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Classification of Parkinson’s Disease Patients—A Deep Learning Strategy
Reprinted from: Electronics 2022, 11, 2684, doi:10.3390/electronics11172684 . . . . . . . . . . . . . 51

Massimiliano Pau, Giuseppina Bernardelli, Bruno Leban, Micaela Porta, Valeria Putzu and
Daniela Viale et al.
Age-Associated Changes on Gait Smoothness in the Third and the Fourth Age
Reprinted from: Electronics 2023, 12, 637, doi:10.3390/electronics12030637 . . . . . . . . . . . . . 69

Luca Pietrosanti, Alexandre Calado, Cristiano Maria Verrelli, Antonio Pisani, Antonio Suppa
and Francesco Fattapposta et al.
Harmonic Distortion Aspects in Upper Limb Swings during Gait in Parkinson’s Disease
Reprinted from: Electronics 2023, 12, 625, doi:10.3390/electronics12030625 . . . . . . . . . . . . . 81

Benedetta C. Casadei, Alessandro Gumiero, Giorgio Tantillo, Luigi Della Torre and Gabriella
Olmo
Systolic Blood Pressure Estimation from PPG Signal Using ANN
Reprinted from: Electronics 2022, 11, 2909, doi:10.3390/electronics11182909 . . . . . . . . . . . . . 95

Paola Cesari, Matteo Cristani, Florenc Demrozi, Francesco Pascucci, Pietro Maria Picotti and
Graziano Pravadelli et al.
Towards Posture and Gait Evaluation through Wearable-Based Biofeedback Technologies
Reprinted from: Electronics 2023, 12, 644, doi:10.3390/electronics12030644 . . . . . . . . . . . . . 107

Arti Rana, Ankur Dumka, Rajesh Singh, Mamoon Rashid, Nazir Ahmad and Manoj Kumar
Panda
An Efficient Machine Learning Approach for Diagnosing Parkinson’s Disease by Utilizing Voice
Features
Reprinted from: Electronics 2022, 11, 3782, doi:10.3390/electronics11223782 . . . . . . . . . . . . . 129

Sambath Kumar Sethuraman, Nandhini Malaiyappan, Rajakumar Ramalingam, Shakila
Basheer, Mamoon Rashid and Nazir Ahmad
Predicting Alzheimer’s Disease Using Deep Neuro-Functional Networks with Resting-State
fMRI
Reprinted from: Electronics 2023, 12, 1031, doi:10.3390/electronics12041031 . . . . . . . . . . . . . 149

v



Nestor Rafael Calvo-Ariza, Luis Felipe Gómez-Gómez and Juan Rafael Orozco-Arroyave
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1. Introduction

The incidence of neurodegenerative disorders (NDs) is increasing in an aging pop-
ulation. NDs encompass a wide range of disorders characterized by the progressive
deterioration of the central or peripheral nervous system, affecting millions of individuals
worldwide. Despite the clinical significance of monitoring ND’s symptoms, this can be
challenging in current practice due to the difficulty of accurately remembering and describ-
ing symptoms and the infrequency of clinical appointments. Moreover, individuals with
NDs may experience difficulties in objectively assessing their symptoms, and these may be
perceived differently by their care partners. Thus, there is an unmet need for more objective
and continuous monitoring of symptoms in NDs.

To address this challenge, new technological solutions are required for computerized
diagnosis, evaluation of the effectiveness of therapy, and continuous monitoring of disease
progression. In such a context, wearable technology has emerged as a revolutionary
approach to healthcare, offering a more personalized approach to diagnosis and disease
management. For example, in the field of neurological diseases, wearable technology has
the potential to improve diagnosis, provide inexpensive and non-invasive assessment tools,
monitor disease progression, and inform ongoing disease management. Recent advances in
wearable and portable sensors, information, and communication technologies have enabled
continuous monitoring of NDs. The use of wearable technology allows the collection of
high-dimensional data from different domains during daily activities. In addition, signal
processing and machine learning (ML) approaches have provided powerful methods for
analyzing large amounts of multimodal data, facilitating the obtaining of detailed, objective,
and accurate information on disease manifestations.

Wearable technology offers several advantages in monitoring NDs, such as continuous
monitoring, objective measurements, and remote monitoring, which can lead to earlier
diagnosis, more accurate treatment decisions, and improved outcomes. Wearable technol-
ogy can also be used to measure various parameters, such as heart rate, blood pressure,
movement, sleep patterns, and brain activity, providing insights into cognitive function and
facilitating the diagnosis of NDs. In addition, the data collected from wearable technology
can be analyzed using ML algorithms to identify patterns and develop predictive models,
supporting clinicians in making informed decisions about treatment and care. In conclusion,
wearable technology has excellent potential in NDs, providing continuous and objective
monitoring and enabling ML analysis of high-dimensional data. As wearable technology
continues to advance, it is likely to play an increasingly important role in diagnosing and
managing NDs.

2. The Present Special Issue

The present Special Issue comprises eleven research and review articles that propose
wearable solutions and explore signal processing, ML, and deep learning (DL) approaches
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for the computerized diagnosis and monitoring of NDs. The following is a brief summary
of each of the articles.

Masi et al. [1] provided an overview of non-intrusive approaches to sleep monitoring
for NDs. The authors reviewed twenty-six articles to gather information on the proposed
solutions in terms of technologies, methods, and fields of application. The results showed
that wearable sensors were mainly used for automatic sleep staging and movement analysis,
while non-wearable solutions were used for home monitoring. In addition, inertial sensors
were the most commonly used technology, followed by environmental cameras and bedside
sensors. The authors concluded that, despite the wide variety of proposed solutions, these
need further validation before being applied in clinical practice and in patients’ daily lives.

Sigcha et al. [2] proposed a wearable system to estimate the severity of bradykinesia
(i.e., slowness of movement) in Parkinson’s disease (PD). Six subjects with PD and seven
age-matched healthy controls (HCs) were equipped with a consumer smartwatch and
asked to perform a series of motor exercises for 6 weeks. Inertial data were processed
using different data representations, data augmentation techniques, feature sets, and ML
models. The combination of convolutional neural network (CNN) and random forest (RF)
classifier provided the best performance, with an accuracy of 0.86. Furthermore, a Pearson’s
correlation coefficient (r) of 0.94 and a mean square error of 0.46 were obtained between
the system output and the clinical severity score.

Carvajal-Castaño et al. [3] collected inertial data from forty-five subjects with PD and
eighty-nine HCs, including forty-four young and forty-five elderly people. Participants
were asked to perform various gait tasks while wearing inertial measurement units attached
to their shoes. Different data representations and DL models were used to process the data.
The CNN fed with the short-time Fourier transform provided comparable results to the
gated recurrent unit fed with raw data. The further combination of both models did not
significantly improve performance. Finally, discrimination of persons with PD from elderly
people proved more difficult (0.93 accuracy) than discrimination from younger persons
(0.83 accuracy).

Pau et al. [4] employed a single inertial sensor on the lower back to analyze the subjects’
gait. Specifically, 449 elderly HCs were recruited and divided into three groups according
to age. Acceleration signals were recorded while participants walked in a straight line.
Spatial and temporal gait parameters and harmonic ratio were calculated. Finally, statistical
analysis (i.e., two-way multivariate analysis of variance) was used to assess significant
differences. Older subjects showed a reduction in gait speed, stride length, and cadence
(p < 0.001), compared to younger participants. Furthermore, the harmonic ratio analysis
revealed a general trend of linear decrease with age.

Pietrosanti et al. [5] used wearable inertial sensors to analyze the swinging movement
of the forearms during walking. Fifty-eight PD patients and thirty-one age-matched HCs
were enrolled and asked to wear sensors on each arm and upper back while performing a
timed up-and-go test. The fast Fourier transform of the inertial data was generated and
used to extract a series of harmonic features. The two-sample t-test was used to assess
the differences between PD and HC subjects. In addition, Spearman’s test was used to
calculate the correlation between features and clinical scores. The results showed significant
differences in arm swing characteristics between subjects with PD and HCs. Furthermore,
the harmonic amplitude features correlated significantly with the clinical gait (r = −0.64),
body bradykinesia (r = −0.67), and overall score (r = −0.57).

Casadei et al. [6] developed a systolic blood pressure monitoring system based on a
wearable device. First, a public data set comprising photoplethysmographic (PPG) record-
ings of forty-seven subjects was used to train a DL algorithm. Subsequently, data from eight
subjects were recorded using both a small wearable PPG sensor and a sphygmomanometer,
which was used as a reference. The results showed that the performance of the system was
up to standard, with an average absolute error of 3.85 mmHg.

Cesari et al. [7] investigated how wearable devices can be assembled and used to
provide feedback to human subjects to improve gait and posture. This can be applied to
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the rehabilitation of motor disabilities of patients suffering from NDs. Twelve subjects
were asked to perform certain postural and motor tasks on a proprioceptive board while
being monitored via electromyographic sensors, a force platform, motion capture cameras,
and wearable inertial sensors. From the pre-processed multimodal data, several time- and
frequency-domain features were extracted and input to different ML models. Preliminary
analysis showed that using the inertial sensor system in addition to the other data sources
significantly improved performance. Furthermore, using only wearable motion sensors
and an RF classifier, an F-score of 0.90 was obtained in the detection of the different phases
of motor tasks.

Rana et al. [8] proposed a processing pipeline based on voice analysis for the comput-
erized diagnosis of PD. The data set consisted of voice features extracted from twenty-three
PD patients and eight HCs. The authors used different feature selection strategies and
different ML classifiers. The proposed DL algorithm provided the best results, with an
accuracy of 0.87.

Calvo-Ariza et al. [9] analyzed facial expressions (happiness, surprise, and anger) to
discriminate between thirty-one PD patients and twenty-three HCs. The face was extracted
from each video frame using a multi-task CNN cascade. Subsequently, two different feature
sets, namely local binary patterns and histograms of oriented gradients, were extracted and
given as input to a support vector machine for binary classification. The first feature set
provided the best performance, achieving an accuracy of 0.80 for the happiness expression.

Sethuraman et al. [10] proposed a system for aiding the diagnosis of Alzheimer’s
disease (AD) from resting-state functional magnetic imaging (rs-fMRI). The data set com-
prised 152 patients, in which subjects with AD, mild cognitive impairment, and HCs were
equally represented. The images were digitally processed and various frequency levels
of the rs-fMRI time series were extracted. Finally, data transformation was applied to
convert the time series into images to be input into the DL model. Two CNNs (AlexNet
and Inception V2) were used for classification, which were then fine-tuned and optimized.
The results showed excellent discrimination ability, with an accuracy of 0.97 and 0.83 in
differentiating subjects with AD from HCs and subjects with MCI, respectively.

Besides the mere utilization of wearables for monitoring purposes, the integration of
healthcare with the Internet of Things (IoT) presents numerous opportunities for patient
monitoring. Nevertheless, a major challenge in the era of Healthcare 4.0 is identifying
compromised and malicious nodes, which can threaten network security and user privacy.
On such aim, Awan et al. [11] proposed a trust management approach for edge nodes
based on ML to identify nodes with malicious behavior. The trust calculation was based
on characteristics such as friendliness, trustworthiness, and cooperation. Data were pre-
processed using feature selection and scaling and input into a naive Bayes classifier. The
experiments were performed in different scenarios and attacks, varying the number of
nodes in the network. The results showed that the proposed EdgeTrust system is able to
recognize possible IoT attacks to maintain a robust environment. Furthermore, the low
power consumption makes the system suitable for real-world scenarios.

3. Future Directions

In recent decades, the advancement of technologies and methodologies has facilitated
scientific research in wearable sensors and data processing techniques for health monitoring,
leading to a proliferation of wearable solutions for objective assessment, computer-aided
diagnosis, and continuous monitoring of chronic disorders. However, challenges in the
clinical validation of these solutions and patient compliance for long-term passive monitor-
ing in daily life still persist. To address these challenges, the development of tiny sensors
that can be attached to the body or smart textiles with embedded sensors has emerged as a
promising solution. Additionally, while research on widely prevalent neurodegenerative
disorders such as Parkinson’s disease is extensive, there has been limited exploration of
rare disorders such as ataxia, Huntington’s disease, and progressive supranuclear palsy.
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To develop effective, scalable, and clinically validated wearable sensor systems for human
health monitoring, further research is necessary.
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Abstract: Good sleep quality is of primary importance in ensuring people’s health and well-being.
In fact, sleep disorders have well-known adverse effects on quality of life, as they influence attention,
memory, mood, and various physiological regulatory body functions. Sleep alterations are often
strictly related to age and comorbidities. For example, in neurodegenerative diseases, symptoms
may be aggravated by alterations in sleep cycles or, vice versa, may be the cause of sleep disruption.
Polysomnography is the primary instrumental method to investigate sleep diseases; however, its use
is limited to clinical practice. This review aims to provide a comprehensive overview of the available
innovative technologies and methodologies proposed for less invasive sleep-disorder analysis, with a
focus on neurodegenerative disorders. The paper intends to summarize the main studies, selected
between 2010 and 2022, from different perspectives covering three relevant contexts, the use of
wearable and non-wearable technologies, and application to specific neurodegenerative diseases.
In addition, the review provides a qualitative summary for each selected article concerning the
objectives, instrumentation, metrics, and impact of the results obtained, in order to facilitate the
comparison among methodological approaches and overall findings.

Keywords: neurodegenerative diseases; sleep monitoring; sleep disorders; Parkinson disease; de-
mentia; Alzheimer Disease; wearable sensors; inertial sensors; video analysis; Internet of Things

1. Introduction

Sleep plays a fundamental role in the lives of many animals, from some invertebrates to
humans. It has both physiological and behavioral connotations and, although its functions
and evolutionary significance are not yet fully known, its fundamental role in the main-
tenance of homeostasis and the adverse effects due to its sub-optimality are well-known
in humans. Indeed, it influences attention, memory, mood, blood pressure, immune and
inflammatory response, and stress response [1–3]. Under physiological conditions, a sleep
phase and a wakefulness phase alternate in a regular manner, constituting the sleep–wake
circadian rhythm. The sleep phase is a dynamic process aimed at obtaining the required
neurophysiological states at certain times, according to circadian and homeostatic needs
and despite external or internal interfering stimuli. Moreover, the so-called macrostruc-
ture of sleep, as recorded by electroencephalography (EEG) during polysomnography
(PSG), is characterized by a chain of regular and predictable events (cyclic alternation of
rapid eye movements (REM) and non-REM (NREM) sleep stages). The process shows an
intrinsic variability and has to finely modulate itself in order to maintain the maximum
adaptability while preserving sleep macrostructure. In this context, peculiar transient EEG
patterns (sleep microstructure) are supposed to play the main role in the building up of
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EEG synchronization and in the flexible adaptation against perturbations. Alterations in
sleep macro- or microstructure provoke sleep disruption, sleep instability and loss of sleep
quantity and quality [4,5]. Sleep and wakefulness influence each other; therefore, sleep
quality degradation, when persisting over time, may translate into severe and irreversible
symptoms, taking the form of a pathological framework. Therefore, it is very important
to create the best possible sleeping conditions and to intervene promptly when sleep dis-
turbances occur, both in their diagnosis and eventual treatments. Even though sleep time
and quality lessen with age, sleep disorders are related to comorbidities rather than age [6].
In particular, sleep disorders have a high incidence in neurodegenerative diseases (ND)
and are known to influence well-being and quality of life [7]. Indeed, the symptoms of
the NDs may be worsened by the sleep disorders, but, at the same time, the latter may be
caused or augmented by the neurodegenerative disease, creating a more complex clinical
picture. Optimized, sometimes individualized, treatments are being developed in clinical
practice [8]. The relationship between sleep abnormalities/disorders and NDs is so close
that sleep disorders can be used as criteria for the diagnosis of specific NDs [9]. As an ex-
ample, stridor co-occurs with multiple system atrophy (MSA), while a REM-sleep behavior
disorder may discriminate between Alzheimer’s disease (AD) and dementia with Lewy
body (DLB). The most interesting discovery in the field is that, in some cases, especially in
Parkinson’s disease (PD), the onset of sleep disturbance could reflect early alterations in the
neural pathways involved, thus constituting a prodromal symptom [10]. This allows earlier
intervention in treatment and follow-up; moreover, it will be crucial when neuroprotective
drugs become available [11]. The assessment of sleep macro- and microstructure, move-
ments, respiratory pattern or other neurophysiological changes that occur during sleep is
essential to verify the quality of sleep and detect sleep disorders. For clinical purposes, PSG
is the gold standard for the assessment of sleep disorders, and guidelines are available for
recommended uses. In PSG, selected electrophysiological signals are recorded along with
other biological signals of interest, such as airflow, oxygen saturation, chest movements
or snoring. The type and number of signals that are recorded depends on the reported
symptoms and the aim of the PSG. EEG, plectrooculography (EOG), electrocardiography
(ECG), and electromyography (EMG) are required for sleep staging, whereas in the detec-
tion of sleep apnea, for instance, the primary focus is on oxygen saturation, airflow, and
thorax and abdominal movements [12]. Complete polysomnographic examinations are
very complex and invasive; they need cumbersome instrumentation, a proper location,
night-time assistance by experienced personnel, time, money and they bring discomfort
for the patient as well. The medical inspection of the signals (many hours of recording)
needs to be performed by qualified experts and it is, however, subjected to inter- operator
variability [13,14]. For these reasons, PSG can only be performed in proper settings and
usually for in-patients, mainly when precise diagnosis is essential for targeting therapy.
Therefore, many alternatives have been proposed in the research to cope with this limi-
tation, in particular for screening or monitoring purposes. They exploit, in general, new
technologies and automatic algorithms to reduce the invasiveness of the instrumentation
required and the intervention of specialized personnel. This would allow a much more
frequent, if not continuous, assessment of the patients’ condition with reduced cost and
discomfort, providing the conditions for optimized diagnosis and treatments. Research in
this area has several objectives:

• To update and simplify the work of medical staff by automating or semi-automating
certain procedures—such as sleep staging or sleep disorders diagnosis—through
new instrumentation.

• To verify medical treatment efficacy and, eventually, to optimize it, through sleep
monitoring.

• To ensure frequent or continuous follow-up by providing instrumentation and proto-
cols to be used in non-hospital settings.

This review wants to explore the available new technologies for minimally invasive
sleep monitoring, specifically applied to the field of the NDs, focusing on wearable and
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non-wearable solutions. The paper is organized as follows. The next Sections 1.1 and 1.2
provides a general background on clinical aspects of sleep monitoring and an overview
on the use of technological approaches in NDs. Section 2 provides the description of the
methodology employed for the paper selection in this review, Section 3 illustrates results
and, lastly, Sections 4 contains discussion and conclusions.

1.1. Background of Sleep Monitoring in Neurodegenerative Diseases

In NDs, the progressive loss of neurons in particular structures of the central nervous
system (CNS) causes dysfunctions of neural pathways, leading to the symptoms typical
of each disease. In some cases, treatments are available for symptoms relief, but the
neurodegeneration process is unstoppable and irreversible. AD and PD are among the
most common neurodegenerative disorders worldwide, with a high incidence in the elderly
population [15]. In fact, aging is one of the main risk factors in developing NDs, even
though their etiology can vary, and are not completely understood. Moreover, genes and
environment are believed to be together responsible of these diseases’ onset. Other less
common NDs are Huntington disease, DLB, amyotrophic lateral sclerosis (ALS), Friedreich
ataxia, and MSA. A brief description of the principal symptoms and characteristics is
provided in Table 1, with a focus on the diseases’ effects on sleep. In fact, these pathologies
have a complex relationship with the sphere of sleep. Sleep disruption and disorders can
be commonly found in patients with ND and may constitute an early biomarker. Iranzo
in [11] highlights the frequent occurrence of the subsequent sleep disorders in ND:

• Insomnia.
• Excessive daytime sleepiness (EDS).
• Rapid eye movement (REM) sleep behavior disorder (RBD).
• Periodic leg movements in sleep (PLMS).
• Restless legs syndrome (RLS).
• Central or obstructive sleep apnea (CSA, OSA).
• Sleep disordered Breathing (SDS).
• Nocturnal stridor.
• Circadian rhythm disorders.

Further, sleep-quality impairment, sleep-time reduction, and presence of abnormal
movements (both excessive and impaired) are other typical features. Sleep symptoms
derive from multifactorial causes, including the deterioration of sleep–wake regulatory
circuitries caused by the neurodegeneration itself and altered neural pathways, movement
or respiratory symptoms specific to each pathology or several indirect mechanisms [16].
Sleep has, in turn, an influence on the neurodegeneration process, realizing a complex
bi-directional relationship that could lead to new targeted interventions [17]. For instance,
sub-optimal sleep—e.g., lack of sleep, disturbed sleep, sleep disorders—was found corre-
lated to cognitive-impairment severity in AD patients and in the elderly, thus constituting
a possible risk factor for the onset of cognitive impairment [18,19]. Lately, the discoveries
regarding this relationship have been translated in the clinical practice, renovating dis-
ease diagnostic criteria and treatments [20]. However, sleep-related symptoms are still
under-reported by patients and under-diagnosed by healthcare professionals. This is a flaw
in optimized diagnosis and intervention, because of the reduced descriptive power of a
complete clinical framework that considers these aspects. The result is a reduced quality of
life for patients, sub-optimal treatments, and, sometimes, late diagnosis or misdiagnosis. In
clinical practice, these sleep disruptions and disorders, including abnormal movements, are
assessed through different tools, such as individual interviews (anamnesis), sleep diaries,
sleep questionnaires, clinical scales, reduced or complete PSG, sleep diaries, and clinical
scales; moreover, clinical protocols establish assessing procedures [21,22]. Typical sleep
symptoms and main clinical assessing protocols are described in Table 2. PSG is the most
complete clinical examination, able to evaluate every aspect of sleep and derive quantita-
tive measures, constituting the gold standard in assessment and diagnosis of sleep-related
problems. Sleep staging, REM sleep without atonia, apneas, oxygen saturation, sleep
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microstructure including the cyclic alternating pattern (CAP), and sleep parameters compu-
tation can be investigated by PSG. Some of the typical sleep parameters employed, besides
sleep-stages descriptors, are total sleep time (TST), sleep latency, sleep efficiency, wake after
sleep onset (WASO), and REM latency [23]. Standardized semiquantitative evaluation of
symptom severity and quality-of-life reduction is provided by clinical rating scales, such
as those shown in Table 2. The latter are employed for various sleep disturbances and
disorders, including restless legs syndrome (RLS), insomnia, nocturia, breathing disorders,
and daytime sleepiness [24]. It must be considered that each subject’s clinical history deeply
influences the sleep evaluation tools; in fact, perception of symptoms is subjective and can
be influenced by the clinical framework. As an example, in dementia, cognitive impairment
can make it difficult to obtain a subject’s collaboration in clinical interviews and physical
exams [25]. In synucleinopathies—such as PD, DBL, and MSA—RBD assessment is par-
ticularly relevant because its idiopathic occurrence is known to be a prodromal symptom
that can anticipate any other symptom by decades [26]. In contrast, RBD developing after
the onset of other symptoms may indicate a particular disease phenotype. For this reason,
RBD screening and diagnosis have attracted much clinical attention in the last years.

Table 1. Neurodegenerative diseases (ND) and sleep-related symptoms, and sleep disorders incidence
(sleep disorders incidence (SD)) [11].

ND Symptoms Sleep Symptoms SD

Parkinson’s disease [27,28]

Motor: tremors, postural issues,
bradykinesia, ON/OFF states, dystonia,

rigidity, dyskinesias. Non-motor:
orthostatic hypotension, depression,

gastrointestinal symptoms, speech and
writing change

RBD (also prodromal), sleep-disordered
breathing, EDS, Insomnia, RLS, PLMS 60–90%

Multiple system atrophy [29] Parkinsonism, breathing problems RBD, fragmented sleep, insomnia, stridor,
EDS 80–100%

Dementia with Lewy body [30] Dementia, parkinsonism, fluctuations, and
visual hallucinations

Insomnia, circadian rhythm disorder,
RBD 1 (also prodromal), confusional

awakenings, EDS
80%

Alzheimer’s Disease [31] Cognitive impairment, dementia. Altered
behavior, confusion, aggressiveness

Frequent daytime napping, difficulty in
falling asleep and early wakeups, sleep
fragmentation, reduced deep and REM
sleep amounts, OSA, circadian rhythm

alterations, slowdown of sleep
EEG rhythms.

45%

Huntington Disease [32] (genetic) Dementia, psychiatric disturbances

Sleep quality loss, insomnia, sleep
fragmentation, EDS, circadian rhythm
sleep disorders, reduced NREM and

REM sleep.

87%

Amyotrophic lateral sclerosis [33] Weakness, muscle atrophy, spasticity,
respiratory dysfunction

Sleep-disordered breathing, nocturnal
hypoventilation, nocturia, cramps,

insomnia, EDS
17–76%

Friedreich ataxia [34] (genetic) Impaired gait, balance, coordination,
and speech RBD, RLS, OSA 50%

1 OSA: obstructive sleep apnea; EEG: electroencephalography; RBD: REM behavior disorder; EDS: excessive
daytime sleepiness; RLS: restless leg syndrome. PLMS: periodic limb movements during sleep.
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Table 2. Clinical assessing methods in sleep investigation.

Sleep Investigation Clinical Assessing Methods

Sleep quality [35]
Anamnesis, diaries such as Consensus Sleep Diary (CSD), clinical scales such as Pittsburgh Sleep Quality
Index (PSQI) for sleep disturbances, sleep duration, sleep latency, sleep efficiency, use of sleep
medication, daytime dysfunction, and sleep-quality subjective evaluation in the past months.

SD: restless leg syndrome (RLS) [36] Anamnesis, PSG for detecting associated PLMS, International Restless Legs Scale (IRLS).

SD: REM behavior disorder (RBD) [37]
Anamnesis; PSG 1 with sleep staging and REM sleep without atonia scorings; Video-PSG; screening
questionnaires; rating scales: RBD Screening Questionnaire (RBDSQ), RBD Single-Question Screen
(RBD1Q).

Sleep-related problems severity in PD Rating scales: Parkinson’s disease sleep scale (PDSS), ESS, SCOPA-SLEEP; PSG.

Nocturnal movements in PD [24]

Anamnesis; PSG; Video-PSG, Actigraphy; rating scales:

• PDSS for leg or arm restlessness when resting, urgency to move when resting, getting out of bad for
urination, nocturnal hypokinesia, painful posturing of the arms or legs, fidgeting.

• MDS-UPDRS for turning in bad, getting out of bad.
• NMSS for urgency to move when resting.
• NMSQ for getting out of bed for urination, acting out dreams, urgency to move when resting.
• PSQI, RLS and RBD scales.

Sleep disturbances in AD [25] Anamnesis (manifestations of the sleep disorders can be atypical, cognitive impairment can make it
difficult); RLS and breathing-disorders assessment; PSG; Actigraphy.

EDS [38] Anamnesis, PSG, Multiple sleep latency test (MSLT), Maintenance of wakefulness test (MWT), Epworth
sleepiness scale (ESS)

1 PSG: polysomnography; SD: sleep disorder; SCOPA-Sleep: Scales for Outcomes in Parkinson’s Disease-Sleep
Disturbances; MDS-UPDRS: Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease
Rating Scale; NMSQ: Non-Motor Symptoms Questionnaire; NMSS: Non-Motor Symptoms Scale

1.2. Overview of Technologies for Neurodegenerative Diseases

Thanks to the progression of technology, many new-generation devices are available
to the medical field. Reduction in costs and dimension for greater computational perfor-
mances is the main followed trend in the hardware technology. This trend is influencing
every aspect of medicine, from in-vitro studies to surgery, passing through virtual reality
and robotics [39–42]. In particular, the development of good-quality low-cost sensors
determined the development of new possible applications. In addition, the growing world
population and the increase in life expectancy created new challenges that technologies,
sensors, devices, and algorithms may help to resolve. Technologies in this field are being
used to guarantee objectivity, continuity of care and massive screening for lower prices,
employing wearable sensors, sensors networks, wireless communication, and automatic
algorithms [43].

Companies are also riding the wave, in fact, many consumer products, including
smartphones and smartwatches, integrate health monitoring tools and are available at
affordable prices for the general population, providing new means for screening and
the optimization of self-care. The information provided by this kind of technology does
not usually have the aim of substituting standard clinical practice and is targeted to
healthy population use; therefore, it is rare for these devices to comply with medical
regulations. Nevertheless, some applications, such as heart-rate monitoring and movement
analysis, have been proposed as medical tools and obtained American Food and Drug
Administration (FDA) approval [44,45]. The gaming industry followed, as well, with the
introduction of exergames for physical- and cognitive-health assistance and rehabilitation
in neurodegenerative pathologies [46–48]. Sleep monitoring tools are also usually included
in smartphones, smartwatches, and consoles, due to the well-known effects of sleep in
cognitive and physical performances, as well as quality of life. However, the reliability of
these devices in this field is not well-known yet [49,50]. Nevertheless, sleep monitoring is a
wide field, where many aspects must be considered depending on the required observation
(e.g., movements, sleep staging) and the final aim (e.g., diagnosis, screening) and it is
influenced by many factors. Hence, it is very difficult to generalize results from general-
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purpose instrumentation, especially in the presence of diseases altering sleep characteristics.
The latter is the case for NDs, for which sleep disturbances and disorders are important
to consider, as presented in the previous section, but which manifest themselves through
physical and cognitive symptoms which could influence monitoring tools in unknown
and often unpredictable ways. From this perspective, a smaller portion of the research
explores this declination, both for single-symptom assessment and generic care of the eldery
or frail people. activity of daily living (ADL) recognition and assessment is one of the
most interesting topics, because they allow continuous monitoring beyond clinic facilities
and provide a multi-potential tool in the wide field of smart homes and assisted living.
This is the main objective of Internet of Things (IoT) applications for the elderly. Indeed,
due to the incidence of comorbidities in the elderly and their constantly growing number,
management of their multiple needs will be possible only through new technologies. In
the case of dementia and other NDs, this is one of the followed paths [51–56]. Besides
ADLs monitoring, sleep patterns, disease diagnosis and progression assessment, vital
signs, agitation, social interactions, compliance with medication intake, movement and
fall detection/prevention are interests of these applications. Smart-home applications
use a wide range of technological aids—such as radio frequency identification (RFID),
wireless communication protocols, global positioning system (GPS), sensors, and cameras—
frequently organized in a mixed architecture including wearable and non-wearable sensors.
Studies on smart-home monitoring for NDs are reviewed in the dedicated results section
(see Section 3.2).

Another trending topic in new technologies for sleep monitoring is the simplifica-
tion of PSG. PSG is the gold-standard sleep-monitoring exam in clinical facilities. In its
conventional set up, it involves multiple high-quality signals recordings. However, the
instrumentation is cumbersome and uncomfortable for the subject to wear. In addition, the
examination is long to carry out and to analyze, since clinicians have to deal with hours
of recordings. This creates an imperative need for an intervention to simplify the whole
procedure through new technologies. Moreover, the polysomnogram evaluation involves
anomaly identification (REM sleep without atonia, arousals, apneas) and sleep staging
which are subjected to intra- and inter-rater variability [13]. Simpler devices and methods
are widely proposed in the literature: sleep staging through single-channel physiological
recordings, actigraphy, respiratory dynamics and video were attempted [57–60]. Auto-
matic sleep-staging solutions for NDs are reviewed in the dedicated results section (see
Section 3.1).

Moreover, a wide range of unobtrusive sensors is employed in the literature for other
aspects related to sleep monitoring, including wearables [61–65] or camera-based [66–69]
systems. In PD and AD, sensors are widely used in symptoms management and assess-
ment, also with a view to early diagnosis [70–80]. In these disorders, sleep is frequently
investigated, especially in studies that focus on motor symptoms, such as the bradykinesia
(BK) or dystonia in PD, which can lead to pain or create problems in changing positions or
turning in bed. Actigraphy, which provides acceleration recordings from a wrist-worn unit,
is already approved by the FDA in the medical field since it enables continuous monitoring
(beyond single PSG evaluation). This approach is suitable for the evaluation of excessive
daytime sleepiness (EDS), insomnia, and circadian-rhythm sleep disorders, where analysis
of time spent in bed and asleep is more relevant. However, its boundary of use in sleep
studies is still to be drawn and still a hot topic in the literature, such as in the assessment of
NDs’ sleep symptoms. In this framework, studies dedicated to NDs compliant with the
inclusion criteria of this review are reported in the results section.

2. Materials and Methods

To provide a general overview of the main recent technological approaches used for
the analysis of sleep disorders in NDs, an extensive search of the literature was performed
through the online databases Web of Science and PubMed over the last 12 years. The
search focused on published studies concerning the NDs listed in Table 1 and on the more
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exploited unobtrusive approaches for sleep monitoring. To this end, the following search
criteria were set through:

• Customized queries using keywords and Boolean operators in the form “(Neurode-
generative Disorder OR Parkinson OR Alzheimer OR Huntington OR Lewy Body
OR amyotrophic lateral sclerosis OR Ataxia OR Dementia OR Tremor) AND (sleep
monitoring) AND (sensor OR IoT OR smart sensor OR environmental sensor OR
inertial sensor OR wearable sensor OR optical sensor OR camera OR bed sensor)”.

• Year range restriction to 2010–2022.
• Exclusion of pharmacology, veterinary and construction engineering categories.
• Writing language limitation to English.

No criterion was applied on the characteristics of studies participants, as long as the
application proposed was explicitly aimed at use on ND-affected subjects.

3. Results

The total records found on Web of Science and PubMed were 142, of which 43 dupli-
cates were excluded. Screening of the titles and abstracts reduced the records to 58. In the
end, the full-text analysis of the remaining records led to a total of 26 articles. The selection
procedure is shown in Figure 1.

Figure 1. Article selection process.

The selected articles were then categorized considering the three main application
domains: automatic sleep staging, at-home sleep monitoring and sleep-quality and move-
ment analysis tools. The papers’ distribution according to this categorization is shown
in Figure 2a. Moreover, a qualitative synthesis is provided for each article, containing
the main aim of the article, the instrumentation, the metrics and obtained results. The
instrumentation employed in selected papers largely depended on the application and
aims. Figure 2b shows the distribution of articles according to the use of wearable and
non-wearable approaches, as well as the tested-sample-size type (e.g., PD-affected patients,
healthy subjects). In addition, the collection of the sensors used in the reviewed paper
was assessed; it includes: bed sensors, 3D cameras, infrared cameras, inertial sensors,
smartwatches, headbands and novel tattooed electrodes. A pie chart summarizing sensors’
employment is shown in Figure 3.
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Figure 2. Distribution of selected papers according to chosen categorization. (a) Pie chart reporting
the percentage of articles for the three mainly investigated categories in the literature; (b) bar plots
of the distribution of the articles in the three categories of aim, considered sensor type (wearable or
non-wearable) and type of targeted population.

Figure 3. Pie chart reporting the distribution of sensors employed in the reviewed articles.

3.1. Automatic Sleep-Staging Techniques

Various systems for simplifying the sleep-staging procedure are proposed in the litera-
ture, whether based on PSG or innovative instrumentation; however, few of these studies
consider the peculiar condition of NDs, which, as already mentioned, can have a strong
influence on the feasibility of the proposals and the generalizability of the results. Moreover,
these diseases, together with their associated sleep disruptions, often require the observa-
tion of peculiar phenomena, to which the proposed new systems need to provide sensitivity.
The gold-standard PSG or video-PSG procedure is the most descriptive and complete exam
used in these cases. The research challenge is to reduce the cumbersome instrumentation
needed, without losing the fundamental information for sleep-stage recognition and abnor-
mality identification (e.g., k-complexes, sleep spindles, delta burst, apneas, muscle tone,
eyes movements). To do so and understand the best configuration, automatic sleep-staging
algorithms are also needed. From this perspective, the literature search provided four
articles. Their qualitative analysis is displayed in Table 3.
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Table 3. Qualitative summary of the selected articles proposing automatic sleep staging.

Article Subjects Instrumentation Methods Results

Casciola et al. [81] 12 healthy subjects
(12 nights)

(W 1) two-channel EEG
headband (HB)

DL approach to overcome
low-quality signals from
EEG HB in sleep staging.
Manual and automatic
corrupted-epoch
recognition and discard.
Data augmentation. DL
training in CNN plus LSTM
configuration.

Accuracy: 74 ± 10 % with
EEG HB signals, 77 ± 10 %
with PSG signals.

Shustak et al. [82] 9 healthy subjects (5 nights)

(W) temporary tattooed dry
electrode array: two

submental EMG, two EOG
and four forehead EEG

electrodes. The signals were
acquired through a

customized wireless
recording system and

Bluetooth connection. See
Figure 4a.

Assessment of sensing
performance in three ways:
by observing signal
behavior in typical facial
expression; in comparison
with standard video-PSG,
through qualitative and
correlation measures; and
in-home settings for
feasibility and
electrode-stability
evaluation. In addition, the
opinions of sleep
technicians were collected.

Signals recorded with the
temporary tattoo and the
10–20 system were visually
similar (e.g., eye blinking,
k-complexes, sleep
spindles), making them
easily interpretable for sleep
technicians. Amplitude
signal parameters and noise
were evaluated in the
presence of artifacts such
rolling in bed or blinking.

Yi et al. [83] 5 healthy subjects (1 night) (NW) hydraulic bed sensor.

74 features extraction from
cardiac and respiratory
signals. Classification into
awake, REM, and non-REM
stages by SVM and k-NN.
Accuracy referred to
manual PSG scoring.

Accuracy 85% with
0.74 kappa, in the detection
of awake, REM, and
non-REM stages.

Ko et al. [84]

30 healthy subjects, 27 PD
patients divided into two
subgroups: 15 PD patients
taking clonezepam (PDcC),

12 PD patients without
clonezepam (PDnC)

(W) Smartwatch (PPG). See
Figure 4b.

Quantification analysis of
light sleep, deep sleep,
REM, and abnormal REM
sleep. Classification into
sleep/awake, light/deep
sleep and REM sleep using
Cole–Kripke algorithm and
k-means clustering.
Definition of abnormal REM
epochs. Comparison
between control group and
PD group was conducted in
the quantitative analysis of
sleep stages.

Statistically significant
differences between PD and
controls were measured in
the percentage of deep sleep
and abnormal REM.
Abnormal REM sleep was
also able to distinguish
between PDcC and PDnC.

1 W: wearable; NW: non-wearable; ML: machine learning; EEG: electroencephalography; EOG: electrooculo-
gram; CNN: convolutional neural network, LSTM: long short-term memory; SVM: support vector machine;
PSG: polysomnography; PD: Parkinson diseases; REM: rapid eye movements; PSG: polysomnography; PPG:
photoplethysmogram.

Some potential solutions were explored by Casciola et al. in [81], Shustak et al. in [82]
and Yi et al. [83], on healthy subjects, whereas Ko et al., in [84], tested the capability of the
proposed system for abnormal REM detection on PD patients. Casciola, in [81], considered
the condition of dementia in AD, where cumbersome instrumentation is a critical issue,
due to the typical patient behavior (fear, confusion, aggressive behavior [85,86]). From this
perspective, portable EEG headbands (HB) could provide a solution. The authors wanted to
overcome the typical reduced signal quality in HB through a deep learning (DL) approach.
Their approach was tested on EEG HB and simultaneous PSG recordings. Accuracies of
their automatic scoring algorithm were calculated according to manual scoring of PSG in the
two cases (HB and PSG signals). The signal processing of HB included band pass filtering
and corrupted-epoch manual identification and removal. This cleaning procedure was
further deepened through an automatic identification of corrupted epochs using correlation
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metrics between channels and amplitude values. Data were augmented exploiting windows
overlapping, and a DL model, based on convolutional neural network (CNN) and long
short-term memory (LSTM), was developed and applied. Authors also implemented
traditional sleep-staging techniques for performance comparison. In the end, the proposed
DL sleep-staging model achieved 74% accuracy on low-quality HB EEG data and 77% with
gold-standard PSG with respect to manual scores. Moreover, the balanced accuracy of the
proposed DL method increased by almost 20% compared to any other machine-learning
sleep-staging method attempted by them. To better understand the power of their method
in the NDs’ framework, their approach should be tested on a bigger and differentiated
population, comprehending pathological subjects. Yi et al., in [83], proposed an automatic
sleep-staging algorithm that exploits bed-sensor recordings consisting of four hydraulic
bed transducers under the mattress. Their method aimed to classify sleep in awake, REM
and NREM stages by computing 74 features and classifying them usingk-nearest neighbour
(k-NN) and support vector machine (SVM) classifiers. Features related to temporal and
frequency domains of heartbeat and respiration were considered (ballistocardiography
signal analysis). The SVM classifier provided the best performances (accuracy 85.3%) and
was also used in a hierarchical fashion (binary asleep–wake classification plus binary REM
or NREM classification). In contrast, the other classifiers considered in this study showed
inferior and similar performance when compared to the PSG manual score.

Regarding instrumentation developments, Shustak et al., in [82], proposed a wearable
setup for sleep staging composed of temporary tattooed dry electrodes: two submental
EMG, and two EOG and four forehead EEG electrodes. Data amplification and transfer
to a laptop exploited a compact wireless recording system (a customized printed circuit
board, a Bluetooth low-energy chip, and a battery). The electrode array employed is
shown in Figure 4a. Signals were classically band-pass filtered, and a notch filter was also
applied. The authors tested their system in three ways: firstly, they validated effectiveness
of EOG, EMG, and EEG recordings using typical facial movements (e.g., smiling, blinking
swallowing); secondly, they compared their EEG recordings to the gold-standard systems
and, lastly, they assessed the feasibility in home environments. The tattooed electrodes
provided signals visually similar to the ones from an EEG system with 10–20 international
standard. It was possible to observe sleep spindles and k-complexes, and the recordings
were easily interpretable for sleep technicians. Stable recordings were achieved both in a
hospital environment and in home settings, where subjects reported good reviews and no
impairments in sleep.

Lastly, Ko et al. in [84], provided a method for sleep staging and abnormal REM
recognition using cardiac and acceleration signals provided by a smartwatch, see Figure 4c.
The authors applied a hierarchical classification through machine-learning techniques,
classifying firstly sleep/awake conditions with the Cole–Kripke algorithm, then deep and
light sleep based on the G-value and, lastly, identifying REM through k-means clustering.
They also defined identification criteria of abnormal REM stages, to be sensitive to REM
parasomnias such as EDS typical in PD and MSA. They verified sleep-staging results in a
clinical trial, comparing sleep stages and abnormal REM percentages in healthy-control
versus PD patients treated with therapy for REM sleep behavior disorder (RBD) versus
untreated PD patients. Although the classification accuracies were not very high, the results
showed statistically significant differences between healthy-control and PD patients in the
percentage of deep sleep. In addition, abnormal REM was found to be significantly different
between PD patients with and without RBD therapy (in particular, using clonazepam).
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Figure 4. Examples of sensors employed for automatic sleep staging. (a) Electrodes array system,
adapted from electromyography, electrooculography and electroencephalography, adapted from [82].
(b) Smartwatch for cardiac and inertial evaluation, adapted from [84].

3.2. At-Home Sleep Monitoring

The elderly population presents multiple needs simultaneously, since they are usually
affected by several diseases with different symptoms. To cope with their conditions,
more and more emphasis is being placed on wide-ranging monitoring over time within
the home setting. In this way, various parameters can be monitored in a customized
manner responding to multiple objectives: to verify health status; to assess the risks for
the subject; to make preventive interventions; to diagnose diseases and observe their
possible progression; ti check compliance with treatment and, finally, verify the effects
of treatments. Such multi-approach monitoring is even more suitable in the presence of
a diagnosed ND; in fact, significant efforts are focused on this line of research. Many of
these studies include sleep monitoring in their set-up, given its importance for quality-
of-life and symptom monitoring. Usually, these systems rely on a network of sensors,
wearable and/or non-wearable, which transmit data to cloud services or platforms. In this
way, subjects, caregiver, and clinicians can access the data and observe long-term results.
Sometimes, these platforms provide custom-made analysis algorithms or they provide
a summary of the outputs of the commercial/custom sensors employed. The literature
search produced 11 articles in this framework; their summary description is presented
in Table 4, where emphasis is placed on the advancement of the sleep-related study and
instrumentation adopted.

Regarding cognitive impairment, a smart-home environment for continuous moni-
toring of elders with dementia is presented by Lazarou et al. in [87]. The article presents
the architecture developed in the framework of the Dem@Care FP71 project [88,89]. In
the Dem@Care project, the monitoring of sleep, physical activity and ADL were the main
goals. In their setup, also used in [90], a commercial under-mattress sensor was employed
that was able to determine sleep duration and stages. The proposed solution also involved
the integration of the automatic evaluation of daily activity and anomalies by a wide
range of sensors, with the assessment and final opinion of clinical experts to target the
treatment. In Ref. [87], the authors wanted to verify that their system and the adapted
clinical interventions could have positive effects on the physical and cognitive functions of
participants. Results concerning sleep included reports of four use cases where, in general,
a reduced number of sleep interruptions and increased deep sleep and REM phases were
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found. Detailed data of sleep patterns were presented for the four subjects (use cases).
In Ref. [90], the long-terms effects of the use of the system were evaluated on a bigger
subject sample (twelve mildly cognitive-impaired subjects and six subjects with AD): the
results confirmed the previous observations: reporting better sleep quality. The effects
of this system installation, along with a personalized non-pharmaceutical intervention
suggested by the system, were compared with a control group that underwent traditional
interventions and with a second control group that did not receive neither personalized
nor traditional interventions. Thomas et al., in [91], proposed an at-home smart moni-
toring system able to assess treatment efficacy for AD. Part of the platform is shown in
Figure 5. They considered sleep monitoring using a smartwatch, evaluating TST and
compliance to wearing the watch. Specifically, they found that the watch was worn more
during the day than at night (compliance 60%), and that subjects often forgot to put the
watch back on their wrist when they put it away for some reason. This last result may
suggest that wearable solutions, such wrist bands, may not be optimal for continuous
sleep monitoring in elders, especially with any kind of memory impairment such as in
mild cognitive impairment (MCI) or dementia. Kikhia et al., in [92], focused on nursing
homes and proposed the DemaWare@NH monitoring framework system. The aim was
to assess behavioral and psychological symptoms of dementia. Concerning sleep, they
employed a smart clock connected with a smartphone able to detect respiration signals
and movements. The system provided sleep staging in terms of awake, light-sleep and
deep-sleep periods, and a 1–100 sleep score. The clinical staff accepted the system, but the
smart-clock recordings were made difficult by patients who frequently interacted with the
clock-phone system, moving it during the day or pulling cables. This forced the clinical
stuff to set up the sensor only during the night. However, the clinical stuff considered
the data provided informative on the status of the subjects. Rose et al., in [93], dealt with
symptom assessment in AD. Specifically, they analyzed the correlation between nighttime
agitation, sleep disturbances and urinary incontinence outside of the clinical setting. Even
in this case, the authors designed a multiple-sensor network. To perform sleep monitoring,
they used an under-mattress sensor, a microphone, and TEMPO nodes on wrists, i.e., a
wireless inertial sensor net. They were able to detect the aforementioned symptoms and to
find a correlation between them.

Table 4. Selected articles that present a system dedicated to neurodegenerative diseases in a smart-
home monitoring framework, which includes sleep monitoring.

Article Stage Instrumentation Subjects Results

Dem@Care FP71 project
[87,90]

Platform tested on
patients

(NW 1) Commercial
under-mattress sensor

providing sleep duration
and stages

4 in [87]; 22 MCI + 4AD in
[90];

Adaptation of treatment
based on clinicians’
observation of the
platform output resulted
in the improvement of the
sleep quality, also
comparing the results with
subjects who received a
standard intervention.

Thomas et al. [91] System feasibility
(W) Smartwatch and

automatic measures. See
Figure 5.

30 AD + 30 spouses

Evaluation of feasibility,
compliance in wearing
watch, and total
sleep-time extraction.

Kikhia et al. [92] System feasibility and
preliminary results

(NW) Smart clock with a
smartphone (movement

and respiration detection)
able to provide sleep

staging (awake, light sleep
and deep sleep) and a

sleep score.

4 subjects with Dementia

Good acceptability of the
system by clinical staff,
who were able to assess
patients based on the
output of the system.
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Table 4. Cont.

Article Stage Instrumentation Subjects Results

Rose et al. in [93] Platform tested on
patients

(NW) Matress sensor,
TEMPO nodes on wrists
and a microphone, from

which data are transmitted
to an online platform

where automatic event
detection is performed
and available for users’

consultation.

12 AD subjects

Monitoring and
correlation of symptoms,
such as nighttime
agitation and incontinence
in AD, were performed.
The correlation inference
process showed a pattern
for the time occurrence of
symptoms.

Hayes et al. [94] Platform tested on
patients

(NW) Passive infrared
sensors with custom
automatic algorithm

extracting sleep features
(ORCATECH platform)

45 seniors, including 16
MCI (amnestic, aMCI, and

non-amnestic MCI,
naMCI) over 6 months

The comparisons of
self-reported and platform
measures in the three
groups (healthy seniors,
aMCI, naMCI) showed
that movement in bed
during the night, wake
after sleep onset, and
times up during the night
were significantly
different.

Au-Yeung et al. [95] Case study with existing
platforms

(NW) Aging & Technology
(ORCATECH) platform +

Emerald device

2AD, 1 frontotemporal
dementia, and a major

neurocognitive disorder
affected subjects.

Sleep-score comparison in
the presence/absence of
drug administration.
Night-time agitation and
PLM assessment.

Rawtaer et al. [96] Feasibility study

(NW) Bed-occupancy
sensor based on fiberoptic

technology, providing
sleep duration and quality

metrics (sleep duration,
number of sleep
interruptions)

28 MCI and 21 healthy
controls (>65 years)

subjects (HC)

Comparison of sleep
duration and
interruptions between
MCI and HC subjects.

Abbate et al. [97] Feasibility study (W+NW) Bed sensor +
EEG HB . -

General discussion on the
feasibility of sleep studies
based on Enobio EEG HB
and inference of risk of
fall.

Branco et al. [98] Feasibility study
(W) Inertial sensor

included in the Datapark
platform

22 PD subjects in
rehabilitation center, for

2 months

Report of changes in sleep
position and wakeups
were provided to
clinicians and patients
along with other measures
of general activity. Good
acceptability of the
system.

Silva de Lima [99] Study presentation and
beginning of recruiting (W) Smartwatch + app To be: 1000 PD subjects

The system aims to
provide sleep-movement
analyses.

1 W: wearable; NW: non-wearable; MCI: mild cognitive impairment, AD: Alzheimer disease; EEG: Electroen-
cephalography; HB: Headband; HC: healthy controls; PD: Parkinson disease; HB: headband.

Regarding continuous monitoring of AD, Oregon Center for Aging and Technology
(ORCATECH) at the Oregon Health and Science University have been developing a home
monitoring system since 2004. Their platform was meant to assess disease progression and
intervention efficacy, relying on passive IR motion sensors and wireless magnetic-contact
sensors. The project design and application are described in detail in [19]. Between the
various activity recognition and evaluation, the findings regarding sleep by Heyes, in [94],
are within the scope of this review. In this last study, the authors used a previously validated
algorithm to automatically assess sleep, extracting sleep duration and permanence in bed
features (e.g., WASO; TST; settling time: time from getting into bed until the start of the
first 20 min period of no movement; times up at night: when the participant actually
got out of bed; and total movement in bed at night). Authors also collected subjective
sleep assessments and compared elderly volunteers with amnestic MCI and with non-
amnestic MCI subjects. Passive sensing for dementia monitoring were also employed by
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Au-Yeung in [95]. Their study evaluated only four subjects, two with the ORCATECH
platform and two with the Emerald platform (Emerald Innovations Inc., Cambridge, MA,
USA), which provides movement, location, and activity info from radio-wave sensors.
They compared sleep scores, as provided by the two systems, in different pharmacological
interventions. They were able to detect periodic leg movements, associated with drug side
effects, providing a tool for modifying interventions and treatments.

Figure 5. Example of an at-home smart platform for broad-spectrum assessment, including sleep. The
Figure is adapted from [91], where a platform for the assessment of treatment efficacy in Alzheimer’s
disease is presented.

The works of Rawtaer et al. in Ref. [96] and of Abbate et al. in [97] were focused on
the field of prevention and early detection. In Ref. [96], the authors evaluated the duration
and quality of sleep with a sensor able to detect bed occupancy in terms of sleep duration
and interruptions, both on healthy controls and subjects with MCI. The monitoring system
reported a worse sleep quality in MCI subjects, in agreement with clinical questionnaires
and almost all participants reported good acceptability (41 out of 49). In Ref. [97], the
authors proposed a platform exploiting passive and physiological sensing. The study does
not report any results on a specific group of subjects, but it claims the feasibility of sleep
studies based on Enobio EEG HB (Starlab®, Neuroelectrics, Barcelona, Spain). From sleep
data, they also intended to infer the risk of fall. Part of the presented platform architecture
is shown in Figure 5a. Regarding Parkinson disease, Branco et al., in [98], presented a data
platform (DataPark) able to collect continuous data from an accelerometer. The platform
includes quantification algorithms of sleep and physical activity. They obtained preliminary
results in a group of PD patients living in a rehabilitation clinic, observing sleep-position
changes and wake-ups. In addition, authors reported that patient and personnel feedback
were positive, especially regarding physical activity and sleep monitoring. Finally, Silva
de Lima, in [99], presented their project and platform, feasibility study and recruiting
procedure. Their system relied on a smartwatch connected to a smartphone to detect and
analyze sleep movements.

3.3. Sleep Quality and Movement Analysis

In the literature, studies focused on sleep-quality evaluation and movements in sleep
were found mainly addressed to PD, Friedreich ataxia and AD. The selected articles in
this scope are shown in Table 5. Regarding PD, research focused on analyzing abnormal
nocturnal movements during sleep. Those disturbances commonly affect PD patients
because of disease-related symptoms or sleep disorders and are clinically assessed by PSG
or video-PSG. Actigraphy is also commonly used for this purpose and is FDA-approved,
while accelerometers and inertial sensors in various configurations have been gaining
ground in this field in recent years [24,100].
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Table 5. Selected articles that present a system dedicated to neurodegenerative diseases for sleep-
quality and nocturnal-movements assessment.

Article Subjects Instrumentation Methods Results

Boroojerdi et al.
in [101] 21 PD subjects (W 1) NIMBLE patch contains an

accelerometer and an EMG

Tremor, postural instability, and
sleep-quality-measures
computation with different patch
locations. Comparison with
standard clinical scales. Feasibility
evaluation.

No correlation between sleep
measures and sleep diaries.
General good usability and
acceptability of the system.

Klingelhoefer in [102]
30 PD subjects with

EDS and 33 PD
subjects without EDS

(W) PKG (Parkinson’s
Kineti-Graph)

Bradykinesia and dyskinesia
scores to determine disturbed
nights. Comparison of the two
groups by PKG and sleep-diary
data (immobility, sleep duration,
sleep interruptions).

In the PD-EDS group, correlation
between subjective sleep reports
and PKG parameters for quantity
and quality of sleep. No
correlation in the other group.

Xue in [103] 29 PD subjects, 17 with
IBM (W) multisite inertial sensors

Sleep-quality measure with
traditional measures (total sleep
time and sleep efficiency) and
inertial sensors (acceleration,
angular velocity, wakeups,
turning in bad, limbs movements).
Comparison between the two
groups.

Negative correlation between
turning-over events and disease
duration. Positive correlation
between TST and sleep-efficiency
parameters and the number of
turns in bed. Significant
correlation between the number of
turns and TST.

Bhidayasiri et al.
in [104]

6 PD subjects and 6
spouses (W) Inertial sensors

Night-time movement analysis,
hypokinesia, rolling over
description (degrees, duration,
velocity, and acceleration) and
wakeups

Impairment in turning in PD
subjects (less frequent, slower,
smaller).

Mirelman et al.
in [105]

305 PD + 205 HC
subjects (W) Accelerometer

Nocturnal symptom assessment
through lying, turning, and
upright time.

Advanced PD subjects showed
more upright periods, and a
reduction in the number and
velocity of their turns. Correlation
between the reduction in
nocturnal movements and
increased PD motor severity,
worse dysautonomia and
cognition, and dopaminergic
medication.

Gavriel et al.
in [106,107] 9 F.Ataxia subjects (W) 1 or 4 of wireless BSN nodes

(inertial).

Extraction of biomarkers of Ataxia
and Ataxia progression from
segmentation of acceleration. They
are based on movements and
stillness intervals and were
correlated to SARA (traditional
Ataxia assessment method).

Correlation between the proposed
biomarker and SARA assessment.

Wei et al. in [108]

10 healthy young
subjects, 10 healthy

elders, 8 subjects
affected by Dementia

(W) Smartwatch (accelerometer) +
actigraph and temperature

sensors. See Figure 6.

Confront sleep diaries and
accelerometer data. Sleep onset,
sleep offset, and sleep duration
and nighttime wakeups were
calculated. Interday stability and
intraday variability were
calculated from temperature.

More movement during sleep,
measured by actigraphy, in older
adults than in the young, with an
increasing trend in those with
dementia. In addition, less
temperature variation between
night and day was measured in
the elderly.

1 W: wearable, NW: non-wearable; EMG: electromyogram; EDS: excessive daytime sleepiness; IBM: Impaired
Bed Mobility; TST: Total Sleep Time; HC: Healthy Controls; BSN: Body Sensors Network; SARA: Scale for the
Assessment and Rating of Ataxia; SAS: sleep apnea syndrome; iRBD: idiophatic behavior disorder.

Boroojerdi et al., in [101], and Klingelhoefer, in [102], focus on sleep-quality evaluation
in PD, assessing movements during the night. In particular, Boroojerdi et al., in [101], stud-
ied PD motor symptoms with an EMG patch and an accelerometer, evaluating sleep quality
in terms of time asleep and postural changes. The authors could not find a correlation
between sleep-quality measures and the sleep-diary reports of the subjects. In contrast,
Klingelhoefer et al., in [102], studied the effects of disturbed nights, such as daytime sleepi-
ness, through scores for BK and dyskinesia (DK) during sleep computed from Parkinson’s
KinetiGraphTM (Global Kinectic Pty Ltd, Melbourne Victoria, Australia). The authors
were able to correlate their algorithms for the definition of the quantity and quality of
sleep, derived from immobility-period identification, to self-assessment reports, in the EDS
affected group only. Nocturnal hypokinesia in PD was compared in [103] and [104]. Xue
et al., in [103], compared standard clinical scores, such as Unified Parkinson’s Disease Rat-
ing Scale (UPDRS), Hoehn andYahr (HY), Pittsburg Sleep Quality Index (PSQI), Epworth
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Sleepiness Scale (ESS), Parkinson’s Disease Sleep Scale (PSS), with sleep-quality parameters
extracted from inertial sensor analysis. They mainly considered TST, sleep efficiency and
sleep turnings. In this way, they could find that sleep quality is influenced by turnings
in bed and correlated to UPDRS or scores. Bhidayasiri et al., in [104], detected nocturnal
movements with an inertial sensor as well. Specifically, the authors measured turning
frequency and kinematic turnings parameters (e.g., degrees, velocities, accelerations). In
addition, they compared turns in bed in PD patients and their spouses, finding significant
impairment in PD subjects turnings (fewer, smaller, and slower turnings). The impact of PD
on turning in bed was the main focus of [105] by Mirelman et al. as well. Specifically, the
authors analyzed the influence of PD on sleep, obtaining information on sleep interruptions,
turnings and laying from a single accelerometer, comparing data on 305 PD subjects and
205 healthy controls. In advanced PD, fewer turns, slower turns, and greater upright time
were found, as expected. Moreover, newly diagnosed subjects were similar to controls
in the number of turns, but differed in the speed and amplitude of turning, suggesting
that this type of measurement can be used as a descriptive of disease progression and as a
potential diagnostic tool.

Sleep quality and motion description were also considered relevant topics in Friedreich
Ataxia by Gavriel et al. in ref. [106] and ref. [107], where a kinematic sensor network was
used to assess disease progression and drug effect in an objective manner. Specific kinematic
biomarkers were extracted from movement segmentation and compared with Scale for the
Assessment and Rating of Ataxia (SARA) scores (standard assessing method). Finally, sleep
quality was also explored in the field of dementia, where Wei et al., in [108], compared sleep-
quality measures and outcomes in the presence of a dementia diagnosis and in subjects
of different ages. They employed a commercial wristband together with a custom one
equipped with actigraphy and temperature sensors, as shown in Figure 6a. The authors
found significantly lower sleep and wake temperature difference in older adults with
dementia. Furthermore, movements during sleep increased with age, and even more in the
presence of dementia. Lastly, a group of innovative technologies related to RBD detection
and evaluation were selected. In fact, RBD traditional assessment mainly relies on the
identification of movements during the REM stage. Therefore, it requires the simultaneous
identification of the REM stage and the analysis of EMG recordings, which constitutes one
of the most complex procedures. Given its discovered importance in synucleinopathies,
interest grew around prodromal RBD, also considering the difficulty in distinguishing it
from mimics, i.e., other motor manifestations or parasomnias during sleep. An attempt at
simplification was provided by Cesari and Waser in [109,110], respectively, which exploited
3D video analysis to evaluate limbs movements. They used custom algorithms to identify
limb movements. The video analysis was based on the motion signal, corresponding to
pixel-wise variation in the 3D video frames over time. Specifically, the authors grouped
the automatically identified movements into three regions of interest (upper body, lower
body, and full body) based on their duration, estimated movement features for each group
and, finally, evaluated their accuracy. In addition, they correlated the estimated features,
which could better discriminate isolated RBD- [111] from sleep-disordered breathing (SDB)-
affected patients for each group regarding REM sleep without atonia episodes. Finally,
Filardi et al., in [112], exploited the analysis of rest–wake-cycle analysis obtained from
actigraphy to identify subjects with RBD and to compare their features with those of
subjects presenting with symptoms that mimic RBD. A qualitative summary of these works
is shown in Table 6.
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Figure 6. Custom-built wristband for actigraphy and temperature measures, employed for sleep
quality assessment. The figure is adapted from [108].

Table 6. Selected articles that present a system dedicated to neurodegenerative diseases for nocturnal
movements related to RBD.

Article Subjects Instrumentation Methods Results

Waser et al. in [110]

122 (40 iRBD, 18
prodromal RBD, 64
participants with

mimic symptoms).

(NW1) 3D cameras

Custom algorithm for lower limb
movement identification in REM.
Feature extraction (movements rate,
duration, extent, and intensity) and
comparison with
video-polysomnographic findings.

Significant increase in features
analyzed among subjects with iRBD
and prodromal RBD and mimic
groups. In addition, leg movements
with a duration <2 s discriminated
iRBD with the highest accuracy
(90.4%) from other motor activity
during sleep.

Cesari et al. in [109] 20 RBD, 24 SDB
subjects (NW) 3D cameras

Custom algorithm for lower and
upper limb movement identification
in REM with a max. duration of 5s.
Exclusion of breathing movements.
Feature extraction (3D rate: the
number of movements in REM sleep
per hour of REM sleep, and 3D ratio:
the total movement-duration time in
seconds in REM sleep divided by the
total REM-sleep time in seconds) and
patient classification were performed
(receiver operating characteristic
curve to distinguish iRBD , positive
class from SDB, negative class).

RBD vs. SDB classification provided
an accuracy of 0.91 and F1-score of
0.90

Filardi et al. [112]

19 with iRBD, 19 RLS
and 20 with untreated

SAS and 16 healthy
controls

(W) Micro Motionlogger®

Actigraphy Watch
(Ambulatory Monitoring, Inc.;

NY) + light sensor.

Comparison of video-PSG and
RBD-screening-questionnaires
findings with the analysis of
rest–activity cycles as derived from
actigraphy. Features of rest–activity
rhythm such as bedtime, wake-up
time, midpoint of sleep, estimated
wake after sleep onset (eWASO),
estimated sleep efficiency (eSE) and
activity bouts were extracted.

Lower sleep efficiency, augmented
eWASO and increased frequency of
prolonged activity bouts for subjects
with iRBD compared with those
with RLS and controls; no difference
compared with SAS patients. In
addition, features computed on 24h
recording allowed to distinguish
iRBD subjects better than screening
questionnaires.

1 NW: non-wearable; W: wearable; EMG: electromyogram; REM: Rapid Eye movement; SDB: sleep disordered
breathing; iRBD: idiophatic behavior disorder.
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4. Discussion and Conclusions

As discussed in the introduction section, sleep has an important role in guaranteeing a
good quality of life, influencing cognitive and physical performances in healthy people and
more extensively in the elderly, frail people or subjects with neurodegenerative disorders.
Unobtrusive technologies for sleep monitoring are becoming the focus of many companies
that develops health and well-being monitoring applications. The use of unobtrusive
devices for sleep monitoring would also be of great value in the medical field, especially
if applied to subjects affected by NDs, enabling more convenient and even continuous
assessment of sleep-related disorders. However, analysis of the articles selected by this
review showed that, in the latter area, the multiple proposed solutions still need further
validation before application in clinical practice and in patients’ daily lives. In fact, many
different sensors were used in the reviewed works, showing the feasibility of different sleep
monitoring tools, but, it was infrequently considered how these systems could fit into the
complex consolidated clinical practice related to NDs.

First, the smart-home monitoring approach, even if interesting, requires the integration
of sensors, data and interactions from many stakeholders: the house owner (who is also
probably the end user), the company providing the system and the clinical facility that
relies on the system and provides the medical service through it. At the moment, there
are few healthcare facilities that actually provide these types of telemedicine services.
Moreover, the literature search highlighted many smart-home monitoring solutions aimed
at ND that included sleep monitoring, but most of them involved feasibility studies or only
preliminary results about sleep. Ref. [90] and ref. [94] constitute exceptions, providing
results on a moderate number of subjects with cognitive impairment and AD. However,
the setup employed by these solutions, consisting of a network of several sensors, presents
some drawbacks. For example, the large amount of data collected from all the sensors
in continuous monitoring are very difficult (and expensive) to manage and analyze to
obtain clinically meaningful results. In addition, custom algorithms should consider many
use cases to be robust and subject-oriented, but structured guidelines for continuous
home-monitoring applications are lacking in the literature. Moreover, the overall cost
could be excessively expensive even in the validation phase of the solution, making these
applications apparently suffer from the bottleneck effect typical of many telemedicine
solutions [113,114].

Secondly, when there are multiple needs, as in multi-disease patients, it would not be
feasible to employ a single device to assess each symptom. Therefore, patients and health-
care institutions need to rely on few trusted tools. From this perspective, actigraphy and
inertial sensors are the main solutions for the movement analysis of daytime and nighttime
symptoms, in addition or complementary to PSG. The wide applications of these types
of sensors (e.g., gait analysis, limb movements, bradykinesia, tremor) make them suitable
for integration in patients’ daily life and hospitals. Indeed, they proved to be the most
widespread and validated solutions. Actigraphy or “equivalent FDA approved devices that
uses an accelerometer to measure limb activity associated with movement during sleep for
physiologic applications” have already landed in the clinical sleep-monitoring field [115].
However, their use is always contingent on individual circumstances, such as the presence
of ND. This is confirmed by the fact that the use of inertial sensors for sleep monitoring
in ND is dominant between the reviewed articles, as shown in Figure 2, especially for
sleep-quality assessment and movement analysis in a wearable configuration. The inertial
sensors are mainly used to determine the permanence in bed, the number of sleep inter-
ruptions and the kinematic properties of the movements, such as the turning speed. This
makes them good substitutes for sleep diaries, due to their ability to collect quantitative
and objective information about sleep. In [102–105], inertial wearable sensors showed the
ability of characterizing PD patients with respect to healthy subjects and disease progres-
sion; while in refs. [87,90], they were successfully used for AD treatment optimization and
in refs. [106,107] for Ataxia characterization through the extraction of biomarkers correlated
to standard scores. The feasibility and the importance of sleep evaluations in patients with
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ND is, therefore, undoubtable, but a structured protocol of assessment that exploits these
sensors has still to be established. For instance, hte optimized number and positioning
of inertial sensors in the different disciplines is still to be defined. Fewer sensors would
provide a cheaper and more convenient solution, but may not provide sufficient sensitivity
to events of interest (e.g., the accelerometer on the arm may ignore foot/limb movements),
not to mention that the events of interest depend on the analysis to be performed, which
is not always completely defined a priori. Bed sensors are known to be able to provide
information on bed occupancy and nighttime movements [116], but no articles presenting
their use in ND other than AD were found in the literature search.

A separate discussion should be conducted on movement detection during REM
phase to assess REM sleep without atonia for the diagnosis of RBD. In this literature
search, two main approaches were found in this direction: 3D-video analysis [109,110] and
actigraphy [112]. Both of them showed good performance and are cost-effective solutions.
However, they need prior sleep-stage scoring (such as REM-stage recognition for 3D video
analysis) or manual event tagging (such as day–night stage recognition for actigraphy). The
potential of this type of screening is huge due to the possibility of observing other types of
movements of clinical interest, such as thorax/abdomen movements during breathing, or
turnings in bed. Therefore, these technologies are a promising line of research that should
be further explored, while also considering mixed approaches. Lastly, the selected articles
about automatic sleep staging showed interesting results using several types of sensors.
However, the samples tested are not sufficient to evaluate a trend in this category. For
example, in refs. [81–83], only healthy subjects were enrolled, with sample sizes ranging
from 5 to 12 subjects. In contrast, ref. [84] included PD subjects but did not provide an
accuracy comparison with PSG results.

To conclude, the literature research conducted in this review seems to demonstrate
the feasibility of many different types of unobtrusive methods and technologies for sleep
monitoring in ND, but further exploration needs to be performed to better establish the
possibilities and limitations of these solutions in this specific scenario. Furthermore, a
structured revision of the possible intersection with the actual clinical practice should be
considered in order to select and adapt the possible solutions capable to cover, for each
neurodegenerative disorder, the widest possible number of their clinical needs.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Alzheimer’s disease
ADL activity of daily living
ALS amyotrophic lateral sclerosis
BK bradykinesia
CAP cyclic alternating pattern
DK dyskinesia
CNN convolutional neural network
CNS central nervous system
DL deep learning
DLB dementia with Lewy body
ECG electrocardiography
EDS excessive daytime sleepiness
EEG electroencephalography
EMG electromyography
EOG electrooculography
ESS Epworth Sleepiness Scale
FDA American Food and Drug Administration
GPS global positioning system
HY Hoehn andYahr
IoT Internet of Things
k-NN k-nearest neighbour
LSTM long short-term memory
MCI mild cognitive impairment
MSA multiple system atrophy
ND neurodegenerative diseases
NREM non-REM
ORCATECH Oregon Center for Aging and Technology
OSA obstructive sleep apnea
PD Parkinson’s disease
PLMS periodic leg movements in sleep
PSG polysomnography
PSQI Pittsburg Sleep Quality Index
PSS Parkinson’s Disease Sleep Scale
RBD REM sleep behavior disorder
REM rapid eye movements
RFID radio frequency identification
RLS restless legs syndrome
SARA Scale for the Assessment and Rating of Ataxia
SD sleep disorders incidence
SDB sleep-disordered breathing
SVM support vector machine
TST total sleep time
UPDRS Unified Parkinson’s Disease Rating Scale
WASO wake after sleep onset

References
1. Killgore, W.D.S. Effects of sleep deprivation on cognition. Prog. Brain Res. 2010, 185, 105–129.
2. Spiegel, K. Effect of sleep deprivation on response to immunizaton. JAMA 2002, 288, 1471–1472. [CrossRef]
3. Knutson, K.L.; Spiegel, K.; Penev, P.; Van Cauter, E. The metabolic consequences of sleep deprivation. Sleep Med. Rev. 2007,

11, 163–178. [CrossRef] [PubMed]
4. Halász, P. Hierarchy of micro-arousals and the microstructure of sleep. Neurophysiol. Clin. Neurophysiol. 1998, 28, 461–475.

[CrossRef]
5. Parrino, L.; Ferrillo, F.; Smerieri, A.; Spaggiari, M.C.; Palomba, V.; Rossi, M.; Terzano, M.G. Is insomnia a neurophysiological

disorder? The role of sleep EEG microstructure. Brain Res. Bull. 2004, 63, 377–383. [CrossRef] [PubMed]

24



Electronics 2023, 12, 1098

6. Foley, D.; Ancoli-Israel, S.; Britz, P.; Walsh, J. Sleep disturbances and chronic disease in older adults: Results of the 2003 National
Sleep Foundation Sleep in America Survey. J. Psychosom. Res. 2004, 56, 497–502. [CrossRef] [PubMed]

7. Iranzo, A.; Santamaria, J. Sleep in Neurodegenerative Diseases. In Sleep Medicine; Springer: New York, NY, USA, 2015;
pp. 271–283.

8. Iranzo, A. Sleep in dementia and other neurodegenerative diseases. In Sleep Disorders in Neurology; John Wiley & Sons, Ltd:
Chichester, UK, 2018; pp. 229–240.

9. Abbott, S.M.; Videnovic, A. Chronic sleep disturbance and neural injury: Links to neurodegenerative disease. Nat. Sci. Sleep 2016,
8, 55–61.

10. Priano, L.; Bigoni, M.; Albani, G.; Sellitti, L.; Giacomotti, E.; Picconi, R.; Cremascoli, R.; Zibetti, M.; Lopiano, L.; Mauro, A. Sleep
microstructure in Parkinson’s disease: Cycling alternating pattern (CAP) as a sensitive marker of early NREM sleep instability.
Sleep Med. 2019, 61, 57–62. [CrossRef]

11. Iranzo, A. Sleep in neurodegenerative diseases. Sleep Med. Clin. 2016, 11, 1–18. [CrossRef]
12. Mendonca, F.; Mostafa, S.S.; Ravelo-Garcia, A.G.; Morgado-Dias, F.; Penzel, T. A review of obstructive sleep apnea detection

approaches. IEEE J. Biomed. Health Inform. 2019, 23, 825–837. [CrossRef]
13. Younes, M.; Raneri, J.; Hanly, P. Staging sleep in polysomnograms: Analysis of inter-scorer variability. J. Clin. Sleep Med. 2016,

12, 885–894. [CrossRef] [PubMed]
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Abstract: Bradykinesia is the defining motor symptom of Parkinson’s disease (PD) and is reflected
as a progressive reduction in speed and range of motion. The evaluation of bradykinesia severity
is important for assessing disease progression, daily motor fluctuations, and therapy response.
However, the clinical evaluation of PD motor signs is affected by subjectivity, leading to intra- and
inter-rater variability. Moreover, the clinical assessment is performed a few times a year during pre-
scheduled follow-up visits. To overcome these limitations, objective and unobtrusive methods based
on wearable motion sensors and machine learning (ML) have been proposed, providing promising
results. In this study, the combination of inertial sensors embedded in consumer smartwatches and
different ML models is exploited to detect bradykinesia in the upper extremities and evaluate its
severity. Six PD subjects and seven age-matched healthy controls were equipped with a consumer
smartwatch and asked to perform a set of motor exercises for at least 6 weeks. Different feature sets,
data representations, data augmentation methods, and ML models were implemented and combined.
Data recorded from smartwatches’ motion sensors, properly augmented and fed to a combination
of Convolutional Neural Network and Random Forest model, provided the best results, with an
accuracy of 0.86 and an area under the curve (AUC) of 0.94. Results suggest that the combination of
consumer smartwatches and ML classification methods represents an unobtrusive solution for the
detection of bradykinesia and the evaluation of its severity.

Keywords: Parkinson’s disease; bradykinesia; wearables; inertial sensors; artificial intelligence;
deep learning

1. Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases
worldwide [1], affecting millions of people and impacting their quality of life (QoL) [2]. PD
is a progressive disease with a slow and variable evolution. In the early stages, the symp-
toms are weak, and they increase in intensity as the disease progresses [3]. PD involves
both motor and non-motor symptoms, with some of the latter (i.e., speech impairment and
sleep disorders) manifesting up to 20 years before the clinical diagnosis [4]. Being primarily
a movement disorder, several motor signs are associated with PD, including bradykinesia,
tremor, and rigidity. As the disease progresses, postural instability and freezing of gait
(FOG) manifest, increasing the risk of falls [5] and contributing to decreased mobility [6].
As the main biochemical abnormality in PD is dopamine deficiency [7], current treatments
are mainly based on dopamine replacement, with Levodopa representing the most ef-
fective drug treatment for PD [8,9]. However, current treatments do not prevent disease
progression, their effectiveness decreases with disease progression [10], and long-term
therapy frequently leads to severe side effects [11]. Moreover, as the disease progresses and
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drug therapy is administrated, patients may experience fluctuations in the state of their
motor system, between the so-called ON state, where symptoms are under control and the
patient can move fluidly, and an OFF state, in which a lack of dopamine predominates and
symptoms reappear when the effect of the medication vanishes.

Bradykinesia represents one of the earliest motor signs of PD, and it is one of the
main aspects that specialists try to quantify to diagnose PD and optimize therapy. It is
defined by the slowness and decrease in the amplitude or speed of movement in a body
part [12]. Akinesia and hypokinesia refer respectively to poor spontaneous movements
(i.e., in facial expression) or associated movement (i.e., arm swing during walking) and
the low amplitude of movement [2,13]. Bradykinesia can vary throughout the day and its
severity also vary depending on the timing and amount of the last medication. In addition,
the symptom’s severity also depends on the patient’s emotional state and environment [2].
Bradykinesia is one of the key signs in the evaluation of PD, it is directly related to dopamine
deficiency [14], and it shows an exceptional response to treatment [15]. Thus, objectively
quantifying this symptom would provide relevant information for treatment adjustments
and early diagnosis. Following the movement disorder society revised version of the unified
Parkinson’s disease rating scale (MDS-UPDRS), neurologists assess bradykinesia severity
through the execution of rapid, repetitive, alternating hand and heel movements, and they
observe the amplitude and slowness of the movement [16]. However, the assessment is
performed sporadically, during brief follow-up visits, often without considering the effect
of medication. Moreover, intra-rater and inter-rater variability affect the evaluation of the
patient’s motor performance [17,18].

Subjectivity and late diagnosis highlight the need for new, more objective methodolo-
gies allowing the early diagnosis of the disease, the continuous monitoring of its evolution,
and the evaluation of the response to therapy [19]. In this context, digital technologies have
demonstrated their potential to change the disease paradigm, providing unobtrusive yet
efficient solutions for the diagnosis, assessment, monitoring, and treatment planning of PD
patients [20,21]. Indeed, an objective measure of PD symptoms can help improve disease
management and accelerate the development of new therapies [15]. Wearable sensors bene-
fit from the current technological advances to provide lightweight, portable, easy-to-use,
inexpensive devices which can provide accurate measurements of physical variables [22].
Wearable motion sensors and ML methods have been widely used for objectively and
rigorously assessing motor symptoms, motor fluctuations, and other complications that are
relevant to adjust treatment and remote assistance [15,23–26].

In this context, this paper evaluates the potential of consumer smartwatches for
estimating bradykinesia severity in PD. To this end, upper limb motion data were recorded
from a triaxial accelerometer and triaxial gyroscope placed on the patient’s wrist. Then,
signal processing, data augmentation, data transformation, and different ML and DL
classification models were implemented to predict the bradykinesia severity following the
standards of the MDS-UPDRS scale. The main contributions of this work are summarized
as follows:

• This study evaluates the potential of accelerometer and gyroscope sensors embedded
in commodity smartwatches to detect bradykinesia severity using a set of standard-
ized exercises. This approach can present an unobtrusive solution for bradykinesia
monitoring in ambulatory and non-supervised environments using low-cost devices
instead of using proprietary monitoring devices or sensors.

• Different feature extraction methodologies proposed in the related literature are repro-
duced and evaluated with the data collected using commodity smartwatches. This
task is performed to compare the predictive power of approaches based on ML and
DL. In addition, the potential of different data representations and data augmentation
techniques is evaluated with the aim of improving the performance of the systems for
automatic bradykinesia severity scoring.

• This work also introduces the use of convolutional neural networks (CNN) with
patch input (implemented with 1D-convolutional layers) for automatic temporal
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window contextualization. The patch input strategy is proposed as a mechanism to
automatically split and project the data of a single (multi-channel) sliding window into
another dimension that can be exploited by classification algorithms. Additionally,
the proposed approach is evaluated using an end-to-end neural network, and in
combination with a Random Forest (RF) classifier located at the top of the neural
network.

• Finally, a methodology for the aggregation of a set of predictions (severity ratings)
obtained from the classifiers during a single clinical visit is proposed and evaluated.
This methodology is carried out with the aim of improving the outcomes of the
bradykinesia assessment by providing a single severity indicator of the motor function
of the upper limbs.

The rest of this paper is organized as follows: An overview of the research stud-
ies focusing on bradykinesia detection using wearable sensors is provided in Section 2.
Section 3 describes the data set used in this study, the implemented signal processing and
ML methods, and the performance evaluation procedure. Results are reported in Section 4
and discussed in Section 5, together with conclusions.

2. Related Work

The quantification of bradykinesia using wearable technologies has been widely
explored in the last several decades. Besides commercial solutions, such as Kinesia® (Great
Lakes NeuroTechnologies Inc., Cleveland, OH, USA) [27] and PKG® (Global Kinetics
Pty Ltd., Melbourne, Australia) [28], several research studies focused on the detection of
bradykinesia by characterizing the movement of patients. In [29], 50 PD patients were
monitored to quantify bradykinesia and hypokinesia. Two accelerometers on the wrist
were used for data collection, obtaining sensitivities of 60–71% and specificities of 66–76%.
In [30], seven gyroscopes and two accelerometers were placed on the forearms, shins,
and trunk for diagnosing the presence or absence of bradykinesia, tremor, body posture,
and gait parameters, obtaining a Pearson correlation coefficient r of 0.71 with the UPDRS
scale. In [31], a combination of a flexible sensor placed on the hand (triaxial accelerometer
and gyroscope) and a consumer smartwatch (triaxial accelerometer) was employed to
monitor 13 PD subjects. By using an RF algorithm, the authors achieved an AUC of 0.65
in a multiclass classification (MDS-UPDRS). In [32], an inertial measurement unit (IMU)
wristband with an accelerometer was used to monitor 31 PD patients and 50 healthy
controls. The authors proposed a methodology to extract bradykinesia digital biomarkers,
providing a strong correlation (Pearson r = 0.67) between hand motion measurements and
the MDS-UPDRS scoring.

The leg agility task (MDS-UPDRS item 3.8) was addressed in different studies for the
quantification of bradykinesia. In [33,34], 34 and 24 subjects were enrolled, respectively.
Three IMUs were mounted on the patient’s chest and each thigh. Time- and frequency-
domain features were extracted and selected to feed classification algorithms, i.e., Support
Vector Machine (SVM) and k-Nearest Neighbors (kNN). Bradykinesia severity (UPDRS
score) was estimated with an accuracy of 43% in both studies. In [35], 19 subjects with
PD were monitored with ankle-mounted IMUs for leg agility evaluation and treatment
response. Time- and frequency-domain features were computed to feed different classifiers,
i.e., SVM, Decision Tree, and Logistic Regression. Pearson correlation with the UPDRS
bradykinesia score was found to be r = 0.83. Finally, in [17], smartphones’ sensors and ML
were used to detect bradykinesia using leg agility exercises, achieving an accuracy of 77.7%
in a multi-class classification using the UPDRS scale.

In recent years, the research community has explored the use of DL techniques for
the automatic analysis of motor symptoms. DL methods make it possible to process the
recorded inertial signals without the need for additional processing techniques, reducing
the effort in the design and selection of discriminative feature sets [36]. However, despite
the advantages of technology in PD, the application of these techniques requires a high
amount of quality data and high computational processing power [37].

33



Electronics 2022, 11, 3879

Relevant works using DL methods and wearable technology to assess bradykinesia
have been proposed in [38,39], where CNN and sensors placed on the upper limbs have
been employed. The results of these works indicate that they can outperform (shallow)
ML approaches achieving an accuracy of 90.9% [38], and an AUC of 0.926 [39]. In [40],
30 PD patients were monitored during different activities using a single accelerometer on
the wrist. CNN was used to process raw data and predict bradykinesia severity, achieving
an accuracy of 0.67, sensitivity of 0.65, and specificity of 0.89. In [41], six flexible wearable
sensors were used for recording data from 20 individuals with PD throughout multiple
clinical assessments. Raw inertial data were input to a CNN algorithm, providing an AUC
of 0.77.

3. Materials and Methods

In this section, the methodology developed to obtain different bradykinesia detection
methods is described. Section 3.1 describes the data used in this study, including informa-
tion regarding subjects’ characteristics, experimental procedures, and clinical assessment of
bradykinesia. The preprocessing procedures, including filtering, feature extraction, data
transformation, and data augmentation, are reported in Section 3.2. Section 3.3 describes
the ML and DL classification algorithms employed in the present work, together with their
implementation details. Finally, details regarding the performance evaluation methods are
provided in Section 3.5.

3.1. Bradykinesia Dataset

The dataset employed in this study was collected using the Monipar application [42].
Monipar proposes a system based on wearable technology and artificial intelligence (AI) for
monitoring motor activity in PD. The system consists of a mobile app that guides the user
in performing 8 exercises of the MDS-UPDRS scale and a wearable module that records
the subject’s movement using the triaxial accelerometer and gyroscope embedded in a
consumer smartwatch. Specifically, tasks consisted of a series of 8 exercises belonging
to the MDS-UPDRS scale part III, concerning the examination of the motor aspects [16].
The selected exercises include rest tremor amplitude, postural tremor of the hands, move-
ment of the hands to the chest, finger tapping, hand movements, pronation–supination
movements of the hands, arising from a chair, and gait. The duration of the entire procedure
is approximately 7 min.

3.1.1. Data Acquisition

Data were recorded from 6 subjects (3 females and 3 males, 64.2 ± 8.2 years) diagnosed
with PD in the early stages of the disease, according to the Hoehn and Yarn scale [43]
(H&Y = 1 in all subjects) and from 7 healthy control subjects (4 females and 3 males,
64.0 ± 5.4 years). The data collection process was carried out for 8 and 9 weeks, respectively,
using the Monipar application. Each week, subjects performed the pre-defined motor
tasks in a controlled environment. A total of 105 weekly sessions were collected during
the experimentation (46 sessions for PD; 59 sessions for healthy controls). These data
correspond to more than 13 h of movement data collected with a triaxial accelerometer and
a triaxial gyroscope. However, only relevant data related to the movement of the upper
limbs, i.e., that recorded during finger tapping, hand movement, and pronation–supination
movement of the hands, were analyzed in this study. The data from the three hand exercises
correspond to 80 min (10% of the entire data set) of movement data collected by each of the
inertial sensors.

The smartwatch employed for data collection was available on the market in 2019.
This device employs Android Wear operating system and an internal memory of 4 GB
(2 GB of free space). The device has a calibrated triaxial accelerometer with a maximum
amplitude set to ±2 g, and triaxial gyroscope with a measurement range set to ±2000 dps.

The smartwatch was placed on the wrist of the most affected side, according to the
clinical indication of the physician attending to the patient and the dominant hand of
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healthy controls. Data were recorded using the accelerometer and gyroscope embedded in
the smartwatch, with a sampling frequency of 50 Hz. Such a frequency is appropriate for
human motion analysis, as the frequency content generated by common human movements
lies in the 0–20 Hz band [44]. Figure 1 summarizes the data collection process carried out
using the Monipar app.

Figure 1. Data collection methodology to detect bradykinesia using smartwatches and MDS-
UPDRS exercises.

3.1.2. Data Labeling

Training supervised ML and DL methods to automatically detect motor symptoms
requires data to be labeled by expert clinicians, who recognize symptoms and evaluate their
severity. The labeling of the Monipar data was performed by a trained expert neurologist,
who reviewed the videos of the weekly trials performed by the subjects. For each motor
task, the clinician identified the presence of bradykinesia and evaluated its severity. Ac-
cording to the MDS-UPDRS guidelines, a score between 0 (no bradykinesia) and 4 (severe
bradykinesia) was assigned to each task. To assign a single severity value to the data of
each weekly assessment, the sub-scores of the three upper limbs exercises were averaged
and rounded, and finally used as the reference metric. The distribution of the severity of
bradykinesia in the group of PD patients and control subjects is reported in Figure 2. It can
be observed that the recorded bradykinesia severity corresponds to four UPDRS ratings,
including normal (0), slight (1), mild (2), and moderate (3). As evident from Figure 2,
the data distribution is unbalanced, with more than 57% of the data corresponding to the
UPDRS 0 severity (no bradykinesia). Moreover, movements belonging to the class UPDRS
4 (severe bradykinesia) are not represented. This is likely due to the intrinsic composition
of the PD sample, which encompasses patients in the early stages of the disease.

Figure 2. Distribution of the severity of bradykinesia in the dataset.
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3.2. Signal Preprocessing

In order to prepare data for the subsequent classification step, some preprocessing
procedures were performed. First, data were filtered and segmented (Section 3.2.1); then,
different data transformation methods were applied (Section 3.2.2) to provide the input for
ML and DL algorithms; finally, data augmentation was exploited to increase the data set
size and provide a more balanced distribution of data (Section 3.2.3).

3.2.1. Filtering and Segmentation

The low-frequency components of the sensor readings are related to postural changes
(gross movements), while the high-frequency components reflect the actual accelerations of
the body segments, associated with rapid movements [45]. To remove the gravity effect and
the noise produced by trembling or shaking, inertial data were filtered using a fourth-order
zero-lag Butterworth band-pass infinite impulse response (IIR) digital filter, with cut-off
frequencies of 0.25 Hz and 3.5 Hz. The advantage of the Butterworth-type filter is that it
allows a nearly constant gain in the passband. Then, inertial signals were segmented using
non-overlapping sliding windows of 5.12 s (i.e., 256 samples). Figure 3 shows a segment of
the raw gyroscope signal (Figure 3a) and the corresponding filtered signal (Figure 3b).

(a) Original signal

(b) Filtered signal
Figure 3. Filtering applied to the gyroscope signals. (a) sample of the original signal corresponding to
exercise 4 (finger tapping); (b) gyroscope signal after applying a 0.25–3.5 Hz fourth-order Butterworth
band pass filter.

3.2.2. Feature Extraction

Classic ML models such as RF require features to be extracted from recorded signals.
Two feature sets proposed in the reference literature were reproduced in this study, belong-
ing to both the time and frequency domains. This was carried out to establish a reference
model for comparison with the proposed methods. The two sets of features [31,46] include
a total number of 74 and 43 features, respectively.

As far as the input data for DL models are concerned, two different data representa-
tions were employed. The first consists of using the inertial readings, normalized in the
range from −1 to 1. The second was created as follows. Every single window obtained from
the segmentation process was divided into two consecutive windows of 2.56 s (i.e., 128 sam-
ples). Then, the signals’ fast Fourier transform (FFT) was computed for both windows and
used as an input feature set. This feature extraction method is based on contextual windows
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and will be referred to in the rest of the paper as Contextual FFT. The contextualization of
adjacent FFT windows is based on methods proposed in the reference literature to improve
the performance in FOG detection using accelerometers [47–49].

A summary of the feature set employed in this study is shown in Table 1.

Table 1. Summary of the data representations. FFT: fast Fourier transform.

Feature Set Number of
Features Description of the Features

Shawen et al. [31] 74

- Time domain features (24)
- Frequency domain features (24)
- Features extracted from the derivatives of the signals (16)
- Entropy (4)
- Peak correlation between signals (3)
- Cross-correlation delay (3)

Channa et al. [46] 43
- Time domain features (28)
- Frequency domain features (12)
- Peak correlation between signals (3)

Filtered signal
(256-sample

window)

768
(256 × 3)

Filtered signal obtained from the triaxial sensors
(accelerometer or gyroscope).

Contextual FFT
384

(128 × 3)

Concatenated single-side FFT of two consecutive windows.
A single window (256 samples) was divided into 2 win-
dows of 128 samples before FFT computation.

3.2.3. Data Augmentation

The synthetic minority over-sampling technique (SMOTE) [50] was used to balance
the data input to classic ML classifiers. Specifically, the classes with a minority number of
sliding windows (i.e., UPDRS 1 = 768; UPDRS 2 = 1027; UPDRS 3 = 2132) were resampled
to provide the same number of sliding windows as the majority class (UPDRS 0 = 5253).
The number of nearest neighbors used to construct the synthetic samples was set to 5. This
procedure produced an increase in the dataset size of 53%.

As far as the raw signals input to convolutional models are concerned, the applica-
tion of signal permutation and magnitude warping [51] were employed to quadruple the
amount of data. In the former case, the input data were sliced into four equal-length seg-
ments, and these segments were randomly permuted to create a new sliding window. As for
the latter method, convolution between the input data and a smooth (randomly generated)
curve was performed to change the magnitude of the samples of the sliding window.

All the described data augmentation techniques were applied only to the training
subsets, while the testing subset remained unchanged. Figure 4 shows examples of the
original data and the data augmentation techniques applied to the gyroscope signals.
As shown in Figure 4b,e, portions of the signal were randomly permuted from the original
signals (see Figure 4a,d), while, in Figure 4c,f, the amplitude of the original signals was
modified by a randomly generated (smooth) curve.
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(a) Original signal (b) Permutation (c) Magnitude warping

(d) Original signal (e) Permutation (f) Magnitude warping

Figure 4. Data augmentation techniques applied in the gyroscope signals. (a) sample of the original
signal corresponding to exercise 4 (finger tapping); (b) permutation of a sample signal of the exercise 4;
(c) magnitude warping of a sample signal of exercise 4; (d) sample of the original signal corresponding
to exercise 5 (hand movements); (e) permutation of a sample signal of the exercise 5; (f) magnitude
warping of a sample signal of exercise 5.

3.3. Classification Algorithms

Different algorithms were implemented to predict the bradykinesia severity in PD
patients and control subjects, resulting in a multi-class classification task. The output of
the implemented models is a value between 0 and 3, according to the clinical bradykinesia
score provided by the MDS-UPDRS scale.

For comparison proposes, two detection methods have been reproduced and evaluated
to generate baseline metrics. The reproduced methods were the feature sets proposed in
Shawen et al. [31] and Channa et al. [46]; these feature sets fed an RF classification model
with 100 estimators, as proposed in [31]. Additional parameters of the RF classification
algorithm were a minimum sample split equal to 2, a minimum sample leaf equal to 1,
and the split criterion was Gini impurity [52].

The following DL algorithms were trained either using raw inertial signals or using
the Contextual FFT data representation, as previously described in Section 3.2.2.

CNN. It consists of an input layer (256 features and 3 channels), connected to three
one-dimensional convolutional layers of (1D-CNN), all three with 64 filters of size equal
to 8 and rectified linear unit (ReLU) activation functions. Then, a global average pooling
(GAP) layer was connected. For classification tasks, a multi-layer-perceptron (MLP) block
composed of a densely connected layer with 260 units and ReLU activation was densely
connected to a softmax layer with 4 units, corresponding to the number of output classes
(i.e., bradykinesia severity score from 0 to 3).

Contextual CNN. The features extracted by the contextual windows method were
evaluated. In this case, the architecture of the CNN used is composed of an input layer
(256 features and 3 channels), connected to three 1D-CNN, the first one with 64 filters of
size 8 and the next two with 20 filters of size 8, all of them with ReLU activation function.
A GAP layer was then connected. For the classification tasks, an MLP block composed of a
densely connected layer with 180 units and a ReLU activation function was connected to
the classification layer, made of 4 units with a softmax activation function.

CNN (PI). As a novel approach, a CNN with patch input (PI) was proposed and
evaluated. The patch extraction was implemented using a 1D-CNN. For this task, the kernel
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and stride parameters were set with the same value. In this way, the convolutional layers
can act as an automatic patch extractor and bring equivalent results to patching extraction
strategies such as those employed in Transformer-based models and isotropic computer-
vision models [53,54], in which images are divided into non-overlapping square patches in
raster-scan order. The proposed patching input strategy adapted to process multi-channel
signals is shown in Figure 5.

Figure 5. Patch input strategy with 1D-Convolution.

The training and evaluation of this latter model were performed using the filtered
inertial signals. The architecture consists of an input layer implementing the PI strategy
using 64 filters with kernel size and stride equal to 8 (in both cases). The input layer was
connected to one 1D convolutional layer with 64 filters, a kernel size of 3, and a ReLU
activation function. Then, a max pooling layer with a pool size of 2 and a subsequent GAP
layer were connected. For the classification tasks, the MLP block included two densely
connected layers, with 100 and 50 units, respectively, both with ReLU activation functions.
Finally, these layers were connected to the final classification with 4 units and a softmax
activation function. The architecture for the DNN with convolutional layers and PI is
shown in Figure 6.

Figure 6. Proposed architecture for a CNN with patch input and MLP.

CNN (PI) + RF. The combination of CNN with PI and RF classification algorithm was
evaluated. In this approach, the convolutional (with path input) block acts as a feature
extractor, while the RF model (with 100 estimators) performs the classification tasks. While
the CNN block allows the automatic extraction of features from the raw signal, the RF
classifier takes advantage of a large number of individual decision trees that operate as an
ensemble, providing good performance and high generalization capabilities.
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In this classification algorithm, the parameters of the CNN block are similar to those
used in the CNN architecture with path input (see Figure 6). The classification algorithm
that combines convolutional layers with PI and RF is shown in Figure 7.

Figure 7. Proposed architecture for a CNN with patch input and Random Forest classification.

For the training of the DL algorithms, it was necessary to perform an initial hyperpa-
rameter tuning process. This adjustment was performed with the hyperband method [55],
during which the learning rate, the number of filters, and the number of densely connected
neurons were adjusted. A batch size of 64, a maximum number of epochs equal to 200,
and a cross-entropy loss function were used in all cases to solve the multi-class classification
problems. Moreover, an early stopping strategy was included, consisting of stopping the
training process when the performance stops improving on the validation data set. The
ADAM [56] backpropagation method was employed for optimizing the models’ parameters.
The learning rate was set to 2.3 × 10−3 for all DL architectures except for the Contextual
CNN, where 5.9 × 10−3 was used.

3.4. Session-Based Analysis

For further evaluation, a session-based analysis was performed using the best ap-
proach for bradykinesia severity rating. Since the output of the classification algorithms is
a specific class (UPDRS 0 to 3) for each single sliding window (hereinafter referred to as
window-level detection), the aggregation of the predicted windows from a single (weekly)
session was performed using statistical methods.

The aggregation of data from the three exercises was performed by calculating the 95th
percentile value of the corresponding window-level predictions. This was accomplished to
mimic the clinical assessment, which is based on the worst severity rating (i.e., maximum
MDS-UPDRS rating) observed by the examiner during the assessment period. In addition,
the 95th percentile was selected in agreement with the methodology proposed in [32] to
derive bradykinesia digital biomarkers from hand movements using wrist-worn sensors.
Finally, the predicted outcomes of a single session were compared with the reference metric
(average of the MDS-UPDRS sub-scores) described in Section 3.1.2.

3.5. Evaluation Methodology

Stratified k-fold cross-validation (CV) with a k value equal to 5 (5-fold CV) was used
to evaluate the performance of the algorithmic approaches. First, all the observations
(sliding windows) of the data set were randomly shuffled; then, data were divided into
5 equal parts (folds) while preserving the percentage of samples for each class, as shown
in Figure 8. At each interaction, ML and DL models were trained using four folds and
tested on the final fold. The procedure was repeated 5 times, corresponding to the number
of folds. Sliding windows of 256 samples with no overlap were used to avoid training
and evaluation subsets sharing signal segments when using the 5-fold CV methodology.
This validation approach was used to overcome the limited amount of bradykinesia data
for each patient. Additionally, the performance metrics used to evaluate the bradykinesia
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detection models included accuracy, precision, recall, F1-score, area under the curve (AUC),
Pearson r and root-mean-square error (RMSE) [57].

Figure 8. K-fold validation (k = 5) employed to evaluate the performance of the classification algo-
rithms.

4. Experiments and Results

This section reports the results obtained in the present study. Several experiments were
performed to evaluate the proposed approaches, to identify the combination of sensors (or
combination of sensors), signal processing, input type, and DL algorithms that provide the
best performance.

Section 4.1 reports the results of the RF classification model, fed with either accelerome-
ter or gyroscope recordings, and using their combination. The experiments were performed
using the two different feature sets proposed in the literature [31,46]. The results of the
different DL approaches are reported in Section 4.2, evaluating the effect of different in-
put types (raw data or FFT), data augmentation [50,51], and DL architectures. Finally,
the results of the session-based analysis are reported in Section 4.3.

4.1. Baseline

Table 2 reports the performance of the RF classification model. The effect of different
feature sets, sensors, and sensor combinations are evaluated. First, the feature set proposed
by Channa et al. [46] provided better results than that used by [31], despite the smaller
number of features extracted. This is reflected in all performance metrics for all types of
sensor data. Specifically, the best performance in bradykinesia detection was obtained
using features [46] extracted from the gyroscope recordings, achieving an AUC value up to
0.909 and a corresponding accuracy of 0.783. Moreover, from Table 2, it can be observed
that the combination of accelerometer and gyroscope does not provide better performance
than that obtained by using only the gyroscope data. This suggests that is possible to
implement robust bradykinesia detection systems using a single inertial sensor.

In this study, the reproduction of Shawen et al. features [31] in conjunction with an RF
algorithm achieved better performance than that reported by the authors (0.65 AUC) by us-
ing the gyroscope data. This behavior is expected because, in the work of Shawen et al. [31],
the data employed corresponds to a set of activities of daily living (ADLs) in addition to
the clinical assessment tasks (i.e., finger-to-nose).

Moreover, according to Table 2, the reproduction of both approaches [31,46] using the
gyroscope data presents competitive results. These results are in line with the ones reported
in similar studies, where an AUC of 0.926 [39] and accuracy up to 0.909 [38] were achieved.

Based on these results, the subsequent experiments were performed using only the
gyroscope data. In addition, the feature set proposed by Channa et al. [46] in conjunction
with an RF classifier with 100 estimators was selected as a baseline.
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Table 2. Baseline methods. Accel: Accelerometer; Gyro: Gyroscope.

Feature Set Sensor Data Accuracy Precision Recall F1-Score AUC

Accel 0.731 0.721 0.731 0.692 0.889
Shawen et al. [31] Gyro 0.762 0.753 0.762 0.727 0.907

Accel + Gyro 0.720 0.705 0.720 0.673 0.886

Accel 0.749 0.745 0.749 0.716 0.905
Channa et al. [46] Gyro 0.783 0.773 0.783 0.755 0.909

Accel + Gyro 0.749 0.746 0.749 0.718 0.893

4.2. Classification Methods

In this section, the performance of six algorithmic approaches is reported and
compared—specifically, the baseline model identified in the first experiment; the base-
line model fed with data augmented using the SMOTE algorithm; the CNN model trained
with the filtered inertial signals; the CNN model trained with the contextual FFT windows;
the CNN model with the proposed PI and data augmentation; and, finally, the convolutional
model (with PI) combined with the RF classification model.

In more detail, for the first approach, the performance metrics of the baseline model
(hand-crafted features with an RF classification algorithm) were reported without addi-
tional processing. Second, to improve the predictive power of the first method, the SMOTE
technique was employed to increment the data used to train the algorithm. Third, for com-
parison purposes, the performance of a (standard) CNN trained with a raw signal was
evaluated. This approach was selected to take advantage of the capability of the CNNs to
handle raw signals. Fourth, in an attempt to improve the CNN’s results, the performance
of a similar (three-layer) CNN was evaluated in conjunction with features extracted by the
contextual windows method. Fifth, the CNN with PI and MLP (see Figure 6) was evaluated
in conjunction with the data augmentation techniques (permutation and magnitude warp-
ing). This method was proposed as an end-to-end solution for the detection of bradykinesia
which does not require feature extraction. In addition, sixth, to improve the predictive
power of the CNN with PI, the classification block at the top of the network was changed to
an RF classification algorithm (see Figure 7). RF classifiers can provide good performance
and high generalization capabilities even when handling unbalanced data [58], in this
case, by using the features extracted by the CNN block. This latter approach was trained
similarly to the fifth approach to facilitate the comparison of results.

The performance of these models is reported in Table 3. The best results for each
metric are bold in Table 3.

Table 3. Results of different bradykinesia detection methods using data collected for a single triaxial
gyroscope. SMOTE: synthetic minority over-sampling technique; RF: random forest; CNN: convolu-
tional neural network; FFT: fast Fourier transform; MLP: multi-layer perceptron; PI: patch input; DA:
data augmentation.

Method Data Representation Classifier Accuracy Precision Recall F1-Score AUC

Baseline Channa et al. [46] RF (100) 0.783 0.773 0.783 0.755 0.909
Baseline + SMOTE Channa et al. [46] RF (100) 0.792 0.702 0.667 0.680 0.912

CNN Raw signal CNN + MLP 0.675 0.661 0.675 0.618 0.687
Contextual CNN 1 FFT contextual CNN + MLP 0.629 0.561 0.629 0.563 0.706
CNN(PI) + DA 2 Raw signal CNN (PI) + MLP 0.826 0.733 0.751 0.738 0.943

CNN(PI) + RF + DA 2 Raw signal CNN (PI) + RF (100) 0.835 0.750 0.748 0.746 0.939
1 Proposed method which employs contextualization of adjacent windows (Contextual FFT) in the input data.
2 Proposed method which implements the patch input strategy in the CNN feature extraction block. The best
results for each evaluation metric are bold.
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According to the results reported in Table 3, the best accuracy (0.835) in bradykinesia
detection was obtained employing the combination of CNN with path input and RF
classification algorithm, while the best performance in terms of AUC (0.939) was achieved
using the approach consisting of a CNN with path input and an MLP block for classification.

Data augmentation methods led to an improvement in performance for all the clas-
sification tasks. As for the baseline model, the effect of data augmentation was a slight
increase in accuracy and AUC, and a decrease in recall and precision, which is reflected in
the F1-score. When data augmentation techniques (SMOTE, signal permutation, and mag-
nitude warping) were applied to DL algorithms, a significant performance improvement
was observed. Specifically, accuracy, F1-score, and AUC improved by 15%, 12%, and
25%, respectively. The use of contextual FFT windows did not provide incremental per-
formance regarding the use of raw inertial signals, probably due to the limited amount
of data used during training. Finally, using CNNs combined with the RF model, instead
of the classic MLP approach, led to an increase of 0.9% in accuracy and 0.8% in Fscore,
while AUC decreased from 0.943 to 0.939. However, such small differences can not be
considered significant.

On the one hand, the comparison of the results with most of the related literature
work is difficult because of the diversity of approaches and validation methodologies.
However, when comparing the performance of the best classification methods (CNN with
PI) with the best results reported in similar studies (i.e., 0.926 [39]), slightly superior results
in terms of AUC (0.939) were achieved. However, in terms of accuracy, higher performance
than that achieved in this work (83.5%) was reported (i.e., 90.9% [38]). On the other hand,
a direct comparison of the best-proposed method with the (reproduced) baseline shows a
significant increment in accuracy (5.2%) and AUC (3%). This presents competitive results
for bradykinesia severity rating using a single gyroscope sensor and opens opportunities
for the development of unobtrusive solutions for monitoring based on consumer devices.

4.3. Results of the Session-Based Analysis

The results of the session-based analysis were obtained using the best-proposed
method (CNN with PI and RF classification). For this task, the window-level predictions of
each clinical visit were processed according to the methodology described in Section 3.4.
After this process, the session-based results were compared with the reference evaluation
obtained from MDS-UPDRS sub-scores during the clinical assessment (see Section 3.1.2).

In addition, to compare the results of the session-based analysis with the window-level
evaluation, regression metrics were calculated using the proposed methods. The results of
both assessment methods are shown in Table 4.

Table 4. Results of different assessment methods for bradykinesia detection using the proposed CNN
with patch input and Random Forest classification. RMSE: root mean square error.

Assessment Method Accuracy Precision Recall F1-Score r RMSE

Window-level 0.835 0.750 0.748 0.746 0.82 0.77
Session-based 0.857 0.733 0.728 0.716 0.94 0.46

According to Table 4, the aggregation of the window-level predictions presents a
slight increase in the accuracy (0.857) over the results of window-level detection (accuracy
0.835). However, a decrease in the Precision and Recall is identified in the session-based
assessment. On the other hand, an increase in the Pearson r (0.945, p < 0.001) and a reduction
in the RMSE (0.455) were achieved using the session-based methodology. The results of
the session-based analysis indicate that it is feasible to derive a single indicator of the
bradykinesia severity using the data aggregated from the three selected MDS-UPDRS
exercises. In addition, this indicator shows a high correlation with the clinical assessment
of a single clinical visit.
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4.4. Summary of the Findings Observed in the Experiments

Overall, the present findings can be summarized as follows.

• The use of the gyroscope sensors presents better results in bradykinesia detection
than the use of only the accelerometer data or the combination of accelerometer and
gyroscope data.

• DL approaches provided better results than classic ML classifiers fed with extracted
features. In addition, the use of the proposed method (CNN with PI and RF classifica-
tion) presents competitive results for bradykinesia severity detection at the window
level.

• Data augmentation methods have a positive effect on classification performance and
its effect is more pronounced in the DL-based approaches.

• The use of data transformation methods such as FFT does not provide better results,
compared to raw inertial signals.

• Using DL approaches with an RF model as the final classification layer does not
significantly improve performance.

• The aggregation of the window-level predictions from a single clinical visit presents a
slight increase in the accuracy and increases the correlation between the automatic
and the clinical evaluation.

5. Discussion and Conclusions

Bradykinesia is a cardinal symptom for the evaluation of PD. The Objective quan-
tification of this symptom is relevant for diagnosis, treatment adjustment, and a better
understanding of disease progression. For this reason, research efforts have been devoted to
developing automated systems that seek to diagnose and monitor bradykinesia. However,
several limitations and challenges remain to consider.

There is a great heterogeneity of solutions, both in the number and type of sensors
and in the methodologies proposed for data analysis. Therefore, the potential use of
such technologies in the current clinical practice is limited due to the lack of validation
and standardization.

The potential of complementing traditional assessment in medical centers and also
extending the diagnosis and monitoring to a home environment suggest that the manage-
ment of PD could be revolutionized by new wearable systems. However, challenges in
scaling up solutions of this type remain, mainly due to the quality and quantity of data
recorded to identify PD motor symptoms. This latter varies widely between individuals,
and activities, and also evolves over time [41].

The results obtained in this study suggest that it is possible to use commercial smart-
watches combined with AI techniques for the detection and evaluation of bradykinesia
severity. Moreover, the best performances were obtained by using data recorded by a single
tri-axial gyroscope, while combining acceleration and angular velocity data did not provide
further improvements. The use of a single sensor embedded in the smartwatch would
be beneficial in reducing the computational burden and increasing the battery life, thus
enabling continuous monitoring.

The comparison between DL methods and classic ML-based classification approaches
revealed the weak performances of the former, due to the limited amount of data. How-
ever, the simultaneous application of data augmentation techniques and novel algorithmic
approaches led to significantly better performances (AUC 0.939; Accuracy 0.835) than those
provided by shallow ML algorithms. Specifically, the use of DL architectures employing
CNN patch extraction strategies seems to be a feasible approach to contextualize the raw
data from a single sliding window. By employing such a technique, a DNN is capable of
extracting specific information from small non-overlapping patches to feed discriminative
architectures automatically. In addition, the proposed approach brings opportunities for ap-
plications in different tasks involving sequential data such as raw inertial signals. Moreover,
the potential of combining this approach with recurrent architectures or transformer-based
architectures may allow the development of end-to-end architectures capable of extracting
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and modeling automatically temporal dependencies. In this line, future studies could eval-
uate the performance of this approach in tasks where temporal dependencies are relevant,
for example in the automatic detection of freezing of gait.

Table 5 reports a comparison of the methods and results of the proposed approach (at
window-level) and those reported in the related literature. As can be observed, the classifica-
tion performance provided by the proposed DL algorithm outperformed the state-of-the-art
methods. Specifically, accuracy of 0.84 and AUC of 0.94 were higher than the best results
from the related works (accuracy 0.77 and AUC 0.92 [17]). It is worth noticing that an
accuracy of 0.91 was obtained in [38]. However, only a binary classification task (presence
or absence of bradykinesia) was set in this case, compared to the multi-class classification
problem (bradykinesia severity) used in this study.

Table 5. Comparison of different bradykinesia detection methods and results. ML: machine learning;
AUC: area under the curve; RMSE: root mean square error; IMU: inertial measurement unit; ADLs:
activities of daily living; SVM: support vector machine; kNN: k-nearest neighbors; PCA: principal
component analysis; MLP: multi-layer perceptron; RF: random forest; CNN: convolutional neural
network; DA: data augmentation; LR: linear regression.

Study Sensor (Location) Task ML Model (Input) Accuracy AUC r RMSE

[17] Smartphone (thigh) Leg agility MLP (features) 0.77 0.92 0.92 0.42

[31] Smartwatch, IMU
(wrist, hand)

gait, upper limbs
exercises RF (features) - 0.65 - -

[33] IMU (thighs) Leg agility kNN (features + PCA) 0.430 - 0.640 -

[35] IMU (ankles) Leg agility SVM (features) - - 0.83 0.53

[38] IMU (forearm) upper limbs exercises CNN (raw data) 0.91 (binary) - - -

[39] IMU (wrist, fingers) upper limbs exercises LR (features) - 0.93 0.85 -

[40] Accelerometer (wrist) ADLs CNN (raw data + DA) - - 0.83 -

[41] IMU (hand) gait, upper limbs
exercises RF (features) - 0.73 - -

Proposed Smartwatch (wrist) upper limbs exercises CNN + RF (raw data) 0.86 0.94 0.94 0.46

As far as the regression results are concerned, the obtained correlation coefficient was
found to be larger than that of related literature studies, while slightly smaller errors were
obtained in [17]. However, the leg agility task was addressed in this latter study, using
sensors on lower limbs. This represents a very specific exercise of the MDS-UPDRS, suitable
for in-laboratory examinations but rather uncommon in daily living settings. Moreover,
only a single sensor was employed in this study, representing a less invasive solution
than those proposed in [31,33,35,39], suitable for passive long-term monitoring of PD
patients in home settings. Finally, it is worth noticing that, unlike most related studies,
a comprehensive performance evaluation was carried out in this work, providing both
classification and regression metrics.

The present work has some limitations. The enrolled subjects’ cohort is larger than
in [38] and comparable to [31], but it is smaller than in [17,33,35,39–41]. Data augmentation
methods were used in this study to increase the data set size and provide more robust
results. However, different patients may have different movement patterns, thus a larger
population should be investigated to further validate the present findings. Moreover,
data were collected during semi-supervised tasks, as was also carried out in most similar
literature works [17,31,33,35,38–41]. In order to extend the use of the proposed method in
non-supervised settings, a context algorithm for gesture recognition should be developed.
Then, the activities recognized by such a model can be analyzed using the computer
methods implemented in this work. Alternatively, a new unsupervised data collection
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procedure may be carried out, as achieved in [40], where the presence or absence of
bradykinesia was estimated during unconstrained ADLs.

The proposed solution, further improved and validated on a larger cohort of PD
patients, may be used to complement traditional outpatient visits. Specifically, data col-
lected during the sporadic clinical examination can be employed for further training the
proposed automatic scoring system. Afterward, the wearable solution can be used in the
home setting to passively collect information regarding bradykinesia presence and severity.
Finally, the information will be able to be assessed by clinicians for evaluating the evolution
of the symptom over time and its fluctuations throughout the day, eventually planning
proper therapy adjustments.

The present study is intended to show the potential of consumer wearable technol-
ogy and DL approaches to detect the severity of bradykinesia by using data recorded
during standardized MDS-UPDRS upper limbs’ motor tasks. Moreover, different ML
and DL methodologies are proposed and compared, further discussing the effect of data
augmentation, input type, and architectures.

Future studies will be in the direction of increasing the data set size, by enrolling a
larger patient cohort. Then, the development of an automatic scoring system working in
non-supervised conditions [40] would pave the way to continuous, long-term, unobtrusive
monitoring of PD in home environments.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ADAM Adaptive moment estimation
ADLs Activities of daily living
AUC Area under the curve
CNN Convolutional neural network
CV Cross-validation
DA Data augmentation
DL Deep learning
DNN Deep neural network
FFT Fast Fourier Transform
GAP Global average pooling
kNN k-nearest neighbors
IMU Inertial measurement unit
LR Linear regression
ML Machine learning
MLP Multi-layer perceptron
PCA Principal component analysis
PD Parkinson’s disease
QoL Quality of life
ReLU Rectified linear unit
RF Random forest
ROC Receiver operating characteristic
RMSE Root mean square error
SMOTE Synthetic minority over-sampling technique
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Abstract: (1) Background and objectives: Parkinson’s disease (PD) is one of the most prevalent neu-
rodegenerative diseases whose typical symptoms include bradykinesia, abnormal gait and posture,
shortened strides, and other movement disorders. In this study, we present a novel framework
to evaluate PD gait patterns using state of the art deep learning algorithms. A comparative analysis
with three different approaches is presented and evaluated upon three groups of subjects: PD pa-
tients, Young Healthy Controls (YHC), and Elderly Healthy Controls (EHC). (2) Methods: The three
approaches used in the study include: (i) The energy content of the gait signals in the frequency
domain is captured with spectrograms that are used to feed a CNN model, (ii) Temporal information
is incorporated by creating GRU networks, (iii) Temporal and spectral information is simultaneously
captured by creating a new architecture based on CNNs and GRUs. (3) Results: Accuracies of up
to 83.7% and 92.7% are found for the classification between PD vs. EHC and PD vs. YHC, respectively.
According to our observations, the proposed approach based on the combination of temporal and
spectral information, yields better results than others reported in the state of the art. (4) Conclusions:
The results obtained in this study suggest that the combination of temporal and spectral information
is more accurate than individual approaches used to classify and evaluate gait patterns in PD patients.
To the best of our knowledge, this is the first study in gait analysis where temporal and spectral
information is combined in an architecture of deep learning.

Keywords: gait analysis; Parkinson’s disease; convolutional neural networks; gate recurrent units;
deep learning

1. Introduction

Parkinson’s Disease (PD) is a neurodegenerative disease that produces movement
disorders including tremor, rigidity, postural instability and lack of coordination which
affect patients’ gait [1–3]. PD patients are characterized by abnormal gait patterns associated
with bradykinesia (slowness of movement), less steady walk, reduced stride length and
shuffling steps or impaired gait initiation [4–6]. The symptoms of PD may appear about
10 years prior to the clinical manifestations [7], besides, several studies show that PD
mainly impacts elderly people [8]. An important fact is that the prevalence of the disease is
increasing with age worldwide [9,10]. Neurologists usually use clinical scales to evaluate
and quantify the neurological state of the patient. The most used is the Movement Disorder
Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [11]. This scale allows
neurologists to evaluate the patient’s state and it is useful to follow up on therapies.
The MDS-UPDRS scale is composed of four sections. The third one is called MDS-UPDRS-III
and corresponds to the assessment of routine motor activities including 33 tasks, therefore
it ranges from 0 to 132.
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Gait patterns allow to obtain information about different movement disorders that
are sometimes associated to Parkinson’s disease (PD) symptoms. In the literature, the use
of Inertial Movement Units (IMU) has increased considerably since they allow to capture
gait patterns to study the movement dynamics of patients. This includes the study of kine-
matic characteristics of PD patients [12,13], nonlinear dynamics [14,15], stability and deep
learning approaches [16], among others.

Computer vision methods and force platforms are used in laboratories to evaluate gait
disorders [17,18]; however, they are expensive and difficult to access. Conversely, wearable
sensors allow for designing low-cost and unobtrusive solutions that enable continuous
monitoring of patients [19]. The most common wearable sensors for gait analyses are those
based on plantar pressure systems [20–22] and IMU sensors [23,24]

Gait analysis is of great interest for the research community due to its suitability to per-
form unobtrusive automatic and continuous evaluation of motor symptoms of PD patients.

1.1. State of the Art

The study of gait patterns is related to the human locomotion and includes the study
of people move while walking. Models can be created considering different gait features,
related to kinematics, such as: stride length, stride velocity, turning angle, swing phase,
and others [25,26]. The analysis of abnormal gait patterns have been typically performed
considering Inertial Movement Units (IMU). An IMU is an electronic device usually consist-
ing of accelerometer and gyroscope sensors, and in some cases also include magnetometer
sensors. In [27] the authors presented a complete study related to the use of IMU sensors.
The aim of the authors is to model abnormal gait patterns. According to the authors IMU
sensors in gait analysis are used due to their low cost and the potential for designing
wearable devices for continuous monitoring. Even though the study was presented about
seven years ago, the same claim continues to be valid today. In [28] the authors proposed
the use of one IMU sensor in each foot to analyse patients with different neurological
conditions. The authors extracted several kinematic gait measures like stride length, stance
time, swing time, and cycle time. The proposed method was tested with a dataset com-
prised of 22 healthy control (HC) subjects recorded with a camera-based system. A clinical
discussion using a dataset of 17 subjects with different neurological disorders was also pre-
sented. According to the authors, it is possible to obtain relevant information on different
neurodegenerative diseases, even outside clinical settings. In [20] the classification of PD
patients and HC subjects was performed by using several spatial-temporal measures like
stride length, cadence, stance time, and swing time. Different classifiers were tested includ-
ing Random Forest (RF), Support Vector Machine (SVM) and Kernel Fisher Discriminant.
The best result was found with a RF classifier (92.6%). A multi-modal study for the discrim-
ination between PD patients and HC subjects, considering information of three bio-signals:
speech, handwriting, and gait, was presented in [16]. To merge the information of each bio-
signal a Convolutional Neural Networks (CNN) was implemented. The authors reported
the highest accuracy with the combination of the three bio-signals (97.6%). Another ap-
proach in gait analysis is based on non-linear dynamics (NLD) measures. In [14] the authors
extracted several NLD and Entropy measures. Three classifiers were compared: SVM, RF
and k-nearest neighbours (KNN). Accuracies up to 92% were reported In [15] the authors
proposed a new strategy considering Poincaré sections. Accuracies up to 89% in the classi-
fication of PD vs. HC were reported, besides, the authors’ proposal includes experiments
with PD patients in three different stages of the disease: mild, moderate, and severe where
accuracies up to 67.2% were reported. Recently, in [13] the authors computed three sets
of features named kinematics, NLD, and stability, and proposed a clinical interpretation
based on the most discriminant feature per subset. The authors reported accuracies of up
to 92% when using only three of the features.

In this paper, we use raw gait signals captured using IMU sensors to assess the ability
of different deep learning architectures to classify PD patients vs. HC subjects. Three
architectures were considered: Convolutional Neural Networks (CNN), Gate Recurrent
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Units (GRU) and a new approach that considers energy information at the input of a CNN
and temporal information with a GRU. In order to consider the effect of age three groups
of subjects are examined: Young Healthy Control (YHC), Elderly Healthy Control (EHC),
and PD patients. The EHC group and the PD group are matched in age. Accuracies up
to 85.3% were reported in the PD vs. EHC scenario, and accuracies of up to 92.7% were
found in PD vs. YHC.

1.2. Contributions of This Study

Three different deep learning architectures, namely CNN, GRU and CNN + GRU were
evaluated in this study to classify between PD patients and HC subjects. Models based
on CNNs yielded good results but did not consider temporal information, therefore we
decided to evaluate an architecture based on GRUs to incorporate relevant information pos-
sibly encoded in the evolution of the patterns, i.e., temporal information. The combination
of CNNs and GRUs in the same model was introduced to take advantage of incorporating
temporal and frequency information in the same model, which potentially enables clinical
interpretation. We believe that the CNN+GRU model did not show better results due
to the small amount of data available for the present experiments.

In this study two tasks were considered: 2× 10 m task corresponds to a 10 m walk
performed twice and 4× 10 m task corresponds to a 10 m walk which is performed 4 times.
In general terms, the 4 × 10 m task is better than the 2 × 10 m one. We think that this is
because longer tasks allow to collect more information and therefore increase the chances
to find abnormal patterns in the gait signal.

2. Materials and Methods
2.1. Methodology

The general methodology proposed in this study is summarized in Figure 1. Gait sig-
nals are collected using wearable IMU sensors. Note that the main characteristic of the pro-
posed methodology is that there is no a sophisticated feature extraction stage. The seg-
mentation process is based on sliding windows of fixed length and, in the case of the CNN
architecture, we compute the spectrogram that is used as input. Information of each foot
and their combination are considered. In the following subsections, the stages of this
methodology are explained.

INPUT 
(Raw signals)

Signal processing and
segmentation

Deep Learning
architecture

OUTPUT
(PD or HC)

Figure 1. Scheme of the general methodology addressed in the study.

2.2. Data Collection and Participants

The eGaIT system (Embedded Gait analysis using Intelligent Technology),
was used to record gait signals. eGaIT consists of a 6 degrees of freedom sensor to capture
accelerometer and gyroscope signals. The accelerometer allows to measure the acceleration
in a range of ±6 g and 200 mV/g of sensibility. Gyroscope allows to measure rotational
velocities in a range of ±500 ◦/s and ±2 mV/g of sensitivity. A representation of the eGait
system and the position of the sensor in the shoe is shown in Figure 2. Signals are collected
using an Android Application.

The sensor used captures motion patterns at a sampling frequency (Fs) of 102.4 Hz with
12 bits of resolution. Besides, this value enables capturing information with a resolution
good enough to model low-frequency patterns such as those related to the patient’s gait.
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(a)

(b)

Figure 2. (a) Interface of the eGait software, (b) Location of the eGait sensor in the shoe.

In this study, two tasks were considered:

i. 2 × 10 m task:

• The subject starts standing.
• The subject walks 10 m in a straight line.
• The subject stop.
• The subject turns right and returns to the starting point.

ii. 4 × 10 m task:

• The subject starts standing
• The subject walks 10 m straight.
• The subject turns right and returns to the starting point.
• The subject turns right walks 10 m.
• Finally, the subject turns right, again, and returns to the starting point.
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The dataset used in this study consists of 134 recordings where 45 are PD patients
and 89 HC subjects. The HC group is divided into two groups: 44 YHC subjects under
45 years old and 45 EHC subjects of people older than 45 years. In Table 1 the information
of the dataset is presented. The age of the EHC group is balanced with respect to the
PD participants.

Table 1. Details about the participants.

Group Gender # Subjects Age & Range MDS-UPDRS-III & Range

PD Male 17 65.0± 10 & [41–82] 37.6± 21 & [8–82]
Female 28 58.9± 11 & [29–75] 33.5± 21 & [9–106]

EHC Male 23 63.3± 11 & [49–85] -
Female 22 58.9± 10 & [45–83] -

YHC Male 26 25.3± 5 & [21–42] -
Female 18 22.9± 3 & [19–32] -

Age and MDS-UPDRS-III score are presented in terms of mean ± standard deviation. There are no significant
differences in the age of PD vs EHC (t-student test, p-value� 0.05). The last column includes the MDS-UPDRS-III
values associated to PD patients.

2.3. Convolutional Neural Network (CNN)

A CNN is a deep learning architecture typically used for image analysis where convolu-
tion and pooling layers are used with the aim to obtain relevant information of the input [29].
The main advantage of a CNN is that it requires minimal or sometimes no pre-processing
for the input to implement the architecture. Let’s define the input of a CNN as a tensor
as follows:

X ∈ Rp×q×r (1)

where p, q and r correspond to the number of vertical pixels, horizontal pixels and channels
of the image, respectively. The convolution process is performed between the input tensor
X and a convolutional filter, named kernel, represented as follow:

W ∈ Rn×n×d (2)

where n is the size of the kernel and d is the number of kernels in the convolutional
layer. The result of the convolution between X and W per channel produces a hidden
representation H as follows:

H = X ∗W (3)

where:
H ∈ R(p−n+1)×(q−n+1)×d (4)

Note that tensor H represents the extracted features obtained from the input X. A pooling
layer is implemented after each convolution step. The pooling layer reduces the size of the hid-
den representation H. One of the aims of the pooling layer is to reduce the computational
cost required to process the information, in addition, it is useful to remove some invariant
features [29]. Finally, a fully connected layer with h hidden units followed by an activation
function is implemented to obtain the final decision of the classification process.

It is important to note that different CNN architectures can be created depending
on the problem. Figure 3 presents an illustration of a CNN architecture with two convolu-
tional hidden layers.
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Convolutional and 

Pooling layer 1
Fully connected

layer

Convolutional and

Pooling layer 2

PD vs. HC

Input

Figure 3. Illustration of a CNN with two convolutional layers.

For the case of gait signals, the CNN architecture corresponds to a two-dimensional
(2D) CNN. The input to the CNN consists of r = 12 channels when the two feet are
considered. The channels have information of the accelerometer and gyroscope signals
in the x, y, and z-axes.

With the aim to guarantee at leas 3 quasi-periods in the gait signal, segments of 3 s
are considered. The Short Time Fourier Transform (STFT) is computed to create the input
to the CNN. Figure 4 shows four examples of STFT computed upon two PD patients (a and
b), one EHC subject (c), and one YHC subject (d). In the four cases images are extracted
from gyroscope signals (z-axis) of the left foot during the 2× 10 task.

(a)

(c) (d)

(b)

Figure 4. Resulting STFT computed to: (a) PD female patient, Lower limps score: 50, Age: 75; (b) PD
female patient, Lower limps score: 10, Age: 65; (c) EHC female patient, Age: 50; (d) YHC female
patient, Age: 20.

The CNN was trained using the stochastic gradient descent (SGD) algorithm. The loss
function is the cross-entropy between the label of the training data y and the prediction
ŷ. An Exponential Linear Unit (elu) is used as activation function for the convolutional
layer. Dropout is included to avoid over-fitting in the training process. The architecture
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of the CNN for this study includes two convolutional layers with max-pooling, dropout
for regularization, and five fully connected hidden layers. A sigmoid activation function is
used at the output. Figure 5 summarizes the details of the architecture.

Dense and 

Dropout layersSegments of 3s          Conv. 1 - Max. pool        Conv. 2 - Max. pool   

Figure 5. Architecture of the CNN implemented in this study.

2.4. Gate Recurrent Network, GRU

The paradigm of GRU was proposed in [30,31] as a variation to recurrent neural
networks (RNN). A GRU is composed of two gates: update and reset, whose objective is
to only pass relevant information through the network to improve the predictions. Among
the advantages of the GRU over other recurrent networks are the fact that they require less
memory, therefore their training process is faster. Figure 6 illustrates a single GRU unit.

X

+

+

X

X

tanh

Reset 

gate
Update 

gate

xt

ht-1

rt ht

ht'

+ +

1-ztzt

Figure 6. Single GRU unit.

The computation of a GRU starts with the calculation in the step time t for the update
gate zt, as follow:

zt = σ(W(z)xt + U(z)ht−1) (5)

xt is multiplied by W(z), which is its own weight. The same process is performed with
ht−1, which has information of the previous step time t − 1 and is multiplied by its
own weight U(z). A sigmoid activation function is applied to the sum of both products.
The aim of the update gate is to define the information to be considered in the future.
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The reset gate intends to find the information to be forgotten, in this case it is called rt,
defined as follows:

rt = σ(W(r)xt + U(r)ht−1) (6)

Which is similar to the equation of the update gate except for the weights. The current
memory content h′t is calculated as follow:

h′t = tanh(Wxt + rt �Uht−1) (7)

where � is the Hadamard matrix product. The final memory at the time step t is:

ht = zt � ht−1 + (1− zt)� ht (8)

A GRU architecture is able to process information of time series such as the one
existing in raw gait signals. In this work, the input to the GRU consists of 12 raw signals
captured with the IMU sensor. Figure 7 shows four examples of signals collected from two
PD patients (a and b), one EHC subject (c), and one YHC subject (d). The GRU architecture
implemented in this study is presented in Figure 8.

(a) (b)

(c) (d)

Figure 7. Comparison between the raw time series of: (a) PD female patient, Lower limps score: 50,
Age: 75; (b) PD female patient, Lower limps score: 10, Age: 65; (c) EHC female patient, Age: 50;
(d) YHC female patient, Age: 20.
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Figure 8. Architecture of the GRU implemented in this study.

2.5. Training Process and Classification

A 5-fold cross-validation strategy was used to evaluate the proposed approach along
the experiments. Four folds were used for training and one-fold for testing. Each experi-
ment was repeated ten times and the reported results correspond to the average over those
repetitions. Adam optimizer [32] and binary cross-entropy were used in the classification stage
of all experiments.

The acquisition of the acceleration data performed in this work is by-default normal-
ized between −6 g and +6 g and the gyroscope signals between +500 ◦/s and −500 ◦/s.
Therefore, it is not necessary to perform any additional normalization. Besides, the architec-
ture of the Neural Network by itself performs an “internal batch” normalization according
to the patterns that it is observing during the training process. Further details of the batch
normalization can be found in [33].

3. Experiments and Results

Three different experiments were considered: only with the CNN, only with the GRU,
and with the combination of both architectures. Each experiment considers two scenar-
ios: PD vs. EHC and PD vs. YHC. The two gait tasks were considered independently.
Results are reported in terms of accuracy (Acc), sensitivity (Sen), specificity (Spe), and
Area Under ROC Curve (AUC) [34]. Two different accuracy values are reported in each
experiment, accuracy in development refers to the result obtained within the 4 folds con-
sidered during the training process and accuracy in test refers to the result obtained in the
external fold that did not participate in the optimization process. Standard deviation values
appear because the experiments were repeated ten times independently to perform a fair
evaluation of the proposed approach.

3.1. Classification with CNN

The general scheme of the proposed CNN architecture is presented in Figure 5. This
approach includes two convolutional layers and five fully connected hidden layers, besides
Max-pooling and dropout layers are included to avoid overfitting. Details of the imple-
mented architecture are presented in Appendix A, Table A1. Figure 9 shows details of the
pre-processing stages applied in this experiment before feeding the CNN architecture.
Notice that the raw input contains 12 channels, therefore there is the same number of spec-
trograms before the segmentation step. The STFT is computed upon segments of 3s per
channel with an overlap of 80%.
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Input

(Raw data, dim = 12)
Spectrograms

dim = 12

Segmentation

(3 sec, overlaping 80%)

dim = 12 x N

CNN

PD

HC

Figure 9. Methodology for the classification based on CNNs.

Note that when both feet are considered the dimension of the input is r = 12 which
corresponds to three accelerometer signals and three gyroscope signals per foot. Table 2
shows the results obtained in the classification with the 2× 4 task. The highest accuracy
in test is 82.4% for the PD vs. EHC scenario, while 87.5% for PD vs. YHC. Table 3 presents
the results obtained with the 4× 10 task. Notice that in this case the results are higher
compared to those obtained in the previous task. In the PD vs. EHC scenario, the highest
accuracy in test is 82.7% while in PD vs. YHC it is 92.1%. This improvement could be
associated to the fact that this task is longer than the previous one, therefore there are more
chances to observe abnormal patterns in the gait signals. Also, a longer task likely produces
more fatigue in the participants, especially the patients.

Table 2. Results using CNN and 2× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 79.1± 3 81.3± 4 74.3± 4 84.3± 4 0.87
PD vs. EHC Right 79.5± 4 80.1± 4 79.3± 4 80.3± 4 0.88

Both 80.2± 3 82.4± 3 76.2± 3 87.3± 4 0.88

Left 83.9± 5 85.4± 5 87.2± 3 88.0± 4 0.90
PD vs. YHC Right 81.7± 4 83.8± 4 88.1± 3 85.0± 4 0.90

Both 84.3± 5 87.5± 4 88.7± 3 87.1± 4 0.91
Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area under
the ROC curve.

Table 3. Results using CNN and 4× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 83.2± 5 85.3± 4 83.0± 6 91.3± 3 0.92
PD vs. EHC Right 83.3± 4 79.5± 6 83.3± 5 82.9± 6 0.91

Both 83.5± 6 82.7± 4 85.6± 2 87.9± 2 0.92

Left 87.4± 4 88.5± 4 88.3± 6 90.5± 5 0.95
PD vs. YHC Right 85.3± 6 86.5± 4 91.4± 4 87.9± 5 0.94

Both 88.5± 5 92.1± 5 91.2± 3 88.4± 5 0.95
Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area under
the ROC curve.

3.2. Classification with GRU

The general scheme of the GRU architecture used in this work is presented in Figure 8.
In this case, the raw input with 12 channels is first segmented into windows of 3 s with 80%
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overlap. Each window is segmented into N number of steps. Details of the implemented
architecture are presented in Appendix A, Table A2. Notice that since every person can
produce a different number of steps during the time window, the number of steps needs
to be variable in order to make it the method robust and flexible. This segmentation
procedure is shown in Figure 10. Table 4 shows results of the two classification scenarios:
PD vs. EHC and PD vs. YHC when the 2× 10 task is considered. Similarly, Table 5 includes
results obtained with the 4× 10 m task. Note that the GRU architecture yields better results
in most of the experiments, compared to those obtained with the CNN. Similar to what
we observed in the previous experiment, the 4× 10 task yields better results. In the case
of the classification between PD patients and EHC subjects the highest accuracy was 82.7%
and in the case of PD vs. YHC the best result was 92.5%. Signals of both feet provided the
best results in both scenarios, as it was also observed in the experiment with CNN.

Input

(Raw data, dim = 12)

Segmentation

(3 sec, overlaping 80%)

dim = 12 × N

GRU

PD

HC

X +

XX

1-

Figure 10. Methodology used for the classification with a GRU architecture and both feet.

Table 4. Results using GRU and 2× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 75.7± 4 75.2± 4 70.6± 6 74.3± 4 0.82
PD vs. EHC Right 74.9± 4 73.3± 5 75.7± 4 78.8± 6 0.81

Both 78.5± 6 78.7± 5 72.8± 3 83.3± 5 0.84

Left 84.7± 4 83.4± 5 88.4± 4 87.2± 5 0.89
PD vs. YHC Right 81.3± 6 82.6± 4 87.7± 5 84.4± 4 0.88

Both 86.7± 5 84.5± 4 89.1± 3 87.9± 5 0.90
Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area
under the ROC curve

Table 5. Results using GRU and 4× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 77.5± 4 76.6± 3 75.1± 2 80.8± 3 0.88
PD vs. EHC Right 75.6± 4 74.5± 3 77.3± 5 82.1± 5 0.87

Both 84.1± 4 82.7± 6 83.8± 4 86.3± 6 0.92
Left 91.8± 6 90.3± 4 89.3± 6 90.1± 6 0.94

PD vs. YHC Right 89.5± 5 88.6± 6 90.4± 4 92.4± 5 0.94
Both 93.7± 4 92.5± 5 92.6± 3 94.1± 6 0.96

Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area under
the ROC curve.

3.3. Classification with CNN + GRU

To consider temporal and frequency information of the gait signals simultaneously,
a novel strategy is proposed in this work. Details of the implemented architecture are
presented in Appendix A, Table A3. The input to the proposed architecture are the spec-
trograms and also the raw signals. Figure 11 shows how the two approaches can be
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considered simultaneously to perform the final decision of whether a subject belongs
to the PD or HC group.

Results presented in Tables 6 and 7 show that this methodology yields results slightly
better than those obtained with the GRU model. When observing the 4 × 10 m task,
the highest accuracy in the PD vs. EHC scenario was 83.7%, while in PD vs. YHC the result
was 92.7%.

Although the results of the CNN + GRU model are not much higher than those
obtained with the GRU architecture, we believe that this is due to the small amount of data
considered in this work. We are currently working on the collection of more data to validate
whether these kinds of architectures yield results significantly better than others where
only temporal or frequency information is considered separately.

Input
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Spectrograms
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Segmentation

(3 sec, overlaping 80%)

dim = 12 × N
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Figure 11. Proposed methodology considering a CNN + GRU architecture

Table 6. Results using CNN + GRU and 2× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 76.7± 5 74.6± 6 71.3± 5 75.2± 4 0.83
PD vs. EHC Right 75.2± 3 73.6± 5 74.9± 6 79.3± 4 0.81

Both 80.4± 5 78.7± 4 73.3± 5 84.1± 5 0.85

Left 85.4± 5 83.7± 4 89.2± 5 86.9± 4 0.88
PD vs. YHC Right 83.5± 6 82.0± 6 88.4± 4 85.2± 6 0.87

Both 88.5± 4 85.7± 5 90.2± 3 86.5± 5 0.89
Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area under
the ROC curve.
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Table 7. Results using CNN + GRU and 4× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 76.7± 6 74.7± 4 75.2± 5 77.8± 5 0.84
PD vs. EHC Right 74.2± 7 72.4± 6 74.2± 4 78.5± 5 0.82

Both 85.7± 3 83.7± 4 84.7± 5 85.9± 4 0.93

Left 90.9± 6 91.1± 3 89.5± 6 91.1± 5 0.94
PD vs. YHC Right 90.3± 5 87.9± 5 90.6± 3 92.2± 6 0.95

Both 93.3± 4 92.7± 4 91.9± 3 94.4± 5 0.96
Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area under
the ROC curve.

Figure 12 presents the best results of the 4× 10 m task in the two scenarios and
the three experiments. The distribution of the scores/posteriors obtained in the classifi-
cation stage of each scenario (PD vs. EHC and PD vs. YHC) are included in Figure 12a,c.
Although both scenarios are clearly separable due to the robustness of the proposed ap-
proach based on a GRU+CNN architecture, it can be observed that there is more overlap
in the first scenario. Regarding Figure 12b,d, they include the ROC curves resulting
from the three experiments (CNN, GRU, and CNN + GRU) in each scenario. Notice that
in both cases the CNN + GRU architecture yields the highest AUC values, which confirms
its superiority compared to other approaches.

(a) (b)

(c) (d)

Figure 12. Comparison of the best results considering the 4× 10 m task and both feet. (a) Distribution
of the scores in PD vs. EHC using the GRU + CNN architecture. (b) Comparison of the ROC curves
in the PD vs. EHC scenario. (c) Distribution of the scores in PD vs. YHC using the GRU + CNN
architecture. (d) Comparison of the ROC curves in the PD vs. YHC scenario.
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Table 8 summarizes the results obtained with the different architectures with the 4× 10 task.

Table 8. Summary of the accuracy in test for the best results considering the 4× 10 m task.

Scenario Foot CNN GRU CNN + GRU

Left 85.3± 4 76.6± 3 74.7± 4
PD vs. EHC Right 79.5± 6 74.5± 3 72.4± 6

Both 82.7± 4 82.7± 6 83.7± 4

Left 88.5± 4 90.3± 4 91.1± 3
PD vs. YHC Right 86.5± 4 88.6± 6 87.9± 5

Both 92.1± 5 92.5± 5 92.7± 4
Data correspond to the accuracy in test by each architecture.

4. Discussion

Three different deep learning architectures were considered for the classification of PD
vs. HC subjects. Two subgroups of healthy healthy subjects were included, elderly (EHC) and
young (YHC). The architectures evaluated in this work correspond to the state of the art in
gait analysis and are based on CNNs and GRUs. Previous works suggest that CNN architec-
tures are a suitable approach when considering the STFT of gait signals [16,35]. In [16] the use
of a CNN is introduced to classify gait signals and the authors reported an accuracy of 88%.
We found comparable results in our present study, where the best accuracy obtained with
the CNN is 82.7% considering the YHC group and the best result with the EHC group is
82.4%. The algorithm performed better always when the 4× 10 m task was considered.
We believe that this is because a longer task allows to capture more information about pos-
sible abnormal gait patterns which provides better classification results and also improves
the generalization of the algorithms. The GRU model presented here allowed modelling
information of gait signals without any pre-processing. In [36] the authors explored the use
of RNNs to predict gait phases. They showed that these kinds of architectures are promis-
ing for the analysis of gait signals. In our experiments, we could observe that the GRU
architecture improved the accuracy in most of the experiments. Similar to the CNN case,
better results were obtained with the 4× 10 m task. The classification of PD vs. EHC
yields an accuracy of 82.7%, while with the YHC group, the accuracy is 92.5%. Besides
CNN and GRU architectures evaluated individually, in this paper we proposed a model
where CNN and GRU architectures are considered together. We hypothesized that re-
sults could improve when temporal and frequency information were combined in a single
model. We found that, in general, results were similar to those obtained with the GRU
architecture, with accuracies of 83.7% and 92.7% in the PD vs. EHC and PD vs. YHC
scenarios, respectively. We believe that the results of the CNN + GRU model were not
higher due to the small amount of data that we could consider here. Further research with
a larger group of participants is required to validate whether this could lead to better results.
We consider that this work is a step forward in the development of deep learning models
for the automatic classification of PD patients.

In addition, it is necessary to consider other deep learning architectures seeking
to improve the results, such as transfer learning, data argumentation and combinations
of classifiers. Perhaps the most realistic approach would be to do transfer learning based
on existing datasets, however, it is necessary to perform the experiments to raise strong
conclusions.

5. Conclusions

GRU architectures clearly yielded better results than the CNN ones and this is likely
due to the fact that temporal information is incorporated when the first approach is consid-
ered. Besides, we validated that the combination of CNN and GRU methods are suitable
and provide similar results to those observed with GRUs only. Although we expected
to find higher accuracies with the combination of methods, it was not possible to prove our
hypothesis. We believe that it was due to the small amount of data considered in this study.
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Regarding the comparison of gait tasks, we could validate that the 4× 10 m task is
more suitable and systematically yields better results than the 2× 10 m task. Very likely this
is because longer tasks allow us to collect more information and also give more chances
to observe abnormal patterns in the gait signals.

Besides the evaluation of state-of-the-art deep learning architectures, the results ob-
tained in this paper are comparable to others reported in the literature, so we believe that
this study is a contribution to the topic gait analysis in PD patients.

We are aware that one of the limitations of this study is the small amount of data. We
expect to perform experiments with more participants in the near future to make it possible
to validate further hypotheses.
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Appendix A

Details of the architectures used in the models.

Table A1. Details of the CNN architecture considering both feet (12 channels).

Layer Output Shape Number of Parameters

Input (12, 257, 12) 0

Convolution 2D (10, 255, 8) 872
Convolution 2D (8, 253, 16) 1168

Max pooling (4, 126, 16) 0
Flatten 2016 0
Dense 1 256 2,064,640
Dropout 256 0
Dense 2 128 32,896
Dropout 128 0
Dense 3 64 8256
Dropout 64 0
Dense 4 32 2080
Dropout 32 0
Dense 5 16 528
Dropout 16 0

Output 1 17
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Table A2. Details of the GRU architecture considering both feet (12 channels).

Layer Output Shape Number of Parameters

Input (12, 306) 0

GRU 128 148,608
Dense 1 256 8256
Dropout 256 0
Dense 2 128 1040
Dropout 128 0

Output 1 17

For the CNN + GRU architecture we combined the dense 5th layer of the CNN
architecture with the dense 2nd layer of the GRU architecture as follow:

Table A3. Details of the CNN + GRU architecture considering both feet (12 channels).

Layer Output Shape Number of Parameters

Input Dense 5th of CNN and dense
2nd of GRU 0

Dense 4 36

Output 1 5
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Abstract: Although gait disorders represent a highly prevalent condition in older adults, the alter-
ations associated with physiologic aging are often not easily differentiable from those originated by
concurrent neurologic or orthopedic conditions. Thus, the detailed quantitative assessment of gait
patterns represents a crucial issue. In this context, the study of trunk accelerations may represent
an effective proxy of locomotion skills in terms of symmetry. This can be carried out by calculating
the Harmonic Ratio (HR), a parameter obtained through the processing of trunk accelerations in
the frequency domain. In this study, trunk accelerations during level walking of 449 healthy older
adults (of age > 65) who were stratified into three groups (Group 1: 65–74 years, n = 175; Group 2:
75–85 years, n = 227; Group 3: >85 years, n = 47) were acquired by means of a miniaturized Inertial
Measurement Unit located in the low back and processed to obtain spatio-temporal parameters of gait
and HR, in antero-posterior (AP), medio-lateral (ML) and vertical (V) directions. The results show that
Group 3 exhibited a 16% reduction in gait speed and a 10% reduction in stride length when compared
with Group 1 (p < 0.001 in both cases). Regarding the cadence, Group 3 was characterized by a 5%
reduction with respect to Groups 1 and 2 (p < 0.001 in both cases). The analysis of HR revealed a
general trend of linear decrease with age in the three groups. In particular, Group 3 was characterized
by HR values significantly lower (−17%) than those of Group 1 in all three directions and significantly
lower than Group 2 in ML and V directions (−10%). Taken together, such results suggest that HR may
represent a valid measure to quantitatively characterize the progressive deterioration of locomotor
abilities associated with aging, which seems to occur until the late stages of life.

Keywords: gait; harmonic ratio (HR); smoothness; symmetry; older adults; inertial sensor

1. Introduction

Gait is a fundamental physical activity of daily life and represents an important fac-
tor for independent living. However, gait efficiency undergoes significant changes with
age [1–3]. In fact, the physiologic decline of the musculoskeletal system and cognitive
performance associated with aging [4] leads to reduced movement smoothness and cog-
nitive reserve, thus impairing several aspects of mobility associated with daily life tasks.
This primarily affects walking, which results in altered automaticity and skill [5,6] but
also affects other movements, such as turning and sitting to standing and vice versa [7].
Moreover, it should be recalled that, in older adults, most falls occur while walking, which
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emphasizes the importance of having a stable gait as a preventive countermeasure against
such hazardous events [8].

In this context, the detailed analysis of the gait characteristics appears crucial to define
the current status of the individual and, where necessary, plan specific interventions able to
ensure that a sufficient degree of mobility is preserved during the late stages of life. Gait is
usually investigated in both spatial and temporal domains [9], and its main features can
be classified into relatively independent domains, with pace, rhythm, variability, symme-
try, and postural control being probably the most important ones [10]. The parameters
belonging to each of these domains can be assessed using several kinds of systems, such
as motion-capture systems, electronic walkways, and, more recently, wearable Inertial
Measurement Units (IMUs). IMUs employed for human movement analysis are basically
stand-alone microelectromechanical systems that integrate multiaxial inertial sensors. A
typical configuration, which includes a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis
magnetometer, allow measuring acceleration, angular speed, and magnetic vector field of a
moving object in a three-dimensional space, providing up to six degrees of freedom [11,12].
Since modern IMUs are designed to be small, lightweight, economic, and unobtrusive,
their use quickly gained popularity among researchers involved in human movement
analysis. To date, they are considered a reliable and affordable solution to assess gait in a
variety of environments, as they do not require dedicated spaces or complex laboratory set-
tings [13,14]. In particular, contrary to the equipment present in the traditional movement
analysis laboratories, they allow individuals to be tested while wearing their usual clothes
and shoes, thus ensuring good ecological validity [15]. IMUs can provide a new dimen-
sion of granularity for gait analysis and are increasingly used in research studies [16,17].
Although the number and placement of sensors can be variable, the simple setup which
makes use of a single sensor (usually located in the low back) is widely employed as it
ensures a minimum encumbrance for tested individuals, thus allowing gait to be performed
freely under habitual conditions and type of terrains [18]. Several metrics derived from
trunk accelerations during gait have been associated with specific features such as pattern
regularity (through Recurrence Quantification Analysis [19]), motor complexity (through
Multiscale Entropy Analysis [20]), gait stability (using short Lyapunov exponents [20]), and
step-to-step symmetry or rhythmicity/smoothness (through calculation of the Harmonic
Ratio, HR, [21]).

Particularly the HR, which is obtained by processing trunk accelerations in the frequency
domain for antero-posterior (AP), vertical (V), and medio-lateral (ML) directions, has been
demonstrated as a valid and robust metric useful to quantify step-to-step symmetry and to
describe the overall smoothness/rhythmicity of gait. As higher values of HRs are associated
with greater smoothness/symmetry, this parameter can be considered a good indicator of
whole-body balance during gait [22,23], and, to date, some evidence supports the pivotal role
of HRs in discriminating gait variations consequent to neurologic [24–26] and orthopaedic [27]
conditions. Moreover, HRs are sensitive to subtle changes in gait smoothness which may
occur even in the presence of normal spatio-temporal parameters [26,28].

Among other applications, HR has been employed to characterize age-associated
changes in the smoothness of gait as its value has been found to increase when passing
from childhood to adolescence and maturity (where a maximum is reached), while it tends
to decrease during aging [23,29,30]. In this context, such parameters would potentially
be useful to discriminate physiologic gait alterations from those associated with specific
pathologic conditions, including cognitive deficits, in older adults. However, it is note-
worthy that there are few applications of this approach to investigate the role of aging in
terms of smoothness modifications [21,23,29,31–34]. Brach et al. [29] aimed to validate the
discriminative power of HR by testing groups of young and old participants across differ-
ent walking conditions (i.e., straight and curved path, dual task). They found that older
adults had lower HR in the AP direction, indicating a less smooth strategy in the direction
of motion. Lowry et al. [23] examined age-related differences in HRs across a range of
self-selected overground walking speeds, finding that young and older adults exhibited
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similar HRs in all directions of motion across speeds, while old-old adults exhibited lower
HR in AP and V directions. However, no differences were observed in HRs calculated
for natural and faster speeds, with the exception of reduced HR in the V direction in the
very fast condition for the older groups. The HR in the ML direction was not different
between groups and varied less across speeds. Lowry et al. [31] investigated age-related
differences in locomotor strategies during an adaptive walking task (i.e., walking with
narrow and wide step widths). They demonstrated that, compared to young adults, older
adults generally had greater reductions in the variables used to describe forward progres-
sion (HR in AP direction) in both narrow and wide step width. In contrast, the pattern of
results for ML control was similar between young and older adults. In the study by Misu
et al. [32], HR was employed to assess possible changes associated with nutritional status
in a group of community-dwelling older adults. They found significantly reduced HR in
the ML direction in those characterized by a poor nutritional status and hypothesized that
this aspect could affect lateral trunk control. Asai et al. [33] used HR to assess whether fall
history and the fear of falling contribute to the smoothness of lower trunk oscillation during
walking in older adults living in the local community. Row Lazzarini et al. [34] examined
the effects of speed and treadmill walking (TW) on the smoothness and rhythmicity of
40 men and women aged 70–96 years. They concluded that the use of treadmills for gait
smoothness and rhythmicity studies in older adults is problematic as some participants
were not able to achieve overground speed during TW; walking at the overground speed on
a treadmill improves rhythmicity and ML smoothness, and walking at the slower preferred
treadmill walking speed worsens vertical and AP gait smoothness. At last, Pau et al. [35]
reported that, in older adults, the existence of a cognitive deficit is associated with a signifi-
cant reduction of HR in AP and V directions with respect to cognitively intact individuals
and that HR values in all the three directions resulted moderately correlated with the
cognitive performance assessed using either Mini Mental State Examination (MMSE) or
Addenbrooke’s Cognitive Examination Revised (ACE-R).

The existing literature seems to support the hypothesis that HR may represent a suit-
able measure to describe the changes in gait smoothness associated with aging. However,
studies on this topic are quite limited and often carried out in small groups and/or ap-
proximately around the age of 70–75 years. Moreover, only one study [23] included the
presence of a small sample (13 participants) of the oldest-old adults (i.e., those aged 85 and
over). As the effects of aging on gait become significantly stronger approximately around
the age of 80 years [36], it could be interesting to specifically investigate the reductions of
gait smoothness in such individuals.

Based on the aforementioned considerations, in this study, we aim to provide reference
values of HR during gait useful to characterize the changes occurring during aging in a
large cohort of healthy individuals aged 65 and over, including the oldest-old participants.
Our hypothesis is that aging is associated, other than with changes in spatio-temporal
parameters previously recognized [1,37], also by modifications of gait smoothness that may
indicate a progressive deterioration of locomotor abilities.

2. Materials and Methods
2.1. Participants

During the period November 2019 to June 2022, 863 older adults were screened
for eligibility at the Center for Cognitive Disorders and Dementia (in collaboration with
the Geriatric Unit of “SS. Trinità” General Hospital, Cagliari, Italy) and the University
of Milan (Milan, Italy). Eligibility criteria included: (1) age over 65 years; (2) ability to
walk independently (i.e., without an assistive device or the assistance of another person);
(3) being free from either neuromuscular disorders impairing movement (including but not
limited to Parkinson’s disease, stroke, and multiple sclerosis) or spinal disorder affecting
accelerometer placement; (4) being cognitively intact (i.e., MMSE score > 26); and (5) being
free from depressive symptoms (i.e., score on 30-item Geriatric Depression Scale > 10).
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Four hundred forty-nine individuals matched the inclusion criteria and were enrolled
in the study and stratified into three groups as follows:

• Group 1 (age 65–74 years, n = 175);
• Group 2 (age 75–85 years, n = 227);
• Group 3 (age >85 years, n = 47).

The selection process is shown in Figure 1.
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Figure 1. Process of participants’ selection.

The anthropometric features of the participants are reported in Table 1.

Table 1. Participant’s characteristics. Values are expressed as mean ± SD.

Group 1
(65–74 Years)

Group 2
(75–85 Years)

Group 3
(>85 Years)

Participants # (F, M) 175 (103 F, 72 M) 228 (128 F, 100 M) 47 (28 F, 19 M)
Participants percentage (F, M) F 59%, M 41% F 56%, M 44% F 60%, M 40%
Age (years) 70.4 ± 2.5 79.1 ± 2.8 a 86.5 ± 1.7 a,b

Body Mass (kg) 66.8 ± 12.4 65.6 ± 11.4 61.3 ± 13.6 a,b

Height (cm) 162.0 ± 8.4 160.0 ± 8.7 a 158.6 ± 8.5 a

The symbol a indicates a significant difference for Group 1; the symbol b indicates a significant difference for
Group 2.

The study, which was conducted in accordance with the Declaration of Helsinki of
1964 and its latest amendments, was approved by the ethical committees of the University
of Milan (authorization number 12_2019) and ATS Sardegna, Italy (authorization number
300/2021/CE). Written informed consent was obtained from all participants.

2.2. Data Acquisition

A small, lightweight inertial sensor (G-Sensor®, BTS Bioengineering, Italy), previously
validated for the assessment of gait spatio-temporal parameters in healthy individuals [38]
and previously used to assess gait in older adults [33,39,40], was attached to participants’
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trunk (at the L4-L5 vertebrae level) using a dedicated semi-elastic belt (see Figure 2). After
a short familiarization period, participants were required to walk, at a self-selected speed
and in the most natural manner, along a 30 m hallway following a straight trajectory. The
device acquired the linear accelerations in the three directions (AP, ML, and V) at 100 Hz
frequency, then transmitted in real-time via Bluetooth to a personal computer to be stored
as ASCII files. Subsequently, data were processed by means of a custom Matlab® routine to
calculate the gait parameters of interest. In the first 5 s of the acquisition, the participant
is required to stand without moving; this period was employed to confirm the sensor
orientation and to adjust the acceleration vector data during the data collection. The most
relevant spatio-temporal parameters (gait speed, cadence, stride length, stance, and double
support phase duration) were computed starting from the raw acceleration data, according
to the peak-detection algorithm formulated by Zijlstra et al. [41].
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Instead, HRs were calculated using the approach proposed by Menz, Lord, and
Fitzpatrick in 2003 [19]. In short, the accelerations of the trunk collected by the IMU in
the three orthogonal directions are handled in the frequency domain via a finite Fourier
series. Then, the HRs for the AP and V directions are calculated using Eq. 1 as the ratio
between the sum of the amplitudes (A) of the first ten even harmonics (associated with
the in-phase components of the signal) and the sum of the amplitudes of the first ten odd
harmonics (which contain the out-of-phase components), the latter being minimized as
gait smoothness improves. In the case of ML direction, the calculation is slightly different
(see Eq. (2)). In fact, since the acceleration pattern is characterized by one peak per stride
(thus resulting in the dominance of the first harmonic and subsequent odd harmonics), in
this case, HR ML is obtained by dividing the sum of the amplitudes of the odd harmonics
divided by the sum of the amplitudes of the even harmonics.

HRAP−V =
∑ Aeven harmonics

∑ Aodd harmonics
(1)

HRML =
∑ Aodd harmonics

∑ Aeven harmonics
(2)

HR values are quite simple to interpret, being lower values indicative of a less
smooth/symmetrical gait. Previous studies reported that healthy older adults are char-
acterized by values of HR approximately from 3–4 in the AP and V directions and from
2.1–2.6 in the ML direction [21,23,25,34].
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2.3. Statistical Analysis

A two-way multivariate analysis of variance (MANOVA) was used to verify the
presence of differences among the three groups in terms of spatio-temporal parameters
and HRs. In particular, regarding HRs, previous studies indicated its sensitivity to gait
speed (i.e., higher speed originates higher HR values [23]), and its value is expected to
differ across different age groups. Thus, it appears necessary to include it in the analysis as
a covariate.

The independent variables were the participant’s age group, while the dependent
variables were, in one case, the six spatio-temporal parameters and, in the other, the three
HRs. The statistical significance level was set at p < 0.05, and the effect sizes were evaluated
via the eta-squared (η2) coefficient. Univariate analysis of variance (ANOVA) was used as
a post hoc test through a reduction of the significance level according to the Bonferroni
correction for multiple comparisons (p = 0.008, 0.05/6) for spatio-temporal parameters and
p = 0.016, 0.05/3) for HRs). Data were analyzed using the IBM SPSS Statistics v.23 software
(IBM, Armonk, NY, USA).

3. Results

Table 2 reports the experimental test results regarding the spatio-temporal parameters of
gait and HRs for each age group. A significant main effect of the group [ F(12, 878) = 4.38,
p < 0.001, Wilks λ = 0.89, η2 = 0.06 ] was found by the MANOVA on spatio-temporal
parameters of gait. In particular, the oldest participants (Group 3) were characterized by
a 16% reduction in gait speed and by a 10% reduction in stride length (p < 0.001) when
compared with the performance of the Group 1 (p < 0.001 in both cases), resulting after
the post hoc analysis. Slightly smaller (yet statistically significant) reductions in speed and
stride length (approximately 9% in both cases) were also observed between individuals of
Group 1 and Group 2. Regarding the cadence, the statistical analysis revealed that Group
3 was characterized by a 5% reduction with respect to Groups 1 and 2 (p < 0.001 in both
cases). In contrast, no significant differences were observed for the duration of the stance,
swing, and double support phases.

Table 2. Mean and standard deviation values of the spatio-temporal and HR (Harmonic Ratio)
parameters in the three considered groups.

Group 1
(65–74 Years)

Group 2
(75–85 Years)

Group 3
(>85 Years)

Spatial-temporal
parameters of gait

Gait speed (m s−1) 1.08 ± 0.24 0.98 ± 0.24 a 0.91 ± 0.26 a

Stride length (m) 1.16 ± 0.21 1.05 ± 0.22 a 1.04 ± 0.27 a

Cadence (steps min−1) 111.20 ± 9.46 111.61 ± 10.75 105.20 ± 13.00 a,b

Stance phase (% of the GC) 60.46 ± 2.55 60.82 ± 1.97 61.28 ± 2.74
Swing phase (% of the GC) 39.42 ± 3.00 39.06 ± 2.73 39.04 ± 3.32

Double support phase (% of the GC) 10.56 ± 2.08 10.80 ± 1.98 11.21 ± 2.71

Harmonic Ratio *
AP direction * 3.63 ± 1.03 3.15 ± 0.97 a 3.01 ± 0.89 a

ML direction * 2.60 ± 0.80 2.42 ± 0.69 a 2.17 ± 0.58 a,b

V direction * 3.57 ± 0.97 3.33 ±0.86 a 2.96 ± 0.88 a,b

The symbol a indicates a significant difference for Group 1 after Bonferroni correction (p = 0.016), the symbol b

indicates a significant difference for Group 2 after Bonferroni correction (p = 0.016); * controlled for gait speed;
GC: Gait Cycle.

The trend of HR for AP, ML, and V directions across the analysis groups is shown in
Figure 3. Including gait speed as the covariate, MANCOVA detected a significant main
effect of age on HR values [ F(6,882) = 3.10, p = 0.005, Wilks λ = 0.96, η2 = 0.02]. The post hoc
analysis showed that older participants (i.e., Group 3) exhibited a quite uniform reduction
of HR with respect to those of Group 1 for all three directions of approximately 17%
(p < 0.001), while differences vs. Group 2 involved only the ML and V directions and were
smaller (−10%). Finally, significant differences were also found between Group 2 and
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Group 1 for HR in all three directions, as those aged 75–85 exhibited reduced HR values
(approximately between 6 and 13%).
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4. Discussion

In this study, we aimed to quantitatively investigate the existence of age-related alter-
ations of gait patterns in a large cohort of healthy older adults aged 65 and over, including
the oldest-old participants, assessed in a clinical environment via a wearable inertial sen-
sor. The hypothesis was explored by analyzing HRs computed from trunk acceleration
and the most common spatio-temporal parameters. In particular, HRs, representative of
gait smoothness, can be considered an effective indicator of whole-body balance during
gait, and it was already demonstrated to be a measure suitable to describe the changes in
ambulation associated with aging. In this regard, although there is previous evidence of
age-related reductions of HRs during walking [29,33,42], little data is available as regards
the oldest-old adults. We attempted here to overcome such a limitation by testing a large
cohort of healthy individuals, which also included a group of 47 participants aged 85–90.

Our data confirm that aging is associated with significant changes in spatio-temporal
parameters. In particular, as for gait speed and stride length, the youngest participants
(Group 1) exhibited higher values when compared with the other two groups, while as
regards the cadence, significantly lower values were found in Group 3 compared to Group
1 and Group 2. In contrast, no significant differences among groups were found in terms of
stance, swing, and double support phase duration, although a consistent trend of variation
with age (i.e., stance and double support phases increase, swing phase duration decreases)
was observed. It is noteworthy that the observed speed changes are consistent with those
reported in previous studies, which showed a continuous reduction in gait speed in older
adults, especially from the seventh decade [43,44]. These data align with Hollman et al.,
2011 [36], which presents the normative spatio-temporal gait parameters in older adults,
and a more recent study [45] which reports the reference values for usual gait speed
in community-dwelling older adults living in Western Europe. Moreover, since such a
reduction is accompanied by a correspondent step/stride shortening (particularly when
passing from 65 to 75 years), our data confirm that older adults adopt a cautious strategy
in order to achieve better stability in locomotion and, consequently, decrease the risk of
falling [46–49].

As regards HRs, the values calculated in the present study are quite consistent with
those previously reported for individuals of similar age ranges [21,23,33–35]. For exam-
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ple, in Lowry et al. [21], the adults aged 80–86 years exhibited lower HR in the AP and
V directions compared to those aged 60–69 years, and no differences in the ML direction
were detected between the Groups. In Brach et al. (2011) [29], older adults (mean age:
77.5 years) had lower HR in the AP direction than young adults (mean age = 24.4 years).

This indicates that, despite the possible differences involving equipment, measurement
protocol, and data processing, the HR parameter could represent a sensitive approach.
The main finding which emerges from the trunk acceleration analysis is that aging is
associated with a substantially linear decrease of HRs in all directions, with the oldest-
old participants characterized by the lowest values in all three directions. As previously
mentioned, it is known that older adults are usually characterized by lower HRs compared
to young adults [23,29], and among them, the co-existence of cognitive decline enhances
this phenomenon [33]. In this regard, our results demonstrate that smoothness tends to
further worsen in those aged 85 and over (Group 3), thus suggesting that changes in motor
control abilities continue to occur until the late stages of life. However, it is difficult to
perform a comparison as the age ranges are not similar among studies, and also equipment
and measurement protocols are not uniform [23,36]. Alterations in limb dynamics and a
different distribution of joint torques and powers on lower limb joints towards proximal
segments (i.e., older adults tend to perform more work at the hip and less at the ankle)
have been identified as possible factors able to increase irregularity of trunk accelerations
and thus consequently able originate reduced smoothness [23]. However, it should also be
recalled that the control of ML motion during the stance phase of gait represents a main risk
factor for falls in older adults [50,51]. It is, thus, possible that reduced HRs (in particular
those of ML directions) are one of the expressions of the cautious strategy adopted to keep
the center of mass safely between their feet and thus preserve balance. In fact, an optimal
balance during walking requires continuous integrative control, particularly in a lateral
direction, due to inherent instability associated with single limb support [52]. There is now
considerable evidence for the effects of age on ML motion [53–56], some of which have
been associated with increased fall risk [57].

As HR is a parameter that is very sensitive to even subtle changes in gait smoothness,
it could be used as an outcome measure of rehabilitation/training programs aimed at
improving gait in older people in combination with the conventional spatio-temporal pa-
rameters. In particular, the literature suggests that structured exercise programs, prescribed
and designed according to individual clinical conditions, age, and goal/s to reach, can now
be considered a strategy to maintain and improve physical function in older people [58–60].
In particular, it was demonstrated that exercise programs reduce the rate of falls and the
number of people experiencing falls in older people living in the community [61] and that
physical exercises, including functional mobility training, especially walking, have better
results than physical programs with only static, resistance, and flexibility training, espe-
cially in those with cognitive deficit [62]. It is also important to stimulate them to regularly
perform physical activity to improve general well-being and cognition, also considering
home-based exercise programs.

Some limitations of the study should be acknowledged. Firstly, the proposed strat-
ification resulted in a Group (i.e., those aged 85 and over) that was markedly smaller
than the others. This reflects, to some extent, the need to include participants free from
significant mobility restrictions and cognitively intact, which is not easy to achieve con-
sidering that such issues are quite common during the late stage of life. Secondly, since
this study focused solely on spatio-temporal parameters and HRs, we could only speculate
about the mechanisms underlying the pattern of results. Future developments of the study
should aim to combine kinematic and kinetic features of gait with HRs and other trunk
acceleration-derived measures, to have a detailed and exhaustive picture of the control of
body motion during walking and even to understand which measures are most sensitive to
age-related changes in gait.
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5. Conclusions

In the present study, the possible changes in spatio-temporal parameters and smooth-
ness of gait associated with aging were explored in a cohort of youngest-, middle-, and
oldest-old, using parameters derived from trunk acceleration collected in a clinical con-
text using a simple setup composed by a single miniaturized IMU. Our data showed the
presence of significant alterations in gait according to aging, reporting a reduced speed
and stride length and a reduction of HR in the three directions. The latter changes were
similar in magnitude across the three groups and suggested that smoothness similarly
worsens in all directions until the late stage of life. Considering the sensitivity of HR to the
presence of physical and cognitive conditions which interfere with mobility, the analysis
of smoothness of gait may be considered a useful and valid tool for the early detection of
subtle changes in gait in older adults, which that the spatio-temporal parameters alone
could fail to highlight. This parameter could also be used in clinical practice by a physician
and a physical therapist.
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Abstract: Parkinson’s disease (PD) is responsible for a broad spectrum of signs and symptoms,
including relevant motor impairments generally rated by clinical experts. In recent years, motor
measurements gathered by technology-based systems have been used more and more to provide
objective data. In particular, wearable devices have been adopted to evidence differences in the gait
capabilities between PD patients and healthy people. Within this frame, despite the key role that the
upper limbs’ swing plays during walking, no studies have been focused on their harmonic content,
to which this work is devoted. To this end, we measured, by means of IMU sensors, the walking
capabilities of groups of PD patients (both de novo and under-chronic-dopaminergic-treatment
patients when in an off-therapy state) and their healthy counterparts. The collected data were
FFT transformed, and the frequency content was analyzed. According to the results obtained, PD
determines upper limb rigidity objectively evidenced and correlated to lower harmonic contents.

Keywords: Parkinson’s disease; neurological disorders; wearable sensors; frequency harmonics; gait
analysis; gait impairments

1. Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders
worldwide, with an increasing incidence over the last 30 years [1] and prevalence in people
aged >65 years [2]. PD is associated with a progressive loss of dopaminergic neurons in
a specific brainstem area called Substantia Nigra pars compacta, which is responsible for
the occurrence of cardinal motor signs, including rest tremor (i.e., a 4–6 Hz tremor in
fully resting limbs), bradykinesia (i.e., slowness of movements) and rigidity (i.e., muscles
become stiff or inflexible). PD patients may also suffer from postural instability [3] and falls,
especially in the advanced stages of the disease [4], and voice disorders [5,6]. Moreover,
a broad spectrum of non-motor symptoms such as anxiety, depression and urogenital
dysfunction also frequently arise, negatively impacting patients’ quality of life [7].

The clinical evaluation of parkinsonian signs and symptoms is generally carried out
by using rating scales, the most adopted one being the standardized Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [8], divided into four parts.
The third (III) part concerns motor assessment, with a set of motor tasks subjectively ranked
by expert clinical staff with discrete values (0–4). The UPDRS protocol demonstrates
great validity but also limits, such as moderate intra- and inter-rater reliability [9,10],
some observer inconsistencies [11] and a coarse assessment due to the limited scale with
only four discrete values. Consequently, researchers have been more and more open
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to the adoption of objective technology-based systems [12,13] aimed at fine quantitative
assessments of PD motor signs, such as optical apparatuses (e.g., RGB cameras) [14,15],
smartphones [16], EMG tools [17,18], flex [19,20] and force sensors [21] and wearable
devices (e.g., inertial measurement units, hereafter IMUs) [22–24]. In particular, the latter
have been demonstrated to be effective in furnishing reliable data to be used for feature
extraction and data classification purposes with high correlations to standards. For example,
Bobić et al. [25] assessed bradykinesia by means of gyroscopes sensors placed on the thumb
and index fingernails during finger tapping, di Biase et al. [26] determined rigidity with
IMUs measuring passive oscillation of arms, and Dai et al. [27] adopted IMUs to objectively
evidence tremors.

Apart from single aspects of motor deficiencies, IMUs have been adopted to reveal
an ensemble of motor signs, too. Ricci et al. [28] adopted a set of IMUs to assess rigidity,
bradykinesia, postural instability and gait abnormalities, Zampieri et al. [29] adopted IMUs
to objectively evidence reduced arm swing, rigidity and bradykinesia during gait tests and
Lewek et al. [30] evidenced asymmetry in the upper limb swing in early PD subjects on the
basis of measurements gathered by IMUs.

Despite the detailed motor investigations of the published papers, as far as we know,
no work has focused on analyzing the frequency content of forearm swings during gait
tests. However, since forearm movements represent a key aspect of human walking [31],
here we highlight their contribution through IMU-based measurements during a walking
task performed by groups of PD patients and healthy subjects to evidence differences in
their spectral components.

This work is arranged to present the subjects involved in the study (Section 2.1), the
adopted technologies (Section 2.2), the procedures (Sections 2.3 and 2.4) and the results
(Section 3) to determine the impact of key relevant walking motor features (Sections 4 and 5).

2. Materials and Methods
2.1. Subjects

A total of 89 subjects (Table 1), comprising 58 PD patients and 31 age-matched healthy
people (i.e., the control group, HC hereafter), were recruited from the Movement Disorders
Outpatient Service of both Tor Vergata university hospital and Sapienza University of Rome
(Italy). In particular, the PD patients were 44 drug-free de novo (i.e., newly diagnosed
and not yet in therapy, PD-DN hereafter), and 14 PD patients under chronic dopaminergic
treatment, examined when in the off state of therapy (i.e., after drug withdrawal for at
least 12 h; PD-OFF hereafter) [27,28]. All patients were evaluated by medical experts and
rated according to the MDS-UPDRS part III, Hoen and Yahr (H&Y) and Mini-Mental State
Examination (MMSE) scales.

Table 1. Clinical and demographic features of the participants.

PD-DN PD-OFF HC

Age [years] 62 ± 9.7 70 ± 9 69 ± 11.2
Gender 29 M, 15 F 9 M, 5 F 10 M, 21 F

Height [cm] 170.7 ± 8.6 169.4 ± 11.5 163.1 ± 10.7
Weight [kg] 73.7 ± 12.7 70.8 ± 16.8 67.5 ± 12.4

MDS-UPDRS III 22.2 ± 8.8 29.8 ± 10.7
H&Y 1.75 ± 0.5 1.87 ± 0.3

Inclusion criteria for PD subjects were diagnosis of idiopathic PD, ability to walk
independently, absence of comorbidities possibly affecting gait and an MMSE score of >24.

All subjects voluntarily agreed to participate in this study, furnishing informed consent
according to the local ethics committees following the Declaration of Helsinki.
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2.2. Wearable Electronic Devices

We adopted three lightweight (<20 g each), unobtrusive (4 cm × 3 cm × 1.5 cm),
not-hindering-movements (placed by Velcro strips) wearable devices (wearables hereafter),
each termed Movit G1 (by Captiks Srl, Rome, Italy). Each Movit G1 hosts IMUs with
a triaxial accelerometer and a triaxial gyroscope, already validated with respect to gold
standard system [32], to collect kinematic data (i.e., acceleration, angular velocity and
orientation) from different anatomic segments (i.e., forearms and upper back, Figure 1a,b)
of each participant. We configured the accelerometer to ±8 g with 16.384 LSB/g sensitivity
and the gyroscope to ±2000◦/s with 32.8 LSB/◦/s sensitivity. Signals were acquired at a
sampling rate of 50 Hz and sent to a receiver connected to a personal computer that runs a
dedicated application named Captiks Motion Studio (by Captiks Srl, Rome, Italy).
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shoulder, s2 and s3 on the forearms.

2.3. Testing Procedure

Due to our walking-focused work, we adopted the Timed Up and Go (TUG) test as a
standard procedure for gait assessment.

The TUG is a sequence of subjects’ common movements, as explained below:

• Sit to stand: from seated on a chair with arms crossed over the chest to standing up;
• First walking: a walk for 6 m at a comfortable speed;
• First turning: a first 180◦ rotation;
• Second walking: a walk from the turning point back to the chair;
• Second turning: a second 180◦ rotation;
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• Stand to sit: from standing to sitting down.

A schematic representation of TUG test phases is reported in Figure 2.
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The test was fully performed by all participants. Gait was clinically assessed through
discrete scores assigned according to the MDS-UPDRS part III. The frequency contents
were later extrapolated from the walking part only.

2.4. Data Analysis

The TUG test was segmented to isolate the walking phase. This segmentation was
empirically obtained by evidencing the start of the first walk (when the subject releases
the arms from the crossed position), the end of the first walk (when the trunk rotates more
than 10 degrees) and similarly for the second walking phase.

Occasionally, some sample data were not correctly transmitted from the IMUs to the
receiving unit; when this occurred, we interpolated the data streaming (even if empirically,
we could consider this issue not relevant). Signals were also windowed with the Tukey
window function and zero-padded to guarantee a minimum of 1024 samples.

Data were gathered to determine the frequency content (by means of the Fast Fourier
Transform algorithm) of the forearm swings (for both left and right upper limbs) and, in
particular, those motor features of the harmonics related to PD, and seven features were
determined accordingly, as reported in Table 2. Since PD patients, especially those in
the first stages of the disease, behave asymmetrically in arm swings, we considered the
differences between the two upper limbs empirically differentiated into the “most affected”
and “least affected” sides according to their range of motion (ROM) during the walking
phase (“least affected” was for the higher ROM).

A two-sample t-test (p-value = 0.05) was performed to determine if the features’ distri-
butions showed significant differences between PD and HC populations. The comparison
was undertaken distinctly for PD-DN and PD-OFF patients and separately for the “most
affected” and “least affected” sides. Moreover, Spearman’s rank correlation coefficient was
computed between the motor features and MDS-UPDRS III scores to relate the features and
PD signs by considering the MDS-UPDRS items, namely no. 3.3 (rigidity), no. 3.10 (gait),
no. 3.14 (body bradykinesia and hypokinesia) and no. 3.16 (action tremor), as provided by
clinicians. We chose these items because they have already demonstrated a good correlation
with the features obtained from gait [28].

The described data analysis was homemade by means of an ad hoc algorithm written
in MATLAB 2022b (by Mathworks Inc., Natick, MA, USA).
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Table 2. Motor features of the harmonics in upper limb swings during gait.

Features Description

Hamp1 Maximum amplitude of the fundamental frequency
Hamp2 Maximum amplitude of the second harmonic
Hamp3 Maximum amplitude of the third harmonic

freq Fundamental frequency
HD2 Second-harmonic distortion, computed as ratio of Hamp2 and Hamp1
HD3 Third-harmonic distortion, computed as ratio of Hamp3 and Hamp1

Asym Difference in angular velocities of arms, calculated as the difference between
Hamp1 of left and right arm, divided by the highest one

THD Total harmonic distortion, computed considering the first seven harmonics

3. Results

Figure 3 shows the Hamp1 and Hamp2 distributions for HC (Figure 3a,b), PD-DN
(Figure 3c,d) and PD-OFF (Figure 3e,f) populations.
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Table 3 reports the mean and standard deviations of each feature for PD-DN, PD-
OFF and HC, respectively, and the p-values obtained from t-tests separately for the “most
affected” and “least affected” sides.

Table 3. Values of the motor features related to PD-DN, PD-OFF and HC.

Side Feature
PD-DN

(Mean ± Std)
PD-OFF

(Mean ± Std)
HC

(Mean ± Std)

p-Value *

PD-DN PD-OFF

Le
as

ta
ff

ec
te

d

Hamp1 50.94 ± 26.61 70.59 ± 38.00 71.79 ± 29.77 0.002 0.909
Hamp2 15.74 ± 7.42 16.43 ± 8.07 18.41 ± 8.86 0.161 0.480
Hamp3 7.13 ± 4.30 8.12 ± 4.79 9.53 ± 5.93 0.046 0.441

freq 0.87 ± 0.07 0.96 ± 0.10 0.87 ± 0.06 0.571 0.002
THD −8.92 ± 4.21 −10.89 ± 5.13 −10.31 ± 3.99 0.154 0.686
HD2 0.38 ± 0.26 0.28 ± 0.17 0.28 ± 0.13 0.050 0.943
HD3 0.16 ± 0.09 0.13 ± 0.08 0.14 ± 0.09 0.432 0.703

M
os

ta
ff

ec
te

d

Hamp1 26.20 ± 19.25 30.72 ± 21.79 45.30 ± 19.62 <0.001 0.031
Hamp2 13.21 ± 6.75 14.60 ± 7.62 17.07 ± 6.38 0.014 0.263
Hamp3 5.75 ± 3.60 6.18 ± 3.95 8.92 ± 4.42 0.001 0.053

freq 0.89 ± 0.10 0.96 ± 0.11 0.87 ± 0.07 0.525 0.003
THD −6.23 ± 4.40 −5.61 ± 2.96 −7.96 ± 4.56 0.103 0.086
HD2 0.66 ± 0.35 0.58 ± 0.38 0.46 ± 0.29 0.010 0.225
HD3 0.32 ± 0.27 0.32 ± 0.41 0.22 ± 0.11 0.046 0.228

Asym 0.48 ± 0.24 0.52 ± 0.25 0.35 ± 0.21 0.017 0.021

* Statistically relevant p-Values are highlighted in bold.

Table 4 shows the correlation coefficients and related p-values as results of Spearman’s
rank correlation between features and gait and body bradykinesia scores of the MDS-
UPDRS III for PD-DN subjects.

Table 4. Spearman’s rank correlation coefficients for the “most affected” and “least affected” sides in
de novo parkinsonian patients.

Side Feature
MDS-UPDRS III Gait (Item 3.10) Body Bradykinesia (Item 3.14)

r p-Val * r p-Val * r p-Val *

Le
as

ta
ff

ec
te

d

Hamp1 −0.58 <0.001 −0.35 0.030 −0.43 0.006
Hamp2 −0.27 0.093 −0.07 0.651 −0.13 0.413
Hamp3 −0.49 0.001 −0.15 0.350 −0.28 0.080

freq −0.25 0.116 −0.20 0.210 −0.19 0.238
THD 0.14 0.373 0.32 0.046 0.16 0.335
HD2 0.43 0.005 0.33 0.040 0.35 0.029
HD3 0.22 0.175 0.28 0.078 0.20 0.224

M
os

ta
ff

ec
te

d

Hamp1 −0.65 <0.001 −0.27 0.099 −0.60 <0.001
Hamp2 −0.55 <0.001 −0.21 0.188 −0.45 0.003
Hamp3 −0.42 0.007 −0.22 0.170 −0.40 0.011

freq −0.04 0.794 −0.31 0.053 −0.05 0.723
THD −0.17 0.294 −0.13 0.408 −0.13 0.410
HD2 0.40 0.012 0.11 0.506 0.40 0.011
HD3 0.41 0.009 0.20 0.228 0.37 0.019

Asym 0.27 0.089 −0.11 0.506 0.49 0.001

* Statistically relevant correlation coefficients and relative p-Values are highlighted in bold.

Table 5 shows the correlations between motor features and specific MDS-UPDRS III
items for the upper limbs (i.e., action tremor and rigidity) for PD-DN subjects.
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Table 5. Spearman’s rank correlation coefficients in de novo parkinsonian patients.

Feature
Action Tremor (Item 3.16) Rigidity (Item 3.3)

r p-Val * r p-Val *

Hamp1 −0.20 0.066 −0.54 <0.001
Hamp2 −0.09 0.406 −0.36 <0.001
Hamp3 0.23 0.038 0.51 <0.001

freq 0.08 0.444 −0.06 0.542
THD 0.16 0.141 0.01 0.881
HD2 0.16 0.150 0.37 <0.001
HD3 <0.01 0.992 0.17 0.111

* Statistically relevant correlation coefficients and relative p-Values are highlighted in bold.

Table 6 shows the correlation coefficients and related p-values as results of Spearman’s
correlation between features and items related to gait and body bradykinesia of the MDS-
UPDRS III relative to PD-OFF patients.

Table 6. Spearman’s rank correlation coefficients for the “most affected” and “least affected” sides in
patients with Parkinson’s disease when in off state of therapy.

Side Feature
UPDRS III Gait (Item 3.10) Body Bradykinesia (Item 3.14)

r p-Val * r p-Val * r p-Val *

Le
as

ta
ff

ec
te

d

Hamp1 −0.13 0.657 −0.10 0.718 −0.44 0.113
Hamp2 −0.57 0.030 −0.23 0.413 −0.59 0.024
Hamp3 −0.33 0.234 −0.02 0.923 −0.23 0.414

freq −0.45 0.103 −0.34 0.223 −0.56 0.034
THD −0.22 0.439 0.08 0.765 0.06 0.827
HD2 −0.19 0.506 0.05 0.847 0.03 0.906
HD3 −0.18 0.516 0.05 0.847 0.20 0.487

M
os

ta
ff

ec
te

d

Hamp1 −0.41 0.145 −0.64 0.013 −0.34 0.226
Hamp2 −0.40 0.155 −0.27 0.348 −0.67 0.008
Hamp3 −0.11 0.685 0.05 0.860 0.01 0.959

freq −0.38 0.180 −0.28 0.328 −0.54 0.042
THD −0.04 0.886 0.22 0.440 −0.31 0.275
HD2 −0.05 0.851 0.44 0.114 −0.30 0.287
HD3 0.11 0.701 0.43 0.114 0.33 0.244

Asym 0.22 0.448 0.58 0.027 −0.01 0.946

* Statistically relevant correlation coefficients and relative p-Values are highlighted in bold.

Table 7 reports the results of the correlations between motor features and specific
MDS-UPDRS III items for the upper limbs (i.e., action tremor and rigidity).

Table 7. Spearman’s rank correlation coefficients in patients with Parkinson’s disease when in off
state of therapy.

Feature
Action Tremor (Item 3.16) Rigidity (Item 3.3)

r p-Val * r p-Val *

Hamp1 −0.29 0.123 −0.53 0.003
Hamp2 −0.20 0.292 −0.37 0.048
Hamp3 −013 0.484 −0.19 0.33

freq −0.20 0.305 −0.28 0.14
THD −0.06 0.760 −0.02 0.91
HD2 0.164 0.402 0.31 0.099
HD3 0.10 0.596 0.28 0.136

* Statistically relevant correlation coefficients and relative p-Values are highlighted in bold.
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4. Discussion

In this study, we investigated if the frequency analysis of forearm swing during
walking can be a discriminating tool for distinguishing PD patients (both at early, called
PD-DN, or chronically treated, called PD-OFF, stages) from HC and if it allows quantifying
different motor signs.

Our measurements evidenced the (expected) “compound pendulum” behavior of
the upper limb swings, which is characterized by multiple higher-order harmonics. We
focused on the relationship between these spectral components and PD signs. A set of
seven features was used to quantify the nonlinear behavior of the arm swing.

As highlighted in Figure 3, walking arm-swing characteristics of subjects are sig-
nificantly different for PD-DN and HC, demonstrating lower values of Hamp1 (i.e., the
maximum amplitude of the fundamental frequency) and Hamp2 (i.e., the maximum am-
plitude of the second harmonic) for both arms in PD-DN than in HC. This evidence was
confirmed by the results of t-tests reported in Table 3, where, in particular, the p-values
demonstrated significant differences in PD-DN vs. HC in the swings of both arms. In
particular, it was observed that the features of the “most affected” side were more signifi-
cant than those of the “least affected” side, especially for features Hamp2 and HD2 (i.e.,
second-harmonic distortion), which showed no difference between HC and PD-DN for
the “least affected” arm. This result agrees with what has been reported in the literature,
namely that the early stages of this disease are characterized by a greater asymmetry of
motor signs. This asymmetry in the arm swing has been quantified by means of the named
Asym feature.

Table 3 also shows the t-test results for PD-OFF patients. In this case, differences from
HC are evidenced for the “most affected” arm but not for the “least affected” one. Indeed,
residual effects of the dopaminergic therapy, due to the known long-duration response
to L-Dopa, may have smoothed possible differences also involving the “least affected”
side despite a drug withdrawal of at least 12 h [33,34]. In particular, only features Hamp2
and freq (fundamental frequency) of the “most affected” side show significant p-values,
although the other features of the “most affected” side have mean and standard deviation
values close to those reported for PD-DN.

According to the results evidenced in Table 4, for PD-DN subjects, there is a meaningful
correlation between the features of the “least affected” and “most affected” arms. In
particular, motor features of the “most affected” arm are better correlated to the overall
MDS-UPDRS III scores with respect to the “least affected” one, and in a special way with
item no. 3.14 (bradykinesia).

Results shown in Table 5 evidence a significant correlation between rigidity- and
amplitude-related features to the first three spectral components and the second-order
harmonic distortion, while no correlation of the features is found with item no. 3.16 (action
tremor).

As Table 6 shows, the motor feature Hamp2 is particularly useful to evidence bradyki-
nesia issues in PD-OFF subjects. This is interesting in relation to the significance shown in
Figure 3, which underlines lower values of Hamp2 in PD patients.

Table 7 reports how item no. 3.16 (action tremor) is uncorrelated to any features, while
the Hamp1 and Hamp2 features present moderate to good correlation with item no. 3.3.

From the previous outcomes, it is possible to assert that the information obtained
from the analysis of the first three spectral components of the arm swing can be useful
for discriminating PD patients from HC subjects, and they also present a good level of
correlation with MDS-UPDRS scores for bradykinesia and rigidity.

Figure 4 shows the distribution of Hamp1 and Hamp2 for different scores of bradyki-
nesia assigned by clinicians for both PD-DN and PD-OFF patients.
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Of particular interest is the effect of the second harmonic on the arm swing, as it is
possible to provide a physical interpretation of the phenomenon.

In fact, second- and third-harmonic distortion is a well-known phenomenon in non-
linear systems such as power amplifiers [35,36]. These effects are due to the nonlinear
effects of the system’s physical constraints. In nonlinear systems, the presence of even
and odd harmonics is expected, but in the human arm, the constraint of the elbow forces
the forearm into an asymmetric flexion–extension movement with a consequent swing,
such as the one reported in Figure 5, where three different distortions are shown. This
“asymmetry” generates a prevalence of even harmonics. Accordingly, our results highlight
the presence of the second harmonic in HC subjects, while PD patients show a decrease in
the second-harmonic component, meaning a reduced flexion–extension of the elbow. This
finding may reflect the presence of rigidity in patients’ limbs. Indeed, as demonstrated
in [37,38], PD subjects show abnormal EMG patterns in the biceps brachii and triceps surae
muscles during passive movements. Since the considered muscles are responsible for elbow
movements, an alteration in the EMG activity can alter the flexion–extension of the joint
with a consequent variation of the second harmonic. These remarks suggest a connection
between higher-order harmonics and parkinsonian rigidity. As further support to this
hypothesis, we found significant correlations between motor features (i.e., Hamp2, Hamp3,
DH2 and DH3) and rigidity, as clinically assessed through MDS-UPDRS III scores.
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Figure 5. Arm-swing signals in frequency and time domains for different harmonic content. Signals
reported show negligible distortion (a,b), second-harmonic distortion (c,d) and third-harmonic distor-
tion (e,f). As shown in the figure, the second harmonic corresponds to a flattening of negative peaks
in the time domain, while the third harmonic causes a flattening of both positive and negative peaks.
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Figure 6 shows the distribution of Hamp1 and Hamp2 for different rigidity scores
in PD-DN patients. Rigidity scores 0 and 2 present distinct distributions. Thus, it can be
asserted that the study of second harmonics can provide interesting information on the
rigidity severity of upper limbs in parkinsonian subjects.
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5. Conclusions

We propose an approach for PD assessment based on the evaluation of harmonic
distribution and the distortion of arm swings during walking tasks. This assessment was
applied to two different PD groups (de novo subjects, called PD-DN, and PD patients under
chronic dopaminergic treatment when in off state of therapy, called PD-OFF) and their
healthy group (called HC) counterparts.

Findings in harmonic distribution and distortion highlight the nonlinear behaviors
more evident in the HC group.

In particular, features related to the first three spectral frequencies are here demon-
strated to be statistically significant for the discrimination of PD-DN patients, while it is
mainly the fundamental frequency that is relevant for PD-OFF subjects. However, for both
PD-DN and PD-OFF, asymmetry is a key feature for objectively discerning the HC group.

Another key result is the correlation of bradykinesia and limb rigidity with harmonic
distortion. Although studies have been conducted on this topic, rigidity assessment through
wearable systems is still under examination and, as far as we know, without validated
methods.

Although this work presents encouraging results, the authors are aware that the
number of investigated subjects must be enlarged for improved statistical validity.
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Abstract: High blood pressure is one of the most important precursors for Cardiovascular Diseases
(CVDs), the most common cause of death in 2020, as reported by the World Health Organization
(WHO). Moreover, many patients affected by neurodegenerative diseases (e.g., Parkinson’s Disease)
exhibit impaired autonomic control, with inversion of the normal circadian arterial pressure cycle,
and consequent augmented cardiovascular and fall risk. For all these reasons, a continuous pressure
monitoring of these patients could represent a significant prognostic factor, and help adjusting
their therapy. However, the existing cuff-based methods cannot provide continuous blood pressure
readings. Our work is inspired by the newest approaches based on the photoplethysmographic (PPG)
signal only, which has been used to continuously estimate systolic blood pressure (SP), using artificial
neural networks (ANN), in order to create more compact and wearable devices. Our first database
was derived from the PhysioNet resource; we extracted PPG and arterial blood pressure (ABP) signals,
collected at a sampling frequency of 125 Hz, in a hospital environment. It consists of 249,672 PPG
periods and the relative SP values. The second database was collected at STMicroelectronics s.r.l., in
Agrate Brianza, using the MORFEA3 wearable device and a digital cuff-based sphygmomanometer, as
reference. The pre-processing phase, in order to remove noise and motion artifacts and to segment the
signal into periods, was carried out on Matlab R2019b. The noise removal was one of the challenging
parts of the study because of the inaccuracy of the PPG signal during everyday-life activity, and
this is the reason why the MORFEA3 dataset was acquired in a controlled environment in a static
position. Different solutions were implemented to choose the input features that best represent the
period morphology. The first database was used to train the multilayer feed-forward neural network
with a back-propagation model, whereas the second one was used to test it. The results obtained in
this project are promising and match the Association for the Advancement of Medical Instruments
(AAMI) and the British Hypertension Society (BHS) standards. They show a Mean Absolute Error
of 3.85 mmHg with a Standard Deviation of 4.29 mmHg, under the AAMI standard, and reach the
grade A under the BHS standard.

Keywords: cardiovascular diseases; blood pressure; hypertension; photoplethysmography; artificial
neural networks; neurodegenerative disease; remote monitoring; telemonitoring; wearable sensor

1. Introduction

Thanks to the evolution of telecommunication technologies, the use of telemedicine
(TLM) has spread rapidly in different areas. This paper focuses on Telemonitoring, which
provides the acquisition and management of the patients’ vital parameters from a remote
location, so as to be continuously monitored at home. Blood pressure (BP) is one of the
principal vital signs. The continuous and non-invasive remote monitoring of BP has
been widely investigated in the past decades with the aim of preventing and treating
hypertension. The idea of using PPG signal, collected in a optical non-invasive method,
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which is easy to obtain and can be used to detect blood volume fluctuations, has been
explored. The amount of light scattered, reflected, or transmitted, calculated using the
Beer–Lambert law, can provide an indication of changes in overall blood volume [1]. PPG,
with respect to other biological signals, has a higher mobility, thus allowing continuous
monitoring during everyday-life activity. Nevertheless, PPG has been widely used to
measure blood oxygen; it has also been related to arterial blood pressure waveform [2],
where Pulse Transit Time (PTT) and the Pulse Wave Velocity (PWV) have been calculated
from the Electrocardiogram and the PPG signals. Other works also try to estimate BP
deriving either the PTT or the PWV [3]. However, these methods require the use of two
devices to acquire both electrocardiogram and photoplethysmogram, thus limiting the
subject’s freedom of movement. In order to overcome the above-mentioned synchronization
problem, some studies have tried to determine the nonlinear relationship between PPG
and ABP. In [4], 21 features and a multilayer feed-forward back propagation ANN with
21 input neurons and two output neurons, to estimate Systolic and Diastolic blood pressure,
have been used, and satisfactory results have been achieved. In this work we implemented
an ANN model able to estimate the SP starting from the PPG signal only. The paper
is organized as follows. In Section 2, the state of the art is presented. In Section 3, the
Materials and Methods are discussed. In Section 4, results are presented, and in Section 5,
the conclusions are reported.

2. State of the Art

Several methods exist to measure BP, divided into two main categories: invasive blood
pressure (IBP) and non-invasive blood pressure (NIBP) measurement systems. The first
ones are used in the intensive care unit (ICU) and allow the beat-to-beat accurate monitoring
of the patient’s BP. However, they may cause hematoma, infections, and possible occurrence
of thrombi. Being invasive, they can only be used in hospital.

NIBP measurement systems are divided into cuff-based and cuff-less. Cuff-based
methods are routinely used in the clinical practice and at home by the patients themselves.
The main disadvantages are the intermittent monitoring and the discomfort caused by the
inflation of the cuff. Cuff-less methods are more recent and represent an efficient approach
for continuous home monitoring. The most common cuff-less method is based on the Pulse
Wave Velocity (PWV) analysis. That is because arterial stiffness increases the propagation
velocity of the pressure wave, which implies an increase in blood pressure [5]. For example,
in [2], PTT, defined as the time lag between ECG and PPG, was calculated to derive PWV,
which was then correlated with blood pressure readings using a standard linear curve
fitting algorithm.

Although in the literature there are many works demonstrating the huge potential of
PTT to enable cuff-less BP measurement, they require a calibration stage and the use of
two sensors placed at a known distance. In order to overcome these drawbacks, the idea of
using pure PPG signal based method has taken off. Photoplethysmography is a simple and
low-cost optical technology able to detect change in light absorption due to blood volume
fluctuations. The system is composed of:

• Light source: light emitting diode (LED) is used to illuminate biological tissues;
• Photo-detector: it collects and converts light intensity variations into electric current.

PPG sensors are placed on the skin surface, and the amount of light detected by the
PPG photo-detector provides important information about the performance of the vascular
system. PPG waveform encompasses two different components. The physiological blood
volume fluctuations, at each heart beat, are responsible of the pulsatile component (AC). On
the other hand, the slow varying baseline (DC) is imputable to breathing, thermoregulation
and sympathetic nervous system activity.

However, the correlation between PPG morphology and BP is nonlinear, and a mor-
phological analysis on PPG signal is necessary in order to extract features useful to estimate
the blood pressure. The today solutions are to first extract the morphological features from
PPG and then estimates Systolic and Diastolic blood pressure. Nevertheless, the PPG signal
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is highly susceptible to motion artifacts, resulting in distorted signal and meaningless data
zones [6], hence the interest in using ANN to correctly analyze it, removing uninformative
signal portion. Deep Neural Networks have been widely used in classification, analysis,
and biological signal segmentation, such as ECG and PPG [7]. In [8], Soltane et al. using
an ANN has been able to categorize PPG signal in pathological and healthy, with a rate
of success equals to 94.7%. Thanks to the advances of Deep Neural Networks, the PPG
removing artifacts turns out to be not as challenging as it used to be. In [6], an unsupervised
Convolutional Neural Network has been able to detect and remove artifacts in a PPG signal.
In [4], an ANN is used to estimate systolic and diastolic blood pressure values, from twenty-
one time domain features, extracted from 15,000 PPG periods (Figure 1). In [9], in addition
to the time-domain features, frequency and complexity-analysis domain features were com-
puted, so as to describe PPG periods morphology, complexity, amplitude and phase in the
frequency domain. The performance of [9] has been evaluated on the MIMIC III database
and on their everyday-life dataset collected at Jozef Stefan Institute (JSI). In [10], a PPG sig-
nal, a velocity plethysmogram (first derivative of PPG) and an accelerated plethysmogram
signal (second derivative of PPG and an important indicator of arteriosclerosis), are fed
into an autoencoder, to extract different features from the conventional ones, effective for
the blood pressure estimation.

Figure 1. The 21 most common time domain features extracted in PPG from literature.

3. Materials and Methods

This project, developed at the Remote Monitoring group, STMicroelectronics in Agrate
Brianza, Italy, is divided into two parts:

• In the first part, publicly available data have been used;
• In the second part, signals acquired by the MORFEA3 (Figure 2) have been addressed

(MORFEA3 is a prototype developed in the remote monitoring group in STMicroelec-
tronics; it embeds different ST components, and allows a multispectral PPG reading).

Our first database, containing PPG and arterial blood pressure signals from 47 patients
in ICU, was derived from MIMIC III (MIMIC III is a large, freely available clinical database).
Signals were pre-processed in Matlab R2019a; a 4th order Butterworth low-pass filter with a
cutoff frequency of 6.6 Hz was used to remove high-frequency noise from the ABP signal,
and the findpeaks function was used to detect SP peaks. Each SP value was associated with
the corresponding PPG period. The PPG signal was pre-processed using a band-pass filter
with a bandwidth of 0.5 Hz and 7 Hz (The pulse wave frequency values of the PPG signal
is in the range of 0.5–4.0 Hz [11]), and then segmented into one beat periods (Figure 3). The
final dataset is composed as follows: each row contains all the period samples (since each
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period is made up of a different number of samples, it has been necessary to zero-pad all
the periods, so as to have one hundred samples each and to preserve all the PPG period
features, for both long and short periods), and the last column elements represent the
SP values.

Figure 2. MORFEA3 board compared to a 1 euro cent coin.

Figure 3. A portion of PPG periods dataset.

In order to estimate the SP, we implemented an ANN regression model, layer-by-layer,
with Keras. An artificial neural network, a class of machine learning algorithms, one of the
application of Artificial Intelligence (AI), is a mathematical model for predicting system
performance inspired by the networks of neurons in the human brain. The ANN regression
model implemented in this work was intended to predict the SP numerical value. The
layers are as follows:

• The first layer is the input layer, composed of 100 neurons, and is equal to the number
of samples of each PPG period.

• Dense layers were added as hidden layers; as their name suggests, all their neurons
are fully connected to those in the next layer.

• The output layer consists of 1 neuron with a linear Activation Function, which directly
provides the value of the weighted sum of the input.

To evaluate our NN model predictive performance, we adopted the Mean Absolute
Error (MAE), which represents the absolute value of the average error (the difference
between actual and predicted value):

MAE =
∑ |y−y′|

N
(1)
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where y represents the actual value, y’ the predicted value, and N the number of sample
points (it is more intuitive, since its values are expressed in the same unit of measurement of
the input, and it is less sensitive to outliers than the Root mean squared error (RMSE)). Since
the ultimate goal of this project is to embed the final regression model in a Micro-Controller
Unit (MCU), in particular belonging to the STM32L4+ family, it is necessary to evaluate
its computational cost in terms of memory capacity required (Figure 4). To do this, the
STM32CubeMX graphical tool was used.

Figure 4. Flash and RAM memory occupation percentage by the ANN regression model.

The first dataset used in our study, the MIMIC III one, contains periods with 80 mmHg <
SP < 180 mmHg, corresponding to all the classes in the American Heart Association classi-
fication (reported in Table 1), except hypotension.

Table 1. American Heart Association hypertension guidelines classification.

Class Label SP Range

Hypotension <90
Desired 90–119

Pre-Hypertension 120–139
Stage 1 Hypertension 140–159
Stage 2 Hypertension 160–180

After the ANN regression model training phase using the MIMIC III dataset, PPG
signal and NIBP were acquired at STMicroelectronics s.r.l. on 8 healthy subjects (5 males
and 3 females), whose age ranges from 25 to 50 years old, during resting position, and the
acquired data used for testing purposes (Figure 5).

Figure 5. An example of BP and PPG setup for data acquisition on volunteers at STMicroelectronics.
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BP was measured simultaneously using a sphygmomanometer wrapped around the
left arm, and noted down on an Excel file, along with the acquisition time. The PPG signal
was acquired from right hand finger using MORFEA3 at a sampling frequency of 62.5 Hz.
MORFEA3 uses a white LED as a white source and a spectrometer to separate the beam of
white light into its components, in order to measure the green wavelength contribution.
This wearable device, built with a printed circuit board (PCB), embeds a certain number of
STMicroelectronics’s sensors, such as a 3-axis accelerometer, two spectrometers VD6283,
and a NTC thermistor managed by a MCU.

The MORFEA3 prototype interfaces with the outside world using a Bluetooth connec-
tion. To acquire the signals, it is placed within a suitable case, where it is possible to insert
the right hand index fingertip, so as to keep the finger-device contact stable. After wearing
the sphygmomanometer cuff, turning on the device and positioning the right hand finger
inside the case, PPG signal and SP values are acquired. An example of filtered PPG signal
acquired with the MORFEA3 is represented in Figure 6.

Figure 6. Filtered PPG MORFEA3 Signal with the SP acquisition instants superimposed.

The signal has been filtered with the same 4th order Butterworth filter used in the
MIMIC III PPG signal pre-processing. Then, in order to make the MORFEA3 PPG signal
suitable for the chosen ANN model (this is because the number of input neurons of a model
cannot be varied, and if we had segmented our signal without resampling, we would
have obtained a shorter average length of the periods), it was resampled at 125 Hz. Once
resampled, the PPG signal was segmented into periods, each associated to an SP value.
This second dataset was composed of 6460 periods, with one hundred samples each, and, in
the last column, the corresponding SP target. Starting from the discretization of the targets,
the SP values, we realized that pathological values, such as Hypotension and Stage 1 and
Stage 2 Hypertension, are not represented in our dataset. Moreover, our reference is not a
continuous signal, as it was in the case of arterial pressure signal. Therefore, in order to
obtain an SP value for each PPG periods, two consecutive SP records have been averaged
between two acquisition instants.

In order to find the most suitable network architecture, we have made assumptions
on the appropriate number of hidden layers and nodes. Our aim was to reach a good
trade off between complexity and performance. First, we tried to use a basic NN model, so
as to increase the number of hidden nodes in every step, until the best performance was
reached. The first model used was inspired by [12] and is represented in Figure 7. The
other hyperparameters are: learning rate equal to 0.007, sigmoid as Activation Function,
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Adam as optimization algorithm, glorot uniform as initialization mode, Dropout rate equal
to 0.2, batch size equal to 512, and number of epochs equal to 500.

Figure 7. First ANN model.

To improve the model performance we started increasing the number of hidden
layers. Starting from the simplest model, up to the analysis of more complex models, the
performance over the MIMIC III test set improves, and then decreases, probably due to
the overfitting phenomenon. Once the network architecture with the best generalization
properties was identified, the model hyperparameters were tuned using the Grid-Search
method (Grid-Search is a method used to find the optimal hyperparameters of a model
which results in the most ‘accurate’ predictions) and the model performance over the test set
was evaluated, with the purpose of finding the optimal combination of hyperparameters.

4. Results

For the purpose of this study, several NN architectures have been tested and various
hyperparameters have been manipulated to compare the model outcome. The best hyper-
parameters combination, to obtain the best performance in terms of MAE, on the MIMIC
III test set, is reported below:

• Architecture: [100 80 100 60];
• Activation Function: Softsign;
• Optimization Algorithm: Stochastic gradient descent (SGD);
• Initialization Mode: glorot uniform;
• Learning Rate: 0.007;
• Dropout: 0.2;
• Batch Size: 1024.

Once the most suitable network architecture and hyperparameters are selected, the
regression model performance is evaluated over the MIMIC III test set and over our
everyday-life MORFEA3 data set. The regression model performance obtained on the
MIMIC III test set is presented in Table 2, and compared with the results obtained in [4],
using an ANN with 21 input parameters, and with the results in [9], achieved using the
hyperparameter tuned Ensemble of regression trees algorithm with RReliefF selected subset
of features.
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Table 2. The regression model results, in terms of MAE over the MIMIC III test set, compared with
the results coming from literature. Data from [4,9].

MIMIC III Test Set [4] Test Set [9] Test Set

MAE 2.99 mmHg 3.80 mmHg 4.90 mmHg
STD 3.37 mmHg 3.46 mmHg 6.59 mmHg

As mentioned before, in our everyday-life dataset, SP values in the range of Hypoten-
sion, Stage 1 Hypertension, and Stage 2 Hypertension have been not represented so it has
been difficult to evaluate the regression model performance on the pathological classes.
However, the performance obtained over the MORFEA3 dataset was satisfactory and is
reported in Table 3, and compared to the results obtained on the everyday life dataset
collected at JSI in [9].

Table 3. The regression model results, in terms of MAE over the MORFEA3 dataset, compared with
the everyday-life dataset collected at JSI.

MORFEA3 Test Set JSI Collected Test Set

MAE 3.85 mmHg 7.87 mmHg
STD 4.29 mmHg 7.47 mmHg

Figures 8 and 9 show, respectively, the real SP values and the regression model pre-
dicted SP values on the MIMIC III test set and on the MORFEA3 dataset. The predicted val-
ues referred to the values coming from the sphygmomanometer, which are, obviously, not
continuous; however, we represented the values in a continuous manner (Figures 8 and 9),
connecting the different estimation, because of simplicity.

Figure 8. An example of actual and predicted SP values obtained on the MIMIC III test set.
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Figure 9. An example of actual and predicted SP values obtained on the MORFEA3 test set.

The results obtained with the regression model presented in Table 2, are shown more
in detail below (Table 4):

- MIMIC III Test set consisting of 74,902 PPG periods.

• 83.48% of SP values were predicted with an absolute error lower than 5 mmHg;
• 96.34% were predicted with an absolute error lower than 10 mmHg;
• 98.88% were predicted with an absolute error lower than 15 mmHg.

- MORFEA3 dataset consisting of 6460 instances.

• 74.58% of SP values were predicted with an absolute error lower than 5 mmHg;
• 90.55% were predicted with an absolute error lower than 10 mmHg;
• 97.27% were predicted with an absolute error lower than 15 mmHg.

Table 4. Percentage of absolute difference between actual and predicted SP values (mmHg).

Error < 5 mmHg Error < 10 mmHg Error < 15 mmHg

MIMIC III Test set 83.48% 96.34% 98.88%
MORFEA3 Dataset 74.58% 90.55% 97.27%

These are very promising results because the obtained prediction errors are compatible
with most clinical applications.

5. Conclusions

In recent decades, there has been a strong development in Telemedicine and in wear-
able systems. These allow continuous patients remote monitoring, without impairing
the patient’s freedom of movement, and communication at distance between patient and
medical staff. In particular, our study aims the continuous monitoring of blood pressure,
which is highly desirable in hypertension patients, since high blood pressure is considered
as the main cause of CVDs, as well as in the prevention of the risk of dementia and in
autonomic nervous system monitoring in most neurodegenerative diseases [13]. In the
literature, photoplethysmography is considered a promising candidate for non-invasive
and continuous BP monitoring [14].

In this project, the MORFEA3 device was used to acquire, among others (accelerometric
and temperature signals), the PPG signal in order to provide a real-time SP estimation, using
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an Artificial Neural Network. The regression model, with one hundred input neurons and
one output neuron, has yielded stable results; it allows to evaluate the difference between
actual SP values and predicted SP values. The results obtained on the MORFEA3 dataset, in
terms of MAE (3.85 mmHg ≤ 4.29 mmHg), satisfy the Association for the Advancement of
Medical Instrumentation (MAE≤5 mmHg with SD≤ 8 mmHg for SP and DP) (AAMI) and
the British Hypertension Society (BHS) standards (absolute difference between standard
and test device≤5 mmHg in the 60% of the readings,≤10 mmHg in the 85% of the readings
and ≤15 mmHg in the 95% of the readings) [15], as evidenced in Section IV, in Table 2 and
in Table 4.

Although very promising, this work must be considered preliminary as it is affected
by some limitations; in the AAMI and BHS protocols for General Population studies (they
should include 85 subjects over 12 years; ≥30% males and ≥30% females and shall have
≥5% of SP values ≤100 mmHg, ≥5% with ≥160 mmHg, and ≥20% with ≥140 mmHg),
85 subjects are required, whereas in our work only 8 subjects have been tested. Additionally,
we can state that our model turns out to be valid only for finger acquisition, since trying to
estimate SP from wrist PPG signal, the model performance impairs. For this reason, it may
be necessary to build another training set composed only of wrist PPG periods.
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Abstract: In medicine and sport science, postural evaluation is an essential part of gait and posture
correction. There are various instruments for quantifying the postural system’s efficiency and deter-
mining postural stability which are considered state-of-the-art. However, such systems present many
limitations related to accessibility, economic cost, size, intrusiveness, usability, and time-consuming
set-up. To mitigate these limitations, this project aims to verify how wearable devices can be assem-
bled and employed to provide feedback to human subjects for gait and posture improvement, which
could be applied for sports performance or motor impairment rehabilitation (from neurodegenerative
diseases, aging, or injuries). The project is divided into three parts: the first part provides experimen-
tal protocols for studying action anticipation and related processes involved in controlling posture
and gait based on state-of-the-art instrumentation. The second part provides a biofeedback strategy
for these measures concerning the design of a low-cost wearable system. Finally, the third provides al-
gorithmic processing of the biofeedback to customize the feedback based on performance conditions,
including individual variability. Here, we provide a detailed experimental design that distinguishes
significant postural indicators through a conjunct architecture that integrates state-of-the-art postural
and gait control instrumentation and a data collection and analysis framework based on low-cost
devices and freely accessible machine learning techniques. Preliminary results on 12 subjects showed
that the proposed methodology accurately recognized the phases of the defined motor tasks (i.e.,
rotate, in position, APAs, drop, and recover) with overall F1-scores of 89.6% and 92.4%, respectively,
concerning subject-independent and subject-dependent testing setups.

Keywords: biofeedback; wearable sensors; neurodegenerative diseases; movement anticipation;
machine learning

1. Introduction

The control of the postural system is one of the fundamental neurophysiological
mechanisms of the human body. It is fundamental to ensuring balance against gravity and
fixing body orientation, and functions as a reference frame for perception–action coupling
while efficiently dealing with the external world. Postural control is a dynamic process that
requires sensory detection of body motions and integration of sensorimotor information
within the central nervous system. In more detail, the central nervous system triggers
the execution of appropriate musculoskeletal responses in order to obtain an equilibrium
between destabilizing and stabilizing forces [1].

It has been shown, in the reference literature of physiatric medicine, that measure-
ments of postural stability are critical for determining predictors of performance [2], for
evaluating musculoskeletal injuries [3], for determining the effectiveness of physical train-
ing and rehabilitation treatments [4], and to provide injury prevention through the study
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of injury risk-factor analysis [3,5]. The body’s motion is mainly based on the integration of
the proprioceptive, visual, and vestibular inputs [6]. Afferent proprioceptive inputs are
conveyed to different levels of the central nervous system [7–9]; however, most of them
remain unconscious. The joint positions and movement sensing (kinaesthesia) are the
expressions of the conscious component, but postural control is primarily based on the
unconscious component [9]. Specifically for the antigravity movements, proprioceptive
control represents the expression of the effectiveness of the stabilizing reflexes in control-
ling vertical stability [8]. In fact, antigravity movements are the activities that counteract
gravity and postural instability with at least a phase of single-limb stance [6]. In this way,
proprioceptive input represents the most relevant sensory system in the maintenance of
static postural stability at all ages and fitness levels [10]. This topic is also relevant in
neurodegenerative diseases such as Parkinson’s disease (PD). For example, PD patients
with postural instability have worse reactions to brief perturbations, more stance sway,
and trouble switching between tasks. Moreover, quantifying balance changes in early and
moderate-stage PD and the comparison to healthy subjects using clinical assessments of
balance and musculoskeletal activation is paramount, primarily if performed through less
invasive and costly systems [11,12].

Many tools to detect musculoskeletal activation have been used in sport and rehabili-
tative medicine. Mainly, electromyography (EMG) is employed for this purpose. However,
EMGs are not yet widely used in combination with accelerometers for forecasting and
customizing measures for the analysis of the human body’s motion to achieve different
goals. This is mainly due to the limited number of investigations that have been focusing on the
nature of musculoskeletal response to a broad spectrum of stimuli able to identify the thresholds
that establish the standard/ideal status of the postural system. Hence, there is a lack of low-cost
technology that habilitates these measurements.

Furthermore, in the last decade, with the advent of the Internet of Things (IoT), em-
bedded sensors have been integrated into personal devices such as smartphones and
smartwatches. In several applications, sensors are integrated into clothes or other equip-
ment/objects of daily life, becoming a central research topic due to their importance in
many areas, including healthcare, interactive gaming, sports, and monitoring systems for
general purposes in controlled and uncontrolled settings [13–15].

The primary purpose of the investigation we carried out in this project was to present
a preliminary study on the design of a portable and reliable postural system prototype com-
posed of HW and SW, adapted to diverse individual profiles concerning the performance
viewpoint, from patients needing rehabilitation to top-level athletes. It is widely accepted
in the community of psychiatric medicine that proper quantification of the postural system
efficiency represents an essential assessment for improving the quality of life. However,
most of the actual measurements are developed in a laboratory environment where natural
movements are usually constrained by the instruments applied to subjects’ bodies and
the environment. This process is performed to distinguish, as precisely as possible, in the
limits of the experimental setting, the roles of proprioception, visual and vestibular input
using a low-cost and portable instrument. This habilitates the individuals to move freely
and perform activities at home or in other uncontrolled environments (e.g., gyms or sports
facilities) [5,16].

The technology integrated into such project includes state-of-the-art apparatus (i.e.,
force platform, EMG, and motion capture cameras) and wireless three-dimensional iner-
tial units performing computation and data analysis over low-cost devices (i.e., sensors
themselves, smartphones, and tablets) or cloud platforms.

In the project, we considered variants of these configurations’ implementations to
evaluate possible solutions to different settings. Subsequently, another essential goal will be
the usability of the envisioned technology. Thus, the possibility to perform a comparative
study with existing state-of-the-art validated systems is needed to obtain a well-ground
assessment. Moreover, fundamental analysis of the specific characteristics of the exercises
existing in the literature and a combinational calculation will define the subsequent exercise
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prescriptions; a multitude of exercise combinations will be available to satisfy the actual
needs of the different clinical conditions. To identify these exercises, in future works, we are
going to investigate the potential of reinforcement learning as a tool for customization (in
order to adapt the response of the portable tool to the needs of the setting, such as medical
diagnosis, performance test, training evaluation, and training progress measurements) and
personalizing (in order to adapt to the individual variability of the applications mentioned
above).

The project has a threefold scope:

(a) providing a theoretical foundation of a set of motor tasks employed to evaluate
the performance of posture and gait in at least three contexts: rehabilitation, sports
performance, and good health training at different ages;

(b) devising and testing a set of sensors that allow obtaining the above measures;
(c) defining a preliminary set of experiments and algorithms to identify individual profiles

and compute, via machine learning methods, the correct set of functional exercises.

Finally, this paper presents the experimental apparatuses and describes the experi-
mental design strictly related to the goals mentioned above. The experiments conducted
were structured for a final purpose: obtaining an experimental system for identifying the
correct patterns to be devised in the project’s future developments.

The rest of the paper is organized as follows. Section 2 provides an overview of the
relevant references to similar studies. Section 3 discusses the project’s expected research
outcome, and Section 4 introduces the overall experimental design. Section 5 presents
a preliminary evaluation of the data collected by the designed setup. Finally, Section 6
presents some conclusions and sketches further work.

2. Related Work

Posture is studied in two aspects: (a) postural control and (b) postural orientation.
The former involves studying the positional control of the body in space and orientation.
Instead, the latter involves studying the relationships between body segments. A neutral
state (also known as neutral posture) is observed when the upper trunk and head are
at zero degrees concerning the vertebral column. Subjects deviating from this neutral
posture are said to have low stability that can provoke accelerated intervertebral disc
(IVD) degeneration, damage, and misalignment of vertebrae, producing nerve compression
that can cause radicular manifestations, such as sensorimotor deficiencies and pain in
the involved regions [17]. When considering the maintenance of the vertical posture in
everyday life situations, postural control might become a complex task that requires the
ability to anticipate and compensate postural strategies when fast actions are performed
and when environmental perturbations are applied [18]. How individuals control their
preparatory and compensatory postural adjustments is still under debate [19]. Several
mechanisms help individuals to keep their posture when task conditions change due to
self-inflicted perturbation (e.g., I am suddenly moving my upper arm forward [20] or
when somebody is pushing me [21]). These mechanisms are represented by changes in the
activation levels of postural muscles called early postural adjustments (EPAs), starting up
to 1000ms prior to the impact [22], and anticipatory postural adjustments (APAs), starting
0–150ms prior to the impact [23]. The primary role played by the EPAs is to adjust the
posture and facilitate action planning. Typical examples are seen in preparation for making
a step [24] or to avoid contact with an approaching object [25]. On the other hand, the
function of APAs is to generate forces that act against an effect (mechanical) of a predictable
perturbation [26]. Here we concentrate on these ecological motor tasks where individuals
are challenged to control posture when facing a highly dynamic situation. The tasks selected
in this experimental design involve sequences of actions that require the maintenance of
stable posture while standing on an unstable proprioceptive platform and receiving in
an unexpected or expected way a perturbation requiring sudden balance recovery. These
motor tasks will help unveil the individual strategies adopted given the individual’s level of
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skill. Based on the literature background, a single limb stance is regularly used to examine
the postural system [16,27–29],

EMG, electrocardiography (ECG), and inertial sensors integrated into wearables are
emerging as promising low-cost and easily usable solutions in everyday life [13] and
health care contexts [30]. Inertial measurement unit (IMU)-based movement identification
can be achieved by statistical classification or be threshold-based [31]. Such statistical
methods utilize supervised machine learning, which links features of a movement to
possible movement states in terms of the observation’s possibility [32]. Many of these
studies are devoted explicitly to disabled people with diminished gait/posture abilities.
This holds for multiple sclerosis patients [33] and Parkinson’s disease sufferers [30,34,35].
The ability to monitor the gait of multiple sclerosis patients and provide correct biofeedback
can help prevent falls and detect freezing (an aspect that can be fruitful also for Parkinson’s
patients) [33,36]. Prototype systems often include integrated sensors located on the ankles
to track gait movements. Body sensors are positioned near the cervical vertebra or on the
shoulders to monitor body posture [13]. Many systems can also measure parameters that
might be difficult to provide manually, such as the maximum acceleration of the patients
during standing up, or the time it takes from sitting to standing [37,38].

Moreover, the current diffusion of machine learning methods employed in gait, posture
analysis, and feedback is not comprehensive, but a few significant results have already been
achieved. A relevant group of investigations has been designed for decoding algorithms for
brain–machine interactions (BMIs) that use the spiking activity as their control signal [39].
These approaches are powerful in devising usable technologies. Specifically, feedback for
reinforcement-learning-based brain–machine interfaces using confidence metrics has been
addressed [40]. Some studies show how to derive the required evaluative feedback from a
biological source, using both the feedback’s quantity and quality, and incorporate it into
reinforcement learning controller architecture to maximize performance. Analogously, the
Berlin BCI has developed an accurate system that works from the first session in BCI-naive
Subjects [41].

An overview of the various steps in the brain–computer interface (BCI) cycle, i.e., the
loop from the measurement of brain activity, classification of data, feedback to the subject,
and the effect of feedback on brain activity, is the focus of [30,42]. On the other hand, the
role of technology for accelerated motor learning in sports is investigated in [43]. Finally,
parallel man–machine training in ECG-based cursor control development is the subject
of [30,44]. Some references should be given to smart environment previous investigations as
a foundation of the method developed here, emphasizing some development related to en-
ergy management [45] and concerning the design of energy-efficient transmission protocols
for wireless body area networks [46,47]. However, the systems mentioned above present
many limitations related to accessibility, economic cost, size, battery life, intrusiveness, and
usability (i.e., controlled and uncontrolled home or working context) environments.

3. Expected Research Outcomes of the Project

This section illustrates the project goals, reporting the most suitable application sce-
narios of the technology we envision and an overview of the presented architecture design.
For better comprehension, the goals are presented from a top-down perspective.

(a) basic application scenarios;
(b) envisioned technology;
(c) system architecture workflow.

3.1. Application Scenarios

Three different potential application scenarios have been devised under the super-
vision and collaboration of psychiatric medicine personal and sports training experts.
Scenario 1 was a controlled environment enriched with a set of sensors to the extent that
it makes this environment smart. Scenario 2 was set without specifying whether the per-
formed activities were to be carried out indoors or outdoors. It is legitimate to suppose that
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the environmental setting shall be relatively poor regarding available interactions, includ-
ing the potential unavailability of an Internet connection. Scenario 3 identified variations
determined by post-traumatic rehabilitation, personalized performance control over the
evolution of illnesses with harmful consequences on the patient’s stability, and training of
athletes with special needs.

Scenario 1: Diagnostic Evaluation

In the context of a psychiatric medical practice, a patient who suffers from postural instability
due to a traumatic event (e.g., car accident) or neurodegenerative disorder is visited by
medical personnel. The diagnostic process is assisted with the envisioned technology. The
patient is asked to execute a sequence of three exercises: single-stance stability test, forward
movement of arms with weights, and step-on gait on a free-range. During the exercises,
the patient wears a jacket equipped with a set of sensors and interacts with a visual focus
tool that helps her to identify a fixed point at a given distance. The jacket interacts with an
application that works on the cloud, measures the reaction time or other variables, including
anticipation’s effectiveness in the movements, and provides the operator the possibility of
marking progress in performance quality based on a fixed threshold that the operator can
define concerning age, sex, and the clinical condition of the patient. The whole process is
recorded on video, and the instrumental measures are saved on the patient’s profile.

Scenario 2: Sport performance benchmarking

An athlete training for a sporting event is monitored by her coach. He provides her with a
performance benchmark in line with the event requirements and expectations. The athlete
has a given training period for preparing for the event and a performance level she has to
accomplish in order to be competitive. The performance benchmarks have been defined by
the coach based on the athletic preparation path of the athlete. While following the coach’s
requests, the athlete executes some training exercises while wearing the jacket described in
Scenario 1. Every athlete’s exercise is compared against the benchmark performance and
consequently identified in terms of a negative gradient concerning the benchmark itself.

Scenario 3: Rehabilitation Follow-Up

During the rehabilitation period, a patient wearing the jacket described in Scenario 1 attends
a program consisting of a series of exercises. Each step in the series requires comparing the
performance with the provided reference benchmark defined by the psychiatrist during the
diagnostic process. The patient measures are the same as in Scenario 2 and represent how a
patient uses the jacket in a medical context.

3.2. Envisioned Technology

Our project’s aim is to design an accessible, low-cost, small, dedicated low-cost tech-
nological solution (i.e., Gait and Posture Smart Jacket (GPSJack)) suitable for the previously
introduced application scenarios. Figure 1 shows a graphic representation of the envisioned
technology where the subject is wearing the GPSJack and is immersed in the Gait and
Posture Smart Environment (GPSEnv). Numbers 1–5 mark the sensors attached to the
jacket, and number 6 marks the tablet application used by the top-level user. Medical and
potentially sports training staff can interact with the GPSJack/GPSEnv through a tablet to
guarantee total portability and versatility of the envisioned technological solutions.
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Figure 1. Visual description of the GPSJack technology and application scenario.

Therefore, the GPSJack system represents the low-cost inertial sensor-based system,
which is the project’s final goal. GPSEnv represents the adaption of the existing state-of-
the-art technologies to the presented scenarios for validation purposes. The final GSP-
Jack/GPSEnv architecture will provide to medical/sports staff the capability to perform
the following actions:

• register a GPSJack/GPSEnv administrator;
• start setup of a GPSJack/GPSEnv;
• registration of a new user;
• definition of the profile of a registered user;
• eliminate a profile;
• execution of a base test for a registered user;
• registration of a new exercise;
• registration of a new benchmark for an existing exercise;
• assignment of a benchmark for a given exercise to a specific user;
• execution of an exercise;
• registration of a sequence of exercises as a training path;
• association of benchmark values for a training path;
• assignment of benchmark values for a training path to a given user;
• visualization of a single test progresses along a temporal interval;
• visualization of progresses with respect to a given benchmark;

Based on the above-defined functions, several background software instruments are
required. The technologies for managing and analyzing the data from the sensors, which we
may name the GPSJack Framework, have been envisioned. Nevertheless, machine-learning-
based algorithms will guide the personalization of the benchmark process by employing
intelligent reinforcement learning methods. Finally, since the proposed technology has its
main applications in healthcare, it will provide, in addition to the classical data protection
techniques, a physical protection layer that, based on the radio signals’ propagation patterns,
will habilitate the possibility of utilizing the tablet if and only if the tablet is under a certain
distance (e.g., 5 m) from the GPSJack nodes.

3.3. Architecture Workflow

The system’s architecture is composed of several modules, each one with a single
responsibility, the logic model of which is reported in Figure 2.
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Figure 2. Logic model of system architecture.

Every module is related to at least another one:

User Interface: allows the user to input "environments" and provides visualization of all
data/results returned by the Machine Learning module;

Configurator: takes as input a set of environments and gives as output a set of feasible
"exercises" to be used by the Trainer, according to user input and machine learning
algorithms’ indications;

Trainer: uses the exercises and determines the "should be" paths, meaning which exercises
shall be executed and with which environment;

Evaluator: responsible for the evaluation of data and automatic comparison with benchmarks;

Sensor: deals with wearable sensors, collecting and normalizing data;

Machine Learning: gathers data and induces models.

The User Interface’s output is an ordered set of "environments", which are one of the
inputs of the Configurator. The Configurator continuously computes, and at given times
uses models from the Machine Learning module to produce a set of feasible "exercises".
These exercises are to be given to the Trainer, whose outputs are chains of exercises, also
named "paths", to be executed by patients (or athletes). At different times, different paths
are possible due to the work of the Trainer. The data are then gathered from the Sensor
module and sent to the Evaluator to be stored, visualized, and compared with benchmarks.
They are also used to devise possible "paths" and exercises to be delivered as hints to the
user. This is the responsibility of Machine Learning, which acts as a feedback generator for
the whole system, enabling the system to enhance performances continuously.

4. Methodology Design Workflow

This section presents the overall project information concerning hardware composing
the GPSEnv and GPSJack, and software regarding edge computation and the prelimi-
nary data analysis pipeline. To achieve the system’s architectural requirements, we have
designed a four-step method, illustrated in Figure 3.

- the first step consists of the identification of the most suitable motor tasks;
- the second step consists of the description and design of the used data collection

systems composing the GPSEnv/GPSJack;
- the third step exploits the collected data analysis workflow;
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- the fourth step exploits the modeling of individuals’ gait and posture invariants by
machine learning.

Figure 3. GPSJack/GPSEnv system design workflow.

4.1. Identification of Motor Tasks

The motor tasks should contain specific characteristics. We aimed to select tasks that
challenge postural stability and require the ability to foresee and anticipate the conse-
quences of actions given the presence of a sudden perturbation that might change posture
from a stable to an unstable state. In this way, we will be able to train fundamental motor
skills such as action adaptation, compensation, and anticipation, while, on the other hand,
measuring the performance of such skills. We will describe a typical trial involving a
sequence of movements that satisfies the task requirements stated above:

1. The subject stands on an unstable proprioceptive board (Figure 4) while holding a
heavy ball. The task is to rotate at an angle of 30◦ or 60◦ or 90◦, both right and left,
while keeping his feet still and rotating only the torso, without losing equilibrium.
Body balance is evaluated by analyzing the center of pressure (COP) migration. This
sequence of activities identifies two distinct motor task phases: (a) rotate and (b) in
position.

2. Once in position, the subject is asked to drop the ball quickly (in the 150 ms preced-
ing this action, the anticipatory postural adjustments (APAs) can be identified and
analyzed) captured by the EMG and the force platform. This sequence of activities
identifies two distinct motor task phases: (c) APAs and (d) drop.

3. After the loss of balance (due to the fast drop of the ball), the subject is asked to regain
the balance as fast as possible. The analysis of COP migration for defining the balance
recovery after the perturbation is considered. This activity identifies one motor task
phase: (d) recover.

Figure 4. The wooden board: bottom and lateral views.

We analyzed different experimental conditions to define the departure from the stan-
dard measurements by considering the same task while changing the biomechanical and
perceptual conditions and testing different populations ranging from elite athletes to in-
dividuals affected by neuromuscular diseases. Figure 5 presents an overview of the force
platform x-axis data of a motor task. As shown, it is composed by five different move-
ments: (a) rotate, (b) in position, (c) APAs, (d) drop, and (e) recover. The task starts at most
10 s after the emission of an audio signal. Such a signal is later used during the manual
synchronization of the GPSJack and GPSEnv data streams.
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Figure 5. Overview of motor task phases: (blue) rotate, (red) in position, (green) APAs, (purple)
drop, and (yellow) recover.

Data Collection Procedure

To validate the GPSJack system, subjects of different ages, genders, and motor back-
grounds performed the introduced protocol of exercises. This protocol aimed to analyze
the tested subjects’ gait and posture using state-of-the-art instrumentation to identify the
anticipatory movements and minimum requirements that the GPSJack nodes (as shown in
Figure 1) will have to implement.

Figure 4 presents the proprioceptive board. Area dimensions were 0.45 m × 0.45 m,
and height was 0.025 m. On the bottom of the surface, the board was touching the ground
utilizing a beam glued along the board mid-line, having the same length as the wooden
board, and being 0.025 m in height and 0.06 m in width. Figure 6, on the left, presents how
the board was used during the exercise.

Figure 6. Experimental setup: the task.

4.2. Data Collection Systems

This section presents the instruments involved in the design of the GPSEnv and
GPSJack systems. GPSEnv is defined as a state-of-the-art apparatus. GPSJack was designed
to be a low-cost and long-battery-life system on chip (SoC).

4.2.1. GPSEnv Apparatus

It performs gait and posture analyses based on the combination of three different
instruments:

• Force platform;
• Surface EMGs;
• Motion capture cameras.

Force Platform

The forces in three orthogonal directions, along with the COP migration, are measured
by a force platform (https://tinyurl.com/rhkktv4 accessed on 10 December 2022), coupled
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with a 6-channel strain gauge amplifier (https://tinyurl.com/zy2efpn8 accessed on 10
December 2022), with a sampling frequency of 1000 Hz, presenting a size of 0.9 m × 0.9 m.
The AMTI Biomechanics Force Platform, model BP900900, features composite construction,
resulting in a low-mass instrument with excellent frequency response. Specifically designed
for the precise measurement of ground reaction forces, the BP900900 measures the three
orthogonal force components, the moments about the three axes, and the center of pressure
in the horizontal plane producing a total of eight outputs. The high sensitivity, low crosstalk,
excellent repeatability, and long term stability of this platform make it ideal for research
and clinical studies. The BP900900 is easy to use and is available with 1000, 2000, or 4000
pound (4450, 8900, or 17,800 Newtons) vertical capacity. This force platform is shown in
Figure 6, on the left part, under the subject’s feet, and in right image, represented virtually
as platform 1.

Surface electromyography (EMG)

The surface EMG activity of sixteen postural muscles, on both sides of the body, is
recorded using electrocardiographic electrodes located on the subject’s body, as shown
by the red markers in Figure 7. The muscles used are: the rectus abdominis (RA), erector
spinae (ES), rector femoris (RF), biceps femoris (BF), vastus lateralis (VL), tensor fasciae
latae (TL), tibialis anterior (TA), and soleus (SO). Guidelines from the http://www.seniam.
org/ accessed on 10 December 2022 (Surface ElectroMyoGraphy for the Non-Invasive
Assessment of Muscles) are used to guarantee consistency in the muscles’ anatomical
localization. The https://fccid.io/VH6ZWTX07/User-Manual/User-Manual-903877 accessed
on 10 December 2022 EMG system, produced by Aurion S.r.l., is used to collect and amplify EMG
signals at a sampling rate of 1000 Hz.

Figure 7. Locations of retro-reflective markers (black) and EMG electrodes (red). EMGs were placed
on both sides of the body.

Motion Capture Cameras

Concerning the kinematic analysis, five retro-reflective markers are attached to each
subject. Markers’ positions are located on the subject’s body as shown by the black markers
in Figure 7.

The markers are placed on the backs of both hands, on the forehead, on the lowerback,
and on the lateral malleoulus on the dominant leg. The position, velocity, and acceleration of
every marker are recorded at a sampling rate of 200 Hz, using eight motion capture cameras
(https://www.evl.uic.edu/sjames/mocap/resources/Doc/MXhardware_Reference.pdf ac-
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cessed on 10 December 2022), featuring multiple high-speed processors that perform
real-time proprietary image processing and Vicon Nexus 2.6 software.

4.2.2. GPSJack Apparatus

The GPSJack prototype uses the nRF52840 system on chip (SoC), built over the 32-bit
ARM CortexTM-M4 CPU with a floating-point unit running at 64 MHz. The nRF52840 is
the most advanced member of the Nordic Semiconductor nRF52 Series SoC family (https:
//www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840 accessed
on 10 December 2022). It is fully multi-protocol and capable of supporting Bluetooth
5, Bluetooth mesh, Thread, Zigbee, 802.15.4, ANT, and 2.4 GHz proprietary stacks [48].
Furthermore, the nRF52840 uses a sophisticated on-chip adaptive power management
system achieving exceptionally low energy consumption.

This SoC interfaces with various electronic devices capable of perceiving different
types of measurement of the movement context. In the setup we discuss here, the nRF52840
defines the core of each GPSJack node. On the same HW board, each SoC core commu-
nicates with various sensors, such as an accelerometer, gyroscope, and magnetometer.
However, since the design of every single node of the GPSJack from scratch would require
further targeted effort, and since the goal of the project is to show the suitability of the
system in recognizing the different phases of the defined task, we made use of the Nordic
Thingy 52 IoT Sensors kit shown in Figure 8. In future developments, the Nordic Thingy 52
can be replaced by dedicated data collection nodes based on the nRF52840 SoC, presenting
reduced dimensions and integrating only sensors relevant to the scenario. It transmits data
to/from its sensors and actuators to a receiver implemented through a PC, single board
computing (SBC) (e.g., Raspberry pi 4 or Odroid H2+), or a mobile application running on
a tablet or smartphone [48]. Extended device characteristics are listed in the following:

• Dimensions: 5 cm × 5 cm × 1.5 cm, weight: 47 g;
• Motion-tracking sensors: nine axis motion sensor including 3-axis gyroscope, 3-axis

accelerometer, and 3-axis magnetometer;

– Sampling frequency: up to 200 Hz;
– Full scale: up to 16 g for accelerometer and up to 2000 dps for gyroscope;

• Battery: rechargeable Li-Po battery with 1440 mAh capacity;
• Microprocessor: 64 Mhz Cortex M4 MCU;
• Communication: Bluetooth Low Energy (BLE);
• Cost: 38 Dollars.

Figure 8. Nordic Thingy 52 board (on the left) and its usage in the data collection setup (on the
right).

Nodes positions and number are not definitive, since their positions directly depend on
the preliminary study carried out with the previously introduced instrumentation. The GP-
SJack sampling frequency, the number of nodes, and the positions will be adjusted (reduced)
based on the previous phase’s outcome, thereby reducing the battery consumption of the
overall system.
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Moreover, the designed GPSJack system can be composed of up to 11 different nodes
that collect data and communicate with a single tablet or SBC device. Based on the
performed tests, the designed GPSJack (configured as shown in Figure 1, 5 nodes and
1 data aggregator) can communicate, without data loss, with the tablet device at a maximal
distance of 45 m. Concerning the battery life, the GPSJack data collection nodes can
compute for more than 48 h at a sampling frequency of 200 Hz.

Figure 9 presents an overview of the main characteristics of the GPSJack android mo-
bile application running over a tablet device, presenting data collection and visualization.

Figure 9. GPSJack Android mobile application running on the tablet: node connection and data
visualization.

The raw data (aka, time series), perceived by the GPSJack prototype (at a maximal
sampling frequency of 200 Hz) and the existing in-laboratory architecture (perceived at a
frequency of 200–1000 Hz), will be pre-treated by applying different data processing steps.

Finally, the GPSJack android mobile application executing on a tablet device has the
ability to video-record at 60 FPS the performed tasks. Such recording is synchronized with
the data stream perceived by the data collection nodes (i.e., Nordic Thingy 52).

4.2.3. GPSJack/GPSEnv Synchronization

The GPSJack and the GPSEnv data streams present different timestamps and are
not synchronized. The synchronization is manually performed offline, using the audio
start signal emitted by the Vicon system and the video recording of the task performed
by the GPSJack system. The annotator identifies the precise timestamp of the GPSJack
system where the start audio signal is emitted by the GPSEnv system. In particular, the
annotator identifies the precise video frame during which the signal is emitted (i.e., a
granularity of 16 ms). In future developments, the aim will be to automatically synchronize
the GPSJack/GPSEnv data streams using existing solutions [49], thereby excluding the
time-consuming offline synchronization process.

4.3. Data Analysis

This section presents, starting with the data collected by the mentioned instruments
(i.e., EMGs, force platform, kinematic, and GPSJack), the main data processing steps,
performed with different processing methods in a defined order [50]. This workflow is
presented in Figure 10.

Figure 10. Data analysis workflow.
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4.3.1. Data Cleaning

This phase emphasizes data patterns by reducing their dependence on environmen-
tal/HW noise and the data collection architecture, which often leads to data loss or corrup-
tion during transmission. In particular, dedicated data cleaning techniques must handle
missing or corrupted data to maintain the time series structure and information. In this step,
the corrupted and missing data issue is handled by applying an interpolation data-filling
method that replaces such data with a value that follows the time series’s previous and
consequent pattern [51]. The noise’s impact is reduced by applying a 4-order low-pass
filter with a cut-off frequency of 20 Hz. We do not apply any data cleaning method to the
existing in-lab architecture, since the architecture’s proprietary software already performs
such a step.

4.3.2. Feature Extraction

Furthermore, since standard pattern-recognition models are not always suitable for
raw data, the machine learning training phase is anticipated by a feature extraction step
during which time-series are represented as a set of features in the time and/or frequency
domain [52,53]. We make use of the https://github.com/fraunhoferportugal/tsfel accessed
on 10 December 2022 [54] to represent each time window of 150 ms (equal to the APAs
movement duration) perceived by the mentioned instrumentation in a set of 160 features in
the frequency and time domains.

Table 1 shows the most commonly extracted time (e.g., min, max, mean, std, etc.) and
frequency (e.g., Fast Fourier Transform (FFT), Discrete Fourier Transform (DFT), Discrete
Wavelet Transform (DWT), etc.) domain features that are usually combined, further in-
creasing the recognition accuracy. Other features, extracted by using other frameworks or
handcrafted (extracted manually), can be used, since the proposed workflow is modular.
Thus, we can easily substitute each module.

Table 1. Most used time and frequency-domain features.

Time Domain Features Frequency Domain Features

(1) maximum, (2) minimum, (3) mean, (4) standard deviation,
(5) root mean square, (6) range, (7) median, (8) skewness,

(9) kurtosis, (10) time-weighted variance, (11) interquartile
range, (12) empirical cumulative density function,

(13) percentiles (10, 25, 75, and 90), (14) sum of values above or
below percentile (10, 25, 75, and 90), (15) square sum of values
above or below percentile (10, 25, 75, and 90), (16) number of

crossings above or below percentile (10, 25, 75, and 90),
(17) mean amplitude deviation, (18) mean power deviation,

(19) signal magnitude area, (20) signal vector magnitude,
(21) covariance, (22) simple moving average of sum of range of a

signal, (23) sum of range of a signal, (24) sum of standard
deviation of a signal, (25) maximum slope of simple moving
average of sum of variances of a signal, (26) autoregression.

(1) Fast Fourier Transform (FFT) coefficients, (2) Discrete Fourier
Transform (DFT), (3) Discrete Wavelet Transform (DWT),

(4) first dominant frequency, (5) ratio between the power at the
dominant frequency and the total power, (6) ratio between the
power at frequencies higher than 3.5 Hz and the total power,

(7) two signal fragmentation features, (8) DC component in FFT
spectrum, (10) energy spectrum, (11) entropy spectrum,

(12) sum of the wavelet coefficients, (13) squared sum of the
wavelet coefficients and energy of the wavelet coefficients,
(14) auto-correlation, (15) mean-crossing rate, (16) spectral
entropy, (17) spectral energy, (18) wavelet entropy values,

(19) mean frequency, (20) energy band.

BUsers could also decide not to apply the feature extraction step and use the date in
the form provided by the previous block applying a standard data segmentation phase. In
such a case, the feature selection algorithm is not applied [13,50].

4.3.3. Preprocessing of Features

The extracted features could present a wide range of values that will govern the
training process, but such features are not those that primarily represent the dataset’s char-
acteristics or the final pattern-recognition model’s accuracy. Data normalization transforms
multi-scaled data to the same scale, and all variables equally influence the model, improv-
ing the learning algorithm’s stability and performance [55]. Our methodology makes use
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of the robust scaling normalization technique that scales each feature of the dataset by
subtracting the median (Q2(x)) of this feature and then dividing by the interquartile range
(IQR) (Q3(x)− Q1(x)). This scaler is robust to outliers, in contrast with the other scalers
that arehighly affected by outliers. When working with datasets in which different features
are used to represent every single sample, the datasets perform independent normalization
for every feature.

Moreover, a large number of features does not imply high recognition quality, since
they can positively or negatively impact the recognition process. Therefore, feature selec-
tion techniques identify features that positively and negatively influence the recognition
process, reducing the model’s dependence on irrelevant features. The exclusion of a certain
number of features decreases the training process’s complexity, since a smaller dataset
generally requires less training time. The main benefits of such techniques are (i) reducing
overfitting by eliminating redundant data, which consequently reduces noise-related is-
sues; (ii) improving accuracy, since misleading data are eliminated; (iii) reducing training
time due to fewer data points; and iv) raising interest in certain features demonstrating
higher importance [55,56]. We use the tree-based feature selection technique to compute
impurity-based feature importances, discarding irrelevant features in cooperation with
other feature selection techniques.

In conclusion, the execution of this series of data treatment steps transforms the raw
data, subject to noise and errors, to an optimal number of features in the time and frequency
domains. This features set will be used by the machine learning models in the fourth phase
of the methodology, as shown in Figure 3. The features-preprocessing step is anticipated
by the hold/leave-out validation techniques, generating the training and testing datasets.
Then, the training dataset will be preprocessed as mentioned above, and then the testing
dataset is preprocessed based on the training dataset’s requirements.

5. Preliminary Experimental Evaluation

Following the experimental design of Section 4, we collected data from 12 different
male subjects, whose physical characteristic are shown in Table 2.

Table 2. Subjects’ characteristics.

Subject Age (Years) Height (cm) Weight (kg)

22 24 182 72.6
23 24 183 61.1
24 22 186 97.7
25 28 176 65.1
26 28 172 69.7
28 23 170 64.7
29 24 174 69.0
30 28 176 78.0
31 25 187 86.9
32 23 189 78.1
33 23 176 66.9
34 19 175 72.8

Min. 19 170 61.1
Max. 28 189 97.7
Avg. 24.76 178.65 73.71
Std. 2.78 6.15 9.97

At the end of the data collection phase, each subject had performed a total of 84 7 tasks
(i.e., do not rotate, rotate of an angle of 30◦ or 60◦ or 90◦, both right and left) × 2 statuses
(i.e., stable/unstable) × 6 repetitions) data collection sessions. Each session involved the
five movements phases (i.e., rotate, in position, APAs, drop, and recover) described in
Section 4.1 and shown in Figure 5.

In this preliminary evaluation, the collected data are divided based on the data col-
lection technologies we utilized (force platform, EMGs, or acceleration data) into three
different datasets, as shown in Table 3.
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Table 3. Overview of the three types of datasets analyzed.

Dataset Time Force Platform EMG’s Acceleration Sampling
Frequency

ID [ms] (#1) (#10) (#9) [Hz]

A 1000
B 200
C 200

(# val) number of sensors.

Subsequently, for each dataset type (i.e., A, B, and C), we applied the data-processing
pipeline defined in Section 4.3 and shown in Figure 10. In particular, the data, in segmen-
tation and feature representation forms were segmented in time windows of 150 ms as
the hypothetical duration of the APA movement phase), were used to train three different
machine learning models, whose performances in recognizing the movement phases of
Figure 5 were measured in terms of accuracy A), precision (P), recall (R), and F1-score (F1),
defined as follows [57]:

A = tp+tn
tp+tn+ f p+ f n P = tp

tp+ f p

R = tp
tp+ f n F1 = 2 × P×R

P+R

Here, tp represents the number of true positives, n represents the number of true
negatives, fn represents the number of false negatives, and fp represents the number of false
positives.

5.1. Preliminary Results

Tables 4 and 5 present the results of our preliminary analysis. Table 4 presents the
results for datasets A, B, and C from all subjects simultaneously by performing a k-fold test
(k = 5) on all subjects’ data. Table 5 presents the results for datasets A, B, and C for every
single subject by performing a k-fold test (k = 5) on each subject’s data.

Table 4. Average results for segmentation and feature-extraction data representation of all 12 subjects’
data.

Segmentation Feature Extraction

A B C A B C

Model A P R F1 A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

k-NN 58.1 56.2 58.1 55.2 47.4 45.0 47.4 44.0 57.3 55.5 57.3 54.4 42.7 39.4 42.7 40.2 38.9 36.8 38.9 35.8 71.4 67.7 71.4 69.2
RF 77.7 80.2 77.7 76.0 54.5 55.3 54.5 48.3 88.8 89.3 88.8 88.2 84.0 84.8 84.0 83.5 63.0 68.6 63.0 59.5 89.9 90.2 89.9 89.6
LDA 49.2 48.9 49.2 47.3 42.5 64.7 42.5 25.7 49.5 49.2 49.5 48.4 36.8 34.6 34.5 31.45 61.3 67.6 61.3 56.9 65.1 67.4 65.0 63.6

The results of Table 4 show that the random forest performed the best on all three
datasets (i.e., A, B, and C), and for both data-treatment types (i.e., segmentation and feature
extraction). Moreover, when differentiating by dataset type, the results show that the
conjunct information of dataset A (i.e., EMGs and Force Platform) and dataset B (i.e.,
acceleration values) was put to use significantly better than when used separately. In
particular, in terms of F1-score, there was an increment of 12.2% from dataset A to dataset C
and 39.9% from dataset B to dataset C. Such results indicate that the acceleration provides
precious information concerning the recognition of the studied activities. Overall, the
achieved F1-scores for all subjects using the random forest model and dataset C were 88.2%
and 89.6%, respectively, in segmentation and feature representation modes.
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Table 5. Results on segmentation and feature extraction data representation for each subject.

Segmentation Feature Extraction

A B C A B C

Subject Model A P R F1 A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

P22
k-NN 56.8 55.6 56.8 54.4 40.0 42.1 40.0 39.0 56.5 55.3 56.5 54.2 39.4 37.4 39.4 37.7 34.5 31.9 34.5 32.6 44.5 60.5 44.5 48.9
RF 83.6 84.8 83.6 82.7 54.1 55.9 54.1 49.2 84.9 85.7 84.9 84.1 83.6 84.8 83.6 83.0 61.5 63.3 61.5 59.4 83.9 85.1 83.9 83.2
LDA 59.5 59.5 59.5 59.4 32.1 30.8 32.1 31.2 54.8 56.4 54.8 55.5 39.3 76.0 39.3 40.0 3.0 8.3 3.0 0.4 44.5 60.5 44.5 48.9

P23
k-NN 66.7 67.3 66.7 64.3 42.1 42.8 42.1 37.4 65.8 63.5 65.8 63.0 49.1 46.8 49.1 47.8 37.8 34.7 37.8 35.0 82.9 81.4 82.8 80.3
RF 86.1 87.7 86.1 85.6 48.9 47.9 48.9 43.5 99.8 99.8 99.8 99.8 87.6 88.0 87.6 87.2 62.4 64.9 62.4 60.3 100 100 100 100
LDA 61.1 61.9 61.1 61.4 37.8 33.7 37.8 33.4 98.6 98.7 98.6 98.6 30.5 0.1 3.1 0.01 3.6 12.9 3.6 1.2 97.4 97.5 97.4 97.4

P24
k-NN 63.7 64.0 63.7 62.6 46.1 43.9 46.1 41.0 64.4 63.7 64.4 63.1 46.1 44.2 46.1 44.9 40.9 38.0 40.9 37.2 65.8 61.6 65.8 63.5
RF 89.4 90.8 89.4 88.8 56.2 60.6 56.2 49.8 88.1 89.6 88.1 87.3 91.4 91.7 91.4 91.1 65.3 70.5 65.3 62.3 92.1 92.3 92.1 91.7
LDA 59.7 60.8 59.7 60.0 35.0 32.3 35.0 33.8 52.8 57.2 52.8 54.5 58.2 66.6 58.2 57.1 30.0 34.4 30.0 15.0 61.8 64.3 61.8 62.9

P25
k-NN 63.3 62.8 63.3 60.9 49.5 50.9 49.5 46.5 63.4 63.0 63.4 61.1 48.0 45.4 48.0 46.4 37.6 37.6 37.6 34.9 68.3 65.0 68.3 66.2
RF 85.0 85.6 85.2 84.7 55.9 63.4 55.9 52.1 90.1 90.3 90.1 89.7 86.1 85.9 86.1 85.8 65.2 72.3 65.2 62.4 90.1 90.0 90.1 89.7
LDA 55.9 56.1 55.9 55.7 37.5 35.2 37.5 35.6 54.1 54.4 54.1 54.1 20.0 7.8 20.0 10.5 3.7 11.6 3.7 1.9 40.0 46.4 40.0 31.8

P26
k-NN 65.0 64.1 65.0 62.3 48.1 46.4 48.1 43.1 65.0 64.1 65.0 62.3 49.7 46.7 49.7 47.5 37.3 32.9 37.3 34.2 80.4 76.9 80.4 77.7
RF 86.3 86.5 86.3 85.9 58.7 61.5 58.7 52.7 99.8 99.8 99.8 99.8 88.4 88.3 88.4 88.1 65.3 65.2 65.3 60.8 100 100 100 100
LDA 57.9 58.6 57.9 58.2 41.7 38.7 41.7 38.6 98.3 98.4 98.3 98.3 41.3 25.7 41.3 31.0 31.4 11.2 31.4 15.8 98.3 98.4 98.3 98.3

P28
k-NN 65.5 64.3 65.5 62.8 46.7 46.2 46.7 41.7 65.5 64.3 65.6 62.8 52.3 49.5 52.3 50.2 38.7 33.6 38.7 35.0 64.0 60.7 64.1 62.2
RF 84.2 85.4 84.2 83.1 56.7 60.7 56.7 49.7 85.8 86.5 85.8 84.8 86.1 86.8 86.1 85.4 63.4 67.1 63.4 59.0 85.5 86.1 85.5 84.8
LDA 58.8 59.3 58.8 59.0 46.7 41.4 46.7 39.1 53.6 56.2 53.5 54.5 56.6 62.7 56.6 60.6 3.4 17.9 3.4 0.6 50.8 57.0 50.1 52.5

P29
k-NN 61.0 60.1 61.0 58.1 46.8 47.5 46.8 42.7 61.1 60.6 61.1 58.4 49.0 46.0 49.0 46.7 39.6 37.9 39.6 36.5 69.4 65.4 69.4 67.0
RF 85.0 87.0 85.0 84.3 59.3 59.5 59.3 51.4 84.8 86.5 84.8 84.0 86.1 87.4 86.1 85.6 65.1 68.4 65.1 58.9 87.8 88.8 87.8 87.3
LDA 61.7 61.3 61.7 61.3 39.0 35.1 39.0 35.9 54.6 57.4 54.6 55.4 59.9 65.6 59.9 61.5 46.9 22.9 46.9 30.5 49.2 54.9 49.2 50.3

P30
k-NN 59.2 62.0 59.2 55.9 51.4 54.5 51.4 43.5 59.7 59.3 59.7 56.5 42.6 39.8 42.6 40.4 37.9 34.9 37.9 34.6 77.8 75.3 77.8 74.2
RF 84.6 85.8 84.6 83.6 61.8 65.0 61.8 57.2 99.8 99.8 99.8 99.8 86.4 87.1 86.4 85.9 69.9 72.8 69.9 67.3 99.8 99.8 99.8 99.8
LDA 53.4 55.3 53.4 54.1 41.1 38.3 41.1 38.9 99.0 99.0 99.0 99.0 11.9 45.4 11.9 13.4 30.1 17.5 30.1 14.9 98.7 98.8 98.7 98.8

P31
k-NN 58.2 55.4 58.2 54.8 45.8 44.3 45.8 38.3 55.6 52.6 55.6 52.5 42.9 39.8 42.9 39.4 38.9 37.1 38.9 35.7 77.8 72.7 78.8 74.4
RF 81.2 83.1 81.2 80.2 53.7 59.6 53.6 47.5 99.8 99.8 99.8 99.8 86.4 87.3 86.4 85.8 62.0 67.2 62.0 58.9 99.9 99.9 99.9 99.9
LDA 59.8 60.0 59.8 59.7 44.1 41.1 44.1 40.4 98.9 98.9 98.9 98.9 65.3 66.1 65.3 65.3 16.8 66.1 16.8 20.5 98.4 98.4 98.4 98.4

P32
k-NN 68.3 67.8 68.3 65.1 30.7 36.8 30.7 30.2 68.3 67.8 68.3 65.0 56.3 53.7 56.3 54.3 41.0 37.5 41.1 38.2 71.2 67.5 71.2 68.7
RF 87.2 87.3 87.2 86.1 58.5 63.6 58.5 53.2 89.3 87.0 89.3 87.9 88.3 87.5 88.3 87.5 67.4 66.1 67.4 64.4 88.6 87.9 88.6 87.9
LDA 56.8 56.7 56.8 56.7 42.3 37.5 42.3 37.9 53.6 55.5 53.6 54.4 15.3 3.9 15.3 06.2 18.6 20.3 18.6 7.0 42.2 25.4 42.2 28.8

P33
k-NN 69.2 65.5 69.2 66.5 45.0 46.1 45.0 43.4 69.4 65.3 69.4 66.7 53.2 49.0 53.2 50.3 38.1 35.0 38.1 34.8 70.4 66.5 70.4 67.7
RF 89.8 90.3 89.8 89.2 53.9 54.8 53.9 48.2 92.0 92.5 92.0 91.3 91.4 91.2 91.4 90.9 63.9 64.7 63.9 59.6 93.8 94.0 93.8 93.2
LDA 60.0 60.3 60.0 60.1 38.9 37.7 38.9 37.3 54.2 56.4 54.2 55.0 14.3 45.8 14.3 18.3 3.3 35.1 3.3 0.8 50.0 57.6 50.0 46.9

P34
k-NN 73.4 73.3 73.4 71.6 52.8 51.4 52.8 45.6 73.9 73.9 73.9 72.0 57.6 54.1 57.7 55.6 40.5 36.4 40.5 37.2 76.4 73.0 76.4 74.5
RF 91.6 91.8 91.6 91.3 58.8 67.9 58.8 52.1 93.8 94.1 93.8 93.4 91.7 91.6 91.6 91.5 66.2 70.1 66.2 60.5 92.4 92.3 92.4 92.2
LDA 63.3 63.5 63.3 63.4 43.1 37.6 43.1 39.0 57.7 58.9 57.7 58.2 28.8 9.1 28.8 13.4 28.9 26.8 28.9 13.7 49.5 49.2 49.5 48.4

k-NN
Min 56.8 55.4 56.8 54.4 30.7 36.8 30.7 30.2 55.6 52.6 55.6 52.5 39.4 37.4 39.4 37.7 34.5 31.9 34.5 32.6 44.5 60.5 44.5 48.9
Max 69.2 67.8 69.2 66.5 51.4 54.5 51.4 46.5 69.4 67.8 69.4 66.7 56.3 53.7 56.3 54.3 41 38 41.1 38.2 82.9 81.4 82.8 80.3
Avg 63.4 62.6 63.4 60.7 44.7 45.6 44.7 40.6 63.2 61.8 63.2 60.5 48.1 45.3 48.1 46.0 38.4 35.6 38.4 35.3 70.2 68.5 70.3 68.3

RF
Min 81.2 83.1 81.2 80.2 48.9 47.9 48.9 43.5 84.8 85.7 84.8 84.0 83.6 84.8 83.6 83 61.5 63.3 61.5 58.9 83.9 85.1 83.9 83.2
Max 89.4 90.8 89.4 88.8 61.8 65 61.8 57.2 99.8 99.8 99.8 99.8 91.4 91.7 91.4 91.1 69.9 72.8 69.9 67.3 100 100 100 100
Avg 85.3 86.4 85.3 84.5 56.4 59.8 56.4 50.6 92.2 92.5 92.2 91.7 87.0 87.5 87.0 86.5 64.8 67.8 64.8 61.4 92.8 93.0 92.8 92.4

LDA
Min 53.4 55.3 53.4 54.1 32.1 30.8 32.1 31.2 52.8 54.4 52.8 54.1 11.9 0.1 3.1 0.01 3.0 8.3 3.0 0.4 40.0 25.4 40.0 28.8
Max 61.7 61.9 61.7 61.4 46.7 41.4 46.7 40.4 99.0 99.0 99.0 99.0 65.3 76.0 65.3 65.3 46.9 66.1 46.9 30.5 98.7 98.8 98.7 98.8
Avg 58.5 59.0 58.5 58.6 39.7 36.4 39.7 36.5 71.8 73.2 71.8 72.3 39.8 42.0 37.1 34.6 18.8 22.3 18.8 10.8 68.1 70.2 68.1 66.8

Table 5 shows that when training and testing the models with one specific subject,
the models’ performances are subject-dependent. As shown from the statistics of each
model for all subjects (bottom of the table), the RF model performed much better (F1
score > 91.6%) in both segmentation and feature representation modes, showing that the
recognition accuracy, in terms of F1-score, is on average 5% higher than when training and
testing with all 12 subjects’ data (see Table 4). Again, differentiating by dataset type, the
results show that the conjunct information of dataset A (i.e., EMGs and Force Platform)
and dataset B (i.e., acceleration values) performed significantly better than when used
separately. In particular, on average, there was an increment of 7.3% in the F1-score from
dataset A to dataset C and 31.1% from dataset B to dataset C.

5.2. GPSJack Evaluation

Concerning the suitability and principal characteristics of the GPSJack system, this sec-
tion presents its evaluation in terms of RAM, storage, CPU, battery consumption, and data
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loss. In particular, a Samsung Galaxy Tab A7 with the following HW/SW characteristics
has been tested in the setup described below.

• Processor: Qualcomm Snapdragon Octo-Core (4 × 2 GHz + 4 × 1.8 GHz);
• Operating system: Android 10;
• RAM: 3 GB;
• Storage: 32 GB;
• Connectivity: Bluetooth 5.0, Wi-Fi a/b/g/n/ac Dual Band;
• Battery: 7040 mAh;
• Dimension: 247.6 × 157.4 × 7 mm per 476 g;
• Price: $140.

Three Nordic Thingy 52 were connected to the Samsung Galaxy for three consecutive
hours. The setup was tested once for each sampling frequency: (i) 50 Hz, (ii) 100 Hz, and
(iii) 200 Hz. Table 6 presents the evaluation results obtained using the Android Studio
Profiler suit.

Table 6. Data aggregators’ profiling using Android Studio 4.1.2.

Galaxy Tab A7

Frequency (Hz) 50 100 200

RAM (MB/h) 147 180 224
Storage (Mb/h) 50 102 185

CPU (%) 31 40 46
Battery (mAh) 312 325 342

Data loss (%) 0 0 0

As observed, the designed system can work on various setups with no data loss and
low storage, RAM, and CPU usage. Moreover, its battery consumption allows a data
collection phase of almost 8 h. Based on the tests performed during the project, the Nordic
Thingy 52 can efficiently compute for more than 48 consecutive hours at 200 Hz.

5.3. Discussion

The results of these preliminary experiments clearly show that the conjugate of EMG,
Force Platform, and acceleration data performs considerably better than their separate
utilization. This improvement enables a better understanding and in-depth study of human
motion. In fact, the GPSJack prototype has good potential to capture relevant information,
enabling the possibility to recognize the studied motion classes with an average F1-score of
89.6% when using all the subjects’ data at once. Furthermore, when tested on single subjects,
the F1-score ranged from a minimum of 83.2% to a maximum of 100%, outperforming
the usage of only one of the aforementioned data sources. Even though the collected
acceleration data present precious information, further work must be conducted to increase
the overall performance and reduce the dependence on state-of-the-art technology. This
can be done by: (i) implementing more complex recognition models than the used k-NN,
RF, and LDA; and (ii) exploiting the utilization of a larger number and different positions
of data collection nodes on the human body. Nevertheless, the information generated by
the EMG and Force Platforms is paramount; thus, a possible next step in addition to those
mentioned above would be the integration of EGM sensors into the same GPSJack nodes.

6. Conclusions and Further Development

This paper has dealt with defining the experimental design of the "Biofeedback Wearable
and Environmental Technologies for Postural Correction" project. We illustrated the target
technology, described the project’s evaluation workflow (i.e., state-of-the-art instruments and
low-cost wearable sensors, data processing flow, and machine learning-based analysis), and
provided a high-level description of the context in which the envisioned technologies are
forecasted to operate. In particular, we devised a methodology investigating how to build the
parameters that allow the physiatric medical staff to evaluate the patient. Three challenging
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motor tasks were identified to, on the one hand, train fundamental motor skills such as
action adaptation, compensation, and anticipation, and on the other hand, to measure the
performance levels fir such skills. To measure the quality of the performed motor tasks, we
evaluated a low-cost body area network (aka GPSJack). GPSJack uses at most eleven data
collection nodes integrating an accelerometer, gyroscope, and magnetometer sensors and
can compute for 48 h at a sampling frequency of 200 Hz. Moreover, we used an android
mobile application that works as a data aggregator and controller for the GPSJack system,
through which the user can observe the collected data and the posture and gait quality
indicators. Nevertheless, in conjunction with the GPSJack, we integrated the GPSEnv based
on state-of-the-art gait and posture evaluation systems.

Tests on data collected from 12 subjects for a total of 84 data collection sessions each
showed that the designed system could highly accurately recognize the phases of the de-
fined motor tasks. In particular, in a subject-independent setup, we achieved an F1-score of
89.6% in recognizing the five studied movement states (i.e., rotate, in position, APAs, drop,
and recover). With a subject-dependent setup, the F1-score ranged from 100% for subjects
23 and 26 to 83.2% for subject 22. These results show that the acceleration information that
we will add to the state-of-the-art systems significantly increases recognition capabilities.

It is widely accepted in the community of psychiatric medicine that proper quantifica-
tion of the postural system’s efficiency represents an essential assessment for improving
quality of life in the elderly, patients with neurological pathologies, and athletes. Moreover,
since most of the actual measurements are made in a laboratory environment where nat-
ural movements are constrained by the instruments applied to subjects’ bodies and the
environment, a system usable in uncontrolled and unconstrained environments (e.g., home,
gym, or sports facilities) habilitates the individuals to move freely in their natural envi-
ronment and perform the required motor tasks. Thus, the designed system will evaluate
profiles from the performance viewpoint of individuals ranging from patients undergoing
rehabilitation to top-level elite athletes in controlled and uncontrolled environments.

Since the final goal of the project is performing the defined task in uncontrolled
environments and using only the acceleration information provided by a system such as
GPSJack, the next step will concern the exploitation of the data collection phase while
making use of a large number of nodes positioned on different body parts and of more
complex pattern-recognition models than the used k-NN, RF, and LDA. In particular, deep
learning models such as recurrent neural networks (RNN) and long short-term memory
(LSTM) have shown optimal results in such fields. Moreover, since the information captured
by the EMG sensors is paramount, integrating an EMG sensor into the GPSJack nodes
should be considered.
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Abstract: Parkinson’s disease (PD) is a neurodegenerative disease that impacts the neural, physiological,
and behavioral systems of the brain, in which mild variations in the initial phases of the disease make
precise diagnosis difficult. The general symptoms of this disease are slow movements known as
‘bradykinesia’. The symptoms of this disease appear in middle age and the severity increases as one gets
older. One of the earliest signs of PD is a speech disorder. This research proposed the effectiveness of
using supervised classification algorithms, such as support vector machine (SVM), naïve Bayes, k-nearest
neighbor (K-NN), and artificial neural network (ANN) with the subjective disease where the proposed
diagnosis method consists of feature selection based on the filter method, the wrapper method, and
classification processes. Since just a few clinical test features would be required for the diagnosis, a
method such as this might reduce the time and expense associated with PD screening. The suggested
strategy was compared to PD diagnostic techniques previously put forward and well-known classifiers.
The experimental outcomes show that the accuracy of SVM is 87.17%, naïve Bayes is 74.11%, ANN is
96.7%, and KNN is 87.17%, and it is concluded that the ANN is the most accurate one with the highest
accuracy. The obtained results were compared with those of previous studies, and it has been observed
that the proposed work offers comparable and better results.

Keywords: ANN; KNN; machine learning (ML); naïve Bayes classification; Parkinson’s disease; SVM

1. Introduction

Parkinson’s disease, commonly known as Tremor, is affected by a reduction in dopamine
levels in the brain which damages a person’s motion functions, or physical functioning. It
is one of the world’s most common diseases. Intermittent neurological signs and symptoms
result from these lesions, which get worse as the disease progresses [1]. Because aging causes
changes in our brains, such as loss of synaptic connections and changes in neurotransmitters
and neurohormones, this condition is more frequent among the elderly. With the passage of
time, the neurons in a person’s body begin to die and become inimitable. The consequences of
neurological problems and the falling dopamine levels in the patient’s body show gradually,
making them difficult to detect until the patient’s condition requires medical treatment [2].
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However, the symptoms and severity levels are different for individuals. Major symptoms of
this disease are deficiency in speech, short-term memory loss, loss of balance, and unbalanced
posture [1].

Every year, 8.5 million individual cases of this disease are registered worldwide, as
per the World Health Organization (WHO) report in 2019 [3]. The chance of developing
this disease rises with age; currently, there are 4% of sufferers worldwide under 50 years
of age. This disease is the most widespread neurodegenerative disease in the world after
Alzheimer’s disease, impacting millions of people [4,5]. Therapy for this disease is still in
its initial stages, and doctors can only assist patients in alleviating the symptoms of the
disease [6]. However, there are no definite diagnostics for this disease, and the diagnosis
is largely dependent on the medical history of the patient [1]. As invasive procedures are
typically used for diagnosis and therapy, which are both expensive and demanding [7], a
reasonably straightforward and accurate way to diagnose this disease looks very relevant.

1.1. Machine Learning-Based Detection of Parkinson’s Disease

Over the past few decades, researchers have looked at a new way of detecting this disease
through ML techniques, a subset of artificial intelligence (AI). Clinical personnel might better
recognize these disease patients by combining traditional diagnostic indications with ML.

As walking is the most common activity in every person’s day-to-day life, it has
been linked to physical as well as neurological disorders. This disease, for example, has
been identifiable using gait (mobility) data. Gait analysis approaches offer advantages
such as being non-intrusive and having the potential to be extensively used in residential
settings [8]. Few researchers have attempted to combine ML methods to make the procedure
autonomous and possible to do offline [9].

Furthermore, persons with the subject disease in its early stages might experience speech
problems [10]. These include dysphonia (weak vocal fluency), repetitious echoes (a tiny assort-
ment of audio variations), and hypophonia (vocal musculature disharmony) [7,11]. Information
from human aural emissions might be detected and evaluated using a computing unit [12,13].

1.2. Research Problem and Motivation

Early PD detection in PD patients is a crucial challenge. Even if their health deteriorates,
people can enhance their quality of life if they receive an early diagnosis. Another issue is that
the diagnosis of PD requires a number of steps, including gathering a thorough neurological
history from the patient and examining their motor abilities in various environments.

The majority of recent studies deal with the homo dataset (text, speech, video, or image).
Problems with dataset modification and multi-data handling procedures have been high-
lighted in the suggested study. The effectiveness of disease prediction is regulated as a result
of the examination of a particular dataset. More real-time solutions are made possible by the
use of machine learning-based techniques for multivariate data processing. The multi-variate
vocal data analysis (MVDA) is driven to provide multiple dataset attribute-based Parkinson’s
disease identification utilizing machine learning approaches. This study examines the po-
tential for improving multi-variate and multimodal data processing, which aids in raising
the disease detection rate. The existing research simultaneously concentrates on various
ML-based techniques such as support vector machines, naïve Bayes, K-NN, and artificial
neural network evaluations of Parkinson’s data based on voice features. The MVDA employs
extensive datasets and machine learning approaches to improve disease identification based
on these works. The incorporation of numerous patients’ multivariate acoustic characteristics
in the proposed MVDA is encouraged. The subjective disease has been diagnosed with the
help of proposed machine learning techniques under the MVDA system.

1.3. Contribution

This research article covers the techniques of machine learning which are implemented
in the auditory analysis of speech to diagnose this disease. The benefits and shortcom-
ings of these algorithms in detecting the disease are thoroughly contrasted, and existing
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comparative studies’ potential drawbacks are explored. The accuracy of ANN in speech
analysis for diagnosis is the finest among different classifiers; however, the assumption
is to enhance and adapt to the difficulties that may come from the data. Using the naïve
Bayes classifier with suitable pre-processing might result in greater average accuracy. The
main contribution of this paper is as follows:

a. To identify which machine learning algorithms, such as SVM, KNN, naive Bayes, and
ANN, offer the most accurate classifications and diagnosis of Parkinson’s disease.

b. To develop statistical evaluations for the diagnosis of Parkinson’s disease in order to
identify the frequency at which the best training and test results will be acquired, and
consequently to assist in upcoming literature-based research.

c. The proposed system has used an ANN classifier to attain the maximum classification
accuracy when compared to the approaches used in earlier research.

d. In order to improve the prediction of PD, a comprehensive methodology was employed
to explore the effectiveness and efficiency of various feature selection approaches.

e. The proposed model is examined with four machine learning methods, including
SVM, naive Bayes, k-NN, and ANN, as well as with earlier and more current studies
on PD detection.

1.4. Structure of Proposed Work

The structure of the study is as follows: Section 2 describes the related research survey.
Section 3 discusses the methodology used to achieve the proposed objective. Section 4 defines
the materials and methods. Section 5 examines the experiment and results. Section 6 discusses
the comparative study and discussion. Finally, Section 7 concludes the proposed work.

2. Related Works

In order to distinguish PD cases from healthy controls, a variety of modern machine
learning algorithms, including support vector machines, artificial neural networks, logistic
regression, naïve Bayes, etc., have been successfully used. In this study, numerous databases,
including Web of Science, Elsevier, MDPI, Scopus, Science Direct, IEEE Xplore, Springer, and
Google Scholar, were utilized to survey relevant papers on Parkinson’s disease.

In a survey by [14], the authors used KNN, SVM, and discrimination-function-based
(DBF) classifiers for the diagnosis of PD. In their study, they used several parameters such
as jitter, fundamental frequency, pitch, shimmer, and other statistical measures. The best
accuracy among these classifiers was obtained from KNN with a 93.83% accuracy rate and
it also provided good performance in other parameters, such as sensitivity, specificity, and
error rate.

The authors in [15] used a convolution neural network classifier applied to speech
classification datasets. The accuracy reached throughout the training phase, which was
over 77%, makes the results optimistic. In accordance with the works mentioned above, [16]
examined a variety of classifiers to identify individuals who were likely to have Parkinson’s
disease. They used 40 participants for their investigation, including 20 PD patients and
20 healthy controls. According to the experimental findings, the naive Bayes classifier
has a detection accuracy of 65%, with a sensitivity rate of 63.6% and a specificity rate of
66.6%, respectively. In [17], the authors used three types of classifiers based on KNN, SVM,
and multilayer perceptron (MLP) to diagnose Parkinson’s disease. Among all these ML
classifiers, SVM using an RBF kernel outperformed with an overall classification accuracy
rate of 85.294%.

A summary of the most recent deep learning methods for audio signal processing
is given in another work by [18]. The works that have been examined include convolu-
tion neural networks as well as other long short-term memory architecture models and
audio-specific neural network models. Similar to the previous studies, [19] detected PD
using naive Bayes and other machine learning approaches. In their method, relevant
features were extracted from the voice signal of PD patients and healthy control subjects
using signal processing techniques. The naive Bayes algorithm shows a 69.24% detection
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accuracy and 96.02% precision rate for the 22 voice characteristics. In [20], the authors
suggested a technique for detecting Parkinson’s disease using SVM on shifted delta cepstral
(SDC) and single frequency filtering cepstral coefficients (SFFCC) features extracted from
speech signals of PD patients and healthy controls. Comparing the standard MFCC + SDC
features to the SDC + SFFCC features, performance increases of 9% were observed. The
73.33% detection accuracy with a 73.32% F1-score was displayed by the conventional SVM
on SDC + SFCC features. In addition to the naive Bayes classifier, several additional super-
vised methods, including but not restricted to well-known deep learning methods, have
been suggested to identify PD patients among healthy controls.

In a survey conducted by [21], the authors examined two recognizing decision forests
i.e., SysFor and ForestPA, along with the most widely used random forest classifier, which
has been utilized as a Parkinson’s detector. In their study, as compared to SysFor and
ForestPA, random forest’s average detection accuracy on incremental trees showed 93.58%.
For the purpose of classifying Parkinson’s disease through sets of acoustic vocal (voice)
characteristics, the authors [22] suggested two frameworks based on CNN. Both frame-
works are used for the mixing of different feature sets, although they combine feature sets
in different ways. While the second framework provides feature sets to the parallel input
levels that are directly connected to convolution layers, the first framework first combines
several feature sets before passing them as inputs to the nine-layered CNN.

AI is assisting physicians in better diagnosing and treating diseases such as postoper-
ative hypotension, and more advanced future models may have even more widespread
medical uses. The evolutionary step in the creation of therapeutic pathways and adherence
is machine learning. The real benefit of machine learning, however, is that it enables
provider organizations to use information about the patient population from their own sys-
tems of record to create therapeutic pathways that are unique to their procedures, clientele,
and physicians [23].

The vocal biomarkers and the description of the Aachen aphasia database, which contains
recordings and transcriptions of therapy sessions, were covered in [24]. The authors also
discussed how the biomarkers and the database could be used to build a recognition system
that automatically maps pathological speech to aphasia type and severity.

In [25], the authors examined the suggested technique using a dataset of 288 audio
files from 96 patients, including 48 healthy controls and 48 participants with cognitive im-
pairment. The suggested method outperformed techniques based on manual transcription
and speech annotation, with classification results that were comparable to those of the most
advanced neuropsychological screening tests and an accuracy rate of 90.57%.

In [26], the authors intended to enlighten on the early indicators of major depressive
relapse, which were discreetly measured using remote measurement technologies (RMT).

RMT has the potential to alter how depression and other long-term disorders are evalu-
ated and handled if it is found to be acceptable to patients and other important stakeholders
and capable of providing clinically meaningful information predicting future deterioration.

It can be seen from the reviews above that all the research that has been carried out is
only restricted to a small number of datasets. The above previous works inspired us to try
a new methodology. In this study, we experimented with several feature selection methods
before comparing the results with various machine learning classifiers. Table 1 illustrates
the review of ML techniques used to diagnose major symptoms of PD i.e., speech recording,
handwriting pattern, and gait features, where data were collected from the UCI machine
learning repository, the University of Oxford (UO), and other resources for 20 studies.
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3. Proposed Work

The proposed ML model uses an SVM, naïve Bayes, KNN, and ANN algorithm in
the core. These algorithms are widely used in the literature since they are easy to use
and only need a small number of parameters to be tuned. There are several processes
involved in developing a model to detect PD from voice recordings. In the first phase,
relevant features are extracted from the dataset for better understanding. In the second
phase, machine learning techniques are applied to classify healthy as well as PD patients,
which are dependent on acoustic features to predict the outputs in the form of visual
representation of graphs and percentage of accuracy score tables. Finally, in the third phase,
there is a difference between the entire machine learning classifier models to predict the
best accuracy score. The complete technical process of the proposed work is represented in
Figure 1. The proposed methodology is shown to be better than the other methodologies
with respect to computational cost since few voice features were used instead of heavy
feature extraction processes such as MRI, motion sensors, or handwriting assessments.
Additionally, the performances of different popular classifiers were evaluated, and the best
classifier was found to be ANN for PD diagnosis problems.
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Feature Selection

Due to many available features, feature selection is a frequent approach used to mini-
mize the dimension of data in machine learning based on voice analysis. As demonstrated
in Figure 2, all feature selection algorithms have the same aim of reducing redundancy
and increasing relevance, which improves the accuracy of the disease’s diagnosis. Prior
to supplying the data to the classifier, a variety of feature selection strategies were used.
The filter-based strategies take into account the importance of the characteristics. As a
result, they are stable and scalable and have a low level of complexity [47,48]. The major
drawback of this method is that, especially when the data are flowing in a stream, it may
overlook certain useful aspects [49]. Both univariate and multivariate techniques based on
filters are possible [50]. According to statistically based criteria such as information gain
(IG) [51–53], the univariate approaches analyze attributes. Multivariate approaches calcu-
late feature dependence before ranking the feature. In addition, a widely utilized statistical
technique for data analysis is principle component analysis (PCA). By choosing a collection
of features that accurately reflects the entire data set, PCA can minimize the size of the
data sets. The initial variables’ principal components are the components with the largest
variance value since PCA is a conversion technique. Following that, the other principal
components are arranged in descending order of variance values [54]. Additionally, the
wrapper-based algorithms assess the quality of the chosen features based on the learning
classifier’s performance.
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In the pre-processing section, the whole procedure for filter techniques takes place
independent of the model. The models are skipped by the filter. Filter methods primarily
consider the data’s distribution and correlation and internal relationships. As a result,
filter techniques have the advantage of being simple and quick to compute. Because of
their simplicity and quick computing speed, filter approaches are commonly used in the
diagnosis of this disease. Some popular filtering methods are listed below. The minimum
redundancy and maximum relevancy (mRMR) method selects characteristics that are far
apart but have a strong “correlation” with the classification variable.

The wrapper method decides whether to have or reject a feature depending on a
classifier’s working change [55]. The wrapper method takes certain classifiers into account
and provides a well-tailored subset. As a result, wrapper methods have a lower chance of
finding the local maximum. Due to its huge gain in performance, the wrapper approach
is popular among ML diagnostics. However, it has drawbacks such as being prone to
overfitting and being computationally costly. Wrapper-based feature selection techniques
use a classifier to build ML models with different predictor variables and select the variable
subset that leads to the best model.
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In contrast, filter-based methods are statistical techniques independent of a learning
algorithm used to compute the correlation between the predictor and independent variables.
The predictor variables are scored according to their relevance to the target variable. The
variables with higher scores are then used to build the ML model. Therefore, this research
aims to use a filter-based feature selection method, to identify the most relevant features
for improved PD detection.

4. Materials and Methods
4.1. Dataset

The dataset of recorded speech signals was obtained from Max Little of the University
of Oxford [56,57]. Table 2 contains the details of the dataset. This dataset has an assortment
of acoustic speech measures from 195 persons, where 147 persons have Parkinson’s disease.
All the attributes in the dataset characterize an individual voice measure, and each tuple
represents a total number of voice recordings made by these people. The objective of the
dataset is to differentiate fit persons compared to the unhealthy using the “status” column,
which is set to negative for fit persons and positive for those having the disease.

Table 2. Detail of Parkinson’s Dataset.

Dataset Characteristic Multivariate

No. of Instances 197

Attributes Characteristic Real

No. of Attributes 23

Missing Values N/A

Made by Max Little of the University of Oxford

Associated Tasks Classification

Types of Classification Binary {0 for healthy and 1 for PD patient}

4.2. Parkinson’s Disease Diagnosis Based on Voice Analysis and Machine Learning

Some studies have concentrated on the acoustic level or the fluctuations in fundamen-
tal frequency (F0) caused by vocal activities. The effects of power spectral analysis of F0
phonation in persons with sensorineural audibility loss and the disease have been examined
in [58–60]. F0’s rhythm was unique in the incidence and amplitude of the diseases. Further,
the study demonstrated that the F0 analysis can be a useful tool for neurological diseases
under investigation. The autocorrelation function approach was used to find the basic
frequencies of speech transmissions. According to the concept, Parkinsonian dysprosody is
frequently described as a simple neuro-motor disorder.

The understanding and generation of pitch characteristics in a group of patients were
examined to confirm the idea. Conventional medications, such as LDOPA, define that in the
early stages of PD, LDOPA is a very effective treatment of subjective disease [61]. In [62],
the authors use deep learning to categorize the patient’s speech data as “severe” and “not
severe”. The evaluation measures employed in this study were the unified Parkinson’s
disease ranking scale (UPDRS). The motor UPDRS examines the patient’s motor ability on
a 0–108 scale, while the entire UPDRS provides a range of scores from 0 to 1766.

4.3. Classification of Parkinson’s Disease with ML Classifier

In this technique, we’ll use an ML classifier to classify the disease. First, we select a
target variable of patient health status and measure the number of patients in this report.
We visualize the data graphically after assessing the health status of a patient. Two types
of datasets were developed: 80% of the dataset was used for training and 20% for the
testing dataset. In the following Figure 3, the score of 0 represents the healthy persons
in the sample, whose count is 48, and 1 represents the patients with Parkinson’s disease,
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whose count is 147. The count of Parkinson’s disease patients in the dataset: 147 out of 195
(75.38%). The count of healthy persons in the dataset: 48 out of 195 (24.62%).
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4.4. Building of Machine Learning Techniques with Classifier Evaluation Metrics

By using different types of classifiers, it becomes easy to detect the disease. Classifi-
cation sensitivity, Matthews’s correlation coefficient (MCC), accuracy, specificity, F-score
(F-measure), and other measurement parameters are used to distinguish it. Each of these
measurement criteria includes a formula for calculating it and determining which classifier
is the most qualitatively appropriate for the analysis. It is requisite to focus on the confu-
sion matrix before developing these criteria [63]. The confusion matrix of the multi-class
classifier is shown in Figure 4.
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F1-Score: It represents the accuracy of a model on a given dataset which is also known
as F-Score as shown in Equation (1):

F − Score = 2 ∗ precision ∗ sensitivity
precision + sensitivity

(1)

MCC: It is utilized for model evaluation to evaluate the quality of the binary and multi-
class classifications as shown in Equation (2). It is based on true-negative, true-positive,
and false-negative, false-positive. It lies between −1 to 1 which is defined as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

(−1): Contradiction between prediction and observation
(0): No better than random prediction
(1): Perfect classifier (accurate prediction).

5. Experiments and Results

The proposed work is implemented in Python 3.7: JupyterLab. Here we detail the
experimental setup and the results of the four machine learning classification methods.

5.1. SVM-Classifier

SVM is one of the most prevalent classifier models because it provides accurate as
well as highly robust results. The fundamental goal of SVM is to classify the training data
by separating the classes while executing a multiple-class learning activity. It allows for the
best classification performance on training data and accurately classifies patterns from the
data [64]. The training procedure uses a sequential minimization strategy, and classification
accuracy is shown to be higher in SVM due to its greater generalization ability [65]. The
linear SVM is calculated by using the following Equation (3).

y = f (x) = wTx − b (3)

where x represents the data, y represents the class label, w represents the weight of vector
orthogonal to the decision hyper-plane, b represents the offset of the hyper-plane and T
shows the transpose operator [66].

In this study, we use the sklearn library in the SVM-classifier module for the classifica-
tion of the given dataset. Table 3 represents the results that are generated by using the SVM
classifier (Figure 5). Figure 6 represents the confusion matrix with the true positive, true
negative, false positive, and false negative value of a PD person by using the SVM classifier.

Table 3. SVM Classifier.

Name Results

Accuracy Score of test data 87.17%

Accuracy Score of training data 88.46%

Execution Time 0.03111 s

F1-score 66.19%

MCC 56.59%
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medical condition, the data comprise numerous speech signal variants. The sklearn 
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5.2. Naive Bayes Classifier

Another main essential category method of ML is the naive Bayes classifier technique.
It provides effective classification and learning and the majority of results are acquired
through the naïve Bayes method [67]. Naïve Bayes, based on Bayes’ theorem, determines
the likelihood of an event occurring depending on the event’s circumstances. For instance,
variations in the voice are common in people with the disease; hence, these symptoms are
linked to the prediction for diagnosis of this disease. The naive variation of the theorem ex-
tends and simplifies the original Bayes theorem, which gives a mechanism for determining
the probability of a target occurrence. To estimate the likelihood of the medical condition,
the data comprise numerous speech signal variants. The sklearn Gaussian naive Bayes
algorithm is used to provide the classifier module for the execution of the naïve Bayes
categorization. The result of the classifier is shown in Table 4 and graphical representation
is illustrated in Figure 7.
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Table 4. Naïve Bayes Classifier Results.

Name Results

Accuracy Rate of test data 74.11%

Accuracy Rate of training data 76.23%

Execution Time 0.0323 s

F1-score 86.74%

MCC 66.56%
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5.3. Artificial Neural Network

ANN is a subfield of deep neural networks that predict how the human brain works.
In general, there is a significant distinction between the human brain and ANN. The
brain has ‘n’ number of parallel neurons, whereas the machine only has a finite sum of
processors. Additionally, neurons are meeker and more relaxed than computer processors.
Another major disparity between computer systems and the brain is the ability to process
information on a larger scale. Neurons are made up of synapses or networks that operate
together [64,68]. In this article, the main aim is to classify the functionality of ANN
techniques in the early detection of this disease which is built on the subsequent phases:

i. Identifying the responsibility and function of ANN in the detection of this disease.
ii. Making observations on labels and features of datasets.

iii. Grouping the types of the studied disease centered on their symptoms.
iv. Examining the accurate outcomes.

These outcomes can be further used in the medical sector as direction for developers
considering ANN deployment to enhance the civic health potential as a reaction to the
studied disease [69].

In the experiment of an artificial neural network, the dataset was split into two parts
i.e., the training dataset (80%) and the test dataset (20%). The classification results of the
artificial neural network were found to be very high in the form of the average accuracy
score which was the highest among all the classification methods, i.e., 96.7% shown in
Table 5 and graphical representation is shown in Figure 8.
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Table 5. Artificial Neural Network Classifier Outcome.

Title Results

Accuracy Rate of test data 96.7%
Accuracy Rate of training data 97.4%

Execution Time 0.025 s
F1-Score 87.01%

MCC 70.11%
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5.4. K-Nearest Neighbor

The KNN technique is costly while presenting with a huge training dataset since it
has been used most of the time in pattern recognition. KNN is the base concept of learning
by analogy utilized to categorize the nearest neighbors. It is accomplished by comparing
closely similar training tuples to the provided test tuple. As a result, “n” characteristics are
utilized to recognize training tuples in which each tuple corresponds to a distinct point in
the n-dimensional space. The KNN classifier’s responsibility in the event of an unlabeled
tuple is to explore the pattern space for all k training tuples that are close together [64].
This study aims to identify the accuracy rate of detecting the subject disease. To find out
the difference between affected patients and healthy persons, the KNN algorithm is used.
In terms of accuracy, experimental data reveal that the ANN classifier outperformed the
KNN classifier on average. The results of the KNN classifier are shown in Table 6 with the
accuracy rate of the training and test datasets, F1-score, and MCC illustrated in Figure 9.

Table 6. KNN Classifier Results.

Name Results

Accuracy Rate of test data 87.17%
Accuracy Rate of training data 88.46%

Execution Time 0.03111 s
F1-score 71%

MCC 65.02%
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5.5. Summary of Evaluation Results

The performance of all the classifier models used in the experiment for the disease’s
prediction is illustrated in Table 7. The artificial neural network classifier scores the highest
accuracy rate followed by SVM, naïve Bayes, and KNN. Figure 10 shows the graphical
representation of the results obtained by these four ML classifiers based on various param-
eters. Table 7 illustrates that SVM attained the average accuracy for the training and test
datasets, which are 88.46% and 87.17% respectively, F1-score (66.19%), and MCC (56.59%),
sensitivity and specificity 62.5% and 93.54%, respectively. In addition, the naïve Bayes
achieved the average accuracy for the training and test datasets, F1-score, MCC, sensitivity,
and specificity, which are 76.23%, 74.11%, 86.74%, 66.56%, 84%, and 79.76% respectively.

Table 7. An overview of evaluation results.

Performance Measure
Accuracy F1-Score MCC Sensitivity Specificity

Training
Dataset

Test
Dataset

SVM 88.46% 87.17% 66.19% 56.59% 62.5% 93.54%
Naïve
Bayes 76.23% 74.11% 86.74% 66.56% 84% 79.76%

KNN 88.46% 87.17% 71% 65.02% 60.0% 93.54%
ANN 97.4% 96.7% 87.01% 70.11% 92.42% 91.25%

It has been observed that the results obtained by the SVM and KNN have the same
values for all the parameters except MCC (65.02 %) and sensitivity (60%). Finally, the
best accuracy was obtained by the ANN where the results of parameters such as accuracy
of the training and test datasets, F1-score, MCC, sensitivity, and specificity are 97.4%,
96.7%, 64.55%, 87.01%, 70.11%, 92.42%, and 91.25%, respectively. Overall, the results of our
experiments show that ANN outperforms SVM, naive Bayes, and KNN.
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6. Comparative Study and Discussion

This section examines the efficient comparative result analysis of the proposed tech-
nique with other conventional machine learning techniques. The comparison of the pro-
posed study with previously published research is shown in Table 8.

Table 8. Performance Comparison with previous studies.

Reference Basis Machine Learning Classifier Accuracy Sensitivity Specificity

Sakar et al. [70] Speech SVM and KNN 68.45% 60 50
Vadovsk’y and Parali [71] Speech C4.5 + C5.0 + randomforest + CART 66.5 NA NA

Ouhmida, A. [72] Speech SVM, K-NN, Decision Tree 98.26% (AUC) NA NA
Mabrouk et al., [73] Speech Random forest, SVM, MLP, KNN 78.4% (SVM), 82.2% (KNN) NA NA

Benba et al. [74] Speech HFCC-SVM 87.5% 90% 85%

Proposed Work Speech SVM, naïve Bayes, KNN and ANN 87.17%, 74.11%, 87.17%,
and 96.7%

62.5%, 84%, 60%,
and 92.42%

93.54%, 79.76%,
93.54%, and 91.25%

As per the comparative analysis, the proposed model (using four machine learning
algorithms) shows better results obtained as compared to all other experimental machine
learning models and the existing state of the art. In the proposed study, the best result
was achieved by ANN with 96.7% accuracy, which is higher than the other experimental
algorithms. The authors of [49] collected 20 PD and 20 HC speech datasets using high-quality
recording equipment and used KNN and SVM to analyze the datasets in order to detect
PD. KNN and SVM classifiers performed with accuracy rates of 59.52% (LOSO) and 68.45%
(LOSO), respectively. In addition to [50], the authors used various algorithms such as C4.5,
C5.0, random forest, and CART based on decision trees. The authors experimented on
40 individuals’ records, where 50% were affected with the subjective disease and 50% were
HC. For this study, the highest average model accuracy of 66.5% was attained. ANN was used
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by [51] to identify PD. The dataset was obtained from the University of California, Irvine’s
machine learning library. A total of 45 attributes were chosen as input values and one outcome
for the categorization using the MATLAB tool. With an accuracy of 94.93%, their suggested
model was able to differentiate healthy individuals from PD subjects. In [52], the authors
used random forest, SVM, MLP, and KNN classifiers for the detection of PD patients from HC.
The result obtained from this study was 78.4% and 82.2% for the SVM and KNN classifiers,
respectively. In a study by [53], the authors examined the comparison between the patients
with PD (PWP) and healthy controls (HC) based on a variety of speech samples. In their study,
human factor cepstral coefficients (HFCC) were applied. The extracted HFCC was used to
generate the average voice print for each voice recording. For the classification, SVM was
used with a variety of kernels, including RBF, polynomial, linear, and MLP. The SVM’s linear
kernel allowed for the highest accuracy of 87.5%.

In addition to the comparisons mentioned above, the performance of the proposed
methodology is compared with related ML methods for PD analysis in various scenarios
and with various types of evaluated PD datasets. The proposed technique outperformed
other similar contributions of ML methods in terms of performance for diagnosing PD, as
seen in the above table, and is thus superior to them.

7. Conclusions

Automated ML techniques may classify PD from HC and predict the outcome using
non-invasive speech biomarkers as features. With noisy and high-dimensional data, our
study compares the performance of multiple machine learning classifiers for disease detec-
tion. Accuracy at the clinical level is feasible with careful feature selection. In this paper, we
compared ML classifiers: SVM with an accuracy of 87.17%, naïve Bayes’ classifier with an
accuracy of 74.11%, ANN with an accuracy of 96.7%, and KNN with an accuracy of 87.17%.
We used these techniques to distinguish between affected patients and healthy people.
The disease is diagnosed using human speech signals. The acquired results demonstrate
how feature selection techniques work well with ML classifiers, especially when working
with voice data where it is possible to extract a large number of phonetic characteristics.
The proposed early diagnosis approach makes it possible to detect PD with high accuracy
in its early stages and the subjective disease’s severe symptoms can be prevented. Many
categorization algorithms are being used in the medical imaging area to obtain the best
level of accuracy. This research may be used in different machine learning methods and
datasets to improve classifier performance and reach the maximum accuracy score. In order
to improve the accuracy of the models created, future efforts will make use of the already-
existing recordings and add to the number of existing attributes. In order to compare the
collected data, various different records processing software that are available online may
also be used.
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Abstract: Resting-state functional connectivity has been widely used for the past few years to forecast
Alzheimer’s disease (AD). However, the conventional correlation calculation does not consider
different frequency band features that may hold the brain atrophies’ original functional connectivity
relationships. Previous works focuses on low-order neurodynamics and precisely manipulates the
mono-band frequency span of resting-state functional magnetic imaging (rs-fMRI). They specifically
use the mono-band frequency span of rs-fMRI, leaving out the high-order neurodynamics. By
creating a high-order neuro-dynamic functional network employing several levels of rs-fMRI time-
series data, such as slow4, slow5, and full-band ranges of (0.027 to 0.08 Hz), (0.01 to 0.027 Hz),
and (0.01 to 0.08 Hz), we suggest an automated AD diagnosis system to address these challenges.
It combines multiple customized deep learning models to provide unbiased evaluation, and a
tenfold cross-validation is observed We have determined that to differentiate AD disorders from
NC, the entire band ranges and slow4 and slow5, referred to as higher and lower frequency band
approaches, are applied. The first method uses the SVM and KNN to deal with AD diseases. The
second method uses the customized Alexnet and Inception blocks with rs-fMRI datasets from the
ADNI organizations. We also tested the other machine learning and deep learning approaches by
modifying various parameters and attained good accuracy levels. Our proposed model achieves
good performance using three bands without any external feature selection. The results show that
our system performance of accuracy (96.61%)/AUC (0.9663) is achieved in differentiating the AD
subjects from normal controls. Furthermore, the good accuracies in classifying multiple stages of AD
show the potentiality of our method for the clinical value of AD prediction.

Keywords: rs-fMRI; classifications; high-order neuro-dynamic functional network; deep learning;
Alzheimer’s disease

1. Introduction

AD is a chronic, developing, acute abnormality that affects people over 60 years of
age [1,2]. Classified as the typical cause of dementia, it comprises memory loss, loss of
spatial orientation, lack of time sense, behavioral issues and, at the acute stages, retrograde
amnesia and mild cognitive impairment [3,4]. The disease is characterized by the unique
“clumps” found in the brains of patients, termed medically as amyloid plaques and tangled

149



Electronics 2023, 12, 1031

fibers called neurofibrillary tangles. As the ailment progresses, the above-listed anomalies
in the brain result in the degradation of the neural networks, causing the gradual loss
of bodily functions. The progression from the loss of mental capabilities to physical
degradation renders AD physically and mentally taxing to the families of the afflicted
and the caregivers. Recent advancements in medical care have increased life expectancy,
which in turn has increased the aged population [5]. Thus, the fraction of the human
population susceptible to AD has also increased. Some researchers have begun using
computer techniques such as neural networks, optimization, machine learning, and so on
to solve the medical domain issues [6].

In existing ML techniques, a field expert manually extracts and labels features. Espe-
cially in the field of computer vision, deep learning (DL), an advanced machine learning
(ML) technique, outperforms classical ML in terms of detecting inclusive structures in
complex, high-dimensional data. The main benefit of DL algorithms is that they attempt
to incrementally learn high-level properties from the brain imaging data, minimizing the
need for domain expertise. DL outperforms ML since it can accurately handle enormous
volumes of data, while ML algorithms require a specific processing step.

Objectives of the Study

Automated diagnosis systems have gained importance in the field of medical image
analysis. The recurring patterns in images have the potential to determine the conformation,
function, and activities of the brain. Unlike most popular AD discovery algorithms, the
input dataset is extensive. Therefore, an efficient technique is essential.

The main objective of this research work is to propose an automated AD diagnosis sys-
tem by developing a high-order neuro-dynamic functional network. LFOs (Low-Frequency
Oscillations) also refer to slow brain activity fluctuations between 0.01 to 0.08 Hz. To under-
stand brain atrophies, these slow fluctuations are analyzed using different levels, such as
slow4, slow5, and full-band ranges. The use of LFOs in brain studies allows for examining
slow changes in brain activity that may be relevant to various neurological conditions.

2. Related Works

Many researchers are interested in revisiting this area to identify a treatment for AD
because of the relevance of early detection of the disease. Therefore, the most significant
studies in this area will be presented in this section. The classified approach of the MCI
(mild cognitive impairment) and AD patients using different network approaches with
strengths and weaknesses are described. Ting Ma et al. [7] have extracted two important
parameters constructed via the pre-processed data of rs-fMRI, such as ALFF and ReHo. In
addition, their findings imply that during deterioration, ROIs in the brain may experience
various physiological alterations. Evanthia E. Tripoliti et al. [8] created the five phases of the
method by including preprocessing fMRI to remove non-task-related variability, modelling
the BOLD material resulting in the stimulus, extracting from fMRI image data, features
selection, and finally, the random forest algorithm. The methods assist in classifying the
disease, with 80.5–87% accuracy. Dachena et al. [9] elaborated on MRI and fMRI shared
with the misuse of MMSE to discriminate AD using SVM classification. Additionally,
the multimodal approach (MRI, fMRI, MMSE) provides more accuracy of 95.65% and
specificity of 97.22% with a sensitivity of 93.39%. Zhe wang Li et al. [10] classified AD, MCI,
and NC and proposed a regularized LDA approach that reduces the noise effect by using
two required shrinkage methods. Furthermore, they investigated the relationship between
LDA and Maximum Likelihood-based classifications. These developed methods can be
applied to a limited sample size.

Babajani-Feremi et al. [11] have developed an approach that can discriminate pos-
sible MCI-decliners using structural and functional MRI integration for AD identifica-
tion. A multi-scale time series kernel-based learning model was used to diagnose brain
diseases as the foundation for the traditional statistical analysis technique proposed by
Fei Guo et al. [12]. They found that this method has advantages for accurately identifying
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brain diseases. Xia-an Bi et al. [13] classified AD, patients’ abnormal brain regions, and HC
by proposing a random neural network cluster based on fMRI data and found that a neural
network cluster is a suitable approach for identifying AD. His group also integrates other
imaging to know brain activity and combines brain and cerebellum activity. In addition,
they differentiate AD and HC patients. In this study, the authors examined 138 participants
using various accuracy criteria.

The model for early-stage detection from functional alterations in MRI images was
created by Modupe Odusami et al. [14] using ResNet18. The accuracy of the ResNet18
is as follows: the attained results are 99.9% for EMCI (Early Mild Cognitive Impairment)
against AD, 99.95% for LMCI (Late Mild Cognitive Impairment) against AD, and 99.95%
for MCI against EMCI. Accuracy, sensitivity, and specificity were all improved using the
created model. Then, a novel three-dimensional two stage-age-network (TSAN) was used
to compute brain age using T1-weighted MRI data. The two-stage network design used
by TSAN was demonstrated [15]. (i) The first stage network more accurately calculates
the approximate brain age from the discretized brain age, and (ii) the first stage network
measures brain age. Additionally, some researchers used machine learning methods to
categorize AD. Feature extraction from ADNI’s fMRI images was used in this work [16],
and the performance analysis is based on the confusion matrix. Additionally, the author
has developed various techniques for CNN architecture and machine learning classifiers
(SVM, KNN, DT, RF, and LDA). The accuracy levels provided by the suggested model are
85.8%, 77.5%, 91.7%, 96.7%, and 79.5%. Finally, the accuracy levels provided by the CNN
architecture are 98.1%, 95.2%, 87.5%, and 89.0%, respectively.

Quamzheng Li et al. [17] built the R-fMRI data to calculate the functional connectivity
of different brain areas. Additionally, a standard control-targeted autoencoder network was
constructed to distinguish between MCI and normal ageing. The technique offers accurate
AD classifiers and discriminative brain network characteristics. Deep learning outperforms
the more traditional R-fMRI method in categorizing high-dimensional multimedia data, as
shown by the accuracy increases of 31.21%.

Unmang Gupta et al. [18] presented an architecture that operates by using the 2D-CNN
model to encode each 2D slice of the MRI. It shows that when compared to the most cutting-
edge methods, the permutation invariant layers train more quickly and produce better
predictions. Additionally, they provide more accurate estimates of healthy participants’
brain ages. Cross-validation of the sMRI-fMRI model by Vince D. Calhoun et al. [19]
indicates that it performed better than a unimodal prediction analysis. Additionally, some
research is based on data from the correlation coefficients between the R-fMRI signal and
functional intellectual network creation. Compared to the former method, this method
demonstrated an increased diagnostic accuracy of about 25%. The convolutional component
of the Spatial-Temporal Net is employed to describe the spatial dependency between the
time series segments of various brain areas and to predict the course of AD using rs-fMRI
time series data. This method performed better than the most recent methodology in
terms of categorization accuracy. Furthermore, it sheds light on the pathogenic chain that
underlies AD [20].

Based on an examination of fMRI data, Yifei Zhang et al. [21] explains a unique
technique for differentiating AD patients from normal (healthy) individuals: functional
connectivity between the brain’s activity voxels. The predicted AD patients are significantly
influenced by the FC between activity voxels inside the prefrontal lobe and those between
the prefrontal and parietal lobes, according to the suggested technique, which demonstrated
higher classification accuracy. It also has a high prospective value.

Uttam Khatri et al. [22] examined the dynamic frequency functional networks at
frequency response time series, including full-band, slow-4, and slow-5 bands, using the
rs-fMRI data amassed by the ADNI. His team also combined four frequency bands with
dynamic frequency brain functional network elements to aid in the early identification of
AD. In addition, it also offers a fresh perspective on how the brain network functions and
offers early Alzheimer’s detection. The author also attained a 94.10% classification accuracy
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level, 96.75% specificity, and 90.95% sensitivity. The High-Order Dynamic Functional
Connectivity model’s experimental results can improve the classification performance with
different levels of evaluation matrices to identify the AD.

The author in [23] implemented two significant approaches—first, normal CNN meth-
ods with 2D and 3D structural brain images. Second, transfer learning methods were
applied achieved 97%. Deep learning methods reached 95.17% and 93.61% accuracy for 3D
and 2D multiclass AD and MCI classifications. The authors in [24] incorporated unsuper-
vised convolutional spiking neural networks trained with the preprocessed ADNI datasets.
They achieved three binary categories without the spike of 86.90%, 83.25%, and 76.70%.

The Motivation for Study

• Studies with the literature reviews have revealed conventional/existing approaches,
and correlation calculation has not considered different frequency band features,
which eventually maintains the accurate functional connectivity relationships of brain
atrophies.

• Moreover, existing works focus on low-order neurodynamics, manipulating the mono-
band frequency span of rs-fMRI by leaving out high-order neurodynamics.

• Researchers also claim great potential lies in the deep learning and rs-fMRI-enabled
classification models.

However, all the existing methods have their bottlenecks and limitations. Therefore,
the model aims to establish a novel DL method that can push the classification accuracy
boundaries towards the most accurate AD and MCI classification approaches. This research
model leads to finding out the limitations of an early diagnosis of AD.

So, with the advancements in rs-fMRI and the deep learning approach, unique ways
have been developed to introduce a diagnosis system for high-order neuro-dynamic func-
tional networks using various levels, which motivated us to create such a classification
model. Results of the study claimed optimal performance with the D2 model using three
bands (slow4, slow5, and full-band) without any external feature selection compared to
other models.

3. Methods and Materials

From the literature, it was deduced that low-order neurodynamics precisely manipu-
late the mono-band frequency span of resting-state functional magnetic imaging (rs-fMRI),
leaving out the high-order neurodynamics. These were then hypothesized to be outper-
formed by DL techniques. Experimentally, we also propose an automated AD diagnosis
system by developing a high-order neuro-dynamic functional network using various levels
such as slow4, slow5, and full-band ranges (0.027 to 0.08 Hz), (0.01 to 0.027 Hz), and (0.01
to 0.08 Hz) of rs-fMRI time-series data.

3.1. ADNI Dataset

ADNI (https://adni.loni.usc.edu/ accessed on 1 September 2022) comprises mul-
timode neuroimages of people who have Alzheimer’s disease and is developed by the
National Institute of Aging (NIA). The ADNI database consists of three classes of biological
markers: AD, MCI, and NC. A total of 153 baseline subjects were selected. Table 1 shows
the demographic details of the selected rs-fMRI subjects.

The MRI protocol for ADNI1 (2004–2009) focused on consistent longitudinal structural
imaging with 1.5T scanners using T1- and dual-echo T2-weighted sequences. One-fourth of
ADNI1 subjects were scanned using the same protocol on 3T scanners. ADNI-GO/ADNI2
(2010–2016) imaging was performed at 3T with T1-weighted imaging parameters similar
to ADNI1. In place of the dual-echo T2-weighted image from ADNI1, 2D FLAIR and T2-
weighted imaging were added at all sites. Both fully sampled and accelerated T1-weighted
images were acquired in each imaging session.

152



Electronics 2023, 12, 1031

Table 1. The demographic of the rs-fMRI subjects for our proposed model.

Number of Samples AD (n = 51) MCI (n = 51) NC (n = 51)

Average
Standard
Deviation

(SD)
Average

Standard
Deviation

(SD)
Average

Standard
Deviation

(SD)

Age 75.2 7.4 75.3 7.0 75.3 5.2
Education 14.7 3.6 15.9 2.9 15.8 3.2

MMSE 23.8 2.0 27.1 1.7 29.0 1.2
CDR 0.7 0.3 0.5 0.0 0.0 0.0

3.2. Data Pre-Processing

SPM 12 was used to pre-process the ADNI dataset and segment it into grey, white,
and cerebrospinal fluid planes. The initial ten volumes were removed to permit dynamic
equilibrium in each subject. All the slices were resampled with the slice-time correction to
provide uniformity in time variation. Here, the middle slice was taken as a reference. It is
followed by the realignment technique based on the reference slice. The individual averaged
functional slices were co-registered using the landmark-based registration technique to
their corresponding MRI. Later, the segmentation process was performed to extract the
brain parts such as White Matter (WM), Gray Matter (GM), and cerebrospinal fluid (CSF).
Every fMRI slice was resized/normalized to MNI (Montreal Neurological Institutes) space,
and resampling was performed with a 3 × 3 × 3 mm3 setting.

A Gaussian kernel was used for smoothing. Last, low frequencies are categorized
based on their ranges—slow4 (0.027 to 0.08 Hz), slow5(0.01 to 0.027 Hz), and full-band (0.01
to 0.08 Hz). Zhang et al. [25] proposed the new model,” hybrid high order fully connected
networks”, to describe the previously unenclosed intermediary relationship between down
and up-order brain networks, getting the highest accuracy. Even the existing model was
not able to address the dynamic brain changes. This work proposes a novel method using
an automated AD diagnosis system by developing a high-order neuro-dynamic functional
network using various frequency levels (slow4, slow5, and full-band) of rs-fMRI time-series
data. Another common transformation is the imaging time series, which converts time
series into images. One significant benefit of this transformation is the ability to retrieve
data for any two time points given a time series. These imaging time series have been
classified using deep neural networks [26], particularly convolutional neural networks.

Higher-order functional brain connections across several frequency bands are used
in customized deep-learning models to distinguish AD and MCI from normal healthy
levels. Thus, the combination of higher-order dynamic and frequency division-based brain
networks opens a new window into diagnosing AD. We have used an “ensemble process”
to increase the current model’s performance by integrating many models into a single
robust model. Figure 1 illustrates the complete workflow of the proposed model using
deep neural networks.

The SPM12 software [27] and the toolboxes DPARSF (Data Processing Assistant for
rsMRI) [28] and REST (Resting-state fMRI Data Analysis Toolkit) [29] were used to process
the input scans. The initial ten volumes were removed to permit the dynamic equilibrium
in each subject. Normalization for images has been performed, by which they were
normalized from 0 to 1. We used the Inception V2 architecture [30] to identify abnormalities
in the brain and detect them, leading to better results with less computational effort. The
primary aim of this network was to select a particular layer at each level. This Inception
V2 network uses a single filter size on the input brain MRI image (1 × 1) for which max
pooling action is involved as a result of this inclusion.
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Figure 1. Proposed model using deep networks.

This neuro-dynamic functional network provided better accuracy, sensitivity, and
specificity, apart from being speedy and efficient for detecting AD using rs-fMRI images.
The ADNI image dataset’s performance has been evaluated using various metrics, such as
recall, specificity, and overall accuracy.

1. Disease Identification method: This is used to classify AD images collected by a
medical expert during screening/monitoring programs.

2. Computer-Assisted Diagnosis: These methods are used to find the chances of
disease based on rs-fMRI image changes.

3. Biomarkers: These are used for evaluating AD disease according to its severity.
This paper aimed to instigate an ML and CNN method for classifying AD from

normal controls.

3.3. Methods
3.3.1. Customized AlexNet

The final three layers are replaced to solve the issue and achieve maximum accuracy.
The last three layers of AlexNet—FC, SoftMax, and classification layer—replace the pre-
trained network. These layers with the altered hyperparameters were eventually included
by fine-tuning the previous layers and training the new layer of the AlexNet model using the
ADNI dataset. The pre-trained model improved classification using the extensive ImageNet
database using the feature extraction method. Minor tweaks are needed for the pre-trained
parameters to adjust to the new MRI brain images. The modified hyperparameters define a
small portion of the freshly transferred network.

Transfer learning is an essential statistical model for developing an efficient DL strategy.
The critical regions of the brain can be recognized from MRI images by using newly
updated parameters in a pre-trained network. These models have good convergence
and are primarily used to extract the features and their classification. For this parameter
learning, stochastic gradient descent with momentum optimizer is used.

As an extension to CNNs, the customized AlexNet architecture was developed to be
competitive at the object detection task. Our proposed model achieves good performance
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using three bands without any external feature selection, reducing the task of exhaustive
search using a set of heuristic approaches.

3.3.2. Customized Inception V2

In this section, the Inception V2 CNN architecture is presented. For AD detection,
TI-weighted MR images and non-invasive methods are used.

The Inception V2 architecture being shown may identify abnormalities in the brain
and detect them, leading to better results with less computational effort. The main goal
of this network is to select a particular layer at each level. This Inception V2 network
utilizes a single filter size on the input brain MRI image (a1 × a1). A max-pooling action is
included as a result of the inclusion. The inception V2’s four pipes operate simultaneously.
The architecture employs (1 × 1 × 1) filters in the first block to decrease the network
by reducing the dimensions. The network begins with three convolutions dimension
(a1 × a1 × a1, b3 × b3 × b3) matrix, which is comparable to the traditional network ap-
proaches (c5 × c5 × c5), (a1 × b3), and (c3 × 1). The filter size in the conventional network
modal is (b3 × b3), which is divided into (a1 × b3) and (b3 × a1) convolutions. As an
example, convolutions in the form of (b3 × b3) or (c5 × c5) are comparable to convolutions
in the form of (a1 × b3) or (a1 × c5) and need less computation than (b3 × b3) dimension
convolutions. In addition, the network comprises only two convolutions (a1 × a1 × a1);
in the third part, it has only the pooling layer, and the fourth has only (a1 × a1 × a1)
filters of convolution.

Similarly, all bands—aside from the max-pooling operation—begin with (a1 × a1 × a1)
convolution filters. All conventional network layers are subjected to batch normalization
to expedite training and reduce the risk of overfitting. After batch normalization is imple-
mented, the convolution network improves and paves the way for data regularization in
each network’s hidden layers; finally, a leaky ReLU function, the activation function, is
implemented. The slope of this function is marginally negative at (0.01). The function’s
slope is somewhat negative (0.01, or so on). The process is as follows in Equation (1):

f (x) = 1(x < 0)(xα) + 1(x ≥ 0)(x) (1)

where α denoted as a negligible constant. The suggested Inception V2 has n properties, as
shown in Figure 2, based on the input. In Figure 2, ∗ symbol indicates the multiplication
operation. The primary advantage of the proposed model is the drastically reduced number
of network parameters. The network’s primary goal is to transfer specific data from the
origin to the target feature space. The primary notion of this network has changed the
feature space of the spatial data from source to destination. The CONV 3D (s.m) represents
the three-dimensional convolution with size (S) and filters (m), whereas the max pool three-
dimensional (p.q) represents the three-dimensional max pool layer for down-sampling
with the stride IQ and size of pool P. The convolution’s filter size nxn has been divided
into ixn and nxi convolutions. It is demonstrated that (a1 × b3) or (a1 × c5) convolutions,
which perform (b3 × a1) or (c5 × a1) convolutions and are an output of the last layer, are
comparable to (b3 × b3) or (c5 × c5) dimension convolutions. Finally, (b3 × b3), which is
less expensive than other convolutions, is the concentration of two convolutions.

The customized model still has its limitations. Pre-trained models such as VGG/inception
often produce valuable features. The big difference is the formation of the problem, especially
the VGG/inception, which was designed for multiclass classification, which means learning
a lot of irrelevant information. All the issues can be solved by fine-tuning a pre-trained
VGG argument with a few layers augmented with a few layers for binary classification, thus
changing the intra-network AD vs. MCI, MCI vs. NL, and NL vs. AD. The weight stored
internally can also be too much, requiring additional regularization. During the design of the
network, we incorporated an Adam optimizer to require fewer parameters for tuning and
implement a faster computation time.
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Figure 2. Inception V2 network architecture.

In the traditional training method, the learning rate always remains the same. Recently,
it has been suggested that the learning rate should be gradually changed, but this method
has not been used in migration learning. Frequent changes in the learning rate not only
accelerate the network convergence but also solve the problem that the loss value oscillates
and is challenging to converge, with the learning weight also being gradually reduced. In
top-level network training, better weight parameters are learned. A set of experiments
are carried out to ensure the enhanced convergence rate of the model with improved
recognition accuracy. The hyperparameter value is shown in Table 2.

Table 2. Training Parameters for Customized AlexNet and Inception V2.

Training Parameter Value

Batch size 4

Epochs 50

L1 (learning rate) 1 × 10−5

Op (optimizer) Adam optimizer

β_1 0.9

β_2 0.999

ε (epsilon) 1 × 10−7

3.3.3. Ensemble Deep Learning Model (D2)

The customized models of Alexnet and Inception V2 described in the previous sections
are separately tested on the dataset. The ensemble output is then created by adding the
probabilities of each participant’s output.

The ensemble process merges various learning algorithms to gain their collective
performance or to enhance the performance of current models by mixing different models
to produce one trustworthy model. An ensemble framework works best when the partic-
ipating systems are statistically varied because ensemble learning attempts to assemble
complementing information from its numerous contributing models. Information fusion
for improving classification performance is the primary justification for employing an
ensemble learning model. To acquire a more reliable result, models trained using various
data distributions related to the same set of classes are used while making predictions.
The primary sources of error in learning models are noise, variation, and bias. Deep learn-
ing (DL) algorithms are accurate and stable due to the ensemble methods’ capacity to
reduce these error-causing elements. SVM and KNN are two different learning methods.
SVM makes the quite restricted assumption that a hyperplane separates the data points.
In contrast, KNN attempts to approximate the underlying distribution of the data in a
non-parametric way.
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4. Experimentation Setup and Results Analysis

A typical Windows 10 system with 8 GB ram is used to develop an automated tool in
MATLAB for the comparison of the results. The pre-processing steps of ADNI subjects are
given in Section 2. The same input images are provided to all the transformations to get
an unbiased estimation of their performance. One hundred fifty-three brain subjects are
chosen and utilized for this purpose. Tenfold cross-validation is used for calculating the
accuracies. The number of cross-validation sets is created from the entire dataset, and the
result averaged precision from all those sets. The input array used for the deep learning
models varies for different low frequencies. The slow4 features are resized to 50 × 50,
slow5 features are resized to 60 × 60, and full-band features are resized to 110 × 110. This
size is fixed based on the number of corresponding features. Figure 3 illustrates the entire
execution process model.
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4.1. Performance Analysis

Performance analysis is necessary to evaluate the performance of any classification
system. The tests are conducted in the following ways: three external bands, such as slow4,
slow5, and full-band, are used to extract the dataset’s features.

Specificity: It correctly identifies negatively labelled classes using Equation (2).

S =
True Negative

True Negative + False Positive
(2)

Recall/Sensitivity: It identifies correctly positive labelled classes by using Equation (3)

R =
True Positive

True positive + False Negative
(3)

Accuracy: It is an overall accuracy of true positive and negative out of the total number
of observations that are examined by using Equation (4),

Accuracy =
TP + TN

TP + FP + FN + TN
(4)
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4.2. Result Analysis

To provide an unbiased evaluation, repeated tenfold cross-validation is observed, and
the mean results are presented in this section. This study demonstrates the customized
AlexNet, InceptionNet, and D2 stacked models. The images were normalized from 0 to 1.
The Training Parameters for AlexNet and InceptionNet models are given in Table 2.

Table 3 lists the performance of customized AlexNet, InceptionNet, and D2 models
using slow4, slow5, and full-band features. Their corresponding area under the curve
(AUC) is plotted in Figure 4. With AlexNet, slow5 parts give the highest performance. For
the AD again NL dataset, the majority baseline classification performance is 93.34%, and
the AUC is 0.9488. For the MCI vs. NL dataset, the majority baseline classification accuracy
is 76.56%, and for the AUC is 0.76.03. For the AD vs. MCI dataset, the majority baseline
classification accuracy is 76.34%, and the AUC is 0.7780.

Table 3. Summarizes the performance of customized AlexNet, InceptionNet, and D2 models using
slow4, slow5, and full-band features.

Group Frequency Band Classifers Acc (%) SPE (%) SEN (%) AUC

AD/MCI

Full-band

AlexNet

58.67 65.37 68.45 0.6221

Slow4 75.47 74.56 70.46 0.7603

Slow5 76.34 76.88 77.45 0.778

AD/NL

Full-band

AlexNet

63.23 60.23 70.34 0.6444

Slow4 91.34 90.45 92.42 0.9163

Slow5 93.43 92.34 92.45 0.9488

MCI/NL

Full-band

AlexNet

74.29 72.34 70.67 0.7573

Slow4 75.23 77.45 77.95 0.7675

Slow5 76.56 77.56 78.34 0.7754

AD/MCI

Full-band

InceptionNet

78.89 77.37 75.56 0.7967

Slow4 79.79 74.37 75.56 0.8021

Slow5 80.45 82.45 81.45 0.8196

AD/NL

Full-band

InceptionNet

65.9 62.38 72.56 0.6878

Slow4 92.38 92.36 91.46 0.9390

Slow5 94.47 93.87 93.56 0.9518

MCI/NL

Full-band

InceptionNet

62.67 64.38 62.47 0.6320

Slow4 75.59 78.59 72.57 0.7668

Slow5 79.67 78.56 76.34 0.7989

AD/MCI

Full-band

D2

76.67 77.37 75.88 0.7782

Slow4 78.58 75.31 75.96 0.7959

Slow5 82.67 81.15 80.16 0.8445

AD/NL

Full-band

D2

64.67 61.2 73.67 0.6540

Slow4 94.56 92.12 94.26 0.9546

Slow5 96.61 94.34 94.96 0.9663

MCI/NL

Full-band

D2

66.99 67.65 62.4 0.6758

Slow4 74.19 77.12 71.25 0.7514

Slow5 81.87 79.86 75.47 0.8221
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Figure 4. (a–c) shows the ROC curve obtained from the AD/NL, MCI/NL, and AD/MCI.

InceptionNet trained with slow5 frequencies reaches the highest performance. For the AD
vs. NL dataset, the baseline classification accuracy/AUC is 94.47%/0.9518, and for the MCI
vs. NL dataset, the majority baseline classification accuracy/AUC is 79.67.47%/0.7989. For
the AD vs. MCI dataset, the majority baseline classification accuracy/AUC is 80.45%/0.8145.

The D2 model with slow5 frequencies achieves the highest performance compared
to all the other features. For the AD vs. NL dataset, the baseline classification accu-
racy/AUC is 96.61%/0.9663; for the MCI vs. NL dataset, the majority baseline classification
accuracy/AUC is 81.87%/0.8221, and for the AD vs. MCI dataset, the majority baseline
classification accuracy/AUC is 82.67%/0.8445. Among the three features, the slow4 and
full-band perform lower than the slow5 frequencies for all the classification tasks. Addi-
tionally, it is noted that the D2 model outperforms better than other conventional models.
It shows the diversity of the results produced using the AlexNet and InceptionNet models.

Next, the results are compared with conventional ML algorithms and are furnished
in Table 4. The performance of our ensemble model outperforms the machine learning
algorithms by 5–9%. It is also highlighted that other research also indicates that slow5
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features perform better than using slow4 or full-band frequencies. The hyperparameter
value is shown in Table 5.

Table 4. Compares the performance of KNN and SVM model using slow4, slow5, and full-band
features with traditional machine learning models.

Group Frequency Band Classifers Acc (%) SPE (%) SEN (%) AUC

AD/MCI

Full-band

KNN

58.1 60.45 56.89 0.5782

Slow4 74.61 71.25 68.59 0.7539

Slow5 73.01 77.46 78.11 0.7503

AD/NL

Full-band

KNN

61.49 55.93 67.15 0.6215

Slow4 89.56 89.87 92.42 0.8986

Slow5 91.06 91.46 90.57 0.9166

MCI/NL

Full-band

KNN

65.16 69.45 68.15 0.6780

Slow4 71.13 74.15 69.45 0.7225

Slow5 71.06 71.89 74.98 0.7279

AD/MCI

Full-band

SVM

56.9 60.24 69.67 0.6215

Slow4 73.67 72.04 67.57 0.7492

Slow5 74.56 77.57 79.59 0.7501

AD/NL

Full-band

SVM

62.79 57.13 68.45 0.6312

Slow4 90.06 89.87 92.42 0.9199

Slow5 91.76 93.46 91.97 0.9226

MCI/NL

Full-band

SVM

68.46 70.45 69.45 0.6951

Slow4 72.33 76.45 71.67 0.7386

Slow5 73.76 71.23 74.34 0.7418

Table 5. Training parameters for SVM and KNN.

Classifiers Hyper Parameter Optimized Value

SVM

Kernel type RBF

Cost 0.1

Gamma 0.001

Kernel degree 2

Coefficient 9

KNN
K-neighbors 500

Weighting Similarity

5. Discussion

In this study, dynamic neuro-functional deep ensemble networks are proposed and
implemented to predict several AD periods, including the MCI (prodromal stage), using
different frequency signals of rs-fMRI. In the three features (slow4, slow5, and full-band fre-
quencies), slow5 achieves the top performance using the D2 model, with an accuracy/AUC
of 96.61% for differentiating AD from NL subjects. In the D2 model trained for the MCI
vs. NL task, the accuracy/AUC is 81.87%/0.8221, and for the AD vs. MCI task, the ac-
curacy/AUC is 82.67%/0.8445 with the D2 model. The results in Figure 5 and Table 6
illustrate that the full-band and slow4 frequencies showed no substantial increase in ac-
curacy. However, the slow5 features yield better performance when compared to the
other two components. According to [20], slow5 features capture more discriminatory
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atrophies in different AD classifications. Our work is wholly automated. There is no need
for feature selection.
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Figure 5. (a–c) shows the different frequency bands obtained from the AD vs. MCI, AD vs. NL, and
MCI vs. NL.
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Furthermore, other works investigated fMRI neuroimaging modalities to identify
regions with different levels of atrophy for the various AD classifications. It is noted that
the additional training and testing of data used in other research make it difficult to compare
our proposed method directly. The current methods use different features/feature selection
in exploring various binary classifications in AD/MCI; the performance of multiple spans
is illustrated in Table 6. The results from Table 6 indicate that dynamic neuro-functional
deep learning ensemble networks with slow5 frequencies achieve better classification
performance than other machine learning methods, including those performed in [31,32].
Gaussian/Regression models are used in most of the previous brain network models.
Additionally, KNN and SVM classifiers use Fisher score feature selection to pick relevant
features [15,33], and SVM with two kernels (radio basis functions and polynomial) are used
along with the Fisher score features reaching 90% accuracy, whereas the linear kernel yield
100% performance. For the same Fisher characteristics, the KNN provides an accuracy of
87.5%. KNN and SVM classification algorithm models are used to analyze and classify
AD diseases.

Table 6. Compares the performance of fMRI-based recent methods with our proposed D2 model.

Authors Subjects Task ACC SENS SPE

Challis et al. [31] 20 NL/50 MCI/27 AD AD again MCI
MCI again NC

80.12
75.15

70.97
100

90.24
50.52

Frankde Vos et al. [32] 173 NL/27 AD AD again NL 76.54 71.75 82.47

Khatri et al. [26] 35 NL/61 MCI/35 AD
AD again NL

AD again MCI
NC again MCI

94.10
87.14
85.85

90.95
91.05
93.89

96.75
86.91
90.01

Ramzan et al. [34] 25 NL/25 AD AD again NL 97.88 - -

Duc et al. [35] 198NL/133 AD AD again NL 85.27

Parmar et al. [36] - AD again NL 96.55

Al-Khuzaie et al. [37] - AD again NL 99.30 - -

Bhaskaran et al. [38] - AD again NL 97.54 - -

Luo et al. [39] 33 NL/27 MCI/24 AD AD again NL 95.67 - -

Emily et al. [40]

174 NL/99 MCI/116 AD

AD again NL
AD again MCI
NC again MCI

79.97
73.94
70.42

Han et al. [41]
AD again NL

AD again MCI
NC again MCI

94.99
83.88
79.52

Huang et al. [42]
AD again NL

AD again MCI
NC again MCI

95.12
82.32
78.88

Li et al.-1 [43]
AD again NL

AD again MCI
NC again MCI

96.47
88.47
81.17

Li et al.-2 [43]
AD again NL

AD again MCI
NC again MCI

97.37
92.11
88.12

- -

Proposed D2 model 51 NL/51 MCI/51 AD
AD again NL

AD again MCI
NC again MCI

96.61
82.67
81.87

94.34
81.15
79.86

94.96
80.16
75.47

ACC: accuracy; SENS: sensitivity or recall; SPE: specificity.

In machine learning, the supervised model k-Nearest Neighbors (KNN) is used. Su-
pervised learning is the process through which a model learns from data that has been
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labelled. A set of input items and output values are fed into a supervised learning model.
The method is then trained using the data to figure out how to translate the inputs into
the required outputs, enabling it to forecast data that has not yet been observed. We must
configure several basic settings for KNN.

5.1. SVM Parameter Setup

The parameter setup for SVM with a fixed number of neighbors is five. Gamma and c
are SVM parameters for the Radial Basis Function (RBF) kernel. With low values signifying
“far” and big values suggesting “near,” the γ parameter indicates the range of a particular
training example’s influence. The model’s support vector samples’ radius of influence
can be compared to the inverse of the γ parameters. The C parameter compromises good
training sample classification for an increase in the margin of the decision function. Greater
values of C can tolerate a smaller margin if the decision function is more accurate at
correctly detecting all training points. A lower C reduces the training accuracy at the
expense of a more significant margin and, hence, a more straightforward decision function.
Our suggested dynamic neurofunctional deep ensemble networks demonstrate equal
good performance in the prediction of numerous stages of AD when compared to other
cutting-edge techniques.

The Brain-Connectivity networks, VGG19 [31], ResNet50 [33], Densenet121 [34],
C3d [35], and C3d-LSTM [35], show good performance for the classifications. However, it
is noted that the training set consists of both baseline and longitudinal images, and opti-
mization parameters such as L1 and L2 regularization are needed to set up these networks.
When compared with these models, it can be said that our work shows good compatible
accuracy for all the classifications. This work reveals that there exist unique discriminatory
frequency values in different bands, which is a major factor in determining the performance
of our proposed research work. We have discussed the accuracies of different conventional
ML and recent DL models on fMRI-based datasets in Table 6. In addition, our technique
has an inherent feature selection, a deciding factor for improved accuracy. It is highlighted
that our method requires less parameter optimization and is fully automated. This makes
our method distinct from all the other methods.

From the last ten years, the different network approaches were used. In that, most
authors use fewer datasets with low-frequency time series data and achieve more than 90%
accuracy with varying band levels.

Our ensemble model also required fewer epochs during training; however, because
of the large number of kernels at the first and second layers, the number of parameters is
very high, increasing the model’s time complexity. Comparing this model to other feature
extraction and classification models, the rs-fMRI slice technique effectively reduces the
complexity of pre-processing. The drawbacks found in the low-order neurodynamics
precisely manipulate the mono-band frequency span of rs-fMRI, leaving out the high-
order neurodynamics. We propose an automated AD system to overcome these issues
by developing a high-order neuro-dynamic functional network using various bands. The
confusion matrix of AD is obtained as a 2 ∗ 2 matrix from the experiments performed with
the segmentation and classification.

Table 7 presents the confusion matrix of our proposed model. From this, out of twenty
subjects, the classifier predicted fourteen subjects as one correctly, and six subjects were
misclassified as zero.

Table 7. Confusion matrix of AD/NL classification.

Actual/Predicted (n = 20) Predicted as 1 Predicted as 0

Actual 1 (AD) 8 2

Actual 0 (NL) 6 4
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Table 8 presents the confusion matrix of our proposed model. From this, out of twenty
subjects, the classifier predicted fourteen subjects as one correctly, and six subjects were
misclassified as zero.

Table 8. Confusion matrix of MCI/NL classification with the hippocampal region.

Actual/Predicted (n = 20) Predicted as 1 Predicted as 0

Actual 1 (MCI) 9 1

Actual 0 (NL) 5 5

Table 9 presents the confusion matrix of our proposed model. From this, out of twenty
subjects, the classifier predicted fifteen subjects as one correctly, and five subjects were
misclassified as zero. The classifier’s efficiency is evaluated from the 2 ∗ 2 matrix for each
region through TP, FP, TN, and FN. The results obtained give desired performances with
the testing subjects. The observations show no significant differences over “AD vs. NL,
MCI vs. NL and AD vs. MCI”. Hence it portrays that the proposed model outperforms the
multiclass classification problems.

Table 9. Confusion matrix of AD/MCI classification with the hippocampal region.

Actual/Predicted (n = 20) Predicted as 1 Predicted as 0

Actual 1 (AD) 7 3

Actual 0 (MCI) 8 2

5.2. Limitations of the Work

The classification of medical images is a fundamental and significant issue in computer
innovation, which has undergone much research over the past few decades. Even though
the reliability of various medical image classification methods has significantly increased,
these methods may not offer correct AD because of their non-universality, vulnerability to
illumination and spoofing effects, and insufficient accuracy via the poor data quality. There-
fore, in many real-world applications, standard medical picture categorization may not be
able to deliver the needed performance. In this study, we solely used the ADNI dataset to
categorize the three frequency ranges of the various phases of AD. The dataset we used
here is small for the entire experimentation. Additionally, this work solely uses traditional
methods for AD classification, such as SVM and KNN, instead of alternative techniques.

6. Conclusions

In this work, the dynamic neuro-functional deep ensemble networks use various
frequencies in resting-state fMRI to diagnose different stages of AD from real-time ADNI
datasets. The excellent performance is achieved with our proposed D2 model using three
bands (slow4, slow5, and full-band) without any external feature selection, and it is a
combination of two deep learning models. Among the three bands evaluated, the results
show that the slow5 features, when trained with various customized Alex and Inception
networks, perform better for AD/MCI classifications. It is also mentioned that additional
studies are required to develop these networks to increase the precision of AD classifications.
We have contrasted our networks against established machine learning techniques and
more contemporary deep learning techniques. It demonstrates that rs-fMRI multi-band
characteristics have a higher potential for being AD biomarkers than single-band features.
It is also noted that more research is needed to optimize these networks to improve the
accuracy of AD classifications. We have compared our networks with traditional machine
learning methods and current deep learning methods. Our study shows that the multi-
band features of rs-fMRI have more potential to be AD biomarkers than single-band
features. Additionally, the performance of the proposed ensemble model outperforms the
conventional ML algorithms by 5–9%. The proposed model is less complex to train and
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requires fewer hardware resources. Furthermore, the proposed model had surpassed in
terms of accuracy the various existing models. In the future, we aim to test and apply this
model on a more extensive and richer dataset. Moreover, we hope to implement single-cell
transcriptome data using variational neighborhood preserving quantum embeddings and
deep learning. In the future, the use of image augmentation for AD classification may be
added with different image augmentation methods such as flipping, padding, etc.
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Abstract: Parkinson’s disease (PD) is a neurodegenerative condition that affects the correct func-
tioning of the motor system in the human body. Patients exhibit a reduced capability to produce
facial expressions (FEs) among different symptoms, namely hypomimia. Being a disease so hard
to be detected in its early stages, automatic systems can be created to help physicians in assessing
and screening patients using basic bio-markers. In this paper, we present several experiments where
features are extracted from images of FEs produced by PD patients and healthy controls. Classical
machine learning methods such as local binary patterns and histograms of oriented gradients are used
to model the images. Similarly, a well-known classification method, namely support vector machine
is used for the discrimination between PD patients and healthy subjects. The most informative
regions of the faces are found with a principal component analysis algorithm. Three different FEs
were modeled: angry, happy, and surprise. Good results were obtained in most of the cases; however,
happiness was the one that yielded better results, with accuracies of up to 80.4%. The methods used
in this paper are classical and well-known by the research community; however, their main advantage
is that they provide clear interpretability, which is valuable for many researchers and especially for
clinicians. This work can be considered as a good baseline such that motivates other researchers
to propose new methodologies that yield better results while keep the characteristic of providing
interpretability.

Keywords: Parkinson’s Disease; image processing; hypomimia; FE; classic techniques; machine
learning

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative condition that affects the basal ganglia,
and it is responsible for the correct functioning of the cortical and sub-cortical motor
systems. PD patients often exhibit reduced facial expressivity and develop difficulties
producing facial expressions (FEs). The cortical motor system modulates expressions
that are executed with consciousness, while the sub-cortical one is related to genuine
expressional expressions which cannot be consciously moderated [1]. Studies suggest
that PD patients show significantly less overall facial movement than healthy controls
(HC) [2]. Reduced facial activity derives from impaired production of smiles and other
expressions due to partial or permanent disabilities to move certain muscle groups, i.e.,
bradykinesia [3].

In the last decade, technological innovations have motivated the inclusion of machine
learning (ML) techniques in different fields, including a diverse spectrum of topics within
medicine [4–6]. ML contributes to this field by helping in medical assessments with
predictive models that have been demonstrated to be accurate and reliable in a wide
variety of applications [7,8]. Similarly, with the growth of ML methods, deep learning (DL)
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algorithms have been widely used thanks to the possibility to automatically extract features
from raw data, perform the prepossessing and give a decision based on the data [9].

In [10], the authors showed that classical methods typically used to extract information
and/or classify subjects, have been less used over years, while neural networks (NN)
structures have increased their popularity. Although this is a global trend in many research
areas, classical approaches can still yield good results. Classical models have a good
performance with fewer computational requirements and offer the possibility to interpret
the result, which is not possible in most of the cases where DL is used.

This paper intends to set a baseline for the automatic classification of PD patients
and HC subjects. To this end, different FEs produced by the participants are modeled
with classical and well-known feature extraction techniques including local binary patterns
(LBP) and histograms of oriented gradients (HOG). Different expressions were studied
including anger, happiness, and surprise. A support vector machine (SVM) was used as
a classifier because it has been extensively used in other studies where FEs are modeled.
Finally, an analysis of the regions that provide the most discriminant information was also
performed.

2. Related Work

The interest in analyzing FEs in PD is growing in the ML community. One of the
main challenges is to automatically detect the expression, which has been a hot topic in
the past decade and multiple contributions have been done recently. For instance, In [11]
proposed a method called Discriminative Kernel Facial Emotion Recognition (DKFER)
which focuses on the integration of information from static facial features and motion-
dependent features, the first set of features is extracted from a single image, the authors
extracted landmarks of the faces of the Japanese Female FE (JAFFE) database [12] to obtain
geometrical information; meanwhile, the motion dependent features are based on the
Euclidean distance of the landmarks between the static state and the peak of the emotion,
the result of this work was the definition of a new technique to merge both static and
dynamic information.

One year later in [13], the authors extracted features using LBP from near-infrared
(NIR) video sequences to classify different FEs, the authors used SVM and sparse represen-
tation classifier (SRC) and found that NIR videos help to reduce indoor light that changes
depending on multiple factors and can affect the quality of the classification but has a
drawback, which is that the working distance of NIR is limited. Later, the authors in [14]
validated that there are a few facial muscles that are essential to discriminate different FEs.
This result was achieved by extracting features from the Cohn–Kanade Database (CK+) [15]
using LBP, which previously showed to be a powerful descriptor in FEs recognition [16].

In 2014, refs. [17,18] worked in understanding the contribution of different facial mus-
cles in the performance of a FEs, and how this can be used to obtain a better classification of
the FEs. The authors in [17] use landmarks to detect the main parts of the face such as the
eyes, eyebrows corners, nose, and lip corners. The face is detected and later extracted using
the Viola–Jones technique of Haar-like features [19]. The experiments were performed
in both JAFFE and CK+ databases. The authors used an SVM as the classifier due to its
simplicity and success in related works. On the other hand, the authors in [18] used only
the CK+ database and proposed a new set of features called Muscle force-based features,
which uses prior knowledge of facial anatomy to estimate the different activation levels of
the muscles depending on the FEs. A wireframe model of the face, called HIgh polygon
GEneric face Model (HI-GEM), originally introduced in [20] is used by the authors to
extract information on key points of the face. Information on the involved muscles, forces,
and direction are also extracted. Three classifiers are evaluated in [18], a Naive Bayes, an
SVM, and a k-Nearest Neighbors (kNN). Better results were obtained with the SVM and
KNN classification methods. Later, in [21] the authors extracted LBP and HOG features
from both CK+ and JAFFE databases and found that different subjects have different ways
to produce FEs, and such differences can be observed in LBP features, which makes this
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method a good feature extractor to model FEs. Other works such as [22–28] have used
combinations of features, classifiers, and techniques to detect FEs; however, few works have
addressed the problem of modeling FEs in PD patients. For instance, Bandini et al. [29]
classified 17 PD patients and 17 HC subjects using landmarks extracted using information
from the Microsoft Kinect Sensor. A Multi-Class SVM with a Gaussian kernel was trained
for each expression: neutral, happiness, anger, disgust, and sadness. The classifiers were
trained with the CK+ database and the Radboud Faces Database (RaFD) [30]. A 10-Fold
Cross-Validation (CV) strategy was performed to optimize the meta-parameters of the
classifiers, and the authors reported an average accuracy (ACC) of 88%. Specific results
per expression indicate accuracies in test of 98% for happiness, 90% for disgust, 88% for
anger, 84% for neutral, and 74% for sadness. In 2018 Rajnoha et al. [31] considered 50 PD
patients and 50 HC subjects to automatically identify hypomimia through conventional
classifiers such as random forest, XGBoost, and decision trees. The authors reported an
average ACC of 67.33% in the classification between PD and HC subjects. One year later,
Grammatikopoulou et al. [32] used similar features as the ones used by Bandini et al. to
model FEs produced by 23 PD patients and 11 HC. The authors tried to classify three
groups of subjects according to the FEs score in the MDS-UPDRS-III scale [33]. The Google
Face API and Microsoft Face API were used to extract 8 facial landmarks and 27 facial land-
marks, respectively. Two individual models were trained to estimate two Hypomimima
Severity indexes (HSi1 for Google and HSi2 for Microsoft features). The authors reported
a sensitivity of 0.79 and a specificity of 0.82 for the HSi1, while for HSi2 the results were
0.89 and 0.73, respectively. More recently, Jin et al. [34] used Face++ to automatically locate
facial landmarks from an image, providing 106 landmark points. The work focused on
the analysis of the tremor caused by movement disorders, which makes the key points
tremble while trying to maintain the expression. The classification was performed with a
long short-term memory (LSTM) and the authors reported accuracies of 86.76%.

Another recent contribution includes the one made by Gomez et al. [35]. In that work,
the authors used the FacePark-GITA database, which includes a total of 54 participants
(30 PD patients and 24 HC subjects). The authors implemented a multimodal study based
on static and dynamic features. A set with 17 dynamic features was combined with 2048
static ones. They reported accuracies of 77.36% for static features and 71.15% for the
dynamic ones. When the combination was considered the ACC improved to 88.76%.
More recently, in 2021 the authors in [36] analyzed action units activation variance from
Open-Face predictions. The three most relevant action units per expression were used
to discriminate between PD patients and HC subjects by using an SVM classifier. The
analysis was performed on 61 PD patients and 534 HC subjects of the PARK dataset [37].
The reported precision and recall were 95.8%, and 94.3%, respectively.

From the studies mentioned above, we observed that the use of landmarks and
geometric features as well as classical classifiers are the most popular approaches and
provide interpretable results. For this reason, in this paper we proposed to use LBP and
HOG features to model FE produced by PD patients and HC subjects. Both methods
are based on transformations over the images and return feature vectors widely used
in FE recognition. Further analysis in classification stages can indicate which regions of
the images may have influenced the decisions made. We are aware that there exist more
sophisticated methods to perform FE analysis; however, we want to present this work as a
rationale baseline for future studies. We expect other researchers to motivate to evaluate
other methods, hopefully with better results but keeping a high level of interpretability,
which is the strongest argument in favor of classical approaches.

3. Contributions of This Work

Two classical feature extraction techniques, LBP and HOG are used to extract features
from video frames of PD patients and HC subjects who produced three different FEs,
namely happiness, surprise, and angriness. An SVM classifier is considered to perform the
classification between PD patients and HC subjects. The three FEs are modeled with the
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two feature extraction methods for comparison purposes. Furthermore, the information
extracted from the features was analyzed to find those areas of the face that are more
informative depending on the FEs and the feature extractor. This work can be considered
as a baseline for the topic of considering FEs to discriminate between PD and HC subjects.

4. Methods
4.1. Methodology

Video recordings from both PD and HC groups will be separated into frames, from
which only five frames will be used according to the findings reported in [35]. The sequence
consisted of five images: Normal, Onset, Apex, Offset, and Normal, as shown in Figure 1.

OnsetNormal Apex Offset Normal

Figure 1. Sequence of frames selected for each subject.

The face was extracted from each frame using the multi-task cascaded convolutional
networks (MTCNN) algorithm, which removes the background noise to avoid unnecessary
variability. The resulting image is resized to 80 × 80 pixels, gray-scaled, and normalized
using facial landmarks as shown in Figure 2.

Image before 
normalization

Landmark 
extraction

Image after 
normalization

Figure 2. Normalization process using Landmarks.

LBP and HOG features were extracted. For LBP, the image is transformed and divided
into 20 × 20 sectors, for each sector the histogram is calculated and concatenated to form a
4096-dimensional feature vector (16 sectors × 256 values of the histograms). This process is
illustrated in Figure 3.

In the case of HOG, the algorithm requires the number of pixels per cell in one of
the parameters, which is set to 20 × 20 to use the same separation grid as the one used in
LBP. For each block, eight orientations are extracted, then a principal component analysis
(PCA) transformation with 95% of the variance is performed to select the most relevant
features and to perform an analysis that allows the identification of areas in the face that
are relevant for each expression. To achieve this, we check the coefficients aji found in the
PCA transformation, the magnitudes of these coefficients give an idea of the relevance of
each original feature in the new set of features.
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... ... ...

Figure 3. LBP feature extraction.

The resulting features are then mapped back to the original image to identify the
portion within the image from which it was extracted, a histogram with the contribution of
each feature to the PCA transformation is created and reshaped to a 4 × 4 matrix, and later
resized into an 80 × 80 image to show the areas of the faces that are selected the most.

4.2. Participants and Data Collection

The corpus considered for this work includes 31 PD patients and 23 HC subjects. All
participants gave informed consent to participate in the study. Patients performed a variety
of tasks including speech production, handwriting, gait, and the posed FEs exercises. Only
the tasks about producing FEs are considered in this work. After completing those tasks,
each patient visited the neurologist, who administered the MDS-UPDRS-III scale and
provided the resulting scores. In the FEs tasks, patients were asked to imitate a specific
expression presented by an avatar on a screen. For this study videos of angriness, surprise
and happiness were considered. Figures 4 and 5 show the distribution of demographic and
clinical information of the participants, more detailed information can be found in Table 1.
Possible biases due to age and gender were discarded according to a Welch’s t-test (p = 0.16)
and a chi-square test (p = 0.57), respectively. All patients were recorded in ON-state, i.e., no
more than 3 h after the medication intake.

Table 1. Demographic information of the patients and healthy controls considered in this study.

PD Patients HC Subjects

Men Women Men Women

# of participants 19 12 12 12
Age 70.1± 10.4 67.4± 10.9 65.3± 10.2 65.2± 8.7

Age range 52–90 53–87 49–80 49–83
Time since diagnosis 8.7± 5.4 15.6± 17.3 − −

Range time since diagnosis 2–20 1–45 − −
MDS-UPDRS-III 35.4± 13.9 29.7± 12.3 − −
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Figure 4. Age distribution for both HC and PD.
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Figure 5. Label count for the MDS-UPDRS-III scale.

4.3. Multi-Task Cascaded Convolutional Networks

Face detection is the first step before removing environmental noise, allowing the
system to focus on the subjects’ faces. Cascade classifiers are commonly used for this
aim. These methods consider features based on pixel intensities on images. For example,
weighted classifiers detect contrasting face parts, such as the nose bridge and eyes. The
algorithms work through small classifiers that ensemble a more robust one by detecting a
face multiple times using different filters; the lower the complexity of the aforementioned
small classifiers the more efficient the resulting system.

Multi-Task convolutional networks implement a novel and efficient approach to detect
faces in images. The image is first resized multiple times in what is called an image pyramid,
these resized images are then passed through a three-stage cascade network P-Net, R-Net,
and O-Net [38]. P-Net is used to localize possible windows where a face can be found,
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the other two networks focus on the refinement and final decision of the window and its
bounding boxes, as shown in Figure 6.

P-Net

R-Net

O-Net

Resize

Bounding box 
refinements

Final boundig
box

Bounding box 
refinements

Figure 6. MTCNN sequence to find a face in an image.

4.4. Local Binary Patterns

LBP is a visual descriptor-based method that considers differences between pixel
neighborhoods to recognize features in images. The workflow of this method is as follows:

1. The image color space is set to gray-scale.
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2. A radius hyper-parameter is chosen and the image is divided into cells.
3. The central pixel of each cell is compared against its N neighbors. If the intensity

of the center pixel is greater than or equal then a value of 1 is set in the neighbors’
position, otherwise, the value is set to 0.

4. Starting clockwise from the top-right (Figure 7) a binary number is formed with the
1 s and 0 s from the previous step, this binary representation is then converted into
decimal and stored in the central pixel position.

5. With this new representation a 2N feature histogram is formed.
6. The process is repeated for each region and the histograms are concatenated forming

the feature vector.

Figure 7. Neighbors operation in LBP.

4.5. Histogram of Oriented Gradients

HOG considers shapes, objects, and textures by computing the intensity and direction
of gradients [39]. The flow of this algorithm is as follows:

1. The image color space is set to gray-scale.
2. For each pixel in the image, the gradient is calculated in the x and y axes, generating

Gx and Gy
3. The magnitude and angle are calculated as shown in Equation (1):

|G| =
√

G2
x + G2

y

θ = arctan Gy/Gx

(1)

4. The gradient matrix is divided into N × N cells where the histogram is calculated.
5. Each histogram is normalized across local groups of cells using the L1 normalization.

This step is necessary to compensate for different changes in illumination and contrast
between neighboring cells.

6. An x-dimensional feature vector is computed across the resulting histograms.

The resulting vector is the one that will be used as a feature vector for the classification
process, but we can also see how the magnitudes and angles change depending on the
parameters, Figure 8 shows an example of an image where HOG was applied.
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Figure 8. Gradients obtained by the HOG algorithm.

4.6. Landmarks

A landmark is a point of correspondence that “matches between and within popula-
tions” [40]. This set of points raised the interest of researchers due to its successful use in
face and FEs recognition [41]. The commonly used landmarks are focused in areas around
the eyes, nose tip, nostrils, mouth, ears, and chin. A total of 68 landmarks are typically used
to improve the representation of the face. External landmarks are also used to normalize
the image. In this work, the pre-trained facial landmark detector introduced in [42] is used
to estimate the 68 landmarks.

4.7. Principal Component Analysis (PCA)

PCA is a well-known transformation method commonly used to reduce the dimen-
sionality of a large dataset. It can also be used to perform a feature selection that allows
identifying which are the most relevant features in a given problem. PCA intends to
capture the data with the most variance [43], and components that give less information
are removed. The data are transformed through a linear combination of the variables, as
shown in Equation (2):

Y1 = a11X1 + . . . + a1pXp

Y2 = a21X1 + . . . + a2pXp

. . .

Yd = ad1X1 + . . . + adpXp

(2)

where Xi the original set of features and Yj is the new set of features created with the
linearly combination between Xi and the constant values aji, where i ∈ {1, 2, . . . , p} and
j ∈ {1, 2, . . . , d} with p and d are the original dimensionality and the new dimensionality
respectively. After the transformation, there will be a linear combination of the original
feature set multiplied by a constant for each principal component. Such a constant value
can be considered as the “weight” for each feature.

4.8. Support Vector Machine (SVM)

SVM is a supervised machine learning method that focuses on finding the best margin
or hyperplane that separates the data into two classes as shown in Figure 9. To find the best
margin, an optimization process is performed by looking at the largest distance between
the hyperplane and the data [44].
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Margin

Figure 9. Support vector machine.

The SVM intends to find the optimal hyperplane but the data are not always linearly
separable. Therefore, kernels are implemented, and the main aim of a kernel is to transform
the data into another space where the separability of the classes is linear. The kernel
trick allows operating in the new space without mapping the data [45]. Some kernels are
(x represents the feature matrix in all cases):

1. Linear: x · x’
2. Polynomial: (x · x’ + 1)d, where d is the degree of the polynomial.
3. Gaussian: eγ||x−x’||/2, where γ is the kernel bandwidth.
4. Sigmoid: tanh(α(x · x’) + r), where r is a shifting parameter that controls the threshold

of the mapping and α is a scaling parameter for the input data [46].

SVM was selected as the classifier for this work given the fact that it has been exten-
sively used in similar works where FEs are intended to be modeled. In fact, according
to our literature revision, SVM is the classifier that most of the times yields better results.
Another advantage of this classification method is its direct interpretability regarding the
distance of the samples to the separating hyperplane.

5. Experiments and Results
5.1. Classification

The hyperparameters of the SVM are optimized following a subject-independent
nested cross-validation strategy. This helps in reducing the bias when combining the hyper-
parameter tuning and model selection. Given that each subject has five images for the outer
loop of the nested cross-validation, stratified cross-validation is applied to split the dataset
into train and test. These cross-validation method returns fold balanced in classes and
with non-overlapping groups. Notice that in this case, the groups are each subject. A grid-
search up to powers of ten where C ∈ {10−5, 10−4, . . . 102} and γ ∈ {10−5, 10−4, . . . 102}
is performed for the inner loop to obtain optimal parameters. shows the range of the
hyper-parameter considered in the grid search. Optimal parameters used for the test are
selected according to the mode along the training process. Notice that two different kernels
are used, namely linear and Gaussian (also known as radial basis function—RBF).

5.2. Results

Tables 2–4 show both the parameters used in the classifier and the performance
obtained, for the tree expressions the best feature extractor was LBP. The score distribution,
as well as the ROC curve, are shown in Figures 10 and 11.
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Angry Happy Surprise

Figure 10. Score distribution (Top) and ROC curve (Bottom).

Figure 11. ROC curve with the three expressions.

Table 2. PD classification results and optimal parameters analyzing angry expression.

Feature Classifier ACC SEN SPE

LBP SVM: C = 0.001, kernel = linear 72.8 75.8 68.3

HOG SVM: C = 0.1, kernel = linear 66.1 88.0 37.8

Table 3. PD classification results and optimal parameters in analyzing happiness expression.

Feature Classifier ACC SEN SPE

LBP SVM: C = 0.001, kernel = linear 80.4 84.6 74.6

HOG SVM: C = 0.1, kernel = linear 62.1 79.6 41.0
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Table 4. PD classification results and optimal parameters analyzing surprise expression.

Feature Classifier ACC SEN SPE

LBP SVM: SVM: C = 0.001, kernel = linear 75.8 80.1 70.6

HOG SVM: SVM: C = 0.1, kernel = linear 64.9 75.6 51.4

Apart from the classification experiments, statistical tests were performed to evaluate
the distribution of the scores obtained with the classifier for each facial expression. First,
a Shapiro–Wilk test was used to know whether the data follow a normal distribution.
This test was performed for each class and facial expression, a total of six p-values were
calculated (PD and HC in each emotion) and all of them were smaller than 0.05 which was
the threshold to either reject or accept the null hypothesis. In this case, the test showed
that none of the distributions are normal, so tests such as the t-test could not be applied.
Nevertheless, another tests can be used e.g the Mann–Whitney U test. Table 5 shows the
results of the Mann–Whitney U test and also whether the null hypothesis was rejected
or not.

Table 5. Mann–Whitney U tests to compare the scores obtained from the classifier per emotion.

Emotion p-Value (Mann-Whitney U Test) H0

Angry 3.81 × 10−14 Rejected

Happiness 3.23 × 10−29 Rejected

Surprise 1.35 × 10−22 Rejected

After classifying the subjects, it is important to discuss what are the most relevant zones
for both feature extractors in all expressions, this can be later compared with the classifier
performance to understand which information is being considered by the classifiers to
make the final decision. For both anger and surprise, we can notice that LBP shows more
emphasis on the upper part of the face, while HOG focuses more on the eyes for both
cases, as observed in Figures 12 and 13. This behavior is somewhat expected because when
the patient is performing the facial expression, these zones that change due to the facial
expression are considered the zones with more variance and hence, the ones that stand out
when the PCA algorithm is applied.

LBP HOG
Figure 12. Most important zones of the faces for angry.
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LBP HOG
Figure 13. Most important zones of the faces for surprise.

For the case of happiness, both feature extractors focus on the lower part of the face,
LBP focuses more on the mouth region, while HOG focuses more on the cheek regions
as seen in Figure 14. Both regions are the main regions involved in happiness expression.
This show that both extractors when a PCA is applied can focus on different facial parts
depending on the expression.

LBP HOG
Figure 14. Most important zones of the faces for happy.

6. Discusion

This study covers the analysis of FEs in PD using HOG and LBP features. The
objective was to classify PD patients vs. HC subjects. 31 PD patients and 24 HC subjects
were considered for the classification task. 55 videos were used for each expression. For
each patient, five images are used, following the pattern: Normal, Onset, Apex, Offset, and
Normal. A PCA reduction with a variance ratio of 95% is applied to remove redundant
features and analyze these features to identify where the most important features are placed.
Each feature set was considered separately for the classification tasks. An SVM classifier is
considered. Nested cross-validation was used to optimize hyper-parameters and divide
the dataset into train and test. The best result for anger has an ACC = 72.8%, for surprise,
the classifier had an accuracy of 75.8%, and happiness an accuracy of 80.4%, making it the
best facial expression for the classification of PD vs. HC.
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The results in this work could relate to [29], a similar behavior was experimented
with these expressions, although the validation scheme and features are different. This is
an exploratory analysis of FEs in PD using classical approaches. The performance of the
models proved to be adequate and robust to classify impaired expressions (i.e., models
with ACC = 80.0%) despite the PDs with low UPDRS values.

The focus of this work is not only to be able to classify PD patients vs. HC subjects, but
to perform a more detailed of the results and to understand what the classifier is seeking in
order to separate the classes.

Further research is needed with more expressions to find out which is the most
suitable for this task, as well as extracting features using deep learning architecture such
as convolutional neural network (CNN), which has been widely used to automatically
extract information from an image, this information can be compared with the hand-crafted
features extracted in this work and also a combination of this features can be performed
in order to improve the performance of the models. There is also a need for experiments
related to clinical personnel to find which features are more suitable for clinical evaluations
and find possible clinical interpretations of the results obtained with these models.

7. Limitations and Constraints

The main limitation of this work is the use of classical techniques both for feature
extraction and for classification. We are aware that there exist more sophisticated methods
in the literature such as those based on deep learning; however, we believe that classical
methods have been overshadowed in the last few years, mostly because deep learning
models require much less knowledge about the application (in the particular case of this
paper, Parkinson’s disease and hypomimia), and achieve better results. The main point in
favor of classical approaches is their interpretability (at the features and classification levels),
which makes them more attractive for clinical applications in the real world. Another
limitation of this study is the small size of the corpus. Although according to the literature
revision the number of patients considered in this study is within the average, we are aware
that more data would help in finding more conclusive results. Notice that this limitation
also supports the fact of not using DL methods, because these approaches require much
more data than the classical ones.

8. Conclusions

The production of FEs is a sensible bio-marker for the classification between PD
patients and HC subjects. Given the fact that different muscles are activated depending on
which FE to be produced, accurate and interpretable models able to extract information from
different FEs are necessary. This work presents a study where classical yet interpretable
techniques are used to create models that allow the automatic discrimination between
PD patients and HC subjects. The classifier used in this study showed high sensitivity
in most of the cases. However, the specificity decreased when the HOG features were
considered. This is possibly due to similarities between the facial abilities of some HC
subjects and PD patients who were in a low to intermediate state of the disease. The
normalization performed with Landmarks reduced the variability of the background
which helped in reducing errors when the models were focusing on the important zones.
Regarding the different FEs produced by the patients, happiness has yielded the highest
accuracy; however, the results obtained with the other two FEs suggest that the three of
them can be used to perform the classification and obtain better results. LBP shows the
best results for the three FEs, although the zones highlighted with HOG features are also
interesting to look at. The main contribution of this work is to set a baseline with classical
and interpretable methods such that motivate other researchers to study other approaches
that likely yield also interpretable results with higher accuracies. Although the results in
this work cannot be directly compared to those in the state-of-the-art because the datasets
are different, we believe that in terms of classical approaches, the results presented here are
competitive and result in a good baseline model. Future studies should focus on developing
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more sophisticated methodologies that provide better classification results while keeping a
clear interpretability for clinicians, patients, and caregivers.
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Abstract: Internet of Things (IoT) is bringing a revolution in today’s world where devices in our
surroundings become smart and perform daily-life activities and operations with more precision.
The architecture of IoT is heterogeneous, providing autonomy to nodes so that they can communicate
with other nodes and exchange information at any time. IoT and healthcare together provide notable
facilities for patient monitoring. However, one of the most critical challenges is the identification
of malicious and compromised nodes. In this article, we propose a machine learning-based trust
management approach for edge nodes to identify nodes with malicious behavior. The proposed
mechanism utilizes knowledge and experience components of trust, where knowledge is further
based on several parameters. To prevent the successful execution of good and bad-mouthing attacks,
the proposed approach utilizes edge clouds, i.e., local data centers, to collect recommendations to
evaluate indirect and aggregated trust. The trustworthiness of nodes is ranked between a certain
limit, and only those nodes that satisfy the threshold value can participate in the network. To validate
the performance of the proposed approach, we have performed extensive simulations in comparison
with existing approaches. The results show the effectiveness of the proposed approach against several
potential attacks.

Keywords: Internet of Things; trust management; healthcare; digital revolution; edge clouds; security;
privacy preservation

1. Introduction

Internet of Things (IoT) [1] consists of diverse standards of nodes in a heterogeneous
environment connected with the Internet to communicate and exchange information in
the network [2]. The classification of these nodes can be created based on their processing
power wherein edge devices, such as sensors, contain the least processing power causing
vulnerabilities [3]. The generic architecture of IoT consists of multiple layers, i.e., busi-
ness, application, middleware, and perception layers [4], which are illustrated in Figure 1.
The business layer contains system management solutions that may be varied according to
the requirements [5]. The middleware layer is the most critical layer that consists of infor-
mation processing [6], ubiquitous computing [7], services management [8], databases [9],
and decision units [10]. The network layer consists of transmission networks that provide a
source by which IoT participating nodes can transmit information among them [11]. These
transmission connections will be 4G, 5G, etc. [12]. The perception layer consists of edge
nodes that can be RFID [13], sensors [14], or any physical object [15]. In [4], a generic
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IoT trust architecture is proposed that integrates trust into all these layers as an integral
component to manage security. IoT faces several security challenges [16], e.g., authentica-
tion [17,18], access control [19], trust management in cross-domain along with smart edge
nodes [20], security management in IoT equipped with VANET nodes, policy enforcement,
secure middleware, and confidentiality.

Figure 1. IoT architecture with the integration of trust management.

Due to the heterogeneous environment of IoT, it is inevitable to implement robust
approaches that maintain a secure environment by eliminating malicious nodes and are also
robust enough to keep resilience towards several potential attacks [21–23]. The maintenance
of security is a significant challenge due to wireless technologies that have been extensively
deployed in the IoT environment [24]. Healthcare 4.0 [25] is the term used to describe the
next generation of healthcare technology, which is focused on harnessing data, and analytic
and digital tools to improve patient care and outcomes. The cost of healthcare is a major
issue for many people, and patients are looking for ways to obtain the care they need
without breaking the bank. The trend toward more affordable healthcare [26] has led to
an incredibly promising new technology, i.e., IoT, which allows us to connect devices with
sensors so that we can track our health in real-time [27]. With IoT, doctors can use AI [28]
to analyze your health data and make predictions about your future health prospects.
Healthcare monitoring contains patients’ electronic health records [29] that are transmitted
to doctors for monitoring. The transmitted data become vulnerable to potential IoT attacks.
The most prominent way to maintain a trustworthy environment is to identify and eliminate
such nodes. Trust is proposed as the most prominent lightweight mechanism that helps to
maintain a secure environment by utilizing parameters.

In this article, we have proposed a trust management approach (EdgeTrust) for those
nodes which are not capable to perform complex computations. The proposed approach
is a combination of centralized and distributed trust management architectures. The Ed-
geTrust working consists of two major components, i.e., distributed edge devices and
centralized data centers/edge clouds. The proposed mechanism utilizes the direct and
indirect trust evaluation mechanism where the pre-observations required to evaluate the
trust are provided by a central authority. The absolute direct trust evaluation consists of
observations provided by central authority along with the observations stored on nodes’
local storage. For indirect trust evaluation, nodes also do not require generating the re-
quest to neighboring nodes as the recommendation is to gather by a central authority.
The advantage of utilizing recommendations of the centralized authority reduces the time
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required to evaluate the trust. The trust is further compared with the threshold value
for decision-making.

The structure of the rest of the article is as follows: Section 2 discusses and elaborates
on the existing trust management approaches. Section 3 explains the working of the pro-
posed mechanism such as trust parameters, computations, trust aggregation, and threshold
comparison of trust. Section 4 elaborates and discusses the simulation outcomes and per-
formance comparison of EdgeTrust with existing approaches. Finally, Section 5 concludes
the paper.

2. Literature Review

There are several trust management approaches proposed for IoT-based Healthcare,
but significant research attention is required to address the computational challenges
associated with IoT edge devices that are not capable of performing complex computations.
This section will elaborate on the existing approaches along with their contribution and
limitation to identify the research gaps, also illustrated in Table 1.

A trust management mechanism is proposed for the Social IoT that maintains trust
by self-enforcing in a decentralized manner [30]. The proposed mechanism architecture
consists of multiple IoT devices owned by numerous users who interact with others
at particular time intervals. After the interaction, these nodes submit user ratings to
the IoT decentralized database shared among nodes. These ratings consist of feedback
and zero knowledge. The major contribution of the proposed mechanism is the integra-
tion of a database that contains the feedback of the nodes. However, the decentralized
database can cause data integrity challenges as it is shared and stored without utilizing any
central authority.

A game theory-based decentralized trust management mechanism is proposed for
IoT to maintain robustness among nodes [31]. The proposed mechanism applies the game
theory to identify nodes that are executing good or bad-mouthing attacks by sending
mendacious trust degrees. For updating the trust degrees of nodes, the proposed approach
utilizes the Dempster–Shafer theory that collects the scores for updating process by exclud-
ing disparate scores. To perform a trust computation, the approach utilizes Fuzzy theory to
classify trust into none, low, high, and definitely. The major contribution of the proposed
mechanism is the utilization of the Fuzzy rule to classify trust. However, the performance
of the proposed mechanism needs to be evaluated against potential IoT attacks such as
on-off, whitewashing, etc.

In 2017, a study was proposed to design an architecture and protocol for eHealth
monitoring with the integration of 5G [32]. The study focuses on the continuous monitoring
of patient’s health and concludes no notable difference between 4G and 5G. The architecture
of the proposed scheme consists of a user, a 5G network-enabled antenna, and a database
server on the hospital side. Users/patients are monitored using Bluetooth wearable sensors
and gadgets, whereas the monitored data are forwarded to the hospital using a 5G network.
The monitored data are received by the database server, which acts as the central authority
between the hospital and its users. The database also receives medical analytical data from
hospitals and forwards alarms to patients in case of emergency.

In 2020, a blockchain-based trust protocol was proposed for IoT, which maintains trust
in a decentralized manner [33]. The study stated that an IoT object can communicate and
exchange information, which makes the environment highly dynamic and raise security
challenges. The proposed mechanism is a hierarchical blockchain protocol that also sup-
ports mobility where the architecture of the proposed mechanism consists of a fog layer,
a private blockchain layer, and an IoT layer with different clusters/zones.

In 2018, an energy-efficient trust management mechanism (EET-IoT) [34] is proposed
to protect the IoT network and primarily focus on smart cities [35,36]. The proposed
mechanism utilizes the IEEE 802.14 protocol to perform computations. The purpose of
using the IEEE 802.14 protocol is to sustain the efficiency of the IEET-IoT. The proposed
mechanism further uses Jasang’s Subjective Logic (JSL) to examine the ambiguity of an
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entity. The EET-IoT uses a triple variable concept, i.e., b, d, and u. Variable b expresses the
belief, d represents the disbelief, and u denotes the uncertainty. The evaluation of EET-IoT
shows a significant decrease in energy utilization. The energy consumption evaluation
of the proposed algorithms shows that LT consumes maximum energy followed by LDE
and NDLF. However, optimization at the MAC Layer is required to overcome adequate
energy consumption.

A smart middle-ware mechanism (Smart-TM) [37] is proposed to detect on-off attacks
in IoT. The focus of the proposed mechanism is to automatically assess the resources of IoT
trust by evaluating the attributes of service providers. The Smart-TM utilizes an approach
of machine learning based on the One-Class Support Vector Machine (OneClass-SVM)
method. The degree of trust is estimated by examining the distance from a function of
the Hyper-plane model. Moreover, the middleware implements the decision function to
estimate the trust, and nodes with a higher degree of trust are listed as trusted nodes,
while nodes with a lower degree of trust are classified as untrusted ones or specified as
attackers. The performance evaluation of Smart-TM represents that the proposed approach
successfully distinguishes the behavior to recognize on-off attacks. However, the proposed
mechanism is unable to specify the framework of information gathering, trust dissemina-
tion, updating, and maintenance.

A scheme of trust management (Tm-SecPro) [38] is proposed that adopts two methods,
i.e., maximum ratios combining and selection combining. In Tm-SecPro, service providers
and seekers communicate with each other directly, and the mechanism preserves trust be-
tween them. The proposed mechanism estimates and concludes the results in three phases.
In the first phase, the information about trust control is transmitted to the lower layer. In the
second phase, the specified model is used to calculate the trust values. While in the last
phase, all relations related to these phases are extracted from each layer. The considerable
aspect of this scheme is a fusion of MRC and SC that will help to maintain the reliability
of Tm-SecPro.

Table 1. The comparative analysis of the existing approaches.

Ref. Contribution Limitation

[30] Integration of database that contains feedback of the nodes. Decentralized databases can cause integrity challenges.

[31] Utilization of Fuzzy rule to classify trustworthy and
malicious nodes.

Performance needed to be evaluated in the
IoT Environment.

[33] Hierarchical blockchain protocol that also supports mobility. Not suitable for nodes with less computational capabilities
due to complexity.

[34] The utilization of Jasang’s Subjective Logic (JSL) to examine
the ambiguity of an entity.

Optimization at MAC Layer is required to overcome
adequate energy consumption.

[37] Hyper-plane model along with middleware implements the
decision function. Unable to specify the framework of trust management.

[38] Fusion of MRC and SC that will help to maintain reliability. Transmission of trust computation between multiple layers
may raise integrity challenges.

3. Proposed EdgeTrust Approach

The identification of malicious and compromised is one of the important challenges
in Healthcare 4.0 that can affect the network security and privacy of users. In this arti-
cle, we have proposed EdgeTrust to address the challenges caused by these malicious
nodes. The architecture of the proposed approach consists of three major layers which
are data center/edge clouds, trust management, and edge nodes as illustrated in Figure 2.
The data center contains the data center and edge cloud that have the capability of Naive
Bayes [39,40] for the identification and classification and behavior prediction of malicious
and compromised nodes by utilizing the stored direct observation collected by the network
nodes. These observations are utilized further to formulate direct trust for edge nodes.
Indirect trust at the data center layer can be formulated with the help of recommendations
collected by the edge nodes. The trust management evaluation is a combination of events
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and time-driven under a different scenario. The direct trust degree is evaluated-based
on the knowledge and experience component, which also involves the trust aggregation,
threshold comparison, and decision-making phase. The edge nodes in IoT can be classified
concerning their computational power and internal capabilities.

Figure 2. The proposed EdgeTrust architecture.

In the proposed approach, these edge nodes are classified based on their categories, i.e.,
sensors, home appliances, and smart mobile devices among others. The training phase of
the proposed mechanism includes five distinct phases which are features selection, feature
scaling, classifier implementation, dataset training, and classification of malicious and
compromised nodes. The features of trust parameters used are reliability, cooperativeness
along with experience, and the computation depends on sessions created between nodes
which are denoted as friendliness. If the friendliness of nodes is higher, then the computa-
tions are computed in a time-driven manner while, in the case of low friendliness, trust
computation is performed based on events. The next phase is to scale the features in which
all the features involved in computations are scaled between 0.0–1, where 0.0 represents
the lowest trust and 1 represents a higher trust degree. The complete workflow of trust
computation and decision-making is illustrated by Algorithm 1.
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Algorithm 1 EdgeTrust trust computation process

1: procedure TRUST DEGREE EVALUATION(dob
t )

2: Central authority computation: ob
t = ∑

[
ob1

n−id + ob2
n−id + ob3

n−id + ... + obn
n−id

]

3: Recommendation-based evaluation: ritrust
c−id = ∑

[
rec

ei→ej
r1 + rec

ei→ej
r2 + ... + rec

ei→ej
rn

]

4: procedure EXPERIENCE GATHERING AND FORMULATION(abt→aggregate
ei→ej )

5: Previous computation: epnode−id
eabsolute

= ∑
[
epp1

ei→ej + epp2
ei→ej + ... + eppn

ei→ej

]

6: Aggregated trust: abt→aggregate
ei→ej = dob

t + epnode−id
eabsolute

7: procedure TRUST COMPUTATION
8: Friendliness computations: f rtr

nid

9: Reliability observation: obprt
ei→ej

= ob
t(ei→ej)1
n−id + ob

t(ei→ej)2
n−id + ... + ob

t(ei→ej)n
n−id

10: Reliability formulation: rtdt
ei→ej

11: Cooperativeness computation: obpcpt
ei→ej = obcpt1

n−id + obcpt2
n−id + obcpt3

n−id + ... + obcptn
n−id

12: procedure TRUST AGGREGATION( f t
dtexp
ei→ej )

13: Absolute computation: ctag
dei→ej

= rtdt
ei→ej

+ cptdt
ei→ej

14: Experience formulation: tpt
expei→ej

= ∑n
i=0

[
eto1

ei→ej + eto2
ei→ej + ... + eton

ei→ej

]

15: Absolute trust degree: f t
dtexp
ei→ej = ctag

dei→ej
+ tpt

expei→ej

16: procedure DECISION MAKING

17: Decision making: θ = tpt
expei→ej

18: Exit

To perform classification and prediction, we adopt the Naive Bayes classifier due to its
accuracy and low energy consumption for classification. After selecting the classifier, the
training phase begins, using a dataset of 120,766 trust values per feature for the classifier to
learn from. After training, the classifier calculates the error difference between computed
and actual trust values to increase precision.

3.1. Data Centers and Edge Clouds

In the proposed approach, the data center layer is responsible for performing three
major operations: machine learning-based prediction and direct and indirect trust observa-
tion evaluation. The data centers and edge clouds are able to make predictions based on
direct observations transmitted by the nodes. These transmitted values are first stored by
the central authorities and later used to predict the behavior of edge nodes by applying the
Naive Bayes Classifier. The direct trust evaluation at the data center layer is a time-driven
process, evaluated after 90 minutes. When an edge node requests data from the data center
layer, the central authorities share the already stored observations for further processing.
After receiving the request, the central authorities formulate the direct trust degree using
Equation (1), where dob

t represents the available direct trust observation and ob1
n−id is the

number of observations transmitted by a particular node.

dob
t = ∑

[
ob1

n−id + ob2
n−id + ob3

n−id + ... + obn
n−id

]
(1)

The coverage area of central authorities is larger compared to edge trust, so they
also provide recommendations that have been computed over a specific time interval.
These recommendations help nodes to compute indirect trust. The recommendation-based
indirect trust is formulated using Equation (2), where ritrust

c−id represents the recommendation-
based trust evaluation, and c-id represents the unique identity of a central authority that
computed indirect trust.
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ritrust
c−id = ∑

[
rec

ei→ej
r1 + rec

ei→ej
r2 + ... + rec

ei→ej
rn

]
(2)

3.2. IoT Edge Nodes

The edge nodes are those that cannot perform complex computations but are crucial
to lightening the burden from them to increase the scalability and security of a network. In
the proposed EdgeTrust approach, central authorities compute the direct trust and transmit
it to the requested node while the edge nodes just have to aggregate that value with the pre-
stored experience. The experience component of trust represents the previous experience
of a particular node regarding other nodes that provide services. To evaluate the aggregate
value, the edge nodes apply the summation function to the previous experience available
as represented by Equation (3), where epnode−id

eabsolute
shows the absolute experience formulation

of a node with a unique identity. The epp1
ei→ej represents the number of previous experiences

stored on the internal memory of edge nodes.

epnode−id
eabsolute

= ∑
[
epp1

ei→ej + epp2
ei→ej + ... + eppn

ei→ej

]
(3)

After the formulation of absolute experience, the edge node computes aggregate
trust by using the direct trust and experience trust degree computation as represented by
Equation (4), where abei→ej represents the absolute trust evaluation of edge node i towards
j, dob

t and epnode−id
eabsolute

represent the direct trust evaluated based on observation and experience
evaluation of a node with unique identifiers, respectively.

abt→aggregate
ei→ej = dob

t + epnode−id
eabsolute

(4)

3.3. Trust Management Computations

The trust computation in the proposed mechanism consists of multiple features that are
computed by the central authorities along with edges to formulate an absolute trust value
for decision-making. When edge nodes want to compute the trust value of a particular
node, the node transmits a trust computation request to the nearest central authority. The
request generated by a particular node consists of the trustee’s identification, the trustor’s
identification, and the previous experience trust degree computed by the edge nodes. The
trust computation process begins by first observing the friendliness of the nodes, which
represents the number of sessions created over a specific interval of time. If the friendliness
of the nodes is high, then trust is computed as time-driven, which reduces the energy
consumption of computation. The time-driven trust computation in the case of higher
friendliness is 60 min, which means that nodes are not required to compute trust based
on events and can use the same trust degree for a pre-defined time. The friendliness
is computed based on the sessions created between particular nodes, as represented in
Equation (5).

f rtr
nid

=





timedriven if f r ≥ 50
Eventdriven if f r ≤ 49
indirecttrust if pob = Yes

(5)

In Equation (5), fr, nid, and tr represent friendliness, nodes’ unique identify, and
trust degree, respectively. For direct trust, if f r ≥ 50, the trust is computed as time-
driven. When the number of sessions formulated between two nodes becomes event-
driven and f r ≤ 49, the trust is also computed using a time-driven approach. In case
of no previous observations pob, the trust is computed by gathering recommendations
from central authorities. After evaluating friendliness, the next phase is to compute the
trust parameters, i.e., knowledge and experience. TThe knowledge component of trust
consists of reliability and cooperativeness, which are computed by central authorities when
a particular node generates a request. In the knowledge parameters, the evaluation is
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initiated by evaluating the reliability by gathering the pre-stored observations received
by the central authorities for a while from network nodes. The process of observation
gathering is shown in Equation (6), where the reliability trust degree is formulated by
applying summation to these pre-available observations:

obprt
ei→ej

= ob
t(ei→ej)1
n−id + ob

t(ei→ej)2
n−id + ... + ob

t(ei→ej)n
n−id (6)

In Equation (6), obp represents previous observations, rt shows reliability trust evalua-

tion, and ei → ej is the trust evaluation of edge node i towards j, where ob
t(ei→ej)1
n−id represents

the pre-stored previous observations. After reliability observation gathering, the proposed
mechanism applies a limit to formulate the absolute trust value of the reliability parameter
as shown in Equation (7):

rtdt
ej
= ob

t(ei→ej)1
n−id + ob

t(ei→ej)2
n−id + ... + ob

t(ei→ej)n
n−id (7a)

rtdt
ei→ej

=
n

∑
i=0

[obprt
ei→ej

∗ rtdt
ej
] (7b)

In Equation (7), rtdt
ei→ej

represent the evaluation of reliability evaluation based on a

direct trust approach, where ∑1
0.0 is the summation function that applies on the previ-

ous trust observation to formulate absolute reliability trust degree with a limit of 0.0–1.
The completion of reliability evaluation leads the computation phase to cooperativeness
estimation. The cooperativeness evaluation is evaluated with the same process as reliability
computation and represented by Equation (8). In Equation (8a), obpcpt

ei→ej represents the

cooperativeness trust evaluation of edge node i towards j where ob
cpt(1...n)
n−id represents the

available observations utilized for the cooperativeness trust evaluation. In Equation (8b),
cptdt

ei→ej
represents the formulation of absolute cooperativeness trust degree, while dt shows

the direct trust evaluation. After the trust parameter estimation, the central authority will
proceed further for the trust formulation along with experience as explained in Section 3.4:

obpcpt
ei→ej = obcpt1

n−id + obcpt2
n−id + obcpt3

n−id + ... + obcptn
n−id (8a)

cptdt
ei→ej

=
n

∑
i=0

[
obpcpt

ei→ej(obcpt1
n−id + obcpt2

n−id + ... + obcptn
n−id)

]
(8b)

3.4. Trust Aggregation and Development

The trust aggregation process is the procedure in which the previous trust value has
been utilized with the current trust to develop an absolute trust value that is used during
the phase of decision-making. In the proposed approach, the aggregation and development
process is initiated by developing the trust degree of the parameter. Furthermore, it
uses that value to compute the aggregated value of trust with the previous experience
trust degree of a node. At that phase, the proposed mechanism formulates the absolute
trust degree of knowledge component that consists of reliability, and cooperativeness as
illustrated in Equation (9):

ctag
dei→ej

= rtdt
ei→ej

+ cptdt
ei→ej

(9)

In Equation (9), the ctag
dei→ej

represents the direct current trust evaluation of edge

node i towards j, where rtdt
ei→ej

and cptdt
ei→ej

illustrate the reliability and cooperativeness
trust evaluation. After developing the parameter trust evaluation, the central authorities
transmit the trust degree of a particular node towards the edge node for the aggregation of
experience with current trust. After receiving the parameter trust degree, the edge node
aggregates the experience with current trust by first formulating the previous experience
observations using Equation (10):

194



Electronics 2023, 12, 140

tpt
expei→ej

=
n

∑
i=0

[
eto1

ei→ej + eto2
ei→ej + ... + eton

ei→ej

]
(10a)

f t
dtexp
ei→ej = ctag

dei→ej
+ tpt

expei→ej
(10b)

In Equation (10a), tpt
expei→ej

represents the absolute experience trust formulation process

of edge node i towards j, where eto1...n
ei→ej illustrates the number of previous experience

evaluation available at local storage of edge nodes. In Equation (10b), f t
dtexp
ei→ej represents

the formulation process of final trust degree, where ctag
dei→ej

is the current trust parameter

evaluation and tpt
expei→ej

illustrates the absolute experience trust evaluation. After the
formulation of the final trust degree, the edge node can compare it with the threshold value
for decision-making as discussed in Section 3.5.

3.5. Trust-Based Decision-Making

The decision-making phase is the final phase that utilizes the absolute final trust
degree to compare it with a threshold value to determine if the node is trustworthy or
malicious. In the proposed mechanism, the range of trust degree is 0.0 to 1. Newly joined
edge nodes have a default trust degree of 0.6. A trust degree of 0.7 to 1 is considered
trustworthy, while a trust degree of 0.0 to 0.6 is considered flunk/no trust for old edge
nodes, as illustrated in Equation (11).

θ = tpt
expei→ej

(11a)

θ =

{
FlunkTrust if θ ≤ 0.6
Trustworthy if θ ≥ 0.7

(11b)

If a node satisfies the threshold value, it is allowed to communicate and transmit
monitoring details to hospitals/doctors. If the trust degree of a particular node is less than
the minimum requirement, the node cannot communicate and is not allowed to exchange or
share information. Furthermore, at the end of communication, the edge node will evaluate
the friendliness to determine whether the process of trust degree evaluation should be
time-driven or event-driven in the future. This classification is evaluated in Section 3.3.

3.6. Recommendation-Based Indirect Trust

Recommendation-based trust evaluation is an important factor when a node wants
to communicate or take services. Furthermore, there are several nodes that do not have
previous observations or experience to evaluate trustworthiness. Recommendation-based
trust evaluation provides a way to evaluate trust degree by requesting input from neigh-
boring nodes.

EdgeTrust utilizes recommendations when no previous observations are available.
To gather recommendations, the node broadcasts requests to surrounding nodes with
the node’s unique ID to share stored observations. After receiving the recommendations,
EdgeTrust develops trust by applying a summation function and then comparing the result
with a threshold for decision-making. In the case of indirect trust, the threshold is different
from the threshold used for direct trust evaluation. In recommendation-based evaluation,
nodes are required to maintain a minimum trust degree of 0.9 to be considered trustworthy.
The conditions for decision-making are illustrated by Equation (12):

θ = trt
expei→ej

(12a)

θ =

{
FlunkTrust if θ ≤ 0.8
Trustworthy if θ ≥ 0.9

(12b)
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4. Results and Discussion

In this section, we elaborate on the performance evaluation of the proposed model
in comparison with existing schemes. We used an open-source library (Zetta [41,42]) to
create a central authority and the IoTivity library [43] to enable inter-object connectivity.
Wireless communication is performed using Zigbee (IEEE 802.15) [44]. The complete
simulation setup is given in Table 2. We performed comparative analysis using several
existing mechanisms: TMEI [45], RobustD [31], and SGSQ-TM [46].

The simulation was performed under different scenarios and attacks by varying the
number of network nodes. During the simulation, the number of varying nodes was 50 to
400, and the percentage of malicious and compromised nodes was 35 to 45. The simulation
time (t) was also varied between 600 to 1100 minutes (m), with time-based friendliness
being performed when the number of sessions created between nodes was 50 or more. For
newly joined nodes, the default trust degree was 0.6, while for old nodes, the flunk/no
trust was 0.0 to 0.6. A trust degree of 0.7 to 1 was considered trustworthy.

Table 2. Parameters and simulation setup.

Parameters Value

Area of Network 300 (m2)
No. of Nodes 400∼600

Simulation Time 600∼1100

Trust Degree 0.0-1

MAC IEEE 802.11

Transmission Rate 3∼5 Mbps

Size of Packet 20∼30

Peak Transmission Range 323 (m)
Node Placement Uniform

Maximum Connection 11

4.1. Aggregated Trust Evaluation

Trust aggregation is a process in which certain nodes evaluate the trust degree by
using the previous trust and current trust to formulate an absolute trust degree for decision-
making. In the proposed mechanism, nodes rank the performance of a particular node
after obtaining the services, known as experience, and use that for aggregation purposes
in future trust evaluation. We evaluated the impact of experience trust aggregation under
two different scenarios in which trust computation is performed by nodes with or without
experience aggregation, as illustrated in Figure 3. The figure shows the comparative analysis
of trustworthy TWP (Trust with Previous) and trustworthy TNP (Trust with no Previous)
observations. The trust evaluation of the trustworthy node with aggregation formulates
a stable result and enhances accuracy, while the trust without aggregation illustrates a
wavered trust degree over a time interval (t). In the second scenario, we performed an
identical evaluation on the trust degree of malicious or compromised nodes, and the result
showed similar outcomes in which Flunk TWP (Trust with Previous) represented a uniform
trust degree and Flunk TNO (Trust with no Previous) showed notable inconstancy in
the trust degree and also assigned a higher trust degree, highlighting the significance of
employing previous experience in the proposed approach.
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Figure 3. The impact of aggregated trust computation.

4.2. Honest and Dishonest Trust Accuracy

The accuracy of the honest and dishonest trust evaluation is determined by comparing
the outcomes of the actual and computed trust degree by the model after the training phase.
The simulation was performed to evaluate the trust degree of honest and dishonest nodes,
with the comparative analysis illustrated by Figures 4 and 5. The simulation time for the
honest and dishonest accuracy evaluation was 300 seconds, with the minimum trust being
0.0 and the maximum trust being 1. The comparative analysis of the computed and actual
trust degree of honesty is represented by Figure 4, which shows that the model took 147
seconds to evaluate the actual trust. During the evaluation of the dishonest trust degree, it
took 162.5 seconds to remove the difference between computed and actual trust for accurate
computations, as illustrated in Figure 5.

Figure 4. Honest node’s trust degree accuracy.
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Figure 5. Dishonest node’s trust degree accuracy.

4.3. On-Off Attack

The on-off attack is one of the most serious attacks in the IoT heterogeneous envi-
ronment, where good nodes may become malicious or compromised at any time. It is
important to distinguish such nodes that maintain a higher trust degree and whose neigh-
boring nodes also assign a higher rank as an experience, but become malicious after a
certain period of time. These nodes may also be compromised by different attacks, making
it crucial to recognize these nodes in order to maintain security and privacy. We evalu-
ated the performance of existing approaches under two distinct scenarios by varying the
percentage of malicious nodes and time (t).

In the first scenario of an on-off attack, the number of nodes varied from 50 to 400, with
a percentage of malicious and compromised nodes at 35%. The simulation time was 600
minutes. Figure 6 shows the simulation outcomes of on-off attack scenario-1, illustrating
the performance comparison in which the proposed mechanism successfully recognized
the execution and assigned a lower/flunk trust degree as the nodes became malicious after
a certain time interval. Initially, the proposed mechanism assigned the default trust degree
to nodes with no past experience, and assigned an increasing trust degree at different points
that reached 0.64 at point-5, before dropping to 0.55 and then to the lowest trust of 0.01.
In the second scenario (Figure 7), the number of nodes was the same as in the previous
scenario, and the percentage of malicious nodes increased to 45%. The simulation time
was 1100 minutes, with a threshold of 0.0 to 1, and trust was computed with aggregated
past experience. The increase in malicious and compromised nodes clearly had an impact
on the simulation, and the trust computation assigned to these nodes was lower from the
beginning and reached a minimum of 0.25 at the end. In both scenarios, the proposed
EdgeTrust mechanism assigned a lower trust degree, indicating the effectiveness of the
trust parameters along with the experience component of trust. Therefore, it successfully
recognized the on-off attack.
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Figure 6. On-off attacks (Scenario-1).

Figure 7. On-off attacks (Scenario-2).

4.4. Self Promoting Attack

It is a kind of attack in which nodes try to promote themselves either alone or in
groups to provide the services. The successful execution of a self-promoting attack can
have severe consequences that may compromise privacy by gaining access to private and
sensitive information. To evaluate the performance of the proposed approach with existing
approaches, we have considered two different scenarios in which nodes try to execute a
self-promoting attack in different ways. In the first scenario of a self-promoting attack,
nodes try to promote themselves alone with any support from the surrounding where the
number of nodes is 400 along with varying self-promoting nodes, and the simulation time
is 600 (m).

In the first scenario, the total number of nodes is 400 with the percentage of self-
promoting nodes being 35%. These nodes self-promote themselves alone and do not have
any supporting nodes, where the simulation time consists of 600 (m) with default trust
being 0.6 for new nodes, flunk trust is 0.0–0.6, and supreme trust is 0.7–1. Figure 8 illustrates
the simulation outcomes of the self-promoting attack in scenario 1, wherein the proposed
mechanism assigns the trust degree of 0.86, and the trust degree decreases to reach 0.2,
which shows the successful identification of self-promoting nodes. Furthermore, the SGSQ-
TM [46] also shows effective performance and assigns a low trust degree, i.e, 0.5. In the
second scenario, the total number of nodes is 400 with 45% self-promoting nodes where the
simulation time is 600 (m). In this scenario, the self-promoting attack executes in a group,
which means a bundle of nodes works in parallel to promote a particular node by assigning
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a higher fake trust degree. Figure 9 illustrates the simulation outcomes in comparison with
the existing approaches, and the results show that the proposed mechanism successfully
identifies the malicious nodes and assigns the flunk trust degree of 0.18. Whereas the
existing approaches also identify and assign low trust degrees, such as TMEI assigning a
lower trust degree of 0.6, RobustD and SGSQ-TM assign a lower trust degree of 0.4 and
0.23, respectively.

Figure 8. Self-promoting attacks (Scenario-1).

Figure 9. Self-promoting attacks (Scenario-2).

4.5. Good and Bad Mouthing Attacks

Good and Bad mouthing attacks are similar to self-promoting attacks, but in these
attacks, nodes do not work together to promote themselves. The good and bad-mouthing
attacks are executed by malicious nodes to assign a lower trust degree to the trustworthy
nodes called bad-mouthing, while they can assign a higher trust degree to malicious nodes
known as a good-mouthing attack. The chances of successful execution of this attack
increase when nodes rely on recommendation-based trust evaluation. In the proposed
mechanism, the utilization of recommendations is minimal, whereas the central authorities
provide the recommendation that has been evaluated based on direct observation. To eval-
uate the effectiveness of utilizing direct trust-based evaluation as a recommendation, we
have performed extensive simulations against good and bad-mouthing attacks under dif-
ferent scenarios. The performance of the proposed approach in comparison to the existing
ones is evaluated under two different scenarios for each good and bad-mouthing attack by
applying the variation to the number of trustworthy and malicious nodes.
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In Figures 10 and 11, the X-axis of the graph shows the simulation time, whereas the
Y-axis represents trust, which is computed and assigned at a particular time. In the first
scenario of the good mouthing attack, the number of nodes is 600 where the percentage of
malicious nodes is 35. Figure 10 illustrates the performance of the proposed mechanism,
which shows the trust degree to reach 0.9. After the identification of a good mouthing attack,
the trust degree declines to 0.7, and later on, the trust degree assigned by the EdgeTrust
declines to flunk trust of 0.4. In comparison, the TMEI and RobustD also show a notable
performance and assign a lower trust degree, i.e., 0.4, and 0.5, respectively. In the second
scenario of good mouthing evaluation, the number of nodes increases to 800 where the
percentage of malicious and compromised nodes is 45, and the simulation time is 600 (m).
Figure 11 illustrates the simulation outcomes of the second scenario. In comparison with the
first scenario, the result is more fluctuated than what happened due to the percentage ratio
of malicious or compromised nodes. When the number of nodes increases and numerous
nodes try to execute an attack, then the trust fluctuates between higher and lower degrees.
In the second scenario of good mouthing evaluation, the proposed mechanism initially
assigns a higher trust degree up to 3 points and then it falls to 0.2 at point 4. Looking at
both scenarios, the EdgeTrust assigns the lowest trust to malicious nodes and detects the
trustworthy nodes.

Figure 10. Good mouthing attacks with varying nodes (Scenario-1).

Figure 11. Good mouthing attacks with varying nodes (Scenario-2).

The bad-mouthing attack is also evaluated under two different scenarios by applying
variation to the number of total nodes along with the percentage ratio of malicious and
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compromised nodes. In the first scenario of a bad-mouthing attack, the number of nodes
is 400, where the percentage ratio of malicious nodes is 35%, and the simulation time
is 600 (m). Figure 12 shows the simulation outcome in which malicious nodes try bad-
mouthing trustworthy nodes by assigning a low trust degree while the increasing trust
graph of the proposed approach clearly shows that it successfully recognizes the attack
and assigns a higher trust degree to the nodes. The proposed EdgeTrust approach initially
assigns a lower degree of trust, i.e., 0.3, but later it reaches 0.9, which is the highest
trust degree. Furthermore, the existing approaches also show a notable performance
against the attack and assign a higher trust degree to the trustworthy nodes. In the second
scenario, the total number of nodes is 400, where the malicious and compromised nodes
that execute the attack are 45%, and the simulation time is 600 (m). Figure 13 illustrates
the comparative performance analysis of the proposed mechanism along with existing
approaches. The EdgeTrust approach begins by assigning a default trust degree that
increases with time and reaches 0.9, which is the highest trust degree. In comparison,
the SGSQ-TM approach also manifests an effective performance and keeps the trust degree
of trustworthiness higher, which is 0.4 in the beginning and reaches 0.7. The performance
of TMEI is stable and assigns a higher trust degree, whereas the performance of RobustD
assigns a lower trust degree, i.e., 0.2, but begins by assigning a higher trust degree after 450
(m) that reaches 0.5.

Figure 12. Bad mouthing attacks in Scenario-1.

Figure 13. Bad mouthing attacks in Scenario-2.
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4.6. Energy Consumption Evaluation

Communication and computation consume a notable amount of energy in IoT, and
it is important to propose such approaches that consume less energy to make the imple-
mentation of green IoT possible in a real-world scenario. We have evaluated the energy
consumption of proposed approaches with existing approaches by applying the variation
to the total number of nodes, and the energy consumption is measured in Joules (J). We
evaluated the energy consumption of the proposed mechanism with a fixed number of
nodes by applying variations to the total time (t). Figure 14 illustrates the simulation which
has been performed with 100, 200, up to 600 nodes, where the maximum energy consumed
by the proposed approach at 1100 (m) is 240 (J) with 400 nodes, 270 (J) with 500 nodes,
and 300 (J) with 600 nodes. The average energy consumption has also been evaluated
with varying total numbers of nodes where the simulation time is 1100 (m). Figure 15
illustrates the energy consumption of the approaches that show that the proposed approach
has utilized less energy to perform trust computation, whereas, in comparison, RobustD
and TMEI use average consumption while SGSQ-TM approaches use a higher amount of
energy to perform their computations. The maximum energy consumption of approaches
with 600 nodes at 1100 (m) is 360 (J) of EdgeTrust, 450 (J) of TMEI, 400 (J) of RobustD, and
520 (J) of SGSQ-TM. The simulation outcomes of average consumption make the proposed
approaches a better way to maintain security among IoT nodes.

Figure 14. Energy consumption with varying nodes.

Figure 15. Average energy consumption comparison.
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5. Conclusions

Internet of Things (IoT) provides diverse opportunities to the real world to improve
daily life by making autonomic devices, which are intelligent and can perform the required
operations and given tasks. Healthcare 4.0 and IoT can enhance the facilities provided to
patients in remote areas. The monitoring of patients may help to save them in a critical
situation. In healthcare 4.0, patients’ details are transmitted to the hospital needed to
maintain integrity and security. The proposed mechanism addresses the requirements of a
lightweight approach to maintain security among nodes. The proposed mechanism utilizes
trust parameters and central authority to manage and provide trust observations. The pro-
posed mechanism combines the concept of distributed and centralized trust management
along with time-driven and event-driven trust computations. We have also evaluated the
performance of the proposed approach with existing approaches among several potential
attacks. The extensive simulation outcomes show that EdgeTrust can recognize IoT’s pos-
sible attacks to maintain a robust environment. In comparison, the proposed approach
assigns a lower degree of trust, i.e., 0.25 and 0.18 in the self-promoting attack. Furthermore,
EdgeTrust also identifies the good-mouthing instantly and maintains the lower trust degree,
whereas, in the case of SGSQ-TM, malicious nodes regain the trustworthiness. Another
notable challenge addressed is the lightweight approach that requires less energy con-
sumption, which makes it suitable for the real-world scenario. In the future, the proposed
mechanism can be extended by evaluating the storage challenges that the edge nodes may
face and formulating a two-way approach to maintain hospital-side trust management.
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