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Preface to ”Applications of Computational

Intelligence”

Computational Intelligence (CI) is the theory, design, application, and development of

biologically and linguistically motivated computational paradigms. CI mainly includes three parts:

neural networks, fuzzy systems, and evolutionary computation. CI has been widely used to solve

complex problems in various domains, such as image processing, point cloud processing, and

classification. Due to the great advantages of CI in dealing with practical application problems,

increasing numbers of researchers have focused on the theoretical research and application of CI in

recent years. This book, consisting of 20 articles written by research experts on topics of interest,

reports the latest research on the applications of computational intelligence. Many novel and

interesting methods are introduced, which provide guiding significance for the further development

of computational intelligence.

Yue Wu, Kai Qin, Maoguo Gong, and Qiguang Miao

Editors
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Abstract: The clinical diagnosis of gastrointestinal stromal tumors (GISTs) requires time-consuming
tumor localization by physicians, while automated detection of GIST can help physicians develop
timely treatment plans. Existing GIST detection methods based on fully supervised deep learning
require a large amount of labeled data for the model training, but the acquisition of labeled data
is often time-consuming and labor-intensive, hindering the optimization of the model. However,
the semi-supervised learning method can perform better than the fully supervised learning method
with only a small amount of labeled data because of the full use of unlabeled data, which effectively
compensates for the lack of labeled data. Therefore, we propose a semi-supervised gastrointestinal
stromal tumor (GIST) detection method based on self-training using the new selection criterion
to guarantee the quality of pseudo-labels and adding the pseudo-labeled data to the training set
together with the labeled data after linear mixing. In addition, we introduce the improved Faster
RCNN with the multiscale module and the feature enhancement module (FEM) for semi-supervised
GIST detection. The multiscale module and the FEM can better fit the characteristics of GIST and
obtain better detection results. The experiment results showed that our approach achieved the best
performance on our GIST image dataset with the joint optimization of the self-training framework,
the multiscale module, and the FEM.

Keywords: gastrointestinal stromal tumor; semi-supervised learning; self-training; object detection;
computational intelligence

1. Introduction

A gastrointestinal stromal tumor (GIST) is a highly aggressive gastrointestinal mes-
enchymal tumor, mainly diagnosed with image examination. GIST detection on abdominal
CT images helps acquire the location of tumors, formulate treatment plans in time, and pre-
vent distant metastasis of tumors. Currently, computer vision technology based on the
neural network has been widely used in a variety of lesion detection tasks, including
the diagnosis of pulmonary tuberculosis, breast cancer, and other lesions. Unlike lesion
detection in other organs, the small intestine has a motor function, so the shape of the GIST
varies widely, leading to low discriminability and many difficulties for GIST detection.
Therefore, there are few studies related to the detection and identification of GIST, and exist-
ing techniques still use common object detection algorithms (Faster R-CNN [1], YOLO [2],

Electronics 2023, 12, 904. https://doi.org/10.3390/electronics12040904 https://www.mdpi.com/journal/electronics1
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Cascade R-CNN [3], RetinaNet [4], etc.). These fully supervised learning methods heavily
rely on labeled data for the parameter optimization, but the medical images must be labeled
by doctors with clinical experience, which requires considerable resources. As a result,
the detection results of neural networks are affected by the lack of labeled data. Meanwhile,
a substantial number of unlabeled images are stored in the hospital’s medical system.
Compared with the high cost of manually labeling them, it is much easier to retrieve these
images. To solve the problem of unsatisfactory training results caused by the imbalance
between the number of labeled and unlabeled images, we use the semi-supervised learning
method to train the model.

With limited labeled data, the semi-supervised learning (SSL) method can improve
the performance of the model by effectively using a tremendous amount of unlabeled data
to optimize the model while reducing the dependence on labeled data. Generally, the SSL
method can be divided into two steps: (a) training on a small amount of labeled data to ob-
tain model A and predicting pseudo-labels of unlabeled data through A; and (b) retraining
the model on a new dataset consisting of pseudo-labeled and labeled data to improve the
performance of the model. Since the pseudo-labels of the unlabeled data are generated with
the model prediction, there may be some mistakes. Some researchers [5,6] have used self-
integration methods to improve the quality of pseudo-labels and enhance the robustness of
the model. In addition, there are also algorithms [7,8] that learn complementary informa-
tion by cotraining to avoid confirmation bias and guarantee the accuracy of pseudo-labels.
In order to prevent wrong pseudo-labels from producing errors that continue to iterate
and affect the performance of the model, we propose a self-training-based SSL method
(Figure 1) that uses the dual constraints of dynamic threshold and IOU to enhance the
quality of pseudo-labels. The dynamic threshold constraint means setting a minimum
threshold for the confidence of the pseudo-label, using a higher confidence threshold at the
beginning of the training and gradually decreasing it as the training progresses. The IOU
constraint means that the intersection over union (IOU) between multiple pseudo-labels of
different transformed images should be greater than the set threshold; that is, after the data
augmentation on the unlabeled image is completed, the shape and the position of the new
candidate bounding box should maintain a certain immutability.

Additionally, to fundamentally ensure the quality of pseudo-labels, we improved the
popular two-stage object detector (Faster R-CNN [1]) and applied the Improved Faster R-
CNN to pseudo-label generation. Most of the traditional object detection algorithms used in
existing GIST detection techniques are designed for object detection tasks in natural images
and perform well on salient object detection. However, GIST has an unclear boundary and
inconspicuous features in abdominal CT, and these algorithms cannot achieve good results.
Compared with these techniques, Improved Faster R-CNN makes adjustments targeted
to the morphological characteristics of GIST. In Improved Faster R-CNN, the multiscale
module and the feature enhancement module (FEM) designed for the characteristics of
GIST have been added. The newly added module can better detect GISTs of different scales
in complex backgrounds, which helps to improve the accuracy of pseudo-labels. Finally,
Mixup [9] can be used to augment the true labels of the labeled data and the pseudo-labels
of the unlabeled data. The generalization capability of the network can be significantly
enhanced by linearly mixing these samples.
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Figure 1. Overview of the self-training method. In each iteration, the predictions of the Improved
Faster R-CNN on unlabeled data are augmented and then filtered out with the IOU constraint and
the dynamic threshold together to generate pseudo-labels. The labeled data and the pseudo-labeled
data are linearly mixed using Mixup, and the resulting new dataset is used for the next iteration. The
data augmentation methods in the figure are (a) horizontal flip, (b) vertical flip, (c) rotation, and (d)
affine transformation; one is randomly selected as the data augmentation method and repeated k
times during the experiment.

In summary, our main contributions are as follows: (1) We propose a detection algo-
rithm (Improved Faster R-CNN) for GIST detection and use it as the benchmark model for
the SSL method. (2) We propose a novel self-training-based SSL method for GIST detection.
(3) Extensive experiments demonstrated that the performance of the proposed SSL method
is significantly improved compared to the fully supervised learning method.

2. Related Work

2.1. Lesion Detection

Lesion detection is an important computer vision task in the field of CAD (computer-
aided diagnosis) and has received considerable attention in recent years. Many scholars
have designed excellent object detectors based on convolutional neural networks (CNNs)
for lesion detection. Cireşan et al. [10] added max-pooling layer and postprocessing
strategies to the CNN for mitosis detection on mammary gland histological images. Setio
et al. [11] proposed a multiview convolutional network that combines the respective ad-
vantages of three detectors for pulmonary nodule detection. Rajpurkar et al. [12] improved
the dense convolutional network by replacing the fully connected layer with a single
output layer and applying a nonlinear sigmoid activation function to achieve excellent
performance on the task of pneumonia detection on chest radiographs. Sedik et al. [13]
constructed a deep learning architecture for COVID-19 detection on CT images and X-ray
films based on CNN and ConvLSTM, which included convolutional, pooling, and ConvL-
STM layers, and the multilayered structure effectively reduced the overfitting errors and
enhanced the detection accuracy. Although artificial intelligence technologies have been
widely used in the field of CAD, there is still little research on GIST detection. The small
intestine moves by its nature, and the GIST appears with considerable morphological differ-
ences in abdominal CT, resulting in difficulty in improving the accuracy of GIST detection.
At present, only our team has carried out this research. Fei et al. [14] have combined a
variety of classical fully supervised detection algorithms to improve the accuracy of GIST
detection, but the theoretical innovation of this method needs to be improved. In addition,
the method requires training on a large amount of accurate manually annotated data, which
is expensive and time-consuming to acquire in the medical imaging domain. In contrast

3
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to previous methods that solely train models on labeled data, our SSL approach trains an
object detector on both labeled and unlabeled data.

2.2. Semi-Supervised Object Detection

Semi-supervised learning methods can leverage latent knowledge from unlabeled data
to facilitate model learning with limited labeled data [15]. Existing SSL methods consist
of two categories: consistency-based methods and self-training-based methods. The main
idea of the consistency-based [16–18] approach is that for any input data, its output should
be consistent with the original output when it is disturbed by less noise. Self-training-based
approaches improve the performance of SSL by filtering noisy labels using a predefined
threshold and adding the retained pseudo-labels into model retraining. Lee et al. [19]
used the deep neural network to train both labeled and unlabeled data simultaneously
and pioneered the method of using pseudo-labels for training. Iscen et al. [20] used a
transduction label propagation method based on the prevalence hypothesis in predicting
pseudo-labels and achieved transduction learning by calculating the similarity matrix
between the labeled and unlabeled data. Qizhe Xie et al. [21] improved the quality of
pseudo-labels through repeated teacher–student model iterations to enhance the robustness
and accuracy of self-training. Considering the uncertainty of the teacher network in the
self-training method, Mukherjee et al. [22] chose the Bayesian network to estimate the
uncertainty of pseudo-labels, thereby reducing the influence of noisy labels on the model.

The SSL method has also been widely used in the object detection field, and many
researchers are committed to training high-performance object detectors with a limited
amount of labeled data and a large amount of unlabeled data. Jeong et al. [23] proposed
the CSD method based on consistency regularization, which calculates the consistency
loss between the prediction on the original unlabeled image and the flipped unlabeled
image to achieve the aim of fully utilizing unlabeled data. Sohn et al. [24] combined
both self-training and consistency regularization to propose the STAC method, which first
eliminates some low-confidence pseudo-labels obtained from self-training by threshold
screening and calculates unsupervised loss as well as a supervised loss while training
on the augmented unlabeled data together with labeled data. Qize et al. [25] performed
self-training object detection based on the mean teacher model, using the nonmaximum
suppression (NMS) method to fuse the detection results from different iteration periods to
ensure the stability of the detection results during the training process. Moreover, the use of
double-head can effectively utilize the complementary information and improve the quality
of the pseudo-labels. To address the problem of the imbalance between the foreground
and background, Fangyuan et al. [26] proposed a self-training method of adaptive class
rebalancing that stores and extracts foreground instances and pastes them into random
positions of training samples, increasing the proportion of foreground instances. They also
designed a two-stage filter to weed out unreliable pseudo labels.

Although the SSL method for object detection has garnered a degree of success,
the following problems in SSL-based GIST detection still remain: (1) The current semi-
supervised object detection methods only employ basic object detection algorithms, such
as Faster R-CNN [1]. However, given that GIST does not have clear boundary features in
the CT image and has a large degree of variation, it is necessary to use an object detection
algorithm that is more suitable for these characteristics. (2) The current object detection
approach uses self-training without taking into account erroneous pseudo-labels, which
results in overfitting to the wrong pseudo-labels and a decrease in the model’s accuracy.
As a result, we have built our SSL framework using the Improved Faster R-CNN with
the multiscale module and the FEM. We then added the dynamic threshold and the IOU
constraint in the self-training process to increase the accuracy of pseudo-labels, ensuring
that the following model iterations perform better.

4
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3. Method

With a severe lack of labeled data, using limited labeled data to improve model
performance has become a significant problem in GIST detection. To fully utilize all data,
including unlabeled data, we propose an SSL method based on self-training and design
Improved Faster R-CNN as the detection algorithm according to the characteristics of GIST.
The Improved Faster R-CNN containing the multiscale module and the FEM can better
integrate multidimensional feature information and combine deep semantic information
with shallow location information. We further developed a new pseudo-label selection
strategy to improve the robustness of the model. By applying the dynamic threshold
constraint and the IOU constraint to the prediction results of unlabeled data, the reliable
pseudo-labels can be retained for subsequent training. In the subsequent sections, we
describe improvements to the Faster R-CNN by introducing two new modules aimed
at characterizing GISTs (Section 3.1). Next, we introduce a novel pseudo-label selection
strategy (Section 3.2) and outline our self-training approach (Section 3.3).

3.1. Improved Faster R-CNN

We optimized the Faster R-CNN to improve the accuracy of GIST detection and
ensure the quality of pseudo-labels; the network structure is shown in Figure 2. In this
paper, two optimization modules are proposed: (1) Given the large variability of GISTs,
a multiscale module was developed to use feature information of various levels. (2) The
FEM was introduced to combine channel and spatial dimension information for the complex
background of GIST images.

Figure 2. The architecture of the Improved Faster R-CNN which consists of several main components:
ResNet, the multiscale module, FEM, RPN, and ROI. The input images are processed using ResNet
to obtain the feature maps of each layer, and the results are combined using the multiscale module
to feed into the FEM. The feature maps enhanced with the FEM are fed into the RPN for anchor
proposal, and the ROI then collects the input feature maps and proposals to extract the proposal
feature maps into the full connected layer.

One of the challenges of GIST detection is that the object scale varies excessively. Using
the single-layer feature map for prediction may affect the accuracy of the result due to
the limited information, so the feature maps at different levels should be combined for
detection. The traditional feature pyramid network (FPN) [27] can fuse information of the
low-level with that of the high-level, but there are still some problems: (1) The transmission
path between the low-level features and high-level features is too long, which increases
the difficulty of access. (2) Although FPN utilizes the information of different layers, each
layer only contains the information of the current layer and higher layers. The lack of
location information of lower levels is not conducive to small target detection. In response
to the problems in the FPN, we improve it by adding a bottom-up connection based on
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the original path. When downsampling the feature map of the Ni layer, M2 and Mi+1 are
bilinearly interpolated to resize to the same scale (the size of the feature map of the Ni
layer), and then the fused results are combined with the feature map of the Ni layer to
obtain the feature map of the Ni+1 layer. We choose the Inception [28] convolution block
for feature map fusion to solve the problem of excessive computation caused by a large
convolution kernel. The improved FPN structure enables the feature map of each layer
to contain both the semantic information of the deeper layers and the rich localization
information of the first layer, assisting the model in performing better detection.

Another challenge of GIST detection is the difficulty of distinguishing the foreground
from the background in CT images. The lesion area shares certain similarities with the
surrounding background, and it is hard for the basic model to separate the object, so the
FEM is introduced. The feature map obtained through convolution only contains the spatial
information in the local receptive field and lacks the connection between each channel.
If the information of each channel is only processed globally, the information interaction
within the space is missed. Our FEM uses both a channel attention mechanism and a spatial
attention mechanism to enhance feature representation, highlight relevant features of the
GIST lesion area, and suppress background noise, thus enhancing the feature extraction
ability of the network.

We use the channel attention mechanism (CAM) [29] to model the correlation between
each channel and obtain the weight of each channel. The process can be written as follows:

MLP1 = Conv1/r
1 (Relu(Convr

1(Pmax(F)))), (1)

MLP1 = Conv1/r
1
(

Relu
(
Convr

1
(

Pavg(F)
)))

, (2)

CA(X) = σ(MLP1 + MLP2), (3)

where F represents the original feature map, Pmax and Pavg denote the max pooling and the
average pooling, Conv1/r

1 denotes that the convolution kernel size is i × i and the number
of channels becomes 1/r times of the original, and σ is the Sigmoid.

The spatial attention mechanism (SAM) [29] is used to model the correlation of the
spatial position on the feature map of each channel and calculate its weight. The feature
map is calculated as follows:

SA(F) = σ(Conv7
(

Pmax(F)‖Pavg(F)
)
, (4)

where Conv7 denotes that the convolution kernel size is 7 × 7, and ‖ represents merging in
the channel dimension.

The FEM refers to BAM [30] and establishes a parallel connection between the CAM
and the SAM. Finally, the calculating process can be expressed as follows:

F′′ = FEM(F) = F + F × F′ (5)

= F + F × σ(expand(CA(F))× expand(SA(F))).

3.2. Pseudo-Label Selection Strategy

The correctness of pseudo-labels is crucial for subsequent training iterations. If in-
correct pseudo-labels are added to the dataset, this will hinder the optimization of model
parameters. To this end, we designed a pseudo-label selection strategy based on the dy-
namic threshold and the IOU constraint, which can effectively screen out pseudo-labels
with a higher correct probability and help the model converge.

The method of selecting pseudo-labels by using an unchanging threshold has numer-
ous drawbacks. If the threshold is set too high, the model will filter out the candidate
bounding box in the target area and prevent it from being added to the pseudo-label set,
leading to a large number of false negative examples in the subsequent training phase.
In contrast, if the threshold is set too low, numerous candidate bounding boxes in the
nontarget area will be added to the pseudo-label set, thus generating many false-positive
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examples in the next round of training. In fact, as training progresses, the network’s de-
tecting ability gradually advances, and the validity of the generated pseudo-labels rises.
Therefore, the threshold value used to choose the pseudo-label should be dynamic. To avoid
incorrect pseudo-labels from influencing model training, we set a high selection threshold
at the early stage of training. As training proceeds, we gradually lower this threshold to
prevent correct pseudo-labels from being eliminated. Selecting pseudo-labels through the
dynamic threshold makes more sense. The value of threshold in the qth round is defined as
follows:

Tq =

{
0.95, q = 1
Tq−1 − (q − 1)× 0.05, q > 1

. (6)

Based on the dynamic threshold, we created a new IOU constraint. The IOU constraint
sets the condition for the retention of pseudo-labels. Only when the IOU between the
detection results of various transformed images is higher than 0.9 do we regard the bound-
ing box as the pseudo-label. Figure 3 shows the results after applying the IOU constraint.
By comparing the original results with the true label, it can be found that the detection box
on the right is a false-positive example, which will affect the optimization of the model if it
is kept as a pseudo-label. After the IOU constraint is applied, the false-positive bounding
box can be successfully excluded, which further ensures the quality of the pseudo labels.

Figure 3. The effect of IOU constraint (the orange bounding box in the figure represents the predicted
box, and the green bounding box represents the actual labeled box).

By synthesizing the dynamic threshold and the IOU constraint, the selecting criteria
of pseudo-labels in the qth round can be expressed as follows:

Pj
i =

{
1, f j

i > Tq and IOU > 0.9
0, otherwise

, (7)
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where i and j denotes the jth bounding box of the ith image, f j
i is the confidence of the

bounding box, and Pj
i = 1 represents that the pseudo-label corresponding to this bounding

box is retained, with the opposite being discarded.

3.3. Self-Training Method

In this paper, we propose a semi-supervised GIST detection algorithm based on the
self-training method, which aims to improve the effectiveness of GIST detection with a
small amount of labeled data and a large amount of unlabeled data. The whole procedure
of the GIST detection is shown in Algorithm 1.

Algorithm 1 Procedure of Semi-Supervised GIST Detection.

Input: Labeled data, L; Unlabeled data, U; Data augmentation strategies T in
{t1, t2, . . . , tm}

Output: Trainable parameters of network, W
1: Initialize hyperparameters: rounds of iteration Q, times of data augmentation K, thresh-

old P1
2: Pretrain the model on L to get the initial parameters W
3: for q = 1 : Q do
4: for k = 1 : K do
5: Use W to predict on ti(U)
6: end for
7: Pq ← Pq − (q − 1)× 0.05
8: Filter the results according to (7) to obtain the set of pseudo-labels
9: Reassemble to acquire the new training set: Ln = L ∪ R ∪ (Mixup(L, R))

10: Retrain the model on Ln to acquire the new parameters W
11: end for
12: Return W

For the labeled data, the labels are the actual bounding boxes, and the confidence is set
to 1. We first train with the labeled data to obtain the initial model and then apply different
data augmentation strategies to the unlabeled data following the data distillation method
proposed by Radosavovic et al. [31].

The data augmentation strategies used in this paper mainly include flip, rotation,
and affine transformation. When the flip is chosen as the data augmentation method,
the corresponding detection result needs to be flipped as well. For the affine transformation,
the set translation range does not exceed 10 pixels, and the position of the bounding box
does not vary greatly, so it can remain unchanged. For the rotation operation, the given
rotation angle is an integer multiple of 90◦ or less than 10◦. When the angle does not exceed
10◦, the position of the bounding box stays unchanged, referring to the affine transformation
operation; when the image is rotated 90◦ clockwise, the coordinates of the corresponding
bounding box need to be rotated 90◦ counterclockwise, and so on for other angles.

The initial model detects the images after data augmentation 1 to k times respectively,
and all the results are fused to obtain the pseudo-labels. The pseudo-labels generated by
prediction may have some errors. For this reason, we use the dynamic threshold and the
IOU constraint to enhance the quality of pseudo-labels. The dynamic threshold refers to
a threshold that changes dynamically for the confidence of the pseudo-label, utilizing a
higher confidence threshold in the early stages of training and progressively lowering
the threshold as training progresses. The IOU constraint is a constraint on the overlap
area between the bounding boxes predicted by the initial model on the images after data
augmentation 1 to k times. After the transformation, the bounding box is used as a pseudo-
label for that image only if it appears on all images with a similar position and size.

After clean pseudo-labels are filtered out through the above-mentioned constraint
strategies, Mixup [9] is used to linearly mix the labeled data and the pseudo-labeled data.
The new samples acquired after mixing are then used once more for the training, which
can substantially enhance the network’s generalization capacity.

8
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Mixup is a crucial part of the MixMatch [16] framework, which enables the model
to obtain better generalization performance by linearly interpolating pairwise training
samples. The traditional Mixup is designed for image classification tasks, where each
image is associated with one class label. The generated image x̃ and its label ỹ can be
defined as follows:

x̂ = λx + (1 − λ)x′, (8)

ŷ = λy + (1 − λ)y′, (9)

where x and x′ denote two different images, y and y′, respectively, denote their probability
of the corresponding class, λ ∈ [0, 1].

Since the data used in this paper are annotated with the bounding box of the lesion,
we opted for image-level Mixup rather than classification Mixup. The generated label x̂i
and its confidence ŷi in image-level Mixup can be calculated as follows:

λ̃ = max(λ, 1 − λ), (10)

x̂i = λ̃xi +
(

1 − λ̃
)

x′i , ∀i, (11)

ŷi = λ̃yi +
(

1 − λ̃
)

y′i, ∀i, (12)

where x̂i denotes the ith label on the generated image x̂, x and x′ denote bounding boxes
on two different images, and y and y′, respectively, represent their confidence, λ ∈ [0, 1].

4. Results

We first conducted ablation studies to verify the effectiveness of the proposed module
and strategies. Furthermore, we designed experiments to demonstrate the superiority of
the Improved Faster R-CNN and the self-training method. Detailed information on the
configuration and results is presented in the following subsections.

4.1. Datasets and Experimental Settings

Datasets used for the fully supervised method (Improved Faster R-CNN) were the
following: The datasets used in the experiment were the CT images (a series of DICOM
format files obtained by doctors using related equipment to scan the patient’s abdomen)
of GIST patients provided by the hospital, including labeled images of 213 patients and
unlabeled images of 10 nonpatients. Each patient had between 50 and 80 slices, of which
only 3 to 10 slices contained GIST. The slices with lesions labeled by qualified medical
professionals were used as the datasets in this work. We used pydicom to convert DICOM
format files to png format images and finally obtained a total of 3735 images with GIST
annotated by doctors, comprising 526 ones with the small object, 2212 ones with the
medium object, and 997 ones with the large object. Of the labeled images, 70% were used
for training, and the remaining 30% of labeled images were added to the test set together
with 600 slices without lesions of 10 nonpatients. Table 1 displays the makeup of the
training set and test set for the GIST detection experiment.

Experimental settings in the fully supervised method (Improved Faster R-CNN) were
the following: The operating system was an Ubuntu 18.04, and the hardware environment
was an Intel(R) Core(TM) i9-10980XE CPU@3.00 GHz and two TITAN RTX 24 G graphics
cards. The programming language used was python3.7, and the framework was the
PyTorch-based mmdetection [32]. The backbone of the network was ResNet50, the number
of training epochs was 24, the batch size was 8, the optimizer was stochastic gradient
descent (SGD), the momentum was 0.9, and the initial learning rate was 0.01, which decays
at epochs 16 and 22.
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Table 1. Composition of the training set and test set.

Dataset Object Number of Slices

Training set Small-scale 413
Medium-scale 1412
Large-scale 789

Test set Small-scale 113
Medium-scale 800
Large-scale 208
Nonlesion 600

Datasets used for the semi-supervised method (Improved Faster R-CNN) were the
following: The semi-supervised method experiment requires a greater number of unlabeled
samples, so the datasets used for the fully supervised method were divided, using 3%, 5%,
10%, and 20% of the data as labeled samples, and the remaining data were unlabeled after
the labels were removed to form an unlabeled dataset together with the unlabeled data
of 54 patients. The specific division of the train set used for the semi-supervised method
is shown in Table 2. The test set was consistent with that used in the fully supervised
method experiment.

Table 2. Composition of the training set.

Proportion of Retained Labels Labeled Data Unlabeled Data

3% 90 6180
5% 150 6120
10% 300 5970
20% 600 5670

The experimental settings in the semi-supervised method were as follows: The hard-
ware environment was identical to that in the fully supervised method experiment, and the
Improved Faster R-CNN was used as the object detector for the experiments. The batch
size was set to 8, the optimizer was stochastic gradient descent (SGD), the initial learning
rate was 0.01, the momentum was 0.9, the rounds of iterations were 5, and the times of
data augmentation were 4. When training the network with only labeled data, the number
of epochs was set to 30 to obtain a better-performing initial model and higher-quality
pseudo-labels, with the learning rate decaying at epochs 18 and 26. For better comparison
with the experimental results of the fully supervised method, the experimental settings
when unlabeled data were used for training were the same as those in the fully supervised
learning experiments. The number of epochs was set to 24, and the learning rate decayed
at epochs 16 and 22.

The variables used in the self-training method experiments included Q and the thresh-
old. Q indicates the total number of training rounds after adding pseudo-labels, and a
higher value of Q indicates a higher proportion of pseudo-labels in the dataset used for
training. The pseudo-label selection threshold is one of the criteria used to select pseudo-
labels during the training process. If the score of the prediction result is lower than the
threshold, it cannot be used as a pseudo-label. The threshold value reflects the correctness
of the pseudo-label, and the larger the threshold value is set, the higher the correctness of
the pseudo-label.

4.2. Ablation Study on Improved Faster R-CNN

In this section, we describe the designed experiments conducted to demonstrate the
effectiveness and superiority of the multiscale module and FEM introduced in the Improved
Faster R-CNN. Table 3 lists the experimental results.
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Table 3. Investigation of different modules introduced to the Faster R-CNN.

Model FPN PAFPN Ours_FPN FEM APs APm APl AP

0.329 0.677 0.796 0.662
� 0.395 0.692 0.806 0.680

� 0.413 0.699 0.815 0.701
Faster R-CNN � 0.431 0.702 0.827 0.735

� 0.342 0.671 0.799 0.667
� � 0.401 0.695 0.811 0.682

� � 0.415 0.711 0.814 0.705
� � 0.435 0.704 0.829 0.739

The bold indicates the best result.

We respectively compare the effects of the Faster R-CNN without the multiscale
module, with the initial FPN [27] module, with the PAFPN [33] module, and with the
FPN module proposed in this paper, and the experimental results are shown in Table 3
and Figure 4. The data in the table show that the proposed FPN structure increases the
AP of the entire item by 0.073, and the AP at all scales is improved by the improved
FPN structure, with the most significant improvement for small objects. The suggested
multiscale approach surpasses other methods in the AP of both the overall objects and each
scale object, proving that the improved FPN is more effective for the task at hand.

(a) base (b) FPN (c) PAFPN (d) Ours_FPN

Figure 4. Visual comparison of different feature pyramid networks (the orange bounding box in the
figure represents the predicted box, and the green bounding box represents the actual labeled box).

As shown in Table 3 and Figure 5, we compared the test results using only the FEM,
using the FPN module together with the FEM, using the PAFPN module together with the
FEM, and using our FPN together with the FEM to verify the effectiveness of the FEM. As
evident from the results in the table, the AP is slightly improved when using only the FEM
without the multiscale module. Using FPN as the multiscale module, the FEM yields an
AP improvement of 0.002, using PAFPN 0.004, and using the proposed multiscale module
0.04. Overall, the AP goes from 0.662 to 0.739 with the addition of the multiscale module
and the FEM. Although the effect of the FEM on this task is not as significant as that of the
multiscale module, a series of comparative experiments also proved that this module can
improve the performance of the network.
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(a) base (b) FEM (c) FPN+FEM (d) PAFPN+FEM (e) Our_FPN+FEM

Figure 5. Visual comparison of the FEM combined with the different feature pyramid networks
(the orange bounding box in the figure represents the predicted box, and the green bounding box
represents the actual labeled box).

4.3. Ablatation Study on the Semi-Supervised Method

In this section, we detail the ablation experiments of the SSL method to demonstrate
that the strategies we introduced to the self-training method are effective in improving
the detection results related to the task defined in this paper. In addition, we explored the
impact of different settings on the model performance.

To verify the effectiveness of the self-training method used in this paper, we first
iteratively optimized the initial model using the original self-training method. We usd
the control variable method to test the two initialization hyperparameters, the number of
training rounds, and the threshold for pseudo-label selection. The experimental results are
shown in Table 4, where Q represents the total number of iterations. When Q = 0, only the
labeled data are used for training, and when Q > 0, pseudo-labels are gradually added to
the train set.

Table 4 shows that as Q rises, the detection accuracy declines. This phenomenon
indicates that in the GIST detection task, accuracy improvement cannot be achieved by
using the initial self-training method to create pseudo-labels. With the threshold held
constant, we observe that as the round of iteration increases, the accuracy of the training
set with 3% labeled data decreases faster than that with 20% labeled data. Because the
initial model trained with 3% labeled data is less accurate than that with 20% labeled
data, a greater number of false pseudo-labels are generated as the number of rounds
increases. In the same training set, we can find that the accuracy decreases faster when the
pseudo-label selection threshold is 0.5. Using a lower threshold leads to many bounding
boxes in nonlesion regions being added to the pseudo-label set, thus generating many
false-positive samples in the subsequent round. When the pseudo-label selection threshold
is 0.9, the accuracy of the model improves briefly, but as the number of iteration rounds
increases, the model tends to overfit the high-confidence data, resulting in a decrease in
accuracy. Therefore, if the accuracy of the initial model is too low or the threshold value
is not appropriate, there will be too many noisy labels. This result shows that using the
original self-training strategy reduces, rather than improves, the detection accuracy due to
noisy pseudo labels.
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Table 4. Investigation of the proportions of labelled data, the thresholds, and the rounds.

Training Set Threshold Q = 0 Q = 1 Q = 2 Q = 3

3% Labeled data 0.5 0.200 0.154 0.126 0.115
0.7 0.200 0.163 0.137 0.125
0.9 0.200 0.202 0.205 0.203

5% Labeled data 0.5 0.312 0.281 0.241 0.239
0.7 0.312 0.288 0.246 0.244
0.9 0.312 0.314 0.313 0.312

10% Labeled data 0.5 0.501 0.481 0.472 0.469
0.7 0.501 0.482 0.475 0.471
0.9 0.501 0.503 0.505 0.504

20% Labeled data 0.5 0.637 0.615 0.608 0.604
0.7 0.637 0.621 0.614 0.611
0.9 0.637 0.638 0.636 0.636

The bold indicates the best result.

Table 5 shows the the experimental findings on the 10% annotated dataset without
data augmentation, with data augmentation using horizontal flip, vertical flip, random
rotation, random noise, and affine transformation to confirm the impact of various data
augmentation approaches. The use of data augmentation techniques other than random
noise can increase the accuracy of detection. One of the four data augmentation techniques
(horizontal flip, vertical flip, rotation, and affine transformation) was chosen at random
in the experiment. There is some variation in the training outcomes because the data
augmentation method was chosen at random. As a result, the findings of the subsequent
experiments involving data augmentation were averaged after four rounds of training.

Table 5. Influence of using different data augmentation methods on the 10% labeled dataset.

Data Augmentation AP0.5 AP0.75 AP

Base 0.793 0.580 0.501
Horizontal flip 0.801 0.585 0.506
Verical flip 0.795 0.578 0.504
Random rotation 0.794 0.581 0.503
Affine transformation 0.794 0.582 0.502
Random noise 0.801 0.576 0.491

The underline indicates the worse results after using data augmentation.

To demonstrate the effectiveness of the dynamic threshold, the IOU constraint, and the
Mixup used in the self-training method, we present ablation studies on the 10% labeled data.
Table 6 shows that after applying the dynamic threshold and the IOU constraint, the results
are improved with iteration. In contrast, as the training iterates, the accuracy of the model
using the original self-training method declines. We can also observe that employing Mixup
results in a modest rise in AP, proving that Mixup enhances the network’s generalization
ability and improves the model’s performance.

Table 6. Investigation of using different strategies in the self-training method.

Model Dynamic Threshold IOU Constraint Mixup Q = 0 Q = 3 Q = 5

� 0.501 0.515 0.518
Improved � 0.501 0.517 0.518

Faster R-CNN � � 0.501 0.519 0.521
� � � 0.501 0.521 0.524

The bold indicates the best result.

4.4. Comparison Experiments and Analysis

In this section, we describe the series of comparative experiments conducted to prove
the superiority of the Improved Faster R-CNN and the proposed self-training method.
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As shown in Table 7 and Figure 6, the Improved Faster R-CNN outperformed the other
mainstream object detection algorithms, including the one-stage object detector, two-stage
object detector, and anchor-free object detector, which demonstrates that our network has
superiority by virtue of the multiscale module and the FEM.

Table 7. Comparison with the state-of-the-art object detection algorithms.

Model AP0.5 AP0.75 AP

Faster R-CNN [1] 0.923 0.771 0.662
Mask R-CNN [34] 0.933 0.802 0.702
Cascade R-CNN [2] 0.914 0.798 0.703
YOLOv3 [3] 0.933 0.474 0.484
RetinaNet [4] 0.922 0.783 0.673
FCOS [35] 0.860 0.543 0.516
Improved Faster R-CNN 0.961 0.802 0.739

The bold indicates the best result.

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Visual comparison of the different object detection algorithms including (a) Faster R-CNN,
(b) Mask R-CNN, (c) Cascade R-CNN, (d) YOLOv3, (e) RetinaNet, (f) FCOS, and (g) Improved Faster
R-CNN. The orange bounding box in the figure represents the predicted box, and the green bounding
box represents the actual labeled box.

In Table 8, we present the improvement in accuracy when using our semi-supervised
method compared to CSD [23], STAC [24], and Instant-teaching [36] on all datasets. It
demonstrates that the network has higher robustness for all datasets since the dynamic
threshold and the IOU constraint guarantee accurate pseudo-labels.
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Table 8. Comparison with state-of-the-art semi-supervised methods.

Dataset Method AP0.5 AP0.75 AP

3% labeled data CSD 0.283 0.227 0.198
STAC 0.291 0.231 0.191
Instant-teaching 0.288 0.246 0.197
Ours 0.301 0.257 0.204

5% labeled data CSD 0.574 0.346 0.351
STAC 0.597 0.319 0.348
Instant-teaching 0.574 0.300 0.341
Ours 0.587 0.412 0.355

10% labeled data CSD 0.715 0.511 0.499
STAC 0.759 0.587 0.508
Instant-teaching 0.781 0.604 0.504
Ours 0.835 0.611 0.524

20% labeled data CSD 0.891 0.721 0.639
STAC 0.901 0.701 0.638
Instant-teaching 0.913 0.728 0.648
Ours 0.932 0.731 0.659

The bold indicates the best result.

Finally, we compared the semi-supervised method with the fully supervised Improved
Faster R-CNN on the fully labeled dataset, using all the labeled data for initial training
and adding the unlabeled CT images of only 54 patients for the pseudo-label generation.
The experimental results are shown in Table 9 and Figure 7. The comparison reveals that the
semi-supervised method can use the information in the unlabeled data to produce detection
results that are marginally better than those of the fully supervised method after using
unlabeled data. It proves that the addition of unlabeled data has no impact on the model’s
performance. However, the improvement in the model performance is not substantial
because the unlabeled data used in this comparison experiment were insufficient and only
contained images of 54 patients.

(a)

(b)

Figure 7. Visual comparison of (a) the fully supervised method and (b) semi-supervised method.
The orange bounding box in the figure represents the predicted box, and the green bounding box
represents the actual labeled box.
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Table 9. Comparison with the fully supervised Improved Faster R-CNN.

Method AP0.5 AP0.75 AP

Fully supervised Improved Faster R-CNN 0.959 0.799 0.739
Semi-supervised Improved Faster R-CNN 0.960 0.797 0.740

The bold indicates the best result.

5. Conclusions

To address the problems of large object scale variation, confusing background, and the
challenge of obtaining labeled data in the detection of GIST, we propose a semi-supervised
object detection method using self-training in this study. The method uses only a small
amount of labeled data supplemented by a sizable amount of unlabeled data and fully
exploits the information contained in the unlabeled data. Through comparison with existing
methods and ablation studies of each module, the feasibility of the proposed method was
proven, and the detection accuracy of the model increased without extra labeling costs.

Although the improved scheme for GIST detection in this paper has achieved good
results, there are still some limitations that should be noted. In the semi-supervised learning
method, the best prediction results are used as pseudo-labels for subsequent training.
The challenging samples—those that the model has not yet learned well—are not used
effectively. Therefore, we can try to combine semi-supervised learning and active learning
to find challenging samples by active learning and then manually label the challenging
samples for training.
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Abstract: A graph is a relational data structure suitable for representing non-Euclidean structured
data. In recent years, graph neural networks (GNN) and their subsequent variants, which utilize deep
neural networks to complete graph analysis and representation, have shown excellent performance in
various application fields. However, the propagation mechanism of existing methods relies on hand-
designed GNN layer connection architecture, which is prone to information redundancy and over-
smoothing problems. To alleviate this problem, we propose a data-driven propagation mechanism to
adaptively propagate information between layers. Specifically, we construct a bi-level optimization
objective and use the gradient descent algorithm to learn the forward propagation architecture,
which improves the efficiency of learning different layer combinations in multilayer networks. The
experimental results of the model on seven benchmark datasets demonstrate the effectiveness of the
proposed method. Furthermore, combining this data-driven propagation mechanism with models,
such as Graph Attention Networks, can consistently improve the performance of these models.

Keywords: graph neural network; propagation mechanism; data-driven method; deep learning

1. Introduction

Graphs are data structures that model a set of objects (nodes) and their relationships
(edges). Graphs can be irregular and have variable-sized unordered nodes, and nodes can
have different numbers of neighbors. As a consequence, while some important operations
(e.g., convolutions [1]) can be easily applied to the image domain [2], it is difficult to apply
to the graph domain. In addition, a key assumption of existing deep learning algorithms
is that the data samples are independent of each other. For graphs, however, there are
edges between each data sample (node) and other data samples (nodes) that capture the
interdependencies between instances. Due to the powerful representational power of
graph structures, the study of graph analysis using machine learning methods has received
increasing attention. Researchers have defined and designed a neural network architecture
for processing graph data. This structure has become a new research hotspot—“graph
neural network (GNN)”, which achieves excellent performance and interpretability on
graph-structured data.

For example, papers in a citation network are linked to each other by citations, and
GNNs can classify each paper into a different group [3–6]. In the fields of chemistry
and medicine, molecules can be modeled as graphs, and their biological activities can be
identified by GNNs for drug development [7–10]. In the field of computer vision, GNNs
can identify objects depicted by 3D point clouds and explore their topology [11–15]. In the
traffic system, GNNs can accurately predict the traffic speed and traffic flow in the traffic
network for route planning and flow control [16,17].

GNNs are used to learn node representations (node embeddings), which can simulta-
neously model node features and graph topology information. In addition, GNNs utilize
the relationships (edges) between nodes of a graph to propagate information rather than
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treating them as features of nodes. Among them, models such as Graph Convolutional
Networks (GCN) [3] and Graph Attention Networks (GAT) [18] follow a neighborhood
aggregation (message passing) scheme. These models learn to iteratively aggregate the
hidden features of each node in the graph and its neighbors as its new hidden features,
where the iterations are parameterized by neural network layers. Theoretically, the aggre-
gation process of L iterations fuses the structural information of each node at each layer,
which can simultaneously learn the topology and the distribution of node features in the
neighborhood.

However, in practice, a deeper version of the model with more information is likely to
perform worse. For example, the best performance of GCN and GAT experiments on the
Planetoid dataset [19] is achieved with a two-layer model, and increasing the number of
layers will reduce the performance. A similar degradation of learning for computer vision
problems is addressed by residual connections [20], which greatly aids the training of deep
models. However, even with residual connections, GCNs with more layers do not perform
as well as two-layer GCNs on datasets such as the Citation Network datasets PubMed [21],
CiteSeer, and Cora [22].

We believe that the structure of different nodes and their neighborhoods (subgraphs)
in the graph has a great influence on the result of neighborhood aggregation. The rate of
expansion, or the growth rate of the radius of influence, is characterized by the mixing
time of random walks and varies significantly across subgraphs of different structures.
Therefore, the same number of iterations can result in very different local distributions.
For example, consider a node at the center of the graph and a node at the edge of the
graph to start an expansion of a random walk. After the same number of iterative layers,
the nodes that may be located in the center of the graph already contain basically all the
information of the graph, so only a small amount of information from other layers needs to
be aggregated. At this time, if all the information of each layer is aggregated, it will cause
redundancy. The nodes located at the edge of the graph may contain only a small amount
of information, and more information needs to be aggregated to perceive the structure of
the graph.

To adaptively adjust the influence radius of each node and task, we propose a data-
driven propagation mechanism that learns to selectively acquire information from various
layers. Finally, each node can selectively obtain low-order local structural information
and high-order neighborhood information, thereby effectively avoiding the problems of
local structural information degradation and information redundancy and enhancing the
representation ability of GNNs. Additionally, stacking too many layers and non-linear
transformations can lead to over-smoothing issues, where node representations tend to
converge to a fixed value, resulting in degraded model performance. To alleviate this
problem, we add an identity map to the convolution operation to improve the network
performance.

Since learning a combination of different layers in a multilayer network is computa-
tionally expensive, we adopt a differentiable approach to reduce the computational cost.
The model achieves good results on the node classification task, demonstrating the effec-
tiveness of the proposed data-driven propagation mechanism. In conclusion, we outline
the main contributions of this paper as follows:

(1) We propose a data-driven propagation mechanism (GraphSAP), which adaptively
learns the connections between different layers, enabling nodes to selectively fuse low-order
local structural information while acquiring high-order neighborhood information.

(2) We add the identity map to the neighbor aggregation function of the GraphSAP
model and use a differentiable algorithm during training to make the model more efficient
while maintaining high performance.

(3) We provide a quantitative comparison of the node classification task under different
datasets, showing the good performance of the model.
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2. Related Work

2.1. Graph Neural Networks

The concept of graph neural networks was first proposed in [23] and further clarified
by Scarselli et al. [24], and many variants [18,25] have been proposed over the past few
years. Ref. [24] is the first paper to propose a graph neural network model, which applies
neural networks to graph-structured data, and elaborates the structure, calculation method,
optimization algorithm, and implementation of the neural network model in detail.

GNN is a new research hotspot that emerged after the maturity of convolutional
neural networks (CNN) [1] to process non-Euclidean data. Some existing studies try to
apply the methods used by CNN to GNN to utilize the excellent abilities of CNN. The
existing deep GNN model adds other operations to the convolution operation to alleviate
over-smoothing or aggregates different layers. Among the contributions of stacking more
layers of CNNs, ResNet [20] and DenseNet [26] are excellent methods that can be seen
in many deep networks today. JKNet [27] is inspired by ResNet, but it does not achieve
good performance by stacking multiple layers like ResNet and can not fully achieve the
representation ability of GNN. These methods are all hand-crafted networks. Therefore,
we cannot directly apply the method of CNN to GNN, but needs to convert these methods
to make GNN obtain better performance. The focus of our work is to better exploit the
representational power of GNNs.

2.2. Data-Driven Methods

Hand-designed interlayer connection network structures have achieved great success
in the past. The emergence of ResNet [20] and DenseNet [26] showed the importance of
residual and dense connections for the design of deep networks and had a huge impact
on the design of deep neural networks. With the continuous development of deep neural
networks and the continuous invention and utilization of various models and new modules,
people gradually realize that developing a new neural network structure is more time-
consuming and labor-intensive.

People have begun to explore how to use existing machine learning knowledge to
independently build networks suitable for business scenarios. Automated Machine Learn-
ing (AutoML) is one of the hottest fields in machine learning and deep learning in recent
years. Several recent works have demonstrated the feasibility of automated learning [28]
and designed some models that go beyond hand-designed ones, such as [29,30]. Using
the dataset as the basis for training the network, various network structures can be de-
signed. For example, if you have a four-layer network, then mathematically, there are
15 combinations of layer-to-layer connections in total. Ideally, given sufficient resources
and time, data-driven learning methods can simulate all connections between layers, which
would cover all hand-designed network structures. A representative method is the Neural
Architecture Search (NAS) algorithm, such as [31]. In NAS, the network architecture is
mainly designed from three parts: search space, search strategy, and evaluation strategy.
The data-driven approach is also a method in the field of AutoML, which adaptively learns
a network model suitable for the data based on the existing data, which is used in our work.

3. Background

Given an undirected graph G = (V, E) with node features X ∈ Rn×di , where V and
E denote node and edge sets, respectively. n represents the number of nodes, and di is
the dimension of node features. We use N(v) to represent the first-order neighbors of a
node v in G, i.e., N(v) = {u ∈ V|(v, u) ∈ E}. In addition, we use the set Ñ(v) to denote
the set of neighbors, including oneself, i.e., Ñ(v) = {v} ∪ {u ∈ V|(v, u) ∈ E}. Let G̃ be
the graph obtained by adding a self-loop to every v ∈ V. The hidden feature of node
v learned by the l-th layer of the model is denoted by h(l)v ∈ Rdh , where dh denotes the
dimension of the hidden features. For simplicity of illustration, we assume that it is the
same between layers. Let A denote the adjacency matrix and D the diagonal degree matrix.
Consequently, the adjacency matrix and diagonal degree matrix of G̃ is defined to be
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Ã = A + I and D̃ = D + I, respectively. The normalized graph Laplacian matrix is defined
as L = In − D−1/2 AD−1/2, which is a symmetric positive semidefinite matrix.

3.1. Graph Convolutional Network

Kipf et al. [3] proposed the Graph Convolutional Network (GCN) model, which can be
described as the “pioneering work” of GNN. GCN uses approximation techniques to derive
a simple and efficient model that enables convolution operations in image processing to be
easily used for graph-structured data processing. Inspired by GCNs, various new graph
neural networks are emerging. The form of GCN can be expressed as:

h(l+1)
i = σ

⎛⎝b(l) + ∑
j∈N(i)

1
cij

h(l)j W(l)

⎞⎠ (1)

where c(ij) =
√|N(i)|√|N(j)| is a regularization term, W(l) and b(l) are trainable parame-

ters, and σ is a non-linear activation function, e.g., a ReLU.
In principle, deeper versions of GCN models that can capture more information will

perform better. We conduct node classification experiments on the Cora dataset using GCNs
with 2-layer, 4-layer, 6-layer, and 16-layer network structures, respectively, to analyze the
performance of GCNs with different layers. The experimental result is shown in Figure 1.
The best performance of GCN on the node classification task on the Cora dataset is achieved
with a 2-layer model, and increasing the number of layers will reduce the performance.
This is due to the over-smoothing problem; as the number of layers in the network increases
and the number of iterations increases, the hidden layer representation of each node tends
to converge to the same value.

Figure 1. Performance of GCNs with different numbers of layers on the node classification task on
the Cora dataset.

3.2. Deep GNNs

In order to better exploit information from neighborhoods of differing localities and im-
prove the over-smoothing problem of deep GNN models, models such as Jumping Knowl-
edge Networks [27] and GCNII [32] proposed a network structure similar to ResNet [20]
structure. These models are roughly represented as follows:

h(l+1)
v = σ(W(l+1) · aggregate({h(l)u , u ∈ Ñ(v)})) (2)

h( f inal)
v = layer_aggregation(h(1)v , h(2)v , ..., h(n)v ) (3)
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where aggregate represents aggregation operations between nodes and layer_aggregation
is the layer aggregation function, indicating that all representations of the middle layer are
aggregated in the last layer. However, this hand-designed way of aggregating the features
of all layers may result in information redundancy.

Many GNN models [33–35] obtain node features via a message-passing pattern [7,36,37],
where the representation of each node is learned by iteratively aggregating the embed-
dings (“messages”) of its neighbors. APGCN [33] sets each node as an extra unit when
the message is passed, which outputs a value that controls whether the communication
should continue. This method can better control the information propagation of nodes to
combine information from more distant neighbors, but it cannot aggregate information
from different layers. To address the above issues, we use GCN as a benchmark and design
an adaptive learning method for inter-layer aggregation. Compared with hand-designed
networks, it can automatically learn the network aggregation architecture to fully exploit
the representational capabilities of GNNs.

4. GraphSAP Network

4.1. Model Analysis

To improve the representation ability of the network model, we design a data-driven
propagation mechanism that adaptively learns the connections of different layers, that is,
the aggregation of different neighbors. We use GCN as the baseline network in our network
and alleviate the over-smoothing problem in deep networks by adding an identity map to
the convolution operation. Formally, we define the l-th layer of our GraphSAP as:

H(l+1) = σ
(

κl L̃Hl
(
(1 − βl)In + βlWl

))
(4)

where κl and βl are two hyperparameters, and L̃ = D̃−1/2 ÃD̃−1/2 is the graph convolution
matrix with the renormalization trick. Compared to the vanilla GCN model (Equation (1)),
we add the identity map In to the l-th weight matrix Wl .

Each intermediate layer is computed from all its predecessors:

layer(j) = ∑
i<j

o(i,j)layer(i) (5)

where layer can be obtained by Equation (4), and o(i,j) denotes the connection state between
layer(i) and layer(j).

The network architecture of our GraphSAP is shown in Figure 2. The main difference
between our model and the existing models is that we design an adaptive learning network
architecture based on a data-driven propagation mechanism instead of relying on hand-
crafted designs. We incorporate identity maps into convolutions to guarantee model
performance and then use a data-driven adaptive approach to learn the best-performing
network aggregation structure. Our proposed network achieves good results in the node
classification task, demonstrating the feasibility of our proposed method.

Identity maps play an important role in preventing performance degradation in deep
models, so we add identity maps to the model’s operations. Generally speaking, identity
mapping is to add the identity matrix to the weight matrix, which can alleviate the over-
smoothing problem of the model due to the increase in the number of network layers.
Frequent interactions between different dimensions of the feature matrix [38] will degrade
the performance of the model in semi-supervised tasks, whereas direct mapping of the
smooth representation L̃Hl to the output will reduce this interaction.
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Figure 2. Network architecture of GraphSAP. SAP is based on data-driven learning at different layers.
Where l is the number of layers of the network, h(l) denotes the hidden features learned by the node
at layer l, relax denotes relaxation operation, mix denotes Equation (6), and X denotes the initial node
features.

4.2. Data-Driven Propagation Mechanism

In this subsection, we first introduce the proposed propagation mechanism. We first
introduce the differences and connections between our data-driven propagation mechanism
and existing propagation strategies, such as Learning to Propagation (L2P) [39]. Although
both L2P and our proposed GraphSAP belong to adaptive propagation, there are still
differences between the two methods. Our GraphSAP learns whether neighbor node
features of nodes at different levels are aggregated. L2P considers that different nodes may
require different propagation layers, so it needs to learn the order of neighbor nodes. Next,
we introduce methods for continuous operations between layers and, finally, optimization
methods to speed up the learning time.

JKNet [27] aggregates the features of nodes of all layers to get the final feature repre-
sentation, as shown in Equation (3). Our method obtains a layer connection operation space
and adaptively learns aggregations between different layers, as shown in Equation (5), each
directed edge (i, j) is associated with the edge state o(i,j). Our final task is to find a suitable
connection method for each layer. The combination of these operations is discontinuous
and learning in discrete spaces is very difficult.

To make the search space continuous, we relax the classification selection for a specific
operation to a softmax of all possible operations:

ō(i,j)(layer) = ∑
o∈O

exp
(

α
i,j
o

)
∑o′∈O exp

(
α

i,j
o′
) o(layer) (6)

where O is the set of all candidate aggregation operations (e.g., identity, maxpooling, and
zero), and each operation represents some function o(·) to be applied to the layer, and
the operation mixing weights for a pair of layers (i, j) are parameterized by a vector αi,j

of dimension |O|. layer represents the GNN layer, as shown in Equation (5). The layer
aggregation operation of GraphSAP is shown in Equation (4), and the node features of the
last layer can be obtained in the following ways:

layer(l) = [o(Hl), ..., o(Hl−1)] (7)
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where o is a classification operation, indicating whether this layer participates in informa-
tion transmission. The final feature of the nodes can be expressed as

Z = so f tmax
(

layer(l)
)

(8)

When training the network, we use Ltrain and Lval to denote the training and validation
losses. Both losses depend not only on the architecture α, but also on the weights w in
the network. The goal of our method is to find α∗ that minimizes Lval(w∗, α∗), where w∗
is the weight that minimizes Ltrain. Thus, our model actually needs to solve a bi-level
optimization [40] problem:

min
α∈A

Lval(w∗(α), α∗) (9)

s.t. w∗(α) = argminw Ltrain(w, α) (10)

where α denotes the network architecture, and ω∗(α) denotes the weight of this architecture
after training. In our experiments, we choose to use the cross-entropy loss for our semi-
supervised node classification task:

L = − ∑
i∈YL

Yi log Zi (11)

where YL is the set of node indices with labels, Yi denotes the predicted label of node i,
and Zi is the final feature representation of node i. This cross-entropy function is used for
adaptive generative network structure training and task model training.

We train the network using a one-shot differentiable method; the optimization de-
tails are given in Algorithm 1. In addition, we use the gradient-based approximation
method [41–43] to update the operation parameter α to save training time, as follows:


α Lval(w∗(α), α) ≈ 
αLval(w − γ 
w Ltrain(w, α), α) (12)

where w denotes the current weights maintained by the algorithm, and γ is the learning
rate for a step of inner optimization. We use only a single training step to adjust w
to approximate w∗(α) without fully solving the internal optimization by training until
convergence (Equation (10)).

Algorithm 1: Data-Driven Propagation Mechanism (SAP).
Input: The aggregation operations A, the number of top performance network k,

the epochs N for learning.
Output: The k aggregation operations Ak.

1 while t = 1, ..., N do

2 Compute the validation loss Lval(w − γ∇wLtrain, α);
3 Update network α by descending ∇αLval ;
4 Compute the train loss Ltrain(w, α);
5 Update weights w by descending ∇wLtrain with the network α;

6 Derive the final network structure based on the learned α.
7 Return

After training, we take the top-k operations with good performance in each layer (in
our experiments, we set k = 1), such as the maximum weight in Equation (6), to form our
model. After adaptive learning is complete, we train from scratch using the best-performing
model and adjust it based on the validation data to receive the final parameters.
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5. Experiment

5.1. Datasets

To verify the effectiveness of our proposed algorithm, we use seven benchmark
datasets to perform the node classification task. Table 1 summarizes the statistics of
the dataset. We conduct experiments on three citation network datasets: PubMed [21],
CiteSeer, and Cora [22]. Each of their nodes represents a paper, and each edge represents
a citation relationship between two papers. The dataset contains bag-of-words features
for each paper (node). The task is to classify papers into different topics according to a
citation network, i.e., node classification. We also introduce four new datasets for the node
classification task: Coauthor CS, Coauthor Physics, Amazon Computers, and Amazon
Photo [44]. Descriptions of these new datasets are mentioned below. We split the nodes in
all graphs into 60%, 20%, and 20%for training, validation, and testing.

Table 1. Dataset statistics.

Datasets Nodes Edges Features Classes

Cora 2708 5278 1433 7
CiteSeer 3327 4552 3703 6
PubMed 19,717 44,324 500 3

Coauthor CS 18,333 81,894 6805 15
Coauthor Physics 34,493 247,962 8415 5

Amazon Computers 13,752 245,778 767 10
Amazon Photo 7487 119,043 745 8

Cora. The Cora dataset consists of machine learning papers divided into the following
seven categories: Case Based; Genetic Algorithms; Neural Networks; Probabilistic Methods;
Reinforcement Learning; Rule Learning; Theory.

CiteSeer. The Citeseer dataset is a portion of papers selected from the CiteSeer Digital
Papers repository and is grouped into the following six categories: Agents; AI; DB; IR; ML;
HCI.

PubMed. The PubMed dataset includes 19,717 scientific publications on diabetes
from the Pubmed database, divided into three categories: Diabetes Mellitus, Experimental;
Diabetes Mellitus Type 1; Diabetes Mellitus Type 2.

Coauthor CS and Coauthor Physics. They are coauthorship graphs based on the
Microsoft Academic Graph from the KDD Cup 2016 challenge. Nodes in the dataset
represent authors and are connected by an edge if two authors coauthored a paper. Node
features represent keywords of each author’s papers, and category labels represent each
author’s most active research area.

Amazon Computers and Amazon Photo. They are fragments of the Amazon co-
purchase graph [44], where nodes represent items, edges represent two items that are
frequently purchased together, node features are bag-of-words-encoded product reviews,
and category labels represent product classifications.

5.2. Settings

Baselines. To compare our proposed mechanism with other existing methods, we con-
sider the following baselines: Graph Convolutional Network (GCN) [3], Graph Attention
Network (GAT) [18], Simplified Graph Convolution Network (SGC)) [4], JKNet [27], Multi-
layer Perceptron (MLP) [45], Graph Sample and Aggregate (GraphSage) [46], DAGNN [47],
GCNII [32], DenseGCN [48], and ResGCN [48].

Configurations. Our experiment is run on a NVIDIA GTX 3090Ti Graphical Card
using PyTorch (version 1.7). In our experiment, GCN [3] is used as the baseline model,
identity mapping is added to the convolution, and the data-driven propagation mechanism
is used to obtain the network model. In all the experiments, we set the depth in {2, 4, 8, 16,
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32, 64}. Throughout the experiment, we use the Adam optimizer [49]. We adopt the learning
rate to be 0.005 and the maximum number of epochs to be 1000. We set the dropout to be
0.5, the dimensions of the hidden features to be 32, and the weight decay to be 0.001. We
add L2 regularization to the model parameters. We set κ� = 1 and β� = log

(
λ
� + 1

)
≈ λ

� .
The principle of setting κ� is to ensure the decay of the weight matrix adaptively increases
as we stack more layers.

5.3. Results

Network evaluation. We evaluate the training performance of the model by observ-
ing the training of the model in network structure selection and corresponding weight
generation. The training results are shown in Figure 3a,b. We adaptively learn the network
structure using the validation set and train and optimize the α in Equation (9) to obtain
the network structure with the best performance. The jumping case of the training loss
in Figure 3a is the process of optimizing the network architecture. After the adaptive
learning of the network structure is completed, we use the method of training GNN to
train and optimize the network parameters w to obtain the final network model. Due to
the use of differentiable methods for optimization, both our network structure selection
training and parameter training can converge quickly. These training results confirm that
the differentiable method we use is feasible and effective.

(a) (b)

Figure 3. The training state of our model on the Amazon Photo dataset [44] with a 64-layer network
structure. (a) is the validation loss and training loss for the training selection network structure; (b) is
the validation loss and training loss for training parameters corresponding to the network structure.

Performance comparison. The quantitative comparison results of node classification
performance with other methods on various datasets are shown in Table 2. All results used
for comparison are the best results achievable using the respective models. Our network
achieves good performance on all seven datasets, achieving the highest classification
accuracy on five of them. GAT shows good results on some datasets, such as Cora, but
the effect on the Amazon Com dataset is mediocre. Compared with some current deep
models GCNII, ResGCN, and DenseGCN, GCNII performs best on Cora and Citeseer
datasets, but our network achieves the best results on all other datasets. In general, our
model can be applied to various datasets and has achieved good results, which proves the
effectiveness of the model. Our method also provides a feasible direction to better utilize
the representational power of GNNs.

To investigate the model performance trends at different depths, we further compare
the representational capabilities of our proposed model and existing models at different
depths. The detailed comparison results of models with different depths are shown in
Figure 4. From these experimental results, we can make the following observations. The
baseline model (GCN) struggles to maintain consistent performance as we stack more
layers. We also found that residual and dense connections can help improve the model
performance on most datasets but not much for Amazon Computer and Pubmed datasets.
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The Jumping Knowledge (JK) mechanism outperforms the baseline model (GCN) [3] in
most cases. However, increasing depth also causes its performance to degrade. The
GCNII model outperforms GCN and JKNet on multilayer networks, and the problem of
over-smoothing is alleviated with increasing depth. However, GCNII performs poorly
on four new datasets, and its generalizability is questionable. These experimental results
further confirm that our proposed method is effective and feasible for training models with
excellent representation ability.

(a) Cora (b) Citeseer

(c) Pubmed (d) Coauthor CS

(e) Amazon Photo (f) Amazon Computers

Figure 4. The performance comparison of the network we designed under different layers. We have
performed experiments on different datasets. As can be seen in the figure, our data-driven layer
connection learning method has relatively good network performance when the number of layers
increases.
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Table 2. Comparison of GraphSAP with other models for node classification tasks on Cora, Citeseer,
PubMed, Coauthor CS, Coauthor Physics, Amazon Computers, and Amazon Photo datasets.

Model

Dataset Cora Citeseer PubMed Coauthor CS Coauthor Physics Amazon Computers Amazon Photo

GCN [3] 81.2 70.3 77.8 93.8 96.1 90.7 92.2

GAT [18] 81.5 71.4 78.7 90.5 92.5 78.0 85.7

SGC [4] 79 68.5 76 83 90.5 88.5 90.3

JKNet [27] 79.6 69.8 78.4 93.8 97.1 90.5 93.6

MLP [45] 58.2 59.1 70.0 88.3 88.9 44.9 69.6

GraphSage [46] 76.6 67.5 76.1 85.0 90.3 / 90.4

DAGNN [47] 82.5 71.2 78.8 92.1 93.7 88.7 93.9

GCNII [32] 82.8 72.6 78.8 88.53 94.8 61.4 88.8

Dense-GCN [48] 80 / 72.6 93.6 96.1 91.1 94.1

Res-GCN [48] 80 / 78.4 93.8 96.0 91.7 94.3

GraphSAP(ours) 81.5 71.7 78.9 95.1 97.2 92.3 95.2

Model Visualization. We visualize the network structure learned by the model for
node classification tasks on the Amazon Photo dataset, as shown in Figure 5. The network
structure diagram shows that the final classification result is an aggregation of neighbors
from different layers. Neighbors that need to be aggregated are adaptively learned by
our method without relying on the manual design. The aggregation between layers of
the network structure is irregular. Our method is flexible and widely applicable and has
excellent graph representation ability.

Figure 5. The 16-layer network structure learned by the model for the node classification task on the
Amazon Photo dataset, where Z denotes the final representation of the node after softmax.

6. Conclusions

We propose a data-driven propagation mechanism that adaptively learns different
connections between different layers, i.e., learns combinations of different neighbors. This
mechanism can alleviate the information redundancy and over-smoothing problems caused
by the previously hand-designed GNN layer-connected architecture. Compared with other
mainstream methods, the network architecture can be adapted to a variety of different
datasets. The proposed GraphSAP achieves good performance on all three public datasets
and achieves the best results on one of the public datasets as well as the new four datasets
tested. In addition, our method has almost no performance degradation when the number
of model layers is deepened. Further, the training efficiency is improved by adopting a
more efficient differentiable learning algorithm.
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In the future, we will explore more automatic learning methods to further improve the
performance of GraphSAP. It also includes exploring other layer aggregators and studying
the impact of different combinations of different layers and node aggregators on the graph
structure. Furthermore, we can also explore tasks other than node classification tasks, such
as graph classification.
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Abstract: In recent years, multiple IoT solutions have used computational intelligence technologies
to identify people and count them. WIFI Channel State Information (CSI) has recently been applied
to counting people with multiple benefits, such as being cost-effective, easily accessible, free of
privacy concerns, etc. However, most current CSI-based work is limited to human location-fixed
environments since human location-random environments are more complicated. Aiming to fix
the problem of counting people in human location-random environments, we propose a solution
using deep learning CM-NET, an end-to-end cross-modal learning network. Since it is difficult to
count people with CSI straightforwardly, CM-NET approaches this problem using deep learning,
utilizing a multi-layer transformer model to automatically extract the correlations between channels
and the number of people. Owing to the complexity of human location-random environments, the
transformer model cannot extract characteristics describing the number of people. To enhance the
feature learning capability of the transformer model, CM-NET takes the feature knowledge learned
by the image-based people counting model to supervise the learning process. In particular, CM-
NET works with CSI alone during the testing phase without any image information, and ultimately
achieves sound results with an average accuracy of 86%. Meanwhile, the superiority of CM-NET has
been verified by comparison with the latest available related methods.

Keywords: people counting; CSI; knowledge distillation; cross-modal learning network;
computational intelligence

1. Introduction

People counting provides key information for a wide range of services and appli-
cations, such as crowd control for places of interest and marketing research for malls.
However, human behavior can be unpredictable; thus, people counting may encounter var-
ious challenges, such as object occlusions, pedestrian overlaps, and demands for real-time
processing. Traditional solutions to these issues fall roughly into the following categories:
environmental sensor-based, vision-based, and wireless signal-based methods.

Along with the advances in sensing technology, many sensor-based networks provide
rather good accuracy in estimating the number of people by analyzing variations in the
surroundings, such as temperature [1], sound [2], and carbon dioxide [3]. However, the
feasibility of sensor-based counting methods is hindered by constraints such as expensive
equipment, the complexity of the operation, and limited scope. Vision-based methods have
been widely used in many public places [4,5], yet these methods are inherently flawed.
First, cameras work only in a line-of-sight pattern, leaving many areas blind to monitoring.
Second, smoke or a lack of light in the environment will severely degrade the image quality.
Thirdly, overlapping objects further hamper the model’s performance. Wireless signals
based methods perform people counting based on radio-frequency signals (WIFI [6–9],
UWB radar [10,11], etc.). The advantage of these methods is that they are not affected by
light, do not violate human privacy and can achieve good recognition results.
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For indoor scenarios, the WIFI-based methods have natural advantages: (1) No ad-
ditional devices are required. With the widespread deployment and coverage of WIFI in
public places or home, the existing infrastructures provide the data base for the WiFi-based
methods. (2) The monitored person is not required to carry any smart devices or sensors.
The principle of the WiFi-based methods is the WIFI signal will reflect, diffract and refract
when encountering obstacles or moving individuals in the process of propagation, to form
a regular signal change pattern. In addition, the number of people can be identified by
analyzing the signal change pattern.

The most commonly used WIFI-based methods are the coarse-grained Received Signal
Strength (RSS) and the fine-grained Channel State Information (CSI). For the former, while
RSS data can be easily obtained for most off-the-shelf wireless devices, RSS measurements
are affected by multipath fading and environmental noises. The RSS dataset is often
expanded to improve the count accuracy, which inevitably incurs additional labor and
time costs. A recently proposed solution [9] to the above problem estimates the number
of people using CSI, which can provide richer information than RSS, including each
subcarriers amplitude and phase information. Meanwhile, CSI is more sensitive to the
number of people in the environment than RSS. Present-day works, however, assume all
human objects are fixed, which is not the case in practice. Therefore, it cannot be applied to
scenarios involving random changes in human positions.

A technical challenge that needs to be solved to turn the idea into a working system,
i.e., how to extract good features characterizing the number of people in the conditions
of different locations. Inspired by knowledge distillation [12], we guide the CSI-based
network by other modal networks acting as teachers so that the CSI-based network can
extract useful features from the crowd. Several existing methods of counting people have
been compared and analyzed, including those using visible images, infrared images, and
other environmental sensing information. It has been found that image-based methods are
easy to implement and can achieve high accuracy under normal conditions. Therefore, we
propose a cross-modal learning network CM-NET, which uses the image-based network as
a teacher network to guide the learning of the student network (CSI-based network). As a
result of CM-NET, CSI-based networks are capable of achieving more accurate results and
alleviating degradation in accuracy caused by the change in human locations.

In CM-NET, both the teacher network and the student network require training. The
teacher network is first pre-trained on the COCO dataset and then fine-tuned on our data.
The student network is trained using the feature knowledge learned from the trained
teacher network. CM-NET avoids privacy issues by using only image information in
training and only CSI data in testing.

The main contributions of this paper are as follows:
1. For the first time, we use multimodal knowledge distillation to perform CSI-based

people counting. We use multimodal knowledge to compensate for the limits of unimodal
network that need a lot of training data and weak feature representation, providing a new
idea for CSI-based people counting methods.

2. We propose a cross-modal learning network, CM-NET, which uses the feature
information output by the vision network as a supervisory signal to guide feature learning
in CSI-based network, alleviating the performance degradation of CSI-based network due
to location changes.

3. To the best of our knowledge, we build the first international dataset of indoor
multimodal (video and CSI), which includes multimodal data from 60 different locations
and 9 different numbers of people. On this dataset, the CM-NET proposed in this paper
achieves an average accuracy of 86%, which is better than other current methods for
counting people.

The rest of the paper is structured as follows. Section 2 provides an overview and anal-
ysis of existing methods and networks related to people counting. Section 3 describes our
proposed people counting method more detailed. Section 4 gives the relevant experimental
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results and provides a detailed description and analysis of the results. Finally, Section 5
concludes the paper.

2. Related Work

Current methods can be classified into three categories: Environmental sensor-based
methods, Vision-based methods and Wireless signal-based methods. In this section, we
will discuss the existing works on the above three types of people counting methods.

(1) Environmental sensor-based methods. These methods can be broadly classified
into the following three categories based on the type of sensor: passive infrared sensor-
based, sound sensor-based, and carbon dioxide sensor-based.

Passive infrared sensors infer the number of moving bodies based on the ambient
temperature change caused by moving objects in the sensor area. F. Wahl et al. [1] arranged
passive infrared sensors at each pedestrian walkway and then designed a probabilistic
distance-based algorithm to estimate the number of people in the environment. The test
results show that the probabilistic distance-based algorithm can compensate for the error
due to the infrared mask effect. The statistical error increases significantly when multiple
people simultaneously pass through the pedestrian passage. Statistical errors can also be
caused by interference from sunlight and heat.

The sound sensor-based people counting method sends an ultrasonic signal to the
monitoring area using a sound sensor. It reflects when the ultrasonic signal encounters a
moving object, such as a person’s body. When the sound sensor receives the reverberation
of the transmitted signal, the number of people in the environment can be inferred based
on characteristics such as reception time or signal attenuation. O. Shih et al. [2] designed
a system to count people in an area using changes in the room’s acoustic properties.
Experiments have shown that the acoustic sensor-based solution performs better in smaller
indoor spaces and crowds. However, the system’s scalability is somewhat limited, as the
accuracy decreases significantly with increasing space and occupancy. In addition, the
number of people estimates may be distorted due to the presence of a large amount of
sound-absorbing materials often present in indoor environments.

Since people’s respiration produces carbon dioxide in a room, it is possible to infer
the number of people by the concentration of carbon dioxide. Such scheme uses sensors
to measure the concentration of carbon dioxide in a room and estimate the number of
people. H. Rahman et al. [3] proposed a people counting system based on indoor carbon
dioxide emissions. Experiments show that the carbon dioxide sensor-based people counting
method is slow to respond to dynamic changes as it takes a certain amount of time for the
carbon dioxide concentration to change if someone enters or leaves the room.

(2) Vision-based people counting methods. N. Dalal et al. [4] proposed a technique
for intact human body-based detection. This technique extracts directional gradient his-
tograms from pedestrian sample images as features for person counting using a linear
support vector machine [5] for classification. However, intact body-based detection tech-
niques are only suitable for cases where bodies do not overlap, so the system is vulnerable
to occlusions or complex backgrounds, resulting in poor recognition performance. Wu
Bo et al. [13] proposed a partial body-based detection technique, which uses part of the
pedestrian’s body structure to perform detection. For example, the Adaboost [14] network
can be trained on the head and shoulders of pedestrians. Then, the number of pedestrians’
heads and shoulders are detected in the image to calculate the number of people. Although
this technique can reduce statistical errors caused by multi-person overlap, it still poses
problems determining image region division and sliding window size.

The regression network-based people counting technique [15] using a proven regres-
sion network counts the number of people in an image by considering the crowd in the
image as a whole object. The technique extracts foreground image features from the col-
lected images [15], then trains a regression model using the obtained feature set, and then
uses the built regression model to obtain the headcount information from the test sam-
ple. The features used can be classified as foreground image features, edge features [16],
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gradient features [17], and texture features [18]; regression strategies comprise Gaussian
process regression [19], nonlinear regression, and neural networks; images can be processed
according to partitioning, sliding windows, global estimation, etc. Unlike detection-based
algorithms, regression networks have good generalization capabilities, excellent portability,
and endless possibilities. A. Davies et al. [15] found a correlation between the number
of people in the environment and the foreground pixel area and chose to use regression
information to identify the number of pedestrians in an image. This work was the first to
introduce regression methods to crowd analysis and indirectly inspired people counting.
Regression-based methods also fail to overcome the impact of overlap occlusion of the
human body.

(3) Wireless signal-based methods. Wireless signal-based methods use deployed
wireless devices to build an environment-aware system for people counting. These tech-
niques not only compensate for the vulnerability of sensor-based people counting tech-
niques to environmental influences but also fill the gap of video-based counting techniques
that do not work in privacy and obscuration situations. As far as the current research
in this field is concerned, it can be divided into the following three classes based on the
characteristics of the chosen radio signal: UWB signal-based people counting methods,
RSS-based people counting methods, and CSI-based people counting methods.

People counting based on UWB signals [10] is mainly performed through radar net-
works. The method first removes static objects and people reflections by the background
phase cancellation method [11]. After that, it calculates the number of people based on the
waveform characteristics of the received signal. J. W. Choi et al. [20] proposed an IR-UWB
radar system that sends a broadband pulsed signal along with receiving the backscattered
signal from the environment to infer the number of human targets. Experiments have
shown that the system can detect up to three targets, with errors reaching 8%. UWB
signal-based counting technology has excellent recognition performance; however, this
technology requires expensive and special hardware devices to support it, so it is difficult
to prevail in the production life of people.

In 2008, M. Nakatsuka et al. [6] first validated the feasibility of using RSSI for people
counting and designed a linear regression-based model. This model relies mainly on the
mean change of RSSI measurements to calculate the number of people. Experimental results
demonstrated that the RSS between two radio nodes decreases as the number of people
bodies located between these nodes increases, and they proposed linear network can detect
up to 9 people. In 2015, T. Yoshida et al. [7] implemented an RSS-based people counting
technique based on support vector regression. This method can count up to 7 people with
an accuracy of up to 77%. Alsamhi et al. [21] proposed extending the ANN’s method to
UAVs to predict the intensity of signals in different areas of the city, planning for WIFI-based
outdoor people counting in the future. Although RSSI-based people counting technology
can significantly reduce equipment deployment costs by depending on WiFi infrastructure,
RSSI, as a coarse-grained description of the channel, can only reflect the signal’s fading after
propagation. In a complex and noisy indoor environment, the performance of a system
designed by RSS can be greatly compromised.

With the development of technology and the unremitting efforts of researchers, D.
Halperin et al. [8] extracted Channel State Information (CSI) on commercial Wi-Fi support-
ing 802.11n protocol using the self-developed CSI Toolkit. With the successful extraction
of CSI, Xi Wei et al. [9] proposed a passive number counting system based on CSI. In this
system, the authors utilize the percentage of non-zero elements in the inflated CSI matrix as
features to describe the variation of the wireless channel, and use the gray Verhulst model
for feature training thereby building a library of feature-number relations, which can be
used to identify the number of people at the testing phase. S. D. Domenico et al. [22] pro-
posed a people counting system based on differential CSI measurements. The system uses
Euclidean distance to represent the difference between two CSI measurements and uses
features such as first- and second-order statistical moments for classification. Experiments
show that the system can accommodate up to seven people in an indoor environment with
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a classification error of about 15%. Compared with the RSSI-based counting method, the
CSI-based method offers more stable performance and relatively higher accuracy. In 2016,
Alsamhi et al. [23] proposed a technique for maintaining signal quality on high-altitude
mobile platforms, improving the signal quality and mitigating the impact of signal quality
on the number of people counted.

3. Design and Training of CM-NET

Generally, the performance of visual-based people counting models, once trained,
is almost position-independent. However, visual-based people counting models may be
susceptible to factors such as illumination and occlusion, leading to significant performance
degradation. Furthermore, privacy concerns involving those being watched may arise with
vision-based networks. In contrast, CSI-based networks rely on CSI to infer the number
of people, which is readily available even in low-light settings. These methods have very
few privacy concerns because they do not specifically use the monitored people’s images.
Nevertheless, monitored individuals’ location changes decrease CSI-based networks’ per-
formance. The location sensitivity limits of CSI-based people counting jobs may be partially
overcome if CSI-based counting networks can achieve comparable anti-interference and
discriminating skills to vision-based networks [24,25].

Based on the preceding study and motivated by the knowledge distillation technique,
we propose an end-to-end cross-modal learning network called CM-NET that trains the
CSI-based network using the class probabilities from the vision-based network as soft
labels. CM-NET’s architecture consists of teacher and student networks; the training frame-
work is depicted in Figure 1. CM-NET’s teacher network performs people counting with
visible images.

Figure 1. The training framework of CM-NET. It has two components: the teacher’s training network
and the student’s training network. The teacher is a vision-based people counting network, whose
network is first initialized using the trained weights from the COCO dataset and then fine-tuned
with our collected video data. The student is a CSI-based people counting network, whose network
training process is supervised by the soft labels from the teacher network.

In CM-NET’s teacher network, the Yolov3 target detection module first obtains the
probability of each person in the image. Then, the probability matrix of the total number of
people category is generated by the uniform distribution. Finally, the probability matrix is
fed to the softmax classifier. The output of the softmax classifier is used as a soft label to guide
the training of the student network. The student network of CM-NET uses CSI to count
people, consisting of the transformer feature extraction module and the softmax classifier
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module. It should be noted that CM-NET only introduces the soft labels generated by the
teacher network as supervised information during the student network’s training process.

Section 3.1 describes the teacher network of CM-NET, and Section 3.2 describes the
student network of CM-NET. Finally in Section 3.3, we will describe the design of the
CM-NET loss function.

3.1. Teacher Network: Vision-Based People Counting Network

CM-NET’s teacher network uses Yolov3 as the detection model. We customized the
output module of Yolov3 in order to transfer the knowledge gained to the student network. We
statistically analyze the degree of confidence of each individual in the Yolov3 photos, denoted
as pi, where i represents the ith people detected. In addition, the statistics are summed and
averaged to obtain the confidence scores for the total number of people denoted as P, the
corresponding function is shown in Equation (1). Then, the confidence score matrix for total
number of people class denoted as M = [m1, m2, m3, . . . , mK], was obtained by expanding P
through a label smoothing technique, the corresponding function is shown in Equation (2).
Finally, M is fed into the softmax layer to obtain the prediction results.

P =
n

∑
i

pi/n (1)

mj =

{
P if j = n

1−P
K−1 if j 
= n

(j = 1, 2, 3, . . . , K)· (2)

where K represents the total classes of crowd. It is important to note that the soft labels
generated by the teacher network can more accurately represent the similarity across
classes than the actual labels. The knowledge distillation approach adds a temperature
coefficient to the original softmax function to soften the class probabilities in order to
better represent this similarity between classes. The softened soft label is represented as
OV = [v1, v2, v3, . . . , vK], and it is calculated as shown in Equation (3).

vi =
e(mi/T)

∑K
k=1 e(mk/T)

(3)

where it can be seen that the distribution of probability output is “softer” under high tem-
peratures. The “softer” probability distribution is more effective in extracting knowledge
and training the network.

3.2. Student Network: CSI-Based People Counting Network

CSI is 2D time series data denoted as C ⊆ Rd×n, where d and n represents channel
number and received package number, separately. The CSI data contains noise and outliers
due to the presence of multipath effects and ambient noise in the room, as well as defects
in the hardware equipment itself. If the raw data are used directly, the performance of
CSI-based people counting networks will be significantly degraded. For this reason, we
performed the necessary preprocessing. We first apply Equation (4) to remove the outliers
from the raw CSI data and then smooth CSI data using linear interpolation.

C = [μ − η × δ, μ + η × δ] (4)

where μ − η is the median of a set of observations, δ is the absolute deviation from the
median, and η is the empirical constant, which is taken as 2 in this paper.

Then, we use a soft-threshold denoising method based on wavelet analysis to eliminate
the noise. In this paper, we use a Gaussian function as the wavelet basis function for 12-layer
denoising of CSI data and a soft thresholding method for high frequency coefficients. The
processed CSI data are fed into the student network for training. The student network uses
the transformer framework as the base network, which consists of five MCAT layers [26], a

38



Electronics 2022, 11, 4113

pooling layer and a fully connected layer. The student network feeds the softmax layer with
the people in the crowd extracted by the transformer’s digit extraction algorithm to obtain
the prediction results. It is worth noting that during the training process, the predictions of
the student network are divided into hard predictions denoted as OS = [s1, s2, s3, . . . , sK]
and soft predictions denoted as O′

S =
[
s′1, s′2, s′3, . . . , s′K

]
. The OS generated by the student

network uses the original softmax. This is expressed in Equation (5):

si =
ezi

∑K
k=1 ezk

(5)

where zi is the output of the fully connected layer of the student network.
Similar to OV generated by the teacher network, O′

S generated by the student network
uses the temperature coefficients of the softmax layer, as shown in Equation (6).

s′i =
e(zi/T)

∑K
k=1 e(zk/T)

(6)

3.3. Design of the Loss Function

The loss function L of CM-NET consists of two components: the KL scatter loss Lkl
between the output of the student network and the output of the teacher network, and
the cross-entropy loss Lce between the output of the student network and the hard label,
where the hard label is the true label of the sample noted as Y. The KL scatter loss Lkl can
be formulated as follows:

Lkl = ∑ OS′ log
OS′

OV
(7)

the cross-entropy loss Lce can be formulated as follows:

Lce = ∑ OV log Y + (1 − OS) log(1 − Y) (8)

Finally, the loss function L of CM-NET can be formulated as follows:

min
S

L = λLkl + (1 − λ)Lce (9)

where λ is the balance factor. In the training process of CM-NET, we fixed the parameters of
the teacher network and updated the student network using the gradient descent method.
The student and teacher networks are dropout-regularized during the training process to
avoid overfitting.

4. Experiments

The experimental section begins with Section 4.1, which describes how the equipment
is deployed and data collected. In Section 4.2, we describe the preprocessing details of
the dataset and the CM-NET hyperparameter settings. Section 4.3 describes the metrics
for evaluating CM-NET’s performance and counting the number of people. Section 4.3.3
shows comparisons between our experiments and existing work.

4.1. Equipment Deployment and Data Collection Process

Our data collection is based on commercially available hardware, including a TP-Link
camera, wireless router, and laptop with an Intel 5300 NIC. The TP-link wireless router
serves as the transmitter, and the laptop the receiver. The receiver and transmitter were
mounted on a 0.75 m stand separated by 5.6 m. In order to make sure that the camera
would cover the entire area used for collecting CSI data, we fixed the camera to the wall
four meters high.

We set up the equipment mentioned above in our lab to gather CSI and video data.
The size of the area where we collected CSI data was 2.4 m × 3.2 m, and the area is shown
in Figure 2. We enlisted 9 volunteers for this experiment, including 2 females and 7 males.
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We gathered information under two cases: fixed location (dataset-1) and non-fixed location
(dataset-2). In detail, we asked different numbers of volunteers to stand once at each of the
fixed 60 locations and collected CSI data lasting 15 s, and then added corresponding labels
to the data for the category of each number of volunteers. Thus, we obtained 540 samples
(9 Classes × 60 locations). For the second batch of data, we loosened the restriction by
permitting volunteers to stand wherever within the CSI data collection area. In a similar
number, we collected 540 samples and assigned each sample to the corresponding class of
people. Specifically, the camera remained active during the whole data gathering process.

Figure 2. The area where the CSI data were collected. The crossbelt marks the boundary of the area,
which is 2.4 m × 3.2 m in size.

4.2. Preprocessing Details of the Dataset and CM-NET Hyperparameter Settings

We extract the CSI amplitude data from the CSI dataset and preprocess it with noise
and outlier removal. After that, we segmented the CSI dataset based on a 3 s time window
to expand the dataset. Since the location and number of people do not change in each video
sample we collect, so we sample fixed interval frames from the original video data as our
video dataset. Specifically, we conduct sampling every 3 s so that each CSI sample has a
frame to correspond to. This provides the benefit of speeding up CM-NET training while
conserving computational resources.

The teacher and student networks are trained as part of the CM-NET training proce-
dure. We first use the COCO dataset to establish the initial training weights for the teacher
network, and then we use the video dataset we collected to fine-tune them. The weight
parameters of the teacher network are frozen once the training process is complete. Before
feeding the CSI data into CM-NET synchronously with the corresponding video frames,
we load the teacher network’s weight parameters into it to train the student network. In
the course of training the student network, the soft labels generated by the teacher network
and the tagged real labels are used in conjunction to supervise the training process.

CM-NET training is performed on a laptop with an RTX 2060 GPU, based on the
PyTorch deep learning framework. The batch size for training the student network is set
to 8, the training parameters are optimized using the Adam optimizer, the learning rate
is set to 0.001, the MCAT is set to 5 layers, and the balance factor λ is set to 0.5. If not
stated otherwise, the following results are assessed using a 7:1:2 random allocation for the
training, testing, and validating datasets.
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Performance of CM-NET under Different Parameters

(1) The impact of different λ. The magnitude of λ determines how far the teacher
network can affect the student network during training. In this paper, we selected four
different degrees and tested them on dataset-1, and the results are shown in Figure 3a. The
performance of CM-NET with five degrees is lighter (0.3): 0.8550, light (0.4): 0.8515, mod-
erate (0.5): 0.8640, heavy (0.6): 0.8493, and heavier (0.7): 0.6374. 0.6374. Not surprisingly,
the performance of the student network did not rise as the effect of the teacher network
increased. Only appropriate instruction improves the ability of the student network to
extract the characteristics of the number of people. Suppose the teacher network interferes
too much with the learning of the student network. In that case, it will make the students
depend too much on the teacher network’s inference when extracting features, which
leads to the student network not paying enough attention to its data, and the model’s
performance decreases.

(2) The impact of MCAT with different layers. The number of layers of MCAT deter-
mines the depth of the CM-NET network. In this paper, we selected four different depths
and performed tests on dataset-1, whose results are shown in Figure 3b. The performance
of CM-NET with four depths is four layers: 0.8540, five layers: 0.8640, six layers: 0.8654,
and seven layers: 0.8512. Obviously, the depth of the network does affect the ability of
CM-NET to extract features. For the same number of samples, an appropriate increase
in the number of MCAT layers can boost the extraction ability of the network. However,
increasing the number of MCAT layers without expanding the data can cause the network
to overfit during the training process, which leads to worse prediction results. Notably, the
final number of MCAT layers selected in this paper is five. This is because the accuracy of
the MCAT of five layers is similar to that of six. However, five layers MCAT causes less
training time, fewer parameters, and fits with less difficulty.

(a) (b)

Figure 3. Performance of CM-NET under different parameters. (a) The impact of different λ. (b) The
impact of MCAT with different layers.

4.3. Experimental Results
4.3.1. Performance Evaluation Metrics

In this paper, four evaluation metrics of Accuracy, Recall, Precision, and F1score are
used to evaluate the people counting performance of CM-NET, and the expressions of each
evaluation metric are as follows:

Accuracy =
TP

FP + FN + TP + TN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)
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F1-score = 2
Precision × Recall
Precision + Recall

(13)

where TP represents the number of samples that were correctly classified by the classifier
and rated positive by the classifier; TN represents the number of samples that were correctly
classified by the classifier and rated negative by the classifier; FP represents the number of
samples that were incorrectly classified by the classifier and rated positive by the classifier;
and FN represents the number of samples that were incorrectly classified by the classifier
and rated negative by the classifier.

4.3.2. CM-NET Performance Evaluation

To test the performance of CM-NET at multiple locations, we use CM-NET and CM-
NET (Training without image) on dataset-1 (shown in Table 1) and dataset-2(shown in
Table 2), respectively.

Table 1. CM-NET performance on dataset-1.

Model Accuracy Recall Precision F1-Score

CM-NET 86.40% 85.44% 85.68% 85.15%
CM-NET
(Training

without image)
82.44% 81.19% 81.49% 80.72%

Table 1 compares the performance of CM-NET and CM-NET (Training without image)
on dataset-1. On dataset-1, it is simple to observe that CM-NET (Training without image)’s
people counting accuracy can only reach 82.44% and other metrics are around 81%. In
contrast, CM-NET’s accuracy can reach 86.40%, and other metrics are around 85%, which is
superior to CM-NET (Training without image). By examining the test data, it can be seen
that even if the position is fixed, the CSI amplitude is still subject to position interference.
The CM-NET (Training without image) performs poorly in classification because it cannot
extract more effective crowd features. In contrast, CM-NET was trained by introducing soft
labels produced by the vision-based network. This allowed the network to extract a greater
variety of people features, and its performance in counting was greatly enhanced.

Table 2. CM-NET performance on dataset-2.

Model Accuracy Recall Precision F1-Score

CM-NET 83.61% 85.40% 82.92% 82.65%
CM-NET
(Training

without image)
75.92% 75.64% 75.80% 75.43%

Table 2 compares the performance of CM-NET and CM-NET (Training without image)
on dataset-2. We can see that on dataset-2, CM-NET (Training without image)’s accuracy
in counting people can only reach 75.92%, and all other metrics are around 75%, while
CM-NET’s accuracy in counting people can reach 83.61%, and all other metrics are around
82%, which is superior to CM-NET (Training without image). The results shown in Table 2
indicate that location change interferes more with CSI when the location of the detected
people is not fixed. As the location of detected people changes randomly, and we cannot
collect data from all locations, the CM-NET (Training without image) network extracts
information with significantly less attention being paid to the feature of the number of
people, and its performance for counting people declines. While, the location change
almost did not affect the performance of the vision-based network. CM-NET transfers the
knowledge learned by the vision-based people counting network to the CSI-based network
using the technique of knowledge distillation. By doing so, CSI-based networks can extract
features more efficiently and count people more effectively.
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We present the confusion matrix of CM-NET and CM-NET (Training without image)
test results in Figure 3. Where Figure 4a shows the confusion matrix of CM-NET (Training
without image) on dataset-1, Figure 4b the confusion matrix of CM-NET on dataset-1,
Figure 4c the confusion matrix of CM-NET (Training without image) on dataset-1, and
Figure 4d the confusion matrix of CM-NET on dataset-2.

(a) (b)

(c) (d)

Figure 4. Confusion matrix of CM-NET (Training without image) and CM-NET test results. In the
confusion matrix, the row coordinates represent the number of people predicted by the network and
the vertical coordinates represent the actual number of people; the numbers in the matrix represent
the proportion of correctly predicted samples to the total samples in the class. (a) CM-NET (Training
without image) confusion matrix on dataset-1. (b) CM-NET confusion matrix on dataset-1. (c) CM-NET
(Training without image) confusion matrix on dataset-2. (d) CM-NET confusion matrix on dataset-2.

It is clear from the confusion matrix in Figure 4 that CM-NET increases the CSI-based
network’s accuracy for classifying several people-counting groups. The improved accuracy
is attributed to the fact that CM-NET makes the CSI-based network pay more attention to
the features of the number of people when extracting features by introducing soft labels of
visual information as supervisory signals, which attenuates the effect of changes in location
on the network feature extraction.

4.3.3. Comparative Experiments and Correlation Analysis with Existing Related Work

We compared with some existing networks, including DNN [27], SVM, KNN, and the
current state-of-the-art classification network Two-Stream Transformer [24], to show the
superiority of CM-NET in people counting at multiple places.
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The performance of the five current networks on dataset-1 is shown in Table 3. By
analyzing Table 3, We found that on dataset-1, differences in location interfered with CSI,
resulting all network trained using CSI only that could not achieve the desired recognition
results. In contrast, CM-NET uses soft labels generated by the vision-based network to
supervise the training of the CSI network, allowing the CSI network to efficiently extract
more useful human feature data and the network to achieve produce more accurate results.

Table 3. Performance of existing networks on dataset-1.

Model Accuracy Recall Precision F1-Score

CM-NET 86.40% 85.44% 85.68% 85.15%
Two-Stream Transformer [24] 72.24% 70.92% 64.77% 66.50%
DNN [27] 53.88% 33.33% 17.96% 23.34%
SVM [26] 49.41% 41.71% 42.25% 40.17%
KNN [26] 49.55% 41.83% 41.45% 41.37%

The five current networks’ performance tests are shown in Table 4 for dataset-2. Table 4,
through analysis, revealed that on dataset-2, the interference caused by the location is more
apparent due to the position’s immobility, causing all networks’ accuracy to fall. Each
network metric has a pronounced degradation when CSI is solely employed, especially
for machine learning networks, where performance is approximately halved. In contrast,
CM-NET increases the network’s ability to extract features about the number of people by
transferring the information learned from the vision network to the CSI network, reducing
interference caused by location changes and ensuring stability for the network’s performance.

Table 4. Performance of existing networks on dataset-2.

Model Accuracy Recall Precision F1-Score

CM-NET 83.61% 83.40% 82.92% 82.65%
Two-Stream Transformer [24] 53.51% 53.11% 37.00% 42.65%
DNN [27] 39.73% 33.33% 13.24% 18.96%
SVM [26] 25.92% 24.32% 30.31% 22.28%
KNN [26] 22.84% 22.16% 22.37% 22.25%

The results in Tables 3 and 4 reveals that in both cases—especially when the location is
not fixed—CM-NET achieves superior people counting performance.

5. Conclusions

In this paper, we introduce multimodal knowledge distillation to the task of CSI-based
people counting. We propose an end-to-end supervised cross-modal learning network,
CM-NET. By transferring knowledge from a vision-based network to a CSI-based network
using deep learning and distillation learning, CM-NET enhances the performance of CSI-
based networks for people counting. Our data acquisition uses only a pair of receivers,
transmitters, and a camera, and experiments are conducted in a real room. The experimental
results show that the average recognition accuracy of CM-NET for up to 9 people is 86%,
which is better than existing related methods. Our method is quite robust in complex
indoor environments. For our future work, we plan to further improve the recognition
accuracy of people counting.
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Abstract: Crystal Structure Algorithm (CryStAl) is a new meta-heuristic algorithm, and it has
been studied by many scholars because of its wide adaptability and the fact that there is no need
to set parameters in advance. An improved crystal structure algorithm (GLCryStAl) based on
golden sine operator and Levy flight is designed in this paper. The algorithm makes good use
of the relationship between the golden sine operator and the unit circle to make the algorithm
exploration space more comprehensive, and then gradually narrows the search space in the
iterative process, which can effectively speed up the convergence rate of the algorithm. At the
same time, a Levy operator is introduced to help the algorithm effectively get rid of the attraction
of local optimal value. To evaluate the performance of GLCryStAl, 12 classic benchmark functions
and eight CEC2017 test functions were selected to design a series of comparative experiments. In
addition, the experimental data of these algorithms are analyzed using the Wilcoxon and Friedman
tests. Through these two tests, it can be found that GLCryStAl has significant advantages over
other algorithms. Finally, this paper further tests the optimization performance of GLCryStAl in
engineering design. GLCryStAl was applied to optimize pressure vessel design problems and
tension/compression spring design problems. The optimization results show that GLCryStAl is
feasible and effective in optimizing engineering design.

Keywords: crystal structure algorithm; golden sine algorithm; levy flight; engineering
optimization problems

1. Introduction

Nowadays, practical problems in the fields of traffic scheduling, engineering design,
machinery manufacturing, etc., are becoming more and more complex and challenging.
When dealing with these problems, people often use optimization algorithms to save some
costs. Since most production practice problems are multivariate, nonlinear, and have many
complex constraints, the traditional conjugate gradient method does not perform well in
the optimization of these problems [1]. The meta-heuristic algorithm has the characteristics
of not depending on gradient information and wide adaptability, which can effectively
make up for the shortcomings of traditional optimization algorithms. At present, the
meta-heuristic algorithm is applied in various industries, such as workshop scheduling [2],
task planning [3], engineering management [4–7] and so on.

The meta-heuristic algorithm is a mathematical method inspired by the biological
behavior and some physical phenomena in nature [8]. The meta-heuristic algorithms
mainly include the swarm optimization algorithm [9], evolutionary algorithm [10], physical
and chemical algorithms [11] and human based algorithms [12]. The simulated anneal-
ing algorithm [13,14] and differential evolution algorithm [15] are classical evolutionary
algorithms. Some classic and newly proposed swarm intelligence optimization algorithms
are as follows: the bee collecting pollen algorithm (BCPA) [16] is proposed by simulating
the behavior of bees collecting pollen. The fruit fly optimization algorithm (FOA) [17] is
proposed by simulating the process of drosophila predation using its keen sense of smell
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and vision. The bat-inspired algorithm (BA) [18] is proposed by simulating bats using a
sonar to detect prey and avoid obstacles. The grey wolf optimizer (GWO) [19] and the tuna
swarm optimization (TSO) [20] are proposed by simulating the hunting behavior of wolves
and tuna swarms. At present, the metaheuristic algorithm is applied in more and more
fields, which has caused more and more scholars to study it.

In nature, a large number of microscopic material units such as molecules, atoms and
ions are regularly arranged to form material structures called crystals. “Lattice points” are
the basic units of crystal; they form a periodic lattice in a predefined space. The “basis”
associated with each lattice point determines the position of the molecule in the crystal
structure. In 2021, SIAMAK TALATAHAR proposed a new meta-heuristic algorithm called
crystal structure algorithm (CryStAl) [21], by studying the principle of adding basis to form
crystal structures with lattice points. The crystal structure algorithm has the advantages
of simple structure, no need to set parameters in advance and strong adaptability, so it
has generated widespread interest since it was proposed. Although CryStAl has excellent
performance in many aspects, there are still some deficiencies in the crystal structure
algorithm. CryStAl is susceptible to local extremes during iteration, resulting in insufficient
exploration. Furthermore, the convergence speed of CryStAl is relatively slow. Up to
now, no scholars have made relevant improvements to the crystal structure algorithm.
Because the crystal structure algorithm has the advantages of simple structure, being easy
to understand and low time complexity, this paper improves the algorithm under the
premise of retaining these advantages of the crystal structure algorithm so that it can obtain
better comprehensive optimization performance.

In view of these shortcomings, this paper developed a crystal structure algorithm
improved by using a Levy flight operator and golden sine operator.

To ensure CryStAl has a balanced exploration and development performance, ran-
dom numbers subject to Levy distribution are added to the CryStAl, which can effectively
avoid CryStAl being affected by the suboptimal solution iterative process, and the golden
sine operator is applied to modify the update strategy of candidate solutions, so that
the algorithm converges faster. GLCryStAl is designed according to the modification
strategy above.

The main contents of the article are summarized as follows. Section 2 introduces the
CryStAl algorithm. Section 3 introduces the improved algorithm GLCryStAl in detail. In
Section 4, a series of comparative experiments are designed and experimental numerical
analysis is carried out. Section 5 uses GLCryStAl to optimize two engineering problems.
Section 6 provides a comprehensive discussion of GLCryStAl. The paper ends in Section 7.

2. An Overview of the Crystal Structure Algorithm

The crystal structure algorithm is inspired by the principle of adding basis to lattice
points to form crystals. Based on this principle, SIAMAK TALATAHAR proposed a crystal
structure algorithm in 2021.

The internal particles of the crystal are regularly arranged. The structural particles
that make up a crystal are regularly arranged at certain points in three-dimensional space,
and these points periodically form an infinite lattice with a certain geometric shape, called
a “lattice”. The “basis” associated with each lattice point in the crystal determines the
position of the particle in the crystal structure, adding basis to the lattice point to form the
crystal structure. The mathematical model of the lattice position is as follows [22]:

r = ∑ niai (1)

where i represents the number of crystal angles, ai is the shortest vector and ni is an integer.
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CryStAl initializes crystals using the following formula:

Cr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
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...
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...
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i x2
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i
...
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n x2
n · · · xj

n · · · xd
n
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,
{

i = 1, 2, · · · , n
j = 1, 2, · · · , d

(2)

where n is the total number of single crystals and d is the total number of variables. Single
crystals are initialized using the following formula:

xj
i(0) = xj

i,min + ξ(xj
i,max − xj

i,min),
{

i = 1, 2, · · · , n
j = 1, 2, · · · , d

(3)

where xj
i,max and xj

i,min denote the two extreme values of the jth decision variable of the ith

candidate solution, ξ is a random value in the range of 0–1 and xj
i(0) denotes the initial

position of the single crystal.
In CryStAl, the crystal at the corner is called Crmain. The average value of randomly

selected crystals is Fc. Currently, the best crystal is Crb. The crystal structure algorithm has
four candidate solution updating strategies, as follows:

Simple cubicle strategy:

Crnew = Crold + rCrmain (4)

Cubicle with the optimal crystal:

Crnew = Crold + r1Crmain + r2Crb (5)

Cubicle with the average crystal:

Crnew = Crold + r1Crmain + r2Fc (6)

Cubicle with the optimal crystal and average crystal:

Crnew = Crold + r1Crmain + r2Crb + r3Fc (7)

where r–r3 are four random values, Crold is the position of the old crystal and Crnew is the
position of the new crystal. The pseudocode of CryStAl is displayed in Algorithm 1:
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Algorithm 1. Pseudo-code of CryStAl

1: Initialization: the positions of crystals, Cri (I = 1, 2, . . . , n)
2: Calculate the fitness value of all crystals
3: while t < tmax do

4: for (each crystal) do
5: Create Crmain
6: Create new crystals through formula (4)
7: Create Crb
8: Create new crystals through formula (5)
9: Create Fc
10: Create new crystals through formula (6)
11: Create new crystals through formula (7)
12: if (the new crystal goes beyond the preset boundary) then
13: Modify the position of the new crystal
14: end if
15: Calculate the fitness values of all new crystals
16: Update the crystal with the optimal fitness value
17: end for
18: t = t + 1
19: end while
20: return the best crystal

3. The Proposed Algorithm

In this chapter, we first introduce the golden sine operator and Levy flight operator.
Based on these two operators, the original crystal structure algorithm is modified. Then,
a crystal structure algorithm based on Levy flight and golden sine operators is proposed,
which is called GLCryStAl.

3.1. Golden Sine Position Update Strategy

The golden sine algorithm [23] is called golden-SA for short. It is a new intelligent
optimization algorithm proposed by Tanyildizi, inspired by the mathematical model of sine
function. Golden-SA is widely studied because of its simple structure, fast convergence
speed and strong stability. Golden-SA simulates the search space exploration process by
using the sine function to scan the unit circle. It makes good use of the special relationship
between the sine function and the unit circle and combines the golden section coefficients
to search the algorithm space iteratively, and finally finds the optimal solution set.

The golden section coefficient is a concept proposed by the ancient Greek mathemati-
cian Eudoxus. It does not depend on gradient information and only needs to be iterated
once per step, while its contraction steps are fixed per step. Scholars have found that the
strategy of combining the traditional sine function with the golden section coefficient can
help the algorithm quickly find the extreme value of the unimodal function. At the same
time, the golden sine search strategy has good ergodicity, so it can effectively prevent the
algorithm from being attracted by the local extreme value.

The mathematical description of the Golden-SA strategy is shown in Equation (8):

Vt+1
i = Vt

i |sin(r1)| − r2 sin(r1)
∣∣x1Bt

i − x2Vt
i
∣∣ (8)

where t represents the current number of iterations and Bt
i represents the position of the

best individual in the population in the tth iteration. r1 and r2 are random numbers in [0,2π]
and [0,π], respectively; they determine the moving distance of the current individual in
the next iteration and the direction of the current individual position update. Vt

i and Vt+1
i

represent the positions of the ith individual in iteration t and iteration t + 1, respectively.
x1 and x2 are the golden section coefficients mentioned above, which can help the algorithm
gradually narrow the search space and guide the ordinary individuals in the population
toward the optimal individuals.
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The mathematical expressions of x1 and x2 are as follows:

x1 = a · (1 − τ) + b · τ (9)

x2 = a · τ + b · (1 − τ) (10)

τ =

√
5 − 1
2

(11)

where a and b are the search interval, and the golden sine algorithm is segmented by the
interval of the standard sine function. Since the period of the standard sine function is
2π, according to the relationship between the standard sine and the unit circle, in order
to enable the population to traverse the searched space in each dimension throughout the
period, the values of a and b are usually π and −π. τ is the golden ratio.

3.2. Levy Flight Position Update Strategy

Levy operator [24] is a search strategy consistent with Levy distribution, and its step
size is random, which makes Levy operator more suitable for exploration in a wider space
than Brownian motion [25]. In the search process, Levy flight uses long distance step in
low frequency and short distance step in high frequency, which can effectively avoid the
algorithm being attracted by local extrema in the optimization process. Due to the high
complexity of Levy distribution, researchers often use the Mantegna [26] algorithm to
simulate Levy flight step size, which is defined as follows:

s =
μ

|ν|1/β
(12)

where μ and ν are defined as follows:

μ ∼ N
(

0, σ2
μ

)
(13)

ν ∼ N
(

0, σ2
ν

)
(14)

σμ =

⎧⎪⎨⎪⎩
Γ(1 + β) sin

(
πβ
2

)
Γ
[
(1+β)

2

]
· β · 2

(1+β)
2

⎫⎪⎬⎪⎭, σν = 1 (15)

where the value of β is usually 1.5.
In order to show the global exploration capability of Levy flight more intuitively,

this paper compares Levy flight with random walk strategy. The comparison results are
presented in Figure 1.
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Figure 1. Simulation comparison experiment diagram of Levy flight and random walk.
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Figure 1 shows that the Levy flight has a larger search range. The jump points of
random walk strategy are more concentrated, and the jump points of Levy flight strategy
are widely distributed. This means that the crystal structure algorithm modified by Levy
flight can effectively enhance its global search performance.

3.3. Improved Crystal Structure Algorithm

Aiming at the shortcomings of crystal structure algorithm, such as slow convergence
speed and the requirement of practical engineering project for algorithm accuracy, this
paper proposes a crystal structure algorithm (GLCryStAl) combining golden sine and
Levy flight operator.

The GLCryStAl algorithm introduces the golden sine algorithm and the golden section
coefficient into the three position update strategies mentioned in Equations (4)–(6), and
determines its update position according to Equation (8). Because the golden sine operator
has excellent ergodicity, it can make the optimization space of the algorithm more compre-
hensive and control the distance and direction of the candidate solution update through the
parameters r1 and r2, so the exploration space of the algorithm can be gradually reduced.
Therefore, the introduction of the golden sine operator can reduce the solution time of the
algorithm and help the algorithm to obtain a more ideal solution.

Levy operator can significantly enhance the algorithm’s global exploration perfor-
mance. In this paper, the update strategy in Equation (7) is mutated by using the jump
characteristics of the combination of long and short steps of the Levy operator, which
can greatly improve the diversity of the algorithm population and make the optimization
efficiency of the algorithm higher. The specific steps of GLCryStAl are as follows:

The modified simple cubicle strategy:

Crnew = Cr1|sin(r1)| − r2 sin(r1)|x1Crb − x2Cr1| (16)

The modified cubicle with the optimal crystal:

Crnew = Cr2|sin(r1)| − r2 sin(r1)|x1Crb − x2Cr2| (17)

The modified cubicle with the average crystal:

Crnew = Cr3|sin(r1)| − r2 sin(r1)|x1Crb − x2Cr3| (18)

Cubicle with the optimal crystal and average crystal:

Crnew = Crold + α ⊗ Levy(λ)⊗ Crmain + α ⊗ Levy(λ)⊗ Crb + α ⊗ Levy(λ)⊗ Fc (19)

where Crb is the optimal candidate in the current population. Cr1, Cr2 and Cr3 are the
candidate solutions produced by Equations (16)–(18) in the last execution,α is a distance
control parameter, ⊗ denotes point multiplication, and Levy(λ) is the jump path whose
jump distance obeys Levy distribution. Considering that the exploration step size of Levy
flight is too aggressive, it may jump out of the main search range during the algorithm
search process, so this paper sets α to 0.01.

The pseudocode of GLCryStAl is displayed in Algorithm 2:
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Algorithm 2. Pseudo-code of GLCryStAl

1: Initialization: the positions of crystals, Cri (i = 1, 2, . . . , n)

2: Calculate the fitness value of all crystals
3: while t < tmax do

4: for (each crystal) do

5: Create Crmain, Crb
6: Create new crystals through formula (16)
7: Create new crystals through formula (17)
8: Create new crystals through formula (18)
9: Create Fc
10: Create new crystals through formula (19)
11: if (the new crystal goes beyond the preset boundary) then

12: Modify the position of the new crystal
13: end if

14: Calculate the fitness values of all new crystals
15: Update the crystal with the optimal fitness value
16: end for

17: t = t + 1
18: end while

19: return the best crystal

4. Simulation Experiments and Results Analysis

In this section, 12 classic benchmark functions and eight CEC2017 test functions are
applied to design comparative experiments of the other five algorithms of GLCryStAl in two
different dimensions. To avoid the length of the article being too long, this paper selected
part of the CEC2017 test function, which is also representative. Finally, the experimental
results are numerically analyzed to verify the optimization performance of GLCryStAl.

4.1. Benchmark Functions and Experimental Design

The details of the test functions are displayed in Table 1. F1–F6 are unimodal functions,
which are applied to evaluate the solution speed of these algorithms. F7–F9 are multimodal
functions, which are applied to evaluate whether these algorithms have excellent global
exploration capacity. F10–F12 are combined functions, which are suitable for testing algo-
rithm performance in fixed dimensions and are used to test the answer accuracy of these
algorithms. F13–F20 are the CEC2017 functions which are applied to test the comprehensive
capability of these algorithms.

Based on these 20 test functions, this paper designs a series of experiments compar-
ing GLCryStAl with some of the latest algorithms and an improved algorithm. These
competitor algorithms are CryStAl, Accelerated Particle Swarm Optimization Algorithm
(APSO) [27], Whale Optimization Algorithm (WOA) [28], Golden Jackal Optimization
(GJO) [29], Tunicate Swarm Algorithm (TSA) [30] and the newly proposed Dung beetle
optimizer (DBO) [31]. Functions F1–F9 are tested in 30 and 100 dimensions, respectively,
and F10–F12 are tested in their suitable dimension. Eight CEC2017 benchmark functions
are tested in 50 dimensions. The maximum number of evaluations of F1–F12 is 1000.
Since CEC2017 benchmark functions are too complex, the number of evaluations of eight
CEC2017 functions are simplified to 3000 without losing representativeness. The popula-
tion size of each algorithm is 30. To avoid accidental interference, we run each algorithm
30 times independently in each experiment. The parameter values of these algorithms
involved in these experiments are shown in Table 2.
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Table 1. Benchmark functions.

Function Dim Range fmin

F1(x) = ∑D
i=1 x2

i 30, 100 [100, 100] 0
F2(x) = ∑D

i=1|xi|+ ∏D
i−1|xi| 30, 100 [−10, 10] 0

F3(x) = ∑D
i=1 (∑

D
j−1 xi)

2 30, 100 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ D} 30, 100 [−100, 100] 0
F5(x) = ∑D

i=1 100(x2
i+1 − x2

i )
2
+ (xi − 1)2 30, 100 [−30, 30] 0

F6(x) = ∑D
i=1 ixi

4 + random[0, 1) 30, 100 [−1.28, 1.28] 0
F7(x) = ∑D

i=1 (x2
i − 10 cos(2πxi) + 10) 30, 100 [−5.12, 5.12] 0

F8(x) = −20 exp

(
−0.2

√
1
D

D
∑

i=1
x2

i

)
− exp

(
1
D

D
∑

i=1
cos(2πxi)

)
+20 + e 30, 100 [−32, 32] 8.8818 × 10−16

F9(x) =
D
∑

i=1

x2
i

4000 − D
∏
i=1

cos
(

xi√
i

)
+ 1 30, 100 [−600, 600] 0

F10(x) = ((1/500) + ∑25
j=1 (1/(j + ∑2

i=1 (xi − aij)
6)))

−1 4 [−65.53, 65.53] 0.998004

F11(x) = ∑11
i=1 (ai − (x1(b2

i + bix2)/b2
i + bix3 + x4))

−1 4 [−5, 5] 0.0003075

F12(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2 x1−3x2)
2(18 − 32 x1+12x2

1+48x2−36x1x2+27x2
2)]

2 [−5, 5] −1.03163

F13(x)(CEC2017 14 :Hybrid Function 4 (N = 4)) 50 [100, 100] 1400
F14(x)(CEC2017 15 :Hybrid Function 5 (N = 4)) 50 [100, 100] 1500
F15(x)(CEC2017 17 :Hybrid Function 6 (N = 5)) 50 [−100, 100] 1700
F16(x)(CEC2017 18 :Hybrid Function 6 (N = 5)) 50 [−100, 100] 1800
F17(x)(CEC2017 19 :Hybrid Function 6 (N = 5)) 50 [−100, 100] 1900
F18(x)(CEC2017 20 :Hybrid Function 6 (N = 6)) 50 [−100, 100] 2000
F19(x)(CEC2017 23 :Composition Function 3 (N = 4)) 50 [−100, 100] 2300
F20(x)(CEC2017 27 :Composition Function 7 (N = 6)) 50 [−100, 100] 2700

Table 2. Parameter values of the algorithms.

Algorithm Parameter Value

APSO α = 1, β = 0.5, γ = 0.95, population size N = 30, tmax = 1000, 3000
WOA population size N = 30, tmax = 1000, 3000
GJO population size N = 30, tmax = 1000, 3000
TSA Pmin = 1, Pmax = 4, population size N = 30, tmax = 1000, 3000
DBO k = 1, λ = 4, b = 0.3, S = 0.5, population size N = 30, tmax = 1000, 3000

CryStAl population size N = 30, tmax = 1000, 3000
GLCryStAl population size N = 30, tmax = 1000, 3000

4.2. Results and Analysis

Table 3 displays the experimental results of GLCryStAl and other competitors in low
dimensional benchmark functions (dimension = 30). Std is the standard deviation and
mean is the average. The mean reflects the solution accuracy of these algorithms and Std
reflects their robustness. F10–F12 are tested in their suitable dimension.

Table 4 displays the test data of GLCryStAl and competitors in high-dimensional
benchmark functions (dimension = 100). The experimental results of eight test functions in
CEC2017 are shown in Table 5.
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Table 3. Experimental results in 30 dimensions.

Function Performance APSO WOA GJO TSA DBO CryStAl GLCryStAl

F1

Mean 5.27 × 10−39 4.31 ×
10−159

4.15 ×
10−113 0 7.46 ×

10−283 5.97 × 10−32 0

Std 1.16 × 10−39 8.51 ×
10−159

8.45 ×
10−113 0 0 1.74 × 10−31 0

F2

Mean 2.62 × 10−1 1.45 ×
10−103 1.75 × 10−65 3.75 ×

10−200
3.93 ×
10−122 4.58 × 10−17 0

Std 4.21 × 10−1 3.74 ×
10−103 3.00 × 10−65 0 1.24 ×

10−121 1.12 × 10−16 0

F3
Mean 9.76 1.56 × 10+4 1.90 × 10−34 0 2.64 ×

10−185 6.03 × 10−34 0

Std 4.43 6.68 × 10+3 5.71 × 10−34 0 0 1.08 × 10−33 0

F4

Mean 3.15 × 10−1 4.77 × 10+1 4.77 × 10−34 8.15 ×
10−185

4.45 ×
10−107 7.54 × 10−17 0

Std 1.27 × 10−1 2.98 × 10+1 7.95 × 10−34 0 1.41 ×
10−106 2.01 × 10−16 0

F5
Mean 3.09 × 10+1 2.74 × 10+1 2.74 × 10+1 2.89 × 10+1 2.48 × 10+1 2.87 × 10+1 2.87 × 10+1

Std 6.28 5.90 × 10−1 5.54 × 10−1 3.20 × 10−1 2.20 × 10−1 2.66 × 10−2 1.09 × 10−1

F6
Mean 1.74 × 10−1 6.67 × 10−4 1.94 × 10−4 7.17 × 10−6 6.77 × 10−4 5.37 × 10−4 5.11 × 10−5

Std 6.11 × 10−2 1.25 × 10−3 8.02 × 10−5 2.54 × 10−5 3.26 × 10−4 3.38 × 10−4 3.39 × 10−5

F7
Mean 8.51 × 10+1 0 0 6.81 2.19 0 0

Std 1.74 × 10+1 0 0 1.84 × 10+1 6.92 0 0

F8
Mean 3.43 × 10−1 5.15 × 10−15 4.44 × 10−15 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Std 4.84 × 10−1 2.13 × 10−15 0 0 0 0 0

F9
Mean 5.57 × 10−3 0 0 9.86 × 10−4 0 0 0

Std 1.33 × 10−2 0 0 2.96 × 10−3 0 0 0

F10
Mean 1.27 × 10+1 2.37 5.10 1.13 × 10+1 1.39 9.98 × 10−1 9.98 × 10−1

Std 1.48 × 10−13 2.90 4.64 6.25 8.37 × 10−1 0 0

F11
Mean 5.04 × 10−3 7.72 × 10−4 4.96 × 10−4 1.54 × 10−2 7.02 × 10−4 4.03 × 10−4 3.09 × 10−4

Std 7.77 × 10−3 5.34 × 10−4 3.64 × 10−4 2.61 × 10−2 2.63 × 10−4 5.58 × 10−5 8.23 × 10−7

F12
Mean 3.00 3.00 3.00 8.40 × 10+1 5.70 3.00 3.00

Std 5.63 × 10−15 8.54 × 10−6 2.37 × 10−6 3.71 × 10+1 8.54 5.85 × 10−5 6.58 × 10−6

Table 4. Experimental results in 100 dimensions.

Function Performance APSO WOA GJO TSA DBO CryStAl GLCryStAl

F1
Mean 2.10 × 10+1 1.58 × 10−153 2.34 × 10−60 0 1.56 × 10−235 3.43 × 10−32 0

Std 5.73 2.58 × 10−153 3.03 × 10−60 0 0 9.64 × 10−32 0

F2
Mean 4.23 × 10+1 4.67 × 10−102 2.68 × 10−37 5.23 × 10−184 2.13 × 10−124 5.41 × 10−17 0

Std 5.80 1.34 × 10−101 2.51 × 10−37 0 5.17 × 10−124 1.49 × 10−16 0

F3
Mean 2.32 × 10+2 9.68 × 10+5 1.26 × 10−10 0 3.30 × 10−97 4.59 × 10−36 0

Std 4.17 × 10+1 1.11 × 10+5 3.11 × 10−10 0 1.04 × 10−96 1.16 × 10−35 0

F4
Mean 2.29 5.70 × 10+1 1.57 4.01 × 10−170 4.17 × 10−124 8.48 × 10−18 0

Std 1.80 × 10−01 3.48 × 10+1 4.72 0 1.16 × 10−123 1.46 × 10−17 0

F5
Mean 5.84 × 10+3 9.82 × 10+1 9.81 × 10+1 9.85 × 10+1 2.49 × 10+1 9.87 × 10+1 9.81 × 10+1

Std 1.67 × 10+3 3.64 × 10−1 5.98 × 10−1 4.12 × 10−1 2.71 × 10−1 5.35 × 10−2 7.03 × 10−2

F6
Mean 5.21 × 10+2 5.58 × 10−4 4.71 × 10−4 4.82 × 10−5 7.68 × 10−4 3.42 × 10−4 1.34 × 10−5

Std 3.41 × 10+2 1.19 × 10−3 2.31 × 10−4 1.56 × 10−5 5.46 × 10−4 2.87 × 10−4 3.96 × 10−5

F7
Mean 4.49 × 10+2 1.14 × 10−14 0 3.98 × 10−1 0 0 0

Std 6.35 × 10+1 3.41 × 10−14 0 4.87 × 10−1 0 0 0

F8
Mean 3.70 4.09 × 10−15 1.12 × 10−14 5.15 × 10−15 1.24 × 10−15 1.24 × 10−15 8.88 × 10−16

Std 2.98 × 10−1 2.49 × 10−15 2.95 × 10−15 1.42 × 10−15 1.12 × 10−15 1.07 × 10−15 0

F9
Mean 4.67 × 10−1 0 0 9.86 × 10−4 0 0 0

Std 8.78 × 10−2 0 0 2.96 × 10−3 0 0 0
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Table 5. Test results of CEC2017 functions.

Function Performance APSO WOA GJO TSA DBO CryStAl GLCryStAl

F13
Mean 9.25 × 10+8 1.39 × 10+6 2.06 × 10+6 4.39 × 10+7 7.70 × 10+5 5.68 × 10+4 2.51 × 10+4

Std 1.69 × 10+1 1.73 × 10+6 6.62 × 10+5 1.20 × 10+7 5.51 × 10+5 3.24 × 10+4 4.71 × 10+4

F14
Mean 1.84 × 10+10 5.67 × 10+5 1.20 × 10+9 7.32 × 10+8 1.29 × 10+7 5.81 × 10+5 2.78 × 10+5

Std 2.72 × 10+6 5.34 × 10+5 5.02 × 10+8 2.09 × 10+9 4.05 × 10+7 3.01 × 10+5 1.72 × 10+5

F15
Mean 3.91 × 10+4 4.27 × 10+3 3.50 × 10+3 5.76 × 10+3 4.08 × 10+3 3.20 × 10+3 2.84 × 10+3

Std 3.81 × 10+2 4.90 × 10+2 4.56 × 10+2 1.76 × 10+3 4.96 × 10+2 1.76 × 10+2 2.29 × 10+2

F16
Mean 7.24 × 10+8 1.28 × 10+7 1.79 × 10+7 5.85 × 10+7 8.01 × 10+6 1.92 × 10+5 1.28 × 10+5

Std 2.90 × 10+6 5.98 × 10+6 2.15 × 10+7 6.03 × 10+7 7.21 × 10+6 7.11 × 10+4 2.10 × 10+5

F17
Mean 1.09 × 1010 3.05 × 10+6 2.43 × 10+8 1.17 × 10+9 1.63 × 10+6 7.76 × 10+5 2.35 × 10+5

Std 1.27 × 10+6 4.00 × 10+6 3.00 × 10+8 1.43 × 10+9 1.69 × 10+6 4.57 × 10+5 4.97 × 10+5

F18
Mean 3.96 × 10+3 4.34 × 10+3 3.37 × 10+3 3.96 × 10+3 3.68 × 10+3 3.23 × 10+3 3.05 × 10+3

Std 1.04 × 10+2 2.88 × 10+2 5.28 × 10+2 3.70 × 10+2 1.90 × 10+2 1.97 × 10+2 1.16 × 10+2

F19
Mean 6.11 × 10+3 3.54 × 10+3 3.34 × 10+3 4.15 × 10+3 3.39 × 10+3 3.83 × 10+3 3.34 × 10+3

Std 1.06 × 10+2 2.09 × 10+2 1.20 × 10+2 1.50 × 10+2 1.54 × 10+2 1.24 × 10+2 1.54 × 10+2

F20
Mean 1.32 × 10+4 4.76 × 10+3 3.93 × 10+3 4.84 × 10+3 3.87 × 10+3 4.84 × 10+3 3.79 × 10+3

Std 1.75 × 10+2 4.01 × 10+2 1.44 × 10+2 4.10 × 10+2 1.68 × 10+2 2.78 × 10+2 3.63 × 10+2

As can be seen from the above three tables, when the dimension is 30, GLCryStAl
can obtain the theoretical optimal values in test functions F1–F4 and F7–F9; GLCryStAl still
shows excellent performance in other functions. The solution accuracy of GLCryStAl in F5
is slightly worse than that of WOA, GJO and DBO, and the solution accuracy of GLCryStAl
in F6 is not good, but the gap between GLCryStAl and other competitive algorithms in
these two test functions is not large. The results are analyzed according to the Std value.
Among the functions other than F5 and F6, the Std value of GLCryStAl is the smallest,
which indicates that the optimization effect of GLCryStAl is very stable.

When the dimension is 100, GLCryStAl has the best solution accuracy in all benchmark
functions, and GLCryStAl can find the theoretical optimal value in all functions except
F5 and F6. All the data were analyzed according to Std value. The Std value of CL in F5 was
only ever worse than CryStAl, and the Std value of GLCryStAl in F6 was the second best,
indicating that GLCryStAl still has excellent robustness when solving high-dimensional
problems. From the data in Table 5, we can see that the optimization performance of
GLCryStAl does not decrease as the test case dimensions increase.

The experimental results of CEC2017 function indicate that all algorithms do not
obtain the theoretical optimal value. However, GLCryStAl can achieve better optimization
accuracy than other competitors in all test functions. This indicates that the GLCryStAl
algorithm modified by Levy operator and golden sine operator can get rid of the attraction
of local extreme value more efficiently when solving difficult optimization problems. At
the same time, the development and exploration ability of the algorithm are balanced to
ensure that the algorithm has a fast convergence rate.

Based on the above three tables for overall analysis, GLCryStAl has the characteristics
of high accuracy in 85% of the function optimization problems in the classical bench-
mark function. Combined with the experimental results of two different dimensions, the
Std value of GLCryStAl shows obvious advantages in 76% of the functions. It is not diffi-
cult to see that the optimization effect of GLCryStAl is not easily affected by contingency
probability, and GLCryStAl can always maintain a stable solution accuracy. In the CEC2017
experimental environment, GLCryStAl can calculate more accurate results within a limited
number of executions. None of the comparison algorithms calculate the theoretical optimal
value in eight CEC2017 experiments, but this can illustrate that the proposed Levy operator
and golden sine operator can accelerate the convergence speed of GLCryStAl and enable it
to obtain a better global exploration vision.
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Because the golden sine operator has excellent ergodicity, the optimization space
of the algorithm can be more comprehensive. The introduction of the golden section
coefficient in the iterative process further reduces the search space of the algorithm,
which greatly improves the convergence rate of GLCryStAl. Using the Levy flight
strategy to modify the candidate solution update formula expands the exploration
scope of GLCryStAl, and reduces the probability that GLCryStAl is attracted by local
optimal solution. The above data strongly prove the superiority of GLCryStAl and the
effectiveness of the proposed operator.

Figure 2 shows the convergence curves of GLCryStAl and other six comparison
algorithms on 20 test functions, where Figure 2a–i are the curves of F1–F9 in 100 dimensions,
Figure 2j–l are the curves of F10–F12 in their suitable dimension and Figure 2m–u are the
curves of eight CEC2017 functions.

The convergence curves of these algorithms indicate that GLCryStAl has more
excellent convergence performance than its competitors. For simple optimization prob-
lems, GLCryStAl can obtain theoretical optimal values within 400–700 iterations. For
complex and challenging problems, GLCryStAl can also maintain a faster convergence
rate and get rid of the influence of local attraction points, and ultimately achieve higher
optimization accuracy.

In order to further test whether GLCryStAl has an obvious enhancement advantage
compared with other algorithms, this paper uses the Wilcoxon [32] statistical method and
Friedman method to analyze the experimental data of these algorithms in 100-dimensional
benchmark functions. The data of F10–F12 are based on their respective dimensions. The
experimental data of eight CEC2017 benchmark functions are measured in 50 dimensions.
The results of Friedman and Wilcoxon tests are listed in Tables 6 and 7.

The smaller the rank mean of the algorithm, the better its performance. As can be seen
from Table 6, GLCryStAl has the smallest rank mean, CryStAl ranks second, followed by
DBO, GJO, WOA, TSA, APSO. According to the statistical analysis results, the rank mean of
the second-ranked competitive algorithm is almost twice that of GLCryStAl, and the rank
mean of APSO is more than three times that of GL, which indicates that the improvement
effect of the operator proposed in this paper is significant.

In the Wilcoxon statistical test results, if the p-value is less than 0.05 and close to 0, it
proves that the experimental results of the two algorithms are significantly different. If the
p-value exceeds 0.05, it proves that the experimental results of the two algorithms are not
significantly different. If the p-value is equal to NaN, it proves that the experimental results
of the two algorithms are not different.

As can be seen from Table 7, the p-values of GLCryStAl are basically less than 0.05
and close to 0, which means that GLCryStAl has significant advantages compared with
other algorithms. A small number of the data in Table 7 are greater than 0.05, as are a small
number for NaN. This is because the final solution accuracy of these competitive algorithms
is not much different from that of GLCryStAl, but it can be seen from the convergence
curves of all algorithms that although the solution accuracy of these competitive algorithms
is not much different from that of GLCryStAl, their convergence speed is generally much
slower than that of GLCryStAl.

Table 6. Friedman analysis results.

Algorithm Rank Mean

GLCryStAl 1.70
CryStAl 3.35

DBO 3.43
GJO 3.75

WOA 4.48
TSA 4.73

APSO 6.58
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Table 7. p-value of Wilcoxon statistical test results.

Function
GLCryStAl

vs.
APSO

GLCryStAl
vs.

WOA

GLCryStAl
vs.

GJO

GLCryStAl
vs.

TSA

GLCryStAl
vs.

DBO

GLCryStAl
vs.

CryStAl

F1 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 NaN 6.39 × 10−5 6.39 × 10−5

F2 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

F3 1.73 × 10−4 1.73 × 10−4 1.73 × 10−4 NaN 6.39 × 10−5 1.73 × 10−4

F4 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

F5 1.83 × 10−4 7.69 × 10−4 2.57 × 10−2 2.83 × 10−3 1.83 × 10−4 1.83 × 10−4

F6 1.83 × 10−4 1.83 × 10−4 2.83 × 10−3 1.73 × 10−2 1.71 × 10−3 1.83 × 10−4

F7 6.39 × 10−5 3.68 × 10−1 NaN 3.50 × 10−2 NaN NaN
F8 6.39 × 10−5 1.98 × 10−3 3.29 × 10−5 3.29 × 10−5 3.68 × 10−1 3.68 × 10−1

F9 6.39 × 10−5 NaN NaN 3.68 × 10−1 NaN NaN
F10 1.78 × 10−4 9.10 × 10−1 4.52 × 10−2 1.83 × 10−4 2.12 × 10−2 3.45 × 10−1

F11 1.83 × 10−4 1.83 × 10−4 9.70 × 10−1 1.83 × 10−4 2.57 × 10−2 1.83 × 10−4

F12 1.79 × 10−4 6.78 × 10−1 4.40 × 10−4 7.91 × 10−1 2.71 × 10−3 3.85 × 10−1

F13 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 4.40 × 10−4 4.73 × 10−1

F14 1.83 × 10−4 5.71 × 10−1 1.83 × 10−4 1.83 × 10−4 2.83 × 10−3 5.21 × 10−1

F15 1.83 × 10−4 2.11 × 10−2 7.57 × 10−2 1.83 × 10−4 5.80 × 10−3 5.83 × 10−4

F16 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 2.41 × 10−1

F17 1.83 × 10−4 9.10 × 10−1 5.39 × 10−2 1.83 × 10−4 9.70 × 10−1 2.41 × 10−1

F18 1.83 × 10−4 1.01 × 10−3 4.27 × 10−1 4.40 × 10−4 5.83 × 10−4 2.73 × 10−1

F19 1.83 × 10−4 2.73 × 10−1 3.30 × 10−4 7.69 × 10−4 6.40 × 10−2 8.50 × 10−1

F20 1.83 × 10−4 1.04 × 10−1 9.70 × 10−1 9.11 × 10−3 1.71 × 10−3 1.04 × 10−1

Figure 2. Cont.
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Figure 2. Convergence curve of each algorithm.

5. Optimization Engineering Example Using GLCryStAl

5.1. Using GLCryStAl to Optimize Pressure Vessel Design Problem

The design of pressure vessel is a classical and important problem in practical engi-
neering projects. The structure of the pressure vessel is shown in Figure 3, which consists
of a cylindrical container and two hemispherical containers. In this optimization problem,
there are four key variables, which are Ts, Th, R and L. Ts denotes the thickness of the shell
of the cylindrical container, Th denotes the thickness of the hemispheric container lid, R is
the radius inside the hemispherical container and L is the length of the cylinder container.
These four variables can be expressed as the following equation when using algorithms to
optimize the pressure vessel design problem.

x = (x1, x2, x3, x4)
T = (Ts, Th, R, L)T (20)

Figure 3. Pressure vessel structure diagram.
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In this optimization problem, we use heuristic algorithm to regulate these four vari-
ables, so as to minimize the sum of material cost, forming cost and welding cost of the
pressure vessel, which is transformed into the problem of finding the minimum of objective
function with constraints.

The objective function of the pressure vessel design optimization problem is as follows:

min f
(→

x
)
= 0.6224x1x3x4 + 1.7781x2x3

2 + 3.1661x1
2x4 + 19.84x1

2x3;
s.t. g1(x) = −x1 + 0.0193x3 ≤ 0;

g2(x) = −x2 + 0.00954x3 ≤ 0;
g3(x) = −πx3

2x4 − 4
3 πx3

3 + 1296000 ≤ 0;
g4(x) = x4 − 240 ≤ 0;
1 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200

(21)

To verify the effectiveness of GLCryStAl in pressure vessel design, this paper selects
PSO, WOA, GJO, TSA, DBO and CryStAl to compare with GLCryStAl, and runs each
algorithm 10 times. The population size of all algorithms is 30, and the maximum number
of iterations tmax = 1000. The specific results are listed in Tables 8 and 9.

Table 8. Total cost of six algorithms for optimizing pressure vessel design problems.

Algorithm PSO WOA GJO TSA DBO CryStAl GLCryStAl

Best value 6233.24 7073.26 5935.81 7016.74 5949.13 5951.03 5912.19
Worst value 6401.17 9776.40 7051.61 7765.10 7319.00 6727.56 6745.60
Mean 6215.85 8345.98 6359.02 7529.88 6365.51 6175.29 6142.88
Std 112.39 853.42 537.95 269.94 618.57 241.23 204.76

Table 9. The best results of six algorithms.

Algorithm Ts Th R L f(x)

PSO 0.9439015 0.466571 48.90681 107.2621 6233.24
WOA 0.8127619 0.7146932 40.51463 197.303 7073.26
GJO 0.7838487 0.3997165 40.60734 196.2115 5935.81
TSA 1.05297 0.554377 51.6783 86.8777 7016.74
DBO 0.81254 0.402322 42.098439 176.6367 5949.13
CryStAl 0.7923016 0.3923043 40.81446 193.5723 5951.03
GLCryStAl 0.7839314 0.3905878 40.6004 196.3812 5912.19

It is clear from the above two tables that the total cost calculated by GLCryStAl
is the smallest in the pressure vessel optimization design problem. In addition, the
Std of GLCryStAl is within an acceptable range, which proves from another aspect
that GLCryStAl has excellent stability when solving constrained engineering design
optimization problems.

5.2. Optimizing the Design of Tension/Compression Spring Using GLCryStAl

To fully prove the feasibility and effectiveness of the GLCryStAl algorithm in
engineering optimization problems, this paper applies the GLCryStAl algorithm to the
optimization design problem of a tension/compression spring. A schematic of the spring
is shown in Figure 4. This optimization problem is to select the most appropriate wire
diameter (D), the average coil diameter (L) and the number of effective coils (P) under a
series of specific constraints, so as to minimize the weight of the spring. In this paper, the
three variables D, L and P are represented as x1, x2 and x3. The mathematical modeling
of the optimization problem in this section is as follows:
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min f
(→

x
)
= (x3 + 2)x2x2

1;

s.t. g1(x) = 1 − x3
2x3

71785x4
1
≤ 0;

g2(x) = 4x2
2−x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1
− 1 ≤ 0;

g3(x) = 1 − 140.45x1
x2

2x3
≤ 0;

g4(x) = x1+x2
1.5 − 1 ≤ 0;

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

(22)

Figure 4. Schematic diagram of tension/compression spring design.

To evaluate the effectiveness of GLCryStAl in the design of tension/compression
spring, a comparative experiment is designed. PSO, WOA, GJO, TSA, DBO and CryStAl
are selected to compare with GLCryStAl, and the results are listed in Tables 10 and 11. In
this comparison experiment, each algorithm runs 10 times independently. The population
size of each algorithm is 30, and the maximum number of iterations tmax = 1000.

Table 10. Comparison results of six algorithms in spring design problem.

Algorithm PSO WOA GJO TSA DBO CryStAl GLCryStAl

Best value 0.012773 0.012757 0.01273 0.013104 0.012703 0.012702 0.012692
Worst value 0.014331 0.017183 0.012745 0.015482 0.017773 0.012836 0.012801
Mean 0.013323 0.013703 0.012736 0.013690 0.013633 0.012783 0.012767
Std 5.774 × 10−4 1.381 × 10−3 8.093 × 10−6 7.922 × 10−4 1.721 × 10−3 5.047 × 10−5 5.135 × 10−5

Table 11. The best results of six algorithms.

Algorithm D L P f(x)

PSO 0.054129 0.41825 8.4229 0.012773
WOA 0.068001 0.89079 2.1716 0.017183
GJO 0.0503732 0.325773 13.4042 0.01273
TSA 0.055371 0.45034 7.4903 0.013104
DBO 0.0506135 0.331388 12.9636 0.012703
CryStAl 0.0523392 0.372375 10.4521 0.012702
GLCryStAl 0.0515739 0.353728 11.4895 0.012692

From the experimental results, in the optimization results of all algorithms, the mean
value obtained by GLCryStAl is second only to the mean value obtained by GJO. However,
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from another point of view, the best value of spring weight optimized by the GLCryStAl
algorithm is smaller than that of all the competitors. This proves that the GLCryStAl
algorithm proposed in this paper is feasible and effective in the optimization design
problem of a tension/compression spring.

6. Discussion of GLCryStAl

CryStAl is a heuristic algorithm with a simple structure and no need to set hyper-
parameters. This paper uses Levy operator and golden sine operator to make targeted
optimization based on some subsidies of the original CryStAl algorithm. Firstly, this
paper uses the golden sine operator to optimize the candidate solution update equation
in CryStAl. The golden sine operator has excellent ergodicity to speed up the conver-
gence of the algorithm. Secondly, this paper uses the levy flight operator to perturb the
candidate solution update method of the CryStAl algorithm. By using the method of
combining the long and short steps of the operator for optimization, the algorithm is
effectively prevented from being attracted by the local optimal value during execution.
The excellent optimization capability of GLCryStAl is demonstrated by comparison with
various competitive algorithms. A series of experiments have proved the effectiveness
of GLCryStAl from multiple viewpoints, which strongly indicates that GLCryStAl has a
wide range of engineering applications.

In a series of function test experiments, GLCryStAl has higher solution accuracy
than other competitors in 85% of classical benchmark functions. GLCryStAl has a higher
Std value than other competitors in 76% of classical functions, which proves that the
accuracy of GLCryStAl is not easily affected by random factors. In the comparison of
CEC2017 benchmark functions, although all algorithms cannot calculate the theoretical
optimal value, GLCryStAl can calculate a more accurate solution in a limited number
of executions. The comparison results of a series of functions are analyzed by statistical
methods. GLCryStAl achieved the smallest rank mean in the Friedman analysis experiment,
and the p-value in the Wilcoxon analysis experiment is basically less than 0.05 and close
to 0. These statistical analyses prove that the two operators proposed in this paper have
significant improvement effects on CryStAl. Applying GLCryStAl to the pressure vessel
design problem and the tension/compression spring design problem, compared with
other competitors, GLCryStAl can calculate the minimum cost pressure vessel design
and the minimum weight stretch/compression spring design. It can be proven from a
series of experiments in this paper that the optimization performance of GLCryStAl is
significantly improved compared with the original CryStAl algorithm, but the performance
of GLCryStAl in solving some multi-peak complex problems still needs to be improved,
which is also a major research direction in our future.

7. Conclusions

Focusing on the problem of the crystal structure algorithm being easily attracted
by local extremum and the solution accuracy not being high enough, GLCryStAl is
proposed. In GLCryStAl, the golden sine operator and Levy operator are applied to
modify the update strategy of the four candidate solutions in the crystal structure.
This improvement can effectively prevent GLCryStAl from being attracted by local
extreme values in the optimization process, and the optimization speed of GLCryStAl
is significantly accelerated. In this paper, 10 classical benchmark functions and eight
CEC2017 test functions are applied to design a series of comparison experiments with
the latest algorithms and our improved algorithm. When solving low-dimensional
functions, GLCryStAl can calculate the theoretical optimal value of the function in F1–F4
and F7–F9, and GLCryStAl can maintain the minimum standard deviation in functions
other than F5 and F6. When solving high-dimensional functions, GLCryStAl obtains
theoretical optimal values in seven functions. It can be concluded from the experimental
results that the optimization capability of GLCryStAl is obviously stronger. In addition,
the experimental data of the six algorithms were analyzed by Wilcoxon and Friedman

62



Electronics 2022, 11, 4109

method. The statistical results show that the rank mean of GL is only 1.7, which indicates
that GLCryStAl algorithm is superior to other competitors.

Finally, this paper uses GLCryStAl to optimize two practical engineering problems.
In the first engineering problem, GLCryStAl is applied to the optimal design of pressure
vessels. GLCryStAl achieved the best performance in this experiment. In the second
engineering problem, GLCryStAl is applied to optimize the stretch/compression spring
design. In this experiment, the optimal spring weight designed by GLCryStAl is second
only to that of GJO. These two design problems fully demonstrate the feasibility and
effectiveness of GLCryStAl in optimizing practical engineering problems.
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Abstract: Crop disease leaf image segmentation (CDLIS) is the premise of disease detection, disease
type recognition and disease degree evaluation. Various convolutional neural networks (CNN) and
their modified models have been provided for CDLIS, but their training time is very long. Aiming
at the low segmentation accuracy of various diseased leaf images caused by different sizes, colors,
shapes, blurred speckle edges and complex backgrounds of traditional U-Net, a lightweight multi-
scale extended U-Net (LWMSDU-Net) is constructed for CDLIS. It is composed of encoding and
decoding sub-networks. Encoding the sub-network adopts multi-scale extended convolution, the
decoding sub-network adopts a deconvolution model, and the residual connection between the
encoding module and the corresponding decoding module is employed to fuse the shallow features
and deep features of the input image. Compared with the classical U-Net and multi-scale U-Net, the
number of layers of LWMSDU-Net is decreased by 1 with a small number of the trainable parameters
and less computational complexity, and the skip connection of U-Net is replaced by the residual
path (Respath) to connect the encoder and decoder before concatenating. Experimental results on a
crop disease leaf image dataset demonstrate that the proposed method can effectively segment crop
disease leaf images with an accuracy of 92.17%.

Keywords: crop disease leaf image segmentation (CDLIS); U-Net; dilated convolution; lightweight
multi-scale dilated U-Net (LWMSDU-Net)

1. Introduction

Plant diseases severely affect the quality and yields of crops. Early detection of crop
diseases reduces economic losses and has a positive impact on crop quality [1,2]. Crop
disease leaf image segmentation (CDLIS) is a key prerequisite for the automatic detection,
early warning, diagnosis and recognition of leaf diseases [3,4]. However, CDLIS is an
important and challenging topic due to the various colors, shapes, textures, sizes and
backgrounds of crop disease leaf images, as shown in Figure 1 [5,6].

 
Figure 1. Disease leaf image examples.

Many image segmentation algorithms, such as fixed threshold, Otsu, K-means clus-
tering, C-means clustering, fuzzy clustering, maximum entropy, 7 invariant moments and
Local Binary Patterns (LBP), can be applied to CDLIS [7]. Wang et al. [8] proposed an
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adaptive CDLIS method based on K-means clustering by three stages. Fernandez et al. [9]
applied principal component analysis (PCA) to the spectrum to evaluate the spectral sepa-
rability between healthy and infected leaves, used the spectral ratio between infected and
healthy leaves to determine the optimal wavelength for disease detection, and applied the
linear support vector machine (SVM) classifier to some spectral features.

The accuracy of the above traditional algorithms mainly depends on experience, and
due to the complexity of diseased leaf images, they lack generalization ability. With the
improvement of computing power, storage, Internet of Things, big data and artificial
intelligence, deep learning methods, such as convolutional neural network (CNN), full
convolutional neural network (FCN) and U-Net, have been widely applied to the detection,
segmentation and classification of crop disease leaf images, and achieved a significant
accuracy rate [10–13]. Ashwinkumar [14] proposed an optimal mobile network-based
CNN (OMNCNN) for detecting and classifying plant leaf diseases. It involves bilateral
filtering-based image preprocessing and Kapur’s thresholding-based image segmentation
to detect the affected portions of the leaf image. U-Net is a relatively simple and widely
used image semantic segmentation model and has achieved remarkable performance in
medical image segmentation. However, its segmentation performance for very multi-scale
small targets may be poor. U-Net can be improved from many aspects, such as encoder
number, convolution operation, up-sampling and down-sampling operation, residual
operation, attention mechanism, multi-scale convolution, model optimization strategy and
connection type between encoding and decoding layers [15,16]. Tarasiewicz et al. [17]
proposed a lightweight U-Net (LWU-Net) and applied it to multi-mode magnetic resonance
brain tumor image segmentation, obtaining accurate brain tumor contour. Xiong et al. [18]
proposed a multi-scale feature fusion attention U-Net (AU-Net) to improve the defect
detection accuracy caused by large background noise, unpredictable environments, and
different defect shapes and sizes in defect images of industrial parts. This model combines
attention U-Net with a multi-scale feature fusion module to detect the defects in low-noise
images effectively. Yuan et al. [19] presented an improved AU-Net, which can integrate
deep and rich semantic information and shallow detail information to perform adaptive and
accurate segmentation of aneurysm images with large size differences in MRI angiography.
Multi-scale U-Net (MSU-Net) can concatenate the fixed and moving images with multi-
scale input or image pyramid and concatenate them with corresponding layers of the same
size in U-Net [20]. Tian et al. [21] proposed a modified MSU-Net with dilated convolution
structure, squeeze excitation block and spatial transformer layers. Experiment results
indicated that it is competitive for normal and abnormal images. Wang et al. [22] proposed
an improved U-Net namely HDA-ResUNet with residual connections, adding a plug-and-
play, portable channel attention block and a hybrid dilated attention convolutional layer. It
makes full use of the advantages of U-Net, attention mechanism and extended convolution,
and performs accurate and effective medical image segmentation for different tasks. In
U-Net, some related discriminant features may be lost in image segmentation.

Inspired by LWU-Net, AU-Net and MSU-Net, a multi-scale dilated U-Net (LWMSDU-
Net) is constructed to improve the performance of CDLIS. It is lightweight, and the dilated
convolutional coding operation is used to fuse features from different sizes of receptive
fields. The main contributions of this paper are as follows:

• LWMSDU-Net is constructed by retaining local and multi-scale detail information;
• Dilated convolution is introduced into U-Net to enlarge the receptive field of the

convolution layer, improve the feature learning ability of U-Net, and obtain more
information about leaf spot image;

• A residual path (Respath) connection instead of the skip connection is employed to
allow gradient information to flow better through the network and overcome gradient
vanishing and degradation.

The rest of this paper is arranged as follows. Section 2 introduces the related works.
LWMSDU-Net is described in detail in Section 3. A lot of experiments are conducted on a
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crop disease leaf image dataset in Section 4. Finally, the paper is concluded and the future
work is given in Section 5.

2. Related Works

2.1. Residual Block

The difference between the residual convolution block and the standard convolution
block is that there is a skip connection [23]. Skip connection can effectively reduce the
problems of gradient vanishing and network model degradation. Residual is the difference
between the predicted value and the observed value. Suppose the first layer of the network is
described as Y = H(x), and a residual block of the residual network is noted as H(x) = F(x) + x,
then F(x) = H(x) − x, and y = x is the observed value and H(x) is the predicted value, H(x) − x
or F(x) is the residual, so it is also called the residual network.

2.2. Dilated Convolution

The basic principle of dilated convolution is to fill 0 in the middle of the convolution
kernel to expand the receptive field as a principle, which is shown in Figure 2. By setting
different expansion rates for each layer, multi-scale convolution domains can be obtained,
thus obtaining multi-scale features. Its advantage is that the receptive field is enlarged
without loss of features by pooling, so that each convolution output contains a wide range
of features. Figure 2a corresponds to a 1-dilated convolution of 3 × 3, which is the same as
an ordinary convolution operation without filling 0. Figure 2b corresponds to a 2-dilated
convolution of 3 × 3. The actual convolution kernel size is still 3 × 3, but the void is 1, that
is, for a 7 × 7 image patch, only 9 red points have convolution operation with a 3 × 3 kernel,
and the rest points are skipped. Figure 2c is a 4-dilated convolution operation reaching the
receptive field of 15 × 15. Compared with the traditional convolution operation, when the
convolution of 3 layers and 3 × 3 is added together, the stride is 1, and the receptive field
can only reach (kernel-1) × layer + 1 = 7, that is, the receptive field of dilated convolution
increases exponentially. The corresponding convolutional images are shown in Figure 3.

   
(a) (b) (c) 

Figure 2. Dilated convolution kernel: (a) rate = 1; (b) rate = 2; (c) rate = 4.

 
   (a)              (b)               (c)              (d) 

Figure 3. Dilated convolution images: (a) original image; (b) rate = 1; (c) rate = 2; (d) rate = 3.

2.3. U-Net

U-Net consists of a mutually symmetrical encoding subnetwork, decoding subnetwork
and the skip connection. Its basic architecture is shown in Figure 4.
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Figure 4. U-Net architecture.

Encoding subnetwork consists of four down-sampling operations and middle-layer
operations, and each down-sampling operation includes Conv 3 × 3, BN, ReLU, MaxPool
2 × 2, DEA, where Conv 3 × 3 is 3 × 3 convolution for feature extraction, BN is a batch
normalization layer to alleviate the problem of gradient disappearance, ReLU is the acti-
vation layer used to introduce nonlinear factors and accelerate network convergence, and
MaxPool 2 × 2 is the maximum pooling layer of 2 × 2 to extract semantic information.
Decoding subnetwork takes the output of the coding subnetwork as the input and carries
out three upsampling operations, which are described as upconv 2 × 2 + Copy&crop
+ Conv 3 × 3 + BN + ReLU + DE module, where upconv 2 × 2 is a 2 × 2 upsampling
convolution operation used to restore the size and size of the feature maps, and copy&crop,
namely skip connection, refers to integrate the rough features of the encoding subnetwork
with the refined features of the decoding to better retain the spatial information and detail
information of the original image and then improve the image accuracy.

2.4. Summarization

The characteristics of the Residual block, dilated convolution and U-Net are summa-
rized as follows.

Residual blocks can increase the depth of the network, help solve the problems of
gradient disappearance and gradient explosion, and ensure good performance while
training deeper networks.

When the network layer requires a large receptive field, but the computing resources
are limited and cannot increase the number or size of convolution kernels, dilated convolu-
tion can be considered. Its advantages are that the receptive field can be increased without
pooling information, so that each convolution output contains a large range of information.
However, the dilated convolution may have a grid effect, that is, the convolution kernels
are discontinuous; if only multiple 3 × 3 convolution kernels with dilation rate = 2 are
stacked multiple times, not all input pixels are calculated. The key to designing a good
dilated convolution layer is how to deal with the relationship between objects of different
sizes at the same time.

U-net can provide context semantic information of segmentation target in the whole
image, train end-to-end from a few images, and is superior to the previous sliding window
convolution network. It uses features spliced together in the channel dimension to form
thicker features, which can provide finer features for image segmentation. The addition of
corresponding points used in FCN fusion does not form thicker features.

3. Lightweight Multi-Scale Dilated U-Net (LWMSDU-Net)

3.1. LWMSDU-Net Architecture

Although many improved U-Net models have been constructed and achieved re-
markable results, they do not take into account the number of trainable parameters, the
calculation of the model, and the characteristics of the disease leaf image shown in Figure 1,
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and are not suitable for deployment on devices with limited computing power and storage
space. To improve the accuracy and effectiveness of CDLIS, a lightweight multi-scale
dilated U-Net (LWMSDU-Net) is constructed for CDLIS by making use of the advantages
of lightweight, multi-scale, residual convolution, and dilated U-Net. Its architecture is
shown in Figure 5a.

 
(a) 

 
(b) 

 
(c) 

Figure 5. The architecture of LWMSDU-Net: (a) LWMSDU-Net structure; (b) dilated structure, where
the size of the feature map is a × a, and M is the channel number; (c) Respath structure.

The multi-scale dilated convolution is employed instead of the convolution of U-Net
in the convolutional layer. According to the characteristics of the diseased leaf image, the
expansion rates r is set as 1, 2 and 3, respectively, so that the irregular disease regions of
different scales could be effectively segmented and the overall segmentation performance
could be improved. The structure of multi-scale dilated convolution is shown in Figure 5b.
Suppose fh represents the height of the original convolution kernel and fw is the width of
the original convolution kernel, the height of the effective convolution kernel thus obtained
is fh + ( fh − 1)(r − 1), and the width is fw + ( fw − 1)(r − 1).

In U-Net, the skip connection is used to connect the encoder and decoder. It is simple
to implement, but there is often a big semantic gap in semantic between the encoder
and decoder due to the complex disease leaf images. To improve segmentation results
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and relieve this semantic gap, a residual path (Respath) instead of the skip connection is
constructed to connect the encoder and decoder before concatenating, so that the encoder
features perform some additional convolution operations before being spliced with the
corresponding features in the decoder. Respath structure is shown in Figure 5c, consisting
of four residual convolution blocks [22].

3.2. Process of CDLIS

The steps of LWMSDU-Net based CDLIS method include training stage and test stage.
The original parameters of LWMSDU-Net are set by transfer learning, then the training
dataset is used to optimize its parameters iteratively, and the test set is used to verify
the model recognition effect. Model training is the most crucial step in the experiment
because the trained appropriate model can improve the classification accuracy, and the
experiment mode and hyper-parameter configuration of this paper are standardized to
ensure the validity of the experiment. In the model training stage, to enhance the model
image feature extraction ability and training speed, the PlantVillage dataset is used as
the input of LWMSDU-NET, and the parameters of pre-training are retained. Then, the
network model after pre-training is trained by the constructed augmented dataset of maize
corn cucumber diseases. Pre-training can accelerate the model training speed, effectively
enhance the fitting ability of the network, and improve the accuracy of CDLIS on the
limited dataset.

The training stage includes the following steps:
Step 1: Convert the disease leaf images from R*G*B color space to L*a*b, and using

the simple linear iterative cluster (SLIC) method to preprocess the transformed disease leaf
images;

Step 2: Disease leaf images are converted to TensorFlow2 format, divided into different
batches and then input into LWMSDU-Net for feature extraction (https://github.com/
tzutalin/labeling/releases, accessed on 7 October 2022);

Step 3: Use transfer learning to reduce the number of training iterations and speed up
training the network;

Step 4: Fuse the extracted features from LWMSDU-Net, and input the fused features
into the classifier for training the classifier;

Step 5: If the error between the authentic labeled training images and the predictive
labeled training images is more than the given threshold, go back to Step 2 and further
train LWMSDU-Net. Otherwise, the training stage is stopped.

The test stage includes the following steps:
Step 1: Normalize the scale of the test images;
Step 2: Put the normalized images into the trained LWMSDU-Net and extract features;
Step 3: Fuse the extracted features and then put them into the SoftMax classifier;
Step 4: Output the recognition result of the input image.

4. Experiments and Analysis

In this section, a lot of experiments of CDLIS are conducted to validate the proposed
method. Comparative experiments and results are then analyzed and discussed. All
experiments are carried out: Windows 7 64-bit operating system, Intel Xeon E5-2643v3
@3.40 GHz CPU, 64 GB RAM, NVidia Quadro M4000 GPU, 8 GB of video memory, by
CUDA Toolkit 9.0, CUDNN V7.0, Python 3.5.2, Tensorflow-GPU 1.8.0 with Keras open
source deep learning framework. In LWMSDU-Net, the initial weight parameters are set
randomly, the number of iterations is set as 500, the initial learning rate is specified as 0.001
and then gradually reduced to 0.1 times in training stages, the momentum is set as 0.99 to
reduce the overfitting problem, the weight decay is set as 0.005, and the training images are
divided into 10 batches and sent to the network model in turn. To improve the segmentation
effect of the model, LWMSDU-Net is trained 1200 rounds with each round of iteration of
3000 times, and the widely used stochastic gradient descent (SGD) is used as a training
mechanism. Since the last layer of the network is the Softmax classifier, Softmax-loss is
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used as a loss function, which is more stable in computing. Other parameters are set as
the default parameters of the U-Net framework. The trained model is evaluated by the
verification images. In LWMSDU-Net, all RGB images of disease leaf are preprocessed
through median filtering and then standardized by cropping to reduce calculation and
training time. Each image is normalized and cropped to a size of 512 × 512 pixels.

4.1. Dataset

PlantVillage (https://tensorflow.google.cn/datasets/catalog/plant_village, accessed
on 7 October 2022) is an open source dataset. It was collected at experimental research
stations associated with Land Grant Universities in the USA (Penn State, Florida State,
Cornell and others). It is an open source dataset for diagnosing and recognizing crop
diseases. It consists of 54,303 healthy and unhealthy leaf images of 26 diseases of 14 crops
taken in the natural environment of farmland. In this paper, it is utilized for pre-training to
make up for the shortage of the training samples. The pre-trained model is then trained
and tested using the real crop dataset.

In this paper, five types of maize and cucumber disease were taken with digital cam-
eras, smart phones and other devices in the Yangling Agricultural Demonstration Field,
Shanxi Province, including two corn leaf images of blight and brown spot, and three cucum-
ber leaf images of target spot, brown spot and anthracnose, 20 leaf images for each disease.
As the disease leaf images vary with crop growth environment, background, sunshine and
photographic equipment, to reflect the real scene and improve the generalization ability of
the model, all images were taken in the morning, noon, afternoon, sunny and cloudy days
from April to June 2021. Five disease leaf image samples are shown in Figure 6.

  
(a) (b) 

   
(c) (d) (e) 

   
(f) (g) 

Figure 6. Five typical disease leaf images: (a) Original images for leaf blight of maize; (b) original
images for brown blotch of maize; (c) original images for target spot of cucumber; (d) original images
for brown spot of cucumber; (e) original images for anthrax disease of cucumber; (f) 10 augmented
images of a maize disease leaf image; (g) equalized images of the above images in the above (a–e).
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The number of the collected disease leaf images is limited, which easily leads to
the overfitting. Augmenting algorithms, such as randomly enhanced lighting, randomly
cropping, rotation, shifting, adding random noise and mirroring, are often used to augment
the number of training samples. Augmenting operation can enlarge the diversity of
the training samples and avoid overfitting. In the following experiments, each image
is augmented to 10 images, as shown in Figure 6f. An augmented dataset containing
1100 images is constructed, including 100 original and 1000 augmented images. The details
of the original dataset and its augmented dataset are shown in Table 1.

Table 1. The details of the original dataset and its augmented dataset.

Disease Type
Number of

Original Images
Number of

Augmented Images
Total

Corn
Leaf blight 20 200 220
Brown spot 20 200 220

Cucumber
Target spot 20 200 220
Brown spot 20 200 220

Anthracnose 20 200 220
Total number of images 100 1000 1100

To reduce environmental noise and computational complexity, smooth the image,
remove salt and pepper noise and retain image edge information, the median filtering
algorithm is carried out on the crop disease leaf image, as follows:

y(n) = med[x(i − N), . . . , x(i + N)] (1)

where x(i) is the value of the pixel point in the center of the sliding window, med is the
value of the pixel’s neighborhood, and y(n) is the median filtering output value.

From Figure 6g, it is observed that median filtering can enhance the contrast of
the disease leaf images and the filtered images can significantly characterize the disease
leaf image features. The image recognition accuracy of CDLIS can be improved after
median filtering.

The effective disease leaf image blocks are cropped from the collected images to
reduce the influence of complex background on CDLIS, and the leaf images are uniformly
processed into 512 × 512 resolution images. Secondly, Labelme is used to label the image
set of crop disease leaves in the demonstration base. Each image contains two data labels: 1
represents the area of crop leaf disease spots, and 0 represents the background. Annotation
data are stored in JSON format, and the command of labelme json to the dataset is used to
convert data labels into binarized PNG graphs. The color annotated image can be obtained
by multiplying the original and binarized images. The cropping and annotating process is
shown in Figure 7.

Figure 7. The cropping and annotating process.

In order to reduce the influence of geometric transformation and accelerate the speed
of gradient descent to find the optimal solution, each image is normalized, which is imple-
mented by mapping the pixel value of the image to (0,1) by linear function transformation,

y = (x-MinValue)/(MaxValue-MinValue) (2)
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where x and y are the values before and after conversion, respectively, and MaxValue and
MinValue are the maximum and minimum values of the sample, respectively.

There are some methods to form the statistical tests [24]. In the paper, a five-fold cross
verification scheme is employed to validate LWMSDU-Net, that is, all 1100 leaf images
per disease are randomly divided into five subsets with the same number of images, each
is used as a test set for testing the model, and the remaining images are used as training
samples for training the model. Each subset is taken as a test set once, and a total of five
tests are conducted. The average segmentation result of five times experiments is the
final result.

4.2. Results

Average precision, average recall and average F1-score of five-fold cross verification
experiments are often adopted to test network performance, and are calculated as follows:

Recall =
Bseg

Bseg + Iunseg
(3)

Precision =
Bseg

Bseg + Iwseg
(4)

F1-score = 2 × precision × recall
precision + recall

(5)

where Bseg is the pixel number correctly segmented into spot pixels, Iunseg is the pixel
number not segmented into spot pixels but being spot pixels in the image, and Iwseg is the
pixel number that segments the background pixels into spot pixels.

Pixel accuracy AccPixel is often used to evaluate the performance of the model. It is
the total number of pixels whose real pixel category is predicted as a category, which is
calculated as follows,

AccPixel =
1
m

m

∑
i=1

fi, fi =

{
1,
∣∣yi − y′i

∣∣ < T
1,
∣∣yi − y′i

∣∣ ≥ T
(6)

where yi is the ith real pixel category, and y′i is the ith predicted category, T is a threshold.
In fact, the final output of the image segmentation models is a grayscale image and

the values of all pixels vary from 0 to 1, T is often set 0.5.
LWMSDU-Net is trained on the augmented dataset. The training accuracy and loss

are recorded after each iteration, as shown in Figure 8. It can be seen from Figure 8 that
with the increasing number of training iterations, the accuracy of the model keeps rising
while the loss value keeps decreasing. When the number of iterations reaches 2500, the
accuracy is stable at 0.91, the fluctuation is stable within 1 percentage point, the loss value
is stable at 0.043, and the fluctuation is within 0.01. The model has high accuracy and good
robustness. It can be observed from the analysis that the LWMSDU-Net in this paper is
effective and feasible for CDLIS.

The pre-trained model on the PlantVillage dataset is trained in the constructed dataset.
In order to test the training performance of LWMSDU-Net, it is compared with U-Net,
LWU-Net [17], AU-Net [18] and MSU-Net [21] on the augmented dataset. Each of the three
improved models has its advantages, where LWU-Net is a lightweight U-Net, AU-Net
takes advantage of attention, and MSU-Net is a multi-scale U-Net. Figure 9 shows their
segmentation accuracies versus the number of iterations in the convergence process, where
all models are pre-trained on PlantVillage dataset. From Figure 9, it is observed that all loss
values of five network models drop rapidly before the 1000th iteration, and are nearly stable
after the 1500th iteration. From Figure 9, it is also found that LWMSDU-Net outperforms
other four models and achieves the best convergence performance after the 2700th iteration.
The reason may be that dilated convolution and Respath are used to speed up its training
and improve its segmenting performance. Comparing Figures 9 and 10, it can be found
that the performance of LWMSDU-Net after pre-training is very good.
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Figure 8. Accuracy and loss value versus iteration.

Figure 9. Segmentation accuracy versus the number of iterations of four networks.

To be fair, 5 trained models are chosen after the 3000th iteration. The typical segmented
disease leaf images of five models are shown in Figure 10.

From Figures 9 and 10, it is observed that all four modified U-Net models are much
better than the traditional U-Net. In five-fold cross verification experiments, the trained
U-Net, LWU-Net, AU-Net, MSU-Net and LWMSDU-Net are used to segment the disease
leaf images of the augmented dataset, and their segmentation results are shown in Table 2.

Table 2. Segmentation results of U-Net, LWU-Net, AU-Net, MSU-Net and LWMSDU-Net.

Method U-Net LWU-Net AU-Net MSU-Net LWMSDU-Net

Precision 86.13 89.86 92.54 93.25 94.18
Recall 82.36 81.18 84.31 85.25 89.10

F1-score 84.20 85.30 88.23 89.07 91.57
Pixel accuracy 85.66 90.24 91.50 91.45 93.71
Training Time 12.51 h 6.42 h 10.52 h 11.14 h 5.17 h
Testing time 5.64 s 5.18 s 5.42 s 4.85 s 4.73 s
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Figure 10. Typical segmented disease leaf images by 5 models.

4.3. Ablation Experiments and Results

The proposed model LWMSDU-Net is based on U-Net, and makes use of the character-
istics of the Respath connection, dilated convolution and multi-scale Inception module. To
verify the effectiveness of their combination, some ablation experiments are carried out. The
experimental results are shown in Table 3 by combining different convolution structures
and connection structures, where U-Net employs 3 × 3 convolution and skip connection,
Res-U-Net is combined by U-Net and residual block for image segmentation [25], and
Inception U-Net consists of a normalization layer, convolution layers, and Inception layers
(concatenated 1 × 1, 3 × 3, and 5 × 5 convolution [26].

Table 3. Segmentation results by different combinations of convolution and connection.

Combination Mode Precision Training Time

U-Net: 3 × 3 conv.+ Skip connection 86.13 12.51 h
U-Net: 3 × 3 conv. + Respath connection 87.22 11.36 h

Res-U-Net: residual block + Skip connection 90.14 11.75 h
Inception U-Net: Inception + Skip connection 92.16 10.46 h

U-Net: Inception module + Respath connection 91.57 9.73 h
U-Net: dilated Inception module + skip connection 92.46 7.13 h

LWMSDU-Net: dilated Inception + Respath connection 94.18 5.17 h

From Table 3, it is found that the proposed LWMSDU-Net exhibits quite significant
results as compared to the original U-Net, Inception U-Net and different combination
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architecture, and the results validate the effectiveness of dilated Inception module, Respath
connection and their combination.

5. Analysis and Discussion

From Figures 9 and 10 and Tables 2 and 3, it is observed that LWMSDU-Net and
other modified U-Net networks can obtain more detailed spot images even if the spots are
small and not clearly contrasted with the healthy leaf areas and background, and specially,
LWMSDU-Net is superior to the other models in accuracy and computing complexity. LWU-
Net and LWMSDU-Net have shorter training times because they are lightweight and have
fewer trainable parameters, while LWMSDU-Net has the shortest training time because it
utilizes dilated convolution and Respath connection. U-Net splices the features together
in the channel dimension to form richer segmentation features. U-Net can completely
segment the lesion area including the small lesion area, but it cannot effectively divide the
adhesion lesion, resulting in more missing lesion pixels. CDLIS by U-Net has some false
positive areas, which could not distinguish the lesion area from the background. CDLIS
by its modified models is better than that of U-Net. MSUN-Net is slightly better than
LWU-Net and AU-Net due to the multi-scale convolution. AU-Net is slightly superior
to LWU-Net because of the attention mechanism. LWMSDU-Net can accurately segment
the disease leaf images including the lesion area and the edge details of the lesion, due
to it utilizing Respath instead of the skip connection of U-Net, and dilated convolution
instead of convolution. It is indicated that Respath and dilated convolution can improve
the performance of CDLIS.

Compared with other networks, the experimental results demonstrate that LWMSDU-
Net achieves a significant segmentation effect. However, it is validated only on a single
enhanced dataset. The super-parameters of the training network need to be adjusted
according to the dataset being processed, so it cannot completely guarantee that the model
weight parameters can be transmitted to other data sets.

In terms of the memory occupied by the model, VGG16 occupies the largest memory,
552.0 MB, the memory occupied by AlexNet is 227.6 MB, because the number of parameters
of the fully connected layers is the largest in the entire model. In deep CNN, in order to
increase receptive fields and reduce the amount of computation, it is always necessary to
conduct downsampling (pooling or s2/conv). In this way, although the receptive fields
can be increased, the spatial resolution is reduced. In order not to lose resolution and still
expand the receptive field, dilated convolution can be used. By adding zeros to expand
the receptive field, the original 3 × 3 convolution kernel can have a 5 × 5 (dilated rate = 2)
or a larger receptive field under the same parameter amount and calculation amount, so
that no down sampling is required. Dilated convolution introduces only a parameter called
dilated rate to the convolution layer, which defines the distance between values when the
convolution kernel processes data. In other words, compared with the original standard
convolution, the extended convolution has an additional division rate parameter. The
division rate of a normal revolution is 1. It can be observed that the number of parameters
of the dilated convolution is greatly reduced. Based on this, dilated convolution is added
to U-Net, which effectively reduces the number of model parameters. The number of
parameters of U-Net is 7.76 M, while the number of parameters of this model after training
is 5.8 MB.

6. Conclusions

Aiming at the problem of crop disease leaf image segmentation (CDLIS), the traditional
U-Net model is improved by making use of dilated convolution and Respath. Multi-scale
dilated convolution instead of traditional convolution is used to increase the receptive
field and improve the feature learning ability of U-Net. Respath instead of skip connection
between Encoder and Decode is utilized to concatenate the lesion information of disease
leaf image. PlantVillage is employed for pre-training to make up for the shortage of the
training samples, overcome the overfitting problem and improve the network performance.

76



Electronics 2022, 11, 3947

The proposed CDLIS method based on LWMDU-Net can be applied to the actual agricul-
tural environment, help farmers quickly and accurately detect crop diseases, and provide
effective technical means for scientific disease control. For future work, it is necessary
to further verify and optimize the model and construct a more lightweight version for
deployment to personal computers and smartphones.
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Abstract: The research on brain cognition provides theoretical support for intelligence and cognition
in computational intelligence, and it is further applied in various fields of scientific and technological
innovation, production and life. Use of the 5G network and intelligent terminals has also brought
diversified experiences to users. This paper studies human perception and cognition in the quality of
experience (QoE) through audio noise. It proposes a novel method to study the relationship between
human perception and audio noise intensity using electroencephalogram (EEG) signals. This kind of
physiological signal can be used to analyze the user’s cognitive process through transformation and
feature calculation, so as to overcome the deficiency of traditional subjective evaluation. Experimental
and analytical results show that the EEG signals in frequency domain can be used for feature learning
and calculation to measure changes in user-perceived audio noise intensity. In the experiment, the
user’s noise tolerance limit for different audio scenarios varies greatly. The noise power spectral
density of soothing audio is 0.001–0.005, and the noise spectral density of urgent audio is 0.03. The
intensity of information flow in the corresponding brain regions increases by more than 10%. The
proposed method explores the possibility of using EEG signals and computational intelligence to
measure audio perception quality. In addition, the analysis of the intensity of information flow in
different brain regions invoked by different tasks can also be used to study the theoretical basis of
computational intelligence.

Keywords: computational intelligence; quality of experience; human perception; electroencephalogram

1. Introduction

With the continuous development of computer technology, how to deal with and
analyze the potentially insightful information in big data has become an extremely urgent
problem that must be overcome. The emergence of computational intelligence and artificial
intelligence technology has become an effective way to solve the above problems in vari-
ous scientific fields. Many outstanding works have further promoted the application of
computational intelligence. In the field of image analysis, machine learning (ML) and deep
neural networks are used for feature extraction and image segmentation [1,2].

In the field of multimedia communication, with the development of multimedia and
communication technology, new services and applications emerge in an endless stream.
There are more and more ways for people to obtain information through various terminals,
and the audio–visual forms are becoming increasingly abundant; traditional audio, video
and emerging virtual reality, augmented reality and other forms are becoming more and
more convenient. Ubiquitous multimedia and converged media services are changing
people’s lives, which also leads to great changes in business content and data volume.
Whether a product can provide users with satisfactory services has become a decisive factor
for success in the rapidly changing market environment, which is crucial for communication
service providers and business service providers. Under the new market demand, the
communication changes from data communication to multimedia communication. User
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satisfaction is also affected by a variety of factors, and the mechanism of action is much more
complex [3,4]. At this time, ML is often used for resource allocation, quality management
and quality prediction [5].

Traditionally, the most recognized method is a technology parameter-centric quality
metric named quality of service (QoS) [6], which mainly considers objective technical
parameters such as jitter, packet loss, delay, etc. It has been widely used in technology and
industry. Additional research has found that the key performance QoS of traditional net-
works measures the objective quality [6]. The QoS does not consider the actual experience
of users. Therefore, a good QoS may not satisfy users, which leads to the bottleneck of
improving user satisfaction [7].

International standardization organizations ITU-T [8] defined QoE as “the overall
acceptability of an application or service, as perceived subjectively by the end-user” [9].
According to such a definition, the factors influencing QoE are more diverse, including not
only audio quality, video quality and network quality, but also service content, multimedia
devices and users’ personal feelings [3]. For service providers and network operators, the
shift from the traditional quality evaluation method focusing on QoS service performance
to the QoE evaluation aiming at users’ perception and demand seems to better reflect
the original intention of providing users with better-quality services. Therefore, QoE
research has become an interdisciplinary field involving a lot of knowledge, such as social
psychology, cognitive science, intelligent computing and engineering science [10].

At present, the evaluation methods of QoE are mainly divided into two categories: ob-
jective parameter-based evaluation and intelligent cognitive-based subjective
evaluation [4,7,11], as shown in Figure 1. The objective parameter-based evaluation method
first measures or calculates the objective parameters, or establishes a mathematical esti-
mation model from objective parameters to subjective experience, which is based on the
statistical knowledge derived from a large number of data, then the estimation model is
further used to transform the objective parameters into the estimated value of experience
quality [11]. Both the advantages and disadvantages of this kind of method are very
prominent. One advantage is that if a suitable mathematical model has been embedded
in the QoE evaluation system, the evaluation of QoE will be efficient. Therefore, it is
still the best choice for the actual multimedia business scenario [12]. The disadvantage is
that it is impossible to truly experience the multi-level satisfaction of users without their
participation. Intelligent cognitive-based subjective evaluation refers to evaluation that
requires users’ participation. Either the specific indicators or the information of experience
quality needs to be obtained directly from users. It can be reported by users straight away
or be measured by users’ relevant physiological variables. These physiological data need to
further adopt feature extraction and learning to calculate and analyze the real feelings of the
user [7,10,13]. Based on the correlation between perceptual processes and neurophysiology,
using advanced calculation and analysis of user neurophysiological indicators to quantify
users’ subjective experience is an important way to overcome the bias caused by users’
upper cognitive behavior in the process of subjective feedback [14]. In addition, due to the
amount of data and analytical requirements, computational intelligence techniques also
provide more feasible methods for subjective QoE prediction and quality analysis [15,16].

In multimedia communication, the sound is the sensory channel with the highest
priority, which is the basis of audiovisual perception. Nonetheless, to our knowledge, the
influence of auditory perception on QoE is much less studied than that of visual perception
on QoE. This paper proposed a new method to explore the possibility of measuring the
user’s auditory subjective feelings by collecting the physiological sensory signals from
the user’s central nervous system. The main contributions of our work are summarized
as follows. First, a complete experiment was designed to collect perceptual data of users
under different audio quality conditions, including EEG data, subjective judgment data
and perceptual semantic data. Second, a new method of studying the relationship between
human perception ability and audio noise intensity using EEG signals was proposed, and
the perceptual tolerance of audio noise in different semantic scenarios was obtained. In
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addition, the relationship between audio signal to noise ratio (SNR), audio scenarios, user
emotions, and noise perceptual tolerance was explored. Finally, the location of the brain
area for audio processing was explored, and the connectivity of related brain regions was
quantitatively analyzed.

Figure 1. The evaluation methods of QoE.

The rest of this paper is organized as follows. Section 2 reviews related work for
QoE evaluation. Section 3 briefly describes the experiment design and data recording. In
Section 4, we describe the signal processing and analysis methods in detail, and Section 5
expands on the experimental results and discussion. In Section 6, we conclude the current
work and give the direction for future work.

2. Related Work

Since the concept of QoE was proposed, there has been a lot of excellent work pub-
lished continuously on QoE prediction and evaluation. In the paper [17], the authors used
subjective mean opinion score (MOS) data and evolutionary algorithms to optimize QoE
on a global scale. In the paper [18], deep learning (DL) was used to extract generalized
features and representation learning from text data, video and audio data and classification
parameters, and finally achieved QoE prediction through the classifier. The data in the
above works came from communication networks and multimedia devices. Psychological
and physiological data were retrieved directly from the user. The psychology aspect mainly
involves the user questionnaire, the ratings, and so on. The physiology aspect mainly
involves the collection and processing of users’ physiological signals. Currently, physiolog-
ical measures used to assess the quality of multimedia experience fall into three categories:
central nervous system measurement, peripheral autonomic nervous system measurement,
and eye measurements [19]. Human primary perception and thinking activities belong to
the central nervous system function. The neural connections between attention, decision
making, and memory in animals and humans have been described in a wide range of
experimental studies [20]. Because the physiological indicators measured by the central
nervous system can directly reflect human perception and other thinking activities, this
method is more conducive to the calculation and analysis of users’ perception and cognitive
process of multimedia stimulation [14]. The most common devices available are electroen-
cephalography (EEG) [19], near-infrared spectroscopy (NIRS) [21], functional magnetic
resonance imaging (fMRI) [22] and magnetoencephalography (MEG) [23]. The activity
of the peripheral autonomic nervous system is not controlled by the upper cognition of
the brain. The peripheral autonomic nervous system regulates physiological functions
such as respiration, heart rate and skin conductance, so electrocardiography (ECG) [24]
and electrodermal activity (EDA) [25] can be used to measure the fatigue degree and emo-
tional changes of users. There is also an eye measurements method that evaluates QoE by
measuring eye gaze tracking, blinking, or pupillometry [26].

EEG is one of the basic theoretical research methods for brain science. Human mental
and physical activities are dependent on bioelectricity. The brain produces and transmits
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different but regular electrical signals all the time. Therefore, the physiological signals of
brain activity can overcome the influence of user fatigue, preference, educational back-
ground and external environment when analyzing the user’s real feelings [27]. When
neurons in the brain fire, they penetrate the brain’s dura and skull, creating a weak wave
of electrical potential on the brain’s skin. This allows non-invasive EEG measurements to
infer the firing of intracranial neurons, which can be observed and collected by attaching
special electrodes to the surface of the scalp [27]. The location of these electrodes is usually
specified in the 10–20 standard system, and the appropriate reference electrode is selected.
A standard system facilitates the spatial localization and signal tracking of electrodes in
EEG signal analysis.

Induced event-related potentials (ERPs) [28], time-frequency domain analysis [29]
and spatial brain connectivity [30] are important methods for EEG experiments and signal
processing. ERPs is a special brain potential evoked by sensory stimulation and cognitive
process in the brain. The relative strength of the component is significantly improved
during the superposition averaging process. After the occurrence of sensory stimulation
events, the waveforms of specific channel signals show distinct multiple fluctuations in
sequence, and these peaks and troughs represent different patterns of ERPs. The middle-
latency response generally refers to the potential induced by 50–200 ms, mainly including
N100, P100, N200 and P200. In the paper [31], the authors pointed out that N100 was
widely present in a variety of cognitive processing functions, including auditory, visual,
behavioral and cognitive tasks, and it can reflect early simple sensory processing and can be
used as a biomarker of neuroplasticity. P300 is the neural activity triggered by task-related
target stimulus, which is an important aspect of ERPs research. It is a widely existing
component that can be recorded and observed in the scalp, with a large amplitude and a
wide span [32]. The P3a subcomponent reflects the top-down frontal attentional mechanism
during task processing. Another subcomponent, P3b, reflects top-down temporoparietal
activity related to memory mechanisms [33]. N400 can be used as a neurophysiological
index for semantic priming, with the absolute value of N400 amplitude being smaller when
a word is a good match with the previous word/context, and larger when the two do
not match [34]. The time-frequency decomposition of non-stationary time signals, such
as continuous wavelet transform (CWT) [35], discrete wavelet transform (DWT) [29] and
empirical mode decomposition (EMD) [36], are effective EEG signal analysis methods,
which can accurately capture and locate transient features in the time domain and the
frequency domain to better understand the dynamic characteristics of the human brain.
Assessing information exchange between brain regions is also a common method for
analyzing EEG signals. This method can be combined with graph theory to analyze and
quantify the structure, function and causality of the brain. The directed transfer function of
the autoregressive model framework was proposed and used to determine the direction
and frequency content of brain activity, and the validity of the DTF algorithm was verified
by real neurobiological data [37,38]. In the paper [39], the authors validated a connection-
based EEG feature detection method using ML based on tone-mapped high dynamic range
videos and confirmed that DTF outperformed undirected functions.

It is clear from a large amount of research that visual stimuli have been studied far
more than auditory stimuli. In the paper [40], the authors pointed out that there were
not as many physiological studies on hearing as vision, so early auditory perception
activation could be explored by means of physiological measurement and computational
intelligence. In our previous article, we carried out some preliminary research, including
recruiting volunteers, collecting EEG signal samples, selecting appropriate threshold of
DTF to construct edge sets and using weighted degree for clustering [41]. The work of this
paper was based on the previous work, so part of the previous experimental results are
presented in Section 5.3.
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3. Design of Experiments

3.1. Procedure

The experiments were performed in the Wireless Multimedia Communication Lab
(WMC) at Tsinghua University. The subjects were required to complete all the experimental
contents in the professional EEG shielding room, as shown in Figure 2. The process of signal
acquisition required the subject to complete all experiments in a professional EEG shielding
chamber. This shielding room can strictly control external noise, indoor temperature, light,
and electromagnetic interference. Mobile phones and other devices were banned during
the experimental phase. Before the experiment, every participant was asked to read and
sign an informed consent form. The researchers explained the experimental procedure
and operation to the subjects in detail. The subjects did not know the specific principles
and methods of the experiment. During the experiment, the subjects had to complete their
tasks alone in the shielding room. Researchers could watch the indoor situation through a
monitor in the control room and the brain waves of the subjects through a computer screen
in real time. In special cases, researchers could communicate with the subject through the
internal microphone and sound system as necessary.

We recruited 12 students and young teachers as volunteers, consisting of 6 females
and 6 males, aged between 18 and 28. None of them had major illnesses. They all had
normal hearing and had never had any neurological problems. Participants were tested in a
soundproof, standardized EEG lab and asked to minimize blinking, make body movement,
and swallow during the experiment. Two of the subjects’ data were discarded due to the
too many behavioral interference signals. We finally admitted EEG data from a total of
10 subjects [41].

Figure 2. EEG experiment environment

3.2. Stimuli and Experimental Procedure

In the experiment, four kinds of specially processed audio materials with very different
semantic content were played through the headset, and each audio clip was played for
15 s. The four semantic contents were classical piano music, ocean waves, fire alarms and
mosquitoes, all with periodic rhythms. Six levels of white Gaussian noise were added to
each audio clip. The six Gaussian noise levels were defined according to the power spectral
density of noise, which was 0, 0.001, 0.005, 0.01, 0.03 and 0.1. Depending on the level, the
noise was added to the audio from 2s to 6s and lasted for 5 s. The noise of level 1 started
from the second second; the noise of level 2 started from the third second, and so on. In the
end, 24 different audio clips were obtained.

In each section of the experiment, the audio clips (24 in total) were randomly played
twice. So, in the whole experiment, all the audio clips (24 in total) were played six times.
After each audio clip was played, the subjects were asked whether they could tolerate
the noise in the audio. A response of Y meant yes, and N meant no. At the end of each
section, subjects rested for 3 min. At the end of the experiment, the subjects were asked
to complete a subjective audio semantic questionnaire. We used the semantic difference
method to make the subjects perform multiple perceptual evaluations on four different
kinds of audio. The subjects were asked to evaluate three contrasting pairs of attributes.
They were pleasant–unpleasant pair, relaxed–tense pair, and calm–upset pair. Matlab was
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used for audio material synthesis and signal processing, and Presentation, a program used
for stimulation presentation and experimental control in physiological experiments, was
used for stimulus materials. The whole experimental procedure is shown in Figure 3.

Figure 3. The experimental procedure consisted of three sections and two rests. In each session,
48 stimuli clips were played randomly.

4. Signal Processing

4.1. Directed Transfer Function

In brain network research, directional functional brain connections can also be called
causal brain connections. The information between the connected nodes is statistically
causal. Methods for constructing causal connections mainly include directional transfer
function (DTF) and partial directed coherence (PDC), and network connection thresholds
need to be further selected for quantification. In this paper, we used the DTF method to
construct the brain network and carried out degree feature extraction.

DTF is an autoregressive (AR) model [37], which can be described as

D

∑
d=0

Adxt−d = et

where D is the model order determined by Akaike information criterion, Ad is the delay
matrix in AR model, and when d = 0, it is an identity matrix. xt = (x1,t, x2,t, . . . , xk,t) is
the the EEG data based on time series and et = (e1,t, . . . , ek,t) is the vector of uncorrelated
zero-means Gaussian white noise processes. If xk,tis a stationary stochastic process, Ad can
be obtained according to the Yule–Walker equation. Then, the Z transformation gives the
following result.

X( f ) = H( f )E( f )

where H( f ) is the transfer function, X( f ) and E( f ) represent the transformed EEG data
and noise data at frequency f . The DTF value (denoted by DTFi,j( f )) is obtained by
performing column square sum normalization by H and indicates the information flow
intensity between the i-th and j-th electrode.

There is a large amount of redundancy in the DTF coefficients. In the simulated
signal test, only dimensions of 3, 4, 5 or 7 are used frequently [37,42], while in actual
multichannel EEG signal processing, the dimensions are generally much greater than those
in the simulated test. Therefore, we first simulated and tested the same dimensional vector
time series system of the DTF algorithm so as to determine an appropriate threshold to
construct the brain-connected network. We controlled the spectral radius ρ(Ad) to solve the
problem of randomly generating a large number of Ad matrices while maintaining system
stability in high-dimensional vector time series system simulation [37,41]. The formula is
as follows.

r(Ad) ≤ ρ(Ad) ≤ R(Ad)
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where r(Ad) and R(Ad) are the minimum and maximum row summation of Ad, respec-
tively. In the process of simulation, we let each row summation of Ad be a random variable
obeying uniform distribution with extreme values of 0.30 and 0.95; thus, we had for all i.

31

∑
j=1

Ad(i, j) ∼ U(0.30, 0.95)

Specifically, we gave the row summation and then randomly divided it into 5–16 parts
as the elements of the corresponding line, indicating that Ad was non-negative and
R(Ad) < 1.

In our previous work [41], we found a strong correlation between the information
flow accuracy of the DTF algorithm and the Ad of the actual AR model through large-scale
testing of random analog signals. Previous experimental results have shown that when 10%
was chosen as the threshold for constructing the brain connectivity network, the accuracy
of effective connectivity could be guaranteed at most densities of Ad.

4.2. Network Structure and Comprehensive Weighted Degree

In order to characterize the intensity of information flow in the cerebral cortex, we
constructed a brain connectivity graph by DTF( f ) denoted by Gq

f = (V, A, W), where
V = {1, 2, . . . , 31} is the vertex of the network, corresponding to 31 electrodes. A =
{(i, j)|i, j ∈ 1, . . . , 31 and i 
= j} is the directed edge set of the graph and W : A → [0, 1]
represents the weight of each directed edge. Figure 4 shows different brain connection
networks constructed by a subject when listening to piano music of different quality levels.
Different colors represent different connection strengths. As can be seen from the figure,
the strength of noise in audio affected brain connectivity.

Figure 4. The brain connection networks of a subject when listening to piano music with 0 (a), 1 (b),
4 (c) and 5 (d) noise level.

To further quantify the information strength feature, for each vertex v ∈ V(G), we
calculated the following parameters.

deg(v) = ∑
w∈ON(v)\IN(v)

W(v, w) + ∑
w∈IN(v)\ON(v)

W(w, v) + ∑
w∈ON(v)∩IN(v)

max(W(v, w), W(w, v))

where IN(v) and ON(v) are the input and output neighbor of vertex v, respectively,
and deg(v) is the comprehensive weighted degree of v , we also let degGq

f
(V) denote the

comprehensive weighted degree sequence of graph Gq
f , and λq denote that of full-frequency

band [41].

λq =

∑
f

degGq
f
(V)

fmax − fmin + 1
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Figure 5 shows the brain topography of comprehensive weighted degree of a user in
four different audio scenarios under two extreme conditions (the audio with no noise and
the audio with noise intensity of 0.1). It can be seen that the user’s EEG response varies
greatly under different conditions.

Figure 5. The brain topography of comprehensive weighted degree in four different audio scenarios
under two extreme conditions.

4.3. Clustering

For each given audio semantic scenario, we performed the clustering algorithm sepa-
rately on λ0, . . . λ5. Clustering optimization was carried out according to the error sum of
squares criterion function.

J =
K

∑
i=1

N

∑
j=1

wji‖λq − Ci‖

where w is the membership coefficient, which is either zero or one. λq is the feature
data of K-means clustering. This comprehensive weighted degree was 31 dimensions.
The clustering category was defined as the acceptable level space and the unacceptable
level space, and the user’s tolerance level in different audio semantics was determined by
the clustering sample subordination, which was defined as the proportion of EEG signal
samples classified into the unacceptable level category at different noise levels.

5. Result and Discussion

5.1. Results of Subjective Data Analysis on Noise Level

Figure 6 shows the statistical subjective evaluation results of the number of times
the user experiences noise that affects audio quality. It can be seen from the results that
the pure subjective evaluation of users was not completely consistent with the objective
facts. In many cases, the subjective evaluation results were intuitive but not reliable. For
example, in the case of the sound of ocean waves, when the noise level was low, there was
no negative evaluation. Users did not make a lot of negative quality evaluations, even
when the noise level reached level 4, which was unexpected. In addition, although subjects
were required to evaluate only the impact of noise on audio quality, in the last two audio
scenarios of the experiment, when the noise level was zero, a lot of negative evaluations on
audio quality had been received. In fact, the objective audio quality was very good at that
point and did not include noise. This is the disadvantage of subjective evaluation, which is
the uncontrollable subjective arbitrariness of users.
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Figure 6. Number of times the user experiences noise that affects audio quality.

5.2. Results of Semantic Questionnaire Analysis

The attributes and semantic questionnaire analysis results are shown in Figure 7. It
can be clearly seen from the figure that the perceptive semantic radar map of the four audio
scenarios expressed two completely different audio emotions. This data and result can also
be seen in our previous work [41]. The details were discussed in Section 5.3, together with
the physiological data results.

(a) (b) (c) (d)

Figure 7. The subjective audio semantic questionnaire: the result of multiple perceptual evaluations
on four different kinds of audio. (a) Piano music (b) Ocean wave (c) Fire alarm (d) Mosquito.

5.3. Perceptual Tolerance

An important goal of our analysis of EEG signals is to find the level of noise perceptual
tolerance, when the noise level is higher than the perceptual tolerance, almost all subjects
would show an intolerable trend. According to general experience, the perceptual tolerance
of humans to audio noise should be determined by the value of the SNR. Figure 8 shows
the SNR results of all audio stimulus materials with noise in our experiment. As can be
seen from the Figure 8, the value of SNR decreases significantly with the increase in noise
level. In addition, due to the different semantics of the audio scene, the value of SNR
with the same noise level fluctuates in a small range. However, the physiological signal
analysis results given in Figure 9 show that humans have different perceptual tolerance
for the same noise level. In this work, the brain map of the comprehensive weighting
degree was very different from that of high-intensity audio when users listened to raw
audio and low-intensity-noise audio. Therefore, the comprehensive weighting degree of
the full frequency can be used as EEG features for the clustering algorithm. Figure 9 shows
the clustering visualization results as block diagrams of all subjects.

It can be clearly seen from Figure 9 that the user’s noise tolerance level for a particular
audio scenario was determined. Specifically, the user’s limits of audio 1, 2, 3 and 4 were
noise levels 1, 2, 4 and 4, respectively. We suspected the above results were related to the
audio scenario and the difference between the original audio signal and the noise. So, we
focused on the analysis of the semantic environment of the audio and the absolute integral
value of the deviation between the four semantic audios with different levels of white noise.
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Figure 8. The SNR of audio stimulus materials.

Figure 9. Clustering visualization results with comprehensive weighted degree based on DTF: A
lighter block indicates a lower degree of subordination, and a deeper block indicates a higher degree
of subordination. Red dashed lines represent the determination of clustering result.

Combined with the results of the perception semantic questionnaire results in Figure 7,
it can be seen that based on the choices of all subjects, the smooth piano music and ocean
waves make people feel pleasant, relaxed and calm. Under this situation, even the low-
intensity white Gaussian noise on such audio will have a great influence on the subject’s
quality of experience; the user will be very sensitive to the noise, and their brainwave signal
will significantly change. A different situation appears in audio 3 and 4. The fire alarm
makes subjects feel tense and unpleasant, and mosquito audio makes subjects more upset.
In this semantic audio environment, the subject’s sensitivity to noise is reduced, and the
perceptual tolerance of noise intensity is increased. Different audio scenes bring different
perceptual emotions to people, which perfectly explains that humans’ perceptual tolerance
does not exactly correspond to the objective SNR of the audio. Figure 10 gives more details
about the signal absolute difference integral proportion difference between audio with
five levels of noise and raw audio under four different audio scenarios. This is a strong
explanation for the results that the perceptual tolerance of audio 3 and 4 are higher than
that of audio 1 and 2. The clustering results can also be seen in our previous work [41].

In conclusion, the perceptual tolerance of human perception of noise was related to
the audio semantic environment perceived by users, and it was inversely proportional
to the signal absolute difference integral proportion difference between audio with noise
and raw audio under different audio scenarios. Moreover, both EEG signals analysis and
subjective evaluations indicated that users were more sensitive to noise-induced quality
changes in the calming and soothing audio scenario.

Figure 10. The signal absolute difference integral proportion difference between audio with five
levels of noise and raw audio under four different audio scenarios.
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5.4. Connectivity Analysis of Related Brain Regions

To better illustrate the experimental result, we presented the comprehensive weighted
degree of key channel signal of ten users with qualified experimental data. We defined
the key channel as degree >1 in the audio condition (high-quality audio or audio with
noise), and compared with level 0, the amplitude of level 5 increased by more than 10%.
The specific values are shown in the table below.

The brain is divided into frontal, parietal, temporal, and occipital regions. The naming
of the channel electrodes on the EEG cap is refined according to the location of the four
brain regions. The channel F represents the frontal region, P represents the c region, T
represents the temporal region, O represents the occipital region, C represents the central
region, FC represents the frontal central region, CP represents the central parietal region, FP
represents the frontal pole region, the singular represents the left brain, the even represents
the right brain, and Z represents the middle region.

As can be seen from Table 1, when users heard the audio, the degree of nodes of CP
related channels degree was higher than that of other nodes (8/10 users), and the degree of
nodes of FC related channels degree was higher than that of other nodes (8/10 users), too,
indicating that certain brain regions were activated after users heard the audio stimulation.
We found that no matter the audio scenario, the value of node degree would increase
significantly when there was noise, indicating that the activation degree of the electrical
nerve signal in the brain area increased. For example, under four audio scenarios, the
channel degree of the original audio and the audio with noise level 5 increased by 39.59%,
35.08%, 16.07%, and 41.66%, respectively. For another example, the CP2 channel degree
of user 1 increased by 28.2%,65.92%, and 32.3% under the audio scenarios 1, 2 and 4. In
audio scenario 3, the degree of channel CP5 increased by 13.99% in the same brain area.
Similarly, the increase in FC-related channels was also obvious. Under audio scenarios 1, 2
and 3, the degree of FC2 of user 4 increased by 105.88%, 37.97%, and 28.78%, respectively.
The degree of FC6 in the same area increased by 10.16% under audio scenario 2 and 18.75%
under audio scenario 4. These statements suggested that noise had a greater effect on the
brain regions where the channels mentioned above were located. In particular, the central
parietal region where CP channels were located and the frontal central region where FC
channels were located were cognitive-integration-related brain regions and preference-
decision-related brain regions. These were consistent with previous research on brain
perception [43]. All of these were consistent conclusions, regardless of the individual or
the audio scenario. However, activation of the brain regions did not rule out individual
differences. For example, when user 7 was under audio scenario 1 and scenario 4, the
degree value and the increase in F3 and Fz channels in the frontal regions were both great.

Table 1. The values and ranges of degree.

User Audio Scene Channel The Values and Ranges of Degree

1

1 23:CP2 1.95, 2.50, 28.2%
2 23:CP2 1.79, 2.97, 65.92%
3 11:CP5 2.43, 2.77, 13.99%

4
6:FC5 0.95, 1.18, 24.21%

23:Cp2 1.95, 2.58, 32, 3%

2

1 23:CP2 2.02, 2.50, 23.76%
2 23:CP2 1.79, 2.97, 65.92%
3 11:CP5 2.42, 2.86, 18.18%

4
6:CP5 0.89, 1.18, 32.58%
23:CP2 1.96, 2.58, 31.63%
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Table 1. Cont.

User Audio Scene Channel The Values and Ranges of Degree

3

1 28:FC6 1.07, 1.33, 24.29%

2
23:CP2 1.74, 1.79, 2.87%
24:Cz 1.82, 2.11, 15.93%
19:P4 2.13, 2.60, 22.06%

3 28:FC6 0.83, 1.26, 51.8%

4 23:CP2 1.39, 1.53, 10.07%
19:P4 2.31, 2.56, 10.82%

4

1 29:FC2 0.85, 1.75, 105.88%

2 28:FC6 3.05, 3.36, 10.16%
29:FC2 0.79, 1.09, 37.97%

3 24:Cz 2.77, 3.16, 14.07%
29:FC2 0.66, 0.85, 28.78%

4 28:FC6 3.04, 3.61, 18.75%

5

1 6:FC5 1.66, 2.60, 56.62%
23:CP2 1.97, 2.75, 39.59%

2 12:CP1 0.36, 1.18, 227.77%
23:CP2 1.71, 2.31, 35.08%

3
6:FC5 1.64, 2.27, 38.41%

23:CP2 1.68, 1.95, 16.07%
31:F8 1.34, 1.65, 23.13%

4 23:CP2 1.68, 2.38, 41.66%
31:F8 1.16, 1.59, 37.06%

6

1 6:FC5 1.75, 2.24, 28.00%

2
6:FC5 1.45, 2.28, 57.24%
7:FC1 0.84, 1.30, 54.76%
8:C3 1.56, 2.05, 31.41%

3 7:FC1 0.64, 0.84, 31.25%
4 6:FC5 1.64, 2.58, 57.31%

7

1 2:Fz 1.04, 1.23, 18.26%
14:P3 0.93, 1.06, 13.97%

2 12:CP1 1.52, 1.73, 13.81%
14:P3 1.15, 1.63, 41.73%

3
12:CP1 1.04, 1.51, 45.19%
22:CP6 1.11, 1.38, 24.32%
28:FC6 0.73, 1.05, 43.83%

4 2:Fz 1.13, 1.48, 30.97%
14:P3 1.06, 1.39, 31.13%

8

1 13:PZ 0.98, 1.22, 24.48%
23:CP2 0.52, 1.26, 142.3%

2 12:CP1 1.42, 1.77, 24.64%
3 23:CP2 0.55, 1.25, 127.27%
4 29:FC2 0.57, 0.69, 21.05%

9

1 12:CP1 0.54, 1.04, 92.59%
23:CP2 2.2, 2.42, 10.00%

2 11:CP5 1.78, 2.29, 28.65%
3 12:CP1 0.72, 1.03, 43.05%
4 23:CP2 2.36, 2.66, 12.71%

10

1 6:FC5 1.64, 1.77, 7.92%
2 29:FC2 0.61, 0.68, 11.47%
3 11:CP5 1.78, 1.86, 4.49%
4 6:FC5 1.26, 1.82, 44.44%

6. Conclusions

This paper discussed the evaluation methods of human subjective perception from
two aspects. They were the analysis of the physiological signals from the central nervous
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system and the users’ subjective behavioral data. The EEG was used to record real brain
wave data, and brain connectivity maps were constructed to obtain the perceptual tolerance
degree of audio noise in different scenarios. The relationship between audio signal-to-
noise ratio, audio scenarios, user emotions and noise perception tolerance was analyzed
comprehensively. Meanwhile, a change in brain activity intensity was also demonstrated.
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Abbreviations

QoE Quality of Experience.
EEG Electroencephalogram.
QoS Quality of Service.
MOS Mean Opinion Score.
ML Machine learning.
DL Deep learning.
DTF Directional Transfer Function.
ERPs Event-Related Potentials.
NIRS Near-Infrared Spectroscopy.
fMRI Functional Magnetic Resonance Imaging.
MEG Magnetoencephalography.
ECG Electrocardiography.
EDA Electrodermal Activity.
CWT Continuous Wavelet Transform.
DWT Discrete Wavelet Transform.
EMD Empirical Mode Decomposition.
AR Autoregressive.
PDC Partial Directed Coherence.
SNR Signal to Noise Ratio.
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Abstract: The tuna swarm optimization algorithm (TSO) is a new heuristic algorithm proposed by
observing the foraging behavior of tuna populations. The advantages of TSO are a simple structure
and fewer parameters. Although TSO converges faster than some classical meta-heuristics algorithms,
it can still be further accelerated. When TSO solves complex and challenging problems, it often easily
falls into local optima. To overcome the above issue, this article proposed an improved nonlinear
tuna swarm optimization algorithm based on Circle chaos map and levy flight operator (CLTSO). In
order to compare it with some advanced heuristic algorithms, the performance of CLTSO is tested
with unimodal functions, multimodal functions, and some CEC2014 benchmark functions. The test
results of these benchmark functions are statistically analyzed using Wilcoxon, Friedman test, and
MAE analysis. The experimental results and statistical analysis results indicate that CLTSO is more
competitive than other advanced algorithms. Finally, this paper uses CLTSO to optimize a BP neural
network in the field of artificial intelligence. A CLTSO-BP neural network model is proposed. Three
popular datasets from the UCI Machine Learning and Intelligent System Center are selected to test
the classification performance of the new model. The comparison result indicates that the new model
has higher classification accuracy than the original BP model.

Keywords: artificial intelligence; circle chaotic map; Levy flight; nonlinear adaptive weight; tuna
swarm optimization

1. Introduction

Nowadays, many engineering problems in real life have become more and more com-
plex and challenging. High-quality solutions can help people effectively reduce resource
investment. Because most production practice problems are multivariate, nonlinear, and
have many complex constraints, the traditional branch and bound algorithm [1], conjugate
gradient method [2], and dynamic programming method [3] cannot achieve remarkable
results regarding these problems. The meta-heuristic algorithm has the characteristics of
strong global search ability, no dependence on gradient information, and wide adaptability.
It can effectively overcome the shortcomings of traditional optimization algorithms. Much
of the research on meta-heuristic algorithms has shown that these algorithms are able to
solve nonlinear optimization problems [4,5]. Many researchers tend to use meta-heuristic
algorithms to solve complex engineering problems. Now, meta-heuristic algorithms are ap-
plied in various fields, such as workshop scheduling [6], task optimization [7], engineering
management [8–10], and others.

The meta-heuristic algorithm is a mathematical method inspired by biological behav-
ior and some physical phenomena in nature. These methods are used to solve complex
problems in real life [11]. The meta-heuristic algorithm has the advantages of a simple struc-
ture, fewer hyperparameters, and being easy to understand. Based on these advantages, it
has become an important method for solving optimization problems today. Meta-heuristic
algorithms can be divided into four categories: swarm intelligence algorithms [12], evolu-
tionary algorithms [13], human-based algorithms [14], and physical and chemical-based
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algorithms [15]. The swarm intelligence algorithms simulate the behavior of animal pop-
ulations. Each individual in the population is a candidate solution. They are randomly
explored in the search space, which effectively avoids the possibility of entering the local
optimum. Some classic and newly proposed swarm intelligence algorithms include Golden
Jackal Optimization (GJO) [16], the Gray Wolf Optimization Algorithm (GWO) [17], and the
Poplar Optimization Algorithm (POA) [18]. Some classical evolutionary algorithms include
Genetic Algorithms [19] and the Biogeographic-Based Optimization Algorithm (BBO) [20],
etc. Meta-heuristic algorithms can effectively enhance the efficiency of engineering practice.
This has attracted more and more scholars’ attention.

In many industrial problems, specific solution functions can be established with math-
ematical models. How to solve complex function optimization problems has become a
focus of current research. For the optimization problems with fewer constraints and dimen-
sions, the traditional mathematical methods can achieve outstanding results. Although
meta-heuristic algorithms have very good performance in dealing with complex and high
dimensional optimization problems, the convergence speed of simple meta-heuristic algo-
rithms still needs to be improved. Sometimes with a single meta-heuristic algorithm, it is
difficult to get rid of the attraction of local extremum. To further enhance the optimization
capability of meta-heuristic algorithms, many experts try to use different strategies to
improve them. Zhongzhou Du introduced Levy flight in the iterative process of PSO,
which accelerated the optimization speed of PSO [21]. Hang Yu used a chaotic mapping
strategy to improve the GWO initialization method, which improved the accuracy of the
GWO solution [22]. Xiaoling Yuan introduced adaptive weight into the PSO algorithm,
which greatly strengthened its global search capability [23]. So-Youn Park combined CS
with oppositional learning, making the CS converge faster [24]. W. Xie used the golden
sine operator to improve the Black Hole algorithm (BH) [25], giving it better exploration
performance [26].

Xie et al. proposed a new meta-heuristic algorithm called the tuna swarm optimiza-
tion algorithm (TSO) [27] in 2021 after observing the foraging behavior of tuna swarms.
There are two common foraging strategies for tuna swarms: spiral foraging strategy and
parabolic foraging strategy. TSO searches for the global optimal value by simulating the
common individual in the tuna swarm to follow the optimal individual in the swarm to
attack the prey. Comparing TSO with the Whale Optimization Algorithm (WOA) [28], the
Salp Swarm Algorithm (SSA) [29], and some other advanced algorithms, the comparison
results indicate that TSO outperforms the competitors. The tuna swarm optimization
algorithm has the advantages of less parameters and easy realization. Therefore, after it
was proposed, TSO has been widely studied and applied to engineering practice. Although
TSO performs very well in many engineering practices, it still has some shortcomings.
Firstly, TSO cannot efficiently search for the global optimal value. It is easily attracted by
local extremum. Secondly, TSO does not converge fast enough. Finally, the followers of the
optimal individual blindly follow the later. There is a lack of local exploitation. At present,
Hu et al. have used Gaussian mutation to improve the TSO algorithm, and have applied
the improved algorithm to photovoltaic power prediction [30]. Kumara et al. improved
the TSO algorithm by using chaotic maps to increase the diversity of the algorithm popula-
tion [31]. This paper proposes an improved tuna swarm optimization algorithm (CLTSO)
based on the Circle chaotic map [32], Levy flight operator, and nonlinear adaptive operator.
The innovations made in this article are summarized as follows:

(1) At the CLTSO initialization stage, this paper introduces the Circle chaotic map to
uniformly generate individual positions. Because the initial positions of tuna individ-
uals are randomly generated, the initial tuna individuals are likely to cluster together.
In this paper, the emergence of the initial individual aggregation problem can be
effectively solved by introducing the Circle chaotic map.

(2) In CLTSO, the optimal individual and its follower positions are updated by using
Levy flight strategy. Because Levy flight uses a combination of long and short steps, it
can significantly enlarge the search scope of CLTSO.
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(3) In the iterative process of CLTSO, a nonlinear convergence factor is introduced to
balance the exploration and the exploitation. In CLTSO, a large convergence factor in
the initial iteration can bring the common individuals closer to the optimal individuals.
A smaller convergence factor at the end of iteration increases the capability of followers
to explore local scope.

This article covers the following aspects: Section 1 introduces some related content
of the meta-heuristic algorithm and the tuna swarm optimization algorithm. Section 2
reviews the two foraging strategies of the original tuna swarm optimization algorithm.
Section 3 introduces the improved Circle chaotic map strategy, the Levy flight operator,
and the nonlinear adaptive weight operator, and the usage of these operators to improve
TSO. Section 4 compares CLTSO with some classical and advanced meta-heuristics and
makes some experimental analysis. Section 5 modifies the BP neural network based on
CLTSO, and then tests the new model by using three popular datasets. Finally, Section 6
summarizes the content of the article.

The main mathematical symbols mentioned in this paper are shown in Table 1.

Table 1. Explanation of symbols.

Symbol Meaning

Xint
i Tuna individual in TSO

ub The upper boundary of the search space of TSO
lb The lower boundary of the search space of TSO

NP Population size of TSO
τ Distance parameter
α1 Weight parameters of tuna following the best individual
α2 Weight parameters of tuna following the front individual
p Weight parameters in parabolic foraging strategy
s The step length of Levy flight
t Current number of iterations of the algorithm

TMax Maximum number of iterations of the algorithm
α1i Improved version of α1
α2i Improved version of α2
pi Improved version of p

2. An Overview of Tuna Optimization Algorithms

Tuna is the top predator in the ocean. Although tuna swim very fast, some small prey
are more flexible than tuna. Therefore, in the process of predation, tuna often choose group
cooperation to capture prey. The tuna swarm has two efficient predatory strategies, namely,
the spiral foraging strategy and the parabolic foraging strategy. When the tuna swarm
uses the parabolic foraging strategy, each tuna will follow the previous individual closely.
The tuna swarm forms a parabola to surround the prey. When the tuna swarm adopts the
spiral foraging strategy, the tuna swarm will aggregate into spiral shapes and drive prey to
shallow water areas. Prey is more likely to be captured. By observing these two foraging
behaviors of tuna swarm, researchers proposed a new swarm intelligence optimization
called TSO.

2.1. Population Initialization

There are NP tunas in a tuna swarm. At the swarm initialization phase, the tuna
swarm optimization algorithm randomly generates the initial swarm in the search space.
The mathematical formulas for initializing tuna individuals are as follows:

Xint
i = rand · (ub − lb) + lb
=
[

x1
i x2

i · · · xj
i

]
{

i = 1, 2, . . . , NP
j = 1, 2, . . . , Dim

(1)
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where Xint
i is the i-th tuna, ub and lb are the upper and lower boundaries of the range of

tuna exploration, and rand is a random variable with uniform distribution from 0 to 1. In
particular, each individual, Xint

i , in the tuna swarm represents a candidate solution for TSO.
Each individual tuna consists of a set of Dim-dimensional numbers.

2.2. Parabolic Foraging Strategy

Herring and eel are the main food sources of tuna. When they encounter predators,
they will use their speed advantage to constantly change their direction of swimming. It
is very difficult for predators to catch them. Because tuna is less agile than their prey, the
tuna swarm will take a cooperative approach to attack the prey. The tuna swarm will use
the prey as a reference point to keep chasing prey. During predation, each tuna follows the
previous individual, and the whole tuna swarm forms a parabola to surround the prey. In
addition, the tuna swarm also uses a spiral foraging strategy. Assuming that the probability
of the tuna swarm choosing either strategy is 50%, the mathematical model of parabolic
foraging of the tuna swarm is as follows:

Xt+1
i =

{
Xt

best + rand · (Xt
best − Xt

i ) + TF · p2 · (Xt
best − Xt

i ), if rand < 0.5
TF · p2 · Xt

i , if rand ≥ 0.5
(2)

p = (1 − t
tmax

)
(t/tmax)

(3)

where t indicates that the tth iteration is currently running and tmax means the maximum
number of iterations preset. TF is a random value of 1 or −1.

2.3. Spiral Foraging Strategy

Besides the parabolic foraging strategy, there is another efficient cooperative foraging
strategy called the spiral foraging strategy. While chasing the prey, most tuna cannot
choose the right direction, but a small number of tuna can guide the swarm to swim in
the right direction. When a small group of tuna start chasing the prey, the nearby tuna
will follow this small group of individuals. Eventually, the entire tuna swarm will form a
spiral formation to catch the prey. When the tuna swarm adopts a spiral foraging strategy,
individuals will exchange information with the best to follow individuals or adjacent
individuals in the swarm. Sometimes the best individual is not able to lead the swarm to
capture prey effectively. The tuna will then select a random individual in the swarm to
follow. The mathematical formula of the spiral foraging strategy is as follows:

Xt+1
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 · (Xt
rand + τ · ∣∣Xt

rand − Xt
i

∣∣+ α2 · Xt
i ),

i = 1

α1 · (Xt
rand + τ · ∣∣Xt

rand − Xt
i

∣∣+ α2 · Xt
i−1),

i = 2, 3, . . . , NP

α1 · (Xt
best + τ · ∣∣Xt

best − Xt
i

∣∣+ α2 · Xt
i ),

i = 1

α1 · (Xt
best + τ · ∣∣Xt

best − Xt
i

∣∣+ α2 · Xt
i−1),

i = 2, 3, . . . , NP

, i f rand < t
tmax

, i f rand ≥ t
tmax

(4)

where Xt+1
i denotes the i-th tuna in the t + 1 iteration. The current best individual is

Xt
best. Xt

rand is the reference point randomly selected in the tuna swarm. α1 is the trend
weight coefficient to control the tuna individual swimming to the optimal individual or
randomly selected adjacent individuals. α2 is the trend weight coefficient to control the
tuna individual swimming to the individual in front of it. τ is the distance parameter that
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controls the distance between the tuna individual and the optimal individual or a randomly
selected reference individual. Their mathematical calculation model is as follows:

α1 = a + (1 − a) · t
tmax

(5)

α2= (1− a)− (1− a) · t
tmax

(6)

τ = ebl · cos(2πb) (7)

l = e3 cos(((tmax+1/t)−1)π) (8)

where a is a constant to measure the degree of tuna following and b is a random number
uniformly distributed in the range of [0, 1].

2.4. Pseudocode of TSO

The pseudocode of the original TSO is displayed in Algorithm 1. The flow chart of
TSO is displayed in Figure 1.

Algorithm 1 Pseudocode of TSO Algorithm

Initialization: Set parameters NP, Dim, a, z and TMax
Initialize the position of tuna Xi (i = 1, 2, . . . , NP) by (1)
Counter t = 0
while T < TMax do

Calculate the fitness value of all tuna
Update the position and value of the best tuna Xt

best
for (each tuna) do

Update α1, α2, p by (5), (6), (3)
if (rand < z) then

Update Xt+1
i by (1)

else if (rand ≥ z) then

if (rand < 0.5) then

Update Xt+1
i by (4)

else if (rand ≥ 0.5) then

Update Xt+1
i by (2)

t = t + 1
return the best fitness value f (Xbest) and the best tuna Xbest

In the iterative process of the TSO algorithm, each tuna will randomly choose to
perform either the spiral foraging strategy or the parabolic foraging strategy. Tuna will also
generate new individuals in the search range according to probability Z. Therefore, TSO
will choose different strategies according to Z when generating new individual positions.
During the execution of the TSO algorithm, all tuna individuals in the population are
constantly updated until the number of iterations reaches a predetermined value. Finally,
the TSO algorithm returns the optimal individual in the population and its optimal value.

The following advantages of TSO can be seen from Algorithm 1: (1) The TSO algorithm
has fewer adjustable parameters, which is beneficial to the implementation of the algorithm.
(2) This algorithm will save the position of the best tuna individual in each iteration; even if
the quality of the candidate solution decreases, it will not affect the location of the optimal
value. (3) The TSO algorithm can keep the balance between exploitation and exploration
by selecting two foraging strategies.
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Figure 1. Flow chart of TSO.

3. The Improved Tuna Swarm Optimization Algorithm

This section introduces an improved nonlinear tuna swarm optimization algorithm,
CLTSO, based on Circle chaotic map and Levy flight operator. Firstly, the population initial-
ization using Circle chaotic map can increase the diversity of the swarm. The combination
of TSO and Levy flight gives the algorithm an outstanding global exploration capability.
Furthermore, a nonlinear adaptive weight operator is introduced to modify the weight
coefficient of tuna following behavior in CLTSO. In CLTSO, the relationship between global
exploration and local exploitation in the iterative process are well balanced.

3.1. Circle Chaotic Map

Many changes in nature are not random. They seem to conform to some special laws.
Such a phenomenon is called chaos. Many movements in nature are chaotic [33]. Chaos is
a random behavior, but it conforms to certain laws, which enables this operator to display
more states in the search space of TSO [34].

Because the position of the tuna is randomly generated in the initialization phase of
the tuna algorithm, it is easy to make the initial tuna gather at the same place. The initial
tuna swarm does not fully cover the search space, resulting in a small difference between
tuna individuals. This greatly reduces the global searching capability of the algorithm.
The current popular chaotic mapping strategies are as follows: Tent [35], Logistic [36],
Circle [37], Chebyshev [38], Sinusoidal [39], and Iterative chaotic map [40]. Studying the
related literature on the above chaotic mapping strategies, we found that Circle chaotic
map has a more stable chaotic value and has a higher coverage rate in the search space [41].
However, our experiments indicate that the distribution of Circle chaotic value is still
not uniform. The chaotic values of the original Circle operator are clustered in the scope
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of [0.2, 0.5]. To make the chaotic value distribution more uniform, we improved the
mathematical model of the Circle chaotic mapping strategy.

The mathematical modeling of the original Circle chaotic map is as follows:

xi+1 = mod(xi + 0.2 − (0.5/2π) sin(2πxi), 1) (9)

where xi is the ith chaotic particle and xi+1 is the (i + 1)th chaotic particle. The scatter
plot and frequency histogram of the initial candidate solution of the original Circle chaotic
mapping operator are displayed in subgraphs (a) and (c) of Figure 2. In the Circle chaotic
map experiment, the total number of particles is 2000. Chaotic particles denote the initial
candidate solution of TSO.

Figure 2. Frequency distribution histogram of improved Circle chaotic map.

As can be seen from subgraphs (a) and (c) of Figure 2, the chaotic particles are con-
centrated in the range of [0.2, 0.5] in the chaotic sequence initialized by Circle chaotic map.
However, the initial candidate solutions are too concentrated, which will greatly reduce the
population diversity of TSO. Therefore, the original Circle chaotic map is improved in this
paper [42]. The mathematical modeling of the improved Circle chaotic map is as follows:

xi+1 = mod(3.85xi + 0.4 − (0.7/3.85π) sin(3.85πxi), 1) (10)

where xi is the ith chaotic particle and xi+1 is the (i + 1)th chaotic particle.
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The scatter plot and frequency histogram of the initial candidate solution of the
improved Circle chaotic map operator are displayed in subgraphs (b) and (d) of Figure 2.

From (b) and (d), we can clearly see that, compared to the original Circle chaotic
map, the particle distribution of the improved Circle chaotic map is more uniform. Each
candidate solution particle of the algorithm is explored in the search space. Therefore,
using the improved Circle chaotic map operator to modify TSO can obtain more uniform
candidate solutions. The initial tuna individuals uniformly distributed in the search space
of the algorithm can significantly increase the population diversity of TSO.

3.2. Levy Flight

The movement and trajectory of many small animals and insects in life have the
characteristics of Levy flight. These animals and insects include ants and flies. Many
animals in nature use Levy flight strategy as an ideal way of foraging. By studying this
phenomenon, French mathematician Paul Pierre Levy proposed the mathematical model of
Levy flight [43]. Levy flight is an operator conforming to Levy distribution. The step size
of Levy flight is random and mixed with long and short distances, which makes it easier to
search over a large scale and with unknown scope compared to Brownian motion [44]. In
the searching process, the Levy operator often uses short steps to walk and occasionally
uses long steps to jump, which allows it to efficiently get rid of the effects of local attraction
points. Therefore, in the random searching problem, many heuristic algorithms adopt this
strategy to modify the iterative process, which efficiently helps the algorithm to get rid of
the influence of local attraction points [45–47].

The Levy distribution can be expressed by the following mathematical model:

L(s) ∼ |s|−1−β (11)

where β is in the range of (0, 2), s is the step size, and L(s) is the probability density of a
step size, s, according to Levy modeling. The mathematical modeling of Levy distribution
is as follows:

L(s, γ, μ) =

{ √
γ

2π exp[− γ
2(s−μ)

] 1
(s−μ)3/2 , 0 < μ < s < ∞

0 , otherwise
(12)

where μ represents the minimum step size and μ > 0, γ represents size parameters. When
s → ∞ , Equation (12) can be written in the following form:

L(s, γ, μ) ≈
√

γ

2π

1
s3/2 (13)

Usually, scholars regard L(s) approximation as the following mathematical formula:

L(s) → αβ · Γ(β) sin(πβ/2)
π|s|1+β

, s → ∞ (14)

where Γ represents gamma function. Its mathematical model is as follows:

Γ(z) =
∫ ∞

0
tz−1e−tdt (15)

Due to the high complexity of Levy distribution, researchers often use the Man-
tegna [48] algorithm to simulate Levy flight step size, s, which is defined as follows:

s =
μ

|ν|1/β
(16)
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where μ and v are defined as follows:

μ ∼ N
(

0, σ2
μ

)
(17)

ν ∼ N
(

0, σ2
ν

)
(18)

σμ =

⎧⎪⎨⎪⎩
Γ(1 + β) sin

(
πβ
2

)
Γ
[
(1+β)

2

]
· β · 2

(1+β)
2

⎫⎪⎬⎪⎭, σν = 1 (19)

where the value of β is usually 1.5.
To show the global exploration capability of Levy flight more intuitively, this paper

compares Levy flight with random walk strategy. The simulation steps of Levy flight and
random walk are set to 300. The comparison results are presented in Figure 3.

Figure 3. Simulation comparison experiment diagram of Levy flight and random walk.

Figure 3 shows that the Levy flight has a larger search range than random walk. The
jump points of the random walk strategy are more concentrated, and the jump points of the
Levy flight strategy are widely distributed. Figure 3 fully demonstrates the characteristics
of Levy flight, which can make it better to explore in the whole searching space.

3.3. Nonlinear Adaptive Weight

How to balance the exploration capability and the exploration capability of the swarm
intelligence optimization algorithm is very important. Weight parameters play an impor-
tant role in the TSO algorithm. When the tuna chooses the spiral foraging strategy, in
Equations (5) and (6), the weight parameters α1 and α2 determine the degree of how much
tuna individuals follow the optimal individual to forage. This reflects the optimization
process of the algorithm. Similarly, in the parabolic foraging strategy, the weight parameter
p in Equation (2) determines the degree of how much ordinary individuals follow the
optimal individual. When the weight parameter is large, the degree of tuna following the
optimal individual is higher, which makes the whole tuna population better explore the
whole space. When the weight parameter is small, ordinary tuna individuals do not follow
the optimal individuals. They will swim around a small part of the space, which facilitates
the ordinary tuna individual to develop the field around itself. To sum up, the exploration
and the exploitation capabilities of TSO depend on the changes of weight parameters α1,
α2, and p.
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From Equations (5) and (6), it can be seen that the weight parameters α1 and α2 are
linear changes. However, the optimization process of TSO is very complex, and the linear
changes of weight parameters α1 and α2 cannot reflect the actual optimization process of
the algorithm. Nowadays, in order to overcome the drawbacks caused by linear control
weights, many scholars use nonlinear adaptive weights to improve the swarm intelligence
optimization algorithms [49–51]. Repeated experiments indicate that the optimization
effect of the nonlinear adaptive weight strategy is better than the linear weight strategy.
Therefore, two improved nonlinear weight parameters α1i and α2i are introduced in this
paper. Their mathematical models are as follows:

α1i(t) = α1ini − (α1ini − α1 f in) · sin(
t

μ · TMax
· π) (20)

α2i(t) = α2ini − (α2ini − α2 f in) · sin(
t

μ · TMax
· π) (21)

where μ = 2, α1ini denotes the initial value of α1, α1 f in denotes the final value of α1, α2ini
denotes the initial value of α2, and α2 f in denotes the final value of α2. We compared the
improved weight parameters α1i and α2i with the original weight parameters α1 and α2.
The results are displayed in Figure 4. In the experiment, TMax = 500.

Figure 4. Comparison of weight coefficients α1 and α2 before and after improvement.

It can be clearly seen from Figure 4 that the improved weight parameters α1i and α2i
change rapidly in the early stage, which makes ordinary tuna individuals more closely fol-
low the optimal individual. It increases the global exploration capability of TSO. The weight
parameters α1i and α2i change slowly in the late stage, which enables tuna individuals to
explore their surrounding areas. It increases the local search capability of TSO.

In the spiral foraging strategy, a new nonlinear weight parameter pi is proposed. Its
mathematical model is as follows:

pi(t) = pini − (pini − p f in) · sin(
t

μ · TMax
· π) (22)

where pini represents the initial value of p, and p f in represents the final value of p. We
compare the improved weight parameter pi

2 with the original weight parameter p2. The
comparison curves are displayed in Figure 5. In the comparison curve, TMax = 500.
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Figure 5. Comparison of the weight coefficient p before and after the improvement.

As can be seen from Figure 5, the improved weight parameter pi
2 decreases rapidly

in the early stage, so a tuna individual can follow its previous individual more closely. It
increases the global exploration capability of TSO. The improved weight parameter pi

2

decreases slowly in the late iteration, so tuna individuals can swim and explore in the
surrounding space. It increases the local exploration capability of TSO.

3.4. Improved Nonlinear Tuna Swarm Optimization Algorithm Based on Circular Chaotic Map and
Levy Flight Operator

The TSO algorithm usually uses random data to initialize population in solving func-
tion optimization problems, which may lead to the phenomenon that candidate solutions
are clustered together. However, this phenomenon will lead to poor population diversity,
which eventually leads to poor optimization results of the algorithm. Circle chaotic map
has the advantages of randomness and ergodicity. In the optimization process of TSO, these
advantages make it easier for the algorithm to escape the attraction of local extremum, and
helps the algorithm to maintain the diversity of the swarm. Therefore, an improved Circle
chaotic map strategy is introduced to initialize the tuna swarm. The swarm initialization
mechanism is upgraded from Equations (1)–(10).

For the swarm intelligence optimization algorithm, how to get rid of the influence of
local attraction points is a very important issue. The Levy flight strategy is an operator
that can strengthen the global capability of TSO. This mechanism often uses short steps to
walk and occasionally uses long steps to jump. The low-frequency use of long step length
can ensure that TSO can extensively search the entire search area. The high-frequency use
of short step length can ensure that TSO can locally search its nearest scope. Therefore,
this paper introduces the Levy operator to modify the swarm update strategy of TSO.
Considering that the jump of the Levy operator is too intense, and it may jump out of the
main range in the process of operation, this paper adds step control parameters on the
basis of the original Levy operator. The small step size control parameters can control the
search of TSO in a small scope, which can enhance the local exploration ability of TSO
without weakening the global exploration ability. The step size control parameters with
large values can control the exploration of TSO in a large scope, which is conducive to
solving the complex optimization problem.
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The original TSO designed the parabolic foraging strategy and the spiral foraging
strategy to balance the global exploration and the local exploitation capabilities of TSO.
However, in the spiral foraging strategy, the linear changes of the weight parameters α1
and α2 cannot solve the actual complex problems well. In the parabolic foraging strategy,
the change of the weight parameter p cannot effectively provide the solution to TSO
for the global and the local exploration abilities. This paper uses nonlinear adaptive
weight to modify the spiral foraging strategy and parabolic foraging strategy in TSO. The
mathematical model of weight parameter pi is upgraded from Equation (3) to Equation (22),
and the mathematical models of α1i and α2i are upgraded from Equations (5) and (6) to
Equations (20) and (21), respectively.

The mathematical model of the improved spiral foraging strategy based on the Levy
operator and nonlinear adaptive weight strategy is as follows:

Xt+1
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1i · (Xt
rand + Lτ · ∣∣Xt

rand − Xt
i

∣∣+ α2i · Xt
i ),

i = 1
α1i · (Xt

rand + Lτ · ∣∣Xt
rand − Xt

i

∣∣+ α2i · Xt
i−1),

i = 2, 3, . . . , NP
α1i · (Xt

best + Lτ · ∣∣Xt
best − Xt

i

∣∣+ α2i · Xt
i ),

i = 1
α1i · (Xt

best + Lτ · ∣∣Xt
best − Xt

i

∣∣+ α2i · Xt
i−1),

i = 2, 3, . . . , NP

, i f rand < t
tmax

, i f rand < t
tmax

(23)

where Lτ is an improved distance control parameter combined with the Levy operator. Its
mathematical model is as follows:

Lτ = eα·Levy(s)·l · cos(2π · Levy(s) · α) (24)

where Levy(s) is the step size of the Lévy operator, and α is the step size control coefficient.
In this article, α = 0.01. The mathematical model of improved parabolic foraging strategy
based on the Levy operator and nonlinear adaptive weight strategy is as follows:

Xt+1
i =

{
Xt

best + α · Levy(s) · (Xt
best − Xt

i ) + TF · p2 · (Xt
best − Xt

i ), if rand < 0.5

TF · pi
2 · Xt

i , if rand ≥ 0.5
(25)

Based on the above improvement strategies, an improved TSO is proposed, called
CLTSO. The pseudocode of CLTSO is shown in Algorithm 2, and the process diagram of
CLTSO is shown in Figure 6.

Algorithm 2 Pseudocode of CLTSO Algorithm

Initialization: Set parameters NP, Dim, a, z and TMax. Initialize the position of tuna Xi (i = 1, 2,
. . . , NP) by (10)
Counter t = 0
while T < TMax do

Calculate the fitness value of all tuna
Update the position and value of the best tuna Xt

best
for (each tuna) do

Update α1i, α2i, pi by (20), (21), (22)
if (rand < z) then

Update Xt+1
i by (10)

else if (rand ≥ z) then

if (rand < 0.5) then

Update Xt+1
i by (23)

else if (rand ≥ 0.5) then

Update Xt+1
i by (25)

t = t + 1
return the best fitness value f (Xbest) and the best tuna Xbest
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Figure 6. Flow chart of CLTSO.

Comparing Algorithms 1 and 2, it is clear that the overall structures are similar. The
update strategies have been changed. Therefore, the improved operator proposed in this
paper does not destroy the structural simplicity of the original TSO algorithm.

3.5. Time Complexity Analysis

Time complexity is an important measurement tool for evaluating the efficiency of an
algorithm. In much of the research literature, it is represented by the symbol O. The time
complexity is closely related to the number of instruction operations of the algorithm. The
time complexity of TSO is closely related to iteration times, location update mechanism,
and the evaluation times of fitness value function. The time complexity of CLTSO is closely
related to the number of iterations, the number of fitness function evaluations, and the
improvement operator. To compare the time cost differences between TSO and CLTSO, the
time complexity of TSO and CLTSO is evaluated as follows. The time complexity of each
operation instruction in the TSO is discussed below.

1. Initialize N individuals in the TSO, each with a dimension of D, so N · D calculations
are required.

2. Calculate the fitness value of each individual in the tuna population and select
the optimal individual in the current population. Therefore, it needs to calculate
[N · (N − 1)]/2 times.

3. Update the values of parameters α1, α2, and p, which are computed 3 times.
4. Update all tuna individuals in the search space, which are computed N · D times.
5. Return the best individual, Xbest, in the tuna population, which requires this code to

be executed 1 time.
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The instructions in steps 2 to 4 need to be iteratively run TMax times. Combining
the above analysis process, the time complexity of TSO can be expressed as O(TSO) =
TMax · [(N2 − N)/2 + N · D + 3].

The time complexity of each operation instruction in CLTSO is analyzed as follows.

1. Initialize N individuals in the CLTSO, each with a dimension of D, so N · D calcula-
tions are required.

2. Calculate the fitness value of each individual in the tuna population and select the
optimal individual in the current population. Therefore, it needs to be calculated
[N · (N − 1)]/2 times.

3. Update the values of parameters α1i, α2i, and pi, which needs to be calculated 3 times.
4. Update all tuna individuals in the search space, which needs to be calculated N · D

times.
5. When each individual in the tuna population is updated, the Levy operator needs to

be calculated 1 time. Therefore, it needs to be run N times in total.
6. Return the best individual, Xbest, in the tuna population, which requires this code to

be executed 1 time.

Steps 2 to 5 require a total of TMax iterations. Therefore, the time complexity of CLTSO
can be expressed as O(CLTSO) = TMax · [(N2 − N)/2 + N · D + 3 + N].

Compared with the tuna swarm optimization algorithm, the three operators pro-
posed in this paper slightly increase the time cost. CLTSO and TSO have very close time
complexity.

4. Simulation Experiments and Results Analysis

To verify the effectiveness of the proposed CLTSO in solving different optimization
problems, in this section, 22 benchmark functions are applied to design a series of exper-
iments to compare CLTSO with other famous meta-heuristic algorithms. In addition, to
illustrate the outstanding performance of CLTSO, we compared it against the tuna swarm
optimization algorithm (TSO), the improved TSO based on the Levy flight operator (LTSO),
the improved TSO based on the Circle chaotic map, and nonlinear adaptive weights (CTSO).
Finally, this section provides a detailed analysis of the experimental results.

4.1. Benchmark Function

Twenty-two different types of benchmark functions are selected to evaluate the capa-
bility of CLTSO, which cover unimodal, multimodal, fixed-dimension multimodal, and
combined functions in the CEC2014 [52]. Through a survey of relevant literature, we find
that CEC2014 is a classic test function, so it can be used as a benchmark to evaluate the
performance of the proposed algorithm. Its mathematical model is given in Table 2. F1~F7
are unimodal functions, which are used to evaluate the convergence rate of the algorithm.
F8~F14 are multimodal functions, which are applied to verify whether the algorithm has
good global exploration capability. F15~F22 are the CEC2014 functions, which are applied
to test the comprehensive capability of these algorithms.

4.2. Comparison Algorithm and Parameter Setting

Based on these 22 benchmark functions, a series of comparative experiments are de-
signed to test the selected algorithms, which include Accelerated Particle Swarm Optimiza-
tion (APSO) [53], WOA, the Fitness-Distance Balance based adaptive guided differential
evolution (FDB-AGDE) algorithm [54], Covariance Matrix Adaptation Evolutionary Strate-
gies (CMA-ES) [55], TSO, and CLTSO. The parameter values of the algorithms involved in
these experiments are shown in Table 3. The symbol ‘ ~ ’ indicates that the algorithm does
not set parameter values. Functions F1~F13 are tested in 30 and 100 dimensions, respectively,
and F14 is tested in its suitable dimension. Eight CEC2014 benchmark functions are tested
in 50 dimensions. The maximum number of evaluations of F1~F14 are 1000. Because CEC
benchmark functions are complex, the number of evaluations of 8 CEC2014 functions are
simplified to 5000 without losing representativeness. The swarm size of each algorithm is
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30. To avoid accidental interference, we run each algorithm 30 times independently in each
experiment.

Table 2. Benchmark functions.

Function Dim Range fmin

F1(x) = ∑D
i=1 x2

i 30,100 [−100, 100] 0

F2(x) =
D
∑

i=1
|xi |+

D
∏
i=1

|xi | 30,100 [−10, 10] 0

F3(x) =
D
∑

j=1

(
j

∑
i=1

xi

)2
30,100 [−100, 100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ D} 30,100 [−100, 100] 0

F5(x) = ∑D
i=1 100(x2

i+1 − x2
i )

2
+ (xi − 1)

2
30,100 [−30, 30] 0

F6(x) =
D
∑

i=1
(�xi + 0.5�)2 30,100 [−100, 100] 0

F7(x) =
D
∑

i=1
ixi

4 + random[0, 1) 30,100 [−1.28, 1.28] 0

F8(x) = ∑D
i=1 −xi sin(

√|xi |) 30,100 [−500, 500] −418.
9829 × D

F9(x) = ∑D
i=1 (x2

i − 10 cos(2πxi) + 10) 30,100 [−5.12, 5.12] 0

F10(x) = −20 exp
(
−0.2

√
(1/D)∑D

i=1 x2
i

)
− exp

(
(1/D)∑D

i=1 cos(2πxi)
)
+ 20 + exp(1) 30,100 [−32, 32] 8.8818 × 10−16

F11(x) = (1/4000)∑D
i=1 x2

i − ∏D
i=1 cos

(
xi/

√
i
)
+ 1 30,100 [−600, 600] 0

F12(x) = π/D
{

10 sin2(πyi) + ∑D
i=1 (yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yD − 1)

}
+∑D

i=1 u(xi , 10, 100, 4)

yi = 1 + [(xi + 1)/4]u(xi , a, k, m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k(xi − a)m, xi > a

0,−a < xi < a

k(−xi − a)m, xi < a

30,100 [−50, 50] 0

F13(x) = 0.1
{

sin2(3πxi) + ∑D
i=1 (xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xD − 1)2[1 + sin2(2πxD)]

}
+∑D

i=1 u(xi , 5, 100, 4)
} 30,100 [−50, 50] 0

F14(x) = ((1/500) + ∑25
j=1 (1/(j + ∑2

i=1 (xi − aij)
6)))−1 2 [−65.53, 65.53] 0.998004

F15(x)(CEC2014 1 : Rotated High Conditioned Elliptic Function) 50 [−100, 100] 100

F16(x)(CEC2014 2 : Rotated Bent Cigar Function) 50 [−100, 100] 200

F17(x)(CEC2014 3 : Rotated Discus Function) 50 [−100, 100] 300

F18(x)(CEC2014 5 : Shifted and Rotated Rosenbrock) 50 [−100, 100] 500

F19(x)(CEC2014 18 : Shifted and Rotated Expanded Scaffer′s F6 Function) 50 [−100, 100] 1800

F20(x)(CEC2014 20 : Hybrid Function 4 (N = 4)) 50 [−100, 100] 2000

F21(x)(CEC2014 21 : Hybrid Function 5 (N = 5)) 50 [−100, 100] 2100

F22(x)(CEC2014 30 : Composition Function 8 (N = 3)) 50 [−100, 100] 3000

Table 3. Parameter values of the algorithms.

Algorithm Parameter Value

APSO α = 1, β = 0.5, γ = 0.95
WOA l ∈ (−1, 1)

FDB-AGDE μCR = 0.5
CMA-ES μ = 2

TSO a = 0.7, z = 0.05
CLTSO a = 0.7, z = 0.05
CTSO a = 0.7, z = 0.05
LTSO a = 0.7, z = 0.05
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4.3. Results and Analysis

Table 4 shows the experimental results of CLTSO and other algorithms in low dimen-
sional benchmark functions (dimension = 30), where Std is standard deviation and Mean is
mean value. Mean represents the solution accuracy of these algorithms. Std reflects the
stability of these algorithms in the solution process. F14 is tested in its own dimension.
Table 5 displays the experimental results of CLTSO and other algorithms in high dimen-
sional benchmark functions (dimension = 100). The experimental results of eight composite
functions in CEC2014 are displayed in Table 6.

Table 4. Experimental results in 30 dimensions.

Function Performance APSO WOA FDB-AGDE CMA-ES TSO CLTSO

F1
Mean 5.09 × 10−39 4.82 × 10−150 1.23 × 10−8 5.99 × 10−15 0 0

Std 1.05 × 10−39 2.59 × 10−149 1.34 × 101 3.94 × 10−15 0 0

F2
Mean 4.38 × 10−1 8.02 × 10−103 4.49 × 10−6 1.83 × 10−7 1.71 × 10−252 0

Std 5.79 × 10−1 3.63 × 10−102 5.61 × 101 4.53 × 10−8 0 0

F3
Mean 1.32 × 101 2.01 × 104 1.08 × 10−96 6.14 × 10−6 0 0

Std 4.84 × 100 9.41 × 103 6.35 × 104 1.16 × 10−5 0 0

F4
Mean 4.96 × 10−1 3.61 × 101 1.64 × 100 8.37 × 10−6 6.42 × 10−249 0

Std 1.75 × 10−1 2.69 × 101 1.45 × 101 2.29 × 10−6 0 0

F5
Mean 5.02 × 101 2.72 × 101 1.50 × 102 6.64 × 101 2.94 × 10−4 2.12 × 10−4

Std 4.56 × 101 4.96 × 10−1 1.14 × 102 1.52 × 102 7.65 × 10−1 3.82 × 10−5

F6
Mean 4.01 × 10−32 8.72 × 10−2 1.09 × 10−8 6.59 × 10−15 1.37 × 10−9 2.04 × 10−10

Std 1.60 × 10−32 9.95 × 10−2 1.33 × 101 3.44 × 10−15 8.89 × 10−6 2.40 × 10−10

F7
Mean 1.54 × 10−1 1.53 × 10−3 2.36 × 10−2 2.44 × 10−2 2.16 × 10−5 1.81 × 10−5

Std 2.03 × 10−2 2.05 × 10−3 9.40 × 100 6.71 × 10−3 2.19 × 10−4 6.32 × 10−5

F8
Mean –1.09 × 102 –1.16 × 104 –1.26 × 104 –4.41 × 1011 –8.38 × 102 –1.26 × 104

Std 3.25 × 100 1.50 × 103 3.32 × 10−1 2.34 × 1012 1.17 × 104 6.00 × 10−8

F9
Mean 7.42 × 101 0 3.11 × 101 5.60 × 101 0 0

Std 5.96 × 100 0 1.62 × 101 6.32 × 101 0 0

F10
Mean 5.36 × 10−1 4.56 × 10−15 6.78 × 10−7 7.01 × 10−1 8.88 × 10−16 8.88 × 10−16

Std 5.28 × 10−1 2.15 × 10−15 3.73 × 10−1 3.78 × 100 8.29 × 10−16 0

F11
Mean 8.49 × 10−3 1.61 × 10−3 2.85 × 10−7 3.29 × 10−4 0 0

Std 1.67 × 10−2 8.69 × 10−3 1.64 × 101 1.77 × 10−3 0 0

F12
Mean 1.08 × 10−1 6.17 × 10−3 1.74 × 10−25 2.01 × 10−15 2.65 × 10−10 6.75 × 10−14

Std 1.21 × 10−1 6.67 × 10−3 2.01 × 101 1.14 × 10−15 1.14 × 10−7 3.87 × 10−11

F13
Mean 2.38 × 10−3 3.11 × 10−1 1.87 × 10−19 3.77 × 10−14 5.12 × 10−8 1.24 × 10−9

Std 4.42 × 10−3 2.72 × 10−1 1.54 × 101 3.15 × 10−14 2.84 × 10−3 3.77 × 10−9

F14
Mean 1.27 × 101 2.27 × 100 9.98 × 10−1 7.65 × 100 9.98 × 10−1 9.98 × 10−1

Std 1.12 × 10−13 2.91 × 100 2.71 × 100 3.59 × 100 9.31 × 10−1 2.69 × 10−16
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Table 5. Experimental results in 100 dimensions.

Function Performance APSO WOA FDB-AGDE CMA-ES TSO CLTSO

F1
Mean 1.84 × 101 1.03 × 10−149 7.27 × 101 1.83 × 10−3 0 0

Std 1.40 × 100 4.01 × 10−149 1.98 × 101 4.15 × 10−4 0 0

F2
Mean 4.13 × 101 6.59 × 10−102 7.95 × 100 2.99 × 10−1 8.66 × 10−235 0

Std 2.74 × 100 2.42 × 10−101 7.89 × 100 1.09 × 10−1 0 0

F3
Mean 2.23 × 102 8.92 × 105 7.05 × 10−86 4.80 × 105 0 0

Std 1.40 × 101 2.09 × 105 1.05 × 101 1.31 × 105 0 0

F4
Mean 2.29 × 100 7.06 × 101 5.91 × 101 1.73 × 100 5.52 × 10−229 0

Std 8.35 × 10−2 2.77 × 101 6.11 × 100 3.03 × 10−1 0 0

F5
Mean 6.22 × 103 9.77 × 101 1.30 × 105 3.59 × 102 1.08 × 10−1 1.89 × 10−3

Std 2.28 × 103 4.05 × 10−1 9.66 × 105 1.49 × 103 1.99 × 10−1 4.41 × 10−3

F6
Mean 2.66 × 101 1.76 × 100 5.27 × 10−5 1.71 × 10−3 5.10 × 10−5 4.65 × 10−5

Std 7.14 × 100 6.30 × 10−1 1.37 × 101 3.09 × 10−4 2.37 × 10−2 7.68 × 10−5

F7
Mean 1.83 × 103 1.67 × 10−3 2.81 × 10−1 1.39 × 10−1 2.76 × 10−4 1.04 × 10−4

Std 6.20 × 102 1.19 × 10−3 1.37 × 101 1.83 × 10−2 3.08 × 10−4 1.13 × 10−4

F8
Mean −2.35 × 102 −3.73 × 104 −3.45 × 104 −1.81 × 105 −2.79 × 103 −4.19 × 104

Std 9.35 × 100 5.59 × 103 4.00 × 103 3.12 × 104 3.91 × 104 2.95 × 10−3

F9
Mean 4.33 × 102 0 2.25 × 102 6.69 × 102 0 0

Std 2.60 × 101 0 1.18 × 102 1.64 × 102 0 0

F10
Mean 3.58 × 100 4.20 × 10−15 5.86 × 100 9.41 × 10−3 8.88 × 10−16 8.88 × 10−16

Std 3.04 × 10−1 2.23 × 10−15 4.11 × 100 1.04 × 101 8.29 × 10−16 0

F11
Mean 4.39 × 10−1 0 1.71 × 100 3.49 × 10−2 0 0

Std 6.34 × 10−2 0 1.12 × 101 6.78 × 10−3 0 0

F12
Mean 5.46 × 10−1 1.80 × 10−2 6.02 × 10−3 2.12 × 10−4 2.49 × 10−8 2.78 × 10−9

Std 1.09 × 10−1 7.22 × 10−3 9.60 × 100 5.70 × 10−5 5.86 × 10−5 2.19 × 10−7

F13
Mean 8.73 × 100 1.65 × 100 5.93 × 10−1 3.76 × 10−3 2.02 × 10−4 6.80 × 10−6

Std 2.13 × 100 7.21 × 10−1 1.53 × 101 2.83 × 10−3 4.38 × 10−3 7.14 × 10−6

Table 6. Simulation results of CEC2014 functions.

Function Performance APSO WOA FDB-AGDE CMA-ES TSO CLTSO

F15
Mean 1.19 × 1010 8.85 × 108 3.36 × 105 1.84 × 107 2.22 × 106 4.35 × 105

Std 3.12 × 107 3.34 × 108 7.01 × 107 3.94 × 106 1.21 × 106 4.35 × 105

F16
Mean 1.65 × 1011 7.71 × 1010 3.36 × 102 2.02 × 104 1.00 × 104 2.75 × 102

Std 3.25 × 108 7.86 × 109 1.20 × 101 5.08 × 104 4.94 × 109 1.15 × 104

F17
Mean 1.99 × 108 9.77 × 104 7.36 × 102 8.33 × 105 8.38 × 103 3.59 × 102

Std 3.10 × 103 9.92 × 103 1.09 × 101 1.18 × 105 7.60 × 103 3.29 × 101

F18
Mean 5.20 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.20 × 102

Std 9.69 × 102 8.62 × 10−2 1.14 × 101 4.43 × 10−2 3.13 × 102 1.06 × 10−1

F19
Mean 1.39 × 109 4.83 × 105 2.96 × 103 5.07 × 104 2.27 × 103 1.98 × 103

Std 1.98 × 104 4.22 × 105 2.00 × 103 2.89 × 104 2.91 × 103 1.56 × 103

F20
Mean 3.17 × 103 3.04 × 105 3.13 × 103 8.77 × 105 4.66 × 103 2.67 × 103

Std 5.98 × 102 2.31 × 105 1.56 × 101 3.70 × 105 4.86 × 103 2.25 × 102

F21
Mean 9.39 × 108 1.12 × 107 3.56 × 104 5.20 × 106 4.10 × 104 6.27 × 103

Std 1.14 × 106 5.43 × 106 1.05 × 105 2.42 × 106 2.33 × 105 6.06 × 104

F22
Mean 3.20 × 103 3.79 × 105 1.26 × 104 4.00 × 103 3.20 × 103 3.20 × 103

Std 7.83 × 10−4 2.41 × 105 9.53 × 100 2.93 × 102 1.92 × 103 0
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As can be seen from Table 3, in low-dimensional functions, the optimization accuracy
of CLTSO is only slightly weaker than its competitors in F6, F8, F12, and F13. Among
the remaining 10 benchmark functions, CLTSO not only has significantly better solution
accuracy than its competitors, but also has better robustness. This shows that the Circle
chaotic map operator can help CLTSO obtain more diverse candidate solutions, and each
candidate solution can continuously update and finally select the optimal solution during
the iteration.

When the dimension of the benchmark function is 100, CLTSO has better optimization
performance in dealing with higher dimensional and more complex problems. Only in the
F8 test function is the optimization accuracy of CLTSO slightly worse than that of CMA-ES.
In the remaining 12 functions, CLTSO has the best optimization accuracy, and CLTSO can
find the theoretical optimal value in F1, F2, F3, F4, F9, F10, and F11. From the robustness of
the algorithm, CLTSO obtains the minimum Std value in all benchmark functions, which
indicates that CLTSO has more stable exploration ability than other competitors. This
is due to the fact that the Circle chaotic map strategy helps CLTSO to obtain a richer
population diversity, which allows the initial tuna to be evenly distributed in the search
space. In addition, during the execution of CLTSO, the Levy flight operator strengthens the
exploration capability of the algorithm, and the nonlinear adaptive weight operator can
well balance the exploration and exploitation capability of CLTSO.

The experimental results of the CEC2014 function indicate that all algorithms do not
obtain the theoretical optimal value, but CLTSO can still achieve more excellent optimiza-
tion accuracy than other competitors in F16~F22. This effectively proves that the improved
nonlinear tuna swarm optimization algorithm based on the Circle chaotic map strategy
and the Levy flight operator can adapt to more complex and challenging optimization
problems.

To more intuitively observe the convergence ability of CLTSO and the competitors,
Figure 7 draw their operating curves. The images of F1~F13 are drawn in 100 dimensions,
the image of F14 is drawn in its suitable dimension, and the images of F15~F22 are drawn in
50 dimensions.

The convergence curves of these algorithms indicate that CLTSO has a better conver-
gence performance than the competitors. For simple optimization problems, CLTSO can
obtain theoretical optimal values within 500~600 iterations. For complex and challenging
problems, CLTSO can also maintain a faster convergence rate and get rid of the influence of
local attraction points, and ultimately achieve higher optimization accuracy.

In order to further show whether CLTSO has obvious advantage over other algorithms,
this paper uses the Wilcoxon [56] statistical method and the Friedman method to analyze
the experimental results of these algorithms in 100-dimensional benchmark functions. The
results of F14 is based on its suitable dimensions. The experimental data of eight CEC2014
benchmark functions are measured in 50 dimensions. The results of the Friedman test and
the p-value of the Wilcoxon test are listed in Tables 7 and 8, respectively.

Table 7. Results of Friedman test.

Algorithm Rank Mean

CLTSO 1.39
TSO 2.48

FDB-AGDE 3.68
CMA-ES 4.09

WOA 4.14
APSO 5.23
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Figure 7. Cont.
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Figure 7. Convergence curve of each algorithm (F1~F22).

The Friedman test is a nonparametric statistical analysis method, which uses rank
mean to test whether there are significant differences in multiple population distributions.
Because the problem in this paper is to find the minimum value, a smaller rank mean value
in the Friedman test results indicates better performance of the algorithm. As can be seen
from Table 6, CLTSO has the smallest rank mean and TSO ranks the second, followed by
CMA-ES, WOA, DE, and APSO.

In the Wilcoxon statistical test results, if the p-value is less than 0.05 and close to 0, this
indicates that the experimental results of the two algorithms are significantly different. If the
p-value exceeds 0.05, this indicates that the experimental results of the two algorithms are
not significantly different. If the p-value is equal to NaN, this means that the experimental
results of the two algorithms are not different. As can be seen from Table 7, except for
the last column, the p-values of CLTSO are basically less than 0.05 and close to 0, which
indicates that CLTSO has significant advantages compared with other algorithms. It is not
difficult to find that half of the p-values for Wilcoxon analysis of CLTSO vs. TSO are greater
than 0.05. This is because both CLTSO and TSO can find the theoretical optimal value in
these functions, or the optimal value found by TSO is not much different from that found
by CLTSO. From the optimization curves of TSO and CLTSO, we can see that although the
calculation results of these two algorithms are not very different in those functions with
p-values greater than 0.05, the speed of CLTSO is generally much faster than that of TSO.
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Table 8. Results of Wilcoxon test.

Function
CLTSO

vs.
WOA

CLTSO
vs.

APSO

CLTSO
vs.

FDB-AGDE

CLTSO
vs.

CMAES

CLTSO
vs.

TSO

F1 1.21 × 10−12 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F2 1.21 × 10−12 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 1.21 × 10−12

F3 1.21 × 10−12 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F4 1.21 × 10−12 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 1.21 × 10−12

F5 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 4.18 × 10−9

F6 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 2.78 × 10−7

F7 3.82 × 10−10 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 6.20 × 10−4

F8 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 3.65 × 10−8

F9 NaN 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F10 3.06 × 10−9 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F11 NaN 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F12 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 6.53 × 10−8

F13 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 1.69 × 10−9

F14 1.57 × 10−11 1.39 × 10−4 NaN 1.57 × 10−11 1.22 × 10−1

F15 7.94 × 10−3 7.94 × 10−3 1.59 × 10−2 7.94 × 10−3 1.51 × 10−1

F16 7.94 × 10−3 7.94 × 10−3 8.41 × 10−1 4.21 × 10−1 6.90 × 10−1

F17 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3

F18 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3

F19 7.94 × 10−3 7.94 × 10−3 8.41 × 10−1 7.94 × 10−3 8.41 × 10−1

F20 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3

F21 7.94 × 10−3 7.94 × 10−3 4.21 × 10−1 7.94 × 10−3 1.51 × 10−1

F22 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 1.00 × 100

Finally, this paper quantitatively analyzes all the algorithms in the experiment. The
quantitative analysis of these algorithms is based on the mean absolute error (MAE) of
22 benchmark functions. In mathematics, MAE is a measure of the error between paired
observations expressing the same phenomenon. The mathematical model of MAE is as
follows:

MAE =
∑N

i=1|mi − oi|
N

(26)

where N is the total amount of benchmark functions used for testing, mi is the average of
the optimal results calculated by the algorithm, and oi is the theoretical optimal value of
the ith benchmark function.

Table 9 shows the MAE ranking results of these algorithms. The MAE value of CLTSO
ranks the first among all competitors, and FDB-AGDE ranks the second. The above data
intuitively illustrate the advantage of CLTSO.

Table 9. MAE ranking results of each algorithm.

Algorithm MAE

CLTSO 2.06 × 104

FDB-AGDE 2.70 × 104

CMA-ES 1.21 × 106

TSO 3.82 × 106

WOA 3.55 × 109

APSO 9.60 × 109

The time consumed by these algorithms in functions F1~F22 are shown in Table 10.
The numerical unit is second. The analysis of the time they consumed indicates that the
time complexity of CLTSO is slightly higher than that of TSO, but the increase is trivial.
The improved operator proposed in this paper only increases the time complexity a little
but greatly enhances the optimization performance of the CLTSO algorithm.
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Table 10. The execution time of each algorithm.

Function APSO WOA FDB-AGDE CMA-ES TSO CLTSO

F1 0.5014 0.2206 8.2466 2.6347 0.2277 0.2603
F2 0.4465 0.3333 8.7963 2.8552 0.2389 0.27260
F3 0.5782 1.3826 8.4424 4.0751 1.2743 1.2819
F4 4.3284 0.2083 8.8472 2.4857 0.1960 0.1942
F5 0.7193 0.2458 3.586 2.7163 0.2440 0.3442
F6 0.8572 0.1921 8.8967 2.4867 0.1879 0.1946
F7 0.7557 0.4226 13.6329 2.7073 0.3906 0.3860
F8 1.0016 0.2599 23.6696 2.6709 0.2689 0.2698
F9 0.5113 0.2074 26.1973 2.5678 0.2126 0.2246
F10 0.5619 0.2370 21.3863 3.9514 0.3425 0.3350
F11 0.5321 0.4213 20.6873 2.9784 0.3491 0.4298
F12 1.9510 0.9889 19.5429 3.5528 0.8823 0.8381
F13 1.8874 0.8468 11.6196 6.1577 2.2185 1.5804
F14 2.0775 3.0364 4.9752 4.7462 2.2598 2.2449
F15 1.9327 2.3167 15.5858 21.6152 2.4425 2.6542
F16 1.4227 1.9362 14.8224 21.4082 1.9444 2.0605
F17 1.4958 2.0395 14.6579 22.1484 2.0020 1.9974
F18 1.2775 2.2311 15.6855 21.5255 2.1373 2.2258
F19 1.7849 2.1867 15.3276 22.2718 2.0847 2.2293
F20 2.5258 2.2063 29.3849 20.9746 2.1806 2.2839
F21 3.0010 2.4824 30.1273 23.3055 2.4337 2.5681
F22 6.1130 6.2426 49.8559 27.5203 5.9850 6.0176

4.4. Effectiveness Analysis of Improved Operators

This paper makes three improvements to the original tuna swarm optimization algo-
rithm. Firstly, the improved Circle chaotic mapping strategy is introduced in the initializa-
tion phase, which expands the swarm diversity. Secondly, the Levy operator is introduced
in the position update phase, which strengthens the global swimming ability of tuna. Fi-
nally, the nonlinear adaptive weight strategy is introduced in the TSO iteration stage, which
can effectively balance the exploration and the exploitation capabilities of the tuna swarm.
Section 3 of this chapter proves that the proposed operator significantly improves the opti-
mization performance of TSO. In addition, to verify the effectiveness of the improvements
proposed in this paper, we selected the tuna swarm optimization algorithm (TSO), the
improved TSO based on the Levy flight operator (LTSO), the improved TSO based on the
Circle chaotic map and nonlinear adaptive weights (CTSO), and CLTSO to conduct a set of
comparative experiments. Functions F1~F22 are used to test these algorithms in this section,
and each algorithm runs 30 times independently. F1~F13 are experiments in 100 dimensions,
F15~F22 are experiments in 50 dimensions.

The experimental results of various versions of the improved tuna swarm optimization
algorithm are displayed in Table 11. Their convergence curves are displayed in Figure 8.

Table 11. Experimental results of various versions of the improved TSO.

Function Performance TSO LTSO CTSO CLTSO

F1
Mean 0 0 0 0

Std 0 0 0 0

F2
Mean 9.66 × 10−237 0 0 0

Std 0 0 0 0

F3
Mean 0 0 0 0

Std 0 0 0 0

F4
Mean 1.26 × 10−233 0 0 0

Std 0 0 0 0
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Table 11. Cont.

Function Performance TSO LTSO CTSO CLTSO

F5
Mean 2.52 × 10−3 4.84 × 10−4 2.35 × 10−3 1.27 × 10−5

Std 3.37 × 10−4 2.47 × 10−2 6.09 × 10−3 5.71 × 10−5

F6
Mean 9.33 × 10−4 6.07 × 10−5 2.92 × 10−4 3.07 × 10−5

Std 2.93 × 10−3 8.82 × 10−5 1.76 × 10−2 2.78 × 10−5

F7
Mean 1.34 × 10−4 4.20 × 10−5 8.46 × 10−5 4.07 × 10−5

Std 1.62 × 10−4 6.46 × 10−5 1.41 × 10−4 3.07 × 10−5

F8
Mean −4.19 × 104 −4.19 × 104 −4.19 × 104 −4.19 × 104

Std 2.51 × 104 2.51 × 104 7.54 × 103 5.30 × 10−8

F9
Mean 0 0 0 0

Std 0 0 0 0

F10
Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Std 0 0 0 0

F11
Mean 0 0 0 0

Std 0 0 0 0

F12
Mean 5.26 × 10−5 1.41 × 10−6 7.65 × 10−7 5.14 × 10−10

Std 2.72 × 10−5 2.04 × 10−7 8.98 × 10−5 1.52 × 10−7

F13
Mean 7.86 × 10−4 7.47 × 10−6 9.84 × 10−6 3.60 × 10−7

Std 7.73 × 10−4 5.16 × 10−3 1.58 × 10−3 2.08 × 10−5

F14
Mean 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1

Std 5.99 × 10−1 5.99 × 10−1 5.99 × 10−1 1.72 × 10−16

F15
Mean 1.15 × 106 1.69 × 106 2.32 × 106 9.51 × 105

Std 1.45 × 106 6.65 × 105 2.06 × 106 3.35 × 105

F16
Mean 1.38 × 104 1.12 × 104 1.61 × 103 3.40 × 102

Std 7.08 × 103 1.93 × 103 8.20 × 103 2.05 × 103

F17
Mean 3.16 × 103 4.72 × 102 4.57 × 103 3.71 × 102

Std 6.55 × 103 2.28 × 102 1.62 × 104 4.36 × 101

F18
Mean 5.21 × 102 5.20 × 102 5.21 × 102 5.20 × 102

Std 3.13 × 102 3.12 × 102 3.13 × 102 4.47 × 10−2

F19
Mean 5.54 × 103 8.74 × 103 4.22 × 103 3.78 × 103

Std 2.93 × 103 3.42 × 103 2.35 × 103 1.34 × 103

F20
Mean 6.52 × 103 3.09 × 103 5.49 × 103 2.62 × 103

Std 3.39 × 103 1.59 × 103 4.34 × 103 1.85 × 102

F21
Mean 2.15 × 104 7.56 × 104 1.95 × 104 1.90 × 104

Std 1.30 × 105 3.01 × 104 6.81 × 104 3.08 × 104

F22
Mean 3.20 × 103 3.20 × 103 3.20 × 103 3.20 × 103

Std 0 0 0 0

As can be seen from Table 10 and Figure 8, CLTSO has higher optimization accuracy
than the competitors. In benchmark functions F1, F2, F3, F4, F9, F10, F11, and F14, CLTSO,
CTSO, and LTSO can calculate the theoretical optimal values, but CLTSO converges much
faster than CTSO and LTSO. The above data indicate that the optimization performance of
CTSO and LTSO is more enhanced than the original tuna swarm optimization algorithm,
which further confirms the validity of the three modified operators in CLTSO. To demon-
strate that the optimization capability of CLTSO is greatly enhanced compared to CTSO
and LTSO, Friedman statistical analysis and MAE ranking are conducted based on the data
in Table 11. The analysis and ranking results are listed in Tables 12 and 13.
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Table 12. Results of Friedman statistical analysis.

Algorithm Rank Mean

CLTSO 1.80
LTSO 2.25
CTSO 2.84
TSO 3.11

Table 13. MAE ranking results.

Algorithm MAE

CLTSO 4.42 × 104

LTSO 8.06 × 104

CTSO 1.08 × 105

TSO 1.18 × 105

According to the above two tables, it is clear that CLTSO has the smallest rank mean
in the Friedman analysis test, LTSO ranks the second, and CTSO ranks the third, followed
by TSO. According to the MAE value of each algorithm, CLTSO ranks the first. The above
ranking shows that CLTSO can better approximate the theoretical optimal value when
dealing with optimization problems. CLTSO has shown much better performance than the
competitors. Therefore, the above data and analysis results confirm that the three improved
operators proposed in this paper are effective.

Figure 8. Cont.
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Figure 8. Convergence curves of each version of improved TSO.

5. Optimization Engineering Example Using CLTSO

The original intention of meta-heuristic algorithms is to optimize the engineering
problems encountered. How to improve the precision of engineering practice is the concern
of researchers. To verify the effectiveness of CLTSO for real engineering problems, CLTSO
is applied to the modification design of a BP neural network. The BP neural network is a
model proposed by McCulloch to train the network based on error back propagation. It is
one of the most mature and widely used artificial neural network modules. The BP neural
network is widely used in pattern recognition, classification and prediction, nonlinear
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modeling, etc. Figure 9 shows a BP neural network topology with d input neurons, l output
neurons, and q hidden layer neurons.

Figure 9. BP neural network topology.

vih is the weight between the ith node in the input layer and the hth node in the hidden
layer. whj is the weight between the hth node in the input layer and the jth node in the
hidden layer. The threshold of the jth node in the output layer is expressed by θj. Therefore,
the input value received by the hidden layer hth neurons in the network model is as follows:

αh = ∑d
i=1 vihxi (27)

The value received by the jth node in the output layer is as follows:

β j = ∑q
h=1 wihbh (28)

where bh is the output value of the hth neuron in the hidden layer. Taking training case (xk,
yk) as an example, we assume that the output of the network model is as follows:

ŷk = (ŷk
1, ŷk

2, · · · , ŷk
l ) (29)

ŷk
j = f (β j − θj) (30)

Therefore, the mean square error of the network on example (xk, yk) is as follows:

Ek = 1/2∑l
j=1 (ŷ

k
j − yk

j )
2

(31)

where n is the total amount of training samples, m is the total amount of input nodes, xk
i is

the output value of the network model, and dk
i is the real value of training samples.

In the training process of the model, the error will be transmitted back to the hidden
nodes. The model will adjust the weights and thresholds between each layer of nodes
based on the error, and finally make the error achieve satisfactory accuracy. At present,
the training methods of the BP neural network are mostly gradient descent. The training
accuracy of the network model is extremely sensitive to the initial weight value and the
learning rate. Therefore, when the objective function has multiple extreme values, the
neural network is easily attracted by local extreme values. This will lead to a serious
degradation in the performance of the algorithm. In order to optimize the performance of
the BP network model and verify the optimization ability of CLTSO, a CLTSO-BP neural
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network model is proposed. The basic idea of the model is to use the weights and thresholds
of each node in the BP model as the tuna individual in the CLTSO algorithm and use MSE
as the fitness function in the CLTSO algorithm. CLTSO optimizes the MSE of the model to
obtain the optimized initial value weight and the threshold.

To compare the capability of the CLTSO-BP neural network with the original BP model,
three popular datasets from the UCI machine learning and intelligent system center, Iris,
Wine, and Wine Quality, are selected to design a comparative experiment. This experiment
compares the classification accuracy of the CLTSO-BP neural network model and the BP
model on the above three datasets.

In the experiment, the total amount of tuna is 30, the CLTSO algorithm is executed
30 times in total, and the neural network is executed 500 times in total. Table 14 shows the
comparison results of the CLTSO-BP neural network model and the original BP model.

Table 14. The comparison results of the two models.

Dataset Model Classification Accuracy

Iris
CLTSO-BP neural network 100%

BP neural network 95.2%

Wine
CLTSO-BP

neural network 100%

BP neural network 94.4%

Wine Quality CLTSO-BP neural network 65.6%
BP neural network 45.2%

By comparing the result of the CLTSO-BP neural network and the original BP model
on three datasets, it is found that the new model can obtain more ideal classification results.
It also indicates that CLTSO can show excellent performance in multi-layer perceptron
training difficulties.

6. Conclusions

The tuna swarm optimization algorithm is widely recognized by scholars because of its
simple structure and low number of parameters. The tuna swarm optimization algorithm
has excellent optimization performance, but it can still be further improved. When dealing
with simple problems, the solving speed of TSO can still be further improved. When facing
complex problems, it is difficult for TSO to escape the attraction of local optimal value.
Therefore, this article proposes a modified nonlinear tuna swarm optimization algorithm
based on Circle chaotic map and Levy flight operator. The optimization performance of
CLTSO has been fully verified in 22 benchmark functions. The results show that CLTSO out-
performs the comparable algorithms. Comparation data based on 22 benchmark functions
were analyzed using Wilcoxon’s test, Friedman’s test, and MAE. The analysis conclusion
indicates that the rank mean and MAE value of CLTSO are superior to other advanced
algorithms such as CMA-ES. Finally, this paper optimizes the BP neural network based on
CLTSO. The CLTSO-BP neural network model is tested using three popular datasets from
the UCI Machine Learning and Intelligent System Center. Compared with the original BP
model, the new model optimizes the classification accuracy. However, for the optimization
problem of more complex datasets, the classification ability of the CLTSO-BP neural net-
work still needs to be improved. Possible directions include increasing the swarm size of
the algorithm and the total number of CLTSO operations to obtain a higher quality solution,
which is also the target of continuous research in the future. In addition, the advantages
of CLTSO in solving some complex multimodal functions can still be further improved,
which is also one of the key research directions in the future. CLTSO has the advantages of
fast convergence and high convergence accuracy, which can be applied in practical projects
such as workshop scheduling and distribution network reconstruction.
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Abstract: Given that spatiotemporal measurement of the subsurface profile over a wide range are
difficult to obtain, surface observations from satellites are often used to estimate the sound speed
profile (SSP). This paper proposes a multisource method based on the self-organizing map (SOM)
to improve the estimation of the SSP by merging surface observations with satellite data. Surface
observations from the Kuroshio Extension Observatory (KEO) were used to supplement satellite
observations (anomalies in the measured sea level and sea surface temperature) to this end. Different
combinations of the surface parameters were assessed, their errors were analyzed, and differences
between the results before and after the multisource parameters were used are discussed. The
proposed method significantly increased the accuracy of estimating the SSP when the parameters
obtained from in situ measurements were used, with a root mean square error of 2.18 m/s, less than
a third of the error obtained when only satellite observations were used. The proposed method
provides a new approach to determining an accurate three-dimensional structure of the sound speed
when various surface observations are available.

Keywords: Kuroshio Extension Observatory; sound speed profile; self-organizing map

1. Introduction

The sound speed profile (SSP) plays an important role in civil and military marine ap-
plications. As it is a key parameter that determines the characteristics of sound transmission,
accurately measuring the SSP is critical for such acoustic applications as localization [1],
geoacoustic inversion [2], and tomography [3]. The perturbation-based monitoring of the
SSP is the main means of acoustically monitoring the ocean. Dynamic activities in the
ocean, ranging from the global climate to internal waves and turbulence, can be observed
and analyzed by inverting the SSP [4–6].

Because profile measurements are time-consuming and laborious, it is almost impossi-
ble to obtain the real-time three-dimensional (3D) structure of the SSP over a large scale by
means of in situ measurements. Researchers have identified a close link between surface
parameters and subsurface profiles, and the remote sensing platform with a high spatial
and temporal resolution has thus become an important means of obtaining large-scale SSP
measurements. Attempts to infer the subsurface profile from satellite observations fall into
two categories: “physical” and “statistical” methods. Physical methods take advantage
of physical equations between the surface and the subsurface to infer the profile from
surface observations. Carnes first discussed the relationship between the sea level (SL)
and amplitudes of the empirical orthogonal function (EOF) of the temperature profile [7].
Profile estimation based on the sea surface temperature (SST) and the SL was subsequently
found to offer considerable improvements over that based only on the SL, and temperature
profiles of the northwest Pacific and northwest Atlantic Oceans were estimated using a
single empirical orthogonal function-based regression (sEOF-r) [8]. The sEOF-r method
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uses an approximate linear equation to describe the physical relationship between param-
eters of the surface and the subsurface and has been used in such prediction schemes as
the operational marine environment of the United States Navy and the Modular Ocean
Data Assimilation System (MODAS) [9,10]. Chen confirmed that the sEOF-r method can
also be used to directly estimate the global SSP [11]. Although the approximate linear
physical relationship inevitably incurs errors owing to the highly nonlinear dynamics of
the ocean, research has shown that simple physical expressions can be used to obtain
results with reasonably high accuracy. The SST and SL are also effective predictors of the
sea surface in the context of profile estimation [12]. Based on big data theory, “statistical”
methods describe the relationship between the parameters of the surface and the subsur-
face through machine learning without preset equations of a specific form. Hjelmervik
used the clustering of EOFs and gradient search to estimate the real-time temperature and
salinity of the ocean [13,14]. By using the AVISO satellite product as a predictor of the
input, Chapman reconstructed velocities by searching for the best-matching class through
self-organizing maps (SOM) [15,16]. Su proposed an ensemble learning algorithm that
combines extreme gradient boosting and the gradient boosting decision tree to retrieve the
profiles of temperature and salinity in the upper 2000 m of the global ocean [17]. Statistical
methods can improve the accuracy of profile estimation to a greater extent than physical
methods by eliminating the constraints on equation-based inversion.

However, the SST and SL do not include details on the state of the ocean, and this
reduces the accuracy of the SSP profile estimated by using them. Based on observations
from the central Arabian Sea, Jain found that most errors in reconstructing the SSP occurred
at depths of 40–125 m owing to insufficient information about the depth of the mixed layer
provided by the SST and SL [18]. Similar errors occurred in SSP estimation in the South
China Sea, where the SSP inferred from the SST and SL incurred large errors at a depth
close to 500 m due to the exchange of water between the South China Sea and the Pacific
Ocean in the Luzhou Strait. This could not be described by remote sensing parameters
alone, so multisource parameters were added to strengthen the study of this area [19].
Huang conducted a visual analysis of the practicality of EOF in the South China Sea [20].
Considering that the information available for estimating the subsurface profile is limited,
additional predictors are needed to offer richer information to improve the estimation of the
SSP. Bao obtained the sea surface salinity (SSS) from both in situ and satellite observations to
improve the results of the salinity profile reconstruction [21]. Ou and Chapman estimated
SSP using a machine learning method based on SST and SL data [22]. Chen included
inverted data from the echo sounder and the depth of the mixed layer in addition to the
SST and SL to estimate the SSP [23]. The results indicated that multisource observations
can significantly improve the results of estimation, and different predictors make varying
contributions to the improvement in estimation.

With advances in the technologies used to observe the global ocean surface, such
as voluntary observing ships and moored platforms, the spatiotemporal coverage of in
situ surface measurements has significantly increased. These data may help avoid time-
consuming and laborious profile measurements. In this study, we improve estimations of
the SSP by combining satellite data with in situ observations of the sea surface. We propose
a technique for SSP estimation that uses the SOM with multisource observations to this
end. We infer the nonlinear relationships between the multisource surface information
and the amplitude of the EOF of the SSP by taking advantage of the topology of a neural
network cell. The proposed method can be used for the fused processing of multiple
parameters from different types of sensors and provides a tool to evaluate the effects of
different predictors of the inversion model. Different models are examined to determine
the contributions of different in situ surface parameters. The in situ surface parameters
that can provide the value of the gain owing to the inversion scheme are identified and
an optimized multi-source model is provided. The results of the SSP estimation based on
data from the Kuroshio Extension Observatory (KEO) show that the proposed method
can improve the accuracy of the acquired SSP. The multisource method has significant
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advantages in dynamic areas of the ocean, such as the Kuroshio Extension region. In the
application of real-time and large-scale subsurface profile estimation, the accuracy may
be greatly improved by a surface-going vessel, an automated glider, a mooring station or
other in situ surface observation equipment.

2. Methodology

The SOM is used to process multisource information for an inversion problem in order
to estimate the SSP by combining satellite data with in situ sea surface observations. The
processing flow of the SSP estimation is shown in Figure 1.

Figure 1. The flow of SOM-based estimation of the SSP.

Using SST and SL parameters, previous studies have focused on estimating the SSP.
Despite the use of excellent machine learning algorithms, it is still difficult to solve the
problem of insufficient information in SST and SL. With the development of measurement
technology, more and more parameters can be observed. However, the processing method
of parameters is not synchronized. It is not possible to process additional parameters and it
is not clear how the parameters affect the results.

The EOF is commonly used in SSP modeling to provide a constraint on the inversion
problem. The SPP c(z, t), at a sampling depth z, and time t can be described by [24]

c(z, t) = c0(z) +
∞

∑
s=1

as(t)Ks(z) (1)

where c0(z) is the background profile, K is the EOF, and a is the projection coefficient of the
EOF. The background profile is the constant part of the SSP that is stable in the long term
and can be approximated by the profile of the climatological mean. The superpositions are
parts representing perturbations in the SSP. As higher orders of s often introduce excessive
noise to the samples, the superposition series are commonly truncated without risking a
loss of information from the SSP. A threshold of 95%, which is the proportion of variances,
is commonly used to determine the number of modes of the EOF used. According to an
analysis of the experimental data, three orders of EOFs are used in SSP modeling here.

The EOF can be calculated from a principal component analysis of the space–time
samples. The matrix of anomalies in the SSP of the ocean is X = [x1, · · · xM] ∈ RZ×S. It
is obtained by sampling over Z discrete points in terms of depth and S instants in time,
and by subtracting the background profile from the S samples. Based on singular value
decomposition, the EOFs can be calculated by

XXT = KΛ2KT (2)

where the non-zero elements of Λ2 = diag([λ2
1, · · · λ2

n]) ∈ RL×L represent the variance
along the principal directions defined by the corresponding EOF. The three EOFs with the
highest variances are used to reconstruct the SSP. In SSP inversion, the EOF vectors can
be obtained by the principal component analysis of the samples. Both the input and the
output SSPs are expressed in the form of projection coefficients.
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A SOM-based estimation technology is proposed to process multisource information
for the SSP. The SOM is a nonlinear vector projection algorithm between the input and
output layers. In the input layer, each set of measurement data forms a prototype vector,
including remote sensing measurements, location data, in situ measurements, and infor-
mation on samples of the SSP. To evaluate the contributions of different in situ surface
parameters, the in situ measurement parameters are considered optional. In the training
process, the prototype vectors follow the probability density of the input layer without
changing the topological structure. Reference vectors are assigned through the iterative
learning algorithm based on the mean values of different classes of all clusterings of the
training data. In the output layer, each neuron unit is represented by a class that contains
one reference vector. The input information can be regarded as a fragmentary neuron unit,
and the missing part represents the coefficients of EOF of the SSP to be estimated. After
training the SOM, the input information is matched with different classes on it according
to the Euclidian distance. Charantonis introduced a formula to calculate the Euclidian
distance over only dimensions with the available parameters [16]:

Dp
E(X, Yp) = ∑

i∈a
(1 + ∑

j∈b
(Cp

i,j)
2
)× (Xi − Yp

i )
2

(3)

where DE is the Euclidian distance, X is the input vector, Y is the reference vector, p is the
index of each class, a is the set of input data (available variables), and b is the reconstructed
output (missing variables) to be solved for. C is the correlation matrix between the missing
and the available variables. The input information can be regarded as a neuron with
missing information, representing the projection coefficients that describe the SSP. The
reference vector closest to the input vector can be identified from Equation (3) by using
the best-matching class. The missing projection coefficients of the input vector can then be
estimated by extracting the corresponding part of the best-matching class and outputting it
to reconstruct the SSP.

3. Data

We used surface data collected from in situ measurements and satellite observations
as input parameters for the proposed model. Part of the subsurface measurements of the
sound speed profile was used to train the SOM and the rest to validate the accuracy of the
estimated SSP. The climatological mean profile was used as the background profile.

All in situ surface measurements and SSP samples used were from the KEO. As a sur-
face mooring, the KEO (32.3◦ N, 144.6◦ E) has a long record of daily real-time measurements
in the ocean. The slack-line mooring provides a rich variety of surface and subsurface
data, including longwave radiation (LR), shortwave radiation (SR), wind speed (WS),
surface temperature (ST), surface salinity (SS), air temperature (AT), surface density (SD),
heat content (HC), relative humidity (RH), temperature profile, and salinity profile. The
temperature and salinity profiles of the SSP samples can be calculated from Del Grosso’s
empirical formula [25]. As EOF processing requires samples at the same depth, the SSP
sample is considered completed only when its sample depths are shallower than 5 m and
deeper than 475 m. And the remaining profiles were cubic interpolated to the nominal
depths of sensors on the slack-line (5, 10, 15, 20, 25, 35, 40, 50, 75, 100, 125, 150, 175, 200,
225, 275, 325, 400, 425, 475). For the KEO, such a depth range can retain more perturbation
description while losing too many samples due to the exclusion of shallower profiles. A
total of 2277 profiles were finally obtained. Of them, 80% (1820 samples from 26 September
2009 to 3 October 2018) formed the training dataset, and the other 20% (457 samples from
4 October 2018 to 5 May 2020) were used as the test set.

The WOA18 was used to describe the background profile. It was obtained from the
National Oceanic and Atmospheric Administration. It analyzes in situ measurements from
a wide variety of sources and provides the global gridded mean climatological profile. The
annual average profile from 2005 to 2017 was used at a spatial resolution of 0.25◦. Figure 2
shows all the SSPs used from the experimental area. Owing to the intense exchange of
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energy and matter in the Kuroshio Extension, a large perturbation of about 30 m/s in the
sound speed occurred on the sea surface and at a depth of 475 m. The large amplitude of
the perturbation, with a complex origin, posed a challenge to the SSP estimation.

Figure 2. Profiles of training, testing, and the background.

The surface parameters of satellite remoting sensing used here were collected from
the Coriolis projects (https://marine.copernicus.eu (accessed on 29 January 2021)). So that
they could be distinguished from the surface parameters of the in situ measurements, the
remoting sensing parameters consisted of anomalies in the sea level (SLA) and the sea
surface temperature (SSTA), and had a spatial resolution of 0.25◦ and a temporal resolution
of one day.

4. Results

Eleven models of the surface parameters derived from the satellite observations and
in situ measurements were evaluated, and the results are listed in Table 1 and shown in
Figure 3. The precision of the SSP reconstruction was difficult to ensure owing to the
complex and intense perturbance in the SSP in the Kuroshio Extension. The mean-variance
of the SSP samples was 5.90 m/s, with the appearance of a perturbance of large amplitude in
both the sea surface and the thermocline measurements. Model 1 was the classic model for
estimating the SSP, and was based only on remote sensing data. It was used as a reference.
Model 2–10 evaluated the effects of different sea surface parameters obtained from in situ
measurements. If the error in the models examined was smaller than that of Model 1, the in
situ parameters were considered to have provided effective information to estimate the SSP
and improve the accuracy of the results. Conversely, if the error in the model was larger
than that of Model 1, this indicated that the parameters of the in situ measurements had
led to redundant neural network topology and the mirage had reduced the accuracy of the
results of inversion. As parameters directly affect the sound speed, temperature, salinity,
and density were effective input parameters, and the temperature had the most significant
effect on the accuracy of SSP estimation. Although air temperature and heat content do not
directly reflect the physical properties of seawater, they can reduce error, and show a strong
correlation with the SSP. The heat content was a special parameter that led to the greatest
improvement in accuracy at a depth of about 50 m from the sea surface. The addition of
longwave radiation, shortwave radiation, and wind speed directly increased the error, and
so these parameters were considered inappropriate input parameters for SSP estimation.
To obtain the best estimation results, all effective in situ predictors and remote sensing
predictors were combined in Model 11, which delivered the best results of all parameter
combinations considered.
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Table 1. Results of SSP estimation of each model.

Model Parameters
Root Mean Square

Error (m/s)
Mean Absolute

Error (m/s)

1 SLA, SST 3.49 2.52
2 SLA, SST, LR 3.56 2.55
3 SLA, SST, SR 3.79 2.56
4 SLA, SST, WS 3.69 2.59
5 SLA, SST, ST 2.71 1.97
6 SLA, SST, SS 3.07 2.25
7 SLA, SST, AT 3.33 2.45
8 SLA, SST, SD 2.75 2.03
9 SLA, SST, HC 2.82 2.03
10 SLA, SST, RH 3.63 2.54

11 SLA, SST, ST, SS, AT,
SD, HC 2.18 1.56

Figure 3. Results of SSP estimation for each model.

According to the variation in the estimation error with depth, it is clear that the
accuracy of SSP reconstruction was related to the amplitude of perturbations. A large
anomaly in the sound speed might have led to a larger error. Because the results were
directly derived from the sea surface parameters, accuracy was relatively high near the
sea surface even if there was a large deviation in the speed of sound. In the range of
depth of 50–150 m below the surface, large errors occurred owing to seasonal and diurnal
variations in the mixed layer. The differences between the models gradually decreased
with increasing depth, and they delivered nearly the same performance below 250 m. The
results of inversion show that the introduction of in situ measurement data improved the
accuracy of SSP estimation. This was mainly reflected at depths close to the sea surface. In
the case of a large perturbation deeper below the surface, the accuracy did not improve
when only the sea surface parameters were considered. To examine the performance of the
multisource method in practice, we assessed Model 11 further.

The estimation errors of all samples are shown in Figure 4. Except for a few samples,
the multisource model improved the accuracy and robustness of the results. The standard
deviation of the estimated SSP was 5.54 m/s and the maximum value was 9.73 m/s.
Model 1 had an overall root mean square error (RMSE) of 3.49 with a maximum error of
11.10 m/s. Although the remote sensing parameters were effective predictors as inputs to
the inversion model, insufficient information led to many incorrect results. The multisource
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model performed better than model 1 in about 80% of the samples. Its RMSE and the
maximum error were 2.18 m/s and 6.66 m/s, respectively. In addition, about 82% of the
estimated SSPs of the multisource model were within the error limit of 3 m/s, and this
value decreased to only 58% without the in situ measurements.

Figure 4. Deviations in the data and estimation errors for different samples.

Some parameters might have assisted in the estimation in a special way. Prediction in
this case, which might have degraded the results of estimation owing to drastic changes in
value, can indicate anomalies in the results of inversion. Almost all failures of estimation
corresponded to a large predicted value, which reflected perturbance owing to extreme
weather events, such as typhoons and rainstorms. This can be used to build an early
warning index for the reliability of the results.

Figure 5 shows the estimated speeds of sound by two models at all depths. Model 1,
based only on remote sensing parameters, had an overall mean absolute error of 2.52 m/s,
with a value of the coefficient of determination (R2) of 0.76 and a slope of 37.2. The
multisource model outperformed model 1, with an absolute error of 1.56 m/s, R2 of 0.90,
and slope of 43.9. The speed of sound estimated by it had an error of only 0.1% compared
with the measured speed of sound.

Figure 5. Scatter in the measured and estimated speeds of sound obtained by different models.
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The SSPs estimated by different models (for the first sample in each month in the
period considered) are given in Figure 6. Consistent with the previous statistical results,
the results of the multisource model were significantly better than those of the model based
only on remote sensing parameters. Large errors mainly appeared in parts with large
perturbances in the speed of sound, mainly at depths of less than 150 m and greater than
350 m. In the case of perturbations on the sea surface, the accuracy of the estimated SSP
significantly improved after the introduction of multisource information, such as in the
results for 4 October 2018 and 1 April 2019. In other regions, the perturbance in the sound
speed generally decreased with depth. Most errors occurred in the upper thermocline,
possibly due to variations in the mixed layer or the dynamics of the ocean, such as internal
waves. The multisource method significantly improved the accuracy of the estimated sound
speed in the upper ocean. A special characteristic of the KEO is that due to the exchange of
energy and matter, perturbations in the deeper thermocline do not decrease to less than in
the surface layer. The results show that it was difficult to estimate perturbations far from
the surface because all the input parameters were based on data obtained on the sea surface.
Although modes of the EOF can express the SSP at all depths as a whole, the principal
components of the shape of perturbance had no significant correlation between the surface
and deeper layers of the ocean. In addition, different models obtained consistent results on
data from 1 November 2019 and 1 April 2020. This indicates that inversion processing and
EOF representation cannot be used by themselves to accurately reconstruct the profile of
sound speed.

Figure 6. Comparison between the measured and the estimated SSPs.

5. Conclusions

This study proposed a method to estimate the SSP based on the SOM. We used the
topological structure of neurons to input multisource observations and estimate the SSP.
We used data from the Kuroshio Extension to assess the performance of the proposed
model, which uses different surface parameters derived from remote sensing and in situ
measurements. The results showed that the addition of parameters of in situ measurements
can markedly improve the estimation of SSP. Compared with model 1, the accuracy of
the multisource model is improved by 38%. However, not all surface parameters play a
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positive role in the inversion. The best results were obtained when remote sensing data and
effective predictors were used in the multisource model. Error in the estimated SSP in the
region of the Kuroshio Extension was larger than in other parts of the ocean owing to the
intense exchange of energy and matter there. The degradation in accuracy revealed that sea
surface parameters can be used to accurately estimate the sound speed in the surface layer
of the ocean but not in the deep layers. The large amplitude of SSP perturbances poses a
challenge to the accurate estimation of the SSP.

Further work is needed to accurately calculate profiles of the SSP as almost all currently
available methods are statistical, and require physical rules to obtain reliable estimations.
Moreover, methods that can be applied to regions for which few samples are available
should be researched.
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Abstract: In recent years, Transformer has become a very popular architecture in deep learning and
has also achieved the same state-of-the-art performance as convolutional neural networks on multiple
image recognition baselines. Transformer can obtain global perceptual fields through a self-attention
mechanism and can enhance the weights of unique discriminable features for image retrieval tasks
to improve the retrieval quality. However, Transformer is computationally intensive and finds it
difficult to satisfy real-time requirements when used for retrieval tasks. In this paper, we propose
a Transformer-based image hash learning framework and compress the constructed framework
to perform efficient image retrieval using knowledge distillation. By combining the self-attention
mechanism of the Transformer model, the image hash code is enabled to be global and unique. At the
same time, this advantage is instilled into the efficient lightweight model by knowledge distillation,
thus reducing the computational complexity and having the advantage of an attention mechanism
in the Transformer. The experimental results on the MIRFlickr-25K dataset and NUS-WIDE dataset
show that our approach can effectively improve the accuracy and efficiency of image retrieval.

Keywords: image retrieval; Transformer; self-attention; knowledge distillation; hashing learning

1. Introduction

With the development of WEB 2.0, Internet information generation has changed from
traditional website employee generation to user-led generation. Virtual social activities
with the help of various multimedia social platforms are becoming increasingly normalized,
and the human-oriented self-media have led to a qualitative change in the status and
role of people in Internet activities. From the traditional information receiver to the infor-
mation publisher, more and more people are communicating by publishing and sharing
multimedia information. Birjandi et al. proposed the use of text to retrieve image content
(KBIR, keyword-based image retrieval) to meet the needs of users for large-scale image
retrieval [1]. By manual annotation, the method uses keyword attributes between text and
images to build an index. However, manual annotation is labor-intensive in many cases.
Users are often unable to describe the content of an image, so researchers have proposed a
technique that allows users to enter images to search for relevant images (content-based
image retrieval—CBIR) [2]. These methods have automatically extracted the image con-
tent features by analyzing the image content and then quantifying them, and building
indexes for retrieval based on the quantified content features. However, because tradi-
tional content-based image retrieval methods usually use manual features, which is a fixed
representation of visual features, and lack the ability to learn, retrieval performance is
challenging to improve. With the study of deep convolutional neural networks and the
large-scale accumulation of image data, many methods are using deep convolutional neural
networks (DCNNs) to automatically learn the features of images and use these features to
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retrieve images from large-scale datasets. Peng et al. proposed an image retrieval method
based on DCNNs and binary hash learning [3]. The method uses DCNNs to learn the
intrinsic distribution of images and extract image features while adding a hashing layer to
the DCNNs to learn deep features and hash codes to perform an effective retrieval.

In recent years, the Transformer has become a prevalent architecture in the field of deep
learning. For example, BERT [4] and GPT-2 [5], which have become very famous works in
the natural language processing (NLP) field [6] in recent years, use the Transformer archi-
tecture. Transformer relies on a simple but potent mechanism, the Attention mechanism [7],
which allows neural network models to selectively focus on certain parts of the input and
reason more efficiently. Various architectures based on Transformer have been used with
encouraging results in sequence prediction, language modeling, and machine translation.

Convolutional computation has better locality and spatial invariance and has an
inherent natural advantage (inductive bias) for visual problems. The CNN model [8] needs
to obtain a larger perceptual field by continuously stacking Conv layers [9]. Moreover,
the number of operations required to compute the association between two locations
increases with the location distance. The self-attention is the fundamental component of
Transformer [7], and the number of operations required by self-attention to compute the
association between two positions is distance independent. The inherent advantage is that,
unlike convolution which has a fixed and limited field of perception, the self-attention
operation can obtain long-range information [10]. By examining the weight distribution of
each Attention Head, self-attention can produce more interpretable results.

Nowadays, inspired by the Transformer in NLP, researchers have extended the Trans-
former to the field of computer vision (CV). Dosovitskiy et al. proposed ViT [11], a model
that feeds a sequence of image blocks (Patches) into a standard Transformer. This frame-
work achieves the same state-of-the-art results on multiple computer vision task baselines.
Some Transformer architectures for image retrieval tasks have also been gradually pro-
posed [12]. These apply Transformer to pre-trained models for feature extraction, and then
perform a similarity comparison in the feature space to solve problems in image retrieval.

Transformer can obtain the global sense field by self-attention mechanism, and can
enhance the weight of unique discriminable features for image retrieval tasks to improve the
retrieval quality. However, Transformer is computationally intensive, and it is challenging
for it to meet real-time requirements when used for retrieval tasks. Knowledge distillation
can replace a teacher model with a lightweight student model to improve speed and
ensure accuracy. Therefore, it is necessary to design a framework based on knowledge
distillation [13] to improve the retrieval speed for the Transformer-based image retrieval
model. In recent years, the parameter size of models has become larger and larger, which
often requires a large number of memory resources and is time-consuming to run during
the deployment phase of the model. By model distillation, the model with huge parameters
is compressed into a small parametric number model, which can make the model occupy
fewer resources and be less time-consuming without losing accuracy.

This paper proposes a Transformer-based image hash learning framework, and the
constructed framework is compressed for efficient image retrieval using knowledge distilla-
tion. First, Resnet-based Backbone is used to extract the image features. Then, the features
are input to multi-head of Transformer as query, key, and value, respectively, and the
mutual attention weights are calculated using Transformer. Then, the features fused by
Transformer are mapped to Hamming space to perform more compact hash learning. Fi-
nally, the performance of this model is distilled into a smaller and faster student model for
real-time retrieval.

The main contributions of the proposed method include: (1) by introducing the self-
attention mechanism of the Transformer model, it makes the image features a global
perspective, which can strengthen the weights of unique discernible features and improve
the image retrieval quality. (2) By introducing knowledge distillation, the computationally
heavy Transformer model is compressed into an efficient lightweight model, which reduces
the computation and also has the advantage of features learned by the Transformer. (3) The
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experimental results on two public datasets achieved encouraging results, demonstrating
the effectiveness of the proposed method.

2. Related Works

In recent years, many machine learning-based search methods have been proposed
to perform an efficient search of multimedia data. Among them, hash-based methods are
gradually becoming the majority approaches for this problem [14–19]. These methods
mainly use a variety of hash functions to encode the high-dimensional feature of an
image to a low-dimensional representation, while expecting to preserve the approximate
relationships in the original space after mapping them. Traditional hashing methods
usually use manual image features such as SIFT [20], HOG [21], etc., to extract image
features and then transform the features into hash codes using a fixed hash mapping
function. This will reduce the capacity to express visual content and cannot handle complex
similarity semantics well. Chugh et al. [22] combined multiple features to improve the
retrieval of plants. With the popularity of deep convolutional neural networks (CNNs),
CNNs are also gradually used for hash learning to solve the above problems. CNN-based
supervised hash learning methods have achieved groundbreaking experimental results
on many baselines [17–19,23–25]. For example, Xia et al. [23] proposed a CNN-based
hashing method that learns binary hash codes by supervised training and demonstrates
significant search performance on some public baselines. Zhang et al. [24] proposed to
increase the rule element of the loss function based on triplet learning for the supervised
deep hash coding method by using a Laplacian matrix. Furthermore, the method achieves
bit scalability by giving a weight to each bit of the hash coding. The approach proposed by
Zhao et al. [19] learns the hash coding of objects, while the method implements weakly
supervised hash coding using multi-instance learning.

Google first proposed the Transformer model in 2017, which was first proposed by
Vaswani et al. [26], as an only attention-based mechanism to implement machine translation
tasks. Subsequently, Devlin et al. [4] pre-trained the Transformer by letting the model
predict the masked words on untagged text data. This approach (i.e., BERT) was later
considered a new paradigm for natural language representation models. Inspired by the
Transformer in NLP, researchers have extended this mechanism to the field of computer
vision (CV). In contrast to the previous CNN models [27], Chen et al. [28] pre-trained a
sequence Transformer to predict masked pixels and was much more effective than CNN on
image classification tasks. Dosovitskiy et al. proposed ViT [11], which applies the standard
Transformer to image block (Patch) sequences for learning the embedded representation
sequences of blocks. The output of the Transformer encoder is used as a representation and
prediction of the image, which makes it equally state-of-the-art performance on multiple
image recognition baselines. Transformer also achieved the desired results in high-level
vision (HLV) tasks. High-level vision tasks are concerned with understanding and using
the semantic content in images [29]. DETR [30] attempts to solve the image object detection
problem using the Transformer, which treats the object detection task as an image-to-set
prediction problem and simplifies detecting images. To address the limitations of the
Transformer Attention module in processing image feature maps, researchers have further
proposed deformable DETR for end-to-end object detection [31]. Since DETR still heavily
relies on object box prediction during the training process, Wang et al. [32] proposed a
dual-path Transformer for end-to-end panoramic segmentation, which effectively unifies
semantic segmentation and instance segmentation.

Transformer has also gained some attention in the field of image retrieval. Liu et al. pro-
posed the first large-scale text-to-image retrieval (VisualSparta) based on Transformer [33].
The proposed method can retrieve relevant images from a large and unlabeled set of images
under a given text query. Facebook proposed a visual Transformer-based image retrieval
model [12]. The model uses a visual Transformer to generate image descriptors and trains
the model with a metric learning objective. The metric learning objective combines contrast
loss with a differential entropy regularizer. In the Google Landmark Recognition 2021 Kag-
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gle competition, Henkel et al. [34] proposed an effective end-to-end network architecture
for large-scale landmark recognition and retrieval. The network architecture combines
DLOG (orthogonal Local and Global) [35] and the hybrid Swin–Transformer model [36]
and uses a predictive retrieval approach. For each query image, the method uses L2 to
normalize the cosine similarity between image descriptors and then searches for the most
similar image in the indexed image database.

Although many Transformer-based models have been proposed to solve computer
vision tasks such as image retrieval, existing Transformer models are usually huge and
computationally expensive, e.g., the base ViT model [11] requires 18 billion FLOPs to
process the images. The knowledge distillation algorithm [13] is a technique that can
compress a large network into a small efficient network and obtain comparable performance.
The knowledge distillation algorithm usually uses a teacher network (large model) to teach
a student network (small model), transferring the knowledge from the teacher network to
the student network so that the performance of the student model is as close as possible to
the performance of the teacher model. In 2015, Hinton et al. [13] first proposed the concept
of knowledge distillation (KD) in neural networks, using the output logits of the teacher
network or the integrated network (many teacher networks) and applying these logits to
train fast small networks. Remero et al. [37] used not only the final output logits of the
teacher network, but also its intermediate hidden layer parameter values (intermediate
representations) to train the student network. Mirzadeh et al. [38] introduced multi-step
knowledge distillation in teacher networks and student networks with teaching assistant
networks. Knowledge distillation can be used for many networks (e.g., from large to small
networks, from single networks to integrated networks, from CNNs to Transformer, etc.).
More relevantly, Tian et al. [39] used distillation learning to fuse multi-modal transformers
for a sketch-based image retrieval task. Few studies are currently related to knowledge
distillation on Transformer-based image hashing learning networks. Our work focuses on
using Transformer to obtain hash codes with a global view and high uniqueness and using
knowledge distillation to obtain lightweight and efficient models that can be deployed
in practice.

3. Method

This section describes our proposed framework, including a Transformer model for
learning hash representations with a global view and high uniqueness and a lightweight
and efficient model obtained by distillation that can be used for practical deployment.
Section 3.1 introduces the architecture of the proposed framework in this work. Section 3.2
describes a CNN-based backbone for image feature extraction. Section 3.3 describes a
Transformer teacher module for high-level semantic hash learning and a lightweight and
efficient student model. Section 3.1 introduces the training phase including a ranking loss
based on triplet samples and a distillation learning loss.

3.1. Model Overview

This work first extracts the visual features of the images using a CNN-based backbone.
Then, the decoder of Transformer is used to perform the fusion of different image patch
features by self-attention. Moreover, the final fused features are mapped to Hamming space
to perform more compact hash learning. Finally, the knowledge learned by the Transformer
module is distilled into a smaller and faster model.

In this paper, backbone utilizes a pre-trained ResNet model [27]. The backbone model
is mainly used for feature extraction on images, so that this neural network model is generic
and can be integrated with any advanced deep model. These methods can also be trained
on unlabeled or weakly labeled data, thus further improving their performance.

The cross-attention described in this work utilizes the decoder in the Transformer
structure to perform cross-attention. In this method, the query, key, and value in the
cross-attention layer in the standard decoder are all from the image features output by the
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backbone, and the process of computing attention by all three completes the cross-attention
among visual features and achieves feature fusion.

In hash learning, the fused features are mapped into compact pseudo-binary codes
that are used to improve the efficiency of image retrieval. The same image features from the
backbone are input in the student module. However, instead of performing Transformer’s
attention computation, the linear layer is directly used to perform accelerated projection
and constrain the output to be consistent with the Transformer. Figure 1 illustrates the
overall architecture of our proposed framework.

Figure 1. The overall architecture of our proposed framework.

3.2. CNN-Based Backbone

In our work, the main role of the backbone is to perform the initial feature extraction
of the image. Our backbone uses the ResNet-50 model [27]. Figure 2 is a brief framework
diagram of ResNet-50. In ResNet-50, residual learning is applied to every few stacked
layers to construct a residual block, defined as:

y = F(x, W) + x, (1)

where x, y are the input and output vectors for computing the current residual block.
F(x, W) denotes the residual mapping function, and W is the parameters to be learned,
F(x, W) + x is achieved by adding the shortcut linking layers and elements, and the
dimensions must be equal before their summation.

In our work, we remove the final averaging pooling layer and full connection layer of
Resnet-50, and use convolutional computation to extract its spatial features �0 = RH×W×d,
where H × W represent the height and weight of the feature map, respectively, and d
denotes the dimension of features. We set H = W = 18, so in total there are 324 elements
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of feature embedding vectors. Since the output dimension of ResNet-50 is 2048, we set the
dimension of our embedding size d as 2048.

Multi-layer Conv

Rule Rule

Matrix Add
Multi-layer Convolution

Level one Level ×N

Figure 2. A brief framework diagram of ResNet-50.

3.3. Transformer Teacher Module and Student Module

Query update: The visual features �0 of the image obtained from the above backbone
are then input into the decoder of Transformer as key, value, and query. The image’s
spatial features are calculated using a multi-layer Transformer for self-attention. The input
image is divided into d embedding vectors, and each embedding vector obtains a one-
dimensional position encoding token corresponding to its position and is used as input to
the decoder regularly. The prior position is merged by adding a learnable one-dimensional
position encoding code to the input embedding vectors. An extra learnable CLS token is
added to the input embedding vector to represent its correspondence to the output token
as a global concept. The Transformer consists of L layers, each layer consisting of two
main modules: a multi-headed self-attentive (MSA) layer, which applies the self-attentive
operation to different embedding vectors of the inputs, and a feed-forward network (FFN).
Both the MSA and FFN layers are preceded by a normalization layer, and followed by a
skip connection layer. The query of the (i)-th decoder layer Qi is updated based on the
output of its previous layer Qi−1 as follows:

Sel f − Attention : Q
′
i = Q

′
i−1 + MultiHead(Q̃i−1, Q̃i−1, Qi−1) (2)

FFN : Qi = FFN(Q
′
i) (3)

where Q̃i−1 denotes the embedding vectors with the position encoding of outputs at layer
(i − 1)-th, Q

′
i is the intermediate variable, MultiHead(query, key, value) and FNN(x) are

the multi-headed attention mechanism and feed-forward network, respectively.
Pooling: We need to extract a compact code that globally describes the image. In our

reference pooling approach, we directly treat the output of the CLS embedding as a global
image descriptor.

Reduction and binarization: After obtaining the global image descriptors, we further
perform dimensionality reduction and binarization to improve the retrieval speed. Specifi-
cally, we use a combination of a linear projection layer and a Sigmoid function to map the
global image descriptors through the fully connected layer to a smaller size b bit codes and
project the logit values to [0, 1] using the Sigmoid function:

ĥ = Sigmoid(WT
k zcls + bk) (4)

where WT
k and bk are the parameters of the linear projection layer and ĥ is the pseudo

hash code. It is worth mentioning that since the symbolic function sgn() is not derivable,
the pseudo hash codes generated in the training phase are real-valued, while in the inference
phase, the binary hash codes are generated by the following formula:

h =
1
2
(sgn(ĥ − 0.5) + 1) (5)

140



Electronics 2022, 11, 2810

where h denotes the binary hash code.
Student module: The designed student model is straightforward. We directly remove

the Transformer part of the teacher model. The feature map generated from the backbone
will go through two fully-connected layers and output the same size as the teacher model.

3.4. Training

Loss function for teacher model: there are two losses used to train the teacher model,
namely metric ranking loss based on triplet samples and quantified loss. The metric ranking
loss function is used to make the similarity between positive sample pairs greater than the
similarity between negative sample pairs:

LTriplet = ∑
n
[S(In, I+n )− S(In, I−n ) + δ]+ (6)

where [x]+ = max(0, x), S() is the cosine similarity between sample pairs, (In, I+n ) are
positive sample pairs and (In, I−n ) are negative sample pairs. The metric ranking loss would
treat the sample pair of S(In, I−n ) + δ > S(In, I+n ) as a valid sample pair and increase the
penalty, while for the sample pair of S(In, I−n ) + δ ≤ S(In, I+n ) is considered to satisfy the
desired goal and is therefore ignored. By training with this loss, the cosine identity of the
negative sample pair will be guaranteed to be at least δ greater than the cosine identity of
the positive sample pair.

The quantization loss in our approach is mainly to constrain the network output
pseudo hash codes where the code values are as close to 0 or 1 as possible, as follows, which
penalizes the network if the output of a neuron is close to 0.5:

LQuan = −∑
n

1
b
(ĥn − 0.51)T · (ĥn − 0.51) (7)

where 1 represents a vector of ones of length b. During training for the teacher model,
we weight the two loss components LTriplet and LQuan by factors λ1 and λ2, respectively.
Therefore, the overall loss for the teacher model is: LTeacher = λ1LTriplet + λ2LQuan.

Loss function for student model. The student model uses the same backbone as the
teacher model and both sides share the same backbone parameters. We fix the backbone
parameters when training the student model. The subsequent structure is mapped to
the same b bits as the output of the teacher model by a fully connected mapping layer
and activated with a sigmoid function. Relative entropy is used here as a distillation loss
function to measure the distance between the two model distributions. Assuming that, for
any sample n, the hash code output by the teacher model is ĥtech

n and the hash code output
by the student model is ĥstud

n , the distillation loss is

Ldistill = ∑
n

pn · (log pn − log qn) (8)

log pn =
exp(((ĥtech

n )T · ĥtech
n )/τ)

∑n exp(((ĥtech
n )T · ĥtech

n )/τ)
(9)

log qn =
exp(((ĥstud

n )T · ĥstud
n )/τ)

∑n exp(((ĥstud
n )T · ĥstud

n )/τ)
(10)

where pn and qn denote the probability distributions of the corresponding sample n in
the teacher and student models, respectively, and τ is the temperature parameter in the
knowledge distillation. After training with this loss, the student model will acquire a
representation capability close to that of the teacher model, but with a more efficient
inference speed.
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4. Experiment and Analysis

4.1. Datasets and Metrics

MIR Flickr-25K [40]: In the MIR Flickr dataset, there are 25,000 images and 38 con-
cepts of ground truth labels. In our experiments, we selected images with at least 1 of the
38 labels. Thus, a total of 16,000 images were used for training and 2000 images for testing.

NUS-WIDE [41]: It is a large-scale dataset that can be used to evaluate multiple
multimedia tasks. Much of their image data come from contributions from social media
sites. The dataset contains 269,648 images and 81 manual labels as ground truth that can be
used for performance evaluation. It also contains 5018 tags annotated by amateur users.
In our experiments, we only used the 21 most common labels and all images associated with
these labels. Thus, we form a training set of 100,000 images and a test set of 2000 images.

In our experiments, the Hamming distances of the query images and the images in the
training set are used for ranking. We consider a correct retrieval result when there is an
identification label in the query image and the returned image. Evaluation metrics include
mean accuracy (MAP), precision, and recall.

4.2. Training

Our backbone is pre-trained on ImageNet. We trained our model including a teacher
module and a student module using mini-batch gradient descent with a learning rate of
0.001 and a learning rate of 0.0001 to fine-tune the backbone. We also used the momentum
term with the rate of momentum equal to 0.9. The weighing factors for the losses λ1 and λ2
are all set to 1.0 for all the experiments, which were determined by cross-validation.

4.3. Analysis of the Lifting Effect of Transformer and Distillation

In this section, we provide an experimental study on using the Transformer model
and fast student model for retrieval. To analyze the effectiveness of the Transformer
model and fast student model, we report the experimental results of our method with
different modules on MIRFlickr-25K and NUS-WIDE datasets. Our main findings are
summarized below.

Transformer teacher model is better than the student model in retrieval accuracy.

Table 1 compares the various variants of our approach. We observe that the attention-
based Transformer model outperforms the linear projection-based fast student model. This
suggests that the self-attentive mechanism in Transformer has the potential to improve the
ability to discriminate features and thus improve retrieval quality.

The student model has significant advantages over the teacher model in terms of

retrieval efficiency. As we can see from Table 1, although the Transformer-based teacher
model achieves high accuracy, it is too slow to generate hash codes. On the other hand,
the fast student model achieves nearly 10 times the computational speed of the teacher
model. This is because Transformer is computationally intensive. There exists a large
amount of computation in the self-attention process.

Table 1. Transformer-based teacher model and fast student model comparison. Length is the size of
hash codes. Time indicates the time for the model to generate the hash codes on the query image.

Model Train Data Length MAP Time

Teacher
MIRFlickr-25K

24 0.7582 2.11 s
48 0.7435 2.18 s

Student 24 0.7112 0.19 s
48 0.7088 0.21 s

Teacher
NUS-WIDE

24 0.6932 2.11 s
48 0.6882 2.18 s

Student 24 0.6473 0.19 s
48 0.6482 0.21 s
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Distillation improves the student model. In Table 2, we compare two methods on
NUS-WIDE and MIRFlickr-25K datasets, one with no teacher guidance and directly using
the loss functions Equations (6) and (7) to train the student model, and the other with
teacher guidance for distillation training denoted as Transformer. As seen in Table 2,
the distillation method improves the performance of the student model by more than 10%
on MAP when trained on NUS-WIDE, which significantly reduces the gap between the
slow and fast models. On the other hand, the improvement when trained on MIRFlickr-
25K is not as significant as on NUS-WIDE, probably due to the more minor training data
of MIRFlickr-25K. In addition, the teacher model has limited ability to generalize the
knowledge learned on the small training data, and thus has a lower upper limit when
distillation learning.

Table 2. Distillation experiment with the Transformer-based model as the teacher and the linear
projection-based fast model as the student.

Model Teacher Train Data Length MAP

Student

None

MIRFlickr-25K

24 0.6678
Transformer 24 0.7112

None 48 0.6561
Transformer 48 0.7088

Student

None

NUS-WIDE

24 0.5321
Transformer 24 0.6473

None 48 0.5396
Transformer 48 0.6482

4.4. Comparison to the State of the Art

In this session, we compared our method with the state-of-the-art methods performed
using the same evaluation metrics. The contrasting methods include LSH [42], ITQ [16],
SH [15], PCAH [43], SpH [44], DH [45], DeepBit [46], DSH [47], BDNN [48], DVB [49]
and DOH [50]. The LSH, ITQ, SH, PCAH, SpH, and DSH are not deep learning based
hashing methods. We extracted depth features from the pre-trained ResNet model [27] and
used them as input for these methods in order to make a fair comparison. For the deep
learning-based methods, i.e., DH, DeepBit, BDNN, and DOH, we evaluated them with the
hyperparameter settings suggested in their papers and ran the source codes provided by
the authors. For DVB [49], we directly refer to the results of the original paper.

The MAP results calculated using different lengths of hash codes on two datasets,
MIRFlickr-25K and NUS-WIDE, are reported in Table 3. The reported results show the
superiority of the proposed method and validate that the motivation of the proposed
method is valid. Furthermore, by incorporating the self-attention mechanism of the Trans-
former model, image hash codes can be made global and unique. At the same time, this
advantage can be instilled into the efficient lightweight model by knowledge distillation,
which reduces the computational effort and has the feature advantage of the Transformer.

Table 3. MAP results for the MIR Flickr-25K and NUS-WIDE datasets, using hash codes of different
lengths, were calculated using the first 5000 images retrieved.

Methods MIR Flickr-25K NUS-WIDE

Length 12 24 32 48 12 24 32 48

LSH [42] 0.5763 0.6065 0.5966 0.6263 0.3523 0.4096 0.4186 0.4555

SH [15] 0.6621 0.6433 0.6296 0.6225 0.5652 0.5061 0.4866 0.4546

SpH [44] 0.5982 0.5832 0.5831 0.582 0.4656 0.4662 0.4473 0.4481

ITQ [16] 0.6932 0.7082 0.6686 0.6991 0.6332 0.6255 0.5922 0.6481
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Table 3. Cont.

Methods MIR Flickr-25K NUS-WIDE

PCAH [43] 0.6444 0.6321 0.6377 0.6534 0.5775 0.5052 0.4921 0.4924

DSH [47] 0.6962 0.7076 0.6851 0.6612 0.5944 0.5987 0.5725 0.5795

DH [45] 0.6021 0.6176 0.6144 0.6174 0.4745 0.4631 0.4625 0.4755

DeepBit [46] 0.5887 0.6033 0.6092 0.6091 0.5465 0.5551 0.5626 0.5612

BDNN [48] 0.6654 0.6692 0.6678 0.6695 0.5932 0.5922 0.5912 0.6098

DVB [49] - - - - - - 0.562 -

DOH [50] - - 0.6728 0.6712 - - 0.6145 0.6251

Ours—student 0.7046 0.7112 0.7092 0.7088 0.6361 0.6473 0.6526 0.6482

Ours—teacher 0.7471 0.7582 0.7485 0.7435 0.6818 0.6932 0.6925 0.6882

Figures 3 and 4 show the performance curves of retrieval results on the MIRFlickr-25K
dataset and the NUS-WIDE dataset. It can be seen from these two figures that the proposed
method outperforms all the compared methods on both datasets. The results express the
superiority of our method over the compared methods.

Figure 3. Performance curves of retrieval results on the MIRFlickr-25K dataset. (a) Precision using
hash lookup within the Hamming radius 2; (b) Precision–recall curve for 48 bits; (c) Precision curve
for 48 bits; (d) Precision–recall curve for 24 bits; and (e) Precision curve for 24 bits.
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Figure 4. Performance curves of retrieval results on the NUS-WIDE dataset: (a) Precision using hash
lookup within Hamming radius 2; (b) Precision–recall curve for 48 bits; (c) Precision curve for 48 bits;
(d) Precision–recall curve for 24 bits; and (e) Precision curve for 24 bits.

5. Conclusions

This paper proposes a Transformer-based image hash learning with a knowledge dis-
tillation framework. By combining the self-attention mechanism of the Transformer model,
the image hash code is enabled to be global and unique. At the same time, this advantage
is instilled into the efficient lightweight model by knowledge distillation, thus reducing
the computation and having the advantage of the Transformer’s features. Experimental
results on MIRFlickr-25K and NUS-WIDE datasets show that our approach can effectively
improve the accuracy and efficiency of image retrieval.
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Abstract: Accurate crop insect pest identification in fields is useful to control pests and beneficial to
agricultural yield and quality. However, it is a difficult and challenging problem due to the crop insect
pests being small with various sizes, postures, shapes, and disorganized backgrounds. Multi-scale
convolution-capsule network (MSCCN) is constructed for crop insect pest identification. It consists
of a multi-scale convolution module, capsule network (CapsNet) module, and SoftMax classification
module. Multi-scale convolution is used to extract the multi-scale discriminative features, CapsNet is
employed to encode the hierarchical structure of the size-variant insect pests in the crop images, and
Softmax is adopted for insect pest identification. MSCCN combines the advantages of convolutional
neural network (CNN), CapsNet, and multi-scale CNN, and can learn multi-scale robust features from
pest images of different shapes and sizes for pest recognition and identify various morphed pests.
Experimental results on the crop pest image dataset show that this method has a good recognition
rate of 91.4%.

Keywords: crop insect pest identification; convolutional neural network (CNN); capsule network
(CapsNet); multi-scale convolution-capsule network (MSCCN)

1. Introduction

To control pests, avoid economic losses, and reduce pesticide costs, early detection and
identification of crop pests is an important task. However, it is difficult and challenging to
detect and recognize crop pests in fields, because the insect pest images are photographed
in complex crop environments. These include not only various types, sizes, postures,
and shapes of insect pests, but changeable light, viewpoint, and irregular backgrounds,
and it is obvious that the insect pest size is small in proportion to the whole image and
its color and texture characteristics are similar to those of the background in the cropped
image, as shown in Figure 1. Therefore, it usually leads to low identification accuracy using
the traditional pattern recognition and image processing algorithms [1].

With the development of computer vision technology, computer computing power,
and various algorithms of artificial intelligence (AI) [1,2], machine learning [3,4], and mod-
ern digital and deep learning [5], many crop pest detection and recognition methods
have been presented [6]. Martineau et al. [7] investigated forty-four studies on this topic,
including a lot of methods of image capture, feature extraction, and classification and tested
datasets, and generally discussed the questions that might still remain unsolved. Costa
et al. [8] constructed a knowledge-based crop pest identification system. This system can
provide a convenient way for farmers to manage crop pests and diseases. Liu et al. [9] intro-
duced the definition and connotation of the crop disease-pest knowledge and analyzed and
classified the key techniques and methods of crop disease-pest detection and recognition in
recent years, including knowledge representation, feature extraction and fusion, reasoning,
and classifier. Huo et al. [10] introduced the research progress of disease-pest identification,
pest number, and position detection, of an existing dataset and some methods used in
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previous articles. Li et al. [11] proposed a few-shot cotton pest recognition method and
verified its effectiveness and feasibility on two datasets, namely the national bureau of
agricultural insect resources and a dataset with the natural scenes. The results of the above
methods show that the performance of the traditional pest identification methods relies
on hand-crafted features and matching templates, shallow learning-based features with
limited representation power, and only low-level features, but ignores the hierarchical
features of pest images, so their recognition rate and generalization ability are limited.

 
(a) 

 
(b) 

 
(c) 

Figure 1. Crop insect pest image examples. (a) Maize army worm. (b) Cotton bollworm. (c) Bean larvae.

Convolutional neural network (CNN) has made remarkable achievements in various
target detection and recognition tasks. It has been widely used in pest detection and recog-
nition as it can automatically learn the essential features of the pest images from a large
amount of data and produce fewer high-quality candidate features for pest recognition [12].
Ai et al. [13] used CNN to automatically identify crop disease pests as they trained the
Inception-ResNet-v2 model, utilizing the public dataset of the AI Challenger Competition in
2018, with 27 disease images of 10 crops, and designed and implemented the Wechat applet
of crop disease-insect pest recognition. Xie et al. [14] proposed an automatic crop pest clas-
sification method by learning multi-level features from a large number of unlabeled image
patches using unsupervised feature learning methods and utilized the filters in multiple
scales coupling them with several pooling granularities. Labaa et al. [15] proposed a crop
pest recognition method based on CNN, improved by combining different technologies
such as CNNs and REST services. Li et al. [16] proposed a fine-tuned GoogLeNet model to
deal with the complicated backgrounds presented by farmland scenes and achieved better
pest classification results than the original model.

Compared to traditional handcraft-feature extraction algorithms, CNN is effective
in image classification tasks. It can automatically learn features during the training pro-
cess, avoiding the error generated by manual selection, but its pooling operation (down-
sampling) can only give rough location information, allowing the model to ignore some
small spatial changes and failing to accurately learn the location association of different
objects, such as the location, size, direction, and even deformation degree and texture of
entities in a region. Although the pooling operation of CNN can maintain the invariability
of the location and direction of the entity, it will lose the characteristics of small pests,
so the recognition rate of crop pests may not be high. Therefore, pooling operations may
cause some problems: they may lose the low-level features and spatial hierarchical features,
and the data of small pests (under certain conditions) may be lost after down-sampling.
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The capsule network (CapsNet) is a new kind of deep learning architecture aiming to
encode the features of the images and their spatial relationships [17]. It can overcome the
shortcomings of CNN. It only uses the shallow CNN to preserve the spatial information,
and can capture not only the discriminant features, but also the underlying relationships
between these features. A capsule is a group of neurons whose output represents the various
perspectives of an entity, such as pose, texture, scale, or the relative relationship between
the entity and its parts. In this case, CapsNet is more robust to affine transformations and
achieves good results with fewer training samples. Paoletti et al. [18] constructed a CapsNet
for hyperspectral image classification, where several spectral-spatial capsules are used to
learn HSI spectral-spatial features while significantly reducing the network complexity.
Mensah et al. [19] proposed Gabor CapsNet for plant disease detection and evaluated
its performance on three publicly available plant disease datasets containing disease leaf
images with high similarity and background objects. Wang et al. [20] proposed a multi-
scale convolutional CapsNet for hyperspectral image classification, which is composed
of a multi-scale convolutional layer, a single-scale convolutional layer, a PrimaryCaps
layer, a DigitCaps layer, and a fully connected layer. Peker [21] proposed a multi-channel
CapsNet ensemble for plant disease detection and individually trained the network on the
image set. Thenmozhi et al. [22] proposed a deep CNN model to classify insects, where
transfer learning was applied to fine-tune the pre-trained models.

From the above analysis, it is known that the conventional CNN-based crop pest image
classification faces a problem of quite limited training samples, which leads to overfitting
and dissatisfied performance to describe the correlation between features. CapsNet can
deal with the disadvantages of CNN, but the feature representation capability of the
low-level features extracted by the shallow-layer CNN is limited. Therefore, the original
CNN or CapsNet is not suitable for crop pest recognition tasks. Inspired by multi-scale
convolutional CapsNet and multi-channel CapsNet, a multi-scale convolution-capsule
network (MSCCN) is constructed for crop insect pest recognition combining the advantages
of traditional CNN and CapsNet. It consists of a multi-scale convolutional module, CapsNet
module, and a Softmax classification module. The main contributions of this work are
as follows:

1. Inception is introduced into the convolutional module with different-scale convolu-
tional kernels in different branches of the Inception structure, and multi-scale image
features are extracted by different receptive fields in each branch, which increases the
width of the network and the adaptability of the network to pest scale;

2. An improved dropout is proposed on the encoded capsules to enhance the robustness
of the model for the capsule layer.

The remainder of the paper is organized as follows. Section 2 reviews the related
works including Inception and CapsNet. MSCCN is introduced in detail in Section 3.
Experiments are presented in Section 4. Section 5 concludes the paper and puts forward
some opinions and suggestions for the future research direction.

2. Related Methods

2.1. Inception

Inception is a module in GoogleNet and has been validated to be better in complex
images classification tasks. It has multi-scale convolution kernels to extract the features
of different scales from the input images by increasing the number of convolutional ker-
nels and introducing multi-scale convolutional kernels. The inception structure has been
improved in terms of speed and accuracy. There are multiple versions of Inception: Incep-
tion V1, Inception V2, Inception V3, Inception V4, and Inception ResNet, each of which is
an iterative evolution of the previous version. In general, a lower version of the Inception
module may work better in classification tasks. Figure 2 shows Inception V1. As shown in
Figure 2, 1 × 1, 3 × 3, and 5 × 5 convolutional kernels are used to convolve the outputs of
the upper layer at the same time to form a multi-branch structure. Feature maps obtained
from the different branches are then concatenated to obtain different classification features
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of the input images. Processing these operations in parallel and combining all the results
will result in better image representation. To make the feature map have the same size,
each branch adopts the same padding mode with the stride of 1. The 1 × 1 convolution
operation is used before 3 × 3 and 5 × 5 and after Max-pooling to reduce the amount
of calculation.

 
Figure 2. The structure of Inception V1.

2.2. Capsule Network (CapsNet)

CNN is composed of multiple neurons stacked together, and it takes a lot of com-
putation to compute convolution between neurons, so the pooling operation is used to
reduce the size of the network layer. However, classification information may be lost
by pooling. CapsNet is constructed to overcome the limitations and shortcomings of
CNN. It can encode spatial information and calculate the existence probability of objects,
and is good at dealing with changeable object recognition with different positions, sizes,
directions, deformations, speeds, textures, and other features. Its architecture is shown in
Figure 3, consisting of a traditional convolution layer, a primary capsule layer, and a digital
capsule layer.

 
Figure 3. The architecture of CapsNet.

In CapsNet, the primary capsule layer mainly transforms the upper scalar represen-
tation into a vector representation, so its output is as a vector. The digital capsule uses
dynamic routing algorithms to update the network. The final output is vectors. The length
of each vector is the probability value of belonging to a class.

3. Multi-Scale Convolution-Capsule Network (MSCCN)

Motivated by the fact that the crop insect pests are changeable with various postures,
and their sizes range from less than 1 mm to more than 100 mm, a multi-scale convolution-
capsule network (MSCCN) is proposed for crop insect pest recognition. Its architecture is
shown in Figure 4.

152



Electronics 2022, 11, 1630

Figure 4. Architecture of MSCCN.

The input image is reshaped to 128 × 128, 96 × 96, and 64 × 64 assembled in parallel.
MCNN firstly extracts the high-level features of describing pest images through three multi-
scale convolutions, three Inceptions, and three CapsNet using these features to further
construct the vector-based capsule structure to form the final discriminative feature vector
of pests in the image, which will be directly fed to the final SoftMax classifier without
any feature reduction. Finally, pest recognition is implemented by the Softmax classifier.
MCNN is designed as an end-to-end structure for easy convolution-CapsNet training
and deployment.

In CapsNet, three multi-dimensional primary capsules are employed to encode the
hierarchical multi-scale features extracted by three multi-scale convolutions, and obtain
12D, 8D, and 4D capsules, respectively. Then, the predicted vectors are computed through
different weight matrixes W, V, and U as follows:
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where u1, u2, u3 are the feature maps of three multi-scale convolutions, W, V, and U are
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,
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u
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respectively, uk

i is i-th primary-capsule
from k-th branch, ûk

j|i is predict vector between the j-th parent capsule and the i-th child
capsule of k-th branch, and û is the output of this multi-scale capsule encoding structure,
which concatenates the results of three branches by function concat().

The classification features are encoded using a weight matrix between i-th child
capsule and j-th parent capsule. During the training, the part–whole relationship for each
capsule pair is learned by adjusting the transformation matrixes W, V, and U.

There is a dynamic routing between the multi-scale capsule encoding unit and digit
capsule layer. It is used to ensure that the outputs of child capsules are sent to the
proper parent capsules. The prediction vectors û in the previous section are computed
through a weight matrix. The relationship is determined between each parent capsule sj
and prediction vector û by dynamic routing. All the prediction vectors are denoted as
ûj|i(i = 1, · · · , n). In the first iteration, c1

i = 1
n and s1

j = ∑n
i=1 c1

i ûj|i, where ∑j cj = 1 and

cj ≥ 0. Then, adjust the routing coefficients c1 to c2 by the function update() as follows:

bi+1 = bi + ûj·vj
ci+1 = so f t max(bi+1)

(2)
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where b is the coupling coefficient before normalization and b1 = 0, vj is the jth output
capsule of the parent capsule layer calculated by

vj =
‖sj‖2

1 + ‖sj‖2 ·
sj

‖sj‖ (3)

where sj is the total input vector of the jth capsule obtained by the weighted sum of the

jth parent capsule layer connecting with the ith child capsule layer,
‖sj‖2

1+‖sj‖2 is the reduction

coefficient of sj,
sj

‖sj‖ is the normalized unit vector of sj, sj = ∑
i

cijûj|i, and the prediction

vector ûj|i is obtained by multiplying the output features of the BN layer with the weight
matrix of the primary capsule layer.

The objective function of MCNN is expressed as follows:

Lc = ∑
k∈CNum

Tkmax(0, m+ − ‖Vk‖2) + λ(1 − Tk)max(0, ‖Vk‖ − m−)2 (4)

where the former part is used to calculate the settings of the correctly classified digital
capsule, the latter part is used to calculate the losses of wrongly classified digital capsules,
m+ = 0.9 and m− = 0.1 are the default category prediction values, λ = 0.5 is the default
balance coefficient, Tk is the label of data category, Tk = 1 is the correct label, Tk = 0 is
the incorrect label, CNum is the number of categories, ‖Vk‖ is the length of the vector
representing the probability of discriminating as the kth class pest, and the total loss is the
sum of all digital capsule loss functions.

The main processes of MCNN-based crop pest recognition are shown in Figure 5.

Figure 5. Crop pest recognition process based MSCCN.

First, all kinds of pest images are divided into the training set and test set. Both sets
need to be preprocessed to facilitate MSCCN to extract the multi-scale features. Then,
the results of image preprocessing are used as the input of the multi-scale convolution,
the network will automatically extract the multi-scale features of color, texture, and shape
from training samples. Multi-scale CapsNet is used to encode the multi-scale convolution
features. Each layer of CapsNet is composed of neurons. The neuron input of CapsNet is
vectors. The vector length represents the approximate probability of the pest. The vector
direction represents the instantiation parameters of the pest. The output of a capsule is
only routed to the next layer of the corresponding capsule, which will return a clearer input
signal, it can accurately determine the posture of the pest. The feature combination method
is adopted for different feature vectors. MSCCN structure and network parameters are set
up. After training, the classification model is implemented to classify and recognize pest
images by Softmax. The k-dimension feature vector Yi extracted by CapsNet is input into
the trained Softmax classifier, as follows:

P(Y = i|x ) = So f t max(Yi) =
exp(�iYi)

K
∑

i=1
exp(�kYk)

(5)

where P is the probability that the feature vector x belongs to the ith category, K is the total
number of categories, and � is the weight items.

From the above analysis, the pseudocode MSCCN is introduced in Algorithm 1:
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Algorithm 1: Multi-scale CapsNet

Input training pest images, parameters: η = 0.001, α = 0.9, β = 0.99, and ε = 0.00001,
batch-size = 128, the number of iterations and dynamic routing are 3000 and 3, respectively,
threshold ρ;
1: Image processing;
2: Reshape each image into three images with different sizes;
3: For iteration;
4: for k = 1 to 3

Carry on the kth convolution with different kernels with sizes of 7 × 7, 5 × 5 and 3 × 3;
Carry on the kth Inception convolution;
Carry on procedure routing (k,

�
u j|i, r, l) of the kth CapsNet;

(1) for all capsule i in layer l and capsule j in layer(+1): bij ← 0;
(2) for r iterations do
for all capsule i in layer l: ci ← softmax(bi)
for all capsule j in layer (l + 1): sj ← ∑j cij

�
u j|i by Equation (5)

for all capsule j in layer (l + 1): vj ← squash(sj)

(3) for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij +
�
u j|ivj

(4) return vj
return vk;

5: integrate vk;
6: vk × Mask;
7: input vk × Mask into Softmax classifier;
8: calculate loss Lc by Equation (4);
9: if Lc more than ρ, return step 3;
10: Stop iterations.

4. Experiments

To evaluate the performance of the proposed method based on MSCCN, a lot of
experiments were conducted on the rice pest image set of IP102 dataset and compared
with four existing mainstream deep learning methods, AlexNet [12,23,24], CapsNet [19],
MS-CapsNet [20], DCNN + transfer learning (DCNNTL) [22], and ResNet50 [25]. AlexNet
consists of five convolutional layers, three max pooling layers, and three fully connected
layers. Resnet50 is composed of 49 convolutional layers and a fully connected layer, where
the residual network unit contains cross-layer connections. MS-CapsNet consists of a
multi-scale convolutional layer, a single-scale convolutional layer, a primaryCaps layer,
a digitCaps layer, and a fully connected layer. DCNNTL consists of six convolutional layers,
five max pooling layers, and a fully connected layer. It uses VGG16 as transfer learning
to pre-train the deep CNN model on the constructed dataset. In all models, categorical
cross entropy is used as a loss function, Stochastic gradient descent (SGD) is used as the
optimizer, and Softmax classifier is used in their output layers to classify pest categories.

The hardware and software conditions of the experiments are as follows: the operating
system is 64-bit Microsoft Windows 10, the CPU is I5-6200U, GeForce RTX2080 SUPER
8GB, 64-bit Operating System and x64-based processor NVIDIA Ge Force RTx 2080Ti 11GB
GDDR6 Mother Board Intel i7/i8/i9, the programming language is Python 3.7 Jupyter
notebook software, and the deep learning framework is Keras 2.3.0.

4.1. IP102 Dataset

IP102 (https://github.com/xpwu95/IP102 (accessed on 7 April 2019)) is often used to
test insect pest detection and recognition methods based on deep learning [26]. It contains
75,222 images belonging to 102 common crop insect pest categories with an average of
737 images per class. Most images were collected by common image search engines at
different growth stages, and about 19,000 images were annotated with bounding boxes
for pest detection. Some images are shown in Figure 6. From Figure 6, it is found that
the insect pest images were collected in the fields with various sizes, shapes, and complex
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backgrounds, and the pest has different sizes, postures, and shapes at the different stages
of the life cycle [23].

 
(a) 

 
(b) 

 
(c) 

Figure 6. Insect pest image examples in IP102. (a) The first 20 original images. (b) Different forms of
a kind of insect pest at different stages of the life cycle. (c) Nine kinds of rice annotated images.

IP102 contains 5701 original images of nine rice pests. Their pest image names and
corresponding numbers and serial numbers are shown in Table 1, where the maximum
number is 1115, and the minimum number is 369. The number of each kind of rice pest
image is increased to more than 500 by the augmentation algorithm. All images are
converted to JPEG format. Repeated or damaged images are deleted. In this study, all rice
insect pest images are used to conduct rice insect pest recognition experiments, where each
original image is firstly reshaped to 128 × 128, closer to the actual application, because the
sizes of the collected images are not uniform. Finally, 5000 preprocessed images are used
for experiments, except for 1034 poor quality or negative images.

Table 1. The number of rice pest images in IP102 dataset.

No. Pest Name Number Label

1 Rice leaf roller 1115 0–1115
2 Rice leaf caterpillar 485 1116–1601
3 Asiatic rice borer 1053 1863–2915
4 Yellow rice borer 504 2916–3419
5 Rice gall midge 506 3420–3925
6 Rice Stemfly 369 3926–4294
7 Rice water weevil 856 6575–7430
8 Rice leafhopper 404 7431–7834
9 Rice shell pest 409 8008–8416

Total 5701

Due to the different crop pest conditions of data collection, illumination, and parameter
settings of a digital scanner, color differences of digital pest images are often caused.
Size and color normalization can not only ensure the color consistency of the original
image, but also preserve the biological information in the pest image, so as to improve the
recognition performance of the model. As the pest image sizes of the dataset are different,
ranging from 220 × 220 to 512 × 512, the size of the input original image and ROI label
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will be uniformly adjusted to 128 × 128. At the same time, pixel values of all images will
be regularized to between 0 and 255 when entering the channel expansion module. After
channel expansion, minimax normalization is applied to the pest images of each channel to
normalize the range of pixel values to between 0 and 1, so as to complete channel expansion
of original pest images and better meet the input of the deep learning network. Minimax
normalization is defined as follows,

xnor =
x − Xmin

Xmax − Xmin
(6)

where x is the pixel value of the original image, Xmin is the minimum value of the pixel
value set, and Xmax represents the maximum value of the pixel value set.

The 5-fold-cross-validation (5FCV) strategy is used to evaluate the performance of
the proposed model. The 5FCV experiment is conducted 50 times, and the results are the
average of 50 5FCV experiments.

4.2. Experiment Results

Rice pest recognition mainly relies on MSCCN to extract the pest image features and
complete the pest identification via Softmax classifier. MSCCN is a deep learning algorithm.
The CapsNet module in MSCCN uses activity vectors to represent instantiation parameters
of specific pest types. The length of the output vectors is used to characterize the probability
of pests having the current input. After the pest images are preprocessed, the images are
output into MSCCN, where CapsNet uses multi-scale convolution to extract the pest image
features, trains the image classification, and predicts the output vector based on routing-
by-agreement protocol. In this paper, the characteristics of MSCCN are used to solve the
problem of crop pest identification difficulties caused by multiple pests overlapping during
the pest recognition process. The most vital step, according to routing-by-agreement, is to
analyze the pest images with overlapped objects. The parameters of MSCCN are originally
set as a batch size 128, weight decay factor 0.00001, and number of training epochs 100,
and the initial weights are set randomly from a Gaussian distribution with a mean of 0
and a variance of 1. In the multi-scale convolution module, the dropout rate is set to 0.4,
the learning rate is initialized to 1 × 10−3, decreasing 0.05 times as the number of iterations
increases. In CapsNet module, the number of iterations of dynamic routing is 3000, and the
dropout ratio is 0.9. Adam is employed as the gradient descent algorithm to perform the
training. In Adam, the original parameters are set as η = 0.001, α = 0.9, β = 0.99, and
ε = 0.00001.

Three parameters in MSCCN are not trainable but can be fine-tuned: dropout rate,
learning rate, and mini-batch size. They are fixed at the start of training. Considering
validation accuracy while tuning hyperparameters, we fine-tune them. The dropout is
used to reduce overfitting, and a dropout layer is often added after each dense layer except
the last. MSCCN is trained with three dropout rates of 0.3, 0.4, and 0.5. The results are
0.891, 0.575, and 0.843, respectively. The dropout rate of 0.3 has the best result in general.
In the experiments, the dropout rate is set to 0.3, which means that MSCCN model will
randomly ignore 30% of the neurons of the previous layer. Learning rate determines
how fast the weights of MSCCN are adjusted to find the local or global minima of the
loss function. MSCCN is tested with a learning rate of 0.01, 0.001, 0.0001, and 0.00001.
In terms of convergence speed and accuracy, learning rate of 0.0001 has the best accuracy of
0.906. MSCCN is evaluated with a mini-batch size of 10, 16, 32, 64, and 128. The accuracy
of MSCCN is improved with the increase in mini-batch size from 10 to 64, and then it
decreased for 128, as shown in Figure 7. Then, a mini-batch size of 64 is selected to train
the model that increases the convergence precision.
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Figure 7. Accuracy versus Mini-Batch sizes.

Gradient descent and backpropagation algorithms are used to update the weight
parameters of the model. As the gradient descent algorithm of the driving quantity is used,
the momentum factor is set as 0.9 to prevent the overfitting problem. In order to show the
performance of MSCCN, MSCCN is compared with classical CNN and CapsNet, and three
modified models: MS-CapsNet, DCNNTL, and ResNet50.

Figure 8 shows the loss values of six models in the training set. From Figure 8, it is
found that MSCCN converges fastest, and the curve is relatively stable after 2000 iterations.
All models converge basically when the number of iterations is more than 2000. For fair
comparison, in the following experiments, all trained models are selected after 3000 itera-
tions to recognize pest categories. Table 2 shows the average recognition rates of 50 5FCV
experiments by six models based on pest recognition methods.

Figure 8. The loss versus iterations of three models.

Table 2. Average recognition rates of five models.

Method AlexNet CapsNet MS-CapsNet DCNNTL ResNet50 MSCCN

Recognition rates 0.803 0.824 0.896 0.847 0.855 0.924
Training time (h) 22.37 19.10 21.25 18.26 25.08 20.17

Test time (s) 0.35 0.30 0.37 0.28 0.29 0.26

4.3. Discussion

From Figure 8 and Table 2, it is found that MSCCN outperforms the other four mod-
els. Its generalization is enhanced because the multi-scale input, multi-scale convolution,
and time-spatial characteristics can be extracted from various pest images, ultimately allow-
ing the pest images to be characterized at a higher level of abstraction. The main reason is
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that MSCCN makes use of the advantages of multi-scale input, Inception, multi-scale CNN,
and multi-scale CapsNet, so it can quickly extract the features from the pests with various
sizes and shapes. MS-CapsNet is the second best because, similar to MSCCN, it employed
multi-scale convolution to extract the image features of pests with scale changes and uses
capsule network to extract the image features of pests with shape, position and angle
changes. DCNNTL is better than AlexNet and CapsNet, because it employed transfer
learning to speed up training. Though ResNet50 has the deepest layers, it does not work
very well. The reason for this is that it needs a large number of training samples, but there
are not enough samples. AlexNet has the worst performance, because it is difficult to opti-
mize pest distortions at the same time by simply changing the size of the projection model,
while AlexNet requires a large training database as a comparison library to improve its
classification performance and overcome the overfitting problem. CapsNet is not very good
because it has a shallow convolution layer, which cannot extract deep classification features.

The results in the references [12–16] verify that CNN and its variants are suitable for
classifying images that are very close to the training data set, but they perform poorly
in various pest images because pest images vary greatly. Pooling in CNN can establish
invariance of location and size, but this invariance can also lead to objects with harmful
colors and shapes being mistaken for pests. Humans can identify various pests through a
few training images of pests, while CNN needs a large number of training samples, even
tens of thousands, to train a good model, which is obviously too substantial. Unlike CNN,
CapsNet extracts feature vectors, not feature maps. The vector modulus represents the
probability of the feature existence, and the vector direction represents the attitude feature
information. The moving features will change the CapsNet vector without affecting the
probability of the features’ existence. Therefore, CapsNet is more suitable to describe the
characteristics of various pests. As CapsNet collects the pose information of pests, a good
representation effect can be learned from a small number of samples, so the identification
performance of pests is improved.

Unlike other deep models such as CNN and CapsNet, the components of MSCCN
are intended to reveal typical time–spatial features and their corresponding instantiation
parameters. These features allow the various pest images to be described at a higher level
of abstraction while reducing the overfitting inherent in complex and deep networks.

5. Conclusions

Traditional pest identification methods cannot effectively extract robust classification
features from the changeable images of pests. Many methods based on deep learning have
great advantages in image recognition, but they require a large number of training samples
and time for training parameters. To improve the recognition performance, a multi-scale
convolution-capsule network (MSCCN) is constructed for crop insect pest identification.
MSCCN combines the advantages of CNN, CapsNet, and multi-scale CNN to recognize
various pests, including small-size ones, in complex fields. We implement a series of experi-
ments involving the pest images in the complex fields. Experimental results with the IP102
dataset consistently produce the best identification performance with the highest accuracy
and least training time. The proposed model has the advantages of good generalization,
high recognition rate, and fast convergence, and provides technical support for the practical
application of capsule network in crop pest identification system.

In this study, there are some problems in identifying pests in the field because the
same pest may have completely different shapes and sizes during its growth period. Future
research is expected to apply this method to crop pest control systems to make the system
more intelligent.
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Abstract: Humans are born with the ability to learn quickly by discerning objects from a few samples,
to acquire new skills in a short period of time, and to make decisions based on limited prior experience
and knowledge. The existing deep learning models for medical image classification often rely on a
large number of labeled training samples, whereas the fast learning ability of deep neural networks
has failed to develop. In addition, it requires a large amount of time and computing resource to retrain
the model when the deep model encounters classes it has never seen before. However, for healthcare
applications, enabling a model to generalize new clinical scenarios is of great importance. The existing
image classification methods cannot explicitly use the location information of the pixel, making them
insensitive to cues related only to the location. Besides, they also rely on local convolution and cannot
properly utilize global information, which is essential for image classification. To alleviate these
problems, we propose a collateral location coding to help the network explicitly exploit the location
information of each pixel to make it easier for the network to recognize cues related to location only,
and a single-key global spatial attention is designed to make the pixels at each location perceive the
global spatial information in a low-cost way. Experimental results on three medical image benchmark
datasets demonstrate that our proposed algorithm outperforms the state-of-the-art approaches in
both effectiveness and generalization ability.

Keywords: few-shot learning; computational intelligence; medical image classification; spatial
attention

1. Introduction

Medicine was previously a purely artisan profession, which was highly dependent
on the skills and experience of the doctors, rather than seeking to establish a standardized
process for diagnosing and treating patients. On the one hand, manual analysis of large
medical image datasets is a very time-consuming task [1]. On the other hand, erroneous
interpretations may arise due to large smooth grayscale changes, which are imperceptible
to the human eyes. Details that may be missed due to the above factors can negatively
impact the treatment procedure. In recent years, the situation has begun to change because
technologies such as evidence-based medicine and precision medicine have tried to inject
more rigorous and data-driven methods into the this field [2].

With the increase of computing resources and data volumes, artificial intelligence has
been applied in various fields, such as remote sensing image analysis [3–5], automatic
driving [6–8], and privacy protection [9–11]. In the aspect of medical image analysis, deep
learning has been shown to be a powerful diagnostic tool that can provide healthcare work-
ers and patients with the exact information they need. This could give remote community
health workers access to purified world medical knowledge, and it could allow physicians
to greatly improve their efficiency and accuracy, while giving patients and families greater
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control and visibility of their healthcare. Medical image classification plays a vital role in
the diagnosis process by assigning appropriate labels to certain attributes in the image.
Medical image classifiers can distinguish different types of diseases in specific organs, such
as breast biopsies, liver lesions, brain tissue, the lungs, and rectal cancers.

Many excellent research works have greatly advanced the field of medical image clas-
sification. Semi-supervised support vector machine was used to solve the problem of brain
MRI image classification with mild cognitive impairment [12]. Peikari et al. [13] performed
cluster analysis on semi-supervised learning to improve the classification performance of
pathological images. In addition, several studies have explored the Generative-Adversarial-
Network (GAN)-based methods, which show strong applicability in the automatic detection
of retinal diseases [14], skin diseases [15], and cardiac diseases [16]. However, there are
still several serious problems in the research of medical image classification. The existing
deep models for medical image classification rely on a large number of labeled training
samples, and their generalization performance for unseen categories is either unsatisfactory
or otherwise depends on a time-consuming retraining process. Humans are very good at
recognizing a new object through a very small number of samples. For example, a child
only needs some pictures in a book to recognize what a “zebra” is and what a “rhinoceros”
is. Inspired by the rapid learning ability of human beings, researchers seek for deep learn-
ing models to learn a new category quickly with only a small number of samples after
learning a large amount of data in a certain category.

Overall, the existing deep models for medical image classification rely on a large
number of labeled training samples and have poor generalization performance for unseen
categories, requiring much time and computing resources to retrain. Moreover, the clas-
sification information of an image is not only related to the color of the pixel, but also to
the location of the pixel, for example the location of a lesion is related to whether it is a
malignant disease or not [17], while current image classification methods cannot explicitly
use the location information of the pixel, making them insensitive to cues related only to
the location. We propose a collateral location coding to help the network explicitly utilize
the location information of each pixel to make it easier for the network to recognize cues
related to location only. In addition, existing algorithms rely on local convolution and
cannot properly utilize global information, which is essential for image classification. To
solve this problem, we propose a single-key global spatial attention that allows each pixel
in the feature map to obtain information about all features and use it as a basis for feature
importance measurement.

The contributions of this paper are summarized as follows:

(1) A complete classification framework is presented for few-shot learning of medical
images, which achieves excellent performance compared with the well-known few-
shot learning algorithms.

(2) A collateral location coding is proposed to help the network explicitly utilize the
location information.

(3) A single-key global spatial attention is designed to make the pixels at each location
perceive the global spatial information in a low-cost way.

(4) Experimental results on three medical image datasets demonstrate the compelling
performance of our algorithms in the few-shot task.

The remainder of this paper is structured as follows. Section 2 briefly reviews some
related work in medical image classification and few-shot learning. In Section 3, our method
is introduced in detail. Section 4 gives the experimental settings and the analysis of the
experimental results. Finally, the conclusions and future works are described in Section 5.

2. Related Work

2.1. Medical Image Classification

Computer-Aided Diagnosis (CAD) is an important research field, and excellent algo-
rithms can improve the efficiency of diagnosis and reduce the chance of misdiagnosis. For
example, tumors or lesions may be very small and easily missed by radiologists in the early

164



Electronics 2022, 11, 1510

stages, but the number of false negatives can be reduced by automatically highlighting by
medical image processing.

Recently, many research works have achieved promising results in medical image
classification as an important part of CAD. Annotating medical images in the real world
is often time-consuming, especially when consensus is required among multiple experts.
References [18,19] designed semi-supervised learning in medical image classification; the
pseudo-labels were created by training a model on labeled data and then using the trained
model to predict labels on unlabeled data. Furthermore, the label data and the newly
generated pseudo-label data were combined as new training data. In addition, the data
distribution of medical image datasets tends to be very skewed due to a large number
of negative disease cases versus a small number of positive disease cases. To alleviate
this problem, modified loss functions [20], cost-sensitive learning [21], oversampling or
undersampling methods [22], and decision threshold shifting [23] have been designed to
solve skewed class distributions.

For specific medical problems, Li et al. [24] proposed a semi-supervised graph-based al-
gorithm to address the tongue diagnosis problem, which leverages random graph sampling
techniques and label consistency modeling. De Herrera et al. [12] and Csurka et al. [25]
employed semi-supervised methods to expand the training set. They first employed sup-
port vector machine (SVM) or the K-nearest neighbor (KNN) classifier trained with other
multimodal (e.g., visual and textual) information to generate confidence scores for unla-
beled data and then expanded the training set by manual visual retrieval. In addition,
GANs were used in [16] to address the scarcity of labeled data and data domain differ-
ences in chest X-ray classification. To process high-resolution retinal fundus images for
diabetic retinopathy classification, Lecouat et al. [14] proposed a patch-based classification
framework and a semi-supervised GAN. Su et al. [26] proposed a local mean teacher-based
self-supervised learning method that solves the kernel classification problem by enforcing
local and global consistency.

2.2. Few-Shot Learning

The current mainstream few-shot learning algorithms can be divided into three cate-
gories based on the data augmentation, metric learning, and meta-learning methods.

The methods based on data augmentation focus on the problem of too few samples
in few-shot learning, and enhance the data themselves through a series of means, thereby
transforming few-shot learning into ordinary machine learning problems. This kind of
methods is mainly studied from two directions: original data enhancement and feature
enhancement. The generative adversarial network proposed by Goodfellow et al. [27]
employs the idea of game theory to map a certain noise distribution (generally, a Gaussian
distribution) to a true distribution close to the data and realizes data enhancement from
the perspective of data characteristics. On this basis, Antoniou et al. [28] proposed a
data augmentation generative adversarial network to improve the quality of the model
by generating data with an approximate sample distribution. Chen et al. [29] explored
semantic information to design a semantic auto-encoder for higher-level data enhancement
and used the image block combination method to fuse the original features of the image
and the transformed features, so as to achieve the purpose of data enhancement.

The methods based on metric learning map the original data into deep features through
a neural network, and the features can be used as a representation of a certain type of sample
after further processing. The classification can be completed by calculating the similarity
between a given sample and the representation. It usually consists of a feature embedding
module, a category representation module, and a similarity measurement module. The
matching network [30] employs the attention mechanism and storage memory to complete
the encoding of the support set and query set samples, measures the matching degree of
the two through the cosine distance, and finally, obtains the label of a given sample by the
weighted average method. Moreover, for the samples that do not appear in the training,
the original model does not need to be changed, and only a small amount of data can
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be used to complete the identification of the new category. Snell et al. [31] proposed the
prototype network, which can be regarded as a general framework for deep metric learning.
It represents the original data as a feature vector with feature embedding, takes the mean
value of the vector of the same category as the prototype of the category, and completes the
classification task by calculating the distance between the new sample and the prototype.
The covariance metric network [32] takes into account the second-order features of the data,
calculates the covariance to better represent the data, and achieves good performance on
benchmark datasets.

Meta-learning can independently choose certain strategies to complete the learning of
different tasks and study how to use previous experience to guide the existing learning,
also known as “learning how to learn”. Finn et al. [33] proposed a Model-Agnostic Meta-
Learning (MAML) for the fast adaptation of deep networks. MAML empowers the model to
independently determine the initialization of parameters with the selection of the network
architecture and the optimization strategy. It obtains a global optimal value by training
on the auxiliary set, which is used as the initialization value of the model on different
tasks, and only needs a small number of iterations to converge on a small amount of data
in a given support set. In addition, Ravi et al. [34] employed Long Short-Term Memory
(LSTM) as a meta-learner to learn by taking the gradient information and the learning rate
of the model as the state of the LSTM. Cheng et al. [35] proposed a meta-metric learner to
integrate the matching network and LSTM.

Overall, the research on few-shot learning is still in its infancy. The breakthrough of
existing algorithms in model accuracy is very dependent on deeper networks, and more
emphasis is placed on experiments, which is still very much lacking in theoretical research
and practical application.

3. Method

3.1. Overview

The whole dataset was divided into a training set, a validation set, and a test set, where
the training set was used to train the image classifier, while the test set was further divided
into support sets and query sets, where the support sets contain the few-shot labels and
the query sets do not contain labels. During training, the images are first processed by the
proposed collateral location coding and then fed to the feature extractor, which contains the
proposed single-key global spatial attention. In the testing phase, we fixed the parameters
of the feature extractor and used it to extract the image features of the support set and the
query set, and finally, we used the nearest class mean for classification. The training and
testing processes of our method are shown in Figures 1 and 2, respectively

Feature extractor Fully connected layer
Training

Class

Figure 1. Training stage of our method. Our method follows the classical routine of training a
classifier during training.
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Figure 2. Testing stage of our method. We fix the feature extractor and use the nearest class mean
method to classify the image during testing.

3.2. Collateral Location Coding

When determining what kind of disease a medical image contains, the location of the
lesion often has a strong correlation with the type of disease, for example the location of
a lung nodule correlates with its possible development into cancer [17]. Most malignant
nodules are located in the upper lobe of the lung, more commonly in the upper lobe of the
right lung. Approximately two-thirds of metastases are located in the lower lobe of the
lung, and approximately 60% of isolated pulmonary nodules are located in the peripheral
regions of the lung. Non-calcified pulmonary nodules near the lung fissures have a lower
probability of malignancy. Subpleural nodules, especially those located in the middle or
lower lobe of the lung, are likely to be intrapulmonary lymph nodes. Technically, different
medical images may have similarly shaped anomalies in them, but the locations of these
anomalies greatly affect the classes of these medical images, so ignoring the location of the
abnormalities based only on their appearance is not conducive to accurate classification.
Reference [36] found that neural networks implicitly learn coarse positional information by
means of padding, but existing image classification algorithms usually feed only a single
RGB image into a deep neural network, which means that this process does not explicitly
make use of the exact positional information of each pixel, especially considering that most
classification networks end up using global pooling to eliminate spatial information, in
which the average pooling will produce the same result regardless of where the key features
are located.

Existing work [37] has attempted to stitch the coordinate information of the image
together with the RGB image; however, the location information may be corrupted in
the process due to some downsampling by the network during the convolution process;
in addition, directly stitching the original coordinates is not necessarily the most helpful
way for the neural network to utilize the location information, because the original coordi-
nate information has too much difference from the color information distribution of the
RGB image.

Inspired by recent advances in depth estimation [38], we propose a collateral location
coding to allow the model to perceive the coordinate information of each pixel, while
ensuring that the downsampling process does not corrupt the position information and
allowing to reduce the difference between the position information and the distribution of
RGB color information.

From any input image, we first obtain a coordinate map p = (x, y) to record the
position of each pixel, which is a two-channel map, recording the x-axis coordinate and the
y-axis coordinate, respectively.

This coordinate map p will then be coded as:

Fclc(p) = a2 · GELU(a1 · p + b1) + b2 (1)

where a1, b1, a2, and b2 are linear transformation coefficients, GELU is the Gaussian error linear
units [39], and the linear operation of a · p + b can be implemented by a 1 × 1 convolution.
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The input image will be spliced with the location feature Fclc and then fed into the
network. When the features advancing in the network encounter downsampling (e.g.,
pooling layer), the above process will be repeated, i.e., the features will be spliced with a
location feature matching their own resolution and then sent to the next layer for processing.

3.3. Single-Key Global Spatial Attention

One of the drawbacks of convolutional networks is that they can only fuse local
information and each pixel can only perceive its neighbors in local spatial locations, while
it is more difficult to capture remote dependencies. Self-attention is a widely adopted
approach for establishing non-local connections in deep learning; yet, its huge amount
of operations is still a computational burden. Inspired by recent detached attention [40],
we propose a lightweight single-key global spatial attention. The process of this part is
shown in Figure 3. As shown in the bottom path in the figure, the input x firstly passes
through a 1 × 1 convolutional layer, which does not change the number of channels, then
the global pooling downsizes the spatial dimension, after another 1 × 1 convolutional layer,
which does not change the number of channels, and the key of the input feature is finally
obtained, i.e.,

K = Conv(2)K (AvgPool(Conv(1)K (x))) (2)

The middle path in Figure 3 means that passing x through a 1 × 1 convolutional layer
that allows inter-channel information exchange provides the query of the input features, i.e.,

Q = ConvQ(x) (3)

Input feature Q

& AvgPool

K

×

W

·

Output feature

Figure 3. Single-key global spatial attention. We utilize a similar idea to self-attention, but the
difference is that the spatial dimension of the key collapses in our approach, and each spatially
located feature has to interact with only one feature instead of interacting with all features as in
self-attention. We use the idea of weighting similar to SE attention [41] to weight the important
features, instead of the feature generation method in self-attention.

We multiply Q and K and feed the result into the Sigmoid layer to obtain the weight
W for each spatial location, i.e.,

W = Q × KT (4)

where T denotes the matrix transpose.
The final weighting for x is accomplished by multiplying the weight matrix W with

the input features x, i.e.,
Out = W · x (5)

In the above process, we utilized a similar idea to self-attention, but the difference is
that the spatial dimension of the key collapses in our approach, and our approach does
not consume huge computational resources as self-attention does, because each spatially
located feature has to interact with only one feature instead of interacting with all features
as in self-attention.

In addition, we used the input features themselves as the value matrix, similar to
that in self-attention; however, we did not introduce the convolution for the value, which
further reduces the computational effort, and we used the idea of weighting similar to SE
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attention [41] to weight the important features, instead of the feature generation method in
self-attention.

3.4. Classification
3.4.1. Training

For training, we used cross-entropy as the loss function, i.e.,

L(ζi, ζ̂i) = −
N

∑
i=1

(ζi log ζ̂i) (6)

where N is the number of categories, ζi is the ground truth distribution of the i-th category,
and ζ̂i is the predicted distribution of the i-th category.

3.4.2. Testing

We denote the feature extractor as φ, the feature of an input image I as FI = φ(I), and
δi as the set of the features of the i-th category in the support set. We used the nearest class
mean to obtain a center for each category, i.e.,

εj =
1
|δi| ∑

FI∈δi

FI (7)

The predicted category of each sample in the query set can be obtained as:

Category(FI) = arg min
i

||FI − εi||2 (8)

4. Experimental Results and Analysis

4.1. Dataset Description

The datasets employed in this paper are all from MedMNIST [42,43], which is available
at https://medmnist.com/ (accessed on 31 December 2021). As a large-scale lightweight
benchmark dataset for two-dimensional and three-dimensional biomedical image classi-
fication, MedMNIST has been widely used in research on medical image classification.
Specifically, three datasets in MedMNIST were employed in the experiments of this paper,
where the details of these datasets are presented in Figure 4 and Table 1.

(a) (b) (c)

Figure 4. Medical image classification datasets. (a) DermaMNIST. (b) PathMNIST. (c) OrganM-
NIST (Axial).
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Table 1. The details of three medical image classification hldatasets.

Datasets Classes Training Validation Test Image Modality

DermaMNIST [44,45] 7 7007 1003 2005 Dermatoscope
PathMNIST [46] 9 89,996 10,004 7180 Pathology

OrganMNIST (Axial) [47,48] 11 34,581 6491 17,778 Abdominal CT

DermaMNIST is based on HAM10000 [44,45], which is a collection of multi-source
dermoscopic images of large common pigmented skin lesions. The source images with
3 × 600 × 450 pixels were resized to 3 × 28 × 28 pixels. The dataset consists of 10,015
dermoscopic images, which are divided into seven different diseases to form a multi-class
classification task. The images were divided into a training set, verification set, and test set
in the ratio of 7:1:2.

PathMNIST is based on a prior study [46] and is mainly used to predict survival in
colorectal cancer histological sections. The source images with 3 × 224 × 224 pixels were
resized to 3 × 28 × 28 pixels. In [46], a dataset (NCT-CRC-HE-100K) containing 100,000
non-overlapping image patches from hematoxylin- and eosin-stained histological images
were split as 9:1 into a training set and verification set. In addition, a dataset (CRC-VAL-
HE-7K) with 7180 image patches from different clinical centers was treated as the test set.
The PathMNIST dataset consists of nine types of organizations, which allows for multiple
classification tasks.

OrganMNIST(Axial) is the axial acquisition from 3D Computed Tomography (CT)
in the Liver Tumor Segmentation Benchmark (LiTS) [47]. The organ labels in OrganM-
NIST (Axial) were obtained from boundary box annotations of 11 body organs in another
study [48]. The original image was resized to 1 × 28 × 28 pixels, which classifies 11 body
organs into multiple categories. In detail, the training and validation set were selected from
115 and 16 CT scans in the source training set, respectively. The test set was constructed
with 70 CT scans from the source test set.

4.2. Experimental Setup

For the sake of fairness, all experiments in this paper were implemented on the PyTorch
framework in an NVIDIA GeForce RTX 3090. In the practical implementation, we randomly
selected three categories as the training set, two categories as the validation set, and the
remaining two categories as the test set in DermaMNIST, so 2-way 1-shot and 2-way 5-shot
were performed in the comparative experiments. For PathMNIST, we randomly selected
three categories as the training set, three categories as the validation set, and the remaining
three categories as the test set. For OrganMNIST, we randomly selected five categories as
the training set, three categories as the validation set, and the remaining three categories as
the test set. In addition, 3-way 1-shot and 3-way 5-shot were performed in the PathMNIST
and OrganMNIST. We used ResNet18 [49] as the backbone, where we added the proposed
single-key global spatial attention module at the end of each convolution block. We adopted
the optimizer of SGD with a momentum of 0.9. The learning rate was 0.1. We also report
the 95% confidence interval, and the performances were averaged over 1000 generated
classification tasks.

4.3. Comparing with State-of-the-Art Algorithms

In order to quantify the superiority of our proposed algorithm, five well-known
few-shot learning algorithms were selected as the comparison algorithms, including the
MatchingNet [30], MAML [33], Prototype Net [31], Relation Net [50], and Transductive
Propagation Network (TPN) [51].

For DermaMNIST, as can be seen from the experimental results in Table 2, our method
achieved the best results on 2-way 1-shot and 5-shot. Specifically, our method outperformed
the state-of-the-art method by 3.25% and 1.86% in 1-shot and 5-shot, respectively. We also
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show the loss curve and the validation accuracy curve of the proposed method on the
DermaMNIST dataset, in Figures 5 and 6, respectively.

Table 3 shows the experimental results on the PathMNIST dataset; our method out-
performed all existing methods. The results on the OrganMNIST dataset are shown in
Table 4; our method achieved the best performance with the highest accuracy and the
lowest confidence interval.

Table 2. The accuracy comparison of different methods on the DermaMNIST dataset.

Method
2-Way

1-Shot 5-Shot

MatchingNet 55.52 ± 1.14% 61.91 ± 1.57%
MAML 56.14 ± 0.97% 63.27 ± 1.12%
PrototypeNet 56.84 ± 0.88% 62.74 ± 1.18%
Relation Net 58.74 ± 0.84% 63.82 ± 1.20%
TPN 60.12 ± 0.86% 67.52 ± 1.14%
Ours 63.37 ± 0.80% 69.38 ± 1.03%

Figure 5. Validation accuracy curve on the DermaMNIST dataset.

Figure 6. Loss curve on the DermaMNIST dataset.
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Table 3. The accuracy comparison of different methods on the PathMNIST dataset.

Method
3-Way

1-Shot 5-Shot

MatchingNet 46.38 ± 0.82% 53.28 ± 1.29%
MAML 51.58 ± 0.81% 58.39 ± 0.92%
PrototypeNet 51.29 ± 0.77% 59.19 ± 0.82%
Relation Net 53.48 ± 0.81% 60.73 ± 0.87%
TPN 52.91 ± 0.83% 59.29 ± 0.84%
Ours 54.82 ± 0.78% 61.92 ± 0.81%

Table 4. The accuracy comparison of different methods on the OrganMNIST dataset.

Method
3-Way

1-Shot 5-Shot

MatchingNet 44.59 ± 0.96% 50.84 ± 1.12%
MAML 48.47 ± 0.87% 56.86 ± 0.96%
PrototypeNet 49.39 ± 0.83% 57.83 ± 0.72%
Relation Net 50.93 ± 0.84% 58.61 ± 0.89%
TPN 51.86 ± 0.87% 57.35 ± 0.85%
Ours 53.48 ± 0.81% 59.38 ± 0.84%

4.4. Ablation Experiments

In this subsection, the ablation experiments are performed to demonstrate the ef-
fectiveness of our innovation. The ablation results on DermaMNIST, PathMNIST, and
OrganMNIST are shown in Tables 5–7, respectively. Both of the proposed contributions
improved the performance because collateral-type location coding allows the model to
exploit feature information related to location only, while single-key global spatial attention
allows the model to make each pixel in the feature map perceive global information in a
cost-effective manner.

Table 5. Ablation on the DermaMNIST dataset.

Method
2-Way

1-Shot 5-Shot

Baseline 59.28 ± 1.01% 63.81 ± 1.29%
+ Collateral Location Coding 61.27 ± 0.98% 65.72 ± 1.21%
+ Single-Key Global Spatial Attention 62.79 ± 0.91% 65.14 ± 1.18%
Full 63.37 ± 0.80% 69.38 ± 1.03%

Table 6. Ablation on the PathMNIST dataset.

Method
3-Way

1-Shot 5-Shot

Baseline 49.91 ± 0.95% 56.28 ± 1.04%
+ Collateral Location Coding 51.39 ± 0.91% 58.21 ± 0.97%
+ Single-Key Global Spatial Attention 52.96 ± 0.84% 58.49 ± 0.89%
Full 54.82 ± 0.78% 61.92 ± 0.81%
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Table 7. Ablation on the OrganMNIST dataset.

Method
3-Way

1-Shot 5-Shot

Baseline 50.48 ± 0.98% 55.71 ± 1.07%
+ Collateral Location Coding 51.41 ± 0.93% 57.39 ± 0.91%
+ Single-Key Global Spatial Attention 51.83 ± 0.88% 57.57 ± 0.89%
Full 53.48 ± 0.81% 59.38 ± 0.84%

5. Conclusions

In this paper, we proposed a few-shot learning framework for medical image classifi-
cation, in which we specifically proposed a collateral location encoding to help the network
recognize only location-dependent features, and we proposed a single-key global spatial
attention that allows the model to perceive global spatial information in a cost-effective
manner. Experiments on three publicly available medical datasets confirmed the effective-
ness of our algorithm. Noticing that a large amount of valuable medical data is underused,
we find it urgent to fuse various medical classification data sources seeking a further boost
in performance. Therefore, in our future work, we will focus on how to embed unannotated
samples from different medical data sources into a few-shot learning framework to further
improve model effectiveness.
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Abstract: The joint integrated probabilistic data association (JIPDA) algorithm is widely used for
the automatic tracking of multiple targets, but it has the well-known problem of track coalescence.
By optimizing the posterior density, the accuracy of the target state estimation can be improved.
Motivated by this idea, we developed a novel evolutionary optimization based joint integrated
probabilistic data association (EOJIPDA) filter to overcome the coalescence problem of the JIPDA
filter. The trace for the covariance matrix of the posterior density is used as the objective function for
the above optimization problem. It is shown that the accuracy of the target state estimation can be
improved by reducing the trace. Evolutionary optimization was employed to minimize the trace and
optimize the posterior density. More specifically, we enumerated all the possible permutations of the
targets and assign a unique index to each permutation. The resulting indices were randomly assigned
to all possible association hypothesis events. Each assignment indicated one possible gene in the
evolutionary algorithm. This process was repeated several times to arrive at the initial population.
An illustrative example shows that the EOJIPDA filter can effectively improve the accuracy of state
estimation. Numerical studies are presented for two challenging multi-target tracking scenarios with
clutter and missed detections. The experimental results demonstrate that the EOJIPDA filter provides
better tracking accuracy than traditional coalescence-avoiding methods.

Keywords: multi-target tracking; evolutionary optimization; random finite set; joint integrated
probabilistic data association

1. Introduction

Multi-target tracking (MTT) is one of the most important low-level techniques used
in radar, computer vision, Internet of things [1,2], and other surveillance systems [1–5].
Traditional MTT methods usually regard the MTT problem as the tracking of multiple
single-targets. Examples of such methods are the multiple hypothesis tracking (MHT) [6,7]
and joint probabilistic data association (JPDA) [8] filters. The essence of these filters is
the association between the measurements and the targets being tracked. The MHT filter
propagates all possible association hypothesis events over time. The target states can be
estimated accurately from sufficient events. However, the main drawback of the MHT
filter is its heavy computation. Compared with the MHT filter, the JPDA filter requires less
computation and is effective at MTT. Nevertheless, the JPDA filter has the track coalescence
problem, whereby tracks tend to coalesce when the targets are closely spaced. The JPDA
filter has a well-known drawback in that it assumes that the number of targets and their
initial states are known a priori. Furthermore, the number of targets remains constant
during tracking.

In practice, the number and states of targets are usually unknown in advance and the
number of targets may vary with time. The automatic tracking system is a natural choice
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to track targets in this situation. Both target and clutter measurements are used by the
automatic tracking system to initiate tracks. To distinguish between false and true tracks, it
is necessary to measure the quality of each track. The joint integrated probabilistic data
association (JIPDA) filter uses the probability of target existence to measure the quality of
the track and is effective for automatic tracking [9]. However, the JIPDA filter also suffers
from the track coalescence problem.

To overcome the track coalescence problem of the JIPDA filter and further improve the
tracking accuracy, we combine the advantages of the RFS theory and the standard JIPDA
filter and propose a novel filter, named evolutionary optimization based joint integrated
probabilistic data association (EOJIPDA). The essential reason for the track coalescence is
that the overlap of the tracking gates leads to the association uncertainty problem. In this
case, the posterior density becomes multimodal and the estimation of the multi-target state
becomes less accurate. The trace of the covariance matrix is a measure of the multimodality
of the posterior density [10,11]. To improve the accuracy of the multi-target state estimation,
we used the evolutionary computation approach to minimize the trace of the covariance
matrix and optimize the posterior density. First, it is necessary to define a population of
possible solutions in the search space for the optimization problem. We enumerated all the
possible permutations of the targets and assigned a unique index to each permutation. The
resulting indices were randomly assigned to all the possible data association events. Each
assignment indicated one possible gene in the evolutionary algorithm. This process was
repeated several times until we obtained the initial population. Each candidate solution
was assigned a fitness value based on the cost function. Fitter individuals have a higher
chance of mating, producing more “fitter” individuals. The crossover and mutation are
then applied to the population to generate the new offspring. This process is repeated until
the stopping criterion is reached. The main contributions of the proposed EOJIPDA filter
are summarized as follows.

(1) Although the JIPDA filter is effective for automatic MTT, few improvements have been
proposed to overcome its coalescence problem. We propose to optimize the posterior
density of the JIPDA filter using the RFS theory, when target identity is irrelevant.

(2) To the best of our knowledge, this is the first work to use the computational intelligence
technique to improve the performance of the data association based filter. We model
the optimization of the posterior density as an evolutionary optimization problem,
improving the accuracy of the state estimation.

(3) The illustrative example shows that the EOJIPDA filter can effectively improve the
accuracy of the state estimation. Simulation results obtained from two challenging
MTT scenarios demonstrate the effectiveness of the EOJIPDA filter in terms of the
optimal sub-pattern assignment (OSPA) multi-target miss distance.

The organization of this paper is as follows. Section 2 introduces the target and
measurement models, and the necessary background on the JIPDA filter. In Section 3,
the proposed EOJIPDA filter is described in detail. Section 4 evaluates the performance
of the EOJIPDA filter using two different tracking scenarios. Finally, Section 5 presents
concluding remarks.

2. Related Work

To date, several approaches have been proposed to overcome track coalescence, such as
the exact nearest-neighbor JPDA (ENNJPDA) filter [12], the JPDA* filter [13], the set JPDA
(SJPDA) filter [10], the Kullback–Leibler SJPDA (KLSJPDA) filter [10], the multi-objective
JPDA (MOJPDA) [14], and the nearest-neighbor SJPDA (NNSJPDA) filter [15]. Motivated
by the JPDA* filter [13], the JIPDA* filter [16] has also been proposed to overcome the
track coalescence problem of the traditional JIPDA filter. In the JIPDA* filter, the target
states are estimated by selecting one association hypothesis event and the other association
hypothesis events are pruned. The track coalescence problem can be avoided effectively by
the JIPDA* filter, but the association hypothesis events being pruned may contain some
useful information. Our recent work [11] proposes to use the information contained in
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all the association hypothesis events by optimizing the posterior density. The proposed
algorithm strongly depends on initializations and improper initializations may result in
bad local minima.

Finite set statistics (FISST)-based MTT algorithms [17], such as the probability hypoth-
esis density (PHD) filter [18], the cardinalized PHD (CPHD) filter [19], the multi-Bernoulli
(MB) filter [20], the label multi-Bernoulli (LMB) filter [21], and the generalized label multi-
Bernoulli (GLMB) filter [22,23], have attracted significant attention in recent years. These
filters use the random finite set (RFS) theory to model the uncertainty in systems. Among
them, the PHD and CPHD filters are the moment approximations of the Bayes multi-target
filter and have no analytical expression for the posterior multi-target density. Unlike the
PHD and CPHD filters, the MB filter propagates parameters of the multi-Bernoulli RFS
instead of the posterior multi-target density. By using the labeled RFS, the LMB and GLMB
filters have also been proposed as approximations of the multi-target Bayes filter. These
filters can be implemented by the Gaussian mixture (GM) method or the sequential Monte
Carlo (SMC) method, depending on the characteristics of the tracking system. In Table 1,
we list all the above-mentioned existing MTT methods.

Table 1. Existing MTT methods.

JPDA-Based Multi-Target Tracking

Reference Filter Characteristic

[8] JPDA The number of targets and their initial states are known a priori.
The number of targets remains constant during tracking.

[12] ENNJPDA After a measurement-to-target assignment is performed, tracks are
only updated by a single measurement.

[13] JPDA* The best data association hypothesis is chosen to calculate the
measurement-to-target probabilities.

[10] SJIPDA When all hypotheses are combined together for full optimization,
the computation burden can be huge.

[10] KLSJPDA The optimal Gaussian approximations are provided in the
Kullback–Leibler sense.

[14] MOJPDA The cost function is a linear combination of multiple
objective functions.

[15] NNSJPDA A pair selection criterion is used for the iterative optimization.

JIPDA-Based Multi-Target Tracking

Reference Filter Characteristic

[9] JIPDA The number of targets can be unknown and time-varying.
Measurements are used to initiate tracks.

[16] JIPDA*
It combines the JIPDA filter with the JPDA* scheme.
The hypothesis events being pruned may contain some
useful information.

[11] CCJIPDA It strongly depends on initializations and improper initializations
may result in bad local minima.
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Table 1. Cont.

RFS Based Algorithms

Reference Filter Characteristic

[18] PHD Moment approximation of the Bayes multi-target filter.
It has no analytical expression for the posterior multi-target density.

[19] CPHD Besides the moment approximation, the filter also propogates the
cardinality distribution.

[20] MB A set of multi-Bernoulli parameters are used to characterize the
posterior multi-target RFS.

[21] LMB A generalization of the multi-Bernoulli filter.

[22,23] GLMB The GLMB density is closed under the multi-target prediction and
update operations.

JPDA* denotes a coalescence-avoiding version of JPDA, as shown in [13].

3. Background

3.1. Target and Measurement Assumptions

We consider the nearly constant velocity model in this paper. Assuming that the target
state at time k is denoted as xk, the target motion is modelled as follows

xk+1 = Fkxk + uk (1)

where Fk is the transition matrix and u k ∼ N (0, Qk) is zero-mean Gaussian distributed
process noise with covariance Qk. If the number of all potential targets (tracks) at time k is
nk, the augmented vector of labeled target states is

Xk =

[(
x1

k

)T
,
(

x2
k

)T
, . . . ,

(
xnk

k
)T
]T

(2)

At time k, the relation between the target xk and its measurement zk is described as

zk = Hkxk + wk (3)

where Hk is the observation matrix and wk ∼ N (0, Rk) denotes that wk follows the Gaus-
sian distribution with zero-mean and covariance Rk. The target-originated measurements
are detected with the probability of detection PD. Measurements may also originate from
clutters. It is assumed that the number of clutter measurements follows the Poisson distri-
bution and the average number of clutter measurements at each time step is r = λ|FoV| ,
where λ is the intensity of clutter and |FoV| denotes the sensor’s field-of-view. The set of
the validated measurements received at time k is given by

Zk =
{

z1
k , z2

k , · · · , zmk
k

}
(4)

where mk denotes the number of measurements. The sequence of measurement sets
accumulated up to time k is described as Z1:k = {Z1, Z2, · · · , Zk}.

3.2. Joint Integrated Probabilistic Data Association Filter

In the JIPDA filter, association hypothesis events are formed by assigning the validated
measurements to the targets being tracked. From this, the target state xt

k and covariance
Pt

k are estimated for each track t at time k. What’s more, the estimation of the probability
of target existence rt

k is also taken into considered. Therefore, a track t can be completely
described by the parameter set

{
rt

k,N (xt
k, Pt

k))
}

, where N (xt
k, Pt

k) is a Gaussian PDF with
mean xt

k and covariance Pt
k. At time k + 1, the main steps used to estimate the parameter

set are as follows.
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• Step 1: Predicting the target state xt
k+1|k, the covariance Pt

k+1|k, and the probability of

target existence rt
k+1|k for each track t.

The predicted target state xt
k|k−1 and covariance Pt

k|k−1 are estimated using the Kalman
filter. The propagation of the target’ existence probability follows the Markov chain one,

rt
k+1|k = p11rt

k + p21(1 − rt
k) (5)

where p11 and p21 are the Markov chain coefficients.

• Step 2: The tracking gate is generated for each target to select the validated measurements.

After the prediction, gating is performed for each track by defining an area around the
predicted track. The area is named as “gate” and only the measurements falling within the
gate are regarded as the validated measurements and are used to update the track. The
authors of [24] present various gating techniques, among which the ellipsoidal gate [25] is
widely used. The ellipsoidal gating area for track t at time k is defined as follows,

Rt
k =

{
zj

k ∈ R
dz
∣∣∣dt(zj

k) ≤ G
}

(6)

where
dt(zj

k) = v(k, t, j)T(St
k
)−1v(k, t, j)T (7)

denotes the distance between predicted measurement zt
k|k−1 and received measurement

zj
k, v(k, t, j) = zj

k − zt
k|k−1 denotes the difference between zt

k|k−1 and zj
k, St

k is the innovation
covariance, dz is the measurement dimension, and G is the threshold that leads to a specified
gating probability PW .

• Step 3: Association hypothesis events are formed by associating the validated mea-
surements with the tracks.

The posterior probability of the association hypothesis event θh is computed as

P(θh) = C−1 ∏
t∈Th

0

(
1 − PDPWrt

k−1
)× ∏

t∈Th
1

(
PDPWrt

k−1
pt

hVk

m̂k

)
(8)

where C is the normalization constant; pt
h = f t(zt

k

∣∣Z1:k−1)/PW with PW denoting the gating
probability and Z1:k−1 is the set of measurements accumulated up to time k − 1; PD is the
probability of detection; Vk is the cluster volume; m̂k is the number of clutter measurement;
Th

0 denotes the set of tracks associated with no measurement; and Th
1 denotes the set of

tracks associated with one measurement.
Using the posterior probability P(θh), the target existence probability of track t in θh is

computed as

rt|h
k =

(
1 −

mk

∑
i=1

ξ
t|h
i

)
rt|h

k,0 +
mk

∑
i=1

ξ
t|h
i rt|h

k,i (9)

where rt|h
k,0 denotes the probability that track t is not associated with any measurement,

rt|h
k,i denotes the probability that track t is associated with measurement zi

k in θh, and the

parameter ξ
t|h
i indicates whether the track t is associated with a measurement, i.e.,

ξ
t|h
i = 1 , if track t is associated with measuremt zi

k
ξ

t|h
i = 0 , otherwise

(10)
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The probabilities rt|h
k,0 and rt|h

k,i are computed as follows

rt|h
k,0 =

(1 − Pt
DPt

W)rt
k|k−1

1 − Pt
DPt

Wrt
k|k−1

P(θh), rt|h
k,i = P(θh) (11)

Using the posterior probability P(θh) and the target existence probability rt|h
k , the

target state and the error covariance of track t in θh are estimated as

xt|h
k =

(
1 −

mk

∑
i=1

ξ
t|h
i

)
xt

k|k−1 +
mk

∑
i=1

ξ
t|h
i xt

k,i (12)

Pt|h
k =

(
1 −

mk

∑
i=1

ξ
t|h
i

)
Pt

k|k−1 +
mk

∑
i=1

ξ
t|h
i

[
Pt

k|k−1 − Kt
kSt

k
(
Kt

k
)T
]

(13)

where xt
k,i is the updated target state using zi

k and Kt
k is the filter gain.

• Step 4: The target existence probability, the target state, and the error covariance for
track is approximated as [11]

rt
k =

NH
∑
h=1

rt|h
k (14)

xt
k =

1
rt

k

NH
∑
h=1

rt|h
k xt|h

k (15)

Pt
k =

1
rt

k

NH
∑
h=1

rt|h
k

[
Pt|h

k + xt|h
k

(
xt|h

k

)T − xt
k
(
xt

k
)T
]

(16)

where NH denotes and the number of all association hypothesis events.

4. Evolutionary-Optimization-Based Joint Integrated Probabilistic Data Association

4.1. Motivations

In automatic tracking systems, the target number may vary with time. In this paper, we
assume that the targets are not discriminated from each other. Under these assumptions, the
target states can be described as RFSs, in which the points are unordered and random [17].
It was shown that the posterior density can be changed into the other density within its
RFS family [10]. Therefore, we propose to optimize the ordered posterior density within its
RFS family to improve the tracking accuracy.

By reducing the error covariance, the problem of overlapping tracking gates can be
effectively alleviated [11]. A scalar measure of the error covariance is the trace for the
covariance matrix, as follows [11]

Ck =
nk
∑

t=1
trace(Pt

k)

=
nk
∑

t=1

NH
∑

h=1

rt|h
k
rt

k
trace

(
Pt|h

k + xt|h
k (xt|h

k )
T − xt

k(x
t
k)

T
)

=
nk
∑

t=1

1
rt

k

NH
∑

h=1
rt|h

k

[
trace

(
Pt|h

k

)
+ ‖xt|h

k − xt
k‖

2
] (17)

To alleviate the problem of overlapping tracking gates and improve the tracking
accuracy, the trace for the covariance matrix Equation (17) is used as the cost function for
the optimization of the posterior density.
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4.2. Evolutionary Optimization of the Posterior Density

For the optimization of the posterior density, the target permutations under different
association hypothesis events are reordered to minimize the cost function using Equa-
tion (17). We use the evolutionary algorithm [26,27] to implement the optimization. The
specific steps of the proposed EOJIPDA method are as follows.

• Step 1: It is necessary to generate the initial population for the evolutionary optimization.

We enumerate all the possible permutations of the targets and assign a unique index
to each permutation. For example, when the number of targets is nk = 3, the number of all
possible permutations of the targets is NP = nk! = 3! = 6. The set of the indexes for these
permutations is denoted as

I =
{

I1, I1, . . . , Ink!
}

(18)

The indices within the set I are randomly assigned to each association hypothesis
event. An assignment indicates a possible solution for the evolutionary algorithm. Such a
solution is named as a chromosome, as follows

chromosome = [C1, C2, . . . CNH ] (19)

where the element Cj ∈ I and j = 1, 2, . . . , NH. We randomly perform the assignments and
generate Npop chromosomes. These chromosomes are used as the initial population, i.e.,
the first generation, for the evolutionary optimization.

• Step 2: The value of the cost function forms the fitness value for each solution.

The fitness function is used to test how well the chromosome solves the problem. All
the solutions in the population are sorted based on their fitness values.

• Step 3: The offspring solutions are generated using the selection, crossover and
mutation operators.

The selection operator chooses some of the chromosomes for reproduction. For the
crossover operator, we use the single-point crossover. The genes of the two-parent chro-
mosome are interchanged after a random selected point. Along with the crossover, the
mutation is performed. We random select one point and change it into a random selected
point from the set using Equation (18).

The new population with all the parents and offspring is sorted again based on their
fitness values and the population size is decreased to Npop by eliminating all the lower
rank solutions.

• Step 4: Back to Step 3 and the cycle repeats.

For each generation, we record the chromosome with the highest fitness (along with
the value of the fitness). The cycle is repeated until the fitness value of the “best-so-far”
chromosome stabilizes.

4.3. Illustrative Example

To illustrate the procedure of the proposed EOJIPDA method, a one-dimensional
example is used in this subsection. We assume that two Gaussian distributed targets
generate two detections and there are two association hypothesis events θ1 and θ2. The
density of target t corresponding to θh is denoted as pt|h(x) =

{
rt|h, N (xt|h, Pt|h)

}
. The

initial posterior probability density is given as

θ1 : p1|1(x) = {0.1, N(1.0, 1.0)}, p2|1(x) = {0.4, N(5.0, 1.0)}
θ2 : p1|2(x) = {0.5, N(4.0, 1.0)}, p2|2(x) = {0.5, N(2.0, 1.0)} (20)
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Using Equations (14)–(16), the approximated probability density for each track is
described by

p1(x) = {0.60, N(3.50, 2.25)}, p2(x) = {0.9, N(3.33, 3.22)} (21)

The posterior probability density of the joint track state and its approximated prob-
ability density of the estimated track state are shown in Figures 1a and 1b, respectively.
Obviously, Figure 1b is very different with Figure 1a. Therefore, the approximation is less
accurate and the trace of the covariance matrix in Equation (17) of the estimated covariance
matrix is C0 = 2.25 + 3.22 = 5.47.

(a) (b) 

Figure 1. The posterior probability density and its approximated probability density of iteration 0:
(a) posterior probability density of iteration 0 (b) approximated probability density of iteration 0.

To improve the accuracy of the approximation, we perform the evolutionary optimiza-
tion of the posterior probability density. Five iterations are performed and the resulting
posterior probability density is given as

θ1 : p1|1(x) = {0.1, N(1.0, 1.0)}, p2|1(x) = {0.4, N(5.0, 1.0)}
θ2 : p1|2(x) = {0.5, N(2.0, 1.0)}, p2|2(x) = {0.5, N(4.0, 1.0)} (22)

Using Equations (14)–(16), the approximated probability density for each track is
described by

p1(x) = {0.60, N(1.83, 1.14)}, p2(x) = {0.9, N(4.44, 1.25)} (23)

The resulting posterior probability density and its approximated probability density
are plotted in Figure 2a,b, respectively. It is obvious that the similarity between Figure 2a,b
is much higher than that between Figure 1a,b. The trace of the covariance matrix in
Equation (17) of the estimated covariance matrix is reduced to C0 = 1.14 + 1.25 = 2.39.
This indicates that the accuracy of the approximation and the state estimation is greatly
improved. The results show a good agreement with the theoretical analysis.
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(a) (b) 

Figure 2. The posterior probability density and its approximated probability density of iteration 5:
(a) posterior probability density of iteration 5 (b) approximated probability density of iteration 5.

5. Numerical Simulation and Results

We demonstrate the performance of the proposed EOJIPDA filter using two challeng-
ing MTT scenarios in the two-dimensional surveillance area. At time k, the state of the
moving target is represented by the state vector

xk = [xk,
.
xk, yk,

.
yk]

T (24)

where [xk, yk]
T is the target position and [

.
xk,

.
yk]

T is the target velocity. The transition matrix
of the motion model in Equation (1) is

F = I2 ⊗
[

1 Ts
0 1

]
(25)

where ⊗ is the Kroneker product, I2 is a 2 × 2 identity matrix, and Ts is the sampling
interval. The covariance of the Gaussian process noise u k is

Q = I2 ⊗ q

[
T3

s
3

T2
s

2
T2

s
2 Ts

]
(26)

where q is a tuning parameter. In both scenarios, a sensor is used to collect the measurements
in the surveillance area. For simplicity, it is assumed that the measurements collected by
the sensor represent the positions of the targets. Therefore, the observation matrix of the
measurement model in Equation (3) is

H =

[
1 0 0 0
0 0 1 0

]
(27)

The covariance of the Gaussian measurement noise wk is

R =

[
σ2

x 0
0 σ2

y

]
(28)

where σx and σy are the standard deviations of the measurement noise in x and y coordi-
nates, respectively.

The sampling interval of the sensor is fixed as Ts = 1 s and the detection probability
is PD = 0.92. The gating threshold is G = 9.21 [28], which corresponds to a two-
dimensional gating probability of PW = 0.99. The coefficients of the Markov chain one
model in Equation (5) are borrowed from [9], where p11 = 0.98 and p21 = 0. The tracks
are terminated if the target existence probability falls below the termination threshold
and are confirmed if the probability exceeds the confirmation threshold. The confirmation

185



Electronics 2022, 11, 582

and termination thresholds are PC = 0.83 and PT = 0.0909 [9], respectively. The tracking
performance of the filter is measured by the optimal sub-pattern assignment (OSPA) [29]
multi-target miss distance, which measures the error between the estimated and true state
and is widely used [17–20,30]. If X = {x1, x2, · · · , xn}, Y = {y1, y2, · · · , ym}, and n ≥ m,
the OSPA multi-target miss distance is defined as [29]

dOSPA
p,c (X, Y) :=

(
1
n

(
min
π∈Πn

m

∑
i=1

d(c)(xi, yπ(i) )
p + cp(n − m)

))1/p

(29)

where d(c)(x, y) := min(c, ‖x − y‖), c > 0 is the cut-off parameter, p ≥ 1 is an order
parameter and π is a permutation function in the set of permutations Πn. If n < m,
dOSPA

p,c (X, Y) := dOSPA
p,c (Y, X). All the experiments are tested in MATLAB R2010a and

implemented on a computer with a 3.40 GHz processor.

5.1. Scenario 1

We consider the tracking of two targets in this scenario, whose trajectories are shown in
Figure 3. The track coalescence of the JPDA and JIPDA filters can be clearly observed using
this scenario; hence, this scenario has been widely used [10–15]. In Figure 3, the parameters
are selected as: φ = π/3, d = 0.5 m, and l1 = l2 = 10 m. It is assumed that the speed of
the target stays constant as v = 1 m/s. The parameters for the clutter measurements are

λ = 0.36 × 10−3 m−2 and
∣∣FOV

∣∣= 1.4 × 103 m2 , giving an average of five clutter returns
per scan. The standard deviations of the measurement noise are σx = σy = 0.1 m .

φ

l

l

d

v

v

Figure 3. Simulated scenario 1.

The estimated target positions for a single run of the JIPDA and EOJIPDA filters
are shown in Figures 4a and 4b, respectively. It can be observed that the serious track
coalescence problem happens in Figure 4a. When the targets are closely spaced, their
position estimates coalesce. Although the targets move away from each other later, the
JIPDA fails to detect their separation. Compared with the JIPDA filter, the EOJIPDA filter
can accurately estimate the target positions, as shown in Figure 4b.

The average OSPA distances over 100 Monte Carlo trails for the JIPDA, exact nearest
neighbor JIPDA (ENNJIPDA), JIPDA*, and EOJIPDA filters are shown in Figure 5. Due
to the track coalescence problem, the OSPA distance of the JIPDA filter is worse than in
the comparative algorithms. Although the ENNJPDA filter was proposed to overcome the
coalescence problem, it is sensitive to clutter and missed detections. Compared with the
JIPDA* filter, the EOJIPDA filter uses more information about the posterior density and
performs better in terms of the OSPA error.
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(a) (b) 

Figure 4. Estimated target positions for Scenario 1, in which circles represent estimated positions and
dotted lines represent true trajectories: (a) Output of the JIPDA filter; (b) output of the EOJIPDA filter.

Figure 5. Average OSPA distances for Scenario 1. JIPDA* denotes a coalescence-avoiding version of
JIPDA, as shown in [16].

5.2. Scenario 2

The tracking of three targets is studied in this scenario. The trajectories of the targets
cross each other at a crossing point, as shown in Figure 6. Each target keeps a constant
speed, v = 1 m/s. The parameters used in the simulations are φ1 = φ2 = π/8 and
l1 = l2 = 100 m, σx = σy = 10 m, λ = 2.5 × 10−3 m−2 , and

∣∣FOV
∣∣= 2 × 103 m2 . The

two-point difference [24] is used to initiate tracks automatically and the maximum possible
speed is assumed to be 200 m/s.
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φ

v

vφ

v

l

l

 

Figure 6. Simulated scenario 2.

The estimated target positions for a single run of the JIPDA and EOJIPDA filters are
shown in Figures 7a and 7b, respectively. It can be observed from Figure 7 that it takes some
time for the JIPDA and EOJIPDA filters to localize targets. When the targets are spaced
close to each other, the JIPDA filter cannot accurately estimate the target positions and the
tracks tend to coalesce. Compared with the JIPDA filter, the EOJIPDA filter can effectively
overcome the track coalescence problem and provide position estimates that are close to
the true values.

(a) (b) 

Figure 7. Estimated target positions for Scenario 2, in which circles represent estimated positions and
dotted lines represent true trajectories: (a) Output of the JIPDA filter; (b) output of the EOJIPDA filter.

The average OSPA distances for the different tracking methods are shown in Figure 8.
The tracking errors of all the methods are high at the initial time steps because the initial
states of the targets are assumed to be unknown in this scenario. Since the track coalescence
problem happens in the JIPDA filter, it can be observed that the tracking error of the
JIPDA filter is high after the crossing point (at time k = 11). The ENNJIPDA and JIPDA*
filters can effectively reduce the tracking error of the JIPDA filter. Nevertheless, the error
performance of the proposed EOJIPDA filter is better than that of other filters for almost
the entire scenario.

Table 2 shows the accumulated number of confirmed tracks at the end point of the
tracking by 100 MC trails for the JIPDA filter, the ENNJIPDA filter, the JIPDA* filter and the
EOJIPDA filter. The results for the different clutter rates are provided. It can be seen that
the challenging tracking environment makes all the filters lose some tracks. Nevertheless,
the performance of the EOJIPDA filter is superior to others under different clutter rates. In
other words, the better tracking performance of the EOJIPDA filter makes the detection of
target existence more reliable.
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Figure 8. Average OSPA distances for Scenario 2.

Table 2. Number of confirmed targets.

Clutter Rate JIPDA ENNJIPDA JIPDA* EOJIPDA

r = 3 241 287 293 299
r = 6 238 281 290 297
r = 9 230 279 283 294

6. Conclusions

The JIPDA filter an effective method for MTT, but it suffers from the serious track
coalescence problem. To improve the tracking performance of the JIPDA filter, a novel MTT
filter, named EOJIPDA, was proposed in this paper. We first attempted to use the evolu-
tionary computation technique to optimize the posterior density of the JIPDA filter. When
the target identity was irrelevant, we modeled the posterior density optimization problem
as an evolutionary computation problem and the trace of the covariance matrix is used
as the cost function. Through an indicative example, it was shown that the evolutionary
computation can effectively reduce the value of the cost function, improving the accuracy
of the Gaussian approximation and the state estimation.

The simulation results show that the EOJIPDA filter effectively avoids track coales-
cence and performs better than the traditional algorithms in terms of the OSPA error.
Future work will investigate the application of more computational intelligence strategies,
such as particle swarm optimization and the Cuckoo search algorithm, to improving the
performances of traditional tracking methods.
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Abbreviations

The following abbreviations are used in this manuscript:

MTT multi-target tracking
MHT multiple hypothesis tracking
JPDA joint probabilistic data association
ENNJPDA exact nearest-neighbor JPDA
ENNJIPDA exact nearest-neighbor JIPDA
SJPDA set JPDA
NNSJPDA nearest-neighbor SJPDA
JIPDA joint integrated probabilistic data association
FISST finite set statistics
PHD probability hypothesis density
CPHD cardinalized PHD
MB multi-Bernoulli
LMB label multi-Bernoulli
GLMB generalized label multi-Bernoulli
RFS random finite set
GM Gaussian mixture
SMC sequential Monte Carlo
EOJIPDA joint integrated probabilistic data association
OSPA optimal sub-pattern assignment
List of mathematical symbols
xk state vector at time k
F k transition matrix at time k
N (m, P) Gaussian probability density with mean m and covariance P
zk measurement vector at time k
Hk observation matrix at time k
PD detection probability
Pk covariance matrix at time k
rk target existence probability at time k
p11,p21 Markov chain coefficients
zk|k−1 predicted measurement vector from time k-1 to time k
Sk innovation covariance
dz measurement dimension
G gating threshold
θh association hypothesis event
PW gating probability
Vk cluster volume
Kk filter gain
NH number of all association hypothesis events
trace(P) trace for the covariance matrix P
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Abstract: Deep Neural Networks (DNNs) are commonly used methods in computational intelligence.
Most prevalent DNN-based image classification methods are dedicated to promoting the performance
by designing complicated network architectures and requiring large amounts of model parameters.
These large-scale DNN-based models are performed on all images consistently. However, since
there are meaningful differences between images, it is difficult to accurately classify all images by a
consistent network architecture. For example, a deeper network is fit for the images that are difficult
to be distinguished, but may lead to model overfitting for simple images. Therefore, we should
selectively use different models to deal with different images, which is similar to the human cognition
mechanism, in which different levels of neurons are activated according to the difficulty of object
recognition. To this end, we propose a Hierarchical Convolutional Neural Network (HCNN) for
image classification in this paper. HCNNs comprise multiple sub-networks, which can be viewed
as different levels of neurons in humans, and these sub-networks are used to classify the images
progressively. Specifically, we first initialize the weight of each image and each image category,
and these images and initial weights are used for training the first sub-network. Then, according
to the predicted results of the first sub-network, the weights of misclassified images are increased,
while the weights of correctly classified images are decreased. Furthermore, the images with the
updated weights are used for training the next sub-networks. Similar operations are performed on all
sub-networks. In the test stage, each image passes through the sub-networks in turn. If the prediction
confidences in a sub-network are higher than a given threshold, then the results are output directly.
Otherwise, deeper visual features need to be learned successively by the subsequent sub-networks
until a reliable image classification result is obtained or the last sub-network is reached. Experimental
results show that HCNNs can obtain better results than classical CNNs and the existing models based
on ensemble learning. HCNNs have 2.68% higher accuracy than Residual Network 50 (Resnet50)
on the ultrasonic image dataset, 1.19% than Resnet50 on the chimpanzee facial image dataset, and
10.86% than Adaboost-CNN on the CIFAR-10 dataset. Furthermore, the HCNN is extensible, since
the types of sub-networks and their combinations can be dynamically adjusted.

Keywords: computational intelligence; image classification; HCNNs; progressive deep learning;
disease screening

1. Introduction

With the development of computer vision technologies, many visual tasks, such as
object detection, semantic segmentation, and image classification, have been widely applied
in many fields [1–3]. Image classification is one of the most common and important visual
tasks [4–6], and a large number of models have been proposed based on traditional machine
learning methods and deep learning methods [7–9]. Recently, Convolutional Neural
Network(CNN)-based image classification methods, such as AlexNet [10], Visual Geometry
Group 16 (VGG16) [11], ResNet [12], and Densely Connected Networks (DenseNet) [13,14],
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were widely applied in many visual tasks. Generally speaking, the networks with fewer
layers usually extract the low-level visual features, while the networks with more layers
can extract the more abstract visual features.

These primary research works focus on how to extract distinguishable local features
to improve the image classification performance. In practice, however, there are large num-
bers of various types of objects, and many images suffer from poor illumination conditions,
varying degrees of occlusion, similarities between objects, and so on. It is difficult to accu-
rately classify all images by a consistent model, which presents great challenges to image
classification [15,16]. For human beings, different types of objects are recognized through
different processes, and people tend to quickly make judgments on easy-to-recognize ob-
jects based on their own subjective and objective cognition or prior knowledge. Meanwhile,
people need further analysis and understanding for relatively difficult-to-recognize objects,
and may further perform information abstraction and knowledge reasoning. Therefore,
we contend that there are meaningful differences between images, and various models
encounter various difficulties when attempting to accurately classify them. For example,
images with appropriate lighting conditions are more easily classified correctly by the
model than those with strong or weak lighting conditions; it is easier to perform disease
screening on medical images for prominent lesions [17,18]. Therefore, we should select
the appropriate networks according to the particular tasks. However, in most traditional
CNN-based methods, all images need to be sent to the same classification process, which
neglects the differences in discrepant classification difficulties for different images [19–21].

Inspired by the mechanism of human cognition and the fact that different images
present different levels of cognitive difficulty, we design a hierarchical integrated deep
learning model named HCNN. The HCNN treats multiple CNNs as sub-networks and uses
them progressively for feature extraction [22,23]. Specifically, the simple sub-networks are
used to extract visual features for the images that are easy to classify accurately. Moreover,
the complex sub-networks are used to extract the more abstract visual features, which
are more suitable for the images which are more difficult to accurately classify. The final
classification results are obtained by integrating the results of these sub-networks. Most
existing models integrate multiple CNNs by fusing the high-level feature/decision of the
CNNs to obtain a final result. Our HCNN selectively extracts the composite features of
multiple sub-networks in different levels, which is more reasonable and complies with the
process of human cognition.

Furthermore, the multi-class joint loss is designed to offer the features of the samples
within the same category higher similarity, while the similarity between the features of
different categories is made as low as possible. Gradient descent is used to train the entire
network end-to-end. Finally, several experiments are conducted on a medical image dataset,
two common image classification datasets (CIFAR-10, CIFAR-100 [24]), and a chimpanzee
dataset [25]. The comparison experimental results show that the HCNN achieves superior
performance to the existing related models. Moreover, ablation experiments prove that our
model’s performance is superior to that of each single network and combinations of several
sub-networks. In addition, it is worth noting that the HCNN has good scalability, since the
types and combinations of CNN modules can be dynamically adjusted depending on the
specific tasks involved.

The main contributions of this paper are as follows:
(1) We propose a progressive image classification model, named HCNN, which can

progressively use its sub-network modules (with different depths of network layers) to
extract different levels of visual features from images, while the classification results of
different images are output by corresponding sub-network modules. In brief, the HCNN
can use the sub-network modules with fewer network layers to quickly yield image
classification results for the images that are easy to classify accurately, while the images that
are difficult to classify accurately need to pass through more complex sub-network modules.

(2) A multi-class joint loss is designed to reduce the distance between the features of
samples within the same category, while increasing the distance between the features of
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samples in different categories. In addition, gradient descent is used for the entire model
training end-to-end.

(3) The performance and scalability of the HCNN are verified on four image classifi-
cation datasets. The comparison and ablation experimental results show that the HCNN
achieves significant performance improvements compared with existing models and com-
binations of several sub-networks.

This paper is organized as follows. In Section 2, we review the related image clas-
sification models, ensemble learning models, and metric learning models and describes
their relationships with our model. In Section 3, we elaborate the basic framework and
loss functions of HCNNs and give the model implementation process in the test stage.
In Section 4, we compare HCNNs and eight related methods on our own ultrasonic image
dataset and three public image datasets. We also perform validation experiments to further
analyze the HCNNs. The final conclusion is given in Section 5.

2. Related Work

Image classification is one of the most important visual tasks in computer vision. Due
to the rapid development of deep learning technologies and its superior performance in
computer vision, image classification methods based on DNNs have become increasingly
mature. To accurately classify images, various types of artificial visual features are de-
signed, and the visual features are automatically learned by DNNs. Related classifiers are
then used to distinguish the categories of the images. To date, a large number of deep
learning-based image classification methods have been proposed [26,27] and have been
widely used in different computer vision tasks. In addition, several improved models have
been successively proposed to improve the image classification performance. Xi et al. [28]
proposed a parallel neural network by combining texture features. This model can extract
features that are highly correlated with facial changes, and thus achieves better perfor-
mance in facial expression recognition. Hossain et al. [29] developed an automatic date
fruit classification system to satisfy the interest of date fruit consumers. Goren et al. [30]
collected the street images taken by roadside cameras to form a dataset, and then designed
a CNN to check the vacancy in the collected dataset. To form an efficient classification
mechanism that integrates feature extraction, feature selection, and a classification model,
Yao et al. [31] proposed an end-to-end image classification method based on an aided
capsule network and applied it to traffic image classification. An image classification
framework for securing against indistinguishable plaintext attacks was proposed by Has-
san et al. [32]. This framework performs a secure image classification on the cloud without
the need for constant device interaction. To solve the multi-class classification problems,
Vasan et al. [33] proposed a new method to convert raw malware binaries into color images,
which are used by the fine-tuned CNN architecture to detect and identify malware families.

A single CNN may be impacted by gradient disappearance, gradient explosion, and
other similar factors, while network models based on ensemble learning have better immu-
nity to these adverse factors due to the cooperative complementation of multiple CNNs.
For example, Ciregan et al. [34] designed a method by utilizing multiple CNNs, which are
trained by using the same training datasets. These trained CNNs are then used to obtain
multiple prediction results, which are in turn fused to obtain the final result. This method
employs the simple addition of the predicted results of different CNNs, which it treats in iso-
lation. Frazao et al. [35] assigned different weights to multiple CNNs; the CNNs with better
performance have higher weights, and therefore have greater impacts on the final results.
An integration of CNNs is used to detect polyps by Tajbakhsh et al. [36]; this approach can
accurately identify the specific types of polyps by using their color, texture, and shape fea-
tures. Ijjina et al. [37] proposed a human action prediction method, which combines several
CNNs and uses the best predicted result as the final result. Although these methods use
multiple neural network modules to carry out related classification tasks, the modules are
independent of each other and the interactions between models are ignored. To solve these
problems, Adaboost CNN models have been proposed. For example, Taherkhani et al. [38]
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combined several CNN sub-networks based on the Adaboost algorithm. These CNN sub-
networks have the same network structure; thus, the transfer learning method can be used
between adjacent layers, and the last CNN sub-network module outputs the final results.
The model in [38] is unable to selectively and progressively use the CNN sub-networks
for feature extraction, and the testing images need to go through all CNN sub-networks to
obtain the final results.

A key problem with the semantic understanding of images is that of learning a good
metric to measure the similarity between images. Deep metric learning-based methods have
been proposed to learn the appropriate similarity measures between pairs of samples, while
samples with higher similarities are classified into a single category according to the dis-
tances between samples. These approaches have been widely used for image retrieval [39],
face recognition [40], and person re-identification [41]. For example, Schroff et al. [42] pro-
posed a face recognition system named FaceNet, and a triplet loss was designed to measure
the similarities between samples. Wang et al. [43] proposed a general weighting framework
for a series of existing pair-based loss functions by fully considering three similarities for
pair weighting, and then collecting and weighting the informative pairs. These metric
learning methods focus on optimizing the similarity of image pairs. Furthermore, center
loss is proposed by Wen et al. [44] to define a category center for each category, as well as
to minimize the distance within one category. Wang et al. [45] proposed an angular loss,
which considers the angle relationship to learn a better similarity metric, while the angular
loss aims at constraining the angle at the negative point of triplet triangles.

The related works mentioned above mainly involve DNNs, ensemble learning, and
metric learning. Meanwhile, there are intrinsic correlations between these fields. In general,
ensemble learning needs to use multiple DNN models, and the design of both ensemble
learning and DNNs should be on the basis of the theory of metric learning. Specifically,
the proposed HCNN is an ensemble learning model based on DNNs for the image classifi-
cation task, and the multi-class joint loss is designed for the HCNN according to the basic
theory of metric learning.

3. The Proposed Hierarchical CNNs (HCNNs)

In order to classify different images in real life, we design a hierarchical progressive
DNN framework, named Hierarchical CNNs (HCNNs), which consists of several sub-
networks. The images need to go through one or more sub-networks so as to obtain a more
reliable classification result. In this paper, we refer to the definitions of samples in self-
paced learning methods [46]: the samples that are easy for models to identify are defined as
easy samples, while the difficult-to-identify samples are denoted as hard samples. In this
section, we will describe the overall structure of the HCNN and its loss function. Multiple
CNNs are combined to form HCNNs, which can progressively carry out the sub-networks
to classify the images; the cross-entropy loss and triple loss are combined for model training
to more accurately extract the distinguishing features of the images.

3.1. The Model Framework of HCNNs

Based on the basic concept of ensemble learning, we try to aggregate multiple CNNs
into a strong image classification model [1,47,48]. However, unlike traditional ensemble
learning methods or Adaboost CNNs [38], which consist of the same type of sub-networks
that are indiscriminately trained and tested, our HCNN consists of several different types
of CNNs as the sub-networks, and these sub-networks are trained progressively in order.
In this paper, we choose Alexnet [10], VGG16 [11], Inception V3 [49], Mobilenet V2 [50],
and Resnet-50 [12] as the basic sub-networks (see Figure 1). In addition, there are no limits
on the number of sub-networks and their types. At the training stage, images are assigned
weights to express the difficulties encountered by models in accurately classifying them.
If an image can not be accurately classified by a sub-network, its weight will be increased.
Images with updated weights are then input into the next sub-network for extracting
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more abstract and effective visual features. In this section, we will elaborate on HCNNs in
more detail.

Figure 1. An overview of HCNNs. In this paper, the HCNN consists of five sub-networks,
i.e., Alexnet, VGG16, Inception V3, Mobilenet, and Resnet-50. Each image sample has its weight for
the specific sub-networks. D1, · · · , D5 represent the image weights for the sub-networks, respectively.
Each sub-network combines the results of the previous sub-networks to make decisions.

Assume that HCNNs have M sub-networks, and they are trained one by one. Let wm
i

be the weight of the i-th image for the m-th sub-network, and Dm = {wm
1 , wm

2 , . . . , wm
n }.

Here, i ∈ {1, 2, . . . , n}, m ∈ {1, 2, . . . , M}, while n is the number of all images in the
training dataset.

First of all, the weights of all images need to be initialized. We therefore input all these
training images with their initial weights into the first sub-network (Alexnet, m = 1) for
model training.

D1 = {w1
1, w1

2, . . . , w1
n}, (1)

where w1
i = 1/n, i = 1, · · · , n. The first sub-network is then trained through multiple

iterations. The gradient descent is used to update its parameters in each iteration. Finally,
the trained sub-network can give the predictions:

ym
i = Gm(xi), (2)

where Gm(·) represents the m-th sub-network, and ym
i is the predicted label of the i-th

sample by the m-th sub-network Gm. Next, we select the samples that meet the condition
of ym

i 
= ti, where ti is the ground truth of the category label of the i-th sample. We further
use the following equation to calculate the weighted error rate εm of the m-th sub-network
Gm(·) on all selected samples in the training set:

εm =
Ni_s

∑
i_s=1

wm
i_s, (3)
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where wm
i_s is the weight of the i_s-th selected samples for Gm(·), and Ni_s is the number of

selected samples. Subsequently, εm is used to obtain the weight coefficient αm of Gm, which
denotes the importance coefficient of Gm in HCNNs:

αm =
1
2

log
1 − εm

εm . (4)

As Equation (4) shows, αm is inversely proportional to εm, i.e., with a smaller error rate
εm, the corresponding sub-network will have larger values of the importance coefficient
throughout the whole model. Furthermore, αm is used to update the weights of the samples
to train the next sub-network.

For the images that meet the condition ym
i = ti, we have

w(m+1)
i = wm

i exp(−αm). (5)

Otherwise,
w(m+1)

i = wm
i exp(αm). (6)

Then,
D(m+1) = {w(m+1)

1 , w(m+1)
2 , ..., w(m+1)

n }. (7)

Therefore, if the predicted results ym
i exhibit a high degree of agreement with the true

labels ti of the images, then the weights of the images for the next sub-network decrease;
otherwise, their weights increase. We then use the image samples with their updated
weights to train the next sub-network for multiple iterations.

For a dataset containing a small number of samples, the initial and updated weights of
the samples are applicable to training of HCNNs. However, if the dataset consists of a large
number of samples, there is a risk of gradient explosion occurring during model training
due to the loss values being too small (possibly even approaching zero); this means that
the network parameters cannot be updated normally. To solve this problem, we use the
weights of samples to obtain the category weights using Equation (8):

C(m+1)
j =

Kj

∑
k_j=1

w(m+1)
k_j , (8)

where C(m+1)
j represents the weight of the j-th category for the (m + 1)-th sub-network,

and w(m+1)
k_j is the weight of the k_j-th sample belonging to the j-th category, which has Kj

samples. We then use C(m+1)
j as the weights of the samples belonging to the j-th category

(Equation (9)).

w
′(m+1)
k_j = C(m+1)

j . (9)

Therefore, before training each sub-network, we need to update the weights of all
samples according to the weights of their corresponding categories. The sub-network will
then pay more attention to the samples with larger weights.

HCNN is a scalable model, and its architecture is illustrated in Figure 1. In addition,
HCNN enhances the correlation between different sub-networks by transmitting the feature
vectors and the sample weights in the previous sub-network to the next sub-network.

3.2. Multi-Class Joint Loss in HCNNs

During model training, we constantly updated the weights of the image categories
and the images to express the difficulties encountered by the model. We then needed to
design the loss function, which can guide the model to extract the specific visual features
from different images. In addition, this loss function should attempt to make the difference
in the visual features within the same category as small as possible, while the difference in
the visual features in different categories should be as large as possible.
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Cross-entropy loss with category weights. The cross-entropy function LC is a clas-
sic and commonly used loss function. In this paper, to enable the HCNN to select its
corresponding sub-networks and therefore extract the visual features in different levels,
a category weight is assigned to each image category; subsequently, the new cross-entropy
loss with category weights can be expressed by the following equation:

L
′(m+1)
C = Cm

j L(m+1)
C . (10)

Here, L
′(m+1)
C is the cross-entropy loss with category weights for the (m + 1)-th sub-

network, and L(m+1)
C is the traditional cross-entropy loss.

Weighted triplet loss. For image classification, the problem may arise that there may
be less similarity between images within the same category, while there is more similarity
between images in different categories; as a result, it is difficult to effectively improve the
image classification performance. The triplet loss can guide models to learn the visual
features to further cluster the samples within the same category and separate the samples
of different categories. Therefore, we use a weighted triplet loss in each sub-network.
This guides HCNNs to extract more discriminative visual features between the samples of
different categories, as shown in Figure 2.

Figure 2. An illustration of the influence of triplet loss on visual feature learning.

Assume that we have a series of image samples {x1, x2, ..., xn}, and {y1, y2, ..., yn} are
their true labels. We then define an anchor image ua, a positive image sample u+, and a
negative image sample u−. More specifically, ua is an image in one category, u+ is another
image in the same category with ua, and u− is an image in another category that differs
from the category of ua. During model training, we can obtain a triplet set consisting of Ua,
U+, and U− in each batch, and then randomly select the corresponding samples to form a
triple S = {ua, u+, u−} as the input of each sub-network. We can then obtain the triplet
loss Lm

T for the m-th sub-network:

Lm
T = Max

{
d( f a, f+)− d( f a, f−) + α, β

}
. (11)

Here, f a, f+, and f− represent the visual features extracted by the m-th sub-network
from the images of ua, u+, u−, respectively, while d(·) is the Euclidean distance. Moreover,
α is a threshold parameter used to distinguish between the positive and negative samples
of the anchor samples. β is a parameter that is close to 0 without being equal to 0. Triplet
loss is used to reduce the distance between the features of ua and u+ and expand the
distance between the features of ua and u−, as shown in Figure 2. Then, triplet loss can be
used to solve the following three situations in HCNNs.
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Case I: If d( f a, f+)+ α < d( f a, f−), then Lm
T = β. This situation shows that the current

sub-network can accurately classify these three image samples; thus, there is no need to
pay more attention to them in the subsequent sub-networks.

Case II: d( f a, f+) < d( f a, f−) < d( f a, f+) + α. This situation shows that high similar-
ity exists among these three image samples, and the current sub-network finds it difficult
to distinguish them. This triple S then needs to pass through the subsequent sub-networks
with more complex network structures.

Case III: d( f a, f−) < d( f a, f+). This situation shows that the current sub-network
cannot distinguish these image samples, and that their more abstract features need to be
extracted by the subsequent sub-networks.

Weighted multi-class joint loss function. HCNNs can progressively classify images and
achieve visual feature learning at different levels. In addition, in each batch during model
training, a weighted multi-class joint loss function is designed by combining cross-entropy
loss with category weights and weighted triplet loss.

Lm = L
′(m)
C + γLm

T . (12)

Here, Lm is the weighted multi-class joint loss for the m-th sub-network. γ is a
hyperparameter; in this paper, γ = 0.5.

3.3. Model Testing

To test the proposed model, we need to provide a threshold Hm for each sub-network
so as to make the model output the final classification results. When image classification
confidence in the m-th sub-network is higher than Hm, this prediction is reliable; otherwise,
the credibility of the image classification results is lower. Generally speaking, the values of
Hm can be set larger, which ensures that the difficult-to-identify images can pass through
the subsequent sub-networks with more complex network structures. Figure 3 shows the
simple process of image classification of HCNNs.

Figure 3. Progressive image classification by HCNNs in the test stage.

In more detail, the testing process of HCNNs with M sub-networks can be described
as follows.
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Step 1: The test image is input into the m-th sub-network for visual feature learning
(m = 1 for the first sub-network). The model then outputs the probability distribution
of the image classification results Pm = {pm

1 , pm
2 , ..., pm

N_C}, where N_C is the number of
image categories.
Step 2: A comparison is drawn between the maximum classification probability pm

k =
Max(Pm) and Hm.
Step 3: If pm

k ≥ Hm or m = M, then the model outputs the classification results correspond-
ing to pm

k ; otherwise, m = m + 1, and return to Step 1.

4. Experimental Results and Analysis

To verify the effectiveness and superiority of the proposed HCNN, we implement
our model on two challenging image classification datasets (our ultrasonic prostate image
dataset and the chimpanzee dataset [25]) and two commonly used image classification
datasets (CIFAR-10 and CIFAR-100 [24]). Furthermore, we also utilize several related
existing DNN models for comparative experimental analysis. In addition, we conduct
ablation experiments to verify the influences of different sub-networks.

4.1. Image Classification Datasets

(1) Ultrasonic image dataset of prostate
There have been related works on medical image datasets [51–54], while there are few

works for prostate cancer screening. The traditional method of prostate cancer screening
usually uses prostate biopsy puncture to obtain the pathological results, which causes great
pain for patients. Therefore, we have collected ultrasonic images of prostate, and attempted
to design CNN-based models for prostate cancer screening. Our ultrasonic image dataset
of prostate has 932 images, which were selected from a number of ultrasonic images
according to doctors’ experience. We divided these ultrasound images into two categories:
the ultrasound images of patients with prostate cancer and those of patients without
prostate cancer.
(2) The chimpanzee facial image dataset

The chimpanzee dataset is provided by Loos et al. in [25]. The chimpanzee facial
images were captured at Zoo Leipzig in Germany and Taï National Park in Africa. There are
large numbers of images with weak or highlight illumination, incomplete facial contours,
partial occlusion by branches or leaves, and inconsistent image sizes. This image dataset is
therefore very challenging for the image classification task. Table 1 presents the details of
the chimpanzee facial images used in this paper. We selected at least five images for each
chimpanzee individual from the entire dataset as our test images.
(3) CIFAR-10 and CIFAR-100

CIFAR-10 and CIFAR-100 contain 60,000 images each, where each color image has
32 × 32 pixels. CIFAR-10 comprises 10 categories (aircraft, car, bird, cat, deer, dog, frog,
horse, boat, truck). As in previous works, we also use 50,000 images for model training
and 10,000 images for testing, and there are no duplicate image samples. In addition, we
select 20% of the training images as the validation image dataset. CIFAR-100 consists of
the image samples of 100 categories, and we also divide these into 50,000 training images
and 10,000 testing images. The training, validation, and testing image sets are allocated
according to a ratio of 9:1:2 in the whole CIFAR-100 image dataset (as shown in Table 1).

Table 1. Datasets summary.

Datasets Category Train Validation Test

Ultrasonic image dataset 2 746 93 93
Chimpanzee facial image
dataset 52 1689 292 540

CIFAR-10 10 40,000 10,000 10,000
CIFAR-100 100 45,000 5000 10,000
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4.2. Experimental Setup

The proposed HCNN is an image classification model based on ensemble learning.
In this paper, we choose Alexnet [10], VGG16 [11], Inception V3 (I_V3) [49], Mobilenet
V2 (M_V2) [50], and Resnet-50 [12] as the basic sub-networks. Of course, in specific tasks,
the types of sub-networks can be changed, and we also can add or subtract sub-networks.
We further implement several existing deep learning models and ensemble learning models
as the comparison models. The experimental results of our model are compared with
these basic sub-networks by using the same parameters. We further make comparisons
of our model with Adaboost-CNN [38] on CIFAR-10, and with Wide-ResNet 40-2 [55],
Wide-ResNet 40-2+CutMix [56], DenseNet-100 [57], and DenseNet-100+CutMix [56] on
CIFAR-100. In addition, to verify the gradual improvements achieved by HCNNs, we draw
comparisons of HCNNs with the single sub-networks and their different combinations.

For each image dataset, we set the batch size to 10, and the initial learning rate is
0.0001. We set γ in Equation (12) to 0.5. The dimensions of f a, f+ and f− in triplet loss are
set to 256 uniformly. All models used in this paper were implemented on three TITAN
Xp GPUs.

4.3. Experimental Results

(1) Experimental results on the ultrasonic image dataset
Prostate cancer screening based on ultrasound images is mainly used to distinguish

whether the patients have prostate cancer or not according to their prostate ultrasound
images. It can be regarded as a binary image classification problem. However, the prostate
ultrasound images are fairly complex, and the lesions are not obvious, so it is difficult for
professional doctors to diagnose prostate diseases only using ultrasound images. Therefore,
there are challenges for the automatic screening of prostate cancer utilizing computer vision
technologies from ultrasound images. In this paper, we try to use several DNN models
to perform the binary image classification task, and the experimental results are shown
in Table 2. We can obtain the following points from the experimental results. First, all
the models used in this paper fail to achieve perfect image classification performance,
and the highest recognition accuracy is lower than 85%, which shows that there is difficulty
in recognizing prostate cancer. Second, Resnet50 achieves better performance among
the single deep network models. It has 4.31% higher accuracy than VGG16, and 5.65%
higher than Inception V3. Third, the models combing multiple networks have increasing
accuracies; for example, “Alexnet+VGG16+Inception V3+Mobilenet V2” has 2.83% higher
accuracy than VGG16. Among these methods, the HCNN with five deep networks achieves
the best performance, and it has 2.68% higher accuracy than Resnet50. Figure 4 shows the
graph of Table 2; we can see that HCNN achieves obvious advantages over other models
in most evaluation indicators. In addition, the performance would be further improved
with the improvement or addition of the sub-networks.

Table 2. The ablation analysis on the ultrasonic image dataset.

Models ACC F1 Score Recall Precision

Alexnet [10] 0.6989 0.7200 0.8571 0.6207
VGG16 [11] 0.7634 0.7381 0.7381 0.7381
Inception V3 [49] 0.7500 0.7164 0.7273 0.7059
Mobilenet V2 [50] 0.6989 0.6499 0.6190 0.6842
Resnet50 [12] 0.8065 0.7805 0.7619 0.8000

Alexnet+VGG16 0.7361 0.7077 0.7188 0.6970

Alexnet+VGG16+Inception V3 0.7639 0.7385 0.7500 0.7273

Alexnet+VGG16+ 0.7917 0.7693 0.7813 0.7576Inception V3+Mobilenet V2

HCNN 0.8333 0.8125 0.8125 0.8125
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Figure 4. The curve graph of Table 2.

(2) Experimental results on the chimpanzee facial image dataset
There are a large number of challenging chimpanzee facial images in the chimpanzee

facial image dataset [25]; it is therefore difficult for models to achieve good image classi-
fication performance. In this paper, we implement nine different models on this dataset;
the experimental results are shown in Table 3, where we can see that these models, which
perform well on some public image classification databases, do not perform well on this
chimpanzee facial image dataset. The model with the single network that works best is
Resnet50, with 0.7336% accuracy, while the HCNN achieves the highest image classification
accuracy of 74.55%. Figure 5 shows the curves of these models’ performance in related
evaluation indicators, and it can be seen that the HCNN has general advantages over mod-
els with single neural networks and other models with multiple sub-networks in terms of
F1 score, recall, and precision, which clearly demonstrates its effectiveness and superiority.

Table 3. The ablation analysis on the chimpanzee facial image dataset.

Models ACC F1 Score Recall Precision

Alexnet [10] 0.5532 0.5470 0.5428 0.5512
VGG16 [11] 0.6885 0.6836 0.6818 0.6854
Inception V3 [49] 0.7008 0.6976 0.6956 0.6996
Mobilenet V2 [50] 0.5737 0.5699 0.5701 0.5698
Resnet50 [12] 0.7336 0.7327 0.7321 0.7334

Alexnet+VGG16 0.7023 0.7010 0.6998 0.7023

Alexnet+VGG16+Inception V3 0.7234 0.7200 0.7199 0.7201

Alexnet+VGG16+Inception
V3+Mobilenet V2 0.7349 0.7316 0.7288 0.7344

HCNN 0.7455 0.7435 0.7451 0.7419
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Figure 5. The curve graph of Table 3.

(3) Experimental results on CIFAR-10
Table 4 presents the experimental results of nine different models on CIFAR-10; these

models include the sub-networks in HCNNs and their different combinations. For each
model, we carried out 20 epochs of model training. From the results shown in Table 4, we
can see that Resnet50 [12] achieves the best performance among all models with a single
network. Furthermore, the ensemble learning models with different sub-networks achieve
general improvements over the corresponding single-network models, which proves the
effectiveness of ensemble learning models. Therefore, HCNN achieves the final best perfor-
mance, with test accuracy of 92.26% on CIFAR-10, and 1.46–13.45% higher classification
accuracy than the other five basic sub-networks. In addition, HCNN also has advantages
in terms of F1 score, recall, and precision. In Figure 6, the performance difference among
these models can be illustrated more clearly. Although these models achieved better results
on CIFAR-10 than on the ultrasonic image dataset and chimpanzee facial image dataset,
the overall trends of the models’ performance are similar. The reasons may be that the
weights of the training samples for each sub-network in HCNNs are updated according to
the classification results of the previous sub-network. In this way, different sub-networks
can learn the specific features from the images, and present various degrees of difficulty
to the various models that attempt to accurately classify them. Therefore, HCNNs can
progressively learn the visual features at different levels and gradually improve the image
classification performance.

Table 4. The ablation analysis on the CIFAR-10 dataset.

Models ACC F1 Score Recall Precision

Alexnet [10] 0.7881 0.7881 0.7894 0.7868
VGG16 [11] 0.8860 0.8810 0.8818 0.8802
Inception V3 [49] 0.8922 0.8921 0.8928 0.8914
Mobilenet V2 [50] 0.8704 0.8639 0.8647 0.8631
Resnet50 [12] 0.9080 0.9008 0.9011 0.9005

Alexnet+VGG16 0.8877 0.8878 0.8880 0.8877

Alexnet+VGG16+Inception V3 0.9023 0.9086 0.9087 0.9085

Alexnet+VGG16+Inception
V3+Mobilenet V2 0.9104 0.9106 0.9107 0.9105

HCNN 0.9226 0.9221 0.9222 0.9221
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Figure 6. The curve graph of Table 4.

AdaBoost-CNN [38], proposed by Taherkhani et al., is also an ensemble learning model
based on DNNs. Its test accuracy on CIFAR-10 reaches 81.40%, as shown in Table 5. By con-
trast, our HCNN has 10.86% higher accuracy. Adaboost-CNN creates a classification model
with better performance by combining several simple convolutional sub-networks. How-
ever, multiple sub-networks in Adaboost-CNN use the same network structure, and each
sub-network is only fine-tuned on the parameters of its previous sub-network. Therefore,
it is difficult for the model to learn the specific abstract visual features from the images;
this may be the reason for the limited performance of Adaboost-CNN.

Table 5. The experimental analysis of Adaboost-CNN and HCNN on the CIFAR-10 dataset.

Models Acc

Adaboost-CNN [38] 0.8140
HCNN 0.9226

(4) Experimental results on CIFAR-100
CIFAR-100 contains more image categories than CIFAR-10 and is less able to achieve

higher image classification accuracy for classification models. Fourteen different models
are implemented in CIFAR-100, and the experimental results are shown in Tables 6 and 7
and Figure 7. From the test results shown in Table 6, it can be seen that the models
combining different sub-networks achieve better performance than models with a single
neural network, which is similar to Table 4. The HCNN, with a test accuracy of 78.47%,
achieves accuracy that is 9.46% higher than that of Mobilenet V2 and 1.72% higher than
that of Inception V3, which represents the best performance among the single neural
network models.

Moreover, as shown in Table 7, HCNN achieves similar performance to DenseNet-
100+CutMix [56], but is better than other existing network models with complex network
structures. During the image classification process, each image (regardless of whether it is
easy or difficult for the model to accurately classify) needs to go through these complex
network models to extract visual features. In HCNNs, however, different images will
pass through different levels of sub-networks, and the model will learn specific visual
features from images at different levels. Therefore, HCNN achieves better effectiveness
and efficiency for image classification.
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Table 6. The ablation analysis on the CIFAR-100 dataset.

Models ACC F1 Score Recall Precision

Alexnet [10] 0.5347 0.5326 0.5329 0.5323
VGG16 [11] 0.6556 0.6548 0.6556 0.6540
Inception V3 [49] 0.7675 0.7686 0.7690 0.7682
Mobilenet V2 [50] 0.6601 0.6634 0.6645 0.6623
Resnet50 [12] 0.6031 0.6033 0.6034 0.6032

Alexnet+VGG16 0.6623 0.6640 0.6646 0.6635

Alexnet+VGG16+Inception V3 0.7742 0.7767 0.7778 0.7757

Alexnet+VGG16+Inception
V3+Mobilenet V2 0.7798 0.7740 0.7746 0.7735

HCNN 0.7847 0.7846 0.7844 0.7848

Figure 7. The curve graph of Table 6.

Table 7. The experimental results of Adaboost-CNN and HCNN on the CIFAR-100 dataset.

Models Acc

Wide-ResNet 40-2 [55] 0.7473
Wide-ResNet 40-2+CutMix [56] 0.7821
DenseNet-100 [57] 0.7773
DenseNet-100+CutMix [56] 0.7855
HCNN 0.7847

5. Conclusions

At present, all the image classification models treat the images equally. However,
there are meaningful differences between images, so different images should be treated
differently by various models, which would comply with the basic mechanism of human
cognition. Therefore, we propose HCNNs, which classify different images by different
numbers of sub-networks. In HCNNs, the easy-to-identify images are recognized by
simple sub-networks and output the results directly, while images that are more difficult
to identify may need to go through multiple complex sub-networks to extract their more
abstract visual features. Through this image classification mechanism, HCNNs achieve
better image classification performance compared with existing single-network models
and Adaboost CNN with its multiple simple sub-networks. In addition, the HCNN has
better scalability and variability; that is, the number of sub-networks can be increased or
decreased, and the types of sub-networks can be changed according to the specific visual
tasks involved. Therefore, in the future, more detailed models similar to HCNNs may
be constructed based on the complexity of the image classification task, which would
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gradually become closer to the basic mechanism of human cognition, and the models will
have higher recognition accuracy and efficiency.
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Abstract: Computational intelligence has been widely used in medical information processing. The
deep learning methods, especially, have many successful applications in medical image analysis. In
this paper, we proposed an end-to-end medical lesion segmentation framework based on convolu-
tional neural networks with a dual attention mechanism, which integrates both fully and weakly
supervised segmentation. The weakly supervised segmentation module achieves accurate lesion
segmentation by using bounding-box labels of lesion areas, which solves the problem of the high
cost of pixel-level labels with lesions in the medical images. In addition, a dual attention mecha-
nism is introduced to enhance the network’s ability for visual feature learning. The dual attention
mechanism (channel and spatial attention) can help the network pay attention to feature extraction
from important regions. Compared with the current mainstream method of weakly supervised
segmentation using pseudo labels, it can greatly reduce the gaps between ground-truth labels and
pseudo labels. The final experimental results show that our proposed framework achieved more com-
petitive performances on oral lesion dataset, and our framework further extended to dermatological
lesion segmentation.

Keywords: medical image segmentation; computational intelligence; convolutional neural networks;
weakly supervised segmentation; attention mechanism

1. Introduction

With the rapid development of computer vision, especially the significant improve-
ment of the representation ability of convolutional neural networks [1,2], image segmen-
tation has achieved good performances and laid a solid foundation for the application of
medical image segmentation. Medical images segmentation as an important and difficult
task of computer-aided diagnosis, is the key to further obtain diagnostic information. Tradi-
tional object location in medical images requires professional doctors to manually identify,
which is not only time-consuming and labor-intensive but also vulnerable to subjective
factors. While the lesion segmentation results obtained by deep learning methods are
now becoming a promising method. However, compared with ordinary images, clinical
diagnosis invokes higher requirements for the accuracy of the segmentation results of
medical images. In addition, the high variability, the complex morphological structure,
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the ambiguity and the scarce labels of lesions in medical images pose great challenges to
medical image segmentation [3].

Recently, lesion segmentation methods based on deep convolutional neural networks
have been widely applied to medical image segmentation. Encoder-Decoder, FCNs [4]
(Fully Convolutional Networks for Semantic Segmentation) and the methods based on ex-
tended convolutional neural network have become the mainstream segmentation methods.
For example, U-Net designed in [5] an “U-shaped” network, and symmetric expansion
paths are added to enhance the positioning representation capability of the network. U-Net
is superior to the previous methods in terms of the amount of data required, the efficiency
and accuracy of methods. Since then, more and more variants of U-Net [6–11] are proposed
to enhance the network presentation capabilities, the transmission and fusion of feature in-
formation within and between layers to further improve the segmentation accuracy. U-net
and its variants perform well in medical images such as CT(Computed Tomography) and
MRI(Magnetic Resonance Imaging). On the one hand, the CT and MRI images are mostly
single-channel grayscale images, with simple semantics and relatively fixed structures.
On the other hand, the U-Net network has fewer parameters, and the skip connection of
U-net plays an important role. The skip connection can make the feature graph of the
corresponding position of the encoder fuse on the channel in the up-sampling process of
each level of the network. Through the fusion of low-level features and high-level features,
the network can retain more high-resolution details contained in high-level feature images,
thus improving the accuracy of image segmentation, so as it is not easy to overfit for rela-
tively small medical datasets. Therefore, when there are relatively small medical datasets,
this U-NET model is preferred to avoid overfitting.

There are also some medical image datasets consisting of visible images, such as
our oral leukoplakia dataset and the ISIC2018 [12–14] used in this paper. Different from
radiographic images such as CT and MRI images, this type of medical image taken by con-
ventional visible light cameras have larger size, and relatively richer semantic information,
while they also have challenges in terms of object segmentation. As shown in Figure 1,
the same category of objects has some differences in visual features, while the features of
different categories of objects have similarities. The texture, color, shape, and size of lesions
in the images varies, and the boundary of lesions is blurred. In addition, all of the artifacts
during image capturing, light intensity and reflections, bubbles, hair occlusion, background
boards, and so forth, bring many difficulties to the segmentation task. Specifically, for the
oral leukoplakia dataset built in this paper, the difficulties of leukoplakia lesion segmenta-
tion mainly lie in the morphology diversity of lesion, including granular, crumpled, warty,
and so forth. In addition, the differences in the size of lesions, the blur boundaries between
the lesions and their surrounding tissues, and the changeable locations of lesions, and so
forth, will also increase the difficulty in the segmentation of leukoplakia. At present, there
are few related works to oral lesion segmentation. Camalan et al. [15] developed a image
classification method to identify the “suspicious” oral dysplasia or “normal” oral images
through transfer learning on Inception-ResNet-V2. Jubair et al. [16] proposed a method to
predict oral cancer from oral images using a lightweight transfer learning model. These
methods are designed for the image classification task, while our method is performed for
segmenting the oral lesion, which is the image segmentation task with more complexity.
Figure 1 shows some examples of segmentation results of oral leukoplakia and skin disease
lesions. All of these complex medical images pose big challenges for lesion segmentation,
since the category filling rate loss in traditional image segmentation models often loses its
effects of medical image segmentation.
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Figure 1. Some samples of lesion segmentation (The first two rows are oral leukoplakia dataset, and
the last two rows are ISIC 2018 dataset).

For some types of medical images with extremely complex morphological and multi-
scale features, traditional U-Net can not deal with the multi-scale features of the objects
well, which makes it difficult for U-Net to extract the effective visual features of small
objects. This results from the fact that the models have significant performance degradation.
In order to solve these problems, it is particularly important to improve the network’s
visual feature capturing capabilities for medical images. Fortunately, many attempts have
been made, and introducing the attention mechanism into different deep networks is
a feasible direction. Compared with the U-Net, the structure of Mask R-CNN is more
complex, especially the FPN backbone network. This network can adapt to multi-scale
changes of lesions and extract effective regional features. Therefore, in this paper, we
introduce a dual attention mechanism into Mask R-CNN [17–20], and propose a network
to extract the effective visual features of lesions. The dual attention mechanism can
help the network pay attention to feature extraction from important regions, which can
improve the representation ability of the convolutional networks for lesion areas. The
experimental results show that the models with the dual attention mechanism have the
optimal segmentation boundaries, and fewer missed or false segmentation areas. Although
it is possible to obtain better segmentation results through fully supervised learning, it
requires fine pixel-level labels of the objects in images. Therefore, a professional pathologist
is required to give labels for medical images, which can consume some economic and time
and greatly limits the practical application of intelligent assistance systems. To solve this
problem, the segmentation methods based on weakly supervised learning can use image-
level and box-level coarse-grained labels to train a pixel-level fine segmentation network.
In this paper, we make full use of our network with a dual attention mechanism, and
integrate a weakly supervised segmentation branch. This improvement achieves the weakly
supervised lesion segmentation, which has much less cost in image labeling. Furthermore,
this segmentation framework can also be applied to radiomics lesion segmentation in
the future.
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Main contributions can be concluded as follows:

1. In this paper, the researchers construct an end-to-end medical lesion segmentation
framework, which has both fully supervised segmentation and weakly supervised
segmentation branches. If pixel-level labels are used for the images, the fully super-
vised segmentation branch can be used for lesion segmentation. In the process of
experiments if we only have box-level labels similar to the labels for object detection,
the researchers can use the weakly supervised segmentation branch to achieve ac-
curate lesion segmentation with comparable results to those obtained by the fully
supervised segmentation methods.

2. To solve the problem of inaccurate segmentation of lesion boundaries in the lesion
segmentation task, the researchers introduce the CBAM [21] attention mechanism
into the Mask R-CNN to help the network pay attention to fine-gain feature learning
from the regions of interest. This improvement will be beneficial for the segmentation
results, especially for the segmented lesion boundaries.

This paper is organized as follows. In Section 2, we first state some classical methods
of fully and weakly supervised image segmentation (Sections 2.1 and 2.2), as well as
the basic principles of attention mechanisms (Section 2.3). Then, the proposed image
segmentation framework is described in Section 3, and we specifically give a statement for
weakly supervision segmentation in Section 3.2. The validation experiments and analysis
of the model are described in Section 4; here, we carried out several related methods and
our improved method on public skin image datasets and our own oral leukoplakia image
dataset. While the final conclusion is given in Section 5.

2. Materials and Methods

2.1. Fully Supervised Segmentation Methods

Fully supervised segmentation is divided into semantic segmentation and instance
segmentation. In terms of semantic segmentation, since FCN [22] first introduced full
convolutional neural networks into segmentation, a series of improved or redesigned seg-
mentation methods [23–29] following this paradigm have achieved good results. Currently,
models based on the encoder-decoder structure have gradually become the mainstream
segmentation framework such as SegNet [30,31], U-Net [5] and RefineNet [32]. The main
reason is that this model can extract long-distance semantic information. In addition,
ParseNet [33], DeepLabv2 [34], PSPNet [35] and other models based on spatial pyramid
pooling [36] to capture long-distance contextual semantic features are becoming popular
as well. In addition, among the methods mentioned above, Refine Net is a good network
model. This model is a multipath optimized network for high resolution semantic seg-
mentation. It makes perfect use of all available information in the downsampling process
to achieve high resolution prediction of long-distance residual connections. Moreover, a
network structure for generating high rate segmentation graph is provided by combining
high level semantic features with low level features. This feature makes it suitable for
multi-class semantic segmentation tasks. Compared with semantic segmentation, instance
segmentation also needs to distinguish different instances of the same class of targets
on the basis of semantic segmentation. Many methods [37–42] incorporating the region
proposal network [43] (RPN) have achieved satisfying results. These methods first obtain
the detection box of the target and then use another segmentation branches to segment
the instance.

Among the new methods, Mask-RCNN [18] adds a mask branch based on faster
R-CNN [44]. This branch changes ROI pooling to ROI alignment, so as to obtain pixel-level
mask prediction. It also has the functions of object detection and instance segmentation.
This method has become a general framework.

2.2. Weakly Supervised Segmentation Methods

The fully-supervised segmentation model can segment accurate results after training
with a large number of pixel-wise labels, but it is extremely expensive to obtain pixel-wise la-
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bels. To address this issue, different levels of weakly supervised labels are adopted to solve
the problem of manually labeling large amounts of data, such as image-level [39,45–50],
scribbles [51–53], and point labels [54]. Because these weakly supervised labels provide
limited prior information, it is difficult to produce satisfactory results for the complex med-
ical images. In this article, we focus on using bounding box-level labels to balance labeling
cost and segmentation accuracy. Previous box-level weakly supervised segmentation
methods usually need to manually generate weakly supervised pseudo labels, and then
use pseudo labels for training on fully supervised methods. Specifically, it can be divided
into three stages: the first stage uses GrabCut [55] or MCG [56] to generate pixel-level
pseudo labels, the second stage uses the generated pseudo labels as ground-truth to train
the segmentation model, and the third stage uses an iterative algorithm or conditional
random fields (CRFs) [2,57–60] to optimize and post-process the segmentation results.
Therefore, it is difficult to solve the gap between the ground-truth and the pseudo label,
and the final segmentation result will be significantly worse than the effect of the pseudo
label. Compared with previous work, our weakly supervised segmentation method is
different in the following respects. Firstly, our model does not require manual generation
of pseudo labels. Secondly, we first use box labels to train the target detection model,
and then use GrabCut [55] to separate the foreground and background regions of the de-
tected target region in the inference stage. Thirdly, in terms of final mask optimization, we
abandoned the use of CRFs [2,57–60], and instead adopted the faster ConvCRF [20,61–63]
for post-processing.

2.3. Attention Mechanism

Human vision can quickly scan the global image to obtain the target areas that need
to be focused on. The attention mechanism in deep learning is similar to the human
visual attention mechanism, and the goal is to select the critical information in the current
task. By adjusting the feature map, Wang proposed a residual attention network [64,65],
which not only performs better but also is robust to noisy input. Oktay proposed the
Attention-Unet [6,66] to suppress the information of unimportant regions, which is better
in segmentation. Hu [67–69] proposed the Squeeze-and-Excitation module based on the
relationship between channels. It only uses global average pooling to calculate channel
attention. However, as shown in spatial attention[70], it also plays an important role
in convolutional networks. It will tell the network “where” to focus. Since then, the
application of channel attention and spatial attention have become a consensus. DANet [71]
introduces the idea of self-attention, which can better capture features through a long-range
context. CCNet [72,73] skillfully uses the criss-cross idea, which greatly reduces the amount
of calculation. In this paper, we add CBAM [21] to Mask R-CNN [18] for the first time,
which also has channel attention and spatial attention. Channel attention tells us “what” is
meaningful and spatial attention tells us “where” important information is.

3. Methods

The Mask R-CNN is extended from Faster R-CNN [18,74] and is a two-stage frame-
work. The first stage is the Region Proposal Network [43] (RPN). In the second stage,
further fine-tuning frames for the ROI proposed by RPN. Finally, the parallel Mask head
branch will segment the target mask.

In the weakly supervised segmentation branch, we directly use the detection boxes
to segment the lesion area, to avoid the gap between the pseudo labels and ground-truth
labels. This improves the segmentation performance. The key points and differences of
the method are detailed in the following subsections. The architecture of the segmentation
model is shown in Figure 2.
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Figure 2. Medical lesion segmentation framework based on dual attention mechanism.

3.1. Segmentation Model Based on Dual Attention Guidance

FPN, as the backbone network of Mask R-CNN, performs well in conventional seg-
mentation tasks. However, when segmenting medical images with complex and fuzzy
boundaries, it often results in missing segmentation or wrong segmentation. The reason is
that the correct features of the lesion area are not extracted. Therefore, we add the dual
attention module in the backbone network and the improved attention-FPN structure is
shown in the attention FPN part of Figure 2. As shown in Figure 3, the specific joining
position of the dual attention module is in the Conv block and identity block of ResNet.
Conv block and identity block are the basic modules of ResNet network. Conv block has
convolution operation on branches, which can change the number of output channels of
the block; Identity block has no operation on the branch, and the number of input and
output channels of this block is the same. In our model, a dual attention mechanism is
added to these two different blocks.

Figure 3. Attention conv block and Attention identity block.

In CNN, if the sizes of the convolution kernels are smaller than the step size, the
performance of detection and segmentation will decline linearly. FPN is a clever solution
by up-sampling high-level features and top-down connecting of low-level features. In the
feature extraction and fusion stage, FPN performs well, especially for small target detection.
We then use ResNet [75] series in the backbone network to have more flexible choices.
Taking ResNets as the backbone network, the FPN network contains three paths, a bottom-
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up path, a top-down path, and a horizontal connection in the middle. In the forward
propagation process of CNN, the feature map after the calculation of the convolution
kernel is usually small. The size of the feature map will change after passing through
some layers, but not for the other layers. The layers that do not change the size of the
feature map are classified as a stage. Specifically, for ResNets, the feature output of the
last residual block of each stage is used to activate the output. For conv2, conv3, conv4,
and conv5 outputs, the outputs of these final residual blocks are represented as C2, C3,
C4, C5, and they have a step size of 4, 8, 16, 32 relatively to the original input image.
The top-down process is to perform two times the up-sampling of higher-level features
with more abstract and stronger semantic information, and to merge the output results of
the up-sampling with the feature map of the previous layer generated from the bottom
up through the horizontal connection. After fusion, the high-level features have been
strengthened, and the two horizontally connected features should have the same spatial
size. This is done to make use of the positioning details of the bottom layer. Each feature
map is composed of many channels. In Mask R-CNN, the outputs of ResNet C2, C3, C4, C5
are passed to the next layer of the network for fusion. All channels of these output feature
maps are given the same weight, that is, the same attention, but some of these channels are
meaningless or erroneous features. We use channel attention after C2, C3, C4, C5 to capture
the relationship among global channels. In other words, it encodes different weights for
each channel to enhance the weight of important channels and suppress the features of
unimportant channels.

In order to calculate the channel attention, the spatial dimensions of the input feature
are compressed, the global maximum pooling and global average pooling are performed
respectively, and then the multilayer perceptron model (MLP) output features are added
and operated through the shared MLP. As shown in Figure 4a, after sigmoid activation
operation, the final channel attention map is generated. Multiply the channel attention
map and the input feature to generate the input feature of the spatial attention module.

Figure 4. The overall structure of dual attention ((a). Channel Attention; (b). Spatial Attention).
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The calculation process is as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(F

c
max))

)
(1)

In the above formula, Fc
avg and Fc

max represent the averaged pooling feature and the
maximum pooling feature, respectively, and σ represents the sigmoid activation function.
Mc ∈ Rc×1×1, W0 and W1 are the weights of MLP.

In the original FPN network, the bottom-up and top-down features are fused directly
into the horizontal connection, which lacks the spatial dependence among pixels. We use the
spatial relationship among pixels to generate a spatial attention map, making the network
pay attention to “where” the information is, which supplements channel attention.

In order to calculate the spatial attention, we use the feature map output by the
channel attention module as input to perform global maximum pooling and global average
pooling on the channel axis, respectively. We then conduct the concat operation and the
7 × 7 convolution operation. Finally, the 1 × H × W spatial attention map is generated
through the sigmoid activation function, as shown in the Figure 4b. The final feature map
is obtained by multiplying the spatial attention graph and the input features of this module.
Spatial attention is calculated as follows:

Ms(F) = σ
(

f 7×7([ AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

]))
.

(2)

In the above formula, Fs
avg and Fs

max represent the averaged pooling feature and the
maximum pooling feature respectively, and the dimension is 1 × H × W. σ represents the
sigmoid activation function.

The outputs of ResNet C2, C3, C4, C5 calculate the one-dimensional channel attention
Mc ∈ Rc×1×1 on the channel axis through channel attention module and a two-dimensional
spatial attention map Ms ∈ R1×H×W is calculated on the spatial axis through the Spatial
Attention module. Then, the final feature map is calculated through the series connection
and the process is shown in Figure 3. The training of the fully supervised segmentation
network is carried out using a dataset with pixel-level labels. The training process is the
same as the original Mask R-CNN. The detection branch and the Mask Head branch will
be trained at the same time; the inference phase will generate the final segmentation result
in the Mask Head branch.

3.2. Weakly Supervised Segmentation

In this section, we will show the weakly supervised segmentation method. Given
a dataset D = {In, Bn}N

n with bounding box labels, N represents the number of samples
datasets, In represents the n th picture, and Bn represents the box-level label of In. In this
section, our goal is to build an end-to-end weakly supervised segmentation model using
only box-level dataset D. We know that Mask R-CNN [18] not only has the function of in-
stance segmentation but also has the ability of target detection. In Section 3.1, the improved
segmentation model also performs well on target detection, which is an important merit
for our weakly supervised segmentation method. Apart from the fully supervised segmen-
tation framework explained before, we abandon the fully supervised mask head branch
and add a weakly supervised segmentation branch (Figure 2). The overall segmentation
framework is shown in Figure 2. In the inference stage, the detection branch will give the
target’s tight bounding box, the area outside the bounding box is the background area, and
there are some background pixels mixed in the target box. We use GrabCut [55,76,77] to
separate the foreground and background in the boundary box. So far, we have obtained
preliminary segmentation results, but the foreground segmented by GrabCut [55,78] has
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holes in the interior, and inaccurate boundaries. In order to obtain better performance, we
use the faster ConvCRF [20,61–63] to generate the final segmentation mask.

When using GrabCut to separate the foreground and background according to the
detection bounding boxes of the lesion area, the efficiency will be slow with large input
image. In order to increase the speed, the image must be zoomed, but the small lesion
area will lose a lot of information after the image size reduction, thus, finding a balance
between efficiency and effect is necessary. In order to calculate the scale of the zooming,
we determine the relative scale of the detection box and the image.

The training process of the weakly supervised segmentation network is different from
the fully supervised process. The latter uses the box-level weakly supervised label dataset
and only trains and updates the parameters of the detection branch, which is essentially the
process of training a target detection network. In the inference stage, the weakly supervised
segmentation branch will generate weakly supervised segmentation results based on the
output bounding box of the target detection network.

4. Result

4.1. Experimental Details and Evaluation Strategies

Experimental details: The proposed method is evaluated on two popular datasets
including the OLK dataset and the ISIC [12] 2018. We use the keras framework to implement
our model. We use ResNets as our backbone network and fine tune the network from a
pre-trained model which is learned on the MS COCO dataset. The batch size, learning
rate, weight decay, momentum and Epoch are 2, 0.001, 10−4, 0.9 and 60, respectively. The
optimizer is Adam, and data enhancement, such as rotation, affine transformation, and
random clipping, are performed. The framework is trained on a machine with a NVIDIA
TITAN RTX 24 GB GPU.

Evaluation strategy: Like most medical image segmentation evaluation strategy, we
use the standard F1-score (F1), sensitivity (SEN), specificity (SPE), accuracy (ACC), and
Jaccard similarity to evaluate our proposed model.

4.2. Oral Leukoplakia Dataset

Oral leukoplakia is an injury to the oral mucosa and a precancerous lesion. We
obtained the oral leukoplakia medical image dataset from the hospital which contains
90 original images and corresponding masks labeled by professional doctors. We divided
the whole image dataset into a training set (55 images), a validation set (15 images), and a
test set (20 images). Since the number of oral leukoplakia datasets is small, there is no test
set. Compared with the ISIC 2018 dataset, the segmentation task of the oral leukoplakia
dataset is more challenging. Not only is the number sparse—only 3% of the ISIC 2018
dataset—but also the boundary of the lesion area is more blurred, the shape is irregular
and changeable. In the fully supervised segmentation experiment, the ground-truth labels
are the binary masks of the original dataset. In the weakly supervised segmentation
experiment, the ground-truth labels are the circumscribed rectangles of the binary masks.

Figure 5 shows the segmentation results of our proposed fully supervised and weakly
supervised methods on the oral leukoplakia dataset. The results obtained by our fully
supervised segmentation method basically remain consistent with the shapes of the ground
truths, although the boundaries do not have very good consistency. Att-Deeplab-V3+ can
achieve good performance in quantitative evaluation indicators, but it does not have good
shape preservation of lesions with the ground truths, and so are the results obtained by
Mask RCNN. In addition, our weakly supervised (WS) segmentation method can achieve
segmentation results with more overlaps with the lesions in the ground truths. Table 1
shows the quantitative evaluation indicators of all the methods. From the experimental
results, we can see that the proposed fully supervised (FS) and weakly supervised (WS)
segmentation methods achieve the best performance, and have many improvements over
the baseline method (Mask RCNN). In addition, the segmentation performance of the
weakly supervised method is very close to that of the fully supervised method. Therefore,
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the new weakly supervised segmentation model greatly reduces the cost of data annotation
for the localization and segmentation of disease regions.

Table 1. Performance comparison of the proposed segmentation network and other methods on the
Oral leukoplakia dataset.

Method F1 SEN SPE ACC Jaccard Similarity

FS

Att-Deeplab v3+ [79] 0.514 0.521 0.953 0.935 0.935
U2-Net [80] 0.759 0.734 0.986 0.967 0.967
Mask R-CNN [18] 0.741 0.704 0.978 0.959 0.959
Ours-full 0.815 0.758 0.990 0.967 0.967

WS Ours-weak 0.684 0.843 0.964 0.943 0.943

Figure 5. Segmentation results of fully supervised and weakly supervised segmentation method on
the Oral leukoplakia dataset.

4.3. ISIC

The ISIC 2018 [12] challenge dataset was published by the international skin imaging
collaboration (ISIC) in 2018. We select the dermatoscopy image lesion boundary segmenta-
tion dataset of challenge task 1, which contains 2594 original images and the corresponding
binary ground-truth masks. In order to compare with other methods, we set up the same set
with other methods, including 1815 training sets, 259 verification sets and 520 test sets. We
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set the image input size to 768 × 768. In the fully supervised segmentation experiment, the
ground-truth labels are the binary masks of the original dataset. In the weakly supervised
segmentation experiment, the ground-truth labels are the circumscribed rectangles of the
binary masks. In addition, ISIC 2017 is also a famous skin image dataset similar to ISIC
2018, we also conducted relevant experiments on ISIC 2017 to verify the performance of
different models.

Figure 6 shows the segmentation results of the proposed fully supervised and weakly
supervised methods on the ISIC 2018 [12] dataset. It is not difficult to find out that some
of the methods suffer a serious performance degradation on the oral leukoplakia dataset,
but achieved much better performance on the ISIC 2018 dataset. The main reason may be
that the lesion regions in the skin disease images are easier segmented than those in oral
leukoplakia images. Therefore, there is little difference in the result images by the image
segmentation methods. In addition, the weakly supervised segmentation methods also
achieved good performance, and their results are almost close to the results obtained by the
fully supervised segmentation methods. However, the results of our weakly supervised
segmentation method have better shape consistency with the ground truths than WSIS-
BBTP. Furthermore, the quantitative evaluation indicators of the experimental results are
shown in Table 2. It can be seen that the proposed fully supervised segmentation method
achieved great improvements over the original mask R-CNN, and also achieves compet-
itive results compared with other methods. At the same time, our weakly supervised
segmentation method has better performance than WSIS-BBTP, and also achieved compa-
rable performance regarding fully supervised segmentation methods, and even surpassed
some fully supervised segmentation methods, such as U-net [5], Att U-net [6], R2U-net [81],
Att R2U-Net [81], BCDU-Net [82]. Furthermore, the experimental results on ISIC 2017 are
shown in Table 3. It can be seen that there have been better performances for different
models compared with ISIC 2018, and our weakly supervised segmentation method also
achieved a competitive performance with other fully supervised segmentation models.

Figure 6. Segmentation results of fully supervised and weakly supervised segmentation methods on
the ISIC 2018 dataset.
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Table 2. Performance comparison of the proposed segmentation network and other methods on the ISIC 2018 dataset.

Method F1 SEN SPE ACC Jaccard Similarity

FS

U-net [5] 0.647 0.708 0.964 0.890 0.549
Att U-net [6] 0.665 0.717 0.967 0.897 0.566
R2U-net [81] 0.679 0.792 0.928 0.880 0.581
Att R2U-Net [81] 0.691 0.726 0.971 0.904 0.592
BCDU-Net [82] 0.851 0.785 0.982 0.937 0.937
MCGU-Net [83] 0.895 0.848 0.986 0.955 0.955
Deeplab v3+ [25] 0.882 0.856 0.977 0.951 0.951
Att-Deeplab v3+ [79] 0.712 0.875 0.988 0.964 0.964
Mask R-CNN [18] 0.872 0.846 0.974 0.947 0.947
Wu’s Method [84] - 0.942 0.941 0.947 -
Ours-full 0.904 0.865 0.987 0.961 0.961

WS WSIS-BBTP [85] 0.858 0.784 0.967 0.937 0.937
Ours-weak 0.874 0.861 0.986 0.950 0.950

Table 3. Performance comparison of the proposed segmentation network and other methods on ISIC 2017 dataset.

Method F1 SEN SPE ACC Jaccard Similarity

FS

U-net [5] 0.8682 0.9479 0.9263 0.9314 0.9314
Melanoma det [86] - - - 0.9340 -
Lesion Analysis [87] - 0.8250 0.9750 0.9340 -
R2U-net [81] 0.8920 0.9414 0.9425 0.9424 0.9421
BCDU-Net [82] 0.8810 0.8647 0.9751 0.9528 0.9528
MCGU-Net [83] 0.8950 0.8480 0.9860 0.9550 0.9550
HRFB [88] - 0.870 0.964 0.938 -
Deeplab v3+ [25] 0.9162 0.8733 0.9921 0.9691 0.9691
Att-Deeplab v3+ [79] 0.9190 0.8851 0.9901 0.9698 0.9698
Mask R-CNN [18] 0.9092 0.8644 0.9794 0.9472 0.9472
Wu’s Method [84] - 0.9061 0.9628 0.9570 -
Ours-full 0.9145 0.8865 0.9879 0.9635 0.9636

WS Ours-weak 0.8845 0.8473 0.9706 0.9384 0.9384

From these related works, performed for skin lesion segmentation, we can see that our
method achieves a competitive performance compared with the classic lesion segmenting
methods—Wu’s method [84], HRFB [88] and Att-Deeplab V3+ [79]. In addition, our method
is different to these related methods. Specifically: (1) The existing methods for skin lesion
segmentation are the methods based on the fully supervised learning, while our proposed
method can carry out lesion segmentation based on weekly supervised learning using box
level annotations; (2) ADAM [84] attention module, which includes Global Average Pooling
(GAP) and Pixel Level Correlation (PC), is designed in Wu’s method to capture global
contextual information. HRFB [88] provides high-resolution feature mapping to preserve
spatial details. Att-Deeplab V3+ [79] introduces two levels of attention mechanism based
on deeplab V3+ to capture the relationships between a group of features. We introduce the
CBAM module into the FPN (Feature Pyramid Networks) network to form an attention
FPN, so as to improve the network’s perception of multi-scale images.

In summary, Figures 5 and 6 show the results of the comparison of the segmentation
details between our method and other methods. It can be seen that after the attention
mechanism is involved, the segmentation of lesion area will have fewer false segmentation
and missing segmentation, and the segmentation of boundary details will be more accurate
than the original network does. These qualitative results are exactly in line with our
expectations of joining the dual attention mechanism, allowing the network to pay attention
to “what” and “where”. However, in the quantitative evaluation, our fully supervised
method achieve the second best results regarding Att-Deeplab v3+ in the ISIC dataset,
and surpassed other methods in all indicators on the oral leukoplakia dataset. However,
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in the oral leukoplakia dataset, Att-Deeplab v3+ achieved the worst results. Even our
weakly supervised segmentation results surpassed Att-Deeplab v3+. It can be seen that
the segmentation framework we proposed can effectively extract the features of the lesion
area; thus, it is robust and adaptive to different datasets. In the segmentation task of
oral leukoplakia, due to the small amount of data in the oral leukoplakia dataset, the
image size is extremely large, and the scale of the lesion area changes greatly, which will
lead to the traditional feature extraction network to lose a lot of details after extracting
higher-level information. If the lesion area is small, this area will be ignored, leading
to missing segmentation. In contrast, our framework backbone network is based on the
feature pyramid network of dual attention. The multi-scale network can fuse the high-level
features with richer semantic information and the low-level features with higher resolution,
and effectively reduce the phenomenon of missing segmentation. In the weakly supervised
segmentation method, the detection model with the attention mechanism also greatly
improved the ability of locating the lesion area, which provides an accurate bounding box
for the segmentation of GrabCut [55].

In addition, we also analyzed the computational complexity of some related segmen-
tation methods, and the results are shown in Table 4. From these results, we can see that
our model have similar computational complexity with most segmentation methods.

Table 4. The computational complexity of related segmentation methods.

Method Params(M) GFLOPs

U-Net [5] 31 233
R2U-Net [81] 75 78

Deeplab V3+ [25] 59 67
Attention U-Net [81] 51 55

Wu’ method [84] 38 33
Our model 44 47

5. Conclusions

In this paper, we propose an end-to-end medical lesion segmentation framework. In
this framework, if pixel-level labels are available, we can use the fully supervised branch
to obtain more precise segmentation results. If you only have box-level labels, you can still
use the weakly supervised branch to obtain better segmentation results. In addition, we
add a dual attention mechanism to improve the network segmentation performance. The
dual attention mechanism in Mask R-CNN can help the network focus on the features of
important regions, but suppress the unimportant features. This mechanism also provides a
more accurate bounding box for weakly supervised branches. In addition, the proposed
weakly supervised segmentation branch can greatly reduce the gap between labels and
pseudo labels, and achieve comparable performance with fully supervised segmentation.
Experimental results on the oral dataset and the ISIC 2018 dataset demonstrate the ef-
fectiveness of our proposed framework. In this paper, the fully and weakly supervision
segmentation branches are used for lesion segmentation separately, rather than integrat-
ing into one model. Therefore, we can design an end-to-end weak supervision image
segmentation model in the future.
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Abstract: Recently, the multiobjective evolutionary algorithms (MOEAs) have been designed to cope
with the sparse unmixing problem. Due to the excellent performance of MOEAs in solving the NP
hard optimization problems, they have also achieved good results for the sparse unmixing problems.
However, most of these MOEA-based methods only deal with a single pixel for unmixing and are
subjected to low efficiency and are time-consuming. In fact, sparse unmixing can naturally be seen as a
multitasking problem when the hyperspectral imagery is clustered into several homogeneous regions,
so that evolutionary multitasking can be employed to take advantage of the implicit parallelism from
different regions. In this paper, a novel evolutionary multitasking multipopulation particle swarm
optimization framework is proposed to solve the hyperspectral sparse unmixing problem. First, we
resort to evolutionary multitasking optimization to cluster the hyperspectral image into multiple
homogeneous regions, and directly process the entire spectral matrix in multiple regions to avoid
dimensional disasters. In addition, we design a novel multipopulation particle swarm optimization
method for major evolutionary exploration. Furthermore, an intra-task and inter-task transfer and
a local exploration strategy are designed for balancing the exchange of useful information in the
multitasking evolutionary process. Experimental results on two benchmark hyperspectral datasets
demonstrate the effectiveness of the proposed method compared with the state-of-the-art sparse
unmixing algorithms.

Keywords: evolutionary multitasking; particle swarm optimization; multipopulation optimization;
computational intelligence; sparse unmixing

1. Introduction

With the progress of remote sensing technology, hyperspectral imagery, which can
obtain hundreds of sequential spectrum bands, has been widely applied in both civilian
and military scenarios, for example, land-cover classification [1–3], environmental monitor-
ing [4–6] and target detection [7,8], and so forth. However, there remains the problem of
mixed pixels due to the low spatial resolution of sensors and the mixture of the surface
features [9,10]. Therefore, spectral unmixing aims at extracting the collection of constituent
spectra (called endmembers) from the mixed pixels and calculating the fractional abun-
dances of these endmembers [11,12]. Accordingly, different spectral unmixing methods
can be divided into three categories, that is, the geometrical-based, statistical-based and
sparse-regression-based approaches. Traditional geometrical-based and statistical-based
methods are extensively used as they can be utilized easily and flexibly, but they also
suffer from the weakness of poor performance on highly mixed scenes spectra and the
limitedness of time consumption, respectively [13]. Sparse unmixing, as an emerging
spectral unmixing technology in recent years, is devised to find out the optimal solution
that can represent each pixel of the hyperspectral image the most from a spectral library
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known in advance. Among these algorithms, the sparse unmixing via variable splitting and
augmented Lagrangian (SUnSAL) based on the alternating direction method of multipliers
has been proposed to relax the l0 norm [14]. To overcome the disadvantage of SUnSAL
that only utilizes spectral information without considering the spatial-contextual informa-
tion, Iordache et al. proposed the collaborative SUnSAL (CLSUnSAL) which improves
the unmixing results by solving a joint sparse regression problem, where the sparsity is
simultaneously imposed to all pixels in the dataset [15,16].

Mathematically, sparse unmixing is an NP-hard problem. Multiobjective evolutionary
algorithms (MOEAs), which are able to optimize some contradictory objectives and acquire
a set of nondominated solutions called the Pareto-optimal front, are suitable for solving the
NP-hard problems and overcoming the aforementioned difficulty in sparse unmixing [17].
A multiobjective sparse unmixing (MOSU) model was first proposed by Gong et al. [18]
to deal with the sparse unmixing for hyperspectral imagery. Xu et al. [19] developed a
multiobjective optimization based sparse unmixing (SMoSU) to take full advantage of the
spectral characteristics of hyperspectral images under the framework of the multiobjective
evolutionary algorithm based on decomposition (MOEA/D). In [20], the SMoSU was
further improved and a classification-based model called CM-MoSU was designed. The
estimation of distribution algorithms is modified to pay more attention to the feasible space
with high quality.

However, the existing sparse unmixing algorithms based on MOEAs are limited to the
pixel-based unmixing, which leads to the disadvantage of the low efficiency and the lack
of the spatial structure information [21]. In some recent studies [22–24], a hyperspectral
image is clustered into multiple homogeneous regions based on the assumption that the
probability of the active endmember set in the homogeneous region is likely to be the same,
which not only reduces the complexity of unmixing, but also further enhances the spatial
correlation of pixels in the same category. Interestingly, this coincides with the idea of
evolutionary multitasking framework emerging in recent years. The evolutionary multi-
tasking [25] aims to solve different multiobjective optimization problems simultaneously
to take advantage of the implicit parallelism from different tasks. Therefore, it is promising
to employ the evolutionary multitasking multiobjective framework to efficiently solve
the sparse unmixing problem. Besides, the particle swarm optimization (PSO) algorithm,
which simulates the regularity of bird cluster activities, has proved to be effective in solving
multiobjective endmember extraction problems [26–28]. From this, the current multitasking
paradigm can be further explored and applied to sparse unmixing problems.

In this paper, we propose a novel evolutionary multitasking multipopulation particle
swarm optimization (EMMPSO) framework for sparse unmixing. In the proposed method,
a hyperspectral image is clustered into multiple homogeneous regions first, then the multi-
population particle swarm optimization is employed to explore each sparsity. Finally, the
multiobjective optimization is applied to each task simultaneously to obtain a compromise
between the reconstruction error and the endmember sparsity. Significantly, it is different
from the traditional MOEA-based algorithms that EMMPSO can process the entire matrix
due to the decomposition strategy of evolutionary multitasking, aiming at pixel-based
unmixing only. In addition, we design a novel intra-task and inter-task transfer strategy
to overcome the impact of negative transfer in multitasking. It can not only utilize the
effective information in the same task to speed up the convergence of each sub-particle
swarm, but also explore the similarities between different tasks to improve the overall
convergence performance. Finally, the Pareto optimal solution in each task can be obtained
to reverse the final endmember abundance.

The contributions of the proposed EMMPSO algorithm are summarized as follows:

(1) A novel evolutionary multitasking multipopulation particle swarm optimization
framework is proposed to solve the sparse unmixing problem. With the decomposition
of the evolutionary multitasking, multiple homogeneous regions of a hyperspectral
image can be processed simultaneously, which can accelerate the convergence by
exploring the relevance of all the tasks. In addition, the Pareto optimal solution
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between the reconstruction error and the endmember sparsity can be obtained with
the multiobjective optimization.

(2) A multipopulation particle swarm optimization is designed in the multitasking frame-
work for the major evolution. In addition, the intra-task and inter-task transfer strategy
are proposed to balance the evolutionary process of exploration and utilization. An
efficient local exploration strategy with MOEA is designed to facilitate the search
process to obtain the optimal points.

(3) The superiority of EMMPSO on the convergence speed, global optimization perfor-
mance and unmixing accuracy is substantiated compared with the classical mathemati
cal-based and MOEA-basd sparse unmixing algorithms.

The remainder of this paper is structured as follows: Section 2 briefly reviews some
related work on sparse unmixing. In Section 3, our method is introduced in detail. Section 4
gives the experimental settings and the analysis of the experimental results. Finally, the
conclusions and future works are described in Section 5.

2. Related Work

Generally, the mixed pixels are usually unmixed in the linear mixing model. For a
single mixed pixel y ∈ RL×1 with L spectral bands, which can be expressed as:

y = Ax + n, (1)

where A ∈ RL×D is the spectral library. It is worth noting that all the spectral information
is known in advance in the spectral library. In addition, x ∈ RD×1 is the corresponding
fractional abundance vector, that is, the proportion of each endmember, and n ∈ RL×1

represents the noise term for the mixed pixel. In normal circumstances, a hyperspectral
image Y ∈ RL×n contains n pixels, the matrix form of (1) can be formulated as:

Y = AX + N. (2)

Therefore, the purpose of sparse unmixing is to obtain the most suitable set of end-
members for the reconstructing remote sensing image from the huge spectral library.
Mathematically, this is an NP hard optimization problem, which can be expressed as:

min
x

‖x‖0, s.t. ‖y − Ax‖2
2 ≤ δ. (3)

Many studies employed the relaxation methods to solve the l0-norm problem. SUn-
SAL [14] resorted to the l0-norm to match l0-norm, and the mathematical optimization
formula is as follows:

min
x

(1/2)‖y − Ax‖2
2 + λ‖x‖1 + ιR+(x) + ι{1}(1Tx), (4)

where λ stands for a regularization parameter that controls the relative weight between
the sparse term and the error term. In [15], the CLSUnSAL takes spatial information into
account and directly processes the whole matrix, which is shown as follows:

min
X

‖Y − AX‖2
F + λ‖X‖2,1 + ιR+(X). (5)

Considering the excellent performance of MOEAs in solving NP-hard optimization
problems, many studies have turned their attention to MOEAs to solve the sparse un-
mixing problem in recent year. Gong [18] proposed a novel multiobjective cooperative
coevolutionary algorithm to optimize the reconstruction term, the sparsity term and the
total variation regularization term simultaneously, which can be expressed as:

min
x

(‖y − Ax‖2
2, ‖x‖0, ∑j∈ε

∥∥x − xj
∥∥

1), (6)
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where ε stands for the set of the horizontal and vertical neighbors in X. Jiang [29] decom-
posed the sparse unmixing problem into two stages and employed the MOEAs to solve
them separately. In the first phase, it is mainly aimed at the endmember extraction, the
optimized formula is as follows: min

M
(RSE1, SP1), where RSE1 is the residual of the mea-

sured hyperspectral image, SP1 represents the size of the measured estimated endmembers
(M). In the second phase, the extracted abundance estimation becomes the focus, which
can be expressed as: min

M
(RSE2, SP2), where RSE2 is the residuals of the hyperspectral

unmixing, SP2 represents the favorable abundance matrix obtained by incorporating the
spatial–contextual information. In addition, Jiang [30] improved the Tp-MoSU to settle the
problems of the limited performance in identifying real endmembers from high-noise data
in the first phase, and cannot effectively use the spatial context information in the second
phase due to the similarity metric used. Besides, many sparse unmixing algorithms based
on evolutionary multiobjective decomposition [19,20,31] have also been explored.

Recently, evolutionary multitasking optimization [25,32] has become a new favorite in
the field of evolutionary computing. In a nutshell, evolutionary multitasking aims to deal
with multiple optimization problems at the same time, and promote the optimization of
each task by exploring the hidden relationship between these optimization problems. It is
worth noting that many evolutionary multitasking optimization related algorithms have
been explored and applied to many fields, such as feature selection [33], reinforcement
learning [34] and sparse regression [22] and so forth. In sparse unmixing, a hyperspectral
image can be clustered into multiple homogeneous regions according to spatial information,
so this coincides with the concept of evolutionary multitasking. It is very promising to
model each homogeneous region as an optimization task, though the decomposition of
multiple tasks can effectively reduce the impact of dimensional disasters.

3. EMMPSO Framework

The pseudo code of EMMPSO is shown in Algorithm 1. In this section, the proposed
framework is introduced in detail from initialization, multipopulation particle swarm
optimization and the decision making with MOEA.

3.1. Initialization and Representation

In sparse unmixing, the spectral library known in advance and a hyperspectral image
are input for processing, and the endmember set selected from the library and the corre-
sponding abundance map are output. In the proposed EMMPSO, a hyperspectral image is
first clustered into K homogeneous regions, and each homogeneous region is processed
as a task [22], which is shown in Figure 1. The spectra of the entire spectrum library are
coded into each particle in order, that is, the length of particle is equal to the number of
spectra. Considering that the sparsity of particles remains unchanged in the evolution for
most current discrete particle swarm optimization algorithms, the population in each task
is divided into multiple subpopulations according to the sparsity to ensure that there are
particles to explore in each sparsity. For the s-th subpopulation in the j-th task, the position
of each particle is initialized as follows:

{Xt
i,s}j = {(x1, x2, ..., xn)|xi ∈ {0, 1}, ||Xt

i,s||0 = s}, (7)

where xi is composed of two elements, 0 or 1. If the xi is equal to 1, it means that the
spectrum at the corresponding position in the spectral library is selected, and vice versa.

Then, each particle is evaluated with the reconstruction error (||Y − AvXv||F) in the
corresponding task, where the Y is the hyperspectral image, v represents the endmember set
from the particle {Xt

i,s}j, Av and Xv are the subset of spectral library A and the abundances
of endmembers, respectively. After the evaluation is completed, the skill factor τi,s, defined
as the task with the best performance of the subpopulations with sparsity s in all the tasks,
is assigned to each particle. Besides, the {pbests}j and {gbests}j for the subpopulation with
sparsity s in the j-th task can be obtained. The velocity of particle is initialized as:
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{Vt
i,s}j = ({pbests}j − {Xt

i,s}j) + ({gbests}j − {Xt
i,s}j). (8)

Algorithm 1 The EMMPSO Framework

1: %Initialization
2: Set t = 0, G = ∅.
3: for j = 1 to K do
4: for s = 1 to S do
5: for i = 1 to N/KS do
6: {Xt

i,s}j = {(x1, x2, ..., xn)|xi ∈ {0, 1}, ||Xt
i,s||0 = s}.

7: end for
8: end for
9: Evaluate the fitness of each particle in task Tj.

10: Assign the skill factor τi.
11: Initialize the {pbestt

s}j and {gbestt
s}j.

12: {Vt
i,s}j = ({pbestt

s}j − {Xt
i,s}j) + ({gbestt

s}j − {Xt
i,s}j).

13: Gt
j = ∑S

s=1{gbestt
s}j.

14: end for
15: %Evolution
16: while t<Maxt do
17: for j = 1 to K do

18: Update the {Xt+1
i,s }j and {Vt+1

i,s }j based on (9).
19: end for
20: Update the particle according to Algorithm 2.
21: Evaluate the fitness of each particle.
22: Update the {pbestt

s}j, {gbestt
s}j, and Gt

j with the Local Exploration Strategy.
23: t = t + 1.
24: end while
25: %Decision Making
26: Obtain the optimal point in each task from Gj.

Figure 1. The evolutionary multitasking optimization framework for hyperspectral sparse unmixing.
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3.2. Multipopulation Particle Swarm Optimization for Knowledge Transfer

Considering the discreteness of decision variables in sparse unmixing, the population
in each task is divided into multiple subpopulations according to the sparsity during
initialization. In the process of particle swarm evolution, the position and velocity of the
particles in the j-th task with the sparsity s are updated as follows:

{Xt+1
i,s }j = {Xt

i,s}j + {Vt
i,s}j,

{Vt+1
i,s }j =

{
T({Vt+1

i,s }j), if (any({Vt
i,s}j) ≥ 0)

R({Xt+1
i,s }j), otherwise,

(9)

where T and R are both the selection functions [35].
After updating the positions and velocities of all the particles, we designed an efficient

knowledge transfer of intra-task and inter-task to explore the useful information, which
is shown in Algorithm 2. Firstly, two particles are randomly selected from the current
generation of particles. In the intra-task transfer, the same positions of the particles focus on
exploitation. ∩(pa, pb) represents the positions where the elements in pa and pb are both 1.
Then, the new particles directly inherit positions in ∩(pa, pb), and the remaining randomly
inherit the position on the original particle. On the contrary, the exploration of randomness
focuses on the inter-task transfer. ∪(pa, pb) represents the positions where the elements
are equal to 1 in pa or pb. For the new particles pa′ and p

b
′ , ||pa||0 and ||pb||0 positions are

directly selected from ∪(pa, pb), respectively. Then the pa and pb are updated with the better
fitness particles. In order to more intuitively illustrate the essence of Algorithm 2, Figure 2
shows a simple example for the genetic knowledge transfer. Two particles with sparsity
of 3 and 4 are selected from the current generation first, in the intra-task transfer, the new
particles are updated by inheriting all positions in their same positions which refer to the
positions in pc, then randomly set the rest of positions to 1 to ensure that the sparsity of the
new particles is the same as the previous particles. Similar operations are also performed in
the inter-task transfer, but the difference is that the new particles are updated by selecting
form the positions with 1 in the previous particle, and randomly set them to 1 with the
same sparsity.

Algorithm 2 Genetic Knowledge Transfer

Input: Pt: the current generation of particles.
1: for g = 1 to N/2 do
2: Randomly select two particles pa and pb in Pt.
3: if τa = τb then
4: %Intra-task Transfer
5: pc ← ∩(pa, pb).
6: pa′ ← Inherit all positions of pc and randomly set (||pa||0 − ||pc||0) positions to 1.
7: p

b
′ ← Inherit all positions of pc and randomly set (||pb||0 − ||pc||0) positions to 1.

8: else
9: %Inter-task Transfer

10: pc ← ∪(pa, pb).
11: pa′ ← Randomly select ||pa||0 positions in pc.
12: p

b
′ ← Randomly select ||pb||0 positions in pc.

13: end if
14: Evaluate the fitness of pa′ and p

b
′ .

15: Update the pa and pb.
16: g = g + 1.
17: end for
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Figure 2. An example of the knowledge transfer.

3.3. An Efficient Local Exploration Strategy with MOEA

After the optimization of multipopulation particle swarms, the set of globally opti-
mal particles with all the sparsity levels on each task (G = {∑K

j=1{∑S
s=1{gbests}j) can be

obtained. Two conflicting parameters are included in each particle, that is, the endmember
sparsity and the reconstruction error. Therefore, we employ the multiobjective optimization
algorithm to facilitate the search process to obtain the optimal points in each task. In the
evolutionary multitasking multiobjective framework, the optimized function is expressed
as follows: ⎧⎨⎩{X∗

1, X∗
2, ..., X∗

K} = arg min{F(X1), F(X2), ..., F(XK)} ,

F(Xj) = min
Xj

(||Xj||0, ||Y j − AXj||F), (10)

where the Y j and Xj represent the original image and inversion abundance in the j-th task,
respectively.

The local exploration strategy processes are in Figure 3. First, the globally optimal
particles are transcoded to the first generation of the evolutionary algorithm for the NSGA-
II framework. The roulette selection, single-point crossover and bitwise mutation operators
are employed to participate in the evolution of multiobjective optimization. Then, the
generated offspring are evaluated to update the Pareto front in each task according to
the nondominated sorting and crowding distance, and the nondominated solutions are
transcoded back to the globally optimal particles.

With the above design, the optimal point in each task can finally be obtained by:
X∗

jv = arg min ||Y j − AvXjv||F, which can be solved simply with the least squares method.
Finally, the optimal abundance map obtained from each task constitutes the final inverted
abundance map.

Figure 3. The illustration of the Local Exploration Strategy with MOEA.
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4. Experimental Results

4.1. Data Sets

Data 1 provided by Iordache et al. [36] is an image which contains 100 × 100 pix-
els and 224 bands in each pixel, and the related abundance map of nine endmembers
is shown Figure 4. It contains nine randomly selected signatures from a sublibrary of
230 spectral signals, and the fractional abundances are piecewise smooth. Data 2 pro-
vided by Tang et al. [37] is an image which contains 64 × 64 pixels and 224 bands in each
pixel, the related abundance map of five endmembers is shown Figure 5. It includes five
endmembers from a sublibrary of 498 spectral signals, and the fractional abundances are
also homogeneous. These two benchmark datasets were tested at different levels of white
noise, that is, SNR = 20, 30 and 40 dB. The number of tasks was set to three on these two
datasets as recommended in [22]. In order to maintain the fairness of the experiments, all
experimental results were taken from the average results of 20 experiments, which is the
same as in the comparative method paper.

Figure 4. True abundance maps of five endmembers in data 1.

Figure 5. True abundance maps of nice endmembers in data 2.
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4.2. Performance Analysis of EMMPSO

In this section, the ablation experiments were performed to demonstrate the effec-
tiveness of the knowledge transfer and the local exploration strategy. The hypervolume
indicator was used to compare the evolution process and the convergence procedure of
the EMMPSO and the EMMPSO without transfer. Hypervolume was calculated using a
reference point 1% larger in every component than the corresponding nadir point [38]. As
an important indicator to measure the Pareto-optimal front (PF), the larger the value of
the hypervolume, or the faster the convergence speed of the hypervolume, the better the
PF obtained by the algorithms. The evolution of the hypervolume indicator is shown in
Figure 6. It is clear that, after a few iterations, our method can obtain the higher hy-
pervolume values with the help of the intra-task and inter-task transfer strategy. When
several related tasks are optimized simultaneously under the framework of evolutionary
multitasking, the convergence rate is improved significantly.

Secondly, to test the efficiency of the local exploration, the performance of EMMPSO
and EMMPSO without local exploration was compared. Usually, signal to reconstruction
error (SRE) is used to measure the quality of the reconstruction of a signal. Table 1 shows
the SRE (dB) with different noise levels of our proposed method and the EMMPSO without
the local exploration on the simulated data. It can be observed that our method can achieve
values of SRE (dB) higher than the EMMPSO without local exploration on both simulated
datas. It is obvious to see that the local exploration is useful for facilitating the search
process to obtain the optimal points.

Table 1. Comparison of EMMPSO and EMMPSO without Local Exploration on data 1 and data 2.

Data 1
SRE (dB)

20 30 40

EMMPSO without LE 7.9435 13.3654 22.7536
EMMPSO 8.2783 15.8039 25.2174

Data 2
SRE (dB)

20 30 40

EMMPSO without LE 10.7025 14.7089 17.0224
EMMPSO 12.3572 20.5891 25.7204
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Figure 6. Cont.
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Figure 6. Comparison of the hypervolume indicator for EMMPSO and EMMPSO without transfer. (a) task 1 on data 1, (b) task 2 on
data 1, (c) task 3 on data 1, (d) task 1 on data 2, (e) task 2 on data 2, (f) task 3 on data 2.

4.3. Comparing with State-of-Art Algorithms

In order to reflect the superiority of our proposed algorithm, EMMPSO compares
with the state-of-art algorithms, including SUnSAL, CLSUnSAL, two-phase multiobjective
sparse unmixing (Tp-MOSU) and evolutionary multitasking sparse reconstruction (MTSR).
Among them, SUnSAL and CLSUnSAL are the traditional pixel-based and matrix-based
processing algorithms. Tp-MOSU and MTSR are two algorithms based on the multiob-
jective optimization and multitasking optimization, respectively. In order to reflect the
advantage of the proposed method, Figures 7 and 8 depict the estimated abundance maps
for the endmember 2, 5, 8 on data 1 and the endmember 1, 3, 5 data 2, respectively. The
rightmost column represents the abundance map of the real endemembers. The closer the
inverted abundance map is to the real abundance map, the better the unmixing perfor-
mance of the modified algorithm is. It can be seen that the Tp-MOSU, MTSR and EMMPSO
exhibit better performances than the other two methods in the similarity with the original
abundance map. Although the abundance maps obtained by the Tp-MOSU, MTSR and
EMMPSO are similar, the abundance map of EMMPSO has much less noise. Table 2 shows
the results of SRE (dB) obtained by the five methods on data 1 and data 2. At different
levels of noise, the proposed EMMPSO can always achieve the highest values of SRE (dB)
on both simulated datasets. The experimental results on two datasets have proved that
our proposed EMMPSO is able to achieve a competitive performance by evolutionary
multitasking and local exploration strategy.
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Figure 7. The fractional abundance maps of endmember 2, 5, 8 by SunSAL, CLSUnSAL, Tp-MOSU,
MTSR and EMMPSO on Data 1.

Figure 8. The fractional abundance maps of endmember 1, 3, 5 by SunSAL, CLSUnSAL, Tp-MOSU,
MTSR and EMMPSO on Data 2.

Table 2. Comparison of EMMPSO and other methods on data 1 and data 2.

Data 1
SRE (dB)

20 30 40

SunSAL 4.5568 8.5833 12.9890
CLSUnSAL 5.5164 11.4842 18.7935
Tp-MOSU 8.4083 14.4070 22.5478

MTSR 7.0496 13.7802 22.7329
EMMPSO 8.5783 15.2039 24.2174

Data 2
SRE (dB)

20 30 40

SunSAL 3.5823 8.0323 12.9896
CLSUnSAL 8.2382 13.0988 14.3502
Tp-MOSU 11.3578 15.7132 18.0457

MTSR 10.7254 14.6143 17.6775
EMMPSO 12.3572 20.5891 25.7204

5. Conclusions

In this paper, we propose a novel evolutionary multitasking multiobjective particle
swarm optimization framework called EMMPSO to solve the sparse unmixing problem.
With processing multiple homogeneous regions of a hyperspectral image simultaneously,
the evolution convergence is accelerated. The local exploration strategy with MOEA is
also designed to obtain the optimal solution. For the case study, the proposed EMMPSO
is compared with some state-of-the-art methods on benchmark simulated datasets. The
results demonstrate the superiority of the EMMPSO.
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In future work, we will focus on reducing the time complexity of EMMPSO, and
design an efficient multiobjective particle swarm optimization paradigm for the sparse
unmixing problem.
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The following abbreviations are used in this manuscript:

SUnSAL sparse unmixing algorithm via variable splitting and augmented Lagrangian
CLSUnSAL collaborative SUnSAL
MOEAs Multiobjective evolutionary algorithms
MOSU multiobjective sparse unmixing
MOEA/D multiobjective evolutionary algorithm based on decomposition
PSO particle swarm optimization
EMMPSO evolutionary multitasking multipopulation particle swarm optimization
Tp-MOSU two-phase multiobjective sparse unmixing
MTSR multitasking sparse reconstruction
SRE signal to reconstruction error
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Abstract: Effectively learning the appearance change of a target is the key point of an online tracker.
When occlusion and misalignment occur, the tracking results usually contain a great amount of
background information, which heavily affects the ability of a tracker to distinguish between targets
and backgrounds, eventually leading to tracking failure. To solve this problem, we propose a simple
and robust reliable memory model. In particular, an adaptive evaluation strategy (AES) is proposed
to assess the reliability of tracking results. AES combines the confidence of the tracker predictions
and the similarity distance, which is between the current predicted result and the existing tracking
results. Based on the reliable results of AES selection, we designed an active–frozen memory model to
store reliable results. Training samples stored in active memory are used to update the tracker, while
frozen memory temporarily stores inactive samples. The active–frozen memory model maintains
the diversity of samples while satisfying the limitation of storage. We performed comprehensive
experiments on five benchmarks: OTB-2013, OTB-2015, UAV123, Temple-color-128, and VOT2016.
The experimental results show that our tracker achieves state-of-the-art performance.

Keywords: online update; reliable evaluation strategy; active–frozen memory model; visual tracking

1. Introduction

Visual tracking is a fundamental problem of computer vision that tracks targets in
subsequent frames by specifying the position and size of the target in the first frame. It has
been successfully applied to robots, video surveillance, and self-driving cars. There are
some challenging factors, such as deformation, in-of-plane scale variation, and illumination
variation. These challenges are likely to cause significant changes to the appearance of the
target. Therefore, how to effectively learn the appearance change of a target is an essential
issue of visual tracking.

Recently, online learning-based trackers have achieved good performance. Online
updates are often employed to learn appearance changes of targets. The tracking results
are collected as online training samples every frame or at fixed intervals. There are some
online update strategies that have been proposed [1–6]. For example, some strategies
include selecting the most confident tracking result within the fixed interval frames to
update specific networks [7]; collecting two consecutive frames [2]; storing each frame
in order [3,8,9]; using a convolutional neural network to update the template [4,5]; and
storing all tracking results using the Gaussian Mixture Model (GMM) [1,10].

Although the functions of these online update strategies have been validated, there
are still two challenges. One challenge is that tracking results are not always reliable. When
misalignment, occlusion, and out-of-view occur, the tracking results are likely to contain a
great amount of background information, which is regarded as noise. Unreliable tracking
results reduce the ability of a tracker to distinguish between targets and backgrounds,
ultimately leading to tracking failure. Another challenge is that tracking results are not
appropriately stored. The predicted tracking result in each frame [8,9] or several tracking
results with higher confidence [2,7] are stored. However, in these methods, there are very
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few online tracking samples and also only represent the latest appearance change of the
target. This can easily cause the tracker to over-fit the current appearance of target.

To solve the above challenges, we propose a robust reliable memory model that
can accurately evaluate the reliability of tracking results and efficiently store all reliable
results. First, we propose an adaptive evaluation strategy (AES) to assess the reliability of
tracking results. AES calculates the reliability weight based on the tracking confidence of
the tracker prediction and the similarity distance, which is between the current predicted
result and the existing tracking results. Reliability thresholds are adaptively calculated to
enhance the generalization of AES. Only reliable tracking results were selected to construct
online training samples. Based on the reliable results of the AES selection, inspired by the
computer storage structure, we devised an active–frozen memory model to store all reliable
tracking results. Training samples stored in active memory are used to update trackers
online. The frozen memory temporarily stores some of the oldest results. The active–frozen
memory model maintains the diversity of training samples by exchanging samples in two
memories. Combined AES and the active–frozen memory model can effectively avoid
introducing background information, while avoiding tracker over-fitting to the current
target appearance.

The contributions are summarized as follows:

1. We propose an adaptive evaluation strategy (AES) for the reliability of tracking results.
The AES adaptively calculates the reliability threshold r by combining the similarity
distance and the confidence of the tracker prediction to reduce the introduction of
background information. It ensures the quality of online training samples to avoid
bad online updates.

2. We propose an active–frozen memory model to efficiently store all reliable tracking
results. Samples stored in active memory are used to update the tracker. The frozen
memory stores some of the oldest samples. Samples exchange between the active
memory and frozen memory to ensure the diversity of samples within the active
memory. The active–frozen memory model avoids tracker over-fitting to current
appearance changes.

3. We evaluate our proposed tracker on five benchmark datasets: OTB-2013, OTB-2015,
UAV123, Temple-Color-128, and VOT2016. Our tracker obtains a 69.4 AUC score on
OTB-2015. Experimental results show that our proposed tracking algorithm achieves
state-of-the-art performance.

2. Related Work

When scale variability, deformation, and rotation occur, the appearance of the target
tends to change significantly. How to effectively learn the appearance change of a target is
an essential issue of visual tracking. Recently, most approaches utilize the tracking results
as online training samples to fine-tune the tracker to learn the appearance change of targets.

Reliability evaluation of tracking results. The reliability of online training samples
is key to update the tracker. There are two main strategies for constructing online training
samples. One strategy is to directly use the tracking results as an online training sample,
regardless of its reliability. Some trackers [1,2,8,10] collect one training sample based on the
tracking result in each frame. Other trackers [3,11,12] draw in some positive and negative
samples around the predicted target location. When tracking drift occurs, the tracking
results are likely to contain a great amount of background information that contaminates
the online training samples.

The second strategy is to only consider the confidence of the tracking results, which
is predicted by the tracker. FCNT [7] collects the most confident tracking results within
the intervening frames. STCT [13] sets a confidence threshold and collects the tracking
results with a confidence higher than the threshold. However, the tracking results are
predicted by the tracker, which is always more confident about its own predictions. Thus,
incorrect tracking results are still likely to achieve high confidence. Different from the
above methods, we designed a robust adaptive evaluation strategy (AES) to assess the
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reliability of the tracking results. The AES not only considers the confidence of the tracking
results but also considers the similarity distance between the current predicted result and
the existing tracking results.

Storage of online training samples. Existing trackers construct a fixed volume of
space to store online training samples. Some trackers [2,7,13] maintain a very small space,
which only store one or two samples, to reduce the amount of computation. CREST [2]
stores only two samples, namely the last two frames. FCNT [7] stores only one training
sample within the intervening frames. STCT [13] stores the tracking result with the confi-
dence of the tracker prediction higher than a predefined threshold. These methods only
collect a small amount of tracking results, making the tracker over-fit easily to the current
training samples.

Other trackers collect large amounts of tracking results in large spaces. Some positive
and negative samples are stored in each frame [3,11,12]. One sample is added in each
frame [8,10]. UpdateNet [4] uses the initial frame and accumulated template to estimate the
optimal template for the next frame. Meta-updater [6] integrates geometric, appearance,
and discriminative cues to sequential information. In particular, ECO [1] employs the
Gaussian Mixture Model (GMM) to reduce the redundancy of the training samples. When
the number of samples reaches the maximum capacity, the tracker discards the oldest
samples, which easily causes the tracker to over-fit to the current appearance of the target.
We propose an active–frozen memory model to store all reliable tracking results. The
training samples stored in the active memory are used to fine-tune the tracker. The frozen
memory temporarily stores the sample, whose weight is less than a threshold, as discarded
the by active memory. The samples in the active memory and frozen memory are exchanged
to ensure the diversity of samples in the active memory.

3. Our Approach

As mentioned earlier, the reliability of training samples is very important for the
online updating of a tracker. When occlusion and tracking misalignment occur, the tracking
result has a good chance to contain background information, which can be regarded as
noise. When the tracker is updated with these tracking results, the ability of the tracker to
distinguish between the background and the target is reduced, and eventually it can lead
to poor location estimation or tracking failure. As shown in Figure 1, ECO (red box) does
not consider the reliability of the tracking result and is easily affected by similar objects,
scale variables, and rotation. Our approach (green box) evaluates the reliability of the
result to avoid introducing noise for generating better prediction results. As we know, the
reliability of tracking results is not enough of a concern for researches. We obtained two
observations by analyzing the confidence of the current tracking result and the similarity
distance, which is between the current predicted result and the existing tracking results.
Based on the two observations, an adaptive evaluation strategy (AES) was designed to
evaluate the reliability of the tracking results.

The first observation. The similarity distance between the current predicted result
and the existing tracking results increases significantly when tracking drift occurs. Figure 2
shows the change of the minimum distance during the tracking process. Around the 70th
frame, the target jumps, causing the appearance to significantly change and leading to the
similarity distance to increase rapidly. Thus, the similarity distance can help to recognize
when the tracking drift occurs.
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Figure 1. Our approach is compared with the ECO [1] on three test sequences called Basketball (top

row), CarScale (middle row), and Twinnings (bottom row). ECO (red box) does not consider the
reliability of the tracking result and is easily affected by similar objects, scale variability, and rotation.
Our approach (green box) evaluates the result’s reliability by AES.

Figure 2. Visualization of the dynamic changes of the similarity distance on Biker. The tracking drift
occurs when the target jumps around 70th frame. We can clearly observe that the similarity distance
is significantly increased.

The second observation. We used the VGG network to extract semantic features and
to represent the target with HOG and color name (CN) features together. The tracker has
the ability to address some variations in the appearance of the target. Figure 3 shows the
relationship of the similarity distance and the confidence. According to the first observation,
as indicated by the purple curve, when the illumination or appearance of a target changes
drastically, the similarity distance increases significantly. However, the confidence of the
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current predicted result (blue curve) is still higher than the mean confidence (red curve).
That is, when the appearance of the target changes significantly, the tracker can still show a
high level of confidence in the current prediction results.

Figure 3. Visualization of the relationship between the confidence and similarity distance on Singer2.
Even if the target’s pose or appearance changes significantly (purple curve), the confidence of the
current predicted result (blue curve) is still higher than the mean confidence (red curve).

The tracking results are collected as training samples to update the tracker online.
Based on the reliable results of the AES selection, we designed an active–frozen memory
model to maintain the diversity of results while satisfying the limitation of storage.

3.1. Adaptive Evaluation Strategy (AES) of the Reliability

Inspired by the aforementioned two observations, we propose an adaptive evaluation
strategy (AES) that combines the similarity distance with the confidence of the tracker
prediction to assess the reliability of tracking results.

We use U = {u1, ..., un} ∈ Rm∗n to represent the features of tracking results and
C = {c1, ..., cn} ∈ R1∗n to represent the confidence of the tracker prediction. For the current
predicted result x, its tracking confidence is represented by t and its reliable weight is
represented by V. V is composed of distance-based reliability weight V1 and a confidence-
based reliability weight V2. When the current predicted result x is unreliable, the V is
assigned a value of zero.

We first calculated the distance-based reliability weight V1 based on the similarity
distance between the current predicted result and the existing tracking results.

min
V1

E(V1; r) = V1 ∗
(

r − min
n

∑
i=1

L(x, ui)

)
s.t. V1 ∈ {0, 1} (1)

where L(x, y) calculates the Euclidean distance and r is a threshold when L(x, y) is greater
than r, V1 = 0, and otherwise is V1 = 1. The purpose of V1 is to help the tracker to identify
significant changes in the appearance of the target. The confidence-based reliability weight
V2 is calculated according to the confidence of the tracking results.
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min
V2

E(V2) = V2 ∗
(

1
n

n

∑
i=1

ci − t

)
s.t. V2 ∈ {0, 1} (2)

The tracker is robust to appearance changes of the target because of the confidence-
based reliability weight V2. Based on the distance-based reliability weight V1 and the
confidence-based reliability weight V2, the reliability weight V is calculated by Equation (3).

V = V1 ◦ V2 (3)

where ◦ is a Hadamard product. According to Equations (1)–(3), the global optimum V� of
reliability weight V is calculated by the following:

V� =

{
1, V1 ◦ V2 = 1
0, otherwise

(4)

The reliability of the tracking results can be effectively evaluated by Equation (4).
The parameter r is an important threshold that determines the reliability of the current
predicted result. Figure 4 shows the similarity distance between the current predicted
result and the existing tracking results in different sequences. In the FleetFace sequence
(yellow curve), the similarity distance is significantly smaller than the Bolt2 sequence (red
curve) and BlurCar1 sequence (green curve). In the Bolt2 sequence, the similarity distance
shows a significant dynamic change. The similarity distance of different sequences is
remarkably different because the target has different motion states, appearance changes,
and resolutions of features. According to the second observation, the confidence of the
tracking result can effectively address the appearance’s change of the target. We propose a
method that adaptively calculates the threshold r.

Figure 4. Visualization of the similarity distance between the current predicted result and the existing
tracking results in the BlurCar1 (green curve), Bolt2 (red curve), and FleetFace (yellow curve). The
similarity distance of different sequences is remarkably different.
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In the case of V1
⊕

V2 = 1, this indicates that the distance-based reliability weight V1 is
different from the confidence-based reliability weight V2. When V2 = 1, this indicates that
the appearance of the target has changed significantly. The threshold r should be increased
to select more tracking results as online tracking samples. When V2 = 0, this indicates
that the tracker is not certain about its own predictions. Although the new tracking results
are close enough to the existing tracking results, we believe that the threshold r should
be reduced to ensure the quality of the current predicted result. The threshold r can be
adaptively calculated by the following formula:

r = r + w ∗
[

r − min
n

∑
i=1

L(x, ui)

]
∗
(

V1
⊕

V2

)
(5)

where w represents the pace for each calculation.

3.2. Active–Frozen Memory Model

In order to learn the appearance change of the target, tracking results are collected
as training samples to update the tracker online. Most trackers [1,7,10] discard the oldest
results when the number of samples reaches the maximum limit, which results in training
samples that do not fully represent the appearance change of the target.

Based on reliable results of the AES selection and as inspired by the multi-level
cache technique in computer storage, we propose an active–frozen memory model that
stores all reliable tracking results. The structure of the active–frozen memory model is
shown in Figure 5, and is a cascaded structure that can exchange components between two
memories. Tracking results stored in the active memory are used to update the tracker
online. Frozen memory is used to temporarily store some of the oldest results. In order to
reduce computation load, following the [1], we used the Gaussian Mixture Model (GMM)
to fuse tracking results in each memory. The two closest components, namely K and S in
GMM, are merged into one, specifically component G.

WG = WK + WS, XG =
WKXK + WSXS

WK + WS
(6)

Figure 5. The structure of the active–frozen memory model (top row). There are two operations
(below row), namely transfer component and exchange component. Only reliable tracking results
are stored and are otherwise discarded directly. The active–frozen memory model guarantees the
diversity and reliability of tracking results in active memory by exchange operations and AES.
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We first constructed a Gaussian component based on the weight Wx and mean features
X of the current predicted result x. The reliability of x was evaluated by AES (see Section 3.1
for details). If the current predicted result x is reliable, it is stored in the active memory.
Otherwise, it is discarded directly.

After the current predicted results are collected, we checked whether the component
numbers in the active memory had reached the maximum limit and whether the weight
of one component was less than the predefined threshold. If an existing component
satisfies the above requirement, it is exchanged with the closest component from the frozen
memory. If the frozen memory is empty, we place this component directly into the frozen
memory. The active–frozen memory model guarantees the diversity and reliability of
tracking results in the active memory. The stored procedure of the active–frozen memory
model is illustrated in Algorithm 1.

Algorithm 1 Stored procedure of the active–frozen memory model.

Require: current predicted result x.
Ensure: active–frozen memory.

1: Construct a component based on the weight Wx and mean x of the new sample
2: Calculate the reliability weight V of the tracking result x by AES
3: if V = 1 (the tracking result x is reliable) then

4: The tracking result x is stored in the active memory by Equation (6)
5: else

6: Discard the tracking result X directly
7: end if

8: if the number of components in the active memory reaches the maximum limit and
one component with the weight is less than the threshold then

9: if the frozen memory is empty then

10: Put the component into the frozen memory directly
11: else

12: Exchange with the closest component from the frozen memory
13: end if

14: end if

15: return active–frozen memory.

3.3. Model Update

In recent trackers [1,7,12,14], a sparse update scheme was employed. The tracker,
which takes collected tracking results as online training samples, is updated every Ns
frames and each update performs a fixed number Ni of iteration optimization algorithms.
The sparse update scheme not only reduces the computations but also reduces the over-
fitting to the recent online training samples.

We also utilized the sparse update scheme in our approach. Only the training samples
stored in the active memory were used to update our tracker (see Section 3.2 for details).
When the current predicted result was unreliable, the active memory did not change
because the predicted result was discarded directly. Thus, before updating the tracker, we
detected whether the active memory changes in the Ns frame, that is, whether there were
new tracking results to be collected. If the active memory had not changed, indicating
the Ns tracking results were unreliable, we reduced the number of iterations Ni of the
optimization algorithms to avoid the tracker over-fitting to existing online training samples.
Otherwise, we performed Ni times of iteration optimization algorithms.
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4. Experiments

We validated the performance of our tracker on five benchmark datasets, including
OTB-2013 [15], OTB-2015 [16], UVA123 [17], Temple-color-128 [18], and VOT2016 [19].

4.1. Implementation Details

Our tracker was implemented in Pytorch. We initialized our tracker using the method
proposed in [1]. The VGG-m network was used as a feature extractor to capture the Conv1
(the first convolutional layer) and Conv5 (the last convolutional layer) features, and the
HOG and Color Name (CN) features were combined to represent the target. For the
adaptive evaluation strategy (AES) of the reliability, the threshold r was initialized to 0.
In order to obtain a reasonable value of r, the tracking results of the first 50 frames were
used to adaptively calculate the value of r by Equation (5). In fact, the initial value of r
had no effect on the performance of the tracker. In the first 50 frames, the pace for each
calculation w was set to 0.5. In the subsequent frames, the pace w was calculated by the
following formula.

w =

⎧⎨⎩0.4 ∗ max(ci) + 0.6 ∗ r
distancemin

, r > distancemin

0.4 ∗ max(ci) + 0.6 ∗
(

r
distancemin

− 1
)

, otherwise
(7)

where distancemin represents the minimum similarity distance between the current pre-
dicted result and the existing online training samples.

For the active–frozen memory model, as presented in Section 3.2, the maximum limit
of the number of training samples in the active memory and frozen memory was set to
50 and 10, respectively. We initialized the active memory with the tracking results of the
first 50 frames of the sequence. The learning rate was set to 0.009. We updated the tracker
every Ns = 6 frames. When tracking results were added to the active memory, we used the
same iteration number Ni = 5 as in [1]. Conversely, the number of iterations Ni was set to
4. Note that all parameters settings were kept fixed for all the sequences in the dataset. It is
important to note that the computational complexity of our proposed adaptive evaluation
strategy (AES) and active–frozen memory model was O(n), which is negligible and thus
guarantees the real-time performance of the tracking.

4.2. Ablative Study

In this section, we analyze the contribution of both the adaptive evaluation strategy
(AES) of the reliability and the active–frozen memory model to the tracker by performing
experiments on the OTB-2013 dataset [15]. The OTB-2013 dataset contains 50 sequences
that are all fully annotated. There are 11 attributes, such as occlusion, scale transformation,
and deformation, which represent the challenge factors in visual tracking. Each sequence
has at least one challenge factor. We used a precision plot and a success plot to evaluate
the performance of the tracker. Precision plots calculate the Euclidean distance between
the estimated location and the ground truth, and counts the percentage of frames that are
less than a given threshold distance. The threshold was set to 20 pixels. The success plot
quantitatively calculates the overlap ratio of the bounding box, where the overlap rate
ranges from 0 to 1. The success plot counts the number of frames whose overlap rate is
greater than a given threshold. The threshold was set to 0.5.

We chose ECO [1] as our baseline tracker and organized four comparison experiments
by controlling variables, including standard ECO, only the adaptive e- valuation strategy
(ours-AES), only the active–frozen memory model (ours-AF memory), and our proposed
approach (ours). Figure 6 shows the comparison experiment results on the OTB-2013
dataset. In the precision plot, the score of the baseline tracker was 93%. Compared with the
baseline tracker, our active–frozen memory model achieved a 0.8% improvement and our
adaptive evaluation strategy achieved a 1.6% improvement, which provided the greatest
contribution. Our approach finally improved by 1.8%. In the success plot, the baseline
tracker obtained an area-under-curve (AUC) score of 70.9%. Both the adaptive evaluation
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strategy and thw active–frozen memory model achieved a 0.4% improvement, and our
approach achieved a 0.5% improvement compared with the baseline tracker.

Figure 6. Ablative experiments on the OTB-2013 dataset. The area-under-curve (AUC) score of the
success plot and the score of the precision plot are represented in the legend, respectively.

We also analyzed the performance of the tracker under different challenge factors.
Figure 7 only shows the results of the scale variation, illumination variation, in-plane
rotation, and deformation challenge factors; we achieved an increase of 1%, 1%, 0.6%, and
2.6% respectively. In particular, our method can better learn the deformation of a target,
which is our main purpose, i.e., learning the appearance change of a target.

Figure 7. Success plot on scale variation, illumination variation, in-plane rotation, and deformation.
The AUC score of each challenge factor is shown in the legend.

AES guarantees the quality of online training samples to avoid introducing back-
ground information and the active–frozen memory model guarantees the diversity of
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online training samples to prevent the tracker from over-fitting to the current target appear-
ance. The experimental results in Figures 6 and 7 show that the adaptive evaluation strategy
(AES) of the reliability and the active–frozen memory model are useful for improving the
performance of the tracker.

Meanwhile, we conducted ablation experiments on VOT2016 [19] as shown in Table 1.
Our tracker can reach 35 FPS with negligible computation introduced by AES and AF
memory, satisfying the real-time requirement.

Table 1. Ablative experiments on the VOT2016.

Baseline Ours-AES Ours-AF Memory Ours

EAO 0.374 0.385 0.378 0.389
A 0.540 0.577 0.560 0.590
R 0.306 0.306 0.308 0.310

FPS 41 36 40 35

4.3. Comparisons to State-of-the-Art Trackers

In this section, we compare our approach with state-of-the-art trackers on five bench-
mark datasets: OTB-2013 [15], OTB-2015 [16], UVA123 [17], Temple-color-128 [18], and
VOT2016 [19].

OTB-2013. We compared our approach with VITAL [3], ECO [1], MDNET [12],
DAT [11], MCPF [20], CREST [2], CCOT [9], TRACA [21], BACF [22], DeepSRDCF [23],
SRDCF [8], SiamFC [24], and 29 trackers from the OTB-2013 dataset. The experimental
results are shown in Figure 8. In the precision plot, VITAL achieved the best performance.
Our tracker obtained a precision score of 94.8%, second only to VITAL and more than the
0.4% and 1.8% of DAT and ECO, respectively. In the success plot, our method achieved
the best performance between all the state-of-the-art trackers, obtaining an AUC score of
71.4%, which was more than the 0.4% and 0.5% of VITAL and ECO, respectively. Com-
pared with ECO, although the adaptive evaluation strategy (AES) of the reliability and the
active–frozen memory model had been added, the extra calculations were negligible and
our trackers ran at the same speed as ECO.

Figure 8. Precision plot and success plot on the OTB-2013 dataset. The AUV score and precision score
of each tracker is shown in the legend. For clarity, we only show the top 10 trackers for performance.

OTB-2015. The OTB-2015 dataset is based on the OTB-2013 dataset, which adds
50 additional sequences and is still fully annotated. We compared our approach with
recent state-of-the-art trackers: VITAL [3], ECO [1], MDNET [12], DAT [11], MCPF [20],
CREST [2], CCOT [9], TRACA [21], BACF [22], DeepSRDCF [23], SRDCF [8], SiamFC [24],
and 29 existing trackers from the OTB-2015 dataset. The experimental results are shown in
Figure 9. Our approach achieved the best performance in both the precision and success
plot, with a precision score of 92.3% and an AUC score of 69.4%, respectively. Our tracker

253



Electronics 2021, 10, 2488

was 0.5% higher than VITAL and 1.3% higher than VITAL in the precision plot. Additionally,
our tracker was 0.3% higher than ECO and 1.2% higher than VITAL.

Figure 9. Precision plot and success plot for the OTB-2015 dataset. The AUV score and precision score
of each tracker is shown in the legend. For clarity, we only show the top 10 trackers for performance.

UAV123. UAV123 is constructed by 123 video sequences and more than 110K frames,
which contain 12 tracking attributes, captured from a low-altitude aerial perspective. We
compared our approach with state-of-the-art trackers: ECO [1], MEEM [14], DSST [25],
SRDCF [8], DCF [26], Struck [27], MUSTER [28], SAMF [29], and 31 trackers from the
UAV123 dataset. Figure 10 shows the results over all the 123 sequences in the UAV123
dataset. Our tracker provided the best performance with a precision score of 74.9% and an
AUC score of 52.8%. Additionally, our tracker achieved a substantial improvement over
ECO [1], with a gain of 0.8% in the precision plot and a gain of 0.3% in the AUC.

Figure 10. Precision plot and success plot on the UAV123 dataset. The AUV score and precision score
of each tracker is shown in the legend. For clarity, we only show the top 10 trackers for performance.

VOT2016. The VOT2016 dataset contains 60 sequences with new annotations. We
compared our approach with SiamDW [30], UpdateNet [4], SiamRPN [31], and ECO [1].
Table 2 shows the results of the VOT2016 dataset. Our tracker provided the best perfor-
mance with an EAO score of 0.389.

Table 2. Comparison with state-of-the-art trackers on VOT2016.

SiamRPN SiamDW-RPN ECO UpdateNet Ours

EAO 0.344 0.370 0.374 0.381 0.389
A 0.560 0.580 0.540 0.560 0.590
R 0.302 0.240 0.306 0.261 0.310

FPS 92 90 41 70 35
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Temple-color-128. The Temple-color-128 dataset is constructed by 128 color sequences
with ground truth and challenge factor annotations. As we all know, the color information
of a target provides rich discriminative cues for inference. The purpose of this dataset was
to study the use of color information for visual tracking. We compared our approach with
MEEM [14], Struck [27], KCF [26], and other trackers from the Temple-color-128 dataset.
The experimental results over all the sequences are shown in Figure 11. Our approach
achieved the best performance in both the precision and success plot, with a precision
score of 79.35.3% and an AUC score of 59.10%, respectively. Additionally, our tracker again
achieved a substantial improvement over MEEM [14], with a gain of 8.54% in the precision
plot and a gain of 9.10% in the AUC.

Figure 11. Precision and success plot on the Temple-color-128 dataset. The AUV and precision score
of each tracker is shown in the legend. For clarity, we only show the top 10 trackers for performance.

5. Conclusions

In this paper, we proposed a robust strategy for constructing online training samples
to learn the changes of a target’s appearance. The adaptive evaluation strategy (AES)
combines the tracking confidence of the tracker prediction and similarity distance, which
is between the current predicted result and the existing tracking results, to assess the
reliability of the tracking results in order to ensure the quality of the online training
samples. We also proposed an active–frozen memory model that can effectively store all
reliable tracking results. Training samples stored in the active memory are employed to
update the tracker. The diversity of the online training samples is ensured by sample
exchange between two memories to prevent the tracker from over-fitting to the current
appearance changes. Extensive experiments on five benchmark datasets show that our
approach outperforms the performance of state-of-the-art trackers.
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Abstract: In the development of artificial intelligence (AI), games have often served as benchmarks
to promote remarkable breakthroughs in models and algorithms. No-limit Texas Hold’em (NLTH)
is one of the most popular and challenging poker games. Despite numerous studies having been
conducted on this subject, there are still some important problems that remain to be solved, such as
opponent exploitation, which means to adaptively and effectively exploit specific opponent strategies;
this is acknowledged as a vital issue especially in NLTH and many real-world scenarios. Previous
researchers tried to use an off-policy reinforcement learning (RL) method to train agents that directly
learn from historical strategy interactions but suffered from challenges of sparse rewards. Other
researchers instead adopted neuroevolutionary (NE) method to replace RL for policy parameter
updates but suffered from high sample complexity due to the large-scale problem of NLTH. In this
work, we propose NE_RL, a novel method combing NE with RL for opponent exploitation in NLTH.
Our method contains a hybrid framework that uses NE’s advantage of evolutionary computation
with a long-term fitness metric to address the sparse rewards feedback in NLTH and retains RL’s
gradient-based method for higher learning efficiency. Experimental results against multiple baseline
opponents have proved the feasibility of our method with significant improvement compared to
previous methods. We hope this paper provides an effective new approach for opponent exploitation
in NLTH and other large-scale imperfect information games.

Keywords: opponent exploitation; no-limit Texas hold’em; neuroevolution; reinforcement learning

1. Introduction

Poker is often regarded as a representative problem for the branch of imperfect
information games in game theory. It naturally and elegantly captures the challenges
of hidden information for each private player [1]. The complexity of its solving method
is much higher compared with perfect information games, such as Go [2]. As the most
strategic and popular variation of poker, Texas Hold’em poker has been widely studied
for years. AI researchers are working to find its solving method just as in AlphaGo or
AlphaZero. However, Texas Hold’em poker contains additional challenges of imperfect
information, dynamic decision-making, and misleading deceptions, as well as multistage
chip and risk management, etc., which restrict it from being solved perfectly by AI. Most
researchers are firmly convinced that the related technology behind the Texas Hold’em
Poker’s solution can be extended to multiple real-word applications, such as strategic
portfolio, auction, finance, cybersecurity, and military applications [3], and the promising
application prospect motivates continuous study until now.

Texas Hold ’em is an interactive decision poker game consisting of four stages: preflop,
flop, turn, and river. At each stage players can bet different amounts of money based on
private hands and public cards. They can only obtain rewards after taking a series of
sequential actions until there is only one player remaining or the end of the last river

Electronics 2021, 10, 2087. https://doi.org/10.3390/electronics10172087 https://www.mdpi.com/journal/electronics259



Electronics 2021, 10, 2087

stage. According to the limitation of betting amount, Texas Hold’em poker can be divided
into either a limited game or a no-limit game. The number of their information sets are
about 1014 and 10162, respectively [4]. It is obvious that solving no-limit Texas Hold’em
(NLTH) is much more complex and resource-consuming, which makes NLTH an important
benchmark in the domain of large-scale imperfect information games. The most recent and
advanced progress of NLTH was achieved by two research teams from the University of
Alberta (UoA), and Carnegie Mellon University (CMU). They have almost simultaneously
put forward AI programs—Libratus (from CMU) [5] and DeepStack (from UoA) [6]—to
solve two-player NLTH in 2017, as well as a Superhuman AI—Pluribus (from CMU) for
multiplayer NLTH in 2019 [1].

Despite the above equilibrium-based solutions achieving highlight performances,
their lack of adaptability to opponents seems to be a problem. That is, no matter what kind
of opponents are there, these AIs always play the same way in order to ensure equilibrium.
This is usually not the exact solution we want.

Another approach to deal with this problem is opponent exploitation . Simply put,
opponent exploitation is a class of methods that specially design agents to target specific
opponents. Sometimes, this approach can achieve greater rewards from the opponents
than the equilibrium-based solutions, as it pursues the maximum individual utility against
current opponent strategy rather than equalize all possible opponent strategies indiscrimi-
nately. Related research for opponent exploitation in NLTH can be seen in several previ-
ously published studies [7–12], using advanced techniques including deep reinforcement
learning, neuroevolution, etc. While methods in these works show practical effectiveness,
there still exist some disadvantages that need to be improved. For example, due to the
multi-stage sequential decision process and high dimensional action/state space in NLTH,
the reinforcement learning (RL) method typically confronts the challenge of sparse rewards
that only obtain non-zero values at the final steps [9,10], whereas the neuroevolution (NE)
method typically suffers from high sample complexity and struggles to optimize a large
number of parameters [11,12]. Generally speaking, these problems can be summed up as
ineffective and inefficient learning. For opponent exploitation in a large-scale problem such
as NLTH, what we most want to achieve is not merely learning to exploit our opponents
as much as possible (effectiveness). We also want to make the learning process as fast as
possible (efficiency), which can greatly reduce the consumption of computing resources
and time. Thus, developing an effective as well as efficient learning method for opponent
exploitation in NLTH is the main motivation of our work.

In this paper, we propose a novel method combining neuroevolution (NE) with
reinforcement learning (RL) for opponent exploitation in NLTH. The key insight of our
method (NE_RL) is to incorporate NE’s ability to address the challenge of sparse action
reward in the RL framework by evaluating returns of entire game episodes (the amount
of chips you win/lose) to form a fitness metric. Additionally, RL’s ability to leverage
powerful gradient descent methods can in turn help improve the learning efficiency in
NE, which will greatly benefit the training process. In addition, NE_RL extends NE’s
population-based approach to build two separate populations that evolved by NE and
RL seperately. Synchronous interactions within and between the populations can make
the learning process more stable and robust. These improvements together make NE_RL
a more effective and efficient opponent exploitation method compared to the previous
NE- or RL-only methods. It should be noted that the NE method in this work refers to
using evolutionary computation to optimize the weights of neural networks with fixed
network topologies. The topologies or architectures are manually designed and improved,
as discussed in Section 3.2.

2. Background

How AI can solve Texas Hold ’em poker has been a major challenge in recent years.
One popular approach to achieve this goal is equilibrium-based solutions, which include
the most part of state-of-the-art algorithms [2,5,6,13]. However, these leading “game-
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solving” paradigms still have some deficiencies in some aspects. For example, they need a
large amount of computing resources to obtain so-called equilibrium solutions, and these
equilibrium solutions do not take into account any advantage of opponents’ weakness that
can be exploited, which corresponds to poor dynamic adaptiveness [14]. More importantly,
the theoretical guarantees of the equilibrium no longer stand in multiplayer settings [15].

Basically speaking, the equilibrium solutions work under the assumption that the
opponent is perfectly rational and then conduct a no-regret search or fictitious self-play
along the entire (or compressed) game tree so as not to lose in expectation, no matter what
the opponent does [16]. However, the assumption is makes it difficult to win often against
specific opponents (either weak or skilled). Alternatively, we can consider one’s goal as
learning to play and maximizing one’s rewards against some specific opponent groups
through repeated strategic interactions (which is exactly the core of NLTH). In such a case,
an equilibrium strategy is perhaps not so optimal and this is the problem that opponent
exploitation mainly deals with. To illustrate at a high level, opponent exploitation means
to win over one’s opponents as much as possible [17]. One possible approach to achieve
this goal is to explicitly identify opponents’ hand beliefs [8] or strategy styles [18] and
then make decisions accordingly. Similar methods can be collectively called “explicit
exploitation” and are quite easy to understand. However, these types of methods rely very
much on the accuracy of identification, which is as difficult (if not more) as solving the
game itself and requires either sufficient domain knowledge or a mass of labeled data.
Another possible approach called “implicit exploitation” seems to be more feasible [19].
Its main idea is to improve the rewards directly against the opponents through repeated
interactions and a policy optimization function, which is similar to the idea of reinforcement
learning. The biggest difference compared to “explicit exploitation” is that it does not
explicitly reason about exploitable information about the opponents but instead implicitly
learns to win through end-to-end training. Generally speaking, “implicit exploitation” is a
more effective and straightforward class of opponent exploitation methods. The opponent
exploitation methods mainly discussed in this paper all fall into this class.

In 2009, Nicolai and Hilderman first put forward the idea to use a neuroevolutionary
(NE) method in NLTH [12]. Their NE agent was composed of 35-20-5 feed-forward neural
networks, with a sigmoidal function applied at each level. However, their experimental
results showed that the skill level of the evolved agents is limited, even though evolutionary
heuristics such as co-evolution and halls of fame were used. In 2017’s AAAI conference,
Xun Li presents a NE method to evolve adaptive LSTM (Long Short Term Memory Network)
poker players featuring effective opponent exploitation [11]. His main contribution lies
in the introduction of the LSTM to extract useful features and learn adaptive behaviors in
NLTH. However, the use of the NE method needs a huge number of training episodes and
a large amount of computing resources to update generation by generation, mainly due
to high sample complexity facing a large-scale problem such as NLTH. Some researchers
instead tried to use more sample-efficient reinforcement learning (RL) methods to train
NLTH agents [9,10]. However, the multi-stage sequential decision process in NLTH with
sparse rewards imposes restrictions on the policy gradients optimization function in many
RL methods. As a result, efficient opponent exploitation in NLTH still remained a problem
to be solved in recent years. Combining the NE method with the RL method is a general
idea to complement each method’s flaws and use the strengths of both. In 1991, Ackley
and Littman first showed the combination of evolutionary and gradient operators to be
significantly more effective for agent survival in an uncertain environment [20]. In 1997,
Chowdhury and Li used “messy genetic algorithms” to overcome the disadvantages of
traditional RL techniques for fuzzy controllers [21]. In 2007, Lin et al. proposed R-HELA,
a “reinforcement hybrid evolutionary learning algorithm”, for solving various control
problems with uncertainty [22]. Later, in 2011, Koppejan and Whiteson presented the
“neuroevolutionary reinforcement learning” method for generalized control of simulated
helicopters and demonstrated that neuroevolution can be an effective tool for complex,
online RL tasks [23]. More recently, similar ideas have been applied to some small-scale
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video games [24,25]. Nevertheless, applying such ideas in large-scale games such as NLTH
has not been studied yet to the best of our knowledge.

In this work, we focus on the two-player and no-limit version of Texas Hold’em Poker,
i.e., Heads-Up No-Limit Hold’em (HUNL). In HUNL, two players compete for money or
chips contributed by both of them, i.e., the pot. At the beginning of each game, both players
are forced to post a bet into the pot, i.e., the blinds. Then each player is dealt two cards,
i.e., the hole cards, from a standard 52-card poker deck. The hole cards are private for the
receiver, thus making the states of the game partially observable. The game is divided
into four betting rounds: preflop, flop, turn, and river. The players act alternately in each
betting round. Players must choose one of the following actions when it is their turn to
act: call, check, raise, or fold. If a player chooses to call, that player will need to increase
his/her bet until both players have the same number of chips. If one player raises, that
player must first make up the chip difference and then place an additional bet. Check
means that a player does not choose any action on the round but can only check if both
players have the same chips. If a player chooses to fold, the game ends, and the other
player wins the game. When all players have equal chips for the round, the game moves on
to the next round. As the game proceeds, five cards are dealt face up on the table. Each of
them is a community card, and the set of community cards is called the board. Specifically,
the board is empty in preflop; three community cards are dealt at the beginning of the flop,
a fourth community card is dealt at the beginning of the turn, and the last community card
is dealt at the beginning of the river. The board is observable to both players throughout the
game. If neither player has folded by the end of the river, the game goes into a showdown.
In addition, at any point of the game, if a player who has moved all-in contributes no more
chips to the pot than the other, the game also goes into a showdown. In this case, unfinished
betting rounds are skipped, and the board is completed immediately. In a showdown, each
player combines the hole cards with the board and chooses five out of the seven cards (two
hole cards plus five community cards) to form the best possible hand. The player with the
better hand wins the pot. If the two hands are equally strong, the players split the pot.

3. Methods

This paper introduces a new method, NE_RL, for opponent exploitation in NLTH. It
incorporates NE’s indifference to the sparsity of reward distribution and RL’s gradient-
based method to improve learning efficiency. Figure 1 illustrates the hybrid framework
of NE_RL. It is divided into two parts by a dotted line. The left part shows a standard
off-policy RL agents’ training process and the right part is a standard neuroevolutionary
agents’ training process. The opponent pool contains a set of baseline opponent strategies
for training. At the beginning, two populations of agents are initialized with different
parameter distributions. Then, the individuals from the populations play full NLTH games
against one (or more) specific opponent(s) sampled from the opponent pool separately.
The populations are continuously updated by NE and RL respectively. The interactions be-
tween these two parts are arranged in the following ways (as shown by the red arrow): On
the one hand, the trajectories generated by the NE agents can provide diverse experiences
for the replay buffer to train the RL agents. On the other hand, we periodically use the
RL agents to replace the worst performing NE agents to inject gradient information into
the NE population (this process is abbreviated as transfer). There are several advantages
to these interactions. First, the recycling of the NE agents’ training data makes full use of
information from each agent’s experiences. Most samples can be used for further training
rather than simply being discarded. As a result, the learning efficiency is improved with
less game samples. Second, the gradient information provided by the RL agents can help
guide the evolving directions for the NE population, which leads to faster learning com-
pared to the NE-only method. Additionally, both the NE agents and the RL agents conduct
population-based training, which aims to produce moderate diversity and redundancy.
With diversity and redundancy, our method can explore the strategy space on a larger scale
during the learning process. We argue that these two properties respond well in practice to
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the challenges of large-scale and high-complexity problems such as NLTH. Experimental
results against multiple baseline opponents have proven the feasibility of our method with
a significant improvement compared to the previous NE and RL methods.

Figure 1. High-level illustration of the NE_RL method for opponent exploitation in NLTH.

Further details are described in the following subsections on two levels: learning
methods and architectures. Section 3.1 separately introduces the learning methods (NE
and RL) used in our work. Section 3.2 mainly describes how to organically combine these
two learning methods together and then introduce the fundamental network architectures
that the learning methods can apply to.

3.1. Introductions of NE and RL

NE is a class of black box optimization algorithms typically used for neural network
(NN)-based modules [26]. Inspired by natural evolution, the general flow of NE is as
follows: At every iteration, a population of NN’s parameter vectors is perturbed by muta-
tion or a crossover operator and their objective function values (“fitness”) are evaluated.
The highest scoring parameter vectors are then recombined to form the population for the
next iteration. There are various implementations of NE depending on the specific problem
and context. In our method, in order to incorporate with RL we adopted a standard NE
algorithm that proceeds as follows: A population of NE agents is initialized with random
weights. They are then evaluated in interactions with the same opponent concurrently and
independently. Each agent’s cumulative rewards in the current generation are averaged
to serve as its fitness. A selection operator then selects a portion of the population for
survival with a probability commensurate with their relative fitness scores. The agents
in the population are then probabilistically perturbed through mutation and crossover
operations to create the next generation of agents. A select portion of agents with the
highest relative fitness are preserved as elites and are shielded from the mutation step.

The RL population composed of multiple agents is initialized with different parameter
distributions and updated independently by the same RL method. The RL method in this
work typically refers to any off-policy reinforcement learner that utilizes a cyclic replay
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buffer R maintained by both the RL agents and the NE agents. Trajectories in R come
from separate game episodes that contain a tuple (st,at,rt,st+1), which refers to the current
state, action, observed reward, and the next state, respectively. Here we take a Deep Q-
learning Network (DQN) method as example to illustrate a representative learning process
of RL. First, compute the current state’s estimated Q-value via Q(s, a; θi) (θi refers to the
parameters of the Q-networks). The corresponding loss function is:

Li(θi) = Es,a ∼ρ(·)
[
(yi − Q(s, a ; θi))

2
]

where:

yi = Es′∼E [r + γ maxa′ Q(s′, a′; θi−1) | s, a]

Then, use an optimizer such as Adam to minimize the loss function and perform a
gradient descent update. Usually the policy of the DQN agent during training is a noisy
version of the learned policy: πb(st) = π(st) + Noise(t), where π(st) = argmaxQ(st, at) is
a greedy policy over the estimated Q-value at time step t and the value of Noise(t) decays
with t. The additional noise is for the purpose of exploration in the RL agents’ action space.

3.2. Combination of NE and RL

The main idea of our method, NE_RL, is using the advantages of the combination of
NE and RL. Algorithm 1 provides a detailed pseudocode as well as the complete procedure
of NE_RL. The size of the NE population (N), the size of the RL population (M), and the
size of the replay buffer R are important hyperparameters of the algorithm. Genmax refers
to the max generations of algorithm updates. fNE and fRL are computed as each agent’s
fitness value via a Tournament function, which conducts ξ full game episodes and returns
averaged game results. The action–reward tuples of (si, ai, ri, si+1) are extracted from the
game episodes and restored in the replay buffer so that the RL agents can continually learn
from them. The RL agents use DQN to update their action-value function Q with weights
θ and yi represent the q-target value, which is then used along with the predicted q-eval
value Q(s, a ; θ) to compute the mean square loss function Li(θi). At first sight, one may
find it similar to a standard NE method. Compared to NE, which just uses episodes to
compute a fitness score, NE_RL also looks into the episodes to extract experience to learn.
It stores both the NE agents’ and the RL agents’ experiences in its replay buffer R rather
than disregard them immediately. The RL agent can then sample a small batch from R and
use it to update its parameters by gradient descent. It is obvious that with this mechanism
we can extract maximal information from each individual experience and improve the
method’s sample efficiency.

As the fitness score captures an individual’s episode-wide return, the selection op-
erator imposes strong pressure in favor of individuals with higher episode-wide returns.
Since the replay buffer consists of the experiences gathered by these individuals, this
process skews the state distribution towards regions with higher episode-wide returns.
This is a form of implicit prioritization that favors an experience with a higher long-term
return, and is effective for NLTH with long time horizons and sparse rewards. RL agents
using this state distribution tend to learn strategies to achieve higher episode-wide returns.
In addition, a noisy version of the RL agent is used to generate an additional experience
for the replay buffer. In contrast to the population of agents that explore by noise in their
parameter space (neural weights), the RL agents explore through noise in their action space.
These two processes complement each other and form an effective exploration strategy to
better explore the policy space.

The final procedure of NE_RL involves contributions from RL agents to NE population.
Periodically, the RL agents’ parameters are duplicated into the NE population; we define
this process as transfer. It is the key process in which the NE population can directly receive
the information learned through gradient descent. If the information from the RL agents
is good, it will survive the selection operator and pass on to the NE population via the
crossover operator. Otherwise, it will simply be discarded. Such a mechanism only allows
constructive information to flow from the RL agents to the NE population.
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Algorithm 1 Main procedure of NE_RL

1: Initialize a population of N NE agents popn and an empty cyclic replay buffer R
2: Initialize a RL agent Arl with weights θπ and make M copies to form a RL population

popm
3: Define a noise generator O
4: for generation from 1 to Genmax do
5: for agent A ∈ popn do
6: fNE, R = Tournament(A, ξ, noise = None, R)
7: end for
8: Rank the population based on fitness scores and conduct the selection, crossover,

mutation operators respectively
9: fRL, R = Tournament(Arl , R, noise = O, ξ)

10: Sample a random minibatch of T transitions (si, ai, ri, si+1) from R

11: Set yi =

{
ri, for terminalsi+1;
ri + γ maxa′ Q(si+1, a′; θ), for non-terminalsi+1

12: Update Arl by minimizing the loss: Li(θi) = Es,a ∼ρ(·)
[
(yi − Q(s, a ; θ))2

]
13: Copy popm into popn: for the M weakest set AM ∈ popn : AM ⇐ popm
14: end for
15:
16: function TOURNAMENT(A, ξ, noise = None, R)
17: Sample an agent Aopp from the opponent pool
18: Reset and register A, Aopp into the table
19: f itness = 0
20: for i = 1:ξ do
21: Choose action from policy at = A(st) + noiset
22: Send action at to game engine and receive reward rt as well as new state st+1
23: Store transition (st, at, rt, st+1) into R
24: f itness ← f itness + rt and st = st+1
25: end for
26: Return f itness

ξ , R
27: end function

Up to now, we have provided a complete introduction of our NE_RL method. How-
ever, these introductions are all about the agents’ learning method, that is, how to combine
NE with RL at the method design level. In order to make such a hybrid learning method
possible to implement, the fundamental network architecture of the RL agents and the NE
agents should be the same. As shown in Figures 2 and 3, we introduce two architectures
that are used in our work.

Figure 2 is a prototype architecture mainly designed for early experiments on the
combination of the NE and RL methods (henceforth referred to Arc_pro). As seen in
Arc_pro, it receives inputs containing two sets of domain-specific features. One (game
feature encoding) is made up of detailed information about the current game in which the
agent is playing, and the other (opponent feature encoding) is a global vector that tracks
the overall performance (simply represented by frequency of actions) of the opponent
against which the agent is playing. They are concatenated to form the input tensor and
then transferred into hidden layers that consist of fully connected neural networks with the
size 512-1024-2048-1024-512. Additionally, the output tensor is mapped to the size of the
action space and transformed into an action-value vector. The action space is continuous
and infinite in NLTH; however, we observed that it could encourage more exploration by
discretizing the actions. This forced the actions to be non-smooth with respect to input
observations and parameter perturbations, and thereby encouraged a wide variety of
behaviors to be played out. Similar conclusions can be found in Salimans’s work [27].
This architecture is quite straightforward and easily compatible with both the NE and RL
methods. It is mainly used to carry out preliminary experiments to verify the feasibility
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of our method. In the next section we will show the experimental results obtained with
Arc_pro to effectively train NLTH agents to exploit weak opponents, such a random agents
(RA). Further introductions of game feature encoding rules are as follows:

• Current stage: The current street (preflop, flop, turn, or river) as a one-hot encoding.
It costs four features. It has to be a one-hot encoding as there is no continuity between
the streets and each has to be considered separately.

• Hand equity: The equity is the probability of winning the hand if all active players
went to the showdown. It is the only information about the cards that the player
gets. It is calculated by Monte-Carlo simulations. In each simulation a random hand
is given to the opponent, and random community cards are added to have a full
board. The winner of the hand is then determined. These results are then averaged to
estimate the equity. The simulations are repeated until a satisfying standard deviation
on the estimated equity is achieved. The tolerance is set to 0.1%. Note that the hand
range of the opponent is not explicitly modeled here, as random cards are distributed
to him. The equity calculation is the most time-consuming operation in the agent’s
decision making, and thus also the generation of game data is time-consuming. In the
implementation used it took approximately 10 ms. The repeated estimation and
comparison of hand strength is the reason for this relatively long computation.

• My investment: The investment of the player in the hand, normalized by the initial
stack.

• Opp’s investment: The investment of the opponent in the hand, normalized by the
initial stack. The investments summarize the importance of the current hand and may
describe the strength of the hand the opponent is representing.

• Pot odds: The pot odds are the amount of chips necessary to call divided by the total
pot. It is an important measure often used by professional players.

Figure 2. Arc_pro, a prototype architecture for the NE and RL agents. It receives domain-specific
inputs and transfers to output action values with several layers of full-connected (fc) neural networks.

Figure 3 shows an improved architecture compared to Arc_pro. The biggest difference
is the addition of an LSTM layer, a special class of recurrent neural networks that has
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been proven to be effective for dealing with sequential decision problems like NLTH.
Since strategies in NLTH are essentially based on sequences of actions from different
players, LSTM is directly applicable to extracting useful temporal features and learning
adaptive behaviors. When we use this architecture (henceforth referred to as Arc_lstm)
to train agents, the input features should be managed into episodic sequences. That
means that the game trajectories are no longer considered independent but as interrelated
within each episode. If an input feature implies the beginning of a game, the LSTM layer
will reset to the initialization state in preparation for processing new episodic sequences.
Therefore, the main advantage of Arc_lstm is that it captures the sequential nature of
NLTH and makes decisions depending on the context of the current game stage as well
as the opponent’s overall performance (see the opponent feature set introduced above).
It should be noted that in order to generate episodic continuous experiences, the replay
buffer must be managed in sequence and the random minibatch sampled from it must
contain full episodes rather than independent trajectories. This is another aspect that
differs from Arc_pro. Experimental results show that these additional settings can help
Arc_lstm achieve better performance against opponents whose strategy is relatively strong
and harder to exploit.

Figure 3. Arc_lstm, an improved architecture compared to Arc_pro. The biggest difference is
the addition of an LSTM layer, which helps to extract useful temporal features and learning
adaptive behaviors.

4. Experiments

In this section, we present experiments conducted to evaluate the proposed NE_RL
method for NLTH. We first compared the performance of NE_RL with the NE- or RL-only
methods when training NLTH agents against weak opponents, such as random agents.
More specifically, these NLTH agents share the same architecture as Arc_pro but differ in
their learning methods (respectively including an evolutionary method, a policy gradient,
and the combination of both). With the feasibility of NE_RL validated, we stepped forward
to train agents to exploit relatively strong opponents but encountered the problem that
the NE method fails to learn anything after tens of thousands of episodes played, which
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also leads to a poor learning process for NE_RL. Then we used an improved architecture,
Arc_lstm, leading to a significant performance boost, thus further validating the role of
the additional LSTM in Arc_lstm. We then evaluated the performance of NE_RL with
Arc_lstm under a constrained situation in which training episodes were limited to 40,000.
Such a limitation is necessary to evaluate the efficiency of all of the learning methods from
a practical point of view, because the computational resource consumption grows linearly
with the total training episodes. Finally, we conducted ablation experiments to demonstrate
the effectiveness of the transfer process, which is the core mechanism within NE_RL for
incorporating evolutionary methods and policy gradient methods to achieve the best of
both methods.

In all experiments, we chose the two-player NLTH setting in order to focus more on
the method itself and leave the extension to multiplayer settings for future research. In
addition, we used an open-source toolkit—Rlcard [4]—to carry out all experiments, so as
to ensure reproduction of our results. All of the algorithms are based on PyTorch [28] and
run through a cloud server with 80 CPUs. The duration of the experiments ranged from
hours to tens of hours with multiple threads. The hyper-parameters of each algorithm and
related experimental details are as follows:

• NE population size N = 8
• RL population size M = 4
• Size of replay buffer R = 5 × 104

• Learning rate in DQN = 5 × 10−5

• Discount rate in DQN = 0.99
• Training batch size in DQN = 32
• Elite fraction in NE = 0.25
• Mutation rate in NE = 0.3–0.05, mutation strength in NE = 0.5–0.1

The mutation rate is set to linearly decrease from 0.3 to 0.05 while the mutation
strength linearly is set to decrease from 0.5 to 0.1.

• Number of game episodes in tournament function ξ = 2000
Since NLTH is a stochastic game with much uncertainty, 2000 independent full
episodes were tested to compute an averaged fitness score.

4.1. Preliminary Evaluation of NE_RL

The first experiment is a motivating example that validates the effectiveness of our
method. In it we used a chump opponent random agent (RA) to train NLTH agents with the
same architecture (Arc_pro) but different learning methods, and their performances were
evaluated periodically after a certain number of episodes played. Figure 4 (Left) shows the
comparative performances of methods in previous works (DQN, NE) and our proposed
method, NE_RL, which combines the mechanisms within DQN and NE. The rewards of
the agents were measured by the average winning big blinds per hand (bb/h for short,
each player was initialized with 50 bb for the beginning of each hand). Higher rewards
represent higher exploitation of the opponent. Specifically, the evaluation process ran every
100 training episodes for DQN and every evolutionary generation for NE and NE_RL.
During the evaluation process, another 2000 episodes were played against the RA for each
agent to compute an average reward, which was necessary in order to reduce the impact
of luck and uncertainty in NLTH. This experiment was conducted fivr times to compute
averaged performance with the standard error band. From the experimental result we
can see that the DQN agent learned faster with much less episodes and converged at
an exploitation level of about 8.5 bb/h, while the NE population typically needed many
more interactions against their opponent but could converge to the exploitability bound
computed by the local best response [29], owing to the population-based exploration.
We were also excited to see that the NE_RL agents inherited the advantages from both
methods and achieved better overall performance on sample efficiency as well as maximum
exploitation. Maximum exploitation means the largest amount of money one can win from
the opponent and sample efficiency means that the lowest number of training episodes
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needed to achieve converged performance. These together constitute the goal of our work
and the motivation to propose the NE_RL method.

Figure 4. (Left) Comparative performance of NE_RL, NE, and DQN in training against the RA
opponent. (Right) Average selection rate of the transferred RL agents changes during the course of
evolution and plot with error bars.

This result validates the feasibility of NE_RL. It outperformed NE and RL by com-
bining the advantages of both methods. The interactions between NE and RL include
two types: the training episodes of the NE population are reused to provide diverse ex-
perience for the RL agents to train, while the trained RL agents periodically transfer to
the NE population to inject gradient information into the NE agents. In order to examine
whether such interactions truly help achieve improved performance, we ran additional
experiments logging how the transferred RL agents performed among the NE popula-
tion. Three evaluation indexes were used to log the frequency of these agents chosen as
elites, selected, or discarded during selection: elite_rate, selected_rate, and discard_rate,
respectively. As shown in Figure 4 (Right), during the course of evolution, the chosen rate
of the transferred RL agents remained stable. elite_rate and selected_rate indicate that
the gradient information played a role among the NE population and contributes to the
evolutionary direction. In other words, the NE population may spend fewer generations
to find its way to evolve with the help of gradient information, and the performance of
the population continually improves though the discard_rate of transferred RL agents is
high. This is due to built-in redundancies and diversities of population-based exploration
and exploitation.

In conclusion, the first experiment successfully validated our NE_RL method’s effec-
tiveness for opponent exploitation in NLTH and achieved significant improved perfor-
mance compared to previous NE- or RL-only methods. However, in this phase we only
chose a weak opponent that plays randomly for testing purposes. Further experiments
against stronger opponents will be introduced in the following subsection.

4.2. Learning to Exploit Baseline Opponents

The goal of our work is proposing a general method for opponent exploitation in
NLTH. The first experiment proved our method’s feasibility in NLTH games against a
weak opponent. In the next experiment, we introduced four stronger agents adopted
from an open-source NLTH platform [30]. They were designed according to specific rules
and characterized by human-like styles, namely Tight Aggressive (TA), Tight Passive
(TP), Loose Aggressive (LA), and Loose Passive (LP). Unlike the RA opponent that plays
randomly, these baseline opponents take actions based on their hand-strength whose
strategies are relatively strong. “Tight” means an opponent only plays a small range of
strong hands and “Loose” means the opposite. “Aggressive” means an offensive play
style while “Passive” means a defensive play style. Moreover, the TA opponent’s decision-
making mechanism also mimics human bluffing behavior and probabilistically takes
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deceptive actions, which makes it even harder to exploit. When we tried to do the same
thing to train agents against these baseline opponents as before, problems began to arise.
We observed that the NE method seems to make no progress even after tens of thousands of
training episodes. This led us to reflect on what went wrong, such as whether the network
architecture Arc_pro needs improvements to adapt to stronger opponents. The main reason
may be that the prototype structure of the neural network originally designed in Arc_pro
is not available for generating strategies against more complex opponents.

Inspired by previous works that highlighted a special class of recurrent neural net-
works, LSTM (Long Short Term Memory), as an effective and scalable model for NLTH,
we modified Arc_pro by adding a single LSTM layer between the input game feature
set and the hidden layers. The main purpose was to extract the temporal features from
opponents’ actions, which were simply neglected in the first experiment, since the RA
opponent just plays randomly and there is no temporal feature to extract at all. However,
if we want to exploit more experienced opponents, these extra features seem to become
critical. Figure 5 shows the comparative performance when we replace Arc_pro with
the improved architecture Arc_lstm and use the same NE method to train agents against
the baseline opponents (take TP for example). From the results we can see that the NE
method recovered to optimize its performance once equipped with Arc_lstm. We can now
conclude that Arc_lstm is a more suitable architecture to train NLTH agents. This is a
crucial improvement not only for the NE method itself but also for our NE_RL method,
since the NE method is the most important component of our NE_RL method. In the
following experiments we continued testing the feasibility of our NE_RL method with
Arc_lstm.

Figure 5. Comparative performance between Arc_pro and Arc_lstm with the same NE method in
training against the TP opponent.

As we have emphasized in this work and validated in the first experiment, the NE_RL
method is supposed to be superior to the previous NE- and RL-only methods for opponent
exploitation in NLTH. With Arc_lstm we can now compare the performance between these
methods against the four baseline opponents to show more evidence of the superiority
of our method. As shown in Figure 6, we conducted four independent experiments
against each of the baseline opponents (TA, TP, LA, LP) to evaluate the performance of
opponent exploitation under different methods. Additionally, we set the maximum number
of training episodes to 40,000 to reflect both the sample efficiency and the exploitation
performance for each method. Together, these results suggest that our NE_RL method can
achieve maximum exploitation of the baseline opponents under limited training episodes.
By contrast, the NE method suffered from a lack of samples and the RL method could only
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converge to a sub-optimal performance under the same conditions. Similarly to the first
experiment, we further studied the role of interactions between the RL and NE methods
by tracking the elite_rate, selected_rate, and discard_rate of the transferred RL agents
within the NE population. Table 1 shows the averaged selection rate during the training
process for each baseline opponent. A high level of average discard_rate means that the
transferred RL agents were mostly discarded and the NE population is still the mainstream
of the NE_RL. The contributions of transferred RL agents are represented by elite_rate
and selected_rate. Though it was only a small fraction, it indeed made a big difference for
NE_RL, which outperformed both the NE and RL methods.

(a) (b)

(c) (d)

Figure 6. Learning curves of different methods in training against the four baseline opponents: (a) TA, (b) TP, (c) LA, (d) LP.

Table 1. Selection rate for transferred RL agents within the NE population.

Elite Selected Discarded

TA 27.8 ± 2.7% 28.1 ± 3.3% 71.9 ± 2.5%
TP 4.0 ± 2.8% 5.7 ± 3.4% 94.3 ± 3.2%
LA 13.2 ± 6.0% 26.2 ± 6.9% 73.8 ± 10.3%
LP 14.9 ± 8.7% 24.4 ± 14.1% 75.6 ± 13.3%
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4.3. Ablation Experiments

Next, we used an ablation experiment to test how the strength of the transfer process
affects NE_RL’s performance. During the transfer process, the RL agents reinsert into the
NE population to provide learned gradient information. We define the strength of this
process as m, which represents the number of RL agents relative to the size of the NE
population. Suppose the size of the NE population is fixed; then, a higher m means a
stronger impact imposed on the NE population by the RL agents. Here we represented
m as a fraction of the size of the NE population and conducted contrast experiments with
different m values. Figure 7 shows the experimental results in training against all four
baseline opponents, with m ranging from 0 to 0.5, which means the the strength of the
transfer process changes from weak to strong. Typically, m = 0 represents the original NE
method and m = 0.5 represents a rather strong NE_RL method, which was commonly used
in the previous experiments. From those results, we can conclude that in general, different
m values may lead to visible performance differences, which indicates that the value of
m may be one of the most important hyper-parameters for NE_RL. In this experiment, it
seems that a higher value of m achieved better converging performance after a limited
number of 40,000 training episodes. However, this may not be true in all cases. It depends
on the specific experimental settings and we cannot draw a definite conclusion in this
paper. It may be a good topic to study further in future work.

(a) (b)

(c) (d)

Figure 7. Ablation experiments on different RL population sizes, m, in training against the four baseline opponents: (a) TA,
(b) TP, (c) LA, (d) LP.
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5. Discussion

In this paper, we proposed a novel method for opponent exploitation in imperfect
information games such as NLTH. Since a NLTH-like game typically contains challenges of
sparse rewards and high complexity, the previous RL- or NE-only methods for opponent
exploitation struggle with poor optimal performance or low sample efficiency. Our NE_RL
method uses NE’s advantage of evolutionary computation with a long-term fitness metric to
address the sparse rewards feedback in NLTH and retains RL’s gradient-based method for
higher learning efficiency. Additionally, NE_RL recycles data generated by both NE and RL
populations and uses an experience replay mechanism for the off-policy RL method to learn
from them more than once, which can greatly help improve sample efficiency. Experimental
results against various opponents show that NE_RL outperforms the previous NE- and
RL-only methods with advantages of maximum exploitation and sample-efficient learning.

Apart from NLTH, we believe that our method can also be extended to other domain
problems with challenges of adversarial sequential decision-making processes and imper-
fect information. Future work based on this paper includes incorporating more complex
evolutionary sub-mechanisms to improve the standard NE operators used in NE_RL, or
incorporating more advanced off-policy reinforcement learning methods and techniques to
replace the currently used DQN in NE_RL. In addition, extending NE_RL to multiplayer
NLTH will be another exciting thread of research leading to wider application prospects.
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Abstract: Mixed pixels inevitably appear in the hyperspectral image due to the low resolution of
the sensor and the mixing of ground objects. Sparse unmixing, as an emerging method to solve
the problem of mixed pixels, has received extensive attention in recent years due to its robustness
and high efficiency. In theory, sparse unmixing is essentially a multiobjective optimization problem.
The sparse endmember term and the reconstruction error term can be regarded as two objectives
to optimize simultaneously, and a series of nondominated solutions can be obtained as the final
solution. However, the large-scale spectral library poses a challenge due to the high-dimensional
number of spectra, it is difficult to accurately extract a few active endmembers and estimate their
corresponding abundance from hundreds of spectral features. In order to solve this problem, we
propose an evolutionary multiobjective hyperspectral sparse unmixing algorithm with endmember
priori strategy (EMSU-EP) to solve the large-scale sparse unmixing problem. The single endmember
in the spectral library is used to reconstruct the hyperspectral image, respectively, and the corre-
sponding score of each endmember can be obtained. Then the endmember scores are used as a
prior knowledge to guide the generation of the initial population and the new offspring. Finally,
a series of nondominated solutions are obtained by the nondominated sorting and the crowding
distances calculation. Experiments on two benchmark large-scale simulated data to demonstrate the
effectiveness of the proposed algorithm.

Keywords: large-scale multiobjective optimization; sparse unmixing; hyperspectral image; evolu-
tionary algorithm

1. Introduction

Hyperspectral imagery, which contains a wealth of spectral information for the surface
features in each pixel, has been widely used in various remote sensing applications, such
as geological analysis, environmental monitoring and military reconnaissance. However,
due to the low spatial resolution and the ground substances intimate mixtures, the mixed
pixels inevitably appear in the hyperspectral images. To solve this problem, the spectral
unmixing technique aims to extract the pure spectral signatures (also called endmembers) from
hyperspectral images and estimate their corresponding proportions (also called abundances).

The spectral unmixing assumes that there is no multiple scattering between endmem-
bers in the spectrum, each pixel is a linear combination of elements from the endmember
set in the linear mixed model (LMM) [1]. Under this model, various methods such as
geometry-based [2], nonnegative matrix factorization-based (NMF) [3–5] and statistical-
based [6] have been conducted research in the hyperspectral spectral unmixing, which
also obtained a very ideal unmixing effect. However, these methods suffer from poor
performance when the assumption of pure pixels or the generation of virtual endmembers
do not satisfy.

Electronics 2021, 10, 2079. https://doi.org/10.3390/electronics10172079 https://www.mdpi.com/journal/electronics275
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As an emerging spectral unmixing technology, Hyperspectral sparse unmixing aims
to find the optimal subset of the true endmembers for reconstructing the mixed pixels
based on the known spectral library in advance. Compared to the number of endmembers
in the spectral library, the number of endmembers use for reconstructing is is relatively
sparse. Mathematically speaking, it is a l0 norm problem, which is highly non-convex
and NP-hard [7]. The relaxation methods, such as the l1 norm or the lp norm (0 < p <1),
are some of the relatively effective solutions to deal with the l0 norm problem. Bioucas-
Dias et al. [8] solves the sparse unmixing problem by the alternating direction method of
multipliers, but the SUnSAL [8] only focuses on the spectral information without taking
the spatial structure information between different pixels into account. To take advantage
of the relationship between pixels in the hyperspectral image, many strategies such as
collaborative sparse regression framework [9] or spectral regularization terms [10,11] are
applied in the sparse unmixing model to promote the spatial correlation.

However, these algorithms are very sensitive to parameter settings, which greatly
affect the stability of unmixing algorithms. Recently, the intelligent optimization algorithms
have been greatly developed. Połap et al. [12] proposed a red fox optimization algorithm
by simulating the hunting behavior of fox. In [13], a polar bear optimization algorithm
was proposed to simulate the hunting behavior of a polar bear into the stage of global
search and the stage of local search. Khishe et al. [14] proposed a chimp optimization
algorithm to further alleviate the two problems of slow convergence speed and trapping in
local optima in solving high-dimensional problems. Nevertheless, in solving the NP hard
problems, the multiobjective evolutionary algorithms (MOEAs) have attracted extensive at-
tention because of the global search ability. Therefore, some excellent algorithms proposed
in [15–18] have applied the multiobjective optimization to sparse unmixing. However,
most of MOEA-based algorithms in sparse unmixing only focus on solving pixel by pixel
efficiently without considering the spatial structure information because of the curse of
dimensions. In addition, MOEA-based algorithms suffer from the problem of being time-
consuming, resulting in inefficiency and impracticality. Compared with the large-scale
spectral library, the number of endmembers used to reconstruct the hyperspectral image
is actually sparse. Therefore, many existing MOEAs suffer from a large number of deci-
sion variables when dealing with the sparse multiobjective optimization problems, which
consumes the expensive computing resources to search in a large decision space with an
arbitrary initialization.

To alleviate the above problems, an evolutionary multiobjective hyperspectral sparse
unmixing algorithm with endmember priori strategy (EMSU-EP) is proposed in this paper.
In the proposed EMSU-EP, each decision variable is taken out separately for evaluation in
the initialization, and their corresponding scores are recorded for the subsequent crossover
and mutation. In the subsequent genetic operation, a new genetic operator is designed to
ensure the sparsity of the offspring in a uniform interval. With the prior knowledge of the
quality of each decision variable and the new genetic operators for binary variables, the
proposed EMSU-EP can achieve the better convergence performance and diversity, and the
result of unmixing has been greatly improved. The main contributions of the proposed
EMSU-EP are summarized as follows.

(1) We propose a novel multiobjective optimization framework for sparse unmix-
ing, which can guide the subsequent evolution of the algorithm according to the prior
knowledge obtained from the spectrum library.

(2) A special initialization mechanism is designed, it is demonstrated that the proposed
EMSU-EP can obtain the diverse and targeted population compare with the state-of-the-art
MOEA-based sparse unmixing methods.

(3) The particular crossover and mutation operators are proposed to maintain the
sparsity of the population, which can not only promote the convergence of the algorithm,
but also improve the performance of sparse unmixing.

The rest of this paper is organized as follows. In Section 2, the related works are sum-
marized. In Section 3, the framework of our proposed EMSU-EP algorithm is introduced

276



Electronics 2021, 10, 2079

in detail. The experimental results are presented and analyzed in Section 4. Finally, the
work in this paper is concluded in Section 5.

2. Related Works

In this section, the related works on sparse unmixing and the multiobjective optimiza-
tion are introduced.

2.1. Sparse Unmixing

As shown in Figure 1, sparse unmixing aims to find the optimal set of endmembers
for modeling the mixed pixels from a large-scale and pre-known spectral library. Therefore,
a mixed pixel (y ∈ RL×1) with L spectral bands can be formulated as

y = Ax + n (1)

where A ∈ RL×D is the spectral library, x ∈ RD×1 represents the corresponding fractional
abundance vector and n ∈ RL×1 is the noise term. In the absence of noise, the sparse
unmixing method of the Formula (1) is mathematically expressed as

min
x

‖x‖0

s.t. ‖y − Ax‖2
2 ≤ δ

(2)

where δ ≥ 0 denotes the error tolerance, ‖x‖0 is the l0 norms of x, which is highly non-
convex and NP-hard. It was not well solved until Candes et al. [7] proved that l1 norm can
induce sparsity instead of l0 norm under a certain restricted isometry property condition.
In [8], the SUnSAL was proposed to solve the sparse unmixing problem of mixed pixels by
establishing constrained sparse regression as

min
x

(1/2)‖y − Ax‖2
2 + λ‖x‖1 + ιR+(x) + ι{1}(1Tx) (3)

where ‖x‖1 denotes the l1 norm of x, λ is a regularization parameter that controls the
relative weight of the error term and the sparse term, 1 denotes a column vector of 1’s,
the ιR+(x) and ι{1}(1Tx) represent the abundance non-negativity constraint (ANC) and the
abundance sum-to-one constraint (ASC) [19], respectively.

Figure 1. Illustration of the hyperspectral sparse unmixing problem, Y is the image to be unmixed,
A is the large-scale spectral library, and X is the obtained abundance matrix. Only colored active
endmembers participate in the reconstruction of endmembers.

However, the SUnSAL [8] only focuses on the spectral information without taking the
spatial structure information between different pixels into account. In general, a hyperspectral
image (Y ∈ RL×n) with n pixels structured in the matrix can be formulated as

Y = AX + N (4)
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where Y = [y1, y2, . . . , yn], yi is the i-th mixed pixel, X ∈ RD×n is the abundance matrix,
and N ∈ RL×n is the corresponding error term. The formula (4) can be transformed into an
optimization problem expressed as

min
X

‖X‖0

s.t. ‖Y − AX‖2
F ≤ δ

(5)

where ‖X‖0 = |supp(X)|, supp(X) = {1 ≤ i ≤ D, xi 
= 0}, xi is ith row of X. To take
advantage of the relationship between pixels in the hyperspectral image, CLSUnSAL [9]
assumes that all pixels share the same active endmembers to reduce the influence of the
spectral coherence between endmembers on the unmixing effect. The model is shown
as follows

min
X

‖Y − AX‖2
F + λ‖X‖2,1 + ιR+(X) (6)

where ‖X‖2,1 = ∑m
k=1
∥∥xk
∥∥

2 represents the l2,1 norm, ιR+(X) = ∑n
i=1 ιR+(xi) denotes the

indicator function. Moreover, many spectral regularization terms, such as the total variation
regularization term [10] and the non-local regularization terms [11], are integrated into the
sparse unmixing model to promote the spatial correlation.

2.2. Multiobjective Optimization

The multiobjective evolutionary algorithms (MOEAs) have attracted extensive atten-
tion because of the global search ability in solving the sparse unmixing problems. In [15],
Gong et al. proposed the multiobjective sparse unmixing model with a cooperative coevolu-
tionary strategy. Jiang et al. [16] formulated the sparse unmixing problem into a two-phase
multiobjective problem to estimate the endmembers and determine the abundances, re-
spectively. In [17,18], the multiobjective evolutionary algorithm based on decomposition
(MOEA/D) [20] has also been explored and applied in the sparse unmixing problem. For
the multiobjective optimization problem, the mathematical form with a objectives and b
decision variables can be described as

min F(x) = ( f1(x), f2(x), . . . , fa(x))T

s.t. x = (x1, x2, . . . , xb)
T ∈ Ω

(7)

where x is the decision vector, F: Ω → Ra, Ω is the decision space and Ra is the objective
space.

In the majority of cases, there is no single solution capable of minimizing all the
objectives at the same time. Instead, the best trade-off between the objectives can be defined
as Pareto optimality. Therefore, in order to evaluate the pros and cons of multiple solutions,
the nondominated fronts and crowding distances of the individual can be applied. If the
individuals are dominated by the same number of individuals, these individuals belong
to the same nondominated front. In addition, the crowding distance of an individual can
be obtained by calculating the side length of the rectangle formed between two adjacent
individuals that belong to the same nondominated front with the individual. Assuming
that p1 and p2 are two individuals in the population, individual p2 is preferred over p1 (i.e.,
p2 � p1) if any one of the following conditions holds [21], (1) NF2 < NF1, (2) NF2 = NF1
and CD2 > CD1, where NF1 and NF2 represent the nondominated fronts of individuals p1
and p2, respectively. CD1 and CD2 represent the crowding distances of individuals p1 and
p2, respectively.

3. Proposed Method

For the sparse unmixing problem, there are two conflicting objectives to be optimized,
namely the sparse endmember term and the reconstruction error term. Therefore, the
multiobjective optimization problem for sparse unmixing is

min
X

(‖X‖0, ‖Y − AX‖2
F) (8)
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where the ‖X‖0 is the sparse term and the ‖Y − AX‖2
F represents the reconstruction error.

The Formula (8) can be solved with the multiobjective optimization to obtain the Pareto
Front (PF) of a compromise between these two objectives. Then the knee point is selected
as the final solution, which is the preferred solution on PF with the maximum marginal
utility and can be obtained from the individual with the maximum angle with the two
adjacent individuals. In addition, two constrains for the abundance are required by{

ANC : X = [x1, . . . , xn] ≥ 0

ASC : ∀xi ∈ X, 1Txi = 1, i = 1, . . . , n
(9)

The pseudocode of the proposed EMSU-EP is shown in Algorithm 1. First of all,
in the initialization, the k-th endmember is extracted from the spectral library at a time
to reconstruct the hyperspectral image Ŷk for obtaining the corresponding reconstruction
error with the original image. This operation needs to run through all the endmembers in
the spectral library. The reconstruction errors of all endmembers are sorted in ascending
order, and the corresponding Scorek represents the position order. Then the spectral library
is encoded into a binary vector with dimension D, where “1” and “0” represent the selected
and unselected endmembers, respectively. Then EMSU-EP randomly selects two elements
from the D-dimensional decision variables each time, and uses the endmember score as
the evaluation criterion to set one of to “1” with the binary tournament selection method,
which is shown in Figure 2. In order to ensure the diversity of the initial population,
the rand() operator is employed to uniformly distribute N individuals in the sparse interval
[0, D], respectively. Unlike the inefficiency of random initialization, the more likely real
endmembers can be selected to form the initial population with the prior knowledge.

Algorithm 1 Pseudocode of EMSU-EP
Input: A (the spectral library), Y (the hyperspectral image), N (population size), tmax

(maximum number of iterations).
Output: X∗ (the estimated abundance map).
1: for k = 1 : D do
2: Reconstruct Ŷk with the k-th endmember in A.
3: Scorek ← ‖Y − Ŷk‖2

F
4: end for
5: Encode A as a binary vector;
6: % P ← Initialization(N)
7: for i = 1 : N do
8: for j = 1 : rand()× D do
9: [m, n] ← Randomly select two endmembers;

10: if Scorem < Scoren then
11: Set the m-th endmember to 1 in i-th individual;
12: else
13: Set the n-th endmember to 1 in i-th individual;
14: end if
15: end for
16: end for
17: t ← 0;
18: while t ≤ tmax do
19: C ← Mutation(Crossover(P, N));
20: P ∪ C ← Evaluation(P ∪ C, 2N);
21: P ← Selection(P ∪ C, N);
22: t ← t + 1;
23: end while
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With the prior knowledge of decision variables, those decision variables with higher
scores should be given more attention in the subsequent genetic operations. Therefore,
the genetic operators of crossover and mutation proposed in [22] are employed to gen-
erate the offspring, which are represented by Crossover() and Mutation(), respectively,
in Algorithm 1. The left gray box and the the right gray box represent the Crossover()
operator and the Mutation() operator, respectively, in Figure 3. Before evolution, two
individuals p1 and p2 are randomly selected from population as the parents. There are two
situations in the Crossover(). On the one hand, the original offspring c inherits p1, then
two non-zero elements are randomly selected from the differential gene positions of p1
and p2, and one of the gene positions of c is set to “0” based on endmember scores (the
larger the better). On the other hand, two zero elements are randomly selected from the
differential gene positions of p1 and p2, and one of the gene positions of c is set to “1” based
on endmember scores (the smaller the better). In the Mutation(), two non-zero elements
are randomly selected from the offspring c, and one of the gene positions is set to “0”
determined by the larger score. To the opposite, two zero elements are randomly selected
from c, and set one of the gene positions is set to “1” determined by the smaller score. A
zero or non-zero element in the binary vector is flipped with the same probability as shown
in Figure 3. Compared with the single-point crossover (SPC) and bitwise mutation (BitM),
the operators designed by the EMSU-EP select the element to be flipped according to the
score of the decision variable to ensure the sparsity of the offspring.

During the evolution of the population, if too many endmembers are selected, some
solutions are no longer sparse. To prevent this problem from happening, the sparsity limit
d is applied to the population evolution. When the number of selected endmembers in an
individual exceeds the sparsity limit d, EMSU-EP will only retain the endmember whose
endmember score sorting in the first d-th, and the rest will not be selected (i.e., set to 0).

Y  
^ 

Y  
^ 

Y  
^ 

Score

Score

Score

||Y - Y ||  

D 

Score > Score

Score < Score

Figure 2. Obtaining the score of every endmember and generate the initial population.
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Figure 3. Illustration of the flow of crossover and mutation operators. The middle procedure represents the generation process
of a offspring, the left procedure represents the crossover operation, and the right procedure represents the mutation operation.

Finally, all individuals of the parent and offspring are evaluated for nondominated
sorting and crowding distance calculation [23], and the best N individuals are selected to
form the next generation population. After satisfying the end of the iteration, the knee
point in the last generation population is returned [24]. The set of non-zero elements
are extracted from this optimal binary vector, which also represents the corresponding
endmember subset As∗ from the spectral library A. Therefore, the abundance map Xs∗ can
be calculated according to the least square method, which is shown as follows

Xs∗ = arg min
Xs∗

‖Y − As∗Xs∗‖F. (10)

According to the Formula (10), we can not only achieve dimensionality reduction
of hyperspectral data, but also ensure the sparseness of unmixing solutions. After the
calculation of Formula (10), the zero element is inserted into the non-zero real solution
according to the original position to realize the restoration of the data dimension.

4. Experimental Results and Discussion

In this section, the effectiveness of EMSU-EP in solving large-scale sparse unmixing
problems will be demonstrated. Two large-scale sparse unmixing benchmark datasets
are used to validate the performance of the EMSU-EP. In order to reflect the efficiency of
EMSU-EP, some advanced algorithms such as SUnSAL [8], CLSUnSAL [9], MOSU [15] and
MTSR [21] will be compared with EMSU-EP.

In the experiment, the population size is set to 100, and the maximum generation
Maxgen is set to 300, the population sparse limit interval d is 50. Part of the experiment
code refers to the PlatEMO platform (PlatEMO 2.8: https://github.com/BIMK/PlatEMO
(accessed on 22 August 2021)) [25]. All experiments will be added with different degrees of
Gaussian white noise (SNR = 20, 30 and 40 dB). All experimental results are obtained from
the average of 100 independent repeated runs.

4.1. Dataset and Evaluation Indicators
4.1.1. Dataset

Data 1 is a 64 × 64 synthetic image containing 224 bands provided by Tang [26], its
digital spectral library A1 is a sub-library of 498 spectral features selected from the USGS
spectral library (http://speclab.cr.usgs.gov/spectral.lib06 (accessed on 22 August 2021)).
These spectral signals are evenly distributed at 0.25–0.4 μm. The true abundance map of
all five endmembers of data 1 is shown in Figure 4. Data 2 is an image of 100 × 100 pixels
and 224 bands per pixel, provided by Iordache et al. [10], its digital spectral library A2 is a
sublibrary with 230 spectral signatures of the USGS spectral library. The true abundance
map of all nine endmembers of data 2 is shown in Figure 5.

To summarize, data 1 needs to accurately select five endmembers from 498 spec-
tral signals and estimate the corresponding abundance, and data 2 needs to select nine
endmembers from 230 spectral signals and estimate the corresponding abundance. Two
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datasets are sparse enough and difficult. Therefore, both data 1 and data 2 are large-scale
sparse unmixing problems.

(a) (b) (c) (d) (e)

Figure 4. True abundance maps of five endmembers in data 1. (a) True abundance map of endmember 1. (b) True abundance
map of endmember 2. (c) True abundance map of endmember 3. (d) True abundance map of endmember 4. (e) True
abundance map of endmember 5.

Figure 5. True abundance maps of five endmembers in data 2. (a) True abundance map of endmember 1. (b) True abundance
map of endmember 2. (c) True abundance map of endmember 3. (d) True abundance map of endmember 4. (e) True
abundance map of endmember 5. (f) True abundance map of endmember 6. (g) True abundance map of endmember 7.
(h) True abundance map of endmember 8. (i) True abundance map of endmember 9.
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4.1.2. Evaluation Indicators

In order to compare the accuracy and the robustness of different sparse unmixing al-
gorithms on large-scale hyperspectral sparse unmixing problem, two evaluation indicators
are considered in the experiments.

(1) Signal-to-Reconstruction Error (SRE) can be expressed as:

SRE (dB) ≡ 10 log10

(
E
[‖X‖2

F
]

E
[∥∥X − X̂

∥∥2
F

]) (11)

where x is the true fractional abundance matrix and x̂ is the estimated fractional abundance
matrix. Without loss of generality, the larger the SRE value is, the better the unmixing
accuracy will be.

(2) Success Ratio (SR): If the relative error is smaller than a given threshold τ, the cor-
responding run of this method is denoted as a successful run [27]. SR under the threshold
τ is defined as:

SRτ ≡ P
(∥∥X − X̂

∥∥2
F

‖X‖2
F

≤ τ

)
(12)

The probability is the ratio of the successful runs on 100 random instances. If we set
τ = 5 and arrive at SRτ = 1, this implies that the relative error of the reconstruction result is
less than 5 with probability one.

The Hypervolume (HV) [28] indicator can be used to evaluate the quality of PF, which
can reflect the convergence and diversity of the solutions. HV is calculated by utilizing a
reference point who is 1% larger in every component than the corresponding nadir point.
In this paper, we use it to evaluate the performance on large-scale sparse unmixing problem
by crossover and mutation operations of EMSU-EP, traditional SPC and BitM.

4.2. Experiments on Synthetic Data

Figure 6 shows the PF of the 50-th generation population obtained by different meth-
ods on data 1 and data 2. Whether compared to the PF obtained by SPC and BitM with
the initial population of EMSU-EP or the PF obtained by SPC and BitM with the random
initial population, EMSU-EP obviously has better convergence and a clearer knee point
area, which will be very helpful to choose the final solution later.

Figure 6. Illustration of the Pareto Front of the 50th generation on data 1 and data 2.

In order to reflect the advantages of EMSU-EP in each generation, Figure 7 uses the
HV indicator to evaluate the PF of the first 100 generations. As shown by the red and
purple curves in Figure 7, since the SPC and BitM operation has the same initial population
of EMSU-EP, a higher HV value can be obtained from the first generation compared to the
SPC and BitM with the random initial population, which corresponds to a better initial
population quality and shows the guiding effect of endmember scores on the production of
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initial population. However, as shown by the blue and red curves in Figure 7, after the 20-th
generation on data 1 and the 50-th generation on data 2, there are large static difference
between the HV value of EMSU-EP and the HV value of the SPC and BitM operation,
which shows the guiding effect of endmember scores on the evolution of the population.

Figure 7. Illustration of the HV value of each evolution step on data 1 and data 2.

The estimated abundance maps of some endmembers obtained by different algorithms
on data 1 and data 2 are shown in Figures 8 and 9, respectively. These experimental results
are all on the 30dB SNR. In Figure 8, the abundance maps obtained by SUnSAL, CLSUnSAL,
MOSU, MTSR and EMSU-EP are exhibited from left to right, endmember 1, endmember 2
and endmember 5 of data 1 are arranged from top to bottom. In Figure 9, the abundance
maps obtained by SUnSAL, CLSUnSAL, MOSU, MTSR, and EMSU-EP are exhibited from
left to right, endmember 1, endmember 5 and endmember 8 of data 2 are arranged from
top to bottom. As shown in Figures 8 and 9, it is obvious to see that EMSU-EP always has
the best performance compared to other algorithms, the unmixing maps color of EMSU-EP
is the closest to the real image. Nevertheless, the performance of EMSU-EP in reducing
noise is not stable enough, only the abundance map of endmember 1 has the least noise
points in Figure 8, and only the abundance map of endmember 8 has the least noise points
in Figure 9. Tables 1 and 2 show the SRE (dB) and SRτ of the unmixing results obtained by
different algorithms on data1 and data 2, respectively. The two data sets are corrupted by
different levels of correlated noise (SNR = 20, 30 and 40 dB). According to Tables 1 and 2,
EMSU-EP has the highest SRE (dB) and SRτ compared to other algorithms at three SNR
levels, which indicates that EMSU-EP has the best unmixing accuracy and robustness.
The experimental results of two hyperspectral datasets demonstrate that the proposed
EMSU-EP method can improve the performance of the sparse unmixing model by utilizing
the endmember prior information.

Table 1. Comparison of EMSU-EP with other algorithms on data 1. The value of τ is set to 0.15.

Method
SRE (dB) SRτ

20 30 40 20 30 40

SUnSAL −4.3472 4.0704 13.8207 0.15 0.43 0.74
CLSUnSAL 8.2830 13.1349 14.3583 0.65 0.83 0.88

MOSU 7.3594 13.1434 14.4707 0.69 0.87 0.90
MTSR 10.7254 14.6143 17.6775 0.75 0.89 0.93

EMSU-EP 16.4900 19.9379 23.7559 0.78 0.91 0.95
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Table 2. Comparison of EMSU-EP with other algorithms on data 2. The value of τ is set to 0.15.

Method
SRE (dB) SRτ

20 30 40 20 30 40

SUnSAL −4.2856 4.0604 13.3420 0.23 0.35 0.54
CLSUnSAL 5.5443 11.5608 18.9487 0.62 0.75 0.91

MOSU 5.5623 11.1713 19.4105 0.66 0.78 0.94
MTSR 7.0496 13.7802 22.7329 0.70 0.80 1.00

EMSU-EP 7.2801 14.6303 23.1275 0.74 0.86 1.00

Figure 8. The estimated abundance maps of endmember 1, endmember 2 and endmember 5 for data 1 on 30 dB SNR
obtained by different algorithms.

Figure 9. The estimated abundance maps of endmember 1, endmember 5 and endmember 8 for data 2 on 30 dB SNR
obtained by different algorithms.
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5. Conclusions

In this paper, we proposed an evolutionary multiobjective hyperspectral sparse un-
mixing algorithm with an endmember a priori strategy (EMSU-EP) to solve the large-scale
hyperspectral sparse unmixing problem. EMSU-EP reconstructs the hyperspectral image
by a single endmember to generate every endmember score first. Then the obtained end-
member scores are used as prior knowledge to guide the generation of initial populations
and new individuals. Experiments have demonstrated that the proposed EMSU-EP al-
gorithm is effective in solving large-scale sparse unmixing problems, and EMSU-EP can
maintain the superiority compared with the state-of-the-art sparse unmixing algorithms.

In the future, we will focus on reducing the noise on hyperspectral sparse unmixing
problems and exploring the further improvement of EMSU-EP performance.

Author Contributions: Conceptualization, Z.W. and J.W.; methodology, Z.W.; validation, Z.W.,
J.W. and F.X.; investigation, J.L.; writing—original draft preparation, Z.W., J.W. and J.L.; writing—
review and editing, F.X., J.L. and P.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of Shaanxi Province
(grant no. 2021JQ-210), the Fundamental Research Funds for the Central Universities (Grant no.
XJS200216), Key R & D programs of Shaanxi Province (Grant no. 2021ZDLGY02-06) and the National
Natural Science Foundation of China (Grant no. 61973249).

Data Availability Statement: The data 1 and data 2 can be downloaded from http://levir.buaa.edu.
cn/Code.htm (accessed on 22 August 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shi, C.; Wang, L. Linear spatial spectral mixture model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3599–3611. [CrossRef]
2. Nascimento, J.M.P.; Dias, J.M.B. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci.

Remote Sens. 2005, 43, 898–910. [CrossRef]
3. Miao, L.; Qi, H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix

factorization. IEEE Trans. Geosci. Remote Sens. 2007, 45, 765–777. [CrossRef]
4. Zhou, G.; Xie, S.; Yang, Z.; Yang, J.; He, Z. Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of

learning parts. IEEE Trans. Neural Netw. 2011, 22, 1626–1637. [CrossRef]
5. Li, J.; Bioucas-Dias, J.M.; Plaza, A.; Liu, L. Robust collaborative nonnegative matrix factorization for hyperspectral unmixing.

IEEE Trans. Geosci. Remote Sens. 2016, 54, 6076–6090. [CrossRef]
6. Berman, M.; Kiiveri, H.; Lagerstrom, R.; Ernst, A.; Dunne, R.; Huntington, J.F. Ice: A statistical approach to identifying

endmembers in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2085–2095. [CrossRef]
7. Candes, E.J.; Tao, T. Decoding by linear programming. IEEE Trans. Inf. Theory 2005, 51, 4203–4215. [CrossRef]
8. Bioucas-Dias, J.M.; Figueiredo, M.A. Alternating direction algorithms for constrained sparse regression: Application to hyper-

spectral unmixing. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4.

9. Iordache, M.; Bioucas-Dias, J.M.; Plaza, A. Collaborative sparse regression for hyperspectral unmixing. IEEE Trans. Geosci. Remote
Sens. 2014, 52, 341–354. [CrossRef]

10. Iordache, M.; Bioucas-Dias, J.M.; Plaza, A. Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans.
Geosci. Remote Sens. 2012, 50, 4484–4502. [CrossRef]

11. Zhong, Y.; Feng, R.; Zhang, L. Non-local sparse unmixing for hyperspectral remote sensing imagery. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2014, 7, 1889–1909. [CrossRef]
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Abstract: Convolutional neural networks (CNNs) have shown great success in a variety of real-world
applications and the outstanding performance of the state-of-the-art CNNs is primarily driven by the
elaborate architecture. Evolutionary convolutional neural network (ECNN) is a promising approach
to design the optimal CNN architecture automatically. Nevertheless, most of the existing ECNN
methods only focus on improving the performance of the discovered CNN architectures without
considering the relevance between different classification tasks. Transfer learning is a human-like
learning approach and has been introduced to solve complex problems in the domain of evolutionary
algorithms (EAs). In this paper, an effective ECNN optimization method with cross-tasks transfer
strategy (CTS) is proposed to facilitate the evolution process. The proposed method is then evaluated
on benchmark image classification datasets as a case study. The experimental results show that the
proposed method can not only speed up the evolutionary process significantly but also achieve
competitive classification accuracy. To be specific, our proposed method can reach the same accuracy
at least 40 iterations early and an improvement of accuracy for 0.88% and 3.12% on MNIST-FASHION
and CIFAR10 datasets compared with ECNN, respectively.

Keywords: evolutionary algorithm; convolutional neural network; transfer learning; image classifi-
cation

1. Introduction

Machine learning has shown great success in various real-world applications. Among
machine learning approaches, convolutional neural networks (CNNs), which show over-
whelmingly superiority among machine learning approaches, have been widely used
in various real-world applications, such as image processing [1], engineering [2], health
care [3,4], and cognitive science [5], etc. Convolutional neural network commonly consists
of convolution, pooling, and fully-connected layers and are trained on the source dataset
and then applied to the target dataset. As is well-known, the success of CNNs mainly
benefit from the improvement on fundamental CNN architectures, such as increasing
the depth of neural networks, the employment of skip layers, and adding inner network
structures, etc. However, the state-of-the-art CNN architectures with high performance are
manually devised by experienced experts with trial-and-error. As designing efficient CNN
architectures is a challenging process, researchers have developed algorithms to design the
CNN architectures automatically, which aims to enhance the applicability and universality
of CNNs.

Designing the best CNN architecture can be viewed as a neural architecture search
(NAS) process on the given dataset, and the searching parameters include the number
of convolutional layers, the configuration of different layers and the placement of skip
layers, etc. In the domain of machine learning, reinforcement learning (RL) is an early
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method for NAS and is always collocated with recurrent neural network (RNN) to control
the process of hyperparameter tuning [6]. In addition to reinforcement learning, Bayesian
optimization [7] has also been widely used, which achieves global optimization by main-
taining black-box functions that do not assume any specific forms. Some other machine
learning approaches including grid search, random search and gradient search are explored
in [8–10]. Nonetheless, with these methods remains the problem of taking up too much
searching space, thus requiring excessive GPU memory.

Evolutionary algorithms (EAs) are optimization approaches which seek the opti-
mal solution by simulating the natural evolution process inspired by Darwin’s theory
of evolution [11]. Evolutionary algorithm begins with generating individuals that un-
dergo crossover, mutation, and selection to retain strong individuals and eliminate weak
ones. After several generations, it can solve complex optimization problems and gen-
erate high-quality optimization schemes efficiently. Since evolutionary algorithm has
flexible representations and strong searching capacity, it has been widely used to solve
a variety of tasks, especially under the environment with non-convex or non-derivative
functions [12–16]. In recent years, EAs have attracted great interest as they offer alternative
methods to solve NAS problems. With flexible encoding strategy and strong searching
capacity, EAs are becoming a promising approach to optimizing CNN architectures. The
general framework of evolutionary convolutional neural network (ECNN) follows the
evolution procedure, the performance of which mainly depends on the effective design of
network architecture evolution strategy.

However, most of the ECNN methods focus on improving the performance of discov-
ered CNN architectures without considering the relevance between different classification
tasks. The evolution process has to start from scratch if the learning environment changes.
In such a situation, evolutionary transfer learning which utilizes the knowledge from the
previously solved tasks to facilitate solving target task, is promising for NAS problems.
Evolutionary transfer learning is a human-like learning process, it has been frequently
introduced to solve different but related problems for more effective evolutionary algo-
rithms. In [17–22], EAs with transfer capacity are designed to solve extensive optimization
problems like dynamic vehicle routing, heterogeneous and image classification problems,
etc. With the assistance of knowledge from optimized solutions, the performance of
evolutionary algorithms can be enhanced.

In this paper, an effective evolutionary convolutional neural network optimization
method with cross-tasks transfer strategy (CTS-ECNN) is proposed to take full advantage
of the knowledge extracted from the previously solved tasks when a new classification
task is encountered. The main contributions of the proposed CTS-ECNN method are
summarized as follows:

(1) We propose a simple and effective cross-tasks transfer strategy, which can select the
valuable knowledge from the original task to transfer for improving the performance
of the target task. Especially at the early generations, our method can increase
the optimization speed significantly, which is important when the learning time or
computing resource is limited;

(2) Within the case study of image classification tasks, it is demonstrated that the pro-
posed CTS-ECNN can obtain better results than the ECNN that starts from scratch
and some manually-designed state-of-the-art methods do;

(3) In the framework of the proposed CTS-ECNN, when a new task is encountered, we
can extract knowledge from the optimized tasks. With more knowledge achieved
from related tasks, the proposed method can be applied to more tasks rapidly without
considering the sequence of tasks.

The rest of this paper is organized as follows: In Section 2, the related works are sum-
marized. In Section 3, our method is introduced in detail. Section 4 gives the experimental
settings and the analysis of the experimental results. Finally, the conclusions and future
works are described in Section 5.
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2. Related Works

2.1. Evolutionary CNN Optimization

Since the evolutionary algorithm has the advantage of gradient-free and being insensi-
tive to local optimum, evolutionary deep learning has been an interesting domain recently.
Among all of them, the neural network, especially CNN architecture optimization with the
evolutionary algorithm, attracts much attention. The general framework of evolutionary
convolutional neural network is concluded in Algorithm 1. As is shown in Algorithm 1,
the whole process of evolutionary CNN follows the evolution procedure: initialization
(step 1), evaluation (step 2), selection (step 4), mutation and crossover (step 5). Specially,
the fitness evaluation in evolutionary CNN is executed by training the corresponding
CNN architecture. The evaluation process is completed by optimizing the weights in CNN
architecture to reach the maximal classification accuracy. To evaluate each individual’s
fitness accurately, a CNN is trained for several epochs by using the same initialization
method, loss function and optimizer. The performance evaluation of CNN is provided in
Algorithm 2.

Algorithm 1 Evolutionary convolutional neural network.
Input: N: the max number of generations, k: the size of each generation, pm: the

mutation probability, pc: the crossover probability.
Output: Individuals of the last generation with their fitness values.
1: Randomly initialize k individuals and map them to the corresponding CNNs;
2: Compute the classification accuracy of each CNN to obtain the fitness value with

Algorithm 2;
3: for n = 1 : N do
4: Generate a new generation with selecting method on parent individuals based on

the fitness value;
5: Produce offspring through the operator of mutation and crossover with probability

pm and probability pc;
6: Compute the classification accuracy of each individual on offspring;
7: end for

Algorithm 2 Performance evaluation of CNN.
Input: p: the individual, Dtrain: the training dataset, Dvalid: the validation dataset, T: the

epoch number, B: the training batch size, L: the loss function, η: the learning rate.
Output: The classification accuracy.
1: Map p into the corresponding CNN architecture;
2: ω ← initialize the weights of CNN with predefined method;
3: for t = 1 : T do
4: η ← update η according to t;
5: for each B in Dtrain do
6: ∇ω ← compute the gradient by ∂L/∂ω;
7: ω ← ω - η∇ω;
8: end for
9: Compute the classification accuracy on Dvalid;

10: end for

In [23], Xie et al. introduced a binary encoding method to represent CNN and use GA
to learn network architectures automatically. Concurrently, Cartesian genetic programming
was used to design deep convolutional neural network architectures with a variable-length
genotype-to-phenotype method in [24]. Real et al. [25] designed an image classifier
named AmoebaNet which applies evolutionary algorithm to neural network topologies.
Sun’s work [26] gave a comprehensive comparison of manually designed and automatically
designed neural networks, and then proposes CNN-GA which is competent for discovering
deep neural networks. Lu and Whalen et al. [27] addressed multi-objective framework
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to neural architecture search, and the NSGANetV1 algorithm is demonstrated on new
classification tasks, i.e., corrupted CIFAR-10, ImageNet-V2 and medical X-ray images.

2.2. Transfer Learning

In the domain of machine learning, transfer learning has received significant interest
on solving different but related problems for better effective deep learning performance.
Knowledge transfer of internal representations is an example of transfer learning in [28].
A trained deep convolutional neural network is demonstrated that its components can
be transferred to another network to learn new information with smaller training sets.
Terekhov et al. [29] applied knowledge transfer to deep neural networks by re-using
block-modular architecture to solve new tasks. This architecture can outperform networks
trained from scratch and has fewer weights to learn. Based on the learning features of
each layer in neural networks, Yosinski et al. [30] proposed a method which can quantify
the transferability of layer features. The results show that transferability is affected by
difficulties of splitting network layers and the specificity of higher network layers.

There is also a growing interest in evolutionary transfer algorithms in recent years.
Evolutionary transfer algorithms have been applied to solving different types of problems,
such as multi-task optimization, multi-objective optimization, and complex optimization,
etc. In multi-task environment, [31] transferred knowledge through crossover based on
the theory that the solving of one problem may facilitate the solving of other related
problems. In [32], Y. Ong et al. extended knowledge transfer by designing a explicit
auto-encoder to transfer optimized solutions instead of genetic crossover. In the domain
of multi-objective optimization, Liang et al. [18] devised a one-layer auto-encoder to
enhance the performance of evolutionary algorithm by transferring knowledge across
heterogeneous problems. Iqbal et al. [19] developed the GP-criptor to transfer learning
GP-criptor which can reuse knowledge from past solved classification problems to improve
image classification accuracy.

In this work, we focus on utilizing transfer learning to improve the performance and
efficiency of neural architecture evolution. The proposed method can take full advantage
of knowledge transferred from the previous solved tasks when a new classification task
is encountered.

3. Materials and Method

As mentioned before, the key problem of transfer learning in EAs is how to utilize
the knowledge from the source tasks efficiently. Which information to be transferred and
how to transfer the knowledge determine whether the transfer process can facilitate the
evolution of target task better than random initialization. In this section, we will introduce
the CTS-ECNN method which constructs the suitable individuals for transference based
on the multi-population framework [33]. Meanwhile, considering the high computation
cost of evaluating the performance of a CNN architecture, we also use a clustering method
to accelerate the transfer process. Figure 1 shows the workflow of the CTS, as well as the
associated ECNN.

As shown in Figure 1, the proposed CTS-ECNN method is composed of three modules,
i.e., classification tasks, evolutionary algorithm of CNN, and cross-tasks transfer. First,
a set of individuals representing different CNN architectures are evolved on the first
classification task with their performances (shown in Section 3.1). After evolution, the
CNN architectures with top fitness values are encoded for clustering similar individuals
with affinity propagation (AP) method (shown in Section 3.2). With clustered individuals,
exemplars of each cluster are evaluated on the target classification task, and then their
performances are used as the ranking index prepared for constructing the subpopulation
(shown in Section 3.3). When the mixed subpopulation is constructed, we can transfer the
useful knowledge to the target classification task through applying the selected individuals
as the initial generation. To clarify the proposed method, we give a general framework
of CTS-ECNN in Algorithm 3. Noting that our proposed method provides a sequential
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transfer framework applicable to different classification tasks. If we have discovered CNN
architectures on the preceding (M-1) tasks, the M-th task can be facilitated by utilizing the
knowledge obtained from the previously solved (M-1) tasks.

Figure 1. The workflow of the CTS-ECNN.

Algorithm 3 The pseudocode of CTS-ECNN.
Input: N: the max number of generation, k: the size of each generations, DM: the target

dataset.
Output: The best CNN architecture for DM.
1: for m = 1 : M do
2: if m = 1 then
3: {OP}k ← Randomly initialize k individuals;
4: else
5: {OP}k ← Transfer k individuals based on Algorithm 4;
6: end if
7: Set n ← 0;
8: while n ≤ N do
9: Obtain offspring {OC}k with crossover and mutation operators;

10: {OR}2k ← {OP}k ∪ {OC}k;
11: Evaluate each individual in {OR}2k;
12: {OP}k ← Select the next generation;
13: n ← n + 1;
14: end while
15: while m < M do
16: {Oc

r} ← collect individuals with top fitness values for CTS in Algorithm 4;
17: end while
18: end for

3.1. Neural Architecture Evolution

Generally, the whole process of ECNN follows the procedure in Algorithm 3 (steps
1–14). The first step is to design a proper genotype-to-phenotype mapping strategy. We
provide a variable-length string representation to describe the CNN architecture. In our
method, we prepare two types of convolutional and pooling operators for building a CNN
architecture, i.e., the standard and residual convolutional operators, the max and average
pooling operators. The max number of convolutional operators Nc and pooling operators
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Np are predefined. It is noted that the proposed method focuses on the optimization
of neural network structure, so we select these building blocks as functional nodes to
realize flexible genotype-to-phenotype mapping. For the first classification task, a set of
individuals with predefined population size is randomly initialized based on the string
representation. Accordingly, subsequent classification tasks use the assigned subpopulation
from cross-tasks transfer as the initial generation (steps 2–6).

During evolution, mutation and crossover operator are implemented on each genera-
tion. When {OR}2k is obtained, each produced individual is evaluated on the corresponding
dataset to compute its classification accuracy by training the CNN architecture it represents
through several epochs, and then these accuracies serve as fitness values to produce a
new generation. When the max number of generations is reached, we not only obtain the
optimized CNN architecture for the current classification task but also utilize individuals
with top fitness values as the learning resource to facilitate posterior classification tasks.

3.2. Encoding and Extraction of Feature

The encoding operator acts on the optimized CNN architectures which have been
evolved on previous classification tasks. To extract the features of each CNN architecture,
these architectures have to be encoded into fixed-length strings which are suitable for
similarity computation. Each convolutional operator is encoded into a quaternion as (type,
channel, filter, in), where type for the standard and residual convolutional operator is set
to 0 and 1, respectively. As for pooling operators, each of them is encoded into a pair as
(type, in), type of the max and average pooling operators is denoted by 0 and 1. There is
no need to encode the parameter of out because it can be deduced by the in of subsequent
operator. When the number of convolutional operator is smaller than Nc or the number
of pooling operators is smaller than Np, the blank position will be set to zeros to keep the
coding length invariable.

As the encoding of CNN architectures has been finished, the codes containing struc-
ture information can be used directly by similarity computation. Algorithm 4 shows the
framework of our proposed CTS, and steps 2–7 give a general process of constructing a
similarity matrix. We use Euclidean distance as the similarity of CNN architectures:

s(i, j) = −‖xi − xj‖2 (1)

where xi and xj are two different codes, and the setting of a negative squared error is for
convenient calculation. Each code of its corresponding CNN architecture is compared
with all the other codes string-to-string to work out the similarity s(i, j), and then the
similarity s(i, i) for each code is set to a shared value, for which we choose the median of
the input similarity.

Considering the demand of reducing transfer computation and utilizing knowledge
from previous tasks efficiently, clustering is a necessary preprocessing for the construction
of subpopulation. Of all the clustering methods, AP has the advantages of good robustness
and accuracy over other clustering methods [34]. It does not need to determine the number
of clusters before running the algorithm and is based on the concept of “message passing”
between data points, which updates two matrices:

r(i, j) ← s(i, j)− max
j′ 
=j

{
a(i, j′) + s(i, j′)

}
(2)

a(i, j) ← min
{

0, r(j, j) + ∑
i′ 
∈{i,j}

max{0, r(i′, j)}
}

(3)

where r(i,j) is the value of responsibility matrix and reflects the fitness that j serves as the
exemplar for i on account of the other potential exemplars. a(i,j) is the value of availability
matrix and reflects the appropriateness that i chooses j as its exemplar on account of the
other potential exemplars. To be specific, a(i,j’) represents the belongingness of other points
to i except j. s(i,j’) represents the attraction of other points to i except j. If the value of r(i,j)
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is greater than 0, it means that j has better chance to become the exemplar; r(i,j’) represents
the similarity that j becomes the exemplar of other points except i. Taking all the attraction
values greater than or equal to 0 and the possibility that j is the exemplar into consideration,
a(i,j) represents the cumulative proof that i chooses j as the exemplar.

Both matrices are initialized to all zeroes. Iterations proceed until cluster boundaries
remain unchanged over several iterations. The j with the maximum value of a(i,j) + r(i,j)
will be chosen as the exemplar of its corresponding cluster. When AP terminates, the
number of clusters and the exemplar of each cluster are obtained.

Algorithm 4 Cross-task transfer strategy (CTS).
Input: {Oc

r |r = 1, 2, ..., k, c = 1, 2, ..., M−1}: individuals with top fitness values from the
preceding (M−1) datasets, qm: the mutation probability, TP: the transfer parameter.
Output: The parent PTrans for DM.
1: Et ← encode Oc

r independently;
2: if i 
= j then
3: s(i, j) ← compute the similarity between Ei and Ej;
4: end if
5: if i = j then
6: s(i, i) ← input the median of the acquired similarities;
7: end if
8: Cluster CNN architectures with AP algorithm;
9: p ← the number of clusters;

10: {M}p ← choose the exemplar of each cluster;
11: Approximate the classification accuracies of {M}p;
12: Popt ← choose the optimal cluster;
13: Nsub ← determine the size of suboptimal subpopulation with TP;
14: Psub ← randomly choose Nsub individuals from the suboptimal cluster;
15: if Nopt + Nsub < k then
16: Pext ← perform mutation operator with probability qm on Popt;
17: PTrans ← Popt ∪ Psub ∪ Pext;
18: else if Nopt + Nsub > k then
19: Popt ← choose (k - Nsub) individuals from Popt randomly;
20: PTrans ← Popt ∪ Psub;
21: else
22: PTrans ← Popt ∪ Psub;
23: end if

3.3. Construction of Subpopulation

In original transfer learning strategies, the entire knowledge extracted from previous
tasks is evaluated on the target task to sort out the best solution. However, considering
the high computational cost of evaluating the performance of a CNN architecture, it
is computationally cumbersome to evaluate each individual especially when we have
numerous source tasks for transfer learning. In our method, we only evaluate the exemplar
of each cluster on the target task to represent its corresponding cluster. The proposed CTS is
a straightforward way to utilize the ranked clusters of alternative CNN architectures based
on exemplars’ performance. To enable efficient transfer, we construct the subpopulation by
exploiting high-quality individuals and exploring new individuals.

The efficacy of the proposed CTS-ECNN depends on how the subpopulation of each
target task is constructed. On account of the complementarity of individuals, we adopt the
multi-population framework to construct subpopulation which includes the optimal cluster
Popt and the suboptimal cluster Psub. Specifically, Popt can be viewed as the individuals
which carry most problem-solving knowledge and thus can be viewed as the individuals
belonging to target task, Psub can be viewed as the extra individuals selected from related
tasks accordingly. When the mixed subpopulation is constructed, it can collect inter-
task knowledge and inner-task knowledge to generate offspring for the target task. Nsub
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is determined by the cross-task transfer parameter TP, thus the number of suboptimal
individuals Nsub is denoted by

Nsub = min{[TP × k], Nsub,max} (4)

where k represents the size of each generation and Nsub,max is the size of suboptimal cluster
which guarantees that cross-task knowledge will not overflow. TP is the transfer parameter
which controls the degree of inter-task knowledge transfer thus maintaining the balance of
subpopulation.

It is an important issue to set the transfer parameter TP thoughtfully as it controls
the amount of inner-task and inter-task knowledge transferred into the target task. To be
specific, if TP is large, the more extra individuals from related tasks are collected, therefore
the more inter-task knowledge can be transferred to target task. Correspondingly, if TP is
small, the more inner-task knowledge will be extracted. To conclude, a large TP is suitable
for a compact searching space where individuals have small divergence, while a small TP
is suitable for individuals with significantly different performances.

With Nsub determined by TP, we randomly choose Nsub individuals in the suboptimal
cluster as a part of subpopulation. In Algorithm 4, the construction of subpopulation is
executed in step 15–23. As shown in Algorithm 4, the rest part of the subpopulation are
produced by the optimal cluster. When Nopt is insufficient, some extra individuals are
produced by operating mutation on the individuals of optimal cluster with probability qm
to keep the size of generation invariable. On the contrary, if (Nopt + Nsub) exceeds the size
of generation, we randomly choose (k − Nsub) individuals from the optimal cluster for the
same purpose.

The constructed subpopulation is used as the current best generation for the target
classification task to accelerate the evolution of CNN architectures. Particularly, the more
source tasks we have trained, the more transfer knowledge we can utilize to facilitate
the subsequent tasks. More importantly, as the knowledge from all the previous tasks
participates in our cross-task transfer process, the sequential transfer process can keep
going without deploying specified order of tasks.

3.4. Training and Prediction

Based on conventional settings in machine learning community, stochastic gradient
descent (SGD) with a batch size of 128 is used to train the CNN architectures, whose
weights are initialized by He’s method [35]. For fear of over-fitting, the weight decay is
set to 5 × 10−4. The learning rate is initialized to 10−2 for the first 30 epochs, followed by
10−3 for 120 epochs, 10−4 for 90 epochs, and 10−5 for 30 epochs. Each CNN architecture is
trained for 50 epochs in the phase of fitness evaluation to reduce computation time. All
of the CNN architectures are trained on two NVIDIA 1080TI GPUs. Noting that these
parameter settings are applied in both experimental scenarios.

For the parameter settings of neural architecture evolution, the max number of con-
volutional operators Nc and pooling operators Np are set to 10 and 5, respectively. We set
the mutation probability pm and the crossover probability pc to 0.8 and 0.2, respectively,
to accelerate the evolution of new CNN architectures. The number of generations for the
target classification dataset is set to 50 and each generation contains 20 individuals. Note
that the max generation for the source classification dataset which is prepared for the CTS
is set as 20.

4. Experimental Results and Discussion

4.1. Datasets

In the case study, the proposed CTS-ECNN method, which is based on transfer
learning, is evaluated using two benchmark image classification datasets. Results are
compared with the ECNN that starts from scratch and some state-of-the-art methods.

As mentioned in Section 3, the proposed method is a sequential transfer framework,
so we design two experimental scenarios to test its applicability for different classification

296



Electronics 2021, 10, 1857

tasks. For the first scenario, our method is tested on the MNIST-FASHION dataset and the
transfer process is based on the MNIST classification task which has been optimized before.
For the second scenario, our method is tested on the CIFAR10 dataset and the transfer
process is based on the MNIST and MNIST-FASHION classification task which have been
optimized before.

The MNIST dataset is a large database of handwritten digits, which consists of 60,000
grayscale images for training and 10,000 grayscale images for testing, and each of them
has the dimension of 28 × 28. There are 10 categories, i.e., digits from 0 to 9, which
have the equal number of samples for both the training and testing set. The MNIST-
FASHION dataset shares the same image size and structure of training and testing splits
with the MNIST dataset. The only difference between them is that there are 10 categories of
commodity in MNIST-FASHION. The CIFAR10 dataset is a subset of 80 million tiny images,
which consists of 50,000 color images for training and 10,000 color images for testing, and
each of them has the dimension of 32 × 32. There are also 10 categories, which have the
equal number of samples for both the training and testing set. As there are no validation
sets in these benchmark datasets, 10% images of the training sets will be randomly selected
as the validation sets to attain the fitness value.

4.2. Results of the First Experimental Scenario

We first compare the classification accuracy of each evolution step for the proposed
CTS-ECNN method and the ECNN that starts from scratch on the MNIST-FASHION test-
ing dataset. The maximum classification accuracy of each evolution process is visualized
in Figure 2. It is obvious that the max classification accuracy is improved significantly in
the first few generations with the transferred knowledge from the MNIST classification
task. As shown in Figure 2, the proposed CTS-ECNN can achieve the same accuracy about
40 iterations early compared with ECNN that starts from scratch. When the evolution
terminates, our method still obtains better classification accuracy than the original ECNN
method does. The above result shows that the proposed CTS-ECNN can achieve the valu-
able knowledge from the MNIST classification task to help the neural network optimization
of MNIST-FASHION classification task.

Figure 2. The maximum classification accuracy of each evolution step on the MNIST-FASHION
testing dataset.

To make a comprehensive comparison of the two methods, classification performance
of all the individuals in each evolution step are reported in Figure 3. As shown in Figure 3,
the red and blue points represent the individuals in CTS-ECNN method and the original
ECNN method that starts from scratch, respectively. As can be seen in each iteration,
most of the individuals of our method can obtain better performance, which means with
transferred knowledge the excellent parent generation is more likely to generate good
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offspring via evolution process. There are also a few red points lying below all the blue
points in the figure, especially at the early iterations of the evolution process. As evolution-
ary algorithm is a heuristic search method that uses crossover and mutation operators to
generate new populations, good individuals may also produce poor offspring. However,
the historically best individuals are always maintained, so the evolutionary process can
keep a steady improvement. With the evolution proceeding, individuals of our method
perform better aggregation index than the original ECNN method does. We argue that
the evolutionary algorithm tends to preserve the useful transferred knowledge, so that the
excellent individuals are more easily to generate.
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Figure 3. The current classification accuracy of each evolution step on the MNIST-FASHION test-
ing dataset.

In addition to reporting the overall results of each iteration, we complete quantitative
analysis on these two methods to obtain precise statistics. Results are summarized in
Table 1. With the help of CTS, we can always find better network architectures which can
achieve better classification accuracy. After the 10th generation, classification accuracies of
the two methods keep a similar rate of growth and the accuracy improvement becomes
smaller than the previous generations. To be specific, among the 10th and 50th generation,
the proposed CTS-ECNN and original ECNN attain the improvement of 0.85% and 0.87%
on maximum classification accuracy, respectively. Although during the period of evolution
the average and medium classification accuracy are fluctuating a little, on the whole they
gradually get higher. According to three kinds of difference value, i.e., the maximum, the
average and the medium accuracy difference, the CTS-ECNN method shows significant
advantage over the ECNN algorithm. This is important, because it means the CTS-ECNN
algorithm can guarantee the overall improvement on original ECNN algorithms. After
50 generations, the maximum classification accuracy of the CTS-ECNN method reaches
94.37% and keeps a leading margin of 0.88% over the original ECNN method.

4.3. Results of the Second Experimental Scenario

As mentioned before, we have two optimized classification tasks, i.e., the MNIST and
MNIST-FASHION dataset, which means when a new task is encountered, we can extract
knowledge from the above three tasks. We will first compare the CTS-ECNN method based
on the two classification tasks with the original ECNN method. The maximum classification
accuracy of the two methods on the CIFAR10 testing dataset is shown in Figure 4. As
in the MNIST-FASHION experiment, the maximum classification accuracy grows from
generation to generation. Compared with the first experiment on MNIS-FASHION dataset,
with more knowledge extracted from the previously solved two classification tasks, the
initial generation of CTS-ECNN can outperform even the last generation of the original
ECNN. This means our method can not only skip the process of random initialization but
also generate better individuals. In the end of the evolution process, our proposed method
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obtains the improvement of about 3% for the maximum classification accuracy, which can
demonstrate the scalability of our proposed method. As we all know that the iteration of
the neural network optimization is time-consuming, the experiment with 50 generations
can demonstrate that our method has the ability to reduce the computational cost.

Table 1. Classification accuracy on the MNIST-FASHION testing dataset. Diff is the difference of
classification accuracy with ECNN that starts from scratch. Gen represents different evolution steps.

Gen Max % Diff % Avg % Diff % Med % Diff %

01 93.52 2.43 91.49 1.72 91.73 2.13
05 93.52 1.48 91.76 1.26 91.67 0.73
10 93.52 1.00 91.72 1.17 91.95 1.03
15 93.75 1.23 91.93 0.37 91.93 0.38
20 93.81 1.12 92.12 1.06 92.45 1.52
25 93.81 1.03 92.70 1.10 92.89 1.33
30 94.12 1.01 92.58 0.60 92.42 0.30
35 94.15 0.88 92.20 1.61 92.13 0.72
40 94.15 0.67 92.35 1.79 92.50 1.33
45 94.37 0.88 93.38 1.78 93.28 1.73
50 94.37 0.88 93.10 1.22 93.13 1.38

Figure 4. The maximum classification accuracy of each evolution step on the CIFAR10
validation dataset.

In order to better understand the details of the proposed method on the CIFAR10
classification task, we draw box plots in Figure 5. As is shown in Figure 5, both of the two
methods show increase for the maximum classification accuracy and fluctuation for the
median classification accuracy. However, our proposed method shows smaller fluctuation
and better median classification accuracy. By investigating the height of each box, it can
also be observed that the variation of the classification accuracy during each generation
of our proposed method is much smaller than the original ECNN, which implies the
evolution processes towards a more steady state on the CIFAR10 classification task with
transferred knowledge.

299



Electronics 2021, 10, 1857

Figure 5. The classification accuracy of different evolution steps on the CIFAR10 testing dataset. The
red box represents CTS-ECNN and blue box represents the original ECNN. The max and median
classification accuracy of different evolution steps are connected by a dashed line and solid line.

In addition, our proposed method is compared with some state-of-the-art methods in
Table 2. We group these methods into two different categories, namely manually-designed
methods and automatically-designed methods. For the first category including ResNet
(depth = 1.10), ResNet (depth = 1.202) [36], Maxout [37], Network in Network [38] and
Highway Network [39], we mainly compare the classification accuracy. Among these
manually-designed peer competitors, after the 50th generation, our proposed method can
obtain higher classification accuracy than most of the state-of-the-art CNN architectures
but lower than ResNet (depth = 101). We note that ResNet (depth = 101) is much deeper,
i.e., ResNet (depth = 101) has 101 layers while the proposed CTS-ECNN has less than
15 layers (10 convolutional layers and 5 pooling layers). Even at the 10th generation,
our method can outperform Maxout and Network in Network. It can be demonstrated
that when compared with the state-of-the-art manually designed methods, the proposed
method can design competitive CNN architecture automatically with limit computation
cost. For the second category including hierarchical evolution [40], CGP-CNN [24], genetic
CNN [23], and the proposed CTS-ECNN, we compare the classification accuracy and
the number of iterations that each method costs, which represent the efficiency of each
method. Among these automatically-designed peer competitors, hierarchical evolution and
CGP-CNN obtain 3.96% and 1.6% improvements on the CIFAR10 testing dataset over our
proposed method. However, both of the methods consume much more iterations to obtain
the best classification accuracy and hierarchical evolution focus on convolutional cells,
rather than the entire neural network architecture [40]. It is noted that the classification
accuracy of genetic CNN is slightly higher than CTS-ECNN, but it still requires the manual
tuning based on expertise. It is demonstrated that our method could find competitive CNN
architecture with limited computational resources. It makes sense, as someone with little
knowledge of neural network architecture can design a competent neural network to solve
the certain task easily.
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Table 2. The comparisons between the proposed method and the state-of-the-art methods in terms of
the classification accuracy (%) on the CIFAR10 testing dataset. Gen represents the evolution steps
each method takes.

Method Acc % Gen

Manually

Designed

ResNet (depth = 101) 93.57 –

ResNet (depth = 1202) 92.07 –

Maxout 90.70 –

Network in Network 91.19 –

Highway Network 92.40 –

Automatically

Designed

Hierarchical Evolution 96.37 7000

CGP-CNN 94.02 300

Genetic CNN 92.90 50

CTS-ECNN (G-10) 91.46 10

CTS-ECNN (G-30) 92.06 30

CTS-ECNN (G-50) 92.42 50

5. Conclusions

In this paper, we apply the transfer learning to facilitate the evolutionary CNN
architecture optimization. We propose an effective ECNN method with cross-task transfer
strategy named CTS-ECNN which constructs the suitable individuals to transfer without
taking up too much computational resource. For the case study, our proposed method
is compared with the original ECNN and some state-of-the-art methods on benchmark
image classification datasets. The results show that our method can not only accelerate the
evolution process significantly but also find competitive CNN architectures.

However, our method still suffers from several drawbacks. First, although we attempt
to reduce the computational cost of transfer strategy, the process of neural architecture
evolution on source tasks also requires computational resource. Second, in this work,
transfer strategy is only applied to the initial generation. It would be interesting to transfer
knowledge among each generation. The above directions are left for future work.
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Abbreviations

The following abbreviations are used in this manuscript:

CNNs Convolutional neural networks
ECNN Evolutionary convolutional neural network
EAs Evolutionary algorithms
CTS Cross-tasks transfer strategy
NAS Neural architecture search
RL Reinforcement learning
RNN Recurrent neural network
AP Affinity propagation
SGD Stochastic gradient descent
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Abstract: Computer games have been regarded as an important field of artificial intelligence (AI) for a
long time. The AlphaZero structure has been successful in the game of Go, beating the top professional
human players and becoming the baseline method in computer games. However, the AlphaZero
training process requires tremendous computing resources, imposing additional difficulties for the
AlphaZero-based AI. In this paper, we propose NoGoZero+ to improve the AlphaZero process
and apply it to a game similar to Go, NoGo. NoGoZero+ employs several innovative features to
improve training speed and performance, and most improvement strategies can be transferred to
other nonspecific areas. This paper compares it with the original AlphaZero process, and results
show that NoGoZero+ increases the training speed to about six times that of the original AlphaZero
process. Moreover, in the experiment, our agent beat the original AlphaZero agent with a score
of 81:19 after only being trained by 20,000 self-play games’ data (small in quantity compared with
120,000 self-play games’ data consumed by the original AlphaZero). The NoGo game program based
on NoGoZero+ was the runner-up in the 2020 China Computer Game Championship (CCGC) with
limited resources, defeating many AlphaZero-based programs. Our code, pretrained models, and
self-play datasets are publicly available. The ultimate goal of this paper is to provide exploratory
insights and mature auxiliary tools to enable AI researchers and computer-game communities to
study, test, and improve these promising state-of-the-art methods at a much lower cost of computing
resources.

Keywords: artificial intelligence; deep learning; AlphaZero; NoGo games; reinforcement learning

1. Introduction

The successive appearance of AlphaGo [1], AlphaGo Zero [2], and AlphaZero [3],
achieving remarkable performance in one of the most complex games, Go, demonstrate
the capabilities of deep reinforcement learning.

In 2017, Deepmind’s AlphaGo Zero showed the possibility for computers to achieve
superhuman performance in Go without relying on human knowledge or pre-existing data.
Subsequently, AlphaZero made outstanding achievements in chess and shogi. However, a
large amount of computational resources was required. Deepmind ran the training progress for
Go for several days with 5000 TPUs, while Facebook’s ELF OpenGo used 2000 V100 GPUs to
achieve the top level of performance [4]. Therefore, it is an important and meaningful research
direction to improve AlphaZero with limited computational resources.

This paper introduces several methods to speed up the training process and improve
the final performance of the original AlphaGo Zero model (pipeline shown in Figure 1).
The reinforced model is called NoGoZero+. Although NoGoZero+ uses some domain-
specific features and optimization methods, it still starts from a random policy without
using external strategic knowledge or existing data. Additionally, techniques used in
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NoGoZero+ can be transferred to other nonspecific domains. By comparing the training
process under the same condition in NoGo, the training efficiency of NoGoZero+ was at
least six times that of the original AlphaZero.

Figure 1. AlphaZero’s pipeline. Self-play games’ data are continuously generated and collected
to train deep neural networks. After each round of training, the new model is compared with
the previous model. If the new model defeats the previous model, the training process continues.
Otherwise, the previous training result is discarded and the previous step is restarted.

NoGo is a new kind of board game that originated in 2005 [5]. Different than traditional
Chinese board game Go, it forbids players from capturing stones. Once a player has no
choice but to capture the counterpart’s stones, the player loses. The formal rules of NoGo
are shown below [6]:

• Board size is 9 × 9.
• Black goes first, and both sides take turn in moving in the board. A stone cannot be

moved once the location is chosen.
• The goal of both sides is occupying areas instead of capturing counterpart’s stones.
• One side loses if it captures the other side’s stones or it suicides (deliberately makes

its own stone to be captured by their counterpart).

Because of NoGo’s novel rules and extremely limited background studies, NoGo
does not have a mature strategy. This paper creates a precedent of successfully applying
reinforcement learning to NoGo.

The main contributions are summarized as follows:
First, the paper proposes methods that can speed up the training progress and improve

the final performance. These methods can be either directly or indirectly applied to similar
AlphaZero training processes or general reinforcement-learning processes.

Second, the authors applied NoGoZero+ to the NoGo game and obtained better results
than those achieved by the original AlphaZero under the condition of limited resources.
This result shows the efficiency gap between AlphaZero’s general methods and indicates
the existence of better methods under specific conditions.

Third, to help research in this field, we provide the source code used to train the
model, some pretrained high-level models, and a comprehensive self-play dataset that
contains about 160,000 self-play games (available online: https://github.com/yifangao18/
NoGoZero (accessed on 20 June 2021)).

The rest of this paper is organized as follows. In Section 2, we present some closely
related works. The paper summarizes the basic architecture in Section 3 and describes the
proposed techniques. In Section 4, we introduce experimental settings, criteria, and details.
Section 5 reports the result and reviews the performance of NoGoZero+ in the competition.
Section 6 discusses the results obtained with our approach. Lastly, we conclude our work
and plan future works in Section 7.
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2. Related Work

In this section, we first go over the AlphaGo family, which first introduced deep
reinforcement learning (DRL) to board games with a large searching space, and some
famous board game AI based on AlphaGo-like methods. Then, we introduce early work
on the game of NoGo. Most of them achieved great success in the early years.

2.1. State of the Art in Board Game AI

The AlphaGo family, including AlphaGo, AlphaGo Zero, and AlphaZero [1–3], have
had great success in many complex board games such as Go and chess. Unprecedentedly,
AlphaGo family introduced DRL to board games, and DRL-based methods attracted many
researchers’ attention when AlphaGo beat top human player Lee Sedol. In particular, AlphaGo
Zero successfully trains a Go AI from scratch using only the rules of the game because of the
successful combination between Monte Carlo tree search (MCTS) [7,8] and deep neural network.
Furthermore, the so-called zero-learning method used by AlphaZero is a more general method
that can be used both in board games and other, more practical areas.

However, the large amount of computational resources consumed by the training pro-
cess of AlphaZero and the relatively immature network structures encouraged many re-
searchers to look into improved methods based on AlphaZero. An open-source project called
ELF OpenGo [4] reached superhuman level in the game of Go after two weeks of training
on 2000 GPUs (a relatively small number compared with the 5000 TPUs used by AlphaZero).
KataGo [9], a reimplementation of AlphaGo Zero, improved the learning process in many
ways, including using different optimization approaches to have more data about the value in a
shorter period of time and using additional training targets to speed up the training process.
Leela Zero [10], which is an open-source program trained with GPUs donated by a community
of contributors, mastered Go and chess. Morandin et al. [11] proposed a sensible artificial
intelligence (SAI) that plays Go to overcome the problem that AIs cannot target their margin of
victory, and this is the common problem shared by most of the famous early-game AIs based
on AlphaZero. Thus, the SAI successfully overcame the negative consequences: AIs often win
by a small margin, cannot be used with komi 6.5, and show lousy play in handicap games.

2.2. NoGo AI Research

NoGo, as opposed to the ancient game of Go, is becoming the new favorite in the
game AI community because of its relatively easy rules and lower computational resource
requirements. Some early studies on NoGo AI achieved great results. Lee et al. [12] proposed
an approach using ontologies, evolutionary computation, fuzzy logic, and fuzzy markup
language combined with a genetic-algorithm-based system. Their NoGo AI could analyze
the situation of the current board and play the next move to an inferred good-move position.
Sun et al. [13] put forward a static-evaluation method to accurately estimate the value of each
state of NoGo. Sun et al. [14] successfully used an improved pattern-matching algorithm to
find out the best move in the game of NoGo.

As far as we know, there are few studies about the combination of DRL or zero-
learning and the game of NoGo. Although former NoGo AI combined with traditional
methods achieved relatively good performance, the AlphaGo family showed that there is a
great performance gap between traditional methods and the DRL method. As a result, the
implementation of DRL and zero-learning method in the game of NoGo is necessary.

3. Methods

In this section, we introduce methods that we used to build up NoGoZero+.
We first go over the basic architecture of NoGoZero+. Then, we introduce the main
novel techniques that we used to improve the training process and the final performance
of NoGoZero+.
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3.1. Basic Architecture

While NoGoZero+ has various novel details and improvements, it has a similar
basic architecture to that of AlphaZero. We basically followed the parameters in [9]
because this study provides complete parameter information compared to other AlphaZero
implementations.

MCTS is the core searching method of AlphaZero, which is guided by a neural network.
NoGoZero+ uses it to play the game against itself to generate training data. It also uses a
variant of PUCT [15] to balance exploration and exploitation, and cpuct is a constant that
determines the importance of both. When cpuct is small, MCTS tends to exploit game states
with high value. Conversely, when cpuct is large, MCTS tends to explore unknown move
locations, and the exploration is guided by the policy prior outputs by the neural network.
With playouts repeating, the searching process continues, and the search tree grows. The
process of playouts starts from the root and goes down the tree, and each node n selects
child c with the largest PUCT(c) value:

PUCT(c) = V(c) + cpuctP(c)

√
∑c′ N

(
c′
)

1 + N(c)
(1)

where V(c) represents the average predicted score of all nodes in c’s subtree, P(c) represents
the policy prior of c from the neural network, N(c) represents the number of playouts that
are used to go through child c, and we set cpuct = 1.1. The Iteration of MCTS is terminated
after a certain amount, and generates new policies on the basis of the visit frequency of
their child nodes in the tree.

NoGoZero+ adds noise to the policy prior at the root to encourage exploration:

P(c) = 0.75Praw(c) + 0.25η (2)

where η is a draw from Dirichlet distribution on legal moves with parameter
α = 0.03 ∗ 92/N, where N is the number of legal moves, and Praw(c) is the policy prior at
the root.

The board of NoGo, unlike the traditional 19 × 19 Go board, has a size of 9 × 9, so the 92

part of parameter α corresponds to the NoGo board size. NoGoZero+ also applies a softmax
temperature at the root of 1.03 to improve policy convergence stability according to [11].

A convolutional residual network [16] with preactivation is used to guide the search.
The residual network has a trunk of b residual blocks with c channels. However, after
various improvements, our network structure was very different compared to that of
AlphaZero; see Figure 2. Furthermore, in the primary stage of training, inspired by
curriculum learning [17], we designed a method called network curriculum learning to
speed up the training progress. NoGoZero+ began with a relatively small residual network
and gradually improved the size of the network when it converged under the condition of
using the earlier residual network.

3.2. Techniques in NoGoZero+
3.2.1. Global Attention Residual Block

In general, the AlphaZero-based model has a strong ability to capture the local in-
formation of the board. However, due to the limited perceptual radius of the classical
convolution layer, global strategy prediction remains challenging. Some findings in previ-
ous studies on board games, such as the fatal ‘ladder failure’ that commonly occurs in Go,
support this view [4]. Therefore, we began exploring the attention-based structure. As a
popular design of computer vision, the attention mechanism can help models to globally
pay more attention to important information.
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Figure 2. Comparison of network architecture of AlphaZero and NoGoZero+ (5 residual blocks).

In this section, we propose the global attention residual block (GARB), a novel
attention-based structure based on the global pooling layer, as shown in Figure 3. The
global pooling layer was proposed in previous research on the game of Go [9]. The layer
enables the convolutional layers to condition in a global context, which can be hard or im-
possible for convolutional layers with limited perceptual radius. NoGoZero+ replaces parts
of the ordinary convolutional layers with the global pooling structure (GPS) to improve
the neural network’s ability of synthesizing the global context.

Figure 3. Proposed GARB. The structure globally aggregates values of one set of channels to bias
another set of channels, potentially providing the final output with information on the global
context in NoGoZero+.

Given a set of c channels, the global pooling layer computes the mean of each chan-
nel and the maximum of each channel. The whole process outputs a total of 2c values.
The global pooling layer is a part of the GPS. Given input X ∈ RC1×H×W and G ∈ RC2×H×W

(C1 and C2 represent the channel, H and W represent the height and width respectively),
the GPS includes the following components:

• Batch-normalization layer and rectified linear unit (ReLU) activation function applied
to G, output shape C2 × H × W.

• Global pooling layer applied to G, output shape 2C2.
• Fully connected (FC) layer to G, output shape C1.
• Channelwise sum with X, output shape C1 × H × W.
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Previous studies showed that avoiding dimensionality reduction in the FC layer is
crucial for learning channel attention [18]. Therefore, we set the value of C1 to twice
that of C2 to avoid performance degradation caused by dimensional changes. GPS was
inserted into a standard residual block and eventually constituted GARB. Given input
Xin ∈ RC×H×W of GARB, two independent convolutional layers decomposed the input
into X with channel dimension number 2C

3 , and G with channel dimension number C
3

before sending it to GPS.
Moreover, GARB is more focused on extracting long-range dependencies, and it

is insufficient for local-information extraction compared to the standard residual block.
In order to supplement local information, GARB alternates between two configurations in
consecutive residual blocks, as illustrated in Figure 2b.

3.2.2. Multitask Learning

AlphaZero has both a policy head and a value head at the end of its deep neu-
ral network. They contribute to the policy network and value network, respectively.
The policy head predicts potential good moves, and the value head predicts the final
result of the game.The deep neural network outputs policy and value on the basis of the
current state of the board. Two parallel networks can be regarded as two training tasks for
the neural network.

Such a multitask learning method [19] has had great success in training AlphaZero.
NoGoZero+ follows and expands the idea. The paper adds two other output heads,
dominion head and score head, which contribute to the two extra tasks (shown in Figure 4a).
In NoGo, dominion head predicts the ownership of each location on the board. The
ownership indicates the key locations that heavily impact the final result. In both computer
games and real world, the final result is suggested both by outputs of a prediction network
or noisy 1 and −1 (win and loss), and by more details observed during the game. The
neural network can have more insight into the cause of the final result, including the true
gap between the winner and loser in a playout round.

Our proposed dominion head architecture is shown in Figure 4b. It contains a convolu-
tional block, a global pooling convolutional block, and an output layer. The convolutional block
includes a batch-normalization layer, a ReLU activation layer, and a 3 × 3 convolutional layer.
The global pooling convolutional block includes the GPS, a batch-normalization layer, a ReLU
activation layer, and a 1 × 1 convolutional layer with 2 filters.

We assumed input feature map x ∈ RC×H×W , where C, H, and W are channel, height,
and width. First, the convolutional block is applied to x, output with the same size as that
of x. Then, the output of the convolutional block is passed through the global pooling
convolutional block, and the number of channel dimensions of x is reduced to 2. Lastly,
we apply a FC layer with sigmoid activation in the output layer that provides dominion
output yd ∈ RH×W .

Our proposed score-head architecture is shown in Figure 4c. The network structure of
the score head is similar to that of the dominion head, with two differences. The first is that
the 1 × 1 convolutional layer of the global pooling convolutional block has only one filter,
so the output feature map is 1 in the channel dimension. The second is that the output
layer of the score head contains a FC layer with tanh activation, outputting a scalar in the
range of [−1, 1]. Lastly, we multiply it by the score factor to reflect the score gap between
the two players. In NoGo, since most score gaps are within 5 points, the score factor was
set to 5, and a larger score gap is regarded as 5 points once appearing. Therefore, output ys
is a scalar in the range of [−5, 5].
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Figure 4. (a) Multitask learning network structure. (b) Illustration of dominion head. (c) Illustration
of the score head. Except for the policy head and value head, which are also used in AlphaZero, we
added score head and dominion head to evaluate the gap of the performance of two players and the
key winning position, respectively. The two additional heads can effectively help the NoGoZero+
agent have insight into the game state and make full use of self-play data because of the more
detailed information.

3.2.3. Network Curriculum Learning

Curriculum learning is an important method in reinforcement learning [20,21].
To prevent the agent from being stuck at the early stage of training because of the
hard initial task or having dissatisfactory performance at the end of training because
of oversimplified tasks, we carried out curriculum learning by imitating the learning
process of humans and animals and gradually improve the model trough progressive
samples and knowledge.

In this paper, the idea of curriculum learning was extended to the neural network
and is called ‘network curriculum learning’. A ahallower and narrower structure leads
to a network with less complexity, but it converges more quickly. While the deeper and
wider network with more complexity is usually harder to be trained, network curriculum
learning tries to balance complexity and convergence rate. During NoGoZero+ training,
the process starts with a simpler network with fewer parameters. Self-play and training
data are generated by the shallow network, and used to train a deeper and more complex
network (and the simpler network itself), while the deeper network itself does not
generate new data. As soon as the simpler network meets its bottleneck, which means
that this network has converged, the whole training process is transferred to a larger
network. The process is repeated until the size and the performance of the network
satisfy our needs.
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Figure 5 shows the course of network curriculum learning. The whole process
of training the NoGoZero+ agent can be separated into three stages, and the number
of residual blocks (b in Figure 5) grew from 5 to 20, while the number of channels
(c in Figure 5) of each residual block grew from 32 to 128. With the help of network
curriculum learning, the agent avoids the stagnation of training in the early stage and
saves much training time.

Figure 5. Process of network curriculum learning. Data generated by the shallower network are used to
train both the shallow network itself and a deeper network. The whole process contains three stages, and
the network with b = 20, c = 128 was extracted as the final network that is used in the agent.

3.2.4. Advanced Specific Features

AlphaZero provides a universal method to train game agents. The method per-
forms perfectly on chess, shogi, and Go. However, a sea of computational resources
that make the universal method work. With limited resources, it is important for us to
add some advanced specific features to speed up the training process and make full use
of the obtained data from every game. Like other machine-learning methods [22], rein-
forcement learning also attaches much importance to well-designed specific features,
which can make a great difference to the speed of training process, as well as the final
performance of agents.

Similar to imitation learning, some domain-specific professional knowledge guides
the deep model to converge faster during the initial stage. Besides current and historical
steps, which are also the features used by AlphaZero, NoGoZero+ adds another kind of
advanced feature, liberty, which is also called ‘qi’. Four input layers are added on the
basis of the input layers of the network to show the features of liberty:

• Liberty locations belonging to our stones that have only one liberty.
• Liberty locations belonging to our stones that have two liberties.
• Liberty locations belonging to the counterpart’s stones that have only one liberty.
• Liberty locations belonging to the counterpart’s stones that have two liberties.

The four above features are (1) ‘half-dead’, (2) ‘near-dead’, (3) ‘half-kill’, and
(4) ‘near-kill’, respectively. One-hot encoding is used to represent the four advanced
features. The corresponding location in the input layer is set to 1 once a specific feature
appears. The corresponding features are schematically shown in Figure 6.
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Figure 6. Demonstration of advanced features. Location of existing features is marked with one-hot
encoding in the corresponding input layer. Four additional layers are added to the input layer set of
the original AlphaZero and provide the NoGoZero+ agent with additional advanced information
about the board state. Results in the next section show that such modification can obviously improve
training speed and final performance.

4. Experiments

In the two following sections, we use some control tests to verify the improvements
our techniques bring to the basic AlphaZero method, and use ablation experiments to
examine the contributions of each approach used in NoGoZero+. In this section, we
introduce the experimental settings, evaluation criteria, and training parameters to detail
the background and process of our experiments.

4.1. Experimental Settings

To look into the behavior of NoGoZero+ and demonstrate the effects of the unique
techniques introduced in the paper, two experiments were conducted.

First, we designed an experiment to show the significant speedups attributing to
adding extra training methods to the original AlphaZero theory by comparing three
models’ training processes on the NoGo:

• Training process of the original AlphaZero.
• Training process of AlphaZero with network-curriculum-learning technique.
• Training process of NoGoZero+.

Second, to explore the effects of every single technique, an ablation experiment was
conducted. To more clearly demonstrate the contributions of each technique to the final result,
all agents in the ablation experiment did not use the network-curriculum-learning method.

4.2. Evaluation Criteria

The Elo model [23] is an effective way to measure the level of game agents, widely
used to evaluate the performance of agents in, for example, chess, Go, basketball, and
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football. Assuming that the Elo ratings of Agents A and B are RA and RB, respectively, the
expected winning probability of A versus B is:

EA =
1

1 + 10
RB−RA

400

(3)

When Player A’s true score SA is different from its expected winning probability
(1 for win, 0 for loss, 0.5 for tie. There is no tie in NoGo.), its Elo rating should be adjusted as

R
′
A = RA + α(SA − EA) (4)

where R′
A is the Elo rating of Player A after adjustment, and α is a weight that is often set

to 16 in master tournaments (α = 16 is also used in our experiment).

4.3. Training Parameters and Details

We set stochastic gradient descent (SGD) as the optimizer with a learning rate equal
to 0.001 and momentum equal to 0.8. Our experiments were performed on an NVIDIA
Tesla V100 GPU (with 32 GB GPU memory). The deep-learning models were implemented
using Pytorch. In training, the data-augmentation technique that we used includes all
eight reflections and rotations for each position. The entire training process took about
100 h, and most of the resources were consumed in self-play. Multithreading self-play is
recommended to make full use of GPU and CPU resources.

Considering the four output heads of the improved network structure, the loss func-
tion is the sum of the five following kinds of losses.

• Policy Loss
− ∑

m
π(m) log (π̂(m)) (5)

where m is the set of the rest legal moves, π is the target policy derived from the
playouts of the MCTS search, and π̂ is the neural network’s prediction of policy π.

• Value Loss
− cg ∑

r
z(r) log (ẑ(r)) (6)

where r is the final result for the current player ((r ∈ {win, lost}), z is a one-hot
encoding function of r, ẑ is the neural network’s prediction of the final result. cg = 1.5
is a scaling constant.

• Dominion Loss

− cd ∑
m

γ(m) log (γ̂(m)) + (1 − γ(m)) log (1 − γ̂(m)) (7)

where m is the set of the moves in the board, γ is the final result for the current player
(r ∈ {dominion, not dominion}), ẑ is the neural network’s prediction of γ. cd = 0.5 is
a scaling constant.

• Score Loss
cs(v̂ − v)2 (8)

where v is the scalar of score difference, v̂ is the prediction of the final result. cs = 0.25
is a scaling constant.

• L2 Penalty
cL2‖θ‖2 (9)

where cL2 = 10−5, so as to prevent the network from overfitting due to the relatively
deep neural network structure.
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5. Results

In this section, the experiment results are shown and discussed. Then, some interesting
playouts are displayed and explained to demonstrate the intelligence of NoGoZero+.
Lastly, we introduce the performance of NoGoZero+ in the competition and summarize
the possible reasons for not winning first place.

5.1. Experiment Results

The results of the first experiment are shown in Table 1. AlphaZero’s Elo rating reached
2500 after 120,000 self-play games, while it only took NoGoZero+ 20,000 self-play games to
reach an Elo rating of 2750, and NoGoZero+ defeated original AlphaZero with 81 wins and
19 losses in 100 playouts. The AlphaZero agent, with the help of the network-curriculum-
learning method, had a similar learning curve to that of NoGoZero+. However, an obvious
gap of Elo rating between the AlphaZero agent with network curriculum learning and
complete NoGoZero+ indicated that other techniques that we use make a great difference
in the behavior of the agent.

Table 1. Comparison of Elo ratings among original AlphaZero, AlphaZero with only network cur-
riculum learning, and complete NoGoZero+. NCL, network curriculum learning. NoGoZero+ had
advantages over the original AlphaZero in final performance (Elo rating) and training speed. More-
over, the obvious gap between complete NoGoZero+ and AlphaZero with only network curriculum
learning indicated the supplementary power of other techniques. Blocks represent the number of
residual blocks in the network.

Method Blocks NCL Games Elo Score

AlphaZero 20b 120k 2500
AlphaZero 5b � 3k 1800
AlphaZero 10b � 10k 2250
AlphaZero 20b � 20k 2350

NoGoZero+ 5b � 3k 2300
NoGoZero+ 10b � 10k 2625
NoGoZero+ 20b � 20k 2750

The results of the second experiment (ablation experiments) are shown in Table 2.
Comparing the final behavior of the agents with different parts weeded out, GARB had a
relatively larger influence on the final performance (the Elo rating of which dropped from
2300 to 2045 without it), while multitask learning and advanced features closely impacted the
performance of the agent. Adding advanced features was less influential because the main aim
of adding advanced features is to help the agent make full use of detailed information obtained
from one single playout to speed up the training process with relatively limited resources.
Overall, every technique used in the training process of NoGoZero+ had a positive effect, which
can effectively help to improve the Elo rating of the agent.

5.2. Strategies Learnt by the Agent

Unlike Go, which originated thousands of years ago and has been researched for quite
a long time, NoGo is a new board game with few mature strategies. However, with the help
of techniques shown in the previous sections, the NoGoZero+ agent developed a series of
inspirational strategies. The paper demonstrates and discusses some distinct, impressive
strategies shown by the NoGoZero+ agent in self-play games.
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Table 2. Comparison of Elo ratings among original AlphaZero, AlphaZero with only network
curriculum learning, AlphaZero using some of the techniques in this paper, and complete NoGoZero+.
ASF, advanced specific features; MTL, multitask learning network structure; 5b, number of residual
blocks in the network.

AlphaZero (5b) GARB MTL ASF Games Elo Score

� 3k 1800
� � � 3k 2174 ± 47.62
� � � 3k 2134 ± 52.24
� � � 3k 2045 ± 87.39
� � � � 3k 2300

5.2.1. Triangle Strategy

A triangle layout and a prismatic layout are two kinds of favorable layouts to players
because the central location of such layouts cannot be occupied by a counterpart’s stones. As a
result, such layouts can greatly help at the end of the game when there are few locations to place
a stone. At the beginning of a game, the agent tries to build as many triangle and prismatic
layouts as possible, if not disturbed by the counterpart player (see Figure 7). Moreover, the
agent sometimes manages to prevent its counterpart from successfully building a triangle or
a prismatic layout after weighing advantages and disadvantages. Such behavior is called the
‘triangle strategy’.

Figure 7. Demonstration of ‘triangle strategy’. Black successfully built a triangle structure in the
location marked by �, and white successfully prevented black from building triangle structure in
Step 4 because neither black nor white could occupy the location marked by ×. Moreover, the white
stone placed in Step 8 also tried to destroy a potential triangle structure that may have contained the
black stones placed in Steps 5 and 7.

5.2.2. Predictive Strategy

With the progress of the NoGoZero+ agent, it becomes harder for white to win (the
average win rate is 4.5) because black learns to make full use of the sente advantage.
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A typical situation is: white tries hard to prevent black from using the triangle strategy and
fails because black takes the lead in the order (Figure 8).

Figure 8. A typical situation where the white falls behind. Starting from Step 4, white tried hard
to prevent black from using the triangle strategy, but black always took the lead. Although white
made a wise choice in Step 14 and terminated the ‘chasing game’, black successfully built a triangle
structure in Step 7. The whole process indicates that black has an obvious advantage over white
when the NoGoZero+ agent is well-trained.

Since NoGo is considered to be a game where the black player is more likely to win,
the white player needs to adopt a more aggressive strategy to win the game. We looked
into games in which white won, and found that white seemed to gain foresight under
certain conditions.

Figure 9 shows a part of a game where the white player won. Instead of chasing black’s
steps and trying hard to stop black in a relatively small area, the white player controlled the
overall situation and successfully disturbed black’s deployment on a larger scale.

Such a decision shows a sense of prediction, so the behavior is called ‘predictive
strategy’. The sense of the overall situation and the prediction should be attributed to the
GARB, which gives the agent a high level of understanding of the whole situation, and
multitask learning makes the agent capable of predicting the behavior of its counterpart.

Although the white player did not fully understand the predictive strategy in the experi-
ment, it is impressive that the agent developed such a high-level tactic. Hopefully, after more
self-play games, the agent can master predictive strategy or even other high-level strategies.
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Figure 9. Demonstration of predictive strategy. When black tried to build a triangle structure in Step
3, instead of chasing black’s step like the behavior shown in Figure 8, white took Step 4 and built a
wider encirclement, thus rendering the triangle structure built by black (marked by ×) useless.

5.3. NoGoZero+ in CCGC

The China Computer Game Championship (CCGC) is the largest computer-game
competition in China, held annually since 2006. In 2020, a total of 18 teams entered
the national finals. Our team competed for the first time and unfortunately lost in the
finals to the KnighTeam-NG (KNG) program developed by the Chongqing University of
Technology. KNG has won consecutive championships in NoGo since 2014. As the code is
not open-source, we cannot know what kind of technology KNG uses.

One lesson is that we unreasonably allocated the game time. NoGoZero+ spent much time
in the first half of the game, and when the second half of the time was exhausted, some strange
and unreasonable moves appeared before it lastly lost the game. In addition, our equipment for
participating in the competition was not good enough. For each move, NoGoZero+ could only
perform 1400–1800 MCTS on average, which led to worse model performance.

6. Discussion

Although the main battlefield of NoGoZero+ is still the game of NoGo, the techniques
used by NoGoZero+ can be extended to other nonspecific areas to reduce resource con-
sumption caused by large search spaces. First, GARB is an efficient attention mechanism
that helps improve the network’s ability to perceive global information. Second, the suc-
cess of the multitask learning network structure proved that adding more output heads to
neural networks can efficiently help the training process. Third, the network-curriculum-
learning technique can help to balance the complexity and the rate of convergence of a
deep neural network. Fourth, adding moderate domain-specific knowledge to the training
process of neural networks can make full use of training data and reduce the training
period, especially when computational resources are limited.

The game of NoGo is becoming a useful tool for many researchers who are interested in
game AI but do not want to spend too much time learning the complex game rules to carry out
studies. On the basis of the NoGoZero+ result, they can quickly develop a basic structure of
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NoGo game AI and save time for further study. As a result, with the help of techniques used by
NoGoZero+, the game AI community benefits from the lower research thresholds.

Moreover, AlphaZero-based methods mainly use convolutional neural networks
(CNN) to capture board information, just like CNN captures information from pictures
in computer-vision tasks. This means that many tricks used in computer vision can
be transformed into AI training processes. The attention model, which is commonly
used to select the most crucial information from pictures during computer-vision tasks,
can be combined with the original CNN structure to improve efficiency in the usage of
computational resources, and further enhance the final performance of the AI. This method
is reasonable and needs further research because some positions are also more important
than others are in board games.

7. Conclusions and Future Work

This paper presented NoGoZero+, which efficiently masters the game of NoGo on the basis
of the improved AlphaZero algorithm. By using several techniques, the improvement is nearly
cost-free. The methods enable a unified reinforcement-learning-based system to be trained from
scratch to being a powerful agent in a few days. The techniques used in NoGoZero+ can easily
be extended to other areas to reduce computational-resource consumption and improve training
efficiency. Experiments showed that NoGoZero+ had six times better training speed and better
performance than those of the original AlphaZero. This study highlights the tremendous
potential of reducing computing resources in board-game AI.

Although the experiment results of this study are encouraging, there are still some
limitations. For example, we were only awarded second place in the CCGC. The future
of this study includes exploring more powerful neural-network architectures and more
efficient sample-utilization methods to further improve performance. Our ultimate goal
is to provide insights and additional tools for the community to explore large-scale deep-
learning methods of computer games. Our code and data are public to help researchers in
the game AI community.
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