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Preface to ”The 5th Mexican Workshop on Fractional

Calculus”

The Mexican Workshop on Fractional Calculus (MWFC), which originated in the

Irapuato-Salamanca Campus Engineering Division of the University of Guanajuato in 2012, has an

international scope. Its main objective is to present the latest theoretical advances and applications

of fractional calculus to different areas of Science and Engineering. It is also an opportunity for

free scientific discussion among young people and experts. Indisputable personalities in the area of

fractional calculus have participated in these workshops and have stimulated young scientists. The

workshops are aimed at high-level and postgraduate students, as well as young researchers and

consolidated researchers. These workshops are held every two years at different universities around

the country.

Prefaced by

Prof. J. Juan Rosales-Garcı́a

Department of Electrical Engineering, DICIS-UG
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Editorial

Fractional Calculus in Mexico: The 5th Mexican Workshop on
Fractional Calculus (MWFC) †

Jorge M. Cruz-Duarte 1,* and Porfirio Toledo-Hernández 2

1 School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501,
Col. Tecnológico, Monterrey 64849, Nuevo León, Mexico

2 Faculty of Mathematics, University of Veracruz, Paseo 112, Sección 2 S/N, Col. Nuevo Xalapa,
Xalapa-Enríquez 91097, Veracruz, Mexico

* Correspondence: jorge.cruz@tec.mx
† All the papers in this proceedings volume were Presented at the 5th Mexican Workshop on Fractional

Calculus (MWFC), Monterrey, Mexico, 5–7 October 2022.

The Mexican Workshop on Fractional Calculus (MWFC) is a bi-annual international
workshop and the largest Latin American technical event in the field of fractional calculus
in Mexico. The focus of MWFC is to motivate critical discussions of ideas about abstract
and non-integer operators, chaotic systems, complex behavior, and their applications in
several areas. MWFC offers an ideal forum for intellectuals and curious people to present
their latest research insights. In its 5th version, MWFC was held in Monterrey, one of the
most influential cities in México and home of the Tecnológico de Monterrey (TEC), where
MWFC was hosted in a hybrid format. During the 5th MWFC, we attended six plenary
talks from distinguished international scientists, as well as two tutorials, a poster session,
and four panels of accepted papers.

In submitting conference proceedings to Computer Sciences and Mathematics Forum, we
certify to the publisher that all papers published in this volume have been subjected to
peer review administered by the volume editors. Expert referees conducted reviews to the
professional and scientific standards expected of a proceedings journal.

• Type of peer review: Double-blind.
• Conference submission management system: EasyChair via https://www.easychair.

org/conferences/overview?a=29473298 (accessed on 10 November 2022).
• Number of submissions sent for review: 22.
• Number of submissions accepted: 16 submissions were accepted to be presented at

the 5th MWFC, and 8 of those 16 submissions were considered for inclusion in this
conference proceedings and encouraged to submit to MDPI for publication; 2 of those
8 manuscripts were withdrawn by the authors.

• Acceptance rate (number of submissions accepted/number of submissions received):
∼73% for the submissions presented at the 5th MWFC; ∼36% for the submissions
considered to be in this conference proceedings and encouraged to further submit to
MDPI for publication.

• Average number of reviews per paper: 2.
• Total number of reviewers involved: 16.
• Any additional information on the review process: The average number of papers

assigned to each reviewer was about 2–3 to ensure review quality.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are
solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).
MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from
any ideas, methods, instructions or products referred to in the content.
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Further Remarks on Irrational Systems and Their Applications †

Adrián-Josué Guel-Cortez 1,*, César-Fernando Méndez-Barrios 2, Diego Torres-García 2 and Liliana Félix 2

1 Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, UK
2 Faculty of Engineering, Autonomous University of San Luis Potosi, San Luis Potosi 78210, Mexico
* Correspondence: adrianjguelc@gmail.com
† Presented at the 5th Mexican Workshop on Fractional Calculus (MWFC), Monterrey, Mexico,

5–7 October 2022.

Abstract: Irrational Systems (ISs) are transfer functions that include terms with irrational exponents.
Since such systems are ubiquitous and can be seen when solving partial differential equations,
fractional-order differential equations, or non-linear differential equations; their nature seems to be
strongly linked with a low-order description of distributed parameter systems. This makes ISs an
appealing option for model-reduction applications and controls. In this work, we review some of the
fundamental concepts behind a set of ISs that are of core importance in their stability analysis and
control design. Specifically, we introduce the notion of multivalued functions, branch points, time
response, and stability regions, as well as some practical applications where these systems can be
encountered. The theory is accompanied by some numerical examples or simulations.

Keywords: irrational systems; fractional-order control; model-reduction methods

1. Introduction

Irrational Systems (ISs) can be found when solving partial differential equations,
fractional-order differential equations, or non-linear differential equations [1]. ISs have
also been called implicit operators since they often come from solving a second-order
polynomial whose solution describes the total impedance of infinite linear lumped-element
networks (for further details, see [2]). In addition, fractional behavior or non-exponential
decay can also be associated with ISs due to their time-response, often related to special
functions such as Bessel or error functions [3]. Hence, ISs’ nature is strongly linked to a
low-order description of distributed parameter systems, making ISs an appealing option
for control and model-reduction applications.

In the literature, ISs have been applied as mathematical models in different scenarios.
For instance, ref. [4] uses fractances in a lumped model of the cardiovascular system,
leading to the description of different types of heart anomalous behaviors. In [3,5,6], ISs are
introduced to describe robotic formations in the form of tree-like networks and ladder-like
networks. Ref. [7] models pipeline-infinite networks that converge to an IS. Similarly,
ref. [8] shows an application of ISs to model electrical line transmissions.

When talking about control applications, in our previous work [9], we discuss the
stability and control for a type of IS driven by fractional-order controls. Then, in [10], we
formalize our analysis and apply the fractional-order controls of the type proportional-
integral (PI) and proportional-derivative (PD), including their fragility analysis.

As the conceptualisation and application of ISs to engineering are still under devel-
opment, in this work, we summarize the fundamental concepts, assumptions, and limits
of ISs. The summary aims to briefly explain IS stability analysis and control based on
our previous and undergoing investigations. The work is organized as follows: Section 2
defines the fundamental concepts and details the origins of ISs. It also discusses the intrinsic
connection between fractional calculus and ISs. Furthermore, it states the fundamental
hypothesis when applying ISs in system modeling. Section 3 describes the conditions of

Comput. Sci. Math. Forum 2022, 4, 5. https://doi.org/10.3390/cmsf2022004005 https://www.mdpi.com/journal/csmf
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stability for ISs. Section 4 briefly explains how to design low-order controllers of the type
PD-μ (i.e., fractional-order proportional-derivative controls) for the kind of ISs that the
paper focuses on. Section 5 gives some examples of ISs’ control. Finally, Section 6 provides
concluding remarks and outlines future work.

2. Preliminaries

Before formally describing the set of ISs that this work will discuss, we need to
introduce the following concepts:

Definition 1 (Multivalued function [11,12]). A multivalued function is any complex function
F : C → C satisfying

F[z(r, θ + 2π)] �= F[z(r, θ)], (1)

where r and θ are the magnitude and argument of the complex variable z ∈ C.

Definition 2 (Branch points and branch cuts [13]). The Branch point (BP) or point of accu-
mulation is defined as the point with the smallest magnitude for which a function is multivalued.
Another definition would be: a branch point is a point such that the function is discontinuous when
going around an arbitrarily small circuit around this point.

It is now easier to understand the following definition of an IS:

Definition 3 (Irrational system). An irrational system is a multi-valued transfer function G(s)
with one or more terms raised to the power α ∈ Q.

In this work, we consider ISs described by

G(s) =
N(s) +

√
P(s)

D(s) +
√

Q(s)
, (2)

where N(s) = ∑m
k=0 bksk, D(s) = ∑n

k=0 aksk, ai, bi, an �= 0 are arbitrary real numbers,
and n ≥ m. Moreover, P(s) and Q(s) are second-order polynomials with positive real
coefficients defined as P(s) = ∑N

k=0 βksN and Q(s) = ∑N
k=0 γksN , respectively.

Clearly, according to Definition 3, the open-loop system (2) and IS with α = 1
2 , and

branch points are located at the roots of P(s) and Q(s).

Origins and Connection with Fractional Calculus

Irrational transfer functions such as (2) are proven to appear when modeling infinite
networks of lumped elements (for a complete description, see [1,7]). The proof of such a
statement, omitted here for brevity, requires the following assumptions:

• The network should contain only linear lumped elements. For instance, viscous
dampers, springs, capacitors, or inductors.

• All initial conditions should be equal to zero.
• Elements in the network should have equal impedance value. For example, the tree-

like network shown in Figure 1 contains only two linear operators L1 and L2, which
have the same value throughout all the layers of the network.

• The network is one-dimensional and infinite.

4
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◦xin(t)

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2
L1

L2

L1 xout(t)
L2

xout(t)

L1 xout(t)
L2

xout(t)

n = 1 n = 2 n = 3 n = N

Figure 1. Tree-like network of N layers that can be described by an ISs transfer function. In the
network, it is necessary to have L∞ and L∈ to be linear operators. Note that all end-points xout are in
the same position. The movement is in one-dimension.

In spite of such necessary conditions, ISs can still be applied in many scenarios,
epecially when the following hypotheses are considered:

Hypothesis 1. The accuracy of 0-dimensional models of complex dynamical systems can increase
by adding “networks” as lumped elements in the model.

Hypothesis 2. ISs can be used as model reductions for large-scale dynamical systems.

The validity of Hypothesis 1 has been proved in scenarios such as the cardiovascular
system [4,14] or muscle/joint modeling [15].

On the other hand, Hypothesis 2 has been explored in robot formations and transmis-
sion lines (for further details, see [6,16–18]). Furthermore, in some cases the ISs description
leads to basic fractional-order transfer functions (for instance, see [18]).

For a better understanding of Hypotheses 1 and 2, consider the circuit-like description
of the cardiovascular system shown in Figure 2a and the graphical description of a forma-
tion of mobile robots in one dimension in Figure 2b. In the case of Figure 2a, we can assume
that one of the elements is itself an infinite network of linear elements with an impedance
equal to 1

Cα
Fsα (i.e., of fractional-order); then, its mathematical model is given by

0Dα
t Pa =

Qa

Cα
F
− Pa

RCα
F

. (3)

Furthermore, by using the Caputo definition of the fractional derivative operator 0Dα
t

of order 0 < α < 1, the time response of system (3) is given by

Pa(t) = Pa(0)tα−1Eα,α(− 1
RCα

F
tα) +

1
Cα

F

∫ t

0
Qa(t − τ)τα−1Eα,α(− 1

RCα
F

τα)dτ, (4)

where Eα,α(z) is the Mittag–Leffler function of the complex value z [19]. Equation (4)
describes the arterial pressure as a power law equation with a diffusive term. Even
though this kind of representation implies some physical challenges that have been recently
discussed through various works (for instance, see [20,21] and the references therein), it

5
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is clear that we can substitute any IS’s impedance instead of a simple lumped element to
expand the capabilities of 0-dimensional models, as discussed in Hypothesis 1.

R

Qa

Q

Pa

+

− −

+

P

Aorta

Right
Atrium

CF

α

α
CF

≈ . . .

R

C C

R

C

R

C

R

(a)
. . .

PID1 PID2
m1 m2 mlastf

b1

b2

(b)
Figure 2. Examples of the application of Hypothesis 1 and 2 in realistic scenarios. (a) Model reduction
of the cardiovascular system by an electrical system using a fractance. (b) Ladder network description
of mobile robots described by mechanical elements and driven by PID controls [6].

Regarding Hypothesis 2, Figure 2b shows a PID-driven robotic formation in one-
dimension (for example, see [22]) where all robots are described as simple mechanical
elements. If we regard the network as infinite, the transfer function relating the leader’s
position and the last robot in the formation would be an IS [6]. Is this representation a good
approximation of the actual transfer function when the number of robots in the network is
finite? The answer is still not conclusive and requires further investigation (a preliminary
analysis is given in [3]).

3. Stability Analysis

One of the great advantages of ISs mathematical models is that we can easily study
their stability if the following Theorem is considered:

Theorem 1 ([8]). A given multivalued transfer function is stable if and only if it has no pole in C+

and no branch points in C−. Here, C+ and C− stand for the closed right half plane (RHP) and the
open RHP of the first Riemann sheet in the complex plane, respectively.

Briefly, Theorem 1 states that the BPs should not be located in the right-hand side of
the complex plane to achieve the IS’s stability. To grasp this conclusion, let us consider the
following simple examples:

Example 1. Consider the multivalued transfer function

G(s) =
1√

s + k
, (5)

where k ∈ R. The impulse response of (5) is given by (proof given in Appendix A)

6
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y(t) = L −1
ï

1√
s + k

ò
=

⎧⎪⎪⎨⎪⎪⎩
e−kt√

πt
k > 0

ekt√
πt

k < 0
1√
πt

k = 0

. (6)

In Example 1, the IS (5) is stable iff k > 0. Note that as mentioned earlier, the BP is
located at the root of the radicand s + k.

Example 2. Consider the multivalued transfer function

G(s) =
1√

s2 + k
, (7)

where k ∈ R. The impulse response of (7) is given by (see Appendix B)

y(t) = L −1
ï

1√
s2 + k

ò
=

⎧⎪⎨⎪⎩
J0(

√
kt) k > 0

J0(i
√

kt) k < 0
1 k = 0

. (8)

Equation (7) is an example where the open-loop IS is stable as the BPs are located in
the imaginary-axis and not in the right-hand side of the complex plane.

4. Control Design

PDμ Control

Once the stability conditions for ISs are established, it is possible to design stabilis-
ing low-order controllers by following the D-composition method [23]. The following
summarizes the procedure, but a complete guide can be found at references [10,24,25].

First, consider a low-order controller, for instance, the fractional-order PD control
whose transfer function is well-known to be [9]

C(s) = kp + kdsμ. (9)

Then, compute the characteristic polynomial of (2). In this case defined as

Δ(s) := D(s) +
√

Q(s) +
Ä

N(s) +
√

P(s)
ä(

kp + kdsμ
)
. (10)

Now, substitute the stability boundary of the complex plane s = iω in the characteristic
polynomial and solve for the control gains.

Remark 1. Note that the substitution of s = iω requires one to consider the cases ω = 0, ω → ∞
and ω �= 0 separately [25]. In this manner, we create various sets of stability boundaries in the
controller’s parameter plane that permit us to enclose a stability region (See Figure 3).

kp

kd

mapping

controller parameters’ planecomplex plane

Im

Re

s = iω

s = 0

stability region

s = iω

s = 0

stable region

Figure 3. Example of the D-composition method. The method maps the complex plane stability
region to the controller parameters’ plane. In this case, the plane has not stability boundary at s → ∞.
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5. Applications

5.1. Control of IS

We now apply the D-composition method to some specific ISs. Note that, in all
examples, the time response of the ISs closed-loop is obtained numerically using the
inverse numerical Laplace transform proposed in [26]. Furthermore, fixed parameters have
been selected randomly as the example’s purpose is to prove the results’ validity.

5.2. Bessel

Consider the Laplace transform of the Bessel function of order zero described as

1√
s2 + 1

. (11)

Therefore, the characteristic function is given by

Δ(s) =
√

s2 + 1 + kp + kdsμ. (12)

Setting μ = 0.3 and solving (12) for kp and kd, we obtain two stability boundaries
shown in red and blue in Figure 4a. The red curve corresponds to the case where ω = 0
before solving Δ(iω) = 0, while the blue corresponds to the case where ω �= 0. Figure 4b
shows the closed-loop response of a set of controller gains inside and outside of what is
found to be the IS’s stability region.

-2 -1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

0 5 10 15 20 25
0

0.2

0.4

0.6

0 2 4 6 8 10 12
-6

-4

-2

0 109

0 5 10 15 20 25
-400

-200

0

200

(b)
Figure 4. Stability analysis of system (11). (a) Stability region (gray) of the closed-loop system with
μ = 0.3. (b) Time response for control gains inside different regions on the parameter’s plane.

5.3. First Order IS

Another example of an IS that can be controlled by a fractional-order PD control is
√

3s + 1
s +

√
2s + 1

. (13)

In this case, the characteristic equation is

Δ(s) = s +
√

2s + 1 +
√

3s + 1. (14)

Likewise, in the previous application we set μ = 0.4 and solved (14) for kp and kd to
obtain the stability boundaries shown in Figure 5a. Again, the red curve corresponds to the
case where ω = 0 before solving Δ(iω) = 0, while the blue corresponds to the case where

8
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ω �= 0. Figure 5b shows the closed-loop response of a set of controller gains inside and
outside of what is found to be the IS’s stability region.

-2 -1.5 -1 -0.5 0 0.5 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
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(a)
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0.4

0.6

0 2 4 6 8 10

-2

-1

0 109

0 1 2 3 4 5 6 7 8 9 10 11
0

200

400

(b)
Figure 5. Stability analysis of system (13). (a) Stability region (gray) of the closed-loop system with
μ = 0.4. (b) Time response for control gains inside different regions on the parameter’s plane.

6. Conclusions

In this work, we have briefly described the concepts, hypotheses, and assumptions
behind the use of ISs. In addition, in our applications, we present the stability analysis and
control of ISs. As can be seen by the reader, future work may take various paths, including
the design of different low-order controls for ISs, the application of ISs to model other
complex phenomena, or the creation of irrational controls that could stabilize ISs whose
BPs are in the right-hand side of the complex plane.
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Appendix A. Example 1

To compute the time-response of the multivalued transfer function in (5), we consider
the following definition of the inverse Laplace transform:

y(t) = L −1
ï

1√
s + k

ò
=

1
2iπ

∫ c+∞

c−∞
G(s)estds. (A1)

To solve (A1), let the contour C be defined as the sum of Ci, i ∈ [1, 6], as shown in
Figure A1. Note that the election of the integration path should be one which avoids branch
points, namely, point −k in this scenario.

Im

Re

ρ

−k

C1

C2 C3

C4

C5

Br

R → ∞

Figure A1. Integration path of Example 1.

According to the residue theorem∫
C

G(s)estds = 0. (A2)

Then, we can express (A1) as

∫
Br

G(s)estds = −
5

∑
i=1

∫
Ci

G(s)estds. (A3)

Observe that, for R → ∞ ∫
C1

=
∫

C5

= 0, (A4)

and, on the other hand, for ρ → 0 we have∫
C3

= 0. (A5)

Thus, it suffices to compute the integration along C2 and C4 to obtain y(t). In order to
perform such an operation, consider the parameterisation s + k = −r, which in polar form
can be rewritten as re±iπ , where the positive sign corresponds to C2 and the negative sign
corresponds to C4. This permits us describe the path r ∈ (k + ρ, ∞), with δ, ρ → 0, i.e.,

∫
C2+C4

=
∫ ρ

∞

e−(r+k)teiπ
√

reiπ/2
dr +

∫ ∞

ρ

e−(r+k)te−iπ
√

re−iπ/2
dr, (A6)
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since ρ → 0

∫
C2+C4

= (eiπ + e−iπ)
∫ ∞

0

e−(r+k)t
√

r
dr

= −2i sin
(
π/2

)
e−kt

∫ ∞

0

e−rt
√

r
dr

= −2i sin
(
π/2

)
e−ktt−1/2Γ(1/2).

Now, as we know that
Γ(x)Γ(1 − x) =

π

sin(πx)
,

with x = 1/2, from (A1) we have,

L −1
ï

1√
s + k

ò
=

e−kt
√

tπ
. (A7)

This finishes the proof of statement (6).

Appendix B. Example 2

Following the ideas used to find the inverse Laplace Transform of 1√
s+k

shown in
Appendix A, we now perform the time-response of (7) (given in Equation (8)) by computing

y(t) = L −1
ï

1√
s2 + k

ò
=

1
2iπ

∫ c+∞

c−∞
G(s)estds. (A8)

Observe that for k > 0, we have a complex conjugate branch point, while for k < 0
we have two real points. Under these observations, we consider two different integration
paths, shown in Figure A2, where Figure A2a and Figure A2b correspond to the case of k
negative and positive, respectively.

Im

Re

ρ ρ

−√
k

√
k

C1

C2
C3

C4

(a)

Im

Re

ρ
−j

√
k

j
√

k

C3

C4

C2

Br

C1

C6

C5

ρ

C7

C8C9

C10

(b)
Figure A2. Integration path of Example 2. (a) k < 0. (b) k > 0.

We first consider the case k < 0; thus, we shall consider the path shown in Figure A2a
and create a path such that ∫

C
G(s)estds = 0.

Under the assumption that ρ → 0,∫
C1+C2

= 0. (A9)
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Now, C3 and C4 s vary from
√

k − ρ to −√
k + ρ, and then we have∫

C2+C3

est
√

s2 − k
= −i

∫ √
k−ρ

−√
k+ρ

est
√

k − s2
+ i

∫ −√
k+ρ

√
k−ρ

est
√

k − s2
= −2i

∫ √
k−ρ

−√
k+ρ

est
√

k − s2
. (A10)

Since ρ → 0,

y(t) =
1

2πi

∫
Br

G(s)estds =
1
π

∫ √
k

−√
k

est
√

k − s2
. (A11)

Then, making s = a cos(u), the integral becomes

1
π

∫ π

0
ekt cos(u)du = I0(

√
kt). (A12)

We can express the modified first Bessel function in terms of the first Bessel function if
−π < arg(

√
kt) ≤ π

2 :
Jα(i

√
kt) = eα π

2 Iα(
√

kt)

with α = 0:
J0(i

√
kt) = I0(

√
kt).

Now, we consider the case where k > 0. The inverse Laplace transform of G(s) can be
written in two different forms (see for instance [27]):

y(t) =
2
π

∫ ∞
√

k
sin(st)

1√
s2 − k

ds, (A13)

y(t) =
2
π

∫ √
k

0
cos(st)

1√
k − s2

ds. (A14)

The first Bessel function is given as

J0(x) =
1
π

∫ π

0
cos(−x sin(τ))dτ.

Thus, by taking s =
√

k sin(θ) in (A14), with θ ∈ (0, π
2 ) we have

y(t) =
2
π

∫ π
2

0
cos
Ä√

kt sin(θ)
ä

dθ =
2
π

π

2
J0(

√
kt). (A15)
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Abstract: Diffusive predator–prey systems are well known to exhibit spatial patterns obtained by
using the Turing instability mechanism. reaction–diffusion systems were already studied by replacing
the time derivative with a fractional order derivative, finding the conditions under which spatial
patterns could be formed in such systems. The recent interest in fractional operators is due to
the fact that many biological, chemical, physical, engineering, and financial systems can be well
described using these tools. This contribution presents a diffusive predator–prey model with a
finite interaction scale between species and introduces temporal fractional derivatives associated
with species behaviors. We show that the spatial scale of the species interaction affects the range
of unstable modes in which patterns can appear. Additionally, the temporal fractional derivatives
further modify the emergence of spatial patterns.

Keywords: pattern formation; predator–prey systems; fractional derivatives

1. Introduction

In population dynamics, Lotka–Volterra equations describe a system of two coexisting
species whose densities oscillate in time [1]. These systems can exhibit diffusion-driven
instabilities, which are explained by the Turing mechanism for diffusion-reaction sys-
tems [2,3], through extensions or modifications of the original model [4–6]. Predator–prey
interaction is a multi-factor dependent process. For instance, some studies consider hunting
cooperation, prey defense mechanisms, limited localized resources, and cross-diffusion
terms for studying the influence of movements on both species [7].

It has been proposed that the relative distance between a predator and prey can
influence the probability of an encounter between them. The latter is modeled through a
nonlinear reactive term that considers the mean of the possible interactions within a fixed
radius centered on one of the two species. [8,9]. These finite-range interaction models show
that the emergence of patterns is not only driven by diffusion but also there are regions
where the instability is driven by the interaction range [8]. Recently, this model has been
extended by introducing a constant drift and constraining the system to a large and narrow
environment [10]. In such an analysis, the geometry of the boundaries induces an effect that
couples with the drift. Thus, the corresponding dispersion relation has three parameters:
the ratio of diffusivities, a dimensionless drift, and the ratio of interaction lengths, which
enlarge the parameter space and, therefore, the possibilities of obtaining different kinds of
spatio-temporal patterns.

On the other hand, many processes, not only in ecology but in many other areas, have
been adequately described through models that include equations with fractional time
derivatives, which are well-known to model memory and non-local effects [11]. Including
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such effects, beyond just modifying the nonlinear interaction terms, brings the model closer
to a more realistic situation [12]. For reaction–diffusion models with anomalous diffusion,
it has been seen that the parameter that drives the instability is modified by the anomalous
diffusion exponent [13]. The inclusion of temporal fractional derivatives in predator–prey
systems has been shown to help control the stability of patterns for species coexistence [14];
memory effects can also shift the bifurcation threshold in such systems [15]. It has also
been shown that in systems where patterns do not naturally emerge, fractional derivatives
can induce diffusion-driven instability and thus pattern formation, hence the importance
of using this kind of model [16,17].

In general, the changes induced by fractional time derivatives in reaction–diffusion
systems have been extensively studied in the literature [18–22]. In almost all cases, it was
found that the nonlinearity of the functions describing the kinetics had an essential role in
the generation of spatial and temporal patterns.

In this work, we are interested in finding a relationship between the fractional deriva-
tive and the Turing instability, that is, if the temporal fractional derivative induces Turing
instability and produces spatial patterns. We present the stability analysis of the model that
considers the mean number of interspecies interactions in a given region defined by the
interaction distance. This distance is one of the parameters guiding the system towards the
instability leading to pattern formation. We consider whether replacing the time derivative
by a fractional operator accounts for memory effects in a predator–prey diffusive model
with a finite interaction scale between species.

The manuscript is structured as follows. Section 2 analyzes the predator–prey model
with a finite interaction length. We find the steady state and the corresponding dispersion
relation that depends on three parameters. The instability curve for the control parameter is
found when the ratio of the characteristic lengths of each species is larger than two, which
is the set value in previous studies. Section 3 presents the system’s stability analysis when
a fractional operator replaces the time derivative to account for memory effects, and its
consequences are discussed. Section 4 summarizes the obtained results.

2. Predator–Prey Model with Finite Interaction Length

Let us consider a model characterized by a system of two equations: one for the prey
N(x, t) and one for the predator P(x, t). They describe diffusion in the physical space, and
the strength of the interaction (nonlinear term) is a function of individuals’ proximity. These
reaction–diffusion models with the spatial interaction scale have been widely applied to
model the competition of species’ coevolution in an ecology community. We introduce two
different length scales to consider different effective interaction ranges, the region where
prey and predators interact may have different relevance to predator growth and prey
death. These scales have an important role in pattern formation. The model is as follows:

∂N(x, t)
∂t

= DN
∂2N(x, t)

∂x2 + rN(x, t)− αN(x, t)
∫ x+L1

x−L1

P(s, t)ds, (1)

∂P(x, t)
∂t

= DP
∂2P(x, t)

∂x2 − mP(x, t) + βP(x, t)
∫ x+L2

x−L2

N(s, t)ds. (2)

Predators consume the prey with an intrinsic rate α and reproduce with the rate
β; r is the growth rate of prey, and predators are assumed to die spontaneously with
rate m. DN and DP are the constant diffusion coefficients of prey and predators, respec-
tively. The conditions under which the spatio-temporal patterns occur are first stud-
ied considering the stationary case with no diffusion. This gives us the stationary state
(N̄, P̄) = (m/(2βL2), r/(2αL1)). By considering now small harmonic perturbations for
both species, we pbtain the following dispersion relation of the system with diffusion

λ̂(K) = −K2 +

√
rmL2

1
DK

√
− sin2 K cos K. (3)
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where DN = DP = D, L2 = 2L1, K = kL1, and λ̂ = λ
L2

1
D . The system was further studied

in [10], and it was found that a general dispersion relation is the following:

λ̂ = − (1 + d)
2

(K2)± 1
2

[
(1 − d)2K4 − 4μ2 sin(K) sin(K�)

K2�

]1/2

, (4)

from now on λ̂ = λ
L2

1
DN

, and the parameters d = DP/DN , μ =
√

rmL2
1/DN , and � = L2/L1

were introduced. Certainly if d = 1 and � = 2, this reduces to the above expression.
The system (1) and (2) linearized around the stationary point, with no diffusion, leads

to a characteristic equation λ̂ = ±iμ, two conjugate imaginary eigenvalues, which is the
limiting case for the instability condition since it has no real part. As the eigenvalues are
purely imaginary and conjugate to each other, this fixed point must be a center for closed
orbits in the local vicinity, i.e., an attractive or repulsive spiral in the phase space.

Turing Instability Parameter Space

For several values of μ, it has been seen that the critical value dc is reached for values
close to 1; therefore, when increasing, there will be no pattern formation. For �, something
similar happens; it has been seen that to guarantee pattern formation, � �= 1 must be
fulfilled, and usually it is just considered � = 2, as in Equation (3). However, it is not the
only possible value.

In Figure 1, we plot the dispersion relation (4) with d = 1, as a function of K, varying
the parameter μ and for different values of � indicated with different colors. This figure
shows that as � increases, different ranges of unstable modes appear for each fixed μ value.
The choice of values � > 2 increases the space of possibilities that meet the instability
condition and pattern formation.

Figure 1. Dispersion relation λ̂(K) varying the parameter μ. Several values of the ratio between the
interaction lengths are presented with different color plots; values increase to the left of � = 2 (blue),
� = 3 (green), � = 5 (red), � = 10 (dark purple), and � = 20 (purple).

To satisfy the instability condition Re(λ(K)) < 0 for pattern formation, it is usually
necessary to verify the so-called Turing conditions [2], a number of inequalities that come
from the analysis of the dispersion relation. This is equivalent to considering the instability
threshold when λ̂c = 0 in the characteristic equation, imposing a relation among the system
parameters and the critical value Kc, which determines such a threshold. For Equation (4),
we find that the parameters to study the instability of the system will be (μ, �). Remember
that μ measures the competition of time scales given by the species’ growth, death, and
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diffusion rates, while � is the ratio between the characteristic lengths. Choosing μ2 as the
control parameter [23], it is possible to obtain the following relation, having fixed d = 1,

μ2(K, �) = − �K6

sin(K) sin(K�)
. (5)

This expression has a minimum in Kc obtained by deriving and equaling zero; this
reduces to solving the next equation, and as we can see it will depend on the choice of �,

Kc(cot (Kc) + � cot (Kc�)) = 0. (6)

We can construct the stability curve μc(�) in parameter space, which satisfies the above
equations, such that patterns will emerge for values greater than the critical value of the
control parameter μ > μc. See the orange dots and curve in Figure 2.

The ratio of the interaction lengths of the two species �, as mentioned in [8], is an
important parameter since it drives the instability together with d. As we can see in Figure 2,
as � increases, the parameter μ decreases but does not vanish.

=
=
=
=
=

Figure 2. Stability curve μc as a function of � with different fractional order values α. To guarantee
pattern formation μ must take values above the orange curve.

3. Fractional-Order System Stability Analysis

Let us now consider a reaction–diffusion system of fractional order in the temporal
derivative

∂αN(x, t)
∂tα

= DN
∂2N(x, t)

∂x2 + f (N, P), (7)

∂αP(x, t)
∂tα

= DP
∂2P(x, t)

∂x2 + g(N, P), (8)

where f , g are usually nonlinear functions, and in this case we will consider the same
dynamics as in (1) and (2). The fractional time derivative is defined in Caputo’s sense as

∂αF(t)
∂tα

:=
1

Γ(1 − α)

∫ t

0

∂F(t′)
∂t′

dt′

(t − t′)α
, (9)

with 0 < α < 1, which is defined by its Laplace transform as follows:

L̂
{

∂αF(t)
∂tα

}
= sα F̃(s)− sα−1F(0+),

where F̃(s) = L̂{F(t)}, and 0 < α < 1.
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To study the stability of the system, we first consider the diffusionless case. Let
P = (N̄, P̄) be an equilibrium point of the system; its the stability of can be determined by
linearizing the system (7) and (8) around it, which leads to the following linear system:⎛⎜⎝

∂α N̄(x,t)
∂tα

∂α P̄(x,t)
∂tα

⎞⎟⎠ =

(
fu fv
gu gv

)
P︸ ︷︷ ︸

A

(
N̄
P̄

)
. (10)

By transforming the system to Laplace space, it is possible to rearrange it as follows:

(λ(s)I − A)︸ ︷︷ ︸
Δ(s)

(L(N̄),L(P̄)) = (L{N̄(0)},L{P̄(0)})sα−1, (11)

where λ(s) = sα. The equilibrium point P of the system is stable if all the roots of the
characteristic equation Δ(s) = 0 have negative real part, i.e., Re(λ) < 0, additionally to
satisfying the usual conditions [2,23]. In the complex plane, the negativity condition means
that the argument of s must be greater than π

2 ; this implies that the argument of λ must be

| arg (λ)| > α
π

2
, (12)

this is called the Mantignon form for the stability criterion for the fractional case [24,25].
For the system (1) and (2), it was shown that, in the absence of diffusion, μ =

sin
(

arg
(

λ̂
))

; condition (12) implies that μ > μα = sin(απ/2), which defines a constraint
surface in the extended parameter space (μ, �, α), such that, besides satisfying the condition
seen above μ > μc, this condition must also be fulfilled to guarantee the stability of the
steady state associated with the order α.

In Figures 2–4, the effect of this constraint can be seen. In Figure 2, μc(�) is plotted, so
to guarantee pattern formation μ must take values above this curve. Considering different
values of alpha, we see that for larger ell, the values of muc(�) must be beyond those
determined by muc(�)., i.e., there will be a region associated with the order α, given by
μα > μc, for which the parameter values that previously met the instability conditions are
now discarded, and pattern formation is no longer possible.

Notably, for the extreme case α = 1, condition (12) merely reduces to asking for μ > 1
values. Although this condition does not influence the non-fractional case, it does set an
upper bound on the values of μ dropped by the fractional order. This case is illustrated as a
dotted line in Figure 2. The interesting point is that its intersection with the curve μc, which
occurs at approximately �∗ ≈ 6, indicates the values of � above from which the fractional
order will have an effect, depending on the value of α. In Figures 3 and 4, the intersection
of the two surfaces μc and μα in the extended parameter space is shown for each value of
α. The region below the surface is just the region discarded by the fractional order of the
system, while the intersection curve gives the minimum � for each α.
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Figure 3. Intersection of the two surfaces μc and μα in the extended parameter space for 0 < α < 1.

Figure 4. Alternative point of view of the intersection of the surfaces μc and μα.

4. Conclusions

Over the last few years, it has been seen that many physical, chemical, and bio-
logical systems, where memory effects cannot be neglected, are well described through
reaction–diffusion equations with fractional time derivatives. This work presents the
stability analysis of a reaction–diffusion system when a fractional operator replaces the
time derivative.

Early analyses found that this distance is indeed one of the parameters guiding the
system towards the instability that leads to pattern formation [8,9]. Later studies showed
that the parameter space for studying this instability could be extended to include drift
effects, as well as the large values of the characteristic length ratio and the parameter μ that
is a combination of the birth and death rates of the species and the characteristic time at
which they diffuse [10].
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Introducing the fractional time operator to include memory effects restricts the time
eigenvalue as a function of the fractional order of the derivative, in addition to the well-
known conditions. Thus, on the one hand, it is necessary to extend the parameter space to
include the fractional order. However, on the other hand, since several conditions must
be fulfilled simultaneously, the intersections of the restriction surfaces must be found to
find the corresponding critical values. In the specific case of the predator–prey system,
this is reflected in the fact that for large values of the characteristic length ratio—values
approximately greater than six—the value of μ must be taken above the critical value given
by the Turing conditions. How large this value should be depends on the fractional order.
That is, there is a region of μ values that in the usual case can form patterns but at the order
α is forbidden. When the interaction lengths of the species are very different, memory
effects cause the μ values that are suitable for pattern formation to be reduced.

The class of oscillations and their behavior will be analyzed in future work. The
present study reinforces the importance of the influence of the anomalous order in the for-
mation of unsteady state structures in a system where diffusivity is not the only parameter
guiding instabilities.
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Abstract: This work proposes a fractional-order mathematical model of a Buck-Boost converter
performing in continuous conduction mode. To do so, we employ the average duty-cycle representation
in state space, driven by the nonadimensionalize approach to avoid unit inconsistencies in the
model. We also consider a Direct Current (DC) analysis through the fractional Riemann–Liouville
(R-L) approach. Moreover, the fractional order Buck-Boost converter model is implemented in the
Matlab/Simulink setting, which is also powered by the Fractional-order Modeling and Control
(FOMCON) toolbox. When modifying the fractional model order, we identify significant variations
in the dynamic converter response from this simulated scenario. Finally, we detail how to achieve
a fast dynamic response without oscillations and an adequate overshoot, appropriately varying
the fractional-order coefficient. The numerical results have allowed us to determine that with the
decrease of the fractional order, the model presents minor oscillations, obtaining an output voltage
response six times faster with a significant overshoot reduction of 67%, on average.

Keywords: fractional order Buck-Boost converter; modeling; Riemann–Liouville fractional derivative;
FOMCON; steady state analysis

1. Introduction

Modern power electronics techniques aim to provide an efficient way to transform
electrical energy [1]. One is a Direct Current (DC–DC) voltage converter [2], which
transforms an input voltage into an output voltage of a different magnitude, preserving
its exact nature. The main goal is to supply a regulated voltage with a minimum
ripple. DC–DC converters are switched sources that transform the input voltage to the
desired output value with elements that intrinsically make the system non-linear. These
converters are widely used, especially as power supplies in computer hardware and medical
equipment [3]. The adequate control of the output voltage of these converters has been an
essential subject of study during the last few years. Therefore, the switching operation is
mainly responsible for their non-linear behavior and increasing design complexity [4,5].

The literature is prolific in studying integer-order models of DC–DC converters.
Nevertheless, the capacitor and inductor could behave depending on fractional
derivatives [1,6]. Therefore, fractional order models provide a more accurate description
and deeper insight into physical processes [7,8]. In recent years, there has been significant
study and development of fractional order systems [9,10]. Unfortunately, the inconsistency
of units at the time of modeling is often overlooked when trying to model these
electronic elements. There are three most used definitions of fractional calculus: Caputo
Derivative (CD), Riemann–Liouville (R-L) fractional integral, and Grünwald–Letnikov
(G-L) derivative [11]. Because of differences between the fractional calculus definitions,
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the model results under different fractional orders may present variations related to the
used fractional derivative and the occasional requirement of initial conditions.

This work analyzes the fractional order model of a Buck-Boost converter, its system
is nondimensionalized, and its properties are in Continuous Conduction Mode (CCM).
In doing so, we first nondimensionalized the fractional-order model of such a converter
represented in the state space. Next, we consider the converter’s duty cycle to achieve an
average model in the state–space of fractional order. Afterward, we analyze the non-linear
nature of the Buck-Boost converter fractional representation to determine the values for
which the converter’s performance increases.

The main contributions of the proposed Fractional-order Buck-Boost model were
a decrease in the output voltage oscillations or harmonics, fast settling time, and a
nondimensionalized version of the inductor current and capacitor voltage responses at a
stable state.

2. Mathematical Modeling

This section describes the mathematical procedure we followed for analyzing and
modeling the fractional-order Buck-Boost converter. First, we detail the most relevant
aspects of the traditional converter model using classical calculus. Then, we apply the
non-dimensionalization procedure to achieve a physically correct model.

2.1. DC–DC Buck-Boost Converter

The DC–DC Buck-Boost converter is derived from the combination of elementary
converters such as Buck and Boost. The resulting configuration can provide an output
voltage of inverse polarity, either greater or smaller than the input voltage. In this study,
we replace the integer-order capacitor and inductor with fractional-order ones to transform
the traditional converter model into the fractional domain. Figure 1 shows the circuit based
on non-integer calculus representing the fractional-order Buck-Boost converter.

Figure 1. Fractional-order Buck-Boost converter.

In this circuit, R [Ω] corresponds to the load, Vi [V] stands for the input voltage, ST
represents an ideal switching power MOSFET, and SD an ideal diode. In a broad sense,
the converter works as follows: when it operates in CCM, it appears in two switching states
defined below.

1. State 1: ST = ON and SD = OFF, for nT < t ≤ (n + Dc)T.
2. State 2: ST = OFF and SD = ON, for (n + Dc)T < t ≤ (n + 1)T.

In both states, n is an integer, T is the switching period, and Dc is the duty cycle of
the Pulse Width Modulation (PWM) commuting ST , which is defined as the ratio between
the turn-on time of ST and T. Hence, States 1 and 2 switch periodically in a stable state. In
practice, obtaining a fractional model of the capacitor and inductor is possible based on the
pioneering analysis performed by Zhang et al. [12] and Jiang and Zhang [13]. Consequently,
the inductor’s voltage vL and the capacitor’s current ic can be represented using a fractional
model, such as,

vL(t) = L
dαiL
dtα

, iC(t) = C
dβvC

dtβ
, (1)

where α and β denote the fractional order of the derivatives for the inductor’s current iL
and capacitor’s voltage vc, respectively.
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This model contains two features worth noticing. The former is when α = β = 1,
so the inductor and the capacitor components behave as ideal electronic components of
integer order derivatives. The latter is when {α, β} ∈ (0, 1) presents a fractional order.

Considering the particular case when ST = ON and SD = OFF, the fractional-order
Buck-Boost converter turns into State 1.

Applying Kirchhoff’s voltage law over the equivalent circuits of Figure 2, it is easy
to obtain,

L
dαiL
dtα

= Vi, C
dβvC

dtβ
= −vC

R
. (2)

(a) (b)

Figure 2. Equivalent circuits of the Buck-Boost converter in State 1 with ST = on and SD = off.
(a) Equivalent circuit of the Buck-Boost converter in State 1 and ST = ON. (b) Equivalent circuit of
the Buck-Boost converter in State 1 and SD = OFF.

Meanwhile, when the ST = OFF and SD = ON, the fractional-order Buck-Boost
converter is in State 2, as Figure 3 depicts.

Figure 3. Equivalent circuit of the Buck-Boost converter in State 2 with ST = OFF and SD = ON.

Performing a Kirchhoff’s voltage law analysis on the equivalent circuit in Figure 3,
the fractional-order differential equations supporting the State 2 analysis are,

L
dαiL
dtα

= −vC,

C
dβvC

dtβ
= iL − vC

R
.

(3)

Merging (2) and (3) and implementing the state-space averaging model of the
fractional-order Buck-Boost converter operating in CCM leads to the next coupled model:

L
dα〈iL〉T

dtα
= SD〈Vi〉T − (1 − SD)〈vC〉T ,

C
dβ〈vC〉T

dtβ
= −〈vC〉T

R
+ (1 − SD)〈iL〉T .

(4)
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From these expressions, it is essential to recall that 〈x〉T , for any x(t), is the average
value of this variable x during a switching period, and it can be numerically computed
as follows,

〈x〉T =
1
T

∫ t+T

t
x(t) dt. (5)

2.2. Fractional-Order DC–DC Buck-Boost Converter

It is well-known that circuit variables in the converter, such as inductor’s current iL
and capacitor’s voltage vc, present high-order harmonics due to the commutation sequence
related to the operating principle of the Buck-Boost converter. These harmonics are
eliminated by averaging the circuit variables, considering a switching period. Furthermore,
when linearizing the model and obtaining the system transfer function, the averaged model
of the converter is given by,

L
dαiL
dtα

= Dc Vi − (1 − Dc)vc,

C
dβvc

dtβ
= −vc

R
+ (1 − Dc)iL.

(6)

Since a fractional-order derivative is used, such a transformation procedure
generates inconsistency in the units of the model depending on the chosen operator [14].
Consequently, it is paramount to apply a nonadimensionalize procedure to render
fractional-order differential equations with dimensions physically correct. Next, the
characteristic parameters used to nonadimensionalize are

τ̂ =
t

L/R
−→ dt =

L
R

dτ̂,

φ̂ =
iL

Vi/R
−→ diL =

vi
R

dφ̂,

ψ̂ =
vc

Vi
−→ dvc = Vidψ̂.

(7)

Therefore, the nondimensional model is obtained by substituting (7) into (6), as follows

dαφ̂

dτ̂α
= −(1 − Dc)ψ̂ + Dc,

dβψ̂

dτ̂β
= kτ

[−ψ̂ + (1 − Dc)φ̂
]
,

(8)

where kτ = L/R
RC is a constant produced by nondimensionalizing (6).

As in the integer case, the fractional state–space model is defined by two equations [15]:

1. A state equation, where each state xi(t) is differentiated to a fractional-order αi, is
given in the case of a generalized state–space model. All states xi(t) are differentiated
to the same fractional order α for the commensurate case.

2. An output equation depends on the internal states and the inputs, as in the
integer case.

Before obtaining the fractional state–space model, we first applied the concept of
fractional derivative to the classic state–space representation. In consequence, such a
fractional model in the state–space domain corresponds to

D(α)(x) = Asx + Bsu,

y = Csx + Dsu,
(9)
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where D(α)(x) = [Dα1 x1, Dα2 x2, . . . , Dαn ]ᵀ, since As, Bs, Cs, and Ds are the state–space
representation model matrices. Roughly speaking, we can obtain any model in the Laplace
domain by using its transform and considering zero initial conditions,

G(s) = Cs

[
(sα In − As)

−1
]

Bs + Ds, (10)

where Ds is generally null. The fractional state–space model, derived from (8), is now
defined as⎡⎢⎢⎣

dαφ̂

dτ̂α

dβψ

dτ̂β

⎤⎥⎥⎦ =

[
0 −(1 − Dc)

kτ(1 − Dc) −kτ

]
︸ ︷︷ ︸

As

[
φ̂

ψ̂

]
+

[
Dc

0

]
︸ ︷︷ ︸

Bs

u(t), y =

[
1 0

0 1

]
︸ ︷︷ ︸

Cs

[
φ̂

ψ̂

]
. (11)

For the sake of simplicity, we assume that α = β. Thus, the proposed transfer function
is obtained from (11) as follows,

M = sα I − As =

[
sα (1 − Dc)

−kτ(1 − Dc) sα + kτ

]
, (12)

where the characteristic equation is given by

|M| = s2α + kτsα + (1 − Dc)
2 kτ , (13)

G(s) =
1

s2α + kτsα + kτ(1 − Dc)2

[
1 0
0 1

][
sα + kτ −(1 − Dc)

kτ(1 − Dc) sα

][
Dc
0

]
. (14)

G(S) =

⎡⎢⎢⎣
Dc(sα + kτ)

s2α + kτsα + (1 − Dc)2 kτ

kτ Dc(1 − Dc)

s2α + kτsα + (1 − Dc)2 kτ

⎤⎥⎥⎦U(S), (15)

where U(S) = L{u(t)} is the Laplace transform of u(t). Once the system of equations is
nondimensionalized, we can express the output φ̂ and ψ̂ as follows,

φ̂(s) =
Dc(sα + kτ)U(s)

s2α + kτsα + (1 − Dc)2 kτ
, (16)

ψ̂(s) =
kτ Dc(1 − Dc)U(s)

s2α + kτsα + (1 − Dc)2 kτ
. (17)

3. Stable-State Analysis

The linearized model (6) is solved using the definition of the Riemann–Liouville
derivative, defined as

RL
a Dα

b f (t) =
1

Γ(1 − α)

d
dt

∫ b

a

f (t)
(t − τ)α

dτ, (18)

where Γ(·) is the Gamma function and [a, b] is the interval of the stable-state signal.
Thereby, the fractional derivatives of the variables iL and vc are obtained from (18),

respectively, as shown,

dαiL
dtα

=
1

Γ(1 − α)

d
dt

∫ (n+1)T

nT

iL
(t − τ)α

dτ =
iLt−α

s
Γ(1 − α)

,

dβvc

dtβ
=

1
Γ(1 − β)

d
dt

∫ (n+1)T

nT

vc

(t − τ)β
dτ =

vct−β
s

Γ(1 − β)
,

(19)
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where n is the current operating cycle of the PWM, ts is the time needed so that the
Buck-Boost converter achieves the stable state. Once the converter reaches this state,
the inductor current (iL) and capacitor voltage (vc) are considered constant and ts ≈ T.

Substituting (19) in (6), the inductor current and capacitor voltage at stable state are
defined as,

iL =
ViDc

[
RCt−β

s + Γ(1 − β)
]

Γ(1 − β)R(1 − Dc)2 + Lt−α
s Γ(1−β)
Γ(1−α)

+ RCLt−(β+α)
s

Γ(1−α)

, (20)

vc =
ViDc(1 − Dc)RΓ(1 − β)Γ(1 − α)

R Γ(1 − β)Γ(1 − α)(1 − Dc)2 + Γ(1 − β)Lt−α
s + RLCt−(α+β)

s

. (21)

The Buck-Boost converter voltage ratio Gv at stable state is obtained by (21) since the
capacitor voltage is directly the output voltage,

Gv =
vc

Vi
=

Dc(1 − Dc)RΓ(1 − β)Γ(1 − α)

R Γ(1 − β)Γ(1 − α)(1 − Dc)2 + Γ(1 − β)L t−α
s + RLC t−(α+β)

s

. (22)

Table 1 presents the circuit parameters used in the numerical simulations and the
fractional-order converter model analysis in the stable state.

Table 1. Parameters used for the simulations to obtain the Buck-Boost converter fractional model
response in the stable state.

Parameter Values

Stable–state time ts = T = 4 ms
Input voltage Vi = 25 V
Inductor L = 3 mH
Capacitor C = 150 μF
Load R = 30 Ω
Duty cycle Dc = 0.6

Figure 4 displays the response of the Buck-Boost converter fractional model in the
stable state. Plus, in Figure 4b, we fixed α, varying the value of β. Notice that the Gv
response falls slowly but then recovers rapidly. Figure 4a is the opposite case. When
varying β, the Gv response tends to mimic the behavior shown in Figure 4b. Additionally,
Figure 4c shows the dynamic variation of the Gv with the change of the fractional order,
presenting a minimum gain when α = β = 0.956.

(a) (b) (c)

Figure 4. Visualization of α and β influence the response of GV in stable-state. (a) Relationship
between Gv and α. (b) Relationship between Gv and β. (c) Three-dimensional representation of α and
β variations.
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4. Numerical Simulation

The mathematical model of the fractional-order Buck-Boost converter driven by CCM
is implemented in the Matlab/Simulink environment through the FOMCON toolbox [16].
According to the state–space model given by (11), we construct the block diagram of the
system, as shown in Figure 5. It is noteworthy that 1/sα is the fractional integral unit.

Figure 5. Numerical simulation of the fractional mathematical model by Matlab/Simulink.

The parameters for this numerical simulation were previously given in Table 1.
Furthermore, Figure 6 shows the dynamic response of φ̂ and ψ̂, cf. (7), which are associated
with the nondimensionalized inductor current (iL) and capacitor voltage (vC), respectively.

(a) (b)

Figure 6. Nondimensionalized voltage and current of the fractional-order Buck-Boost converter. (a)
Nondimensionalized inductor’s current. (b) Nondimensionalized capacitor’s voltage.

Figure 6a displays the behavior of the nondimensionalized inductor current with
different α values. It is worth commenting that when α = 0.7, iL achieves the desired
behavior, exhibiting a lower overshoot without negative values.

Figure 6b shows the nondimensionalized capacitor voltage under different scenarios.
We noticed that when the fractional order tends to unity, we obtain the traditional responses
of the converter, containing a myriad of oscillations. Further, the converter must evolve
for a long time to reach the desired reference. However, when α begins to decrease, this
reference is tracked in a shorter time. A similar behavior occurs with the nondimensional
inductor’s current for the nondimensional voltage when α = 0.7, as Figure 7 shows. The
obtained output is the desired one in this type of converter: a smooth and controlled voltage
rise, a lower overshoot concerning the other solutions, and a fast settling time.
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Figure 7. Nondimensionalized capacitor voltage with α = 0.7.

The red dotted line represents the voltage reference value set in 1.5. The green dotted
line represents the maximum peak reached by the converter, which has a value of 1.7653
that translates into an overshoot of 17.6854%. The black dotted line corresponds to the
reached settling time by this device, which is equal to t̂ss = 20.3321, using the criterion of
5%. Note that in the lower right part of Figure 7, a zoomed version of the output voltage
ripple response is located after achieving the stable state. Such an output ripple ranges
between 0.5100 and 0.5092. It is noteworthy that these values are nondimensionalized, and
to have the expected values with real units, we must use the reconversion described in (7).

We attribute the behavior observed in Figure 6a,b to the location of the poles of the
characteristic polynomial described in (13). As one may see, the α value directly affects
the imaginary part of the poles. Indeed, when α starts to decrease, the imaginary pole
magnitude tends to decrease. For this reason, the converter output response changes
its behavior from an under-damped system with many oscillations to an under-damped
system with a single overshoot. Notwithstanding, the α value should be carefully chosen,
since a small α value may provoke the converter to not work correctly and hinder the
construction of the electrical elements of the fractional order circuit. Table 2 exhibits the
converter performance w.r.t. the variation of α. It is observed that α = 1 presents an
overshoot of 71.8907 V, representing 91.7086%, while α = 0.7 produces an overshoot of
17.6854%. We can observe that the position of the poles cthange.

Table 2. Electrical characteristics of the fractional-order Buck-Boost Converter while varying α.

Nondimensionalized Real

α Poles L̂ t̂ss v̂ f L [v] tss [ms] vf [v]

0.7 −0.0391 ± 0.0165i 1.7653 20.420 1.5003 37.5075 2.0420 37.5075
0.8 −0.0465 ± 0.0426i 2.0369 29.832 1.5002 50.9225 2.9832 37.5045
0.9 −0.0457 ± 0.0725i 2.4010 48.5906 1.5001 60.0257 4.8590 37.5034
1 −0.0375 ± 0.1029i 2.8756 318.6323 1.5020 71.8907 31.8620 37.5511

On the other hand, we employ the phase portrait approach to represent the Buck-Boost
converter dynamic in the phase plane geometrically. The main idea is to identify those
equilibrium points permitting the system to maintain stable states. Retracing the path of
the fractional calculus concept applied to this work, the phase portraits shown in Figure 8
considered null initial conditions with different α values.
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(a) (b)

(c) (d)

Figure 8. Phase portrait of the fractional-order Buck-Boost converter at different values of α: (a)
α = 0.7, (b) α = 0.8, (c) α = 0.9, (d) α = 1.

Analyzing the obtained phase portraits, one can see that the equilibrium point
(1.54, 0.2) remains constant for all α values. Furthermore, we detected two significant
findings regarding the α range. The first one liaises a low α value so that the trajectory
toward the equilibrium point is much faster and more stable than in the other cases
(cf. Figure 8a). The second one corresponds to the unit value of α, which leads to
an asymptotically stable spiral point (cf. Figure 8d). With this in mind, the obtained
results prove that a fractional-order Buck-Boost model yields an improved behavior and
performance than an integer-order model.

5. Conclusions

In general terms, most DC–DC converters adopt the integer-order approach for
representing the behavior of their electrical components. Consequently, the mathematical
models of such converters do not match the reported experimental data. Therefore,
the proposed fractional-order Buck-Boost converter model was nondimensionalized,
and the fractional-order state–space model was deduced to avoid integer-order model
inconsistencies in the analysis. To carry this out, the inductor current and capacitor voltage
were determined through the fractional Riemann–Liouville definition in the stable state.
Moreover, the steady-state response of the system showed variations while the order
of the derivative changed. Some models demonstrated a remarkable performance over
the integer-order model. This phenomenon happened for α values of 0.7. Therefore,
we consider that decreasing below this value makes building the model very difficult.
The proposed nondimensionalized model was tested using the Simulink and FOMCOM.
It is worth mentioning that the parameter α directly impacts the capacitor voltage and
inductor current responses. Additionally, we determined that the converter reaches the
desired behavior when α = 0.7. According to the obtained results, the fractional-order
concept used in this work seems feasible for achieving more realistic models of DC–DC
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converters. Finally, the experimental tests led to the design of a Buck-Boost converter with
fractional-order electrical components that do not require complex control schemes.
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Abstract: The Cauchy problem of a time–space fractional partial differential equation which has as a
particular case the damped wave equation is solved for the Dirac delta initial condition. The solution
is obtained in terms of H-Fox functions and models the travel of a disturbance in a vibrating medium.

Keywords: fractional partial differential equation; Cauchy problem; H-Fox functions

1. Introduction

In previous works [1–3], the fractional space–time partial linear differential equa-
tion Dα

t u(x, t) = v2
α,βD

β
x u(x, t) has been solved. In such an expression, Dα

t indicates the

time fractional derivative in the sense that Caputo (see Ref. [4]), Dβ
x represents the space

fractional operator in the sense of Riesz (see Ref. [5]) and vα,β is a constant such that
[vα,β] = [L]β/2[T]−α/2, where [L] and [T] stand for the units of length and time, respectively.
This equation includes as particular cases the heat equation [6] for (α, β) = (1, 2), for which
v2

1,2 = k, where k stands for the thermometric conductivity, and the wave equation [7–10],
for (α, β) = (2, 2), for which v2,2 = v, where v represents the velocity of propagation of the
wave. The Cauchy problem of such an equation with the Dirac delta initial condition is
solved by means of Laplace and Fourier methods in Refs. [1–3]. In Ref. [1], the equation was
solved in terms of generalized Wright functions [11]. The solution has different representa-
tions depending on which of the three cases α > β, α = β or α < β is fulfilled. In Ref. [2], a
unified representation of the solution was obtained for all possible combinations of α and β
by solving the problem in terms of H-Fox functions. Furthermore, in Ref. [2], a Gaussian
initial condition was also considered, leading to a series of H-Fox functions as a solution,
where, in the appropriate limit, the solution for the Dirac delta initial condition is recovered.
In Ref. [3], attention is paid to the particular case α = β. The solution is obtained in terms of
the well-known sine and cosine trigonometric functions. In the first two cases (Refs. [1,2]),
the solution depends on the parameters α and β. Its solution enables on to recover the heat
and wave equation solutions for (α, β) = (1, 2) and (α, β) = (2, 2), respectively. In the last
case, (Ref. [3]), the main results depend on α and enable one to recover the wave equation
solution for α = 2. In addition, the integro-differential equations of integer order arise
as particular cases of the mentioned equation: the first is obtained for (α, β) = (1, 1) (see
Refs. [1,2]) and the second for (α, β) = (2, 1) (see Ref. [2]). The last is introduced in Ref. [2]
as a complementary equation, a broader analysis of an such equation is made in Ref. [12].

In a recent work [13], the Cauchy problem of the more general fractional differential
expression [Dα

t + aα]u(x, t) = v2
α,βD

β
x u(x, t) (a > 0) that includes as a particular case

the Klein–Gordon equation [14] (for its classical applications see, e.g., [15]), is solved in
terms of a series of H-Fox functions. The solution is reduced to that of the equation
Dα

t u(x, t) = v2
α,βD

β
xu(x, t) in the limit a = 0.

Numerical techniques to solve space–time fractional differential equations were pro-
posed in Refs. [16–19]. In [16], they aimed to solve the equations of the wave type and
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in Ref. [17], they aimed to solve the equations of the telegraph form, in both cases with
constant coefficients. In Ref. [18], they aimed to solve equations of the Klein–Gordon-type
and in Ref. [19], of a more general form, in these two last cases with variable coefficients.

Motivated by those previous works, we consider now the study of a fractional differ-
ential equation that includes as a limit case the damped wave equation. Such an equation

has the form [Dα
t + γ

α
2 D

α
2
t ]u(x, t) = v2

α,βD
β
xu(x, t) with γ > 0. This work is addressed

to solve the Cauchy problem of such a fractional differential equation for Dirac delta
initial condition.

2. Problem Formulation

Let us consider the one-dimensional damped wave equation[
∂2

∂t2 + γ
∂

∂t

]
u(x, t) = v2 ∂2

∂x2 u(x, t). (1)

In Equation (1), γ > 0 represents the damping parameter and the constant v the
velocity of the damped wave. By replacing the time derivative operators ∂2

∂t2 and ∂
∂t in

Equation (1) with the Caputo fractional derivative operators Dα
t and D

α
2
t , respectively, (see

its definition in Appendix A). We obtain the equation

[
Dα

t + γ
α
2 D

α
2
t

]
u(x, t) = v2

α
∂2

∂x2 u(x, t). (2)

In Equation (2), α ∈ [1, 2] and the constant vα fulfills [vα] = [L][T]− α
2 .

A more general expression of Equation (2) can be obtained by replacing the space-
derivative operator ∂2

∂x2 in Equation (2) with the Riesz fractional operator Dβ
x (see its defini-

tion in Appendix A). We arrive at the expression[
Dα

t + γ
α
2 D

α
2
t

]
u(x, t) = v2

α,βD
β
x u(x, t). (3)

In Equation (3), β ∈ [1, 2] and the constant vα,β fulfills [vα,β] = [L]
β
2 [T]− α

2 . Additionally,
vα,2 = vα and v2,2 = v2 = v.

Let us consider a fractional η-order differential equation with 1 ≤ η ≤ 2, derivatives
defined in the sense of Caputo and solution y(t). The Caputo fractional derivative is
reduced to the first and second derivative operators for η = 1 and η = 2, respectively; this
permits the equation to transit from a first-order differential equation for η = 1 to a second-
order one for η = 2. For 1 < η ≤ 2, this equation requires two initial conditions to have
a completely determined solution. For η = 1, the equation requires one initial condition
for such purposes. To obtain a solution that permits to transit between the solution to the
fractional differential equation for η = 1 to that of η = 2 through the parameter η, we
may impose the initial condition dy

dt |t=0 = 0 for 1 < η ≤ 2. Taking into account the last
considerations, we may impose the following initial conditions into Equation (3)

u(x, 0) = ϕ(x),
∂u
∂t

(x, t)|t=0 = 0. (4)

Equations (3) and (4) constitute the Cauchy problem to be solved. In this work, we con-
sider the Dirac delta initial condition u(x, 0) = ϕ(x) = μδ(x) and no boundary conditions.

3. Solution of the Problem

The Laplace transform L of Equation (3) is

(sα + γ
α
2 s

α
2 )U(x, s)− (sα−1 + γ

α
2 s

α
2 −1)ϕ(x) = v2

α,βD
β
xU(x, s). (5)

In the above equation, U(x, s) = L[u(x, t)]. The Fourier transform F of Equation (5) is
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(sα + γ
α
2 s

α
2 )U(k, s)− (sα−1 + γ

α
2 s

α
2 −1)φ(k) = −v2

α,β|k|βU(k, s), (6)

where U(k, s) = F [L[u(x, t)]] and F [ϕ(x)] = φ(k). The algebraic expression (6) is solved by

U(k, s) =
(sα−1 + γ

α
2 s

α
2 −1)φ(k)

sα + γ
α
2 s

α
2 + v2

α,β|k|β
. (7)

To obtain the solution u(x, t), we first recover U(x, s) by taking the inverse Fourier
transform F−1 of U(k, s). From the definition of inverse Fourier transform, we have

U(x, s) =
1√
2π

∫ ∞

−∞

(sα−1 + γ
α
2 s

α
2 −1)φ(k)eikxdk

sα + γ
α
2 s

α
2 + v2

α,β|k|β
. (8)

Setting the initial condition ϕ(x) = μδ(x) into Equation (8) gives

U(x, s) =
μλβ

2πs

∫ ∞

−∞

eikxdk
λβ + |k|β , λ =

(
sα + γ

α
2 s

α
2

v2
α,β

) 1
β

. (9)

In Ref. [20], the integral in Equation (9) was calculated (as can also be seen in Ref. [2]),
and the result leads to the following expression for U(x, s)

U(x, s) =
μλ

βs
H2,1

2,3

⎡⎣λ|x|
∣∣∣∣

(
1 − 1

β , 1
β

)
,
(

1
2 , 1

2

)
(0, 1),

(
1 − 1

β , 1
β

)
,
(

1
2 , 1

2

) ⎤⎦, (10)

where Hm,n
p,q [x|−] is the H-Fox function [21,22] (as can also be seen in Appendix A). The in-

verse Laplace transform L−1 of U(x, s) is calculated in the Appendix B and gives the
solution u(x, t) as follows

u(x, t) =
μ

βt
α
β v

2
β

α,β

∞

∑
n=0

(γt)
αn
2 Θn(x, t; α, β), (11)

where

Θn(x, t; α, β) = H2,2
4,4

⎡⎢⎣ |x|
t

α
β v

2
β

α,β

∣∣∣∣
(

1 − 1
β , 1

β

)
,
(
− 1

β , 1
β

)
,
(

1
2 , 1

2

)
, (1 − α

β + αn
2 , α

β )

(0, 1),
(

1 − 1
β , 1

β

)
,
(

1
2 , 1

2

)
, (− 1

β + n, 1
β )

⎤⎥⎦. (12)

4. Discussion of Results

In Figure 1, the graphic representation of the solution is depicted in Equations (11) and (12)
for some combinations of (α, β). According to the graphics contained in the panel, the so-
lution to Equation (3) can be studied in terms of a disturbance propagating in a vibrating
medium. In all the cases presented herein, a mixture of diffusive and wave-like behavior
can be observed in the traveling disturbances. As α becomes smaller, the diffusive behavior
becomes more predominant. As α approaches 2, the wave-like behavior is predominant
over the diffusive one and the effects of the reduction in the parameter β become notorious,
as can be observed in the third column with the change in the shape in the center of the
traveling disturbances, in contrast to the first and second columns where such changes are
not evident. Such a phenomenon may be associated with the presence of jump processes
(as can be seen in [23–25]) into the traveling disturbance; as β is reduced, its effects become
more significant.
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(a) (α = 1.5,β = 1.9) (b) (α = 1.7,β = 1.9) (c) (α = 1.9,β = 1.9)

(d) (α = 1.5,β = 1.7) (e) (α = 1.7,β = 1.7) (f) (α = 1.9,β = 1.7)

(g) (α = 1.5,β = 1.5) (h) (α = 1.7,β = 1.5) (i) (α = 1.9,β = 1.5)

Figure 1. Time evolution of the disturbances described by the solution u(x, t) in Equations (11) and (12)
(μ = vαβ = γ = 1). The orange line stands for u(x, t = 1), the brown for u(x, t = 5/3), the blue for
u(x, t = 7/3), and the gray for u(x, t = 3).

5. Conclusions

The Cauchy problem for a fractional differential equation with the damped wave equa-
tion as a particular case was solved with the Dirac delta initial condition, and its solution
was obtained in terms of series of H-Fox functions. According to the graphic representation
of the solution, the fractional differential equation models traveling disturbances, where a
mixture of wave-like and diffusive behavior is observed. Future work is addressed to the
study of a fractional differential equation with the telegrapher equation as a particular case.
Such an equation also contains the fractional expressions [Dα + aα]u(x, t) = v2

α,βD
βu(x, t)

and
[

Dα + γ
α
2 D

α
2

]
u(x, t) = v2

α,βD
βu(x, t) as limit cases, which are the second object of

study in this work. Work in this direction is in progress and will be reported elsewhere.
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Appendix A. Some Useful Definitions

Let α > 0, f ∈ Cn(R+) and n = �α�. The α-order Caputo’s fractional derivative with
respect to t Dα

t of a function f is defined as

Dα
t f (t) =

1
Γ(n − α)

∫ t

0
(t − t′)n−α−1

(
dn f
dt′n

)
dt′. (A1)
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Let 1 < β < 2. The β-order Riesz fractional derivative with respect to x D
β
x of a

function f is defined as

D
β
x f (x) = − 1√

2π

∫ ∞

−∞
eikx|k|βF [ f ](k)dk, (A2)

where F [ f ] is the Fourier transform of the function f .
The Mellin-Barnes integral IM of a function f is defined as follows

[IM f ](x) =
∫ c+i∞

c−i∞
fM(s)x−sds. (A3)

Let m, n, p, q ∈ N such that 0 ≤ m ≤ q and 0 ≤ n ≤ p, Ai, Bj ∈ (0, ∞) and ai, bj ∈ C

(i = 1, . . . , p; j = 1, . . . q). The H-Fox function is defined via the next Mellin–Barnes integral

Hm,n
p,q

[
z
∣∣∣∣ (a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

]
=

∫
L

∏m
j=1 Γ(bj + Bjs)∏n

i=1 Γ(1 − ai − Ais)z−sds

∏
p
i=n+1 Γ(ai + Ais)∏

q
j=m+1 Γ(1 − bj − Bjs)

. (A4)

The path of integration L separates the poles of Γ(bj + Bjs) to the left and the poles of
Γ(1 − ai − Ais) to the right of L.

Appendix B. Derivation of Expressions (11) and (12)

According to the definition of the H-Fox function provided in (A4), one can express
the Equation (10) in its Mellin–Barnes representation as follows

U(x, s) =
μ

β

1
2πi

∫
L

λ1−z

s

Γ(z)Γ(1 − 1
β + z

β )Γ(
1
β − z

β )x−zdz

Γ
(

1
2 − z

2

)
Γ
(

1
2 + z

2

) , (A5)

where

λ =

(
sα + γ

α
2 s

α
2

v2
α,β

) 1
β

. (A6)

The inverse Laplace transform operator L−1 acts on the complex variable s, then
L−1U(x, s) can be expressed as follows

L−1U(x, s) =
μ

β

1
2πi

∫
L
L−1

[
λ1−z

s

]Γ(z)Γ(1 − 1
β + z

β )Γ(
1
β − z

β )x−zdz

Γ
(

1
2 − z

2

)
Γ
(

1
2 + z

2

) . (A7)

The series expansion

λ1−z

s
=

1

v
2(1−z)

β

α,β

∞

∑
n=0

Γ
(

1 + 1
β − z

β

)
γ

αn
2

n!Γ
(

1 + 1
β − n − z

β

)
s1− α

β +
αn
2 + αz

β

, (A8)

together with the inverse Laplace transform formula

L−1
[

1

s1− α
β +

αn
2 + αz

β

]
=

t−
α
β +

αn
2 + αz

β

Γ
(

1 − α
β + αn

2 + αz
β

) , 1 − α

β
+

αn
2

+
αz
β

> 0, (A9)

leads to

L−1
[

λ1−z

s

]
=

Γ
(

1 + 1
β − z

β

)
t−

α
β +

αz
β

v
2(1−z)

β

α,β

∞

∑
n=0

(γt)
αn
2

n!Γ
(

1 + 1
β − n − z

β

)
Γ
(

1 − α
β + αn

2 + αz
β

) . (A10)
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From (A7) and (A10), we have

L−1U(x, s) =
μ

βt
α
β v

2
β

α,β

∞

∑
n=0

(γt)
αn
2 Θn(x, t; α, β) (A11)

where

Θn(x, t; α, β) =
1

2πi

∫
L

Γ(z)Γ(1 − 1
β + z

β )Γ(
1
β − z

β )Γ
(

1 + 1
β − z

β

)
Γ
(

1
2 − z

2

)
Γ
(

1 + 1
β − n − z

β

)
Γ
(

1
2 + z

2

)
Γ(1 − α

β + αn
2 + αz

β )

⎛⎜⎝ |x|
t

α
β v

2
β

α,β

⎞⎟⎠
−z

dz. (A12)

From the definition of the H-function, one may write the expression (A12) as follows

Θn(x, t; α, β) = H2,2
4,4

⎡⎢⎣ |x|
t

α
β v

2
β

α,β

∣∣∣∣ (1 − 1
β , 1

β ), (− 1
β , 1

β ), (
1
2 , 1

2 ), (1 − α
β + αn

2 , α
β )

(0, 1), (1 − 1
β , 1

β ), (
1
2 , 1

2 ), (− 1
β + n, 1

β )

⎤⎥⎦. (A13)

The results (A11)–(A13) are included in Section 3, as are the solutions to Equations (11)
and (12).
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Abstract: All possible configurations of a chaotic map without fixed points, called “nfp1”, in its
implementation in fixed-point arithmetic are analyzed. As the multiplication on the computer does
not follow the associative property, we analyze the number of forms in which the multiplications
can be performed in this chaotic map. As chaos enhanced the small perturbations produced in the
multiplications, it is possible to built different pseudorandom number generators using the same
chaotic map.

Keywords: chaotic map; fixed-point arithmetic; PRNG; chaos sensitivity

1. Introduction

The multiplication inside a computer does not follow the associative property, that
is, for the three different numbers a, b, and c, a(bc) �= (ab)c �= (ac)b. This fact is produced
because of using fixed-point arithmetic; the multiplication of two numbers, i. f , with i bits in
the integer part and f bits in the factional part, produces a number (2i + 1).2 f . This resulted
number must be returned to the same used representation, then the result is shifted f bits to
the right. Moreover, to avoid the increasing size of the bits in the integer part, the number
of bits in this part is chosen large enough to keep all the results of the multiplications within
i bits. Fixed-point arithmetic is mostly used in the hardware implementation of chaotic
circuits because of its simplicity [1–3].

The dynamics of a chaotic system are highly sensitive to small changes in its initial
conditions. In this work, a map without fixed points to generate pseudorandom numbers
by changing the order in the multiplications is studied, which also produces small changes
that are increased by the chaos. In [4], the authors study the sensitivity of a chaotic system
more as a problem. In this work, the sensitivity of a chaotic map is taken as an advantage
to generate more maps by changing the order in the multiplications of the map terms.

Random numbers are very important in simulations [5], video games, in Monte Carlo
methods, in cryptography [6], and in evolutionary algorithms [7] as the genetic algorithms,
because these kind of algorithms can be considered a guided (intelligent) random search.

In the next Section 2, the chaotic map used and the generation of random sequences
are described. In Section 3, the process to generate new sequences by changing the order of
the multiplication is described. In this section, it is also shown that generated sequences
are uncorrelated and random. Finally, in Section 4, the conclusion of this work is given.

2. Chaotic Map

The map nfp1 in [8] is used in this work. This map is defined as

x(i + 1) = a
[
y2(i)− 1

]
x(i) + c,

y(i + 1) = x(i) + y(i),
(1)
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with parameters values a = 1.78 and c = 0.001. These parameters values are the suggested
in [8].

The domain of attraction for Equation (1) is shown in Figure 1. The gray zone in
Figure 1 represents where the initial values take the shown values on the x and y axes, and
the maps converge to the behavior shown as the black points. The white zone in Figure 1
represents where, with the shown initial values, the map’s dynamic behavior is destroyed.
Thus, from this figure, it is possible to choose the initial values for x(0) and y(0) within
the interval [−0.5, 0.5]. Moreover, from Figure 1, it possible to see that the range of values
for x(i + 1) is the interval [−2, 2] and [−1, 1] for y(i + 1), then 2 bits in the integer part are
necessary for the calculations. For the fractional part, we decided to use 61 bits, plus the
sign bit, then numbers of 64 bits are used. Then, the initial values can be expressed as the
interval [−0.5 + u,−0.5 + v], where u, v ∈ [0, 1), and 1 = 261 with the used representation.
Thus, the possible values for the initial values are (261)2 = 2122. These values can also be
seen as the different possible values for the seed of the pseudorandom number generator
(PRNG). A PRNG gives the same output sequence if the same seed is used. A PRNG is a
deterministic process that generates a sequence of binary numbers that looks random.

−1

−0.5

0

0.5

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

y
va

lu
e

x value

Figure 1. The domain of attraction of the map in Equation (1). This domain was obtained in floating
point arithmetic. Moreover, 40,000 points obtained with initial conditions (x(0), y(0)) = (−0.5, 0.4)
are shown.

An output binary sequence of 16 bits can be generated by concatenating two itera-
tions of

b[i + 1] = x[i + 1] mod 256, (2)

that is, the last 8 bits of the value of x variable are consider random. The value of the y
variable cannot be used because it can be obtained easily from the previous values. In
Equation (2) brackets are used due the sequences now being discrete binary values. This
same technique was applied in [9] using a 2D map.

3. Analysis of the Map

The Equation (1), for the calculation of the x(i + 1) term can be expressed as

x(i + 1) = ay2(i)x(i)− ax(i) + c, (3)

where the first term in the right part can be also expressed as the calculation of three
terms: (ay)(y)(x) or as (a)(y2)(x). Each one of these two triplets of terms can be multiplied
in three forms as (t1t2)t3, t1(t2t3), or (t1t3)t2; therefore, with the map in Equation (1),
3 × 3 = 9 different forms of multiplying the terms to obtain x(i + 1) in Equation (3) are
possible. This can be seen as, if three more bits are added to the possible initial values, then
now (23 + 1)× 2122 = 2125 + 2122 different initial values could be possible.

40



Comput. Sci. Math. Forum 2022, 4, 6

As a test of this idea, eight sequences are generated, four sequences with the values
shown in Table 1, and another four sequences with the codes 10, 10, 11, and 12 named
as sequences s5, s6, s7, and s8. The first number in the code selects between the terms
(ay)(y)(x) or (a)(y2)(x). The second number in the code selects among the three possible
forms of multiplying the three previous terms: 0 for (t1t2)t3, 1 for t1(t2t3), and 2 for (t1t3)t2.

Table 1. Initial values and codes for the first four generated sequences.

Seq. Name x(0) y(0) Code

s1 −0.5 −0.5 00
s2 −0.5 −0.5 + 2−61 00
s3 −0.5 −0.5 01
s4 −0.5 −0.5 02

The correlations between the pair of sequences (s1, s2), (s1, s3), and (s1, s4) are show in
the graph of Figure 2a; the correlations between the sequences (s5, s6), (s5, s7), and (s5, s8)
are show in the graph of Figure 2b. The correlation is calculated with the overlapped
pairs of five samples of the sequences. The values of the each of the four nibbles ranging
from the most significant to the least significant at the output of the PRNG are used as the
samples values.
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Figure 2. In (a) is shown the three correlations between the sequences (s1, s2), (s1, s3), and (s1, s4),
and in (b), between sequences (s5, s6), (s5, s7), and (s5, s8).

From Figure 2, it is possible to see that sequences are uncorrelated if the initial values
are change in a single bit (as sequences s2 and s6 are generated) or by changing the order of
the multiplication around the nibble 10, or 40 bits, except for the correlation of sequences
(s5, s8). This last case, in which the sequence s8 is calculated with the code 12, is when
the term (a)(y2)(x) is calculated as (ax)y2. If the value of the constant a in Equation (1) is
changed from 1.78 to 1.7777777, or as 0x38e38e38e38e38e3 in hexadecimal, the correlations
change, as shown in Figure 3.
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Figure 3. In (a) is shown the three correlations between the sequences (s1, s2), (s1, s3), and (s1, s4),
and in (b), between sequences (s5, s6), (s5, s7), and (s5, s8); by now, the value of a in Equation (1) is
changed to 1.7777777.

From Figure 3, the first 40 bits of each sequence must be discharged to consider them
as uncorrelated sequences when the order in the multiplications in the map is changed.

To demonstrate that the generated sequences are random, three tests of TestU01 suite,
Rabbit, Alphabit, and BlockAlphabit are applied on 100 sequences of 106 bits. These tests
were designed for bits stored in a file (or a physical device). Rabbit and Alphabit apply 40
and 17 different statistical tests, respectively. BlockAlphabit applies the Alphabit battery
of tests repeatedly to a binary file after reordering the bits by blocks of different sizes
(with sizes of 2, 4, 8, 16, and 32 bits) [10]. Applying the TestU01 to the eight generated
sequences from s1 to s8 gives the results shown in Table 2. All the sequences passed the
tests, except the sequence s7. This sequence is generated as the multiplication of the terms
a(y2x). It looks as though multiplication by the constant a does not give enough variability
to generate a random sequence by obtaining the last 8 bits of each iteration on the map
calculation.

Table 2. Results of applying the TestU01 to the generated sequences.

Test Name Seqs. s1, s2, s3, s4, s5, s6, s8 Seqs. s7

1 Rabbit All 40 tests passed 17/40
2 Alphabit All 17 tests passed 1/17
3 Block Alphabit All 6 repetitions of Alphabit tests passed 8/102

As a configuration does not give random sequences, the number of possible initial
values is 23 × 2122 = 2125.

Discussing the number of bits used in the number representation, the number of bits in
the integer part is clear: they are necessary to perform the calculations of Equation (1). The
number of bits for the fractional part is not so clear: they must be necessary to maintain the
map behavior shown in Figure 1 and to keep a random behavior in the eight less significant
bits. The used representation of 64 bits is more precise than real numbers (doubles in C
programming language) that have around 52 bits of precision. Lesser bits in the fractional
part could keep the map behavior but, at the same time, stop the random behavior of the
less significant bits.
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4. Conclusions

A map without a fixed point was used to generate random numbers by changing the
association in the multiplication of a term with three variables. Fixed-point arithmetic
was used with numbers with 2 bits for the integer part and 61 bits for the fractional part.
The value of a constant used by the map was changed slightly (from 1.78 to 1.7777777) to
generate uncorrelated sequences. One of the configuration multiplies the constant values
by the other terms; this configuration does not generate random sequences. With the used
numbers, 2122 values can be used as the seed for the random number generator. With the
different association in the multiplication, three bits can be added to the seed values, given
a total of 2125 possible values for the seed. An efficient design in hardware can be proposed
in a future work, as well as the search for more applications for the studied configuration.
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Abstract: Taking into count the large number of fractional operators that have been generated over
the years, and considering that their number is unlikely to stop increasing at the time of writing this
paper due to the recent boom of fractional calculus, everything seems to indicate that an alternative
that allows to fully characterize some elements of fractional calculus is through the use of sets.
Therefore, this paper presents a recapitulation of some fractional derivatives, fractional integrals, and
local fractional operators that may be found in the literature, as well as a summary of how to define
sets of fractional operators that allow to fully characterize some elements of fractional calculus, such
as the Taylor series expansion of a scalar function in multi-index notation. In addition, it is presented
a way to define finite and infinite Abelian groups of fractional operators through a family of sets of
fractional operators and two different internal operations. Finally, using the above results, it is shown
one way to define commutative and unitary rings of fractional operators.

Keywords: fractional operators; set theory; group theory; fractional calculus of sets

1. Introduction

Fractional calculus is a branch of mathematics that uses derivatives of non-integer
order that originated around the same time as conventional calculus due to Leibniz’s
notation for derivatives of integer order

dn

dxn .

Therefore, thanks to this notation, L’Hopital could ask in a letter to Leibniz about
the interpretation of taking n = 1/2 in a derivative. Since at that moment Leibniz could
not give a physical or geometrical interpretation of this question, he simply answered to
L’Hopital in a letter, “. . . is an apparent paradox of which, one day, useful consequences
will be drawn” [1]. The name of fractional calculus comes from a historical question since,
in this branch of mathematical analysis, the derivatives and integrals of a certain order α
are studied, with α ∈ R. Currently, fractional calculus does not have a unified definition of
what is considered a fractional derivative. As a consequence, when it is not necessary to
explicitly specify the form of a fractional derivative, it is usually denoted as follows

dα

dxα
.

The fractional operators have many representations, but one of their fundamental
properties is that they allow retrieving the results of conventional calculus when α → n.
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For example, let f : Ω ⊂ R → R be a function such that f ∈ L1
loc(a, b), where L1

loc(a, b)
denotes the space of locally integrable functions on the open interval (a, b) ⊂ Ω. One of the
fundamental operators of fractional calculus is the operator Riemann–Liouville fractional
integral, which is defined as follows [2,3]:

a Iα
x f (x) :=

1
Γ(α)

∫ x

a
(x − t)α−1 f (t)dt, (1)

where Γ denotes the Gamma function. It is worth mentioning that the above operator is a
fundamental piece to construct the operator Riemann-Liouville fractional derivative, which
is defined as follows [2,4]:

aDα
x f (x) :=

⎧⎨⎩ a I−α
x f (x), if α < 0

dn

dxn

(
a In−α

x f (x)
)
, if α ≥ 0

, (2)

where n = �α� and a I0
x f (x) := f (x). On the other hand, let f : Ω ⊂ R → R be a function

n-times differentiable such that f , f (n) ∈ L1
loc(a, b). Then, the Riemann–Liouville fractional

integral also allows constructing the operator Caputo fractional derivative, which is defined
as follows [2,4]:

C
a Dα

x f (x) :=

{
a I−α

x f (x), if α < 0

a In−α
x f (n)(x), if α ≥ 0

, (3)

where n = �α� and a I0
x f (n)(x) := f (n)(x). Furthermore, if the function f fulfills that

f (k)(a) = 0 ∀k ∈ {0, 1, · · · , n − 1}, the Riemann–Liouville fractional derivative coincides
with the Caputo fractional derivative, that is,

aDα
x f (x) = C

a Dα
x f (x). (4)

Therefore, applying the operator (2) with a = 0 to the function xμ, with μ > −1, we
obtain the following result:

0Dα
x xμ =

Γ(μ + 1)
Γ(μ − α + 1)

xμ−α, α ∈ R \Z, (5)

where if 1 ≤ �α� ≤ μ, it is fulfilled that 0Dα
x xμ = C

0 Dα
x xμ. To illustrate a bit the diversity of

representations that fractional operators may have, we proceed to present a recapitulation
of some fractional derivatives, fractional integrals, and local fractional operators that may
be found in the literature [5–7]:

1. Grünwald-Letnikov fractional derivative:

GL
a Dα

x f (x) = lim
h→0

1
hα

n

∑
k=0

(−1)kΓ(α + 1)
Γ(k + 1)Γ(α − k + 1)

f (x − kh), n = �(x − a)/h�.

2. Marchaud fractional derivative:

Ma−∞Dα
x f (x) =

α

Γ(1 − α)

∫ x

−∞
(x − t)−α−1( f (x)− f (t))dt, 0 < α < 1.

3. Hadamard fractional derivative:

Ha
a Dα

x f (x) =
x

Γ(1 − α)

d
dx

∫ x

a
(ln(x)− ln(t))2−α f (t)

t
dt, 0 < α < 1.
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4. Chen fractional derivative:

Ch
a Dα

x f (x) =
1

Γ(1 − α)

d
dx

∫ x

a
(x − t)−α f (t)dt, 0 < α < 1.

5. Caputo-Fabrizio fractional derivative:

CF
a Dα

x f (x) =
M(α)

1 − α

∫ x

a
exp

(
− α

1 − α
(x − t)

)
f (1)(t)dt, 0 < α < 1, M(0) = M(1) = 1.

6. Atangana-Baleanu-Caputo fractional derivative:

ABC
a Dα

x f (x) =
M(α)

1 − α

∫ x

a
Eα

(
− α

1 − α
(x − t)α

)
f (1)(t)dt, 0 < α < 1, M(0) = M(1) = 1.

7. Canavati fractional derivative:

Ca
a Dα

x f (x) =
1

Γ(1 + α − n)
d

dx

∫ x

a
(x − t)n−α dn

dtn f (t)dt, n = �α�.

8. Jumarie fractional derivative:

Ju
a Dα

x f (x) =
1

Γ(n − α)

dn

dxn

∫ x

a
(x − t)n−α−1( f (t)− f (a))dt, n = �α�.

9. Hadamard fractional integral:

Ha
a Iα

x f (x) =
1

Γ(α)

∫ x

a
(ln(t)− ln(x))α−1 f (t)

t
dt.

10. Weyl fractional integral:

xWα
∞ f (x) =

1
Γ(α)

∫ ∞

x
(t − x)α−1 f (t)dt.

11. Conformable fractional operator:

Tα f (x) = lim
h→0

f
(
x + hx1−α

)− f (x)
h

.

12. Katugampola fractional operator:

Dα f (x) = lim
h→0

f (x exp(hx−α))− f (x)
h

.

13. Deformable fractional operator:

Dα f (x) = lim
h→0

(1 + hβ) f (x + hα)− f (x)
h

, α + β = 1.

Before continuing, it is worth mentioning that the applications of fractional operators
have spread to different fields of science, such as finance [8,9], economics [10,11], number
theory through the Riemann zeta function [12,13], in engineering with the study for the
manufacture of hybrid solar receivers [14,15], and in physics and mathematics to solve
nonlinear algebraic equation systems [16–25], which is a classical problem in mathematics,
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physics and engineering that consists of finding the set of zeros of a function f : Ω ⊂ Rn →
Rn, that is,

{ξ ∈ Ω : ‖ f (ξ)‖ = 0},

where ‖ · ‖ : Rn → R denotes any vector norm, or equivalently,

{ξ ∈ Ω : [ f ]k(ξ) = 0 ∀k ≥ 1},

where [ f ]k : Rn → R denotes the k-th component of the function f .

2. Sets of Fractional Operators

Before continuing, it is worth mentioning that due to the large number of fractional
operators that exist [5–7,26–41], it seems that the most natural way to fully characterize the
elements of the fractional calculus is by using sets, which is the main idea behind of the
methodology known as fractional calculus of sets [42,43]. Therefore, considering a scalar
function h : Rm → R and the canonical basis of Rm denoted by {êk}k≥1, it is feasible to
define the following fractional operator of order α using Einstein’s notation

oα
xh(x) := êkoα

k h(x). (6)

Therefore, denoting by ∂n
k the partial derivative of order n applied with respect to

the k-th component of the vector x, using the previous operator, it is feasible to define the
following set of fractional operators

On
x,α(h) :=

{
oα

x : ∃oα
k h(x) and lim

α→n
oα

k h(x) = ∂n
k h(x) ∀k ≥ 1

}
, (7)

which corresponds to a nonempty set since it contains the following sets of fractional operators

On
0,x,α(h) :=

{
oα

x : ∃oα
k h(x) = (∂n

k + μ(α)∂α
k )h(x) and lim

α→n
μ(α)∂α

k h(x) = 0 ∀k ≥ 1
}

. (8)

As a consequence, it is feasible to obtain the following result:

If oα
i,x, oα

j,x ∈ On
x,α(h) with i �= j ⇒ ∃oα

k,x =
1
2

(
oα

i,x + oα
j,x

)
∈ On

x,α(h). (9)

On the other hand, the complement of the set (7) may be defined as follows

On,c
x,α(h) :=

{
oα

x : ∃oα
k h(x) ∀k ≥ 1 and lim

α→n
oα

k h(x) �= ∂n
k h(x) in at least one value k ≥ 1

}
, (10)

with which it is feasible to obtain the following result:

If oα
i,x = êkoα

i,k ∈ On
x,α(h) ⇒ ∃oα

j,x = êkoα
i,σj(k)

∈ On,c
x,α(h), (11)

where σj : {1, 2, · · · , m} → {1, 2, · · · , m} denotes any permutation different from the
identity. Before continuing, it is necessary to mention that set (7) allows generalizing
elements of conventional calculus. For example, let N0 be the set N∪ {0}. If γ ∈ Nm

0 and
x ∈ Rm, then it is feasible to define the following multi-index notation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ! :=
m

∏
k=1

[γ]k!, |γ| :=
m

∑
k=1

[γ]k, xγ :=
m

∏
k=1

[x][γ]kk

∂γ

∂xγ
:=

∂[γ]1

∂[x][γ]11

∂[γ]2

∂[x][γ]22

· · · ∂[γ]m

∂[x][γ]mm

. (12)
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Therefore, considering a function h : Ω ⊂ Rm → R and the fractional operator

sαγ
x (oα

x) := oα[γ]1
1 oα[γ]2

2 · · · oα[γ]m
m , (13)

it is feasible to define the following set of fractional operators

Sn,γ
x,α (h) :=

{
sαγ

x = sαγ
x (oα

x) : ∃sαγ
x h(x) with oα

x ∈ Os
x,α(h) ∀s ≤ n2 and lim

α→k
sαγ

x h(x) =
∂kγ

∂xkγ
h(x) ∀α, |γ| ≤ n

}
, (14)

from which it is feasible to obtain the following results:

If sαγ
x ∈ Sn,γ

x,α (h) ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
α→0

sαγ
x h(x) = o0

1o0
2 · · · o0

mh(x) = h(x)

lim
α→1

sαγ
x h(x) = o[γ]11 o[γ]22 · · · o[γ]mm h(x) =

∂γ

∂xγ
h(x) ∀|γ| ≤ n

lim
α→q

sαγ
x h(x) = oq[γ]1

1 oq[γ]2
2 · · · oq[γ]m

m h(x) =
∂qγ

∂xqγ h(x) ∀q|γ| ≤ qn

lim
α→n

sαγ
x h(x) = on[γ]1

1 on[γ]2
2 · · · on[γ]m

m h(x) =
∂nγ

∂xnγ
h(x) ∀n|γ| ≤ n2

. (15)

On the other hand, using little-o notation, it is feasible to obtain the following result:

If x ∈ B(a; δ) ⇒ lim
x→a

o((x − a)γ)

(x − a)γ
→ 0 ∀|γ| ≥ 1, (16)

with which it is feasible to define the following set of functions

Rn
αγ(a) :=

{
rn

αγ : lim
x→a

∥∥∥rn
αγ(x)

∥∥∥ = 0 ∀|γ| ≥ n and
∥∥∥rn

αγ(x)
∥∥∥ ≤ o

(‖x − a‖n) ∀x ∈ B(a; δ)
}

, (17)

where rn
αγ : B(a; δ) ⊂ Ω → R. Therefore, considering the previous set and some B(a; δ) ⊂

Ω, it is feasible to define the following sets of fractional operators

Tn,q,γ
x,α,p(a, h) :=

⎧⎨⎩tα,p
x = tα,p

x
(
sαγ

x
)

: sαγ
x ∈ SM,γ

x,α (h) and tα,p
x h(x) :=

p

∑
|γ|=0

1
γ!

sαγ
x h(a)(x − a)γ + rp

αγ(x)
∀α ≤ n
∀p ≤ q

⎫⎬⎭, (18)

T∞,γ
x,α (a, h) :=

⎧⎨⎩tα,∞
x = tα,∞

x
(
sαγ

x
)

: sαγ
x ∈ S∞,γ

x,α (h) and tα,∞
x h(x) :=

∞

∑
|γ|=0

1
γ!

sαγ
x h(a)(x − a)γ

⎫⎬⎭, (19)

which allow generalizing the Taylor series expansion of a scalar function in multi-index
notation [22], where M = max{n, q}. As a consequence, it is feasible to obtain the
following results:

If tα,p
x ∈ T1,q,γ

x,α,p(a, h) and α → 1 ⇒ t1,p
x h(x) = h(a) +

p

∑
|γ|=1

1
γ!

∂γ

∂xγ
h(a)(x − a)γ + rp

γ(x), (20)

If tα,p
x ∈ Tn,1,γ

x,α,p(a, h) and p → 1 ⇒ tα,1
x h(x) = h(a) +

m

∑
k=1

oα
k h(a)[(x − a)]k + r1

αγ(x). (21)

Finally, it is worth mentioning that the set (7) may be considered as a generating set of
sets of fractional tensor operators. For example, considering α, n ∈ Rd with α = êk[α]k and
n = êk[n]k, it is feasible to define the following set of fractional tensor operators

On
x,α(h) :=

{
oα

x : ∃oα
xh(x) and oα

x ∈ O[n]1
x,[α]1

(h)× O[n]2
x,[α]2

(h)× · · · × O[n]d
x,[α]d

(h)
}

. (22)
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3. Groups of Fractional Operators

Considering a function h : Ω ⊂ Rm → Rm, it is feasible to define sets of fractional
operators for a vector function in the following way:

m On
x,α(h) :=

{
oα

x : oα
x ∈ On

x,α([h]k) ∀k ≤ m
}

, (23)

m On,c
x,α(h) :=

{
oα

x : oα
x ∈ On,c

x,α([h]k) ∀k ≤ m
}

, (24)

m On,u
x,α(h) := m On

x,α(h) ∪ m On,c
x,α(h), (25)

where [h]k : Ω ⊂ Rm → R denotes the k-th component of the function h. Therefore, using
the above sets, it is feasible to construct the following family of fractional operators

m MO∞,u
x,α (h) :=

⋂
k∈Z

m Ok,u
x,α(h). (26)

Before continuing, it should be noted that the above family of fractional operators
fulfills the following property with respect to the classical Hadamar product:

o0
x ◦ h(x) := h(x) ∀oα

x ∈ m MO∞,u
x,α (h). (27)

Furthermore, for each operator oα
x ∈ m MO∞,u

x,α (h), it is feasible to define the following
fractional matrix operator [44]:

Aα(oα
x) =

(
[Aα(oα

x)]jk

)
:= (oα

k ). (28)

On the other hand, defining the following modified Hadamard product [42]:

opα
i,x ◦ oqα

j,x :=

⎧⎨⎩ opα
i,x ◦ oqα

j,x, if i �= j (Hadamard product of type horizontal)

o(p+q)α
i,x , if i = j (Hadamard product of type vertical)

, (29)

for each operator oα
x ∈ m MO∞,u

x,α (h), it is feasible to define an Abelian group of fractional
operators isomorphic to the group of integers under the addition, as shown by the following
theorem [43,44]:

Theorem 1. Let oα
x be a fractional operator such that oα

x ∈ m MO∞,u
x,α (h) and let (Z,+) be the

group of integers under the addition. Therefore, considering the modified Hadamard product given
by (29), it is feasible to define the following set of fractional matrix operators

m G(Aα(oα
x)) :=

{
A◦r

α = Aα(orα
x ) : r ∈ Z and A◦r

α =
(
[A◦r

α ]jk

)
:= (orα

k )
}

, (30)

which corresponds to the Abelian group generated by the operator Aα(oα
x) isomorphic to the group

(Z,+), that is,

m G(Aα(oα
x))

∼= (Z,+). (31)

Proof. It should be noted that due to the way the set (30) is defined, just the Hadamard
product of type vertical is applied among its elements. So, ∀A◦p

α , A◦q
α ∈ m G(Aα(oα

x)) it is
fulfilled that

A◦p
α ◦ A◦q

α =
(
[A◦p

α ]jk

)
◦
(
[A◦q

α ]jk

)
=

(
o(p+q)α

k

)
=

(
[A◦(p+q)

α ]jk

)
= A◦(p+q)

α . (32)

So, from the previous result, it is feasible to prove that the set m G(Aα(oα
x)) is a semi-

group since it fulfills the following property:

∀A◦p
α , A◦q

α , A◦r
α ∈ m G(Aα(oα

x)) it is fulfilled that
(

A◦p
α ◦ A◦q

α

)
◦ A◦r

α = A◦p
α ◦

(
A◦q

α ◦ A◦r
α

)
. (33)
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Furthermore, it follows from the definition of the set (30) that it contains a neutral
element, with which it is feasible to prove from the previous result that the set m G(Aα(oα

x))
is also a monoid since it fulfills the following property:

∃A◦0
α ∈ m G(Aα(oα

x)) such that ∀A◦p
α ∈ m G(Aα(oα

x)) it is fulfilled that A◦0
α ◦ A◦p

α = A◦p
α . (34)

It should be noted that due to the way in which the set (30) is defined, for each element
contained in the set its symmetric element is also defined, with which from the previous
result the set m G(Aα(oα

x)) is also a group since it fulfills the following property:

∀A◦p
α ∈ m G(Aα(oα

x)) ∃A◦−p
α ∈ m G(Aα(oα

x)) such that A◦p
α ◦ A◦−p

α = A◦0
α . (35)

Finally, observing that the order in which the elements of the sets are operated does
not influence the final result, it is obtained that the set m G(Aα(oα

x)) is also an Abelian group
since it fulfills the following property:

∀A◦p
α , A◦q

α ∈ m G(Aα(oα
x)) it is fulfilled that A◦p

α ◦ A◦q
α = A◦q

α ◦ A◦p
α . (36)

Once proven that the set (30) defines an Abelian group, to finish the proof of the
theorem it is enough to define a bijective homomorphism between the sets m G(Aα(oα

x))
and (Z,+). So, defining the following functions

ψ : m G(Aα(oα
x)) → (Z,+)

ψ(A◦r
α ) = r

and
ψ−1 : (Z,+) → m G(Aα(oα

x))

ψ−1(r) = A◦r
α

, (37)

it is feasible to prove that the function ψ defines a homeomorphism between the sets
m G(Aα(oα

x)) and (Z,+) through the following result:

∀A◦p
α , A◦q

α ∈ m G(Aα(oα
x)) it is fulfilled that ψ

(
A◦p

α ◦ A◦q
α

)
= ψ

(
A◦(p+q)

α

)
= p + q = ψ

(
A◦p

α

)
+ ψ

(
A◦q

α

)
, (38)

and analogously it is proved that the function ψ−1 defines a homeomorphism between
the sets (Z,+) and m G(Aα(oα

x)) through the following result:

∀p, q ∈ (Z,+) it is fulfilled that ψ−1(p + q) = A◦(p+q)
α = A◦p

α ◦ A◦q
α = ψ−1(p) ◦ ψ−1(q). (39)

Therefore, from the previous results, it follows that the function ψ defines an isomor-
phism between the sets m G(Aα(oα

x)) and (Z,+).

Therefore, from the previous theorem, it is feasible to obtain the following corollary:

Corollary 1. Let oα
x be a fractional operator such that oα

x ∈ m MO∞,u
x,α (h) and let (Z,+) be the

group of integers under the addition. Therefore, considering the modified Hadamard product given
by (29) and some subgroup H of the group (Z,+), it is feasible to define the following set of fractional
matrix operators

m G(Aα(oα
x),H) :=

{
A◦r

α = Aα(orα
x ) : r ∈ H and A◦r

α =
(
[A◦r

α ]jk

)
:= (orα

k )
}

, (40)

which corresponds to a subgroup of the group generated by the operator Aα(oα
x), that is,

m G(Aα(oα
x),H) ≤ m G(Aα(oα

x)). (41)

Example 1. Let Zn be the set of residual classes less than a positive integer n. Therefore, considering
a fractional operator oα

x ∈ m MO∞,u
x,α (h) and the set Z14, it is feasible to define, under the modified

Hadamard product given by (29), the following Abelian group of fractional matrix operators

m G(Aα(oα
x),Z14) =

{
A◦0

α , A◦1
α , A◦2

α , A◦3
α , A◦4

α , A◦5
α , A◦6

α , A◦7
α , A◦8

α , A◦9
α , A◦10

α , A◦11
α , A◦12

α , A◦13
α

}
. (42)
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Furthermore, all possible combinations of the elements of the group are summarized in the
following Cayley table:

◦ A◦0
α A◦1

α A◦2
α A◦3

α A◦4
α A◦5

α A◦6
α A◦7

α A◦8
α A◦9

α A◦10
α A◦11

α A◦12
α A◦13

α

A◦0
α A◦0

α A◦1
α A◦2

α A◦3
α A◦4

α A◦5
α A◦6

α A◦7
α A◦8

α A◦9
α A◦10

α A◦11
α A◦12

α A◦13
α

A◦1
α A◦1

α A◦2
α A◦3

α A◦4
α A◦5

α A◦6
α A◦7

α A◦8
α A◦9

α A◦10
α A◦11

α A◦12
α A◦13

α A◦0
α

A◦2
α A◦2

α A◦3
α A◦4

α A◦5
α A◦6

α A◦7
α A◦8

α A◦9
α A◦10

α A◦11
α A◦12

α A◦13
α A◦0

α A◦1
α

A◦3
α A◦3

α A◦4
α A◦5

α A◦6
α A◦7

α A◦8
α A◦9

α A◦10
α A◦11

α A◦12
α A◦13

α A◦0
α A◦1

α A◦2
α

A◦4
α A◦4

α A◦5
α A◦6

α A◦7
α A◦8

α A◦9
α A◦10

α A◦11
α A◦12

α A◦13
α A◦0

α A◦1
α A◦2

α A◦3
α

A◦5
α A◦5

α A◦6
α A◦7

α A◦8
α A◦9

α A◦10
α A◦11

α A◦12
α A◦13

α A◦0
α A◦1

α A◦2
α A◦3

α A◦4
α

A◦6
α A◦6

α A◦7
α A◦8

α A◦9
α A◦10

α A◦11
α A◦12

α A◦13
α A◦0

α A◦1
α A◦2

α A◦3
α A◦4

α A◦5
α

A◦7
α A◦7

α A◦8
α A◦9

α A◦10
α A◦11

α A◦12
α A◦13

α A◦0
α A◦1

α A◦2
α A◦3

α A◦4
α A◦5

α A◦6
α

A◦8
α A◦8

α A◦9
α A◦10

α A◦11
α A◦12

α A◦13
α A◦0

α A◦1
α A◦2

α A◦3
α A◦4

α A◦5
α A◦6

α A◦7
α

A◦9
α A◦9

α A◦10
α A◦11

α A◦12
α A◦13

α A◦0
α A◦1

α A◦2
α A◦3

α A◦4
α A◦5

α A◦6
α A◦7

α A◦8
α

A◦10
α A◦10

α A◦11
α A◦12

α A◦13
α A◦0

α A◦1
α A◦2

α A◦3
α A◦4

α A◦5
α A◦6

α A◦7
α A◦8

α A◦9
α

A◦11
α A◦11

α A◦12
α A◦13

α A◦0
α A◦1

α A◦2
α A◦3

α A◦4
α A◦5

α A◦6
α A◦7

α A◦8
α A◦9

α A◦10
α

A◦12
α A◦12

α A◦13
α A◦0

α A◦1
α A◦2

α A◦3
α A◦4

α A◦5
α A◦6

α A◦7
α A◦8

α A◦9
α A◦10

α A◦11
α

A◦13
α A◦13

α A◦0
α A◦1

α A◦2
α A◦3

α A◦4
α A◦5

α A◦6
α A◦7

α A◦8
α A◦9

α A◦10
α A◦11

α A◦12
α

It is worth mentioning that the Corollary 1 allows generating groups of fractional
operators under other operations. For example, considering the following operation

A◦r
α ∗ A◦s

α = A◦rs
α , (43)

it is feasible to obtain the following corollaries:

Corollary 2. Let Mn be the set of positive residual classes corresponding to the coprimes less than
a positive integer n. Therefore, for each fractional operator oα

x ∈ m MO∞,u
x,α (h), it is feasible to define

the following Abelian group of fractional matrix operators under the operation (43):

m G∗(Aα(oα
x),Mn) :=

{
A◦r

α = Aα(orα
x ) : r ∈ Mn and A◦r

α =
(
[A◦r

α ]jk

)
:= (orα

k )
}

. (44)

Example 2. Let oα
x be a fractional operator such that oα

x ∈ m MO∞,u
x,α (h). Therefore, considering the

set M14, it is feasible to define, under the operation (43), the following Abelian group of fractional
matrix operators

m G∗(Aα(oα
x),M14) =

{
A◦1

α , A◦3
α , A◦5

α , A◦9
α , A◦11

α , A◦13
α

}
. (45)

Furthermore, all possible combinations of the elements of the group are summarized in the
following Cayley table:
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∗ A◦1
α A◦3

α A◦5
α A◦9

α A◦11
α A◦13

α

A◦1
α A◦1

α A◦3
α A◦5

α A◦9
α A◦11

α A◦13
α

A◦3
α A◦3

α A◦9
α A◦1

α A◦13
α A◦5

α A◦11
α

A◦5
α A◦5

α A◦1
α A◦11

α A◦3
α A◦13

α A◦9
α

A◦9
α A◦9

α A◦13
α A◦3

α A◦11
α A◦1

α A◦5
α

A◦11
α A◦11

α A◦5
α A◦13

α A◦1
α A◦9

α A◦3
α

A◦13
α A◦13

α A◦11
α A◦9

α A◦5
α A◦3

α A◦1
α

Corollary 3. Let Z+
p be the set of positive residual classes less than p, with p a prime number.

Therefore, for each fractional operator oα
x ∈ m MO∞,u

x,α (h), it is feasible to define the following Abelian
group of fractional matrix operators under the operation (43):

m G∗
(

Aα(oα
x),Z

+
p

)
:=

{
A◦r

α = Aα(orα
x ) : r ∈ Z+

p and A◦r
α =

(
[A◦r

α ]jk

)
:= (orα

k )
}

. (46)

Example 3. Let oα
x be a fractional operator such that oα

x ∈ m MO∞,u
x,α (h). Therefore, considering

the set Z+
13, it is feasible to define, under the operation (43), the following Abelian group of fractional

matrix operators

m G∗(Aα(oα
x),Z

+
13
)
=

{
A◦1

α , A◦2
α , A◦3

α , A◦4
α , A◦5

α , A◦6
α , A◦7

α , A◦8
α , A◦9

α , A◦10
α , A◦11

α , A◦12
α

}
. (47)

Furthermore, all possible combinations of the elements of the group are summarized in the
following Cayley table:

∗ A◦1
α A◦2

α A◦3
α A◦4

α A◦5
α A◦6

α A◦7
α A◦8

α A◦9
α A◦10

α A◦11
α A◦12

α

A◦1
α A◦1

α A◦2
α A◦3

α A◦4
α A◦5

α A◦6
α A◦7

α A◦8
α A◦9

α A◦10
α A◦11

α A◦12
α

A◦2
α A◦2

α A◦4
α A◦6

α A◦8
α A◦10

α A◦12
α A◦1

α A◦3
α A◦5

α A◦7
α A◦9

α A◦11
α

A◦3
α A◦3

α A◦6
α A◦9

α A◦12
α A◦2

α A◦5
α A◦8

α A◦11
α A◦1

α A◦4
α A◦7

α A◦10
α

A◦4
α A◦4

α A◦8
α A◦12

α A◦3
α A◦7

α A◦11
α A◦2

α A◦6
α A◦10

α A◦1
α A◦5

α A◦9
α

A◦5
α A◦5

α A◦10
α A◦2

α A◦7
α A◦12

α A◦4
α A◦9

α A◦1
α A◦6

α A◦11
α A◦3

α A◦8
α

A◦6
α A◦6

α A◦12
α A◦5

α A◦11
α A◦4

α A◦10
α A◦3

α A◦9
α A◦2

α A◦8
α A◦1

α A◦7
α

A◦7
α A◦7

α A◦1
α A◦8

α A◦2
α A◦9

α A◦3
α A◦10

α A◦4
α A◦11

α A◦5
α A◦12

α A◦6
α

A◦8
α A◦8

α A◦3
α A◦11

α A◦6
α A◦1

α A◦9
α A◦4

α A◦12
α A◦7

α A◦2
α A◦10

α A◦5
α

A◦9
α A◦9

α A◦5
α A◦1

α A◦10
α A◦6

α A◦2
α A◦11

α A◦7
α A◦3

α A◦12
α A◦8

α A◦4
α

A◦10
α A◦10

α A◦7
α A◦4

α A◦1
α A◦11

α A◦8
α A◦5

α A◦2
α A◦12

α A◦9
α A◦6

α A◦3
α

A◦11
α A◦11

α A◦9
α A◦7

α A◦5
α A◦3

α A◦1
α A◦12

α A◦10
α A◦8

α A◦6
α A◦4

α A◦2
α

A◦12
α A◦12

α A◦11
α A◦10

α A◦9
α A◦8

α A◦7
α A◦6

α A◦5
α A◦4

α A◦3
α A◦2

α A◦1
α

Finally, it should be noted that when n is a prime number, the following result
is obtained:

m G∗(Aα(oα
x),Mn) = m G∗(Aα(oα

x),Z
+
n
)
. (48)

4. Conclusions

Although this article presents one way to define groups of fractional operators using
sets related to the set of integer numbers, it would be feasible to extend the results using
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other sets of numbers that allow defining Abelian groups, as is the case of the set of rational
numbers and the set of real numbers, being feasible to define the following groups:

m G(Aα(oα
x),Q) and m G(Aα(oα

x),R). (49)

Furthermore, from the groups generated by the equation (30), it is feasible define the
following group of fractional matrix operators [42,44]:

m GFIM(α) :=
⋃

oα
x∈m MO∞,u

x,α (h)
m G(Aα(oα

x)), (50)

in which it is assumed that through combinations of the horizontal and vertical type
of the modified Hadamard product given by the equation (29), the fractional operators
are reduced to their minimum expression, allowing to obtain ∀A◦p

i,α , A◦q
j,α, A◦r

j,α ∈ m GFIM(α),
with i �= j, the following result:(

A◦p
i,α ◦ A◦q

j,α

)
◦ A◦r

j,α = A◦p
i,α ◦

(
A◦q

j,α ◦ A◦r
j,α

)
= A◦1

k,α := Ak,α

(
opα

i,x ◦ o(q+r)α
j,x

)
, p, q, r ∈ Z \ {0}. (51)

As a consequence, the following result is obtained:

∀A◦1
k,α ∈ m GFIM(α) such that Ak,α

(
oα

k,x

)
= Ak,α

(
opα

i,x ◦ oqα
j,x

)
∃A◦r

k,α = A◦(r−1)
k,α ◦ A◦1

k,α = Ak,α

(
orpα

i,x ◦ orqα
j,x

)
. (52)

Therefore, if ΦFIM denotes the iteration function of some fractional iterative
method [43,44], it is feasible to obtain the following result:

Let α0 ∈ R \Z ⇒ ∀A◦1
α0

∈ m GFIM(α) ∃ΦFIM = ΦFIM(Aα0) ∴ ∀Aα0 ∃{ΦFIM(Aα) : α ∈ R \Z}. (53)

Finally, it is worth mentioning that it is feasible to develop more complex algebraic
structures of fractional operators using the presented results. For example, without loss
of generality, considering the modified Hadamard product (29) and the operation (43),
a commutative and unitary ring of fractional operators may be defined as follows

m R(Aα(oα
x),R) := (m G(Aα(oα

x),R), ◦, ∗), (54)

in which it is not difficult to verify the following properties:

1. The pair (m G(Aα(oα
x),R), ◦) is an Abelian group.

2. The pair (m G(Aα(oα
x),R), ∗) is a commutative monoid.

3. ∀A◦p
α , A◦q

α , A◦r
α ∈ m R(Aα(oα

x),R), the operation ∗ is distributive with respect to the
operation ◦, that is,⎧⎨⎩ A◦p

α ∗
(

A◦q
α ◦ A◦r

α

)
=

(
A◦p

α ∗ A◦q
α

)
◦
(

A◦p
α ∗ A◦r

α

)
(

A◦p
α ◦ A◦q

α

)
∗ A◦r

α =
(

A◦p
α ∗ A◦r

α

)
◦
(

A◦q
α ∗ A◦r

α

) . (55)
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