2013
(end of the study period) at a 10 × 10 cm spatial resolution. Chronological aerial imagery
from Google Earth was also used to supplement the identification of changes that took
place during the study period. Features of interest identified via aerial imagery were
further verified by incorporating expert knowledge and relevant, supporting documenta-
tion (Figure 2). External expert knowledge included a local landscape photographer, Paul
Maaßen, and community officials in Krefeld. Identifying specific features that changed
based on historical aerial imagery, and supporting these findings with external knowl-
edge and documentation, provided the framework for relating these landscape features to
observed trends in nightlight intensity.

While the spatial resolution of the DMSP-OLS time series data is coarser than the
landscape features investigated, we also considered that a variety of sub-pixel spatial
configurations of landscape features could contribute to the pixel-level trend. For example,
a pixel with a one percent increase in nightlight intensity has many potential spatial
configurations, as displayed in Figure A1. A single hectare that experienced a 100 percent
increase in nightlight intensity, or 20 hectares that experienced a five percent increase in
nightlight intensity, are both potential spatial configurations of the generalized pixel-level
trend (one percent increase). The variety of sub-pixel spatial configurations responsible
for pixel-level trends is an influential factor that was considered throughout the process of
evaluating and attributing changes to specific landscape features.

3. Results

3.1. Image (Pre-)Processing

Nightlight intensity values from DMSP-OLS V4 image collections are stored as digital
numbers which are the raw values captured at the sensor corresponding to the intensity
of reflectance. The original digital numbers range from 1 to 63, from lowest to highest
intensity; the stable lights average composites were processed to remove the temporary
events causing background noise, and these values were replaced with 0. Areas completely
covered by clouds are represented by the value 255. After intercalibration of the images
using the invariant region method [27], the digital numbers of the nightlight intensity
values are rescaled, as shown in Figure 3 (ranging from 1 to 100+). In both the uncalibrated
and calibrated DMSP-OLS time series images, pixel regions with the greatest nightlight
intensity (highest values, shown in yellow) generally correspond with urban areas. The
areas with the brightest nightlight can be identified in the southeastern portion of the study
area in Figure 3b, which geographically corresponds to the areas classified as urban in
Figures 1 and 4.
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(a) (b) 

Figure 3. Example of intercalibrated DMSP-OLS intensity data over the study area in the first
(a, 1992) and second to last (b, 2009) years of the time series. The southeast portion of the study area
(highlighted most in b) corresponds to the highest density urban areas.

Figure 4. Classification of rural (blue) and urban (transparent) areas based on the 2012 CORINE land
cover data within a 10 km buffer around the insect trap locations. Urban classification is based on the
reassignment of urban classes from the original CORINE dataset and their spatial relationships to
city administrative units. The majority of the study area was classified as rural.

3.2. Nightlight Trend Analysis
3.2.1. Overall Trends

The linear regression estimation and Mann–Kendall test revealed comparable relation-
ships between increasing urbanization and increasing intensity values. Across the full time
series (1992–2010, DMSP-OLS), we observed a general increase in nightlight intensity that
was more prominent within localized clusters (Figure 5), likely reflecting development and
urbanization patterns. Approximately 22% of the region demonstrated statistically signifi-
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cant (α < 0.1) trends in nightlight intensity based on the Mann–Kendall test, and 13.4% of
the region had statistically significant trends of increasing or decreasing nightlight intensity
over the 19-year period at α < 0.05 (Table A1). Based on the Mann–Kendall tau statistic,
many of the statistically significant changes in nightlight intensity were clustered in the
northwest of the study area (Figure 5). Decreases in nightlight intensity were only observed
in 13 of the 590 (3%) pixels covering the region (also indicated by the Mann–Kendal tau
statistic) (Figure 5).

 

Figure 5. Mann–Kendall tau statistic across the region for the full time period; values closer to −1 and
1 represent more significant trends and values closer to 0 are less significant. Positive and negative
values represent the directionality of monotonic trends.

Median nightlight intensity in the early and late time periods are shown in
Figures 6 and A2. Between the early and late time periods, the mean pixel-level change in
nightlight intensity across the region was an increase of 7%, with a maximum increase of
47% and decrease of −17% (Figure 7). We also evaluated the number of pixels that exceeded
varying thresholds (1, 5, 10, and 25%) of nightlight intensity increase between the two time
periods. We generally observed that 80% of pixels exceeded the 1% threshold in nightlight
intensity between the early and late time periods (Figure 8). A general trend of increasing
lighting was observed across the majority of the study area. The pixels that exceeded the
5% and 10% nightlight intensity increase thresholds corresponded with urbanization and
varying degrees of new settlement or development (Figure 8). However, only 4% of the
study area experienced greater than a 25% increase in nightlight intensity, and this was
attributed to intensive land use changes in these areas, with high lighting requirements
related to industry and greenhouses (Figure 8). The nightlight intensity thresholds ex-
ceeded by a given pixel between the early and late time periods depend on the amount of
existing urban development present and the initial observation of intensity in the early time
period, implying that change is relative to each pixel (Figure 7). The magnitude of change
observed is multifactorial, and we further explored the types of infrastructure and spatial
configuration of land use changes corresponding to the observed trends in Section 3.3.
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(a) (b) 

Figure 6. Median nightlight intensity from the early time period (a, 1992–1999) and late time period
(b, 2003–2010).

Figure 7. The spatial distribution of the relative difference in nightlight intensity for each pixel
between the early time period (1992–1999) and late time period (2003–2010) derived through linear
trend analysis (a). The distribution (frequency) of the relative difference in nightlight intensity for
all pixels is shown below (b), where the mean relative difference (red line) was approximately a 7%
increase in nightlight intensity.

243



Remote Sens. 2022, 14, 3876

 

Figure 8. Proportion of pixel increases in nightlight intensity exceeding various percent change
thresholds observed between the early (1992–1999) and late (2003–2010) time periods.

3.2.2. Urban/Rural

Through historical, fine-resolution aerial imagery, we visually identified an increase
in urban land cover between 1989 and 2013. Approximately 82% of the region (out of
the 590 pixels) was classified as rural, and inversely, 18% of the region was classified as
urban in 2012 (Table A2). The predominant categorization across the region (10 km radius)
was classified as rural, and overall, we observed a more prominent increase in nightlight
intensity within these rural areas compared to urban areas (Figure 9). Most significant
changes in nightlight intensity (Mann–Kendall p-values, α < 0.05) were related to increases
that occurred within rural areas (Figures 4 and 5). A larger proportion of the study area
classified as rural had positive Mann–Kendall tau values and corresponded to statistically
significant increases in nightlight intensity (p-values, α < 0.05), while a smaller proportion
of urban areas experienced statistically significant increases. Our results from the Mann–
Kendall test revealed some pixels with negative tau values, indicating nightlight intensity
decreases (3% of the region) corresponding to urban areas.

Figure 9. Increases of nightlight intensity across urban (top) and rural (bottom) areas between 1992
and 2010 using Mann–Kendall tau statistic.
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3.3. Change Attribution
3.3.1. Nightlight Intensity Changes within 1 km and 2 km Radii

The change attribution findings were reported as part of a descriptive analysis, and
features were visually identified using historical aerial imagery from 1989 and 2013. Within
the 1 km radius and immediate surroundings of the trap locations, there was a minor
increase in nightlight intensity; however, the single pixel overlapping the actual trap
locations retained relatively low absolute nightlight intensity (Figure A3), as expected, since
they are located within a nature reserve. We identified a new farm extension, settlement,
and greenhouse within the periphery of the trap, as well as a farm reduction. Within the
2 km radius around the trap locations, the results demonstrate a moderate increase in
ALAN during the observation period without any indications of decreases (Figure A4).
The increases likely correspond with settlement extensions identified via historical aerial
imagery. Within the 2 km radius, we identified five specific features likely contributing
to significant increases detected with the Mann–Kendall tau statistic. A new greenhouse
complex, three new greenhouse extensions, and a golf course were identified as potential
contributors to peripheral increases in nightlight intensity within 2 km of the insect trap
locations (Figure A4).

3.3.2. Nightlight Intensity Changes within 10 km Radius–Evaluation Points

Within the full study area (i.e., 10 km radius), in the northwest cluster of statistically
significant increases in nightlight intensity (Figures 5 and 7), the primary driver of these
significant trends is likely urbanization. Within the significant evaluation points (ID 1–10,
criteria outlined in Section 2.5), some specific features identified that are likely responsible
for the increases in nightlight intensity include courtyard extensions, nursery extensions,
greenhouses, and campsites. Within the non-significant evaluation points that still had
a trend slope value greater than 0.86 (ID 11–17), new settlements and growing urban
infrastructure were identified via aerial imagery as changes that occurred within the study
period that likely contributed to increased nightlight intensity. Additional pixels were
investigated using this same framework and significant features or changes were not
identified via aerial imagery; only the significant findings are reported here.

Within the 3% of the region that experienced a decrease in nightlight intensity, further
investigation suggested that the decreases within some of these areas (urban areas) could
be related to decreased consumption (see discussion; Figure A5). Within the city of Krefeld,
efforts were made to reduce the number of lights utilized per streetlamp from two to
one at night, resulting in a 30% decrease in intensity [32]. Data collected by the City of
Krefeld Energy Conservation Program revealed decreasing trends in energy consumption
in urban areas from 12.4 million kWh in 1998 to 8 million kWh in 2012 (Figure A5). The
temporal patterns in regional nightlight intensity (Figure 10) likely correspond to changes
occurring with the Niederberg coal mine, which was opened in 1912 and closed in 2001.
Dismantling of the local briquette factory began in 1995 and corresponds to regional
decreases in nightlight intensity (Figure 10). In the following years, we identified new
residential developments and buildings that correlate with increasing nightlight intensity
(Figure 10); the start and end values in the evaluation points time series are similar to
the mean difference between the regional medians of the early and late time periods
(Figure A2).
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Figure 10. Trends in nightlight intensity examined for evaluation points (pixels) which reflect patterns
in land use change, showing decreasing trends in the early time period (1992–1999), and increasing
trends in the late time period (2003–2010). Values on the right correspond to individual raster cell IDs.

4. Discussion

The spatial distribution of nightlight intensity trends resulting from linear regression
and the Mann–Kendall test reflect patterns of land use (Figures 4 and 5) where, across
the region, nightlight intensity generally increased between 1992 and 2010. The overall
increase in nightlight across the region and study period is likely driven by urbaniza-
tion [5,15,16]. We identified a mean 7% increase in nightlight intensity (and a maximum
47% increase), which is comparable to the trends identified by Sánchez de Miguel et al. [33]
across Germany.

Across the various spatial scales investigated (1, 2, and 10 km radii), we identified
different trends in nightlight intensity, and a variety of features potentially contribut-
ing to those trends; the variance within observations at different spatial scales is a well-
documented concept [34]. It is important to evaluate the nightscape of the area surrounding
nature reserves since they can significantly degrade habitat quality and have a negative im-
pact on the entire ecosystem [12]. Through the trends in nightlight intensity and historical
aerial imagery, we identified a new greenhouse, greenhouse extensions, and golf course
within a two-kilometer radius of the insect traps. Considering the significant insect biomass
decline found by Hallmann et al. [4] within the Orbroicher Bruch Nature Reserve, it may
be valuable to further investigate the contributions to light pollution from the identified
features. Additionally, it may be important to consider how these entities may relate to
declining insect abundance, and other ecological implications within the nature reserve
near these features. Across the full study area (10 km radius), we identified a variety of
new urban features constructed between 1992 and 2010 that have likely altered nightlight
intensity. We found that approximately 96% of the pixel-level trends had a positive slope
(>0, Figure 5), and 22% of the pixels within the region experienced statistically significant
increases in nightlight intensity (Table A2). With the majority of the study area experiencing
nightlight increases >1%, further investigation may reveal regional effects or implications.
The broader trend of increasing nightlight intensity across this region may be important to
consider in relation to local insect population decline.

Within a small proportion of the urban area (3% of the region), we identified decreases
in nightlight intensity that may be related to improved energy efficiency and/or reduced
energy consumption. While we cannot conclusively determine the cause of decreasing
trends in nightlight intensity without including ground-level observations or auxiliary data,
this observation points to the possible impact that city energy conservation programs could
have on ALAN. Energy use could be reduced by introducing new lighting technology while
maintaining or increasing the amount of light pollution. Alternatively, energy use could
also be reduced by using fewer lights, thus decreasing light pollution. Nightlight intensity
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over time could potentially serve as one metric that could provide more information to
local or regional energy programs to assess their effectiveness or plan future improvements.
This could be useful for broader scale management or assessments of light energy efficiency
for countries to monitor their collective progress through time. However, these results may
be confounded by several factors, including overglow, which is more prominent in urban
areas [35], and other limitations of the DMSP-OLS data discussed below.

Attributing specific anthropogenic changes to pixel-level trends in nightlight inten-
sity can help with conservation and landscape planning efforts. This framework has the
potential to direct research into which structures cause the most significant increases in
nightlight intensity near key insect habitats. It may also be helpful in determining what
methods are most effective at decreasing nightlight intensity or the radius that subsequent
light pollution spans across surrounding areas. Additionally, this type of investigation
may help expand understanding of which types of lights contribute the most pollution,
or what energy reduction efforts and policies are most effective. In scenarios without a
quantifiable change in nightlight intensity and observed insect decline, the potential effects
of temperature [36], chemical/biological pollutants, habitat loss or degradation, invasive
species, or other factors should be investigated. In regions with significant nightlight
intensity increases and observed insect decline, the outlined methods could be refined
and expanded upon to help identify which specific structure(s) may be responsible, and
to evaluate the contributions of nightlight. Isolating specific features potentially causing
increases in ALAN can guide in situ measurements to further investigate the impacts of
luminous flux. Ultimately, this type of investigation may have implications for ALAN miti-
gation efforts specific to the identified structure(s). Furthermore, the outlined methodology
could be refined to assess the effectiveness of nightlight mitigation efforts across broader
spatial extents.

There are several factors that have introduced different degrees of uncertainty in
this analysis, and it is important to consider their potential implications for the outlined
results. The limited significance of pixel-level trends across the majority of the region
is likely due to cloud cover, sensor calibration, spatial resolution, the precision of geo-
registration, variable sensor gain, overglow, and other known limitations of the DMSP-OLS
data detailed by Huang et al. [37]. The coarser spatial resolution of the DMSP-OLS dataset
(30 arc-second) is suited for regional analyses, but made it challenging to directly attribute
a quantitative change in nightlight intensity to sub-pixel landscape features (identified
via fine-resolution aerial imagery); the inferences that can be drawn at the 1 km and
2 km scales surrounding the insect trap locations are limited by the original 5 km spatial
resolution of the DMSP-OLS sensors. We selected the DMSP-OLS dataset to investigate
the time period corresponding to the study conducted by Hallman et al. [4]. However,
it would be preferable to use finer-resolution satellite imagery, when possible. Future
studies investigating ALAN during more recent time periods (2012 and onward) should
consider utilizing imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS)
sensor as a finer-resolution option to navigate the uncertainty of attributing nightlight
intensity trends to local features [38]. Specific to the nightlight time series data utilized,
the data from 2010 may introduce noise and some uncertainty; however, excluding the
2010 data is unlikely to change the overall directionality of trends across the 19-year study
period (Figures 10 and A2). Additionally, the DMSP-OLS dataset only captures the VNIR
portion of the electromagnetic spectrum; there may be other light sources emitting in
different portions of the spectrum, like blue light from LED or ultraviolet wavelengths,
that may influence insect behavior [39–42]. This should be considered as there may be
additional ALAN emissions not captured by the DMSP-OLS satellites that could have
negative impacts on different insect species. Furthermore, static satellite images captured
within a single timeframe may not represent the full dynamic variation in the light emitted
by various structures [39]. The timing of important biological processes of different species
implies that impact on individual species may vary based on the timing and composition
of ALAN [39,43]. Previous studies investigating aquatic insects have noted that satellite
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imagery captures light emitted toward the satellite and does not necessarily capture light
emitted into a specific habitat or other directions [11]. Luminous flux also varies based
on the light composition. It is recommended to pair nightlight remote sensing imagery
with ground-level light measurements to monitor insects [7]. Advancements in concepts
surrounding calibration and correction of nighttime light imagery are still emerging, and
future investigations should consider variability in airglow and additional factors that may
influence light emitted upward toward the satellite, as described by Kyba & Coesfeld [44].
Further investigations into the Orbroicher Bruch Nature Reserve should consider using
ground-level measurements of light to explore the impacts of ALAN.

5. Conclusions

Our detailed examination of nightlight time series data paired with aerial imagery
revealed trends in nightlight intensity that reflected dynamic patterns of specific landscape
features that have altered ALAN within the region. Within the 10 km radius surrounding
insect traps in Orbroicher Bruch Nature Reserve, Germany, we observed a mean long-term
median increase of 7% (and a maximum of 47%) between the early and late time periods
we considered, and the majority of the study area experienced nightlight intensity increases
greater than 1%. Numerous studies across the world have reported independently on either
the patterns of increasing ALAN via satellite imager or observed insect population decline.
While it is unclear if the identified trends extend to other geographic regions, our results
further highlight the need for future studies to concurrently investigate long-term trends in
ALAN and insect decline; ideally, future investigations should span multiple scales and
consider the spatial and temporal overlaps between these patterns. This highlights an
important gap between regional trends in ALAN and identifying specific local features
contributing to these patterns. Ultimately, further development and refinement of these
methods has the potential to guide in situ investigations and mitigations of ALAN, and
targeting efforts toward the most impactful landscape features could provide an additional
strategy to support insect conservation.
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Appendix A

 

Figure A1. Examples of potential combinations of spatial patterns, area, and intensity changes that
could cause a 1% increase in nightlight intensity within the time series trend of a single pixel.

Table A1. Significant Mann-Kendall pixel-level trends at varying levels of alpha significance.1.

MKtau p-Value Number of Pixels (Out of 590) Percent of Region of Interest

α < 0.01 18 3.1%

α < 0.05 79 13.4%

α < 0.10 130 22%

Table A2. Urban land cover delineation across the full study area (10 km radius) based on CORINE
2012 dataset. After resampling the classification to match the DMSP-OLS dataset, “urban” was
assigned to any pixel with ≥50% urban cover. The final number of pixels assigned to urban and rural
were totaled to estimate the percentage of the study region comprised of urban and rural land cover.

Land Cover Type Number of Pixels (Out of 590) Percent of Region of Interest

Rural 484 82%

Urban 106 18%
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Figure A2. Median nightlight intensity between the early (left) and late (right) time periods across
the region, with the late time period showing a general increase in nightlight intensity across the full
study area.

 

Figure A3. Mann-Kendall tau statistic values for pixels within a 1 km radius of the insect trap locations
in Orbroicher Bruch Nature Preserve, with minimal changes in nightlight intensity occurring within
the pixel containing the insect trap locations.
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Figure A4. Grid cells (black lines) represent the pixels that overlapped the 2 km radius around the
insect trap locations (red points). Within the 2 km radius, we identified five potential landscape
features (yellow points) potentially contributing to increasing nightlight intensity within the pixels
they are centered in/adjacent to. These features were not present in the 1989 aerial imagery and
were identified as changes in the 2013 imagery (with 2013 imagery shown). These features include a
greenhouse complex, three new greenhouse extensions, and a golf course.

 
(a) (b) 

Figure A5. Decreases in nightlight intensity within urban areas where each different colored line
represents an individual pixel (a) corresponding with improved energy efficiency based on data
collected by the City of Krefeld Energy Conservation Program (b).
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Abstract: Light pollution (LP), induced by human activities, has become a crucial threat to biodiversity
on the Tibetan plateau (TP), but few studies have explored its coverage and dynamics. In this study,
we intended to measure the spatiotemporal patterns of LP on the TP from 1992 to 2018. First, we
extracted the annual extent of LP from time-series nighttime light data. After that, we analyzed its
spatiotemporal patterns at multiple scales and identified the natural habitats and the species habitats
affected by LP. Finally, we discussed the main influencing factors of LP expansion on the TP. We found
that the LP area increased exponentially from 1.2 thousand km2 to 82.8 thousand km2, an increase
of nearly 70 times. In 2018, LP accounted for 3.2% of the total area of the TP, mainly concentrated
in the eastern and southern areas. Several national key ecological function zones (e.g., the Gannan
Yellow river key water supply ecological function zone) and national nature reserves (e.g., the Lalu
Wetland National Nature Reserve) had a large extent of LP. The proportion of LP area on natural
habitats increased from 79.6% to 91.4%. The number of endangered species with habitats affected by
LP increased from 89 to 228, and more than a quarter of the habitats of 18 endangered species were
affected by LP. We also discovered that roadways as well as settlements in both urban and rural areas
were the main sources of LP. Thus, to lessen LP’s negative effects on biodiversity, effective measures
should be taken during road construction and urbanization on the TP.

Keywords: Tibetan plateau; light pollution; urbanization; highway; railway; biodiversity; landscape
sustainability

1. Introduction

LP refers to the phenomenon of diffuse light, reflected light and glare from modern
urban buildings and night lighting that causes interference or negative effects on people,
animals and plants [1,2]. An increasing number of studies show that LP can affect species
feeding, sleep, migration, reproduction, navigation, communication, habitat selection
and social interaction, resulting in a series of ecological and environmental issues, such
as disturbance of circadian rhythm, limited survival and reproduction of species, and
destruction of ecosystem structure [3–16]. At present, social and economic activities such
as global urbanization are accelerating the expansion of LP at an unprecedented speed and
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degree; LP is becoming a hot topic in the field of biodiversity conservation and sustainable
development [17,18].

The Tibetan plateau (TP) is undergoing rapid urbanization and road construction,
driven by the “Belt and Road” initiative, the “New Urbanization” plan and the “Western
Development” strategy [19]. Just as the “Belt and Road” initiative drove the rapid develop-
ment of Central Asia and other regions [20–23], the human footprint on the TP increased
by 28.43% from 1990 to 2010, much higher than the world average (9%) [24]. Increased
LP due to urbanization and road construction affects the quantity, quality and connectiv-
ity of natural habitats, thus posing a serious threat to biodiversity [25]. In addition, the
ecosystems on the TP are fragile and have low resilience [26]. Once disturbed by human
activities, they start to deteriorate rapidly [27]. To limit the influences of LP, it is essential to
reveal the temporal and spatial patterns of LP and its impacts on ecological protection and
sustainable development on the TP. However, there is still a lack of LP research focusing on
the whole region of the TP.

Nighttime light (NTL) data provide an effective way to assess LP on the TP. There
are two ways to measure LP using nighttime light data. One is to characterize LP directly
from the spatial distribution of areas exposed to light at nighttime. Using this approach,
Fan et al. [28] analyzed the impact of global LP on terrestrial nature reserves and wilderness
areas based on Defense Meteorological Satellite Program-Operational Linescan System
(DMSP-OLS) nighttime light data. Kumar et al. [29] analyzed the change in LP in India
based on DMSP-OLS nighttime light data. Another is to build models to assess LP based on
night light data and ecological indicators. For example, Koen et al. [18] analyzed the level
of threat to biodiversity from LP during 1992–2012 based on DMSP-OLS nighttime light
data, using the number of pixels and brightness value of night light in a 20 km × 20 km
quadrate as an LP index. Cabrera-cruz et al. [30] used NPP-VIIRS nighttime light data to
establish the relationship between nighttime light and bird migration routes and analyzed
the impact of LP on migratory bird migration. The first method is simpler and more feasible
and can fully reflect the characteristics of the spatial and temporal patterns of regional LP.

In existing studies, the two widely used sources of nighttime light data, i.e., DMSP-
OLS and Suomi National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer
Suite (NPP-VIIRS) have different archival times, which limits the time of most LP-related
studies to a short period (before or after 2013), leading to a decrease in the spatiotemporal
continuity of related studies [29,31]. To improve the temporal extent of nighttime light
data, Li et al. [32] recently created a long time series nighttime light dataset GHNTL
(Harmonization of DMSP and VIIRS nighttime light data from 1992–2018 at the global
scale) by integrating the two types of nighttime light data, providing new data to support
the study of the spatiotemporal pattern of LP and its impact on the TP in the last 30 years.

This study aimed to analyze the spatiotemporal patterns of LP and its impacts on the
TP based on the GHNTL nighttime light data. First, we quantified the distribution and
dynamics of LP on the TP during 1992–2018. We quantified LP at four scales: ecoregion,
national key ecological function zone, national nature reserve and national park. Second,
we analyzed the effects of LP on various natural habitats and habitats of different species
on the TP. Then, we analyzed the reasons for LP and gave policy suggestions to deal with
LP on the TP.

2. Study Area and Materials

2.1. Study Area

There are 27 ecoregions, 10 national key ecological function zones, 46 national nature
reserves and 4 national parks on the TP (Figure 1). According to incomplete statistics by
the International Union for the Conservation of Nature [33], there are at least 1714 species
on the TP, including 388 species of mammals, 1050 species of birds, 117 species of reptiles
and 159 species of amphibians.
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Figure 1. Study area. Note: the land cover information was obtained from 2018 version of ESACCI
global land cover product.

The TP has undergone rapid social and economic development in recent years. The
urbanization level of Qinghai province increased from 34.76% in 2000 to 55.52% in 2019, an
increase of 21.8%. The urbanization level of the Tibet Autonomous Region increased from
18.93% in 2000 to 31.54% in 2019, an increase of 12.6% [34].

2.2. Data

NTL data obtained from the GHNTL [32] were used to analyze the LP over the TP.
This dataset contains DMSP-OLS NTL time series data calibrated from 1992 to 2013 and
DMSP-like NTL time series data transformed from NPP-VIIRS NTL from 2014 to 2018, with
a spatial resolution of 1 km.

The land cover data from 1992 to 2018 used to assess the impact of LP on natural
habitats were derived from the ESACCI global land cover product (http://maps.elie.ucl.ac.
be/CCI/viewer/index.php) (accessed on 5 November 2022), with a spatial resolution of
300 m. The data include 22 land cover types. Referring to He et al. [35] and Zalles et al. [36],
we adopted the habitat classification of the IUCN to extract natural habitats from ESACCI
global land cover.

The species data used in this study were obtained from the IUCN Red List of Threat-
ened Species (https://www.iucnredlist.org/resources/spatial-data-download) (accessed
on 1 June 2021). Species data can be divided into four categories: mammals, birds, reptiles
and amphibians. Each species was classified as Data Deficient (DD), Least Concern (LC),
Near Threatened (NT), Vulnerable (VU), Endangered (EN), Critically Endangered (CR) and
other categories according to the degree of endangered (Table 1). In addition, referring to
Koen et al. [18], a separate division of nocturnal animals was summarized in this study.
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Table 1. Number of species on the TP.

Category (Abbreviation) Mammals Birds Reptiles Amphibians
Nocturnal

Species
Total

Data Deficient (DD) 24 2 8 26 7 60

Least Concern (LC) 285 931 100 91 103 1407

Near Threatened (NT) 29 52 1 16 6 98

Vulnerable (VU) 28 41 4 17 6 90

Endangered (EN) 20 15 3 7 0 45

Critically Endangered (CR) 2 8 1 2 0 13

Total 388 1050 117 159 122 1714

The ecoregion boundaries used in this study were derived from the Worldwide Fund
for Nature (WWF) World Terrestrial ecoregion database [37] (http://worldwildlife.org/
publications/terrestrial-ecoregions-of-the-world) (accessed on 1 June 2021). There are a
total of 27 ecoregions on the TP. The boundary of national key ecological function zones was
derived from the National and Regional Planning for Main Functional Zones [38]. There are
10 national key ecological function zones on the TP. The national nature reserve boundaries
were derived from the Resources and Environment Science Data Center, and there are a total
of 46 national nature reserves on the TP (http://www.resdc.cn/data.aspx?DATAID=272)
(accessed on 1 June 2021). National park boundaries were derived from vectorization of
national park planning maps [27]. There were four national parks on the TP: Giant Panda
National Park, Sanjiangyuan National Park, Qilian Mountain National Park and Pudacuo
National Park. The glacier dataset was provided by the National Cryosphere Desert Data
Center [39] (http://www.ncdc.ac.cn) (accessed on 1 June 2021). The data of built-up areas
used for LP attribution analysis came from the National Data Center for TP Science [40]. The
basic geographic information came from the China National Basic Geographic Information
Center, including 1:1,000,000 administrative boundaries, administrative centers, roads,
settlements, rivers and lakes (http://ngcc.sbsm.gov.cn) (accessed on 1 June 2021).

3. Methods

3.1. Extraction of the LP Range

First, referring to Koen et al. [18], the night light data used in this study were compre-
hensively corrected to extract the LP range year by year from 1992 to 2018 (Figure 2). The
value of night light from human activities is above 6.5 [32], and pixels with values lower
than 6.5 are mostly abnormal values caused by the reflection of moonlight from glaciers
or lakes. Therefore, the value of 6.5 was selected as the standard to binarize the original
nighttime light data to remove abnormal values from the dataset.

Second, to further eliminate errors, the nighttime light range was corrected based on
glacier and settlement data. As nighttime light patches should contain at least one resi-
dential area, nighttime light patches without residential areas were removed. In addition,
patches of nighttime light containing glaciers were also removed.

Then, as the intensity of human activities on the TP is increasing year by year, we
assumed that the range and intensity of nighttime light continuously increase. Referring to
Liu et al. [41], based on this hypothesis, interannual correction was carried out from 1992
to 2018. After the above corrections, the areas exposed to nighttime light were extracted as
the LP ranges [28,29].
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Figure 2. Flow chart.

3.2. Validation of the LP Range

Referring to Li et al. [42], provincial and prefecture-level socioeconomic indicators
closely related to LP were selected. The accuracy of the annual LP ranges in Qinghai
Province and the Tibet Autonomous Region during 1992–2018 were evaluated by the
correlation analysis method. As the main sources of nighttime LP on the TP are roads and
towns, four indices were selected: freight volume, passenger volume, GDP in secondary and
tertiary industries and urban population. Freight volume and passenger volume represent
the level of transportation development in this region, while GDP in secondary and tertiary
industries and urban population represent the level of urbanization in this region.

3.3. Analysis of Spatiotemporal Patterns of LP

First, referring to Liu et al. [43], the landscape indices were used to quantify the spatial
pattern of LP on the TP during 1992–2018. We selected total area (TA), patch density (PD),
landscape shape index (LSI), aggregation index (AI) and largest patch index (LPI). PD
refers to the number of patches per unit area, reflecting the degree of fragmentation or
dispersion of light-polluted areas. The LSI is the normalized ratio of the patch perimeter to
the patch area, which is an index used to measure the shape complexity of LP patches. The
AI measures the concentration of LP patches. The LPI is the largest polluted patch on the
entire TP. All indices were calculated by Fragstats software (V4.2) [44].

Second, referring to Fan et al. [28], Williams et al. [45] and Mu et al. [46], we analyzed
the impact of LP expansion on the TP during 1992–2018 at the scale of ecoregions, national
key ecological function zones, national nature reserves and national parks. We measured
the degree of LP based on the proportion of LP area to the total area of each subregion.
Since a threshold for defining the high-level LP at such large scales cannot be found, we
used the approach adopted by Koen et al. [18] and He et al. [35], i.e., the regional average
value, to extract the important areas facing relatively high-level LP.

Finally, referring to Koen et al. [18], He et al. [35] and McDonald et al. [47], we
quantified the impacts of LP on biodiversity on the TP during 1992–2018 based on spatial
overlay analysis and statistical analysis of the LP range with different types of natural
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habitats and species habitats. To understand the effects of LP on natural habitats, we
calculated the area of LP that overlapped with each type of natural habitats and calculated
the proportion of this area to the total area of LP range year by year. The effects of LP on
the habitats of different species were quantified from two aspects: one is the number of
species with potential habitats affected by LP (i.e., species whose habitats overlap with
LP areas), and the other is the proportion of light-polluted habitat area of the species.
Additionally, the endangered species with high proportion of light-polluted habitat area
were identified. To highlight key messages, we selected the LP range at seven milestones
(1992, 1995, 2000, 2005, 2010, 2015, and 2018) from annual LP range between 1992 and 2018
for the above analyses.

4. Results

4.1. Validation of the LP Range

LP area is significantly correlated with various socioeconomic indicators (Figure 3).
Correlation coefficients were all above 0.8 and passed the significance test of 0.001. The
correlation coefficient between LP and GDP in secondary and tertiary industries is the
highest (R = 0.89), followed by freight volume (R = 0.88), passenger volume (R = 0.84) and
urban population (R = 0.82).

Figure 3. Accuracy evaluation of the light pollution range on the TP during 1992–2018.

4.2. Changes in LP on the TP from 1992 to 2018

From 1992–2018, the LP area on the TP increased exponentially. The LP area increased
from 1.2 thousand km2 to 82.8 thousand km2, an increase of approximately 70 times, with
an average annual growth rate of 30.6% (Figure 4a). In 2018, 3.2% of the total area of
the TP was affected by LP. The LP in the eastern and southern TP was more serious and
mainly occurred around urban and traffic routes. The LP in Xining and Lhasa was the most
obvious (Figure 4). From 1992–2018, the degree of fragmentation in light-polluted areas on
the TP gradually increased, and the PD increased from 1.6 × 10−5 patches/km2 in 1992 to
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3.8 × 10−4 patches/km2 in 2018, an increase of nearly 24 times (Figure 4b). The complexity
of LP patches on the TP also gradually increased, and the LSI increased from 6.6 to 36.5
(Figure 4c). The concentration degree of LP showed an overall increasing trend, and the AI
increased from 82.8 to 87.6 (Figure 4d). The LPI increased from 9.2 × 10−5 to 4.1 × 10−3,
with an annual increase of 26.7% (Figure 4e).

Figure 4. Changes in light pollution over the TP from 1992 to 2018: (a) total area (TA); (b) patch
density (PD); (c) landscape shape index (LSI); (d) agglomeration index (AI); and (e) largest patch
index (LPI) (Table S1).

4.3. Changes in LP at Different Scales

The results show that 26 of the 27 ecoregions on the TP were affected by LP, and 14
of them were affected by LP at a higher level than 3%, i.e., the average level of LP on the
TP in 2018 (Figure 5a). The ecoregions in the southern TP were more affected, while the
ecoregions in the northwest were less affected. In terms of time periods, the influence of LP
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on the ecoregions of the TP has increased significantly since 2010 (Figure S1). Specifically,
the proportion of LP area in five ecoregions, including Brahmaputra Valley semievergreen
forests (No. 1 in Figure 5a), Yarlung Tsangpo arid steppe (No. 2) and Qionglai-Minshan
conifer forests (No. 3), accounted for 12% or more. It should be noted that the most affected
ecoregion was the Brahmaputra Valley semievergreen forest, located on the southern edge
of the TP, where 32.90% of the entire region was affected by LP. The proportion of LP area
in Qilian Mountain coniferous forests (No. 6), Qin Ling Mountain deciduous forests (No. 7)
and Eastern Himalayan broadleaf forests (No. 8) accounted for 9—12%. The proportion
of LP area in Hengduan Mountains subalpine coniferous forests (No. 9) and northeastern
Himalayan subalpine coniferous forests (No. 10) was between 6% and 9%. The proportion
of LP area in four ecoregions was between 3% and 6%: Eastern Himalayan subalpine conifer
forests (No. 11), Southeast Tibet shrublands and meadows (No. 12), Nujiang Langcang
Gorge alpine conifers and mixed forests (No. 13) and Qaidam Basin semi-deserts (No. 14).

All 10 national key ecological function zones on the TP were affected by LP, and
four of them were affected by LP of more than the average level of LP on the TP in 2018
(Figures 5b and S2). These were the ecological function zone of the Gannan Yellow River
water supply (No. 1 in Figure 5b), the forest and biodiversity in Sichuan and Yunnan
(No. 2), the forest at the margin of the plateau in southeastern Tibet (No. 3), and the Zoige
Grassland Wetland ecological function zone (No. 4). These national key ecological function
zones were all located in the southeast of the TP. The national key ecological zones in the
northwest of the TP were less affected by LP.

Thirty-four of the 46 national nature reserves on the TP were affected by LP, and 17 of
them were affected by LP, accounting for more than the average level of LP on the TP in
2018 (Figures 5c and S3). Specifically, LP in the Lalu Wetland (No. 1 in Figure 5c), Lianhua
Mountains (No. 2) and Xunhua Mengda Nature Reserve in Gansu (No. 3) accounted for
12% or more of the area. The area of LP in Wolong (No. 6) and Four Girls Mountain
National Nature Reserve in Sichuan (No. 7) is between 9% and 12%. LP accounts for
between 6% and 9% of the area of five national nature reserves, including the Haloxylon
forest in Qinghai-Chaidam, Qinghai Province (No. 8), Baihe in Sichuan Province (No. 9)
and Taizi Mountains in Gansu Province (No. 10). Five national nature reserves, including
Sichuan Gexigou (No. 13), Gansu Duoer (No. 14) and Sichuan Gongga Mountain (No. 15),
accounted for between 3% and 6% of the area of LP. It is worth noting that the Lalu Wetland
National Nature Reserve, which was adjacent to Lhasa city and is mainly protected for its
alpine wetland ecosystem, has been continuously affected by LP since 1992. By 2000, the
range of LP affected the whole range of the reserve.

The impact of LP on the TP in 2018 was relatively small in national parks (Figure 5d).
The area of LP in Giant Panda National Park (No. 1 in Figure 5d) accounts for 6.75% of its
own area. and 2.22% of the source regions of the Yangtze River, Yellow River and Lancang
River National Parks (No. 2) were affected by LP. Only 0.68% of the area of Qilian Mountain
National Park (No. 3) was affected by LP, and Pudacuo National Park (No. 4) was not
affected by LP. In terms of the time period, the impact of LP in Giant Panda National Park
from 2000 to 2005 was greater, and, after 2010, the impact of LP in other national parks
except Pudacuo Park increased significantly (Figure S4).

4.4. LP for Different Habitat Typess

The area of LP on natural habitats increased from 938 km2 (79.6% of total LP area) in
1992 to 74.2 thousand km2 (91.4% of total LP area) in 2018 (Table 2). The largest area of LP
was found on grassland, accounting for 46.9% of LP area in 1992 and 54.7% of LP area in
2018 (Figure 6). The area of LP on forest is growing the fastest, and increased from 7.6% of
LP area in 1992 to 26.0% of LP area in 2018 (Figure 6). Desert, wetland and ice accounted
for 9.1%, 1.2% and 0.3% of the total LP area in 2018, respectively.
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Figure 5. Light pollution in 2018 at the different scales. The names of labelled regions are shown in
Figures S1–S4. (a) National key ecological function zone, (b) ecoregion, (c) national nature reserve,
and (d) national park.
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Table 2. Natural habitats affected by light pollution *.

Natural Habitat
Year

1992 1995 2000 2005 2010 2015 2018

Grassland 552
(46.9%)

855
(49.9%)

1903
(50.5%)

4583
(51.7%)

6860
(51.1%)

22,144
(49.9%)

44,424
(54.7%)

Forest 90
(7.6%)

152
(8.9%)

695
(18.4%)

1928
(21.8%)

3207
(23.9%)

13,574
(30.6%)

21,096
(26.0%)

Desert 265
(22.5%)

352
(20.6%)

488
(13.0%)

785
(8.9%)

1096
(8.2%)

3558
(8.0%)

7395
(9.1%)

Wetland 31
(2.6%)

35
(2.0%)

88
(2.3%)

163
(1.8%)

230
(1.7%)

611
(1.4%)

999
(1.2%)

Ice 0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

254
(0.3%)

Sum
938

(79.6%)
1394

(81.4%)
3174

(84.3%)
7459

(84.2%)
11,393

(84.9%)
39,887

(89.8%)
74,168

(91.4%)

* The number denotes the area of natural habitat affected by light pollution, while the proportion in parentheses
denotes the percentage of natural habitat affected by light pollution to total light pollution area.

Figure 6. Natural habitats affected by light pollution.

4.5. LP for Different Species Habitats

The number of species with habitats affected by LP gradually increased on the TP
during 1992–2018 (Figure 7a). Overall, the number of species with habitats affected by
LP nearly doubled from 835 to 1619. The number of mammals with habitats affected by
LP increased from 214 to 359, an increase of 0.7 times. The number of birds with habitats
affected by LP increased from 532 to 1040, an increase of 0.9 times. The number of reptiles
with habitats affected by LP increased from 52 to 110, more than doubling. The number
of amphibians with habitats affected by LP increased by 2.7 times from 37 to 136. Among
these, the number of nocturnal species with habitats affected by LP increased from 43 to
104, an increase of 1.4 times.

In addition, the number of endangered species with habitats affected by LP also
increased year by year (Figure 7a). In total, the number of endangered species with habitats
affected by LP increased from 89 to 228, an increase of approximately 1.5 times. The number
of mammals affected increased 1.1 times, birds 1.6 times, reptiles 3.5 times, amphibians
2.8 times, and nocturnal animals approximately 2.7 times. Birds had the largest number
of endangered species with habitats affected by LP (Figure 7a), while amphibians had the
largest proportion of endangered species with habitats affected by LP (Figure 7b).

264



Remote Sens. 2022, 14, 5755

Figure 7. Different species habitats affected by light pollution on the TP. (a) Number of species
with habitats affected by LP, 1992–2018 and (b) proportion of species with habitats affected by LP
in 2018. Abbreviation: mammals (MM), birds (BRD), reptiles (RPT), amphibians (AMP), nocturnal
species (NS).

The area of habitats affected by LP has gradually increased, especially since 2010
(Figure 8). The proportion of habitat area affected by LP for endangered species was
generally larger than the average for all species. In 2018, a total of 18 endangered species,
including 14 birds, 3 mammals and 1 reptile, were affected by LP, accounting for more than
a quarter of their habitat area (Figure 8b; Tables S2 and S3).

Figure 8. Proportion of habitat affected by light pollution on the TP. (a) Total species and (b) endan-
gered species (i.e., NT, VU, EN and CR species).
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Species richness increased from northwest to southeast, and endangered species also
showed a similar pattern, which was consistent with the spatial distribution pattern of
LP. According to the correlation analysis between the average level of species richness
in different ecoregions and the percentage of increased area of LP from 1992 to 2018, the
correlation coefficient between the percentage of increased area of LP and total species
richness was 0.90 (p < 0.001) and that between the percentage of increased area of LP
and endangered species richness was 0.99 (p < 0.001). The impact of LP on biodiversity,
especially on endangered species, cannot be ignored.

5. Discussion

5.1. Main Reasons for the Increase in the LP Range

LP on the TP mainly occurs along traffic routes and around towns (Figures 1 and 4).
We further conducted attribution analysis on the expanded range of LP on the TP from
1992 to 2018. Specifically, we analyzed the main sources of LP according to the distance
of LP pixels from roads and settlements and LP pixels that had equal distances to roads
and to settlements to the joint effects of both. The results show that the LP on the TP
during 1992–2018 was mainly attributed to the influence of roads, accounting for 87.9%
of the total area of new LP (Figure 9). In addition, 8.1% of the LP area was attributed to
settlements. A total of 4.1% of the LP area was attributed to the combined influence of
roads and settlements.

Figure 9. Attribution analysis of light pollution on the TP during 1992–2018.

5.2. Policy Implications

In recent years, the rapid increase in LP on the TP has posed a potential threat to nature
reserves and endangered species. Therefore, it is suggested that LP should be reduced as
much as possible in the future development process of the TP. Measures such as reducing
lighting intensity, changing lighting spectral composition, and limiting lighting duration
should be taken to effectively reduce LP [48]. For example, turning off an unnecessary
artificial light source or adjusting the light source to the weakest brightness while still
meeting the demand strictly limits the “blue” light that interferes with circadian rhythm and
dark vision [49] and realizes adaptive lighting (intelligent switch) through technology. At
the same time, the government should pay attention to the construction of “dark” ecological
corridors, improve public awareness of LP, and strengthen relevant policy formulation and
legislation (such as incorporating methods to avoid and mitigate LP in protected areas into
management plans) [25,50,51]. Through the implementation of ecological compensation,
the government can strengthen the protection and restoration of the ecological environment
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within the scope of LP and take targeted development measures for different regions to
achieve the coordinated development of regional ecological and environmental benefits,
economic benefits and social benefits [52,53].

Considering that the impact of roads is the main factor for the increase in LP on the TP
in recent years, it is particularly important to make overall planning in the future construc-
tion and development of roads. On the one hand, the impact of LP on the environment
can be controlled by optimizing the planning of traffic networks. On the other hand, road
light sources should be rationally arranged. The intensity of light sources should be strictly
limited to reduce LP caused by roads, avoid damage to ecological corridors and curb
adverse effects on biodiversity [54,55]. Future urban construction should also focus on
the conservation of endangered species as much as possible (Tables S2 and S3), strictly
restricting human activity within the territory of these species.

To promote effective measures for mitigating effects of LP on biodiversity conservation,
we visually identified the major sources of LP for national nature reserves with relatively
high-level LP based on the approach used in attribution analysis. In specific, both human
settlements (including cities, towns, and villages) and roads were identified (Table 3).
Although these areas caused a small proportion of the total LP, they had influences on
the key natural habitats for biodiversity conservation. Therefore, measures should first be
taken to control LP in these areas.

Table 3. Major source of light pollution for national nature reserves.

ID in Figure 5c Name Abbreviation Major Source of Light Pollution

1 Lalu Wetland LW Chengguan Distract in Lhasa city

2 Gansu Lianhua Mountain GLM Xiacheng town, Lianlu town

3 Xunhua Mengda XM Dahejia town

4 Longbao Longbao Longbao town

5 Black-necked crane of
Brahmaputra River BNCBR

Lhunzhub county, Maizhuokunggar county, Shigatse
city, Road from Lhasa to Lhunzhub (G561), Road from

Lhasa to Maizhuokunggar (G349)

6 Wolong Wolong Wolong town, Genda town

7 Four Girls Mountain FGM Siguniangshan town, Dawei town

8 Haloxylon forest in
Qinghai-chaidam HFIQC Beijing-tibet highway (G6), Road from Beijing to

Lhasa (G109)

9 Baihe Baihe Jiuhong road (S301)

10 Taizi mountains TM Songming town

11 The source region of rivers in the
north of Datong SRRND Road from Xining to Zhangye (G227)

12 Gahai-zecha GZ Road from Gahai to Maqu (S204), Gaxiu village, Gahai
village, Gongba village, Langmushi town

13 Gexigou Gexigou Yajing county, Xiangkezong

14 Duoer Duoer Road from Lianghekou to Maqu (S313)

15 Gongga Mountain GM Kangding city

16 Qinghai Lake QL Road from Beijing to Lhasa (G109)

17 Mangkang Yunnan
snub-nosed monkey MYSNM Rumei town, Naxi nationality Town, Quzika Town

Note: only the national nature reserves whose total light pollution range is above the average level of light
pollution on the TP are listed.
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5.3. Future Perspectives

In this study, the spatial-temporal pattern of LP on the TP during 1992–2018 was
determined based on remotely sensed nighttime light data at multiple scales. The impacts
of LP changes on natural habitat and species habitat were analyzed, therefore helping to
fill the gap in the field of LP research on the TP. In the previous studies, Koen et al. [18]
assessed the global LP from 1992 to 2012, while Li et al. [11] evaluated the LP for natural
reserves in China in the same period. They both found that TP had relatively low LP
between 1992 and 2012. However, the previous studies did not measure LP on the TP after
2012 in light of the inconsistence in NTL data. This study provided an assessment of LP
over the past three decades based on the harmonized NTL data, and found that the LP
had increased widely since 2012, posing threats to natural habitats and species habitats on
the TP.

The shortcoming of this study is that we only considered the range of LP, and the
intensity of LP was not fully considered. In fact, the farther away from the center of the
light source, the weaker its ecological impacts. The degree of LP influence also depends
on the duration of light and the weather conditions at that time. In addition, we only
quantified the species with habitats covered by LP, and did not assess the effects of LP on
species (e.g., reproduction and growth) on the TP. Therefore, we will further use nighttime
light intensity information to assess the impact of LP on biodiversity on the TP in the future,
and the field investigations into the effects of LP on species are also needed in order to
reveal thresholds of coverage and intensity for LP that affect habitats.

6. Conclusions

LP has been increasing rapidly in recent years, which has caused a serious impact
on the natural and species habitats in the region. From 1992–2018, the LP area of the
TP increased from 1.2 thousand km2 to 82.8 thousand km2, an increase of approximately
70 times, which was mainly distributed in the east and south of the TP. Since 2010, the
speed of LP coverage has significantly increased, and by 2018, the coverage of LP on the TP
accounted for 3.22% of the total area. LP has seriously affected some ecoregions, national
key ecological function zones, national nature reserves and national parks. The area of LP
on natural habitats increased from 79.6% of total LP area to 91.4% of total LP area. The
number of endangered species with habitats affected by LP rose from 89 to 228. Roads
were the main source of LP, followed by urban and rural settlements. In the process of
urbanization and road construction in the future, effective measures should be taken to
control the scope and intensity of LP, focusing on endangered species affected by LP to
promote biodiversity conservation.
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Abstract: Nighttime remote sensing data from the Visible Infrared Imaging Radiometer suite
day/night band (VIIRS DNB) enable snow cover detection from full moonlight reflection. Us-
ing nighttime data is particularly relevant in areas with limited daytime hours due to high latitudes.
Previous studies demonstrated the potential of using thresholding methods in detecting snow, but
more research studies are needed to understand the factors that influence their accuracy. This study
explored seven thresholding algorithms in four case study areas with different characteristics and
compared the classified snow results to the MODIS MOD10A1 snow cover product. The results
found that Li thresholding delivers higher accuracies for most case studies, with an overall accuracy
between 65% and 81%, while mean thresholding performed best in mountainous regions (70%) but
struggled in other areas. Most false negatives are caused by forests, especially closed and evergreen
forests. The analysis of NDVI data matches these findings, with the NDVI of false negatives being
significantly higher than true positives. False positives appear to be primarily located in or around
built-up areas. This study provides insights into where nighttime VIIRS DNB data can be used to
increase snow cover data temporal and spatial coverage.

Keywords: remote sensing; snow extent; nighttime; moonlight; VIIRS; thresholding; land cover

1. Introduction

Knowing which areas of the planet are covered by snow or ice is of major importance
to many fields of earth sciences, including climatology, meteorology, and hydrology. Snow
has an impact on both local environments and on global climate [1,2]. Since the beginning
of remote sensing in the early 1970s, snow was one of the first to be investigated successfully
because of its high albedo [3]. The introduction of MODIS (Moderate Resolution Imaging
Spectroradiometer) enabled the creation of daily snow cover products at a global scale.
Due to its high temporal resolution and global coverage, the MODIS snow cover product
is widely used in many scientific fields, including climatology and hydrology [4]. The
MODIS snow cover extent product continues to be actively released, and the most recent
version of the product is version 6.1 of MOD10A1 [5], but the MODIS snow cover product
is limited by light availability and cloud coverage. The limitation of low light is particularly
impactful in high-latitude regions that receive few hours of daylight in winter months
due to their position on the globe [6]. Even when there is sufficient light, the view of the
ground may be limited by the presence of clouds. Beyond the limited winter availability of
light, the impact of clouds is noticeable in both high-latitude regions and other potentially
snow-covered areas in mid-latitude regions.

Satellite images captured during the night can circumvent both potential obstacles.
The illumination from moonlight during certain lunar phases can be sufficient for detecting
ground features with a high albedo, which also includes snow [7,8]. The ability to use
illumination from moonlight means that data collection is not limited by the low number
of daytime hours in winter in high-latitude regions.

The use of nighttime data would also increase the possibility of data being captured in
cloud-free conditions anywhere on the planet. Regions covered by clouds during the day
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would have no data available. If clouds clear during the night, it is then possible to deter-
mine the snow cover extent. Combined with the assumption that there are fewer clouds at
night due to the reduced convection, this means that more data would be available [9,10].

Snow detection with nighttime images has been around since the early days of night-
time satellites. The first attempts were made using the Defense Meteorological Satellite
Program’s Operational Line-Scan System (DMSP-OLS) in the 1980s and 1990s, but their
usefulness was limited due to their coarse resolution. Shortly after the launch of the Suomi
National Polar Partnership (S-NPP) satellite equipped with VIIRS, the first study detect-
ing snow cover was conducted, and it showed that this approach is feasible [6]. Further
research into this field has come in recent years, with the two most notable studies being
Huang et al. [7] and Liu et al. [11].

Miller et al. [6] was the first study to demonstrate that the detection of snow was
possible using VIIRS DNB and its potential to provide additional data about snow cover-
age. While this study demonstrated the viability of the approach, it was based on visual
identification, which limited its practical applications.

Later, Liu et al. [11] studied the classification of VIIRS DNB images using a Random
Forest algorithm. They classified the image into four categories: snow, farmland, river, and
other. The overall accuracy achieved in this study was 79.80%, and the kappa value was
0.45. They tested the approach to only one case study area, and it is still unknown how
this approach performs in areas with different land-use and topographic characteristics.
In addition, this approach is semi-automatic, requiring the operators to provide training
and test labels, meaning that the results also depend on the quality of the manually created
training and test data.

To the best of the authors’ knowledge, only one study has applied an automated
algorithm to snow detection, and that is the minimum error thresholding algorithm by
Huang et al. [7]. It demonstrated that automatic thresholding was possible for snow detec-
tion at night. They applied the minimum error thresholding algorithm to two case study
areas. The overall accuracy reached 76.7% and 80.3% for each case study. The paper further
analyzed the amount of data gaps that can be addressed using this approach and studied
the impact of lunar phases on the results. However, it did not test the performance of
different algorithms and only used two case study areas. While the variety of thresholding
methods used for our specific purpose is limited, this is not the case in other areas of
remote sensing. Moreover, for snow detection during the day, there have been studies that
examined multiple different thresholding algorithms, including the study conducted by
Yin et al. [12], which benchmarked nine different algorithms.

An additional challenge to nighttime snow detection ©s that other factors beyond
snow cover can impact the brightness of the data collected and, therefore, the results.
Huang et al. [7] looked at what an adequate lunar angle would be to determine snow cover
extent and if there was a difference between different lunar phases. Land cover can also
play a crucial role in VIIRS day/night band (DNB) data since different land covers have
different albedos and, therefore, different pixel values when captured by the sensor. The
impact of land cover on VIIRS data has already been documented in a study that showed
that seasonal land cover change impacted the overall brightness of VIIRS DNB images [13].

Nighttime snow extent estimation is still in its early phases, and some questions still
need to be answered before researchers can more widely adopt it. Two notable questions
are as follows: (1) which thresholding methods perform best (under which conditions) and
(2) what factors impact the accuracy of the methods.

This study examined seven automated thresholding algorithms to determine the best
performance for snow detection using nighttime imagery captured by the S-NPP VIIRS
DNB. After identifying the best automated threshold algorithm, the false estimates were
analyzed to determine what factors influence the misclassifications. Improvements in this
field can lead to a better understanding of what areas and under which conditions could
be most suitable for snow cover detection at night. Furthermore, snow cover detection at
night could further enable better spatial and temporal coverage of snow cover extent data,
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which could play a significant role in further understanding the impact snow coverage has
on weather, climate, climate change, and hydrology.

2. Materials and Methods

2.1. Case Study Areas

For the purposes of this study, four different case study areas were selected. The
selection was made to incorporate different latitudes, elevations, topographies, and land
covers. The four case study areas are spread throughout North America, including both the
United States of America and Canada. The case study areas are located in Colorado, USA
(a); Ontario, Canada (b); Alaska, USA (c); and Saskatchewan, Canada (d). Their extents are
depicted in Figure 1.

Figure 1. Locations of case study areas: Colorado, USA (a); Ontario, Canada (b); Alaska, USA (c);
Saskatchewan, Canada (d).

The case study areas in Colorado (a) and Alaska (c) are primarily mountainous, with
the area in Colorado encompassing a part of the Rocky Mountains, while on the other hand,
the area in Alaska encompasses part of the Alaska Range. The major difference between
the two areas lies in their latitude. The Colorado case study area is in a mid-latitude region,
while the Alaska case study area is in a high-latitude region. Even though the Colorado
case study area is not limited by the number of daytime hours due to it being located in a
mid-latitude region, it can still experience cloud coverage during the day; therefore, it is
included in this study as snow cover extent data can be added if nights are clear.

The other two case study areas are located in Canada and are mostly on flat terrain.
The major difference between the two areas lies in their land cover, with the area in
Saskatchewan (d) being primarily covered in cropland; in contrast, the area in Ontario (b)

275



Remote Sens. 2023, 15, 868

is covered mainly by several types of natural land cover, including several types of forests,
shrubs, and herbaceous vegetation.

In addition to the geographic location of the case study areas, another important factor
was selecting the exact date and time at which the data were captured. Three major factors
determined the appropriate date for the data capture. The first factor was ensuring that
the data were captured during a full moon. While Huang et al. [7] suggested that other
lunar phases are also suitable for nighttime snow detection, only full moon phases were
selected for this study to reduce the potential impact different lunar phases could have on
the results. In addition to the data being captured during a full moon night, it was also
essential to guarantee a sufficient number of day and night hours. Since this study uses
both MODIS data captured during the day and VIIRS DNB data captured at night, only
images from March and October were selected; during both of these months, there was
snow cover in the selected case study areas, and both the day and night were sufficiently
long for capturing data. Finally, the last factor was to ensure that there was no or little
cloud coverage. Table 1 lists the exact dates of data collection for the four case study areas.

Table 1. Date and time of data collection by case study area.

Case Study Location
VIIRS/MODIS
Collection Date

VIIRS Time
(Local)

a Colorado 2 March 2018 01:30
b Ontario 2 March 2018 03:24
c Alaska 13 October 2019 05:06
d Saskatchewan 21 March 2019 04:06

2.2. Data Collection

Data sources collected for the four case study areas included VIIRS DNB data for the
nighttime snow extent estimates; the MODIS snow cover product for benchmarking; and
land cover data to explore what factors could influence the false estimates. Table 2 lists the
datasets used, including the acquisition date, spatial resolution, and access links.

Table 2. Study dataset names, spatial resolution, and links from which they can be accessed.

Dataset Dates Resolution

VIIRS DNB 1 2018–2019 750 m
MODIS Snow Cover 2 2018–2019 500 m

MODIS NDVI 3 2018–2019 500 m
Copernicus Land Use 4 2018–2019 10 m

1 https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/NPP_VDNES_L1--5000, (accessed on 6 May 2022).
2 https://nsidc.org/data/mod10a1/versions/61 (accessed on 5 May 2022). 3 https://lpdaac.usgs.gov/products/
mod09gav061/ (accessed on 7 May 2022). 4 https://land.copernicus.eu/global/products/lc (accessed on 7
May 2022).

The VIIRS DNB data were captured by the Suomi National Polar Partnership (S-NPP)
satellite. The captured data were accessed at the Level-1 and Atmosphere Archive and
Distribution System Distributed Active Archive Center (LAADS DAAC), operated by
the National Aeronautics and Space Administration (NASA). The data were part of the
NPP_VDNES_L1-VIIRS/NPP Day/Night Band 6-Min L1 Swath SDR 750 m product, and
for this study, raw radiance values from the DNB were used [14].

MODIS snow cover extent data were also used in this study, specifically, the latest
version 6.1 of the MOD10A1 snow cover extent product [5]. This data source was selected
because it is commonly used in many hydrology and climate studies and has relatively
high accuracy [4].

For land cover data, since this study covers different countries, it was important to
select a land cover dataset with global coverage. Beyond global coverage, the level of detail
with respect to the data was also an important factor in the selection, as a more detailed
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breakdown of forest and herbaceous vegetation types could lead to a clearer understanding
of how different land covers impact snow detection. For this reason, Copernicus Global
Land Service data were used for both 2018 and 2019 [15,16].

To calculate the NDVI, another MODIS product was used to guarantee consistency
and data availability: version 6.1 of MOD09GA [17].

2.3. Data Preparation

To maximize the potential of accurate threshold calculations, parts of the VIIRS DNB
data were masked as they were either not considered in this study, such as bodies of
water, or because they emitted light, which could skew the data, such as built-up areas [7].
Copernicus land cover data were used to determine which parts of the VIIRS data should
be masked. Areas masked out from the analysis included urban/built-up, permanent water
bodies, and open sea. In this step, any clouds present would also have been masked, but
since the case study areas were explicitly chosen to avoid cloud coverage, this step was not
necessary for this study.

In order to ensure consistency between this study and previous studies, the same
preparation steps outlined in Huang et al.’s studies [7,18] were used: MODIS snow cover
extent data were processed to create a binary snow cover map. Pixels were marked as
snow-covered, snow-free, or as no data (in case of cloud coverage or other data gaps).
While VIIRS data were completely cloud-free, some cloud coverage was present in the
MODIS data.

The NDVI values per case study area were calculated using the MOD09GA data source.
The standard NDVI was used, where MOD09GA Band 1 is the red band and MOD09GA
Band 2 is the near-infrared (NIR) band. The resulting NDVI maps for the case study areas
ranged between −1 and 1, with values closer to 1 indicating higher vegetation presence.

As noted in Table 2, the four datasets used have different spatial resolutions. To
address this, all datasets were resampled using the nearest neighbor operator to match
VIIRS data.

2.4. Methodology

Seven different thresholding algorithms were selected and applied to the preprocessed
VIIRS data. During the calculations, values that were previously masked during the
preprocessing phase were not taken into consideration. The seven thresholding algorithms
used are as follows: (1) Otsu [19], (2) Li [20], (3) Yen [21], (4) triangle [22], (5) minimum [23],
(6) mean [23], and (7) Isodata [24]. While thresholding algorithms were initially created for
different purposes, similarly to general computer vision, text identification, or microbiology,
they have since been used in many fields, including remote sensing [25]. The seven
algorithms are nonparametric and unsupervised. Their calculations are based on the
histogram of all values present in the image. While the specific ways in which they are
calculated vary from algorithm to algorithm, the end result of all algorithms is a numerical
value that splits the results into two discrete categories. A succinct overview of the different
algorithms was proposed by Sekertekin [25], where they also benchmarked the different
methods, however, in the classification of water.

Following this step, the binary snow cover maps made by thresholding (test datasets)
were compared to MODIS binary snow cover data for the same case study area (reference
dataset). All pixels where there were data available in both the test and the reference
dataset were considered true positive (TP), true negative (TN), false positive (FP), or false
negative (FN).

There are two distinct ways in which these results can be displayed, which serve
different purposes. The first is to create a confusion matrix (calculating the percentage
value for each category in the entire case study area). The confusion matrix is particularly
useful in order to determine the overall accuracy of the thresholding results in comparison
to the MODIS snow cover product. Specifically, the higher the sum of the true positive
and true negative percentages, the more accurate the thresholding snow cover extent. The
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second way is to map the accuracy results. This is particularly important to determine
which factors cause both false negatives and false positives. By mapping their position, it is
possible to relate the performance per land cover category and relate it to the NDVI value.

Discriminating the results into discrete categories enables determining if any particular
characteristic impacts the overall accuracy. This entails the creation of confusion matrices
per land cover category as previously proposed in a study by Yang et al. [26]. If the land
cover has no or a limited impact on the results, the accuracy should be relatively consistent
between different land covers. Conversely, if specific land covers do impact the results, the
accuracy within those should vary significantly.

Furthermore, version five of the MODIS snow cover product treated areas with high
NDVI values separately from regions with low NDVI values [27]; therefore, this study
also investigated the influence of NDVI. In version five of the MODIS snow cover product,
areas with high NDVI values were given a lower threshold in order to be considered snow-
covered compared to areas with low NDVI values [27]. If the impact of NDVI on VIIRS
matches the impact it had on MOIDS, it is expected that the NDVI values of pixels marked
as false negatives would be higher than those marked as true positives, indicating that the
potential reason for the misclassification would be the NDVI. This factor was examined
by looking at the distribution and mean values of the NDVI of true positives and false
negatives per case study area.

Finally, some false positive and false negative values might not be explainable using
the methods outlined above; therefore, visual analysis was also performed to explore
possible hypotheses explaining some of the results and potentially create the basis for
further research.

3. Results

3.1. Overall Thresholding Results

The confusion matrices of the seven different thresholding algorithms for the four
case study areas are shown in Table 3. The results are expressed as percentages, with the
number representing the total fraction of the classification relative to the total number of
all classified pixels. Both the overall accuracy (the sum of both the true positive and true
negative percentages) and Cohen’s kappa [28,29] are included in Table 3.

Table 3. Confusion matrix, overall accuracy, errors, and Cohen’s kappa for the seven thresholding
algorithms and the four case study areas.

Case
Study

Thresholding
Algorithm

TP TN FP FN
Overall

Accuracy
Kappa

a. Colorado

Otsu 28.42 31.32 0.14 40.13 59.73 0.31
Li 36.86 31.19 0.26 31.68 68.05 0.42

Yen 0.03 31.44 0.01 68.51 31.47 0.00
Triangle 7.98 31.42 0.04 60.57 39.40 0.08

Minimum 0.01 31.45 0.00 68.54 31.45 0.00
Mean 38.36 31.15 0.30 30.19 69.51 0.44

Isodata 29.73 31.30 0.16 38.82 61.02 0.32

b. Ontario

Otsu 62.34 0.00 0.00 37.66 62.34 n/a
Li 69.17 0.00 0.00 30.83 69.17 n/a

Yen 77.91 0.00 0.00 22.09 77.91 n/a
Triangle 0.07 0.00 0.00 99.93 0.07 n/a

Minimum 0.00 0.00 0.00 100.00 0.00 n/a
Mean 54.75 0.00 0.00 45.25 54.75 n/a

Isodata 64.97 0.00 0.00 35.03 64.94 n/a
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Table 3. Cont.

Case
Study

Thresholding
Algorithm

TP TN FP FN
Overall

Accuracy
Kappa

c. Alaska

Otsu 19.17 40.25 0.22 40.36 59.42 0.27
Li 25.72 40.16 0.31 33.81 65.88 0.37

Yen 0.01 40.42 0.05 59.53 40.42 0.00
Triangle 0.20 40.39 0.08 59.33 40.59 0.00

Minimum 0.00 40.47 0.00 59.53 40.47 0.00
Mean 30.50 40.03 0.44 29.03 70.53 0.45

Isodata 23.38 40.19 0.27 36.15 63.57 0.34

d. Saskatchewan

Otsu 55.10 22.26 0.17 22.47 77.36 0.52
Li 59.37 22.21 0.22 18.20 81.58 0.59

Yen 0.02 22.38 0.04 77.55 22.41 0.00
Triangle 0.15 22.34 0.08 77.42 22.50 0.00

Minimum 0.00 22.42 0.00 77.57 22.42 0.00
Mean 52.68 22.27 0.16 24.89 74.95 0.48

Isodata 55.10 22.26 0.17 22.47 77.36 0.52

In Figure 2, the thresholding method with the best overall accuracy was used to map
the confusion matrix. For the Colorado and Alaska case study areas, mean thresholding was
used; for the Ontario case study area, Yen thresholding was used; finally, Li thresholding
results were used for the Saskatchewan case study area. The resulting four maps for the
case study area show the geographic locations of TP, TN, FP and FN values.

Figure 2. Maps of the confusion matrices: (a) Colorado—mean thresholding; (b) Ontario—Yen
thresholding; (c) Alaska—mean thresholding; (d) Saskatchewan—Li thresholding.
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3.2. Land Cover Discrimination

The mapping of the confusion matrix values onto their geographic location also
enabled the creation of discrete results per land cover type. For this, the maps from Figure 2
were compared per land cover type of the Copernicus data for the appropriate year [15,16].
The resulting confusion matrices (Table 4) discriminate the per land cover type. As the four
case study areas cover different geographic regions, there are differences between the land
cover types present in them. Additionally, some land cover types are infrequent in some
case study areas; therefore, land covers with under 500 appearances were removed from
the results.

Table 4. Confusion matrix per land cover type for the four case study areas.

Case Study Thresholding Algorithm TP TN FP FN
Overall

Accuracy
Kappa

a. Colorado

Shrubs 25.45 58.43 0.73 15.39 83.88 0.65
Herbaceous vegetation 46.45 41.22 0.46 11.88 87.67 0.76
Cultivated and managed
vegetation/agriculture 7.72 86.68 0.64 4.95 94.40 0.70

Bare/sparse vegetation 73.37 24.09 0.13 2.37 97.50 0.93
Closed forest, evergreen needle leaf 22.81 15.33 0.08 61.77 38.15 0.10
Closed forest, deciduous broad leaf 70.13 0.11 0.03 29.74 70.24 0.00
Closed forest, unknown 43.42 20.74 0.14 35.69 64.16 0.33
Open forest, evergreen needle leaf 34.72 21.94 0.18 43.15 56.66 0.26
Open forest, deciduous broad leaf 72.95 0.07 0.00 26.99 73.01 0.00
Open forest, unknown 43.14 29.40 0.24 27.22 75.86 0.54

b. Ontario

Shrubs 85.81 0.00 0.00 14.19 85.81 n/a
Herbaceous vegetation 94.17 0.00 0.00 5.83 94.17 n/a
Herbaceous wetland 97.09 0.00 0.00 2.91 97.09 n/a
Closed forest, evergreen needle leaf 36.94 0.00 0.00 63.06 36.94 n/a
Open forest, evergreen needle leaf 63.92 0.00 0.00 36.08 63.92 n/a
Open forest, unknown 74.73 0.00 0.00 25.27 74.73 n/a

c. Alaska

Shrubs 20.65 56.49 0.25 22.61 77.14 0.50
Herbaceous vegetation 48.50 33.71 0.31 17.48 82.21 0.65
Bare/sparse vegetation 84.51 1.14 0.28 14.06 85.66 0.12
Snow and Ice 78.48 0.18 0.03 21.30 78.67 0.01
Herbaceous wetland 3.37 82.83 2.28 11.52 86.20 0.27
Closed forest, evergreen needle leaf 6.13 38.31 0.35 55.22 44.44 0.07
Closed forest, mixed 0.95 69.95 2.47 26.63 70.90 0.00
Closed forest, unknown 6.66 56.01 0.74 36.59 62.67 0.16
Open forest, evergreen needle leaf 11.60 31.55 0.91 55.93 43.16 0.10
Open forest, unknown 12.24 58.13 0.45 29.18 70.37 0.32

d. Saskatchewan

Herbaceous vegetation 48.16 37.93 0.59 13.33 86.08 0.72
Cultivated and managed
vegetation/agriculture 67.79 20.76 0.13 11.31 88.55 0.71

Herbaceous wetland 62.41 20.66 0.18 16.75 83.07 0.60
Closed forest, evergreen needle leaf 6.43 0.08 0.00 93.50 6.50 0.00
Closed forest, deciduous broad leaf 29.14 0.22 0.00 70.63 29.37 0.00
Closed forest, mixed 3.46 0.07 0.00 96.48 3.52 0.00
Closed forest, unknown 35.92 5.77 0.00 58.31 41.69 0.07
Open forest, evergreen needle leaf 57.12 0.92 0.00 41.96 58.04 0.02
Open forest, deciduous broad leaf 58.94 0.26 0.00 40.80 59.20 0.01
Open forest, unknown 60.25 7.63 0.08 32.03 67.88 0.22

3.3. NDVI Influence

NDVI values were also investigated in this study. If false negative areas have a higher
NDVI than true positives, this may indicate that the thresholding value should be lower
for the areas with higher NDVI. In order to determine if the NDVI values are higher,
two boxplots per case study area were created: one for true positives and one for false
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negatives. The boxplots indicate mean values, the first and third quantiles of the data, and
the minimum and maximum (see Figure 3).

  

Figure 3. Boxplots of NDVI values per case study area. NDVI values for true positives (2) and false
negatives (1).

3.4. Additional Factors

To explain false positives (which account for less than 1% of the pixels), visual analyses
were performed. What is clearly noticeable in the spatial distribution of false positives is
the proximity to urban/built-up areas. Examples of this phenomenon can be observed in
Figure 4, where the built-up areas from the Copernicus data are presented, as well as false
positives. The Ontario case study area had no false positives; therefore, it was not included
in the visual analysis.

Even though most false negatives occurred in forested areas, other land covers also had
false negatives. The distribution and cause of these cannot be explained by tree canopies;
therefore, another factor must be their cause. The two different false negatives can be best
observed in the Saskatchewan case study area, which is pictured in Figure 5. While the
false negative values in the north and northeast can be explained by the forest present there,
the false negatives in the center and southwest are present in a mixture between cropland
and herbaceous vegetation.
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Figure 4. False positive values and urban/built-up areas in Alaska (a) and Saskatchewan (b) case
study areas.

Figure 5. Map of the confusion matrix for the Saskatchewan case study area (top) and land use for
the Saskatchewan case study area (bottom).
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4. Discussion

The seven thresholding algorithms investigated in this study had notably different
performances. The overall accuracy varied for each algorithm and between the four case
study areas, but some overall conclusions can still be drawn from them. The overall
accuracy of the algorithms had quite widespread values, with the lowest overall accuracy
being 0%, while the highest overall accuracy was 81.58%.

The two thresholding algorithms that performed the worst were triangle thresholding
and minimum thresholding, both of which had their highest overall score at only around
40%. Similarly, Yen thresholding also had results of less than or approximately 40%, with the
exception of the Ontario case study area, where it performed the best with a 77.91% overall
accuracy. Otsu and Isodata thresholding had middling performances in all four case study
areas, with neither of them being the best-performing one in any case study area. Their
overall accuracies ranged between 59% and 77%. Another algorithm, mean thresholding,
had a similar range of overall accuracy, with its lowest result being 54.75% and the highest
being 74.95%. However, what is notable is that mean thresholding was the best-performing
algorithm in both the Colorado and Alaska case study areas. However, it underperformed
in the Ontario case study area, where it achieved only a 54.75% overall accuracy. These
results indicate that mean thresholding is the best-performing algorithm in mountainous
regions, as both the Colorado and Alaska case study areas are predominantly mountainous.

While mean thresholding performed the best in mountainous areas, the algorithm with
the best range of overall accuracy and the highest individual accuracy in the Saskatchewan
case study area was Li thresholding. This algorithm always had an overall accuracy
above 65% and was either the highest or second-highest result in every case study area.
Therefore, even though mean thresholding did have the best result in two out of the four
case study areas, the results indicate that its choice depends on context. The fact that
mean thresholding measurably underperformed in the Ontario case study area means
that in order to ensure the best overall and consistently high overall accuracy, the Li
thresholding algorithm is the best choice out of all seven algorithms tested in this study.
If the thresholding is applied exclusively to mountainous areas, using mean thresholding
could yield better results. However, if various terrains are present, Li thresholding will
provide fair overall and consistent results.

The highest overall accuracy results among all case studies range between 70% and
82%, which is comparable with the results achieved by Huang et al. [7], where the overall
accuracy reached 77% and 80%. Moreover, similarly to the results achieved by Liu et al. [11],
the overall accuracy reported was 80% and the Kappa coefficient was 0.45. Therefore,
the results were also within the range of the maximums achieved by the thresholding
algorithms in this study.

Determining the best thresholding algorithm is not the only conclusion that can be
drawn from the results. What is especially noteworthy is the difference between false
positives and false negatives. The percentage of false negatives is significantly larger than
the false positives for all thresholding algorithms and in all case study areas. In fact, false
positives in every case study area and thresholding algorithm make up less than 0.5%. This
indicates that the vast majority of overall error comes from the underestimation of the
snow extent by the VIIRS DNB snow extent model when compared to the MODIS snow
cover product.

The causes of this underestimation and the locations where it occurs can be potentially
explained by the land cover’s presence. While the four case study areas had different
land cover types present, some overall trends are still noticeable. The two land covers
that had the lowest overall accuracy in all case study areas are open and closed evergreen
needle leaf forests. Besides those two, all other types of forests, when present in the case
study area, had lower overall accuracies than non-forest land covers such as shrubs or
herbaceous vegetation. Considering forest types, evergreen needle leaves had the lowest
overall accuracy, but when comparing open and closed forests, closed forests have lower
overall accuracies. In all cases, the low overall accuracy can be entirely explained by false
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negatives, with false positives being rare or nonexistent for most forests. The remaining non-
forested areas performed well with high true-positive and true-negative values, resulting
in high overall accuracy. The false negatives were in the 10–25% range, and false positives
were present but usually made up less than 1%.

The effect that forests have on the accuracy of snow cover extent is not unexpected.
Forests have been a factor that limited the accuracy of snow cover extent estimates in
many different products. The presence of tree canopies would effectively block the view
of the ground and, therefore, any snow that is present, causing underestimations [30].
Furthermore, while it is possible that the canopy itself would capture some of the snow and
therefore increase its albedo, studies suggest that even when that does occur, the overall
albedo is still lower [31].

The differences between closed and open forests relate mainly to their canopies. In the
Copernicus land cover data, closed forests were considered all areas that have more than
70% of the ground covered by canopies, while open forests have 15–70% canopy cover [32].
Since canopies cover more of the view of the ground and any snow present there in closed
forests, they would have more false negative estimates than in open forests, where more of
the ground is visible.

The impact of canopies would also explain the lower overall accuracy of evergreen
forests compared to other forest types. In most cases, the evergreen forests performed
roughly 20–30% worse than other types of forests. This relates to the fact that the images
were captured during March and October, when evergreen trees still retain their full canopy
while deciduous trees have lost most of their canopy. The lack of canopies in deciduous
forests would mean that the ground—and therefore any potential snow on the ground—
would be more visible and therefore easier to classify.

Another way in which this effect could possibly be measured is by investigating the
NDVI. As tree canopies, and especially evergreen trees, should have a high NDVI value
at the time the data were captured, it would be expected that the NDVI values of the
false negatives would show consistently higher values than the NDVI in true positives.
As observed from the box plots in Figure 3, the mean, quantiles, and maximum values
of the NDVI are higher for false negatives than for true positives. This indicates that a
higher NDVI is correlated with false-negative identification. This factor, combined with the
previous discussion of the impact of forest canopies, suggests that high-density forests and
especially evergreen forests have the most negative impact on identification.

The cause of the false negatives can be explained by their location at the periphery of
the snow cover. Because these areas mark the transition between snow and no snow, they
should have relatively shallow snow depth. Studies have shown that even during the day,
the accuracy of remote sensing of snow decreases with lower snow depths [26]. Therefore,
nighttime snow detection accuracy seems to also be susceptible to underestimations with
low snow depth, explaining the underestimates in those periphery regions. The snow
depth could have also slightly changed in the period between when MODIS and VIIRS
DNB data were captured, which could explain some of the discrepancies between them.
While in most non-forested areas, the VIIRS DNB data performed well, the accuracy of
the boundaries will only become apparent with an in situ study, which could analyze the
impact of snow depth on the accuracy.

The spatial distribution of false positives (e.g., in Figure 4) clearly shows that most
false negatives are within the vicinity of urban/built-up areas. This is predominant near the
larger built-up areas present in case study areas such as Anchorage in Alaska or Saskatoon
and Regina in Saskatchewan. While the specific built-up areas were masked during the
data preparation step, the surrounding areas were noticeably much brighter due to human
activity. Our quantitative analysis of the accuracy within the different land covers is affected
by the accuracy of the land cover reference dataset. If urban areas are underestimated in the
reference dataset, we overestimate the false positives as not enough build-up is masked.

This phenomenon has been described in previous studies suggesting that suburban
and rural areas do emit more artificial light toward the horizon, making the surrounding
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area brighter [33]. However, not all false positives are obviously near built-up areas (or at
least near areas categorized as urban/built-up land cover). When exploring FPs distant
from built-up land cover, we observed that a majority of these false positives still appear to
be linked to human activity, but it is not enough to mark the area as built-up in the land
cover dataset. This is true in the case of smaller communities, such as the town of Beechy in
Saskatchewan, which is categorized as cropland due to its small size and population (the
predominant land cover that completely surrounds the town). While being relatively small,
there is still enough artificial light emitted to skew the results into false positives. Other
areas in the three case study areas with false positive results follow the same pattern. While
this approach seems to explain the false positives, it remains only a visual identification
of the pattern, and to determine if it is the main reason behind it, a more rigorous and
analytical study would be necessary. One way to (potentially) avoid these false positives
is by creating a mask layer that is not based on land use but instead on light. Since the
NASA Black Marble product suite releases monthly and annual data, it could be used to
create a mask layer as all the brightest areas would be a result of human activity [34]. This
approach would also remove uncertainty caused by inaccuracies of the land cover data.

Naturally, this study has certain limitations that can have some impact on the results.
The main limitation is that the VIIRS snow cover extent is compared to another snow cover
model and not to in situ measurements. The selected MODIS snow cover product has
known limitations [35], but it is still a widely used model, and agreement between the
models still indicates that it is acceptable for many studies in hydrology, climate science, or
other areas where MODIS data are commonly used [4].

Exploring accuracies in evergreen or all forested areas is an avenue for further research.
Daytime snow cover extent products have dealt with the forest issues [30], and improving
the results in those areas could be possible by following the strategy of lowering the
threshold for areas with high NDVI or by calculating a separate threshold for forested areas.

Furthermore, since future Joint Polar Satellite System (JPSS) missions are already
planned and will be equipped with VIIRS, data availability in the future will only in-
crease [36]. Hopefully, this will reduce the impact cloud coverage has on VIIRS DNB data
as multiple satellites will be capturing the data, enabling even better coverage in the future.

Identifying snow cover extent using VIIRS DNB data is possible and achievable
with relatively high overall accuracy. The false estimates are usually underestimations,
with overestimations present but usually limited to areas near human activity. The false
negatives are usually present in forested areas, especially in closed and evergreen forests.
Some false negatives also occur on the border between areas covered and not covered by
snow. While this could impact the usefulness of the VIIRS DNB data for some purposes,
this is an area where the results could be improved with in situ research.

5. Conclusions

Of the seven tested thresholding algorithms, Li thresholding achieved the most consis-
tently high overall accuracy in all case study areas, while the mean thresholding algorithm
performed the best in mountainous regions, but it did not have high overall accuracies in
other areas. Depending on the use case, either of the two thresholding algorithms could
provide results that would be useful for climate or hydrology research. If the terrain of the
case study area is diverse or if there are multiple different areas, Li thresholding seems to
be the most effective option. If the case study is predominantly mountainous, then mean
thresholding can potentially achieve better results. While some limitations are present, the
high overall accuracy and the distribution of accurate identification should still prove useful
in filling in some spatial or temporal data gaps for snow cover extent maps, especially in
regions with few forests.
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Abstract: The VIIRS day/night band (DNB) high gain stage (HGS) pixel effective dwell time is in
the range of 2–3 milliseconds (ms), which is about one third of the flicker cycle present in lighting
powered by alternating current. Thus, if flicker is present, it induces random fluctuations in nightly
DNB radiances. This results in increased variance in DNB temporal profiles. A survey of flicker
characteristics conducted with high-speed camera data collected on a wide range of individual
luminaires found that the flicker is most pronounced in high-intensity discharge (HID) lamps, such as
high- and low-pressure sodium and metal halides. Flicker is muted, but detectable, in incandescent
luminaires. Modern light-emitting diodes (LEDs) and fluorescent lights are often nearly flicker-free,
thanks to high-quality voltage smoothing. DNB pixel footprints are about half a square kilometer
and can contain vast numbers of individual luminaires, some of which flicker, while others do
not. If many of the flickering lights are drawing from a common AC supplier, the flicker can
be synchronized and leave an imprint on the DNB temporal profile. In contrast, multiple power
supplies will throw the flickering out of synchronization, resulting in a cacophony with less radiance
fluctuation. The examination of DNB temporal profiles for locations before and after the conversion
of high-intensity discharge (HID) to LED streetlight conversions shows a reduction in the index of
dispersion, calculated by dividing the annual variance by the mean. There are a number of variables
that contribute to radiance variations in the VIIRS DNB, including the view angle, cloud optical
thickness, atmospheric variability, snow cover, lunar illuminance, and the compilation of temporal
profiles using pixels whose footprints are not perfectly aligned. It makes sense to adjust the DNB
radiance for as many of these extraneous effects as possible. However, none of these adjustments will
reduce the radiance instability introduced by flicker. Because flicker is known to affect organisms,
including humans, the development of methods to detect and rate the strength of flickering from
space will open up new areas of research on the biologic impacts of artificial lighting. Over time, there
is a trend towards the reduction of flicker in outdoor lighting through the replacement of HID with

Remote Sens. 2022, 14, 1316. https://doi.org/10.3390/rs14061316 https://www.mdpi.com/journal/remotesensing289



Remote Sens. 2022, 14, 1316

low-flicker LED sources. This study indicates that the effects of LED conversions on the brightness
and steadiness of outdoor lighting can be analyzed with VIIRS DNB temporal profiles.

Keywords: VIIRS; DNB; flicker; artificial lighting

1. Introduction

A “flicker meter” is a device capable of recording and characterizing the brightness
cycling of lighting powered by alternating current (AC) [1]. In AC, the electrons flow back
and forth at a well-regulated frequency. Mass distribution power supplies around the
world operate at either 50 or 60 Hertz (cycles per second). AC is frequently converted to
direct current (DC) to provide a more stable power supply to devices and appliances, in a
process called “rectification”. The full-wave rectification (Figure 1) of a 60 Hz source results
in lights flickering at 120 Hz, but with half the amplitude of the original alternating current.
Further reductions in the amplitude of flicker can be achieved by voltage smoothing with
capacitors (common in fluorescent lights) and “constant current” drivers [2] used to power
large-wattage LED sources (Figure 1).

Figure 1. Voltage versus time patterns for alternating current, full-wave rectification, smoothing
accomplished with a capacitor, and LED “constant-current”.

The “critical flicker frequency” [3] or frame rate of human vision is variable but is
placed in the range of 3 to 70 Hz [4]. It is well established that lighting flicker within
the range of visual perception can induce neurological symptoms like headaches, loss of
attention and visual acuity, irritability, and in some cases, epileptic seizures [5,6]. Most
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modern luminaires have been engineered to minimize flicker below 50 Hz. However, many
light sources flicker in the range of 100 to 120 Hz, which is above the range of conscious
perception to the human eye.

The effects of 100–120 Hz flicker on humans remains an active research area. One
recent study found that humans are subtly affected by lighting flicker up to 500 Hz [7].
Exposure to flicker at rates above 70 Hz for long periods of time can result in neurological
symptoms such as induced photosensitivity [8], chronic migraine and fatigue, and anxiety,
depression, and irritability [9]. There is a growing body of evidence that lighting flicker
adversely affects other organisms [10]. The satellite detection and characterization of
flickering lights would open up a range of new research opportunities in the field of
anthropogenic impacts on many organisms, including humans.

To fully resolve the flicker pattern requires temporal sampling that is nearly ten times
shorter than the flicker rate being measured [11]. Thus, for 120 Hz flickering, the flicker
meter, as one of its design criteria, should measure the brightness of the light at 1200 Hz.
This corresponds to a sampling rate of 8.3 × 10−4 seconds (s). According to Table 3.3-6 on
page 52 of the VIIRS geolocation Algorithm Theoretical Basis Document (ATBD) [12], the
VIIRS DNB pixel dwell time ranges from 2.53 × 10−4 s at nadir to 4.22 × 10−5 s at the edge
of scan. If this is true, the DNB pixel dwell time is shorter than the minimum acceptable
sampling interval recommended for characterizing 120 Hz flickering.

The standard flicker meter collects many cycles in a single collection session to fully
resolve the temporal pattern of the flicker of an individual light. In contrast, the VIIRS
DNB collects once or twice per night across many years. At 742 m on a side, DNB pixels
may contain hundreds of individual lights of various types. Radiance calibrated VIIRS
DNB temporal profiles can be assembled, filtered to remove flawed data, adjusted for a
range of radiance contributors such as moonlight, and analyzed for events such as power
outages or cycling. Is it also possible to discern differences in AC flicker patterns within
VIIRS temporal profiles?

In this paper, we clarify the VIIRS DNB pixel dwell time specifically for the nighttime
collection mode, define the flicker characteristics for the major types of lighting, and
examine VIIRS DNB temporal profiles for evidence of flicker.

2. Materials and Methods

2.1. Calculation of DNB Pixel Dwell Times for High Gain Stage Data

The VIIRS DNB focal plane assembly contains four detector arrays (Figure 2), which
are swept across the earth to construct 16 lines of DNB pixels on each scan [12]. DNB pixel
footprints on the earth’s surface are maintained at almost 742 m on a side from nadir to edge
of scan by the onboard aggregation of different numbers of adjacent detectors in both the
track and scan directions. The number of detectors aggregated is largest at nadir and drops
gradually, moving toward the edge of scan in fixed patterns, referred to as aggregation
zones. Pixels from the first aggregation zone, near nadir, are constructed using 66 detectors
in the scan direction and 42 in the track direction (Figure 2). In aggregation zone 32—at the
edge of scan—pixels are formed using 11 detectors in the scan direction and 20 detectors in
the track direction (Figure 2). All four DNB detector arrays have 672 detectors in the track
direction to afford the exact number of detectors required to form the aggregation zone
1 pixels (16 × 42 = 672). Each of the DNB detector arrays are 672 detectors high but vary
in width based on the amplification requirements to image clouds from daylit to moonlit
conditions. Under daylit conditions, no amplification is required, so the low gain stage
(LGS) focal plane array is only one detector wide. The signal amplification is achieved
by accumulating charge from multiple samples of the same sub-pixels—a process known
as time delay and integration (TDI). The medium gain stage (MGS), designed for cloud
imaging in the transition from day to night at dawn and dusk, has three parallel rows of
detectors for collecting data with a TDI of three. The highest level of signal amplification
comes from the high gain stage (HGS), which is 250 detectors wide. The HGS arrays collect
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data with a TDI of 250. The HGS is designed to collect at night and is responsible for
recording radiances from electric lighting.

Figure 2. Schematic showing the four DNB detector arrays and the aggregation of charge from
variably sized blocks of detectors to maintain near-constant 742 × 742 m ground footprints from
nadir to edge of scan. LGS = low gain stage, optimized for daytime collections. MGS = medium
gain stage, optimized for collection across the terminator during the transition from day to night.
HGS = high gain stage, optimized for nighttime imaging.

There are two HGS detector arrays, referred to as HGS-A and HGS-B. This redundancy
is designed to filter out high energy particle detections, which are common when the
spacecraft flies through the South Atlantic Anomaly (SAA), which is centered near Rio de
Janeiro, Brazil. An onboard algorithm compares the signal from the same ground pixel
from HGS-A and HGS-B. If there is a large difference between the two, the brighter pixel is
dropped, and the pixel’s recorded radiance only comes from one of the two HGS detector
arrays. If the difference is modest, the two HGS signals are averaged.

The detector array sampling rate of the DNB is 260.6 KHz [12], corresponding to
3.83729 × 10−3 milliseconds (ms) per detector. The DNB integration table in the ATBD [12]
calculates DNB pixel collection times by multiplying the subpixels in the scan direction
by 3.83729 × 10−3 s. These numbers are correct for the LGS, which has no TDI, and
accumulating all 66 along-scan detectors (aggregation zone 1) yields 2.53 × 10−4 s. To add
in the TDI to the DNB pixel HGS collection time, an oversample factor of 250 is applied
to each detector in the along-scan direction (Figure 3). Thus, at nadir, the HGS-A pixel
collection time is (66 + 250) times 3.83729 × 10−3 ms = 1.213 ms. To this, we add the gap
time between HGS-A and HGS-B, which is estimated to be 0.25 ms, and then add the
time required to collect HGS-B, which is the same (1.213 ms) as HGS-A. Thus, the total
integration time for a HGS DNB pixel at nadir is 2.67 ms, while for aggregation zone 32, it
is 2.29 ms.

292



Remote Sens. 2022, 14, 1316

Figure 3. Timeline for the VIIRS DNB HGS pixel aggregation.

It is important to note that the four DNB detector arrays collect photons and accumu-
late charge continuously during the scan across the earth, but that the zone of active pixel
formation gradually tapers from nadir to edge of scan (Figure 4) to maintain the 742 m
DNB pixel size. At nadir, all 672 detectors are read out to form pixels. At the edge of scan,
the number of detectors actively involved in pixel formation drops to 320. Similar tapering
occurs on the LGS and MGS arrays. At any one instant, the HGS detector arrays collect
data for a number for DNB pixels. This number can be calculated as 250 divided by the
number of sub-pixels in the scan direction. At nadir, this is 250/66 = 2.79 pixels and at the
edge of scan, 250/11 = 22.72 pixels. Onboard, the DNB evaluates the pixel voltages from
HGS, MGS, and LGS to record the highest unsaturated voltage. Pixels with bright surface
lighting will have a usable signal in the HGS but remain undetectable in the MGS and LGS.
Conversely, daylit clouds will have a usable voltage from the LGS, while the HGS signal
will be saturated. This arrangement makes it possible for the DNB to instantly adjust to
abrupt changes in brightness, such as transits across the dawn–dusk lines.

As an interesting side note, we expected that the HGS noise filtering would elimi-
nate the South Atlantic Anomaly high-energy particle detections commonly found in the
low-light imaging data collected by the VIIRS predecessor: the U.S. Air Force Defense
Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). The SAA-
affected pixels have high radiance levels in unexpected places, such as the Atlantic Ocean
between Africa and South America. Their numbers appear unchanged between OLS and
VIIRS. Several years ago, we conducted an experiment where HGS-A and HGS-B were
brought down intact from the satellite along with the normal DNB data stream using
one of the VIIRS calibration modes. The HGS-A and HGS-B could not be brought down
simultaneously, so they were brought down in alternating granules collected over the
Atlantic Ocean south of the equator—a zone famous for SAA detections. We found that
SAA hits in both the HGS-A and HGS-B, but these were absent from the normal DNB data.
However, the normal DNB data from those granules had a different set of SAA detection
pixels. Our conclusion was that the HGS noise filtering is working as designed. Therefore,
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the SAA detections present in the DNB data stream must be coming from the MGS or LGS,
which lack the noise filtering.

Figure 4. The active zone of DNB pixel formation tapers from 672 detectors in the track direction at
nadir to 320 detectors at the edge of scan.

2.2. Collection of High-Speed Camera Data of Individual Luminaires

High-speed camera (HSC) data and spectral signatures were collected for the set of
individual luminaires listed in Table 1. Most of the data collections were made with a Sony
Cyber-Shot DSC-RX100 V 20.1 operated at 1000 frames per second. A second camera was
used to collect data from a hovering DJI Mavic Air 2S drone in Moscow using the built-in
camera running at 120 frames per second. We also experimented with the collection of
flicker data on the panoramic views of city lights with a night vision photomultiplier tube
(PMT) adapter (generation 3+ auto-gated white phosphor AGM PVS-14) replacing the fore
optics of the Sony camera. Both the original Sony camera and PMT-equipped Sony camera
were tested for the presence of flicker or other aberrations with high-speed camera data
collected on the moon as a flicker-free light source in the night sky.

The MP4 files collected of the luminaires are available via the links listed in the
supplemental material. Temporal profiles were produced from rectangular subsets of the
video frames centered on the light sources. A brightness threshold was applied to each
frame to minimize the inclusion of background into the temporal profiles, which are also
available in the supplemental material.

Luminaire spectra were collected with a BWTek BRC112E spectrometer covering the
400 to 1000 nanometer range. The spectrometer was mounted to record the luminaires’
reflectance from a Spectralon panel. Like fingerprints, the spectra were used to confirm the
lighting types based on previously published spectral signatures of lights [13].
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Table 1. Individual luminaires measured.

Luminaire
Type

Designation Sample Manufacturer Model Wattage

Metal Halide Ceramic Metal
Halide C0009 Sylvania MetalARC Mp

100/U/MED 100

Metal Halide C0012 EMCO Lighting ERA20-3H
SO-89193 175

Metal Halide C0015 Philips MP400/BU/PS
Kr85 400

Metal Halide
RAB C0016 RAB RAB LMH250PS 250

High Pressure
Sodium HPS C0017 Sylvania LU150/55/ECO 175

HPS C0041 General Electric Lucalox 100

Low Pressure
Sodium LPS C0007 Osram N068 80X Great

Britain 18

Fluorescent 4 foot tube pair C0006 Philips Alto F40T/C50
Sumpreme 40

Fluorescent
ceiling C0035 Philips

Alto-II
F32T8/Tl841 800

series
32

Compact
Fluorescent C0028 BFLG 13 13

Compact
Fluorescent C0031 Greenlight 13W/ELS-M/1 13

Compact
Fluorescent C0032 TCP ESN11 11

Incandescent Incandescent C0014

Incandescent C0027 Sylvania Capsylite FL-
tugsten-halogen 45

Incandescent C0034 Soft White 60

LED LED C0018 PLT Solutions PLT-11557 300

LED 4000 K C0020 LeoTEK Beta 100

LED 3000 K C0022 LeoTEK Beta 100

LED C0026 Lithonia DSXPG 51

iphone C0036 Apple iPhone Xr
MT472LL/A ?

2.3. Collection of Flicker Data for Mixtures of Lights

To investigate the expression of flicker that might be present in VIIRS DNB data
collected on pixels having large numbers of individual luminaires, high-speed camera data
were collected for a set of scenes containing mixtures of light sources. We speculated that
the magnitude of flicker would decline when large numbers of individual luminaires are
viewed together. The first collection in the multi-light series was made on a wide range of
luminaires from Table 1 placed together on an office table. This included LED streetlights,
metal halides, high-pressure sodium, low-pressure sodium, incandescent, and fluorescent
lights (Figure 5).
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Figure 5. High-speed camera data were collected on a mixture of luminaires placed together on a
table.

Next, we collected high-speed camera data (1000 frames per second) from the ground
for three outdoor scenes containing large numbers of individual luminaires. This included:
(1) Broomfield, Colorado’s civic center (Figure 6), (2) the central zone of Golden, Colorado
(Figure 7), collected from a viewpoint located on Lookout Mountain Road, and (3) Boulder,
Colorado, viewed at a distance from a viewpoint along Highway 36 (Figure 8). The
panoramic collections of Golden and Boulder cover large portions of each city as viewed
from an oblique angle. The resulting temporal profiles from Golden and Boulder cover
much larger areas than the individual DNB pixel footprint. The examination of the MP4
movies of these collections reveals the presence of a cacophony of sources ranging from
lights having prominent flicker to lights having no visually evident flicker.

 

Figure 6. High-speed camera data were collected on a mixture of lights present at the Civic Center in
Broomfield, Colorado. Also included in the scene was the moon—in the upper left-hand corner—
which made it possible to analyze the flicker from the camera itself.
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Figure 7. Oblique view of the mixture of lights presents in the central Golden, Colorado area collected
with the high-speed camera. The data collection was from a viewpoint along Lookout Mountain
Road west of Golden.

 

Figure 8. Panoramic view of Boulder, Colorado, from a viewpoint along Highway 36. High-speed
camera data were collected covering the full sweep of lights visible in Boulder from the viewpoint.

To further investigate the remote sensing of flicker from the DNB, digital camera data
were collected from a hovering drone carrying a slow-motion camera pointed in the nadir
direction towards the earth. The experiment took place in the suburbs of Moscow, Russia
(55.6321 north, 37.8622 east), at 01:00 local time on 29 November 2021. The vehicle was a
DJI Air 2S drone with a built-in 4K video camera. The data were collected while the drone
hovered 315 m above the earth’s surface, resulting in a footprint of 600 × 600 m—slightly
smaller than the DNB pixel footprint. The nighttime movie of the lights was recorded with
FHD resolution 1920 × 1080, shutter speed 1/120 s, f/2.8 aperture, and sensitivity ISO
3200. The data were collected at 120 frames per second. The scene includes numerous
flickering high-pressure sodium streetlights and parking lot lights, plus strings of white
lights (Figure 9), with some clearly flickering and others with no obvious flickering.
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Figure 9. View of lights collected at 120 frames per second from a hovering drone in Moscow, Russia.

2.4. Processing of the High-Speed Camera Data

The digital data from the high-speed camera MP4 movie frames were filtered to
remove background pixels, which helped to concentrate the signal coming from the lights.
The brightness of the remaining pixels in each frame were averaged and frame step times
added. For the Sony camera, the frame steps were in millisecond increments since the
camera ran at 1000 frames per second. The time step for the drone camera collection was
8.333 ms, corresponding to 120 frames per second. The result was a set of temporal profiles
that were further analyzed to detect the presence and relative intensity of flicker.

An autocorrelation function (ACF) was used for the detection of flicker in the HSC data
and a determination of the cycling rate in Hz. The ACF rates the similarity of the time series
with itself for a series of evenly spaced temporal or lag increments [14]. For instance, if the
data series is broken up into a series of consecutive five ms segments, the ACF calculates
the degree of similarity found between the segments. This autocorrelation analysis is
performed for all possible lag increments within the time series. The types of detectable
temporal phenomena from the ACF analysis are dictated by the temporal increment of the
data. For instance, annual cycling cannot be analyzed with annual nighttime lights data
but can be analyzed with either nightly radiances [15] or average monthly radiances [16].
The presence of an AC flicker cycling in the high-speed camera data is indicated when an
ACF peak exceeds the 95% or 99% confidence level threshold calculated via a z-statistic [17].
For an ACF sample size of 100 points, the 95% confidence threshold is 0.196, and the 99%
confidence threshold is 0.258. A flicker rate of 120 Hz is indicated by the presence of a
primary ACF peak at 8 ms, exceeding the 95% confidence thresholds (Figure 10).

Figure 10. An autocorrelation function (ACF) is generated for each high-speed camera temporal
profile to detect the presence of millisecond-scale cycling. The primary peak is defined as the highest
local max lag value greater than 1 ms and exceeding 95% confidence. The Sony camera collected at
1000 frames per second. An ACF lag of 8 ms indicates the presence of 120 Hz flickering.
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Calculations were made of the percent flicker and flicker index based on the methods
described in the Lighting Handbook 10th Edition [18]; examples are shown in Figure 11.
Note that in order to apply the flicker index to the randomized and actual DNB profiles,
the definition had to be modified. In addition, the index of dispersion is calculated as the
variance divided by the mean [19].

 

Figure 11. Calculation of percent flicker, flicker index, and index of dispersion.
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Percent flicker is designed to quantify the amplitude of the flicker and is defined as:

Percent Flicker =
A − B
A + B

× 100

For the high-speed camera temporal profiles, A is the average brightness of the upper
peak, while B is the average brightness of the lower peak. For the simulated and actual
DNB temporal profiles, A and B are the upper and lower limits of the core data range.
Outlier removal and detrending may be required to obtain results that can be compared
across samples.

The flicker index is designed to quantify the symmetry of the flicker and is defined as:

Flicker Index =
∑
(
S − S

)
∑ S

where the S is the sample brightness, and S is the mean of sample brightness.
The dispersion index is defined as:

Dispersion Index =
var(S)

S

where var(S) is the variance of sample brightness.
As with the percent flicker, outlier removal and trend removal may be advisable prior

to the flicker index and dispersion calculations to yield consistent results.

2.5. Simulation of DNB Temporal Profiles from the High-Speed Camera Data

Because the VIIRS DNB temporal repeat cycle ranges from hours to days, the flicker
patterns in lighting are sampled randomly. It is impossible to discern the lighting flicker
rates with the ACF methodology using nightly time series of VIIRS DNB temporal profiles.
However, we still want to test the flicker indices to evaluate their utility in analyzing the
flicker effects present in DNB temporal profiles. Each DNB scanline has 4064 pixels and
the HGS dwell time varies as a function of the sample position. The SNPP orbit processes,
with a 16 day repeat cycle. That means the satellite repeats its orbital tracks every 16 days,
with only minor deviations. The repeat cycle, combined with the spacecraft’s precision
orbit control, results in a series of narrowly defined “permissible” sample positions for
any location on the ground. To mimic the variable temporal sampling of the HGS, we
followed the sampling pattern established for a particular mid-latitude location, as shown
in Figure 12. Any location would suffice due to the even mixture of sample positions
over time. The Figure 12 template happens to be from Houston, Texas, and has 1946
cloud-free DNB pixels from 2012 to 2020, binned into 20 vertical sample position columns.
In simulating the DNB temporal profile from each high-speed camera temporal profile,
exactly 1946 samples are drawn randomly from the brightness profile using the sample
positions from Figure 12. The randomly drawn sample positions point to the appropriate
DNB temporal aggregation time via a look up table. The simulated DNB temporal profiles
have the same brightness units and range as the original 1000 frame per second profiles
but are randomized. The A and B inflection points used to calculate the percent flicker are
taken to be the upper and lower brightness levels of the data cloud (Figure 11).
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Figure 12. Sample position columns for the VIIRS DNB temporal profile from a 15-arcsecond grid
cell in Houston, Texas. These columns define the sampling pattern for simulating the DNB temporal
profiles from the high-speed camera data for each of the tested luminaires.

2.6. Examination of VIIRS DNB Temporal Profiles for Flicker Effects

To explore the detection of flicker in actual VIIRS data, a nightly DNB temporal profile
grid was constructed for Tucson, Arizona. We generated the profiles at 15-arcsecond
spacing, with 100 cells east–west and 72 cells north–south centered on Tucson (Figure 13).
The DNB profiles were processed to remove sunlit and cloudy data. A satellite zenith
angle normalization was applied to remove view angle effects [15]. A lunar illuminance
adjustment was applied to subtract the reflected moonlight [15]. Cloudy pixels were
filtered out based on the VIIRS cloud mask [16] generated by NOAA [20]. The annual
mean, variance, and dispersion were then calculated for each 15-arcsecond grid cell.

 

Figure 13. Outline of the VIIRS DNB temporal profile grid constructed for Tucson, Arizona. The
locations of LED streetlight conversions are marked blue.

For decades, Tucson has taken actions to reduce light pollution to limit interference
with several nearby astronomical observatories, such as Kitt Peak National Observatory.
In 2016, the City of Tucson began replacing high-pressure sodium streetlights with LED
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luminaires [21–23]. The motivation for the streetlight conversions was two-fold. There was
a financial incentive, which was to reduce the power consumption and replacement cycle
for individual luminaires. The other motivator was that the new system was designed
to allow individual streetlights to be dimmed, thereby reducing light pollution. All of
the city’s nearly 20,000 streetlights were converted. It should be noted that other lighting
present in the grid cells was unaffected by the city’s LED conversion program. Following
the conversion, the majority of the new LED streetlights have been operated at 60% capacity
from midnight to dawn [21].

The grid cells are divided into three zones to examine the effects of the streetlight
conversions on the index values. First, the grid cells are divided into those with and without
detectable lighting (Figure 14). Background areas, devoid of detectable lighting, are defined
based on annual average radiance values under one nanowatt/cm2/sr. The lit grid cells
are further divided into sets with and without City of Tucson LED streetlight conversions
(Figure 15).

 

Figure 14. Average radiance image from Tucson for the combined years 2015 and 2017. Background
areas, devoid of VIIRS detected lighting, are black. Grid cells with detectable lighting and no LED
streetlight conversions are gray, and lit grid cells with LED streetlight conversions are green.

 

Figure 15. The DNB temporal profiles are divided into three categories: background (blue), lit and
zero streetlight conversions (cyan), and lit with streetlight conversions (green). There are 1955 grid
cells in the background, 4121 grid cells lit with no-LED conversions, and 1124 grid cells with LED
streetlight conversions.
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A set of five Tucson grid cells were selected for more detailed examination and testing.
This included one grid cell from the background. The other four grid cells were selected
because they show abrupt and dramatic changes in radiance levels, with two from the
city’s LED conversion zone and two from areas outside the city’s LED conversion zone. For
these five grid cells, the annual percent flicker, flicker index, and index of dispersion values
were calculated.

3. Results

3.1. Re-Calculation of DNB Pixel Collection Times for HGS

The re-calculated SNPP DNB HGS pixel integration times are listed for each aggrega-
tion zone in Table 2 and shown graphically in Figure 16. The integration time is longest
at nadir (2.68 ms) and shortest at the edge of scan (2.25 ms). The DNB pixel HGS-A and
HGS-B integration times at nadir and edge of scan, shown overlaying a high-speed camera
(1000 frames per second) temporal profile from a high-pressure sodium luminaire, are
shown in Figure 17. The DNB HGS integration times are about one-third to one-fourth of
the typical lighting flicker rates of 100 to 120 Hz.

Figure 16. SNPP DNB pixel integration times by aggregation zone.

Figure 17. SNPP VIIRS DNB pixel integration times for HGS-A and HGS-B randomly placed over a
high-pressure sodium temporal profile collected with the Sony high-speed camera. Each HGS sample
consists of an A and a B side, separated by a 0.25 ms gap.
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Table 2. SNPP VIIRS DNB pixel integration times by aggregation zone.

Aggregation
Mode from

Nadir

Number of Sub-pixels per Pixel Number of
Pixels per

Mode

Time per
Pixel (s)
HGS-A

Time on
HGS A-B

Gap (s)

Time per
Pixel (s)
HGS-B

Total Time
per DNB
Pixel (s)

Track
Direction

Scan Direction

1 42 66 184 1.21E-03 2.50E-04 1.21E-03 2.68E-03

2 42 64 72 1.20E-03 2.50E-04 1.20E-03 2.66E-03

3 41 62 88 1.20E-03 2.50E-04 1.20E-03 2.64E-03

4 40 59 72 1.19E-03 2.50E-04 1.19E-03 2.62E-03

5 39 55 80 1.17E-03 2.50E-04 1.17E-03 2.59E-03

6 38 52 72 1.16E-03 2.50E-04 1.16E-03 2.57E-03

7 37 49 64 1.15E-03 2.50E-04 1.15E-03 2.54E-03

8 36 46 64 1.14E-03 2.50E-04 1.14E-03 2.52E-03

9 35 43 64 1.12E-03 2.50E-04 1.12E-03 2.50E-03

10 34 40 64 1.11E-03 2.50E-04 1.11E-03 2.48E-03

11 33 38 64 1.11E-03 2.50E-04 1.11E-03 2.46E-03

12 32 35 80 1.09E-03 2.50E-04 1.09E-03 2.44E-03

13 31 33 56 1.09E-03 2.50E-04 1.09E-03 2.42E-03

14 30 30 80 1.07E-03 2.50E-04 1.07E-03 2.40E-03

15 29 28 72 1.07E-03 2.50E-04 1.07E-03 2.38E-03

16 28 26 72 1.06E-03 2.50E-04 1.06E-03 2.37E-03

17 27 24 72 1.05E-03 2.50E-04 1.05E-03 2.35E-03

18 27 23 32 1.05E-03 2.50E-04 1.05E-03 2.35E-03

19 26 22 48 1.04E-03 2.50E-04 1.04E-03 2.34E-03

20 26 21 32 1.04E-03 2.50E-04 1.04E-03 2.33E-03

21 25 20 48 1.04E-03 2.50E-04 1.04E-03 2.32E-03

22 25 19 40 1.03E-03 2.50E-04 1.03E-03 2.31E-03

23 24 18 56 1.03E-03 2.50E-04 1.03E-03 2.31E-03

24 24 17 40 1.02E-03 2.50E-04 1.02E-03 2.30E-03

25 23 16 72 1.02E-03 2.50E-04 1.02E-03 2.29E-03

26 23 15 24 1.02E-03 2.50E-04 1.02E-03 2.28E-03

27 22 15 32 1.02E-03 2.50E-04 1.02E-03 2.28E-03

28 22 14 64 1.01E-03 2.50E-04 1.01E-03 2.28E-03

29 21 13 64 1.01E-03 2.50E-04 1.01E-03 2.27E-03

30 21 12 64 1.01E-03 2.50E-04 1.01E-03 2.26E-03

31 20 12 16 1.01E-03 2.50E-04 1.01E-03 2.26E-03

32 20 11 80 1.00E-03 2.50E-04 1.00E-03 2.25E-03

Total 2032 7.71E-02

3.2. Results from High-Speed Camera Temporal Profiles for Individual Sources

Figure 18 shows representative examples of the high-speed camera temporal profiles
from the 23 individual luminaires, including high-pressure sodium, metal halide, fluores-
cent, incandescent, and LED. The 120 Hz flicker pattern can be seen visually, though the
clarity of the pattern is diminished in the LED streetlight.
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Figure 18. High-speed camera temporal profiles from a variety of individual luminaires. The
brightness axis scaling has been adjusted to highlight the flicker pattern, which is weakest in the LED.
The title line on each profile records the luminaire type, sample number, percent flicker (PF), flicker
index (FI), and dispersion index (DI).

The temporal profiles were resampled to simulate DNB temporal profiles, a process
that obliterates the cycling pattern evident in the millisecond temporal profiles (Figure 19).
However, histograms from the DNB temporal profiles of individual luminaires continue
to exhibit spikes near the low and high ends of brightness range, corresponding to the
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flicker inflection points. The histogram spike pattern is characteristic of “harmonic oscil-
lators” [24]. The histogram spikes occur due to the increased temporal dwell at nearly
the same brightness level when the sample falls across either the upper or lower flicker
inflection points.

 

Figure 19. Simulated DNB temporal profile and associated histogram from the resampling of a
metal halide high-speed camera temporal profile. Note that the brightness range of the simulated
DNB temporal profile is slightly less than the original 1000 frames per second temporal profile, an
expression of the temporal aggregation from the longer DNB pixel aggregation. The histogram shows
spikes at brightness levels of 10.5 and 19, a vestigial expression of the flickering upper and lower sine
wave peaks.

The flicker index and ACF results from the individual luminaires are summarized
in Table 3. The table is sorted according to the percent flicker in descending order. The
highest percent flicker values are found with the high-intensity discharge lamps, with the

306



Remote Sens. 2022, 14, 1316

two high-pressure sodium sources having the highest percent flicker, followed by the metal
halides and low-pressure sodium. The LED streetlights and one of the fluorescent tubes
have the lowest percent flicker.

Table 3. Flicker results for individual luminaires. SDNB = simulated DNB.

Luminaires Number
%

Flicker
Flicker
Index

Dispersion
Flicker

Hz
SDNB %
Flicker

SDNB Flicker
Index

SDNB
Dispersion

Compact
Fluorescent

C0028 68.12 0.8216 17.1248 120 38.59 0.7303 8.0688

High Pressure
Sodium

C0017 43.33 0.7250 9.3200 120 28.69 0.6356 5.4270

High Pressure
Sodium

C0042 40.02 0.6398 9.3078 120 28.95 0.6249 5.6576

Metal halide C0012 21.71 0.5656 3.6492 120 18.49 0.5816 2.3106

Low Pressure
Sodium

C0007 15.31 0.6992 1.0630 120 8.25 0.6051 0.4863

Metal Halide C0015 15.18 0.5627 2.0215 120 12.40 0.5550 1.3042

Ceramic metal
Halide

C0009 14.40 0.5754 1.7200 120 10.73 0.6237 1.0180

Metal Halide RAB C0016 12.51 0.5956 1.7166 120 9.96 0.5474 0.8887

Incandescent C0027 5.47 0.5108 0.2264 60 5.26 0.5464 0.2031

Fluorescent C0006 1.70 0.5491 0.0137 120 1.23 0.5152 0.0080

Incandescent C0034 1.44 0.4794 0.0179 120 1.23 0.5604 0.0128

Incandescent dual C0033 1.30 0.4986 0.0135 120 1.14 0.5661 0.0093

Incandescent C0014 1.06 0.5379 0.0118 120 1.16 0.5075 0.0077

iphone flashlight C0036 0.77 0.4574 0.0047 0 0.53 0.6268 0.0016

Compact
Fluorescent

C0031 0.65 0.5561 0.0031 120 0.47 0.6230 0.0018

Compact
Fluorescent

C0032 0.63 0.3580 0.0028 120 0.59 0.5852 0.0013

LED C0018 0.29 0.5059 0.0007 120 0.30 0.5049 0.0005

LED 4000 K C0020 0.19 0.4897 0.0003 120 0.22 0.4930 0.0002

Compact
Fluorescent

C0011 0.14 0.5450 0.0003 120 0.17 0.5378 0.0003

LED C0026 0.12 0.5250 0.0002 120 0.12 0.5201 0.0001

LED 3000 K C0022 0.10 0.4360 0.0001 120 0.11 0.5117 0.0001

Fluorescent
Ceiling

C0035 0.08 0.5547 0.00004 120 0.09 0.6592 0.00004

Figure 20 shows representative examples of ACF profiles from the high-speed camera
data and a grid cell in Tucson found to have weekly brightness cycling. The ACF analysis
found 120 Hz flicker in 19 of 20 individual luminaires (Table 3). The ACF analysis found no
detectable flicker from the iPhone flashlight (sample C0036).
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Figure 20. Examples of autocorrelation function (ACF) profiles from the study. (A) High-speed
camera (HSC) data from a Sylvania incandescent light (C0027), (B) HSC data from an LED streetlight
(C0018), (C) PMT-equipped HSC data from a lunar view, (D) HSC data from a lunar view, and
(E) DJI Air 2S drone camera data of lights in Moscow, Russia, collected at 120 frames per second. The
primary peak has a lag of six frames, indicating 20 Hz flickering. The actual flicker rate is 100 Hz. The
discrepancy is due to aliasing. (F) VIIRS DNB nightly temporal profile of Davis Monthan Air Force
Base, Tucson, Arizona. The seven-day lag indicates the presence of weekly cycling in the brightness
of the lights.

Scattergrams were generated to examine the relationships between the three indices
and the impact of DNB resampling. Figure 21 shows the percent flicker versus flicker index,
with labeling of the lighting types. The luminaires with high percent flicker also have
relatively high flicker index values, though it is not a well-defined linear relationship. In
contrast, the index of dispersion is highly correlated to percent flicker (Figure 22).

308



Remote Sens. 2022, 14, 1316

Figure 21. Percent flicker versus flicker index for individual luminaires, multi-light collections, and
Tucson DNB profiles. The individual luminaires are clustered into types: HPS = high-pressure sodium,
MH = metal halide, LPS = low-pressure sodium, INC = incandescent, CF = compact fluorescent, IP =
iPhone flashlight, LED = LED streetlights, FT = fluorescent tubes.

Figure 22. Percent flicker versus the index of dispersion for the HSC collections made of individual
luminaires, multi-light collections, and DNB temporal profiles from Tucson.

The scattergram of percent flicker from the individual luminaires versus DNB sim-
ulated temporal profiles shows a highly linear relationship (Figure 23). There is a slight
decline in the percent flicker values from the DNB-simulated temporal profiles, presum-
ably due to the longer integration time of the DNB versus the Sony camera running at
1000 frames per second. The flicker index values from HSC temporal profiles versus their
DNB-simulated equivalents are shown in Figure 24. Note that the DNB simulation results
in compression in the flicker index range. Figure 25 shows that the index of dispersion
values for HSC and DNB simulated temporal profiles are highly correlated.
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Figure 23. Percent flicker from the high-speed camera collections versus the DNB-simulated temporal
profiles. The two are highly corelated, with the data cloud forming a diagonal. There is a slight loss
in flicker index values for the DNB-simulated sets, presumably due to the longer integration time of
the DNB compared to the digital camera data.

Figure 24. Flicker index values from the high-speed camera collections versus the DNB-simulated
temporal profiles. The two data sets are not well correlated. Specifically, the flicker index data range
from the simulated DNB temporal profiles is compressed, indicating a loss in the index’s ability to
distinguish different types of lighting.
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Figure 25. Index of dispersion values from the high-speed camera collections versus the DNB
simulated temporal profiles. The two are highly corelated, with the data cloud forming a diagonal.
The DNB-simulated profiles produced slightly lower dispersion values, presumably due to the longer
integration time of the DNB compared to the digital camera data.

3.3. Results from Lunar Views

The lunar view temporal profiles from the Sony and PMT cameras are shown in
Figure 26. These can be considered HSC collections of individual sources since all other
sources are masked out. The temporal profiles from the Sony camera show a low level of
background noise with no sign of flickering. The PMT’s lunar profile shows prominent AC
fluctuations. This led to the exclusion of the PMT collections from other parts of this study.

Figure 26. High-speed camera collections of the moon at night from the Sony camera (top) and
the Sony camera equipped with a photo-multiplier tube (bottom). Note the prominent electronic
flicker present in the PMT collection. This led to the exclusion of the PMT from further flicker study
collections.
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3.4. Results from High-Speed Camera Temporal Profiles for Multi-Light Collections

Figure 27 shows the high-speed camera temporal profiles from the multi-light col-
lections from the table-top collection, oblique view of Golden, horizontal view of the
Broomfield Civic Center, panoramic view of Boulder, and overhead view of outdoor light-
ing collected from a hovering drone in Moscow. Flicker is evident in each of the profiles,
though it is more weakly expressed in the Golden and Boulder samples where the sample
view covered lights present in multiple VIIRS DNB pixel footprints. The multi-light tempo-
ral profiles from Colorado feature 120 Hz flicker. Note that the horizontal axis scaling is
expanded from 100 ms to 500 ms for the Moscow drone profile where the camera frame
rate is 120 per second. The index results are reported in Table 4. All five of the multi-light
temporal profiles had flicker present in the range of 3 to 5%. The ACF analysis found the
flicker rate from Colorado to be 120 Hz, and the Moscow sample’s to be 100 Hz.

Figure 27. High-speed camera temporal profiles from five multi-light collections. Each of the samples
shows visual evidence of AC flicker. The pattern is less clear in the Golden and Boulder examples,
where the field-of-view covered multiple DNB pixels. Note that the temporal scale for the Colorado
1000 frames per second collection is standardized to 100 ms. The Moscow drone data were collected
at 120 frames per second and a horizontal axis range of 500 ms to expose the flicker pattern. PF =
percent flicker, FI = flicker index, DI = dispersion index.
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Table 4. Multi-light camera collections. SDNB = simulated VIIRS DNB.

Observed
Scene

Number % Flicker
Flicker
Index

Dispersion Flicker Hz
DNB %
Flicker

DNB
Flicker
Index

DNB
Dispersion

Table Mul-
tilights

C0005 8.38 0.5277 0.1119 120 6.67 0.4953 0.072

Golden
Panorama

C0040 8.43 0.5178 0.1972 120 9.92 0.5069 0.1581

Broomfield
Civic

Center
C0146 4.79 0.5689 0.0991 120 4.36 0.5214 0.06

Boulder
Panorama

C0138 5.09 0.5274 0.0585 120 4.99 0.4956 0.0349

Moscow
Drone

D0014 3.61 0.5008 0.0228 100 2.45 0.5026 0.0101

3.5. Examination of DNB Temporal Profiles of Tucson, Arizona

The VIIRS DNB profiles for five grid cells from the Tucson metropolitan area are
shown in Figure 28. Percent flicker, flicker index, and index of dispersion calculations were
made for each of the five temporal profiles to examine the value of the indices in detecting
changes in flicker. For each site, one year is reported as a reference and a second year is
reported as a subject. The results are shown in Table 5.

Table 5. Flicker index calculations for five Tucson grid cells.

Location
Cell

Number
Reference

Year
Ref. %
Flicker

Ref.
Flicker
Index

Ref.
Dispersion

2017 %
Flicker

2017
Flicker
Index

2017
Dispersion

LED Con-
versions

S. Kino Parkway
and 22nd

4738 2015 21.21 0.5797 1.88 23.29 0.5148 0.91 61

Automall 2730 2015 63.77 0.677 13.92 59.09 0.6725 9.01 29

HomeGoods
Distribution

Center
6746 2014 99.99 0.6175 4.15 41.63 0.5644 10.87 0

Airport terminal 6841 2013 22.59 0.657 15.17 36.06 0.6457 7.13 0

Mt. Lemmon 100 2015 99.97 0.6426 0.422 99.96 0.6554 0.404 0

The South Kino Parkway grid cell covers a lit roadway and a commercial zone with
streets and buildings. It had 61 LED streetlight conversions. The temporal profile started
out in 2012 with a mean radiance of 46 nW and a variance of 141, more than three times
the mean. There was an upward radiance trend from 2012 to 2015, leading to a 2015 mean
of 62 nW and a variance of 117. In 2016, there was a rapid decline in both radiance and
variance, likely in response to the reduction in streetlight voltages after midnight and the
near absence of flicker in the LED streetlights. The radiant emission pattern remained
stable from 2017 to 2021.

The Tucson Automall grid cell is centered on a large, brightly lit parking lot featuring
a large number of metal halide and high-pressure sodium luminaires. Multiple car dealer-
ships are located together and are reported to begin turning off portions of their lighting
after the 8 p.m. showroom closures. The grid cell had 29 LED streetlight conversions. The
temporal profile is distinctive relative to the others in Figure 28 for its high level of variance
across all years, fluctuating from a high of 1796 in 2013 to a low of 568 in 2018. As with
the Kino Parkway grid cell, there is a decline in the mean radiance in 2016 during the

313



Remote Sens. 2022, 14, 1316

LED conversion period. The mean radiance drops from 101 nW in 2015 to 72 nW in 2018.
Following this, the mean radiance then slowly rebounds to 77 nW in 2021.

Figure 28. VIIRS DNB temporal profiles for five grid cells from Tucson, Arizona.

The Tucson International Airport (TUS) terminal grid cell contains the terminal build-
ing, parking lots, and a portion of the runway. It is one of the brightest locations found
in Tucson, with zero LED streetlight conversions. The mean brightness started out with a
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mean of 220 nW and variance of 3636 in 2012. The mean increased slightly until mid-2014,
at which point there was a sharp dip in radiance which continued until mid-2015, a period
of renovation with the conversion of many metal halide and high-pressure sodium outdoor
lights to highly-shielded LEDs. Once the construction was complete, there was a slight
radiance recovery in late 2015, and the emissions then stabilized to means near 120 nW and
variances near 900 from 2017 to 2021.

The HomeGoods Distribution Center is an 850,000 square foot facility that held its
grand opening on 14 October 2016 [25]. The DNB temporal profile shows a relatively
modest and stable level of lighting present from 2012 to July 2015, with mean radiances
near 10 nW and variances ranging from 35 to 50. The brightness dropped slightly in August
of 2015 and then bumped up with the radiances frequently rising to the 20–30 nW range
for the next year—the facilities construction phase. The brightness increased again at the
end of June 2016, prior to the grand opening, and remained in a largely stable state, with
mean radiances in the 80 to 90 nW range and variances in the 880 to 1000 range through
2021. There was a month-long radiance drop in April 2020, likely the result of a site-wide
shut down during the COVID-19 pandemic.

The fifth individual grid cell being examined is representative of the unlit background,
taken from the core of Mt. Lemmon, part of the Coronado National Forest. The DNB
temporal profile features low mean radiances, in the range of 0.3 to 0.5 nW, indicating the
absence of detectable lighting. Variances were also low, under 1 in each of the years. There
was a series of radiance spikes, up to 8 nW on a winter night with high lunar illuminance,
likely the result of moonlight reflecting off snow.

3.6. Examination of Annual Mean, Variance, and Dispersion across Tucson

The grid cells from the Tucson DNB temporal profile grid were divided into three
zones: background (no lighting detected), lit and no-LED conversions, and lit with LED
conversions. In this section, we examine the behavior of the lighting in the three zones
prior to and following the completion of most of the LED conversions using the annual
mean, variance, and index of dispersion from 2015 and 2017.

Figure 29 shows the scattergrams of the annual mean radiances for the three zones.
There was a slight increase in the mean radiance for 71.6% of the grid cells in the background
zone. The mean radiances were largely unchanged in the lit grid cells with no LED
streetlight conversions. In contrast, the mean radiance declined for 97% of the grid cells
with LED conversion from 2015 to 2017.

Figure 29. Mean radiance scattergrams for the three zones for 2015 versus 2017. The diagonal lines
indicate equal values in the two years. There was a minor increase in the mean radiance in 2017 for
the background grid cells. The mean radiance stayed nearly constant for lit grid cells lacking LED
streetlight conversions, tracking the diagonal. Mean radiance declined in 97% of the grid cells with
LED streetlight conversions. Red triangles correspond to the five Tucson DNB profiles shown in
Figure 28: ML = Mount Lemmon; HG = HomeGoods Distribution Center; TUS = Tuscon International
Airport; K = South Kino Parkway; TA = Tucson Automall.
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Figure 30 shows the scattergrams of the annual variance for the three zones for 2015
versus 2017. The grid cells in the background zone changed very little in variance from 2015
to 2017, with the data cluster centered on the diagonal. There was a discernable decline
in variance for a small portion of the background grid cells. For the lit zone with no-LED
conversions, 74.6% of the lit grid cells had a decline in variance. Amongst the grid cells
with LED streetlight conversions, 92.6% had a decline in variance in 2017 relative to 2015.

Figure 30. Variance scattergrams from the three zones for 2015 versus 2017. The diagonal lines
indicate equal values in the two years. The grid cells in the background zone were largely stable in
variance, with only a small portion of the grid cells dropping slightly in variance in 2017 relative to
2015. For the lit grid cells with no LED streetlight conversion, 74.6% had a slight decline in variance
in 2017. In contrast, 92.6% of the grid cells with LED streetlight conversions had a decline in variance
in 2017. Red triangles correspond to the five Tucson DNB profiles shown in Figure 28: ML = Mount
Lemmon; HG = HomeGoods Distribution Center; TUS = Tuscon International Airport; K = South
Kino Parkway; TA = Tucson Automall.

Figure 31 shows the scattergrams of the annual index of dispersion for the three zones
for 2015 versus 2017. There was a slight decrease in the dispersion for the background zone.
The dispersion is largely unchanged in the lit zone with no LED streetlight conversions.
There is a decline in the dispersion in 2017 compared to 2015 for 79.3% of the grid cells
with LED streetlight conversions.

Figure 31. Index of dispersion scattergrams for the three zones for 2015 versus 2017. The diagonal
lines indicate equal values in the two years. The grid cells in the background zone were largely stable
in dispersion, with only a small portion of the grid cells dropping slightly in variance in 2017 relative
to 2015. For the lit grid cells with no LED streetlight conversion, 74.8% had a decline in dispersion in
2017. In contrast, 79.3% of the grid cells with LED streetlight conversions had a decline in dispersion
in 2017. Red triangles correspond to the five Tucson DNB profiles shown in Figure 28: ML = Mount
Lemmon; HG = HomeGoods Distribution Center; TUS = Tuscon International Airport; K = South
Kino Parkway; TA = Tucson Automall.
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4. Discussion

The recalculation of the VIIRS DNB HGS pixel aggregation time finds that the pixel
collection times vary from 2.25 to 2.68 ms. This is substantially shorter than the 8.3 ms cycle
for the lighting flicker associated with a 60 Hz alternating current. Of the lighting types
measured, flicker is most prominent in high-intensity discharge (HID) luminaires such as
high-pressure sodium and metal halide, which are widely used in outdoor lighting. Com-
pared to HID sources, flicker is reduced in incandescent and fluorescent lights. Fluorescent
light fixtures frequently include capacitors, which reduce the voltage fluctuations that cause
flicker. The thermal inertia of incandescent filaments serves as an inbuilt capacitor, reducing
flicker to a greater degree than HID sources. Over the years, LED manufacturers have
invested in the development of “constant-current” drivers [26] that have largely eliminated
flicker in today’s LED streetlights.

Evidence for the effects of flicker can be seen in VIIRS DNB temporal profiles from
Tucson sites where LED conversion projects replaced HID streetlights with low-flicker LED
sources. Both the South Kino Parkway and Tucson Airport temporal profiles start out with
high radiance levels and high variance. The conversion period is indicated by noticeable
drops in radiance levels. Upon completion of the LED conversions, the radiance levels
stabilize at a reduced level and both variance and dispersion are reduced. The radiance
drop is likely the result of voltage reductions after midnight, plus the improved shielding
of the new LED streetlights. In the grid cells where the variance reductions exceed that
radiance reduction, there is a decline in dispersion. This occurred in 79.3% of the Tucson
grid cells with LED streetlight conversions. This decline in the dispersion indicates that the
flicker was reduced when the high-flicker HID lights were replaced with low-flicker LED
lights.

Three indices were tested for their ability to detect changes in the flicker levels in VIIRS
DNB temporal profiles, including percent flicker, flicker index, and the index of dispersion.
Percent flicker and the flicker index are standard measurements developed to detect and
quantify flicker by the lighting engineering community. All three indices performed well
for the individual luminaires listed in Table 3. For the VIIRS DNB profiles, the index testing
contrasted the values from a reference year and a subject year, selected to straddle an
obvious change in the lighting behavior. The DNB profile index results (Table 4) indicate
that the percent flicker and flicker index did not perform as well as the index of dispersion.
The grid cell from Figure 16 with the highest percent flicker is from Mt. Lemmon—a
background area devoid of lighting. The percent flicker remained nearly constant for the
South Kino Parkway grid cell, which had 61 LED streetlight conversions, resulting in a
substantial reduction in variance. Similar issues were found for the flicker index, which
jumped by two orders of magnitude for the Mt. Lemmon grid cell and remained largely
unchanged for the South Kino Parkway and Tucson Airport grid cells, which had large
numbers of HID-to-LED conversions. Our assessment is that the index of dispersion is
better than the percent flicker and flicker index for the detection and analysis of flicker in
VIIRS DNB temporal profiles.

5. Conclusions

Back to the original question, is the VIIRS DNB a flicker meter in space? The answer is
“yes” and “no”. The DNB HGS pixel integration time is more than three times shorter than
the 100 to 120 Hz flicker found in lighting. However, VIIRS is incapable of measuring the
flicker rates in Hz due to the fact that the DNB’s repeat cycle is measured in hours rather
than milliseconds. The VIIRS DNB differs from conventional flicker meters in that it is
unable to collect coherent flicker cycles from spaces. Instead, the DNB integrates radiances
from all of the surface lighting present in pixel footprints and collects for 2–3 ms nightly
with hour- to day-long gaps between observations. This implies that if flicker is present at
the pixel footprint level, the recorded VIIRS radiance will fluctuate unpredictably over time,
making it a source of instantaneous dispersion. This instability is expressed as an enhanced
level of variance in long-term DNB temporal profiles. Because the VIIRS pixel footprints are
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about half a square kilometer, there can be many individual lights present and contributing
to the radiance observed by the DNB. If the flickering lights are not synchronized, the
observable radiance pattern is an erratic cacophony, with multiple offset flicker patterns
tending to cancel each other out. An AC flicker pattern can emerge from the cacophony,
though it will be a weak signal compared to that found in individual sources.

Several recent studies [15,27] have enumerated the factors that introduce variance into
VIIRS DNB temporal profiles, such as the view angle, atmospheric variability, cloud-effects,
cycling of lunar illuminance, snow cover, and even deciduous tree phenology. To this,
we should add flicker and the variability of flicker within DNB pixel footprints that are
assembled in the construction of DNB temporal profiles. The distinction between flicker
and these other variables is that flicker is an instantaneous source of dispersion, and the
other sources operate with longer time constants. Together, these variables produce a cloud
of radiance dispersion in long-term DNB temporal profiles. The stability of DNB temporal
profiles can be improved by adjusting the radiance levels for individual pixels designed
to remove these influences. The purpose of cloud-screening is to reduce the radiance
dispersion induced by cloud obscuration, a variability that is unrelated to actual surface
lighting. Satellite zenith angle effects can be analyzed and removed via normalization [15].
It is also possible to isolate and remove fluctuations associated with lunar, weekly and
annual cycling from DNB temporal profiles. However, no amount of adjustment for the
environmental and geometric effects on DNB radiances can remove the effects of lighting
flicker. Thus, flicker, if present at the pixel level, imprints itself indelibly on the DNB
temporal profiles and sets an implicit limitation on the uncertainty of applications that
utilize the DNB observations of artificial lights.

It is possible to collect data on flicker levels with high-speed cameras. A frame rate
of 1000 per second makes it possible to observe flicker patterns in good detail. It appears
feasible to collect quantitative flicker information for footprints approximating the DNB
with high-speed cameras from hovering drones. One caution is that it is important to test
the camera for the presence of electronic flicker by viewing the moon or daylit surface
devoid of AC flicker.

The data from a high-speed camera collected on a wide range of luminaires indicate
that high-intensity discharge (HID) luminaries, such as high- and low-pressure sodium
and metal halides, are particularly prone to high levels of flicker. In contrast, modern LED
luminaires are virtually devoid of flicker. This fact should be considered when designing
ground-based DNB calibration sources. LED sources are vastly better than HID sources
for DNB calibration sources. This fact casts doubt on the value of DNB calibration efforts
where HID sources are utilized [28,29].

We examined the DNB temporal profiles from grid cells known to have had HID-to-
LED conversions in Tucson, Arizona. The DNB profiles reveal the conversion date range,
and the reduction in flicker effects that occurs when temporally unstable HID luminaires
are replaced with steady LED sources. Three annual indices were tested for detecting and
characterizing flicker in DNB temporal profiles, including percent flicker, flicker index, and
the index of dispersion. The preliminary results indicate that the index of dispersion is
the best of the three. The flicker index values calculated from the DNB temporal profiles
have a compressed range and show little change between the pre- and post-LED streetlight
conversion radiance profiles. Percent flicker operates suitably in lit grid cells but produces
anomalously high values for background grid cells.

It should be noted that the flicker effects on VIIRS DNB data cannot be detected or
analyzed using the current VIIRS monthly or annual nighttime light products, which only
report the average cloud-free radiance [30,31]. The analyses from Tucson were based on
nightly DNB temporal profiles. Our results indicate that the information value of monthly
and annual VIIRS DNB products can be improved by producing the full suite of statistical
moments (mean, variance, skew, and kurtosis). The mean and variance can be further
processed to calculate the index of dispersion.
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Over time, outdoor lighting flicker is being reduced as high-pressure sodium and metal
halide sources are replaced with constant-current LED streetlights [32]. The results from
Tucson indicate that the loss of flicker and dimming of the upwelling radiances associated
with LED conversions can be detected and quantified with VIIRS DNB temporal profiles.
While the transition to LED is primarily based on economics, there may be human health
impacts. Several studies have noted the adverse health impacts of white LEDs, where the
blue component is enhanced [33,34]. In contrast, the reduction in flicker associated with
LED conversions may have beneficial effects on humans, a possibility that should be further
investigated.

Our results shed some light on the sensor requirements for the observation of flicker
rates and amplitudes. Flicker can be detected and analyzed with high-speed camera data.
Such data can be collected on the ground or from the air. The collection platform should
be stabilized with a tripod on the ground or by hovering in the air. Airborne surveys of
flicker will be the easiest way to investigate the spatial patterns of flicker synchronization
associated with multiple lights operating from a common AC power supply. It may be
possible to map boundaries between power grid entities based on the discontinuities in
flickering. From satellites, it may be possible to observe the flicker rates and amplitudes
with high-speed, low-detection-limit cameras capable of staring at lights present on the
earth’s surface. This could be done from geostationary orbit or with pointable sensors in
lower orbit.

In conclusion, VIIRS DNB-measured radiances from artificial light sources are affected
by several phenomena, including flicker. The flicker effects can be concentrated by filtering
out the pixels contaminated by cloud cover and adjusting the DNB radiances for effects
such as lunar reflectance, view angle, and atmospheric variability. In addition, outlier and
trend removal may be required to achieve consistent results. After the extraneous effects
are removed or compensated for, DNB temporal profiles can reveal details of lighting
development and conversions from high-flicker to low-flicker sources.
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Abstract: A good lighting environment for roads at night is essential for traffic safety. Accurate and
timely knowledge of road lighting quality is meaningful for the planning and management of urban
road lighting systems. Traditional field observations and mobile observations have limitations for
road lightning quality evaluation at a large scale. This study explored the potential of 0.92 m resolution
JL1-3B nighttime light remote sensing images to evaluate road lighting quality in Nanjing, China.
Combined with synchronous field measurements and JL1-3B data, multiple regression and random
forest regression with several independent variable combinations were developed and compared to
determine the optimal model for surface illuminance estimation. Cross validation results showed
that the random forest model with Hue, saturability, ln(Intensity), ln(Red), ln(Green) and ln(Blue) as
the input independent variables had the best performance (R2 = 0.75 and RMSE = 9.79 lux). Then,
this model was used to map the surface illuminance. The spatial scopes of roads were extracted from
Google Earth images, and the illuminance within roads was derived to calculate the average, standard
deviation and coefficient of variation to indicate the overall brightness level and brightness uniformity
of the roads. This study provides a quantitative and effective reference for road lighting evaluation.

Keywords: nighttime light remote sensing; road lighting quality measurements; JL1-3B; Nanjing

1. Introduction

In night driving, road night lighting plays an important role in traffic safety. The Inter-
national Commission on Illumination (CIE) reported that road lighting reduced nighttime
accidents by 13~75% over 15 countries [1]. Christopher found that the reported crashes
where roads were lit decreased 28.95% in total crashes and 39.21% in injury night crashes [2].
Elvik et al. indicated that road lighting reduced the nighttime crash rate by 23% in Belgium,
Britain and Sweden [3]. William found that improving overall uniformity up to approx-
imately 0.4 lowers the night-to-day crash ratio for highways in New Zealand [4]. Good
road lighting quality provides a good lit environment, thus reducing traffic crashes at night.
Consequently, evaluating road lighting quality is meaningful to improve the nighttime
road lit environment and gain urban traffic safety [5–9].

Road lighting quality reflects the photometric performance of road lights aiming
at satisfying drivers’ visual needs at night, which includes parameters such as average
illuminance, overall uniformity, etc., according to CIE [10] and European Committee for
Standardization [11] documents.

Field observation is the most popular way to evaluate road lighting quality. Generally,
illuminance meters or imaging photometers are employed to measure road brightness at
typical places to assess lighting quality. Liu et al. utilized different illuminance meters
and handheld luminance meters to measure the illuminance in different orientations and
the brightness of roads in Dalian, China [12]. Guo et al. measured the luminance of
roads in Espoo, Finland using an imaging photometer LMK Mobile Advanced (IPLMA),
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which converted photos into luminance values, and calculated the average luminance by
the software LMK 2000 [13]. Jägerbrand also applied the IPLMA to obtain road lighting
parameters in Sweden [14]. Ekrias et al. used an imaging luminance photometer ProMetric
1400 to measure the luminance of roads in Finland and calculated the average luminance
and uniformities [15]. However, static road lighting measurements cannot provide lighting
information at large scales. Additionally, observation positions must be placed within
roads, which may affect the normal running of traffic flow [16–18].

Some researchers have carried out mobile measurements with imaging luminance
devices or photometers boarded on vehicles. Greffier et al. used the High Dynamic Range
(HDR) Imaging Luminance Measuring Device (ILMD) mounted on a car to measure road
luminance [19]. Zhou et al. developed a mobile road lighting measurement system with a
photometer mounted on a vehicle, which was able to record the illuminance and position
data simultaneously and successfully applied in Florida, America [20]. However, mobile
measurements are disturbed by many factors, such as the head and rear lights of cars,
relative positions between observation vehicles and street lamps, and the vibration of
observation angles.

Nighttime lighting remote sensing offers a unique way to monitor spatial-continuous
nighttime nocturnal lighting at a large scale. Nighttime light remote sensing data, such as
DMSP/OLS, NPP/VIIRS and Luojia1-01, are widely used in mapping urbanization pro-
cesses [21], estimating GDP, investigating poverty and monitoring disasters [22]. However,
due to the coarse resolutions of these nighttime satellite remote sensing data (DSMP/OLS:
2.7 km; NPP/VIIRS: 0.75 km; Luojia1-01: 130 m), they cannot map the detailed light envi-
ronment within roads and therefore cannot be applied for road lighting quality evaluation,
thus few studies have been carried out on road lighting environments based on nighttime
light data However, there still are some studies. Cheng et al. used JL1-3B nighttime light
data to extract and classify the street lights by a local maximum algorithm, achieving an
accuracy of above 89% [23]. Zheng et al. used the multispectral feature of JL1-3B data to
discriminate light source types using ISODATA algorithm, with an overall accuracy of
83.86% [24]. An unmanned aerial vehicle (UAV) is able to provide high-resolution nighttime
lighting images on a relatively large scale. Rabaza et al. used a digital camera onboard the
UAV to capture orthoimages of the lit roads in Deifontes, Spain, which was calibrated by
a known luminance relationship. Then, the average luminance or illuminance was calcu-
lated [25]. UAVs have the outstanding advantages of convenience, low cost and extremely
high resolution. However, it is also limited by security, privacy factors, and the short flight
distance makes it unsuitable for large areas. The newly launched JL1-3B satellite provides
nighttime images with a high spatial resolution of 0.92 m and multispectral data [24,26].
The features of JL1-3B show the potential of evaluating road lighting quality at large scales.

This study aimed to evaluate the road lighting quality in Nanjing, China, using high-
resolution JL1-3B nighttime light remote sensing data combined with the in situ measured
illuminance on typical roads. Several machine learning models were developed and
compared to produce a fine resolution illuminance map with good accuracy. Then, the
remotely sensed illuminance within roads was extracted to calculate indicators to evaluate
road lighting quality.

2. Study Area and Datasets

2.1. Study Area

Nanjing, the capital city of Jiangsu Province, China, is located in eastern China. It
covers a total area of 6587.02 km2, with latitudes ranging from 31◦14′ to 32◦37′N and
longitudes ranging from 118◦22′ to 119◦14′E. In recent decades, Nanjing has experienced
significant economic and population growth and, accordingly, a rapid increase in the
number of motor vehicles. In 2020, the total number of motor vehicles reached 2,799,469,
and the total length of roads reached 9796 km [27]. It is difficult to evaluate the lighting
quality of such a vast road network by timely in situ observations. Therefore, exploring
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an effective method for road lighting assessment at a large scale is very meaningful for
Nanjing city.

2.2. Data Collection
2.2.1. Remote Sensing Data

JL1-3B, known as “Jilin-1 03B”, which was developed by Changguang Satellite Tech-
nology Co., Ltd. (Changchun, China) and launched on 9 January 2017. This satellite is
on a sun-synchronous orbit with an altitude of 535 km, which provides three imaging
models: video imaging, push-broom imaging and night light imaging [23]. Night light
imaging models provide radiometrically and geometrically calibrated high spatial resolu-
tion (0.92 m) images with multiple bands (red band: 580–723 nm, green band: 489–585 nm,
blue band: 437–512 nm). Regions within an off-nadir angle of ±45◦ can be accessed by the
area array camera boarded on the payload. Each tile of the image covers 11 km × 4.5 km
of the ground area. Compared with DMSP-OPS, NPP-VIIRS and LJ1-01 nighttime light
remote sensing satellites, the high spatial resolution of JL1-3B is capable of depicting the
spatially detailed lit environment within road lights. Compared with the high-resolution
nighttime light remote sensing satellite EROS-B (0.7 m), multispectral data are provided,
allowing for more detailed studies relative to road lighting [23,24,26,28]. The JL1-3B data
can be commercially ordered from the website of Changguang Satellite Technology Co.,
Ltd. (http://www.jl1.cn/Search.aspx?txtSearch=JL1-3B (accessed on 5 October 2020)), of
which price is 180 CNY/km2.

The JL1-3B image in this study was collected at 21:08:37 (Beijing Time) on 23 October 2020,
which covered the northern part of the main urban area (Figure 1). The off-nadir angle was
0.02 degrees, avoiding the shielding effect of buildings on the road lit environment. The
image was primarily geometrically and radiometrically corrected (Figure 2).

Figure 1. JL1-3B image range of study area without geometric correction (base map: Google Earth).

2.2.2. Field Measurements

Field observations were carried out from 20:30–21:30 on 23 October 2020, to coincide
with the JL1-3B overpass time. A TES-1399R illuminance meter was employed to measure
the in situ illuminance. Its measurement range is from 0.01 lux to 999,900 lux, and the
accuracy is ±3% rdg (calibrated to standard incandescent lamp, 2856K). Five groups carried
out observations on the foot with TES-1399R simultaneously on different representative
routes, which covered different lighting conditions. At each sample point, the TES-1399R
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was facing-upward horizontally, placed at a height of 1.5 m to measure the downward
illuminance from the street lamps. The locations of these sample points were also recorded
by Global Navigation Satellite System (GNSS) instruments. To avoid the influence of the
shading effect of street trees, only the sites that were not covered by trees were selected for
observation. A total of 214 measurements were collected (Figure 2).

 
Figure 2. Distribution of measured points (base map: raw JL1-3B image).

3. Methodology

3.1. Workflow

The flowchart of this study is shown in Figure 3, which includes three main steps:
(1) preprocessing the JL1-3B data; (2) developing multiple models and selecting the best of
them to map illuminance from the JL1-3B image; and (3) evaluating road lighting quality
based on the illuminance map.

Figure 3. Flow chart.
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3.2. JL1-3B Data Preprocessing

The noise was removed using the threshold method in the HSV color space. Noises
consist of a patch of pixels with high values of the R, G or B band, which randomly cross
the image. Considering that they are characterized by high saturation, the image was
transformed from RGB to HSV space to identify noisy pixels by the following rules:

{|H − 120| < 10 or |H − 240| < 10 or |H − 360| < 10} and {S > 0.8} and {V > 0.55}, (1)

where H is the hue, S is the saturation and V is the value of the HSV space.
The noisy pixels were identified and then filled using Delaunay triangulation with

triangles calculated from the surrounding valid DN values. Figure 4b shows the denoised
image. After the denoising process, the monochromatic noisy pixels were effectively re-
moved. Note that the denoising process should be performed before geometric registration
because resampling during the registration will mix the monochromatic noisy values and
normal values, making it difficult to distinguish noisy pixels.

Figure 4. Comparison before (a) and after denoising (b).

The denoised JL1-3B image was calibrated in radiation according to Equation (2):

Li =
Di − bi

ai
, (2)

where Li is the radiance (W·m−2·sr−1) of band i, Di is the DN value of band i, and ai and bi
are the calibrated coefficients of band i (Table 1).

Table 1. Radiance calibration coefficients of JL1-3B.

Wavelength a b

Band 1 (Red) 9681 −4.73
Band 2 (Green) 5455 −3.703
Band 3 (Blue) 2997 −4.471

Although the JL1-3B L1A image has been systematically geometrically corrected, it
still has obvious geometric deviations. Taking a high-resolution Google Earth image as the
reference image, 26 ground control points were selected to register the JL1-3B image. It
should be noted that the JL1-3B sensor is an array imaging sensor, and the JL1-3B image of
the study area was mosaicked from multiple images. Therefore, the geometric distortion
of the whole image varies from different source images. Under this consideration, the
Delaunay triangulation method instead of the polynomial method was employed for image
wrapping. Figure 5 shows the registered JL1-3B image.

During field observations, the surrounding environment is complex, and the measured
values may be affected by a variety of factors, such as the headlights of passing vehicles,
landscape lighting and window lights from nearby buildings. These interference factor
may affect the consistency between surface observed illuminance and space-born observed
illuminance. For example, the in-situ observations that were illuminated by vehicle head-
lights had relative high measurement values, but the corresponding pixel values in the
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JL1-3B image were not high because the filed observation and the satellite overpass were
not perfectly synchronous. Therefore, all the sample points were manually checked to
remove problematic sample points to improve the estimation accuracy of illuminance.
Finally, 168 sample points remained.

Figure 5. The JL1-3B image after preprocessing.

3.3. Illuminance Mapping

The emitted light from street lamps is reflected by the road surface and then propagates
through the atmosphere to reach the satellite sensor. The road surface has similar reflection
characteristics, and the atmospheric conditions are relatively uniform at a small scale. In this
way, a close relationship between the in situ observed illuminance and the remotely sensed
radiance should exist. Figure 6a gives the scatter plots between the observed illuminance
and the radiance of the three JL1-3B bands. The illuminance has good relationships with
the radiance of the R, G and B bands, with correlation coefficients of 0.638, 0.648, and 0.649,
respectively. It can also be noted that there are many unique values in band B, which can
be attributed to the relatively strong scattering intensity of the atmosphere for the blue
band [29,30]. Figure 6b gives the scatter plots between the observed illuminance and the log
values of the radiance of the three bands. The correlations between them were higher than
those between the observed illuminance and the radiance values. In order to provide more
relevant variables to the illuminance estimation model, HIS color space was introduced
under the consideration that it is more robust to changes in illuminance [31]. Thus, the RGB
color space was transferred to HIS color space, and the correlation coefficients between
illuminance and H, I, S were −0.34, 0.67 and −0.37, respectively. After their logarithmic
transformation, log(I) showed the highest correlation coefficient (0.77) with illuminance,
and the Pearson coefficients of log(H) and log(S) were both −0.34.

 

Figure 6. (a) RGB scatter plot; and (b) lnRGB scatter plot.
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Relationships between illuminance and different color components varies [32]. Based
on the correlation analysis above, R, G, B, I and their log values show high correlations
with observed illuminance. Considering the auxiliary information that the variable Hue
and Saturation can also provide, variables in RGB color space and HIS color space were
integrated. Then, six combinations of these independent variables were employed (Table 2)
to determine the optimal variables for illuminance estimation.

Table 2. Combinations of independent variables.

Combination Independent Variables

1 R, G, B
2 lnR, lnG, lnB
3 H, S, I
4 H, S, lnI
5 H, S, I, R, G, B
6 H, S, lnI, lnR, lnG, lnB

To properly portray the quantitative relationships between variables in Table 2 and
illuminance, multiple linear regression (MLR) and random forest (RF) algorithms were
used to develop models for illuminance mapping based on the abovementioned variable
combinations. MLR is widely used for its simplicity and interpretability [33,34]. Random
forest regression (RF) is an ensemble algorithm combined with tree predictors such that
random inputs and features are selected in the process of forming trees [35]. The predicted
result is the average value of the overall regression trees, which can effectively reduce the
bias of a single tree [36].

Taking the observed illuminance as the dependent variable and the six variable combi-
nations as the independent variables, multiple linear regression and RF models were fitted.
The predictive accuracy was evaluated using 10-fold cross-validation. First, the dataset
was randomly divided into 10 uniform subsets. Then, one subset (17 samples) was used as
the test set, and the remaining 9 subsets (151 samples) were used as the training set to fit
the model. This process was repeated 10 times using each subset as the test set once. RMSE
(Equation (3)) and R2 (Equation (4)) were calculated to indicate the model performance.

RMSE =

√
∑n
{i=1}(ŷi − yi)

2

n
, (3)

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 , (4)

where ŷi is the predicted illuminance (lux), yi is the actual observed illuminance (lux), y is
the average illuminance (lux) of the whole road, and n is the number of samples.

The number of weak classifiers (n) and the number of variables selected randomly
for each tree split (s) are two important parameters of RF. The parameter n influences the
fitting effectiveness [37], and the parameter s affects the final results, both of which were
tuned to optimize the model

By comparing the accuracies of the models, the best model and variable combination
were chosen. Then, this model was applied to the corresponding JL1-3B spatial variables to
produce a high-resolution surface illuminance map of the study area.

3.4. Road Lighting Quality Evaluation

The spatial scopes of the different classes of roads where distribution of illuminance
was obvious and continuous were extracted from Google Earth images by visual interpre-
tation. Note that different sections of one road may vary in different classes and lighting
conditions; thus, sections of roads were considered as the evaluating objects. During the
process of extracting roads, some rules were obeyed. (1) The intersection areas with buffers
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of approximately 20 m were not extracted to avoid the influence of mixed-source lighting;
(2) the street tree canopies were also excluded in order to avoid the shaded pixels within
the roads (Figure 7); and (3) due to the relatively low accuracy of nighttime lighting data
geometrical correction, roads with relatively low degrees of overlap between the JL1-3B
preprocessed image and Google Earth image (base map in the preprocess of geometric
correction) were excluded.

 

Figure 7. Extraction process illustration of uncovered road region: (a) extracted road region and
street tree canopies; (b) uncovered road region.

Based on the remotely sensed illuminance map and road scopes, the mean value,
standard deviation and coefficient of variation (Cv) of the illuminance within each road
were calculated. The average illuminance indicates the overall brightness level of the road,
and the standard deviation and Cv reflect the brightness uniformity of the road.

E =
∑n

i=1 Ei

n
, (5)

σ =

√
∑n

i=1
(
Ei − E

)2

n
, (6)

Cv =
σ

E
, (7)

where E is the average illuminance of the road or road section (lux), Ei is the illuminance of
pixel i in the road or road section (lux), and n is the number of pixels in the road or road
section. σ is the standard deviation of the illuminance of the road or road section (lux), and
Cv is the coefficient of variation of the illuminance of the road or road section.

The standard for lightning design of urban roads in China [38] specifies the standards
of overall brightness and uniformity. The overall brightness is identified by average
illuminance and the threshold values of different classes of road were shown in Table 3.
For expressways and main roads, the average illuminance is required to be greater than
20 lux. For secondary roads, the average illuminance should be more than 10 lux, and for
branches, the average illuminance should be greater than 8 lux. The uniformity is identified
by the ratio of the minimum illuminance to average illuminance. However, this factor is not
suitable for remote sensing. The minimum value is not stable, which is easily affected by
image noise, shades and other factors. Additionally, it cannot fully utilize the advantages
of remote sensing that can map spatial continuous lit environments. In this study, we
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employed standard deviation and Cv of illuminance to indicate uniformity, and took the
mean values of Cv as the reference values for road lighting uniformity.

Table 3. Average illuminance standard for road grades [18,38].

Road Grade Average Illuminance Standard

Expressway/Main road ≥20 lux
Secondary road ≥10 lux

Branch ≥8 lux

4. Results

4.1. Surface Illuminance Map

Cross-validation results with goodness of fit (R2) and root mean squared error (RMSE)
of MLR and RF models based on different variable combinations are shown in Table 4,
and the optimal parameters of RF for each variable combination are listed in Table 5. In
terms of R2, the performance of the RF models was generally better than that of MLR, for
which R2 for all variable combinations was 0.74 or 0.75. Especially for variable combination
1, the R2 rose from 0.47 (MLR model) to 0.74 (RF model), indicating that the nonlinear
relationship between illuminance and the R, G, and B values was more appropriate than the
linear relationship. With regard to the performance of MLR models, variable combination
6 was the optimal with the highest R2 (0.64) and lowest RMSE (9.50 lux), and variable
combination 5 was slightly worse than it. From the perspective of variable combinations’
color spaces, variable combinations 5 and 6 outperformed variable combinations 3 and 4 as
well as combinations 1 and 2 in both the MLR and RF models, suggesting that the models
combining RGB and HIS color spaces were superior to the single-color space. Based on
the above analysis, RF models with variable combinations 5 and 6 were relatively better
choices for estimating the illuminance. Considering that the RMSE of variable combination
5 was only 0.03 smaller than that of variable combination 6, and this study preferred R2 as
the more important metric for models, variable combination 6 applying the RF model with
the highest R2 (0.75) and the relatively low RMSE (9.79 lux) was selected as the optimal
model for further estimation.

Table 4. Validation results of the models with different variable combinations.

Models MLR RF

Number Combinations R2 RMSE R2 RMSE

1 R, G, B 0.47 11.36 0.74 9.72
2 lnR, lnG, lnB 0.62 9.55 0.74 9.72
3 H, S, I 0.50 10.98 0.75 10.03
4 H, S, lnI 0.62 9.62 0.75 10.03
5 H, S, I, R, G, B 0.63 9.52 0.74 9.76
6 H, S, lnI, lnR, lnG, lnB 0.64 9.50 0.75 9.79

Table 5. Optimal parameters for RF models with different variable combinations.

Combination No. Number of Classifiers (n) Number of Variables (s)

1 150 3
2 150 3
3 110 3
4 110 3
5 110 6
6 120 6

Figure 8 shows the scatter plot between the observed and estimated illuminance from
the random forest model based on variable combination 6. Most samples were clustered
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near the 1:1 line, indicating the good fitness of the model. In addition, there was no obvious
overestimation or underestimation.

Figure 8. Scatter plot for the optimal model.

The developed random forest model with variable combination 6 was applied to the
corresponding spatial independent variables, and the surface illuminance over the study
area was mapped (Figure 9).

 
Figure 9. Illuminance map.

4.2. Road Lighting Quality Evalutions

The main 50 roads in the study area were extracted manually, including 16 express-
ways/main roads, 12 secondary roads and 22 branches. Based on the remotely sensed
surface illuminance map and road spatial scopes, the illuminance values within each road
were extracted to calculate the average, standard deviation and Cv to assess lighting quality.
The results are shown in Table S1. Additionally, the boxplots of the illuminance within
each road are shown in Figure S1. Table 6 shows the statistical results of the lighting
quality the expressways/main roads, secondary roads and branches. The mean of average
illuminance of expressways/main roads, secondary roads and branches were 20.64 lux,
22.35 lux, and 19.46 lux, respectively. Generally, the overall average illuminance of all the
three road classes met the average illuminance standard shown in Table 3. However, the
minimum values of average illuminance of expressways/main roads, secondary roads and
branches were 9.90 lux (Heyan Road), 12.08 lux (Hunan Road), and 8.58 lux (Gaomenlou
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Road), respectively, indicating that there were some expressways/main roads and sec-
ondary roads that did not meet the average illuminance standard. Overall, 87.5% of the
expressways/main roads, all the secondary roads and all the branches met the standard of
average illuminance.

Table 6. The statistics of road lighting quality indicators for each road grade.

Grade Road Lighting Quality Indicators Maximum Minimum Mean

Expressway/Main road
Average illuminance(lux) 27.74 9.90 20.64

Std (lux) 14.12 8.28 10.89
Cv 0.98 0.42 0.56

Secondary road
Average illuminance (lux) 36.75 12.08 22.35

Std (lux) 13.83 8.29 10.65
Cv 0.90 0.33 0.52

Branch

Average illuminance (lux) 36.13 8.58 19.46
Std (lux) 12.79 5.30 9.51

Cv 0.89 0.28 0.54

From the aspects of standard deviation, which represents the absolute uniformity,
the mean value of standard deviation of expressways/main roads, secondary roads and
branches were 10.89 lux, 10.65 lux, and 9.51 lux, respectively. Though the three road classes
showed similar overall standard deviation, their Cv values were quite different because
their average illuminances are different. In fact, absolute uniformity (standard deviation)
was not suitable for the indicator that was used to compare illuminance variation in roads
as it ignores the impact of average illuminance, thus, Cv was considered as the better
indicator to evaluate the uniformity of roads. The mean values of Cv of expressways/main
roads, secondary roads and branches were 0.56, 0.52 and 0.54, respectively. However, the
maximum Cv values of these three road classes were 0.98 (Heyan Road), 0.90 (Hunan Road)
and 0.89 (Gaomenlou Road), suggesting that there were some roads that suffered poor
uniformity of illuminance. Given that the existing standard road lighting uniformity is not
proper for remotely sensed illuminance, we set Cv of the three road classes (0.56, 0.52, and
0.54, respectively) as the reference values of lighting uniformity. The roads with Cv higher
than the reference values were considered that had poor road lighting uniformity. Overall,
75% of the expressways/main roads, 66.7% of the secondary roads and 50% of the branches
showed good uniformity.

Four typical roads were selected for detailed analysis, including Jianning Road, Hubei
Road, Hongshan Road and Longpan Road (Table 7). Jianning Road showed both poor
overall brightness and uniformity; Hubei Road showed good overall brightness, but poor
uniformity; Hongshan Road had poor overall brightness, but good uniformity; Longpan
Road had both good overall brightness and uniformity.

Table 7. Values of typical roads’ lighting quality evaluation metrics.

Road Name Average Illuminance (lux) Std (lux) Cv Grade

Jianning Road 16.65 9.83 0.59 Main road
Hubei Road 23.03 12.79 0.56 Branch

Hongshan Road 19.27 8.51 0.44 Expressway
Longpan Road 27.74 13.44 0.48 Expressway

Figure 10 shows the illuminance maps (local segments) and histograms (all the roads)
of these four roads, which presents more details at pixel scale than the table and boxplots.
For Jianning Road (Figure 10a), the illuminance map shows that most pixels within the
road had low illuminance values indicating the poor overall brightness, and unilluminated
sections of road were interspersed, resulting in the awful uniformity. The histogram of
this road illustrates that most pixels were under the standard for the main roads (20 lux),
and the distribution was obviously skewed to a low illuminance value. For Hubei Road
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(Figure 10b), most areas within the road were obviously de-lighted. However, the middle
sections were much brighter than the sides. The histogram indicates that most pixels
ranged from 15 to 35 lux and there were not relatively fewer extreme illuminated pixels.
For Hongshan Road (Figure 10c), the road regions were approximately evenly and fully
illuminated, but the overall brightness was relatively low. Most pixels were concentrated
between 10–20 lux from the histogram of this road, and few pixels had extreme illuminance
values. The illuminance map for Longpan Road (Figure 10d) showed a generally high
and even distributed lit environment, and the histogram also indicated this point. The
illuminance map and histogram can not only evaluate the lighting quality of the whole
road, but can reflect more spatial and distribution details.

Figure 10. The illuminance maps and histograms of 4 typical roads. The purple box shows the roads’
scopes: (a) Jianning Road; (b) Hubei Road; (c) Hongshan Road; and (d) Longpan Road. To illustrate
the illuminance more clearly, illuminance maps show local sections of the road. Histograms represent
the illuminance of the whole road.
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5. Discussion

Traditional ground-based measurements are limited by the measuring scopes and
usually disturb the normal traffic flow. Nighttime remote sensing can observe spatial
continuous lit environments at large scales, providing potential for road lighting quality
evaluation. However, due to the relative coarse resolutions, most nighttime remote sensing
data cannot be used to map illuminance within roads. The new JL1-3B data has a high
spatial resolution of 0.92 m that can capture detailed lighting environment within roads,
and it also has three channels that can well characterize the light colors [23,24]. Therefore,
JL1-3B is a proper data that can be used for effectively quantifying road lighting quality.
This paper explores the method to evaluating road lighting quality by the estimated illumi-
nance derived from JL1-3B data and in situ observations. The high-resolution illuminance
map contains large amounts of illuminance data and can effectively depict the lighting
environment within roads at pixel scale. Furthermore, with the revisiting period of 9 days,
the proposed method using JL1-3B data is able to measure the road lighting quality periodi-
cally, providing timely information about large-scale road lighting condition for concerned
government departments. Compared with traditional road lighting quality measurements,
the application of nighttime light remote sensing data in this study is superior in terms
of safety, rapidity, measuring scopes, measuring frequency and information content. In
addition to the radiance values of the three bands of JL1-3B, other color components, such
as HIS, were also introduced for estimating illuminance. Six combinations of variables were
compared to determine the optimal variables combination. The results (Table 4) showed
the optimal model involved in all color components, indicating that considering more color
components may improve the performance of the estimation model. Furthermore, the
random forest model outperformed the multiple regression model. This may be attributed
to the fact that different street lamps emit light of different colors, and the tree-based
random forest method that can handle different conditions under different branches is
more suitable for this complex scenario.

There were also some limitations in this study. During the process of data collection,
some deficiencies like discrepancies between the ground and satellite observations and
low positioning accuracy of the GNSS system, have negative impacts on the outcomes of
the methods. Satellite imaging was almost instantaneous, but in situ observation lasted
approximately 1 h. During observation, the lit environment may change, resulting in
inconsistencies between field observations and remote sensing data. Although we carefully
checked them and removed some obvious problematic samples, there may still be some
uncertainties caused by the inconsistency. To overcome this problem, the planned sampling
section can be divided into stable and unstable illumination zones. For stable zones, the
lighting is steady, and therefore, the illuminance cannot be measured strictly synchronously
with the satellite overpass. For unstable zones, the lighting is changeable; therefore,
the illuminance should be recorded strictly synchronously with the satellite overpass.
Assigning more observation teams also helps to reduce the inconsistency because they
can collect abundant samples in less time. Moreover, there are also a lot of pixels that
were affected by these factors in the remotely sensed illuminance map. How to identify
and remove these problematic pixels is still a difficult problem to overcome in the future.
During this in situ observation, normal handheld GNSS instruments were used to record
sample coordinates. However, the positioning accuracy of these instruments is generally
within 10 m. Given the obvious spatial difference in the light environment, this accuracy
level is not sufficient. RTK GNSS instruments with centimeter-level accuracy can effectively
improve the spatial consistency between field observations and remote sensing data. There
is another important point to note, which is the observation angle of the satellite. Though
JL1-3B can image within the off-nadir angle of ±45◦, the satellite zenith angle should not
be high enough to eliminate the shading effect of buildings and trees, and also reduce the
influence of Rayleigh scattering of the atmosphere.
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6. Conclusions

This study proposed a new space-borne method for evaluating road lighting quality
based on JL1-3B nighttime light remote sensing data. Firstly, synchronous field observations
were carried out to measure illuminance in Nanjing, China. After a series of preprocessing
of the JL1-3B image, the in situ observed illuminance and the radiance of JL1-3B were
combined to map the high-resolution surface illuminance based on the close relationship
between them. Two models (multiple linear regression and random forest) with six in-
dependent variable combinations were employed and compared to develop the optimal
model for illuminance estimation. Results showed that the random forest model with
Hue, Saturability, lnI, lnR, lnG and lnB as the independent variables achieved the best
performance (R2 = 0.75, RMSE = 9.79 lux). Additionally, the optimal model was applied
to the JL1-3B preprocessed image to derive the surface illuminance map. The average,
standard deviation and Cv of the illuminance within roads were calculated to assess their
lighting quality.

This study is a preliminary study to develop a technical framework to evaluate road
lighting quality using JL1-3B nighttime light remote sensing data. JL1-3B can be ordered
from Changguang Co., Ltd., Changchun, China and the instruments for ground-based
observation were inexpensive TES-1399R illuminance meters. The devices and methods
used in this study have the advantages of low cost, simplicity and reliability, providing a
reference for road lighting quality evolution in other regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14184497/s1, Figure S1: The boxplot of the extracted roads;
Table S1: Road lighting quality evaluation metrics of the extracted roads.
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