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Quantum technology can break through the bottleneck of traditional information
technology by ensuring information security, speeding up computation, improving mea-
surement accuracy, and providing revolutionary solutions to some issues of economic
and social development. The theory of quantum information and computation provides
guarantee on the development of quantum technology. This Special Issue is intended
to investigate some basic features and applications of quantum information, including
but not limited to complementarity, quantum algorithms, quantum coherence, quantum
correlations, quantum measurement, quantum metrology, quantum uncertainties, and
quantum information processing.

The works in this Special Issue can be divided into two categories: basic theory of
quantum information, and quantum information processing and algorithm designs. We
start with the former.

A quantum channel usually changes the quantum features of the system, such as
causing decoherence of quantum states and destroying quantum correlations. Charac-
terizing quantum channels from the information perspective has yielded fruitful results.
In [1], Song and Li propose a framework to qualitatively and quantitatively characterize
quantum channels from the perspective of the amount of quantumness in ensembles that a
quantum channel can induce. They investigate the dynamics of quantumness in ensembles
and propose quantumness power and dequantumness power to characterize quantum
channels. If a channel reduces the quantumness for all the ensembles at all times, it is a
completely dequantumness channel. The relationship with Markovian channels is also
studied through several examples. The work illustrates new properties of quantum chan-
nels from the perspective of the information flow in terms of quantumness brought by the
interaction between the system and environment. The results can be directly generalized to
arbitrary dimensions and other measures of quantumness.

Quantum verification has been highlighted as a significant challenge on the road to
scalable technology. In addition to the tomography of a quantum state, self-testing is a
device-independent approach to verifying that the previously unknown quantum system
state and uncharacterized measurement operators are, to some degree, close to the target
state and measurements (up to local isometries) based only on the observed statistics,
without assuming the dimension of the quantum system. Previous studies focused on
bipartite states and some multipartite states, including all symmetric states, but only in
the case of three qubits. Bao et al. [2] give a criterion for the self-testing of a four-qubit
symmetric state with a special structure and provide a robustness analysis based on vector
norm inequalities. Bao et al. also generalize the idea to a family of parameterized four-qubit
symmetric states through projections onto two subsystems.

The Belavkin–Staszewski (BS) relative entropy is an enticing and crucial entropy used
to process quantum information tasks, which can be used to describe the effects of possible
noncommutativity of the quantum states (the quantum relative entropy does not work
well for this case). Katariya and Wilde employed the BS relative entropy to study quantum
channel estimation and discrimination. Bluhm and Capel contributed a strengthened
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data processing inequality for BS relative entropy. This property was first established by
Hiai and Petz. Bluhm et al. presented some results on weak quasi-factorization for BS
relative entropy. Fang and Fawzi studied quantum channel capacities with respect to the
geometric Rényi relative entropy. In [3], Zhai et al. define two new conditional entropy
terms and four new mutual information terms by replacing quantum relative entropy
with BS relative entropy. Some basic properties of the newly introduced entropies are
investigated, especially in classical-quantum settings. In particular, the authors of [3] show
the weak concavity of the BS conditional entropy and obtain the chain rule for the BS
mutual information. Finally, the subadditivity of the BS relative entropy is established;
i.e., the BS relative entropy of a joint system is less than the sum of its corresponding
subsystems with the help of some multiplicative and additive factors. Meanwhile, a certain
subadditivity of the geometric Rényi relative entropy is also provided.

One of the fundamental phenomena in quantum physics is the impossibility of simul-
taneous realization of two quantum operations. The Heisenberg uncertainty principle and
the no-cloning theorem are two famous incarnations for such phenomena. Generally, two
(or more) quantum operations, such as measurements, channels, or instruments, are called
compatible if they can be seen as the marginals of a common operation. Otherwise, they
are called incompatible. The concept of incompatibility of quantum channels has been
proposed in terms of the input–output devices. In [4], Zhang and Nechita present a new
incompatibility criterion for quantum channels based on the notion of (quantum) Fisher
information. The power of this incompatibility criterion is further discussed in different
scenarios. The authors of [4] present the analytical conditions for the incompatibility of
two Schur channels. They also investigate the incompatibility structure of a tuple of de-
polarizing channels by comparing the newly introduced criterion with the known results
from asymmetric quantum cloning.

As an important resource in many quantum information tasks, quantum coherence is
a feature of quantum systems rooted in the superposition principle. Since the coherence
of quantum states depends on the choice of the reference basis, it is natural to study the
relationship among the coherence with respect to different bases. Wang et al. [5] study
quantum incoherence based simultaneously on k bases. They firstly define a correlation
function m(e,f) of two orthonormal bases e and f, by which the relationships between sets
I(e) and I(f) of incoherent states are investigated. They show that I(e) = I(f) if and only if the
rank-one projective measurements generated by e and f are identical. They also provide a
necessary and sufficient condition for the intersection I(e)

⋂
I(f) to include a state except the

maximally mixed state. In particular, if two bases e and f are mutually unbiased, then the
intersection has only the maximally mixed state. The authors then introduce the concepts
of strong incoherence and weak coherence of a quantum state with respect to a set B of k
bases and propose a measure for the weak coherence. They prove that in two-qubit systems
there exists a maximally coherent state with respect to B for k = 2 but not for k = 3.

Entanglement is a quintessential manifestation of quantum mechanics and is often
considered to be a useful resource for tasks such as quantum teleportation or quantum
cryptography. Genuine multipartite entanglement is an important type of entanglement
that offers significant advantages in quantum tasks compared to bipartite entanglement.
The distribution of entanglement is believed to be monogamous, i.e., a quantum system
entangled with another system limits its entanglement with the remaining others. There are
two methods used in this research. The first one is to analyze monogamy relations based
on bipartite entanglement measure, and the second one is based on multipartite entangle-
ment measure. In [6], Guo explores the complete monogamy of a genuine multipartite
entanglement measure (GMEM). Guo firstly studies the framework for unified/complete
GMEM according to the unified/complete multipartite entanglement measure. He finds a
way of inducing unified/complete GMEM from any given unified/complete multipartite
entanglement measure. It is shown that any unified GMEM is completely monogamous,
and any complete GMEM that is induced by the given complete multipartite entanglement
measure is completely monogamous. In addition, the previous GMEMs are checked under
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this framework. It turns out that the genuinely multipartite concurrence is not a good
candidate for GMEM.

Entanglement detection is a basic problem in quantum theory. A powerful tool is the
so-called positive partial transpose (PPT) criterion, proposed by Peres. PPT condition is
not only necessary but also sufficient for the separability of qubit–qubit, qubit–qutrit, or
qutrit–qubit systems. Rana shows that all eigenvalues of any partially transposed bipartite
state fall within the closed interval [−1/2, 1]. In [7], Duan et al. study a family of bipartite
quantum states for which the minimal eigenvalues of the partially transposed states are
−1/2. For a two-qubit system, the authors of [7] find that the minimal eigenvalue of its
partially transposed state is −1/2 if and only if the two-qubit state is maximally entangled.
They also show that this result does not hold in general for two-qubit systems when the
dimensions of the underlying space are larger than two.

The second category of the works in this Special Issue focuses on quantum information
processing and algorithm designs.

Since the multi-locality in quantum networks features several independent sources
under joint measurements, one can obtain stronger correlations throughout the whole
network. Such networks were first observed in a bi-local network. Since then the nonlocality
of various quantum networks has been explored, including chain-shaped networks, star-
shaped networks, triangle networks, and tree-tensor networks. In [8], Yang et al. consider
the nonlocality of any forked tree-shaped networks, where each node shares an arbitrary
number of bipartite sources with other nodes in the next “layer”. Yang et al. derive Bell-type
inequalities for such quantum networks in terms of all (tn − 1)-local correlations and all
local correlations, where tn denotes the total number of nodes in the network. The authors
of [8] also derive the maximal quantum violations of these inequalities and the robustness
to noise in these networks.

In recent years, quantum computing has been extensively studied from theory to
practice. Noisy intermediate-scale quantum (NISQ) computers may not have the capability
to deal with large-scale quantum information processing. Delegating computations to
the companies that offer quantum computing may be a better choice to access quantum
computers. In [9], Ma et al. propose a distributed secure delegated quantum computation
protocol, which allows clients to delegate their private computation to several quantum
servers. Ma et al. show that their protocol can guarantee unconditional security of the
computation under the situation where all servers, including the third party, are honest but
curious, and they are allowed to cooperate with each other.

As an important application of quantum theory, quantum key distribution (QKD),
which allows two users to share a secure key privately, is one of the options to combat the
lack of safety in communication caused by the increasingly developed quantum compu-
tation. Bennett and Brassard present the first QKD protocol. In [10], Fan et al. propose
a design rule of rate-compatible low-density parity-compatible codes which covers all
potential signal-to-noise ratio with a single check matrix. By such codes, high-efficiency
continuous-variable quantum key distribution information reconciliation is achieved.

There exist various loopholes in practical systems through which eavesdroppers can
attack the QKD process. Lo et al. present a measurement-device-independent quantum
key distribution (MDI-QKD) protocol to prevent attacks on measurement devices and
enhance the communication distance between two users. In [11], Hua et al. propose
a flexible multi-user measurement-device-independent quantum key distribution (MDI-
QKD) scheme based on a GHZ entangled state. Hua’s scheme can distribute quantum
keys among multiple users while being resistant to detection attacks. Hua et al. then
present simulation results which show that the secure distance between each user and the
measurement device can reach more than 280 km, while reducing the complexity of the
quantum network. Hua et al. also present a method to expand the scheme to a multi-node,
multi-user network, which can further enhance the communication distance between the
users at different nodes.
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In quantum information processing, errors are inevitable. Quantum error-correcting
codes (QECCs) are invented to ensure the implementation of quantum communication
and quantum computing. Pang et al. [12] draw support from the Hamming distance and
minimal distance of orthogonal arrays to study the relationship between uniform states
and binary QECCs. They provide new methods to construct pure quantum error-correcting
codes. By using these methods, several infinite series of quantum error-correcting codes
including some optimal ones are constructed.

A large number of practical problems often boil down to solving a system of linear alge-
braic equations, such as elasticity in engineering and science, circuit analysis, geodesy, heat
conduction, vibration, etc. Many effective numerical methods, such as spline interpolation,
least-squares fitting, generalized Newton method for solving nonlinear equations, method
for calculating the coefficients of Newton–Cotes quadrature formula, finite difference
method, and finite element method for solving numerical solutions of partial differential
equations, are also finally converted into problems of solving linear equations. Zhang et al.
in [13] provide a modified quantum scheme to obtain the quantum state corresponding to
the solutions of linear system of equations with less machine running time than the existing
quantum algorithms. The authors of [12] also investigate the problem of finding solutions
to a linear system with a sparsity-independent and non-square coefficient matrix.

Quantum entanglement swapping is a highly significant technology in quantum
entanglement repeaters, which are generally employed to realize long-distance quan-
tum entanglements in many quantum information processing tasks. In [14], Xie et al.
discuss the problem of quantum correlation (QC) swapping between two Werner-like
states by performing Bell measurements on the middle node and taking into account the
measurement-induced disturbance (MID) and ameliorated MID.

Conflicts of Interest: The authors declare no conflict of interest.
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Quantumness and Dequantumness Power of
Quantum Channels

Hongting Song 1 and Nan Li 2,3,*
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Abstract: Focusing on the dynamics of quantumness in ensembles, we propose a framework to
qualitatively and quantitatively characterize quantum channels from the perspective of the amount
of quantumness in ensembles that a quantum channel can induce or reduce. Along this line, the
quantumness power and dequantumness power are introduced. In particular, once a quantum
dynamics described by time-varying quantum channels reduces the quantumness for any input
ensembles all the time, we call it a completely dequantumness channel, whose relationship with
Markovianity is analyzed through several examples.

Keywords: quantumness in ensembles; quantum channel; quantum Markovianity; non-commutativity

1. Introduction

As natural generalizations of transition matrices in stochastic analysis, quantum
channels are completely positive and trace-preserving maps. A quantum channel usu-
ally changes the quantum features of the system, such as causing the decoherence of
quantum states [1,2] and destroying the quantum correlations [3–6]. Characterizing quan-
tum channels from the information perspective has received fruitful results. The entan-
gling power [7], decorrelating capability [8], cohering and decohering power [9–14], and
quantumness-generating capability [15] of quantum channels have been studied.

In this work, we propose a framework to qualitatively and quantitatively characterize
quantum channels by analyzing the dynamics of quantumness in ensembles. A quantum
ensemble E = {(pi, ρi), i ∈ I} is represented by a family of quantum states together with a
probability distribution specifying the probability of the occurrence of each state [16]. It
arises naturally in quantum mechanics and statistical physics, and is a fundamental and
practical object in quantum information, especially in quantum measurement and quantum
communication [17–23]. As long as the involved quantum states are not commutative,
the quantum ensemble possesses a certain intrinsic quantum feature, which is named as
quantumness in quantum ensembles. It plays a central role in quantum cryptography and
other various quantum information processing tasks. Various measures of quantumness
have been proposed from different perspectives, such as that via commutator [24,25],
that based on no cloning and no broadcasting [19], that defined from the perspective of
accessible information [24], and that via relative entropy [26] and coherence [27,28].

In general, the quantumness in a quantum ensemble will change after performing a
quantum channel. It is natural to investigate the maximal amount of quantumness that
a quantum channel can introduce or reduce. In this work, by virtue of the quantumness
measure based on commutators [24] that is easy to calculate, we study the characterization
of quantum channels from the perspective of quantumness power and dequantumness
power, which quantify the maximal amount of quantumness that a quantum channel
can induce and reduce, respectively. Comparing with the result in Ref. [29] where the
quantumness of the channel is defined as the minimum average quantum coherence of the

Entropy 2022, 24, 1146. https://doi.org/10.3390/e24081146 https://www.mdpi.com/journal/entropy5
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state space after the dynamics, quantumness power defined here is the maximal amount
of the non-commutativity between the states that can be generated after the channel. The
properties and calculation process of quantumness power and dequantumness power have
been analyzed. We call a quantum dynamics described by a quantum channel a completely
dequantumness channel if it reduces the quantumness in ensembles all the time. Through
several significant examples, the relationship between the completely dequantumness
channel and quantum Markovian channel is analyzed. It is worth mentioning that although
we mainly focus on the qubit channels, without loss of generality, the result can be directly
extended to qudit cases.

The paper is organized as follows. In Section 2, we briefly review the measure of
quantumness adopted in this work. Quantumness power and dequantumness power of
the quantum channel with their modified versions are introduced in Section 3. We give the
definition of the completely dequantumness channel and investigate its relationship with
quantum Markovianity through several significant examples in Section 4. We conclude
with a summary in Section 5.

2. Measure of Quantumness

Based on the direct connection between the quantumness of an ensemble and the non-
commutativity among its constituent states, the quantumness of the quantum ensemble
E = {(pi, ρi), i ∈ I} can be naturally quantified via the commutator as [24]

Q(E) = −∑
i,j

pi pjtr[ρi, ρj]
2, (1)

where [ρi, ρj] = ρiρj − ρjρi stands for the commutator, which is anti-Hermitian. This
measure is easy to calculate. We remark that in Refs. [30,31] the authors also used the
Hilbert–Schmidt norm of the commutators between two density operators to quantity the
non-commutativity between these two density operators.

For the two-qubit case, by virtue of the Bloch representation of the state, the expression
of Q(E) for ensembles with only two ingredients such that E = {(p, ρ1), (1− p, ρ2)} can
be further derived. Here p ∈ (0, 1), ρi =

1
2 (1 +�ri ·�σ), i = 1, 2 with 1 the identity operator,

�ri = (rix, riy, riz) the Bloch vector of the state ρi, and�σ = (σ1, σ2, σ3) the vector of the Pauli
matrices. Then, it can be calculated that

Q(E) = p(1− p)|�r1 ×�r2|2 = p(1− p)(r2
1r2

2 − (�r1 ·�r2)
2).

Here r2
i = |�ri|2, × and · denote the outer and inner product of the vectors, respectively.

The Bloch vector of state ρi can be given as �ri = ri(sin θi cos φi, sin θi sin φi, cos θi) with
ri ∈ [0, 1], θi ∈ [0, π], and φi ∈ [0, 2π), then

Q(E) = p(1− p)r2
1r2

2(n
2
1 + n2

2 + n2
3), (2)

with

n1 = sin θ1 sin θ2 sin(φ1 − φ2),

n2 = sin θ1 cos φ1 cos θ2 − cos θ1 sin θ2 cos φ2,

n3 = sin θ1 sin φ1 cos θ2 − cos θ1 sin θ2 sin φ2. (3)

Recently, a modified version of this measure is proposed in Ref. [15] as

Q
′
(E) = −∑

i,j

√
pi pjtr[

√
ρi,
√

ρj]
2,

which is proved to bear some nice properties, such as the positivity, unitary invariance,
subaddtivity, concavity under probability union, convexity under state decomposition, and
increasing under fine graining.
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For simplicity in calculation, we adopt the measure in Equation (2) in the follow-
ing. It is worth mentioning that all the work derived here can be directly generalized to
other measures.

3. Quantumness and Dequantumness Power

After a quantum channel Λ, which is a linear, trace-preserving completely positive
map, the ensemble E = {(pi, ρi), i ∈ I} evolves to Λ(E) = {(pi, Λ(ρi)), i ∈ I}. By ana-
lyzing the dynamics of quantumness in ensembles, we can characterize the quantumness
power and dequantumness power of the quantum channel. To be specific, the quantumness
power of a quantum channel is defined as the maximal amount of quantumness that it
generates over all input ensembles E . Its expression is given as

C(Λ) = max
E

(
Q(Λ(E))−Q(E)

)
,

which quantifies the ability to induce quantumness. If we only focus on the initial commu-
tative ensembles, we can get another definition of quantumness power which we denote as
C
′

with expression
C
′
(Λ) = max

{E : Q(E)=0}
Q(Λ(E)).

Similarly, we can define the dequantumness power of a quantum channel as the maximal
amount by which the quantumness of the ensemble is reduced when it passed through the
channel, i.e.,

D(Λ) = max
E

(
Q(E)−Q(Λ(E))

)
.

When we only consider the initial ensembles with the maximal quantumness, we can obtain
a modified version

D
′
(Λ) = max

{E : Q(E)=Qmax}

(
Q(E)−Q(Λ(E))

)
= Qmax − min

{E : Q(E)=Qmax}
Q(Λ(E)).

Here Qmax denotes the maximal amount of quantunness in a quantum ensemble for a given
Hilbert space, which is dependent on the space dimension.

We remark that in [32], the quantumness of a quantum channel is defined as the
maximal quantumness (non-commutativity) between the output states of the quantum
channel for any two maximal-quantumness states, which can be formally expressed as

max
{E : Q(E)=Qmax}

Q(Λ(E)).

Note that another difference in the motivation is that we start from the quantumness in
ensembles rather than any two quantum states.

From the definition, we can obtain the following properties.
(1) C(Λ) ≥ C

′
(Λ) and D(Λ) ≥ D

′
(Λ).

(2) C
′
(Λ) = 0 is equivalent to that Λ is a commutativity preserving channel.

(3) C(U) = 0 and D(U) = 0, where U is the unitary operation.
(4) C(Λ1 ◦Λ2) ≤ C(Λ1) + C(Λ2) and D(Λ1 ◦Λ2) ≤ D(Λ1) + D(Λ2).
(5) C2(Λ) ≤ Cn(λ) < 2C2(Λ) and D2(Λ) ≤ Dn(λ) < 2D2(Λ), where Cn(Λ) and

Dn(Λ) represent the quantumness and dequantumness power defined on the ensembles
with less than n ingredients, respectively.

Proof. Since the first four properties can be directly verified from the definition, we only
prove the property (5) as follows. For simplicity, we just give the proof of the quantumness
power, with the case of the dequantumness power similarly derived.

7
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For ensembles having two ingredients E2 = {(p, ρ1), (1− p, ρ2)}, the quantumness
power is

C2(Λ) =max
E2

(
Q(Λ(E))−Q(E)

)
= max

p,ρ1,ρ2
2p(1− p)

(
tr[ρ1, ρ2]

2 − tr[Λ(ρ1), Λ(ρ2)]
2
)

=
1
2

max
ρ1,ρ2

(
tr[ρ1, ρ2]

2 − tr[Λ(ρ1), Λ(ρ2)]
2
)
� 1

2
H.

For ensembles with less than n constitutes denoted by En, the quantumness power is

Cn(Λ) = max
{E2,··· ,En}

(
Q(Λ(En))−Q(En)

)
= max

k=2,··· ,n
max
Ek

(
Q(Λ(Ek))−Q(Ek)

)
= max

k=2,··· ,n
max

{(pi ,ρi),i=1,··· ,k}∑
i �=j

pi pj

(
tr[ρi, ρj]

2 − tr[Λ(ρi), Λ(ρj)]
2
)

≤ max
k=2,··· ,n

max
{pi ,i=1,··· ,k}∑

i �=j
pi pjH = max

k=2,··· ,n
max

{pi ,i=1,··· ,k}
(1−∑

i
p2

i )H

≤ max
k=2,··· ,n

(1− 1
k
)H < 2C2(Λ),

meanwhile Cn(Λ) ≥ C2(Λ), then we can directly get that

C2(Λ) ≤ Cn(Λ) < 2C2(Λ), n ≥ 2.

From this property, we can obtain that the calculation of quantumness power and
dequantumness power can be restricted to the ensembles with two ingredients. In the
following, focusing on one particular channel, the explicit calculation process is given.

Example 1. For amplitude damping channels the Kraus operators of which are E0 =

(
1 0
0
√

1− λ

)
and E1 =

(
0
√

λ
0 0

)
, we can calculate the quantumness power and dequantumness power as follows.

Through this channel, the Bloch vectors of the states in the ensemble
E2 = {(p, ρ1), (1− p, ρ2)} change from ri(sin θi cos φi, sin θi sin φi, cos θi) to

�ri =
(

ri sin θi cos φi
√

1− λ, ri sin θi sin φi
√

1− λ, λ + (1− λ)ri cos θi

)
.

From Equation (2), we can obtain the quantumness of this evolved ensemble as

Q(Λ(E2)) =p(1− p)(1− λ)
[
λ2(h2

1 + h2
2) + r2

1r2
2(n

2
2 + n2

3)

+ r2
1r2

2(1− λ)n2
1 + 2λr1r2(n3h1 + n2h2)

]
, (4)

where ni are the same to the ones in Equation (3), and

h1 = r1 sin θ1 sin φ1 − r2 sin θ2 sin φ2 + r1r2(cos θ1 sin θ2 sin φ2 − sin θ1 cos θ2 sin φ1),

h2 = r1 sin θ1 cos φ1 − r2 sin θ2 cos φ2 + r1r2(cos θ1 sin θ2 cos φ2 − sin θ1 cos θ2 cos φ1).

The quantumness power restricted to the ensembles with two ingredients is

C2(Λ) = max
p,ri ,θi ,φi

(
Q(Λ(E2))− p(1− p)r2

1r2
2(n

2
1 + n2

2 + n2
3)
)

.

8
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Since the optimization is very complicated, we only show the numerical result as the blue
solid line in Figure 1.

If we only focus on the initial ensembles without quantumness, i.e., Q(E2) = 0, which
means r1 (or r2) = 0 or n1 = n2 = n3 = 0, we can get the expression of the modified
quantumness power as

C
′
2(Λ) = λ2(1− λ), (5)

whose proof is left in the Appendix A. The difference between these two measures is shown
in Figure 1. C2(Λ) > C

′
2(Λ) when 0 ≤ λ < λc and C2(Λ) = C

′
2(Λ) when λc < λ ≤ 1,

where λc ≈ 0.75.
Similarly, we can get the expression of dequantumness power as

D2(Λ) = max
p,ri ,θi ,φi

(
p(1− p)r2

1r2
2(n

2
1 + n2

2 + n2
3)−Q(Λ(E2))

)
.

Noting maxp,ri ,θi ,φi Q(E2) = 1
4 with p = 1

2 , r1 = r2 = 1 and sin θ1 sin θ2 cos(φ1 − φ2) =
− cos θ1 cos θ2, the modified dequantumness power is

D
′
2(Λ) = max

θ∈[0,π]

1
4

[
1− (1− λ)

[
(2λ2 − 2λ + 1)

± 2λ2 sin θ cos θ + 2λ(1− λ)(cos θ ± sin θ)
]]

.

As shown in Figure 2, D2(Λ) = D
′
2(Λ) in this case.

From this example, we can obtain that C(Λ) can be strictly larger than C
′
(Λ), which

means that the maximum may not be achieved at the free case just like the cohering
power [14]. Though D2(Λ) = D

′
2(Λ) in this case, we conjecture this equality may fail in

certain cases. But we have not found the counterexample satisfying D2(Λ) > D
′
2(Λ) yet.

Meanwhile, we can obtain that the channel with higher quantumness power does not
necessarily have stronger or weaker dequantumness power. The relationship among them
is complicated. For example, C2(0.25) > C2(0.99) while D2(0.25) < D2(0.99), C2(0.5) >
C2(0.1) and D2(0.5) > D2(0.1).

Figure 1. The graphs of C2 and C
′
2 for the amplitude damping channel.
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Figure 2. The graphs of D2 and D
′
2 for the amplitude damping channel.

4. Completely Dequantumness Channel and Its Relationship with
Quantum Markovianity

In this section, we consider a quantum channel as a quantum evolution Λt. If for all
the quantum ensembles, the channel reduces the quantumness all the time, we call this
channel as the completely dequantumness channel. For these channels, we always have

d
dt

Q(Λt(E)) ≤ 0, ∀E , ∀t ≥ 0.

The completely dequantumness channel can be verified to satisfy the following properties:
(1) The quantumness power of the completely dequantumness channel is always 0,

while the inverse is not always true.
(2) To verify whether a channel is a completely dequantumness channel or not, we only

need to verify whether the inequality d
dt Q(Λt(E)) ≤ 0 holds or not for all the ensembles

with two ingredients.

Proof. We only give the proof of property (2) since the first one can be verified directly from
the definition. If the channel reduces quantumness for all ensembles E = {(pi, ρi), i ∈ I},
we can directly obtain that for the ensembles with two ingredients E = {(p, ρ1), (1− p, ρ2)},
the inequality d

dt Q(Λt(E)) ≤ 0 holds.
Conversely, if for all the ensembles with two ingredients, the inequality holds, then by

virtue of the definition in Equation (1), for the general ensembles with arbitrary numbers of
ingredients, we can obtain that d

dt Q(Λt(E)) = −∑i,j∈I pi pj
d
dt tr[Λt(ρi), Λt(ρj)]

2 ≤ 0.

For open quantum systems, the definition of completely dequantumness channel
(dynamics) reflects the information flow of quantumness from the quantum system to the
environment. Since the information loss is a typical feature of Markovianity, it is natural to
investigate the relationship between the completely-dequantumness property of a quantum
dymamics and its Markovianity.

It is worth mentioning that there are various criteria proposed to qualitatively or quan-
titatively characterize quantum non-Markovianity from different perspectives, such as divisi-
bility [33–36], the distinguishability of states [37,38], fidelity [39], correlations [35,40,41], Fisher
information [42–44], and Rényi entropy [45]. Among these, a criterion that can fully charac-
terize the non-Markovianity of a quantum dynamics [33] is using the appearance of negative
decoherence rates in the canonical form of the master equation

dρt

dt
= − i

h̄
[H(t), ρt] +

d2−1

∑
k=1

γk(t)
[
Lk(t)ρtLk(t)† − 1

2
{Lk(t)†Lk(t), ρt}

]
,

10
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where the Lk(t) form an orthonormal basis set of traceless operators, i.e., trLk(t) = 0,
trLj(t)Lk(t)† = δjk, and H(t) is Hermitian. In this sense, a time-local master equation is
Markovian if and only if the canonical decoherence rates are positive at any time, i.e.,

γk(t) ≥ 0, ∀t ≥ 0, k = 1, · · · , d2 − 1. (6)

More importantly, the authors in Ref. [33] give an example of a master equation that
is non-Markovian for all times t ≥ 0, but to which nearly all proposed non-Markovian
measures do not work. For this reason, we will adopt this criterion for Markovianity.

To make a comparative study between the completely-dequantumness property and
the Markovianity, we focus on phase damping dynamics, amplitude damping dynamics,
and random unitary dynamics.

4.1. Phase Damping Dynamics

Consider the qubit dynamics Λ = {Λt : t ≥ 0} with ρt = Λt(ρ) described by the
differential equation

dρt

dt
= γt(σzρtσz − ρt),

where
∫ t

0 γsds ≥ 0 and σz is the Pauli-z spin matrix.
This dynamics is actually a phase damping channel and can be presented as

Λt(ρ) = E0ρE†
0 +E1ρE†

1 with Kraus operators E0 = diag(1,
√

1− λt) and E1 = diag(0,
√

λt),

where λt = 1− e−4
∫ t

0 γsds.
The Bloch vectors of the evolved states are

�ri(t) = ri(
√

1− λt sin θi cos φi,
√

1− λt sin θi sin φi, cos θi).

The quantumness of evolved ensemble Λt(E) = {(p, Λt(ρ1)), (1− p, Λt(ρ2))} turns
out to be

Q(Λt(E)) = p(1− p)r2
1r2

2[(1− λt)
2m1 + (1− λt)(m2 + m3)],

with mi = n2
i given in Equation (3), and the derivative is

dQ(Λt(E))
dt

=− p(1− p)r2
1r2

2

[
2(1− λt)m1 + m2 + m3

]dλt

dt
∝ −γt.

From above, we can obtain that for all quantum ensembles,

dQ(Λt(E))
dt

≤ 0 if and only if γt ≥ 0.

It can be directly verified from the definition of Equation (6) that γt ≥ 0 is just the condition
that the channel Λt is Markovian, which is also in accordance with the results revealed by
the measures based on the quantum trace distance (BLP-Markovianity) [37], dynamical di-
visibility (RHP-Markovianity) [35], quantum mutual information (LFS-Markovianity) [41],
and quantum Fisher information [43] (see Refs. [41,43] and references therein). This implies
that for the phase damping dynamics, it is completely dequantumness if and only if it
is Markovian.

4.2. Amplitude Damping Dynamics

Consider the qubit dynamics Λ = {Λt : t ≥ 0} with ρt = Λt(ρ) satisfying the
following master equation

dρt

dt
= − i

2
st[σ+σ−, ρt] + γt(σ−ρtσ+ − 1

2
{σ+σ−, ρt}),

11
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where {·, ·} denotes the anti-commutator, σ± are the atomic raising and lowing operators, re-
spectively, and st = −2� Ġt

Gt
, γt = −2� Ġt

Gt
. Here Gt satisfies the equation Ġt = −

∫ t
0 ft−sGsds

with initial condition G0 = 1, and ft is the reservoir correlation function.
This dynamics is actually an amplitude damping channel. We can directly obtain the

Bloch vectors of the evolved states in ensemble Λt(E) as

�ri(t) =
(

ri|Gt| sin θi cos(φi + δt), ri|Gt| sin θi sin(φi + δt), 1− |Gt|2(1− ri cos θi)
)

.

Here δt is the argument of Gt. The derivative of quantumness of this evolved ensemble can
be calculated as

dQ(Λt(E))
d|Gt|2 =p(1− p)

[
k12(t) f12(t) + 2|Gt|2r2

1r2
2 sin2 θ1 sin2 θ2 sin2(φ1 − φ2)

+ k21(t) f21(t)− 2r1r2 sin θ1 sin θ2 cos(φ1 − φ2)l(t)
]
,

where

kij(t) =ri sin θi(1− |Gt|2(1− rj cos θj)), i, j = 1, 2,

fij(t) =ri sin θi(1− 3|Gt|2(1− rj cos θj)), i, j = 1, 2,

l(t) =1− 2|Gt|2(2− r1 cos θ1 − r2 cos θ2) + 3|Gt|4(1− r1 cos θ1)(1− r2 cos θ2).

We define

h(|Gt|) � min
p,ri ,θi ,φi

dQ(Λt(E))
d|Gt|2

and plot it in Figure 3. From the figure, we can easily get that h(|Gt|) < 0 when |Gt| > 1
4 ,

which implies that

dQ(Λt(E))
dt

≤ 0, ∀ E ⇔ |Gt| ≤ 1
4

and
d|Gt|

dt
≤ 0.

If |Gt| > 1
4 , we can always find particular ensemble whose quantumness increases during

the evolution.

0 0.25 0.5 0.75 1

|G
t
|

0

h(
|G

t|)

Figure 3. h(|Gt|) as a function of |Gt|.

It can be directly verified from the definition of Equation (6) that the amplitude damp-
ing channel is Markovian if and only if γt = − 2

|Gt |
d|Gt |

dt ≥ 0, i.e., d|Gt |
dt ≤ 0, which is also

12
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in accordance with the result revealed by the measures based on the quantum trace dis-
tance (BLP-Markovianity), quantum mutual information (LFS-Markovianity), and quantum
Fisher information (see Refs. [41,43,46] and references therein). Based on this observation,
we know that Markovianity does not imply completely dequantumness. It means that
there exists a Markovian channel that can induce quantumness for some ensembles.

4.3. Random Unitary Dynamics

Consider the qubit dynamics Λ = {Λt : t ≥ 0} with ρt = Λt(ρ) described by the
master equation

dρt

dt
=

3

∑
i=1

γi(t)(σiρtσi − ρt),

where γi(t) are suitable real functions of time, and σi are the Pauli spin matrices. This
dynamic is actually a random unitary dynamic and can be written in the following
equivalent form

Λt(ρ) =
3

∑
i=0

pi(t)σiρσi.

Here p0(t) = (1 + ∑3
j=1 λj(t))/4 and pi(t) = λi(t)/2 + (1 − ∑3

j=1 λj(t))/4 with

λi(t) = e2
∫ t

0 (γi(s)−∑3
j=1 γj(s))ds.

The Bloch vectors of the evolved ensemble Λt(E) can be derived as

�ri(t) = ri(λ1(t) sin θi cos φi, λ2(t) sin θi sin φi, λ3(t) cos θi),

and the quantumness measure is

Q(Λt(E)) ∝ λ2
1(t)λ

2
2(t)m1 + λ2

1(t)λ
2
3(t)m2 + λ2

2(t)λ
2
3(t)m3.

From this expression, we can obtain that

d
dt

Q(Λt(E)) ≤ 0, ∀E ⇔ d
dt

λi(t)λj(t) ≤ 0, i �= j,

which is equivalent to γ1(t) + γ2(t) + γ3(t) + γj(t) ≥ 0 for all j = 1, 2, 3.
Recall that it has been verified that the random unitary dynamics is Markovian by

the definition of Equation (6) if and only if γi(t) + γj(t) ≥ 0 for all i �= j, i, j = 1, 2, 3 [47],
which is consistent with the result revealed by the measures based on the quantum trace
distance (BLP-Markovianity) [48]. From the above, we get that Markovianity implies the
completely dequantumness, while the inverse is not always true.

In summary, for several significant quantum channels, we have derived the conditions
for the dynamics to be completely dequantumness, and compare them with the Markovian
conditions. Their relationships are illustrated in Table 1.

Table 1. Relationship between completely dequantumness (CDQ) and Markovianity.

Channel Completely Dequantumness Markovianity Relationship

Phase Damping γt ≥ 0 γt ≥ 0 CDQ⇔Markovianity

Amplitude Damping |Gt| ≤ 1
4 and d|Gt |

dt ≤ 0 d|Gt |
dt ≤ 0 CDQ ⇒

�⇐ Markovianity

Random Unitary γ1(t) + γ2(t) + γ3(t) + γj(t) ≥ 0 γi(t) + γj(t) ≥ 0, i �= j CDQ �⇒⇐ Markovianity

From the table, we find that the completely dequantumness channel is related with
Markovian channel, while they are different. There exists the Markovian channel, which
induces quantumness for some ensembles. Meanwhile, there are also some completely
dequantumness channel that are non-Markovian.
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5. Conclusions

In this work, we mainly investigate the dynamics of quantumness in ensembles,
and propose quantumness power and dequantumness power to characterize quantum
channels. Once the channel reduces quantumness for all the ensembles at all times, we call
it the completely dequantumness channel, whose relationship with the Markovian channel
is studied through several examples. This work illustrates new properties of quantum
channels from the perspective of the information flow in terms of quantumness brought by
the interaction between the system and environment. It is worth mentioning that although
we only focus on the qubit case and one special quantumness measure, the results can be
generalized to arbitrary dimensions and other measures of quantumness.

There are still some problems to be further investigated. (1) From Ref. [49], we can
obtain that the commutativity-preserving channels cannot increase the quantumness of
ensembles, which means the quantumness power is zero for the unital qubit channel. Can
we find any non-unital qubit channel without quantumness power? (2) Whether the convex
combination of completely dequantumness channels is still completely dequantumness?
Suppose Λ and Φ are two completely dequantumness channels, we need to check whether
αΛ + (1 − α)Φ is a completely dequantumness channel or not. Since quantumness of
ensembles plays an important role in quantum communication and quantum cryptography,
this work is expected to be helpful in guiding quantum information tasks.
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Appendix A

Here we give the proof of Equation (5). From the definition of the modified quantum-
ness power, we only need to focus on the ensembles without quantumness. By Equation (2)
we know that for an ensemble E = {(p, ρ1), (1− p, ρ2)} such that Q(E) = 0, it holds that

r1(or r2) = 0 or n1 = n2 = n3 = 0.

Towards these two cases, we calculate the quantumness of the ensemble E .
(i) For the case that ri = 0, i = 1 or 2, without loss of generality, we assume r1 = 0,

then from Equation (4) it follows that

Q(Λ(E)) = p(1− p)λ2(1− λ)r2
2 sin2 θ2 ≤ 1

4
λ2(1− λ),

and the upper bound can be achieved by the ensemble E0 = {( 1
2 , ρ1), ( 1

2 , ρ2)} with ρ1 = 1
2 ,

and ρ2 = 1
2

(
1 e−iφ

eiφ 1

)
, ∀φ ∈ [0, 2π).

(ii) For the case that n1 = n2 = n3 = 0, from Equation (4) it follows that

Q(Λ(E)) =p(1− p)λ2(1− λ)(r2
1 sin2 θ1 + r2

2 sin2 θ2 − 2r1r2 sin θ1 sin θ2 cos(φ1 − φ2))

≤p(1− p)λ2(1− λ)(r2
1 sin2 θ1 + r2

2 sin2 θ2 + 2r1r2| sin θ1 sin θ2|)
=p(1− p)λ2(1− λ)(r1| sin θ1|+ r2| sin θ2|)2 ≤ λ2(1− λ),
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and the upper bound can be achieved by the ensemble E0 = {( 1
2 , ρ1), ( 1

2 , ρ2)} with

ρ1 = 1
2

(
1 e−iφ1

eiφ1 1

)
and ρ2 = 1

2

(
1 −e−iφ2

eiφ2 1

)
, ∀φi ∈ [0, 2π), i = 1, 2.

Combining these two cases, we get that the modified quantumness power of the
amplitude damping channel Λ is

C
′
2(Λ) = max

{E2:Q(E2)=0}
Q(Λ(E2)) = λ2(1− λ).
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Abstract: Quantum verification has been highlighted as a significant challenge on the road to scalable
technology, especially with the rapid development of quantum computing. To verify quantum
states, self-testing is proposed as a device-independent concept, which is based only on the observed
statistics. Previous studies focused on bipartite states and some multipartite states, including all
symmetric states, but only in the case of three qubits. In this paper, we first give a criterion for the
self-testing of a four-qubit symmetric state with a special structure and the robustness analysis based
on vector norm inequalities. Then we generalize the idea to a family of parameterized four-qubit
symmetric states through projections onto two subsystems.

Keywords: Bell inequality; self-testing; symmetric states; device independent

1. Introduction

In recent years, quantum technology has developed rapidly and is expected to gain
new real-world applications in communication, simulation, sensing, and computing [1–4].
Quantum devices promise to effectively solve some problems that are difficult to deal with
in the classical field [5,6]. However, it also brings a thorny problem. How do we verify
the solutions? The task of ensuring the correct operations of quantum devices in terms of
accuracy of output is known as quantum verification [7], which is attracting more attention.

A common quantum state verification technology was quantum state tomography (QST) [8]
in the past. It has been implemented in systems with few components, but unfortunately, it
becomes unfeasible for larger systems because the complexity grows exponentially with the
system size. To solve this problem, another alternative technique called self-testing [9] was
proposed. These two techniques could be used to verify the quantum systems.

Self-testing is a device-independent approach to verifying that the previously un-
known quantum system state and uncharacterized measurement operators are to some
degree close to the target state and measurements (up to local isometries) based only on
observed statistics, without assuming the dimension of the quantum system. The device-
independent (DI) approach [10] is important in practical quantum communications. One of
the main applications of self-testing is quantum key distribution (QKD) [11,12], which is
of great interest because of its high security. For the users, the quantum key distribution
system is purchased from the device providers. However, if a device provider deliberately
creates a “dishonest” quantum device, which does not perform key distribution according
to the correct protocol, then the key distribution performed with such a device will be
insecure. Therefore, it is imperative to test the trustworthiness of quantum cryptographic
devices. Fortunately, based on the idea of self-testing quantum systems, it is possible to
design device-independent quantum cryptography protocols. For example, in the device-
independent QKD protocols, even if the device provider is not trusted, the user can still
ensure that the keys generated by the device are secure. The essence is that the user self-
tests the quantum device and uses its output as the key under the condition that the test is
passed, and the key must be trusted in this case. In addition to quantum key distribution,
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various protocols, such as random number generation [13], and entanglement witness [14],
have been designed in a device-independent framework so far.

Let us consider a scenario where N distant observers share an unknown N-partite
quantum state |Ψ〉. Each party can perform uncharacterized measurements {Mxi

ai } on
the state with their quantum devices, where i marks different parties, xi marks different
measurement settings for party i, and ai marks the corresponding measurement outcomes.
In a device-independent scenario, the process of measuring an unknown quantum state
can be viewed as a black box for the N observers: they can only query their devices with
possible measurement settings xi, and to any query, the black box produces a corresponding
outcome. As we do not assume the dimension of the quantum system, the dimension of
the Hilbert space is not fixed. Without loss of generality, we assume that the unknown
state is pure. There is no loss of generality because an extra system can be added to
some of the parties, if necessary, to purify the state, and the purification of the state can
be included in the black boxes. Similarly, we can further assume that the measurement
operators are projective without loss of generality, as an auxiliary system in some known
state can be added to the measured system to replace a general POVM on this system
by a projective measurement on the extended system [9]. According to the postulates of
quantum mechanics [15], the data they observe are given by

p(a1, a2, · · · , aN | x1, x2, · · · , xN) = 〈Ψ|Mx1
a1 ⊗Mx2

a2 ⊗ · · ·MxN
aN |Ψ〉 , (1)

which is referred to as a correlation [16] based on the quantum nonlocality [17] of entangled
states [18]. As the possibility to self-test quantum states and measurements usually relies
on quantum nonlocality, only the entangled states can be device-independently verified by
self-testing techniques. The self-testing problem consists of deciding if the knowledge of
the correlation allows us to deduce the structure of the unknown quantum system.

Symmetric states [19] have been found useful in many quantum information tasks,
such as measurement-based quantum computation (MBQC) [20], as they are not too entan-
gled to be computationally universal. Due to the important role of symmetry in the field of
quantum entanglement, it is important to explore the properties of symmetric states.

This paper is organized as follows. The basic definitions and preliminaries are given
in Section 2. In Section 3, we prove analytically that a particular symmetric four-qubit
state can be self-tested and give bounds that are robust to inevitable experimental errors.
In addition, we show the self-testing of a family of parameterized four-qubit symmetric
states, which are superpositions of four-qubit Dicke states through projections onto two
subsystems in Section 4, and we give the conclusions in Section 5.

2. Basic Definitions and Preliminaries

In this section, we present the definitions of self-testing [21] and give the known results
as several lemmas, which may be used as building blocks for our work.

Definition 1 (Self-testing). A known correlation allows for self-testing the state |Ψ′ 〉 and mea-
surements {M

′ xi
ai
}; if any state and measurements |Ψ〉 and {Mxi

ai } reproduce the correlation, there
exists a local isometry Φ such that

Φ(|Ψ〉) = |junk〉 ⊗ |Ψ′ 〉 ,

Φ(Mx1
a1 ⊗Mx2

a2 ⊗ · · · ⊗ MxN
aN |Ψ〉) = |junk〉 ⊗ (M

′ x1
a1
⊗ M

′ x2
a2
⊗ · · · ⊗ M

′ xN
aN
|Ψ′ 〉),

(2)

where the state |junk〉 is an auxiliary state which will be traced out and thus not taken into
consideration.

The currently known self-testing protocols are mainly tailored for bipartite
states [22–26]. We first review two-qubit self-testing. As given in [23,24], all pure two-qubit
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entangled states can be self-tested by observing the maximum violation of the tilted CHSH
inequality [27]

B(α, A0, A1, B0, B1) ≡ αA0 + A0(B0 + B1) + A1(B0 − B1) ≤ 2 + α, (3)

where 0 ≤ α < 2 and Ai and Bi are observables with outcomes ±1. The maximal violation
is given by b(α) � maxφ 〈φ| B(α, A0, A1, B0, B1) |φ〉 =

√
8 + 2α2.

Lemma 1. Any pure two-qubit states in their Schmidt form |Ψθ〉 = cos θ |00〉+ sin θ |11〉 can be
self-tested by achieving the maximal quantum violation of the tilted CHSH inequality Equation (3).
The corresponding measurements Ai and Bi for two distant parties, Alice and Bob, are set as

A1 = σz, B1 = cos μσz + sin μσx,

A2 = σx, B2 = cos μσz − sin μσx.
(4)

Here, sin 2θ =
√

4−α2

4+α2 and μ = arctan sin 2θ.

Especially for the maximally entangled two-qubit states in the form |00〉+|11〉√
2

, there
exist another two criteria [25].

Lemma 2 (Mayers–Yao criterion). Consider five unknown dichotomic measurements {XA,
ZA; XB, ZB, DB}. If the following statistics are observed

〈Ψ| ZAZB |Ψ〉 = 〈Ψ|XAXB |Ψ〉 = 1,

〈Ψ|XAZB |Ψ〉 = 〈Ψ| ZAXB |Ψ〉 = 0,

〈Ψ| ZADB |Ψ〉 = 〈Ψ|XADB |Ψ〉 = 1√
2

,

(5)

then up to a local isometry, the state |Ψ〉 is self-tested into the maximally entangled two-qubit state
|00〉+|11〉√

2
, and the measurements are the suitable complementary Pauli operators.

Lemma 3 (XOR game). Consider four unknown operators {A0, A1, B0, B1} with binary outcomes
±1 and let Exy ≡ 〈Ψ| AxBy |Ψ〉 = cos αxy. The state |Ψ〉 can be self-tested into the maximally

entangled two-qubit state |00〉+|11〉√
2

by winning the binary nonlocal XOR game defined by the figure
of merit ∑

(x,y)∈(0,1)2
fxyExy if it satisfies α00 + α10 = α01 − α11. The coefficients fxy are constructed

by ⎛⎜⎜⎝
f00
f01
f10
f11

⎞⎟⎟⎠ =

⎛⎜⎜⎝
sin−1 α00

− sin−1 (α00 + α10 + α11)
sin−1 α10
sin−1 α11

⎞⎟⎟⎠. (6)

However, the self-testing of multipartite scenarios has not been fully explored. In this paper,
we work on the four-qubit symmetric entangled states.

Definition 2 (Symmetric states). Symmetric quantum states preserve invariance under any
permutation of their subsystems. We say that an n-partite state |Ψ〉 is symmetric if P |Ψ〉 = |Ψ〉
for all P ∈ Sn, where Sn is the symmetric group of n elements. The n-qubit Dicke states |Sn,k〉 are
typical examples of symmetric state, which are the equally weighted sums of all permutations of
computational basis states with n− k qubits being |0〉 and k being |1〉:

|Sn,k〉 =
(

n
k

)−1/2

∑
Permutation

|0〉 |0〉 . . . |0〉︸ ︷︷ ︸
n−k

|1〉 |1〉 . . . |1〉︸ ︷︷ ︸
k

. (7)
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Let |Ψ〉 be a state vector in an N-fold tensor product space S1 ⊗ · · · ⊗ SN, where dimS1 =
· · · = dimSN = d ≥ 2 and N ≥ 3. As the generalization of the Schmidt decomposition given
in [28], if d = 2, any multipartite states can be written in the expansion as

|Ψ〉 = ∑
i1,i2,··· ,iN∈{0,1}

ti1i2···iN |i1〉 |i2〉 |i3〉 · · · |iN〉 , (8)

where some coefficients satisfy

t011···11 = t101···11 = · · · = t111···10 = 0, (9)

and the rest 2N − N orthogonal product states

{|
N︷ ︸︸ ︷

000 . . . 00〉 , |
N−1︷ ︸︸ ︷

000 . . . 0 1〉 , · · · , |1
N−1︷ ︸︸ ︷

0 . . . 00〉 , · · · , |00

N−2︷ ︸︸ ︷
1 . . . 11〉 , · · · , |

N−2︷ ︸︸ ︷
11 . . . 100〉 , |

N︷ ︸︸ ︷
111 . . . 11〉} (10)

can be seen as a set of local bases. To characterize the symmetric multi-qubit states, we only need to
make the rest coefficients have properties

t000···01 = t00···010 = · · · = t100···00,
...

t001···11 = t0101···1 = · · · = t11···100.

(11)

3. Self-Testing of a Four-Qubit Symmetric State

In this section, we focus on a four-qubit symmetric state with a special structure by
using the known results. In the case of N = 4, as given in Equation (10), the set of local
bases is

{ |0000〉 , |0001〉 , |0010〉 , |0100〉 , |1000〉 , |0011〉 ,

|0101〉 , |0110〉 , |1001〉 , |1010〉 , |1100〉 , |1111〉} (12)

3.1. Self-Testing of a Specific Four-Qubit Symmetric State

The specific four-qubit symmetric state we consider is

|Ψ′
1〉 =

1
2
√

2
(|0000〉+ |0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉+ |1111〉)ABCD, (13)

which is shared by four distant observers, Alice, Bob, Charlie and David.
Rewrite the state as

|Ψ′
1〉 =

1
2
√

2
[
√

2 |00〉AB ⊗
1√
2
(|00〉+ |11〉)CD +

√
2 |01〉AB ⊗

1√
2
(|01〉+ |10〉)CD

+
√

2 |10〉AB ⊗
1√
2
(|01〉+ |10〉)CD +

√
2 |11〉AB ⊗

1√
2
(|00〉+ |11〉)CD].

(14)

The concept of partial measurements [29] is involved in our scheme, which appears
very often in reality. A similar approach for quantum nonlocality chracterization is given
in [30], where quantum imcompatibility is used to characterize nonlocality. According
to the partial measurement postulate given in [29], if any two parties, without loss of
generality, e.g., Alice and Bob, each measure in the σz basis, the remaining two parties share
a maximally entangled two-qubit state |00〉+|11〉√

2
conditioned on the outcome “00” and “11”,

respectively, which can be self-tested combining Lemma 2.
We construct the local isometry Φ as Figure 1. Here, H is the usual Hadamard gate.

Obviously, if Zi = σz, Xi = σx, we can extract the essential information on the unknown
state into auxiliary systems. Inspired by this, Zi and Xi should act analogously to the Pauli
operators on |Ψ1〉 to guarantee the feasibility of the protocol. However, in order to make
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the protocol device-independent, we cannot directly consider Zi and Xi of each party as
Pauli operators, but should construct them with the measurements {Mxi

ai } properly. We
sum the result up as below.

Figure 1. Swap circuit of the isometry Φ to self-test the target state |Ψ′
1〉.

Result 1. Consider four spatially separated parties, Alice, Bob, Charlie and David, each performing
three measurements {Xs, Zs, Ms}(s ∈ {A, B, C, D}) with binary outcomes on an unknown shared
quantum state |Ψ1〉. The target symmetric state |Ψ′

1〉 is self-tested if the statistics are observed as
the following:

〈P0
AP0

BP0
CP0

D〉 = 〈P0
AP0

BP1
CP1

D〉 = 〈P0
AP1

BP0
CP1

D〉 = 〈P0
AP1

BP1
CP0

D〉
= 〈P1

AP0
BP0

CP1
D〉 = 〈P1

AP0
BP1

CP0
D〉 = 〈P1

AP1
BP0

CP0
D〉 = 〈P1

AP1
BP1

CP1
D〉 =

1
8

,
(15)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
〈P0

i P0
j XkXl〉 = 〈P0

i P0
j ZkZl〉 = 1

4

〈P0
i P0

j Xk Ml〉 = 〈P0
i P0

j Zk Ml〉 = 1
4
√

2
〈P0

i P0
j XkZl〉 = 0

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
〈P1

AP1
BXCXD〉 = 〈P1

AP1
BZCZD〉 = 1

4

〈P1
AP1

BXC MD〉 = 〈P1
AP1

BZC MD〉 = 1
4
√

2
〈P1

i P1
j XkZl〉 = 0

, (16)

where (i, j, k, l) = {(A, B, C, D), (A, C, B, D), (A, D, B, C), (B, C, A, D), (B, D,
A, C), (C, D, A, B)} and P0

s � PZs=+1 = 1+Zs
2 , P1

s � PZs=−1 = 1−Zs
2 , where s ∈ {A, B, C, D}

are projectors for the Zs measurement.

Proof. To begin with, the output after the isometry given in Figure 1 is

|Ψ̃1〉 = Φ(|Ψ1〉 |0000〉A′B′C′D′ )

= ∑
a,b,c,d∈{0,1}

Xa
AXb

BXc
CXd

DPa
APb

BPc
CPd

D |Ψ1〉 |abcd〉 . (17)

Observation Equation (15) implies that

〈P0
AP0

BP0
CP0

D〉+ 〈P0
AP0

BP1
CP1

D〉+ 〈P0
AP1

BP0
CP1

D〉+ 〈P0
AP1

BP0
CP1

D〉
+ 〈P1

AP0
BP0

CP1
D〉+ 〈P1

AP0
BP1

CP0
D〉+ 〈P1

AP1
BP0

CP0
D〉+ 〈P1

AP1
BP1

CP1
D〉 = 1,

(18)
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and thus Pa
APb

BPc
CPd

D |Ψ1〉 = 0 for other eight projectors. Based on the fact that 〈ψ|φ〉 = 1
implies |ψ〉 = |φ〉, observation of Equation (16) implies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P0
i P0

j Xk |Ψ1〉 = P0
i P0

j Xl |Ψ1〉 , P0
i P0

j Zk |Ψ1〉 = P0
i P0

j Zl |Ψ1〉
P0

i P0
j Xk |Ψ1〉 ⊥ P0

i P0
j Zk |Ψ1〉 , P0

i P0
j Xl |Ψ1〉 ⊥ P0

i P0
j Zl |Ψ1〉

P0
i P0

j Ml |Ψ1〉 =
P0

i P0
j Xl |Ψ1〉+ P0

i P0
j Zl |Ψ1〉√

2
=

P0
i P0

j Xk |Ψ1〉+ P0
i P0

j Zk |Ψ1〉√
2

, (19)

and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P1

AP1
BXC |Ψ1〉 = P1

AP1
BXD |Ψ1〉 , P1

AP1
BZC |Ψ1〉 = P1

AP1
BZD |Ψ1〉

P1
AP1

BXC |Ψ1〉 ⊥ P1
AP1

BZC |Ψ1〉 , P1
AP1

BXD |Ψ1〉 ⊥ P1
AP1

BZD |Ψ1〉

P1
AP1

B MD |Ψ1〉 =
P1

AP1
BXD |Ψ1〉+ P1

AP1
BZD |Ψ1〉√

2
=

P1
AP1

BXC |Ψ1〉+ P1
AP1

BZC |Ψ1〉√
2

. (20)

Obviously, we have (P0
i P0

j Ml)
2 |Ψ1〉 = P0

i P0
j M2

l |Ψ1〉. Since X2 = Z2 = M2 = I,

we have P0
i P0

j |Ψ1〉 =
P0

i P0
j (Xk+Zk)

2|Ψ1〉
2 =

P0
i P0

j (Xl+Zl)
2|Ψ1〉

2 . Hence, we obtain the following
anti-commutation relation

P0
i P0

j XkZk |Ψ1〉 = −P0
i P0

j ZkXk |Ψ1〉
P0

i P0
j XlZl |Ψ1〉 = −P0

i P0
j ZlXl |Ψ1〉

(21)

for all (i, j, k, l) = {(A, B, C, D), (A, C, B, D), (A, D, B, C), (B, C, A, D), (B, D, A, C), (C, D,
A, B)}, and similarly,

P1
AP1

BXCZC |Ψ1〉 = −P1
AP1

BZCXC |Ψ1〉
P1

AP1
BXDZD |Ψ1〉 = −P1

AP1
BZDXD |Ψ1〉 .

(22)

All these properties of the operators will help to reduce the output Equation (17). By us-
ing Equation (21), XCXDP0

AP0
BP1

CP1
D |Ψ1〉 is equal to P0

AP0
BP0

CXCP0
DXD |Ψ1〉.

As P0
AP0

BXC |Ψ1〉 = P0
AP0

BXD |Ψ1〉 shown in Equation (19), this term becomes P0
AP0

BP0
CP0

D |Ψ1〉.
We can simplify the other five terms similarly. For the last term, we can obtain P1

AP1
BP0

CP0
D |Ψ1〉

using Equations (20) and (22), which can also be simplified to P0
AP0

BP0
CP0

D |Ψ1〉. As a reminder,
there are eight terms equal to zero. Hence, the output Equation (17) is reduced to

|Ψ∗1〉 =P0
AP0

BP0
CP0

D |Ψ1〉 (|0000〉+ |0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉
+ |1111〉) (23)

and can be normalized into the form of |junk〉 ⊗ |Ψ′
1〉, here |junk〉 = 2

√
2P0

AP0
BP0

CP0
D |Ψ1〉.

3.2. Robustness Analysis Based on the L2 Norm

In this section, we give the analysis of robustness based on the vector norm inequality.
Result 1 relies on the observation of Equations (15) and (16) exactly; however, which may
be impossible in actual experiments due to the inevitable deviation from the ideal case.
Suppose each observation in Equations (15) and (16) admits a deviation at most ε around
the ideal value. We say that the self-testing of |Ψ′

1〉 is robust [31] if the isometry still extracts
a state close to it and satisfies

‖ |Ψ̃1〉 − |junk〉 ⊗ |Ψ′
1〉 ‖ ≤ f (ε), (24)

where f (ε)→ 0 when ε → 0.
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We show that

‖ |Ψ̃1〉 − |junk〉 ⊗ |Ψ′
1〉 ‖ ≤ f (ε) = 265.98ε + 348.45ε

3
4 + 94.87ε

1
2 + 60.70ε

1
4 (25)

in Appendix A, which proves the robustness of Result 1.

4. Self-Testing of a Family of Parameterized Four-Qubit Symmetric States

In this part, we consider a more general state

|Ψ′
2〉 =

1√
8 + 4t2

[|0000〉+ t(|0001〉+ |0010〉+ |0100〉+ |1000〉) + |0011〉
+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉+ |1111〉]ABCD

(26)

where t > 0 and t �= 1. The parameterized state is a superposition of W state, GHZ state
and |S4,2〉 state, where the ratio of the coefficient of GHZ state and |S4,2〉 state is a constant
value, which is equal to 1√

3
. Rewrite the states as

|Ψ′
2〉 =

1√
8 + 4t2

[
√

2 + 2t2 |00〉AB ⊗
1√

2 + 2t2
(|00〉+ t |01〉+ t |10〉+ |11〉)CD

+
√

2 + t2 |01〉AB ⊗
1√

2 + t2
(t |00〉+ |01〉+ |10〉)CD

+
√

2 + t2 |10〉AB ⊗
1√

2 + t2
(t |00〉+ |01〉+ |10〉)CD

+
√

2 |11〉AB ⊗
1√
2
(|00〉+ |11〉)CD].

(27)

Denote
|ψ1〉 = 1√

2 + 2t2
(|00〉+ t |01〉+ t |10〉+ |11〉)CD,

|ψ2〉 = 1√
2
(|00〉+ |11〉)CD.

(28)

The state |ψ1〉 in its Schmidt form is

|ψ1〉 = cos β |0′ 〉C |0
′ 〉D + sin β |1′ 〉C |1

′ 〉D , (29)

where cos β = 1+t√
2+2t2 , sin β = |1−t|√

2+2t2 . Here, {|i′ 〉C}, {|i′ 〉D}, i ∈ {0, 1} are the correspond-
ing new bases for C and D. (See detail in Appendix C).

If t = 1, |ψ1〉 is not an entangled state and the lack of nonlocality may result in the
failure of the self-testing. Following the framework of [32], we intend to divide the four
parties into two parts, and one of them performs local measurements on |Ψ2〉. If we divide
ABCD randomly into groups that each have two parties, for example, AB and CD, as
a result, the projection measurements may collapse the state shared by the remaining
parts into some unknown pure bipartite entangled states. Then the remaining two parts
should check whether the projected state they share violates maximally Equation (3) for
the appropriate α. Without loss of generality, if A and B perform the measurement in the
σz bases, |ψ1〉 and |ψ2〉 should be self-tested by C and D, respectively, and simultaneously
conditioned on the outcomes “00” and “11”.

Following the result given in Lemma 1, |ψ1〉 can be self-tested by reaching the maximal
violation of the tilted CHSH Bell inequality

b(α) =
√

8 + 2α2 =
2
√

2(t + 1)√
1 + t2

, (30)
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where α = 2
√

1−sin2 2β

1+sin2 2β
and the optimal measurement are set as Lemma 1 with

tan μ = 1−t2

1+t2 . Meanwhile, |ψ2〉 is still a maximally entangled two-qubit state under the
same transformation of bases

|ψ2〉 = 1√
2
(|0′0′ 〉+ |1′1′ 〉)CD, (31)

and hence, we can use the same measurement settings as |ψ1〉. As the definition given
in Lemma 3, α00 = μ, α01 = −μ, α10 = π

2 − μ, α11 = −π
2 − μ, and thus it will satisfy the

condition α00 + α10 = α01 − α11.
Define

f (t) =

{
0, t < 1
1, t > 1

. (32)

Then |ψ1〉 can be self-tested by winning the XOR game and we give the criterion to
self-test |Ψ′

2〉 as the following Result 2.

Result 2 (See proof in Appendix B). Consider four spatially separated parties, Alice, Bob, Charlie
and David, each performing five measurements with binary outcomes denoted as Ai, Bj, Ck,
Dl(i, j, k, l ∈ {0, 1, 2, 3, 4}) on an unknown shared quantum state |Ψ2〉. The target state |Ψ′

2〉 is
self-tested if the statistics are observed as the following⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

〈P0
AP0

BP0
CP0

D〉 = 〈P0
AP0

BP1
CP1

D〉 = 〈P0
AP1

BP0
CP1

D〉 = 〈P0
AP1

BP1
CP0

D〉 = 〈P1
AP0

BP0
CP1

D〉
= 〈P1

AP0
BP1

CP0
D〉 = 〈P1

AP1
BP0

CP0
D〉 = 〈P1

AP1
BP1

CP1
D〉 =

1
8 + 4t2

〈P0
AP0

BP0
CP1

D〉 = 〈P0
AP0

BP1
CP0

D〉 = 〈P0
AP1

BP0
CP0

D〉 = 〈P1
AP0

BP0
CP0

D〉 =
t2

8 + 4t2

, (33)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
〈P0

MP0
NB(α, Q0, Q1, R2, R3)〉 = t2 + 1

2t2 + 4

√
8 + 2α2

〈P0
MP0

NQ0(R2 − R3)〉 = 0

〈P0
MP0

N R2〉
2 sin μ

− 〈P
0
MP0

N R3〉
2 sin μ

= (−1) f (t)〈P0
MP0

N R1〉

, (34)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
i∈(0,1),j∈(2,3)

fij〈P1
AP1

BCiQj〉 = 2
(2 + t2) sin 2μ

〈P1
AP1

BC0(D2 − D3)〉 = 0

〈P1
AP1

BD2〉
2 sin μ

− 〈P
1
AP1

BD3〉
2 sin μ

= (−1) f (t)〈P1
AP1

BD1〉

, (35)

〈P0
MP0

N P0
QP0

RR0〉 = t
4t2 + 8

, (36)

where (M, N, Q, R) ∈ {(A, B, C, D), (A, C, B, D), (A, D, B, C), (B, C, D, A), (B, D, A, C), (C,
D, A, B)}, P0

s � PZs=+1 = 1+Zs
2 , P1

s � PZs=−1 = 1−Zs
2 , where s ∈ {A, B, C, D} are projectors
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for the Zs measurement and sin μ = |1−t|√
2+2t2 , cos μ = 1+t√

2+2t2 . At the same time, we find a proper
construction of the local isometry Φ, where Zs and Xs are based on the measurement settings

ZA = A1 = (−1) f (t) A2 − A3

2 sin μ
, XA = A0 =

A2 + A3

2 cos μ
,

ZB = B1 = (−1) f (t) B2 − B3

2 sin μ
, XB = B0 =

B2 + B3

2 cos μ
,

ZC = C1 = (−1) f (t) C2 − C3

2 sin μ
, XC = C0 =

C2 + C3

2 cos μ
,

ZD = D1 = (−1) f (t) D2 − D3

2 sin μ
, XD = D0 =

D2 + D3

2 cos μ
,

(37)

and thus makes the protocol device-independent. In addition, each party may need another fifth
measurements A4 = ZAXA, B4 = ZBXB, C4 = ZCXC, D4 = ZDXD to obtain the observation of
Equation (36). Since σZσX = iσY, the fifth measurements are feasible in practical experiments.

5. Conclusions

In this paper, we propose schemes to self-test a large family of four-qubit symmetric
states. The target states we focus on are the superposition of the four-qubit Dicke states.

We first present a procedure for self-testing of a particular four-qubit symmetric state
with a special structure, and this procedure makes use of the self-testing of the maximally
entangled two-qubit state |00〉+|11〉√

2
. At the same time, we prove that this protocol is robust

against inevitable experimental errors based on norm inequality. In addition, we propose an
approach to self-test a one-parameter family of four-qubit pure states through projections
onto two systems. Here in our work, only the simplest Pauli measurements are used, which
is quite helpful in the experiments.

It would also be of interest to work on a more general state with two parameters by
using the swap method and semidefinite programming (SDP) [26] in the form

|Ψ〉 = cos θ cos ρ |GHZ〉+ cos θ sin ρ |S4,2〉+ sin θ |W〉 , (38)

where θ ∈ [0, π
2 ], ρ ∈ [0, π

2 ], which may provide better robustness than the analytical
bounds. What is more, our work could potentially be generalized to a higher dimension
scenario. These are reserved for our future work.
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Appendix A. Proof of the Robustness

In this section, we give the proof of Equation (25) based on the L2 norm. Rewrite the
norm Equation (24) as

‖ |Ψ̃1〉 − |junk〉 ⊗ |Ψ′
1〉 ‖ = ‖ |Ψ̃1〉 − |Ψ∗1〉+ |Ψ∗1〉 − |junk〉 ⊗ |Ψ′

1〉 ‖
≤ ‖ |Ψ̃1〉 − |Ψ∗1〉 ‖+ ‖ |Ψ∗1〉 − |junk〉 ⊗ |Ψ′

1〉 ‖.
(A1)

25



Entropy 2022, 24, 1003

Obviously, we need to find the upper bounds for ‖ |Ψ̃1〉 − |Ψ∗1〉 ‖ and ‖ |Ψ∗1〉 − |junk〉 ⊗
|Ψ′

1〉 ‖ respectively. Suppose each observation in Equations (15) and (16) has a deviation at
most ε around the ideal value. Then we can obtain some inequalities, for instance

1
8
− ε ≤ 〈P0

AP0
BP0

CP0
D〉 ≤

1
8
+ ε, 〈P0

AP0
BXCXD〉 ≥ 1

4
− ε, 〈P0

AP0
BZCZD〉 ≥ 1

4
− ε,

〈P0
AP0

BXCZD〉 ≤ ε, 〈P0
AP0

BXC MD〉 ≥ 1
4
√

2
− ε, 〈P0

AP0
BZC MD〉 ≥ 1

4
√

2
− ε.

(A2)

In addition, for convenience and rigorous of the derivation, we assume that

〈P0
AP0

BP0
CP1

D〉 ≤ ε, 〈P0
AP0

BP1
CP0

D〉 ≤ ε, 〈P0
AP1

BP0
CP0

D〉 ≤ ε, 〈P1
AP0

BP0
CP0

D〉 ≤ ε,

〈P0
AP1

BP1
CP1

D〉 ≤ ε, 〈P1
AP1

BP0
CP1

D〉 ≤ ε, 〈P1
AP0

BP1
CP1

D〉 ≤ ε, 〈P1
AP1

BP1
CP0

D〉 ≤ ε,
(A3)

which may not direct the observation statistics. We can now write

‖(P0
AP0

BXC − P0
AP0

BXD) |Ψ1〉 ‖
=
√
| 〈Ψ1| P0

AP0
BXCXCP0

AP0
B + P0

AP0
BXDXDP0

AP0
B − 2P0

AP0
BXCXDP0

AP0
B |Ψ1〉 |

=
√
| 〈Ψ1| P0

AP0
BXCXCP0

AP0
B |Ψ1〉+ 〈Ψ1| P0

AP0
BXDXDP0

AP0
B |Ψ1〉 − 2 〈Ψ1| P0

AP0
BXCXDP0

AP0
B |Ψ1〉 |

≤
√

1
4
+ 4ε +

1
4
+ 4ε− 2(

1
4
− ε) =

√
10ε = ε1,

(A4)

and similarly,
‖(P0

AP0
BZC − P0

AP0
BZD) |Ψ1〉 ‖ ≤

√
10ε. (A5)

In addition,

‖P0
AP0

B
XC + ZC√

2
|Ψ1〉 ‖

=

√
1
2
| 〈Ψ1| P0

AP0
BXCXCP0

AP0
B + P0

AP0
BXDXDP0

AP0
B + 2P0

AP0
BXCZCP0

AP0
B |Ψ1〉 |

≤
√

1
2
[
1
4
+ 4ε +

1
4
+ 4ε + 2(ε +

√
10ε(

1
4
+ 4ε))] =

√
1
4
+ 5ε +

√
10ε(

1
4
+ 4ε),

(A6)

where 〈Ψ| P0
AP0

BXCZCP0
AP0

B |Ψ1〉 ≤ ε +
√

10ε( 1
4 + 4ε) from

〈Ψ1| P0
AP0

BXCZCP0
AP0

B |Ψ〉 − 〈Ψ1| P0
AP0

BXCZDP0
AP0

B |Ψ1〉 ≤
√

10ε(
1
4
+ 4ε) (A7)

by using the Cauchy–Schwarz inequality [33] and Equation (A5). Hence, we obtain

‖P0
AP0

B MD |Ψ1〉 − P0
AP0

B
XC + ZC√

2
|Ψ1〉 ‖

=

√
| 〈Ψ1| P0

AP0
B MD MD −

√
2P0

AP0
B(MDXC + MDZC) |Ψ1〉+ ‖

P0
AP0

BXC + P0
AP0

BZC√
2

|Ψ1〉 ‖2 |

≤
√

1
4
+ 4ε +

1
4
+ 5ε +

√
10ε(

1
4
+ 4ε)− 2

√
2× (

1
4
√

2
− ε)

=

√
(9 + 2

√
2)ε +

√
10ε(

1
4
+ 4ε) = ε

′
.

(A8)
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Since the norm of the projectors is equal to 1, we have

‖P0
AP0

B(MD)
2 |Ψ1〉 − P0

AP0
B MD

XC + ZC√
2

|Ψ1〉 ‖

≤‖P0
AP0

B MD‖∞‖P0
AP0

B MD |Ψ1〉 − P0
AP0

B
XC + ZC√

2
|Ψ1〉 ‖

≤‖P0
A‖∞‖P0

B‖∞‖MD‖∞‖P0
AP0

B MD |Ψ1〉 − P0
AP0

B
XC + ZC√

2
|Ψ1〉 ‖

=‖P0
A‖∞‖P0

B‖∞‖P0
M − P1

M‖∞‖P0
AP0

B MD |Ψ1〉 − P0
AP0

B
XC + ZC√

2
|Ψ1〉 ‖

≤‖P0
A‖∞‖P0

B‖∞(‖P0
M‖∞ + ‖P1

M‖∞)‖P0
AP0

B MD |Ψ1〉 − P0
AP0

B
XC + ZC√

2
|Ψ1〉 ‖ = 2ε

′
.

(A9)

Similarly,

‖P0
AP0

B
XC + ZC√

2
MD |Ψ1〉 − P0

AP0
B(

XC + ZC√
2

)2 |Ψ1〉 ‖ ≤ 2
√

2ε
′
, (A10)

which implies

‖P0
AP0

B |Ψ1〉 − P0
AP0

B(
XC + ZC√

2
)2 |Ψ1〉 ‖ ≤ (2 + 2

√
2)ε

′

=⇒ ‖P0
AP0

BXCZC |Ψ1〉+ P0
AP0

BZCXC |Ψ1〉 ‖ ≤ 2(2 + 2
√

2)ε
′
.

(A11)

Finally, since⎧⎪⎪⎨⎪⎪⎩
‖P0

AP0
BZCXC |Ψ1〉 − P0

AP0
BZCXD |Ψ1〉 ‖ ≤

√
10ε(

1
4
+ 4ε)

‖P0
AP0

BXDZC |Ψ1〉 − P0
AP0

BXDZD |Ψ1〉 ‖ ≤
√

10ε(
1
4
+ 4ε)

(A12)

=⇒ ‖P0
AP0

BZCXC |Ψ1〉 − P0
AP0

BXDZD |Ψ1〉 ‖ ≤ 2

√
10ε(

1
4
+ 4ε). (A13)

Similarly,

‖P0
AP0

BXCZC |Ψ1〉 − P0
AP0

BZDXD |Ψ1〉 ‖ ≤ 2

√
10ε(

1
4
+ 4ε), (A14)

therefore we can obtain

‖P0
AP0

BXDZD |Ψ1〉+ P0
AP0

BZDXD |Ψ1〉 ‖ ≤ 2(2 + 2
√

2)ε
′
+ 4

√
10ε(

1
4
+ 4ε)

=2(2 + 2
√

2)

√
(9 + 2

√
2)ε +

√
10ε(

1
4
+ 4ε) + 4

√
10ε(

1
4
+ 4ε)

≤2(2 +
√

2)(10ε)
1
4 (

9 + 2
√

2 + 2
√

10√
10

(ε)
1
2 + 1) + 4(

√
10
2

(ε)
1
2 + 2

√
10ε) = 2ε2.

(A15)

Hence, we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

‖P0
i P0

j Xk |Ψ1〉 − P0
i P0

j Xl |Ψ1〉 ‖ ≤ ε1

‖P0
i P0

j Zk |Ψ1〉 − P0
i P0

j Zl |Ψ1〉 ‖ ≤ ε1

‖P0
i P0

j XkZk |Ψ1〉+ P0
i P0

j ZkXk |Ψ1〉 ‖ ≤ 2ε2

‖P0
i P0

j XlZl |Ψ1〉+ P0
i P0

j ZlXl |Ψ1〉 ‖ ≤ 2ε2

, (A16)
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and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖P1

AP1
BXC |Ψ1〉 − P1

AP1
BXD |Ψ1〉 ‖ ≤ ε1

‖P1
AP1

BZC |Ψ1〉 − P1
AP1

BZD |Ψ1〉 ‖ ≤ ε1

‖P1
AP1

BXCZC |Ψ1〉+ P1
AP1

BZCXC |Ψ1〉 ‖ ≤ 2ε2

‖P1
AP1

BXDZD |Ψ1〉+ P1
AP1

BZDXD |Ψ1〉 ‖ ≤ 2ε2

, (A17)

where (i, j, k, l) = {(A, B, C, D), (A, C, B, D), (A, D, B, C), (B, C, A, D), (B, D, A, C), (C, D,
A, B)}. In addition, we have

‖XDP0
AP0

BP0
CP1

D |Ψ1〉 |0001〉+ XCP0
AP0

BP1
CP0

D |Ψ1〉 |0010〉
+ XBP0

AP1
BP0

CP0
D |Ψ1〉 |0100〉+ XAP1

AP0
BP0

CP0
D |Ψ1〉 |1000〉

+ XBXCXDP0
AP1

BP1
CP1

D |Ψ1〉 |0111〉+ XAXCXDP1
AP0

BP1
CP1

D |Ψ1〉 |1011〉
+ XAXBXDP1

AP1
BP0

CP1
D |Ψ1〉 |1101〉+ XAXBXCP1

AP1
BP1

CP0
D |Ψ1〉 |1110〉 ‖

≤‖XDP0
AP0

BP0
CP1

D |Ψ1〉 |0001〉 ‖+ ‖XCP0
AP0

BP1
CP0

D |Ψ1〉 |0010〉 ‖
+ ‖XBP0

AP1
BP0

CP0
D |Ψ1〉 |0100〉 ‖+ ‖XAP1

AP0
BP0

CP0
D |Ψ1〉 |1000〉 ‖

+ ‖XBXCXDP0
AP1

BP1
CP1

D |Ψ1〉 |0111〉 ‖+ ‖XAXCXDP1
AP0

BP1
CP1

D |Ψ1〉 |1011〉 ‖
+ ‖XAXBXDP1

AP1
BP0

CP1
D |Ψ1〉 |1101〉 ‖+ ‖XAXBXCP1

AP1
BP1

CP0
D |Ψ1〉 |1110〉 ‖

= | 〈P0
AP0

BP0
CP1

D〉 | + | 〈P0
AP0

BP1
CP0

D〉 | + | 〈P0
AP1

BP0
CP0

D〉 | + | 〈P1
AP0

BP0
CP0

D〉 |
+ | 〈P0

AP1
BP1

CP1
D〉 | + | 〈P1

AP0
BP1

CP1
D〉 | + | 〈P1

AP1
BP0

CP1
D〉 | + | 〈P1

AP1
BP1

CP0
D〉 |≤ 8ε.

(A18)

With a similar derivation in [34], we have | 〈P0
AP0

BZC〉 |≤ ε1 + ε2 and | 〈P0
AP0

BZD〉 |≤
ε1 + ε2, which implies that

‖P0
AP0

B(1 + ZC)(1 + ZD)‖
=2
√
〈P0

AP0
B〉+ 〈P0

AP0
BZC〉+ 〈P0

AP0
BZD〉+ 〈P0

AP0
BZCZD〉

≤2

√
1
4
+ 4ε + ε1 + ε2 + ε1 + ε2 +

1
4
+ ε,

(A19)

and thus

‖ (1 + ZA)(1 + ZB)(1 + ZC)(1 + ZD)

4
√

2
‖ = ‖P0

AP0
B(1 + ZC)(1 + ZD)√

2
‖

≤
√

1 + 10ε + 4(ε1 + ε2) ≤ 1 + 5ε + 2(ε1 + ε2).

(A20)

We now can write

‖ |Ψ̃1〉 − |Ψ∗1〉 ‖ ≤ 8× (ε1 + ε2) + 8ε = 8(ε1 + ε2 + ε),

‖ |Ψ∗1〉 − |junk〉 ⊗ |Ψ′
1〉 ‖ ≤ 5ε + 2(ε1 + ε2),

(A21)

which implies

f (ε) = 13ε + 10(ε1 + ε2) = 265.98ε + 348.45ε
3
4 + 94.87ε

1
2 + 60.70ε

1
4 . (A22)
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Appendix B. Proof of the Self-Testing of a Family of Parameterized Four-Qubit

Symmetric States

Observation Equation (33) implies that

〈P0
AP0

BP0
CP0

D〉+ 〈P0
AP0

BP0
CP1

D〉+ 〈P0
AP0

BP1
CP0

D〉+ 〈P0
AP1

BP0
CP0

D〉+ 〈P1
AP0

BP0
CP0

D〉
+ 〈P0

AP0
BP1

CP1
D〉+ 〈P0

AP1
BP0

CP1
D〉+ 〈P0

AP1
BP0

CP1
D〉+ 〈P1

AP0
BP0

CP1
D〉+ 〈P1

AP0
BP1

CP0
D〉

+ 〈P1
AP1

BP0
CP0

D〉+ 〈P1
AP1

BP1
CP1

D〉 = 1,

(A23)

and thus Pa
APb

BPc
CPd

D |Ψ2〉 = 0 for other four projectors.
For convenience, we use (M, N, Q, R) = (A, B, C, D) as an example to prove Result 2.

Define the operators for party C and D as

XC = C0, ZC = C1, Z
′
C = C0, X

′
C = C1,

XD = D0, ZD = D1, Z
′
D =

D2 + D3

2 cos μ
, X

′
D =

D2 − D3

2 sin μ
.

(A24)

The maximal violation of the tilted CHSH inequality as Equation (34) implies

P0
AP0

BZ
′
C |Ψ2〉 = P0

AP0
BZ

′
D |Ψ2〉 , (A25a)

P0
AP0

BZ
′
CX

′
C |Ψ2〉 = −P0

AP0
BX

′
CZ

′
C |Ψ2〉 , (A25b)

P0
AP0

BX
′
C(I + Z

′
D) |Ψ2〉 = 1

tan β
P0

AP0
BX

′
D(I − Z

′
C) |Ψ2〉 . (A25c)

Then we have
P0

AP0
BXC |Ψ2〉 = P0

AP0
BXD |Ψ2〉 ,

P0
AP0

BXCZC |Ψ2〉 = −P0
AP0

BZCXC |Ψ2〉
(A26)

by Equations (A25a) and (A25b). The observation of Equation (34) implies

P0
AP0

BZ
′
C |Ψ2〉 ⊥ P0

AP0
BX

′
D |Ψ2〉 , (A27)

and combined with the relation Equation (A25a) from the tilted CHSH inequality, we have

P0
AP0

BZ
′
D |Ψ2〉 ⊥ P0

AP0
BX

′
D |Ψ2〉 . (A28)

We can write the ZD |Ψ2〉 in the subspace of P0
AP0

B as

P0
AP0

BZD |Ψ2〉 = (−1) f (t)P0
AP0

BX
′
D |Ψ2〉 (A29)

by Equation (34) and thus we can define the vector XD |Ψ2〉 orthogonal to ZD |Ψ2〉 as

P0
AP0

BXD |Ψ2〉 = P0
AP0

BZ
′
D |Ψ2〉 . (A30)

From Equations (A25a) and (A25c), we obtain

P0
AP0

BZ
′
DX

′
D |Ψ2〉 = −P0

AP0
BX

′
DZ

′
D |Ψ2〉 . (A31)

Hence, we obtain

P0
AP0

BXDZD |Ψ2〉 = P0
AP0

BZ
′
DX

′
D |Ψ2〉 = −P0

AP0
BX

′
DZ

′
D |Ψ2〉 = −P0

AP0
BZDXD |Ψ2〉 . (A32)
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Similarly, we obtain the following relations

P0
MP0

N XQ |Ψ2〉 = P0
MP0

N XR |Ψ2〉 ,

P0
MP0

N XQZQ |Ψ2〉 = −P0
MP0

N ZQXQ |Ψ2〉 ,

P0
MP0

N XRZR |Ψ2〉 = −P0
MP0

N ZRXR |Ψ2〉
(A33)

for all (M, N, Q, R) = {(A, B, C, D), (A, C, B, D), (A, D, B, C), (B, C, A, D), (B, D, A, C),
(C, D, A, B)}. The maximal violation of the XOR game Equation (35) implies

P1
AP1

BZ
′
C |Ψ2〉 = P1

AP1
BZ

′
D |Ψ2〉 ,

P1
AP1

BX
′
C |Ψ2〉 = P1

AP1
BX

′
D |Ψ2〉 ,

P1
AP1

BZ
′
CX

′
C |Ψ2〉 = −P1

AP1
BX

′
CZ

′
C |Ψ2〉 ,

P1
AP1

BZ
′
DX

′
D |Ψ2〉 = −P1

AP1
BX

′
DZ

′
D |Ψ2〉 .

(A34)

We can use a similar method as above and obtain

P1
AP1

BXC |Ψ2〉 = P1
AP1

BXD |Ψ2〉 ,

P1
AP1

BXCZC |Ψ2〉 = −P1
AP1

BZCXC |Ψ2〉 ,

P1
AP1

BXDZD |Ψ2〉 = −P1
AP1

BZDXD |Ψ2〉 .

(A35)

At last, the observation Equation (36) implies that

P0
MP0

N P0
QP0

RXR |Ψ2〉 = tP0
MP0

N P0
QP0

R |Ψ2〉 (A36)

for all (M, N, Q, R) = {(A, B, C, D), (A, C, B, D), (A, D, B, C), (B, C, A, D), (B, D, A, C),
(C, D, A, B)}.

We construct the local isometry similar to Figure 1: just replace |Ψ1〉 with |Ψ2〉. The
output after the isometry is

|Ψ̃2〉 = Φ(|Ψ2〉 |0000〉A′B′C′D′ )

= ∑
a,b,c,d∈{0,1}

Xa
AXb

BXc
CXd

DPa
APb

BPc
CPd

D |Ψ2〉 |abcd〉 . (A37)

By using Equation (A26), XDP0
AP0

BP0
CP1

D |Ψ2〉 is equal to P0
AP0

BP0
CP0

DXD |Ψ2〉. Combin-
ing with Equation (A36), one can simplify this term to tP0

AP0
BP0

CP0
D |Ψ2〉. The third to fifth

terms share a similar simplification process.
In addition, XCXDP0

AP0
BP1

CP1
D |Ψ2〉 is equal to P0

AP0
BP0

CXCP0
DXD |Ψ2〉 and then can be

replaced by P0
AP0

BP0
CP0

D |Ψ2〉 using Equation (A33). Terms from the seventh to eleventh are
similar. For the last term, we can obtain P1

AP1
BP0

CP0
D |Ψ2〉 using Equation (A35), which is

then the same as the eleventh term. We remind that there are four terms equal to zero.
Finally, the output is reduced to

|Ψ∗2〉 =P0
AP0

BP0
CP0

D |Ψ2〉 (|0000〉+ t |0001〉+ t |0010〉+ t |0100〉+ t |1000〉
+ |0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉+ |1111〉), (A38)

which can be normalized to the form |junk〉 ⊗ |Ψ′
2〉, here |junk〉 = √8 + 4t2P0

AP0
BP0

CP0
D |Ψ2〉.

Then the unknown state |Ψ2〉 is self-tested as |Ψ′
2〉, which proves that Result 2 holds with

the required observations Equations (33)–(36). The protocol is also robust by a norm-
inequality-based analysis similar to the Result 1 and the detailed derivation process is
omitted here.
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Appendix C. Relations between Pauli Operators and the Unknown Measurements

In this section, we give details of the relations between Pauli operators and the un-
known measurements in Result 2 by Schmidt decomposition.

|ψ1〉AB =
1√

2 + 2t2
(|00〉+ t |01〉+ t |10〉+ |11〉). (A39)

The coefficient matrix of |ψ1〉 is

A =
1√

2 + 2t2

(
1 t
t 1

)
, (A40)

which has the Schmidt decomposition A = USV, where

S =

( 1+t√
2+2t2 0

0 |1−t|√
2+2t2

)
(A41)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
U = V =

⎛⎝ 1√
2

1√
2

1√
2
− 1√

2

⎞⎠ if t <1

U =

⎛⎝ 1√
2

1√
2

1√
2
− 1√

2

⎞⎠, V =

⎛⎝ 1√
2

1√
2

− 1√
2

1√
2

⎞⎠ if t >1

. (A42)

Hence, if t <1, we have⎧⎪⎪⎨⎪⎪⎩
|0′ 〉A =

1√
2
(|0〉+ |1〉)A

|1′ 〉A =
1√
2
(|0〉 − |1〉)A

,

⎧⎪⎪⎨⎪⎪⎩
|0′ 〉B =

1√
2
(|0〉+ |1〉)B

|1′ 〉B =
1√
2
(|0〉 − |1〉)B

. (A43)

If t >1, ⎧⎪⎪⎨⎪⎪⎩
|0′ 〉A =

1√
2
(|0〉+ |1〉)A

|1′ 〉A =
1√
2
(|0〉 − |1〉)A

,

⎧⎪⎪⎨⎪⎪⎩
|0′ 〉B =

1√
2
(|0〉+ |1〉)B

|1′ 〉B =
1√
2
(|1〉 − |0〉)B

. (A44)

Now we can consider the relation between operators Z
′

and X
′

with new bases and
Pauli operators for part A,

Z
′
A = |0′ 〉A 〈0

′ |A − |1
′ 〉A 〈1

′ |A = |0〉A 〈1|A + |1〉A 〈0|A = σx,

X
′
A = |0′ 〉A 〈1

′ |A + |1′ 〉A 〈0
′ |A = |0〉A 〈0|A − |1〉A 〈1|A = σz.

(A45)

For part B, if t < 1,
Z
′
B = σx, X

′
B = σz, (A46)

and if t > 1,
Z
′
B = σx, X

′
B = −σz. (A47)
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Hence, if the operators performed by each party are the same as Lemma 1 with new
bases, they can be transformed into Pauli matrices

σZ = A1 = (−1) f (t) A2 − A3

2 sin μ
, σX = A0 =

A2 + A3

2 cos μ
,

σZ = B1 = (−1) f (t) B2 − B3

2 sin μ
, σX = B0 =

B2 + B3

2 cos μ
,

σZ = C1 = (−1) f (t) C2 − C3

2 sin μ
, σX = C0 =

C2 + C3

2 cos μ
,

σZ = D1 = (−1) f (t) D2 − D3

2 sin μ
, σX = D0 =

D2 + D3

2 cos μ
.

(A48)
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Abstract: Belavkin–Staszewski relative entropy can naturally characterize the effects of the possible
noncommutativity of quantum states. In this paper, two new conditional entropy terms and four
new mutual information terms are first defined by replacing quantum relative entropy with Belavkin–
Staszewski relative entropy. Next, their basic properties are investigated, especially in classical-
quantum settings. In particular, we show the weak concavity of the Belavkin–Staszewski conditional
entropy and obtain the chain rule for the Belavkin–Staszewski mutual information. Finally, the
subadditivity of the Belavkin–Staszewski relative entropy is established, i.e., the Belavkin–Staszewski
relative entropy of a joint system is less than the sum of that of its corresponding subsystems with the
help of some multiplicative and additive factors. Meanwhile, we also provide a certain subadditivity
of the geometric Rényi relative entropy.

Keywords: Belavkin–Staszewski relative entropy; geometric Rényi relative entropy; conditional
entropy; mutual information; classical-quantum setting

1. Introduction

Rényi proposed an axiomatic approach to derive the Shannon entropy, and he found a
family of entropies with parameter α (α ∈ [0, 1)∪ (1, ∞)), called Rényi entropy. Meanwhile,
the same axiomatic approach was extended to relative entropy and obtained Rényi relative
entropy [1]. Relative entropy (or Kullback–Leibler divergence [2]) is a special case of
Rényi relative entropy, which is an important ingredient for a mathematical framework of
information theory. It has operational meaning in information theoretical tasks and can be
used to describe the level of closeness between two random variables [3,4]. The axiomatic
approach introduced by Rényi can be readily generalized to quantum settings [5,6]. Because
of the non-commutativity of the quantum states, there are at least three different and special
ways to generalize the classical Rényi relative entropy [6–10], such as Petz-Rényi relative
entropy [11,12], sandwiched Rényi relative entropy [6,13] and geometric Rényi relative
entropy [14,15]. These quantities are very meaningful in different information-theoretic
tasks, including source coding, hypothesis testing, state merging, and channel coding.

The fact is that quantum relative entropy, by taking the limit as α → 1, is a special case
of the Petz-Rényi and sandwiched Rényi relative entropies. However, the geometric Rényi
relative entropy converges to the Belavkin–Staszewski (BS) relative entropy by taking the
same limit. It is noteworthy that both the quantum and BS relative entropies are important
variants of the classical relative entropy extension to quantum settings [16–18]. Quantum
relative entropy, a direct generalization of the classical relative entropy, has been studied
extensively in recent decades. BS relative entropy is also an enticing and crucial entropy
used to process quantum information tasks, which can be used to describe the effects of
possible noncommutativity of the quantum states (the quantum relative entropy can not
work well for this). Additionally, BS relative entropy has recently attracted the attention of
researchers. More precisely, Katariya and Wilde employed BS relative entropy to discuss
quantum channel estimation and discrimination [19], Bluhm and Capel contributed a
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strengthened data processing inequality for BS relative entropy [20]. This property was first
established by Hiai and Petz [21]. Bluhm et al. produced some weak quasi-factorization
results for BS relative entropy [22]. Fang and Fawzi studied quantum channel capacities
with respect to geometric Rényi relative entropy [23].

It is commonly known that von Neumann entropy, quantum conditional entropy,
and quantum mutual information play vital roles in quantum information theory. Apart
from the above entropic measures derived from the quantum relative entropy, however,
other useful entropy-like quantities have also been well studied recently, such as max-
information [24], collision entropy [25], and min- and max-entropies [26–28]. All of these
information measures were generated from quantum Rényi relative entropies by taking
different limits.

BS relative entropy can be seen as a fresh and forceful tool to resolve some specific
challenges of quantum information-processing tasks. Concurrently, the main use of the
geometric Rényi and BS relative entropies is to establish upper bounds on the rates of
feedback-assisted quantum communication protocols [29]. To our present knowledge, there
is no systematic analysis and research for conditional entropy and mutual information
defined from BS relative entropy. Therefore, this paper explores some basic but necessary
results for BS relative entropy. More precisely, we first provide a class of new definitions
of conditional entropy (called BS conditional entropy, see Definition 2) and new mutual
information (called BS mutual information, see Definition 3) via BS relative entropy. Ad-
ditionally, we showed that von Neumann entropy can be defined by BS relative entropy.
Second, we built an order relation between the BS conditional entropy of the bipartite
and tripartite quantum systems. Subsequently, since classical-quantum states play an
essential role in quantum channel coding and classical data compression with quantum
side information, we discussed some valuable properties of BS conditional entropy and
BS mutual information in classical-quantum settings. We established the weak concavity
of BS conditional entropy and obtained chain rules for BS mutual information. Last but
not least, the subadditivity of the geometric Rényi and BS relative entropies is established
with the help of some multiplicative and additive factors (the factors are different linear
combinations of quantum max-relative entropy [30]), i.e., the geomertric Rényi/BS relative
entropy of a joint system is less than the sum of that of its corresponding subsystems.

This paper is organized as follows. In Section 2, we present the mathematical termi-
nology and formal definitions necessary for the formulation of our results. Our results are
shown in Section 3. The paper ends with a conclusion.

2. Basic Notations and Definitions

We denote a finite-dimensional Hilbert space by H. Normalized quantum states
are in the set S=(H) := {ρ ∈ P(H) : Trρ = 1}, and subnormalized states are in the
set S≤(H) := {ρ ∈ P(H) : 0 < Trρ ≤ 1}. We use P+(H) and P(H) to denote the
set of positive definite operators and the set of positive semi-definite operators on H,
respectively. An identity operator is denoted by I. The Hilbert spaces corresponding to
different physical systems are distinguished by different capital Latin letters as a subscript.
A compound system is modeled using the Hilbert spaceHAB = HA ⊗HB. For a bipartite
classical-quantum systemHXB, the corresponding state ρXB is formalized as

ρXB = ∑
x

p(x)|x〉〈x|X ⊗ ρx
B, (1)

where {|x〉} corresponds to an orthonormal basis on the classical system HX, ρx
B is any

quantum state on the quantum system HB, p(x) is the probability distribution, and
∑x p(x) = 1 [17,29]. We also refer to a tripartite classical-quantum state,

ρXAB = ∑
x

p(x)|x〉〈x|X ⊗ ρx
AB, (2)

where ρx
AB is any quantum state on the quantum systemHAB.
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In quantum information theory, one can generalize Rényi relative entropy to the
quantum case, these quantities depend on a parameter α ∈ (0, 1) ∪ (1, ∞), and one can
evaluate their values at α ∈ {0, 1, ∞} by taking different limits. For Petz-Rényi relative
entropy [11,12] and sandwiched Rényi relative entropy [6,13], if one takes the limit as
α → 1, we can obtain the well-known quantum relative entropy. For ρ ∈ S=(H) and
σ ∈ S≤(H), if supp(ρ) ⊆ supp(σ), the quantum relative entropy of ρ and σ is defined as

D(ρ‖σ) = Tr[ρ(log ρ− log σ)]; (3)

otherwise, it is defined as +∞. Throughout this paper, we take the logarithmic function
to base 2. The quantum relative entropy is nonnegative and satisfies the data processing
inequality, which has good applications in quantum hypothesis testing and quantum
resource theory [5,31,32]. We now define the geometric Rényi relative entropy [5,14,15,29].

Definition 1. For all α ∈ (0, 1) ∪ (1, ∞), ρ ∈ S=(H) and σ ∈ S≤(H), the geometric Rényi
relative entropy is defined as

D̂α(ρ‖σ) =
1

α− 1
log
[
Tr
[
σ(σ−

1
2 ρσ−

1
2 )α
]]

. (4)

The term of σ
1
2 (σ− 1

2 ρσ− 1
2 )ασ

1
2 is called the weighted matrix geometric mean of two

positive definite operators ρ and σ, where α is the weight parameter [5,23,33]. The geometric
Rényi relative entropy can be shown to be the maximal relative entropy among all quan-
tum Rényi relative entropies satisfying the data processing inequality [5,15], so it is also
called maximal quantum Rényi relative entropy [5]. The geometric Rényi relative entropy
increases monotonically with respect to the parameter α. Specially, for the limit as α → 1,
the geometric Rényi relative entropy converges to the BS relative entropy [15,19,29], i.e.,

D̂(ρ‖σ) = lim
α→1

D̂α(ρ‖σ) = Tr
[
ρ log(ρ

1
2 σ−1ρ

1
2 )
]
, (5)

where supp(ρ) ⊆ supp(σ); otherwise, D̂(ρ‖σ) = +∞. Here, the inverse σ−1 is taken on
the support of σ.

Similar to the quantum relative entropy [17], the BS relative entropy is non-negative
and satisfies the data processing inequality [15,19,29]. For every quantum channel E ,
we have

D̂(E(ρ)‖E(σ)) ≤ D̂(ρ‖σ). (6)

For more properties of the BS and geometric Rényi relative entropies, one can refer
to [19,29]. In particular, the quantum relative entropy is never larger than the BS relative
entropy [19,21], i.e.,

D(ρ‖σ) ≤ D̂(ρ‖σ). (7)

Obviously, if ρ and σ can be commuted, the BS relative entropy will reduce to the
quantum relative entropy. In this paper, we also need to employ the quantum max-relative
entropy [5,6,30,34], which comes from the sandwiched Rényi relative entropy by taking the
limit as α → ∞, and

Dmax(ρ‖σ) = log inf{λ : ρ ≤ λσ}. (8)

3. Main Results

Once again, the Petz-/sandwiched and geometric Rényi relative entropies are incon-
sistent when taking the limit as α → 1, which leads to many differences between the BS
relative entropy D̂(ρ‖σ) (generated from the geometric Rényi relative entropy) and the
quantum relative entropy D(ρ‖σ) (generated from the Petz-/sandwiched Rényi relative
entropy). However, we find that both the quantum relative entropy and the BS relative
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entropy reduce to the von Neumann entropy for any quantum state ρ when one takes
σ = I, i.e.,

D̂(ρ‖I) = Tr
[
ρ log(ρ

1
2 I−1ρ

1
2 )
]

= Tr[ρ log ρ]

= −S(ρ).

Thus, we have
D̂(ρ‖I) = D(ρ‖I) = −S(ρ). (9)

3.1. Belavkin–Staszewski Conditional Entropy

One of the significant properties of the relative entropy is that it can derive the con-
ditional entropy and mutual information in information theory. The quantum relative
entropy is the quantum analogue of Kullback–Leibler divergence. We know that there is no
similar concept for the joint probability distribution of two variables with different time in
quantum mechanics; in other words, there is no real conditional quantum state to process
quantum information tasks. Thus, we can consider a formal definition of the quantum
conditional entropy [17,31], i.e.,

S(A|B)ρ = S(ρAB)− S(ρB), (10)

where ρB = TrA(ρAB) is the reduced state for the bipartite quantum state ρAB. The quantum
conditional entropy S(A|B)ρ can be denoted as the quantum relative entropy [5,29], i.e.,

S(A|B)ρ = −D(ρAB‖IA ⊗ ρB). (11)

In fact, from the basic properties of the quantum relative entropy, the above equation
has another equivalent expression [5,29],

S(A|B)ρ = max
σB
−D(ρAB‖IA ⊗ σB), (12)

where the maximum is taken over all sub-normalized states onHB.
Combining Equation (9) with Equation (10), we have

S(A|B)ρ = −D̂(ρAB‖IAB) + D̂(ρB‖IB). (13)

However, from the property of Equation (7) and definition of Equation (11), intuitively,
we find that conditional entropy defined by the BS relative entropy is different from the
quantum conditional entropy of Equation (11) generally. Therefore, we define a new
conditional entropy based on the BS relative entropy in the following: the so-called BS
conditional entropy.

Definition 2. For any quantum state ρAB ∈ S=(HAB), the BS conditional entropy is defined as

Ŝ(A|B)ρ = −D̂(ρAB‖IA ⊗ ρB). (14)

Similar to Equation (12), we can also define the alternative BS conditional entropy, i.e.,

Ŝm(A|B)ρ = max
σB
−D̂(ρAB‖IA ⊗ σB), (15)

where σB ∈ S≤(HB). In general, the optimal state is not necessarily the state ρB. We
further have

Ŝm(A|B)ρ ≤ Ŝ(A|B)ρ ≤ S(A|B)ρ, (16)

from the relation of Equation (7). Additionally, if one considers the above relations in the
bipartite classical-quantum systems, they remain equal, as follows.
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Lemma 1. For any bipartite classical-quantum states ρXB, we have

Ŝm(B|X)ρ = Ŝ(B|X)ρ = S(B|X)ρ. (17)

Proof. Without a loss of generality, letting σX = ∑x q(x)|x〉〈x| and ρX = ∑x p(x)|x〉〈x|,
using the definition of Equation (1), we have

Tr
[

ρXB log
(

ρ
1
2
XB IB ⊗ σ−1

X ρ
1
2
XB

)]
= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
B · log

(
∑
x

p(x)q(x)−1|x〉〈x| ⊗ ρx
B

)]
(18)

= Tr

[
∑
x

p(x) log p(x)q(x)−1|x〉〈x| ⊗ ρx
B

]
+ ∑

x
p(x)Tr[ρx

B log ρx
B]

= D(p(x)‖q(x))−∑
x

p(x)S(ρx
B),

where the last equality follows from the fact that

Tr

[
∑
x

p(x) log p(x)q(x)−1|x〉〈x| ⊗ ρx
B

]
= Tr

[
∑
x

p(x) log p(x)q(x)−1|x〉〈x|
]
· Tr[ρx

B]

and Tr
[
ρx

B
]
= 1.

Next, taking the minimization of σX for both sides of Equation (18), we have

min
σB

Tr
[

ρXB log
(

ρ
1
2
XB IB ⊗ σ−1

X ρ
1
2
XB

)]
= min

σB
D(p(x)‖q(x))−∑

x
p(x)S(ρx

B) (19)

= −∑
x

p(x)S(ρx
B).

The optimization of σX for the first equality only depends on the first term. For
all x, one takes the minimization if and only if p(x) = q(x), which also implies that
D(p(x)‖q(x)) = 0. Furthermore, combining the definitions of Equation (15) with Equation (5)
to Equation (19), it holds that

Ŝm(B|X)ρ = ∑
x

p(x)S(ρx
B).

For Ŝ(B|X)ρ, we have

Tr
[

ρXB log
(

ρ
1
2
XB IB ⊗ ρ−1

X ρ
1
2
XB

)]
= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
B · log

(
∑
x

p(x)p(x)−1|x〉〈x| ⊗ ρx
B

)]
= −∑

x
p(x)S(ρx

B).

Similarly, we have
Ŝ(B|X)ρ = ∑

x
p(x)S(ρx

B).

Finally, we can obtain the same result for S(B|X)ρ. We thus complete this proof.
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Since the BS relative entropy satisfies the data processing inequality (6), for any
tripartite quantum systemsHABC, it is easy to obtain that conditioning reduces entropy, i.e.,

Ŝ(A|BC)ρ ≤ Ŝ(A|B)ρ. (20)

This property also holds for the quantum conditional entropy S(A|B)ρ. However,
there is not always true for S(A|B)ρ ≤ S(AC|B)ρ (Problem 11.3(2), in [17]). For the BS
conditional entropy, this paper provides another result in the following.

Lemma 2. For any tripartite quantum states ρABC ∈ S=(HABC), we have

Ŝ(AB|C)ρ − log dA ≤ Ŝ(B|C)ρ (21)

and
Ŝm(AB|C)ρ − log dA ≤ Ŝm(B|C)ρ, (22)

where dA is the dimension of subsystemHA.

Proof. Since the BS relative entropy satisfies the data-processing inequality (Corollary 4.53
in [29]) and the fact that partial trace is a quantum channel [5], we have

D̂(ρABC‖IAB ⊗ ρC) ≥ D̂(TrA(ρABC)‖TrA(IAB ⊗ ρC)).

Furthermore, we have

D̂(TrA(ρABC)‖TrA(IAB ⊗ ρC)) = D̂(ρBC‖dA IB ⊗ ρC),

where dA is the dimension of subsystem HA. Applying the additivity of the BS relative
entropy (Proposition 4.54, [29]), we then have

D̂(ρBC‖dA IB ⊗ ρC) = D̂(ρBC‖IB ⊗ ρC)− log dA.

Recalling the definition of the BS conditional entropy Ŝ(A|B)ρ to the above equality,
we have

Ŝ(AB|C)ρ − log dA ≤ Ŝ(B|C)ρ. (23)

Similarly, for the alternative definition of the BS conditional entropy Ŝm(A|B)ρ, taking
the minimization of σX , we have

min
σB

D̂(ρABC‖IAB ⊗ σC) ≥ min
σB

D̂(ρBC‖IB ⊗ σC)− log dA,

which implies that
Ŝm(AB|C)ρ − log dA ≤ Ŝm(B|C)ρ.

The quantum conditional entropy of Equation (10) also satisfies the concavity, which
plays an important role in the quantum information processing [5,17,31]. Additionally,
for the BS conditional entropy of the tripartite classical-quantum state, we obtain the
following result.

Theorem 1. For any tripartite classical-quantum states ρXAB, we have

H(X) + ∑
x

p(x)Ŝ(Ax|B)ρ ≤ Ŝ(A|B)ρ + log dX (24)

and
H(X) + ∑

x
p(x)Ŝm(Ax|B)ρ ≤ Ŝm(A|B)ρ + log dX , (25)
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where H(X) is the Shannon entropy, and Ŝ(Ax|B)ρ is the BS conditional entropy for the quantum
state ρx

AB.

Proof. For any tripartite classical-quantum states ρXAB, we have

Tr
[

ρXAB log
(

ρ
1
2
XAB IXA ⊗ ρ−1

B ρ
1
2
XAB

)]
= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB · log

(
∑
x

p(x)|x〉〈x| ⊗ (ρx
AB)

1
2 IA ⊗ ρ−1

B (ρx
AB)

1
2

)]
(26)

= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB · log

(
∑
x

p(x)|x〉〈x|
)]

+Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB log

(
(ρx

AB)
1
2 IA ⊗ ρ−1

B (ρx
AB)

1
2
)]

.

For the first term of the last equality, we have

Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB · log

(
∑
x

p(x)|x〉〈x|
)]

= ∑
x
[p(x) log p(x) · Tr[ρx

AB]]

= −H(X),

where the last equality follows from the fact that Tr
[
ρx

AB
]
= 1. Similarly, for the second

term, we further have

Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB log

(
(ρx

AB)
1
2 IA ⊗ ρ−1

B (ρx
AB)

1
2
)]

= ∑
x

p(x)Tr
[
ρx

AB log
(
(ρx

AB)
1
2 IA ⊗ ρ−1

B (ρx
AB)

1
2
)]

= ∑
x

p(x)D̂(ρx
AB‖IA ⊗ ρB)

= −∑
x

p(x)Ŝ(Ax|B)ρ,

where Ŝ(Ax|B)ρ is the BS conditional entropy for the quantum state ρx
AB.

Therefore, we can obtain

Tr
[

ρXAB log
(

ρ
1
2
XAB IXA ⊗ ρ−1

B ρ
1
2
XAB

)]
= −H(X)−∑

x
p(x)Ŝ(Ax|B)ρ.

Using the definition of the BS conditional entropy Ŝ(XA|B)ρ to the above equality,
we have

Ŝ(XA|B)ρ = H(X) + ∑
x

p(x)Ŝ(Ax|B)ρ. (27)

Applying Lemma 2, we further have

Ŝ(XA|B)ρ ≤ Ŝ(A|B)ρ + log dX . (28)

Substituting Equation (27) into the above inequality (28), we can obtain the first
inequality of Theorem 1.
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We will replace ρB with σB to analyze the case of the alternative BS relative entropy in
the same way, i.e.,

Tr
[

ρXAB log
(

ρ
1
2
XAB IXA ⊗ σ−1

B ρ
1
2
XAB

)]
= −H(X) + ∑

x
p(x)D̂(ρx

AB‖IA ⊗ σB),

taking the optimization of σB for the above equality and combining the definition of
Equation (15). We then obtain the desired result.

From the above results, we know that there are two additional terms H(X) and log dX
on each side of the inequality (24), which are different from the concavity of the quantum
conditional entropy S(A|B)ρ. To make a distinction, we call it the weak concavity of the BS
conditional entropy given by Theorem 1.

Combining the above fact with Theorem 1, we can establish the relationship between
Ŝ(A|XB)ρ and Ŝ(XA|B)ρ. Using the direct sum property of the BS relative entropy (Propo-
sition 4.54 in [29]), we have

Ŝ(A|XB)ρ = −∑
x

p(x)D̂(ρx
AB‖IA ⊗ ρx

B). (29)

We cannot determine the order relations between ρx
B with ρB, but one can always

compare D̂(ρx
AB‖IA ⊗ ρx

B) with D̂(ρx
AB‖IA ⊗ ρB). For the case that the former is less than

the latter, we have

Ŝ(A|XB)ρ ≥ −∑
x

p(x)D̂(ρx
AB‖IA ⊗ ρB). (30)

Applying Equation (26), we can obtain

Ŝ(XA|B)ρ − log dX ≤ Ŝ(A|XB)ρ. (31)

In addition, as a special case of the inequality (20), we can easily obtain that
Ŝ(A|XB)ρ ≤ Ŝ(A|B)ρ. Therefore, it holds that

Ŝ(XA|B)ρ − log dX ≤ Ŝ(A|XB)ρ ≤ Ŝ(A|B)ρ. (32)

Otherwise, for the case of D̂(ρx
AB‖IA ⊗ ρx

B) ≥ D̂(ρx
AB‖IA ⊗ ρB), we then obtain

H(X) + Ŝ(A|XB)ρ ≤ Ŝ(XA|B)ρ. (33)

For the quantum conditional entropy of Equation (10), we know that any bipartite
pure states are entangled if and only if S(A|B) < 0. Here, we are also interested in the BS
conditional entropy. Without a loss of generality, let |ψ〉AB = ∑i λi|i〉A|i〉B be any bipartite
pure state, where λi represents non-negative real numbers satisfying ∑i λ2

i = 1, known as
Schmidt coefficients, and |i〉A and |i〉B are orthonormal states for A and B, respectively. The
number of non-zero values λi is called the Schmidt number for the pure state |ψ〉AB [17].
We have

Ŝ(A|B)ψ = −Tr
[

ψAB log
(

ψ
1
2
AB IA ⊗ ρ−1

B ψ
1
2
AB

)]
= −Tr

[
ψAB log

(
IA ⊗ ρ

− 1
2

B ψAB IA ⊗ ρ
− 1

2
B

)]
(34)

= − log r,

where r is the Schmidt number of |ψ〉. We remark that the bipartite pure state is entangled
if the Schmidt number is greater than 1.
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3.2. Belavkin–Staszewski Mutual Information

The quantum mutual information is another important measure in quantum informa-
tion theory, which can describe total correlations in the bipartite quantum subsystems, and
there are important applications in quantum channel capacity, quantum cryptography, and
quantum thermodynamics [17,35]. Based on the property of the quantum relative entropy,
there are four equal definitions for the quantum mutual information, i.e.,

I(A; B)ρ = D(ρAB‖ρA ⊗ ρB)

= min
σB

D(ρAB‖ρA ⊗ σB)

= min
σA

D(ρAB‖σA ⊗ ρB) (35)

= min
σA ,σB

D(ρAB‖σA ⊗ σB),

where the minimums are taken over all density operators σA and σB on quantum systems
HA andHB, respectively. However, for other general relative entropies, these equalities do
not hold in general, such as max-information [24]. In this section, we will consider a new
mutual information via the BS relative entropy, Similar to Equation (35), we define four
different BS information terms as follows.

Definition 3. For any quantum state ρAB ∈ S=(HAB), the BS mutual information terms are
defined as

Î1(A; B)ρ = D̂(ρAB‖ρA ⊗ ρB), (36)

Î2(A; B)ρ = min
σB

D̂(ρAB‖ρA ⊗ σB), (37)

Î2′(A; B)ρ = min
σA

D̂(ρAB‖σA ⊗ ρB), (38)

Î3(A; B)ρ = min
σA ,σB

D̂(ρAB‖σA ⊗ σB). (39)

Notice that, for Î2(A; B)ρ and Î2′(A; B)ρ, they can be thought of as swapping the
positions of the optimization operators σA and σB, so we will consider only one of them.
Intuitively, the remaining three definitions of the BS mutual information Î i(A; B)ρ decreases
with i, i.e.,

Î3(A; B)ρ ≤ Î2(A; B)ρ ≤ Î1(A; B)ρ. (40)

Additionally, recalling the inequality (7), we can obtain that there is not less BS mutual
information than there is quantum mutual information, i.e.,

I(A; B)ρ ≤ Î i(A; B)ρ. (41)

From the monotonicity of the BS relative entropy, it follows that discarding quantum
systems does not increase the BS mutual information, i.e.,

Î i(A; B)ρ ≤ Î i(A; BC)ρ. (42)

Subsequently, for the quantum mutual information (35), it holds that

I(A; B)ρ = S(ρA)− S(A|B)ρ

= S(ρB)− S(B|A)ρ. (43)

The above two relations are called chain rules for the quantum mutual information.
Chain rule can be regarded as a ‘bridge’ between conditional entropy with mutual informa-
tion in information theory. We are also interested in exploring chain rules for the BS mutual
information for bipartite classical-quantum systemHXB (for all quantum scenarios, further
discussion is needed as a remaining issue). It is well-known that the classical-quantum
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state only possesses classical correlation, and there is no quantum correlation, which leads
us to find some significative and interesting results. We first give the following result before
discussing the chain rules for the BS mutual information.

Lemma 3. For any bipartite classical-quantum states ρXB, we have

Îi(X; B)ρ = min
σB

∑
x

p(x)D̂(ρx
B‖σB), (44)

where i = 2, 3.

Proof. The proof is similar to the proof of Lemma 1, thus we omit some calculation steps.
We first consider the case Î3(X; B)ρ. Let σX = ∑x q(x)|x〉〈x|, for any quantum state σB,
we have

Tr
[

ρXB log
(

ρ
1
2
XBσ−1

X ⊗ σ−1
B ρ

1
2
XB

)]
= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
B · log

(
∑
x

p(x)q(x)−1|x〉〈x| ⊗ (ρx
B)

1
2 σ−1

B (ρx
B)

1
2

)]
(45)

= Tr

[
∑
x

p(x) log p(x)q(x)−1|x〉〈x| ⊗ ρx
B

]
+ ∑

x
p(x)Tr

[
ρx

B log(ρx
B)

1
2 σ−1

B (ρx
B)

1
2

]
= D(p(x)‖q(x)) + ∑

x
p(x)D̂(ρx

B‖σB).

Taking the minimum optimization for both sides of Equation (45) about σX and σB,
respectively, we then have,

Î3(X; B)ρ = min
σX ,σB

[
D(p(x)‖q(x)) + ∑

x
p(x)D̂(ρx

B‖σB)

]
= min

σX
D(p(x)‖q(x)) + min

σB
∑
x

p(x)D̂(ρx
B‖σB)

= min
σB

∑
x

p(x)D̂(ρx
B‖σB).

The last equality follows from the fact that the relative entropy D(p(x)‖q(x)) is non-
negative; i.e., it holds that

min
σX

D(p(x)‖q(x)) = 0,

for all x, if and only if p(x) = q(x).
For Î2(X; B)ρ, only optimization is required for σB from its definition, so we directly have

Î2(X; B)ρ = min
σB

Tr
[

ρXB log
(

ρ
1
2
XBρ−1

X ⊗ σ−1
B ρ

1
2
XB

)]
= min

σB
∑
x

p(x)D̂(ρx
B‖σB).

Notice that the BS mutual information Î1(X; B)ρ does not involve any optimizations,
so we have

Î1(X; B)ρ = ∑
x

p(x)D̂(ρx
B‖ρB). (46)

This result shows that the BS mutual information Î1(X; B)ρ is identical in form with
the quantum mutual information I(X; B)ρ, while the latter is the well-known Holevo
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information. In addition, if we consider the tripartite classical-quantum state, we can also
obtain a sum form of the BS mutual information for i = 1, i.e.,

Î1(XA; B)ρ = ∑
x

p(x) Î1(Ax; ρB), (47)

where Î1(Ax; ρB) is the BS mutual information between quantum states ρx
AB and ρx

A ⊗ ρB.
Other cases of the BS mutual information are similar, so we will not go into detail. Based
on the above results, we obtain the chain rules for the BS mutual information for bipartite
classical-quantum states as follows.

Theorem 2. For any bipartite classical-quantum state ρXB, we have

Îi(X; B)ρ + Ŝm(X|B)ρ = H(X), (48)

where i = 2, 3.

Proof. The proof of this theorem is similar to the proof of Theorem 1, so we omit some of
the repetition. For any bipartite classical-quantum state ρXB, we have

D̂(ρXB‖IX ⊗ σB) = ∑
x

p(x)D̂(ρx
B‖σB)− H(X). (49)

Employing the definition of Equation (15), we further have

Ŝm(X|B)ρ = H(X)−min
σB

∑
x

p(x)D̂(ρx
B‖σB). (50)

Applying Lemma 3 to Equation (50), we can then complete the proof.

Similarly, for Î1(X; B)ρ, we give a chain rule with respect to the definition of the BS
conditional entropy Ŝ(X|B)ρ as follows.

Corollary 1. For any bipartite classical-quantum state ρXB ∈ S≤(HXB), we have

Î1(X; B)ρ + Ŝ(X|B)ρ = H(X). (51)

Proof. From Definition 2, we can directly obtain that

Ŝ(X|B)ρ = −Tr
[

ρXB log
(

ρ
1
2
XB IX ⊗ ρ−1

B ρ
1
2
XB

)]
= H(X)−∑

x
p(x)D̂(ρx

B‖ρB). (52)

Combining Equation (46) with Equation (52), we then obtain the desired result.

Recalling Holevo information and applying the result of Lemma 1, we further have

I(X; B)ρ = S(ρB)− Ŝ(B|X)ρ

= S(ρB)− Ŝm(B|X)ρ (53)

= S(ρB)− S(B|X)ρ.

This result shows that the BS conditional entropy with classical side information can be
used to describe the Holevo information as well. In addition, employing the inequality (41),
we have

S(ρB)− Ŝm(B|X)ρ ≤ Î3(X; B)ρ. (54)
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Comparing this to Theorem 2, we find that, when the side information is classical, the
equal sign of the chain rule for Î3(X; B)ρ does not hold in general.

3.3. Subadditivity for the BS Relative Entropy

It is necessary to study the relationship of entropic measures between a joint system
and its corresponding subsystems, which plays a vital role in estimating channel capacity
bounds and analyzing error exponents. The quantum relative entropy satisfies subadditiv-
ity and superadditivity, both of which are fundamental properties of the quantum relative
entropy [31]. More precisely, for any bipartite quantum states ρAB and a product state
σA ⊗ σB, the superadditivity of the quantum relative entropy is

D(ρA‖σA) + D(ρB‖σB) ≤ D(ρAB‖σA ⊗ σB). (55)

This was extended to a more general setting [36]. This paper does not determine
whether the BS relative entropy holds the same property. However, the following result
shows an opposite relationship for the BS entropy, i.e., the subadditivity. We first give an
equivalent definition of the BS relative entropy for obtaining the desired result.

Lemma 4. For any quantum state ρ ∈ S=(H) and σ ∈ S≤(H), we have

D̂(ρ‖σ) = Tr
[
σ(σ−

1
2 ρσ−

1
2 ) log

(
σ−

1
2 ρσ−

1
2

)]
. (56)

Proof. Let Πσ be the projection onto the support of σ. One can obtain that ρ = ρΠσ = Πσρ
from supp(ρ) ⊆ supp(σ). From Equation (5), we thus have

D̂(ρ‖σ) = Tr
[
ρ log(ρ

1
2 σ−1ρ

1
2 )
]

= Tr
[
ρ

1
2 Πσρ

1
2 log(ρ

1
2 σ−

1
2 σ−

1
2 ρ

1
2 )
]

(57)

= Tr
[
ρ

1
2 σ

1
2 σ−

1
2 ρ

1
2 log(ρ

1
2 σ−

1
2 σ−

1
2 ρ

1
2 )
]
,

where the equalities holds from the fact that Πσ = σ
1
2 σ− 1

2 . Employing Lemma 2.6 in [29],
we have

σ−
1
2 ρ

1
2 log(ρ

1
2 σ−

1
2 σ−

1
2 ρ

1
2 ) = log(σ−

1
2 ρσ−

1
2 )σ−

1
2 ρ

1
2 ,

where ρ
1
2 σ− 1

2 = (σ− 1
2 ρ

1
2 )†. We then have

D̂(ρ‖σ) = Tr
[
ρ

1
2 σ

1
2 log(σ−

1
2 ρσ−

1
2 )σ−

1
2 ρ

1
2

]
= Tr

[
log(σ−

1
2 ρσ−

1
2 )σ−

1
2 ρσ

1
2

]
. (58)

The equality holds from the cyclic property of the trace. Since

log(σ−
1
2 ρσ−

1
2 )σ−

1
2 ρσ−

1
2 = σ−

1
2 ρσ−

1
2 log(σ−

1
2 ρσ−

1
2 ),

we have

D̂(ρ‖σ) = Tr
[
log(σ−

1
2 ρσ−

1
2 )σ−

1
2 ρσ−

1
2 σ
]

= Tr
[
σ−

1
2 ρσ−

1
2 log(σ−

1
2 ρσ−

1
2 )σ
]
. (59)

Finally, we obtain the desired result by applying the cyclic property of the trace
again.
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Theorem 3. For any quantum state ρAB ∈ S=(HAB), σA ∈ S≤(HA), or σB ∈ S≤(HB),
we have

D̂(ρAB‖σA⊗σB)≤λ
[
logλ+D̂(ρA‖σA)+D̂(ρB‖σB)

]
, (60)

where λ = 2Dmax(ρAB‖ρA⊗ρB).

Proof. Let Dmax(ρAB‖ρA ⊗ ρB) = log λ for suppρAB ⊆ supp(ρA ⊗ ρB), which implies that
ρAB ≤ λρA ⊗ ρB. For any quantum state σA or σB that satisfies suppρA ⊆ suppσB and
suppρA ⊆ suppσB, respectively, applying Lemma 4, we have

D̂(ρAB‖σA⊗σB)

= Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ⊗ σ

− 1
2

B ρABσ
− 1

2
A ⊗ σ

− 1
2

B

)
· log

(
σ
− 1

2
A ⊗ σ

− 1
2

B ρABσ
− 1

2
A ⊗ σ

− 1
2

B

)]
. (61)

Employing the basic operator inequalities of Lemma 2.13 in [29], we have

σ
− 1

2
A ⊗ σ

− 1
2

B ρABσ
− 1

2
A ⊗ σ

− 1
2

B ≤ λσ
− 1

2
A ⊗ σ

− 1
2

B ρA ⊗ ρBσ
− 1

2
A ⊗ σ

− 1
2

B .

Substituting the above inequality into Equation (61), we then have

D̂(ρAB‖σA⊗σB)

≤ Tr
[
(σA ⊗ σB)

(
λσ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)
· log

(
λσ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)]
= λ · Tr

[
(σA ⊗ σB)

(
σ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)
·
(

log λ + log
(

σ
− 1

2
A ρAσ

− 1
2

A

)
+ log

(
σ
− 1

2
B ρBσ

− 1
2

B

))]
≤ λ log λ + λD̂(ρA‖σA) + λD̂(ρB‖σB).

The equality follows from the linearity of the trace. The last inequality holds based on

Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)]
≤ 1

and

Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)
log
(

σ
− 1

2
A ρAσ

− 1
2

A

)]
= Tr

[
σA

(
σ
− 1

2
A ρAσ

− 1
2

A

)
log
(

σ
− 1

2
A ρAσ

− 1
2

A

)]
= D̂(ρA‖σA).

Similarly,

Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)
log
(

σ
− 1

2
B ρBσ

− 1
2

B

)]
= D̂(ρB‖σB).

As mentioned above, the geometric Rényi relative entropy converges to the BS relative
entropy when the limit is α → 1. More generally, we also provide an upper bound for the
geometric Rényi relative entropy.
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Theorem 4. For any quantum state ρAB ∈ S=(HAB), σA ∈ S≤(HA), or σB ∈ S≤(HB),
we have

D̂α(ρAB‖σA ⊗ σB) ≤ α

α− 1
Dmax(ρAB‖ρA ⊗ ρB) + D̂α(ρA‖σA) + D̂α(ρB‖σB).

Proof. Let Dmax(ρAB‖ρA ⊗ ρB) = log λ for suppρAB ⊆ supp(ρA ⊗ ρB). This implies
that ρAB ≤ λρA ⊗ ρB. For σA and σB with suppρA ⊆ suppσB and suppρA ⊆ suppσB,
respectively, employing the relation of Eq. (4.6.21) in [29], we have

Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ⊗ σ

− 1
2

B ρABσ
− 1

2
A ⊗ σ

− 1
2

B

)α]
= Tr

[
ρAB

(
ρ

1
2
ABσ−1

A ⊗ σ−1
B ρ

1
2
AB

)α−1
]

.

It then holds that

Tr

[
ρAB

(
ρ

1
2
ABσ−1

A ⊗ σ−1
B ρ

1
2
AB

)α−1
]

≤ Tr

[
λ(ρA ⊗ ρB)

(
λρ

1
2
A ⊗ ρ

1
2
B σ−1

A ⊗ σ−1
B ρ

1
2
A ⊗ ρ

1
2
B

)α−1
]

= λαTr

[
(ρA ⊗ ρB)

(
ρ

1
2
A ⊗ ρ

1
2
B σ−1

A ⊗ σ−1
B ρ

1
2
A ⊗ ρ

1
2
B

)α−1
]

= λαTr

[
ρA

(
ρ

1
2
Aσ−1

A ρ
1
2
A

)α−1
]

Tr

[
ρB

(
ρ

1
2
B σ−1

B ⊗ ρ
1
2
B

)α−1
]

.

Combining the above result with Definition 1, we have

D̂α(ρAB‖σA ⊗ σB) ≤ 1
α− 1

log

[
λαTr

[
ρA

(
ρ

1
2
Aσ−1

A ρ
1
2
A

)α−1
]

Tr

[
ρB

(
ρ

1
2
B σ−1

B ⊗ ρ
1
2
B

)α−1
]]

=
α

α−1
Dmax(ρAB‖ρA ⊗ ρB) + D̂α(ρA‖σA)+D̂α(ρB‖σB).

Similarly, one can define a new mutual information term via the geometric Rényi
relative entropy as

Îα(A; B)ρ = min
σA ,σB

D̂α(ρAB‖σA ⊗ σB). (62)

It is then easy to draw the following conclusion.

Corollary 2. For any quantum state ρAB ∈ S=(HAB), σA ∈ S≤(HA), or σB ∈ S≤(HB),
we have

Îα(A; B)ρ ≤ α
α−1 Dmax(ρAB‖ρA ⊗ ρB) + D̂α(ρA‖σA)+D̂α(ρB‖σB). (63)

Notably, if one considers the classical-quantum state, there is no result as shown in
Lemma 3 for the mutual information defined by the geometric Rényi relative entropy.
Specifically, for α ∈ (0, 1), we have

D̂α(ρXB‖ρX ⊗ ρB) =
1

α− 1
log

[
∑
x

p(x)Tr
[

ρB

(
ρ
− 1

2
B ρx

Bρ
− 1

2
B

)α]]

≤ 1
α− 1 ∑

x
p(x) log

[
Tr
[

ρB

(
σ
− 1

2
B ρx

Bρ
− 1

2
B

)α]]
(64)

= ∑
x

p(x)D̂α(ρ
x
B‖ρB),
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where the inequality comes from the Jensen inequality of − log t. For α ∈ (1, ∞), we obtain
the opposite result, i.e.,

D̂α(ρXB‖ρX ⊗ ρB) ≥ ∑
x

p(x)D̂α(ρ
x
B‖ρB). (65)

Furthermore, if one considers the conditional entropy defined by the geometric Rényi
relative entropy, for α ∈ (0, 1), we have

D̂α(ρXB‖IX⊗ρB)≤∑
x

p(x)D̂α(ρ
x
B‖ρB)−H(X). (66)

For α ∈ (1, ∞), we then have

D̂α(ρXB‖IX⊗ρB)≥∑
x

p(x)D̂α(ρ
x
B‖ρB)−H(X). (67)

4. Conclusions

This paper investigates the subadditivity of the geometric Rényi and BS relative
entropies and explores the indispensable properties of the BS conditional entropy and
mutual information, especially in classical-quantum settings. The subadditivity of the
geometric Rényi and BS relative entropies can provide new valuable bounds to estimate
channel capacity and analyze the error exponent. As mentioned above, the BS relative
entropy represents a different quantum generalization of classical relative entropy. The
main use of BS relative entropy is in establishing upper bounds for the rates of feedback-
assisted quantum communication protocols. The primary goal of further research on BS
relative entropy is to explore the intrinsic properties of its relevant conditional entropy and
mutual information and to gain a better understanding of their operational relevance. We
hope that the formal tools provided in this paper will be useful for this purpose.

One question worth answering is whether there is a chain rule for the mutual informa-
tion in terms of the geometric Rényi relative entropy, i.e.,

D̂α(ρAB‖ρA⊗ρB)
≥
≤Ŝα(ρA)+D̂α(ρAB‖IA⊗ρB),

or the other forms, where Ŝα(ρA) is the quantum Rényi entropy. Subsequently, the duality
of conditional entropy is an important property for a tripartite pure state system, which
can be effectively applied in random number extraction and channel coding [26]. Further
research will focus on the duality of the BS conditional entropy.
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Abstract: We introduce a new incompatibility criterion for quantum channels based on the notion
of (quantum) Fisher information. Our construction is based on a similar criterion for quantum
measurements put forward by H. Zhu. We then study the power of the incompatibility criterion in
different scenarios. First, we prove the first analytical conditions for the incompatibility of two Schur
channels. Then, we study the incompatibility structure of a tuple of depolarizing channels, comparing
the newly introduced criterion with the known results from asymmetric quantum cloning.
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1. Introduction

The impossibility of simultaneous realizations of two quantum operations is one of
the fundamental features of quantum theory [1,2]. Two of the most famous incarnations
of this principle are the Heisenberg uncertainty principle (the position and momentum of a
quantum particle can not be measured simultaneously [1]) and the no-cloning theorem (there
is no physical operation producing two identical copies of an unknown, arbitrary, quantum
state [3,4]). In general, two (or more) quantum operations, such as measurements, channels,
or instruments, are called compatible if they can be seen as marginals of a common operation;
if there is no physical operation having the original ones as marginals, they are called
incompatible. As quantum theory is built on Hilbert space, general quantum measurements
are considered the positive operator-valued measures (POVMs). In quantum information
theory, there are many applications of the notion of incompatibility, such as the robustness
of entanglement [5,6], the robustness of measurement incompatibility [7–9], quantum non-
locality [10,11], quantum steering [7,12], quantum state discrimination [13–15], quantum
resource theory [16], and quantum cryptography [17].

In the modern formalism of quantum theory, the most general description of physical
transformations of quantum states is in terms of quantum channels [18,19]. The concept
of incompatibility of quantum channels has been proposed in terms of the input–output
devices [20,21]. In [21], the authors show that the definition of the incompatibility of quantum
channels is a natural generalization of joint measurability of quantum observables. There
exists a large body of work dealing with this notion from various points of view [15,22–24].
Generally speaking, deciding whether a given family of quantum operations is compatible
can be formulated as a semidefinite program [25]. However, the size of the program grows
exponentially with the number of operations considered. Hence, this method can be computa-
tionally prohibitive even for small system sizes (such as qubits) when the number of systems
is moderately large. To cope with this dimensionality problem, (in-)compatibility criteria
have been introduced; these are conditions that are only necessary, or sufficient, for the com-
patibility of the given tuple of channels. As is the case with quantum measurements [20],
there exist much more compatibility criteria [26] than incompatibility criteria.
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In this work, we introduce a new incompatibility criterion for quantum channels based on
the notion of (quantum) Fisher information. Our criterion is based on a similar condition
put forward by H. Zhu [27,28] in the case of quantum measurements.

After introducing the necessary background on Fisher information and quantum
channel compatibility (Sections 2 and 3), we put forward the new incompatibility criterion
in Section 4. The statement of the main result of the paper can be found in Theorem 1. We
then apply this result to study, for the first time, the incompatibility of Schur channels,
an important class of quantum operations with wide-ranging applications; see Section 5.
In the final two sections of the paper, we introduce different compatibility structures for
assemblages of quantum channels (Section 6), and we study them in the case of generalized
depolarizing channels (Section 7).

2. Classical and Quantum Fisher Information

Consider a family of probability distributions {p(x|θ), x ∈ R} parametrized by θ. A
central research direction in statistics is to estimate the accuracy of the value of parameter θ
by observing x outcomes sampled from the distributions. Recall that the (classical) Fisher
information of the model is defined as

I(θ) := ∑
x

p(x|θ)
(

∂ log p(x|θ)
∂θ

)2

.

when an estimator θ̂(x) of the parameter θ is unbiased, the inverse of the classical Fisher
information gives a lower bound on the mean square error (MSE) of the estimator, which is
the well-known Cramér-Rao bound [29,30]. The notion of the classical Fisher information
plays a significant role in the geometrical approach to statistics [31,32] and the information
theory approach to physics [33].

In the multiple-parameter scenario, when θ is a vector, the classical Fisher infor-
mation is considered as a matrix form, which is a real symmetric matrix with matrix
elements [34–36]:

Iij(θ) := ∑
x

p(x|θ)∂ log p(x|θ)
∂θi

∂ log p(x|θ)
∂θj

.

In a quantum parameter estimation scenario, we may perform the quantum positive
operator-valued measurement (POVM) on a quantum state that depends on a parameter
to extract the parameter information. Consider a quantum measurement M = {Mx ≥
0, ∑x Mx = Id} acting on the states ρ(θ) ∈ L(Hd). The parameterized probability of
outcomes x of the measurement is p(x|θ) = Tr[ρ(θ)Mx]. The corresponding measurement-
induced Fisher information IM(θ) is then given by

IM(θ) = ∑
x

p(x|θ)Tr
(

∂ log ρ(θ)

∂θ
Mx

)2

.

The quantum Fisher information of the model ρ(θ) is defined as [37]

J(θ) := Tr[ρ(θ)L(θ)2],

where the symmetric logarithmic derivative (SLD) operators L(θ) for the parameter θ are
determined implicitly by

dρ(θ)

θ
=

1
2
[ρ(θ)L(θ) + L(θ)ρ(θ)].

In contrast with the classical Cramér-Rao bound, the inverse of quantum Fisher
information is also a lower bound for the MSE of an unbiased estimator, which is called the
quantum Cramér-Rao bound [37].
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In quantum multiple-parameter estimation scenarios, both the measure-induced Fisher
information and quantum Fisher information are matrices

IM,ij(θ) = ∑
x

p(x|θ)Tr
(

∂ log ρ(θ)

∂θi
Mx

)
Tr

(
∂ log ρ(θ)

∂θj
Mx

)
, (1)

Jij(θ) =
1
2

Tr{ρ(θ)[Li(θ)Lj(θ) + Lj(θ)Li(θ)]}, (2)

where Lk is the SLD operator corresponding with θk. The measurement-induced Fisher
information resembles the classical correlations, while the quantum Fisher information
resembles the quantum mutual information. From the Braunstein–Caves theorem [36],
the quantum Fisher information, independent of measurement, is an upper bound of the
measurement-induced Fisher information in the positive semidefinite order for matrices:

IM(θ) ≤ J(θ).

In this work, we shall consider another relationship proposed by Gill and Massar [38] for
any d−dimensional quantum system:

Tr[J−1(θ)IM(θ)] ≤ d− 1. (3)

This inequality was the main ingredient in the incompatibility criterion invented by
Zhu [27], which lies at the foundation of our incompatibility criterion for quantum channels.

3. Compatibility of Quantum Channels

In this section, we review the basic definitions of quantum channel compatibility.
Let Hd and HD be Hilbert spaces, and L(Hd) denote the family of linear operators on

Hd. In the Schrödinger picture, a quantum channel is defined as a linear map Φ : L(Hd)→
L(HD) having the following two properties:

• complete positivity: for any dimension k ≥ 1, the linear map idk ⊗Φ : L(Ck ⊗ Hd)→
L(Ck ⊗ HD) is a positive operator;

• trace-preservation: for all operators X ∈ L(Hd), Tr Φ(X) = Tr X.

We say that quantum channels are trace-preserving, completely positive (TPCP) maps. In
this paper, we shall also consider the Heisenberg picture of quantum mechanics, where
channels are seen as acting on observables instead of states. This amounts to considering
the adjoint map Φ∗ : L(HD) → L(Hd), where the adjoint is taken with respect to the
Hilbert–Schmidt scalar product on the corresponding matrix spaces [21]:

〈A, Φ(ρ)〉 = 〈Φ∗(A), ρ〉,

where ρ ∈ L(Hd), A ∈ L(HD), and 〈X, Y〉 := Tr(X∗Y).
We now recall the definition of the compatibility of quantum channels and refer the

reader to the review [20] for further properties.

Definition 1. Consider two quantum channels Φ1 : L(Hd) → L(Hd1) and Φ2 : L(Hd) →
L(Hd2) having the same input space. The pair (Φ1, Φ2) is said to be compatible, if there exists a
joint channel Λ : L(Hd)→ L(Hd1 ⊗ Hd2) such that Φ1,2 are the marginals of Λ:

∀X ∈ L(Hd), Φ1(X) = Tr2 Λ(X) and Φ2(X) = Tr1 Λ(X),

where Tr1,2 denote the partial trace operations in L(Hd1 ⊗ Hd2)
∼= L(Hd1)⊗L(Hd2).

In the Heisenberg (dual) picture, the condition above reads

∀A ∈ L(Hd1), Φ∗1(A) = Λ∗(A⊗ Id2), and ∀B ∈ L(Hd2), Φ∗2(B) = Λ∗(Id1 ⊗ B).
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The (in-)compatibility of more than two channels is defined in a similar manner.

As an example, let us consider the partially depolarizing channel, which is defined as:

Φt = t · id + (1− t)Δ, 0 ≤ t ≤ 1, (4)

with id(A) = A and Δ(A) = Tr(A)Id/d for any operator A; these quantum channels will be
discussed at length in Section 7. From the no-cloning theorem [3,4], it follows that two copies
of the identity channel (id, id), are incompatible. On the other hand, the completely depolar-
izing channel Δ is compatible with any other channel. A question is the self-incompatibility
of Φt. It is well known that the channel Φt is self-compatible if 0 ≤ t ≤ d+2

2(d+1) [26,39].
The necessary and sufficient condition for the compatibility of two different depolarizing
channels Φs and Φt were shown in [40–42]:

t + s− 2
d

√
(1− t)(1− s) ≤ 1. (5)

As previously discussed, quantum channel incompatibility is a key phenomenon in
quantum theory, being at the heart of fundamental results in quantum information, such
as the no-cloning theorem. In order to measure the degree of incompatibility of a given
set of quantum channels, several definitions of the robustness of incompatibility have been
considered in the literature [8,26,43]. In this section, we introduce a new such measure
for a tuple of channels, which has the merit of taking into consideration the asymmetry
between the channels considered. A similar definition was considered in the case of POVMs
in [44,45]. We shall consider only channels acting on L(Hd), and we recall that Δ denotes
the fully depolarizing channel Δ(X) = (Tr X)Id/d.

Definition 2. Given an N-tuple of quantum channels Φ := (Φ1, Φ2, . . . , ΦN), define the com-
patibility region of Φ as

ΓΦ :=

{
s ∈ [0, 1]N : the channels

[
siΦi + (1− si)Δ

]N

i=1
are compatible

}
.

Note that the definition is a relevant event in the case where the channels Φi are
identical: Φi = Φ for all i ∈ [N], in which case we call ΓΦ := ΓΦ the self-compatibility
region (note that the dependence in N is still present since we are consider N copies of the
channel Φ).

The following result is a simple exercise.

Proposition 1. For any N-tuple of quantum channels Φ := (Φ1, Φ2, . . . , ΦN), the set ΓΦ is
convex and closed (i.e., a convex body). We have 0 ∈ ΓΦ, and, for all i ∈ [N],

ei := (0, . . . , 0, 1︸︷︷︸
i-th position

, 0, . . . , 0) ∈ ΓΦ.

4. Channel Incompatibility via POVM Incompatibility

This is the main section of our paper, where we put forward a new incompatibil-
ity criterion for quantum channels in Theorem 1. Our criterion is based on an incom-
patibility criterion for quantum measurements (POVMs) introduced by H. Zhu and his
collaborators [27,28].

Let us start by recalling the definition of compatibility (or joint measurability) of
quantum measurements. First, recall that a quantum measurement (or POVM) is a k-tuple of
operators A = (A1, A2, . . . , Ak), having the following two properties:

• positivity: the operators A1, . . . , Ak ∈ L(Hd) are positive semidefinite;
• normalization: ∑k

i=1 Ai = Id.
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A POVM gives the most general form of a physical process that produces the probabilities
given by the Born rule: when measuring a quantum system described by a density matrix ρ,
one obtains the result i ∈ [k] with probability

P[ outcome i] = Tr(ρAi).

Naturally, one can see a POVM A as a quantum-to-classical channel

ΦA(X) =
k

∑
i=1

Tr(XAi)|i〉〈i|,

where {|i〉}k
i=1 denotes the canonical basis of Ck corresponding to the pointer states of the

measurement apparatus.
Whether two (or more) quantum measurements can be performed simultaneously is

one of the crucial questions lying at the foundations of quantum theory [1,2]. Mathemati-
cally, we have the following important definition (compare with Definition 1).

Definition 3. Two POVMs A = {Ai}i∈[k] and B = {Bj}k∈[l] are said to be compatible (or
jointly measurable) if there exists a third POVM C = {Cij}(i,j)∈[k]×[l], called joint measurement,
such that

∀i ∈ [k], Ai =
l

∑
j=1

Cij,

∀j ∈ [l], Bj =
k

∑
i=1

Cij.

Otherwise, the measurements A and B are called incompatible [46]. The compatibility of more than
two measurements is defined similarly.

Quantum measurement (in-)compatibility has received a lot of attention in the lit-
erature, see, e.g., the excellent reviews [20,47], or the recent perspective on the problem
focusing on the post-processing partial order [48]. Importantly for us, in [27], H. Zhu
proposed a family of universal POVM incompatibility criteria based on the classical Fisher
information matrix. Assume a measurement C is the joint measurement of Ai. According
to the Fisher information data-processing inequality, the measurement-induced Fisher
information matrix of Ai should not exceed that of C, that is to say

IAi ≤ IC

for all quantum states θ (θ is omitted in the formula above for convenience); the Fisher
information matrix I was defined in Equation (1). Define ĨAi := J−1/2 IAi J−1/2 as the metric-
adjusted Fisher information. The following inequality holds for compatible measurements
based on the Gill–Massar inequality (3):

min
{

Tr H : H ≥ ĨAi ∀i ∈ [N]
}
≤ d− 1. (6)

Otherwise, the N-tuple of measurements (Ai)i∈[N] is incompatible. When the parameter θ
(the state around which we compute the Fisher information) corresponds to the maximally
mixed state θ = Id/d, inequality (6) can be rephrased as the following proposition [27,28].

Proposition 2. For a set of N measurements A = (A1, A2, . . . , AN) on L(Hd), define the operators

∀i ∈ [N] GAi :=
ki

∑
s=1
|Ai(s)〉〈Ai(s)|/[Tr(Ai(s)] ∈ L(H⊗2

d ),
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where Ai(1), Ai(2), . . . , Ai(ki) are the (non-zero) effects of the POVM Ai, having ki outcomes.
Consider now the quantity

τ(A) := min Tr H

s.t. H ≥ GAi ∀i ∈ [N].
(7)

If τ(A) > d, then the N-tuple of POVMs A = (A1, A2, . . . , AN) is incompatible.

Remark 1. Note that the function τ(A) satisfies two basic requirements for a good measure of
(in-)compatibility: monotonicity under coarse-graining and global unitary invariance.

Remark 2. For any POVM A, the associated matrix GA is larger, in the positive semidefinite order,
than the maximally entangled state

ω :=
1
d

d

∑
i,j=1

|ii〉〈jj|.

This fact is a consequence of the important observation that the A �→ GA is an order morphism for
the post-processing order of quantum measurements [48], and G{I} = ω.

A natural question is how to capture the incompatibility of quantum channels using
measurements. Let {|ej〉} and {| fk〉} be any sets of the basis of Hilbert spaces Hd1 and
Hd2 , respectively. Motivated by the definition of incompatibility of quantum channels, we
dedicate to research properties of the induced sets {Φ∗1(|ej〉〈ej|)} and {Φ∗2(| fk〉〈 fk|)}. As we
consider the quantum channel is trace-preserving, thus {Φ∗1(|ej〉〈ej|)} and {Φ∗2(| fk〉〈 fk|)}
can be regarded as POVMs [23], that is to say,

∑
j

Φ∗1(|ej〉〈ej|) = ∑
k

Φ∗2(| fk〉〈 fk|) = Id. (8)

Lemma 1. [21] If N quantum channels Φ1, Φ2, . . . , ΦN are compatible, then, for all orthonormal
bases e(1), e(2), . . . , e(N) of Cd, the corresponding POVMs

As :=
[
Φ∗s (|e(s)i 〉〈e(s)i |)

]d

i=1
, ∀s ∈ [N]

are compatible.

Proof. Let Λ be a joint channel for the compatible N-tuple (Φ1, Φ2, . . . , ΦN). Clearly, Λ :
L(Hd)→ L(H⊗N

d ) thus its adjoint is an unital, completely positive map

Λ∗ : L(H⊗N
d )→ L(Hd).

Define operators

B :=

[
Λ∗
( N⊗

s=1

|e(s)is 〉〈e
(s)
is |
)]

i1,...,iN∈[d]
.

From the fact that Λ∗ is a completely positive, unital map, we infer that B is a POVM (with
dN outcomes). Let us now compute the marginals of this POVM. For some fixed s ∈ [N]
and is ∈ [d], we have

∑
i1,...,is−1,is+1,...,iN∈[d]

Bi1···iN = Λ∗(Id ⊗ · · · ⊗ |e(s)is 〉〈e
(s)
is | ⊗ · · · ⊗ Id) = Φ∗s (|e(s)is 〉〈e

(s)
is |) = As(is), (9)

showing that the s-th marginal of B is As. Thus B is a joint measurement of A1, A2, . . . , AN ,
proving the claim.
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We leave open the reciprocal question, which we formulate as a conjecture (below for
two channels, although the general version, for a N-tuple, can be easily stated).

Conjecture 1. Consider two quantum channels Φ, Ψ : L(Hd) → L(Hd) such that, for all
orthonormal bases e = (e1, . . . , ed), f = ( f1, . . . , fd) of Cd, the POVMs[

Φ∗(|ei〉〈ei|)
]d

i=1
and

[
Ψ∗(

∣∣ f j
〉〈

f j
∣∣)]d

j=1

are compatible. Then, Φ and Ψ are compatible channels.

We now turn to the main theoretical result of our paper: a criterion for quantum
channel incompatibility. Informally, one can formulate it as follows: given an N-tuple
of quantum channels, if one can find an N-tuple of orthonormal bases such that the
corresponding quantum measurements are incompatible, then the original N-tuple of
channels must also be incompatible. Our criterion is important since there are very few
useful incompatibility criteria for channel incompatibility. On the other hand, there exist
quite numerous incompatibility criteria for quantum measurements, so one can turn those
into criteria for channels using Lemma 1. We introduce the following important notation:
to a quantum channel Φ : L(Hd)→ L(Hd) and an orthonormal basis e = (ei)

d
i=1 of Cd, we

associate the G matrix

GΦ,e :=
d

∑
i=1

|Φ∗(|ei〉〈ei|)〉〈Φ∗(|ei〉〈ei|)|
Tr Φ∗(|ei〉〈ei|) , (10)

which corresponds to the G matrix associated to the POVM[
Φ∗(|ei〉〈ei|)

]d

i=1
.

Theorem 1. Let Φ1, Φ2, . . . , ΦN : L(Hd) → L(Hd) be N quantum channels. If there exists
orthonormal bases e(1), e(2), . . . , e(N) of Cd such that the value of the semidefinite program

min Tr H

s.t. H ≥ GΦi ,e(i)
∀i ∈ [N]

(11)

is strictly larger than d, then the n-tuple of channels Φ = (Φ1, Φ2, . . . , ΦN) is incompatible.

Proof. The theorem follows directly from Proposition 2 and Lemma 1.

Remark 3. If the quantum channel Φ is unital, that is to say, Φ(Id) = Id, the formula (10)
simplifies, in the sense that the denominator is trivial:

Tr Φ∗(|ei〉〈ei|) = 〈Id, Φ∗(|ei〉〈ei|)〉 = 〈Φ(Id), |ei〉〈ei|〉 = 〈Id, |ei〉〈ei|〉 = Tr|ei〉〈ei| = 1. (12)

This will be the case for most of the examples we shall discuss in what follows.

It is important at this point to note that the incompatibility criterion we put forward
in the result above is formulated as an SDP (semidefinite program). The usual way of
formulating the compatibility of a tuple of quantum channels is also an SDP: one looks for
a joint channel, a problem that can be formulated as an SDP thanks to the Choi formalism.
However, let us compare the size of the SDPs:

• channel compatibility: the joint channel has a Choi matrix of size dN+1

• incompatibility criterion from Theorem 1: the variable H has size d2.
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Note also that one has, in both cases, N constraints of size d2. Therefore, we obtain a dra-
matic reduction in the size of the SDP at the price of having only a necessary compatibility
condition (i.e., an incompatibility criterion).

There is, however, a situation when SDP (11) simplifies and can be analytically solved.
This is when the matrices G corresponding to the channel are orthogonal (up to the maxi-
mally entangled state ω). We formalize this observation below.

Proposition 3. Consider N quantum channels Φ1, Φ2, . . . , ΦN : L(Hd)→ L(Hd) and orthonor-
mal bases e(1), e(2), . . . , e(N) such that, for all i, j ∈ [N], i �= j,

GΦi ,e(i)
−ω ⊥ GΦj ,e(j) −ω.

Then, the value of SDP (11) is

1− N +
N

∑
i=1

Tr GΦi ,e(i)
.

Proof. Taking into consideration Remark 2, one can rewrite SDP (11) by subtracting
ω everywhere:

1 + min Tr H̃

s.t. H̃ ≥ GΦi ,e(i)
−ω ∀i ∈ [N]

(13)

where H̃ = H −ω. Using the hypothesis and noting that the matrices GΦi ,e(i)
−ω are all

positive semidefinite, any feasible H̃ must satisfy

H̃ ≥
N

∑
i=1

GΦi ,e(i)
−ω.

Hence, the optimal H̃ achieves equality above, and the conclusion follows.

This idea will be used in Sections 5 and 7 to obtain (analytical) incompatibility criteria
for important classes of quantum channels.

As an example, let us work out the G matrix for the identity channel id(X) = X.

Gid,e =
d

∑
i=1

∣∣∣|ei〉〈ei|
〉〈
|ei〉〈ei|

∣∣∣ = d

∑
i=1
|ei ⊗ ēi〉〈ei ⊗ ēi| =: Ze. (14)

The matrix Ze will play an important role in what follows. We gather some useful
facts about it below. Recall that two orthonormal bases e, f of Cd are called unbiased if

∀i, j ∈ [d], |〈ei, f j〉| = 1√
d

.

Lemma 2. For any orthonormal basis e, we have

〈Ze, ω〉 = 1.

Moreover, if e and f are unbiased orthonormal bases, then

〈Ze, Zf〉 = 1.

Let us close this section by mentioning how the matrices G behave when mixing
noise into a quantum channel Φ. This property will be very useful in what follows when
investigating the compatibility robustness of some classes of quantum channels.
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Lemma 3. Given a quantum channel Φ : L(Hd)→ L(Hd), consider its noisy version

Φt := tΦ + (1− t)Δ,

where Δ(X) = (Tr X)I/d is the completely depolarizing channel, and t ∈ [0, 1] is some parameter.
Then, for any orthonormal basis e,

GΦt ,e = t2GΦ,e + (1− t2)ω,

where ω is the maximally entangled state (note that ω = GΔ,e).

Proof. This can either be proven directly using formula (10) or by using the corresponding
result for POVMs, see, e.g., ([48] Proposition 5.3).

5. Incompatibility of Two Schur Channels

As the first application of our newly introduced incompatibility criterion for quantum
channels, we consider Schur channels. A Schur map is a linear map of the form

ΣB(X) = B ◦ X,

where B is a d× d complex matrix and ◦ denotes the Hadamard product. The map ΣB is
completely positive if and only if matrix B is positive semidefinite, and it is trace-preserving
if the diagonal of B is the identity: Bii = 1 for all i. If both conditions are satisfied, we call
map ΣB a Schur channel (sometimes also called a Schur multiplier), see [49–52]. Schur
channels have received a lot of attention in operator algebra and quantum information
theory, and they contain the identity channel id = ΣJ , where J is the all 1s matrix, and the
dephasing channel (the conditional expectation on the diagonal sub-algebra) diag = ΣI
as examples.

For Schur channel ΣB, we have

GΣB ,e = |B̄〉〈B̄| ◦ Ze,

for any orthonormal basis e (recall the form of the matrix Z from (14)). If e is the canonical
basis, we have

GΣB ,can = Zcan.

Consider now a basis f that is unbiased with respect to the canonical basis; in other
works, the elements of f form the columns of a Hadamard matrix U: | f j〉 = U |j〉 for all j.
An important example of such a basis is the Fourier basis:

f j(s) = exp(2πi/d)js, ∀j, s ∈ [d].

Lemma 4. If B and C are two positive semidefinite matrices with unit diagonal, and can and f are
unbiased, then

GΣB ,can −ω ⊥ GΣC ,f −ω.

Proof. Expanding the scalar product and using Lemma 2, we need to show that

〈Zcan,
∣∣C̄〉〈C̄∣∣ ◦ Zf〉 = 〈ω,

∣∣C̄〉〈C̄∣∣ ◦ Zf〉.

Let us work out the left-hand-side:

〈Zcan,
∣∣C̄〉〈C̄∣∣ ◦ Zf〉 = 〈|C〉〈C| ◦ Zcan, Zf〉 = 〈Zcan, Zf〉 = 1,

where we have used Lemma 2 and the fact that |C〉〈C| ◦Zcan = Zcan, which follows from the
fact that C has unit diagonal. The right-hand-side can be dealt with in the same manner.
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For a d× d matrix B with unit diagonal, define the real parameter β(B) as follows:

β(B) :=
1

d− 1

(
1
d

d

∑
i,j=1

|Bij|2 − 1

)
=

1
d− 1 ∑

i �=j∈[d]
|Bij|2. (15)

Recall that the torus Td is the set of vectors b ∈ Cd with |bi| = 1 for all i = 1, . . . , d.

Lemma 5. If B is a d× d positive semidefinite matrix with unit diagonal, then

0 ≤ β(B) ≤ 1,

with β(B) = 0 iff B = I and β(B) = 1 iff B = |b〉〈b| for a vector b ∈ Td.

Proof. The non-negativity of β, as well as the equality case, follows directly from definition
(15). For the upper bound, use the ordering of the 1, 2-Schatten norms of B to write

d

∑
i,j=1

|Bij|2 = ‖B‖2
2 ≤ ‖B‖2

1 = (Tr B)2 = d2,

proving the inequality. Equality holds if B is rank one, which, together with the condition
on the diagonal, proves that B = |b〉〈b| for some vector b ∈ Td.

We can now, using Theorem 1, provide a new incompatibility criterion for Schur channels.

Theorem 2. Consider two positive semidefinite matrices B and C with unit diagonal, and the
corresponding depolarized Schur channels

Φs(X) = sΣB(X) + (1− s)Δ(X) = sB ◦ X + (1− s)(Tr X)
I
d

Ψt(X) = tΣC(X) + (1− t)Δ(X) = tC ◦ X + (1− t)(Tr X)
I
d

.

If s2 + β(C)t2 > 1, then the channels Φs and Ψt are incompatible. We have, thus, an upper
bound for the compatibility region from Definition 2:

ΓΦ,Ψ ⊆ {(s, t) ∈ [0, 1]2 : s2 + β(C)t2 ≤ 1 and β(B)s2 + t2 ≤ 1}, (16)

where Φ := Φ1 and Ψ := Ψ1.

Proof. The proof is an application of Theorem 1. To start, let us compute the G matrices
associated with these channels, taking, respectively, the canonical basis can, and any unbi-
ased base f (e.g., the Fourier basis); this choice is inspired by Lemma 4 and Proposition 3.
Applying these results, as well as the scaling Lemma 3, we have

GΦs ,can = s2GΣB ,can + (1− s2)ω = ω + s2(Zcan −ω)

GΨt ,f = t2GΣC ,f + (1− t2)ω = ω + t2(
∣∣C̄〉〈C̄∣∣ ◦ Zf −ω).

Hence, the value of SDP (11) is given by (see Proposition 3)

1− 2 + Tr GΦs ,can + Tr GΨt ,f = s2(d− 1) + 1− t2 + t2 Tr[
∣∣C̄〉〈C̄∣∣ ◦ Zf].

We can evaluate

Tr[
∣∣C̄〉〈C̄∣∣ ◦ Zf] =

1
d

d

∑
i,j=1

|Cij|2,
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and, using parameter β(C) from (15), the incompatibility criterion reads

s2 + β(C)t2 > 1,

which is the first claim. The second claim follows by swapping the roles of the unbiased
bases can and f.

Remark 4. One can not easily generalize the result above to more than two Schur channels. This is
due to the fact that one has to fix one of the bases in Theorem 1 to be the canonical basis. This is due
to the fact that the Hadamard product used to define Schur channels is adapted to the canonical basis.
We leave the generalization of the result (and method) above for three or more Schur channels open.

We compare, in Figure 1, the criterion from the theorem above with the actual incom-
patibility thresholds for some particular Schur channels, concluding that the incompatibility
criterion is close to being exact.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

s

t

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

s

t

Figure 1. The Fisher information-based incompatibility criterion for Schur channels. In the left panel,

we consider two noisy copies of the Schur channel corresponding to B =

[
1 1/2

1/2 1

]
. In the right

panel, we consider noisy versions of ΣB and ΣC, where C =

[
1

√
3/4√

3/4 1

]
. Shaded regions

correspond to the conditions from (16), while the red dots correspond to the maximally compatible
channels in the respective directions.

6. Channel Assemblages

The way in which several quantum measurement and quantum channels can be incom-
patible has been studied extensively in the literature [53–56]. The kind of (in-)compatibility
structures that can be found in nature, and their relation to other important manifesta-
tions of non-locality (such as Bell inequality violations), is clearly a crucial question at the
foundation of quantum theory.

Let {Φi}N
i=1 be a channel assemblage that is an N-tuple of quantum channels. If {Φi}N

i=1
are incompatible, there does not exist a joint quantum channel for all the N channels.
However, a joint channel may exist when we consider a certain subset of {Φi}N

i=1. In
other words, some subsets of {Φi}N

i=1 may be compatible, even though the whole set is
incompatible. Obviously, if the whole set of N channels is compatible, then so is any subset:
if Λ is a joint channel for the N-tuple. Then, for any subset S ⊆ [N] of the channels, ΛS, the
marginal of Λ corresponding to the output indices in S

ΛS : L(Hd)→ L
(⊗

i∈S
H(i)

d

)
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is a joint channel for {Φi}i∈S; above, we identify the different copies of the output space
L(Hd) by a superscript. Therefore, it is significant to classify the incompatibility of subsets
for a given quantum channel assemblage. A K-subset of [N] is simply a subset S ⊆ [N] of
cardinality |S| = K.

Definition 4. Consider a quantum channel assemblage Φ = {Φi}N
i=1 and 1 ≤ K ≤ N an integer.

The N-tuple Φ is called:

• (N, K)-compatible if all K-subsets of Φ are compatible.
• (N, K)-incompatible if at least one K-subset of Φ is incompatible.
• (N, K)-strong incompatible if all K-subsets of Φ are incompatible.
• (N, K + 1)-genuinely incompatible if it is (N, K)-compatible and (N, K + 1)-incompatible.
• (N, K + 1)-genuinely strong incompatible if it is (N, K)-compatible and (N, K + 1)-strong

incompatible.

Note that the assemblage {Φi}N
i=1 is compatible if and only if it is (N, N)-compatible.

The previous definition is strongly inspired by the one from ([56] Section 2) in the case
of POVMs. The incompatibility criterion from Theorem 1 can be readily adapted to the
previous definition by considering subsets of the PSD constraints in (11). We restate it here
for the convenience of the reader. We shall apply it in the next section for assemblages of
depolarizing channels.

Theorem 3. Consider an assemblage Φ = {Φi}N
i=1 of quantum channels acting on L(Hd). For a

K-subset S of [N], and K orthonormal bases e = (e(1), e(2), . . . , e(K)) of Cd, define the value of the
following semidefinite program

val(Φ, S, e) := min Tr H

s.t. H ≥ GΦi ,e(i)
∀i ∈ S.

(17)

If there exists at least one S ∈ [N] and a K-tuple of orthonormal bases e such that val(Φ, S, e) >
d, then the assemblage Φ is (N, K)-incompatible. Moreover, if for all K-subsets S ⊆ [N], there exists
a K-tuple of bases eS such that val(Φ, S, eS) > d, the assemblage Φ is (N, K)-strong incompatible.

7. Assemblages of Depolarizing Channels

In this section, we address the (in-)compatibility properties of an N-tuple of partially
depolarizing channels, using the Fisher information-based criterion from Theorem 1. Recall
that the partially depolarizing channel is the linear map Φt : L(Hd)→ L(Hd) given by

Φt = t · id + (1− t)Δ, (18)

where id is the identity channel id(X) = X and Δ is the fully depolarizing channel Δ(X) =
(Tr X)I/d. The parameter t ∈ [0, 1] interpolates between the identity channel and the fully
depolarizing channel.

In this section, we shall study the incompatibility of N partially depolarizing channels
{Φi

ti
}N

i=1, for some fixed parameters t1, t2, . . . , tN ∈ [0, 1], with the help of the criterion from
Theorem 1. To do so, let us first compute the G matrices of depolarizing channels, which are
just noisy versions of the identity channel. Recall from Equation (14) that, for the identity
channel, we have, for an arbitrary basis e,

Ze = Gid,e =
d

∑
i=1
|ei ⊗ ēi〉〈ei ⊗ ēi|,

where ēi denotes the (entrywise) complex conjugate of the vector ei. Hence, by Lemma 3,
we have

GΦt ,e = t2Ze + (1− t2)ω.
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As in Section 5, we are going to use the orthogonality of the G matrices in order to put
forward analytical incompatibility criteria for depolarizing channels (see Proposition 3). To
do so, recall that the Ze matrices have tractable scalar products for unbiased bases. As it
turns out, mutually unbiased bases [57] will play an important role in what follows. Let
Dd be the maximal cardinality of a set of mutually unbiased bases of Cd. It is known that
3 ≤ Dd ≤ d + 1 [58–60]. The upper bounds are attained for all dimensions d, which are
prime powers; whether it is always attained is an important open problem in quantum
information theory, even the case d = 6 being undecided.

We now state the main result of this section, an incompatibility criterion for depolariz-
ing channels.

Proposition 4. Let N be an integer such that N ≤ Dd, the maximal number of mutually unbiased
bases of Cd. Consider N depolarizing channels Φt1 , . . . , ΦtN , where t1, . . . , tN ∈ [0, 1] are noise
parameters. If

t2
1 + t2

2 + · · ·+ t2
N > 1 (19)

then the N depolarizing channels Φti are incompatible.

Proof. Since the number of channels we consider is smaller than Dd, we can choose N
mutually unbiased bases e(1), . . . , e(N). SDP (11) reads

min Tr H

s.t. H ≥ t2
i Ze(i) + (1− t2

i )ω ∀i ∈ [N].

Proposition 3 applies, so the value of the SDP above is

min Tr H = 1 + (d− 1)
N

∑
i=1

t2
i .

Hence, if condition (19) holds, by Theorem 1, the N quantum depolarizing channels
Φt1 , . . . , ΦtN are incompatible.

As mentioned in the introduction, the compatibility of depolarizing channels is equiv-
alent to approximate quantum cloning: how much noise one needs to add to N copies of
the identity channel to render them compatible. In Figure 2, we present the relative perfor-
mance of the criterion from Proposition 4, with the true values of the noise parameters for
1 → 2 asymmetric approximate quantum clonings from Equation (5).

We can specialize the result above to assemblages of depolarizing channels in the spirit
of Definition 4.

Corollary 1. Consider N partially depolarizing channels {Φti}N
i=1 acting on L(Hd) and let K ≤

min(N, Dd) be an integer. If there exists a subset S ⊆ [N] of cardinality K such that

∑
i∈S

t2
i > 1,

then the channels are (N, K)-incompatible. Moreover, if for every subset S ⊆ [N] of cardinality K
the condition above holds, the channels are (N, K)-strongly incompatible.

Note that in the statement above, we do not require that the number N of channels
must be smaller than the number of mutually unbiased bases in the corresponding Hilbert
space; this is required only of the parameter K. This criterion might thus be useful in
situations where one has a large number of channels.
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Figure 2. Comparing the incompatibility criterion from Proposition 4 (filled region) with the incom-
patibility thresholds from Equation (5) (dashed curves) for different values of d: d = 2 (red curve),
d = 5 (brown curve), d = 20 (black curve).

We end this section by a similar corollary, in the setting where the channels are identical.

Corollary 2. If N, K are integers such that K ≤ min(N, Dd), then the partially depolarizing
channel Φt from Equation (18) is (N, K)-self-(strong) incompatible as soon as t > 1/

√
K.
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Abstract: Quantum coherence is known as an important resource in many quantum information
tasks, which is a basis-dependent property of quantum states. In this paper, we discuss quantum
incoherence based simultaneously on k bases using Matrix Theory Method. First, by defining a
correlation function m(e, f ) of two orthonormal bases e and f , we investigate the relationships
between sets I(e) and I( f ) of incoherent states with respect to e and f . We prove that I(e) = I( f )
if and only if the rank-one projective measurements generated by e and f are identical. We give
a necessary and sufficient condition for the intersection I(e)⋂ I( f ) to include a state except the
maximally mixed state. Especially, if two bases e and f are mutually unbiased, then the intersection
has only the maximally mixed state. Secondly, we introduce the concepts of strong incoherence and
weak coherence of a quantum state with respect to a set B of k bases and propose a measure for the
weak coherence. In the two-qubit system, we prove that there exists a maximally coherent state with
respect to B when k = 2 and it is not the case for k = 3.

Keywords: strong incoherence; weak coherence; orthonormal basis; mutually unbiased basis

1. Introduction

Quantum coherence is not only a feature of quantum systems which arise due to
superposition principle, but also is a kind of fundamental resources in quantum information
and computation [1–8]. The resource theory of coherence is formulated with respect
to a distinguished basis of a Hilbert space, which defines free states as the states that
are diagonal in this basis [3]. Several important quantifiers of quantum coherence have
been introduced and assessed [9–19]. Recently, it is shown that quantum coherence can
be useful resource in quantum computation [20–24], quantum metrology [25], quantum
thermodynamics [26–31] and quantum biology [32–34].

Since the coherence of quantum states depends on the choice of the reference basis,
it is natural to study the relationship among the coherence with respect to different bases.
Cheng et al. [35] first studied the situation of two specific coherence measures under
mutual unbiased basis (MUB): �1 norm of coherence and relative entropy of coherence.
They proposed the complementary relationship of the two coherence measures under any
complete MUB set. Rastegin in [36] discussed the uncertainty relation for the geometric
measure of coherence under MUBs. Sheng et al. [37] further studied the realization of
quantum coherence through skewed information and the geometric measure under mutual
unbiased bases. Recently, considered the standard coherence (SC), the partial coherence
(PC) [38–40] and the block coherence (BC) [41,42] as variance of quantum states under some
quantum channel Φ, Zhang et al. [43] proposed the concept of channel-based coherence of
quantum states, called Φ-coherence, which contains the SC, PC and BC, but not contain the
POVM-based coherence [44,45], and obtained some interesting results.

Usually, the coherence of an individual quantum state is discussed only when referring
to a preferred basis. Considered sets of quantum states, Designolle et al. [46] introduced
the concept of set coherence for characterizing the coherence of a set of quantum states
in a basis-independent way. Followed a resource-theoretic approach, the authors of [46]
defined the free sets of states as sets Fn of groups of states �ρ = {ρj}n

j=1 such that there

Entropy 2022, 24, 659. https://doi.org/10.3390/e24050659 https://www.mdpi.com/journal/entropy67
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exists a choice of basis (equivalently, a unitary U) for which all states UρjU† in the set
U�ρU† become diagonal. Clearly, �ρ ∈ Fn if and only if {ρj}n

j=1 is a commutative family of
states, i.e., ρiρj = ρjρi for all i, j = 1, 2, . . . , n.

Different from the discussions above, in this paper, we focus on the quantum incoher-
ence based simultaneously on k bases; equivalently, the coherence of a quantum state with
respect to a basis contained in a given set B of k orthonormal bases. In Section 2, by defin-
ing the correlation function of two orthonormal bases e and f , we study the relationships
between two sets of incoherent states with respect to e and f , and investigate the maximally
coherent states with respect to e and f . In Section 3, we discuss the strong incoherence and
the weak coherence of a state with respect to a set of k orthonormal bases and introduce a
measure for the weak coherence. In Section 4, we give a summary of this paper.

2. Correlation Function of Two Bases and Quantum Coherence

Let us consider a quantum system X, which is described by a d-dimensional Hilbert
space H and let I denote the identity operator on H. We use B(H) and D(H) to denote
the sets of all linear operators and all density operators (mixed states) on H, respectively.
In quantum information theory, a positive operator valued measure (POVM) is a set
M = {Mi}m

i=1 of operators on H with 0 ≤ Mi ≤ I for all i = 1, 2, . . . , m and ∑m
i=1 Mi = I.

In particular, if M2
i = Mi for all i, then the POVM becomes a projective measurement

(PM). For a rank-one PM P, there exists an orthonormal basis e = {|ei〉}d
i=1 such that

P = {|ei〉〈ei|}d
i=1. In this case, we denote P = Pe = {|ei〉〈ei|}d

i=1. We use the notation z̄ or
z∗ to denote the conjugate of a complex number z.

For the fixed orthonormal basis e = {|ei〉}d
i=1 for H, I(e) denotes the set of incoherent

states on H w.r.t. e, i.e., ones that have diagonal matrix representation under the basis e. A
quantum operation Φ on B(H) is said to be an incoherent operation [3] w.r.t e if it admits
an incoherent Kraus decomposition, i.e.,

Φ(ρ) =
n

∑
i=1

KiρK†
i , ∀ρ ∈ B(H)

with
KiρK†

i ∈ tr(KiρK†
i )I(e), ∀ρ ∈ I(e), i = 1, 2, . . . , n.

We use IO(e) to denote the set of incoherent operations w.r.t e on B(H).
According to Ref. [3], a coherence measure with respect to e, called an e-coherence

measure, is a function C : D(H) �→ R satisfying the following four conditions.
(1) Faithfulness: C(ρ) ≥ 0 for all ρ ∈ D(H); C(ρ) = 0 if and only if ρ ∈ I(e).
(2) Monotonicity: C(Φ(ρ)) ≤ C(ρ) for any Φ ∈ IO(e).
(3) Strong monotonicity: ∀ρ ∈ D(H), ∑n

i=1 piC(ρi) ≤ C(ρ) for all operators Ki in H
such that ∑n

i=1 K†
i Ki = I with KiI(e)K†

i ⊂ R+I(e), pi = tr(KiρK†
i ) and ρi = KiρK†

i /pi if
pi > 0; ρi =

1
d I if pi = 0.

(4) Convexity: C(∑n
i=1 piρi)) ≤ ∑n

i=1 piC(ρi) for any states ρi ∈ D(H)(i = 1, 2, . . . , n)
and any probability distribution {pi}n

i=1.
A usual �1-norm coherence measure [3] of a state ρ ∈ D(H) with respect to a basis e is

defined by
Ce,�1(ρ) = 2 ∑

1≤i<j≤n
|〈ei|ρ|ej〉|.

Clearly,

Ce,�1(ρ) =
n

∑
i,j=1

|〈ei|ρ|ej〉| − 1 ≤ d− 1. (1)

Especially, Ce,�1(ρ) = d− 1 if and only if |〈ei|ρ|ej〉| = 1
d for all i, j = 1, 2, . . . , d; in that case,

ρ is called a maximally coherent state with respect to e.
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From the review above, we find that quantum coherence relies on the choice of or-
thonormal bases. In what follows, we discuss the relationship between quantum coherence
based on different reference bases. To do this, we let e = {|ei〉}d

i=1 and f = {| f j〉}d
i=1 be two

orthonormal bases for H and define

m(e, f ) =
d

∑
i,j=1

|〈ei| f j〉| − d, (2)

called the correlation function between two bases e and f .
Recall that [35] two orthonormal bases e and f for H are said to be mutually unbiased

if |〈ei| f j〉| = 1√
d

for all i, j = 1, 2, . . . , d. Thus, when e and f for H are mutually unbiased, it

holds that m(e, f ) = d
3
2 − d. More properties of the correlation function are given in the

following theorem.

Theorem 1. Let e and f be two orthonormal bases for H. Then
(1) 0 ≤ m(e, f ) ≤ d

3
2 − d.

(2) m(e, f ) = 0 if and only if Pe = Pf if and only if I(e) = I( f ).

(3) m(e, f ) = d
3
2 − d if and only if e and f are mutually unbiased bases.

Proof. (1) Since 0 ≤ |〈ei| f j〉| ≤ 1, we get |〈ei| f j〉|2 ≤ |〈ei| f j〉| for all i, j = 1, 2, . . . , d. So,

d

∑
i,j=1

|〈ei| f j〉| ≥
d

∑
i,j=1

|〈ei| f j〉|2

=
d

∑
j=1

(
d

∑
i=1
|〈ei| f j〉|2

)

=
d

∑
j=1
‖ | f j〉 ‖2

= d.

This shows that m(e, f ) ≥ 0. Since e = {|ei〉}d
i=1 and f = {| f j〉}d

i=1 are two orthonormal
bases for H, there exists a d× d unitary matrix U = [λij] such that (|e1〉, |e2〉, . . . , |ed〉) =
U(| f1〉, | f2〉, . . . , | fd〉); equivalently,

|ei〉 =
d

∑
j=1

λij| f j〉, ∀i = 1, 2, . . . , d. (3)

Hence, λij = 〈 f j|ei〉, and using the Cauchy inequality yields that

d

∑
i,j=1

|〈ei| f j〉| =
d

∑
i,j=1

|λij|

=
d

∑
i=1

(
d

∑
j=1

1 · |λij|
)

≤
d

∑
i=1

√
d

√√√√ d

∑
j=1
|λij|2

= d
3
2 .

Consequently, m(e, f ) ≤ d
3
2 − d.
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(2) We see from Equation (2) that m(e, f ) = 0 if and only if for any i, there exists a
unique i′ such that |〈ei| fi′ 〉| = 1 and |〈ei| fk〉| = 0 for all k �= i′ if and only if for any i, there
exists a unique i′ such that |ei〉 = eiθii′ | fi′ 〉, which is equivalent to Pe = Pf , i.e., I(e) = I( f ).

(3) From the proof of (1), we see that m(e, f ) = d
3
2 − d if and only if |λij| = 1√

d
(∀i, j),

that is, e and f are mutually unbiased bases.
Suppose that e and f are mutually unbiased bases, then the coefficients λij in (3) satisfy

|λij| = |〈 f j|ei〉| = 1√
d

for all i, j = 1, 2, . . . , d. Let ρ ∈ I(e) ∩ I( f ). Then it can be written as

ρ = ∑d
n=1 μn|en〉〈en| with μn ≥ 0 for all n = 1, 2, . . . , d, ∑d

n=1 μn = 1. Using Equation (3)
implies that

ρ =
d

∑
j,k=1

d

∑
n=1

μnλnjλnk| f j〉〈 fk|.

Since ρ ∈ I( f ) and ∑d
n=1 μn = 1, we see that

d

∑
n=1

μnλnjλnk =
1
d

δk,j, ∀k, j = 1, 2, . . . , d

that is,⎛⎜⎜⎜⎜⎝
λ11 λ21 · · · λd1
λ12 λ22 · · · λd2

...
...

. . .
...

λ1d λ2d · · · λdd

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

μ1 0 0 0
0 μ2 0 0
...

...
. . .

...
0 0 0 μd

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

λ11 λ12 · · · λ1d
λ21 λ22 · · · λ2d

...
...

. . .
...

λd1 λd2 · · · λdd

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
d 0 0 0
0 1

d 0 0
...

...
. . .

...
0 0 0 1

d

⎞⎟⎟⎟⎟⎠.

Since U = [λij] is a d × d unitary matrix, we get μk = 1
d for all k = 1, 2, . . . , d, i.e.,

ρ = 1
d ∑d

j=1 | f j〉〈 f j| = 1
d I. Hence, I(e) ∩ I( f ) =

{
1
d I
}

.

Remark 1. Suppose that Pe �= Pf , then there exists an i and j1, j2, . . . , jk(2 ≤ k ≤ d) such that
〈ei| f js〉 �= 0(s = 1, 2, . . . , k) and

|ei〉 =
k

∑
s=1
〈 f js |ei〉| f js〉.

Then |ei〉〈ei| ∈ I(e) and

|ei〉〈ei| =
k

∑
s=1,t=1

〈 f js |ei〉〈 f jt |ei〉| f js〉〈 f jt |.

Since 〈 f js |ei〉〈 f jt |ei〉 �= 0 for any s �= t, we get that |ei〉〈ei| /∈ I( f ). This shows that there exists a
state ρ ∈ I(e) but ρ /∈ I( f ). Similarly, there also exists a state ρ′ ∈ I( f ) but ρ′ /∈ I(e).

From Theorem 1 and Remark 1, we get relationships between m(e, f ) and I(e)⋂ I( f )
as shown by the following Figure 1.

It is clear that 1
d I ∈ I(e)⋂ I( f ) for any bases e and f . Especially, I(e)⋂ I( f ) =

{
1
d I
}

if they are mutually unbiased. However, even though e and f are not a pair of mutually
unbiased bases, it is possible that I(e)⋂ I( f ) =

{
1
d I
}

, see the following example.
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Figure 1. Relationships between m(e, f ) and I(e)⋂ I( f ), where subfigures (a–c) correspond to the
cases that m(e, f ) = 0,m(e, f ) > 0 and m(e, f ) = d

3
2 − d, respectively.

Example 1. Let e = {|0〉, |1〉} and f = {| f0〉, | f1〉} be two orthonormal bases for H = C2 with

| f0〉 = 1√
3
|0〉+

√
2√
3
|1〉, | f1〉 = −

√
2√
3
|0〉+ 1√

3
|1〉.

Clearly, e and f are not a pair of mutually unbiased bases while I(e)⋂ I( f ) = { 1
2 I}.

This example leads us to study the relationship between two bases e and f for H
such that

I(e)⋂ I( f ) =
{

1
d

I
}

.

To do this, we let e = {|ei〉}d
i=1 and f = {| fi〉}d

i=1 be two bases for H and ρ = ∑d
i=1 xi|ei〉〈ei| ∈

I(e) \ {I/d}. Since x1, . . . , xd are the eigenvalues of ρ, they can be rearranged as λ1, λ2, . . . , λd
in decreasing order, say, λ1 ≥ λ2 ≥ . . . ≥ λd. Thus, there exists a permutation matrix P1
such that

P1

⎛⎜⎜⎜⎝
x1
x2
...

xd

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
λ1
λ2
...

λd

⎞⎟⎟⎟⎠. (4)

Suppose that ρ ∈ I( f ). Then

ρ =
d

∑
j=1

yj| f j〉〈 f j|, (5)

where yj = 〈 f j|ρ| f j〉. Using Equation (5) implies that

xi = 〈ei|ρ|ei〉 =
d

∑
j=1
|〈ei| f j〉|2yj(i = 1, 2, . . . , d),

i.e., ⎛⎜⎜⎜⎝
x1
x2
...

xd

⎞⎟⎟⎟⎠ = C

⎛⎜⎜⎜⎝
y1
y2
...

yd

⎞⎟⎟⎟⎠, (6)

where

C =

⎛⎜⎜⎜⎝
|〈e1| f1〉|2 |〈e1| f2〉|2 · · · |〈e1| fd〉|2
|〈e2| f1〉|2 |〈e2| f2〉|2 · · · |〈e2| fd〉|2

...
...

. . .
...

|〈ed| f1〉|2 |〈ed| f2〉|2 · · · |〈ed| fd〉|2

⎞⎟⎟⎟⎠. (7)
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Since y1, . . . , yd are also the eigenvalues of ρ, they can be also rearranged as λ1, λ2, . . . , λd
in decreasing order. So, there exists a permutation matrix P2 such that

P2

⎛⎜⎜⎜⎝
y1
y2
...

yd

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
λ1
λ2
...

λd

⎞⎟⎟⎟⎠. (8)

Thus, ⎛⎜⎜⎜⎝
λ1
λ2
...

λd

⎞⎟⎟⎟⎠ = P1

⎛⎜⎜⎜⎝
x1
x2
...

xd

⎞⎟⎟⎟⎠ = P1C

⎛⎜⎜⎜⎝
y1
y2
...

yd

⎞⎟⎟⎟⎠ = P1CP2

⎛⎜⎜⎜⎝
λ1
λ2
...

λd

⎞⎟⎟⎟⎠. (9)

Putting P1CP2 = [wij] yields that

λi =
d

∑
j=1

wijλj(i = 1, 2, . . . , d). (10)

Thus, when λ1 = λ2 = . . . = λr > λr+1 ≥ . . . ≥ λd, we see from Equation (10) that for
1 ≤ i ≤ r,

λi =

(
r

∑
j=1

wij

)
λi +

d

∑
j=r+1

wijλj

and so ∑r
j=1 wij = 1, wij = 0(1 ≤ i ≤ r, r < j ≤ d). Using Equation (10) again yields that

for 1 + r ≤ i ≤ d,

λi =

(
r

∑
j=1

wij

)
λ1 +

d

∑
j=r+1

wijλj

and so ∑r
j=1 wij = 0, implying that wij = 0(r < i ≤ d, 1 ≤ j ≤ r). Thus,

P1CP2 =

⎛⎜⎜⎜⎝
D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...
0 0 . . . Dk

⎞⎟⎟⎟⎠, (11)

where k means the number of different eigenvalues μ1 > μ2 > . . . > μk of ρ and Di is an
ri × ri-doubly stochastic matrix, and ri denotes the multiplicity of the ith eigenvalue μi.

Conversely, suppose that there exist d× d permutation matrices P1 and P2 such that
P1CP2 is of the form (11) where k > 1. Since the matrix P1CP2 can be written as

P1CP2 =

⎛⎜⎜⎜⎝
|〈es1 | ft1〉|2 |〈es1 | ft2〉|2 · · · |〈es1 | ftd〉|2
|〈es2 | ft1〉|2 |〈es2 | ft2〉|2 · · · |〈es2 | ftd〉|2

...
...

. . .
...

|〈esd | ft1〉|2 |〈esd | ft2〉|2 · · · |〈esd | ftd〉|2

⎞⎟⎟⎟⎠,

where ⎛⎜⎜⎜⎝
s1
s2
...

sd

⎞⎟⎟⎟⎠ = P1

⎛⎜⎜⎜⎝
1
2
...
d

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
t1
t2
...

td

⎞⎟⎟⎟⎠ = P2

⎛⎜⎜⎜⎝
1
2
...
d

⎞⎟⎟⎟⎠,
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we see from condition (11) that

〈esi | ftj〉 = 0(∀r1 < j ≤ d, 1 ≤ i ≤ r1), 〈esi | ftj〉 = 0(∀r1 < i ≤ d, 1 ≤ j ≤ r1). (12)

This implies that the subspaces generated by {|esi 〉}r1
i=1 and {| ftj〉}r1

j=1 are equal and so

ρ :=
1
r1

r1

∑
i=1
|esi 〉〈esi | =

1
r1

r1

∑
j=1
| ftj〉〈 ftj |,

Clearly, ρ ∈ I(e) ∩ I( f ) \ { 1
d I}.

As a conclusion, we arrive at the following.

Theorem 2. Let d ≥ 2, e = {|ei〉}d
i=1 and f = {| f j〉}d

j=1 be two orthonormal bases for H and set

C =
[|〈ei| f j〉|2

]
. Then there exists a state ρ �= 1

d I in I(e) ∩ I( f ) if and only if there exist two
d× d permutation matrices P1 and P2 such that the matrix P1CP2 is k× k block-diagonal for some
k > 1.

Example 2. Let d > 3, e = {|ei〉}d
i=1 and f = {| f j〉}d

j=1 be two orthonormal bases for H such that

|〈 fi|ej〉| = 1√
2
(i, j = 1, 2), |ei〉 = | fi〉(i = 3, 4, . . . , d).

Then

C =
[
|〈ei| f j〉|2

]
=

⎛⎜⎜⎜⎜⎜⎝
0.5 0.5 0 · · · 0
0.5 0.5 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎠.

It follows from Theorem 2 that there exists a state ρ ∈ I(e)⋂ I( f ) \ {I/d}; for example,

ρ =
1

d− 2

d

∑
i=3
|ei〉〈ei|.

Remark 2. From Theorem 2, we know that whether I(e)⋂ I( f ) \ {I/d} �= ∅ depends on the
structure of the matrix C given by Equation (7). Since this, we call C the correlation matrix of the
bases e and f and denote it by Ce, f . Clearly, it can be written as the Hardamard product of the
transition matrix Te, f from e to f and its conjugate matrix T∗e, f :

Ce, f = Te, f � T∗e, f ,

where

Te, f =

⎛⎜⎜⎜⎝
〈e1| f1〉 〈e1| f2〉 · · · 〈e1| fd〉
〈e2| f1〉 〈e2| f2〉 · · · 〈e2| fd〉

...
...

. . .
...

〈ed| f1〉 〈ed| f2〉 · · · 〈ed| fd〉

⎞⎟⎟⎟⎠. (13)

Theorem 2 also tells us that when 〈ei| f j〉 �= 0 for all i, j, there do not exist per-
mutation matrices P1 and P2 such that P1CP2 is r × r(2 ≤ r ≤ d) block diagonal, so
I(e) ∩ I( f ) = {I/d}. Especially, for a pair of mutually unbiased bases e and f , when
ρ ∈ I(e) and ρ �= 1

d I, we have ρ /∈ I( f ). Conversely, when ρ is a maximally coherent state
w.r.t. e, a question is: whether ρ is also maximally coherent w.r.t. f . The follow example
shows that the answer is negative.
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Example 3. Let e = {|0〉, |1〉} and f = {| f0〉, | f1〉} be a pair of mutually unbiased bases for
H = C2 where

| f0〉 = 1√
2
(|0〉+ |1〉), | f1〉 = 1√

2
(|0〉 − |1〉),

choose
ρ1 =

1
2
(| f0〉〈 f0|+ | f0〉〈 f1|+ | f1〉〈 f0|+ | f1〉〈 f1|) = |0〉〈0|.

Then ρ1 is maximally coherent with respect to f but is incoherent w.r.t. e, while for the state

ρ2 =
1
2
(| f0〉〈 f0|+ i| f0〉〈 f1| − i| f1〉〈 f0|+ | f1〉〈 f1|),

we have
Ce,�1(ρ2) = CPf ,�1(ρ2) = 1.

Therefore, ρ2 is both maximally coherent w.r.t. e and f .

The following theorem shows that there must exist a maximally coherent state w.r.t.
any two bases for C2.

Theorem 3. Let e = {|ei〉}2
i=1 and f = {| f j〉}2

j=1 be two orthonormal bases for C2. Then there
exists a state ρ ∈ D(C2) such that

Ce,�1(ρ) + C f ,�1(ρ) = 2.

Proof. First, we observe that Ce,�1(ρ) = 1 if and only if

ρ =
1
2
(|e1〉〈e1|+ eiα|e1〉〈e2|+ e−iα|e1〉〈e2|+ |e2〉〈e2|) (14)

and CPf ,�1(ρ) = 1 if and only if

ρ =
1
2
(| f1〉〈 f1|+ eiβ| f1〉〈 f2|+ e−iβ| f2〉〈 f1|+ | f2〉〈 f2|). (15)

Suppose that
| f1〉 = u11|e1〉+ u12|e2〉, | f2〉 = u21|e1〉+ u22|e2〉,

then U := [uij] is a unitary matrix, which is given.
For a state ρ of the form given by (14), then Ce,�1(ρ) = 1. We compute that

〈 f1|ρ| f1〉 = (u∗11〈e1|+ u∗12〈e2|)|ρ|(u11|e1〉+ u12|e2〉)
=

1
2
(|u11|2 + u∗11u12eiα + u11u∗12e−iα + |u12|2)

=
1
2
+ Re(u∗11u12eiα),

〈 f1|ρ| f2〉 = (u∗11〈e1|+ u∗12〈e2|)|ρ|(u21|e1〉+ u22|e2〉)
=

1
2
(u∗11u21 + u∗11u22eiα + u∗12u21e−iα + u∗12u22)

=
1
2
(u∗11u22eiα + u∗12u21e−iα),
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〈 f2|ρ| f2〉 = (u∗21〈e1|+ u∗22〈e2|)|ρ|(u21|e1〉+ u22|e2〉)
=

1
2
(|u21|2 + u∗21u22eiα + u21u∗22e−iα + |u22|2)

=
1
2
+ Re(u∗21u22eiα).

Thus, C f ,�1(ρ) = 1 if and only if⎧⎨⎩
Re(u∗11u12eiα) = 0;
u∗11u22eiα + u∗12u21e−iα = eiβ;
Re(u∗21u22eiα) = 0,

(16)

if and only if {
Re(u∗11u12eiα) = 0;
u∗11u22eiα + u∗12u21e−iα = eiβ (17)

since u∗11u12 = −u∗21u22.
Since U is a unitary matrix, it can be represented as

U =

(
u11 u12
u21 u22

)
=

(
reiθ1

√
1− r2eiθ2√

1− r2eiθ3 reiθ4

)

where 0 ≤ r ≤ 1, and θk ∈ R s.t. ei(θ1−θ3) + ei(θ2−θ4) = 0. The last condition implies
that −θ1 + θ2 + θ3 − θ4 = (2n + 1)π for some integer n. Taking α = (θ1 − θ2 + θ3 − θ4)/2
implies that |u∗11u22eiα + u∗12u21e−iα| = 1 and so there exists a real number β such that
second equation in (17) holds. Since −θ1 + θ2 + α = nπ + π/2, the first equation in (17)
holds too. Hence, C f ,�1(ρ) = 1.

This shows that the state ρ defined by Equation (14) with α = (θ1 − θ2 + θ3 − θ4)/2
satisfies

Ce,�1(ρ) = C f ,�1(ρ) = 1,

that is, Ce,�1(ρ) + C f ,�1(ρ) = 2.

3. Weak Coherence

In this section, we turn to discuss the weak coherence of quantum states. To this, we
use B to denote a set of k orthonormal bases e1, e2, . . . , ek for H, i.e., B = {e1, e2, . . . , ek}.

Definition 1. We say that ρ ∈ D(H) is strongly incoherent (S-incoherent) w.r.t. B if ρ is
incoherent w.r.t. any basis in B. Otherwise, we say that ρ is weakly coherent (W-coherent) w.r.t. B.

Denoted by SI(B) the set of all S-incoherent states of H w.r.t. B. Clearly,

1
d

I ∈ SI(B) =
k⋂

i=1

I(ei).

Definition 2. Let Φ be a quantum operation on B(H). Then Φ is said to be an S-incoherent
operation (SIO) w.r.t. B (or B-incoherent operation (BIO)) if Φ ∈ IO(ei) for all i = 1, 2, . . . , k,
that is, for each i = 1, 2, . . . , k, Φ has a family of Kraus operators {Ein}mi

n=1 such that

Ein(I(ei))E†
in ⊂ R

+I(ei), ∀n = 1, 2, . . . , mi.

Denoted by IO(B) the set of all SIOs w.r.t. B, then

IO(B) =
k⋂

i=1

OI(ei).
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Similar to the definition of the standard coherence measure, let us introduce the
concept of a B-coherence measure.

Definition 3. A function CB : D(H) → R is said to be a B-coherence measure if the following
four conditions are satisfied:

(1) Faithfulness: ∀ρ ∈ D(H), CB(ρ) ≥ 0; CB(ρ) = 0 if and only if ρ ∈ SI(B).
(2) Monotonicity: CB(Φ(ρ)) ≤ CB(ρ) for every Φ ∈ IO(B) and for every ρ ∈ D(H).
(3) Strong monotonicity: for each i = 1, 2, . . . , k, ∑mi

n=1 pinCB(ρin) ≤ CB(ρ) for every
ρ ∈ D(H) and every Φ ∈ IO(B) with a family Kraus operators {Ein}mi

n=1, where pin =

tr(EinρE†
in) and ρin = 1

pin
EinρE†

in for pin > 0, and ρin = 1
d I for pin = 0.

(4) Convexity: CB(∑m
n=1 pnρn) ≤ ∑m

n=1 pnCB(ρn), where ρn ∈ D(H)(n = 1, 2, . . . , m)
and {pn}m

n=1 is a probability distribution.

The following theorem gives a method for constructing a B-coherence measure from k
ei-coherence measures (i = 1, 2, . . . , k).

Theorem 4. Let Cei (i = 1, 2, . . . , k) be ei-coherence measures. Then the function CB : D(H)→ R

defined by

CB(ρ) =
k

∑
i=1
Cei (ρ)(∀ρ ∈ D(H)) (18)

is a B-coherence measure.

Proof. (1) Let ρ ∈ D(H). Since Cei (ρ) ≥ 0 for all ei(i = 1, 2, . . . , k), we have CB(ρ) =

∑k
i=1 Cei (ρ) ≥ 0. Furthermore,

k

∑
i=1
Cei (ρ) = 0 ⇔ Cei (ρ) = 0(i = 1, 2, . . . , k)⇔ ρ ∈ SI(B).

(2) Let Φ ∈ IO(B). For each i = 1, 2 . . . , k, since Cei is an ei-coherence measure and
Φ ∈ IO(ei), we get

Cei (Φ(ρ)) ≤ Cei (ρ)

for all ρ ∈ D(H), and so

CB(Φ(ρ)) =
k

∑
i=1
Cei (Φ(ρ)) ≤

k

∑
i=1
Cei (ρ) = CB(ρ).

(3) Let ρ ∈ D(H), Φ ∈ IO(B) with families of Kraus operators {Ein}mi
n=1(i =

1, 2, . . . , k). Put pin = tr(EinρE†
in) and ρin = 1

pin
EinρE†

in for pin > 0, and ρin = 1
d I for

pin = 0. For each j = 1, 2, . . . , k, since Cej is an ej-coherence measure and Φ ∈ IO(ej),
we get

mi

∑
n=1

pinCej(ρin) ≤ Cej(ρ)(i, j = 1, 2, . . . , k).

This implies that for each i = 1, 2, . . . , k,

mi

∑
n=1

pinCB(ρin) =
mi

∑
n=1

pin

⎛⎝ k

∑
j=1
Cej (ρin)

⎞⎠ =
k

∑
j=1

(
mi

∑
n=1

pinCej (ρin)

)
≤

k

∑
j=1
Cej (ρ) = CB(ρ).
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(4) Let ρn ∈ D(H)(n = 1, 2, . . . , m) and let {pn}m
n=1 be a probability distribution. Since

Cei is an ei-coherence measure, we have

m

∑
n=1

pnCei (ρn) ≥ Cei

(
m

∑
n=1

pnρn

)

for all i = 1, 2, . . . , k, and therefore,

m

∑
n=1

pnCB(ρn) =
k

∑
i=1

(
m

∑
n=1

pnCei (ρn)

)
≥

k

∑
i=1
Cei

(
m

∑
n=1

pnρn

)
= CB

(
m

∑
n=1

pnρn

)
.

Using Definition 3 yields that the function CB defined by Equation (18) becomes a B-
coherence measure.

Using Theorem 4 yields that the function CB : D(H)→ R defined by

CB,�1(ρ) =
k

∑
i=1
Cei ,�1

(ρ)(∀ρ ∈ D(H)) (19)

is a B-coherence measure. We see from property (1) that CB,�1(ρ) ≤ k(d− 1) for all states
ρ of the system. A state ρ is said to be maximally coherent w.r.t. CB,�1 if CB,�1(ρ) = k(d− 1).
Clearly, a state ρ is maximally coherent CB,�1 if and only if it is maximally coherent w.r.t.
each Cei ,�1

.

Remark 3. (1) I
d ∈ SI(B); Especially, if there exist two mutually unbiased bases in B, then

SI(B) = { I
d}, that is, CB,�1(ρ) = 0 if and only if ρ = I

d .
(2) Theorem 3 implies when d = 2 and B = {e, f }(e �= f ), there exists a maximally coherent

state ρ w.r.t. CB,�1 , that is, CB,�1(ρ) = 2.
(3) The following theorem means that when d = 2 and B = {e, f , g} is a complete set of

mutually unbiased bases, there does not exist necessarily a maximally coherent state w.r.t. CB,�1 .

It was proved in [47] that the maximal number MUB(H) of mutually unbiased bases
for H is d + 1 if the dimension d of H is a prime-power. Thus, MUB(C2) = 3, i.e., there
exists a complete set of three mutually unbiased bases for C2.

Theorem 5. Let B = {e, f , g} where e = {|e1〉, |e2〉} be any orthonormal basis for C2, f =
{| f1〉, | f2〉} and g = {|g1〉, |g2〉} with

| f1〉 = 1√
2
(|e1〉+ |e2〉), | f2〉 = 1√

2
(|e1〉 − |e2〉),

|g1〉 = 1√
2
(|e1〉+ i|e2〉), | f2〉 = 1√

2
(|e1〉 − i|e2〉).

Then e, f and g are mutually unbiased bases pairwise for C2 and CB,�1(ρ) < 3 for all states ρ of C2,
that is, there does not exist a state ρ such that

Ce,�1(ρ) = C f ,�1(ρ) = Cg,�1(ρ) = 1. (20)

Proof. Obviously, e, f and g are mutually unbiased bases pairwise for C2. Suppose that
there exists a state ρ such that Equation (20) holds, i.e.,

|〈e1|ρ|e2〉| = |〈 f1|ρ| f2〉| = |〈g1|ρ|g2〉| = 1
2

. (21)
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Then under the three bases, we have

ρ = a|e1〉〈e1|+ 1
2

eiθ1 |e1〉〈e2|+ 1
2

e−iθ1 |e2〉〈e1|+ (1− a)|e2〉〈e2|, (22)

ρ = b| f1〉〈 f1|+ 1
2

eiθ2 | f1〉〈 f2|+ 1
2

e−iθ2 | f2〉〈 f1|+ (1− b)| f2〉〈 f2|, (23)

ρ = c|g1〉〈g1|+ 1
2

eiθ3 |g1〉〈g2|+ 1
2

e−iθ3 |g2〉〈g1|+ (1− c)|g2〉〈g2|, (24)

where a, b, c ∈ [0, 1], 0 ≤ θk < 2π(k = 1, 2, 3). Since ρ ≥ 0, we conclude from Equation (21)
that a = b = c = 1

2 . Substituting 2| fi〉〈 f j| in Equation (23) with

2| f1〉〈 f1| = |e1〉〈e1|+ |e1〉〈e2|+ |e2〉〈e1|+ |e2〉〈e2|,

2| f1〉〈 f2| = |e1〉〈e1| − |e1〉〈e2|+ |e2〉〈e1| − |e2〉〈e2|,
2| f2〉〈 f1| = |e1〉〈e1|+ |e1〉〈e2| − |e2〉〈e1| − |e2〉〈e2|,
2| f2〉〈 f2| = |e1〉〈e1| − |e1〉〈e2| − |e2〉〈e1|+ |e2〉〈e2|,

and comparing the coefficient of |e1〉〈e2| in Equations (22) and (23), we find that

eiθ1 = −i sin θ2 and so cos θ1 = 0. (25)

Similarly, substituting 2|gi〉〈gj| in Equation (24) with

2|g1〉〈g1| = |e1〉〈e1| − i|e1〉〈e2|+ |e2〉〈e1|+ i|e2〉〈e2|,

2|g1〉〈g2| = |e1〉〈e1|+ i|e1〉〈e2|+ i|e2〉〈e1| − |e2〉〈e2|,
2|g2〉〈g1| = |e1〉〈e1| − i|e1〉〈e2| − i|e2〉〈e1| − |e2〉〈e2|,
2|g2〉〈g2| = |e1〉〈e1|+ i|e1〉〈e2| − i|e2〉〈e1|+ |e2〉〈e2|,

and comparing the coefficient of |e1〉〈e2| in Equations (22) and (24), we find that

eiθ1 = − sin θ3 and so sin θ1 = 0. (26)

Combining Equations (25) and (26) yields that cos θ1 = sin θ1 = 0, a contradiction.

4. Conclusions

In this paper, we have introduced a correlation function m(e, f ) of two orthonormal
bases e and f with the property that 0 ≤ m(e, f ) ≤ d

3
2 − d, and proved that m(e, f ) = 0 if

and only if the rank-one projective measurements generated by e and f are identical if and
only if I(e) = I( f ), where I(e) and I( f ) denote the sets of incoherent states with respect
to e and f , respectively. We have also shown that m(e, f ) reaches the maximum d

3
2 − d if and

only if the bases e and f are mutually unbiased; in that case, the intersection I(e)⋂ I( f )
includes only the maximally mixed state. We have observed that even though two bases
e and f are not mutually unbiased, I(e)⋂ I( f ) may include only the maximally mixed
state. We have obtained a necessary and sufficient condition for I(e)⋂ I( f ) = I

d . We have
introduced the concepts of strong incoherence and weak coherence of a quantum state
w.r.t. a set B of k orthonormal bases and proposed a measure CB for the weak coherence.
In the two-qubit system, we have proved that there exists a maximally coherent state w.r.t.
the measure CB,�1 when B consists of any two bases and observed that there exist does not
a maximally coherent state w.r.t. the measure CB,�1 when B consists of some three mutually
unbiased bases.
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Abstract: A crucial issue in quantum communication tasks is characterizing how quantum resources
can be quantified and distributed over many parties. Consequently, entanglement has been explored
extensively. However, there are few genuine multipartite entanglement measures and whether it
is monogamous is so far unknown. In this work, we explore the complete monogamy of genuine
multipartite entanglement measure (GMEM) for which, at first, we investigate a framework for
unified/complete GMEM according to the unified/complete multipartite entanglement measure
we proposed in 2020. We find a way of inducing unified/complete GMEM from any given uni-
fied/complete multipartite entanglement measure. It is shown that any unified GMEM is completely
monogamous, and any complete GMEM that is induced by given complete multipartite entangle-
ment measure is completely monogamous. In addition, the previous GMEMs are checked under this
framework. It turns out that the genuinely multipartite concurrence is not as good of a candidate
as GMEM.

Keywords: genuine entanglement; entanglement measure; complete monogamy

1. Introduction

Entanglement is a quintessential manifestation of quantum mechanics and is often
considered to be a useful resource for tasks like quantum teleportation or quantum cryptog-
raphy [1–4], etc. There has been a tremendous amount of research in the literature aimed
at characterizing entanglement in the last three decades [1–9]. In an effort to contribute to
this line of research, however, the genuine multiparty entanglement, which represents the
strongest form of entanglement in many body systems, still remains unexplored or less
studied in many facets.

A fundamental issue in this field is to quantify the genuine multipartite entanglement
and then analyze the distribution among the different parties. In 2000 [10], Coffman et al.
presented a measure of genuine three-qubit entanglement, called “residual tangle”, and
discussed the distribution relation for the first time. In 2011, Ma et al. [11] established
postulates for a quantity to be a GMEM and gave a genuine measure, called genuinely
multipartite concurrence (GMC), by the origin bipartite concurrence. The GMC is further
explored in Ref. [12], the generalized geometric measure is introduced in Refs. [13,14],
and the average of “residual tangle” and GMC, i.e., (τ + Cgme)/2 [15], is shown to be
genuine multipartite entanglement measures. Another one is the divergence-based genuine
multipartite entanglement measure presented in [16,17]. Recently, Ref. [18] introduced
a new genuine three-qubit entanglement measure, called concurrence triangle, which is
quantified as the square root of the area of a triangle deduced by concurrence. Consequently,
we improved and supplemented the method in [18] and proposed a general way of defining
GMEM in Ref. [19].

The distribution of entanglement is believed to be monogamous, i.e., a quantum system
entangled with another system limits its entanglement with the remaining others [20].
There are two methods used in this research. The first one is analyzing monogamy relation
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based on bipartite entanglement measure, and the second one is based on multipartite
entanglement measure. For the former one, considerable efforts have been made in the
last two decades [10,21–40]. It is shown that almost all bipartite entanglement measures
we know by now are monogamous. In 2020, we established a framework for multipartite
entanglement measure and discussed its monogamy relation, which is called complete
monogamy relation and tight complete monogamy relation [22]. Under this framework,
the distribution of entanglement becomes more clear since it displays a complete hierarchy
relation of different subsystems. We also proposed several multipartite entanglement
measures and showed that they are completely monogamous.

The situation becomes much more complex when we deal with genuine entanglement,
since it associates with not only multiparty system but also the most complex entanglement
structure. The main purpose of this work is to establish the framework of unified/complete
GMEM, by which we then present the definition of complete monogamy and tight complete
monogamy of unified and complete GMEM, respectively. Another aim is to find an
approach of deriving GMEM from the multipartite entanglement measure introduced in
Ref. [22]. In the next section we list some necessary concepts and the associated notations.
In Section 3 we discuss the framework of unified/complete GMEM and give several
illustrated examples. Then, in Section 4, we investigate the complete monogamy relation
and tight complete monogamy relation for GMEM accordingly. A summary is concluded
in the last section.

2. Preliminary

For convenience, in this section, we recall the concepts of genuine entanglement,
complete multipartite entanglement measure, monogamy relation, complete monogamy
relation, and genuine multipartite entanglement measure. In the first subsection, we
introduce the coarser relation of multipartite partition by which the following concepts
can be easily processed. For simplicity, throughout this paper, we denote byHA1 A2···Am :=
HA1 ⊗HA2 ⊗ · · · ⊗ HAm an m-partite Hilbert space with finite dimension and by SX we
denote the set of density operators acting onHX .

2.1. Coarser Relation of Multipartite Partition

Let X1|X2| · · · |Xk be a partition (or called k-partition) of A1 A2 · · · Am, i.e., Xs =
As(1)As(2) · · · As( f (s)), s(i) < s(j) whenever i < j, and s(p) < t(q) whenever s < t for
any possible p and q, 1 ≤ s, t ≤ k. For instance, partition AB|C|DE is a 3-partition of
ABCDE. Let X1|X2| · · · |Xk and Y1|Y2| · · · |Yl be two partitions of A1 A2 · · · An or subsys-
tem of A1 A2 · · · An. Y1|Y2| · · · |Yl is said to be coarser than X1|X2| · · · |Xk, denoted by

X1|X2| · · · |Xk � Y1|Y2| · · · |Yl , (1)

if Y1|Y2| · · · |Yl can be obtained from X1|X2| · · · |Xk by one or some of the following ways
(the coarser relation was also introduced in Ref. [41], but the the third case in Ref. [41] is a
little different from the third item below):

• (C1) Discarding some subsystem(s) of X1|X2| · · · |Xk;
• (C2) Combining some subsystems of X1|X2| · · · |Xk;
• (C3) Discarding some subsystem(s) of some subsystem(s) Xk provided that Xk =

Ak(1)Ak(2) · · · Ak( f (k)) with f (k) ≥ 2.

For example, A|B|C|D|E � A|B|C|DE � A|B|C|D � AB|C|D � AB|CD, A|B|C|DE �
A|B|DE. Clearly, X1|X2| · · · |Xk � Y1|Y2| · · · |Yl and Y1|Y2| · · · |Yl � Z1|Z2| · · · |Zs imply
X1|X2| · · · |Xk � Z1|Z2| · · · |Zs.

Furthermore, if X1|X2| · · · |Xk � Y1|Y2| · · · |Yl , we denote by Ξ(X1|X2| · · · |Xk −Y1|Y2|
· · · |Yl) the set of all the partitions that are coarser than
X1|X2| · · · |Xk and either exclude any subsystem of Y1|Y2| · · · |Yl or include some but not
all subsystems of Y1|Y2| · · · |Yl . We take the five-partite system ABCDE for example,
Ξ(A|B|CD|E− A|B) = {CD|E, A|CD|E, B|CD|E, A|CD, A|E, B|E, A|C, A|D, B|C, B|D}.
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For more clarity, we fix the following notations. Let X1|X2| · · · |Xk and Y1|Y2| · · · |Yl
be partitions of A1 A2 · · · An or subsystem of A1 A2 · · · An. We denote by

X1|X2| · · · |Xk �a Y1|Y2| · · · |Yl (2)

for the case of (C1), by

X1|X2| · · · |Xk �b Y1|Y2| · · · |Yl (3)

for the case of of (C2), and in addition by

X1|X2| · · · |Xk �c Y1|Y2| · · · |Yl (4)

for the case of of (C2). For example, A|B|C|D �a A|B|D �a B|D, A|B|C|D �b AC|B|D �b

AC|BD, A|BC �c A|B, A|BC �c A|C.

2.2. Multipartite Entanglement

An m-partite pure state |ψ〉 ∈ HA1 A2···Am is called biseparable if it can be written
as |ψ〉 = |ψ〉X ⊗ |ψ〉Y for some bipartition of A1 A2 · · · Am. |ψ〉 is said to be k-separable if
|ψ〉 = |ψ〉X1 |ψ〉X2 · · · |ψ〉Xk for some k-partition of A1 A2 · · · Am. |ψ〉 is called fully separable
if it is m-separable. It is clear that whenever a state is k-separable, it is automatically also
l-separable for all 1 < l < k ≤ m. An m-partite mixed state ρ is biseparable if it can be
written as a convex combination of biseparable pure states ρ = ∑i pi|ψi〉〈ψi|, wherein the
contained {|ψi〉} can be biseparable with respect to different bipartitions (i.e., a mixed
biseparable state does not need to be separable with respect to any particular bipartition).
Otherwise it is called genuinely m-partite entangled (or called genuinely entangled briefly).
We denote by SA1 A2···Am

g the set of all genuinely entangled states in SA1 A2···Am . Throughout
this paper, for any ρ ∈ SA1 A2···Am and any given k-partition X1|X2| · · · |Xk of A1 A2 · · · Am,
we denote by ρX1|X2|···|Xk the state for which we consider it as a k-partite state with respect
to the partition X1|X2| · · · |Xk.

2.3. Complete Multipartite Entanglement Measure

A function E(m) : SA1 A2···Am → R+ is called an m-partite entanglement measure in
literatures [3,42,43] if it satisfies:

• (E1) E(m)(ρ) = 0 if ρ is fully separable;
• (E2) E(m) cannot increase under m-partite LOCC.

An m-partite entanglement measure E(m) is said to be an m-partite entanglement monotone
if it is convex and does not increase on average under m-partite stochastic LOCC. For
simplicity, throughout this paper, if E is an entanglement measure (bipartite, or multipartite)
for pure states, we define

EF(ρ) := min ∑
i

piE(m)(|ψi〉) (5)

and call it the convex-roof extension of E, where the minimum is taken over all pure-state
decomposition {pi, |ψi〉} of ρ (Sometimes, we use EF to denote EF hereafter). When we
take into consideration an m-partite entanglement measure, we need discuss whether it
is defined uniformly for any k-partite system at first, k < m. Let E(m) be a multipartite
entanglement measure (MEM). If E(k) is uniquely determined by E(m) for any 2 ≤ k < m,
then we call E(m) a uniform MEM. For example, GMC, denoted by Cgme [11], is uniquely
defined for any k, thus it is a uniform GMEM. Recall that,

Cgme(|ψ〉) := min
γi∈γ

√
2
[
1− Tr(ρAγi )2

]
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for pure state |ψ〉 ∈ HA1 A2···Am , where γ = {γi} represents the set of all possible bipar-
titions of A1 A2 · · · Am, and via the convex-roof extension for mixed states [11]. All the
unified MEMs presented in Ref. [22] are uniform MEM. That is, a uniform MEM is series of
MEMs that have uniform expressions definitely. A uniform MEM E(m) is called a unified
multipartite entanglement measure if it also satisfies the following condition [22]:

• (E3) the unification condition, i.e., E(m) is consistent with E(k) for any 2 � k < m.

The unification condition should be comprehended in the following sense [22]. Let
|ψ〉A1 A2···Am = |ψ〉A1 A2···Ak |ψ〉Ak+1···Am , then

E(m)(|ψ〉A1 A2···Am) = E(k)(|ψ〉A1 A2···Ak ) + E(m−k)|ψ〉Ak+1···Am .

And

E(m)(ρA1 A2···Am) = E(m)(ρπ(A1 A2···Am))

for any ρA1 A2···Am ∈ SA1 A2···Am , where π is a permutation of the subsystems. In addition,

E(k)(X1|X2| · · · |Xk) � E(l)(Y1|Y2| · · · |Yl)

for any ρA1 A2···Am ∈ SA1 A2···Am whenever X1|X2| · · · |Xk �a Y1|Y2| · · · |Yl , where the verti-
cal bar indicates the split across which the entanglement is measured. A uniform MEM
E(m) is called a complete multipartite entanglement measure if it satisfies both (E3) above
and the following [22]:

• (E4) E(m)(X1|X2| · · · |Xk) � E(k)(Y1|Y2| · · · |Yl) holds for all ρ ∈ SA1 A2···Am whenever
X1|X2| · · · |Xk �b Y1|Y2| · · · |Yl .

We need to remark here that, although the partial trace is in fact a special trace-preserving
completely positive map, we cannot derive ρY1|Y2|···|Yl from ρX1|X2|···|Xk by any k-partite
LOCC for any given X1|X2| · · · |Xk � Y1|Y2| · · · |Yl . Namely, different from that of bipartite
case, the unification condition cannot be induced by the m-partite LOCC. For any bipartite
measure E, E(A|BC) ≥ E(AB) for any ρABC since ρAB = TrCρABC can be obtained by
partial trace on part C and such a partial trace is in fact a bipartite LOCC acting on A|BC.
However, ρAB cannot be derived from any tripartite LOCC acting on ρABC. Thus, whether
E(3)(A|BC) ≥ E(2)(AB) is unknown.

Several unified tripartite entanglement measures were proposed in Ref. [22]:

E(3)
f (|ψ〉) =

1
2

[
S(ρA) + S(ρB) + S(ρC)

]
,

τ(3)(|ψ〉) = 3− Tr
(

ρA
)2 − Tr

(
ρB
)2 − Tr

(
ρC
)2

,

C(3)(|ψ〉) =
√

τ(3)(|ψ〉),
N(3)(|ψ〉) = Tr2

√
ρA + Tr2

√
ρB + Tr2

√
ρC − 3,

T(3)
q (|ψ〉) =

1
2

[
Tq(ρ

A) + Tq(ρ
B) + Tq(ρ

C)
]
, q > 1,

R(3)
α (|ψ〉) =

1
2

Rα(ρ
A ⊗ ρB ⊗ ρC), 0 < α < 1

for pure state |ψ〉 ∈ HABC, and then by the convex-roof extension for mixed state ρABC ∈
SABC (for mixed state, N(3) is replaced with N(3)

F ), where Tq(ρ) := (1− q)−1[Tr(ρq)− 1] is
the Tsallis q-entropy, Rα(ρ) := (1− α)−1 ln(Trρα) is the Rényi α-entropy. In addition [22],

N(3)(ρ) = ‖ρTa‖Tr + ‖ρTb‖Tr + ‖ρTc‖Tr − 3 (6)
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for any ρ ∈ SABC. E(3)
f , C(3), τ(3) and T(3)

q are shown to be complete tripartite entanglement

measures while R(3)
α , N(3) and N(3)

F are proved to be unified but not complete tripartite
entanglement measures [22].

In Ref. [44], we introduce three unified tripartite entanglement measures (but not
complete tripartite entanglement measures) in terms of fidelity:

E(3)
F (|ψ〉) := 1−F

(
|ψ〉〈ψ|, ρA ⊗ ρB ⊗ ρC

)
, (7)

E(3)
F′ (|ψ〉) := 1−

√
F
(
|ψ〉〈ψ|, ρA ⊗ ρB ⊗ ρC

)
, (8)

E(3)
AF (|ψ〉) := 1−FA

(
|ψ〉〈ψ|, ρA ⊗ ρB ⊗ ρC

)
, (9)

for any pure state |ψ〉 inHABC, where F is the Uhlmann-Jozsa fidelity F [45,46], which is
defined as

F (ρ, σ) :=
(

Tr
√√

ρσ
√

ρ

)2
, (10)

√F is defined by [47–49]

√
F (ρ, σ) :=

√
F (ρ, σ), (11)

and the A-fidelity, FA, is the square of the quantum affinity A(ρ, σ) [50,51], i.e.,

FA(ρ, σ) := [Tr(
√

ρ
√

σ)]2. (12)

For mixed states, E(3)
F ,F, E(3)

F′ ,F, and E(3)
AF ,F are defined by the convex-roof extension as in

Equation (5).

2.4. Monogamy Relation

For a given bipartite measure Q (such as entanglement measure and other quantum
correlation measure), Q is said to be monogamous (we take the tripartite case for example)
if [10,26]

Q(A|BC) � Q(AB) + Q(AC). (13)

However, Equation (13) is not valid for many entanglement measures [10,24,52,53] but some
power function of Q admits the monogamy relation (i.e., Qα(A|BC) � Qα(AB) + Qα(AC)
for some α > 0). In Ref. [23], we address this issue by proposing an improved defini-
tion of monogamy (without inequalities) for entanglement measure: A bipartite measure
of entanglement E is monogamous if for any ρ ∈ SABC that satisfies the disentangling
condition, i.e.,

E(ρA|BC) = E(ρAB), (14)

we have that E(ρAC) = 0, where ρAB = TrCρABC. With respect to this definition, a
continuous measure E is monogamous according to this definition if and only if there exists
0 < α < ∞ such that

Eα(ρA|BC) � Eα(ρAB) + Eα(ρAC) (15)

for all ρ acting on the state spaceHABC with fixed dimHABC = d < ∞ (see Theorem 1 in
Ref. [23]). Notice that, for these bipartite measures, only the relation between A|BC, AB
and AC are revealed, and the global correlation in ABC and the correlation contained in
part BC are missed [22]. That is, the monogamy relation in such a sense is not “complete”.
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For a unified tripartite entanglement measure E(3), it is said to be completely monogamous if
for any ρ ∈ SABC that satisfies [22]

E(3)(ρABC) = E(2)(ρAB) (16)

we have that E(2)(ρAC) = E(2)(ρBC) = 0. If E(3) is a continuous unified tripartite entangle-
ment measure. Then, E(3) is completely monogamous if and only if there exists 0 < α < ∞
such that [22]

Eα(ρABC) � Eα(ρAB) + Eα(ρAC) + Eα(ρBC) (17)

for all ρABC ∈ SABC with fixed dimHABC = d < ∞, here we omitted the superscript (2,3)

of E(2,3) for brevity. Let E(3) be a complete MEM. E(3) is defined to be tightly complete
monogamous if for any state ρABC ∈ SABC that satisfies [22]

E(3)(ρABC) = E(2)(ρA|BC) (18)

we have E(2)(ρBC) = 0, which is equivalent to

Eα(ρABC) � Eα(ρA|BC) + Eα(ρBC)

for some α > 0. Here we omitted the superscript (2,3) of E(2,3) for brevity. For the general
case of E(m), one can similarly follow with the same spirit.

2.5. Genuine Entanglement Measure

A function E(m)
g : SA1 A2···Am → R+ is defined to be a measure of genuine multipartite

entanglement if it admits the following conditions [11]:

• (GE1) E(m)
g (ρ) = 0 for any biseparable ρ ∈ SA1 A2···Am ;

• (GE2) E(m)
g (ρ) > 0 for any genuinely entangled state ρ ∈ SA1 A2···Am . This item can

be weakened as: E(m)
g (ρ) � 0 for any genuinely entangled state ρ ∈ SA1 A2···Am . That

is, maybe there exists some state that is genuinely entangled such that E(m)
g (ρ) = 0.

In such a case, the measure is called not faithful. Otherwise, it is called faithful. For
example, the “residual tangle” is not faithful since it is vanished for the W state;

• (GE3) E(m)
g (∑i piρi) � ∑i piE

(m)
g (ρi) for any {pi, ρi}, ρi ∈ SA1 A2···Am , pi > 0, ∑i pi = 1;

• (GE4) E(m)
g (ρ) � E(m)

g (ρ′) for any m-partite LOCC ε, ε(ρ) = ρ′.

Note that (GE4) implies that E(m)
g is invariant under local unitary transformations. E(m)

g is
said to be a genuine multipartite entanglement monotone if it does not increase on average
under m-partite stochastic LOCC. For example, Cgme is a GMEM.

3. Complete Genuine Multipartite Entanglement Measure

Analogous to that of unified/complete multipartite entanglement measure established
in Ref. [22], we discuss the unification condition and the hierarchy condition for genuine
multipartite entanglement measure in this section. We start out with an observation of the
examples. Let |ψ〉 be an m-partite pure state in HA1 A2···Am . Recall that, the multipartite
entanglement of formation E(m)

f is defined as [22]

E(m)
f (|ψ〉) :=

1
2

m

∑
i=1

S(ρAi ),
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where ρX := TrX̄(|ψ〉〈ψ|). We define

E(m)
g− f (|ψ〉) :=

1
2

δ(|ψ〉)
m

∑
i=1

S(ρAi ), (19)

where δ(ρ) = 0 if ρ is biseparable up to some bi-partition and δ(ρ) = 1 if ρ is not biseparable
up to any bi-partition. For mixed state, it is defined by the convex-roof extension. Obviously,
E(m)

g− f is a uniform GMEM since I(A1 : A2 : · · · : An) � 0 for any n [54], where I(A1 : A2 :

· · · : An) := ∑n
k=1 S(ρAk )− S(A1 A2 · · · An) = S(ρA1 A2···An‖ρA1 ⊗ ρA2 ⊗ · · · ρAn) � 0. The

following properties are straightforward: For any ρA1 A2···Am ∈ SA1 A2···Am
g ,

E(k)
g− f (X1|X2| · · · |Xk) > E(l)

g− f (Y1|Y2| · · · |Yl)

for any X1|X2| · · · |Xk �b Y1|Y2| · · · |Yl . It is worth noting that, for any uniform GMEM
E(m)

g , we cannot require E(k)
g (X1|X2| · · · |Xk) = E(l)

g (Y1|Y2| · · · |Yl) for any ρ ∈ SA1 A2···Am
g

and any X1|X2| · · · |Xk �a Y1|Y2| · · · |Yl . For example, if E(4)
g (ρABCD) = E(3)

g (ρABC) for
some ρABCD ∈ SABCD

g , then the entanglement between part ABC and part D is zero, which
means that ρABCD is biseparable with respect to the partition ABC|D—a contradiction. In
addition, let |ψ〉ABC be a tripartite genuine entangled state in HABC, then |ψ〉ABC|ψ〉D is
not a four-partite genuine entangled state, i.e.,

E(4)
g (|ψ〉ABC|ψ〉D) = 0,

but E(3)
g (ψ〉ABC) > 0 provided that E(3)

g is faithful. That is, the genuine multipartite en-
tanglement measure is not necessarily decreasing under the discarding of the subsystem.
However, for the genuine entangled state, it is decreasing definitely. From these observa-
tions, we give the following definition.

Definition 1. Let E(m)
g be a uniform genuine entanglement measure. If it satisfies the unification

condition, i.e.,

E(m)
g (A1 A2 · · · Am) = E(m)

g (π(A1 A2 · · · Am)) (20)

and

E(k)
g (X1|X2| · · · |Xk) > E(l)

g (Y1|Y2| · · · |Yl) (21)

for any ρ ∈ SA1 A2···Am
g whenever X1|X2| · · · |Xk �a Y1|Y2| · · · |Yl, we call E(m)

g a unified genuine
multipartite entanglement measure, where π(·) denotes the permutation of the subsystems.

For any ρ ∈ SA1 A2···Am
g , if X1|X2| · · · |Xk �b Y1|Y2| · · · |Yl , We expect any unified

GMEM satisfies E(k)
g (X1|X2| · · · |Xk) � E(l)

g (Y1|Y2| · · · |Yl) since ‘some amount of entangle-

ment’ may be hided in the combined subsystem. For example, the quantity E(3)
g (AB|C|D)

cannot report the entanglement contained between subsystems A and B. We thus present
the following definition.

Definition 2. Let E(m)
g be a unified GMEM. If E(m)

g admits the hierarchy condition, i.e.,

E(k)
g (X1|X2| · · · |Xk) � E(l)

g (Y1|Y2| · · · |Yl) (22)

for any ρ ∈ SA1 A2···Am
g whenever X1|X2| · · · |Xk �b Y1|Y2| · · · |Yl, then it is said to be a complete

genuine multipartite entanglement measure.
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We remark here that, for any given uniform GMEM E(m)
g ,

E(k)
g (X1|X2| · · · |Xk) � E(k)

g (X′1|X′2| · · · |X′k) (23)

holds for any ρ ∈ SA1 A2···Am
g whenever X1|X2| · · · |Xk �c X′1|X′2| · · · |X′k since ρX′1|X′2|···|X′k

is obtained from ρX1|X2|···|Xk by partial trace and such a partial trace is indeed a k-partite
LOCC, 2 ≤ k ≤ m. That is, a complete GMEM is a series of GMEMs that are compatible in
the following sense: Not only the genuine entanglement contained in the global system
and that of any subsystem or new partition of the global system are comparable but also
the genuine entanglement in any subsystems with the coarser relation can be compared
with each other. Of course, the genuine entanglement should be decreasing whenever the
system is coarsening, as one may expect. By definition, E(m)

g− f is a complete GMEM. We just

take E(m)
g− f for example. For the three-qubit GHZ state |GHZ〉 = 1√

2
(|000〉+ |111〉),

E(3)
g− f (|GHZ〉) = 3

2
> E(2)

g− f (|GHZ〉A|BC) = 1 > E(2)
g− f (ρ

AB) = 0,

and for the W state |W〉 = 1√
3
(|100〉+ |010〉+ |001〉), it is straightforward that

E(3)
g− f (|W〉) =

3
2

log2 3− 1 > E(2)
g− f (|W〉A|BC) = log2 3− 2

3
> E(2)

g− f (ρ
AB) =

2
3

.

In general, the equality in Equation (23) does not hold, i.e., the genuine entanglement
decreases strictly under coarser relation (C3). For example, if E(|ψ〉A|BC) = E(ρAB), then
|ψ〉ABC is biseparable for almost all bipartite entanglement measures E so far [36].

It is clear that Cgme is not a complete GMEM since it does not satisfy the hierarchy
condition (22). We take a four-partite state for example. Let

|ψ〉 =
√

5
4
|0000〉+ 1

4
|1111〉+

√
5

4
|0100〉+

√
5

4
|1010〉,

then Cgme(|ψ〉) = C(|ψ〉ABC|D) =
√

15
8 < C(|ψ〉AB|CD) =

√
65
8 . In general, Cgme is not even

a unified GMEM since we can not guarantee that unification condition (21) holds true.
We now turn to find unified/complete GMEM. E(m)

g− f is derived from unified/complete

multipartite entanglement measures E(m)
f . This motivates us to obtain unified/complete

GMEMs from the unified/complete MEMs.

Proposition 1. Let E(m) be a unified/complete multipartite entanglement measure (resp. mono-
tone), and define

E(m)
g−F(ρ) := min

{pi ,|ψi〉}
∑ piδ(|ψi〉)E(m)(|ψi〉) (24)

whenever E(m)
F = min{pi ,|ψi〉} ∑ piE(m)(|ψi〉) and

E(m)
g (ρ) := δ(ρ)E(m)(ρ) (25)

whenever E(m) is not defined by the convex-roof extension for mixed state, where the minimum
is taken over all pure-state decomposition {pi, |ψi〉} of ρ ∈ SA1 A2···Am , δ(ρ) = 1 whenever ρ is
genuinely entangled and δ(ρ) = 0 otherwise. Then, E(m)

g is a unified/complete genuine multipartite
entanglement measure (resp. monotone).
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Proof. It is clear that E(m)
g−F and E(m)

g satisfy the unification condition (resp. hierarchy

condition) on SA1 A2···Am
g whenever E(m) satisfies the unification condition (resp. hierarchy

condition) on SA1 A2···Am .

Consequently, according to Proposition 1, we get

τ
(3)
g (|ψ〉) = δ(|ψ〉)

[
3− Tr

(
ρA
)2 − Tr

(
ρB
)2 − Tr

(
ρC
)2
]

,

C(3)
g (|ψ〉) =

√
τ
(3)
g (|ψ〉),

N(3)
g (|ψ〉) = δ(|ψ〉)

[
Tr2
√

ρA + Tr2
√

ρB + Tr2
√

ρC − 3
]

,

T(3)
g−q(|ψ〉) =

1
2

δ(|ψ〉)
[

Tq(ρ
A) + Tq(ρ

B) + Tq(ρ
C)
]
, q > 1,

R(3)
g−α(|ψ〉) =

1
2

δ(|ψ〉)Rα(ρ
A ⊗ ρB ⊗ ρC), 0 < α < 1,

E(3)
g−F (|ψ〉) = δ(|ψ〉)

[
1−F

(
|ψ〉〈ψ|, ρA ⊗ ρB ⊗ ρC

)]
,

E(3)
g−F′(|ψ〉) = δ(|ψ〉)

[
1−

√
F
(
|ψ〉〈ψ|, ρA ⊗ ρB ⊗ ρC

)]
,

E(3)
g−AF (|ψ〉) = δ(|ψ〉)

[
1−FA

(
|ψ〉〈ψ|, ρA ⊗ ρB ⊗ ρC

)]
,

for pure states, and define by the convex-roof extension for the mixed states (for mixed
state, where N(3)

g is replaced with the convex-roof extension of N(3)
g , N(3)

g−F), and

N(3)
g (ρ) = δ(ρ)

(
‖ρTa‖Tr + ‖ρTb‖Tr + ‖ρTc‖Tr − 3

)
for any ρ ∈ SABC. These tripartite measures, except for N(3)

g are in fact special cases of
E F

g−123 in Ref. [19]. Generally, we can define

τ
(m)
g (|ψ〉) = δ(|ψ〉)

[
m−∑

i
Tr
(

ρAi
)2
]

,

C(m)
g (|ψ〉) =

√
τ
(m)
g (|ψ〉),

N(m)
g (|ψ〉) = δ(|ψ〉)

[
∑

i
Tr2
√

ρAi −m

]
,

T(m)
g−q(|ψ〉) =

1
2

δ(|ψ〉)∑
i

Tq(ρ
Ai ), q > 1,

R(m)
g−α(|ψ〉) =

1
2

δ(|ψ〉)Rα

(⊗
i

ρAi

)
, 0 < α < 1,

E(m)
g−F (|ψ〉) = δ(|ψ〉)

[
1−F

(
|ψ〉〈ψ|,⊗

i
ρAi

)]
,

E(m)
g−F′(|ψ〉) = δ(|ψ〉)

[
1−

√
F
(
|ψ〉〈ψ|,⊗

i
ρAi

)]
,

E(m)
g−AF (|ψ〉) = δ(|ψ〉)

[
1−FA

(
|ψ〉〈ψ|,⊗

i
ρAi

)]
,
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for pure states and define by the convex-roof extension for the mixed states (for mixed
state, N(m)

g is replaced with N(m)
g−F), and

N(m)
g (ρ) = δ(ρ)

(∥∥∥∥∥∑i
ρTi

∥∥∥∥∥
Tr

−m

)

for any ρ ∈ SA1 A2···Am . According to Proposition 1, together with Theorem 5 in Ref. [22],
the statement below is straightforward.

Proposition 2. E(m)
g− f , τ

(m)
g , C(m)

g , and T(m)
g−q are complete genuine multipartite entanglement

monotones while R(m)
g−α, N(m)

g−F, N(m)
g , E(m)

g−F , E(m)
g−F′ , and E(m)

g−AF are unified genuine multipartite
entanglement monotones, but not complete genuine multipartite entanglement monotones.

Very recently, we proposed the following genuine four-partite entanglement mea-
sures [19]. Let E be a bipartite entanglement measure and let

Eg−1234(2)(|ψ〉) := δ(|ψ〉)∑
i

x(2)i (26)

for any given |ψ〉 ∈ HABCD, where E(|ψ〉AB|CD) = x(2)1 , E(|ψ〉A|BCD) = x(2)2 , E(|ψ〉AC|BD) =

x(2)3 , E(|ψ〉ABC|D) = x(2)4 , E(|ψ〉AD|BC) = x(2)5 , E(|ψ〉B|ACD) = x(2)6 , E(|ψ〉C|ABD) = x(2)7 .
Then E F

g−1234(2) is a genuine four-partite entanglement measure. Let E(3) be a tripartite
entanglement measure,

Eg−1234(3)(|ψ〉) = δ(|ψ〉)∑
i

x(3)i (27)

for any given |ψ〉 ∈ SABCD, where E(3)(ρA|B|CD) = x(3)1 , E(3)(ρA|BC|D) = x(3)2 ,

E(3)(ρAC|B|D) = x(3)3 , E(3)(ρAB|C|D) = x(3)4 , E(3)(ρAD|B|C) = x(3)5 , E(3)(ρA|BD|C) = x(3)6 .
It is clear that E F

g−1234(3) is a genuine four-partite entanglement measure but not uni-
form GMEM.

Generally, we can define E F
g−1234···m(2) by the same way, and it is a uniform GMEM.

We check below that E F
g−1234···m(2) is a complete GMEM whenever E is an entanglement

monotone. We only need to discuss the case of m = 4, and the general cases can be
argued similarly. For any genuine entangled pure state |ψ〉 ∈ HABCD, and any bipartite
entanglement monotone E, it is clear that Eg−1234(2)(|ψ〉) > EF(ρXY) for any {X, Y} ∈
{A, B, C, D}. For any pure state decomposition of ρABC, ρABC = ∑i pi|ψi〉〈ψi|, we have
E(|ψ〉A|BCD) � ∑i piE(|ψi〉A|BC), E(|ψ〉AB|CD) � ∑i piE(|ψi〉AB|C), and E(|ψ〉B|ACD) �
∑i piE(|ψi〉B|AC) since any ensemble {pi, |ψi〉} can be derived by LOCC from |ψ〉. It follows
that Eg−1234(2)(|ψ〉) > E F

g−123(2)(ρ
ABC). By symmetry of the subsystems, we get that the

unification condition is valid for pure state. For mixed state ρ ∈ SABCD
g , we let

E F
g−1234(2)(ρ) = ∑

j
pjEg−1234(2)(|φj〉)

for some decomposition ρ = ∑j pj|φj〉〈φj|. Then

Eg−1234(2)(|φj〉) � E F
g−123(2)(ρ

ABC
j )
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for any j, where ρABC
j = TrD(|φj〉〈φj|). Therefore

E F
g−1234(2)(ρ) = ∑

j
pjEg−1234(2)(|φj〉) � ∑

j
pjE F

g−123(2)(ρ
ABC
j ) � E F

g−123(2)(ρ
ABC)

as desired. In addition, it is clear that

E F
g−123(2)(ρ

ABC) > EF(ρAB) (28)

for any ρ ∈ SABCD
g . That is, E F

g−1234···m(2) is a unified GMEM. The hierarchy condition

is obvious. Thus, E F
g−1234···m(2) is a complete GMEM whenever E is an entanglement

monotone.

Remark 1. It is clear that, for E F
g−1234···m(2), the inequality in Equation (22) is a strict inequality,

i.e.,

E(k)
g (X1|X2| · · · |Xk) > E(l)

g (Y1|Y2| · · · |Yl) (29)

for any ρ ∈ SA1 A2···Am
g whenever X1|X2| · · · |Xk �b Y1|Y2| · · · |Yl. In addition, according to the

proof of Proposition 4 in Ref. [22], Equation (22) holds for E(m)
g− f , τ

(m)
g , C(m)

g , and T(m)
g−q. Namely, in

general, there does not exist ρ ∈ SA1 A2···Am
g such that E(k)

g (X1|X2| · · · |Xk) = E(l)
g (Y1|Y2| · · · |Yl)

holds, X1|X2| · · · |Xk �b Y1|Y2| · · · |Yl.

4. Complete Monogamy of Genuine Multipartite Entanglement Measure

We are now ready to discuss the complete monogamy relation of GMEM. By the
previous arguments, the genuine multipartite entanglement does not necessarily decrease
when discarding the subsystem. However, for the genuine entangled state, it does de-
crease. We thus conclude the following definition of complete monogamy for genuine
entanglement measure.

Definition 3. Let E(m)
g be a uniform GMEM. We call E(m)

g completely monogamous if for any
ρ ∈ SA1 A2···Am

g we have

E(k)
g

(
ρX1|X2|···|Xk

)
> E(l)

g

(
ρY1|Y2|···|Yl

)
(30)

holds for all X1|X2| · · · |Xk �a Y1|Y2| · · · |Yl.

That is, any unified GMEM is completely monogamous. Moreover, according to the
proof of Theorem 1 in Ref. [23], we can get the equivalent statement of complete monogamy
for continuous genuine tripartite entanglement measure (the general m-partite case can be
followed in the same way).

Proposition 3. Let E(3)
g be a continuous uniform genuine tripartite entanglement measure. Then,

E(3)
g is completely monogamous if and only if there exists 0 < α < ∞ such that

Eα
g(ρ

ABC) > Eα(ρAB) + Eα(ρAC) + Eα(ρBC) (31)

for all ρABC ∈ SABC
g with fixed dimHABC = d < ∞, here we omitted the superscript (3) of E(3)

for brevity.
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Analogously, for the four-partite case, if E(4)
g is a continuous uniform GMEM, then

E(4)
g is completely monogamous if and only if there exist 0 < α, β < ∞ such that

Eα
g(ρ

ABCD) > Eα
g(ρ

ABC) + Eα
g(ρ

ABD) + Eα
g(ρ

ACD) + Eα
g(ρ

BCD), (32)

Eβ
g (ρ

ABCD) > Eβ(ρAB) + Eβ(ρBC) + Eβ(ρAC) + Eβ(ρBD) + Eβ(ρAD) + Eβ(ρCD) (33)

for all ρABCD ∈ SABCD
g with fixed dimHABC = d < ∞, here we omitted the superscript

(3,4) of E(3,4) for brevity. Since Cgme may not be a unified GMEM, we conjecture that Cgme is
not completely monogamous.

As a counterpart to the tightly complete monogamous relation of the complete multi-
partite entanglement measure in Ref. [22], we give the following definition.

Definition 4. Let E(m)
g be a complete GMEM. We call E(m)

g tightly complete monogamous if it
satisfies the genuine disentangling condition, i.e., either for any ρ ∈ SA1 A2···Am

g that satisfies

E(k)
g (X1|X2| · · · |Xk) = E(l)

g (Y1|Y2| · · · |Yl) (34)

we have that

E(∗)
g (Γ) = 0 (35)

holds for all Γ ∈ Ξ(X1|X2| · · · |Xk −Y1|Y2| · · · |Yl), or

E(k)
g (X1|X2| · · · |Xk) > E(l)

g (Y1|Y2| · · · |Yl) (36)

holds for any ρ ∈ SA1 A2···Am
g , where X1|X2| · · · |Xk �b Y1|Y2| · · · |Yl, and the superscript (∗) is

associated with the partition Γ, e.g., if Γ is a n-partite partition, then (∗) = (n).

Definitions 3 and 4 mean that, if E(k)
g (X1|X2| · · · |Xk) ≈ E(l)

g (Y1|Y2| · · · |Yl), then

E(∗)
g (Γ) ≈ 0 for any Γ ∈ Ξ(X1|X2| · · · |Xk − Y1|Y2| · · · |Yl). This fact can make ensure

the security of quantum communication tasks, which rely on genuine entanglement as
the resource: Whenever E(k)

g (X1|X2| · · · |Xk) ≈ E(l)
g (Y1|Y2| · · · |Yl), the joint information in

subsystems Γ ∈ Ξ(X1|X2| · · · |Xk −Y1|Y2| · · · |Yl) is nearly zero, i.e., we could choose such
an entangled state when we would like to prevent subsystem Γ in sharing the information
based on the genuine entanglement or from any evegetting information from subsystem Γ.

Remark 2. According to Remark 1, for E(m)
g− f , τ

(m)
g , C(m)

g , T(m)
g−q, and E F

g−1234···m(2), the case of
Equation (34) cannot occur, so they are tightly complete monogamous. We conjecture that the case
of Equation (34) cannot occur for any complete GMEM. In such a sense, any complete GMEM is
tightly complete monogamous.

For example, if E(3)
g is a complete GMEM, then E(3)

g is tightly complete monogamous
if for any ρABC ∈ SABC

g that satisfies

E(3)
g (ρABC) = E(2)(ρA|BC) (37)

we have E(2)(ρBC) = 0, and E(3)
g is completely monogamous

E(3)
g (ρABC) > E(2)(ρAB) (38)
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is always correct for any ρABC ∈ SABC
g . That is, the complete monogamy of E(m)

g refers

to it being completely monogamous in the genuine entangled state, and E(m)
g is strictly

decreasing under discarding of the subsystem, which is different from that of the complete
entanglement measure. Equivalently, if E(3)

g is a continuous complete GMEM, then E(3)
g is

tightly complete monogamous if and only if there exists 0 < α < ∞ such that

Eα
g(ρ

ABC) � Eα(ρAB) + Eα(ρAB|C) (39)

holds for all ρABC ∈ SABC
g with fixed dimHABC = d < ∞, here we omitted the superscript

(3) of E(3) for brevity.
By Definition 4, E F

g−1234···m(2) is tightly complete monogamous since for E F
g−1234···m(2)

the genuine disentangling condition (36) always holds. Cgme is not tightly complete monoga-
mous since it violates the genuine disentangling condition. In addition, the tightly complete
monogamy of E(m)

g is closely related to that of E(m) whenever E(m)
g is derived from E(m) as

in Equations (24) or (25).

Proposition 4. Let E(m) be a complete multipartite entanglement measure. If E(m) is tightly
complete monogamous, then the genuine multipartite entanglement measure E(m)

g , induced by E(m)

as in Equations (24) or (25), is tightly complete monogamous.

Together with Proposition 4 in Ref. [22], R(m)
g−α, N(m)

g−F and N(m)
g are completely monog-

amous but not tightly complete monogamous.

5. Conclusions and Discussion

We have proposed a framework of unified/complete genuine multipartite entangle-
ment measure, from which we established the scenario of complete monogamy and tightly
complete monogamy of genuine multipartite entanglement measure. The spirit here is
consistent with that of a unified/complete multipartite entanglement measure in Ref. [22].
We also find a simple way of deriving a unified/complete genuine multipartite entan-
glement measure from the unified/complete multipartite entanglement measure. Under
such a framework, the multipartite entanglement becomes more clear, and, in addition,
we can judge whether a given genuine entanglement measure is good or not. Compared
with other multipartite entanglement measure, the unified genuine entanglement measure
is automatically completely monogamous. That is, genuine entanglement displays the
monogamy of entanglement more evidently than other measures. These results support
that entanglement is monogamous, as we expected. We thus suggest that monogamy
should be a necessary requirement for a genuine entanglement measure.
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Abstract: As already known by Rana’s result, all eigenvalues of any partial-transposed bipartite state
fall within the closed interval [− 1

2 , 1]. In this note, we study a family of bipartite quantum states
where the minimal eigenvalues of partial-transposed states are − 1

2 . For a two-qubit system, we find
that the minimal eigenvalue of its partial-transposed state is − 1

2 if and only if such a two-qubit state
is maximally entangled. However this result does not hold in general for a two-qudit system when
the dimensions of the underlying space are larger than two.

Keywords: maximally entangled state; positive partial transpose; moment

1. Introduction

Let ρAB be a quantum state in a bipartite quantum system HA ⊗HB such that the
positive partial transpose (PPT) criterion indicates that, for any separable state ρAB, it
must hold ρ

TA
AB � 0, where TA denotes the partial transpose on subsystem A. This PPT

condition was first proposed by Peres [1]. Such a condition is not only a necessary one
but also a sufficient one for separability in a qubit–qubit, qubit–qutrit or a qutrit–qubit
system [2]. The PPT condition can also be verified from the moments of the randomized
measurements [3–5].

Recently, Yu et al. [6] found that the PPT condition can be studied by considering the
so-called partial transpose moments (PT-moments)

pk := Tr
([

ρ
TA
AB

]k
)

.

In fact, these quantities can be efficiently measured in experiments [4,5]. To see the
basic idea behind the PT-moments-based entanglement detection, suppose that we know
all the PT-moments p(d) = (p1, . . . , pd), where d = dAdB is the dimension of the global
system HA ⊗HB, where dA/B = dim(HA/B). We call p(d) the PT-moment vector of the
state ρAB. All the eigenvalues of ρ

TA
AB are denoted by (x1, . . . , xd). As is already known,

(x1, . . . , xd) completely determines the elementary symmetric polynomials (e1, . . . , ed),
where e1 = ∑d

k=1 xk, e2 = ∑1�i<j�d xixj, . . ., and ed = ∏d
k=1 xk; and conversely (e1, . . . , ed)

can determine (x1, . . . , xd) when ignoring their order. In fact, (e1, . . . , ed) and (p1, . . . , pd),
where pk’s are the power sum of xi’s, necessarily identify each other via the following
relationship between ek and pk [7]:

pk =

∣∣∣∣∣∣∣∣∣∣∣

e1 1 0 · · · 0
2e2 e1 1 · · · 0

...
...

...
. . .

...
(k− 1)ek−1 ek−2 ek−3 · · · 1

kek ek−1 ek−2 · · · e1

∣∣∣∣∣∣∣∣∣∣∣
(k � 1)
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and

ek =
1
k!

∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 · · · 0
p2 p1 2 · · · 0
...

...
...

. . .
...

pk−1 pk−2 pk−3 · · · k− 1
pk pk−1 pk−2 · · · p1

∣∣∣∣∣∣∣∣∣∣∣
(k � 1).

Therefore (p1, . . . , pd) determines (x1, . . . , xd) up to their order. Then, all eigenvalues
of the partial-transposed state ρ

TA
AB can be directly obtained. Based on the above observation,

the PPT criterion can be verified immediately. For convenience, we always assume that

p1 = 1. In addition, p2 is just the purity due to the fact that Tr
([

ρ
TA
AB

]2
)
= Tr

(
ρ2

AB
)
. In [6],

the authors studied the following problem.
PT-Moment problem: Given the PT-moments of order n, is there a separable state

compatible with the data? In more technical language, given the PT-moment vector

p(n) = (p1, . . . , pn),

is there a separable quantum state ρAB such that

pk = Tr
([

ρ
TA
AB

]k
)

, k = 1, . . . , n?

It is natural to consider the detection of entanglement in ρAB from a few of the PT-
moments due to the difficulty in measuring all the PT-moments, such as in [6]. Note that the
partial-transposed state ρ

TA
AB, for ρAB ∈ D(Cm ⊗Cn), which is the set of all bipartite quan-

tum states acting on Cm ⊗Cn, cannot have more than (m− 1)(n− 1) negative eigenvalues
and all eigenvalues of ρ

TA
AB fall within [− 1

2 , 1] [8]. Using the second PT-moment to bound
the third one is an interesting question. Moreover, we find that this method can be used to
get a characterization of maximally entangled two-qubit states, that is, a two-qubit state is
maximally entangled if and only if the minimal eigenvalue of its partial-transposed state is
− 1

2 . This is also equivalent to the condition that p(4) = (1, 1, 1
4 , 1

4 ), the PT-moment vector of
the two-qubit state ρAB. This amounts to giving the criterion of maximal entanglement to
the states using the PT-moment vector, the components of which are measurable quantities.

2. Main Result

In this section, we essentially ask: Is ρAB maximally entangled if ρAB ∈ D
(
C2 ⊗C2)

and the minimal eigenvalue of its partial-transposed state ρ
TA
AB is λmin

(
ρ
TA
AB

)
= − 1

2 ? We
give a positive answer to this question in our main result, i.e., Theorem 1. To that end, we
obtained the proof through a series of propositions.

Proposition 1. Let ρAB, σAB, τAB ∈ D(Cm ⊗Cn), where ρAB = tσAB + (1− t)τAB for some
t ∈ (0, 1). If λmin

(
ρ
TA
AB

)
= − 1

2 , i.e., the minimal eigenvalue of ρ
TA
AB, then λmin

(
σ
TA
AB

)
=

λmin

(
τ
TA
AB

)
= − 1

2 .

Proof. Using the main result in [8], we see that, for any bipartite state �AB ∈ D(Cm ⊗Cn),
we have

λmin(�
TA
AB) ∈

[
− 1

2 , 1
]
.
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Thus,

λmin(σ
TA
AB) � −

1
2

, λmin(τ
TA
AB) � −

1
2

.

As is already known, there exists a pure state |ψ0〉 ∈ Cm ⊗Cn, corresponding to the
minimal eigenvalue λmin

(
ρ
TA
AB

)
, such that

−1
2

= λmin

(
ρ
TA
AB

)
=
〈

ψ0

∣∣∣ρTA
AB

∣∣∣ψ0

〉
= t
〈

ψ0

∣∣∣σTA
AB

∣∣∣ψ0

〉
+ (1− t)

〈
ψ0

∣∣∣τTA
AB

∣∣∣ψ0

〉
� tλmin

(
σ
TA
AB

)
+ (1− t)λmin

(
τ
TA
AB

)
� −1

2
.

We must have that λmin

(
σ
TA
AB

)
=
〈

ψ0

∣∣∣σTA
AB

∣∣∣ψ0

〉
= λmin

(
τ
TA
AB

)
=
〈

ψ0

∣∣∣τTA
AB

∣∣∣ψ0

〉
=

− 1
2 .

Corollary 1. Suppose ρAB ∈ D(Cm ⊗Cn) has the pure state decomposition: ρAB = ∑k λk|ψk〉〈ψk|,
where λk > 0 for all indices k. If λmin

(
ρ
TA
AB

)
= − 1

2 , then

λmin

(
ψ

TA
k

)
= −1

2
.

Here ψk := |ψk〉〈ψk|.

Recall that there is a correspondence between the set L(Y ,X ) of all linear operators
from a finite-dimensional Hilbert space Y to another finite-dimensional Hilbert space X .
It can be explained immediately. Denote by X ⊗ Y the tensor space of X and Y . Let the
orthonormal bases of X and Y be {|i〉 : i = 1, . . . , dim(X )} and {|j〉 : j = 1, . . . , dim(Y)},
respectively. The mentioned correspondence between L(Y ,X ) and X ⊗ Y is defined by
the linear mapping vec : L(Y ,X )→ X ⊗Y via vec(|i〉〈j|) = |ij〉 for all i, j [9].

Let |ψ〉 ∈ Cd ⊗Cd be a bipartite pure state. Then there is an d× d complex matrix X
such that |ψ〉 = vec(X). By singular value decomposition (SVD), there are two unitary
matrices U, V ∈ U(d) such that X = UΣV †, where Σ = diag(σ1, . . . , σr, . . . , σd) for σ1 �
· · · � σd � 0 and r = rank(X) � d. Note that ∑d

j=1 σ2
j = 1. Then

|ψ〉〈ψ| = U ⊗ V vec(Σ) vec(Σ)†(U ⊗ V)†

implying that

|ψ〉〈ψ|TA = U ⊗ V
(

vec(Σ) vec(Σ)†
)TA

(U ⊗ V)†.

Due to the fact that Σ = ∑d
i=1 σi|i〉〈i|, we see that

vec(Σ) vec(Σ)† =
d

∑
i,j=1

σiσj|ij〉〈ij|,
(

vec(Σ) vec(Σ)†
)TA

=
d

∑
i,j=1

σiσj|ji〉〈ij|

Proposition 2. All eigenvalues of |ψ〉〈ψ|TA is given by
{

σ2
1 , . . . , σ2

d ;±σiσj (1 � i < j � d)
}

.
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Proof. Let F =
(
vec(Σ) vec(Σ)†)TA = ∑d

i,j=1 σiσj|ji〉〈ij|. Then

FF† =

(
d

∑
i,j=1

σiσj|ji〉〈ij|
)(

d

∑
k,l=1

σkσl |lk〉〈kl|
)†

=
d

∑
i,j,k,l=1

σiσjσkσl |ji〉〈ij| · |kl〉〈lk|

=
d

∑
i,j,k,l=1

δikδjlσiσjσkσl |ji〉〈lk| =
d

∑
i,j=1

(σiσj)
2|ji〉〈ji|;

that is, |F | =
√

FF† = ∑d
i,j=1 σiσj|ji〉〈ji|. Note that

Tr(F) =
d

∑
i=1

σ2
i , Tr(|F |) =

d

∑
i,j=1

σiσj.

By using the Jordan decomposition F = F+ − F−, where F†± = F± � 0 and F+F− =
0 = F−F+. Then

Tr(F+)− Tr(F−) =
d

∑
i=1

σ2
i , Tr(F+) + Tr(F−) =

d

∑
i,j=1

σiσj,

and

Tr(F+) =
d

∑
i=1

σ2
i + ∑

i<j
σiσj, Tr(F−) = ∑

i<j
σiσj.

Therefore, all eigenvalues of F are given by
{

σ2
1 , . . . , σ2

d ;±σiσj (1 � i < j � d)
}

.

Thus, we need to characterize those bipartite pure states that have the minimal eigen-
value of its partial-transposed state, − 1

2 .

Proposition 3. If |ψ〉 ∈ C2 ⊗ C2 is a pure state, then λmin(ψ
TA) = − 1

2 , where ψ ≡ |ψ〉〈ψ|,
if and only if |ψ〉 is a maximally entangled state, i.e., |ψ〉 is proportional to the locally unitarily
rotation of the vector vec(I2). Here I is the identity operator.

Proof. Let |ψ〉 ∈ C2 ⊗C2. Suppose x = (x1, x2, x3, x4) ∈ R4 is the eigenvalues of ψTA with
1 � x1 � x2 � x3 � x4 � − 1

2 [8]. Clearly x4 = λmin(ψ
TA).

Now let x4 = − 1
2 . Again, we see that x3 � 0 by Rana’s result. Let pk = Tr

(
[ψTA ]k

)
,

where k = 1, 2, . . .. It is easy to see that p1 = 1, p2 = 1. Then⎧⎨⎩1 = x1 + x2 + x3 +
(
− 1

2

)
1 = x2

1 + x2
2 + x2

3 +
(
− 1

2

)2
.

Due to the constraint 1 � x1 � x2 � x3 � 0, the above system of equations has a
unique solution: x1 = x2 = x3 = 1

2 .
We have now proved that if λmin(ψ

TA) = − 1
2 for some pure state |ψ〉 ∈ C2 ⊗ C2,

then all eigenvalues of ψTA are { 1
2 , 1

2 , 1
2 ,− 1

2}. In fact, if λmin

(
ρ
TA
AB

)
= − 1

2 for some state

ρAB ∈ D
(
C2 ⊗C2), then all eigenvalues of ρ

TA
AB is { 1

2 , 1
2 , 1

2 ,− 1
2}.

For a pure state |ψ〉 ∈ C2 ⊗ C2, there exists a 2 × 2 complex matrix A such that
|ψ〉 = vec(A). By SVD of A, we get that A = UDV † where D = diag(s0, s1) with
s0 � s1 � 0 and U, V ∈ U(2). Then

|ψ〉〈ψ| = U ⊗ V vec(D) vec(D)†(U ⊗ V
)†

= U ⊗ V vec(D) vec(D)†U† ⊗ VT,
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where

vec(D) vec(D)† = vec

(
∑

i
si|i〉〈i|

)
vec

(
∑

j
sj|j〉〈j|

)†

=
1

∑
i,j=0

sisj|ii〉〈jj|.

Next, we established the equations concerning (s0, s1). The first one is s2
0 + s2

1 = 1 due
to the fact that Tr

(
D2) = 〈ψ, ψ〉 = 1. The second one is

|ψ〉〈ψ|TA =
1

∑
i,j=0

sisj(U|i〉〈j|U†)T ⊗ V |i〉〈j|VT

=
1

∑
i,j=0

sisjU|j〉〈i|UT ⊗ V |i〉〈j|VT

=
(
U ⊗ V

) 1

∑
i,j=0

sisj|j〉〈i| ⊗ |i〉〈j|
(
U ⊗ V

)†

=
(
U ⊗ V

) 1

∑
i,j=0

sisj|ji〉〈ij|
(
U ⊗ V

)†.

Now both |ψ〉〈ψ|TA and ∑1
i,j=0 sisj|ji〉〈ij| have the same eigenvalues. That is, all eigen-

values of

1

∑
i,j=0

sisj|ji〉〈ij| =

⎛⎜⎜⎝
s2

1 0 0 0
0 0 s1s2 0
0 s1s2 0 0
0 0 0 s2

2

⎞⎟⎟⎠
are {s2

0, s2
1, s0s1,−s0s1} = { 1

2 , 1
2 , 1

2 ,− 1
2}. This implies that

s2
0 = s2

1 = s0s1 =
1
2

.

This unique solution is given by (s0, s1) =
(

1√
2
, 1√

2

)
. Therefore, A = 1√

2
UV†. Then

|ψ〉 = vec(A) =
1√
2

vec(UV†) =
1√
2

U ⊗ V vec(I2).

We have proven that |ψ〉 is a maximally entangled state. Conversely, if |ψ〉 is a
maximally entangled state, then the minimal eigenvalue of its partial-transposed state is
apparently − 1

2 [10,11].

For the partial-transposed maximally entangled states in Cn ⊗Cn, the eigenvalues
must be ± 1

n where the multiplicities of 1
n and − 1

n are n(n+1)
2 and n(n−1)

2 , respectively. Thus
its PT-moment vector is given by

p(n2) = (p1, . . . , pn2), pk =
(n + 1) + (n− 1)(−1)k

2nk−1 .

In particular, for the case where n = 2, the PT-moment vector p(4) = (1, 1, 1
4 , 1

4 ).

Theorem 1. Let ρAB ∈ D
(
C2 ⊗C2) be a quantum state, then the following statements are

equivalent:

• the PT-moment vector of ρAB is p(4) = (1, 1, 1
4 , 1

4 ).
• ρAB must be maximally entangled.
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Proof. For the implication (ii) =⇒ (i), the proof is trivial. Next, we show that (i) implies
(ii). Given (i), let (x1, x2, x3, x4), where x1 � x2 � x3 � x4, be eigenvalues of the partial-

transposed state ρ
TA
AB, then Rana’s result [8] means that 1 � x1 � x2 � x3 �

{
0
x4 � − 1

2
.

By the given PT-moment vector, we see that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p1 = x1 + x2 + x3 + x4 = 1
p2 = x2

1 + x2
2 + x2

3 + x2
4 = 1

p3 = x3
1 + x3

2 + x3
3 + x3

4 = 1
4

p4 = x4
1 + x4

2 + x4
3 + x4

4 = 1
4

In fact, note that

ek =
1
k!

∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 · · · 0
p2 p1 2 · · · 0
...

...
...

. . .
...

pk−1 pk−2 pk−3 · · · k− 1
pk pk−1 pk−2 · · · p1

∣∣∣∣∣∣∣∣∣∣∣
(k � 1),

and we see that e1 = 1, e2 = 0, e3 = − 1
4 , e4 = − 1

16 . The characteristic polynomial of ρ
TA
AB is

given by

f (x) = x4 − e1x3 + e2x2 − e3x + e4 = x4 − x3 +
1
4

x− 1
16

=
1

16
(2x− 1)3(2x + 1).

Solving this system of equations via f (x) = 0, we get that x1 = x2 = x3 = 1
2 and x4 =

λmin(ρ
TA
AB) = − 1

2 . Next, if F = ∑1
i,j=0 |ji〉〈ij|, then F|ij〉 = |ji〉 and FTA = vec(I) vec(I)†.

Note that F |01〉−|10〉√
2

= −|01〉−|10〉√
2

. Let |x〉 = |01〉−|10〉√
2

, and we get 〈x|F|x〉 = −1 = λmin(F).
From the previous discussion, we see that in the pure state decomposition of ρAB:

ρAB = ∑N−1
k=0 λk|ψk〉〈ψk|, where λ0 � λ1 � · · · � λN−1 � 0, all pure state |ψk〉 must be

maximally entangled state. Then there exist a pure state |u〉 such that〈
u
∣∣∣ψTA

k

∣∣∣u〉 = −1
2

(k = 0, 1, . . . , N − 1).

There exist Uk, V k ∈ U(2) such that

|ψk〉 = 1√
2

vec(UkV†
k) =

1√
2

UkV†
k ⊗ Ivec(I) =

1√
2

W k ⊗ Ivec(I),

where W k = UkV†
k , implying that ψ

TA
k = 1

2
(
W k ⊗ I

)
F
(
W k ⊗ I

)†. Now let |uk〉 = WT
k ⊗

I|u〉. Then

−1
2
=
〈

u
∣∣∣ψTA

k

∣∣∣u〉 =
1
2
〈uk|F|uk〉 (k = 0, 1, . . . , N − 1).

That is,

λmin(F) = −1 = 〈uk|F|uk〉 (k = 0, 1, . . . , N − 1).

Because −1 is the simple eigenvalue of F, the eigenspace corresponding to −1 is just
C|x〉. This indicates that all |uk〉 = eiθk |x〉 due to the normalization of |uk〉. Furthermore

|u〉 = eiθk
(
W k ⊗ I

)|x〉 (k = 0, 1, . . . , N − 1).
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In fact, the phase factor eiθk can be absorbed into the unitary matrix W k. Without loss
of generality, we assume that

|u〉 = (W k ⊗ I
)|x〉 (k = 0, 1, . . . , N − 1).

Because there is a matrix X such that |x〉 = vec(X), then

X =
1√
2
(|0〉〈1| − |1〉〈0|) = 1√

2

(
0 1
−1 0

)
.

It is easily seen that X is invertible. We see that

|u〉 = vec
(
W kX

)
(k = 0, 1, . . . , N − 1).

implying that W0X = W1X = · · · = W N−1X, i.e., due to the fact that X is invertible, then
W0 = W1 = · · · = W N−1, or

U0V†
0 = U1V †

1 = · · · = UN−1V†
N−1,

implying that vec(U0V †
0) = vec(U1V†

1) = · · · = vec(UN−1V†
N−1); that is, |ψ0〉 = |ψ1〉 =

· · · = |ψN−1〉. Therefore ρAB = ∑k λk|ψk〉〈ψk| = |ψ0〉〈ψ0| is a maximally entangled
state.

In fact, our main result, Theorem 1, tells us that the PT-moment vector of a two-
qubit state ρAB is (1, 1, 1

4 , 1
4 ) iff the minimal eigenvalue of its partial-transposed state ρ

TA
AB

is − 1
2 iff ρAB is maximally entangled. Naturally, we would expect a similar relation

between the magnitude of the lowest negative eigenvalue of the partial-transposed state
and the maximally entangled states in higher-dimensional underlying spaces. However,
the following result, Proposition 4, indicates that the minimal eigenvalue of the partial-
transposed maximally entangled state would approach zero when the dimension of the
underlying space becomes larger and larger. Indeed, after tedious computations and
induction, we can draw the following conclusion:

Proposition 4. Let ρAB ∈ D(Cn ⊗Cn) be a quantum state. If the PT-moment vector of ρAB is

p(n2) = (p1, . . . , pn2), where pk =
(n+1)+(n−1)(−1)k

2nk−1 . Then λmin

(
ρ
TA
AB

)
= − 1

n .

Proof. As an illustration, for a two-qutrit system C3⊗C3 as an example, we get (e1, . . . , e9)
from p(9) = (p1, . . . , p9), where p1 = p2 = 1, p3 = p4 = 1

9 , p5 = p6 = 1
81 , p7 = p8 = 1

729
and p9 = 1

6561 . That is,

e1 = 1, e2 = 0, e3 = − 8
27

, e4 = − 2
27

, e5 =
2

81
,

e6 =
8

729
, e7 = 0, e8 = − 1

2187
, e9 = − 1

19683
.

Furthermore, the characteristic polynomial of ρ
TA
AB is given by

f (x) = x9 − x8 +
8x6

27
− 2x5

27
− 2x4

81
+

8x3

729
− x

2187
+

1
19683

=
(3x− 1)6(3x + 1)3

19683
.

Thus, we get that

x1 = · · · = x6 =
1
3

, x7 = x8 = x9 = −1
3

.
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Therefore λmin(ρ
TA
AB) = − 1

3 .

From the above result, when n → ∞, λmin(ρ
TA
AB)→ 0 for a maximally entangled state

in Cn ⊗Cn. Based on the observation, we can conclude that the family of bipartite states
with the minimal eigenvalue of their partial-transposed states (− 1

2 ) is different from the set
of maximally entangled states when the dimensions of the underlying spaces are larger
than two. This also indicates that the magnitude of the only lowest negative eigenvalue of
the partial-transposed state in higher-dimensional space would not be enough to identify
the maximally entangled state when there is more than one negative eigenvalue. In fact, it
is known that for higher dimensions the characterization of entanglement can be given by
the so-called “negativity” [12], which is defined as the absolute value of the sum of all the
negative eigenvalues of the partial-transposed state. That is, the negativity of ρAB is given
by N (ρAB) =

∣∣∣∑i min
{

λi(ρ
TA
AB), 0

}∣∣∣. With this notion, our Theorem 1 can be rewritten:

For the two-qubit state ρAB, N (ρAB) =
1
2 iff ρAB is maximally entangled. The success of

such characterization lies in the possible number of negative eigenvalues being at most one.
The reason for the failure of this result in high-dimensional space is that only one negative
eigenvalue (the lowest one) would not be enough to characterize entanglement when there
could be more than one negative eigenvalue.

3. Concluding Remarks

In this short note, we make an attempt to study the structure of a family of bipartite
states with the extreme eigenvalue being− 1

2 of its partial-transposed states. To characterize
the maximally entangled two-qubit states, we employed the approach recently used by Yu
et al. to study PT-moments, i.e., PT-moment vectors. In higher dimensional system, we were

curious whether the PT-moment vector (p(n2) = (p1, . . . , pn2) where pk =
(n+1)+(n−1)(−1)k

2nk−1 )
generated by the maximally entangled states, only corresponded to the maximally entan-
gled states. Clearly, a bipartite state in D(Cn ⊗Cn) with λmin(ρ

TA
AB) = − 1

2 was, in general,
not maximally entangled unless n = 2. In future research, we will continue to figure
out the structure of this family of states, especially to find out the connection between
it and maximally entangled states in a higher dimension. Furthermore, we will study
the connection between the entanglement in bipartite states and the number of negative
eigenvalues of the corresponding partial-transposed states.

Author Contributions: Writing—original draft, J.D., L.Z. and Q.Q.; Writing—review & editing,
S.-M.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grant
Nos. (11971140, 12075159, 12171044); Beijing Natural Science Foundation (Grant No. Z190005);
Academy for Multidisciplinary Studies, Capital Normal University; Shenzhen Institute for Quantum
Science and Engineering, Southern University of Science and Technology (No. SIQSE202001), the
Academician Innovation Platform of Hainan Province.

Conflicts of Interest: The authors declare no conflict of interest.

Reference

1. Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 1996, 77, 1413. [CrossRef] [PubMed]
2. Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessary and sufficient conditions. Phys. Rev. Lett.

1996, 223, 1–8. [CrossRef]
3. Gray, J.; Banchi, L.; Bayat, A.; Bose, S. Machine-learning-assisted many-body entanglement measurement. Phys. Rev. Lett. 2018,

121, 150503. [CrossRef] [PubMed]
4. Elben, A.; Kueng, R.; Huang, H.-R.; van Bijnen, R.; Kokail, C.; Dalmonte, M.; Calabrese, P.; Kraus, B.; Preskill, J.; Zoller, P.; et al.

Mixed-state entanglement from local randomized measurements. Phys. Rev. Lett. 2020, 125, 200501. [CrossRef] [PubMed]
5. Zhou, Y.; Zeng, P.; Liu, Z. Single-copies estimation of entanglement negativity. Phys. Rev. Lett. 2020, 125, 200502. [CrossRef]

[PubMed]
6. Yu, X.-D.; Imai, S.; Gühne, O. Optimal entanglement certification from moments of the partial transpose. Phys. Rev. Lett. 2021,

127, 060504. [CrossRef] [PubMed]

104



Entropy 2022, 24, 247

7. Macdonald, I.G. Symmetric Functions and Hall Polynomials, 2nd ed.; Oxford Unversity Press: Oxford, UK, 1995.
8. Rana, S. Negative eigenvalues of partial transposition of arbitrary bipartite states. Phys. Rev. A 2013, 87, 054301. [CrossRef]
9. Watrous, J. The Theory of Quantum Information; Cambridge University Press: Cambridge, UK, 2018.
10. Li, Z.G.; Zhao, M.J.; Fei, S.M.; Fan, H.; Liu, W.M. Mixed maximally entangled states. Quant. Inf. Comput. 2012, 12, 63–73.

[CrossRef]
11. Zhao, M.J. Maximally entangled states and fully entangled fraction. Phys. Rev. A 2015, 91, 012310. [CrossRef]
12. Plenio, M. Logarithmic Negativity: A Full Entanglement Monotone That is not Convex. Phys. Rev. Lett. 2005, 95, 090503.

[CrossRef] [PubMed]

105





Citation: Yang, L.; Qi, X.; Hou, J.

Quantum Nonlocality in Any Forked

Tree-Shaped Network. Entropy 2022,

24, 691. https://doi.org/10.3390/

e24050691

Academic Editors: Shao-Ming Fei,

Ming Li and Shunlong Luo

Received: 7 April 2022

Accepted: 11 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Quantum Nonlocality in Any Forked Tree-Shaped Network

Lihua Yang 1,2,†, Xiaofei Qi 1,*,† and Jinchuan Hou 3,†

1 School of Mathematical Science, Shanxi University, Taiyuan 030006, China; 201912211008@email.sxu.edu.cn
2 School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China
3 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China; houjinchuan@tyut.edu.cn
* Correspondence: qixf1981@sxu.edu.cn
† These authors contributed equally to this work.

Abstract: In the last decade, much attention has been focused on examining the nonlocality of various
quantum networks, which are fundamental for long-distance quantum communications. In this
paper, we consider the nonlocality of any forked tree-shaped network, where each node, respectively,
shares arbitrary number of bipartite sources with other nodes in the next “layer”. The Bell-type
inequalities for such quantum networks are obtained, which are, respectively, satisfied by all (tn − 1)-
local correlations and all local correlations, where tn denotes the total number of nodes in the network.
The maximal quantum violations of these inequalities and the robustness to noise in these networks
are also discussed. Our network can be seen as a generalization of some known quantum networks.

Keywords: quantum correlation; nonlocality; Bell inequality; quantum network

1. Introduction

Quantum correlation is one of the main characteristics that distinguishes quantum
mechanics from classical mechanics. In the last few decades, quantum nonlocality has been
studied extensively both in theory [1–3] and experiment [4–6]. It is found that quantum
nonlocality is a powerful resource in quantum information science, such as secure cryptog-
raphy [7,8], quantum key distribution [9], randomness certification [10], and distributed
computing [11]. Bell inequalities are often used to detect quantum nonlocality [12–14].
Violations of Bell inequalities imply the existence of nonlocal correlations.

Different from the usual Bell nonlocality, where entanglement is distributed from one
common source, the multi-locality in quantum networks features several independent
sources. By performing joint measurements, this leads to stronger correlations throughout
the whole network [15], which is fundamental for long-distance quantum communications.
Nonlocality of correlations generated in such networks was first observed in a bilocal
network [16–18]. Later, the authors in [18] obtained the bilocal inequalities for bilocal
networks, and the scholars in [19] explicitly examined quantum violations of the bilocal
inequalities for pure states and mixed states, respectively. Since then, the nonlocality of var-
ious quantum networks were explored, including chain-shaped networks [20], star-shaped
networks [21–23], triangle networks [24], and other networks in [25–32]. Furthermore,
stronger forms of network nonlocality were examined in [33–35].

The tree-tensor networks are also important quantum networks. They have wide
applications, such as in quantum simulations [36–39], entanglement transitions [40], and
quantum-assisted machine learning [41]. Recently, nonlocal correlations of a special class
of tree-tensor networks, so-called “two-forked” tree-shaped networks were studied in [42].
In this network, there are (2n − 1) parties (nodes) distributed in n “layers” (n ≥ 2), where
each layer k (1 ≤ k ≤ n) has 2k−1 parties, and each party in the layer k shares a source with
another party in the layer k− 1 and with other two parties in the layer k + 1. Thus, this
network is a (2n − 1)-partite system with (2n − 2) independent sources.

The purpose of the present paper is to consider the nonlocality of any forked tree-
shaped network. In this tree-shaped network, tn parties are arranged in an n “layer”
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scenario (n ≥ 2), and the (k, j) party in the layer k, respectively, shares a source with another
party in the layer k− 1 and with other lkj − lk(j−1) parties in the layer k + 1 (2 ≤ k ≤ n− 1,
j ≥ 1), where lk0 = 0 and lkj − lk(j−1) is an arbitrary positive integer. Denote the total
number of parties in layer k by pk (k = 1, 2, · · · , n), satisfying p1 = 1. Write tn = p1 +
· · ·+ pn. Thus, the whole network is a tn-partite system with (tn − 1) independent sources.
In particular, if lkj − lk(j−1) = 2 for all (k, j), this tree-shaped network reduces to the
network in [42].

The rest of this paper is organized as follows. In Section 2, we discuss any forked tree-
shaped network with tn parties and (tn− 1) independent sources. We explicitly examine the
nonlocality of the network for the case of n = 3 and generalize the results to arbitrary n ≥ 3.
Moreover, the (tn − 1)-local inequalities of the networks and quantum violations of the
corresponding inequalities for pure states and mixed states are obtained. Besides, we also
compare this network with some known quantum network scenarios. Some conclusions are
presented in Section 3. The detailed proofs of the main results are provided in Appendix A.

2. Nonlocality in Any Forked Tree-Shaped Network Scenario

In this section, we consider the nonlocality of a general tree-shaped network; see
Figure 1.

Figure 1. The general any forked tree-shaped network consists of tn parties (A11, A21, · · · , A2p2 , A31,
· · · , A3p3 ,· · · , An1, · · · , Anpn ), and tn − 1 independent sources S1, · · · , Stn−1. Denote by xi and ai the
input and output of each party Ai (i = 11, 21, · · · , npn), respectively.

This general tree-shaped network has n “layers” (n ≥ 2), where each layer k has pk
parties (nodes) with p1 = 1, say Alice k1 (Ak1), · · · , Alice kpk (Akpk ), 1 ≤ k ≤ n; each
party Akj in the layer k shares one source with another party in the layer k− 1 and with
lkj − lk(j−1) parties in the layer k + 1, where lkj − lk(j−1) is an arbitrary positive integer,
except that l11 = p2 > 1, 1 ≤ j ≤ pk, 2 ≤ k ≤ n − 1, and lk0 = 0. It is clear that
lkpk

= pk+1, k = 1, 2, · · · , n − 1. Write tn = p1 + p2 + · · · + pn. Thus, this general tree-
shaped quantum network concerns a tn-partite system with tn − 1 independent sources. In
addition, the tn − 1 independent sources S1, · · · , Stn−1 are characterized by independent
hidden variables λ1, · · · , λtn−1, respectively. Denote by xi and ai the input and output of
party Ai (i = 11, 21, · · · , npn), respectively.

We say that the correlations in the tree-shaped network of Figure 1 are local if the joint
probability distribution satisfies

P(a11, a21, · · · , a(n−1)pn−1
, an1, · · · , anpn |x11, x21, · · · , x(n−1)pn−1

, xn1, · · · , xnpn )

=
∫ · · · ∫ P(λ1, · · · , λtn−1)[P(a11|x11, λ1, · · · , λp2 )P(a21|x21, λ1, λp2+1, · · · , λp2+l21

)

· · · P(a(n−1)pn−1
|x(n−1)pn−1

, λtn−1−1, λtn−1+l(n−1)(pn−1−1)
, · · · , λtn−1)

·P(an1|xn1, λtn−1 ) · · · P(anpn |xnpn , λtn−1)]dλ1 · · ·dλtn−1;

(1)
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and moreover, if P(λ1, · · · , λtn−1) in Equation (1) can be decomposed into

P(λ1, · · · , λtn−1) = P1(λ1) · · · Ptn−1(λtn−1) with
∫

Pi(λi)dλi = 1, i = 1, 2, · · · , tn − 1, (2)

then we say that the correlations in the tree-shaped network of Figure 1 are (tn − 1)-
local. Under the source independence restriction Equation (2), correlations that cannot be
decomposed into Equation (1) are said to be non-(tn − 1)-local.

2.1. (t3 − 1)-Local Network Scenario

If n = 3 in Figure 1, then it reduces to the network of Figure 2.

Figure 2. For the case of n = 3, the any forked tree-shaped network consists of t3 par-
ties (A11, A21, · · · , A2p2 , A31, · · · , A3p3 ) and (t3 − 1) independent sources S1, · · · , St3−1. Let
x11, x21, · · · , x2p2 , x31, · · · , x3p3 and a11, a21, · · · , a2p2 , a31, · · · , a3p3 be the corresponding input and
output of each party, respectively.

The network of Figure 2 is a t3-partite system with t3 − 1 independent sources, where
party A11 shares p2 sources with parties A21, A22, · · · , A2p2 ; party A2j shares l2j− l2(j−1) + 1

sources with parties A11, A3(l2(j−1)+1), · · · , A3l2j , where j = 1, 2, · · · , p2 and l20 = 0. Let
l2p2 = p3, and then, t3 = 1 + p2 + p3.

To illustrate Figure 2, we give a concrete example. Let p2 = 2, p3 = l22 = 7, and
l21 = 3. Then, we obtain the network of Figure 3, which is a 10-partite system with nine
independent sources.

For the case n = 3, the correlations obtained in the network of Figure 2 are called local
if the probability distribution can be decomposed as

P(a11, a21, · · · , a2p2 , a31, · · · , a3p3 |x11, x21, · · · , x2p2 , x31, · · · , x3p3 )

=
∫ · · · ∫ dλ1 · · ·dλt3−1P(λ1, · · · , λt3−1)[P(a11|x11, λ1, · · · , λp2 )

·P(a21|x21, λ1, λp2+1, · · · , λp2+l21
) · · · P(a2p2 |x2p2 , λp2 , λp2+l2(p2−1)+1, · · · , λt3−1)

·P(a31|x31, λp2+1) · · · P(a3p3 |x3p3 , λt3−1)],

(3)

and are called (t3 − 1)-local if they have a decomposition form of Equation (3) with the
additional restriction

P(λ1, λ2, · · · , λt3−1) = P1(λ1)P2(λ2) · · · Pt3−1(λt3−1). (4)

Here, the output of every party depends on the corresponding input and all connected
sources. Correlations that do not meet Equations (3) and (4) are said to be non-(t3− 1)-local.
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Figure 3. A tree-shaped network involves 10 parties, A11, A21, A22, A31, · · · , A37, and 9 sources, S1,
· · · , S9. Denote by x11, x21, x22, x31, · · · , x37 and a11, a21, a22, a31, · · · , a37 the input and output of
each party, respectively. Here, l11 = 2, l21 = 3, l22 = 7 and p2 = 2, p3 = 7, t1 = 1, t2 = 3, t3 = 10.

2.1.1. (t3 − 1)-Locality Inequality

In what follows, we consider the case that each party Ai (i = 11, 21, · · · , 3p3) has
binary input xi(∈ {0, 1}) with binary output ai(∈ {0, 1}), respectively. We develop in-
equalities that are fulfilled by all probability distributions satisfying Equations (3) and (4),
but which may be violated by measuring quantum states distributed in the tree-shaped
network of Figure 2.

Theorem 1. Any (t3 − 1)-local correlation in the tree-shaped network of Figure 2 must satisfy the
following inequalities:

|Ii1,··· ,it2 ,0|
1

p3 + |Ij1,··· ,jt2 ,1|
1

p3 ≤ 1, ∀i1, · · · , it2 , j1, · · · , jt2 ∈ {0, 1}, (5)

where

Ii1(j1),··· ,it2 (jt2 ),k
=

1
2p3 ∑

x31,··· ,x3p3

(−1)kl〈A11
i1(j1)

A21
i2(j2)

· · · A2p2
it2 (jt2 )

A31
x31
· · · A3p3

x3p3
〉,

〈A11
x11

A21
x21
· · · A2p2

x2p2
A31

x31
· · · A3p3

x3p3
〉

= ∑
a11,a21,··· ,a2p2 ,

a31,··· ,a3p3

(−1)mP(a11, a21, · · · , a2p2 , a31, · · · , a3p3 |x11, x21, · · · , x2p2 , x31, · · · , x3p3),

k ∈ {0, 1}, l = x31 + · · ·+ x3p3 , m = a11 + a21 + · · ·+ a2p2 + a31 + · · ·+ a3p3 , A11
x11

denotes the

observable for binary inputs x11 of party A11, and A21
x21

, · · · , A2p2
x2p2

, A31
x31

, · · · , A3p3
x3p3

are similarly
defined.

Note that the subscript t2 in Ineqs. (5) indicates the total number of parties A11,
A21, · · · , A2p2 . By Theorem 1, we see that violation of Ineqs. (5) for at least one possi-
ble (i1, · · · , it2 , j1, · · · , jt2) guaranteeing the non-(t3 − 1)-local nature of the correlations
generated by the network of Figure 2. Besides, each of the above 22t2 inequalities is tight.

To see this, we give an explicit (t3 − 1)-local decomposition, which is able to saturate
the bound. Consider the following strategy:

P(a11|x11, λ1, · · · , λp2) =

{
1, if a11 = λ1 ⊕ · · · ⊕ λp2 ,
0, else,
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P(a21|x21, λ1, λp2+1, · · · , λp2+l21) =

{
1, if a21 = (λ1 ⊕ λp2+1 ⊕ · · · ⊕ λp2+l21−1)λp2+l21 ,
0, else,

· · · · · ·
P(a2p2 |x2p2 , λp2 , λp2+l2(p2−1)+1, · · · , λt3−1)

=

{
1, if a2p2 = (λp2 ⊕ λp2+l2(p2−1)+1 ⊕ · · · ⊕ λt3−2)λt3−1,

0, else,

P(a3j|x3j, λp2+j, τ3j) =

{
1, if a3j = λp2+j ⊕ τ3jx3j,
0, else,

∀j = 1, 2, · · · , p3.

Here, λm are hidden variables of shared sources Sm with Pm(λm = 0) = 1 (m =
1, 2, · · · , t3 − 1), and τ3j are sources of local randomness for party A3j with Pj(τ3j = 0) = r
and Pj(τ3j = 1) = 1− r, r ∈ [0, 1] (j = 1, 2, · · · , p3). A simple calculation gives Ii1,··· ,it2 ,0 =

rp3 and Ij1,··· ,jt2 ,1 = (1− r)p3 for any i1, · · · , it2 , j1, · · · , jt2 ∈ {0, 1}. Hence, |Ii1,··· ,it2 ,0|
1

p3 +

|Ij1,··· ,jt2 ,1|
1

p3 = 1, reaching the bound for all i1, · · · , it2 , j1, · · · , jt2 ∈ {0, 1}.
As for the nonlocality correlations in the network of Figure 2, we give a set of Bell-

type inequalities.

Theorem 2. Every local correlation in the tree-shaped network of Figure 2 satisfies the following inequalities:

|Ii1,··· ,it2 ,0|+ |Ij1,··· ,jt2 ,1| ≤ 1, ∀i1, · · · , it2 , j1, · · · , jt2 ∈ {0, 1}, (6)

where Ii1,··· ,it2 ,0 and Ij1,··· ,jt2 ,1 are defined as in Theorem 1.

By Theorem 2, the violation of at least one of the 22t2 Ineqs.(6) guarantees that the
corresponding correlations generated by the network are nonlocal. Apparently, the set
of (t3 − 1)-local correlations is a subset of the set of local correlations in the network of
Figure 2.

For the proofs of Theorems 1 and 2, see Appendix A.

2.1.2. Quantum Violations of (t3 − 1)-Local Inequalities

Now, we consider the network of Figure 2 involving (t3 − 1) independent quantum
sources, each generating a bipartite quantum state. Then, the overall quantum state of this
network has the form

ρ = ρA11
1 A21

1
⊗ · · · ⊗ ρ

A11
p2 A2p2

1
⊗ ρA21

2 A31 ⊗ · · · ⊗ ρA21
l21+1 A3l21 ⊗ · · · ⊗ ρ

A2p2
l2p2

−l2(p2−1)+1 A3p3

with state space H = HA11 ⊗ HA21 ⊗ · · · ⊗ HA2p2 ⊗ HA31 ⊗ · · · ⊗ HA3p3 , where HA11 =
HA11

1
⊗ · · · ⊗ HA11

p2
and HA2i = HA2i

1
⊗ · · · ⊗ HA2i

l2i−l2(i−1)+1
, i = 1, · · · , p2. For simplicity,

we write

ρ = ρA11 A21 ⊗ · · · ⊗ ρA11 A2p2 ⊗ ρA21 A31 ⊗ · · · ⊗ ρA21 A3l21 ⊗ · · · ⊗ ρA2p2 A3p3 .

Once each party receives particles from its all-connecting sources, it performs suitable
measurement. The resulting joint probability distribution has the form

P(a11, a21, · · · , a2p2 , a31, · · · , a3p3 |x11, x21, · · · , x2p2 , x31, · · · , x3p3)
= tr[(Ma11|x11

⊗Ma21|x21
⊗ · · · ⊗ Ma3p3 |x3p3

)(ρA11 A21 ⊗ ρA11 A22 ⊗ · · · ⊗ ρA2p2 A3p3 )],

where Ma11|x11
denotes the specific measurement operator of party A11 corresponding to

the measurement choice x11 with the outcome a11, and other measurement operators have
similar meanings.
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In what follows, we examine quantum violations of the (t3 − 1)-local inequalities (5)
from pure states and mixed states, respectively.

Non-(t3-1)-local correlations from pure states: Firstly, let all (t3 − 1) sources pro-
duce any pure entangled states. Then, ρA11 A21 can be written in the Schmidt basis as
ρA11 A21 = |ψA11 A21〉〈ψA11 A21 | with |ψA11 A21〉 = b10|00〉+ b11|11〉 and b10, b11 > 0, the nor-
malized two-qubit pure state shared by the parties A11 and A21. Likewise, write ρA11 A2i =
|ψA11 A2i 〉〈ψA11 A2i |, ∀i ∈ {2, · · · , p2}, ρ

A2j A3kj = |ψA2j A3kj 〉〈ψA2j A3kj |, ∀j ∈ {1, 2, · · · , p2}, kj ∈
{l2(j−1) + 1, · · · , l2j}, where |ψA11 A2i 〉 = bi0|00〉+ bi1|11〉 and |ψ

A2j A3kj 〉 = ckj0|00〉+ ckj1|11〉
are also written in the Schmidt basis with the corresponding positive coefficients.

For party A11, take the measurement A11
0 = ⊗p2

k=1σk
z and A11

1 = ⊗p2
k=1σk

x ; for parties

A2i (i = 1, · · · , p2), the corresponding measurement choices are A2i
0 = ⊗l2i−l2(i−1)+1

k=1 σk
z and

A2i
1 = ⊗l2i−l2(i−1)+1

k=1 σk
x . Here, σk

z = σz and σk
x = σx for all k are Pauli matrices. Let the settings

of all parties A3q (q = 1, · · · , p3) correspond to any projective measurements in the Z-X
plane of the Bloch sphere. Thus, each measurement can be characterized by an angle. Write
the observables of A3q by A3q

0 = (sin αq, 0, cos αq) ·�σ, A3q
1 = (sin α′q, 0, cos α′q) ·�σ, where

�σ = (σx, σy, σz) is the vector of Pauli matrices and αq, α′q ∈ [0, 2π] for all q ∈ {1, · · · , p3}.
Note that, if the above Schmidt bases differ from the computational basis, then it would be
sufficient to add local unitary rotations to recover the case we discuss here. Then, we have

〈A11
0 A21

0 · · · A2p2
0 A31

0 · · · A3p3
0 〉

= tr{[⊗p2
k=1(σ

k
z ⊗ σk

z )⊗ (σz ⊗ A31
0 )⊗ · · · ⊗ (σz ⊗ A3p3

0 )]
·(ρA11 A21 ⊗ · · · ⊗ ρA11 A2p2 ⊗ ρA21 A31 ⊗ · · · ⊗ ρA2p2 A3p3 )}

= ∏
p2
i=1 tr[(σz ⊗ σz)ρA11 A2i ]tr[(σz ⊗ A31

0 )ρA21 A31 ] · · · tr[(σz ⊗ A3p3
0 )ρA2p2 A3p3 ]

= cos α1 cos α2 · · · cos αp3 .

For any x31, x32, · · · , x3p3 ∈ {0, 1}, we can follow similar calculations as above for

〈A11
0 A21

0 · · · A2p2
0 A31

x31
· · · A3p3

x3p3
〉 and 〈A11

1 A21
1 · · · A2p2

1 A31
x31
· · · A3p3

x3p3
〉. Therefore,

I0,··· ,0,0 = 1
2p3 ∑

x31,··· ,x3p3

〈A11
0 A21

0 · · · A2p2
0 A31

x31
· · · A3p3

x3p3
〉

= 1
2p3 〈A11

0 A21
0 · · · A2p2

0 (A31
0 + A31

1 ) · · · (A3p3
0 + A3p3

1 )〉
= 1

2p3 (cos α1 + cos α′1) · · · (cos αp3 + cos α′p3
)

and
I1,··· ,1,1 = 1

2p3 ∑
x31,··· ,x3p3

(−1)x31+···+x3p3 〈A11
1 A21

1 · · · A2p2
1 A31

x31
· · · A3p3

x3p3
〉

= 1
2p3 〈A11

1 A21
1 · · · A2p2

1 (A31
0 − A31

1 ) · · · (A3p3
0 − A3p3

1 )〉
= 1

2p3 Δ(sin α1 − sin α′1) · · · (sin αp3 − sin α′p3
),

where Δ = b(1) · · · b(p2)c(1) · · · c(p3) > 0, b(i) = 2bi0bi1, i ∈ {1, · · · , p2}, c(q) = 2cq0cq1,
q ∈ {1, · · · , p3}. Consequently,

S(t3−1)−local = |I0,··· ,0,0|
1

p3 + |I1,··· ,1,1|
1

p3

= 1
2 |(cos α1 + cos α′1) · · · (cos αp3 + cos α′p3

)| 1
p3

+ 1
2 |Δ(sin α1 − sin α′1) · · · (sin αp3 − sin α′p3

)| 1
p3 .

Write S(t3−1)−local = f (α1, α′1, · · · , αp3 , α′p3
). To derive the maximum of differentiable

function f (α1, α′1, · · · , αp3 , α′p3
), we calculate all the partial derivatives ∂ f

∂αi
= 0, ∂ f

∂α′i
= 0 for

i = 1, 2, · · · , p3. It follows that the extremal points of f must satisfy the conditions αi = −α′i
and | tan αi| = Δ1/p3 (i = 1, 2, · · · , p3). These force | cos αi| = | cos α′i| = 1√

1+Δ2/p3
and

| sin αi| = | sin α′i| = Δ1/p3√
1+Δ2/p3

, i = 1, 2, · · · , p3. Therefore, the value of f at these extremal
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points is | cos α1|+ Δ1/p3 | sin α1| =
√

1 + Δ2/p3 . Comparing this value with the values of f
at all boundary points, it is easily seen that the maximum of S(t3−1)−local is

Smax
(t3−1)−local =

√
1 + Δ2/p3 > 1. (7)

Notice that tr[(σz ⊗ σx)ρi] = tr[(σx ⊗ σz)ρi]=0 hold for all i = A11 A21, · · · , A2p2 A3p3 .

Thus, other possible nonzero terms for |Ii1,··· ,it2 ,0|
1

p3 + |Ij1,··· ,jt2 ,1|
1

p3 are |I0,··· ,0,0|
1

p3 + |I0,··· ,0,1|
1

p3 ,

|I1,··· ,1,0|
1

p3 + |I1,··· ,1,1|
1

p3 , and |I1,··· ,1,0|
1

p3 + |I0,··· ,0,1|
1

p3 . However, by similar discussions to
the above, one can obtain that these three values are less than 1.

Hence, if all (t3 − 1) sources in the network of Figure 2 emit pure entangled states,
they necessarily violate the (t3 − 1)-local inequalities (5) and, thus, generate non-(t3 − 1)-
local correlations.

Non-(t3-1)-local correlations from mixed states: Now, we consider the case that all
the sources in the network of Figure 2 produce any mixed states.

Assume that the state ρA11 A21 shared by the parties A11 and A21 is a mixed state. Then,
it has the following form:

ρA11 A21 =
1
4
(I⊗ I+�rA11 ·�σ⊗ I+ I⊗�rA21 ·�σ + ∑

i,j
tA11 A21

ij σi ⊗ σj),

where�σ = (σx, σy, σz),�rA11 (�rA21 ) represents the Bloch vector of the reduced state of sub-
system A11 (A21), and TA11 A21

= (tA11 A21

ij ) with i, j ∈ {x, y, z} is the correlation matrix.

By the polar decomposition, the correlation matrix TA11 A21
can be written as TA11 A21

=

UA11 A21
RA11 A21

, where UA11 A21
is a unitary matrix and RA11 A21

=
√
(TA11 A21)†TA11 A21 ≥ 0.

Denote by
√

τA11 A21
1 ≥

√
τA11 A21

2 ≥
√

τA11 A21
3 ≥ 0 the three non-negative eigenvalues of

RA11 A21
.

For the other mixed states ρA11 A22 , · · · , ρA11 A2p2 , ρA21 A31 , · · · , ρA2p2 A3p3 , shared by the
corresponding parties, they also have similar expressions to that of ρA11 A21 , and the corre-
sponding matrices and the eigenvalues are, respectively, represented as

RA11 A2i
=
√
(TA11 A2i )†TA11 A2i ,

√
τA11 A2i

1 ≥
√

τA11 A2i
2 ≥

√
τA11 A2i

3 ≥ 0,

RA2j A3kj
=

√
(TA2j A3kj

)†TA2j A3kj ,
√

τA2j A3kj

1 ≥
√

τA2j A3kj
2 ≥

√
τA2j A3kj

3 ≥ 0,

where i ∈ {1, 2, · · · , p2}, kj ∈ {l2(j−1) + 1, · · · , l2j}, and j ∈ {1, 2, · · · , p2}.
Suppose that party A11 performs measurements A11

0 = ⊗p2
k=1σk

z , A11
1 = ⊗p2

k=1σk
x . We

consider the Z and X Bloch directions (on the first subsystem of party A11, connected to the
first subsystem of party A21) given by the eigenvectors of the matrix RA11 A21

corresponding

to the two largest eigenvalues
√

τA11 A21
1 and

√
τA11 A21

2 , respectively [19]. Similarly, we

use RA11 A2i
for aligning the ith subsystem of A11, connected to the first subsystem of A2i,

i = 2, · · · , p2. Note that the Z and X axes used by the parties A11 and A2i (i = 1, · · · , p2)
may be different from each other. In this case, party A11 can perform different unitary
transformations to the p2 qubits she/he shares with A21, · · · , A2p2 before performing the
measurements. Likewise, we may assume the party A2i (i = 1, · · · , p2) has measurement

choices A2i
0 = ⊗l2i−l2(i−1)+1

k=1 σk
z and A2i

1 = ⊗l2i−l2(i−1)+1
k=1 σk

x . For party A3q (q = 1, · · · , p3),
he/she performs projective measurements on the Z and X Bloch directions, which are
composed of the two eigenvectors with largest eigenvalues of the connected matrix RA2jq A3q

(1 ≤ jq ≤ p2). That is, A3q
0 = �cq ·�σ and A3q

1 = �cq
′ ·�σ, where �cq = (sin βq, 0, cos βq),

�cq
′ = (sin β′q, 0, cos β′q), βq, β′q ∈ [0, 2π].
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Now, we have

I0,··· ,0,0 = 1
2p3 ∑

x31,··· ,x3p3

〈A11
0 A21

0 · · · A2p2
0 A31

x31
· · · A3p3

x3p3
〉

= 1
2p3 〈A11

0 A21
0 · · · A2p2

0 (A31
0 + A31

1 ) · · · (A3p3
0 + A3p3

1 )〉
= 1

2p3 〈(⊗p2
k=1σk

z )⊗ (⊗l21+1
k=1 σk

z )⊗ · · · ⊗ (⊗l2p2−l2(p2−1)+1
k=1 σk

z )⊗ [(�c1 + �c1
′) ·�σ]⊗ · · ·

⊗[( �cp3 + �cp3
′) ·�σ]〉

= 1
2p3 tr{[(⊗p2

k=1(σ
k
z ⊗ σk

z ))⊗ (σz ⊗ (�c1 + �c1
′) ·�σ)⊗ · · · ⊗ (σz ⊗ ( �cp3 + �cp3

′) ·�σ)]
·(ρA11 A21 ⊗ · · · ⊗ ρA11 A2p2 ⊗ ρA21 A31 ⊗ · · · ⊗ ρA2p2 A3p3 )}

= 1
2p3 tr[(σz ⊗ σz)ρA11 A21 ] · · · tr[(σz ⊗ σz)ρA11 A2p2 ]tr[(σz ⊗ (�c1 + �c1

′) ·�σ)ρA21 A31 ]
· · · tr[(σz ⊗ ( �cp3 + �cp3

′) ·�σ)ρA2p2 A3p3 ]

= 1
2p3

√
τA11 A21

1 · · · τA11 A2p2
1 τA21 A31

1 · · · τA2p2 A3p3
1

p3

∏
j=1

(cos β j + cos β′j)

and

I1,··· ,1,1 = 1
2p3 ∑

x31,··· ,x3p3

(−1)x31+···+x3p3 〈A11
1 A21

1 · · · A2p2
1 A31

x31
· · · A3p3

x3p3
〉

= 1
2p3 〈A11

1 A21
1 · · · A2p2

1 (A31
0 − A31

1 ) · · · (A3p3
0 − A3p3

1 )〉
= 1

2p3

√
τA11 A21

2 · · · τA11 A2p2
2 τA21 A31

2 · · · τA2p2 A3p3
2

p3

∏
j=1

(sin β j − sin β′j),

and so

S(t3−1)−local = |I0,··· ,0,0|
1

p3 + |I1,··· ,1,1|
1

p3

= 1
2 (τ

A11 A21

1 · · · τA11 A2p2
1 τA21 A31

1 · · · τA2p2 A3p3
1 )

1
2p3 |

p3

∏
j=1

(cos β j + cos β′j)|
1

p3

+ 1
2 (τ

A11 A21

2 · · · τA11 A2p2
2 τA21 A31

2 · · · τA2p2 A3p3
2 )

1
2p3 |

p3

∏
j=1

(sin β j − sin β′j|
1

p3 .

A calculation gives the maximum

Smax
(t3−1)−local =

√√√√ 2

∑
i=1

(τA11 A21

i · · · τA11 A2p2
i τA21 A31

i · · · τA2p2 A3p3
i )

1
p3 . (8)

The detailed proof for Equation (8) is in Appendix A.
It is easily verified that the above Equation (8) reduces to Equation (7) for the case

of pure states discussed in the above. In fact, for pure states, we have τA11 A21

1 = · · · =
τA11 A2p2

1 = τA21 A31

1 = · · · = τA2p2 A3p3
1 = 1 and τA11 A21

2 = (b(1))2, · · · , τA11 A2p2
2 = (b(p2))2,

τA21 A31

2 = (c(1))2, · · · , τA2p2 A3p3
2 = (c(p3))2, which implies that Equation (8) can be reduced

to Equation (7).
From Equation (8), Smax

(t3−1)−local > 1 implies that these states violate the (t3− 1)-locality

inequalities (5). Since all these eigenvalues τA11 A21

i , · · · , τA2p2 A3p3
i (i = 1, 2) belong to [0, 1]

([23] Lemma 3), by [21] Lemma 1, Equation (8) implies

Smax
(t3−1)−local ≤

√
∑2

i=1(τ
A11 A21

i · · · τA11 A2p2
i τA21 A31

i · · · τA2p2 A3p3
i )

1
p2+p3

≤ (
√

τA11 A21
1 + τA11 A21

2 · · ·
√

τA11 A2p2
1 + τA11 A2p2

2

√
τA21 A31

1 + τA21 A31
2

· · ·
√

τA2p2 A3p3
1 + τA2p2 A3p3

2 )
1

p2+p3

.
= (Smax

A11 A21 · · · Smax
A11 A2p2

Smax
A21 A31 · · · Smax

A2p2 A3p3
)

1
p2+p3 ,
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where the expressions Smax
XY =

√
τXY

1 + τXY
2 represent the maximal CHSH value for the

corresponding state ρXY by the Horodecki criterion in [43]. From the above inequality, we
know that once the states altogether violate the (t3 − 1)-locality inequalities, at least one
of these states necessarily violates the CHSH inequality. However, for each state violating
the CHSH inequality, this does not imply that it necessarily violates the (t3 − 1)-locality
inequalities. We illustrate this case by the specific network of Figure 3. For example, let
nine sources in Figure 3 all produce the following state:

ρ =
3
4
|ψ−〉〈ψ−|+ 1

20
(|ψ+〉〈ψ+|+ I) =

⎛⎜⎜⎝
0.05 0 0 0

0 0.45 −0.35 0
0 −0.35 0.45 0
0 0 0 0.05

⎞⎟⎟⎠,

where |ψ±〉 = (|01〉 ± |10〉)/√2. It is easily obtained that τ1 = 0.64 and τ2 = 0.49. For this
single state, the maximal CHSH value is Smax ! 1.06 > 1. However, through distributing
nine copies of this state in the network of Figure 3, the maximal value of the corresponding
nine-local inequality is Smax

9−local ! 0.98 < 1.

Remark 1. To achieve the maximal quantum violation of the (t3 − 1)-local correlation inequalities
(5), all possible quantum measurements should be considered. However, this is almost impossible
because the calculation is very difficult and complicated. Therefore, for the network of Figure 2,
we take separable measurements for parties A1j and A2j and any measurements for parties A3j.
In this quantum strategy, the maximal violation Smax

(t3−1)−local is obtained, which gives a sufficient
condition that Smax

(t3−1)−local > 1 ensures that the state ρ violates the inequality (5) and, thus,
is non-(t3 − 1)-local. Of course, there are other strategies of the measurement choices that are
computable, and some of them may be better than our strategy, though we have not discovered them
yet. This is an interesting problem that is worth being explored later.

2.1.3. Resistance to White Noise

Now, suppose that each source Si (i = 1, · · · , t3 − 1) in Figure 2 produces Bell state
|φ+〉 = (|00〉+ |11〉)/√2 with white noise of probability 1− vi. Then, the state it actually
produces is the Werner state of the form

ρi(vi) = vi|φ+〉〈φ+|+ (1− vi)
I

4
.

Let the input of party A11 be {A11
0 = ⊗p2

k=1σk
z , A11

1 = ⊗p2
k=1σk

x}. For party A2j (j =

1, · · · , p2), the measurement choices are {A2j
0 = ⊗l2j−l2(j−1)+1

k=1 σk
z , A2j

1 = ⊗l2j−l2(j−1)+1
k=1 σk

x}.

Suppose the inputs of each party A3q (q = 1, 2, · · · , p3) are measurements {A3q
0 = (σz +

σx)/
√

2, A3q
1 = (σz − σx)/

√
2}. Denoting by V = ∏t3−1

i=1 vi as the overall visibility, we
obtain I0,··· ,0,0 = ( 1√

2
)p3 V, I1,··· ,1,1 = ( 1√

2
)p3 V, and so,

|I0,··· ,0,0|
1

p3 + |I1,··· ,1,1|
1

p3 =
√

2V1/p3 .

That is to say, V > ( 1√
2
)p3 implies non-(t3 − 1)-local correlations. Assuming that all

the (t3 − 1) sources emit states with the same noise parameter vi = v, we thus see that a

single source necessarily satisfies v > ( 1√
2
)

p3
t3−1 , which is a little greater than v′ > 1√

2
for

the Werner state to violate the CHSH inequality.

2.2. (tn − 1)-Local Network Scenario

In this subsection, we consider the nonlocality of the general tree-shaped network of
Figure 1. With similar arguments, if each party Ai (i = 11, 21, · · · , npn) has binary input
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xi(∈ {0, 1}) with binary output ai(∈ {0, 1}), then we obtain the following results for any
n ≥ 2.

Theorem 3. All (tn − 1)-local correlations generated by the tree-shaped network of Figure 1
necessarily satisfy the following inequalities:

|Ii1,··· ,itn−1 ,0|
1

pn + |Ij1,··· ,jtn−1 ,1|
1

pn ≤ 1, ∀i1, · · · , itn−1 , j1, · · · , jtn−1 ∈ {0, 1}; (9)

and the corresponding local correlations satisfy the following inequalities:

|Ii1,··· ,itn−1 ,0|+ |Ij1,··· ,jtn−1 ,1| ≤ 1, ∀i1, · · · , itn−1 , j1, · · · , jtn−1 ∈ {0, 1}. (10)

where for k ∈ {0, 1},

Ii1(j1),··· ,itn−1 (jtn−1 ),k

= 1
2pn ∑

xn1,··· ,xnpn

(−1)k·(xn1+···+xnpn )〈A11
i1(j1)

· · · A(n−1)pn−1
itn−1 (jtn−1 )

An1
xn1
· · · Anpn

xnpn
〉,

〈A11
x11
· · · A(n−1)pn−1

x(n−1)pn−1
An1

xn1
· · · Anpn

xnpn
〉

= ∑
a11,··· ,anpn

(−1)mP(a11, · · · , a(n−1)pn−1
, an1, · · · , anpn |x11, · · · , x(n−1)pn−1

, xn1, · · · , xnpn),

m = a11 + · · · + anpn , and Ai
xi

denotes the observable for binary inputs xi of party Ai, i =
11, 21, 22, · · · , npn.

Note that the subscript tn−1 in Ineqs. (9) and (10) represents the total number of
parties A11, A21, · · · , A2p2 , · · · , A(n−1)1, · · · , A(n−1)pn−1 . In particular, if n = 3, then
Inequalities (9) and (10) reduce to Inequalities (5) and (6), respectively. By Theorem 3,
violating Inequalities (9) for at least one possible (i1, · · · , itn−1 , j1, · · · , jtn−1) implies the
non-(tn − 1)-local nature of the general tree-shaped networks in Figure 1. The proof of
Theorem 3 is provided in Appendix A.

Next, assume that all sources in Figure 1 produce pure entangled states |ψi〉〈ψi|,
|ψi〉 = bi0|00〉 + bi1|11〉, written in the Schmidt basis, with positive coefficients bi0 and
bi1, i = 1, 2, · · · , tn − 1. Let the measurements of A11 be {A11

0 = ⊗p2
k=1σk

z , A11
1 = ⊗p2

k=1σk
x}.

For parties Aij with i = 2, 3, · · · , n− 1 and j = 1, 2, · · · , pi, they have the same measure-

ment choices {Aij
0 = ⊗lij−li(j−1)+1

k=1 σk
z , Aij

1 = ⊗lij−li(j−1)+1
k=1 σk

x}. Here, σk
z = σz and σk

x = σz for
any k. For the parties Anq (q = 1, 2, · · · , pn), they perform projective measurements
denoted by {Anq

0 = (sin αq, 0, cos αq) ·�σ, Anq
1 = (sin α′q, 0, cos α′q) ·�σ}, where αq, α′q ∈

[0, 2π]. With similar arguments to that of Equation (7), one obtains I0,··· ,0,0 = 1
2pn (cos α1 +

cos α′1) · · · (cos αpn + cos α′pn) and I1,··· ,1,1 = 1
2pn Δ(sin α1 − sin α′1) · · · (sin αpn − sin α′pn),

where
Δ = b(1)b(2) · · · b(tn−1) > 0,

b(i) = 2bi0bi1, i = 1, 2, · · · , tn − 1. Therefore, the maximum of S(tn−1)−local = |I0,··· ,0,0|
1

pn +

|I1,··· ,1,1|
1

pn is
Smax
(tn−1)−local =

√
1 + Δ2/pn > 1. (11)

That is to say, all pure entangled states distributed in the network of Figure 1 indicate
the non-(tn − 1)-local correlations.

Finally, we consider that all sources in Figure 1 produce any mixed states ρi, i =

1, 2, · · · , tn− 1. Let Ti be the correlation matrix of ρi and τ
(i)
1 , τ

(i)
2 the two larger non-negative

eigenvalues of (Ti)†Ti, i = 1, 2, · · · , tn − 1. Let party A11 perform measurements {A11
0 =

⊗p2
k=1σk

z , A11
1 = ⊗p2

k=1σk
x}; party Aij perform measurements {Aij

0 = ⊗lij−li(j−1)+1
k=1 σk

z , Aij
1 =

⊗lij−li(j−1)+1
k=1 σk

x} (i = 2, 3, · · · , n − 1, j = 1, 2, · · · , pi); and party Anq have measurement
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choices {Anq
0 = (sin βq, 0, cos βq) ·�σ, Anq

1 = (sin β′q, 0, cos β′q) ·�σ} with βq, β′q ∈ [0, 2π]
(q = 1, 2, · · · , pn). By calculations, we obtain

I0,··· ,0,0 =
1

2pn

√
τ
(1)
1 τ

(2)
1 τ

(3)
1 · · · τ(tn−1)

1

pn

∏
i=1

(cos βi + cos β′i)

and

I1,··· ,1,1 =
1

2pn

√
τ
(1)
2 τ

(2)
2 τ

(3)
2 · · · τ(tn−1)

2

pn

∏
i=1

(sin βi − sin β′i).

Following the analogous proof process of Equation (8), we have that the maximal

value of S(tn−1)−local = |I0,··· ,0,0|
1

pn + |I1,··· ,1,1|
1

pn is

Smax
(tn−1)−local =

√
(τ

(1)
1 τ

(2)
1 τ

(3)
1 · · · τ(tn−1)

1 )1/(pn) + (τ
(1)
2 τ

(2)
2 τ

(3)
2 · · · τ(tn−1)

2 )1/(pn). (12)

When n = 3, Equations (11) and (12) reduce to Equations (7) and (8). By Equation (12),
Smax
(tn−1)−local > 1 implies the non-(tn − 1)-local correlations.

Besides, if all sources in Figure 1, respectively, distribute Werner states with visibilities
v1, v2, · · · , vtn−1, then we take the inputs of A11 {A11

0 = ⊗p2
k=1σk

z , A11
1 = ⊗p2

k=1σk
x}; the inputs

of Aij {Aij
0 = ⊗lij−li(j−1)+1

k=1 σk
z , Aij

1 = ⊗lij−li(j−1)+1
k=1 σk

x} (i = 2, 3, · · · , n − 1, j = 1, 2, · · · , pi);
and the inputs of Anq {Anq

0 = (σz + σx)/
√

2, Anq
1 = (σz− σx)/

√
2}. Let the overall visibility

be V = ∏tn−1
i=1 vi. A calculation gives I0,··· ,0,0 = ( 1√

2
)pn V and I1,··· ,1,1 = ( 1√

2
)pn V, and so,

|I0,··· ,0,0|
1

pn + |I1,··· ,1,1|
1

pn =
√

2V1/pn .

Hence, if V > ( 1√
2
)pn , then the inequalities (9) will be violated, demonstrating non-

(tn − 1)-local correlations in Figure 1.

2.3. Comparing Any Forked Tree-Shaped Network with Other Networks

In this subsection, we discuss the relationships of multi-local inequalities between
any forked tree-shaped network of Figure 1 and a bilocal network, chain-shaped network,
star-shaped network, and two-forked tree-shaped network.

In fact, when n = 2 and p2 = 2, the network of Figure 1 reduces to a bilocal network and
the (tn-1)-local Ineq. (5) reduces to the bilocal Ineq. (20) in [18]. When p2 = · · · = pn = 2,
the network of Figure 1 reduces to the chain-shaped network and Ineq. (5) reduces to the
(2n−2)-local Ineq. (16) in [20]. When n = 2, the network of Figure 1 reduces to a star-shaped
network and Ineq. (5) reduces to the p2-local Ineq. (7) in [21]. Moreover, if lkj − lk(j−1) = 2
holds for any (k, j), then the network of Figure 1 reduces to a two-forked tree-shaped
network and Ineq. (5) reduces to the (2n − 2)-local Ineq. (16) in [42]. See Table 1. Therefore,
from this point of view, any forked tree-shaped network can be seen as a generalization of
these networks.
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Table 1. Comparison of multi-local inequalities between any forked tree-shaped network and
other networks.

Networks Multi-Local Inequalities Relations

any forked tree-shaped
|Ii1,··· ,itn−1 ,0|

1
pn +

|Ij1,··· ,jtn−1 ,1|
1

pn ≤ 1

bilocal |Ii1,0| 1
2 + |Ij1,1| 1

2 ≤ 1 n = 2, p2 = 2

chain-shaped
|Ii1,··· ,i2n−3,0| 1

2 +

|Ij1,··· ,j2n−3,1| 1
2 ≤ 1

p2 = · · · = pn = 2

star-shaped |Ii1,0|
1

p2 + |Ij1,1|
1

p2 ≤ 1 n = 2

two-forked tree-shaped
|Ii1,··· ,i2n−1−1,0|

1
2n−1 +

|Ij1,··· ,j2n−1−1,1|
1

2n−1 ≤ 1
lkj − lk(j−1) = 2

3. Discussions

In this work, we discussed the nonlocality of a kind of important quantum network:
any forked tree-shaped network, in which each node, respectively, shares an arbitrary
number of bipartite sources with other nodes in the next “layer”. This network contains
(tn − 1) independent bipartite sources and tn noninteracting parties (n ≥ 2). The “two-
forked” tree-shaped networks discussed in [42] are special tree-shaped networks. In
addition, if n = 2, the networks are in fact the p2-local star networks introduced in [21].
If p2 = · · · = pn = 2, the networks are reduced to the chain networks introduced in [20].
We gave a detailed discussion for the case of n = 3, i.e., a tree-shaped network scenario
with t3 particles and (t3 − 1) independent sources. Concretely, we gave the inequalities
satisfied by all (t3 − 1)-local correlations, proved that all pure entangled states violate
these (t3 − 1)-local inequalities, obtained a necessary condition for mixed states to violate
these inequalities, and explored the relation between the (t3 − 1)-locality correlation and
locality correlation in this quantum network. Finally, we generalized these results to the
general tn-partite tree-shaped networks. Note that the tree-shaped networks examined
here just involve bipartite quantum states. The nonlocality of tree-shaped networks with
multipartite states deserves further research.
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Appendix A

To prove Theorem 1, the following lemma is needed.

Lemma A1 ([21] Lemma 1). Assume that xk
i are non-negative real numbers, i = 1, 2, · · · , n, and

k = 1, 2, · · · , m. Then,
m

∑
k=1

(
n

∏
i=1

xk
i )

1/n ≤
n

∏
i=1

(
m

∑
k=1

xk
i )

1/n.
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Proof of Theorem 1. By the assumption, all joint probability distributions have a (t3 − 1)-
local decomposition form satisfying Equations (3) and (4). Firstly, take i1 = · · · = it2 =
j1 = · · · = jt2 = 0. Then,

I0,··· ,0,0 =
1

2p3 ∑
x31,··· ,x3p3

〈A11
0 A21

0 · · · A2p2
0 A31

x31
· · · A3p3

x3p3
〉

and
I0,··· ,0,1 =

1
2p3 ∑

x31,··· ,x3p3

(−1)x31+···+x3p3 〈A11
0 A21

0 · · · A2p2
0 A31

x31
· · · A3p3

x3p3
〉.

Write
〈A11

x11
〉λ1,··· ,λp2

= ∑
a11

(−1)a11 P(a11|x11, λ1, · · · , λp2),

〈A21
x21
〉λ1,λp2+1,··· ,λp2+l21

= ∑
a21

(−1)a21 P(a21|x21, λ1, λp2+1, · · · , λp2+l21),

· · · · · ·
〈A2p2

x2p2
〉λp2 ,λp2+l2(p2−1)+1,··· ,λt3−1 = ∑

a2p2

(−1)a2p2 P(a2p2 |x2p2 , λp2 , λp2+l2(p2−1)+1, · · · , λt3−1),

〈A3j
x3j〉λp2+j = ∑

a3j

(−1)a3j P(a3j|x3j, λp2+j), ∀j = 1, · · · , p3.

By Equations (3) and (4) and the facts that |〈A11
0 〉λ1,··· ,λp2

| ≤ 1, |〈A21
0 〉λ1,λp2+1,··· ,λp2+l21

| ≤
1, · · · , |〈A2p2

0 〉λp2 ,λp2+l2(p2−1)+1,··· ,λt3−1 | ≤ 1, we have

|I0,··· ,0,0| = 1
2p3 |

∫ · · · ∫ P1(λ1) · · · Pt3−1(λt3−1)〈A11
0 〉λ1,··· ,λp2

〈A21
0 〉λ1,λp2+1,··· ,λp2+l21

· · ·
·〈A2p2

0 〉λp2 ,λp2+l2(p2−1)+1,··· ,λt3−1

p3

∏
j=1

(〈A3j
0 〉λp2+j + 〈A

3j
1 〉λp2+j)dλ1 · · ·dλt3−1|

≤ 1
2p3

∫ · · · ∫ P1(λ1) · · · Pt3−1(λt3−1)|〈A11
0 〉λ1,··· ,λp2

||〈A21
0 〉λ1,λp2+1,··· ,λp2+l21

| · · ·
·|〈A2p2

0 〉λp2 ,λp2+l2(p2−1)+1,··· ,λt3−1 |
p3

∏
j=1
|〈A3j

0 〉λp2+j + 〈A
3j
1 〉λp2+j |dλ1 · · ·dλt3−1

≤ 1
2p3

∫ · · · ∫ P1(λ1) · · · Pt3−1(λt3−1)
p3

∏
j=1
|〈A3j

0 〉λp2+j + 〈A
3j
1 〉λp2+j |dλ1 · · ·dλt3−1

=
p3

∏
j=1

∫
Pp2+j(λp2+j)|〈A3j

0 〉λp2+j
+〈A3j

1 〉λp2+j
|dλp2+j

2 .

Similarly, one has

|I0,··· ,0,1| ≤
p3

∏
j=1

∫
Pp2+j(λp2+j)|〈A3j

0 〉λp2+j − 〈A
3j
1 〉λp2+j |dλp2+j

2
.

By Lemma A1, we can obtain

|I0,··· ,0,0|
1

p3 + |I0,··· ,0,1|
1

p3

≤
p3

∏
j=1

[
∫

Pp2+j(λp2+j)(
|〈A3j

0 〉λp2+j
+〈A3j

1 〉λp2+j
|

2 +
|〈A3j

0 〉λp2+j
−〈A3j

1 〉λp2+j
|

2 )dλp2+j]
1

p3

=
p3

∏
j=1

[
∫

Pp2+j(λp2+j)max{|〈A3j
0 〉λp2+j |, |〈A

3j
1 〉λp2+j |}dλp2+j]

1
p3 ≤ 1.

With similar discussions, Inequality (5) also holds for any other values of i1, · · · , it2 , j1,
· · · , jt2(∈ {0, 1}).
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Proof of Theorem 2. For any i1, · · · , it2 , j1, · · · , jt2 ∈ {0, 1}, we can obtain

Ii1,··· ,it2 ,0 =
1

2p3
〈A11

i1 A21
i2 · · · A2p2

it2
(A31

0 + A31
1 ) · · · (A3p3

0 + A3p3
1 )〉

and
Ij1,··· ,jt2 ,1 =

1
2p3
〈A11

j1 A21
j2 · · · A2p2

jt2
(A31

0 − A31
1 ) · · · (A3p3

0 − A3p3
1 )〉.

Here, we use similar symbols as those in the proof of Theorem 1. Note that |〈A11
i1(j1)

〉
λ1,··· ,λp2

| ≤ 1, |〈A21
i2(j2)

〉λ1,λp2+1,··· ,λp2+l21
| ≤ 1, · · · , |〈A2p2

it2 (jt2 )
〉λp2 ,λp2+l2(p2−1)+1,··· ,λt3−1 |

≤ 1. By Equation (3) and a similar discussion to that in the proof of Theorem 1, we have

|Ii1,··· ,it2 ,0| ≤ 1
2p3

∫
· · ·

∫
P(λ1, · · · , λt3−1)

p3

∏
j=1
|〈A3j

0 〉λp2+j + 〈A
3j
1 〉λp2+j |dλ1 · · ·dλt3−1

and

|Ij1,··· ,jt2 ,1| ≤ 1
2p3

∫
· · ·

∫
P(λ1, · · · , λt3−1)

p3

∏
j=1
|〈A3j

0 〉λp2+j − 〈A
3j
1 〉λp2+j |dλ1 · · ·dλt3−1.

Consequently,

|Ii1,··· ,it2 ,0|+ |Ij1,··· ,jt2 ,1|
≤ 1

2p3

∫ · · · ∫ P(λ1, · · · , λt3−1)
p3
∏
j=1

(|〈A3j
0 〉λp2+j + 〈A

3j
1 〉λp2+j |+ |〈A

3j
0 〉λp2+j − 〈A

3j
1 〉λp2+j |)

·dλ1 · · ·dλt3−1

=
∫ · · · ∫ P(λ1, · · · , λt3−1)

p3
∏
j=1

max{|〈A3j
0 〉λp2+j |, |〈A

3j
1 〉λp2+j |}dλ1 · · ·dλt3−1 ≤ 1.

Proof of Equation (8). Note that

S(t3−1)−local = |I0,··· ,0,0|
1

p3 + |I1,··· ,1,1|
1

p3

= 1
2 (τ

A11 A21

1 · · · τA11 A2p2
1 τA21 A31

1 · · · τA2p2 A3p3
1 )

1
2p3 |

p3

∏
j=1

(cos β j + cos β′j)|
1

p3

+ 1
2 (τ

A11 A21

2 · · · τA11 A2p2
2 τA21 A31

2 · · · τA2p2 A3p3
2 )

1
2p3 |

p3

∏
j=1

(sin β j − sin β′j|
1

p3 .

For convenience, write f (β1, β′1, · · · , βp3 , β′p3
) = S(t3−1)−local. To maximize the func-

tion f , calculating all the partial derivatives ∂β j f = ∂β′j
f = 0 for j, j′ ∈ {1, 2, · · · , p3}, one

obtains that the extreme points of f must satisfy

β′j = −β j and | tan β j| =
(τA11 A21

2 · · · τA11 A2p2
2 τA21 A31

2 · · · τA2p2 A3p3
2 )

1
2p3

(τA11 A21
1 · · · τA11 A2p2

1 τA21 A31
1 · · · τA2p2 A3p3

1 )
1

2p3

, ∀j = 1, · · · , p3.

These imply

| cos β j| =

√√√√√ (τA11 A21
1 · · · τA11 A2p2

1 τA21 A31
1 · · · τA2p2 A3p3

1 )
1

p3

∑2
i=1(τ

A11 A21

i · · · τA11 A2p2
i τA21 A31

i · · · τA2p2 A3p3
i )

1
p3
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and

| sin β j| =

√√√√√ (τA11 A21
2 · · · τA11 A2p2

2 τA21 A31
2 · · · τA2p2 A3p3

2 )
1

p3

∑2
i=1(τ

A11 A21

i · · · τA11 A2p2
i τA21 A31

i · · · τA2p2 A3p3
i )

1
p3

, ∀j = 1, · · · , p3.

Hence, the corresponding function value of these extreme points is√√√√ 2

∑
i=1

(τA11 A21

i · · · τA11 A2p2
i τA21 A31

i · · · τA2p2 A3p3
i )

1
p3 .

By comparing this function value with those of all endpoints, it follows that the
maximum of f = S(t3−1)−local is

Smax
(t3−1)−local =

√√√√ 2

∑
i=1

(τA11 A21

i · · · τA11 A2p2
i τA21 A31

i · · · τA2p2 A3p3
i )

1
p3 .

Proof of Theorem 3. Assume that Equation (1) holds. Write

〈A11
x11
〉λ1,··· ,λp2

= ∑
a11

(−1)a11 P(a11|x11, λ1, · · · , λp2),

· · · · · ·
〈A(n−1)pn−1

x(n−1)pn−1
〉λtn−1−1,λtn−1+l(n−1)(pn−1−1)

,··· ,λtn−1

= ∑
a(n−1)pn−1

(−1)a(n−1)pn−1 P(a(n−1)pn−1
|x(n−1)pn−1

, λtn−1−1, λtn−1+l(n−1)(pn−1−1)
, · · · , λtn−1),

〈Ank
xnk
〉λtn−1−1+k = ∑

ank

(−1)ank P(ank|xnk, λtn−1−1+k), ∀k = 1, · · · , pn.

By Equation (1), for any i1, · · · , itn−1 , j1, · · · , jtn−1 ∈ {0, 1}, we have

|Ii1,··· ,itn−1 ,0| = | 1
2pn ∑

xn1,··· ,xnpn

〈A11
i1
· · · A(n−1)pn−1

itn−1
An1

xn1
· · · Anpn

xnpn
〉|

= | 1
2pn ∑

xn1,··· ,xnpn

∑
a11,··· ,anpn

(−1)a11+···+anpn
∫ · · · ∫ P(λ1, · · · , λtn−1)[P(a11|i1, λ1, · · · , λp2 ) · · ·

·P(a(n−1)pn−1
|itn−1 , λtn−1−1, λtn−1+l(n−1)(pn−1−1)

, · · · , λtn−1)P(an1|xn1, λtn−1 ) · · ·
·P(anpn |xnpn , λtn−1)]dλ1 · · ·dλtn−1|

= | 1
2pn ∑

xn1,··· ,xnpn

∫ · · · ∫ P(λ1, · · · , λtn−1)〈A11
i1
〉λ1,··· ,λp2

· · ·

·〈A(n−1)pn−1
itn−1

〉λtn−1−1,λtn−1+l(n−1)(pn−1−1)
,··· ,λtn−1 〈An1

xn1
〉λtn−1

· · · 〈Anpn
xnpn
〉λtn−1 dλ1 · · ·dλtn−1|

= | 1
2pn

∫ · · · ∫ P(λ1, · · · , λtn−1)〈A11
i1
〉λ1,··· ,λp2

· · ·
·〈A(n−1)pn−1

itn−1
〉λtn−1−1,λtn−1+l(n−1)(pn−1−1)

,··· ,λtn−1 (〈An1
0 〉λtn−1

+ 〈An1
1 〉λtn−1

) · · ·
·(〈Anpn

0 〉λtn−1 + 〈Anpn
1 〉λtn−1 )dλ1 · · ·dλtn−1|

≤ 1
2pn

∫ · · · ∫ P(λ1, · · · , λtn−1)|〈A11
i1
〉λ1,··· ,λp2

| · · ·
·|〈A(n−1)pn−1

itn−1
〉λtn−1−1,λtn−1+l(n−1)(pn−1−1)

,··· ,λtn−1 ||〈An1
0 〉λtn−1

+ 〈An1
1 〉λtn−1

| · · ·
·|〈Anpn

0 〉λtn−1 + 〈Anpn
1 〉λtn−1 |dλ1 · · ·dλtn−1

≤ 1
2pn

∫ · · · ∫ P(λ1, · · · , λtn−1)|〈An1
0 〉λtn−1

+ 〈An1
1 〉λtn−1

| · · · |〈Anpn
0 〉λtn−1 + 〈Anpn

1 〉λtn−1 |
·dλ1 · · ·dλtn−1

= 1
2pn

∫ · · · ∫ P(λ1, · · · , λtn−1)
pn

∏
k=1
|〈Ank

0 〉λtn−1−1+k
+ 〈Ank

1 〉λtn−1−1+k
|dλ1 · · ·dλtn−1
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and

|Ij1,··· ,jtn−1 ,1| = | 1
2pn ∑

xn1,··· ,xnpn

(−1)xn1+···+xnpn 〈A11
j1 · · · A(n−1)pn−1

jtn−1
An1

xn1
· · · Anpn

xnpn
〉|

= | 1
2pn ∑

xn1,··· ,xnpn

(−1)xn1+···+xnpn ∑
a11,··· ,anpn

(−1)a11+···+anpn
∫ · · · ∫ P(λ1, · · · , λtn−1)

·[P(a11|j1, λ1, · · · , λp2 ) · · · P(a(n−1)pn−1
|jtn−1 , λtn−1−1, λtn−1+l(n−1)(pn−1−1)

, · · · , λtn−1)

·P(an1|xn1, λtn−1 ) · · · P(anpn |xnpn , λtn−1)]dλ1 · · ·dλtn−1|
= | 1

2pn ∑
xn1,··· ,xnpn

(−1)xn1+···+xnpn
∫ · · · ∫ P(λ1, · · · , λtn−1)〈A11

j1 〉λ1,··· ,λp2
· · ·

·〈A(n−1)pn−1
jtn−1

〉λtn−1−1,λtn−1+l(n−1)(pn−1−1)
,··· ,λtn−1 〈An1

xn1
〉λtn−1

· · · 〈Anpn
xnpn
〉λtn−1 dλ1 · · ·dλtn−1|

= | 1
2pn

∫ · · · ∫ P(λ1, · · · , λtn−1)〈A11
j1 〉λ1,··· ,λp2

· · ·
·〈A(n−1)pn−1

jtn−1
〉λtn−1−1,λtn−1+l(n−1)(pn−1−1)

,··· ,λtn−1 (〈An1
0 〉λtn−1

− 〈An1
1 〉λtn−1

) · · ·
·(〈Anpn

0 〉λtn−1 − 〈Anpn
1 〉λtn−1 )dλ1 · · ·dλtn−1|

≤ 1
2pn

∫ · · · ∫ P(λ1, · · · , λtn−1)|〈A11
j1 〉λ1,··· ,λp2

| · · ·
·|〈A(n−1)pn−1

jtn−1
〉λtn−1−1,λtn−1+l(n−1)(pn−1−1)

,··· ,λtn−1 |
·|〈An1

0 〉λtn−1
− 〈An1

1 〉λtn−1
| · · · |〈Anpn

0 〉λtn−1 − 〈Anpn
1 〉λtn−1 |dλ1 · · ·dλtn−1

≤ 1
2pn

∫ · · · ∫ P(λ1, · · · , λtn−1)|〈An1
0 〉λtn−1

− 〈An1
1 〉λtn−1

| · · · |〈Anpn
0 〉λtn−1 − 〈Anpn

1 〉λtn−1 |
·dλ1 · · ·dλtn−1

= 1
2pn

∫ · · · ∫ P(λ1, · · · , λtn−1)
pn

∏
k=1
|〈Ank

0 〉λtn−1−1+k
− 〈Ank

1 〉λtn−1−1+k
|dλ1 · · ·dλtn−1.

Therefore,

|Ii1,··· ,itn−1 ,0|+ |Ij1,··· ,jtn−1 ,1|
≤ 1

2pn

∫ · · · ∫ P(λ1, · · · , λtn−1)
pn

∏
k=1

(|〈Ank
0 〉λtn−1−1+k

+ 〈Ank
1 〉λtn−1−1+k

|
+|〈Ank

0 〉λtn−1−1+k
− 〈Ank

1 〉λtn−1−1+k
|)dλ1 · · ·dλtn−1

=
∫ · · · ∫ P(λ1, · · · , λtn−1)

pn

∏
k=1

max{|〈Ank
0 〉λtn−1−1+k

|, |〈Ank
1 〉λtn−1−1+k

|}dλ1 · · ·dλtn−1 ≤ 1,

as desired.
Moreover, if Equation (2) also holds, we have

|Ii1,··· ,itn−1 ,0|
≤ 1

2pn

∫ · · · ∫ P1(λ1) · · · Ptn−1(λtn−1)
pn

∏
k=1
|〈Ank

0 〉λtn−1−1+k
+ 〈Ank

1 〉λtn−1−1+k
|dλ1 · · ·dλtn−1

=
pn

∏
k=1

∫
Ptn−1−1+k(λtn−1−1+k)

|〈Ank
0 〉λtn−1−1+k+〈Ank

1 〉λtn−1−1+k |
2 dλtn−1−1+k

and

|Ij1,··· ,jtn−1 ,1|
≤ 1

2pn

∫ · · · ∫ P1(λ1) · · · Ptn−1(λtn−1)
pn

∏
k=1
|〈Ank

0 〉λtn−1−1+k
− 〈Ank

1 〉λtn−1−1+k
|dλ1 · · ·dλtn−1

=
pn

∏
k=1

∫
Ptn−1−1+k(λtn−1−1+k)

|〈Ank
0 〉λtn−1−1+k−〈Ank

1 〉λtn−1−1+k |
2 dλtn−1−1+k.

Using Lemma A1, we obtain

|Ii1,··· ,itn−1 ,0|
1

pn + |Ij1,··· ,jtn−1 ,1|
1

pn

≤
pn

∏
k=1

[
∫

Ptn−1−1+k(λtn−1−1+k)(
|〈Ank

0 〉λtn−1−1+k
+〈Ank

1 〉λtn−1−1+k
|

2

+
|〈Ank

0 〉λtn−1−1+k
−〈Ank

1 〉λtn−1−1+k
|

2 )dλtn−1−1+k ]
1

pn

=
pn

∏
k=1

[
∫

Ptn−1−1+k(λtn−1−1+k)max{|〈Ank
0 〉λtn−1−1+k |, |〈Ank

1 〉λtn−1−1+k |}dλtn−1−1+k ]
1

pn ≤ 1,
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that is, Inequality (9) holds.
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5. Gröblacher, S.; Paterek, T.; Kaltenbaek, R.; Brukner, Č.; Żukowski, M.; Aspelmeyer, M.; Zeilinger, A. An experimental test of

non-local realism. Nature 2007, 446, 871. [CrossRef]
6. Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson,

J.A.; Abellán, C.; et al, Significant-Loophole-Free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 2015, 115, 250401.
[CrossRef]

7. Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661. [CrossRef]
8. Acín, A.; Brunner, N.; Gisin, N.; Massar, S.; Pironio, S.; Scarani, V. Device-independent security of quantum cryptography against

collective attacks. Phys. Rev. Lett. 2007, 98, 230501. [CrossRef]
9. Acín, A.; Gisin, N.; Masanes, L. From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 2006, 97, 120405.

[CrossRef]
10. Pironio, S.; Acín, A.; Massar, S.; Boyer de la Giroday, A.; Matsukevich, D.N.; Maunz, P.; Olmschenk, S.; Hayes, D.; Luo, L.;

Manning, T.A.; et al. Random numbers certified by Bell’s theorem. Nature 2010, 464, 1021. [CrossRef]
11. Buhrman, H.; Cleve, R.; Massar, S.; de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 2010, 82, 665.

[CrossRef]
12. Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.

1969, 23, 880. [CrossRef]
13. Collins, D.; Gisin, N.; Linden, N.; Massar, S.; Popescu, S Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett.

2002, 88. 040404. [CrossRef] [PubMed]
14. Cruzeiro, E.Z.; Gisin, N. Complete list of tight Bell inequalities for two parties with four binary settings. Phys. Rev. A 2019,

99, 022104. [CrossRef]
15. Tavakoli, A.; Pozas-Kerstjens, A.; Luo, M.-X.; Renou, M.-O. Bell nonlocality in networks. Rep. Prog. Phys. 2021, in press. [CrossRef]
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38. VMurg; Verstraete, F.; Legeza, Ö.; Noack, R.M. Simulating strongly correlated quantum systems with tree tensor networks. Phys.

Rev. B 2010, 82, 205105. [CrossRef]
39. Dumitrescu, E. Tree tensor network approach to simulating Shor’s algorithm. Phys. Rev. A 2017, 96, 062322. [CrossRef]
40. Lopez-Piqueres, J.; Ware, B.; Vasseur, R. Mean-field entanglement transitions in random tree tensor networks. Phys. Rev. B 2020,

102, 064202. [CrossRef]
41. Wall, M.L.; D’Aguanno, G. Tree-tensor-network classifiers for machine learning: From quantum inspired to quantum assisted.

Phys. Rev. A 2021, 104, 042408. [CrossRef]
42. Yang, L.-H.; Qi, X.-F.; Hou, J.-C. Nonlocal correlations in the tree-tensor-network configuration. Phys. Rev. A 2021, 104, 042405.

[CrossRef]
43. Horodecki, R.; Horodecki, P.; Horodecki, M. Violating Bell inequality by mixed spin- 1

2 states: Necessary and sufficient condition.
Phys. Lett. A 1995, 200, 340. [CrossRef]

124



Citation: Ma, S.; Zhu, C.; Quan, D.;

Nie, M. A Distributed Architecture

for Secure Delegated Quantum

Computation. Entropy 2022, 24, 794.

https://doi.org/10.3390/e24060794

Academic Editors: Shao-Ming Fei,

Ming Li and Shunlong Luo

Received: 7 May 2022

Accepted: 3 June 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Distributed Architecture for Secure Delegated
Quantum Computation

Shuquan Ma 1, Changhua Zhu 1,2,3,*, Dongxiao Quan 1 and Min Nie 3,4

1 State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China;
msqloveslife@outlook.com (S.M.); dxquan@xidian.edu.cn (D.Q.)

2 Collaborative Innovation Center of Quantum Information of Shaanxi Province, Xidian University,
Xi’an 710071, China

3 Shaanxi Key Laboratory of Information Communication Network and Security,
Xi’an University of Posts & Telecommunications, Xi’an 710121, China; niemin@xupt.edu.cn

4 School of Communications and Information Engineering, Xi’an University of Posts & Telecommunications,
Xi’an 710121, China

* Correspondence: chhzhu@xidian.edu.cn

Abstract: In this paper, we propose a distributed secure delegated quantum computation protocol,
by which an almost classical client can delegate a (dk)-qubit quantum circuit to d quantum servers,
where each server is equipped with a 2k-qubit register that is used to process only k qubits of the
delegated quantum circuit. None of servers can learn any information about the input and output
of the computation. The only requirement for the client is that he or she has ability to prepare four
possible qubits in the state of (|0〉+ eiθ |1〉)/√2, where θ ∈ {0, π/2, π, 3π/2}. The only requirement
for servers is that each pair of them share some entangled states (|0〉 |+〉+ |1〉 |−〉)/√2 as ancillary
qubits. Instead of assuming that all servers are interconnected directly by quantum channels, we
introduce a third party in our protocol that is designed to distribute the entangled states between
those servers. This would simplify the quantum network because the servers do not need to share a
quantum channel. In the end, we show that our protocol can guarantee unconditional security of the
computation under the situation where all servers, including the third party, are honest-but-curious
and allowed to cooperate with each other.

Keywords: quantum computation; secure delegated computation; distributed architecture

1. Introduction

Quantum computing has been extensively studied from theory to practice [1,2]. It is
widely accepted that noisy intermediate-scale quantum (NISQ) computers may be available in
the coming decades [3]. However, the limited quantum memory of NISQ devices means that
they may not have the capability to deal with large-scale quantum information processing.
This is obviously a severe constraint, as many practical problems, e.g., machine learning, usually
require immense memory overhead. A feasible way to overcome this obstacle is to utilize
distributed architecture for quantum computations [4]. That is, using a group of small-scale
quantum computers interconnected by classical and quantum networks to implement large-
scale quantum computation tasks. However, considering the tremendous cost of building
a quantum computer, it is not likely that ordinary consumers will be able to afford an
NISQ computer in the foreseeable future. In fact, it is widely believed that the role of
quantum computers is similar to today’s classical supercomputers, which means only a few
organizations or enterprises can have quantum computers at their disposal. Thus, for ordinary
customers, a better way to access quantum computers is to delegate their computations to the
companies that offer quantum computing as cloud services. Indeed, this computation pattern
has been applied in today’s Internet, e.g., IBM Quantum platform [5].

Delegated quantum computation is actually closely related to distributed quantum
computation [4]. The client-to-server pattern in delegated computation naturally belongs
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to the category of distributed quantum computation. A class of delegated quantum com-
putation protocols are constructed under the framework of measurement-based quantum
computation (MBQC) [6–8], which is driven by a sequence of single-qubit measurements
on some specific entangled state, where the entangled resource is also a basic module in
the distributed quantum computation. Another class of delegated quantum computation
protocols are obtained using the technique quantum computing on encrypted data (QCED) [9]
or quantum homomorphic encryption (QHE) [10]. Although QCED and QHE are distinct
concepts, the basic idea behind them is identical. Both of them use the quantum one-time
pad to encrypt the input and output states but use different the methods to achieve the
non-Clifford gates. Nevertheless, most schemes use the entangled states as the ancillary
resources, for example [10–12].

Both distributed quantum computation and delegated quantum computation have
been investigated broadly; see references [13–21] and [6,11,22–28], respectively. Typically,
the distributed architecture for quantum computation makes use of photons as flying qubits
between computational nodes, where each node is equipped with a quantum computer.
The flying qubits are usually used to generate entangle states between distinct servers (i.e.,
nodes). By means of quantum entanglement, the non-local operations, such as controlled-
NOT gate, can be done between two distant servers. Note that the quantum computer in
each server is not necessarily an optical quantum computer; it can be made up of some other
quantum system [29], such as ion traps or cloud atoms. Related experiments have been
successfully demonstrated (see references [30,31]). Recently, researchers also investigated
the possibility of simulating large-scale quantum systems in a hybrid quantum-classical
manner [32]. That is, using a classical computer combined with a small quantum computer
to simulate a large quantum computer [33]. However, the computational model consid-
ered in [32,33] is slightly different from the traditional model of circuit-based quantum
computation. In this paper, we will not consider the method in [32], but rather the quan-
tum entanglement to implement the non-local operation. In general, delegated quantum
computation refers specifically to the secure delegated quantum computation (SDQC), which
requires that no one except the client can obtain the right input and output of the computa-
tion. Typically, the client is required to have some basic quantum capacities, for example,
preparing some single qubits or performing single-qubit measurements. In [34], the au-
thors proposed a more rigorous SDQC protocol, which they called universal blind quantum
computation (UBQC). The new protocol can guarantee that not only the input and output
but also the computation itself, i.e., the algorithm, are unknown to the server. Although it
seems that UBQC is more secure than SDQC, they are equivalent. That is, SDQC can be
converted into UBQC [35]. As delegated quantum computation protocols effectively release
the quantum resources in the client side, related experimental demonstrations have rapidly
been implemented using the linear optics components (see References [9,25,36,37]).

Based on the above observations, in this paper we formally propose a distributed
secure delegated quantum computation protocol that allows a half-classical client who can
only prepare special single qubits to implement a large-scale quantum circuit on several
quantum servers interconnected by entangled channels. Each server only has a limited
quantum memory so that it can only compute a fraction of the delegated circuit. Moreover,
during the computation, servers get nothing about the input and output of the computation.
We also give a detailed security proof for our protocol. The rest of this paper is organized
as follows. Section 2 introduces some basic preliminaries and notation. Section 3 presents
the basic modules for delegated quantum computation. Section 4 gives the complete
distributed delegated quantum computation protocol. Section 5 analyzes the security of
our protocol. The last section discusses some remaining problems in our work.
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2. Preliminaries and Notation

We assume that readers are familiar with the basics of quantum computation. In this
work, we will use the following basic quantum gates:

Z |s〉 = eisπ |s〉 , (1)

X |s〉 = |s⊕ 1〉 , (2)

H |s〉 = 1√
2

( |0〉+ eisπ |1〉 ), (3)

P |s〉 = ei s
2 π |s〉 , (4)

T |s〉 = ei s
4 π |s〉 , (5)

CZ |s, t〉 = eistπ |s, t〉 , (6)

where s, t ∈ {0, 1} and i =
√−1; P and T refer to the phase gate and the π/8 gate,

respectively; and CZ denotes the controlled-Z gate. In order to analyze conveniently, we
also introduce the Z-rotation operator defined as follows:

Rz(α) =

(
e−i α

2 0
0 ei α

2

)
, (7)

where α ∈ [0, 2π) is referred as the rotation angle. Regardless of the global phases, we can
see that Z ≡ Rz(π), P ≡ Rz(

π
2 ), and T ≡ Rz(

π
4 ). We use |+ϕ〉 to denote the following

single qubit:

|+ϕ〉 = |0〉+ eiϕπ |1〉√
2

, (8)

where we consider ϕ ∈ [0, 2π). It is clear that, up to an unimportant global phase,
Rz(α) |+ϕ〉 ≡ |+(ϕ+α)〉. Thus, ϕ is also called as the rotation angle. By this definition,
we can see that |+〉 = |+0〉 and |−〉 = |+π〉. Note that for any θ ∈ [0, 2π) the states |+θ〉
and |+(θ+π)〉 comprise a basis, thus we can define a single-qubit measurement operator
as follows:

M(θ) = ∑
s∈{0,1}

(−1)s |+(θ+sπ)〉 〈+(θ+sπ)|, (9)

where θ is referred as the measurement angle in this case, and s ∈ {0, 1} denotes the classical
measurement outcome. Specifically, s = 0 if the post-measurement state is |+θ〉, otherwise
s = 1. Finally, in this work we will also use a special two-qubit entangled state defined
as follows:

|H〉 = |0〉 |+〉+ |1〉 |−〉√
2

, (10)

which can be prepared by applying a CZ gate on two qubits |+〉 |+〉.
3. Secure Delegated Quantum Computation

In this work, the delegated quantum computation model we adopt is from [38],
in which the authors improved the original QCED protocol [11] in two aspects. First,
the quantum capacities of clients are further reduced. In theory, they only need to prepare
the qubits |+ϕ〉, where ϕ ∈ {0, π

2 , π, 3π
2 }. Second, the security of the protocol can be still

guaranteed even if some information is leaked to servers.
First of all, we specify that the client’s input is encoded in X basis. That is, en-

coding 0 and 1 as |+〉 and |−〉, respectively. Let x = x1x2 · · · xn ∈ {0, 1}n be the n-bit
classical input string, then the corresponding encoded input state can be expressed as
|+xπ〉 ≡ |+x1π〉 |+x2π〉 · · · |+xnπ〉. For simplicity, we abbreviate |+xπ〉 as |+x〉. The univer-
sal gate set we consider is U = {X, Z, P, T, H, CZ}. Note that this gate set is not minimal
because X, Z, and P can be obtained from {T, H}. Despite that, additional basic gates can
effectively decrease the circuit complexity.
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Now suppose the client’s input state is |+x〉, where x ∈ {0, 1}n. In [38], the client
uses the random operator Xai

i Zbi
i Pci

i to encrypt each qubit |+xi 〉, where xi ∈ {0, 1}, and
ai, bi, ci ∈ {0, 1} are referred as the encryption keys, and for any operator U we define U0 = I
and U1 = U. The subscript i in Xi, Zi, and Pi is used to denote that the corresponding gate
is applied on the ith qubit (hereinafter referred to as qubit i). Similarly, the subscript i in
ai, bi, ci is used to denote that the corresponding encryption keys are related to qubit i. We
can check that this encryption scheme is a quantum one-time pad (see Equation (11)), thus
it provides an information-theoretical security for any qubit ρ.

1
4 ∑

a,b,c∈{0,1}
XaZbPcρP3cZbXa =

I
2

. (11)

In theory, to achieve this encryption, the client needs to perform random gates Pc, Zb,
and Xa on the state ρ in sequence. However, for the qubit |+xi 〉, it can be easily verified that

Xai Zbi Pci |+xi 〉 ≡ |+ϕi 〉 , (12)

where ϕi = (−1)ai (xi + bi +
ci
2 )π mod 2π ∈ {0, π

2 , π, 3π
2 }. Thus, instead of preparing

|+xi 〉 then encrypting it by Xai
i Zbi

i Pci
i , the client can directly generate the encrypted qubit.

Specifically, given the ith input bit xi ∈ {0, 1}, the client randomly chooses the correspond-
ing encryption keys ai, bi, ci ∈ {0, 1}, then computes the value ϕi = (−1)ai (xi + bi +

ci
2 )π

mod 2π. Finally, the client prepares the qubit |+ϕi 〉 as the encrypted qubit i.
After preparing all encrypted input qubits, the client sends them to the server. The

server then performs the delegated quantum circuit U on the encrypted qubits. Here,
the circuit U is known to both client and server (they can negotiate in advance via a
classical channel). We assume that this circuit has been decomposed into a sequence of
basic gates from the gate set U. That is, U = UmUm−1 · · ·U2U1, where each Ui ∈ U and the
positive integer number m is the total number of gates. The following identities, which all
hold up to an irrelevant global phase, can be easily verified.

Xi(Xai
i Zbi

i Pci
i ) ≡ (Xai

i Zbi⊕ci
i Pci

i )Xi, (13)

Zi(Xai
i Zbi

i Pci
i ) ≡ (Xai

i Zbi
i Pci

i )Zi, (14)

Pi(Xai
i Zbi

i Pci
i ) ≡ (Xai

i Zai⊕bi
i Pci

i )Pi, (15)

Ti(Xai
i Zbi

i Pci
i ) ≡ (Xai

i Zai⊕bi⊕(aici)
i Pai⊕ci

i )Ti, (16)

CZi,j(Xai
i Zbi

i Pci
i X

aj
j Z

bj
j P

cj
j ) ≡ (Xai

i Z
aj⊕bi
i Pci

i X
aj
j Z

ai⊕bj
j P

cj
j )CZi,j, (17)

It follows from Equations (13)–(17) that the basic gates X, Z, P, T, CZ are commutable
with the encryption operator XaZbPc, although the encryption keys may need to be up-
dated. For example, Equation (13) indicates that performing an Xai

i Zbi
i Pci

i followed by an

Xi is equivalent to performing an Xi followed by an Xai
i Zbi⊕ci

i Pci
i . Thus, the client only

needs to update the value of bi such that bi := bi ⊕ ci. The cases for Zi, Pi, Ti, and CZi,j
follow the same reason. The related updating rules of encryption keys are shown in
Equations (14)–(17). Note, however, that the commutativity noted above is not suited for
the Hadamard gate H, as there is no HPc ≡ Pc′H for any c, c′ ∈ {0, 1}. In [38], the authors
proposed a quantum teleportation scheme that they called the H-gadget (see Figure 1) so
as to implement the H gate in a similar manner. Specifically, the client needs to prepare
two ancillary qubits |+αi 〉 , |+βi 〉 and a measurement angle θi, where αi and βi are chosen
randomly, whereas θi can be determined by the following way.
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Figure 1. The H-gadget in Ref. [38], which is designed for implementing an H gate on an en-
crypted qubit i, where si, s′i ∈ {0, 1} are the measurement outcomes and αi, βi ∈ {0, π

2 , π, 3π
2 } are

the rotation angles of two ancillary qubits, and θi ∈ {0, π
2 , π, 3π

2 } is the measurement angle of the
second measurement.

Note that for any αi, βi ∈ {0, π
2 , π, 3π

2 }, we can express them uniquely as follows:

αi = (di +
ei
2
)π, βi = ( fi +

gi
2
)π, (18)

where di, ei, fi, gi ∈ {0, 1}. Thus, the client can first generate random bits di, ei, fi, gi then
compute the values of αi and βi. To determine θi, the client generates a random bit, denoted
by hi∈ {0, 1}, then computes θi such that

θi = [hi ⊕ bi ⊕ di ⊕ (aici)⊕ (sici)⊕ (ciei)]π +
ci ⊕ ei

2
π. (19)

Note also that θi is relevant to the measurement outcome si, which means it can
be determined until the client obtains the first measurement outcome si from the server.
Nevertheless, in theory, all qubits including ancillary qubits can be sent to the server before
the computation begins. Thus, the complete procedure is classically interactive. Finally,
the updating rule for H is shown as follows:

a′i = s′i ⊕ hi, b′i = ai ⊕ si ⊕ fi ⊕ [gi(s′i ⊕ hi)], c′i = gi, (20)

where a′i, b′i , c′i denote the updated encryption keys related to qubit i. The correctness of the
H-gadget is given in the Appendix A. The detailed security proof of the protocol can be
found in [38].

4. Distributed Architecture for Secure Delegated Quantum Computations

In this section, we give a simple scheme to implement the non-local CZ gate between
two quantum servers. Our method uses the entangled state |H〉 (see Equation (10) for
its definition) as ancillary qubits. The similar schemes have been studied intensively,
for example, in [39,40]. The basic circuit is shown in Figure 2a. In the following content, we
first verify the circuit identity shown in Figure 2, then, based on this circuit identity, we
construct a distributed architecture for secure delegated quantum computations.
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Figure 2. (a) The basic circuit used to implement a non-local CZ gate on two distant qubits i and j,
where the partial circuit in the red dotted box is used to generate the entangled state |H〉. (b) The
equivalent quantum circuit for (a).

We start with a circuit named X-teleportation [40] (see Figure 3a), which is easy to verify.

CX

�

�

s

Z

s
X �

(a)

CZ

�

�

s

Z

s
X �

H H

(b)

Figure 3. (a) The original X-teleportation in [40]; (b) the X-teleportation that replaces the CX with a
CZ and two H gates. In both circuits, the measurement is performed under Z basis.

First, we substitute a CZ and two H gates for the CX gate, obtaining the equivalent
circuit, as shown in Figure 3b. We then convert the measurement basis from Z to X by the
following identity (see Figure 4), which is also easy to verify. Finally, we obtain a variant of
the X-teleportation that consists of H, CZ, and X-basis measurement, as shown in Figure 5.

s

Z

H = s

X

Figure 4. Measurement identity that converts Z-basis to X-basis.

CZ

�

�

s

X

s
X �

H

Figure 5. The variant X-teleportation consisting of CZ and H gates, where the measurement basis is X.

We now turn back to Figure 2a. Note first that the CZ gate commutes with itself,
thus the circuit can be reorganized, as in Figure 6a. Obviously, the partial circuits in the
red-dotted line and blue-dotted line boxes are exactly the same circuit as the one in Figure 5,
where X = M(0). Therefore, we can see that, after measuring qubits i, j, the rest qubits and
the rest CZ gate comprise the circuit as, in Figure 6b. Finally, we use the following identity
to exchange the positions of X and CZ, which can be easily verified:

CZ · (Xs ⊗ I) = (Xs ⊗ Zs) · CZ, (21)

where s ∈ {0, 1}. Substituting the above identity in Figure 6b and considering the symmetry
of CZ gate, we immediately obtain the desired circuit, as shown in Figure 2b.

Considering the encryption operators Xai
i Zbi

i Pci
i and X

aj
j Z

bj
j P

cj
j on qubits i and j, we

can see from Figure 6b that the non-local CZ can be thought to be performed on qubits i, j,

which are encrypted by Xai⊕si
i Zbi

i Pci
i and X

aj⊕sj
j Z

bj
j P

cj
j , thus according to the updating rule
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shown in Equation (17), we immediately obtain the updating rule of the non-local CZ gate
as follows: ⎧⎪⎨⎪⎩

a′i = ai ⊕ si,
b′i = aj ⊕ sj ⊕ bi,
c′i = ci,

⎧⎪⎪⎨⎪⎪⎩
a′j = aj ⊕ sj,

b′j = ai ⊕ si ⊕ bj,

c′j = cj.

(22)

H
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+
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CZ

CZ
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s

j
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Figure 6. (a) The equivalent form of the circuit shown in Figure 2a. (b) The resulting circuit after
measuring qubits i, j.

Based on the above analysis, we construct a distributed architecture for secure dele-
gated quantum computation, where a classical client equipped with some qubit generator
can delegate an n-qubit circuit to d small-scale quantum servers. Without loss of generality,
we assume that n = dk. In this configuration, each server typically needs a 2k-qubit register
to process k input qubits of the n-qubit circuit. That is, for each qubit in the n-qubit circuit,
the server needs a 2-qubit register to simulate it. To make sure 2k < n, it requires that d > 2.
We show this distributed architecture in Figure 7. Note that there is a special third party in
this distributed architecture, which is used to generate and distribute entangled states |H〉
between all quantum servers. Thus, all servers do not need to be interconnected directly by
a quantum (even classical) channel, as there is no information exchange between servers
during the computation.
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Figure 7. (a) The distributed architecture for secure delegated quantum computations; (b) the circuits
for a CZ gate between two nonlocal registers i and j; (c) the circuit for an H gate in any register i.
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We give the complete procedure of the protocol in terms of pseudo-code (see
Algorithms 1–3). For simplicity, we use C and {Sq}d

q=1 to denote the client and d servers,
respectively. That is, the qth quantum server is referred to as Sq. As noted, each server
only processes k input qubits of the n-qubit delegated circuit. More specifically, for Sq,
it only processes the qubits indexed by (q − 1)k + 1, (q − 1)k + 2, · · · , qk. Thus, in the
case of no confusion, we also use Sq = {(q − 1)k + 1, (q − 1)k + 2, · · · , qk} to denote
the corresponding qubits. In addition, the delegated circuit U is formally expressed as
U = Upm

m Upm−1
m−1 · · ·Up1

1 , where pi ⊂ {1, 2, . . . , n} denotes the qubits on which the basic gate
Ui is exerted. For example, if Upi

i is a CZ gate on qubits k and l, then pi = {k, l}. By this
definition, we can see that there must be pi ⊂ Sq if Upi

i is a local gate in Sq, otherwise it
only can be pi ⊂ Sq ∪ Sq′ for some Sq and Sq′ .

Algorithm 1 Distributed Secure Delegated Quantum Computations

Input: x = x1x2 · · · xn // private against all Sq

U = Upm
m Upm−1

m−1 · · ·Up1
1 // public for C and all Sq

Output: y = y1y2 · · · yn // private against all Sq
1: C generates a, b, c ←R {0, 1}n and computes rotation angles (ϕ1, . . . , ϕn) according to

Equation (12), then prepares |+ϕ1〉 . . . |+ϕn〉 as the encrypted input state, finally sends
the qubits (q− 1)k + 1, q(k− 1) + 2, · · · , qk to Sq where q = 1, 2, · · · , d. Specifically, C
sends the qubits 1, 2, · · · , k to S1 then sends the qubits k + 1, k + 2, · · · , 2k to S2, and so
on

2: for i ← 1, m do
3: if Upi

i ∈ {X, Z, P, T, H} and pi ⊂ Sq for some q ∈ {1, 2, · · · , d} then

4: if Upi
i is not H then

5: Sq performs Upi
i on qubit pi while C updates the encryption

keys of this qubit according to the updating rules shown in
Equations (13)–(16)

6: else
7: C calls the procedure HADAMARD(pi, q) (See Algorithm 2)
8: end if
9: else // Upi

i is a CZ gate on qubits pi
10: if pi ⊂ Sq for some q ∈ {1, 2, · · · , d} then

11: Sq performs Upi
i on qubits pi while C updates the encryption

keys of those qubits according to the updating rule shown in
Equation (17)

12: else // pi ⊂ Sq ∪ Sq′ for some q, q′ ∈ {1, 2, · · · , d}
13: C calls the procedure NONLOCAL-CZ(pi, q, q′) (See Algorithm 3)
14: end if
15: end if
16: end for
17: Each server measures the final k qubits in Z basis, then sends the measurement out-

comes to C // let ỹ ∈ {0, 1}n be the result collected from all servers
18: C computes the output y = ỹ⊕ a. // a is the X encryption keys of the final state
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Algorithm 2 Implement an H gate on qubit i where i is in Sq

1: procedure HADAMARD(i, q) // qubit i is encrypted by Xai Zbi Pci

2: C generates di, ei ←R {0, 1} and computes the angle αi according to Equation (18),
then prepares and sends the ancillary qubit |+αi 〉 to Sq

3: Sq performs Hi and CZ gates on qubit i and |+αi 〉, then measures qubit i and sends
the measurement outcome si to C, finally labels the ancillary qubit as i

4: C generates fi, gi, hi ←R {0, 1} and computes the angles βi and θi according to
Equations (18) and (19), respectively, then prepares the ancillary qubit |+βi 〉 and
sends it with θi to Sq

5: Sq performs a CZ gate on qubit i and |+βi 〉, then measures qubit i with M(θi) and
sends the measurement outcome s′i to C, finally labels the ancillary qubit as i

6: C updates the encryption keys of qubit i according to Equation (20)
7: end procedure

Algorithm 3 Implement a nonlocal CZ gate on qubits i and j where i is in Sq while j is in
Sq′ , that is, {i, j} ⊂ Sq ∪ Sq′

1: procedure NONLOCAL-CZ({i, j}, q, q′) // qubits i and j are encrypted by Xai Zbi Pci

and Xaj Zbj Pcj , respectively
2: C delegates the third party to prepare an entangled state |H〉 and distribute it to Sq

and Sq′ , that is, each server holds one qubit of |H〉 as the ancillary qubit
3: Sq (Sq′ ) performs Hi (Hj) and CZ gates on qubit i (j) and its ancillary qubit, then

measures qubit i (j) and sends the measurement outcome si (sj) to C, finally labels
its ancillary qubit as i (j)

4: C updates the encryption keys of qubits i and j according to Equation (22)
5: end procedure

5. The Security of the Distributed Delegated Quantum Computation

We show that our protocol can guarantee the unconditional privacy of the input and
output of the computation. We only consider that all servers and the third party who serves
as an entanglement resource are honest-but-curious, which means they follow the algorithm
honestly but try to obtain the information about the input and output. For example, they
may record all classical information generated during the computation and cooperate with
each other, even with the third party.

For the input, the conclusion is obvious as the client encrypts each input qubit by
a quantum one-time pad. Therefore, to complete the proof, we only need to prove that
the output state of the computation is also encrypted by a unbiased quantum one-time
pad. In other words, there is no information leakage about the encryption keys during the
computation. From the procedures of Algorithm 1, we can see that only when the client
calls the procedures HADAMARD and NONLOCAL-CZ will there be an interaction between
client and servers. In the other cases, the algorithm is non-interactive, which means there
is no information leakage about the encryption keys from client to server as they do not
exchange any information. Based on this observation, we infer that to prove the privacy
we only need to analyze the procedures that implement the H and the nonlocal CZ gates.

We first consider the procedure HADAMARD(i, q). In the following content, we use S to
denote all servers including the untrusted third party. According to Algorithm 2, we can see
that given the qubit i encrypted by Xai Zbi Pci where i ⊂ Sq, S controls two ancillary qubits
Zdi Pei |+〉 and Z fi Pgi |+〉, and receives a measurement angle θi from C, it also generates
two measurement outcomes si, s′i ∈ {0, 1} from two independent measurements. We can
infer from the below state evolution that the measurement outcomes si, s′i are uniformly
random, thus S can obtain no information gain about any encryption keys according to si
and s′i.

|φ〉 |+〉 H⊗I−−→ (
H |φ〉 ) |+〉 CZ−→ |+〉√

2
|φ〉+ |−〉√

2
X |φ〉 . (23)
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The only available information to S now is the measurement angle θi. Let θi be
uiπ + viπ

2 , where ui, vi ∈ {0, 1}, then according to Equation (19), we know that ui and vi
can be expressed as follows:

ui = hi ⊕ bi ⊕ di ⊕ (aici)⊕ (sici)⊕ (ciei), (24a)

vi = ci ⊕ ei, (24b)

where ui, vi, and si are known to S . Intuitively, given ui, vi, and si, no server can determine
the correct values of ai, bi, ci, di, ei, hi, as there are six variables in two equations. Never-
theless, S may gain some information utilizing ui and vi. For example, if vi = 1, then
S can infer that ciei = 0. Substituting this into Equation (24a), S can obtain a simplified
equality ui = hi ⊕ bi ⊕ di ⊕ (ai ⊕ si)ci. Despite this fact, we can show that there is no
information leakage about all variables from ai to hi. That is, we prove that in the view of
S , the following equality holds true:

Pr[ri|ui, vi] = Pr[ri] =
1
2

, (25)

where the random variable ri represents the possible parameters {ai, bi, ci, di, ei, fi, gi, hi}.
To see that, we need to know the following simple facts.

First, if x, y ∈ {0, 1} and x is uniform, i.e., x ∈R {0, 1}, then x ⊕ y is also uniform.
Second, if x, y ∈ {0, 1} are uniform and let z = x⊕ y, then Pr[x|z] = Pr[x] = 1/2. Finally,
if x, y1, y2 ∈ {0, 1} and x is uniform, let z = x⊕ (y1y2), then Pr[y1|z] = Pr[y1]. These three
basic facts can be easily verified. With these facts, we can complete our proof. Define
ξi = bi ⊕ di ⊕ (aici)⊕ (sici)⊕ (ciei) so that ui = hi ⊕ ξi. As bi, di ∈R {0, 1}, we first know
that ξi ∈R {0, 1}. Furthermore, as hi, ξi ∈R {0, 1}, we can get that Pr[hi|ui] = Pr[hi] =
1/2. Likewise, we can also get Pr[bi|ui] = Pr[bi] = 1/2 and Pr[di|ui] = Pr[di] = 1/2.
For ai ∈R {0, 1}, define ξi = hi ⊕ bi ⊕ di ⊕ (sici)⊕ (ciei) so that ui = ξi ⊕ (aici), from which
we can infer that Pr[ai|ui] = Pr[ai] = 1/2. Note that hi, bi, di, and ai are irrelevant to
vi, which means Pr[ri|ui, vi] = Pr[ri|ui] for any ri ∈ {hi, bi, di, ai}. As for ci, ei ∈R {0, 1},
as they are related to both ui and vi, in order to simplify our analysis, we define h′i =
hi ⊕ (aici), b′i = bi ⊕ (sici), and d′i = di ⊕ (ciei), then obtain that ui = h′i ⊕ b′i ⊕ d′i. Clearly,
h′i, b′i , d′i ∈R {0, 1}, so ci and ei are only related to vi. By this, we can easily get that
Pr[ci|ui, vi] = Pr[ci|vi] = Pr[ci] = 1/2 and Pr[ei|ui, vi] = Pr[ei|vi] = Pr[ei] = 1/2. Finally,
fi and gi ∈R {0, 1} are obviously irrelevant to ui and vi (see Equations (24a) and (24b)),
which means Pr[ fi|ui, vi] = Pr[ fi] = 1/2 and Pr[gi|ui, vi] = Pr[gi] = 1/2. So far, we have
proved the statement in Equation (25), from which we know that the servers can obtain
no information gain about ai, bi, ci, di, ei, fi, gi, hi from the θi. Thus, after the procedure

HADAMARD(i, q), the updated keys a′i, b′i , c′i are also secure.
Finally, we consider the procedure NONLOCAL-CZ({i, j}, q, q′), where {i, j} ∈ Sq ∪Sq′ .

Note that in this procedure, S can only obtain two independent and uniform measurement
outcomes si, sj. According to the updating rules shown in Equation (22), we can see that
as long as the encryption keys {ai, bi, ci} and {aj, bj, cj} are secure then the updated keys
will also be secure against the servers. As a result, we conclude that, from the perspective
of all servers, the output state of the computation is still encrypted by a sound quantum
one-time pad.

6. Discussion

In this work, we proposed a secure distributed delegated quantum computation proto-
col, which allows clients to delegate their private computation to several quantum servers.
We have shown that unconditional security of the input and output of the computation
can be guaranteed as long as all servers follow the protocol honestly. Nevertheless, there
are some notable problems in our work when we consider it in practice. In the end of this
paper, we discuss those practical problems.
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First, note that our protocol can only work well in a noise-free environment. To make
our protocol fault-tolerant, we assume that each quantum server must be capable of
performing fault-tolerant quantum computation [41]. However, this would inevitably increase
the overhead of ancillary qubits. In addition, we need to consider two channel noises: one
is between the client and each server, the other is between the third party and each server.
The former will introduce errors in the input state, whereas the latter will introduce errors
in the entangled state. There are some methods to remedy this problem. For the input state,
the client can utilize some quantum error-correct code [42] to protect each qubit. However, it
requires that the client can perform additional quantum operations. As for the entangled
state, each pair of servers can use some quantum entanglement distill [43] protocol to obtain
the entangled states with high fidelity. Similarly, it requires additional local operations and
classical communications between the servers.

Second, note that our protocol can only protect the security of the input and output
of the computation. This is because the model of the delegated quantum computation
we used in our work is SDQC protocol instead of UBQC protocol. Nevertheless, we can
convert, in principle, a SDQC protocol into a UBQC protocol. To do that, we first encode
the delegated circuit U as a binary string denoted by C(U). Next, according to the quantum
computation theory [44], there exists a universal quantum circuit U such that

U |+C(U)〉 |+x〉 = |+C(U)〉U |+x〉 , (26)

where the input of the universal circuit U consists of two parts: |+x〉 is the input state of
U and |+C(U)〉 is the canonical and quantum description of the circuit U. Performing this
universal circuit U in our protocol, we can apparently achieve a blind distributed delegated
quantum computation.

Last, we should note that in this work we only consider the honest servers and the third
party who perform the protocol as the client desires. However, a real server may not follow
the protocol honestly, and an untrusted third party may prepare some other entangled
states for the servers. To detect such a malicious server including the untrusted third party,
we should introduce a verification mechanics in our protocol. Indeed, verification is an
important topic in the quantum computation theory (see [45,46]). There is an easy way to
achieve the verification in our protocol. Specifically, given the delegated circuit U, the client
can introduce another small quantum circuit V, for example, a permutation circuit [47],
which is easy to simulate on a classical computer. The client then randomly inserts the
qubits of V into the circuit U and runs this hybrid circuit on the universal quantum circuit
U . After the computation, the client check the result of V; if the result does not match the
desired, then the client rejects the output.

Author Contributions: Conceptualization, S.M. and C.Z.; formal analysis, S.M.; funding acquisition,
C.Z. and D.Q.; methodology, S.M.; supervision, C.Z. and M.N.; validation, C.Z. and D.Q.; writing—
original draft, S.M.; writing—review and editing, C.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant
Nos. 62001351, 61372076, 61971348); Natural Science Basic Research Program of Shaanxi, China
(Grant No. 2021JM-142); Foundation of Shaanxi Key Laboratory of Information Communication
Network and Security (ICNS201802); Key Research and Development Program of Shaanxi Province
(2019ZDLGY09-02).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

135



Entropy 2022, 24, 794

Appendix A. The Correctness of the H-Gadget

In this section, we briefly prove the correctness of the H-gadget proposed in [38]. We
first translate the circuit of this gadget (see Figure 1) into an equivalent form. Note that
the ancillary qubits |+αi 〉 = Rz(αi) |+〉 , |+βi 〉 = Rz(βi) |+〉 and any Z-rotation operator is
commutable with the controlled-Z gate, thus the circuit of the H-gadget can be expressed
equivalently as follows:

H

CZ

( )
i

M �

CZ

(0)M

i i i
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X Z P �
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( )
z iR �

�

Figure A1. An equivalent circuit of the H-gadget of [38].

In Section 4, we obtained a variant X-teleportation (see Figure 5), which is identical to
the above circuit in the red-dotted box. According to this, we can infer immediately that
after performing the measurement M(0), the rest circuit is equivalent to the following form,
where the operator Rz(αi) has been absorbed into the input state.

We then use the identity shown in Figure A2, which is easy to verify. Applying this
measurement identity to the circuit in Figure A3, we can obtain the following circuit (see
Figure A4), where we exchange the positions of Rz(θi) and CZ, and insert a pair of H gates
between them. Obviously, the partial circuit in Figure A4 surrounded by the red-dotted box
is the variant X-teleportation. Thus, we can infer that after the measurement the remaining
qubit will be

Rz(βi)Xs′i HRz(αi − θi)Xai⊕si Zbi Pci |φ〉 (A1)

where Rz(βi) is the Z-rotation operator in the end.
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Figure A2. Measurement identity that converts M(θ) basis to X basis.

( )
i

M �

CZ

�

�

i
s�

( )
z iR �

i i i i
a s b c

X Z P
�( )

z iR �

Figure A3. The rest circuit after performing the measurement M(0) on the top line.
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In the following content, we simplify this output qubit. For simplicity, we temporarily
drop the subscript i and define Rz(γ) ≡ ZbPc, that is, γ = (b + c

2 )π. It is easy to check that
XaRz(θ)Xa = Rz((−1)aθ) for any θ. Thus, the output qubit can be rewritten as follows:

Rz(β)Xs′HRz(α− θ)Xa⊕sRz(γ) |φ〉

= Xs′Rz

(
(−1)s′β

)
HXa⊕sRz

(
(−1)a⊕s(α− θ)

)
Rz(γ) |φ〉

= Xs′Rz

(
(−1)s′β

)
Za⊕sHRz

(
γ + (−1)a⊕s(α− θ)

)
|φ〉

= Xs′Rz

(
(−1)s′β + (a⊕ s)π

)
HRz

(
γ + (−1)a⊕s(α− θ)

)
|φ〉

(A2)

Let θ = (−1)a⊕sγ + α + hπ, where h ∈ {0, 1}. Note that θ here is seemingly not the
same as the one defined in Equation (19). Despite that, we will show they are exactly the
same one. Substitute θ in the above equation, we can easily get the following result:

Xs′Rz

(
(−1)s′β + (a⊕ s)π

)
HRz

(
− (−1)a⊕shπ

)
|φ〉 . (A3)

As Rz is an operator with a period of 2π, which means Rz(π) ≡ Rz(−π) ≡ Z, thus
the output qubit can be expressed as follows:

Xs′Rz

(
(−1)s′β + (a⊕ s)π

)
HZh |φ〉

= Xs′Rz

(
(−1)s′β + (a⊕ s)π

)
Xh H |φ〉

= Xs′⊕hRz

(
(−1)s′⊕hβ + (−1)h(a⊕ s)π

)
H |φ〉 .

(A4)

We further express the Z-rotation in Equation (A4) in terms of Z and P. Recalling that
β = ( f + g

2 )π (see Equation (18)) and considering the periodicity of Z-rotation operators,
we can get that

Rz

(
(−1)s′⊕h( f +

g
2
)π + (−1)h(a⊕ s)π

)
≡ Rz

(
(a⊕ s⊕ f )π + (−1)s′⊕h g

2
π

)
≡ Rz

(
(a⊕ s⊕ f )π + (−1)s′⊕h g

2
π + 2(s′ ⊕ h)gπ

)
= Rz

(
(a⊕ s⊕ f ⊕ [(s′ ⊕ h)g])π +

(−1)s′⊕h + 2(s′ ⊕ h)
2

gπ

)
.

(A5)

Note that for any r ∈ {0, 1}, (−1)r + 2r = 1, so the above Z-rotation operator can be
further rewritten as follows:

Rz

(
(a⊕ s⊕ f ⊕ [g(s′ ⊕ h)])π +

gπ

2

)
≡ Za⊕s⊕ f⊕[g(s′⊕h)]Pg. (A6)

Substituting the above equation to Equation (A4), we get the output qubit in the
following form:

Xs′⊕hZa⊕s⊕ f⊕[g(s′⊕h)]PgH |φ〉 (A7)
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Finally, we substitute γ = (b + c
2 )π and α = (d + e

2 )π in θ = (−1)a⊕sγ + α + hπ,
obtaining

θ = (−1)a⊕s(bπ +
c
2

π) + (dπ +
e
2

π) + hπ

= bπ + (−1)a⊕s c
2

π + dπ +
e
2

π + hπ

= bπ + c(a⊕ s)π +
c
2

π + dπ +
e
2

π + hπ

= h⊕ b⊕ d⊕ (ac)⊕ (sc)π +
c + e

2
π

= h⊕ b⊕ d⊕ (ac)⊕ (sc)⊕ (ce)π +
c⊕ e

2
π.

(A8)

where in the last term we use another simple equality: for any c, e ∈ {0, 1}, c + e =
2ce + c⊕ e. From the above results, the correctness of the H-gadget is obvious.
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Abstract: Long block length rate-compatible low-density parity-compatible (LDPC) codes are de-
signed to solve the problems of great variation of quantum channel noise and extremely low signal-to-
noise ratio in continuous-variable quantum key distribution (CV-QKD). The existing rate-compatible
methods for CV-QKD inevitably cost abundant hardware resources and waste secret key resources.
In this paper, we propose a design rule of rate-compatible LDPC codes that can cover all potential
SNRs with single check matrix. Based on this long block length LDPC code, we achieve high effi-
ciency continuous-variable quantum key distribution information reconciliation with a reconciliation
efficiency of 91.80% and we have higher hardware processing efficiency and lower frame error rate
than other schemes. Our proposed LDPC code can obtain a high practical secret key rate and a long
transmission distance in an extremely unstable channel.

Keywords: rate compatible; LDPC; continuous-variable quantum key distribution; wide range of
SNRs regime

1. Introduction

The cryptosystem based on computational complexity is being challenged by increas-
ingly developed quantum computation. Quantum key distribution (QKD) [1–4], being
one-time pad, has been one of the best solutions for its absolute security. QKD enables two
remote separated parties named Alice and Bob to extract a symmetrical string of secret
keys using a quantum channel.

Currently, there are mainly two types of QKD protocols, called discrete-variable QKD
(DV-QKD) [5] and continuous-variable QKD (CV-QKD) [6,7]. In DV-QKD, the information
is coded on discrete variables of finite dimensional Hilbert space, such as the polarization or
phase of single photon state. In CV-QKD, the information is coded on continuous variables
of an infinite-dimensional Hilbert space, including the regular component of coherent state.
Compared with the single photon detector used in DV-QKD, homodyne or heterodyne
detection techniques, which are used to measure the transmitted quantum states, have
already been applied in classical optical communication. Therefore, CV-QKD has great
practical advantages for its low cost because of the relatively mature development and
being able to transmit in common fiber with classical optical communication. Furthermore,
CV-QKD can achieve higher capacity with frequency-multiplexed entanglement source [8].

Due to the imperfection of the quantum channel and potential eavesdropper Eve,
the key strings held by Alice and Bob are not consistent, so that a procedure called post-
processing is necessary to make them identical. The post-processing of CV-QKD mainly
includes four steps: base vector comparison, parameter estimation, information reconcil-
iation and privacy amplification. Information reconciliation is the most important part,
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whose performance has a direct correlation to the secret key rate. One of the major factors
in information reconciliation is reconciliation efficiency β, which is given by β = R/C.
The R is the rate of key and C = 0.5log(1 + SNR) is the channel compacity. The hardware
processing efficiency α = Dout/Din, where Din represents the data that are input to the
hardware device (e.g., Field-programmable Gate Array, FPGA and Graphics Processing
Unit, GPU) during information reconciliation and Dout represents the output data in unit
time [9]. IAB is the mutual information between Alice and Bob. χBE is the Holevo bound,
which is the maximal bound on the information available to the eavesdropper. The factors
mentioned above are used to evaluate the performance in a frame, while frame error rate
(FER) represents the failure probability of the frames. Ultimately, the practical secret key
rate K is given by

K = α(1− FER)(βIAB − χBE). (1)

The parameters mentioned above is related to the error correcting codes, among them
low-density parity-compatible (LDPC) code is efficient for CV-QKD [10]. The LDPC code
obtained by good degree distribution and reasonable construction method has good error
correction performance. The crux of designing a LDPC code is to construct a check matrix
which includes check nodes and variable nodes. The degree distribution of check node
ρ(x) and variable node λ(x) are expressed as:

ρ(x) =
dc

∑
j=2

ρixj−1 (2)

λ(x) =
dv

∑
i=2

λixi−1, (3)

ρi/λi is the proportion of the number of edges owned by the check/variable node with
degree j/i to the total number of edges in the Tanner graph and dc/dv indicates the
maximum degree of the check/variable node.

However, quantum is easily influenced in the process of quantum signal preparation
and transmission. To realize the free space QKD with satellite [11,12], ship [13], unmanned
aerial vehicles [14] or those with orbital angular momentum, we have to take mode distor-
tion, beam wander, weather etc. into account. Therefore, the problems of great variation of
quantum channel noise and extremely low signal-to-noise ratio (SNR) have to be solved.

One of the simplest rate-compatible methods for LDPC code is to operate on single-
matrix using puncturing, shortening and extending. Furthermore, Gao proposed multi-
matrix rate-compatible reconciliation where, in each iteration, multiple matrices produce
more useful information to correct errors such that the iteration number falls and the
convergence speed increases [15]. However, it inevitably decreases the performance of the
original check matrix. Another commonly used way is to construct several check matrices
with different code rates to meet the requirements of different SNRs. However, for CV-QKD,
the code length has to be longer than 100,000. Base matrices are at least 64,800 long even
when we construct the spatially coupled (SC)-LDPC codes or quasi-cyclic (QC)-LDPC
codes [16]. As one of the most effective decoding tools of LDPC code, the FPGA has limited
hardware resources. To realize high efficiency information reconciliation with FPGA in
an extremely unstable channel, it is necessary to construct a single-matrix rate-compatible
error correction code. A comparison of the existing works with our proposed LDPC code is
shown in Table 1.

In this paper, we first obtain degree distribution with discrete density evolution and
differential evolution algorithm. Then we use random construction, progressive edge
growth (PEG) algorithm and rate compatible methods of extending and puncturing to
construct a check matrix with a code length of 64,800. Finally, we extend the above LDPC
code with quasi-cyclic extension to a code length of 648,000. The results show that the
proposed codes have a reconciliation efficiency of 91.80%, higher hardware processing
efficiency and lower FER than other schemes. Therefore, we can obtain a high practical
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secret key rate and a longer transmission distance in an extremely unstable channel with
wide range of SNRs.

Table 1. Related works comparison in an unstable channel. Transmission distance is 10 km and the
number of check matrix changing times N is 3.

Reference Hardware Resource
Secret Key Rate

(bit/pulse)

Abilitiy to Cope
with Channel SNR

Changing

Single-matrix
rate-compatible
reconciliation

a, single matrix 0.0021 low

Multimatrix
rate-compatible

reconciliation [15]
3a, multimatrix 0.0098 low

Multimatrix
corresponding to
given SNRs [16]

12a, multimatrix 0.0089 low

Our proposed LDPC
code a, single matrix 0.0116 high

The remainder of this paper is organized as follows. In Section 2, we present some
preliminaries of LDPC codes and rate-compatibility. In Section 3, we introduce how to con-
struct our rate compatible (RC)-LDPC code. In Section 4, we present the simulation results
and comparisons for the proposed scheme and existing schemes. Finally, the conclusions
are drawn in Section 5.

2. Preliminaries

In this section, we first briefly introduce the discrete density evolution and differential
evolution, which are used to generate degree distribution. Then we introduce the construc-
tions: random construction, PEG algorithm and QC-LDPC extension, with which we can
construct the check matrix with the degree distribution ahead. We also introduce the rate
compatible methods: puncturing and extending.

2.1. Methods of Obtaining Degree Distribution
2.1.1. Discrete Density Evolution

Compared with continuous density evolution [17] and Gaussian approximation al-
gorithm [18], discrete density evolution [19] has lower complexity and higher accuracy.
Therefore, in this paper, we use discrete density evolution to obtain the optimal degree
distribution of LDPC codes. The main steps are as follows:

• We firstly define two functions: quantized function Q and probability mass function S.

Q(x) =

⎧⎪⎪⎨⎪⎪⎩
⌊

x
Δ + 1

2

⌋
, x ≥ Δ

2⌈
x
Δ − 1

2

⌉
, x ≤ −Δ

2 ,

0, else

(4)

#x$ is the largest integer not greater than x; and %x& is the smallest integer not less
than x. The value range of decoded message is [−L, L] and evenly divided into m = 2q

intervals; the quantization interval Δ is given by 2L/m.

S(Pa, Pb) = ∑
(i,j):kΔ=R(iΔ,jΔ)

Pa[i] · Pb[j]. (5)
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In which two-input operator R is

R(a, b) = Q(tanh−1(tanh
a
2

tanh
b
2
)), (6)

where a and b are quantized messages.
• The check node and variable node updating of discrete density evolution is

p(l)−
u

=
dr

∑
i=2

ρiSi−1
(

p(l−1)
−
v

)
(7)

p(l)−
v
(k) = p(0)−

v
(k) ·

dv

∑
i=2

λi ⊗i−1 (p (l)
−
u
(k)), (8)

⊗
is discrete convolution and l is the iteration number. The initial value p(0)−

v
is

p(0)−
v

=
σ

8π
exp

(
−
(
2− σ2v

)2

8σ2

)
, v(0) ∼ N

(
2
σ2 ,

4
σ2

)
. (9)

• Finally, we calculate the error rate with

p(l)−
e

= p(l)−
v
(0) +

−1

∑
k=−m/2

p(l)−
v
(k). (10)

End the procedure when the p(l)−
e
) < 0 or l reaches the maximum number of iterations.

Otherwise, we continue to update the check node and variable node.

Discrete density evolution is first proposed to obtain the noise threshold according to
the degree distribution ρi and λi. In our work, we use it to obtain the degree distribution
under specific channel noise.

2.1.2. Differential Evolution

Stom first proposed the differential evolution algorithm in 1995 to solve the optimiza-
tion problem [20]. It uses differential mutation operator and crossover operator to generate
new individuals by the way of survival of the fittest. Based on this method, we can obtain
the optimal degree distribution under specific channel noise.

• Set channel noise threshold σ, target error probability Pe, maximum number of itera-
tions lmax, maximum degree of variable node dv and the number of terms of degree
distribution polynomial n.

• Randomly generate NP vectors Pi,G, i = 1, 2, . . . , NP for the degree distribution of
variable node. Use discretized density to evolve each vector and obtain the respective
error probability Pei ,G. The vector with the lowest error probability is marked as the
best vector Pbest,G and its error probability is marked as Pebest ,G.

• For each i, randomly choose four vectors from set of Pi,G and the new vector is
updated by

vi,G+1 = Pbest,G + 0.5
(

Pr1,G − Pr2,G
)
+ 0.5

(
Pr3,G − Pr4,G

)
. (11)

Calculate the corresponding error probability Pvi ,G+1 for each new vector vi,G+1.
• For each i, compare Pei ,G with Pvi ,G+1 and let Pi,G+1 = vi,G+1 if Pei ,G > Pvi ,G+1. The vec-

tor with the lowest error probability is marked as the best vector Pbest,G+1 and its error
probability is marked as Pebest ,G+1.
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• If the error probability corresponding to the best vector Pebest ,G+1 > Pe, update the
vectors again and return to step (4). If Pebest ,G+1 ≤ Pe, the Pbest,G+1 is the ideal vector
that we want.

2.2. Constructions

In this work, we use random construction, the PEG algorithm and QC extension for
their good results in various situations.

2.2.1. Random Construction

Various random constructions have been proposed based on the same core thought,
that is, place non-zero elements in random unfilled positions in the check matrix without
violating any set constraint. There are two constraint rules: one is that line li contains Xi
“1” and column ci contains Yi “1” according to the degree distribution of check nodes and
variable nodes; the other one is the number of elements “1” at the same position in any two
rows or columns is less than or equal to 1. It means that the shortest girth has to be longer
than 4.

2.2.2. Progressive-Edge-Growth Algorithm

Before introducing the PEG algorithm, we first introduce a common representation
of LDPC codes—the Tanner diagram and several concepts. As shown in Figure 1a, Vi is a
variable node, Cj is a check node and the line between them is called an edge. If two nodes
are connected with each other, we say these two nodes are adjacent to each other. The girth
is defined as the minimum number of lines that comes from a node and back to this node,
whose intermediate node is only passed once. As shown in Figure 1a, the shortest girth is 6
and one of them is V1 → C1 → V2 → C4 → V5 → C2 → V1, for instance.

For the PEG algorithm, new edges are added to make the loop girth in the Tanner
diagram corresponding to the check matrix as large as possible. As shown in Figure 1b,
the steps are as follows:

• Determine the number of check node, variable node and the degree distribution of
variable node.

• Randomly choose a variable node Vi and find the check node Cj with the least number
of connected edges in the Tanner graph. Then connect the variable node Vi and the
check node Cj with an edge and take it as the first edge of the variable node Vi.

• Take the variable node Vi as the root node and expand the current Tanner diagram.
When the expansion depth is l, the set of check nodes adjacent to Vi is recorded as
Nl

Vi
. The Nl

Vi
is the complement set of Nl

Vi
, where the complete set Vc is the set of all

variable nodes. Expand the Tanner graph with the root node and the depth of l. When

Nl
Vi
�= ∅, Nl+1

Vi
= ∅ and the number of nodes contained in Nl

Vi
stops increasing but is

still less than the number of matrix rows l, connect the check node Cj with the least
number of connected edges to the variable node Vi.

• Repeat step (2) to add edges to the selected variable nodes until all of them are added.
• Repeat steps (1) to (3) to add edge for all other variable nodes.
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(a)

(b)

Figure 1. (a) Tanner graph; (b) PEG algorithm.

2.2.3. QC-LDPC Extension

QC-LDPC extension is uniquely determined by the dimension and shift times of the
circulant matrix. Its quasi-cyclic characteristics make the process of coding and decoding
more efficient. Compared with randomly constructed LDPC codes, QC-LDPC codes have
lower error level and are more convenient for storage and hardware implementation. We
multiply the corresponding positions of the base matrix Hb and the coefficient matrix Hc
and we define this operation as �, the expression is expressed as follows:

Hb�Hc =

⎡⎢⎣B1,1 · · · B1,i
...

. . .
...

Bj,1 · · · Bj,i

⎤⎥⎦�
⎡⎢⎣C1,1 · · · C1,i

...
. . .

...
Cj,1 · · · Cj,i

⎤⎥⎦ =

⎡⎢⎣B1,1C1,1 · · · B1,iC1,i
...

. . .
...

Bj,1Cj,1 · · · Bj,iCj,i

⎤⎥⎦. (12)

Take lifting size of 3 as an example, the elements of the base matrix are 0 and 1, and the
elements of the coefficient matrix are 1, 2 and 3. Then the matrix elements are replaced by
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the cyclic permutation matrices (CPMs). We replace 0 with zero matrices, 1 with

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦,

2 with

⎡⎣0 1 0
0 0 1
1 0 0

⎤⎦ and 3 with

⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦.

2.3. Methods of Rate-Compatible

Puncturing is a method that makes the code rate change from low to high. As shown
in Figure 2a, the submatrix A are information bits and submatrix B and C are check bits.
The initial code rate is R = L0/(L0 + L1 + L2). By deleting the submatrix C, we can obtain
a code rate increasing to R = L0/(L0 + L1).

On the contrary, extending as shown in Figure 2b enables the code rate to change from
high to low. We first construct a check matrix A with the high bit rate of (N0 −M0)/N0.
Moreover, by adding the submatrix An, we extend the matrix to make it compatible for the
low rate. The code rate is expressed as:

Ri =

n
∑
0

Ni −
n
∑
0

Mi

N
. (13)

(a) (b)

Figure 2. The rate-compatible method: (a) puncturing; (b) extending.

3. Proposed Check Matrix for RC-LDPC Codes with Wide Range of SNRs Regime

From the Equation (1) we can see that high hardware processing efficiency and rec-
onciliation efficiency result in a good performance of final secret key rate for a given
SNR. Proper degree distribution and reasonable construction method lead to good error
correction performance.

3.1. Obtaining Degree Distribution

We first obtain the initial optimal degree distribution using discretize density evolution
and differential evolution refer to Sections 2.1.1 and 2.1.2. Maximum degree of variable
node and the number of terms of degree distribution polynomial are set as 10 and 4,
respectively.

From the initial optimal degree distribution, we find that the pairs of degree distri-
bution are distributed nearby λ3 and λ7 except of λ2 and λ10. Therefore, we calculate
the average number of λ3 and λ7 at rate from 0.3 to 1, i.e., SNR from 0.1 to 3 (the degree
distribution is appropriate to the SNR larger than 3 but the maximum rate 1 corresponds to
the SNR of 3). The initial values are average number λ3 and λ7, and maximum degree of
variable node and the number of terms of degree distribution polynomial are still set as 10
and 4. The difference is that the degree distribution of the variable distribution is set on the
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λ2, λ3, λ7 and λ10 instead of a random distribution. Then we repeat the above operations
to obtain the optimal degree distribution in these conditions.

Through the above operations, we obtain the degree, the maximum degree of the vari-
able node, and the number of terms of the degree distribution polynomial. Ultimately, we
calculate the optimal degree distribution for proposing our LDPC code with Algorithm 1.

Algorithm 1 Obtaining the ultimate variable degree distribution with density evolution
and differential evolution
Input: Target error probability Pe, maximum number of iterations lmax, population size

NP = 50, the number of terms of variable node degree distribution polynomial l = 5,
the highest power of variable node degree distribution, λ3 = 0.0047, λ7 = 0.5072

Output: Error rate Pebest , vector Pbest
1: for i= 1 to NP do
2: refer to Section 2.1.1 generate vector Pi with λ2, λ3, λ7, λ8 and λ10, λ2 + λ8 + λ10 =

0.4881;
3: calculate the error probability Pei ;
4: if Pebest > Pei then
5: Pebest ← Pei ; Pbest ← Pi;
6: end if
7: end for
8: for j = 1 to lmax do
9: randomly choose four numbers r1, r2, r3 ,r4 from 1 to NP;

10: vj = Pbest + 0.5(Pr1 - Pr2 + Pr3 - Pr4);
11: calculate the error probability Pej ;
12: if Pebest < Pe then
13: output vj;
14: end if
15: if Pebest > Pej then
16: Pebest ← Pej ;
17: end if
18: end for

Table 2 is the result of Algorithm 1, whose input signal X ∼ (0, 1) and additive white
Gaussian noise Z ∼ (0, σ2) are random variables that obey Gaussian distribution and
independent of each other. The channel noise SNR = 1/σ2 and σ represents the maximum
allowed value of noise for the additive white Gaussian channel. For ρ(x) = λ(x) = 1,
the check node degree distribution is definite with the constraint condition r = 1 −∫ 1

0 ρ(x)dx/
∫ 1

0 λ(x)dx. The degree distribution in our scheme especially decreases the
difficulty of constructing the check matrix.

Table 2. Variable nodes degree distribution pairs for the code rate from 0.3 to 1.0.

Rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1

λ2 0.0001 0.0001 0.0007 0.0001 0.0002 0.0002 0.0004 0.0005
λ3 0.0047
λ7 0.5072
λ8 0.1382 0.1268 0.1044 0.0761 0.0480 0.0367 0.0281 0.0089
λ10 0.3498 0.3612 0.3830 0.4119 0.4399 0.4512 0.4596 0.4787
σ 1.3868 1.1547 1.0000 0.8771 0.7809 0.7001 0.6337 0.5774

SNR 0.52 0.75 1.00 1.30 1.64 2.04 2.49 3.00
C 0.3072 0.4037 0.5000 0.6008 0.7003 0.8020 0.9016 1.0000

1 The practical rate at 1 is close to but lower than 1.

In order to maximize the use of limited key resources, we still need to fully consider
the condition of rate lower than 0.1. Obviously, the secret key rate is low for the low mutual
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information IAB. Therefore, in order to simplify our work, the degree distribution pairs we
choose for the rate lower than 0.1 are directly refer to Appendix A [21,22].

3.2. Constructing Check Matrix for RC-LDPC Code

With the degree distribution we obtained above, we construct a single matrix RC-LDPC
code simultaneously with the random construction, the PEG algorithm, and QC-LDPC
codes mentioned in Section 2. The structure of the check matrix is shown in Figure 3 and
combined with parts A, B and C.

The part A is a shared part for the rate from 0.1 to 1, which is constructed with λ3 and
λ7. This structure has the advantage of reducing computational complexity and saving the
storage resources. Previous work showed that the PEG algorithm has better performance
at SNR∼3 [23], while random construction exhibits better performance at SNR∼1 [24].
Therefore, the construction that we use to construct the sub-matrix A is the PEG algorithm.

The part B is constructed with rest of degree distribution to realize the rate-compatible
method of puncturing. In order to further improve the performance of our LDPC code, we
construct the check matrix with the thought of puncturing. More specifically, we divide
submatrix Bn into two part and construct one part when the R decreases every 0.05. For rate
from 0.3 to 0.1, this number is 0.1. We use PEG algorithm to construct B1 to B5 and random
construction to construct extra part. Moreover, the structure of part B is a lower triangular
matrix, which can be directly encoded.

Multi-edge-type (MET)-LDPC codes are employed with low SNRs due to their good
error-correcting performances, more amenable decoding complexity and also being able to
be rate-compatible at low rates [25]. Based on the check matrix above, we construct part C
with degree distribution of the MET-LDPC codes from Appendix A for the rate from 0.01
to 0.1.

Figure 3. The check matrix for RC-LDPC codes with wide range of SNR.

4. Simulation Experiment

In this section, we summarize the implementation results of the proposed LDPC codes
over an unstable channel. Our purpose is to construct a RC-LDPC code with single matrix
that can be adapt to the SNR from 0.01 to 15. We show the performance of reconciliation
efficiency β, hardware processing efficiency α and FER, which are influenced by the change
of SNR. Furthermore, the decoding algorithm is a modified Min-Sum algorithm.

The reconciliation efficiency comes from β = R/C. Referring to the construction
mentioned in Section 3.2, we change the check matrix when R reduces to a certain extent.
When R is from 0.3 to 1, C decreases 0.1 to an integer multiple of 0.1. When R is from 0.01
to 0.3, C decreases 0.05 to an integer multiple of 0.05. In Figure 4, assuming that the channel
noise is uniformly distributed, the LDPC code we proposed has an average reconciliation
efficiency β of 91.80%, and for higher rates from 0.3 to 1 this number is 96.13%. Because
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the data with rate lower than 0.3 only have a little contribution to reconciliation efficiency,
the practical reconciliation efficiency is close to 96.13%. Compared with the existing scheme,
the proposed LDPC code has a relatively high reconciliation efficiency.

Figure 4. The reconciliation efficiency for different code rate.

From Equation (1), the secret key rate is also related to the hardware processing
efficiency α, which is equal to the ratio of Dout and Din. More specifically, supposing the
times used to load check matrix, load data and decode data are tlm, tld and tdd, separately.
The number of times that check matrix has to be reloaded is n and the number of data
blocks that have to be processed is m. Suppose the secret key rate that optical system can
provide is M, the number of data blocks m is M/L. The hardware processing efficiency α is

α =
1

ntlm + m(tld + tdd)
(14)

Because of the finite-size effects, the block length in the procedure of privacy amplifica-
tion is at least 107, which also takes up abundant hardware resource [26,27], so that not all
the check matrices can be stored in advance. The reconciliation efficiency will be reduced
quickly even if the SNR changes in a very small range. Therefore, other schemes have to
reload the appropriate check matrix and then load and decode data when the rate is higher
than the channel capacity. With our proposed LPDC code, we save the time of reloading
the check matrix. For the block length of 648,000, the times used to load data and decode
data we tested with the FPGA Arria 10 are 13.0 ms and 211.2 ms. Furthermore, the average
time we used to load check matrix of ATSC 3.0 LDPC codes is 11.1ms. From the Figure 5,
we can see that our work keeps a high hardware processing efficiency α with the number of
check matrix changing times n increases. Meanwhile, difference of hardware reconciliation
efficiency between our proposed LDPC code and ATSC 3.0 LDPC code also increases.

Frame error rate is the rate that a data block failed to be decoded. It is mainly caused by
two reasons: the defect of error correcting code and decoding algorithm; the unadaptable
check matrix led by the changing of SNR. The FER caused by the defect of error correcting
code and decoding algorithm can be reduced to 3.25× 10−3, which is far lower than the
FER led by the latter reason [28]. Therefore, we only take the latter reason into account.
It can be seen from Figure 6 that with the number of check matrix changes increases, our
proposed LDPC code has a lower FER than the other scheme.
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Figure 5. The hardware processing efficiency α influenced by the number of check matrix changing
times n.

Figure 6. FER influenced by the number of check matrix changing times N. The number of data
blocks that have to be processed is nine.

Given the excess noise, efficiency of receiver’s detector and electronic noise at Bob’s
side, we can calculate the practical secret key rate [29]. Figure 7 is the comparison of the
practical secret key rate of the proposed LDPC code and ATSC 3.0 LDPC codes. As can be
seen in the graph, our scheme has a better performance with same number of check matrix
changes N and has a lower performance reduction when the N increases. This comes from
the fact that combined action of reconciliation efficiency β, hardware processing efficiency
α and FER.
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Figure 7. Practical secret key rate with reconciliation efficiency of 91.80% for our proposed LDPC
code and 96.00% for ATSC 3.0 LDPC code. The extra parameters ε = 0.01, η = 0.64 and Vel = 0.1.

5. Conclusions

In this study, we design a rule of proposing a RC-LDPC code with single matrix for
SNRs between 0.01 and 15 to solve the problems of great variation of quantum channel
noise and extremely low SNR. First, we use the discretized density evolution algorithm and
differential evolution to acquire good node degree distribution pairs of LDPC codes. Then,
with construction methods including PEG algorithm, random construction, quasi-cyclic
extension and rate-compatible methods including extending and puncturing, we proposed
a convenient and efficient construction method for designing a RC-LDPC code. Considering
the number of check matrix changing times led by the change of SNR, the result shows that
we have a reconciliation efficiency of 91.80%, higher hardware processing efficiency and
lower FER. It has a good performance especially in an extremely unstable channel.
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Appendix A

Table A1. Degree distribution pairs of code rate from 0.01 to 0.1.

Rate Degree Distribution σ SNR C

0.1 v(r, x) = 0.0775r1x2
1x20

2 + 0.0475r1x3
1x22

2 + 0.875r1x3 2.541 0.15 0.0488
μ(x) = 0.0025x11

1 + 0.0225x12
1 + 0.03x2

2x3 + 0.845x3
2x3

0.05 v(r, x) = 0.04r1x2
1x34

2 + 0.03r1x3
1x34

2 + 0.93r1x3 5.91 0.03 0.0213
μ(x) = 0.01x8

1 + 0.01x9
1 + 0.41x2

2x3 + 0.52x3
2x3

0.02 v(r, x) = 0.0225r1x2
1x34

2 + 0.0175r1x3
1x34

2 + 0.96r1x3 2.541 0.15 0.1008
μ(x) = 0.010625x3

1 + 0.009375x7
1 + 0.6x2

2x3 + 0.36x3
2x3

References

1. Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2001, 74, 145–195. [CrossRef]
2. Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key

distribution. Rev. Mod. Phys. 2009, 81, 1301. [CrossRef]
3. Zhu, M.; Hu, M.; Guo, B. Free-Space QKD with Modulating Retroreflectors Based on the B92 Protocol. Entropy 2022, 24, 204.

[CrossRef]
4. Hua X, Hu M, Guo B. Multi-User Measurement-Device-Independent Quantum Key Distribution Based on GHZ Entangled State.

Entropy 2022, 24, 841. [CrossRef] [PubMed]
5. Alia, O.; Tessinari, R.S.; Bahrani, S.; Bradley, T.D.; Sakr, H.; Harrington, K.; Hayes, J.; ; Chen, Y.; Petropoulos, P.; Richardson,

D.; et al. DV-QKD Coexistence With 1.6 Tbps Classical Channels Over Hollow Core Fibre. J. Light. Technol. 2022, 40, 5522–5529.
[CrossRef]

6. Weedbrook, C.; Pirola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev.
Mod. Phys. 2011, 84, 621–669. [CrossRef]

7. Jain, N.; Chin, H.M.; Mani, H.; Lupo, C.; Nikolic, D.S.; Kordts, A.; Pirola, S.; Pedersen, T.B.; Kolb, M.; Omer, B.; et al. Practical
continuous-variable quantum key distribution with composable security. Nat. Commun. 2022, 13, 4740. [CrossRef]

8. Kovalenko, O.; Ra, Y.S.; Cai, Y.; Usenko, V.C.; Fabre, C.; Treps, N.; Filip, R. Frequency-multiplexed entanglement for continuous-
variable quantum key distribution. Photonics Res. 2021, 9, 2351–2359. [CrossRef]

9. Yang, S.; Lu, Z.G.; Li, Y. High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA
Implementation. J. Light. Technol. 2020, 38, 3935. [CrossRef]

10. Mink, A.; Nakassis, A. LDPC for QKD Reconciliation. arXiv 2012, arXiv:1205.4977.
11. Chen, Y.A.; Zhang, Q.; Chen, T.Y.; Cai, W.Q.; Liao, S.K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.G.; Chen, Z.; et al. An integrated

space-to-ground quantum communication network over 4600 kilometres. Nature 2021, 589, 214–219. [CrossRef]
12. Yin, J.; Cao, Y.; Li, Y.H.; Liao, S.K.; Zhang, L.; Ren, J.G.; Pan, J.W. Satellite-based entanglement distribution over 1200 kilometers.

Science 2017, 356, 1140–1144. [CrossRef]
13. Zhao, W.; Shi, R.; Ruan, X.; Guo, Y.; Mao, Y.; Feng, Y. Monte Carlo-based security analysis for multi-mode continuous-variable

quantum key distribution over underwater channel. Quantum Inf. Process. 2022, 21, 186. [CrossRef]
14. Liu, H.Y.; Tian, X.H.; Gu, C.; Fan, P.; Ni, X.; Yang, R.; Zhang, J.N.; Hu, M.; Guo, J.; Zhu, S.N.; et al. Drone-based entanglement

distribution towards mobile quantum networks. Natl. Sci. Rev. 2020, 5, 921–928. [CrossRef]
15. Gao, C.H.; Guo, Y.; Jiang, D.; Liu, J.; Chen, L.J. Multimatrix rate-compatible reconciliation for quantum key distribution. Phys.

Rev. A 2020, 102, 022604. [CrossRef]
16. Zhang, K.; Jiang, X.Q.; Feng, Y.; Qiu, R.; Bai, E. High Efficiency Continuous-Variable Quantum Key Distribution Based on ATSC

3.0 LDPC Codes. Entropy 2020, 22, 1087. [CrossRef]
17. Richardson, T.J. The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inf. Theory 2001,

47, 599. [CrossRef]
18. Chung, S.Y.; Richardson, T.J.; Urbanke, R.L. Analysis of sum-product decoding of low-density parity-check codes using a

Gaussian approximation. Inf. Theory IEEE Trans. 2001, 47, 657–670. [CrossRef]
19. Chung, S.Y. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. 2002,

5, 58–60. [CrossRef]
20. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J.

Glob. Optim. 1997, 11, 341–359. [CrossRef]
21. Wang, X.; Zhang, Y.C.; Li, Z.; Xu, B.; Yu, S.; Guo, H. Efficient rate-adaptive reconciliation for continuous-variable quantum key

distribution. arXiv 2017, arXiv:1703.04916.
22. Jouguet, P.; Kunz-Jacques, S.; Leverrier, A. Long Distance Continuous-Variable Quantum Key Distribution with a Gaussian

Modulation. Phys. Rev. A 2011, 84, 062317. [CrossRef]
23. Bai, Z.; Wang, X.; Yang, S.; Li, Y. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution. Sci.

China Phys. Mech. Astron. 2016, 59, 614201. [CrossRef]

153



Entropy 2022, 24, 1463

24. Bai, Z.; Yang, S.; Li, Y. High-efficiency reconciliation for continuous variable quantum key distribution. Jpn. J. Appl. Phys. 2017, 56,
044401. [CrossRef]

25. Jeong, S.; Jung, H.; Ha, J. Rate-compatible multi-edge type low-density parity-check code ensembles for continuous-variable
quantum key distribution systems. NPJ Quantum Inf. 2022, 8, 6. [CrossRef]

26. Zhang, C.M.; Li, M.; Huang, J.Z.; Li, H.W.; Li, F.Y.; Wang, C.; Yin, Z.Q.; Chen, W.; Han, Z.F.; Sripimanwat, K.; et al. Fast
implementation of length-adaptive privacy amplification in quantum key distribution. Chin. Phys. B 2014, 23, 090310. [CrossRef]

27. Yan, B.; Li, Q.; Mao, H.; Chen, N. An efficient hybrid hash based privacy amplification algorithm for quantum key distribution.
Quantum Inf. Process. 2022, 21, 130. [CrossRef]

28. Shi, J.J.; Li, B.P.; Huang, D. Reconciliation for CV-QKD using globally-coupled LDPC codes. Chin. Phys. B 2020, 29, 040301.
[CrossRef]

29. Fossier, S.; Diamanti, E.; Debuisschert, T.; Villing, A.; Tualle-Brouri, R.; Grangier, P. Field test of a continuous-variable quantum
key distribution prototype. New J. Phys. 2009, 11, 045023. [CrossRef]

154



Citation: Hua, X.; Hu, M.; Guo, B.

Multi-User Measurement-Device-

Independent Quantum Key

Distribution Based on GHZ

Entangled State. Entropy 2022, 24, 841.

https://doi.org/10.3390/e24060841

Academic Editors: Shao-Ming Fei,

Ming Li and Shunlong Luo

Received: 10 May 2022

Accepted: 16 June 2022

Published: 18 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Multi-User Measurement-Device-Independent Quantum Key
Distribution Based on GHZ Entangled State

Ximing Hua 1, Min Hu 1,2,* and Banghong Guo 1,3,*

1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices,
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,
South China Normal University, Guangzhou 510006, China; 2019022062@m.scnu.edu.cn

2 National Quantum Communication (Guangdong) Co., Ltd., Guangzhou 510535, China
3 Key Laboratory of Quantum Information, University of Science and Technology of China,

Chinese Academy of Sciences, Hefei 230026, China
* Correspondence: hmin@scnu.edu.cn (M.H.); guobh@scnu.edu.cn (B.G.)

Abstract: As a multi-particle entangled state, the Greenberger–Horne–Zeilinger (GHZ) state plays an
important role in quantum theory and applications. In this study, we propose a flexible multi-user
measurement-device-independent quantum key distribution (MDI-QKD) scheme based on a GHZ
entangled state. Our scheme can distribute quantum keys among multiple users while being resistant
to detection attacks. Our simulation results show that the secure distance between each user and the
measurement device can reach more than 280 km while reducing the complexity of the quantum
network. Additionally, we propose a method to expand our scheme to a multi-node with multi-user
network, which can further enhance the communication distance between the users at different nodes.

Keywords: quantum key distribution; GHZ entangled state; measurement-device-independent;
multi-user

1. Introduction

Quantum key distribution (QKD) allows two users, Alice and Bob, to share a secure
key privately [1,2]. The first QKD protocol, called the BB84 protocol, was proposed in 1984
by Bennett and Brassard [3]. However, because of the gaps between reality and theory,
there exist various loopholes in practical systems through which eavesdroppers can attack
the QKD process [4]. Therefore, several investigators have focused on finding ways to resist
such attacks [5,6]. In 2012, Lo et al. proposed a measurement-device-independent quantum
key distribution (MDI-QKD) protocol [7] to prevent attacks on measurement devices and
enhance the communication distance between two users.

QKD research usually begins with a point-to-point scheme. With the development of
quantum networks [8–10], multi-user scenarios have become research hotspots. Multi-user
QKD, known as quantum cryptography conference (QCC) such as Greenberger–Horne–
Zeilinger (GHZ) states [11] based scheme [12] and measurement-device independent
scheme [13] or quantum conference key agreement (CKA) such as the intensity-encoded
scheme [14] and the scheme based on a W-class state [15], is effective in scenarios where
multiple users share common secure keys. Multi-particle entangled states can easily apply
in multi-user QKD realization [16], although the communication distance is limited by the
stability of entangled states and other issues lead to such schemes being inferior compared
to the existing single-photon interference schemes [17].

Ref. [18] proposed an MDI-QKD scheme with an entangled source in the middle
and realized ultra-long communication. Inspired by the scheme, we propose a multi-user
MDI-QKD scheme based on the GHZ entangled state. We analyze the security of our
scheme and derive the secure key rate when users employ an ideal single photon source
and a weak coherent source. The simulation results show that a multi-user MDI-QKD
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system can be realized under this scheme with a reduced number of detectors and quantum
channels compared with traditional MDI-QKD, while the distance between each user and
the measurement device can reach more than 280 km (more than 560 km between each two
users). Additionally, we propose a method to expand our scheme to a multi-node with
multi-user network, which can further enhance the communication distance between the
users at different nodes. This paper is organized as follows: in Section 2, we introduce the
multi-user MDI-QKD based on GHZ entangled state protocol. In Section 3, we estimate the
performance of our scheme for an ideal single-photon source and a weak coherent source.
In Section 4, we introduce a method to expand our scheme to a multi-node with multi-user
network. Finally, a summary is presented in Section 5.

2. Protocol

Before providing details of our protocol, we simply introduce the background knowl-
edge of our scheme. A GHZ entangled state is multi-particle entangled state in which each
particle is entangled with other particles. It has maximum output mutual information,
and resistance to white noise. The n-particle GHZ entangled state can be expressed as
follows [19]: ∣∣φ+

〉
=

1√
2
(|000 . . . 00〉+ |111 . . . 11〉)N (1)

Based on the distribution of an n-particle GHZ entangled state [16], n users can obtain the
common secure key simultaneously. This leads to the generation of a secure key according
to the measurement result of the GHZ entangled state.

In MDI-QKD [7], the measurement device utilizes the Hong–Ou–Mandel (HOM) [20]
effect to construct the relationship between two input particles. According to the click
of the detectors, we obtain the BSM result |ψ+〉 = (|H〉|V〉 + |V〉|H〉)/√2 and |ψ−〉 =
(|H〉|V〉− |V〉|H〉)/√2. In the Z basis, the successful BSM event (|ψ+〉 and |ψ−〉) represents
the polarization of two particles being different, while the X basis |ψ+〉 (|ψ−〉) represents
the two particles having the same (different) polarization.

Combining the distribution of the GHZ entangled state with the MDI-QKD, we can
realize the multi-user QKD by entanglement swapping [21].

As depicted in Figure 1, there is a case of an n-user MDI-QKD system based on GHZ
entangled states. The system can divide into four parts: user, measurement device, GHZ
entangled state source (GHZ-ESS) and channel. The n-user system includes n users, n
measurement devices, a GHZ-ESS, and channel. The user mainly contains a source, a
polarization modulator, and a upper computer. In practice, we usually use a weak coherent
source with a decoy-state instead of a single photon source. The user uses a polarization
modulator to modulate BB84 polarization states. The upper computer control the source,
the polarization modulator and the information processing. The information processing
includes sifting the efficient data, post-processing, etc. Each user has a corresponding
measurement device. The GHZ-ESS connects to all measurement devices. The number
of particles in the GHZ entangled state is similar to the number of users. Each particle of
the GHZ entangled state will interfere with the polarization state prepared by users in the
corresponding measurement device. They will perform Bell state measurement (BSM) in
the measurement device. The channel including quantum channel and classical channel.
Quantum channels are used to transmit quantum signals. Classical information such as the
basis of prepared polarization state is transmitted in classical channel.

As shown in Figure 2, our protocol consists of five main steps:
Step 1: Preparation. Each user randomly prepares one of the BB84 states such as

|+〉,|−〉 in the X basis or |H〉,|V〉 in the Z basis, while the GHZ-ESS randomly prepares
an n-particle GHZ entangled state. The number of particles in the GHZ entangled state is
equal to the number of users (in principle, each user only sends one photon).

Step 2: Transmission. Users (the GHZ-ESS) transmit the BB84 state (the GHZ entan-
gled state) in different quantum channels between each user (the GHZ-ESS) and measure-
ment device.
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Step 3: Measurement. The measurement device performs BSM on the BB84 state
and the GHZ entangled-state particles. Each particle of the GHZ entangled quantum
state can interfere with a particle sent by its corresponding user. If there are only two
detectors responding we call it a successful BSM event (a click in D1H and D2V, or in
D1V and D2H are |ψ−〉; a click in D1H and D1V, or in D2H and D2V are |ψ+〉), similar to
traditional MDI-QKD.

Step 4: Sifting. All users retain the bits when all the corresponding measurement
device generates a successful BSM event. All users announce the basis of the prepared BB84
state, and the GHZ entangled source broadcasts the GHZ state it has prepared through
the classical channels. In our scheme, only the states in the Z basis are used to generate a
secure key; the states in the X basis are used to estimate the error rate. Hence, users retain
the data prepared in the same basis by all users and discard the remaining data. Then, each
user should either flip or not flip its local bits according to the BSM result, the GHZ states,
and the prepared basis; see following and Appendix A for details. At this point, each user
obtains the raw key.

Step 5: Post-processing. Similar to traditional point-to-point QKD protocols, users per-
form post-processing under the control of upper computer, which includes error correction
and privacy amplification. They finally obtain the same secure keys.

Figure 1. Schematic diagram of n-user MDI-QKD system. POL-M: polarization modulator; BS: beam
splitter; PBS: polarization beam splitter; D1H, D1V, D2H, D2V: single-photon detector; Source:
single-photon source or weak coherent source. We use solid line to depict the quantum channel
and dotted line to depict the classical channel. The measurement device includes a BS, two PBSs,
and four single-photon detectors, and implements the Bell state measurement (BSM) the same as
the polarization-based MDI-QKD protocol. The GHZ-ESS can prepare GHZ entangled states with
different numbers of particles corresponding to the number of users.
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Figure 2. Flow chart of our protocol.

Following the original MDI-QKD protocol [7], users need to operate on their local bits
based on the GHZ entangled state and the BSM results to generate secure keys. Taking
three users (named Alice, Bob, and Charles) as an example, Table 1 shows the relationship
between the prepared GHZ state, the BSM results, and the operations of the three partic-
ipants. The users can retain the signal to generate a secure key only when all the BSM
results are |ψ+〉 or |ψ−〉.

Table 1. Participants and their operations in the Z basis.

GHZ State BSM 1 BSM 2 BSM 3 Alice Bob Charles

1√
2
(|H〉|H〉|H〉 ± |V〉|V〉|V〉)

∣∣ψ±〉 ∣∣ψ±〉 ∣∣ψ±〉 No Flip No Flip No Flip
1√
2
(|H〉|V〉|H〉 ± |V〉|H〉|V〉)

∣∣ψ±〉 ∣∣ψ±〉 ∣∣ψ±〉 No Flip Flip No Flip
1√
2
(|H〉|H〉|V〉 ± |V〉|V〉|H〉)

∣∣ψ±〉 ∣∣ψ±〉 ∣∣ψ±〉 No Flip No Flip Flip
1√
2
(|H〉|V〉|V〉 ± |V〉|H〉|H〉)

∣∣ψ±〉 ∣∣ψ±〉 ∣∣ψ±〉 No Flip Flip Flip

For example, when the state prepared by the GHZ-ESS is 1√
2
(|H〉|H〉|H〉 ± |V〉|V〉|V〉),

the message can be retained as a sifted key only if Alice, Bob, and Charles have prepared
the same polarization state and all the BSM results are |ψ+〉 or |ψ−〉.
3. Secure Key Rate

Next, we derive the secure key and error rates to investigate the performance of our
scheme with a single-photon source and a weak coherent source.

By combining the MDI-QKD technique [7] and the GLLP method [22], the security
key rate is given by

R = QZ
1 [1− H

(
eX

1

)
]−QZ f H

(
EZ∗

)
(2)

where QZ and EZ∗ denote the gain and quantum bit error rate (QBER) in the Z basis,
respectively; f is the inefficiency function for the error correction process; QZ

1 denotes
the gain when all users send a single-photon state; eX

1 denotes the phase error rate;
and H(x) = −xlog2(x) − (1 − x)log2(1 − x) is the binary Shannon entropy function.

EZ∗ = max {EZ
U1U2

, EZ
U1U3

. . . EZ
U1Un

}, where EZ
U1U2

(
EZ

U1U3
. . . EZ

U1Un

)
is the marginal quan-
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tum bit error rate between user 1 and user 2 (3. . . n) in the Z basis. In practice, QZ and EZ∗
can be obtained from experimental data.

3.1. Key Rate of Single-Photon Source

For simplicity, we consider the case of three users in our scheme and estimate the
secure key rate for a single photon source.

When the users use an ideal single-photon source to prepare the BB84 state, the gain
in the Z basis is

QZ = QZ
1 = Y1 (3)

where Y1 denotes the probability of obtaining a successful BSM when all the users send a
single-photon state. The yield Y1 is given by

Y1 =
1
64
{(1− Pd)

2[1− (1− Pd)(1− η)][1− (1− Pd)(1− ηd)]

+ 2Pd(1− Pd)
2[1− (1− Pd)(1− η)(1− ηd)]}3

(4)

where Pd is the dark count, ηd is the detection efficiency, η = ηl × ηb = 10−αL/10 × ηb is the
transmittance between the users and measurement device, and ηl represents the channel
loss. 1

64 represents the possibility that users send similar or different polarization states to
the particles of the GHZ entangled state in the Z basis.

We assume that our entangled source is perfect; therefore, the error rate contains two
main contributions: (1) the error rate e0 caused by background counts and (2) the error rate
ed corresponding to the misalignment and instability of the optical system. The total error
rate is as follows:

EZ∗ = EZ
U1U2

= EZ
U1U3

= e0 −
(e0 − ed)(

1
16 η2η2

d(1− Pd)
4)

YU1U2

(5)

where YU1U2 denotes the probability of both measurement devices obtaining a successful
BSM when user 1 and user 2 send a single-photon state. Similarly, we obtain the error rate
in the X basis as follows:

eX
1 = e0 −

(e0 − ed)(
1
64 η3η3

d(1− Pd)
6)

Y1
(6)

Utilizing the experimental parameters in Table 2 [23], we obtained the simulation
results shown in Figure 3. These results show that the communication distance between
each user and the GHZ-ESS can exceed 280 km using optical fibers. Using an ideal single-
photon source and a perfect GHZ-ESS, the GHZ-ESS can be located at the center to establish
a star-configuration quantum network with a radius of 280 km.

Table 2. Experimental parameters used in the simulation. ed is the system intrinsic bit error rate, Pd is
the dark count, f is the error correction inefficiency, and α is the optical fiber transmission loss.

ed Pd f α

2% 8× 10−8 1.16 0.2
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Figure 3. Secure key rate with single-photon state. The red line corresponds to the detection efficiency
ηd of 93% [24], and the blue line corresponds to the detection efficiency ηd of 40% [23]. n is the number
of communication users. The distance refers to the length of the quantum channel between any user
and the measurement device.

3.2. Key Rate of Weak Coherent Source with Decoy State

In this section, we analyze the realization of the decoy state using our protocol. Users
use the decoy state to resist a photon number splitting (PNS) attack on a weak coherent
source. In our protocol, we use the Z basis to generate the secure key and the X basis to
detect the error bit. Therefore, we take the quantum state in the Z basis as the signal state
(only preparing the signal state) and that in the X basis as the decoy state (preparing both
signal state and decoy state).

In our analysis, two decoy-state techniques (signal state v, vacuum state μ2, decoy-state
μ1) are used, where v > μ1 > μ2 = 0 represents the mean photons of the sources.

We consider the situation consisting of three users as an example to derive the secure
key rate. According to the decoy state method [25], in the Z basis, for each measurement
device, we can estimate the gain QZ

m and error rate EZ
m as follows:

QZ
m =

∞

∑
i=0

e−vY1i
vi

i!
(7)

EZ
mQZ

m =
∞

∑
i=0

e−ve1iY1i
vi

i!
(8)

where Y1i (e1i) represents the yield (error rate) from the GHZ-ESS and the corresponding
user. The subscript 1 that different from the traditional MDI-QKD [7] represents the particle
of GHZ entangled state in each measurement device. Therefore, we can estimate the total
gain and error rate in the Z basis as follows:

QZ =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

e−3vY111ijk
vi+j+k

i!j!k!
(9)

EZQZ =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

e−3ve111ijkY111ijk
vi+j+k

i!j!k!
(10)

where Y111ijk (e111ijk) represents the overall yield (error rate) in the Z basis. We optimized
the formula in the Ref. [26] and added the subscript 111 to describe the influence of GHZ
entangled state. We Similarly, we can obtain the total gain and error rate in the X basis.
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Because we use the decoy state technique in the X basis, we can obtain the total gain
in the Z basis when all users send a single photon pulse as

QZ
1 = v3e−3vYZ

1 (11)

where YZ
1 represents the yield when all users send a single photon pulse.

Next, we need to estimate the lower bound of the yield and the upper bound of the
error rate that each user sends for a single-photon pulse in the X basis. According to the
decoy-state method [25–27], we can estimate that

YX
1 ≥ 1

v3μ1
3(v− μ1)

[v4(e3μ1 QX
111μ1μ1μ1

− e2μ1 QX
111μ1μ10 − e2μ1 QX

111μ10μ1
− e2μ1 QX

1110μ1μ1

+ eμ1 QX
111μ100 + eμ1 QX

1110μ10 + eμ1 QX
11100μ1

−QX
111000)

− μ1
4(e3vQX

111vvv − e2vQX
111vv0 − e2vQX

111v0v − e2vQX
1110vv

+ evQX
111v00 + evQX

1110v0 + evQX
11100v −QX

111000)

(12)

eX
1 ≤

1
μ1

3YX
1
(e3μ1 EX

111μ1μ1μ1
QX

111μ1μ1μ1
− e2μ1 EX

111μ1μ10QX
111μ1μ10 − e2μ1 EX

111μ10μ1
QX

111μ10μ1

− e2μ1 EX
1110μ1μ1

QX
1110μ1μ1

+ eμ1 EX
111μ100QX

111μ100 + eμ1 EX
1110μ10QX

1110μ10

+ eμ1 EX
11100μ1

QX
11100μ1

− EX
111000QX

111000)

(13)

where QX
111ijk (i,j,k = 0, μ1, v represent the mean photon number intensities of users’ sources)

is the overall gain in the X basis when users choose the corresponding intensities. EX
111ijk is

the overall error rate in the X basis when users choose corresponding intensities.
Finally, utilizing the experimental parameters in Table 2, we can obtain the perfor-

mance of our protocol when three users use weak coherent sources as shown in Figure 4.
The simulation results show that the communication distance between each user and the
GHZ-ESS can reach further than 210 km using optical fibers. Compared with a single
photon source, the weak coherent source has a lower secure key rate and shorter commu-
nication distance while still realizing a signal transmission of more than 420 km between
each two users.

Figure 4. Secure key rate with weak coherent source. The simulation performed for the situation of
three users had detection efficiency results of ηd = 93% and ηd = 40%. The mean photons of signal
state v = 0.48, and the mean photons of decoy-state μ1 = 0.05. The distance refers to the length of the
quantum channel between any user and measurement device.
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3.3. Security and Discussion

In this section, we will analyze the security of our protocol and compare our protocol
with other schemes.

Without loss of generality, we can depict the three-particle GHZ entangled state in
eight orthogonal GHZ states as [26]:

|α1〉 = 1√
2
(|H〉|H〉|H〉+ |V〉|V〉|V〉) = 1

2
(|+++〉+ |+−−〉+ |−+−〉+ |− −+〉)

|α2〉 = 1√
2
(|H〉|H〉|H〉 − |V〉|V〉|V〉) = 1

2
(|++−〉+ |+−+〉+ |−++〉+ |− −−〉)

|α3〉 = 1√
2
(|V〉|H〉|H〉+ |H〉|V〉|V〉) = 1

2
(|+++〉+ |+−−〉 − |−+−〉 − |− −+〉)

|α4〉 = 1√
2
(|V〉|H〉|H〉 − |H〉|V〉|V〉) = 1

2
(|++−〉+ |+−+〉 − |−++〉 − |− −−〉)

|α5〉 = 1√
2
(|H〉|V〉|H〉+ |V〉|H〉|V〉) = 1

2
(|+++〉 − |+−−〉+ |−+−〉 − |− −+〉)

|α6〉 = 1√
2
(|H〉|V〉|H〉 − |V〉|H〉|V〉) = 1

2
(|++−〉 − |+−+〉+ |−++〉 − |− −−〉)

|α7〉 = 1√
2
(|H〉|H〉|V〉+ |V〉|V〉|H〉) = 1

2
(|+++〉 − |+−−〉 − |−+−〉+ |− −+〉)

|α8〉 = 1√
2
(|H〉|H〉|V〉 − |V〉|V〉|H〉) = 1

2
(|++−〉 − |+−+〉 − |−++〉+ |− −−〉)

(14)

Taking |α1〉 as an example, it will randomly collapse into |γ1〉 = |H〉|H〉|H〉 or
|γ2〉 = |V〉|V〉|V〉 in the Z basis. In the X basis, any user obtains |+〉 (|−〉) when the
other obtains the same (different) polarization. We use the character that provides the
security of the GHZ entangled sources to generate a secure key in the Z basis and error
detection in the X basis.

Based on the principle of MDI-QKD [7], our scheme can resist attacks on the mea-
surement devices. In addition to resisting attacks on the measurement device, our scheme
can resist a PNS attack using the decoy state technique [22,25,28,29]. Users can employ
weak coherent sources with a decoy-state. The GHZ entangled state is equivalent to an
ideal single-photon state in each quantum channel. A PNS attack is ineffective for an ideal
single-photon source. Therefore, our scheme can resist PNS attacks.

Compared with traditional MDI-QKD, ref. [30] reported the longest communication
record that reached 404 km in experiments, while the simulation result shows that our
protocol can be utilized with greater than 560 km between each two users. Four detectors are
required to build a traditional MDI-QKD system between two users. Therefore, 2n (n − 1)
detectors are required to establish a quantum communication system using the MDI-QKD
protocol between n users. However, in our protocol, the number of detectors required
to establish communications between n users is reduced to only 4n. Moreover, only 2n
channels rather than n (n − 1)/2 channels are required if a traditional point-to-point
protocol [7] is used between the users and the measurement device. Thus, the cost and
complexity of the network are reduced.

We compare our scheme with other multi-user schemes in Table 3. When we employ a
single photon source with ηd = 93%, the available distance can reach more than 560 km
between each two users. When we employ a weak coherent source with ηd = 93%, the
available distance can reach more than 420 km between each two users.

Unlike the MDI-QCC based on a post-selection GHZ entangled state [26] and PM-QCC
based on a post-selection GHZ entangled state [19], our protocol uses a GHZ entangled
state and the polarization state prepared by users to execute BSM and realize multi-user
sharing of a common secret key.
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Table 3. Comparison of multi-user schemes.

Items
GHZ State

MDI-QCC [26]

W State
Multi-User

MDI-QKD [31]

GHZ State
Multi-User

MDI-QKD [23]
Our Scheme

Entangled State GHZ state W state GHZ state GHZ state

Users ≥3 ≥4 ≥3 ≥3

Secure Key Rate

10−16

(ηd = 93%,
400 km between

two users,
weak coherent)

10−16

(ηd = 93%,
260 km between

two users,
single photon)

10−21

(ηd = 40%,
400 km between

two users,
single photon)

10−15

(ηd = 93%,
400 km between

two users,
single photon)

Available Distance
420 km between

two users
(weak coherent)

260 km between
two users

(single photon)

520 km between
two users

(single photon)

560 km between
two users

(single photon)
420 km between

two users
(weak coherent)

CKA schemes [32] based on the principle of twin-field QKD [33] can realize a high
secure key rate and long communication distance through the single photon interference.
In our scheme, with a more flexible number of users, we can increase the distance between
the GHZ-ESS and the measurement device to enhance the communication distance between
each two users. In addition, we can expand our scheme further into a multi-node quantum
network, as detailed in Section 4.

Because of the coincidence measurement at the measurement device, increasing the
number of users will lead to an obvious decrease in the secure key rate. We propose a
system that uses an adaptive technique in Appendix B, while we need to investigate the
specific performance in our scheme. At the same time, we will consider using asynchronous
time multiplexing technology [34,35], which idea is based on adaptive techniques, to further
improve our scheme through enhancing the secure key rate under multi-user scenarios.

4. Expansion of Our Protocol

Based on the location-changeable GHZ-ESS, we can expand our scheme further into a
multi-node quantum network without quantum memory. An example of two nodes with
two users per node is shown in Figure 5, and we can extend the system to n nodes with n
users per node.

In the system, we use measurement devices that perform BSM to construct the entan-
gled relationship between two adjacent GHZ entangled sources and extend the communi-
cation distance between users in different nodes by increasing the distance between the
GHZ-ESS and the measurement device. We use the example shown in Figure 5 to detail
the process. In theory, the longest secure communication between user 3 and user 1 can be
estimated as follows:

LU1U3 = LU1 M1 + LGHZ1 M1 + LGHZ1 MGHZ + LGHZ2 MGHZ + LGHZ2 M3 + LU3 M3 (15)

where LU1 M1 (LU3 M3 ) is the distance between the user and the corresponding measurement
device, LGHZ1 M1 (LGHZ2 M3 ) is the distance between the GHZ-ESS and the corresponding
measurement device, and LGHZ1 MGHZ (LGHZ1 MGHZ ) is the distance between the GHZ-ESS
and the measurement device that is between the adjacent GHZ-ESSs.
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Figure 5. An example of two users per node. The system can help user 1, user 2, user 3, and user 4 to
share a common secure key. Unlike our system shown in Figure 1, we build the relationship between
two GHZ-ESSs with measurement devices that use BSM like ordinary MDI-QKD devices.

When we assume that two GHZ-ESSs prepare the same GHZ entangled state and all
measurement devices obtain successful BSM events (|ψ+〉 or |ψ−〉), the operations of users
in the Z basis are as shown in Table 4.

Table 4. The operations of users in different GHZ states in the Z basis. The operation of bit flip
according to user 1 and all measurement devices obtain successful BSM events (

∣∣ψ+
〉

or
∣∣ψ−〉). We

assume that the first particle of the first GHZ is entangled, corresponding to measurement device 1,
and the first particle of the second GHZ entangled state corresponds to measurement device 3.

GHZ state USER 1 USER 2 USER 3 USER 4

1√
2
(|H〉|H〉|H〉 ± |V〉|V〉|V〉) No Flip No Flip Flip Flip

1√
2
(|H〉|V〉|H〉 ± |V〉|H〉|V〉) No Flip Flip Flip No Flip

1√
2
(|H〉|H〉|V〉 ± |V〉|V〉|H〉) No Flip No Flip Flip Flip

1√
2
(|H〉|V〉|V〉 ± |V〉|H〉|H〉) No Flip Flip Flip No Flip

5. Conclusions

In this study, we presented a multi-user MDI-QKD scheme based on the GHZ entan-
gled state. We analyzed the security of our scheme and derived the secure key rate when
users use an ideal single photon source and a weak coherent source. The MDI-QKD-based
scheme is also immune to attacks on the measurement devices, and the communication
distance is increased. Furthermore, in contrast to the multi-user quantum network im-
plemented by the original MDI-QKD protocol, the number of detectors required in our
scheme is reduced from 2n (n −1 ) to 4n, and the number of quantum channels is reduced
from n (n − 1)/2 to 2n. Our scheme realizes an ultra-long QKD available communication
distance that can reach more than 280 km between each user and measurement device (i.e.,
the longest communication distance between any two users can reach more than 560 km)
and further extend by changing the location of the GHZ-ESS. In addition, we can expand
our scheme further to a multi-node quantum network without quantum memory, which
enhances the communication distance between two users.

Although our scheme can be flexibly applied to QKD networks, there are still two
issues remaining to be studied in the future. On one hand, the location of the GHZ
entangled source can be changed in our scheme, and we can extend the communication
distance between two users by increasing the distance between the GHZ entangled source
and the measurement device. Therefore, we will study the influence of GHZ entangled
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state long-distance division. On the other hand, in our estimation of the secure key rate, we
assume that the distance between each user and the corresponding measurement device is
similar. Therefore, it will be interesting to consider an asymmetric situation.
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Appendix A. Protocol Analysis

In this section, we analyze the generation of the secure key. The key generation in the
Z basis in our protocol can be equivalent to the construction shown in Figure A1. The GHZ
entangled source distributes a particle of the n-particle GHZ entangled states to each user.
Users measure the polarization of the particle and obtain the secure key.

Figure A1. The equivalent topological schematic diagram of the GHZ entangled source distributing a
particle of the n-particle GHZ entangled states to each user. HWP: half wave plate; PBS: polarization
beam splitter; DH, DV: single photon detector.

We also considered the case of three users. As shown in Table A1, the GHZ-ESS
prepares different GHZ states and sends them to users. Users measure the polarization
in the Z basis. They obtain value “0” when the measurement result is |H〉, and value “1”
corresponds to |V〉.
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Table A1. Measurement result and value of the secure key. GHZ entangled state is the GHZ state
sent by the entangled source. MR1, MR2, and MR3 are the measurement results of user 1, user 2,
and user 3. and Value1, Value2, and Value3 are the values of the users’ secure keys.

GHZ Entangled State MR1 Value1 MR2 Value2 MR3 Value3

1√
2
(|H〉|H〉|H〉 ± |V〉|V〉|V〉) |H〉 0 |H〉 0 |H〉 0

|V〉 1 |V〉 1 |V〉 1

1√
2
(|V〉|H〉|H〉 ± |H〉|V〉|V〉) |V〉 1 |H〉 0 |H〉 0

|H〉 0 |V〉 1 |V〉 1

1√
2
(|H〉|V〉|H〉 ± |V〉|H〉|V〉) |H〉 0 |V〉 1 |H〉 0

|V〉 1 |H〉 0 |V〉 1

1√
2
(|H〉|H〉|V〉 ± |V〉|V〉|H〉) |H〉 0 |H〉 0 |V〉 1

|V〉 1 |V〉 1 |H〉 0

Compared with the equivalent topological scheme, our protocol can resist attacks
on measurement devices and enhance the communication distance between two users.
Moreover, if we locate the GHZ entangled source near the measurement device, can
we greatly reduce the effect of decoherence of GHZ entangled states. However, we can
also increase the distance between the GHZ-ESS and measurement device to increase
the communication distance between the two users. Therefore, our protocol can realize
multi-user QKD over an ultra-long distance.

Appendix B. Increasing the Secure Key Rate with an Adaptive Technique

According to the idea in [36], we propose our multi-user MDI-QKD system with an
adaptive technique as shown in Figure A2.

Figure A2. Multi-user MDI-QKD system with adaptive method. QNP: quantum non-demolition
measurement; SW: optical switches. The adaptive technology structures are shown inside the red
dashed frames.

The implementation process is as follows. Firstly, all users and GHZ-ESSs send many
signal states to the corresponding measurement device; secondly, the QNP performs the
quantum non-demolition measurement to detect the arrival of the signal; thirdly, the SW is
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used to match the arrival signal from the GHZ-ESS and users; fourthly, the measurement
device performs BSM between the matched signals and broadcasts the matched result as
well as measurement result; lastly, the user keeps the signal data that relate to successful
BSM events and other post-processing.

Through the use of an adaptive technique, we can enhance the secure key rate in our
multi-user QKD scheme. However, the lack of any particles in the GHZ entangled state will
lead to the entire entangled state being unusable, and the GHZ-ESS will need to prepare
more signal states than users in principle. We will study the specific performance of using
an adaptive technique in future research.
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Abstract: By using difference schemes, orthogonal partitions and a replacement method, some new
methods to construct pure quantum error-correcting codes are provided from orthogonal arrays. As
an application of these methods, we construct several infinite series of quantum error-correcting
codes including some optimal ones. Compared with the existing binary quantum codes, more new
codes can be constructed, which have a lower number of terms (i.e., the number of computational
basis states) for each of their basis states.
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1. Introduction

Errors are inevitable in quantum information processing [1], so quantum error-correcting
codes (QECCs) are very important for quantum communication and quantum computing.
In 1995, Shor [1] gave the simplest quantum simulation of a classical coding plan and then
constructed the first QECC. In 1998, Calderbank et al. provided a close connection between
QECCs and classical error correction codes [2], which leads to constructing QECCs from
known classical error correction codes. In recent years, the research on QECCs especially
on binary QECCs has made great progress. Feng and Ma made a way to obtain good pure
stabilizer quantum codes, binary or nonbinary [3]. Li and Li obtained quantum codes of
minimum distance three which are optimal or near optimal, and some quantum codes
of minimum distance four which are better than previously known codes [4]. Feng and
Xing presented a characterization of (binary and non-binary) quantum codes. Based on
this characterization, they derived a method to construct pure p-ary quantum codes with
dimensions not necessarily equal to powers of p [5]. Some other constructions of non-
stabilizer codes, such as CWS codes [6], the codes in [7], and permutation-invariant codes
such as in [8–11] have been studied. However, the majority of binary QECCs constructed
so far are stabilizer codes [12–14]. The main goal of this work is to link between orthogonal
arrays and binary QECCs and to construct more families of new codes.

Orthogonal arrays (OAs) play a more and more important role in quantum information
theory [15–22]. An r× N array A with entries from a set S = {0, 1, . . . , s− 1} is said to be
an orthogonal array with s levels, strength t (for some t in the range 0 ≤ t ≤ N) if every
r× t subarray of A contains each t-tuple based on S as a row with the same frequency. We
will denote such an array by OA(r, N, s, t). Recently, many new methods of constructing
OAs, especially high strength OAs, have been presented, and many new classes of OAs
have been obtained [23–33]. An OA(r, N, s, t) is said to be an irredundant orthogonal array
(IrOA) if, in any r× (N − t) subarray, all of its rows are different [18]. A link between an
IrOA with d levels and a t-uniform state was established by Goyeneche et al. [18], i.e., every
column and every row of the array correspond to a particular qudit and a linear term of the
state, respectively.
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Entropy 2022, 24, 1000

Connection 1 ([18]). If L =

⎛⎜⎜⎜⎝
s1

1 s1
2 · · · s1

N
s2

1 s2
2 · · · s2

N
...

... · · · ...
sr

1 sr
2 · · · sr

N

⎞⎟⎟⎟⎠ is an IrOA(r, N, s, t), then the superposi-

tion of r product states,
|Φ〉 = 1√

r (|s1
1s1

2 . . . s1
N〉+ |s2

1s2
2 . . . s2

N〉+ · · ·+ |sr
1sr

2 . . . sr
N〉)

is a t-uniform state.

More and more attention has been paid to the construction and characterization of
t-uniform states from OAs [15–18,34–39]. Very interestingly, uniform states are closely
related to QECCs. Goyeneche and Życzkowski stated ((N, 1, k + 1))d QECCs are one-to-
one connected to k-uniform states of N qudits [18]. Shi et al. also presented the relation
between a pure QECC and t-uniform state [40]. It is these new developments in OAs and
uniform states that raise the possibility of constructing QECCs from OAs.

In this paper, the Hamming distance and minimal distance (MD) of OAs are applied
to the theory of quantum information. By using difference schemes, orthogonal partitions
and a replacement method, some new methods to construct pure quantum error-correcting
codes are provided from orthogonal arrays. As an application of these methods, we
construct several infinite series of quantum error-correcting codes including some optimal
ones. Compared with the corresponding binary quantum error-correcting codes in [12,41],
more new codes can be constructed, which have fewer terms for each of their basis states.

2. Preliminaries

First, the following concepts and lemmas are needed.
Let AT be the transposition of matrix A and (2) = (0, 1)T . Let 0r and 1r denote the

r× 1 vectors of 0s and 1s, respectively. If A = (aij)m×n and B = (bij)u×v with elements from
a Galois field with binary operations (+ and ·), the Kronecker product A⊗ B is defined
as A ⊗ B = (aij · B)mu×nv, where aij · B represents the u × v matrix with entries aij · brs
(1 ≤ r ≤ u, 1 ≤ s ≤ v), and the Kronecker sum A⊕ B is defined as A⊕ B = (aij + B)mu×nv
where aij + B represents the u× v matrix with entries aij + brs (1 ≤ r ≤ u, 1 ≤ s ≤ v) [23,24].
Let (C2)⊗N = C

2 ⊗C
2 ⊗ · · · ⊗C

2︸ ︷︷ ︸
N

. Let ZN
2 = Z2 ×Z2 × · · · ×Z2︸ ︷︷ ︸

N

over ring Z2 = {0, 1}.

A matrix A can often be identified with a set of its row vectors if necessary.

Definition 1 ([26]). Let A be an OA(r, N, s, t) and {A1, A2, . . . , Au} be a set of orthogonal arrays

OA( r
u , N, s, t1) with t1 ≥ 0. If

u⋃
i=1

Ai = A and Ai
⋂

Aj = ∅ for i �= j, then {A1, A2, . . . , Au} is

said to be an orthogonal partition of strength t1 of A.

Let A be an abelian group of order s. At, t ≥ 1, denotes the additive group of order
st consisting of all t-tuples of entries from A with the usual vector addition as the binary
operation. Let At

0 = {(x1, . . . , xt) : x1 = · · · = xt ∈ A}. Then, At
0 is a subgroup of At of

order s, and its cosets will be denoted by At
i , i = 1, . . . , st−1 − 1.

Definition 2 ([42]). An m× n matrix D based on A is called a difference scheme of strength t if,
for every m× t submatrix, each set At

i , i = 0, 1, . . . , st−1 − 1, is represented equally often when the
rows of the submatrix are viewed as elements of At. Such a matrix is denoted by Dt(m, n, s). When
t = 2, Dt(m, n, s) is written as D(m, n, s).

Definition 3. Let D be a difference scheme Dt(m, n, s) and {D1, D2, . . . , Du} be a set of dif-

ference schemes Dt1(
m
u , n, s, ) with t1 ≥ 0. If

u⋃
i=1

Di = D and Di
⋂

Dj = ∅ for i �= j, then

{D1, D2, . . . , Du} is said to be a partition of strength t1 of D.
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Definition 4 ([42]). Let Sl = {(v1, . . . , vl)|vi ∈ S, i = 1, 2, . . . , l}. The Hamming distance
HD(u, v) between two vectors u = (u1, . . . , ul), v = (v1, . . . , vl) in Sl is defined as the number
of positions in which they differ. The minimal distance MD(A) of a matrix A is defined to be the
minimal Hamming distance between its distinct rows.

Definition 5 ([43]). (quantum Singleton bound) Let Q be an ((N, K, d))s QECC. If K > 1, then
K ≤ sN−2d+2. A QECC that achieves the equality is said to be optimal.

Lemma 1 ([42]). If s ≤ t and t is odd, then there exists a difference scheme Dt(st−1, t + 1, s) on S.

Lemma 2 ([37]). The minimal distance of an OA(st, N, s, t) is N − t + 1 for s ≥ 2 and t ≥ 1.

Lemma 3 ([40]). Let Q be a subspace of (Cs)⊗N. If Q is an ((N, K, d))s QECC, then for any
(d− 1) parties, the reductions of all states in Q to the (d− 1) parties are identical. The converse is
true. Further, if Q is pure, then any state in Q is a (d− 1)-uniform state. The converse is also true.

Lemma 3 can also be viewed as the definition of a QECC. Q is denoted as ((N, K, d))s,
where N is the length of the code, K is the dimension of the encoding state, d is the
minimum Hamming distance, and s is the alphabet size. When s = 2, it is simply written
as ((N, K, d)).

Lemma 4 ([44]). (1) Let D be a difference matrix Dt(m, n, s) and L be an OA(r, N, s, t) for
t = 2, 3. Then D⊕ L is an OA(mr, nN, s, t);

(2) Let D be a difference matrix Dt(m, n, s) with t ≥ 2. Then D⊕ (s) is an OA(ms, n, s, t).

Lemma 5 ([36]). (Expansive replacement method). Suppose A is an OA of strength t with column
1 having s levels and that B also is an OA of strength t with s rows. After making a one-to-one
mapping between the levels of column 1 in A and the rows of B, if each level of column 1 in A is
replaced by the corresponding row from B, we can obtain an OA of strength t.

Lemma 6 ([42]). If s ≥ 2 is a prime power then an OA(st, s + 1, s, t) of index unity exists
whenever s ≥ t− 1 ≥ 0.

3. Main Results

This section presents some new methods for the construction of QECCs. We begin
with a link between OAs and QECCs. There exists a perfect match between the parameters
of an OA(r, N, s, t), A, with an orthogonal partition {A1, A2, . . . , AK} of strength t1 and the
parameters of an ((N, K, d))s QECC, which is listed in Table 1.

Table 1. Correspondence between parameters of OAs and QECCs.

OAs QECCs

N Number of factors Length of code

K Number of partitioned blocks Dimension of code

d min{t1 + 1, MD(A)} MD of code

s Number of levels alphabet size

The construction method for a QECC Q with parameter ((N, K, d)) is summarized in
the following Algorithm 1.
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Algorithm 1 (OA-QECCs method) OA algorithm for construction of binary QECCs.
Step 1. Find an OA(r, N, 2, t) with minimal distance d′ and an orthogonal partition
{A1, A2, . . . , AK} of strength t1 by a difference scheme or a space ZN

2 ;
Step 2. Let d = min{d′, t1 + 1}. Give logical codewords ϕ1, . . . , ϕK, where ϕi is a (d− 1)-
uniform state, by A1, A2, . . . , AK and Connection 1 in the Introduction;
Step 3. {ϕ1, . . . , ϕK} can be used as a base to form the QECC Q = ((N, K, d)).

Theorem 1. If t ≥ 2 and t is odd, then we can construct a ((t + 1, K, 2)) QECC for any integer
1 ≤ K ≤ 2t−1 including an optimal ((t + 1, 2t−1, 2)) code.

Proof. Step 1. Find an OA A with minimal distance d′ and an orthogonal partition
{A1, . . . , AK} of strength t1 by a difference scheme.

By Lemma 1, a difference scheme D = Dt(2t−1, t + 1, 2) exists for any odd integer

t ≥ 2. Take A = D⊕ (2). Due to Lemma 4, A is an OA(2t, t + 1, 2, t). Let D =

⎛⎜⎜⎜⎝
d1
d2
...

d2t−1

⎞⎟⎟⎟⎠.

Then Ai = di ⊕ (2) is also an IrOA(2, t + 1, 2, 1) for i = 1, 2, . . . , 2t−1. It follows from
Lemma 2 that MD(A) = 2 and MD(Ai) = t + 1;

Step 2. Let d = min{d′, t1 + 1}. Give logical codewords ϕ1, . . . , ϕK, where ϕi is a
(d− 1)-uniform state, generated by A1, A2, . . . , AK and Connection 1 in the Introduction.

Let K = 2t−1. By the relation between irredundant orthogonal arrays and uniform
states (Connection 1), {A1, A2, . . . , A2t−1} can generate 2t−1 one-uniform states
{ϕ1, ϕ2, . . . , ϕ2t−1};

Step 3. The uniform states ϕ1, . . . , ϕK are just the logical codewords of a QECC
Q = ((t + 1, 2t−1, 2)).

By Lemma 3 and Definition 5, Q is an optimal code.
Furthermore, if we take QK to be the subspace spanned by {ϕ1, . . . , ϕK} for integer

1 ≤ K ≤ 2t−1 − 1, then it is a ((t + 1, K, 2)) code.
In particular, for t = 1, taking |ϕ〉 = 1√

2
(|00〉 + |11〉) as a basis state, we have a

((2, 1, 2)) QECC.
Compared with the binary QECCs in [12], the ((N, K, 2)) QECCs obtained from

Theorem 1 for N = 4, 6, 8 have fewer terms for each basis state and more dimensions K
not necessarily equal to powers of 2. The comparison is put in Table 2, where “K” denotes
the dimension of QECCs and “No.” represents the number of terms for each basis state.

Table 2. Comparison of the obtained QECCs with those in [12].

The QECCs in [12] The QECCs by Theorem 1

((4, K, 2)) ((6, K, 2)) ((8, K, 2)) ((4, K, 2)) ((6, K, 2)) ((8, K, 2))

K 1, 2, 4 22, 23, 24 24, 25, 26 1, 2, 3, 4 1, 2, 3, . . ., 24 1, 2, 3, . . ., 26

No. 4, 4, 2 8, 4, 2 8, 4, 2 2, 2, 2, 2 2, 2, 2, . . .,2 2, 2, 2, . . ., 2

The following is about construction of QECCs with odd length N and minimum
distance 2.

Theorem 2. (1) When N ≡ 1 (mod 4), we can construct an ((N, K, 2)) QECC with

K = 1 + C2
N + C4

N + · · ·+ C
N−5

2
N + C

N−3
2

N−1;
(2) When N ≡ 3 (mod 4), there exists an ((N, K, 2)) QECC with K = 1 + C2

N + C4
N +

· · ·+ C
N−3

2
N .
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Proof. (1) ZN
2 has C0

N vectors with weight 0, C2
N vectors with weight 2, C4

N vectors with

weight 4, · · · , C
N−5

2
N vectors with weight N−5

2 , and C
N−3

2
N−1 vectors (with the first compo-

nent equal to 1) with weight 1 + N−3
2 . The above vectors are denoted by b1, b2, b3, . . . , bK,

where K = 1 + C2
N + C4

N + · · · + C
N−5

2
N + C

N−3
2

N−1. Let Ai = bi ⊕ (2) for 1 ≤ i ≤ K. Take

A =

⎛⎜⎜⎜⎝
A1
A2
...

AK

⎞⎟⎟⎟⎠. Then Ai and A are strength 1 orthogonal arrays and MD(A) = 2.

By Connection 1, {A1, A2, . . . , AK} can generate K one-uniform states, which form an or-
thogonal basis of a subspace Q of C2⊗N . By Lemma 3, Q is an ((N, K, 2)) QECC;

(2) By arguments similar to those used in the proof of (1), we can obtain the de-
sired QECC.

Theorem 3. Let L be an OA(r, N, 2, 2) with MD(L) ≥ 3. If there exist vectors b1, b2, . . . , bK
in ZN

2 satisfying HD(bi, bj) ≥ 3 and |HD(bi, bj) −HD(L)| ≥ 3 for i �= j, then there is an
((N, K, 3)) QECC.

Proof. Let Mi = 1r ⊗ bi + L for 1 ≤ i ≤ K. Take M =

⎛⎜⎜⎜⎝
M1
M2

...
MK

⎞⎟⎟⎟⎠. Both M and Mi are OAs

of strength two. Any two rows of M can be written as m1 = bi + l1, m2 = bj + l2, where
bi, bj ∈ {b1, b2, . . . , bK}, l1, l2 ∈ L.

(1) When i = j , l1 �= l2, HD(m1, m2) = MD(L) ≥ 3;
(2) When i �= j , l1 = l2, HD(m1, m2) = HD(bi, bj) ≥ 3;
(3) When i �= j and l1 �= l2, we have HD(m1, m2) ≥ HD(bi + l2, m2) − HD(bi +

l2, m1) or HD(m1, m2) ≥ HD(bi + l2, m1)−HD(bi + l2, m2), so HD(m1, m2) ≥ |HD(bi, bj)−
HD(L)| ≥ 3.

So MD(M) ≥ 3. By Connection 1, {M1, M2, . . . , MK} can generate K states, which form
an orthogonal basis of a subspace Q of C2⊗N. By Lemma 3, Q is an ((N, K, 3)) QECC.

Theorem 4. There exists a ((3p, 2p−n, 3)) QECC with 2n−1 ≤ p ≤ 2n − 1 for n ≥ 3. In
particular, for n = 2, we have a ((9, 2, 3)) code.

Proof. Let D = D(4, 3, 2) =

⎛⎜⎜⎝
0 0 0
0 0 1
0 1 0
0 1 1

⎞⎟⎟⎠ be a difference scheme of strength 2. Take

L0 = ((2)⊗ 12n−1 , 12 ⊗ (2)⊗ 12n−2 , . . . , 12n−1 ⊗ (2), L′) is an OA(2n, p, 2, 2) for 2n−1 ≤ p ≤
2n − 1 with n ≥ 3 and Li = ((2)⊗ 12n−1 , 12 ⊗ (2)⊗ 12n−2 , . . . , 12n−1 ⊗ (2), L′ + (12n ⊗ Ri))

where Ri is the ith row of Zp−n
2 for i = 1, 2, 3, . . . , 2p−n. Then {L1, L2, . . . , L2p−n} is an

orthogonal partition of strength 2 of Zp
2 . Let

M =

⎛⎜⎜⎜⎝
D⊕ L1
D⊕ L2

...
D⊕ L2p−n

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
M1
M2

...
M2p−n

⎞⎟⎟⎟⎠,

By Lemma 4, Mi = D⊕ Li is an OA of strength 2. Any two rows of Mi can be written as
m1 = d1 ⊕ l1, m2 = d2 ⊕ l2, where d1, d2 ∈ D, l1, l2 ∈ Li.

(1) When d1 = d2, HD(m1, m2) = 3 ·HD(l1, l2) ≥ 3;
(2) When l1 = l2, HD(m1, m2) = p ·HD(d1, d2) ≥ 3;
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(3) When d1 �= d2 and l1 �= l2, we have

HD(m1, m2) = (3−HD(d1, d2)) ·HD(l1, l2) + (p−HD(l1, l2)) ·HD(d1, d2) ≥ 3.

So MD(Mi) ≥ 3.
Since M can be written as D(4, 3, 2)⊕Z

p
2 after row permutation, M is an OA of strength

2. Similarly, we also have MD(M) ≥ 3. By Connection 1, {M1, M2, . . . , M2p−n} can generate
2p−n states, which form an orthogonal basis of a subspace Q of C2⊗3p. By Lemma 3, Q is a
((3p, 2p−n, 3)) QECC.

Especially, when n = 2 and p = 3, a ((9, 2, 3)) QECC exists with logical codewords:
|ϕ1〉 = 1

4 (|000000000〉 + |011011011〉 + |101101101〉 + |110110110〉 + |000000111〉 +
|011011100〉 + |101101010〉 + |110110001〉 + |000111000〉 + |011100011〉 + |101010101〉 +
|110001110〉+ |000111111〉
+ |011100100〉+ |101010010〉+ |110001001〉),

|ϕ2〉 = 1
4 (|001001001〉 + |010010010〉 + |100100100〉 + |111111111〉 + |001001110〉 +

|010010101〉 + |100100011〉 + |111111000〉 + |001110001〉 + |010101010〉 + |100011100〉 +
|111000111〉+ |001110110〉
+ |010101101〉+ |100011011〉+ |111000000〉).

The code is pure, but neither the 9 qubit Shor code in [1] nor the 9 qubit Ruskai code
in [11] are pure.

Theorem 5. There exists a ((4p, 2p−n+1, 3)) QECC with 2n−1 ≤ p ≤ 2n − 1 for n ≥ 3. In
particular, for n = 2, we have a ((12, 4, 3)) code.

Proof. Take D0 = D(4, 4, 2) =

⎛⎜⎜⎝
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

⎞⎟⎟⎠ and D1 = D(4, 4, 2) =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1

⎞⎟⎟⎠.

Then {D0, D1} is a partition of strength 2 of the difference scheme D(8, 4, 2) = (08,Z3
2). For

2n−1 ≤ p ≤ 2n − 1 and n ≥ 3, let

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0 ⊕ L1
...

D0 ⊕ L2p−n

D1 ⊕ L1
...

D1 ⊕ L2p−n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1
...

M2p−n

M2p−n+1
...

M2p−n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where L1, L2, . . . , L2p−n are as in Theorem 5. Similar arguments in Theorem 2 apply to M,
we can obtain the desired QECCs.

Especially, when n = 2 and p = 3, a ((12, 4, 3)) code can be attained.

Theorem 6. There exists a ((4p, 2p−n+1, 4)) QECC with 2n−2 + 1 ≤ p ≤ 2n−1 for n ≥ 4. In
particular, for n = 3, we have a ((16, 4, 4)) code.

Proof. Let D0 = D3(4, 4, 2) =

⎛⎜⎜⎝
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

⎞⎟⎟⎠ and D1 = D3(4, 4, 2) =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1

⎞⎟⎟⎠.

Then {D0, D1} is a partition of strength 2 of the difference scheme D(8, 4, 2) = (08,Z3
2). Take

L0 = ((2)⊗ 12n−1 , 12 ⊗ (2)⊗ 12n−2 , . . . , 12n−1 ⊗ (2), L′) is an OA(2n, p, 2, 3) for 2n−2 + 1 ≤
p ≤ 2n−1 with n ≥ 4 and Li = ((2)⊗ 12n−1 , 12⊗ (2)⊗ 12n−2 , . . . , 12n−1 ⊗ (2), L′+ (12n ⊗ Ri))
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where Ri is the ith row of Zp−n
2 for i = 1, 2, 3, . . . , 2p−n. Then {L1, L2, . . . , L2p−n} is an

orthogonal partition of strength 3 of Zp
2 . Let

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0 ⊕ L1
...

D0 ⊕ L2p−n

D1 ⊕ L1
...

D1 ⊕ L2p−n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1
...

M2p−n

M2p−n+1
...

M2p−n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Similar arguments in Theorem 5 apply to M, we can obtain the desired QECCs.
Especially, when n = 3 and p = 4, a ((16, 4, 4)) code exists.

Theorem 7. Suppose LN denotes an OA(r, N, 2, t). Let Y = (02 ⊕ LN1 , (2) ⊕ LN−N1). If
MD(Y) ≥ t + 1, then an ((N, 2, t + 1)) QECC exists.

Proof. Let Yi = (LN1 , i + LN−N1) for i = 0, 1. Thus Y =

(
Y0
Y1

)
. Obviously, Yi is an

OA(r, N, 2, t) and Y is an OA(2r, N, 2, t). If MD(Y) ≥ t+ 1, then MD(Yi) ≥ MD(Y) ≥ t+ 1.
From Lemma 3, there exists an ((N, 2, t + 1)) QECC.

Theorem 8. Let L be an OA(r, N, 2, t) with MD(L) ≥ t + 1. If there exist vectors b1, b2, . . . , bK

in ZN
2 such that MD

⎛⎜⎜⎜⎝
1r ⊗ b1 + L
1r ⊗ b2 + L

...
1r ⊗ bK + L

⎞⎟⎟⎟⎠ ≥ t + 1, then there is an ((N, K, t + 1)) QECC.

Proof. Let M =

⎛⎜⎜⎜⎝
M1
M2

...
MK

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1r ⊗ b1 + L
1r ⊗ b2 + L

...
1r ⊗ bK + L

⎞⎟⎟⎟⎠. Obviously, Mi is an OA(r, N, 2, t) and

MD(M) ≥ t + 1. From Lemma 3, there exists an ((N, K, t + 1)) QECC.

Theorem 9. There exists a ((2(md + 1)(d− 1), 1, d)) QECC for any integer d ≥ 5, where md is
the integer that satisfies 2md−1 + 2 ≤ d ≤ 2md + 1. Especially, for d = 3, 4, we have three QECCs
((6, 1, 3)), ((8, 1, 4)) and ((10, 1, 4)).

Proof. Let s = 2md+1. From Lemma 6, an OA(sd−1, s + 1, s, d − 1) exists. Obviously,
s + 1 ≥ 2d, then an OA(sd−1, 2(d− 1), s, d− 1) exists and is denoted by A. From Lemma 2,
MD(A) = d. Replacing the s levels, 0, 1, . . . , s− 1, by distinct rows of Zmd+1

2 respectively, we
can get an IrOA(2(md+1)(d−1), 2(d− 1)(md + 1), 2, d− 1) . By Lemma 3, a ((2(d− 1)(md +
1), 1, d)) QECC exists.

Especially, when d = 3, 4, by using Lemma 3 and IrOA(8, 6, 2, 2), IrOA(16, 8, 2, 3), and
IrOA(24, 10, 2, 3), three QECCs ((6, 1, 3)), ((8, 1, 4)), ((10, 1, 4)) can be obtained.

Corollary 1. For any d ≥ 5, let md be the integer satisfying 2md−1 + 2 ≤ d ≤ 2md . Then an
((nd, 1, d)) QECC exists for 2(d− 1)(md + 1) ≤ nd ≤ 2d(md + 1)− 1. In particular, a QECC
((n′d, 1, 2md + 1)) exists for (2md+1)(md + 1) ≤ n′d ≤ (2md+1 + 1)(md + 1).

Proof. Let s = 2md+1. From Lemma 6, an OA(sd−1, s + 1, s, d − 1) exists. Obviously,
B=OA(sd−1, 2d, s, d − 1) exists since s + 1 ≥ 2d. From Lemma 2, MD(B) = d + 2. By
using the replacement method in Theorem 9, we can get C=OA(sd−1, 2d(md + 1), 2, d− 1).
Removing the last 1, 2, . . . , 2md + 2 columns from C, we can get an OA(sd−1, nd, 2, d− 1)
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with MD≥ d for 2(d − 1)(md + 1) ≤ nd ≤ 2d(md + 1) − 1. By Lemma 3, the desired
((nd, 1, d)) QECC exists.

Similarly, from the OA(sd−1, s + 1, s, d− 1), we can obtain an OA(sd−1, (s + 1)(md +
1), 2, d− 1). Then removing the last 0, 1, . . . , md + 1 columns, we can have the desired result
by Lemma 3.

4. Examples

In this section, we use examples to illustrate applications of theorems.

Example 1. Construction of a ((4, K, 2)) QECC for any integer 1 ≤ K ≤ 4.

Let t = 3 in Theorem 1. Take D3(4, 4, 2) =

⎛⎜⎜⎝
d1
d2
d3
d4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1

⎞⎟⎟⎠, A =

D3(4, 4, 2) ⊕ (2) and Ai = di ⊕ (2) for 1 ≤ i ≤ 4. Then Ai (1 ≤ i ≤ 4) can produce four
states, ϕ1 = 1√

2
(|0001〉 + |1110〉), ϕ2 = 1√

2
(|0010〉 + |1101〉), ϕ3 = 1√

2
(|0100〉 + |1011〉),

ϕ4 = 1√
2
(|0111〉+ |1000〉), which form an orthogonal basis of a subspace Q in C2⊗4. Therefore,

Q is an optimal ((4, 4, 2)) QECC which can be found in [7].
Furthermore, if taking QK to be the subspace spanned by {ϕ1, . . . , ϕK} for 1 ≤ K ≤ 3, then

we obtain a ((4, K, 2)) QECC.

The QECCs in Example 1 are different from and particularly when K = 1, 2, have less
number of items for every basis state than those codes in [12]. To be self-contained, the
((4, K, 2)) QECCs for K = 1, 2, 4 in [12] are provided as follows.

((4, 1, 2)): |φ〉 = 1
2 (|0000〉+ |1100〉+ |0011〉+ |1111〉).

((4, 2, 2)): |φ1〉 = 1
2 (|0000〉+ |1010〉+ |0101〉 + |1111〉), |φ2〉 = 1

2 (|0011〉+ |1001〉+
|0110〉+ |1100〉).

((4, 4, 2)): |φ1〉 = 1√
2
(|0000〉+ |1111〉), |φ2〉 = 1√

2
(|0011〉+ |1100〉), |φ3〉 = 1√

2
(|1010〉+

|0101〉), |φ4〉 = 1√
2
(|0110〉+ |1001〉).

Comparison of the method of code construction with [7].
Both methods can take any classical code to a quantum code. The method proposed

in [7] can make it by solving for the amplitudes in the superposition. Since any classical
code (N, m, d′) is an OA(m, N, 2, t), the method in this paper can produce a quantum code
((N, 1, d′′)) which is also a (d′′ − 1)-uniform state where d′′ = min{d′, t + 1} from Connec-
tion 1. Moreover, if the OA(m, N, 2, t) with an orthogonal partition {A1, A2, . . . , AK} of
strength t1, this method can produce a quantum code ((N, K, d)) where d = min{d′, t1 + 1}.

The amplitudes in the superposition for each logical codeword are all equal to
√

m
K . For

example, the code ((4, 4, 2)) in Example 1 after it is normalized is the same as the one
constructed using the method proposed in [7]. It is noteworthy that in Example 1 if taking

D =

⎛⎜⎜⎝
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

⎞⎟⎟⎠, then we can construct a stabilizer code with parameter ((4, 4, 2))

whose logical codewords are ϕ1 = 1√
2
(|0000〉+ |1111〉), ϕ2 = 1√

2
(|0011〉+ |1100〉), ϕ3 =

1√
2
(|0101〉+ |1010〉), ϕ4 = 1√

2
(|0110〉+ |1001〉).

Example 2. (1) For N = 5, take b1 = (00000), b2 = (11000), b3 = (10100), b4 = (10010), and
b5 = (10001). Let Ai = bi ⊕ (2) for 1 ≤ i ≤ 5. Then Ai (1 ≤ i ≤ 5) can produce five states. By
Theorem 2, Q is a ((5, 5, 2)) QECC;

(2) For N = 7, take b1 = (0000000), b2 = (0000011), b3 = (0000101), b4 = (0000110),
b5 = (0001001), b6 = (0001010), b7 = (0001100), b8 = (0010001), b9 = (0010010),
b10 = (0010100), b11 = (0011000), b12 = (0100001), b13 = (0100010), b14 = (0100100),
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b15 = (0101000), b16 = (0110000), b17 = (1000001), b18 = (1000010), b19 = (1000100),
b20 = (1001000), b21 = (1010000), b22 = (1100000). Let Ai = bi ⊕ (2). Then Ai (1 ≤ i ≤ 22)
can produce 22 states. With Theorem 2, they yield a ((7, 22, 2)) QECC.

Example 3. Construction of a ((7, 2, 3)) QECC.
Let r = 8 and N = 7 in Theorem 3. The two vectors b1 = (0000000) and b2 = (1111111)

can be used to construct a ((7, 2, 3)) QECC whose basis states are:
|ϕ1〉 = 1

2
√

2
(|0000000〉+ |0010111〉+ |0101011〉+ |0111100〉+ |1001101〉+ |1011010〉+

|1100110〉+ |1110001〉) and
|ϕ2〉 = 1

2
√

2
(|1111111〉+ |1101000〉+ |1010100〉+ |1000011〉+ |0110010〉+ |0100101〉+

|0011001〉+ |0001110〉).
This is in fact equivalent to the Steane code. It can correct one error such as e = I2 ⊗ I2 ⊗

I2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ σx, I2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ σy ⊗ I2 and so on.

Example 4. Construction of a ((3p, 2p−n, 3)) QECC with 2n−1 ≤ p ≤ 2n − 1 for n = 3, 4.
(1) Let n = 3, p = 4, 5, 6, 7 in Theorem 4. We can obtain QECCs ((12, 2, 3)), ((15, 4, 3)),

((18, 8, 3)), ((21, 16, 3));
(2) Let n = 4, p = 8, 9, . . . , 15 in Theorem 4. One gets QECCs ((24, 16, 3)), ((27, 32, 3)),

. . ., ((45, 211, 3)).

Example 5. Construction of a ((4p, 2p−n+1, 4)) QECC with 2n−2 + 1 ≤ p ≤ 2n−1 for n = 4, 5.
For the case n = 4 and 22 + 1 ≤ p ≤ 23, Theorem 6 produces QECCs ((20, 4, 4)), ((24, 8, 4)),

((28, 16, 4)), ((32, 32, 4)).
For the case n = 5 and 23 + 1 ≤ p ≤ 24, Theorem 6 yields QECCs ((36, 32, 3)), ((40, 64, 3)),

. . ., ((64, 212, 4)).

Example 6. For N = 23 and N1 = 16, take L23 = (a1, . . . , a23) to be the OA(2048, 23, 2, 6) (the
first 2048 runs and the first 23 columns from OA(4096, 24, 2, 7) in [45]). Let
L16 = (a1, a2, . . . , a16) and L7 = (a17, a18, . . . , a23). Then MD(Y) = 7. Theorem 7 yields a
((23, 2, 7)) QECC.

Example 7. For r = 512 and N = 23, take L to be the OA(512, 23, 2, 4) (the first 512
runs and the first 23 columns from OA(1024, 24, 2, 5) in [45]). We can get b1, b2, . . . , b9 ∈
Z23

2 that satisfies the conditions in Theorem 8 where b1 = (00000000000000000000000),
b2 = (11111111111111111111111), b3 = (00000000000000000111011),
b4 = (00000000000000011011101), b5 = (00000000000001010000111),
b6 = (00000000000001101001011), b7 = (00000000000011110011110),
b8 = (00000000000110010001010), b9 = (00000000001100110111110). Then we can con-
struct a ((23, 9, 5)) QECC.

Example 8. Comparison of the ((10, 1, 4)) QECCs in Theorem 9, [12,46].
The new quantum state in the QECC ((10, 1, 4)) in Theorem 9 has 24 terms. The quantum

state in the QECC ((10, 1, 4)) in [12] has 1024 terms. The quantum state in the QECC ((10, 1, 4))
in [46] with the follow stablizer matrix G has 512 terms where

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1100110000 | 1111110000
0110011000 | 0111111000
0011001100 | 0011111100
0001100110 | 0001111110
0000110011 | 0000111111
1111110000 | 0011000000
0111111000 | 0001100000
0011111100 | 0000110000
0001111110 | 0000011000
0000111111 | 0000001100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Compared with the above two codes, it is clear that our construction method has the advantage
of a small number of terms.

Example 9. Some new QECCs with larger minimum distance by Corollary 1.
Let d = 94. Then md = 7 and we have an ((nd, 1, 94)) QECC for 1488 ≤ nd ≤ 1503.
Let d = 66. Then md = 7 and we have an ((nd, 1, 66)) QECC for 1040 ≤ nd ≤ 1055.
Let d = 41. Then md = 6 and we have an ((nd, 1, 41)) QECC for 560 ≤ nd ≤ 573.
Let d = 23. Then md = 5 and we have an ((nd, 1, 23)) QECC for 264 ≤ nd ≤ 275.
Let d = 129. Then md = 7 and we have an ((n′d, 1, 129)) QECC for 2048 ≤ n′d ≤ 2056.
Let d = 33. Then md = 5 and we have an ((n′d, 1, 33)) QECC for 384 ≤ n′d ≤ 390.

5. Conclusions

In the work, by using OAs, we study the relation between uniform states and binary
QECCs. Several methods for constructing QECCs from OAs are presented. Some optimal
QECCs are obtained. Our methods have three advantages. The first is to be able to
construct an ((N, K1, d)) QECC from each ((N, K, d)) QECC we construct for arbitrary
integer 1 ≤ K1 ≤ K. The second is that Theorems 1 and 7–9 can be generalized to construct
QECCs ((N, K, d))q for arbitrary d and a prime power q. The third is that for the constructed
QECCs, their every basis state has less than or equal to terms compared with the existing
binary QECCs in [41] and [12]. A link between an IrOA and the uniform state is established
by Connection 1. In fact, from Theorem 1 to Theorem 9 we always make quantum codes
by using uniform states generated by orthogonal partitions. On the other hand, when a
quantum code is pure we can easily obtain uniform states. For example, each of the logical
codewords in the quantum code ((4, 4, 2)) in [7] is a one-uniform state. When it is not pure
it is worth studying how to use quantum codes to make uniform states. In the future, we
will also investigate constructing more optimal QECCs with d > 2.
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Abstract: Solving linear systems of equations is one of the most common and basic problems in
classical identification systems. Given a coefficient matrix A and a vector b, the ultimate task is to find
the solution x such that Ax = b. Based on the technique of the singular value estimation, the paper
proposes a modified quantum scheme to obtain the quantum state |x〉 corresponding to the solution
of the linear system of equations in O(κ2√rpolylog(mn)/ε) time for a general m× n dimensional
A, which is superior to existing quantum algorithms, where κ is the condition number, r is the rank
of matrix A and ε is the precision parameter. Meanwhile, we also design a quantum circuit for the
homogeneous linear equations and achieve an exponential improvement. The coefficient matrix
A in our scheme is a sparsity-independent and non-square matrix, which can be applied in more
general situations. Our research provides a universal quantum linear system solver and can enrich
the research scope of quantum computation.

Keywords: system identification; linear systems of equations; quantum algorithm; time complexity

1. Introduction

System identification [1–3] is a common method to determine the mathematical model
describing the behavior of classical systems. Thus, the future evolution of the system can be
predicted through the identified system model, which is widely applied to common weather
forecast, flood forecast, market trend, etc. The traditional system identification method,
namely the classical identification method, mainly includes least squares method [4],
impulse response method and maximum likelihood method [5,6]. Existing studies [2,3]
found that solving linear systems of equations is the basis of system identification problems.
In fact, not only system identification problems, the application of linear equations involves
various fields of science and engineering, including machine learning [7], partial differential
equations [8], classic control system, and so on. Therefore, solving linear systems of
equations for general matrices is of great significance.

Due to the importance of linear systems of equations in various fields, the solution
of linear equations has become an enduring issue, and many algorithms derived there-
from. The classical solvers mainly include: matrix elimination method [9] and Kaczmarz
method [10]. The most famous one of the former is the Gaussian elimination method,
which is often used to solve small linear systems of equations and is suitable for a general
coefficient matrix. The Kaczmarz method is generally more practical in the field of large-
scale linear equations. The running time for these classical solvers scales as O(n3), where n
is the size of the matrix, which will cost a lot of computing resources in solving large-scale
linear systems. However, quantum computation [11–13] is capable of greatly reducing the
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time complexity for matrix operation and numerical calculation, which can be regarded as
a promising attempt as a computing tool to improve the identification efficiency.

Quantum computation is an emerging computing technology that regulates quantum
information units to perform high-efficiency calculations based on the laws of quantum
mechanics, including coherent superposition and entanglement [14]. In 1994, Shor proposed
the algorithm for prime factorization [15] with exponential acceleration over classical
algorithms, which shows the potential of quantum computation for the first time. Since then,
quantum computation has reached an era of rapid development. In recent years, scholars
have also made significant progress in quantum algorithm research, including Grover
algorithm [16], quantum simulation [17–19], duality algorithm [20–22], linear systems
of equations solver [23–25], matrix multiplication algorithm [26,27], and so on. For the
high-dimensional linear systems of equations, there have been breakthroughs in the field of
quantum computation. In 2009, Harrow, Hassidim and Lloyd [23] proposed the quantum
linear system algorithm (HHL) to obtain the quantum state |x〉 = |A−1b〉 corresponding
to the solution of Ax = b in time O(poly log(n)), where the sparse matrix A ∈ Rn×n and
x, b ∈ Rn, which can improve the computational efficiency with an exponential speed-
up over classical algorithms. The HHL algorithm is of great significance in the field of
quantum information processing and has a wide range of applications in big data, machine
learning, numerical computing and other scenarios. In 2018, Wossnig et al. [28] proposed
a sparsity-independent quantum linear system algorithm (QLSA) based on a quantum
singular value estimation algorithm (QSVE). After that, Shao and Xiang [29] modified
the QSVE algorithm to adapt to the non-Hermitian case. Current algorithms for linear
systems have been widely applied in the emerging research area of quantum information
processing. However, existing quantum algorithms have different restrictions on matrix A,
such as the most typical one of HHL algorithm, which requires A to be a sparse Hermitian
matrix so that the unitary transformation eiAt [30,31] can be realized in a constant time. At
present, the quantum algorithm suitable for arbitrary linear system of equations has not
been fully studied.

Without loss of generality, existing quantum algorithms assumed that the coefficient
matrix A is Hermitian as it is well known that the general case can be reduced to the
Hermitian case by embedding a general rectangular matrix M into a block antidiagonal
Hermitian matrix with the elements of M† and M in the lower and upper half, respec-
tively [28]. Different from previous algorithms, we proposed a modified quantum scheme
to solve the cases of general matrices directly, which can reduce the time complexity of
solving the linear system of equations. Moreover, it may not be easy to expand A into a
Hermitian matrix when A is given as quantum information. However, our scheme does not
need such expansion and works well on the original non-Hermitian matrix, and hence it
can be implemented more efficiently. Based on this idea, this paper considers three cases of
the solution of linear systems and proposes a quantum linear system algorithm for general
matrices, where A is not required to be sparse or square, which can effectively improve
the computational efficiency and expand the application range of quantum computation.
For the homogeneous linear equations, we design the corresponding quantum circuit to
ensure the completeness of the solution, which supplies exponential speed-up over clas-
sical algorithms. Meanwhile, we modify the quantum phase estimation (QPE) circuit to
determine the sign of the phase by setting a sign qubit, which can be widely applied to
various quantum algorithms.

The rest of our paper is organized as follows. Section 2 analyzes a general model of
classical identification system based on semi-tensor product and shows the detailed process
of our quantum algorithms. In Section 3, we make a time complexity comparison between
existing algorithms and our algorithms. Then, we perform a numerical simulation to clarify
the process of quantum algorithm in Section 4. Finally, we conclude in Section 5.

182



Entropy 2022, 24, 893

2. Quantum Algorithms for System Identification

2.1. The Classical System Identification Problem

Consider a general discrete model of system identification as follows:

x(i + 1) = Ax(i) + Bu(i) (1)

where x(i) is an n dimensional system state of the i-th sampling, u(i) is the input with
dimension m, A is an n × n system matrix and B is an n × m matrix. The goal of sys-
tem identification is to estimate the matrices A and B from a set of inputs {u(i)} and
states {x(i)}.

System identification problems can be expressed in terms of the semi-tensor product
method [32]. As a kind of special matrix multiplication, the semi-tensor product generalizes
the ordinary matrix multiplication to the general case. T⊗ S denotes the Kronecker product
of matrices Tm×n and Sp×q, which is expressed as

T ⊗ S =

⎡⎢⎢⎢⎣
t1,1S t1,2S · · · t1,nS
t2,1S t2,2S · · · t2,nS

...
...

...
...

tm,1S tm,2S · · · tm,nS

⎤⎥⎥⎥⎦ (2)

Just as a computational tool for solving the model, T � S denotes the semi-tensor
product of matrices T and S:

T � S = (T ⊗ Il/n)(S⊗ Il/p) (3)

where l =lcm(n, p) is the least common multiple of n and p. The semi-tensor product is the
generalization of matrix multiplication. When n = p, there are l = n = p and T � S = TS.

Define VC(S) =

⎡⎢⎢⎢⎣
s1
s2
...

sn

⎤⎥⎥⎥⎦, where si is the ith column vector of the matrix S. Therefore,

we may estimate A and B from a set of u(i) and x(i).

x(i + 1) = Ax(i) + Bu(i)

=

⎡⎢⎣ a11x1(i) + · · ·+ a1nxn(i)
...

an1x1(i) + · · ·+ annxn(i)

⎤⎥⎦+

⎡⎢⎣ b11u1(i) + · · ·+ b1mum(i)
...

bn1u1(i) + · · ·+ bnmum(i)

⎤⎥⎦
= x(i)T ⊗ In ·VC(A) + u(i)T ⊗ In ·VC(B)

= x(i)T
� VC(A) + u(i)T

� VC(B)

= (x(i)T , u(i)T)�

[
VC(A)
VC(B)

]
(4)

where x(i)T is a 1× n matrix and VC(A) is an n2 × 1 matrix. According to Equation (3), the
least common multiple lcm(n, n2) = n2, and x(i)T � VC(A) = (x(i)T ⊗ In)(VC(A)⊗ I1).

Suppose there are N + 1 observed samples, and

W =

⎡⎢⎣ x(2)
...

x(N + 1)

⎤⎥⎦, H =

⎡⎢⎣ x(1)T , u(1)T

...
x(N)T , u(N)T

⎤⎥⎦, Y =

[
VC(A)
VC(B)

]
. (5)
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Then we have
H�Y = W

⇓
(H⊗In)Y = W

(6)

The Equation (6) is a linear system of equations, and the task is to find the solution Y. In the
Equation (6), H⊗ In is an Nn× (m + n)n matrix, where n is the dimension of system states,
m is the dimension of the input, and N is the number of samples. For the high-dimensional
identification system, the time complexity of classical algorithms is enormous and existing
quantum algorithms can not directly solve the non-square linear systems of equations.
In order to reduce the cost of computing resources, it is necessary to propose a quantum
algorithm for general linear equations.

2.2. The Quantum Linear System Algorithm for General Matrices

Inspired by the singular value estimation algorithm [23,28,29], we propose a quantum
algorithm for general linear systems of equations as follows.

Given a general linear equation Ax = b, the singular value decomposition is

A = ∑
i

σiμiν
T
i (7)

where A ∈ Rm×n, x ∈ Rn and b ∈ Rm, σi is the singular value of A, μi ∈ Rm and νi ∈ Rn

are the left and right singular vectors, and μT
i μi = νT

i νi = 1, μT
i μj = νT

i νj = 0(i �= j).
Let the rank of A be r(r ≤ m, n) and the rank of [A b] be q; the relation between the

solution vector x of Ax = b and the r, q is:⎧⎨⎩
approximate solution x̂, r = n and r < q
unique solution x, r = n = q
general solution x̄, r < n.

(8)

The linear system of equations Ax = b can be solved by a mathematical optimization
technique of minimizing the sum of squares of errors between the solution and the actual
data, which is the so-called least squares method

e = ‖Ax− b‖2 (9)

In the Equation (7), {μi} ∈ Rm and {νi} ∈ Rn are a set of basis in m and n dimensional
spaces. Therefore, x and b can be expressed as x = ∑n

i αiνi, b = ∑m
i βiμi, and

e = ‖Ax− b‖2

=

∥∥∥∥∥ r

∑
i=1

σiμiν
T
i

n

∑
i=1

αiνi −
m

∑
i=1

βiμi

∥∥∥∥∥
2

=

∥∥∥∥∥ r

∑
i=1

(σiαi − βi)μi −
m

∑
i=r+1

βiμi

∥∥∥∥∥
2

=
r

∑
i=1

(σiαi − βi)
2 +

m

∑
i=r+1

β2
i

(10)

When αi = βi/σi, em = min ‖Ax− b‖2 = ∑m
i=r+1 β2

i .
Note that when r < n, αi(i = r + 1, . . . , n) is not assigned, and the equation Ax = b

has infinitely many solutions. In engineering, we usually want to find out the lowest energy
solution state x with 〈x|x〉minimality, that is{

αi = βi/σi, i ∈ [1, r]
αi = 0, i ∈ [r + 1, n]

(11)
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The goal is to convert the state b = ∑m
i=1 βiμi to x = ∑r

i=1 βi/σiνi, whose detailed
quantum process of our scheme is described as follows.

The following mappings to access to the data structure can be performed in
O(polylog(mn)) time.

UP : |ξ〉|0〉 = ∑ ξi|i〉|0〉 → ∑ ξi|i, Ai〉
UQ : |0〉|ξ〉 = ∑ ξ j|0〉|j〉 → ∑ ξ j|AF, j〉 (12)

The data structure is based on an array of binary trees, each binary tree contains enough
leaves that store the squared amplitudes of the corresponding matrix entry, which can be
found in [28,33] with a detailed description of such a binary tree memory structure. In
order to facilitate mathematical operation, we define two degenerate operators P and Q that
operate only on valid input information |ξ〉, where the dimension of the input state |ξ〉|0〉
is reduced to the dimension of valid information |ξ〉, so P and Q are called degenerate
operators. The maps P and Q append an arbitrary input state |ξ〉 to a register that encodes:

P : |ξ〉 = ∑ ξi|i〉 → ∑ ξi|i, Ai〉 = |Pξ〉
Q : |ξ〉 = ∑ ξ j|j〉 → ∑ ξ j|AF, j〉 = |Qξ〉 (13)

where |i, Ai〉 = 1
‖Ai‖ ∑n

j=1 Aij|i, j〉 and |AF, j〉 = 1
‖A‖F

∑m
i=1 ‖Ai‖|i, j〉. Thatis, P = ∑m

i=1 |i〉|Ai〉〈i|
and Q = ∑n

j=1 |AF〉|j〉〈j|.
Based on the above definition, it is easy to obtain (P†Q)ij = 〈i, Ai|AF, j〉 =

Aij
‖AF‖ .

Similarly, it follows that P and Q have orthonormal columns and thus P†P = Im and
Q†Q = In. Let S = (2PP† − I)(2QQ† − I), when m = n, we can obtain

SQ|νi〉 = 2σi
‖A‖F

P|μi〉 −Q|νi〉

SP|μi〉 = (
4σ2

i
‖A‖2

F
− 1)P|μi〉 − 2σi

‖A‖F
Q|νi〉

(14)

The eigenvalues of S are e±2πiϕi , and the corresponding eigenvectors are ω±i |w±i 〉 =
−P|μi〉+ e∓2πiϕi Q|νi〉, where ϕi is the phase of eigenvalues and ω±i is the norm of eigen-
vectors. Then, it can be obtained

Q|νi〉 = 1
2i sin(πϕi)

(ω+
i |w+

i 〉 −ω−i |w−i 〉)

P|μi〉 = 1
2i sin(πϕi)

(eπiϕi ω+
i |w+

i 〉 − e−πiϕi ω−i |w−i 〉)
(15)

Through phase rotation, the process of ∑n
i=1 βi|μi〉 �→ ∑n

i=1 βi|νi〉 is achievable [28,29]. It
is worth noting that the above step is avoidable for the case of the coefficient matrix A
being Hermitian. At this point, the singular value decomposition is A = ∑i σiμiμ

T
i , and

the task is to convert |b〉 = ∑i βi|μi〉 to the solution |x〉 = ∑i βi/σi|μi〉 such that Ax = b.
However, for the case of non-Hermitian, it is necessary to realize the transformation of
quantum states |μi〉 to |νi〉.

For a general linear system of equations with m �= n, the above derivation will have some
changes. For i ∈ [1, r], Equations (14) and (15) are valid. While i > r, A|νi〉 = 0, A†|μi〉 = 0,
and we can obtain

SQ|νi〉 = (2PP† − I)(2QQ† − I)Q|νi〉
= (2PP† − I)Q|νi〉
=

2
‖A‖F

PA|νi〉 −Q|νi〉
= −Q|νi〉,

(16)
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and
SP|μi〉 = (2PP† − I)(2QQ† − I)P|μi〉

= (2PP† − I)(
2

‖A‖F
QA†|μi〉 − P|μi〉)

= (2PP† − I)(−P|μi〉)
= −P|μi〉.

(17)

At this point, e2πiϕi = −1 is the eigenvalue of S, that is, ϕi = ±1/2, and the corresponding
eigenvectors are Q|νi〉 and P|μi〉. In order to achieve |b〉 = ∑m

i=1 βi|μi〉 = ∑r
i=1 βi|μi〉 +

∑m
i=r+1 βi|μi〉 �→ |x〉 = ∑r

i=1 βi/σi|νi〉, we first need to eliminate the formula ∑m
i=r+1 βi|μi〉.

Based on these definitions, we show the basic procedure of our algorithm:

1. Preparing the initial quantum state |b〉 = Σm
i=1bi|i〉, which can be represented as:

|b〉 =
m

∑
i=1

βi|μi〉 (18)

2. Apply P in the initial state |b〉

P|b〉 =
m

∑
i=1

βiP|μi〉

=
r

∑
i=1

βi
2i sin(πϕi)

(eπiϕi ω+
i |w+

i 〉 − e−πiϕi ω−i |w−i 〉) +
m

∑
i=r+1

βiP|μi〉
(19)

3. Perform phase estimation on input P|b〉 for S = (2PP† − I)(2QQ† − I), as shown in
Figure 1, then we obtain the following state

r

∑
i=1

βi
2i sin(πϕi)

(eπiϕi ω+
i |w+

i , ϕi〉 − e−πiϕi ω−i |w−i ,−ϕi〉) +
m

∑
i=r+1

βiP|μi〉| ± 1
2
〉, (20)

where e2πiϕi is the eigenvalue of S and | 12 〉 = |01000 . . .〉, | − 1
2 〉 = |11000 . . .〉.

Figure 1. The modified quantum circuit for phase estimation. Set the |x1〉 to be the sign bit, |x1〉 = |0〉
means ϕi is a positive value, otherwise it is negative. The state |ϕi〉 = |x1〉1|x2〉2 . . . |xk〉k and the
phase value ϕi = ∑k

j=2 2−j+1xj − x1. The quantum circuit can estimate the phase value ϕi ∈ (−1, 1).
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4. Apply a phase shift operator controlled by the phase ϕi, then we obtain

r

∑
i=1

βi
2i sin(πϕi)

(ω+
i |w+

i , ϕi〉 −ω−i |w−i ,−ϕi〉) +
m

∑
i=r+1

βiP|μi〉| ± 1
2
〉 (21)

5. Perform a controlled rotation on the ancillary qubit based on the register storing phase
value ϕi and will obtain

r

∑
i=1

βi
2i sin(πϕi)

(ω+
i |w+

i , ϕi〉 −ω−i |w−i ,−ϕi〉)
(

t
σi
|0〉+

√
1− t2

σ2
i
|1〉
)
+

m

∑
i=r+1

βiP|μi〉| ± 1
2
〉|1〉, (22)

where σi = cos(πϕi)‖A‖F and t = mini|σi|, i ∈ [1, r].
6. Apply the inverse transformation of step 3 to obtain

r

∑
i=1

βi
2i sin(πϕi)

(ω+
i |w+

i 〉 −ω−i |w−i 〉)
(

t
σi
|0〉+

√
1− t2

σ2
i
|1〉
)
+

m

∑
i=r+1

βiP|μi〉|〉|1〉

=
r

∑
i=1

βiQ|νi〉
(

t
σi
|0〉+

√
1− t2

σ2
i
|1〉
)
+

m

∑
i=r+1

βiP|μi〉|1〉
(23)

7. Measure the ancillary register. When the measurement result is |0〉, the quantum state
will collapse to

r

∑
i=1

βi/σiQ|νi〉 (24)

8. Apply the inverse of Q and we will obtain the desired state

r

∑
i=1

βi/σi|νi〉, (25)

which is the particular solution of the equation Ax = b, that is, the lowest energy
solution state.

The quantum gate circuit of our quantum algorithm is shown in Figure 2.

Figure 2. The quantum gate circuit of the particular solution of the equation Ax = b. The operator
R is a quantum controlled rotation gate. When the phase ϕi = ± 1

2 , R is a NOT gate, otherwise

R = R(σ−1
i ) =

⎡⎣ 1/σi

√
1− 1/σ2

i√
1− 1/σ2

i −1/σi

⎤⎦, where σi = cos(πϕi)‖A‖F.

Note that the actual phase value is ϕi ∈ (−1, 1), which serves as the control qubits
of the phase shift operation in the step 4, while the previous quantum phase estimation
algorithm outputs phase value ϕi ∈ (0, 1). Therefore, we design a modified quantum phase
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estimation circuit to determine the sign of the phase in Figure 1. In the modified QPE
circuit, we can estimate the phase value in the range ϕ ∈ (−1, 1).

For the case of ϕ ∈ [0, 1), ϕ = ∑k
j=1 2−j+1xj. Since 0 ≤ ϕ < 1, it is easy to obtain

x1 = 0.
While ϕ ∈ (−1, 0), we can obtain e2πi2j ϕ = e2πi2j(2+ϕ), where j = −1, . . . , k− 1. Let

φ = 2 + ϕ ∈ (1, 2), the modified QSV circuit outputs φ = ∑k
j=1 2−j+1xj. It is known that

φ ∈ (1, 2), thus we obtain x1 = 1 and ϕ = ∑k
j=1 2−j+1xj − 2 = ∑k

j=2 2−j+1xj − 1.
Therefore, we can obtain

ϕ =

{
∑k

j=1 2−j+1xj , x1 = 0

∑k
j=2 2−j+1xj − 1 , x1 = 1

(26)

that is, ϕ = ∑k
j=2 2−j+1xj − x1.

2.3. The Quantum Algorithm for Homogeneous Linear Equations

For the condition of r < n, the equation Ax = b has infinitely many solutions.
Therefore, in order to obtain general solutions of the equation Ax = b, we need to solve the
homogeneous linear equation Ax = 0.

Since A = ∑n
i=1 σiμiν

T
i and x = ∑n

i=1 αiνi, we can obtain Ax = ∑n
i=1 σiαiμi. Let

νi(i ∈ [r + 1, n]) be the right singular vector corresponding to σi = 0, when σi = 0 or αi = 0,
Ax = 0 is valid, that is, x = ∑n

i=r+1 αiνi. The description of solving homogeneous linear
equations is essentially just finding the projection of a state onto the ground state for an
operator [34]. Through the quantum circuit shown in Figure 3, we obtain the combination
of the eigenvectors corresponding to σi = 0 and make the solution of homogeneous linear
equations complete.

Figure 3. The quantum gate circuit of homogeneous linear equation Ax = 0. The input state is
|c〉 = ∑n

i=1 ci|νi〉 and the output state is |x〉 = ∑n
i=r+1 ci|νi〉, where |x〉 is the combination of right

singular vectors corresponding to the singular value 0 of A contained in |c〉. When the phase
ϕi = ±1/2, the output of the controlled-NOT gate RN is |1〉, otherwise it outputs |0〉. We can obtain
the solution of the Ax = 0 when an arbitrary input |c〉 contains right singular vectors of A. In order
to ensure that the output |x〉 is complete, we input n linearly independent |c〉 = |0〉, |1〉 . . . |n〉. In
addition, the arbitrary r linearly independent xi can form the solution vector basis of the homogeneous
linear equation.

Based on QSVE, our quantum algorithms are sparsity-independent and may be applied
to non-square dense matrices.

3. Algorithms Complexity Analysis

Then, we analyse the time complexity of our quantum algorithms.
The time complexity of our scheme includes the following two parts: quantum data

generation and the quantum algorithm process. On the one hand, relying on a binary
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tree memory structure detailed as described in [28,33], where the matrix entries associated
with matrix Am×n are stored as suitable data structure, the oracle from classical data to
quantum data can be implemented efficiently in time O(log2 mn) and the data structure size
is O(w log mn) where w is the number of non zero entries in A. On the other hand, based
on the quantum singular value estimation algorithm, our algorithm achieves a runtime
O(κ polylog(mn)/δ), where κ is the condition number of the coefficient matrix A, and δ
denotes the precision parameter.

Define that the additive error achieved in output state x̃ is ε, which means if x is
the exact result and x̃ is the result obtained from quantum algorithms, then ‖x− x̃‖ ≤ ε.
In order to achieve accuracy ε, the precision parameter of our algorithm needs to reach
δ = ε/(κ‖A‖F). Assuming the spectral norm ‖A‖∗ is bounded by a constant, since
‖A‖F ≤

√
r‖A‖∗, we have ‖A‖F = O(

√
r), where r is the rank of matrix A. Therefore,

our quantum algorithm has the time complexity of O(κ2√rpolylog(mn)/ε). Remarkably,
when A is sparse, exponential acceleration is achievable.

In the quantum algorithm of homogeneous linear equations, the time complexity of
QSVE is O( polylog(mn)/ε). In view of the success probability of the ancillary register
collapses to |1〉, we need to repeat the coherent computation n/(n− r) times on average.
Therefore, the runtime of the quantum homogeneous linear equation algorithm is given by
O(n polylog(mn)/((n− r)ε)).

After obtaining the quantum state |x〉 corresponding to the solution of Ax = b,
we need to simulate the subsequent system states through the identified system, where

x =

[
VC(A)
VC(B)

]
. According to Equations (4)–(6), we can obtain

x(i + 1) = 〈ζ(i)|x〉 (27)

where ζ(i) = [x(i)T , u(i)T ]⊗ In. The inner product between pairs of states can be imple-
mented in time O(ploylog(m + n)) by the swap text algorithm [35]. Therefore, we can
predict the system state at the next moment based on the known system state x(i) and
input u(i).

For the case of general matrix Am×n, previous quantum algorithms generally convert
A to a Hermitian matrix:

H =

[
0 A

A† 0

]
(28)

Based on QSVE, the quantum algorithm of H
[

0
x

]
=

[
b
0

]
has the time complexity

of O(κ2‖H‖F polylog (m + n)2/ε). In addition, the time complexity of our scheme is
O(κ2‖A‖F polylog(mn)/ε), where ‖H‖F =

√
2‖A‖F. Let the runtime of our scheme be

T, so the runtime of existing SVE-based quantum algorithms is T′ =
√

2 poly log (m+n)2

poly log(mn) T.

For the large-scale linear system of equations, there is T′ ≈ √2T. Compared to existing
quantum algorithms, our scheme can reduce the time complexity of the linear system of
equations with a non-square dense matrix.

4. Numerical Simulation

To clarify the process of our algorithm and prove the feasibility of algorithms, we
perform simulation on an illustrative example.

For simplicity, we consider a first-order discrete model of classical system as follows:

x(i + 1) = ax(i) + du(i) (29)

where x(i) is the system state of the i-th sampling and u(i) is the input state. The goal of
system identification is to estimate coefficients a and d from a set of u(i) and x(i). Assuming
that the initial system state x(1) = 3, the input states u = {4, 3, 0} and the evolved system
states x(2) = −4, x(3) = x(4) = 0, the mathematical model can be transformed into a
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general linear systems of equations Ax = b, where A =

⎡⎣ 3 4
−4 3
0 0

⎤⎦, b =

⎡⎣ −4
0
0

⎤⎦. The

maps UP and UQ append an arbitrary input state to a register that encodes the Equation (12),
which can be realized by quantum gate circuits in Figure 4, and matrix forms of these maps

are P = 1
5

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0
4 0 0
0 −4 0
0 3 0
0 0 5

√
2

2

0 0 5
√

2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Q =

√
2

2

⎡⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
1 0
0 1
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦.

Figure 4. Quantum circuits implementation of UP and UQ. The maps UP and UQ consist of quantum

control gates, where R1 = 1
5

[
3 4
4 −3

]
, R2 = 1

5

[
−4 3
3 4

]
, R3 = R4 = R5 = H =

√
2

2

[
1 1
1 −1

]

and the X =

[
0 1
1 0

]
is the quantum inverse gate.

The following shows the detailed procedure of the numerical simulation:

1. Preparing the initial state |b〉 = |0〉.
2. Apply P in the initial state |b〉, P|b〉 = 3

5 |0〉+ 4
5 |1〉.

3. Performphaseestimationon P|b〉 forS = (2PP†− I)(2QQ†− I) = 1
25

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 −7 24 0 0
0 0 24 7 0 0
7 −24 0 0 0 0
−24 −7 0 0 0 0

0 0 0 0 0 25
0 0 0 0 25 0

⎤⎥⎥⎥⎥⎥⎥⎦,

then we obtain the following state

− 3
√

2i
10

(
e

1
4 πiω1|w1,

1
4
〉 − e−

1
4 πiω2|w2,− 1

4
〉
)
− 2

√
2i

5

(
e

3
4 πiω3|w3,

3
4
〉 − e−

1
4 πiω4|w4,− 3

4
〉
)

, (30)

where the eigenvalues of S are λi = i, i,−i,−i, 1,−1, and ωi|wi〉 is the correspond-
ing eigenvector.

4. Change the phase, then we obtain

− 3
√

2i
10

(
ω1|w1,

1
4
〉 −ω2|w2,−1

4
〉
)
− 2

√
2i

5

(
ω3|w3,

3
4
〉 −ω4|w4,−3

4
〉
)

(31)

5. Perform a controlled rotation on the ancillary qubit based on the register storing
phase value:
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− 3
√

2i
10

(
ω1|w1,

1
4
〉 −ω2|w2,−1

4
〉
)(

1
5
|0〉+ 2

√
6

5
|1〉
)
− 2

√
2i

5

(
ω3|w3,

3
4
〉 −ω4|w4,−3

4
〉
)(
−1

5
|0〉+ 2

√
6

5
|1〉
)

(32)

where σ1 = cos(± 1
4 π)‖A‖F = 5, σ2 = cos(± 3

4 π)‖A‖F = −5.
6. Apply the inverse transformation of step 3 to obtain

− 3
√

2i
10

(ω1|w1〉 −ω2|w2〉)
(

1
5
|0〉+ 2

√
6

5
|1〉
)
− 2

√
2i

5
(ω3|w3〉 −ω4|w4〉)

(
− 1

5
|0〉+ 2

√
6

5
|1〉
)

(33)

7. Apply the inverse of Q and we will obtain the desired state

3
5
|0〉
(

1
5
|0〉+ 2

√
6

5
|1〉
)
− 4

5
|1〉
(
−1

5
|0〉+ 2

√
6

5
|1〉
)

(34)

8. Measure the ancillary register. When the result is |0〉, the quantum state will collapse to

3
5
|0〉+ 4

5
|1〉 (35)

that is proportional to the solution of the equation Ax = b, so we obtain a = 3
5 C

and d = 4
5 C. Substituting a and d into Equation (29), we obtain C = − 4

5 . So far, the
first-order discrete identification model is:

x(i + 1) = −12
25

x(i)− 16
25

u(i) (36)

We simulated a 6-qubit quantum circuit diagram on the Origin Cloud, as shown in
Figure 5.

Figure 5. The 6-qubit quantum circuit diagram on the Origin Cloud. The quantum circuit
is based on quantum phase estimation, where q[5] is the ancillary qubit and q[4] is the reg-
ister storing input and output information. From left to right, the controlled rotation gate is

RY1 = 1
5

[
3 −4
4 3

]
that generates the initial state P|b〉, RY2 = 1

σ1

⎡⎣ t −
√

σ2
1 − t2√

σ2
1 − t2 t

⎤⎦
and RY3 = 1

σ2

⎡⎣ t −
√

σ2
2 − t2√

σ2
2 − t2 t

⎤⎦, where t = 5
√

2
2 . The controlled gates

s1 = 1
25

[
−7 24
24 7

]
, s2 = 1

25

[
7 −24
−24 −7

]
, z1 =

[
e− 1

4 πi 0
0 e− 1

4 πi

]
and rz =

[
e− 3

4 πi 0
0 e− 3

4 πi

]
are applied on the register q[4].

According to the simulation result in Figure 6, when the ancillary qubit q[5] = 0
and the register storing phase information is restored to q[0] = q[1] = q[2] = 0, the proba-
bilities of the output qubit q[4] are P{|0〉} = 0.086 and P{|1〉} = 0.16. Therefore, the
amplitudes of q[4] are A{|0〉} =

√
P{|0〉}/(P{|0〉}+ P{|1〉}) = 0.59 and A{|1〉} =√

P{|1〉}/(P{|0〉}+ P{|1〉}) = 0.81, and the solution quantum state is q[4] = 0.59|0〉+
0.81|1〉, which is consistent with the expected quantum state based on our algorithm.
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Figure 6. The simulation result of the quantum circuit.

As a comparison, we simulated a second-order discrete system identification model
x(i + 1) = A′x(i) + B′u(i), where A′ is a 2× 2 matrix and B′ is a 2× 1 matrix. Assum-

ing that the initial system state x(1) =

[
1
0

]
, the input u = {1, 2, 3} and the evolved

system states x(2) =

[
1
1

]
, the mathematical model can be transformed into Ax = b,

where A =

[
1 0 0 0 1 0
0 1 0 0 0 1

]
and b =

[
1
1

]
. Due to insufficient samples, the linear

equation has infinite solutions. Consider the structural features of the coefficient matrix A,

which is reduced to
[

1 0 1 0
0 1 0 1

]
.

When the ancillary qubit q[6] = 0 and the register q[5] is restored to 0, the probabilities
of the output qubits q[4] and q[3] are shown in the Figure 7. Thus, the solution quantum
state is |x〉 = 0.493|00〉+ 0.5|01〉+ 0.516|10〉+ 0.485|11〉, which is the lowest energy solution
among infinitely many solutions. So far, according to the existing samples, the second-

order discrete identification model with the lowest energy is: x(i+ 1) =
[

0.493 0
0.5 0

]
x(i) +[

0.516
0.485

]
u(i).

Figure 7. Quantum circuit and simulation result of the two-dimensional discrete system identifica-
tion model.
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5. Conclusions

This paper develops a quantum algorithm of general linear equations for solving classical
system identification problems. Our scheme can be finished in time O(κ2√rpolylog(mn)/ε)
for an m× n dimensional linear systems of equations Ax = b, where κ is the condition number
of the linear equation, r is the rank of the matrix A and ε is the precision parameter, which
is superior to existing algorithms. For the linear equation with non-square coefficient matrix,
we discuss three cases of solutions, including the unique solution, approximate solution and
infinitely many solutions. Our algorithm can obtain the unique solution, the approximate solu-
tion with the minimum error and the lowest energy solution among infinitely many solutions,
which adapts to all cases of linear systems of equations. For the case of infinitely many solutions,
we design a quantum circuit to obtain general solutions in time O(n polylog(mn)/((n− r)ε)),
which can achieve an exponential improvement over classical algorithms. In addition, we
design a modified QPE circuit to obtain a wider range of phase values, which can expand the
application range of quantum phase estimation.

Based on QSVE, our algorithms is sparsity-independent compared with HHL algo-
rithm. Meanwhile, we have extended the existing quantum linear system algorithms to
general equations, which can effectively enrich the application area of linear systems of
equations. For large-scale linear systems, such as machine learning, numerical calculation
of partial differential equations, etc., our algorithms will have a wider range of applications
and is of research significance. In the future work, we will focus on how our algorithms are
implemented on quantum computers and how to apply on them to real practical problems.
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Abstract: In this paper, quantum correlation (QC) swapping between two Werner-like states, which
are transformed from Werner states undergoing local and nonlocal unitary operations, are studied.
Bell states measures are performed in the middle node to realize the QC swapping and correspond-
ingly final correlated sates are obtained. Two different QC quantifiers, i.e., measurement-induced
disturbance (MID) and ameliorated MID, are employed to characterize and quantify all the concerned
QCs in the swapping process. All QCs in the concerned states are evaluated analytically and nu-
merically. Correspondingly, their characteristics and properties are exposed in detail. It is exposed
that, through the QC swapping process, one can obtain the long-distance QC indeed. Moreover, the
similarities of monotony features of MID and AMID between the initial states and final states are
exposed and analyzed.

Keywords: quantum correlation swapping; werner-like state; measurement-induced disturbance
(MID); ameliorated MID (AMID)

PACS: 03.65.Ta; 03.67.-a

1. Introduction

Quantum entanglement swapping is the core technique in quantum entanglement re-
peaters. Quantum entanglement repeaters are usually employed to realize long-distance
quantum entanglements in some quantum tasks in quantum information processing [1–7]. En-
tanglement swapping can make a null-entanglement bipartite system entangled. Additionally,
entanglement swapping can be utilized to enhance quantum entanglement [8].

Today, as is known to all, quantum correlations (QCs) no longer equal to quantum en-
tanglement [9–18]. This recognition was exposed in 2001. Recently, Ollivier and Zurek [19]
made a surprising discovery, in that there are indeed existing quantum correlation different
from entanglement (QCDE). Later, numerous findings [20–35] about the recognition and
applications of QCDEs appeared. Now, QCDE has become a hot field in the research of
quantum information and computation.

As the quantum entanglement was generalized to quantum correlation, which can be
quantum entanglement or QCDE, quantum entanglement swapping can also be generalized
to quantum correlation swapping [36–44]. In quantum correlation swapping, the concerned
quantum correlation may be quantum entanglement, QCDE, or both. Obviously, quantum
correlation swapping is a general extentson of quantum entanglement swapping. Similarly,
the realization of QCDE swapping can be in the same way with entanglement swapping.
In many processes, the entanglement swapping and QCDE swapping can be realized
simultaneously.

In the studies of quantum correlation swapping, three main aspects are of concern.
One is the selection of initial states before QC swapping. Another is the selection of the
middle measurement to realize the QC swapping. The last is the QC quantifiers, which are
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used to quantify the QCs in all the concerned states in the QC swapping process. Hence,
one can see that complexities in the QC swapping stem from the above three aspects.
Moreover, for the three aspects, one can see that many different selections can be used.
Hence, many different properties can be exposed and revealed.

In this paper, a special QC swapping case will be considered. That is to say, two Werner-
like states are taken as initial states; the four Bell state measurements are utilized to realize
the QC swapping; and measurement-induced disturbance (MID) [20] and ameliorated MID
(AMID) [23] are utilized to quantify the QCs in the concerned states.

The following is summarized for the rest of the paper. In Section 2, the Werner-like
initial state QC swapping is described in detail. In Section 3, QCs in both the initial states
and final states are quantified by MID. In Section 4, QCs in both the initial states and final
states are quantified by AMID. In Section 5, QCs in the initial states, MID or AMID, are
analyzed, discussed and compared. Lastly, in Section 6, a summary is provided.

2. Swapping QCs in Two Werner States Undergoing Local and Nonlocal
Unitary Operations

In the QC swapping process, the two initial states are taken as a special kind of
quantum-correlated states. It is called as Werner-like state because it is transformed from
the famous Werner state undergoing local and nonlocal unitary operations.

Usually, a two-qubit Werner state can be written as

�W(z) =
1− z

4
I + z|φ+〉〈φ+|, (1)

where I denotes a unit operator, |φ+〉 = (|00〉+ |11〉)/√2, z is real, and z ∈ (0, 1]. When
z ≤ 1/3, Werner state �W(z) is separable, while z > 1/3, this state is entangled.

Through unitary operation U ∈ U(4), one can transform the Werner state �W(z) to
Werner-like state σ(z, c), i.e., σ = U�WU+. Correspondingly, the Werner-like state σab(z, c)
can be written as [44]

σ(z, c) =
1− z

4
I + z|ψ〉〈ψ|, (2)

where |ψ〉 = U|φ+〉 = √c|00〉+√1− c|11〉 with c ∈ (0, 1].
As for the QC swapping process in this study, the two initial Werner-like states are

respectively written as

σab(z1, c1) =
1− z1

4
Iab + z1|ψ1〉ab〈ψ1|, (3)

σcd(z2, c2) =
1− z2

4
Icd + z2|ψ2〉cd〈ψ2|, (4)

where |ψi〉 = √ci|00〉+√1− ci|11〉, zi, ci ∈ (0, 1] characterize the Werner-like states, and I
is unit operator. a, b, c and d are four subsystems in the whole system, where a and c are
located at a same place.

The QC swapping process can be described as follows. Alice has two particles a and c,
Bob has a particle b and David has a particle d. Initially, a and b are in Werner-like state ρab,
while c and d are in Werner-like state ρcd. When Alice performs the middle measurement
a and c, simultaneously, b and d will be in the final state ρbd. That is to say, initially, Bob
and David have no any correlation. However, after the middle measurement performed by
Alice, Bob and David will be correlated.

In the realization of QC swapping, the middle bipartite measurements are needed.
In this paper, the following four qubit Bell states are selected as the middle bipartite
measurements, i.e.,

|Φ〉±ac =
1√
2
(|00〉 ± |11〉), (5)
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|Ψ〉±ac =
1√
2
(|01〉 ± |10〉). (6)

By performing one of the middle measurements on the product states of Equations (3)
and (4), a final state can be obtained. Corresponding to the four middle measurements,
four final states appear. As for the two Bell states in Equation (5), the two final states can be
obtained as the following:

σ±bd(z1, z2, c1, c2) =
1
N
{W0|0〉b〈0||0〉d〈0|+ W1|0〉b〈0||1〉d〈1|+ W2|1〉b〈1||0〉d〈0|+ W3|1〉b〈1||1〉d〈1|]

± z1z2

√
c1c2(1− c1)(1− c2)(|0〉b〈1||0〉d〈1|+ |1〉b〈0||1〉d〈0|)}, (7)

where

N = W0 + W1 + W2 + W3, (8)

and

W0 = (
1− z1

4
+ z1c1)(

1− z2

4
+ z2c2) +

1− z1

4
1− z2

4
, (9)

W1 = (
1− z1

4
+ z1c1)[

1− z2

4
] + [

1− z2

4
+ z2(1− c2)](

1− z1

4
),

W2 = (
1− z2

4
+ z2c2)(

1− z1

4
) + [

1− z1

4
+ z1(1− c1)][

1− z2

4
],

W3 = [(
1− z1

4
+ z1(1− c1)][

1− z2

4
+ z2(1− c2)] +

1− z1

4
1− z2

4
.

Note that the ± in Equation (7) corresponds to the middle measurements in Equation (5).
As for the two Bell states in Equation (6), the two final states can be obtained as the

following:

σ′±bd (z1, z2, c1, c2) =
1

N′ {W ′
0|0〉b〈0||0〉d〈0|+ W ′

1|0〉b〈0||1〉d〈1|+ W ′
2|1〉b〈1||0〉d〈0|+ W ′

3|1〉b〈1||1〉d〈1|]

± z1z2

√
c1c2(1− c1)(1− c2)(|0〉b〈1||0〉d〈1|+ |1〉b〈0||1〉d〈0|)}, (10)

where

N′ = W ′
0 + W ′

1 + W ′
2 + W ′

3, (11)

and

W ′
0 = (

1− z1

4
+ z1c1)

1− z2

4
+ (

1− z2

4
+ z2c2)

1− z1

4
, (12)

W ′
1 = (

1− z1

4
+ z1c1)[

1− z2

4
+ z2(1− c2)] + (

1− z1

4
)(

1− z2

4
),

W ′
2 = (

1− z2

4
+ z2c2)[

1− z1

4
+ z1(1− c1)] + (

1− z1

4
)(

1− z2

4
),

W ′
3 = [(

1− z1

4
+ z1(1− c1)]

1− z2

4
+ [

1− z2

4
+ z2(1− c2)]

1− z1

4
.

Here in Equation (10), the ± correspond to the middle measurements in Equation (6).

3. MID in the Concerned States

Measurement-induced disturbance (MID) is a QC measure [22] that has been attracting
considerable attention for its easy computability. MID is defined as the difference between
the total correlation and its classical correlation, where, for a given concerned state, the
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classical correlation is determined by measuring both subsystems with the eigenvectors of
marginal states as the measuring bases.

3.1. MIDs in the Two Initial Werner-Like States

For the two initial Werner-like states σab(z1, c1) and σcd(z2, c2), their MIDs [45] are

QM[σab(z1, c1)] = −(1− z1

4
+ z1c1) log2(

1− z1

4
+ z1c1)− (

1 + 3z1

4
− z1c1) log2(

1 + 3z1

4
− z1c1)

+(
1− z1

4
) log2(

1− z1

4
) + (

1 + 3z1

4
) log2(

1 + 3z1

4
), (13)

QM[σcd(z2, c2)] = −(1− z2

4
+ z2c2) log2(

1− z2

4
+ z2c2)− (

1 + 3z2

4
− z2c2) log2(

1 + 3z2

4
− z2c2)

+(
1− z2

4
) log2(

1− z2

4
) + (

1 + 3z2

4
) log2(

1 + 3z2

4
). (14)

3.2. MIDs in the Final States σ±bd(z1, z2, c1, c2)

Now let us inspect the final state σ±bd in Equation (7). Obviously, σ+
bd and σ−bd are

different. However, the difference is minor and it is located at the position ±. In the
following calculations, one can find that the MID in σ+

bd is equivalent to that in σ−bd. That it to
say, in the calculation of MIDs, the position + or − can be ignored. Hence, for convenience,
in the following, σ±bd can be obtained by σbd.

In the final state σbd(z1, z2, c1, c2), the total correlation can be obtained as the following

I [σbd(z1, z2, c1, c2)] = S[σb(z1, z2, c1, c2)] + S[σd(z1, z2, c1, c2)]− S[σbd(z1, z2, c1, c2)], (15)

where S[·] is von Neumann entropy, σb(z1, z2, c1, c2) and σd(z1, z2, c1, c2) represent marginal
states of σbd(z1, z2, c1, c2) which take the form as

σb(x, y, κ) = 1
4 [(w0 + w1)|0〉b〈0|+ (w2 + w3)|1〉b〈1|],

σd(x, y, κ) = 1
4 [(w0 + w2)|0〉d〈0|+ (w1 + w3)|1〉d〈1|],

}
(16)

where w0 = 4
N W0 , w3 = 4

N W3, w1 = 4
N W1, w2 = 4

N W2, and Wi’s are functions of z1, z2, c1
and c2 given by Equation (9). Easily, one can obtain

S[σb(z1, z2, c1, c2)] =
1
4
[8− w01 log2 w01 − w23log2 w23], (17)

S[σd(z1, z2, c1, c2)] =
1
4
[8− w02 log2 w02 − w13log2 w13], (18)

S[σbd(z1, z2, c1, c2)] = −1
4
[w1 log2 w1 + w2 log2 w2 − 2w12 − 3w03]

−1
8
[(w03 + ξ) log2(w03 + ξ) + (w03 − ξ) log2(w03 − ξ)], (19)

where wmn = wm +wn and ξ =
√
(w3 − w0)2 + 16ζ with ζ = 4c1(1− c1)c2(1− c2)z2

1z2
2/N2.

To calculate MID in the final state σbd(z1, z2, c1, c2), its marginal states are needed. It
is because that the eigenvectors of marginal states are taken as the measuring bases to
aquire the classical correlation. Using the marginal states in Equation (16) as measuring
bases to measure both subsystems simultaneously, four different outcomes can be obtained.
For each outcome, its own probability may be occured. Let p(ij)bd denote its occurrence
probability where |ij〉bd is the corresponding outcome. It is easy to work out the occurrence
probability as
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p(00)
bd =

1
4

w0, p(01)
bd =

1
4

w1, p(10)
bd =

1
4

w2, p(11)
bd =

1
4

w3. (20)

Integrating above probabilities, the single-partite probability distributions can be obtained:

p(0)b = p(00)
bd + p(01)

bd = 1
4 w01, p(1)b = p(10)

bd + p(11)
bd = 1

4 w23,
p(0)d = p(00)

bd + p(10)
bd = 1

4 w02, p(1)d = p(01)
bd + p(11)

bd = 1
4 w13.

}
(21)

Utilizing Equations (20) and (21), the classical correlation in the final state σbd(z1, z2, c1, c2)
can be obtained, i.e.,

CM[σbd(z1, z2, c1, c2)] =
1
4
(w0 log2 w0 + w1log2 w1 + w2 log2 w2 + w3 log2 w3) + 2

− 1
4
(w01 log2 w01 + w02 log2 w02 + w13 log2 w13 + w23 log2 w23), (22)

Finally, MID in the final state σbd(z1, z2, c1, c2) can be extracted as

QM[σbd(z1, z2, c1, c2)] = I[σbd(z1, z2, c1, c2)]− CM[σbd(z1, z2, c1, c2)]

= [(w03 + ξ) log2(w03 + ξ) + (w03 − ξ) log2(w03 − ξ)

− 2w0 log2 w0 − 2w3 log2 w3 − 2w03]/8. (23)

3.3. MID in the Final States σ′±bd (z1, z2, c1, c2)

From Equation (10), it is easy to find the difference between σ′+bd (z1, z2, c1, c2) and
σ′−bd (z1, z2, c1, c2). It is + or −. Similar to that in Section 3.2, MIDs in the two final states are
equivalent, i.e., MID in σ′+bd (z1, z2, c1, c2) is equivalent with that in σ′−bd (z1, z2, c1, c2). Hence,
for convenience in the context, σ′bd(z1, z2, c1, c2) is considered instead.

Morovere, compare σ′±bd (z1, z2, c1, c2) in Equation (10) with σ±bd(z1, z2, c1, c2) in
Equation (7), one can find that the two kinds of states have similar structure, only pa-
rameters in them are different. Hence, according to this similarity and the obtained MID
of σbd(z1, z2, c1, c2) in Equation (22), one can directly accquire MID in σ′bd(z1, z2, c1, c2) as
the following

QM[σ′bd(z1, z2, c1, c2)] = [(w′03 + ξ ′) log2(w
′
03 + ξ ′) + (w′03 − ξ ′) log2(w

′
03 − ξ ′)

− 2w′0 log2 w′0 − 2w′3 log2 w′3 − 2w′03]/8, (24)

where all the w′ are quantities related to those in Equation (23) with W ,s are replaced by
W ′,s. W ,s and W ′,s are listed in Equations (9) and (12), respectively.

4. AMID in the Concerned States

Another QC measure, ameliorated measurement-induced disturbance (AMID), was
put forward in 2011, in which the corresponding maximal classical correlation is special.
The special aspect is that, to find the maximal classical correlation, optimization procedure
to rehearse all joint local measurements is needed. Correspondingly, AMID is defined as
the discrepancy between total correlation and the obtained maximal classical correlation.

4.1. AMID in the Two Werner-Like Initial States

For the two initial Werner-like states σab(z1, c1) and σcd(z2, c2), their AMIDs [45] are

QA[σab(z1, c1)] = −(1− z1

4
+ z1c1) log2(

1− z1

4
+ z1c1)− (

1 + 3z1

4
− z1c1) log2(

1 + 3z1

4
− z1c1)

+(
1− z1

4
) log2(

1− z1

4
) + (

1 + 3z1

4
) log2(

1 + 3z1

4
), (25)
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QA[σcd(z2, c2)] = −(1− z2

4
+ z2c2) log2(

1− z2

4
+ z2c2)− (

1 + 3z2

4
− z2c2) log2(

1 + 3z2

4
− z2c2)

+(
1− z2

4
) log2(

1− z2

4
) + (

1 + 3z2

4
) log2(

1 + 3z2

4
). (26)

4.2. AMIDs in the Final States σ±bd(z1, z2, c1, c2)

In order to evaluate AMID in σ±bd(z1, z2, c1, c2), a general joint local measurement

should first be parameterized. It can be parameterized as {Ω(i)
b (α1, φ1, τ1)⊗Λ(j)

d (α2, φ2, τ2),
i, j = 0, 1}, where Ω(k) and Λ(k) take the same forms as that of Π(k) described as the
following three-parameter forms:

{Π(0)(α, φ, τ) = |0′〉〈0′|, Π(1)(α, φ, τ) = |1′〉〈1′|} (27)

with (|0′〉
|1′〉
)
=

(
cos αeiφ sin αeiτ

− sin αe−iτ cos αe−iφ

)(|0〉
|1〉
)

, (28)

where α ∈ [0, π/2], φ ∈ [0, 2π] and τ ∈ [0, 2π].
If both subsystems are measured by using the parameterized measuring bases (Ap-

pendix A), four different outcomes can be obtained as

p(ij)bd = TrbdΩ(i)
b (α1, φ1, τ1)⊗Λ(j)

d (α2, φ2, τ2)σbd (29)

Through some tedious deductions, one can obtain

p(00)
bd = F (w2, w0, α1) cos2 α2 +F (w3, w1, α1) sin2 α2 +

1
2N

√
c1c2(1− c1)(1− c2)z1z2 sin 2α1 sin 2α2 cos ω,

p(01)
bd = F (w2, w0, α1) sin2 α2 +F (w3, w1, α1) cos2 α2 − 1

2N

√
c1c2(1− c1)(1− c2)z1z2 sin 2α1 sin 2α2 cos ω,

p(10)
bd = F (w0, w2, α1) cos2 α2 +F (w1, w3, α1) sin2 α2 − 1

2N

√
c1c2(1− c1)(1− c2)z1z2 sin 2α1 sin 2α2 cos ω,

p(11)
bd = F (w0, w2, α1) sin2 α2 +F (w1, w3, α1) cos2 α2 +

1
2N

√
c1c2(1− c1)(1− c2)z1z2 sin 2α1 sin 2α2 cos ω,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(30)

where F (s1, s2, s3) ≡ 1
4 (s1 sin2 s3 + s2 cos2 s3) and ω = φ1 + φ2 − τ1 − τ2. Combining

these bipartite probability distributions, the single-partite probability distributions can be
obtained as:

p(0)b = p(00)
bd + p(01)

bd = 1
4 (w23 sin2 α1 + w01 cos2 α1),

p(1)b = p(10)
bd + p(11)

bd = 1
4 (w01 sin2 α1 + w23 cos2 α1),

p(0)d = p(00)
bd + p(10)

bd = 1
4 (w13 sin2 α2 + w02 cos2 α2),

p(1)d = p(01)
bd + p(11)

bd = 1
4 (w02 sin2 α2 + w13 cos2 α2).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(31)

Accordingly, the general classical correlation obtained via measure can be expressed as

C[σbd(z1, z2, c1, c2)] = −
1

∑
i=0

p(i)b log2 p(i)b −
1

∑
i=0

p(i)d log2 p(i)d +
1

∑
i=0

1

∑
j=0

p(ij)bd log2 p(ij)bd . (32)

Correspondingly, the usual classical correlation is taken as the maximal one:

CA[σbd(z1, z2, c1, c2)] = max
{Ω(i)

b ⊗Λ(j)
d }
C[ρbd(z1, z2, c1, c2)]. (33)

In order to obtain the maximal value, the extreme points should first be worked out.
That is to say, the derivative equations ∂C[σbd(z1, z2, c1, c2)]/∂α1 = ∂C[σbd(z1, z2, c1, c2)]/∂α2
= ∂C[σbd(z1, z2, c1, c2)]/∂ω = 0 should be solved first. However, it is not easy to solve
these equations. Fortunately, through observation one can find that the extreme points
are α1 = α2 = 0, π/4, π/2 and ω = 0. Moreover, through comparing these three points
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with other points, we find that the value of classical correlation corresponding to this point
α1 = α2 = 0, π/4, π/2 and ω = 0 is the maximal. Hence, the maximal classical correlation
can be expressed

CA[σbd(z1, z2, c1, c2)] =
1
2
[(1 +

2
N

√
c1c2(1− c1)(1− c2)z1z2) log2(1 +

2
N

√
c1c2(1− c1)(1− c2)z1z2)

+(1− 2
N

√
c1c2(1− c1)(1− c2)z1z2) log2(1−

2
N

√
c1c2(1− c1)(1− c2)z1z2)]. (34)

Finally, AMID can be obtained as the discrepancy between the total correlation
(Equation (15)) and the maximal classical correlation (Equation (34)), i.e.,

QA[σbd(z1, z2, c1, c2)] = I [σbd]− CA[σbd]

=
1
8
[(w03 + ξ) log2(w03 + ξ) + (w03 − ξ) log2(w03 − ξ)]

− 1
4
[w01 log2 w01 + g23 log2 w23 + w02 log2 w02 + w13 log2 w13]

− 1
2
[(1 +

2
N

√
c1c2(1− c1)(1− c2)z1z2) log2(1 +

2
N

√
c1c2(1− c1)(1− c2)z1z2)

+ (1− 2
N

√
c1c2(1− c1)(1− c2)z1z2) log2(1−

2
N

√
c1c2(1− c1)(1− c2)z1z2)]

+
1
4
[w1 log2 w1 + w2 log2 w2 − w03] + 2. (35)

4.3. AMIDs in the Final States σ′±bd (z1, z2, c1, c2)

Similar to Section 4.2, one can find that AMIDs in the two states σ′+bd (z1, z2, c1, c2) and
σ′−bd (z1, z2, c1, c2) are equivalent, and hence one can use σ′bd(z1, z2, c1, c2) as the surrogate of
σ′±bd (z1, z2, c1, c2).

Similar to that in Section 4.3, due to the equivalent structure of σ′±bd (z1, z2, c1, c2) and
σ±bd(z1, z2, c1, c2), one can obtain AMID σ′bd(z1, z2, c1, c2) as

QA[σ
′
bd(z1, z2, c1, c2)] =

1
8
[(w′03 + ξ ′) log2(w

′
03 + ξ ′) + (w′03 − ξ ′) log2(w

′
03 − ξ ′)]

− 1
4
[w′01 log2 w′01 + w′23 log2 w′23 + w′02 log2 w′02 + w′13 log2 w′13]

− 1
2
[(1 +

2
N

√
c1c2(1− c1)(1− c2)z1z2) log2(1 +

2
N

√
c1c2(1− c1)(1− c2)z1z2)

+ (1− 2
N

√
c1c2(1− c1)(1− c2)z1z2) log2(1−

2
N

√
c1c2(1− c1)(1− c2)z1z2)]

+
1
4
[w′1 log2 w′1 + w′2 log2 w′2 − w′03] + 2. (36)

where all the w′ quantities related to those in Equation (23) with W ,s are replaced by W ′,s.
W ,s and W ′,s that are listed in Equations (9) and (12), respectively.

5. Analyses, Comparisons and Discussion

In the previous two sections, MID and AMID have been respectively utilized to
quantify all QCs in the initial and final states. In this section, let us make some analyses,
discussions and comparisons.

5.1. Features of QCs in the Initail Werner-Like States

The Werner-like state in Equation (2) is comprised of two terms. They are mingled
with the weight z. One is I, a null quantum correlation maximally mixed state. Another
state |ψ〉 is an entangled pure state. QC in the |ψ〉 increases with c ∈ [0, 1/2]. Hence, for a
fixed c, the QC in it is determined. Moreover, the bigger z is, the larger weight of |ψ〉. Hence,
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naturally, a larger QC can be induced by the two mixtures. Particularly, the Werner-like
state becomes a Werner state when c = 0.5.

To be specific, MID and AMID in the initial Werner-like states have the common
features: (i) c = 0.5 is a symmetrical point of QC; (ii) for given c, MID is an increasing
function of z and arrives the maximum at z = 1; (iii) for a fixed z, QC increases with c in
the region [0, 1/2] and reaches maximum at c = 1/2.

5.2. Monotony Features of MIDs in the Final States
5.2.1. Monotony Features of MIDs in the Final State σbd(z1, z2, c1, c2)

Now let us turn to the monotonic properties of the QCs in the final states (see
Equations (23), (24), (34) and (35)). As mentioned, QCs in the final state are determined by
four parameters, i.e., z1, z2, c1, c2. Obviously, there are two kinds in the four parameters. One
kind is (z1, z2) and another is (c1, c2). To find the the monotonic properties is not an easy, be-
cause it is quite difficult to judge whether the partial derivatives ∂Q[σbd(z1, z2, c1, c2)]/∂vi,
v = z, c and i = 1, 2 are bigger than zero. Hence, we have no choice but to utilize the vast
numerical investigations.

To obtain the monotony features of MIDs in the final states, vast numerical calculations
have been made. Some typical figures are listed in Figures 1–3. Through the vast numerical
calculations, the following properties have been found:

(1) For given (z1, z2), QM[σbd(z1, z2, c1, c2)] is symmetrical regarding c1 and c2. To be
concrete, QM[σbd(z1, z2, c1, c2)] is increasing in c1 ∈ (0, 1/2] and decreasing in c1 ∈ (1/2, 1).
Meanwhile, QM[σbd(z1, z2, c1, c2)] is also increasing in c2 ∈ (0, 1/2] and decreasing in
c2 ∈ (1/2, 1). In other words, QM[σbd(z1, z2, c1, c2)] is symmetrical regarding c1 = c2 = 0.5.
From Figure 1, one can see thatQM[σbd(z1, z2, c1, c2)] is symmetrical regarding c2 = 0.5 and
the maximal point occurs at c2 = 0.5. Moreover, the bigger z2 is, the bigger the maximal
value that can be obtained.

Figure 1. Variation of QM[σbd] with c1 and c2 for three sets of z1 and z2.
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Figure 2. Variation of QM[σbd] with c2 for z1 = 0.5, c1 = 0.5 and z2 = 0.3, 0.6, 0.9, respectively.

202



Entropy 2022, 24, 1244

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q
M

c
1
=0.5, c

2
=0.5

z
1
=0.3

z
1
=0.6

z
1
=0.9

Figure 3. Variation of QM[σbd] with z2 for c1 = 0.5, c2 = 0.5 and z1 = 0.3, 0.6, 0.9, respectively.

Moreover, a similarity property can be found, i.e., MID in the final state has a similar
symmetry property with that in the initial state. That is to say, MIDs in both the two kind
states increase in ci ∈ (0, 1/2] (i is 1 or 2) and decrease in ci ∈ [1/2, 1).

Moreover, One can find that this symmetry property of MID in the final state is similar
to that in the initial Werner-like state in Equations (13) and (14). To be concrete, MIDs
in both the final state and the initial Werner-like state increase with ci (i is 1 or 2) in the
region (0, 1/2] and decrease with ci in the region [1/2, 1). Moreover, there exists an obvious
symmetry in c1 = c2 = 0.5. That is to say, taking the final state as example

QM[σbd(z1, z2, c1 = 0.5− α, c2 = 0.5− β)] = QM[σbd(z1, z2, c1 = 0.5 + α, c2 = 0.5 + β)]. (37)

In Equation (37), α and β are both defined in the region [0, 1/2]. This property means
that the symmetrical property with ci is unchanged during the QC swapping process. In
addition, if z1 and z2 are bigger, the quantities of QC are larger.

(2) For given (c1, c2), in the final state MID increases with z1 or z2 in zi ∈ (0, 1),
i = 1, 2 (see Figure 3). Variations of QM[σbd(z1, z2, c1, c2)] with z2 for c1 = 0.5, c2 = 0.5 and
z1 = 0.3, 0.6, 0.9 are plotted respectively in Figure 3. Obviously, one can see that MID in the
final state is an increasing function of zi, i = 1, 2.

5.2.2. Monotony Features of MIDs in the Final State

As for σ′bd(z1, z2, c1, c2), QC quantified by MID is expressed in Equation (24). Some
features can be exposed through numerical calculations. See Figures 4 and 5.
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Figure 4. Variation of QM[σ′bd] with c1 and c2 for three sets of z1 and z2.
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Figure 5. Variation of QM[σ′bd] with c1 = 0.5, c2 = 0.5 for several sets of z1 and z2.
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(a) For given c2 and (z1, z2), QM[σ′bd] first increases then decreases with c1 ∈ (0, 1].
The maximal points (c1m), i.e., the transition points, vary with parameters. Not only the
maximal points and but also the shape of the curves are determined by the value of c2. To
be specific, the smaller the value of |c2 − 0.5| is, the bigger maximal value of QM[σ′bd] is.
Moreover, for a given set of (z1, z2),

QM[σbd(z1, z2, c1 = 0.5− α, c2 = 0.5− β)] = QM[σbd(z1, z2, c1 = 0.5 + α, c2 = 0.5 + β)] (38)

where α ∈ (0, 1/2), β ∈ (0, 1/2).
(b) QM[σ′bd] is an increasing function of z1 ∈ [0, 1] within z2 ∈ [0, 0.58]. However,

when z2 ∈ [0.58, 1], QM[ρ′bd] first increases then decreases in z1 ∈ [0, 1]. Moreover, the
bigger z2 ∈ [0.58, 1] is, the smaller of transtion point is.

5.3. Monotony Feature of AMIDs in the Final States
5.3.1. Monotony Features of AMIDs in the Final State σbd(z1, z2, c1, c2)

Now let us look at the monotony features of AMIDs in the final states σbd(z1, z2, c1, c2).
Vast numerical calculations have also been made. Some typical figures are listed in
Figures 6–8. Through the vast numerical calculations and comparisons, the following
properties can be exposed:

(1) QA[σbd(z1, z2, c1, c2)] is symmetrical regarding c1 and c2 for given (z1, z2), i.e., QA
[σbd(z1, z2, c1, c2)] is increasing in ci ∈ (0, 1/2] and decreasing in ci ∈ (1/2, 1), i = 1, 2.
Moreover, QA[σbd(z1, z2, c1, c2)] is symmetrical regarding c1 = c2 = 0.5. and arrives its
maximum at this point. From Figure 2, one can see thatQA[σbd(z1, z2, c1, c2)] is symmetrical
regarding c2 = 0.5 and the maximal point occurs at c2 = 0.5. Moreover, the bigger z1 or z2
is , the bigger maximal value can be obtained.

(2) AMID in the final state σbd(z1, z2, c1, c2) is an increasing function with zi in the
region zi ∈ (0, 1), i = 1, 2, for given (c1, c2). See Figure 6. In Figure 6, variations of
QA[σbd(z1, z2, c1, c2)] with z2 for c1 = 0.5, c2 = 0.5 and z1 = 0.3, 0.6, 0.9 are plotted respec-
tively. Obviously, one can see that MID in the final state increase with zi, i = 1, 2.

Figure 6. Variation of QA[σbd] with c1 and c2 for three sets of z1 and z2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
2

0

0.05

0.1

0.15

0.2

0.25

Q
A

z
1
=0.5, c

1
=0.5

z
2
=0.3

z
2
=0.6

z
2
=0.9

Figure 7. Variation of QA[σbd] with c2 for z1 = 0.5, c1 = 0.5 and z2 = 0.3, 0.6, 0.9, respectively.

204



Entropy 2022, 24, 1244

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z
2

0

0.1

0.2

0.3

0.4

0.5

0.6

Q
A

c
1
=0.5, c

2
=0.5

z
1
=0.3

z
1
=0.6

z
1
=0.9

Figure 8. Variation of QA[σbd] with z2 for c1 = 0.5, c2 = 0.5 and z1 = 0.3, 0.6, 0.9, respectively.

5.3.2. Monotony Features of AMIDs in the Final State σ′bd(z1, z2, c1, c2)

To achieve the properties of AMID in the final state σ′bd(z1, z2, c1, c2), we also utilized
vast numerical calculations. Some typical figures are listed in Figures 9 and 10. Through
the vast numerical calculations and comparisons, the following properties can be exposed.

(a) For given c2 and (z1, z2),QA[σ
′
bd] first increases then decreases with c1 ∈ (0, 1]. The

maximal points (c1m), i.e., the transition points, are changed with different parameters. The
maximal points and the shape of the curves are determined by the value of c2. Concretely,
the closer the value of c1 to 0.5 is, the larger maximal value of QA[σ

′
bd] can be obtained.

Moreover, for a given set of (z1, z2),

QA[σbd(z1, z2, c1 = 0.5− α, c2 = 0.5− β)] = QM[σbd(z1, z2, c1 = 0.5 + α, c2 = 0.5 + β)] (39)

where α ∈ (0, 1/2), β ∈ (0, 1/2).
(b)QA[σ

′
bd] is an increasing function of z1 ∈ [0, 1] within z2 ∈ [0, 0.58]. However, when

z2 ∈ [0.58, 1], QA[σ
′
bd] first increases then decreases in z1 ∈ [0, 1]. Moreover, the bigger of

z2 ∈ [0.58, 1], the smaller of transtion point is.
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Figure 9. Variation of QA[σ
′
bd] with c1 and c2 for three sets of z1 and z2.
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Figure 10. Variation of QA[σ
′
bd] with c1 and c2 for three sets of z1 and z2.

5.4. Comparisons between MID and AMID in the Final States

In this section, let us make some comparisons between them MID and AMID. From
the last sections, through many comparisons, one can obtain the following conclusions:

(i) The properties of MID in the final state σbd are similar to those of AMID in the final
state σbd. Comparing Figures 1–3 with Figures 6–8, it is easy to obtain this conclusion. Re-
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gardless of the QC—MID or AMID—QCs in the final state σbd are monotonically increasing
function of zi (i = 1,2). Additionally, they increase when ci ∈ [0, 1/2] and symmetrically
decrease when ci ∈ [1/2, 1]. These properties are manly due to the middle measurements
in Equation (5) during the QC swapping process. In other words, the middle measurements
in Equation (5) do not change the QC properties before and after the QC swapping process.
To be concrete, the dependent relations of QCs on the parameters (zi and ci, i = 1, 2) in the
initial states are retained in the final states.

(ii) The properties of MID in the final state σ′bd are similar to those of AMID in the
final state σ′bd. Comparing Figures 4 and 5 with Figures 9 and 10, one can easily obtain this
result. If c2 = 0.5, then QCs (MID or AMID) in the final state σ′bd are symmetrical regarding
c1 = 0.5. Moreover, they are increasing in c1 ∈ [0, 1/2] and decreasing in c1 ∈ [1/2, 1].
However, when c2 �= 0.5, the symmetry disappears. QCs (MID or AMID) in the final state
ρ′bd still first increase then decrease, but the transition points are no longer equal to 0.5.
As for the dependent relation of QCs (MID or AMID) in the final state σ′bd on zi, some
transitions emerge. For example, if z2 ∈ [0.58, 1], QCs (MID or AMID) in the final state
σ′bd first increase then decrease. Obviously, the properties of QCs (MID or AMID) in the
final state σ′bd on the parameters are no longer similar to those in the two initial states.
This is mainly due to the middle measurements in Equation (6). That is to say, the middle
measurements in Equation (6) changes the properties during the QC swapping process.

(iii) There are some distinct differences between QCs (MID or AMID) in the final state
σbd and those in the final state σ′bd. From (i) and (ii), one can see the distict differences.
Properties in the QCs (MID or AMID) in the final state σbd are similar to those in the two
initial states. However, properties in the QCs (MID or AMID) in the final state σ′bd are no
longer similar to those in the two initial states. The distict differences are mainly due to the
two kinds of different measurements in Equations (5) and (6).

(iv) The long-distance QC can be realized indeed. From the above discussions, one
can find that QCs in the final states are bigger than zero. That is to say, from the two initial
states, i.e., two short-QC owners, one can obtain a final state through QC swapping process.
Moreover, the final state is a long-distance QC owner.

In addition, let us look at the influences of entanglement of the initial Werner-like states
on the QC swapping in this study. For each of the two Werner-like states in Equations (3)
and (4), it is entangled, if and only if 1/2 ≤ c < 1/2(1 +

√
(z + 1)(3z− 1)/2z) [44]. Hence,

one can see that being entangled or not in each one of the initial Werner-like states is
determined by this criterion condition. If the criterion condition is not satisfied, there is
no entanglement in the Werner-like state, and thus no entanglement swapping. However,
from the conclusions discussed above, one can see that the swapping of QC, MID or AMID,
is not influenced by the entanglement criterion condition. That is to say, whether entangled
or separable in the initial Werner-like states, it does not affect the quantum correlation
swapping in this study.

In [42], we discussed quantum correlation swapping between Werner and separable
states. In this paper, we discuss the quantum correlation swapping between two Werner-
like states. The differences between the two cases can be listed as the following: (1) In
the former case, the two initial states are Werner and separable states. The Werner state
can be an entanglement state, the while separable state has no entanglement in it. In the
latter case, the Werner-like state can be entangled. Moreover, the Werner-like state is a state
from the Werner state undergoing local or nonlocal unitary operations. (2) In the former
case, there are only two parameters concerned. One is in the Werner state and another is in
the separable state. In the latter case, there are four parameters concerned. A Werner-like
state has two parameters, one from the original Werner state and another from the unitary
operations. (3) The obtained quantities and properties are distinctly different.

Finally, let us make some simple remarks. In this study, we consider a special case of
quantum correlation swapping. The two initial states we considered are two Werner-like
states. A Werner-like state is determined by two parameters. For convenience, we select the
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four Bell states with no parameters in them. Hence, in the final states, there are four parameters.
In this work, we respectively study the dependence relations on the four parameters.

6. Summary

In this paper, the QC swapping with two Werner-like states has been considered. MID
and AMID have been utilized to quantify all the QCs in the concerned states. Some distinct
features about these obtained QCs have been revealed. Especially, it is found that the
monotony features of MID and AMID in the two final states are similar to those in the two
initial states, while those in two other final states are not. To be specific, the monotony
features of MID and AMID in the two final states in Equation (7) are similar to those in
the two initial states. However, the monotony features of MID and AMID in the two final
states in Equation (9) are different from those in the two initial states. All these obtained
distinct properties will be valuable in the field of quantum information processing.
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Appendix A

In order to evaluate AMID in σ±bd(z1, z2, c1, c2), a general joint local measurement can

be parameterized as {Ω(i)
b (α1, φ1, τ1) ⊗ Λ(j)

d (α2, φ2, τ2), i, j = 0, 1}, where Ω(k) and Λ(k)

take the same forms as that in Equations (27) and (28). If the parameterized measuring
bases are used to measure both subsystems, then four different outcomes may occur. Those
in Equation (29) are occurrence probabilities of different outcomes. After some tedious
deductions, one can obtain those in Equation (30).
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