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Editors’ Foreword

Ongoing developments in computing and data acquisition, along with continuous ad-
vances in medical imaging technology, computational modelling, robotics and visualization
have revolutionized many medical specialties and, in particular, diagnostic and interven-
tional cardiology. As a result, the diagnosis and treatment of many cardiac conditions that
previously relied on invasive tests or procedures have been reshaped by breakthroughs
in medical imaging and visualization. A concrete example is cardiac surgery, which, for
many decades, was only conducted via a highly invasive sternotomy (i.e., open chest), with
the patient connected to a heart–lung machine. By slowly complementing and eventually
substituting the need for a direct view of the surgical field with medical imaging, open
chest access was later replaced by a smaller incision (i.e., mini-thoracotomy) between the
ribs for some procedures, or, for others, by access ports through which laparoscopic or
robotic instruments were introduced, enabling the surgeon to operate on the heart under
real-time visualization provided by a laparoscopic video camera. Ultimately, the navigation
of catheters via percutaneous access through the peripheral vasculature and into the heart
became the least invasive means to deliver cardiac therapy, yet it relies solely on medical
imaging for guidance, as clinicians have no direct visual access to the sites or tissues they
manipulate during therapy.

Hence, effective minimally invasive approaches to diagnose, plan therapy or treat
cardiac conditions rely heavily or almost entirely on medical imaging and, therefore, require
the development of reliable, accurate and robust tools and techniques at the interface of
medical image computing, modelling and visualization. These research contributions are
often the result of multi-disciplinary collaborations among scientists and professionals,
spanning basic and translational research, clinical practice, medical (bio)physics, engineer-
ing, mathematics and computer science.

Several examples include, but are not limited to, the development of the following:
advanced techniques in cardiovascular imaging to investigate structure-function interaction
and identify pathology; image analysis algorithms and artificial intelligence (AI)-based
classification methods to better characterize tissue and physiological signals; computational
modelling platforms that enable the characterization and visualization of normal or patho-
logic anatomy, geometry, morphology and mechanical properties of the heart and coronary
vessels, including applications relevant to 3D printing; the personalized, non-invasive in
silico modelling-based assessment of cardiovascular function and simulation-based plan-
ning and optimization of treatments; novel pre-clinical experimental models and clinical
approaches employed in electro-anatomical mapping for image-aided cardiac ablation, elec-
troporation or resynchronization therapy; and, last but not least, innovative image-guided
interventional procedures for cardiovascular applications.

The goal of this Special Issue was to disseminate emerging techniques and innovative
solutions that comprehensively address unmet needs in cardiovascular disease and have the
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potential to be translated into the clinical arena to help improve the timeliness and accuracy
of disease diagnosis, as well as the precision and efficacy of therapy delivery, toward
achieving optimal patient outcomes. This Issue consists of thirteen scientific contributions:
ten research articles, two review articles and one technical note, spanning several topics,
from novel algorithms and platforms for medical image computing to biomechanical and
hemodynamic modelling and to functional assessment in response to drug therapy, as
briefly highlighted below.

Magnetic resonance imaging (MRI) provides unrivaled images of cardiac anatomy
and function, thanks to its exquisite capability of capturing soft tissue contrast. As a result,
a vast body of work has focused on the development of optimal image segmentation algo-
rithms designed to extract various cardiac structures and key features of interest for better
diagnosis or superior therapy planning. The review article by Galati et al. [1] provides a
comprehensive overview of deep learning-based image segmentation algorithms designed
to operate on cardiac MRI images and focuses specifically on the critical importance of
the accuracy, reliability and robustness of cardiac image segmentation tools prior to their
deployment in clinical practice. In the cardiac image segmentation arena, Guo et al. [2] also
propose a deep learning model for left ventricle myocardium and blood pool segmentation
from cine cardiac MR images and the subsequent functional evaluation based on clinical
indices, such as stroke volume and ejection fraction. Moreover, Hasan et al. [3] describe a
novel semi-supervised approach for learning the deep representations of cardiac structures
that enables the highly accurate segmentation of 4D cine cardiac MRI images using as little
as 1% annotated data.

To facilitate the integration of multi-modality cardiac imaging data with measured
electrical activity toward enabling more accurate predictive modelling, Merle et al. [4]
introduce a novel and robust software platform, created as part of a newly established
consortium with international hospitals, which is dedicated to cardiovascular diagnosis
and therapy guidance and features a plethora of AI/deep learning-based methods for
cardiac image computing, modelling and visualization. This integrative platform has great
utility in routine clinical procedures, especially in the catheter electrophysiology lab.

The interesting studies by Wang et al. [5] and Albors et al. [6] provide a deeper dive
into the cardiac modelling and simulation fields for two different applications—cardiac
ablation and resynchronization therapy. The former study [5] describes a cardiac ablation
simulator that consists of an X-ray compatible 3D-printed, bi-atrial model contained in a
custom-made enclosure for RFA simulation using a new soft tissue-mimicking polymer.
The group used this phantom to perform a full simulation of a radiofrequency ablation
procedure in the cardiac catheterization laboratory and demonstrated the effective delivery
and visualization of radiofrequency ablation lesions. The latter study [6] describes a
first attempt at the development of a meshless in silico model of cardiac electrophysiology
designed to predict patient response to cardiac resynchronization therapy (CRT), as a means
to optimize electrode placement during CRT procedures. Such virtual simulation-based
approaches will continue to receive considerable attention, as they provide non-invasive
methods to improve therapy outcome.

The contributions by Joseph et al. [7] and Hunter et al. [8] focus on different aspects of
cardiovascular modelling. Specifically, using mathematical models, these authors explore
vascular hemodynamics, whose understanding is critical when making decisions with
respect to the spectrum of therapies. For instance, the treatment of coronary stenosis is
decided based on the fractional flow reserve diagnostic index, whose estimation requires
high-risk surgery. As such, the work by Joseph et al. [7] proposes an extensive mathematical
description of the coronary vasculature that provides non-invasive estimates of coronary
fractional flow reserve, which could be used to predict a patient eligibility for subsequent
therapy. The study by Hunter et al. [8], on the other hand, is founded on the premise
that cardiac arrhythmia may reduce cerebral blood perfusion and describes a novel cardio-
cerebral lumped parameter hemodynamic model to investigate the role of the circle of
Willis variants on cerebral blood flow dynamics under atrial fibrillation conditions.
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Another venture into the vast field of cardiac biomechanical modelling is the ex-
haustive contribution by Bracamonte et al. [9], which provides a comprehensive review
of the field of patient-specific inverse modelling of cardiovascular mechanics based on
image-derived kinematic data.

Furthermore, the use of imaging as a biomarker for quantifying cardiac disease has
become a popular topic in computer-integrated diagnosis. Driven by the goal to non-
invasively characterize cardiac tissue that may have undergone chronic myocardial infarc-
tion, the pre-clinical work by Rahman et al. [10] describes the utility of cardiac diffusion
tensor MR imaging to identify the microstructural-based biomarkers of myocardial in-
farction by evaluating the diffusion tensor invariants, eigenvalues and radial diffusivity
in different myocardial areas (i.e., scar, border zone and healthy myocardium) of several
porcine subjects. In their clinical study, Mihuta et al. [11] employed the ultrasound imaging
of the carotid artery to quantify the carotid intima-media thickness as a potential biomarker
indicative of atherosclerotic progression in children and young adults, with the overall
goal to provide a more complete evaluation of their cardiometabolic risk. Lastly, the work
by Lin et al. [12] also illustrates the development of a novel assessment protocol tested
on several porcine subjects which integrates MR imaging and electrophysiology measure-
ments to assess the effect of chemotherapy on cardiac function by quantifying several
imaging-based biomarkers and assessing the presence of drug-induced tissue fibrosis or
electrical remodelling.

Finally, to further attest to the popularity gained by ultrasound imaging for cardio-
vascular applications and, specifically, for therapy planning and guidance, the work by
Carnahan et al. [13] describes the development of a novel method to register multi-view 3D
transesophageal echocardiography images to enable volume compounding as a means to
generate extended field-of-view images that can be used to plan mitral valve procedures.

In sum, while we acknowledge that the contributions disseminated in this Special
Issue barely scratch the surface and only briefly address a very few niches of the vast field
of cardiac image computing, modelling and visualization, we hope our readers find these
pieces sufficiently intriguing to foster their curiosity and to dig deeper and seek additional
literature on the topics of their interest.
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Abstract: Since the rise of deep learning (DL) in the mid-2010s, cardiac magnetic resonance (CMR)
image segmentation has achieved state-of-the-art performance. Despite achieving inter-observer
variability in terms of different accuracy performance measures, visual inspections reveal errors in
most segmentation results, indicating a lack of reliability and robustness of DL segmentation models,
which can be critical if a model was to be deployed into clinical practice. In this work, we aim to bring
attention to reliability and robustness, two unmet needs of cardiac image segmentation methods,
which are hampering their translation into practice. To this end, we first study the performance
accuracy evolution of CMR segmentation, illustrate the improvements brought by DL algorithms
and highlight the symptoms of performance stagnation. Afterwards, we provide formal definitions
of reliability and robustness. Based on the two definitions, we identify the factors that limit the
reliability and robustness of state-of-the-art deep learning CMR segmentation techniques. Finally, we
give an overview of the current set of works that focus on improving the reliability and robustness of
CMR segmentation, and we categorize them into two families of methods: quality control methods
and model improvement techniques. The first category corresponds to simpler strategies that only
aim to flag situations where a model may be incurring poor reliability or robustness. The second
one, instead, directly tackles the problem by bringing improvements into different aspects of the
CMR segmentation model development process. We aim to bring the attention of more researchers
towards these emerging trends regarding the development of reliable and robust CMR segmentation
frameworks, which can guarantee the safe use of DL in clinical routines and studies.

Keywords: cardiac image segmentation; reliability and robustness; deep learning; cardiac magnetic
resonance imaging

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally and a major
contributor to disability [1]. In 2019, an estimate of 17.9 million people died from CVDs,
representing 32% of all global deaths and 38% of premature deaths (under the age of 70)
due to non-communicable diseases [2]. It is projected that, by 2035, the number of people
with CVD will increase by 30%, reaching over 130 million people and a prevalence rate of
45.1% [3]. As a consequence, there are important efforts in place to improve prevention,
early diagnosis and management of CVDs [4].

In this context, cardiovascular magnetic resonance (CMR) imaging has been positioned
as a reference for quantitative cardiac analysis, due to its non-invasive nature and its supe-
rior spatiotemporal resolution that allows imaging the cardiac chambers and great vessels
with a great level of detail [5]. Quantitative cardiac analysis from CMR requires an accurate
segmentation of the heart. Manual delineation of the cardiac anatomical structures can take
a trained expert around 20 min per subject, which is lengthy, monotonous, and prone to
subjective errors [6]. Therefore, alongside the advances in CMR imaging, there has been a

Appl. Sci. 2022, 12, 3936. https://doi.org/10.3390/app12083936 https://www.mdpi.com/journal/applsci5
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substantial part of research devoted to the development of techniques for automatic CMR
segmentation [7–9].

Before the emergence of deep learning (DL), traditional techniques, such as thresh-
olding, edge-based and region-based approaches, model-based (e.g., active shape and
appearance models) and atlas-based segmentation methods, represented the state-of-the-
art performance in CMR segmentation [7]. The main drawback of traditional techniques
is that they require significant user expertise, in the form of feature engineering, encoded
prior knowledge or posterior user intervention, to reach good accuracy.

Over the last ten years, benefiting from advanced computer hardware and greater
availability of public datasets, DL-based techniques emerged as the reference method for
CMR segmentation [9], outperforming previous approaches and demonstrating the capacity
to reproduce the analysis of experts [10]. In fact, DL currently represents a real chance
of developing CMR segmentation frameworks to assist, automate and accelerate routine
clinical procedures and large-scale population studies. Nevertheless, despite their success
and high reported accuracy, they still lack the necessary reliability and robustness to be
safely translated into practice. As highlighted by recent studies [11], unlike experts, even the
top-performing DL methods sometimes generate anatomically impossible segmentation
results. If a model were to be deployed in clinical practice, such segmentation errors
would represent a risk. With DL algorithms unable to provide guarantees on the quality
of their results, the task of inspecting, detecting errors, correcting them and validating
the segmentation results is left to the responsibility of an expert. The development of
additional mechanisms to enable their use in subsequent quantitative cardiac analyses is
highly desirable.

The goal of this paper is threefold. Firstly, we motivate the need to shift research from
targeting high accuracy to new performance goals by showing that the accuracy objective
has currently been met. Second, we provide formal definitions of robustness and reliability
and summarize the major challenges that DL-based CMR segmentation methods face when
trying to meet these two criteria. Finally, we present a review of the current and ongoing
research for reliable and robust CMR segmentation.

The remainder of the paper is organized as follows: Section 2 motivates this work by
illustrating the improvements brought by DL-based algorithms in CMR segmentation over
the last decade. Section 3 formalizes the concepts of reliability and robustness and presents
the challenges faced by DL-based methods that hinder the reliability and robustness of
the CMR segmentations. Section 4 reviews current methods addressing reliability and
robustness and categorizes the proposed solutions into two families, Quality Control
(QC) and Model Improvement (MI) techniques. Although sharing the same objective,
QC techniques are typically external tools that do not require any modification in model
architecture or training procedure, allowing an effortless integration into state-of-the-
art segmentation pipelines. MI techniques, instead, are harder to integrate into existing
pipelines, as their functioning is related to an inner modification of the models. Finally,
discussion and conclusions are presented in Section 6.

2. Evolution of CMR Segmentation Performance (2009–2021)

We motivate the need to shift from a focus on accuracy, as the main performance
criterion, towards other criteria, i.e., reliability and robustness, by studying the evolution of
CMR segmentation methods’ accuracy over approximately a decade. To this end, we focus
on fully-automated cardiac segmentation methods from short-axis (SA) CMR acquisitions.
SA CMR segmentation has been widely studied, thanks to the large number of labelled
SA CMR datasets available through multiple segmentation challenges and within the UK
Biobank [12], a large-scale biomedical database containing in-depth genetic and health
information from half a million participants.

We analyze the performance of 50 CMR segmentation methods, published since
2009, the year where the Sunnybrook Cardiac MR Left Ventricle Segmentation Chal-
lenge (https://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/, accessed on
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7 April 2022). took place. This challenge is the first ever reported CMR segmentation
challenge. A large number of the here-reported works were developed in the context of
this and four other CMR segmentation challenges. In chronological order, these are: the
LV Segmentation Challenge (http://www.cardiacatlas.org/challenges/lv-segmentation-
challenge, accessed on 7 April 2022) in 2011 [13], the Right Ventricle (RV) Segmentation
Challenge (https://rvsc.projets.litislab.fr, accessed on 7 April 2022) in 2012 [14], the Auto-
mated Cardiac Diagnosis Challenge (https://www.creatis.insa-lyon.fr/Challenge/acdc,
accessed on 7 April 2022) in 2017 [11] (ACDC), and the Multi-Centre, Multi-Vendor & Multi-
Disease Cardiac Image Segmentation Challenge (https://www.ub.edu/mnms, accessed on
7 April 2022) in 2020 [15] (M&Ms).

Table 1 presents the SA CMR segmentation methods considered in our study and
specifies the cardiac structures each method extracts, i.e., the left ventricle (LV), the right
ventricle (RV) and left ventricular myocardium (MYO). Figure 1 presents SA CMR seg-
mentation methods’ progress in performance measured with the Dice Score Coefficient
(DSC). The methods are discriminated per segmented cardiac structure (LV, RV and MYO).
Furthermore, we differentiate between DL-based (blue) and non-DL methods (orange).

Table 1. Fully automated SA CMR segmentation methods published between 2009 and 2021 with
the segmented structure of interest (LV, RV or MYO). ALL denotes that a method segments the three
cardiac sub-structures.

No. Ref. Challenge No. Ref. Challenge

1 Jolly et al. [16] LV 25 Baumgartner et al. [17] ALL
2 Huang et al. [18] LV 26 Grinias and Tziritas [19] ALL
3 Schaerer et al. [20] LV 27 Khened et al. [21] MYO
4 Ou et al. [22] RV 28 Jang et al. [23] ALL
5 Margeta et al. [24] MYO 29 Isensee et al. [25] ALL
6 Jolly et al. [26] MYO 30 Yang et al. [27] ALL
7 Liu et al. [28] LV 31 Attar et al. [29] ALL
8 Wang et al. [30] RV 32 Calisto and Lai-Yuen [31] ALL
9 Constantinidès et al. [32] LV 33 Scannell et al. [33] ALL

10 Hu et al. [34] LV 34 Liu et al. [35] ALL
11 Zuluaga et al. [36] RV 35 Li et al. [37] ALL
12 Ngo and Carneiro [38] LV 36 Huang et al. [39] ALL
13 Queirós et al. [40] LV 37 Li et al. [41] ALL
14 Tufvesson et al. [42] LV 38 Simantiris and Tziritas [43] ALL
15 Avendi et al. [44] LV 39 Full et al. [45] ALL
16 Tran Phi Vu [46] ALL 40 Ma [47] ALL
17 Tan et al. [48] LV 43 Zhang et al. [49] ALL
18 Patravali et al. [50] ALL 42 Carscadden et al. [51] ALL
19 Tan et al. [52] MYO 43 Khader et al. [53] ALL
20 Wolterink et al. [54] ALL 44 Saber et al. [55] ALL
21 Rohé et al. [56] ALL 45 Kong and Shadden [57] ALL
22 Zotti et al. [58] ALL 46 Acero et al. [59] ALL
23 Khened et al. [60] ALL 47 Parreño et al. [61] ALL
24 Bai et al. [6] ALL 48 Zhou et al. [62] ALL

We observe that, up to 2015, methods were exclusively not DL-based, mostly focused
on LV segmentation, and with an important performance gap between the LV and the
RV and MYO. The latter may be explained by the LV’s relatively lower variability in
shape than the other cardiac structures. In 2015, in the context of the Kaggle Second
Annual Data Science Bowl (https://www.kaggle.com/c/second-annual-data-science-bowl,
accessed on 7 April 2022), the top-performing methods relied on deep learning technologies
(https://github.com/woshialex/diagnose-heart, accessed on 7 April 2022). After this
milestone, the scientific community shifted quickly towards DL. After 2016, only one
non-DL CMR segmentation method [19] has been reported.
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An immediate consequence of this change of techniques is the jump in performance
for all cardiac structures. This is more evident for MYO and RV, which had the lowest DSCs,
improving from average DSCs of 0.71 and 0.64, respectively before 2015, to both achieving
0.85 after 2015. LV segmentation reports an improvement from 0.88 average DSC to 0.91.
Since then, the number of methods has exploded. However, performance improvements
have stalled and, in some cases, deteriorated. This is the case of the general performance in
the M&Ms Challenge [15], which assessed how well methods could cope with changes in
the properties of the input images (e.g., different origins, scanner vendors and protocols).
The result was a drop in the performance, as observed from the RV trend line or the very
low performing methods (e.g., point 34) in Figure 1.

Finally, while most DL-based methods in Figure 1 report a very high accuracy, close to
the inter-observer variability, Bernard et al. [11] demonstrated that DL-based methods, even
the best performing ones [25], produced CMR segmentations with implausible anatomical
configurations. The authors go then to suggest the adoption of new performance evaluation
metrics that are more resilient to abnormalities. In the following, we show that the problems
here identified, i.e., performance drops or implausible segmentations, can be addressed by
accounting for reliability and robustness.

Figure 1. Dice Score Coefficients (DSCs) obtained between 2009 and 2021 for LV, RV, and MYO.
Methods that do not use deep learning appear in orange, DL-based methods in blue. Green lines
indicate the performance trend over the years, estimated as an average of DSCs within a window of
290 days. Interpretation of numbered labels in Table 1.

3. Robustness and Reliability: New Challenges in CMR Segmentation

In this section, we first provide formal definitions of reliability and robustness. Based
on these definitions, we then identify the main factors that can hinder the reliability and
robustness of DL-based CMR segmentation methods.

3.1. Definitions

The literature offers several definitions for reliability and robustness, as they can have
slightly different interpretations associated with the domain where they are used, or they
are often interchangeably used with related terms, such as stability [63] or safety [64]. In this
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work, we consider a CMR segmentation method as a computer system, thus we adhere
to the following definitions from the IEEE Standard Glossary of Software Engineering
Terminology [65].

3.1.1. Reliability

The ability of a system to perform its required functions under some stated conditions
for a specified period of time.

3.1.2. Robustness

The degree to which a system can function correctly in the presence of invalid inputs.

3.2. Challenges to Reliable Segmentation

Following the definitions in Section 3.1, we identify two factors that can hinder the
reliability of a DL-based segmentation method: overfitting and loss formulation.

3.2.1. Overfitting

The first and most basic condition that a reliable segmentation model should meet is
that its performance is consistent from training to testing. Failing to do so is commonly
referred to as overfitting or poor generalization. Two main factors are linked to overfitting:
model complexity and data collection. Model complexity is related to the number of
parameters in a model (e.g., the number of weights in a network), whereas data collection
refers to the task of collecting and pre-processing data to train a model. In this study,
we assume that the best architectures for fulfilling segmentation in the presence of an
adequate number of training samples have already been identified. Therefore, we consider
that overfitting can only be caused by poor data collection. In other words, the CMR
segmentation methods presented in Section 2 should have a consistent training vs. testing
performance as long as good data collection is guaranteed.

The data collection process that can guarantee the reliability of the model during
testing needs to meet two conditions. First, it requires collecting a large number of samples.
Being CMR segmentation typically fulfilled in a supervised manner, this also implies
that the collected samples require annotations. Second, the collected data should be
representative of the phenomenon under study. Failing to do so is commonly known as
data bias.

3.2.2. Loss Formulation

State-of-the-art CMR segmentation is performed through supervised learning tech-
niques. During supervised training, the loss functions measure the dissimilarity between
the ground truth and the predicted segmentation. There is a vast offer of loss functions for
medical image segmentation (e.g., the cross-entropy loss, the soft-Dice loss) [66], which can
be used independently or combining multiple losses together. An inherent disadvantage of
most of these loss functions is that they are typically pixel-wise objective functions, which
measure dissimilarity in terms of correctly classified pixels over the total. This formula-
tion does not optimize the model towards the final problem task since it does not reward
segmentation results that better reflect the anatomy, i.e., the shape of the heart. Instead, it
favors similarity among pixel intensities and, eventually, it leads to incomplete and unreal-
istic segmentation results both at training and at inference. In particular, predictions may
contain holes inside the structures, abnormal concavities, or duplicated regions, typically
located in the most basal and apical slices [67]. Being caused by intrinsic limitations of
DL-based algorithms, anatomical failures can occur at inference without any possibility of
inferring the quality of the model outcome. Therefore, the model becomes unpredictable,
intractable for model verification, and ultimately unreliable.
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3.3. Challenges to Robust Segmentation

Robustness is associated with performance in face of invalid inputs. We identify
two sources that can lead to invalid inputs, thus affecting the robustness of a DL-based
segmentation method: domain shift and data acquisition.

3.3.1. Domain Shift

Domain shift, or distribution shift, refers to a change in the data distribution between
the one observed at training dataset, and the one the model encounters at inference,
i.e., when deployed. Domain shift represents a critical risk for supervised deployed models
because it has been shown that the inference error increases proportionally to the difference
between samples from the two distributions [68]. In a strict sense, domain shifted data
do not constitute an invalid input because it is still representative of the phenomenon
under study. In this work, we follow a computer system approach where we consider
domain shifted data as deviated from the “specifications” in which the model is developed
or trained. As such, it does not affect reliability. However, the model is expected to
perform well even in the presence of the domain shifted data, i.e., they should be robust.
In CMR segmentation, this drift can be caused by numerous factors, such as changes in
demographics, modalities, acquisition protocols and scanner vendors or simply anatomical
variability or, even, an adversarial attack that may alter the statistical properties of the
input [69]. The M&Ms challenge [15] was designed to assess the capacity of existing
methods to cope with CMR domain shift. The result was an overall drop in performance
showing a lack of robustness in existing methods.

3.3.2. Data Acquisition

Data acquisition may deteriorate the quality of an image and its visual appearance,
but differently from domain shift, it does not alter the image’s statistical properties. Several
factors affect the quality of a CMR image during its acquisition. Some of them are under
the control of the clinician (e.g., the number of acquired slices), some depend on the subject
being scanned (e.g., bulk or respiratory motion), and some are out of control (e.g., arrhyth-
mias, blood flow or magnetic field inhomogeneities) [70]. When the quality is compromised,
CMR images may contain artifacts like ghosting, blurring and smearing. During manual
labelling, these images can be discarded for training. At inference, low-quality input images
may not be possible to discard. Potentially, they could be the only information available
for a patient. However, these low-quality inputs images may lead to poor segmentation
results, if the segmentation model is not capable of handling invalid inputs.

4. Methods for Improved Reliability and Robustness

Two different approaches have arisen aiming to improve the reliability and the ro-
bustness of state-of-the-art DL-based segmentation methods. We distinguish between
techniques limited to identify failures of the segmentation model, which hinder its reliabil-
ity or robustness, and techniques that adopt countermeasures to improve the segmentation
performance. In the former case, which we denote quality control (QC), the developed
tools raise a flag when the system (i.e., the segmentation model) under analysis incurs into
a lack of reliability or robustness, without necessarily explaining the cause or source of
failure. In the latter case, models are improved in their architecture, acting on the sources of
failures to eradicate them, and as a result to increase reliability and robustness. We denote
this category as model improvement (MI) techniques.

4.1. Quality Control Techniques

QC techniques grade the quality of either input CMR images or segmentation outputs,
allowing for recognizing anomalous scenarios, but without performing any action to correct
the identified problem. Therefore, they improve reliability and/or robustness by signalling
the identified anomalies to the users for them to act upon the problem. Most of these
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frameworks are not conceived to depend on a specific segmentation architecture, but they
can adapt to the different segmentation pipelines available in the literature.

We identify two types of QC techniques, depending on when they are used. We denote
as pre-analysis QC [71–77] those methods that act exclusively on the inputs of a DL-based
model, i.e., before the model is executed, thus aiming specifically to improve robustness.
Post-analysis QC [76–88] refers to those methods that act on the outputs of the model to
detect a malfunction, thus addressing reliability. Pre- and post-analysis mechanisms are
not mutually exclusive. They can be combined in an end-to-end framework. Moreover,
pre-analysis QC tools can be combined with further processing steps that mitigate the
erroneous detected inputs.

4.1.1. Pre-Analysis QC Tools

Pre-analysis QC tools aim to identify erroneous inputs, addressing robustness by
discarding them from the segmentation pipeline. The first barrier to overcome by this type
of methods is to define quality itself. Some methods aim to detect predefined types of
artifacts using learning-based approaches [73], heuristic techniques [71] or a combination
of both [72,75]. Other works, instead, follow a more qualitative definition that is based on a
cardiologist’s input [74,76,77]. In this category, machine learning classifiers provided with
a set of qualitative labels (e.g., good/bad, discard/keep) are trained to emulate experts
criteria, aiming to flag low quality. At inference, these models automatically retrieve the
binary feedback, which replaces experts’ decisions in high-throughput pipelines.

In one of the first QC works, Miao et al. [71] assess a perceptual difference model
that quantitatively evaluates image quality of large volumes of magnetic resonance im-
ages to rate different image reconstruction algorithms. Lorch et al. [72] use box-, line-,
histogram-, and texture-based features to train a random decision forest algorithm to distin-
guish between motion-corrupted and artifact-free images. Zhang et al. [73] aim to identify
missing apical and/or basal LV slices in CMR images by using generative adversarial
networks (GANs). This is achieved in two stages. First, adversarial examples are generated
and exploited to extract high-level features from the CMR images. The features are then
used to detect missing basal and apical slices. Such process improves not only robust-
ness to adversarial examples, but also generalization performance for original examples.
Oksuz et al. [74] exploit different levels of k-space synthetic corruption to detect CMR im-
ages with low perceptual quality, defined as the mean of the individual ratings assigned by
human observers. The authors use a data augmentation technique to handle the severe class
imbalance between good-quality and motion-corrupted images, training two deep learning
architectures to increase their robustness in the classification task. In [70,75], Tarroni et al.
present a quality control pipeline for CMR images in the UK Biobank dataset, capable of
detecting three problematic scenarios to warn a human operator. The scenarios are low
heart coverage, high inter-slice motion and low cardiac image contrast.

Finally, some recent works have succeeded at integrating QC tools within a more
complex cardiac analysis pipeline. Machado et al. [76] use a ResNet [89] to classify CMR im-
ages as analyzable or non-analyzable. The network is trained with a dataset of 225 images
labelled by an expert cardiologist. Those considered as analyzable move in forward in a
cardiac analysis pipeline (see Section 4.1.2). Ruijsink et al. [77] present a DL-based pipeline
for automated analysis of cardiac function. Inside the pipeline, two convolutional neu-
ral networks (CNNs) are trained to perform pre-analysis QC: a two-dimensional CNN
with a recurrent long short-term memory layer for motion artifacts detection, and a two-
dimensional CNN for detecting erroneous planning of the 4-chamber view. Flagged images
are discarded from the subsequent segmentation step that serves as input to the cardiac
function analysis.
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4.1.2. Post-Analysis QC Tools

Post-analysis QC tools focus on the assessment of the segmentation outputs of a
model. In this sense, we consider these tools as targeting reliability, as the quality of the
segmentation output is the final indicator of the model’s performance.

Methods under this category follow two main approaches to performance assessment.
They act either as binary classifiers, assigning correct/incorrect labels to a segmentation,
or as regressors, which attempt to infer well-known validation metrics, such as the Dice
Score or the Hausdorff Distance (HD), or uncertainty estimates.

Among regressors, Kohlberger et al. [82] train an SVM regressor from DSCs mea-
sured against ground truth to build confidence measures and rank candidate segmentation
models against each other. Valindria et al. [83] propose the Reverse Classification Accu-
racy (RCA), a registration-based method relying on the spatial overlap between predicted
segmentations and reference atlases as a pseudo-measure of the performance of a seg-
mentation model on new data. The technique has been extensively validated in the UK
Biobank [84], despite being computationally expensive at inference time or prone to failure
at the registration stage [90].

Robinson et al. [85] rely on a CNN to predict the DSC of unseen segmented data.
The authors are the first to observe that it is difficult to obtain a balanced set of labelled
data reflecting the complete feasible distribution of DSCs. Hann et al. [86] use an ensemble
of neural networks to segment the LV from T1 magnetic resonance, while providing
an estimate of the DSC of the predicted segmentation using multiple linear regression.
Fournel et al. [87] question the usefulness of 3D DSCs as the sole measure of segmentation
quality, as it excludes specific information related to the single slices, which is actually
fundamental when analysing the base and the apex. The authors overcome this limitation by
performing simultaneously quality control at 2D-level and 3D-level using a CNN capable of
predicting both 3D and 2D DSCs. Galati and Zuluaga [88] use a convolutional autoencoder
that reconstructs input segmentation masks into pseudo ground truth masks. Pseudo DSC
and HD are then measured between the segmentations and their reconstructions that act as
surrogate measures of the quality of the segmentation results.

Among the classifiers, Albà et al. [78] use statistical, pattern and fractal descriptors in
a random forest classifier, which detect segmentation failures to be corrected or removed
from subsequent analyses. Puyol-Antón et al. [79] use the uncertainty information captured
in the evidence lower bound (ELBO) produced by a Bayesian CNN to identify incorrect
segmentations, which can be rejected or flagged for revision by an expert. In [80], seg-
mentation uncertainty is first assessed at the voxel level by using the multi-class entropy
and Monte Carlo dropout. After deriving uncertainty maps, a CNN is trained to detect
image regions containing local segmentation failures that potentially need correction by
an expert. The authors differentiate tolerated errors, which lay within the range of inter-
observer variability, and the segmentation failures, which are flagged to be corrected by an
expert. Gonzalez et al. [81] propose combining self-supervision loss terms and post hoc
uncertainty estimations into a reliable and lightweight novelty score that allows anomalous
samples’ identification.

The RCA [83], a regressor approach, has been embedded into the method proposed
in [76], where the authors build a cardiac analysis pipeline that integrates both pre- (see
Section 4.1.1) and post-analysis QC. For the latter, they estimate several quality metrics
between pairs of segmentations, before and after being processed by RCA. Based on these
values, an SVM binary classifier is trained to discriminate between poor and good quality
segmentations. As [76], Ruijsink et al. [77] integrate pre- and post-analysis QC in a unified
end-to-end pipeline. When dealing with post-analysis, they attempt to determine inconsis-
tencies by making comparisons between long and short-axis views, LV and RV volumes,
end-diastole and end-systole phases. They implement two support vector machine (SVM)
classification algorithms to detect abnormalities in the obtained volume and strain curves.

Table 2 summarizes the main characteristics of the reported post-analysis QC tools.
In addition to the distinction among classifiers and regressors (Regression), we highlight
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whether a proposed method formulates the problem in a traditional supervised manner,
thus requiring QC labels (no QC labels). Given the cost of data labelling, it can be disad-
vantageous to require QC labels on top of the labels required to train the segmentation
algorithm. Classification methods typically exploit qualitative (e.g., correct/incorrect)
labels, whereas regressors require quantitative labels (e.g., DSC), which can be difficult to
obtain [85]. To avoid these, a final set of methods avoid the use of QC labels by considering
alternative self-supervised techniques or registration-based approaches as the RCA. Finally,
Table 2 also highlights whether a given method allows the identification of the specific
areas of segmentation failure, or it just gives an estimation of the general quality (detection).

Table 2. Post-analysis QC methods and their three main characteristics: performing regression or
classification(regression), the need of quality control labels (no QC labels) and if they detect the
element causing the error within the image (detection).

Method Regression No QC Labels Detection

Albà et al. [78] � � �

Puyol-Antón et al. [79] � � �

Sander et al. [80] � � �

Gonzales et al. [81] � � �

Kohlberger et al. [82] � � �

Valindria et al. [83] � � �

Machado et al. [76] � � �

Ruijsink et al. [77] � � �

Robinson et al. [85] � � �

Hann et al. [86] � � �

Fournel et al. [87] � � �

Galati and Zuluaga [88] � � �

4.2. Model Improvement Techniques

We denote model improvement (MI) techniques as those methods that directly ad-
dress the limitations of DL-based approaches leading to poor reliability or robustness.
Differently from QC techniques, where an external algorithmic tool flags problematic sit-
uations, MI techniques solve the lack of reliability or robustness by explicitly correcting
the model. Another key difference w.r.t. QC tools, which can be plugged in most of the
segmentation models as an external module, is that MI techniques imply modifications to
the models or the overall analysis pipelines. In the following, we first present MI techniques
for improved reliability and robustness classifying them based on the specific problem
they tackle (Section 3). The section concludes with an ablation analysis of the presented
MI techniques to illustrate their contributions to the performance of CMR segmentation
methods.

4.2.1. Overfitting

As discussed in Section 3.2.1, the necessary complexity of DL-based models to guaran-
tee a high-performance accuracy has been established. Therefore, MI techniques to reduce
overfitting firstly consist of strategies to enlarge the available datasets, when further data
collection is not possible. Chen et al. [91] apply geometrical operations to the source train-
ing data in order to simulate various possible data distributions across different domains.
This data augmentation strategy was also adopted by Full et al. [45] in the context of the
M&Ms Challenge.

Other MI techniques assume it is not possible to sufficiently increase (artificially or
through further data collection) the size of the training set that it avoids overfitting and
propose to control the complexity of the highly complex models through regularization.
Among them, Khened et al. [21] present a DenseNet-based FCN architecture with long
skip and short-cut connections to increase parameter efficiency. Guo et al. [92] integrate
continuous kernel cut and bound optimization into a CNN, building a unified max-flow
framework with improved generalization capabilities.
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4.2.2. Loss Formulation

MI techniques mitigating the lack of reliability induced by typical loss functions aim at
re-formulating the training procedure through the definition of additional objective losses
that take into account anatomical constraints. Many of these works rely on shape priors,
embedding prior expertise knowledge into the segmentation model. A second set of works
takes inspiration from control theory, proposing automatic correction schemes that make use
of high-level feedback systems.

Shape Priors

Zotti et al. [93] extend the well-established U-net architecture [94] through the for-
mulation of a probabilistic framework, which allows the embedding of a cardiac shape
prior, in the form of a 3D volume encoding the probability of a voxel to belong to a certain
“cardiac class” (LV, RV, or MYO), and the definition of a loss function tailored to the cardiac
anatomy. Clough et al. [95] propose a loss function that measures the topological correspon-
dence between predicted segmentations and prior shape knowledge. This is done by using
the differentiable properties of persistent homology, which compares topologies in terms
of their Betti numbers. Wyburg et al. [96] enforce topology preservation by combining a
segmentation network with spatial transformers and diffeomorphic displacement fields.
In this way, the network learns to warp a binary prior, completing the segmentation task
with the desired topological characteristics.

Automatic Correction

Girum et al. [67] formulate the segmentation problem as a two systems task: the first is
a U-Net inspired encoder–decoder CNN predicting segmentations from the input images,
the second is a fully convolutional network (FCN) working as a context feedback system.
Once fed with segmentations, the FCN outputs encoded features which are integrated back
into the decoder of the CNN. This context feedback loop helps the model extract high-level
image features and fix uncertainties over time.

Ruijsink et al. [97] build from their previously proposed QC technique [77] to embed
anatomical awareness into CMR segmentation models. The authors assume that the QC
information provided by the QC tool encapsulates expertise biophysical knowledge that
can be used to provide feedback to the network. As such, predictions flagged as high quality
by the QC tool are fed back into the network model to reinforce its anatomical awareness.
Painchaud et al. [98] present a segmentation framework that guarantees anatomical criteria
by warping the predictions of a given model towards the closest anatomically valid cardiac
shape with the use of a constrained Variational Autoencoder (cVAE). This warping step acts
as the correction procedure, effectively leading to a reduced number of anatomical errors
in the segmentation results. Finally, Galati and Zuluaga [99] use the information from an
autoencoder-based post-analysis QC tool as a proxy of a model’s performance in unseen
cardiac images [88]. The QC tool allows the automatic identification of Out-of-Distribution
(OoD) data, which cause failures of the segmentation model. The information is then used
as feedback to refine the training of the segmentation model, thus adapting to the OoD data.

4.2.3. Data Acquisition

Methods trying to mitigate data acquisition problems to improve the robustness of
CMR segmentation models have mostly focused on improving the image quality at the
image reconstruction phase. Among these, Schlemper et al. [100] propose two different
methods to segment the heart directly from the k-space of dynamic MRI data, bypassing
middle reconstruction stages. The first method relies on an end-to-end synthesis network
that exploits the spatiotemporal redundancy of the input to generate the segmentations
directly from the input k-space. The second method is conceived for heavily undersampled
and aliased images, where there may be a loss of geometrical information and the first
approach fails. It uses an autoencoder and a predictor network. The autoencoder is trained
to encode and decode segmentations. The predictor learns to map undersampled images to
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latent encodings. The predicted encodings are used by the autoencoder to decode the corre-
sponding segmentation maps. Huang et al. [101] propose a method that takes as input the
undersampled k-space data from CMR scans to solve the reconstruction and segmentation
problems simultaneously. The reconstruction is derived from the fast iterative shrinkage-
thresholding algorithm (FISTA), while the segmentation is based on a U-Net architecture.
Combining the two modules into a joint single-step, the reconstructed image becomes a set
of differentiable parameters for the segmentation module itself, allowing the two to mutu-
ally benefit from each other through backpropagation. Finally, Oksuz et al. [102] propose to
detect, correct and segment CMR images with motion artifacts, integrating reconstruction
and segmentation in a unique framework, which combines a spatiotemporal 2D+time CNN
for artifact detection, a convolutional recurrent neural network for reconstruction and a
classical U-net for segmentation. The full framework is trained by incorporating terms
from all three subnetworks into an overall loss function.

4.2.4. Domain Shift

Domain adaptation is the umbrella term used to refer to the techniques addressing the
domain shift problem [103,104]. Within our work, we consider domain adaptation as an
MI technique that aims at improving robustness to domain-shifted inputs. It consists of
combining labelled source domain data, i.e., data from the original training distribution,
with target domain one, i.e., the domain shifted data, typically in an unsupervised manner
that avoids labelling the target domain, where in principle no annotated data are available.

Different alternatives have been explored to improve the generalization capacity of
CMR segmentation models to an unseen domain, where the unseen domain can be a different
image modality, such as computed tomography [105–107], a different magnetic resonance
sequence, such as late gadolinium enhancement [108], or the same modality with varying
statistical properties (e.g., different vendors and/or centers) [99]. Chen et al. [105,106] present
an unsupervised domain adaptation framework, named SIFA. This framework adapts a
segmentation network to an unlabeled domain by aligning source and target domains from
both image and feature perspectives. Adversarial learning is enforced at multiple levels in
the pipeline, guiding the two adaptive perspectives through a shared feature encoder to
exploit their mutual benefits. Ouyang et al. [107] introduce an unsupervised domain adap-
tation method specifically designed to compensate for the drawback of domain adversarial
training when only a small number of target samples is available. This result is achieved by
introducing prior regularization on a shared domain-invariant latent space of the source
and target domain images, which is exploited during segmentation. Chen et al. [108] tackle
the problem of domain adaptation by using a common feature generator to fuse the feature
spaces of source and target data into a combined feature domain. This new space is kept
domain-invariant via indirect double-sided adversarial learning.

4.2.5. Ablation Analysis of MI Techniques

We analyzed the reported performance accuracy of the different MI techniques and
their ablated versions. By ablated version, we refer to the backbone architecture of each
method without MI. Figure 2 summarizes the reported DSC and HD of the different
methods. We observe a clear trend of improvement when using MI: there is an DSC increase,
whereas the HD is reduced. Although the reported methods use different backbone
architectures, configurations and datasets, which limit a direct comparison, there is a clear
trend that suggests that MI techniques addressing robustness and reliability do have a
positive impact in the performance of CMR segmentation methods.
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Figure 2. Average DSC (left) and HD (right) with (w/) the use of MI techniques and without
(w/o) them.

5. Discussion

After tracing DL history for CMR segmentation (Section 2), we have highlighted the
shortcomings that currently prevent this technology from meeting some of the requirements
to be safely deployed and used in clinical routine and cardiac analysis pipelines [109].
In this work, we focus on two main factors: a lack of reliability and robustness of many
state-of-the-art methods. After providing formal definitions for the two terms, we have
identified and discuss the elements that lead to poor reliability and/or robustness and we
presented a wide range of works that have recently been published tackling both problems
in CMR segmentation.

In this survey, we proposed to categorize the existing literature into two families:
quality control and model improvement techniques. Quality control techniques can be seen
as simpler strategies that only aim at flagging situations where a model may be incurring
poor reliability or robustness, without aiming to fix the problem. Their main advantage
is that these methods are typically external modules that can be promptly attached to
an existing segmentation pipeline. However, they leave the problem to the expert, who
needs to decide how to address the identified situation. Therefore, QC tools contribute to
reducing the analysis time for the expert and providing some safety guarantees, through the
generation of alerts, but do not contribute to improving CMR segmentation performance.

Model improvement techniques, instead, bring specific improvements in several
aspects of the segmentation model development process, with the final goal of addressing
the limitations of DL models that lead to poor reliability or robustness. As such, these
type of methods are not only capable of identifying a potential problem, as QC tools do,
but they can also act on it and aim to fix it. This being a more complex problem to tackle,
it may explain why the number of existing QC methods is larger than MI techniques.
A second possible explanation to this may be that the development of QC techniques
has been strongly driven by the need to fully automate the processing pipelines of large
databases, such as the UK Biobank.

A current limiting factor to further research on new QC and MI techniques addressing
robustness and reliability is the lack of a common and well-established framework for their
evaluation. QC techniques use different types of outputs, such as quantitative scores or
a wide range of qualitative labels, with no clear mapping among them. MI techniques,
as discussed in Section 4.2.5, rely on different backbone architectures and configurations
that cannot be directly compared. The heterogeneity of existing solutions for both categories
of methods challenges an objective and consistent evaluation. Moreover, as demonstrated
by Bernard et al. [11], current performance measures, such as the DSC or HD, are not
well-suited to identify errors which are associated with poor reliability and robustness.
Progress in the field should therefore be accompanied with the investigation of better
evaluation strategies.
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6. Conclusions

In this paper, we present an overview of the state-of-the-art methods in CMR seg-
mentation deep learning techniques, focusing on the changes of performances preceding
and succeeding their rise. As we show, DL models have reached their maturity, achieving
performance comparable to experts. Therefore, efforts to develop new models that opti-
mize performance accuracy seem unnecessary. Instead, we observe that works specifically
tackling reliability and robustness are rather limited and the field is quite young. We
hope that our review can increase the awareness of these two important challenges of
CMR segmentation and more research work will focus on developing methods that can
efficiently solve them, thus enabling the translation of accurate, reliable, and robust CMR
segmentation pipelines into the clinic.
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Abstract: Learning good data representations for medical imaging tasks ensures the preservation
of relevant information and the removal of irrelevant information from the data to improve the
interpretability of the learned features. In this paper, we propose a semi-supervised model—namely,
combine-all in semi-supervised learning (CqSL)—to demonstrate the power of a simple combination
of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN),
and a conditioning layer-based reconstructor for performing two important tasks in medical imaging:
segmentation and reconstruction. Our work is motivated by the recent progress in image segmen-
tation using semi-supervised learning (SSL), which has shown good results with limited labeled
data and large amounts of unlabeled data. A disentanglement block decomposes an input image
into a domain-invariant spatial factor and a domain-specific non-spatial factor. We assume that
medical images acquired using multiple scanners (different domain information) share a common
spatial space but differ in non-spatial space (intensities, contrast, etc.). Hence, we utilize our spatial
information to generate segmentation masks from unlabeled datasets using a generative adversarial
network (GAN). Finally, to reconstruct the original image, our conditioning layer-based reconstruc-
tion block recombines spatial information with random non-spatial information sampled from the
generative models. Our ablation study demonstrates the benefits of disentanglement in holding
domain-invariant (spatial) as well as domain-specific (non-spatial) information with high accuracy.
We further apply a structured L2 similarity (SL2SIM) loss along with a mutual information minimizer
(MIM) to improve the adversarially trained generative models for better reconstruction. Experimental
results achieved on the STACOM 2017 ACDC cine cardiac magnetic resonance (MR) dataset suggest
that our proposed (CqSL) model outperforms fully supervised and semi-supervised models, achiev-
ing an 83.2% performance accuracy even when using only 1% labeled data. We hypothesize that our
proposed model has the potential to become an efficient semantic segmentation tool that may be used
for domain adaptation in data-limited medical imaging scenarios, where annotations are expensive.
Code, and experimental configurations will be made available publicly.

Keywords: augmentation; cardiac segmentation; domain invariant features; disentangled representation;
generative adversarial network; image quality; mutual information; reconstruction; variational autoencoder

1. Introduction

1.1. Background and Problem Statement

The emerging success of deep convolutional neural networks (CNNs) has rendered
them the de facto model in solving high-level computer vision tasks [1–3]. However, such
approaches mostly rely on large amounts of annotated data for training, the acquisition of
which is expensive and laborious, especially for medical imaging/diagnostic radiology data.
To address the need for high performance, there has been a growing trend in using a limited
amount of annotated data along with an abundance of unlabeled data in a semi-supervised
learning (SSL) setting.
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The recent dominant body of research that has proposed SSL methods in deep learning
features various approaches, including an auxiliary loss term defined on un-annotated data
(consistency regularization) [4,5], adversarial networks [6], generating pseudo-labels [7,8]
based on model predictions on weakly augmented un-annotated data, self-training [9,10],
adversarial learning [11] and domain adaptation [12]. Here we acknowledge their latest
accomplishments in the field of domain adaptation, semi-supervised learning and inter-
pretable representation learning by disentanglement and briefly discuss some of their yet
outstanding limitations.

1.2. Ongoing Efforts and Related Work

Semi-Supervised Learning: Semi-supervised learning (SSL) [13,14] has experienced
much research attention thanks to the increasing availability of large-scale unlabeled data.
Semi-supervised learning aims to revamp the model performance by learning from a
small portion of labeled data along with optimizing an additional unsupervised loss on
a larger portion of unlabeled data, assumed to be sampled from similar distributions,
depending on the type of information that needs to be captured from the unlabeled data.
Commonly, the rationale of SSL is based on generative models and adversarial networks.
The integration of consistency regularization in SSL has shed light on standard baselines
recently. By optimizing this loss term, the model imposes several assumptions/constraints
on the decision boundary to avoid high-density regions of unannotated data.

Generative adversarial networks: Moreover, generative adversarial learning can be
adapted to semi-supervised learning for semantic segmentation [15–17] as well as by
generating pseudo pixel-level predictions [18,19]. Adversarial networks use a critic to
predict the pixel-level distribution of the data, which acts as an adversarial loss term with
the goal to provide the generator with learnable useful visual features from the unlabeled
data for medical image synthesis [20]. Nonetheless, learning high-dimensional data can
be difficult. Autoencoders struggle with multi-modal data distributions, and generative
models rely on computationally demanding models, which are especially difficult to train.

Mutual information estimation: Recent work on representation learning has focused
on mutual information estimation [21]. As mutual information maximization has been
shown to be effective at capturing the salient attributes of data, being able to disentan-
gle these attributes is another desirable property. For example, it may be beneficial to
remove data attributes that are irrelevant to a given task, such as illumination conditions in
object recognition.

Disentanglement learning: Some newly introduced techniques have dedicated
considerable attention to disentangle representation with generative modeling [22,23].
In disentangled representation, information is represented as a collection of (indepen-
dent) factors [24], each of which corresponds to a meaningful aspect of the data [25,26].
A current line of research has argued that disentangled representations are beneficial for
a variety of tasks, including (semi-)supervised learning of downstream tasks, few-shot
learning [27], and exploratory medical data analysis. Additionally, these representations
also make it easier for later processes to only use the relevant parts of the data as input.

Unpaired image-to-image translation: Image-to-image translation was first proposed
by Isola et al. in [28] in their conditional GAN paper. Furthermore, CycleGAN [29]
tackles the problem of the above paired image translation approach by introducing a cycle-
consistency loss to retrieve the original images by exploiting a cycle of translation. Later
work [30] improved CycleGAN from one-to-one mapping to multimodal image generation.
Nevertheless, in medical applications, image synthesis without explicit anatomy design
constrain may lead to volatile anatomical structures and artifacts. Moreover, these methods
are not aimed at medical image segmentation.

Domain Adaptation: Domain adaptation, a form of transfer learning, encodes the
distribution knowledge from a certain source domain to a different but related target
domain, and thus, alleviates the domain shift discrepancy in real world applications [31].
Various methods have been proposed, including style and content-disentanglement [32],
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and adversary based approaches [33,34]. As described later, in this work, we disentangle
the most interpretable segmentation-aware spatial (skeleton) information.

Normalization layers: Inspired by instance normalization (IN) [35], conditional batch-
normalization [36] and adaptive IN (AdaIN) [37] bring significant improvement in image
generation. Later on, feature-wise linear modulation (FiLM) [38] and spatially adaptive
denormalization (SPADE) [39] shed additional light over other normalization layers in
image synthesis. In our proposed work, we also show how we can adapt both SPADE as
well as FiLM normalization as part of a residual and common decoder, respectively.

Variational autoencoder-based models: There have been several recent works involv-
ing disentangled learning with variational autoencoder (VAE) [24,40,41]. In contrast to
these previous works, we will attempt to demonstrate the use of a VAE as a disentangled
representation by sampling the sentiency code to separate the domain-specific information
from the domain-invariant latent code.

1.3. Overview of the Proposed Method

To further address some of the shortcomings associated with existing methods, our
efforts focus on learning meaningful spatial features utilizing a disentangler with a mutual
information minimizer (MIM) to improve the adversarially trained generative models for
improving semi-supervised segmentation and reconstruction results.

Our proposed method builds on several recent and key research findings in the fields
of generative models, semi-supervised learning, and representation learning via disen-
tanglement. We believe that the proposed framework’s reliance on as little as 1% labeled
data for training, in concert with the high segmentation accuracy achieved, comparable to
the fully or semi-supervised models, renders the proposed work an attractive solution for
medical image segmentation, where access to vast expert-annotated data is expensive and
often difficult to gain access to.

We approach this problem using a method that is based on disentangled represen-
tations and utilizes data from multiple scanners with varying intensities and contrast
(Figure 1). Our method is intended to address multi-scanner unlabeled-data issues, such
as intensity differences, and a lack of sufficient annotated data. Learning good data rep-
resentations for medical imaging tasks ensures the preservation of relevant information
and the removal of irrelevant information from the data to improve the interpretability of
the learned features. Our model disentangles the input image into spatial and non-spatial
space. These spatial features are represented as categorical feature maps, with each category
corresponding to input pixels that are spatially similar and are from the same organ part.
This semantic similarity aids in learning to be generalized the anatomical representation to
any modality from different scanners. Furthermore, the non-spatial features capture the
image’s global intensity information, which aids the renderer in painting the anatomy in
the reconstructed image. Finally, because annotating data is time-consuming and expensive,
the ability to learn this decomposition through disentanglement using a small number of
labels is critical in medical image analysis.

In light of these needs, here we propose a semi-supervised (CqSL) model for learn-
ing disentangled representations that combines recent developments in semi-supervised
learning–generative models and adversarial learning. We aim to factorize the representa-
tion of an image pair into two parts: a shared representation that captures the common
information between images and an exclusive representation that contains the specific in-
formation of each image. Furthermore, in order to achieve representation disentanglement,
we propose to minimize mutual information between shared and exclusive representa-
tions. Moreover, we use feature-wise linear modulation (FiLM) [38] to distinguish the
domain-invariant information from the domain-specific information, as well as a spatially
adaptive normalization (SPADE) [39]-based decoder to guide the synthesis of more texture
information to restrain the posterior collapse of the VAE and spatial information.
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Figure 1. Images, histograms and surface plots of two 3D cardiac images featuring all slices of two
random patients from the ACDC dataset are illustrated in (a,b). From left to right: cardiac MR image
in 4 dimensions, histogram plot, and surface plot.

To illustrate its adequacy, our model is applied to two of the foremost critical tasks in
medical imaging—segmentation of cardiac structures and reconstruction of the original
image—and both assignments are handled by the same model. Our model leverages a
large amount of unannotated data from the ACDC (https://www.creatis.insa-lyon.fr/
Challenge/acdc/databases.html, accessed on 2 October 2021) dataset to learn the inter-
pretable representations through judicious choices of common factors that serve as strong
prior knowledge for more complicated problems—the segmentation of cardiac structures.
Figure 2 shows a simplified data view of our proposed model.

Figure 2. A simplified schematic overview of the proposed model.
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1.4. Contributions

Our proposed work makes several contributions summarized as follows:

1. We combine recent developments in disentangled representation learning with strong
prior knowledge about medical imaging data that features a decomposition into
“skeleton (spatial)” and “sentiency (non-spatial)”, to ensure that the spatial informa-
tion is not mixed up with the non-spatial information.

2. We alter the usual cross-entropy loss to down-weigh the loss applied to well-classified
samples in order to overcome the foreground–background class imbalance problem.
Specifically, we exploit a novel supervised loss—the weighted-soft-background-focal
(WSBF) loss, which focuses the training on a set of hard examples to ensure that this
loss can differentiate between easy/hard examples.

3. We employ both qualitative and quantitative tests to evaluate the usefulness of our
framework, which show that our model outperformed fully supervised methods,
even when using only 1% labeled data for training.

The paper is organized as follows: Section 1 establishes the general background and
motivation of the work, reviews the related literature on latest developments in the field of
domain adaptation, semi-supervised learning and representation learning, and provides an
overview of the proposed work; Section 2 describes our proposed methodology; Section 3
presents our quantitative and qualitative results achieved using our proposed method for
both image segmentation and reconstruction, along with the associated ablation studies;
Section 4 concludes the paper with a summary of our contributions and promising future
research directions.

2. Methods

2.1. CqSL Model Overview

We propose a model that combines the concept of variational generative and adver-
sarial learning, and disentangled interpretation learning in a semi-supervised learning
scheme, which is suited for domain-adapted segmentation as well as reconstruction.

We define the learning task as follows: given an (unknown) data distribution p(x, y)
over images and segmentation masks, we define a source domain having a training set,
DL = {(xl

i , yl
i)}nl

i=1 with nl labeled examples, and another domain having a training
set, DUL = {(xul

j )}nul
j=1 with nul unlabeled examples, which are sampled as independent,

identically distributed variables from p(x, y) and p(x) distribution. Empirically, we want
to minimize the target risk ∈t (φ, θ) = minφ,θ LL(DL, (φ, θ)) + γLUL(DUL, (φ, θ)), where
LL is the supervised loss for segmentation, LUL is the unsupervised loss defined on
unlabeled images and φ, θ denotes the learnable parameters of the overall network.

We propose to solve the task by learning domain-specific and domain-invariant fea-
tures that are discriminative of the semgentor and reconstructor. Figure 3 shows the
proposed model comprised of five components—(1) disentanglement component, (2) a
disentangled variational autoencoder (DVAE), (3) a mask segmentor identifier (SI), (4) a
mask discriminator identifier (DI), and (5) a reconstructor R.

The disentangler D (Figure 3a) is designed to factorize the representation of an image
pair into two parts: a shared spatial representation (skeleton, SKe) that captures the common
information between images and an exclusive non-spatial representation (sentiency, Se)
that contains the specific information of each image. The skeleton block SKe is a modified
U-Net++ [42] type architecture (EPU-Net++) (Figure 4 and Section 2.1.1) and is responsible
for capturing the domain-invariant features ( fSK). The sentiency block Se is a DVAE
(Figure 3b) type architecture, which takes both the input image and the domain-invariant
features ( fSK) as the input to map domain-specific features ( fSE) using the reparameterized
trick [43].

The reconstruction block consists of two decoders: the SPADE-based decoder takes
the ( fSE) feature from the sentiency block and proceeds directly to the reconstructor R
(Figure 3d), while the FiLM-based decoder works as another disentangler, which untangles
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a segmentor identifier (SI) (Figure 3c), used for segmentation and extracted features, which
then proceed directly to the reconstructor R. The reconstructor R aims to recover the original
image from both ( fSK, fSE). A mutual information minimizer (Figure 3a block) is applied
between (SKe and Se) to enhance the disentanglement. A supervised trainer is trained on
the labeled data to predict the segmentation mask distribution optimizing a supervised
loss. An unsupervised trainer is trained on the unlabeled data, optimizing unsupervised
losses (Algorithm 1 specifies the overall training procedure). Both the unsupervised and
supervised trainers share the same block, as mentioned above.

Figure 3. Illustration of CqSL framework: Our model makes use of both labeled as well as unlabeled
images. The first block (a) crops the input images to a specific dimension. Then, we disentangle
the latent features of the images via a disentangled block. An input image is first encoded to a
multi-channel spatial representation, SKdn=1,2...8. Then, SKdn can be fed into a segmentation network
SI to generate a multi-class segmentation mask. (c) We train a generative network, which predicts
semantic labels for both labeled and unlabeled data. (b) A sentiency encoder Se uses the factor
SKdn and the input image to generate a latent vector z representing the imaging modality using a
variational autoencoding block. (d) The decoder networks combine the two representations SKdn

and z to reconstruct the input image.
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Algorithm 1 CqSL mini-batch training.

Input:
Training set of labeled data xl , yl , cl ε DL
Training set of unlabeled data xul , size m, ε DUL
Disentanglement Learned parameters: (φ, θ), generator G; segmentor S; disentangler D;
discriminator identifier DI, mutual information estimator M, and reconstructor R.
Require:
Shared disentangler D, Shared encoder SKk

d, Se and decoder
for each epoch do

for each step do
Sample mini-batch from xl

i ; xl
1, . . . , xl

nl
; through DL(x)

Sample mini-batch from xul
j ; xul

1 , . . . , xul
nul

; through DUL(x)
Compute model outputs for the labeled inputs
ŷl ← Wφ,θ (IL)
Compute model outputs for the unlabeled inputs
ŷul ← Wφ,θ(IUL)
Calculate mutual information between the disentangled feature pair ( fsk, fse) with Mi:
Update the mask discriminator identifier DI along its gradient:

∇φDI
1

|IL| ∑
i∈IL

[
LDI(xl

i , yl
i , ŷl

i)
]
+

γ
1

|IUL| ∑
i∈IUL

[
LDI(xul

j , ŷul
j )

]

Update the segmentation mask generator SI and VAE encoder along its gradient:

∇θSI
1

|IL| ∑
i∈IL

[
LSI(xl

i , yl
i , ŷl

i)
]
+

∇θSE
1

|IL| ∑
i∈IL

[
LSe(xl

i ,F (xl
i),∼ zl

dim)
]
+

γ
1

|IUL| ∑
j∈IUL

[
LG(xul

j , ŷul
j )

]
+

∇θSE
1

|IUL| ∑
i∈IUL

[
LSe(xul

j ,F (xul
j ),∼ zul

dim)
]

end for
end for

2.1.1. Disentanglement

Referring to Figure 3a, the disentangler block factorizes the image features into spa-
tial (skeleton/physique) features, as well as non-spatial (sentiency) features that carry
residual information. The skeleton block is a modified U-Net type architecture—EvoNorm-
Projection-UNet++ (EPU-Net++) as shown in Figure 4. We attach eight different decoders
at the common bottleneck layer of EPU-Net++. Each decoder captures bottleneck features
from 2D cropped images and transforms them into different feature maps consisting of a
number of binary channels which are then combined together to form eight most effective

channels: xST
(0,1)(h×w×c)−−−−−−→ {∑i=8

i=1 fSKi}. These feature maps are responsible for capturing
the domain-invariant features and contain cardiac structures (myocardium, the left and the
right ventricle), effective for segmentation and some surrounding structures, effective for
reconstruction (Figure 5).
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Figure 4. Illustration of EPU-Net++ Block: skip connections are replaced with a long projection block.

Figure 5. Representative examples showing the 5 (out of 8) most semantic disentangled multi-channel
binary maps of the spatial information generated from the skeleton decoder from the base to apex
(top to bottom rows). Some channels indicate anatomical portions that are well-defined, such as
the myocardium, left ventricle or the right ventricle, while others represent the remaining anatomy
needed to characterize the input image.

We use a separate neural network for capturing the sentiency information i.e., domain-
specific information. We combine the crop image and the domain-invariant features to pe-
nalize the deviation of latent features from the prior distribution employing Kullback–Leibler
divergence by applying a VAE architecture (Figure 3b) with the following objective function:

Lvae = ∑
∣∣∣(p(zi) log

p(zi)

p(zi|xul
i , fSKi )

)∣∣∣ (1)
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A VAE learns a low dimensional latent space such that the acquired latent representa-
tions fit a prior distribution that is predetermined to be an isotropic multivariate Gaussian
p(z) = N (0, 1). An encoder and a decoder make up a VAE. Given an input, the encoder
guesses the Gaussian distribution’s parameters. In order to enable learning through back
propagation, this distribution is then sampled using the reparameterization technique,
and the resulting sample is sent through the decoder to reconstruct the input.

We use disentangled features as the prior distribution in a VAE (Equation (1)) to
remove class-irrelevant features (e.g., background pixels) and ensure that domain-invariant
features are well-disentangled from class-specific features, because the image-only a priori
aligns the latent features to a normal distribution.

2.1.2. Mutual Information Minimizer

To better exploit the disentanglement, we add a regularization term based on mutual
information (MI), denoted as MIM, which measures the “amount of information” learned
from knowledge of random variable Y about the other random variable X [44]. In this
paper, we adopt the mutual information neural estimator (MINE) [45], MI( fSK, fSE):

1
N

N

∑
i=1

M(α, β, θ)− log
( 1

N

N

∑
i=1

expM(α,β′ ,θ)
)

(2)

where (α, β) are sampled from the joint distribution of ( fSK, fSE) and β′ is sampled from
the marginal distribution.

The mutual information can be expressed as the difference of two entropy terms
MIM(X; Y) = H(X)− H(X|Y); we seek to minimize the MI between domain-invariant
and domain-specific features ( fSK, fSE), whereas we make an assumption that the informa-
tion content does not vary much between intra-domains (Figure 3a).

2.1.3. Segmentation

The mask segmentor identifier (SI) (Figure 3c) takes the output from the FiLM decoder
f F
SK as input and generates predicted segmentation mask SI( fSK) = ŷl ∈ {0, 1}(H×W×L),

where L is the number of categories (RV, LV, LV-Myo, and background) in the training
dataset. We exploit a novel supervised loss, weighted soft background focal (WSBF) loss,
LL

SI(seg) = LWSFL + LBFD for the base model, which is a combination of background focal
dice loss (BFD) and weighted soft focal loss (WSFL):

LL
SI(seg) =

[
α0 + y(α1 − α0)

]
|y − ŷ|γ.wmap.CE(y, ŷ) +

∑
c

[
2 − 2 ∑ yŷ + ε

∑(y + ŷ) + ε
− 2 ∑ yŷ + ε

∑(y + ŷ) + ε

] 1
γ

(3)

where α0 and α1 are designed to account for class imbalance and are treated as hyper-
parameters, the term |y − ŷ|γ is used to down-weigh examples with backgrounds, where
γ varies in the range [1, 3]. The term CE(y, ŷ) = −y log ŷ − (1 − y) log(1 − ŷ) denotes the
cross-entropy loss.

On the other hand, the data with no corresponding segmentation masks are trained
by minimizing the unsupervised loss via a KL divergence based on least-squares GAN [46].
However, since the least-squares loss is not sufficiently robust, we introduce a new diver-
gence loss function by incorporating it into a Geman–McClure model [47] fashion called
adversarial-Geman–McClure (adv-GM) loss between the ground truth of real mask yl and
prediction on unlabeled data yul :

LU
SI(adv-GM) =

DI(SI( fSK(xul)))2 + (DI(ŷul)− 1)2

2β + DI(SI( fSK(xul)))2 + (DI(ŷul)− 1)2
(4)
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where β is the scale factor which varies in the range of [0, 1] and we set β = 0.5 in
our experiment.

2.1.4. Image Reconstruction

To better capture the anatomical shape and the intensity information in the synthetic
image, we propose a two-branched reconstruction architecture featuring two separate
decoders: one is conditioned with FiLM [38], and the other with SPADE [39] (Figure 6a)
and both are then concatenated to produce a realistic image. The FiLM decoder consists of
multiple FiLM layers, a gamma-beta predictor, and convolutional layers with 3 × 3 kernel
and (8, 8, 8, 8, 1) channels in the stride of 1. Each convolution layer is followed by batch
normalization layer along with a Leaky-ReLU layer.

Figure 6. Detailed architecture of SPADE block: (a) shape-aware normalization block where the
spatial tensors, γ and β are multiplied and added to the input features; (b) decoder block fSES with
shape-aware normalization.

To better retain the non-spatial information in the MR image, we integrate the shape
knowledge into the idea of SPADE [39] and form a shape-aware normalization layer (see
Figure 6). SPADE first normalizes the input feature Fin with a scale α and a shift μ learned
from sampled z using an instance-normalization (InstanceNorm) layer, inspired by [38] and
then denormalizes it based on a spatial representation fSK through learnable parameters γ
and β. fSK is then interpolated to match the texture dimension of the sampled z from the
sentiency encoder and used as a semantic mask for SPADE:

Fout =
Fin − μ

α
× γ( fSK) + β( fSK) (5)

where Fin and Fout denote the output feature maps. γ and β are learned from fSK by
three Conv layers. Thus, the learned shape information precludes washing away the
anatomical information, which encourages the image synthesis to be more accurate. The
first convolution layer inside the SPADE block (Figure 6) encodes the interpolated fSK,
and the other two convolution layers learn the spatial tensors γ and β. Simultaneously,
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an instance normalization layer is applied to the intermediate feature map, which is then
modulated by the scale and shift parameters γ and β learned from sampled z to produce
the output. Finally, the output of the two decoders is re-entangled in order to reconstruct
an image.

2.2. Objective Functions

The training objective function consists of multiple losses for labeled and unlabeled
data, each weighted by some scalar term λ:

Ltotal = λseg LL
SI(seg) + λadv−GM {LL

SI,DI(adv−GM)

+ LU
SI,DIu(adv−GM)}+ λvaeLvae

+ λSL2SIM { LL
SL2SIM + LU

SL2SIM}
+ λMIM MIM( fSK, fSE)

(6)

where λt is the weight for the loss of type t. In this paper, we empirically set the weights as
λvae = 0.01, λseg = 10, λadv−GM = 10, λSL2SIM = 0.01, λMIM = 1.

2.2.1. Segmentation Loss

Since the model is trained on both labeled and unlabeled data, the segmentation loss
Lseg includes both supervised and unsupervised losses:

Lseg = Lsup + Lusup (7)

Supervised Loss. Our supervised cost is based on the combination of the two fol-
lowing functions: (1) the weighted soft focal loss, and (2) the background focal dice loss
mentioned in Equation (3) (Lsup = LL

SI(seg)).
Unsupervised Loss. The discriminator identifier is adversarially trained for the la-

beled and unlabeled data and updated along with adversarial-Geman–McClure (adv-GM)
loss Lusup = LL

SI,DI(adv−GM) + LU
SI,DIu(adv−GM). For labeled data, the adversarial loss is

LL
SI,DI(adv−GM) =

Ex∼xl
i
[DI(SI( fSKi (xl

i)))
2] +Ey∼yl

i
[(DI(yl

i)− 1)2]

2β +Ex∼xl
i
[DI(SI( fSKi (xl

i)))
2] +Ey∼yl

i
[(DI(yl

i)− 1)2]

(8)

Similarly, for the unlabeled data, the adversarial loss is

LU
SI,DIu(adv−GM) =

Ex∼xul
i
[DIu(SI( fSKi (xul

i )))2]

2β +Ex∼xul
i
[DIu(SI( fSKi (xul

i )))2]

+ Ey∼ŷul
i
[(DIu(yul

i )− 1)2]

+ Ey∼ŷul
i
[(DIu(yul

i )− 1)2]

(9)

VAE Loss. For the smooth texture detail of the input data, the VAE learns factorized
representations to optimize a KL-divergence loss, given an image xul

i , and its decomposed
skeleton feature fSK (Equation (1)).

2.2.2. Reconstruction Loss

We adopt a novel reconstruction loss as a combination of structural similarity (SSIM)
and L2 loss–SL2SIM in order to enforce the similarity between recovered image and original
image for better learning the distribution of images.

SL2SIM Loss. Since the image intensities vary across imaging scanners, as a result,
there are high chances that the generative model will tend to mode collapse. This structural
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L2 similarity (SL2SIM) loss provides a similarity measure between the input image and the
reconstructed image based on high light-dark variance, contrast, and structural similarity.
The concatenated FiLM and SPADE decoder learn the parameters to reconstruct the input
image using a novel combination of structured similarity loss and L2 loss. For labeled data,
the reconstruction loss is

LL
SL2SIM = Exi∼xl

i

[
1 − SL2SIM

{
xl

i , (F ( fSKi , fSEi )

⊕ S( fSKi , fSEi ))
}
+ α

nl

∑
i=1

∣∣∣∣∣∣{xl
i − (F ( fSKi , fSEi )

⊕ S( fSKi , fSEi ))
}∣∣∣∣∣∣2

2

]
(10)

Similarly, for unlabeled data, the reconstruction loss is

LU
SL2SIM = Exi∼xul

i

[
1 − SL2SIM

{
xul

i , (F ( fSKi , fSEi )

⊕ S( fSKi , fSEi ))
}
+ α

nul

∑
i=1

∣∣∣∣∣∣{xul
i − (F ( fSKi , fSEi )

⊕ S( fSKi , fSEi ))
}∣∣∣∣∣∣2

2

]
(11)

where SL2SIM is the structure similarity index term and α is a regularized term.

2.3. Experiments
2.3.1. Datasets

We validate the effectiveness of CqSL on a widely adopted cardiac image segmentation
challenge dataset by conducting several comparisons to other baseline models. We use the
STACOM 2017 Automated Cardiac Diagnosis Challenge (ACDC) dataset (https://www.creatis.
insa-lyon.fr/Challenge/acdc/databases.html, accessed on 2 October 2021), consisting of
short-axis cardiac cine-MR images acquired for 100 patients (1920 labeled and 23,530
unlabeled images) divided into 5 subgroups: normal (NOR), myocardial infarction (MINF),
dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and abnormal
right ventricle (ARV), available through the 2017 MICCAI-ACDC STACOM challenge [48].
The images were acquired over a 6 year period using two MRI scanners of different
magnetic strengths (1.5 T and 3.0 T). The images were acquired using the SSFP sequence
with spatial resolution 1.37 to 1.68 mm2/pixel and 28 to 40 frames per cardiac cycle. We
split the dataset into three sets—training (70), validation (15), and test (15).

2.3.2. Implementation Details

Input: All the cine cardiac images employed slice-wise normalization in the
range [0, 1] by subtracting the mean slice intensity from each pixel intensity, then
dividing it by the difference between the maximum and minimum slice intensity. All
images were resampled to 1.37 mm2/pixel. Images were cropped to 192× 192× 1 pixels
before feeding to the models. We applied data augmentation on-the-fly during training
as shown in Figure 7, which includes random rotations up to 90 degrees, random
zooms up to 20%, random horizontal shifts up to 20%, random horizontal and/or
vertical flips, and noise addition (Figure 7).

Baselines Architecture: As the disentangled encoder in the skeletal block, we use a
modified U-Net-like architecture, EPU-Net++, and as a sentiency encoder, we use VAE.
As the reconstruction block, we use FiLM- and SPADE-based decoder as used in [49].

Generator–Discriminator Network: Our segmentation generator network consists
of 3 convolution layers with 3 × 3 kernel and {64, 64, 1} channels in the stride of 1. Each
convolution layer is followed by a batch normalization [50] layer along with a Leaky-
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ReLU [51] except the last layer. We use the structure similar to DCGAN [52] for the
discriminator network.

Figure 7. Example images of applying data augmentation via affine transformations.

EvoNorm-Projection skip connections: In our skeleton encoder, we replace the stan-
dard skip connection with a normalized-projection operation using EvoNorm2D + 1 × 1 −
Conv + Gaussian − dropout, as in Figure 4. This new normalization layer adds together
two types of statistical moments–batch variance, and instance variance, both of which
capture both the global and local information across images without having any explicit
activation function [53]. The proposed projection operation helps in reducing the learnable
weights and also allows intricate learnability of cross-channel information.

Additional Factors: The performance of semi-supervised models trained for image
segmentation can be significantly impacted by the proper selection of regularizer, optimizer,
and hyper-parameters. The model implemented in Keras was initialized with the He
normal initializer and trained for 100 epochs with a batch size of 4. We trained all the
components iteratively with the Adam optimizer with a 0.0001 learning rate to minimize
the objective function. All experiments were conducted on a machine equipped with
two NVIDIA RTX 2080 Ti GPU (each 11GBs memory). The detailed training procedure is
presented in Algorithm 1.

Training: In our semi-supervised setup, we trained the network on varying propor-
tions of labeled data: 1%, 10%, 20%, 30%, 50%, and 90% as a labeled set and used the rest of
the data as the training unlabeled set to hold |DL| ≤ |DUL|. In Section 3, we include an
ablation study to investigate the importance of adding different loss components in our
model CqSL which is comprised of all the three loss functions: WSBF , MIM, Adv-GM.
(Definitions are provided in Sections 2.1.2 and 2.1.3.)

We experimented an ablation study containing four of the variants of our proposed
model CqSL. The variants are described as follows: 1CqSL, without weighted-soft focal loss
(WSFL); 2CqSL, without adversarial-Geman–McClure loss (Adv-GM); 3CqSL, dice and cross-
entropy loss only; and 4CqSL, without mutual information minimizer loss (MIM). Here, we
utilize the same backbones as the baselines with the only exceptions being different loss
functions. To clarify our point, in 1CqSL, we removed the weighted soft focal loss (WSFL)
from the weighted soft background focal loss (WSBF), while keeping the background
focal dice loss (BFD), mutual information minimizer loss (MIM) and adversarial-Geman–
McClure (adv-GM) the same as before. In 2CqSL, we removed our Geman–McClure version
of adversarial loss, while keeping the regular adversarial loss, weighted soft background
focal loss (WSBF), and mutual information minimizer loss (MIM) the same as before.
Similarly, in 3CqSL, we used DICE + CE loss rather than using our novel weighted soft
background focal loss (WSBF) while keeping the mutual information minimizer loss (MIM)
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and adversarial-Geman–McClure (adv-GM) the same as before. Finally, in 4CqSL, we
removed our mutual information minimizer loss (MIM) loss, while keeping the weighted
soft background focal loss (WSBF), and adversarial Geman–McClure (adv-GM) the same
as before. Additionally, the sentiency block, Se and the skeleton block, SKe were in place.
We evaluated the performance of all four CqSL semi-supervised variants as summarized
in Tables 1–3 in the Results section, and, as illustrated later, the 1CqSL variant performed
best, but for the sake of consistency, we asses and compare the performance of all four
implemented variants.

Table 1. Quantitative evaluation of RV blood pool segmentation results achieved using four semi-
supervised variants of the proposed CqSL model in terms of mean Dice score (%) with std. dev.,
Jaccard index, Hausdorff distance (mm), precision (%) and recall (%) rate evaluated for varying
proportions of labeled data on the ACDC dataset compared across several frameworks.

Right Ventricle (RV)

Dice Jaccard HD Prec. Rec.

U-Net-90% 80.50 ± 8.45 72.03 ± 9.77 8.89 ± 8.45 90.09 94.35
U-Net-50% 79.21 ± 8.49 70.26 ± 10.69 8.90 ± 6.12 85.32 90.11
U-Net-30% 72.32 ± 10.60 66.10 ± 14.75 10.19 ± 7.43 79.50 83.45
U-Net-20% 61.29 ± 16.59 55.65 ± 18.90 12.88 ± 7.32 67.19 74.50
U-Net-10% 54.90 ± 19.66 46.89 ± 20.05 14.58 ± 9.03 60.55 63.02
U-Net-1.0% 39.02 ± 21.22 32.10 ± 22.22 15.90 ± 9.12 43.02 44.15

GAN-90% 79.0 ± 8.15 70.59 ± 10.89 9.55 ± 6.35 85.09 90.12
GAN-50% 78.76 ± 8.98 70.16 ± 11.18 9.88 ± 6.44 84.32 89.43
GAN-30% 73.97 ± 10.87 67.01 ± 13.04 10.23 ± 6.98 79.93 84.97
GAN-20% 69.92 ± 11.45 63.65 ± 16.88 11.66 ± 7.14 79.12 84.12
GAN-10% 66.33 ± 13.21 60.18 ± 19.23 11.99 ± 7.88 74.12 78.34
GAN-1.0% 62.43 ± 13.23 56.43 ± 22.12 13.43 ± 8.11 69.12 73.33

GAN+REC-90% 78.78 ± 8.11 71.13 ± 9.77 9.12 ± 6.46 86.09 90.23
GAN+REC-50% 78.98 ± 8.88 70.13 ± 11.13 9.78 ± 6.66 85.12 90.54
GAN+REC-30% 74.83 ± 10.67 68.67 ± 14.06 10.01 ± 6.98 80.12 85.32
GAN+REC-20% 71.14 ± 11.18 66.65 ± 16.44 11.34 ± 7.05 80.23 84.23
GAN+REC-10% 69.24 ± 13.78 63.23 ± 17.71 11.80 ± 7.23 75.13 79.12
GAN+REC-1.0% 64.19 ± 12.22 59.33 ± 21.01 12.91 ± 7.54 70.34 74.67

CqSL-90% 83.0 ± 6.33 77.77 ± 11.66 8.1 ± 6.00 90.78 95.12
CqSL-50% 82.72 ± 8.29 76.15 ± 11.0 8.21 ± 6.04 88.44 94.26
CqSL-30% 81.59 ± 7.20 73.27 ± 12.14 8.28 ± 6.10 85.19 92.62
CqSL-20% 81.44 ± 6.12 75.33 ± 11.52 8.56 ± 6.11 83.14 93.79
CqSL-10% 79.21 ± 9.76 71.45 ± 12.91 9.82 ± 6.78 82.40 90.93
CqSL-1.0% 75.50 ± 10.87 70.55 ± 12.58 9.87 ± 6.72 80.55 83.68

1CqSL-90% 81.88 ± 6.0 74.31 ± 11.65 8.5 ± 6.15 90.12 91.97
1CqSL-50% 82.03 ± 6.45 75.22 ± 11.24 8.49 ± 6.10 88.11 93.44
1CqSL-30% 79.25 ± 8.11 73.16 ± 8.14 8.77 ± 6.22 83.62 92.05
1CqSL-20% 80.21 ± 7.54 73.19 ± 11.04 9.01 ± 6.34 83.69 91.05
1CqSL-10% 78.58 ± 9.22 71.12 ± 11.25 9.48 ± 6.57 82.21 91.01
1CqSL-1.0% 73.90 ± 11.88 68.58 ± 13.89 9.85 ± 6.71 79.54 84.54

2CqSL-90% 81.03 ± 7.11 74.37 ± 11.48 8.74 ± 6.25 88.39 92.28
2CqSL-50% 80.65 ± 7.26 73.36 ± 12.06 8.54 ± 6.23 86.78 93.05
2CqSL-30% 78.02 ± 9.36 72.66 ± 10.55 9.35 ± 6.65 82.88 91.96
2CqSL-20% 79.55 ± 8.10 73.0 ± 11.54 9.65 ± 6.63 83.02 89.15
2CqSL-10% 78.33 ± 8.96 68.54 ± 12.89 9.77 ± 6.34 80.56 91.55
2CqSL-1.0% 71.21 ± 11.76 63.45 ± 15.91 11.82 ± 7.12 76.40 81.93

3CqSL-90% 81.13 ± 7.33 73.04 ± 12.11 8.93 ± 6.33 86.02 90.17
3CqSL-50% 79.34 ± 8.56 71.23 ± 12.87 9.05 ± 6.66 84.34 91.24
3CqSL-30% 76.77 ± 10.11 72.04 ± 11.26 9.66 ± 6.73 82.0 90.88
3CqSL-20% 79.01 ± 8.58 71.89 ± 12.88 9.52 ± 6.46 81.66 87.56
3CqSL-10% 76.55 ± 8.25 68.55 ± 13.23 10.12 ± 6.89 81.02 88.72
3CqSL-1.0% 70.41 ± 11.86 64.77 ± 15.70 12.11 ± 7.23 74.44 80.21

4CqSL-90% 79.83 ± 8.23 70.33 ± 12.66 9.25 ± 6.34 84.54 90.02
4CqSL-50% 79.02 ± 8.88 72.68 ± 12.26 9.36 ± 6.23 85.20 90.22
4CqSL-30% 75.38 ± 9.75 70.49 ± 12.0 9.52 ± 6.54 80.33 88.59
4CqSL-20% 75.77 ± 9.05 69.88 ± 13.22 10.19 ± 6.77 81.02 88.78
4CqSL-10% 72.24 ± 10.65 66.70 ± 13.56 10.55 ± 6.75 79.79 85.47
4CqSL-1.0% 68.97 ± 13.90 63.19 ± 16.50 12.88 ± 7.43 72.13 77.59
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Table 2. Quantitative evaluation of LV blood pool segmentation results achieved using four semi-
supervised variants of the proposed CqSL model in terms of mean Dice score (%) with std. dev.,
Jaccard index, Hausdorff distance (mm), precision (%) and recall (%) rates evaluated for varying
proportions of labeled data on the ACDC dataset compared across several frameworks.

Left Ventricle (LV)

Dice Jaccard HD Prec. Rec.

U-Net-90% 88.03 ± 6.81 85.09 ± 6.98 5.16 ± 5.92 97.88 98.79
U-Net-50% 86.88 ± 6.09 84.67 ± 5.36 5.29 ± 6.20 97.01 98.19
U-Net-30% 82.98 ± 8.66 80.10 ± 8.19 6.89 ± 6.75 89.66 91.05
U-Net-20% 81.29 ± 8.91 79.78 ± 9.02 8.22 ± 8.23 87.50 89.77
U-Net-10% 79.49 ± 9.56 71.29 ± 11.26 9.56 ± 9.82 83.33 86.14
U-Net-1.0% 42.56 ± 19.76 37.02 ± 21.45 14.35 ± 10.12 45.53 46.17

GAN-90% 86.15 ± 6.45 81.23 ± 8.01 5.53 ± 5.08 90.57 92.87
GAN-50% 85.34 ± 7.03 81.26 ± 8.12 5.91 ± 6.03 88.34 89.43
GAN-30% 84.03 ± 8.16 80.22 ± 9.11 6.89 ± 7.03 87.23 88.87
GAN-20% 81.90 ± 8.59 79.12 ± 10.82 7.12 ± 7.33 86.19 88.12
GAN-10% 81.78 ± 8.16 76.67 ± 14.13 8.02 ± 7.54 83.15 87.43
GAN-1.0% 75.02 ± 12.32 70.22 ± 15.12 10.89 ± 9.12 80.22 83.12

GAN+REC-90% 88.06 ± 6.11 81.94 ± 8.12 5.73 ± 5.22 91.19 93.35
GAN+REC-50% 86.19 ± 6.89 81.02 ± 8.23 5.76 ± 5.43 90.54 91.65
GAN+REC-30% 85.53 ± 7.36 80.34 ± 9.12 6.78 ± 6.34 89.76 90.34
GAN+REC-20% 83.89 ± 8.19 79.34 ± 10.22 6.88 ± 7.05 87.19 89.53
GAN+REC-10% 83.29 ± 7.16 77.56 ± 13.05 7.58 ± 8.33 85.55 89.02
GAN+REC-1.0% 76.02 ± 11.22 71.32 ± 14.22 10.04 ± 9.12 80.12 84.43

CqSL-90% 92.77 ± 4.98 85.67 ± 7.31 4.53± 4.98 96.12 99.75
CqSL-50% 92.25 ± 5.12 83.98 ± 7.98 5.23 ± 5.03 95.91 97.95
CqSL-30% 90.10 ± 5.89 82.91 ± 8.12 5.93 ± 5.23 93.50 93.79
CqSL-20% 88.98 ± 6.33 81.26 ± 8.78 6.21 ± 5.04 90.14 92.90
CqSL-10% 88.33 ± 6.39 79.92 ± 9.21 6.17 ± 6.44 89.35 92.95
CqSL-1.0% 83.21 ± 7.12 77.94 ± 10.51 7.0 ± 5.98 86.96 91.36
1CqSL-90% 92.21 ± 5.13 83.66 ± 7.45 4.88 ± 3.21 95.03 97.33
1CqSL-50% 91.0 ± 5.55 81.61 ± 8.05 5.16 ± 4.09 94.12 96.13
1CqSL-30% 89.56 ± 5.97 81.23 ± 7.89 5.89 ± 6.98 92.22 92.80
1CqSL-20% 87.28 ± 6.91 80.32 ± 8.12 6.55 ± 5.23 89.89 91.0
1CqSL-10% 87.89 ± 6.44 79.15 ± 9.30 6.05 ± 5.33 89.03 92.55
1CqSL-1.0% 81.78 ± 7.22 75.36 ± 9.20 7.88 ± 5.44 84.55 89.17
2CqSL-90% 91.45 ± 5.86 83.31 ± 7.23 4.90 ± 4.90 95.13 96.73
2CqSL-50% 90.22 ± 5.12 80.78 ± 8.34 5.54 ± 4.55 93.02 96.04
2CqSL-30% 89.11 ± 5.89 81.14 ± 8.10 5.88 ± 5.11 91.14 92.89
2CqSL-20% 87.02 ± 6.98 81.12 ± 8.77 6.74 ± 5.28 89.11 90.58
2CqSL-10% 87.15 ± 6.93 79.02 ± 8.87 6.44 ± 4.87 88.53 92.47
2CqSL-1.0% 80.80 ± 8.12 75.06 ± 10.04 8.01 ± 6.12 85.54 90.20
3CqSL-90% 91.03 ± 5.57 82.44 ± 7.87 5.32 ± 4.77 95.31 95.55
3CqSL-50% 89.79 ± 5.02 79.15 ± 8.04 5.12 ± 5.12 93.44 95.18
3CqSL-30% 89.24 ± 6.15 81.02 ± 7.95 5.71 ± 5.18 92.26 91.11
3CqSL-20% 88.19 ± 5.53 80.52 ± 8.12 6.80 ± 5.05 88.78 89.10
3CqSL-10% 86.56 ± 6.15 79.55 ± 8.45 6.56 ± 6.54 87.98 92.01
3CqSL-1.0% 79.58 ± 9.25 73.20 ± 10.87 8.64 ± 7.01 85.77 91.05
4CqSL-90% 90.55 ± 5.88 80.19 ± 8.25 6.55 ± 6.12 93.12 95.55
4CqSL-50% 89.10 ± 6.15 79.01 ± 8.77 5.54 ± 5.88 92.11 93.22
4CqSL-30% 88.01 ± 6.43 79.89 ± 8.00 5.86 ± 6.43 91.54 91.02
4CqSL-20% 87.78 ± 5.53 80.13 ± 7.72 6.91 ± 5.16 88.17 90.56
4CqSL-10% 86.0 ± 6.39 80.10 ± 8.90 6.92 ± 5.12 85.67 93.34
4CqSL-1.0% 78.13 ± 8.66 74.19 ± 11.20 9.56 ± 8.05 84.66 89.10
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Table 3. Quantitative evaluation of LV-Myocardium segmentation results achieved using four semi-
supervised variants of the proposed CqSL model in terms of mean Dice score (%) with std. dev.,
Jaccard index, Hausdorff distance (mm), precision (%) and recall (%) evaluated for varying propor-
tions of labeled data on the ACDC dataset compared to segmentation across several frameworks.

LV-Myocardium (LV-Myo)

Dice Jaccard HD Prec. Rec.

U-Net-90% 86.93 ± 5.56 84.50 ± 5.20 4.97 ± 3.76 92.32 96.54
U-Net-50% 85.82 ± 6.32 82.25 ± 7.66 5.16 ± 5.77 90.19 95.66
U-Net-30% 77.29 ± 9.19 75.49 ± 7.90 6.56 ± 5.65 87.11 89.56
U-Net-20% 76.56 ± 9.16 71.78 ± 16.20 7.69 ± 5.45 83.57 88.34
U-Net-10% 66.23 ± 15.90 60.63 ± 19.87 10.10 ± 8.55 59.34 62.08
U-Net-1.0% 29.47 ± 20.29 25.39 ± 22.50 13.95 ± 9.12 32.25 34.54

GAN-90% 84.50 ± 6.14 79.03 ± 9.17 5.89 ± 4.23 88.12 89.14
GAN-50% 81.21 ± 7.49 74.12 ± 11.77 5.45 ± 5.14 85.55 88.01
GAN-30% 78.67 ± 9.61 75.88 ± 12.75 5.19 ± 6.15 84.33 86.10
GAN-20% 77.88 ± 9.89 72.45 ± 15.91 6.01 ± 7.65 83.32 85.12
GAN-10% 75.23 ± 11.19 70.33 ± 17.19 7.87 ± 8.55 76.44 81.33
GAN-1.0% 66.02 ± 20.10 62.55 ± 20.87 12.67 ± 9.72 71.43 76.23

GAN+REC-90% 85.34 ± 6.42 77.44 ± 12.13 5.34 ± 4.37 88.44 90.33
GAN+REC-50% 82.33 ± 7.49 75.16 ± 13.16 5.81 ± 4.73 87.32 89.10
GAN+REC-30% 79.77 ± 9.21 74.10 ± 14.77 5.91 ± 5.12 86.76 88.34
GAN+REC-20% 78.43 ± 9.11 73.32 ± 15.11 6.12 ± 6.14 84.12 87.43
GAN+REC-10% 76.18 ± 11.18 72.21 ± 15.80 7.23 ± 7.34 79.43 83.53
GAN+REC-1.0% 67.52 ± 18.12 64.22 ± 19.33 12.12 ± 9.34 72.43 78.44

CqSL-90% 89.33 ± 5.11 82.03 ± 7.33 5.20 ± 5.11 93.98 96.01
CqSL-50% 87.77 ± 6.19 79.12 ± 9.0 5.88 ± 5.43 93.33 93.17
CqSL-30% 85.89 ± 7.07 77.72 ± 11.92 6.23 ± 6.14 91.20 92.25
CqSL-20% 85.55 ± 7.22 76.95 ± 12.9 6.85 ± 7.04 90.01 91.09
CqSL-10% 84.14 ± 7.64 72.76 ± 13.01 7.07 ± 8.01 88.84 90.88
CqSL-1.0% 77.65 ± 9.26 74.20 ± 11.87 10.88 ± 8.45 83.22 88.10

1CqSL-90% 88.98 ± 6.01 81.78 ± 7.63 6.11 ± 6.10 94.13 95.33
1CqSL-50% 86.55 ± 6.22 78.31 ± 9.46 5.74 ± 5.34 93.41 94.11
1CqSL-30% 86.23 ± 7.62 77.43 ± 11.89 6.43 ± 6.29 91.88 91.0
1CqSL-20% 85.10 ± 6.98 76.09 ± 12.77 6.80 ± 6.25 88.87 91.09
1CqSL-10% 84.56 ± 8.01 72.11 ± 13.54 8.13 ± 7.03 89.73 90.16
1CqSL-1.0% 75.54 ± 9.89 73.01 ± 11.56 10.05 ± 8.43 80.89 85.44

2CqSL-90% 88.44 ± 6.43 81.03 ± 7.89 6.65 ± 5.24 92.0 95.32
2CqSL-50% 86.01 ± 6.69 79.28 ± 10.02 5.65 ± 5.27 93.19 92.66
2CqSL-30% 84.93 ± 8.01 78.52 ± 11.61 6.88 ± 5.86 90.42 93.53
2CqSL-20% 85.33 ± 5.73 77.11 ± 11.59 6.32 ± 7.32 89.82 92.38
2CqSL-10% 83.02 ± 8.33 71.67 ± 14.04 8.71 ± 8.10 87.77 91.45
2CqSL-1.0% 75.0 ± 10.10 72.55 ± 11.18 10.20 ± 8.88 81.01 86.56

3CqSL-90% 87.33 ± 7.22 80.73 ± 8.10 6.43 ± 5.50 92.31 94.52
3CqSL-50% 86.43 ± 6.32 78.56 ± 10.22 5.76 ± 5.40 91.34 92.11
3CqSL-30% 83.10 ± 8.66 78.15 ± 10.78 5.92 ± 6.11 88.82 91.63
3CqSL-20% 83.00 ± 6.02 75.44 ± 13.10 6.65 ± 7.63 90.31 92.11
3CqSL-10% 82.88 ± 9.01 72.00 ± 14.66 7.98 ± 8.34 86.11 90.87
3CqSL-1.0% 73.19 ± 11.56 70.04 ± 12.93 10.78 ± 8.54 77.50 83.39

4CqSL-90% 87.44 ± 7.71 81.24 ± 7.45 6.12 ± 5.11 91.32 92.65
4CqSL-50% 86.01 ± 6.81 76.12 ± 10.64 6.01 ± 6.12 89.32 91.88
4CqSL-30% 81.98 ± 10.01 76.65 ± 11.44 5.32 ± 5.44 87.11 92.33
4CqSL-20% 84.01 ± 7.44 75.15 ± 13.19 6.72 ± 6.41 88.43 91.66
4CqSL-10% 81.97 ± 10.66 73.43 ± 13.78 6.69 ± 6.87 84.77 86.32
4CqSL-1.0% 71.21 ± 11.76 69.25 ± 13.16 11.82 ± 9.23 75.40 82.56

2.4. Evaluation Metrics

To evaluate the performance of the semantic segmentation of cardiac structures, we
use the standard metrics, including Dice score, Jaccard index, Hausdorff distance (HD),
precision (Prec), and recall (Rec).

1. Dice and Jaccard Coefficients: The Dice score is used to measure the percentage
of overlap between manually segmented boundaries and automatically segmented
boundaries of the structures of interest. Given the set of all pixels in the image, set
of foreground pixels by automated segmentation Sa

1, and the set of pixels for ground
truth Sg

1 , the Dice score can be compared with [Sa
1, Sg

1]⊆ Ω, when a vector of ground
truth labels T1 and a vector of predicted labels P1 as
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Dice(T1, P1) =
2|T1 ∩ P1|
|T1|+ |P1| (12)

The Dice score will measure the similarity between two sets, T1 and P1, and |T1|
denotes the cardinality of the set T1 with the range of D(T1,P1) ε [0, 1].
The Jaccard index or Jaccard similarity coefficient is another metric which aids in
the evaluation of the overlap in two sets of data. This index is similar to the Dice
coefficient but mathematically different and typically used for different applica-
tions. For the same set of pixels in the image, Jaccard index can be written by the
following expression:

Jaccard(T1, P1) =
|T1 ∩ P1|
|T1 + P1| (13)

2. Precision and Recall

Precision and recall are two other metrics used to measure the segmentation quality
which are sensitive to under- and over-segmentation. High values of both precision
and recall indicate that the boundaries in both segmentation agree in location and
level of detail. Precision and recall can be written as

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

where TP denotes true positive rate when a prediction-target mask pair has a score
which exceeds some predefined threshold value; FP denotes the false positive rate
when a predicted mask has no associated ground truth mask; and FN denotes the
false negative rate when a ground truth mask has no associated predicted mask.

3. Hausdorff distance (HD): Hausdorff distance (HD) measures the maximum distance
between the two surfaces. Let SA and SB be surfaces corresponding to two binary
segmentation masks, A and B, respectively. The Hausdorff distance (HD) is defined as

HD = max
(

max
pεSA

d(p, SB), max
qεSB

d(q, SA)
)

(16)

where d(p, S) = min qεSd(p, q) is the minimum Euclidean distance of point p from
the points q ε S.

4. Image Quality Metrics:

PSNR: The peak signal-to-noise ratio (PSNR) is the most commonly used quality
assessment technique for determining the quality of lossy image compression codec
reconstruction. The signal is the original data, and the noise is the error caused by
the distortion.

5. Clinical Indices: To assess the performance of the ventricles, different indices have
been used in the literature [54], such as left ventricular volume (LVV), left ventricular
myocardial mass (LVM), stroke volume (SV), and ejection fraction (EF). The left
ventricular volume (LVV) is defined as the volume enclosed by the LV blood pool and
the myocardial mass is equal to the volume of the myocardium, multiplied by the
density of the myocardium:

Myo-Mass = Myo-Volume (cm3) × 1.06 (gram/cm3) (17)

Stroke volume (SV) is defined as the volume ejected during systole and is equal to the
difference between the end-diastolic volume (EDV) and the end-systolic volume (ESV):

SV = EDV − ESV × 100% (18)
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The ejection fraction (EF) is an important cardiac parameter quantifying the cardiac
output and defined as the ratio of the SV to the EDV:

EF =
SV

EDV
× 100% (19)

3. Results

3.1. Image Segmentation Assessment

We tested our CqSL model on varying proportions of labeled and unlabeled data
available through the STACOM 2017 ACDC cine cardiac MRI dataset. Training and valida-
tion segmentation accuracies for three different classes (RV, LV, and LV-Myo) are shown in
Figure 8 for 100 epochs. Note that the validation curves show similar trends as the training
curves (Figure 8).

Figure 8. Representative accuracy curves showing the training and validation accuracy of three
different classes (RV blood-pool, LV blood-pool, and LV-Myocardium).

The CqSL experimental results were compared against a fully supervised U-Net model
trained from scratch, as reported in Tables 1–3. Furthermore, to explore the effectiveness
of each component in our model, we propose three different semi-supervised ablations,
i.e., model I: only a GAN architecture (Figure 3c); model II: I + reconstruction (Figure 3c,d);
model III: II + disentangler block (Figure 3a–d), which are also reported in Tables 1–3.
The detailed comparison of our model can be seen in Table 4. The segmentation perfor-
mance is evaluated both qualitatively and quantitatively. As shown in Tables 1–3, our
proposed model significantly improves the segmentation performance of right ventricle
(RV), left ventricle blood-pool (LV), and LV-Myocardium, respectively on varying pro-
portions of annotated data in terms of the Dice and Jaccard indices, Hausdorff distance,
precision and recall rates. Our CqSL model achieves a high dice score (±std. dev.) of
75.50 ± 10.9% for the RV, 83.21 ± 7.1% for the LV blood-pool and 77.65 ± 9.3% for the
LV-Myocardium even if we use only 1% labeled data.

Table 4. Our proposed CqSL model achieves 84.9% accuracy, significantly outperforming other
baselines. We incrementally add each component, aiming to study their effectiveness on the final
results; (model I: only a GAN architecture (Figure 3c); model II: GAN + reconstruction (Figure 3c,d);
model III: GAN + reconstruction + disentangled block (Figure 3a–d). ↑ denotes higher the value
better the result; ↓ denotes lower the value better the result.

Average

Models Dice ↑ Jaccard ↑ HD ↓ Prec. ↑ Rec. ↑
Model I: GAN 76.56 ± 9.97 71.74 ± 14.54 8.26 ± 7.37 82.87 ± 7.66 85.78 ± 6.34
Model II: GAN + REC 77.82 ± 9.87 73.10 ± 13.92 8.11 ± 6.74 83.84 ± 7.12 87.06 ± 5.65
Model III: GAN + REC + DISEN-
TANGLE (CqSL)

84.92 ± 6.55 77.85 ± 11.06 7.20 ± 6.06 87.76 ± 5.45 89.56 ± 5.04

Figure 9 illustrates a qualitative segmentation output that compared CqSL and two
others semi-supervised models, i.e., model I: only a GAN architecture (Figure 3c); model II:

I + reconstruction (Figure 3c,d). For simplicity, this comparison is based on 20% unlabeled
training data. As demonstrated, when only 20% of the training annotation is employed,
U-Net fails completely to segment the cardiac structures from base to apex, particularly
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RV segmentation. As shown in the figure, the segmentation results improve with each
consecutive addition of a distinct block. The GAN-only architecture performs badly, partic-
ularly during RV segmentation, whereas the addition of a reconstruction block improves
performance. Finally, adding a disentangled block to the GAN and reconstruction block
yielded the greatest results. Even the least performing version of our proposed CqSL
model (4CqSL) achieves an overall accuracy superior to the U-Net, GAN-only, as well as
GAN+REC model, confirming that the proposed model is able to effectively learn correct
features that ensure correct segmentation.

Figure 10 illustrates a qualitative segmentation output that compared CqSL and U-Net
results with increasing proportion of unlabeled training data. For simplicity, we have
shown two of our best performing models. As shown, when only 1% training annotation is
used, U-Net completely fails to segment the cardiac structures. Under similar conditions,
our model is still able to yield a high segmentation accuracy of LV, RV, and LV-Myocardium.
When the amount of labeled data increases from 1% to 10%, the U-Net model still performs
poorly, especially for RV segmentation. On the other hand, although the performance
of our model improves significantly when utilizing more than 30% annotated data, its
performance with even 1% labeled data is still satisfactory, comparable to that of semi-
supervised models, and superior to U-Net’s performance under similar conditions.

Figure 9. Representative results showing the comparison across several best performing networks,
including CqSL for the semantic segmentation of full cardiac image dataset from the base to apex
showing of RV blood-pool, LV blood-pool, and LV-Myocardium on 20% labeled data in red, green,
and yellow respectively.

We assessed the performance of our proposed CqSL cardiac image segmentation
method against the segmentation results yielded by the well-established, fully super-
vised U-Net architecture [55] in light of its effectiveness across various medical image
segmentation applications, as well as its extensive use as a baseline method for comparison
by the participants of the ACDC cardiac image segmentation challenge. Furthermore,
to explore the effectiveness of each component in our model, we experiment on three
different semi-supervised ablations, i.e., model I: only a GAN architecture; model II:

GAN + reconstruction; and model III: GAN + reconstruction + disentangler block (CqSL).
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Figure 10. Representative results showing the semantic segmentation of RV, LV blood-pool, and LV-
Myocardium on different proportion of labeled data in red, green, and yellow, respectively.

As shown in Figure 11, the accuracy of our CqSL models remains high when using
as much as 50–90% unlabeled data, which essentially implies excellent performance with
as little as as 10% annotated data. Nevertheless, both U-Net and CqSL models perform
similar to each other when the amount of annotated data increases above 90%. We plot
the mean accuracy for all the models in Figure 12 and confirm that under low amounts of
annotated data conditions, even as low as 1%, our proposed CqSL model and all four of its
semi-supervised variants (1CqSL, 2CqSL, 3CqSL, and 4CqSL) outperform GAN, GAN+REC,
as well as U-Net models for LV, RV, and LV-Myocardium. The typical segmentation contours
of complete cardiac image dataset for the mid and apical slices are shown in Figure 13.

Figure 11. Consistent improvement in segmentation accuracy by the proposed CqSL model over
baseline semi-supervised (variants of our CqSL model: 1CqSL, 2CqSL, 3CqSL, and 4CqSL) and fully
supervised models in varying proportions of labeled training data.

44



Appl. Sci. 2022, 12, 12163

Figure 12. Evaluation on the robustness of CqSL in terms of mean accuracy over RV, LV, and LV-
Myocardium segmentation tasks on varying amounts of labeled training samples. Note significant
improvement in Dice score across all CqSL semi-supervised variants for as little as 1% unlabeled data.

Figure 13. Representative segmentation contours of a complete cardiac cycle for the middle and apex
slices showing RV and LV blood-pool, and LV-Myocardium in green, yellow, and brown, respectively,
in three different view settings (axial, sagittal, and coronal).
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3.2. Image Quality Assessment

Figure 14 illustrates a qualitative comparison between the original image slice and
the reconstructed slices generated from our proposed approach on the ACDC dataset
at the original 5 mm slice thickness. The comparison is augmented by the computed
correlation coefficients (CC) and peak signal-to-noise ratio (PSNR) shown below each
figure. As illustrated in Figure 14, our approach preserves the fine structural details and
realistic textures while remaining visually comparable to the ground truth image. Aside
from qualitative improvements, the proposed method’s CC and PSNR values also prove
that the synthesized image slices preserve the fine structural details.

Figure 14. Qualitative comparison of the original and the reconstructed slices showing that the origi-
nal images are well reconstructed by combining skeleton and sentiency information.The comparison
is augmented by the computed correlation coefficients (CC) and peak signal-to-noise ratio (PSNR).
The middle row illustrates the error images.

Table 5 shows the quantitative results of the objective quality metrics of reconstruction,
indicating that the use of feature-wise linear modulation to remove domain-invariant infor-
mation from the disentangled latent code guides the synthesis of more texture information.
Starting with the spatial factor, we change the content of the spatial channels in Figure 15
to see how the decoder has learned a correlation between the position of each channel and
different signal intensities of the skeleton parts. The sentiency factor remains constant in all
of these experiments. The first two columns show the original input and the reconstruction.
The third row is created by the RV spatial channels and disregarding (zeroing) the MYO
and LV channel. In the fourth image, we swap the RV channels with those of LV. Finally,
the fifth column is produced by considering all LV, MYO and RV channels.

46



Appl. Sci. 2022, 12, 12163

Table 5. Image reconstruction assessment: correlation coefficient (CC) and PSNR comparison between
reconstructed and input images based on 288 test sets.

Reconstruction Quality

CC (%) PSNR (dB)
n = 288 n = 288

Model II: GAN + REC 0.912 27.32
Model III: GAN + REC + DISENTANGLE (Proposed) 0.934 28.89

Figure 15. Reconstructions of a sample of input images when rearranging the spatial representation’s
channels. Rearranging the channels results in reconstructing only left ventricle blood-pool or only
right ventricle blood-pool only or all the ventricular structures.

3.3. Clinical Parameter Estimation

The performance of our developed segmentation method was also reflected in the
computed clinical indices. These clinical indices are computed using the Simpsons method
and the agreement between the ground truth and the same parameters computed using
the automated segmentation results is reported using correlation statistical analysis by
mapping the predicted volumes of the testing set onto the ground truth volumes of the
training set. As illustrated in Table 6 the agreement between our method’s prediction and
ground truth is high, characterized by a Pearson’s correlation coefficient (rho) of 0.898
(p < 0.01) for LV-EF, 0.723 for RV-EF (p < 0.1) and 0.924 (p < 0.01) for Myo-mass. There
was a slight over-estimation in the RV blood-pool segmentation also reflected in the clinical
parameters estimation.
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Table 6. The correlation between the CqSL-predicted and ground truth clinical indices is significantly
higher than the correlation between the U-Net-predicted and same ground truth clinical indices
(�� (p < 0.01), � (p < 0.1)).

Clinical Indices of Healthy Volunteers

UNet CqSL

LV EF 0.487 0.898 ��
RV EF 0.371 0.723 �
Myo mass 0.427 0.924 ��

Figure 16 shows a graphical comparison between the clinical parameters estimated
from the cardiac features segmented via CqSL and the same homologous parameters
estimated from the ground truth manual segmentations for both healthy volunteers and
patients featuring various cardiac conditions. As shown, the clinical parameters estimated
using our automatically segmented features show no statistically significant difference
from those estimated based on the ground truth, manually segmented features.

Figure 16. Graphical comparison showing no statistically significant differences between clinical
parameters estimated using CqSL segmentation and same parameters estimated using the ground
truth segmentation in terms of Mean (Std. Dev.) EF (mL/mL (%)) = ejection fraction, Myo-mass
(in gm) = myocardial mass.

3.4. Ablation Studies

We perform an ablation study to investigate the effect of using different loss functions
in our semi-supervised setting. We demonstrate the effect of different novel loss functions
used in CqSL model: WSBF, MIM, and Adv-GM by assessing the model performance when
each novel loss functions is removed. Figure 17 shows a graphical representation of the
results achieved on the ACDC dataset. In Figure 10, we illustrate the qualitative results on
the ACDC dataset to visualize the effect of using all of the loss components. We can observe
that the best results are achieved when all of the loss components are used. Specifically,
without MIM, the loss curve oscillates, while without WSBF, the output images deviate
drastically from the ground truth. Both the quantitative and qualitative results show that
the design of CqSL improves the preservation of the subject identity and enables more
accurate segmentation of cardiac structures.
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Figure 17. Empirical analysis showing the effect of different loss functions on the 2017 STACOM
ACDC dataset. The significant reduction of total loss in CqSL (in red) suggests the best performing
model with best learned features.

4. Conclusions and Future Work

In this paper, we propose a semi-supervised learning model (CqSL) that features
multiple novel loss functions, including mutual information minimization (MIM), which
minimizes the mutual information between the domain-invariant as well as domain-specific
features. Empirically, we show that disentanglement with mutual information can improve
the performance of the segmentation accuracy, while combined with an adversarial and a
reconstruction block. Our novel use of total loss function enforces the network to capture
both the spatial and intensity information. Our weighted soft focal loss can minimize the
class imbalance problem by applying varying weights over different classes along with a
modulating term. We apply the proposed model to cardiac image segmentation tasks with
varying proportion of labeled data.

Our proposed CqSL model achieves 85% accuracy, significantly outperforming other
baselines. We incrementally add each component, aiming to study their effectiveness on the
final results: (model I: only a GAN architecture (Figure 3c); model II: GAN + reconstruction
(Figure 3c,d); model III: GAN + reconstruction + disentangled block (Figure 3a–d).

In light of consistency, all four implemented CqSL variants are evaluated and compared
to the baselines, but as shown in Tables 1–3, the first variant (1CqS) performs best and hence
it is deemed as the most suitable and recommended CqSL framework.

The experimental results reported in this manuscript show that the proposed CqSL
framework outperforms semi-supervised learning with GANs [56] as well as fully
supervised-type models when using as little as even 1% labeled data and display sim-
ilar performance and comparable accuracy when employing more than 50% labeled
data. Unlike these, we use adversarial-Geman–McClure (adv-GM) loss to force mask
generation to be spatially aligned with the image. Furthermore, we discover that the
semi-supervised segmentation approach of Hung et al. [18] obtains results slightly infe-
rior to ours. Hung et al. reported that their adversarial model achieved a 80.63% accuracy
when trained on 20% labeled data using the ACDC dataset, whereas our model achieved
a 81.44% accuracy under similar training conditions.
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Hence, the proposed method is the first to achieve significant performance for 4D
cine cardiac MRI image segmentation with very minimal annotated data, specifically 1%
of the training dataset. This is a key feature of the proposed work and hence a significant
contribution to the medical (cardiac, in particular) image segmentation, as access to large
amounts of expert-annotated ground truth imaging data is expensive in the medical field.
Nevertheless, here we demonstrate that CqSL can still yield segmentation accuracy superior
to other semi-supervised methods while requiring minimal annotated data for training.
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Abstract: Cardiac MRI is the gold standard for evaluating left ventricular myocardial mass (LVMM),
end-systolic volume (LVESV), end-diastolic volume (LVEDV), stroke volume (LVSV), and ejection
fraction (LVEF). Deep convolutional neural networks (CNNs) can provide automatic segmentation
of LV myocardium (LVF) and blood cavity (LVC) and quantification of LV function; however, the
performance is typically degraded when applied to new datasets. A 2D U-net with Monte-Carlo
dropout was trained on 45 cine MR images and the model was used to segment 10 subjects from the
ACDC dataset. The initial segmentations were post-processed using a continuous kernel-cut method.
The refined segmentations were employed to update the trained model. This procedure was iterated
several times and the final updated U-net model was used to segment the remaining 90 ACDC
subjects. Algorithm and manual segmentations were compared using Dice coefficient (DSC) and
average surface distance in a symmetric manner (ASSD). The relationships between algorithm and
manual LV indices were evaluated using Pearson correlation coefficient (r), Bland-Altman analyses,
and paired t-tests. Direct application of the pre-trained model yielded DSC of 0.74 ± 0.12 for LVM
and 0.87 ± 0.12 for LVC. After fine-tuning, DSC was 0.81 ± 0.09 for LVM and 0.90 ± 0.09 for LVC.
Algorithm LV function measurements were strongly correlated with manual analyses (r = 0.86–0.99,
p < 0.0001) with minimal biases of −8.8 g for LVMM, −0.9 mL for LVEDV, −0.2 mL for LVESV,
−0.7 mL for LVSV, and −0.6% for LVEF. The procedure required ∼12 min for fine-tuning and
approximately 1 s to contour a new image on a Linux (Ubuntu 14.02) desktop (Inter(R) CPU i7-7770,
4.2 GHz, 16 GB RAM) with a GPU (GeForce, GTX TITAN X, 12 GB Memory). This approach provides
a way to incorporate a trained CNN to segment and quantify previously unseen cardiac MR datasets
without needing manual annotation of the unseen datasets.

Keywords: cardiac MRI; machine learning; left ventricle segmentation; cardiac function

1. Introduction

Quantification of left ventricular (LV) function is crucial for risk stratification, diag-
nosis, and treatment of cardiac disease [1]. Cardiac magnetic resonance imaging (MRI)
has been established as the gold standard for evaluating left ventricular function [2], in-
cluding LV myocardial mass (LVMM), end-diastolic volume (LVEDV), end-systolic volume
(LVESV), stroke volume (LVSV), and ejection fraction (LVEF). To generate these measure-
ments, segmentation of the LV structures is required as a first step. Manual segmentation of
cardiac MRI requires intensive efforts from users, depends on the experience of observers,
introduces user variability, and is not compatible with efficient and high throughput cardiac
imaging workflow [3].
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Various methods have been developed for cardiac MR image analysis and demon-
strated utility for use in research and clinical settings. Non-learning based methods [4,5]
heavily rely on hand-crafted features with limited representation capability and gener-
ally provide suboptimal performance [6]. Recently, the development and use of deep
convolutional neural networks (CNN) has achieved remarkable success for numerous
cardiac imaging tasks [7]. With the availability of large annotated datasets and powerful
computational platforms, these learning-based methods can automatically learn highly
discriminative features through feature abstraction in a hierarchical manner. Recent stud-
ies [3,8,9] showed significant promise of using neural networks for heart segmentation in
cardiac cine MRI, as recently reviewed [10]. Although promising, these studies mainly
trained and tested CNNs on datasets acquired using the same scanner or at the same health-
care center, which represents a limited number of applications of deep learning in most
research and clinical settings. Unfortunately, these [3,8] and other investigations [11] also
demonstrated that deep-learning models trained on one domain (source) do not generalize
well to a new domain (target) and direct application of a pre-trained model to a new dataset
often yields degraded performance because of the well-known domain shift issue facing
the community.

To facilitate translation of this important tool for widespread use in research and clini-
cal care, it is urgently required to improve the generalizability of deep-learning methods to
datasets collected using different imaging settings on different systems at various locations
in patients with distinct diseases. Domain adaptation [12] aims to address this issue by
fine-tuning a pre-trained model using a small amount of labeled data from a target domain,
or by learning domain-invariant features or transforming data from the target domain to
resemble the source domain. For example, previous studies [8,13] fine-tuned a pre-trained
model using manually annotated datasets for new cardiac MRI segmentation tasks in a
supervised manner. Other studies employed adversarial learning to transform data in a
one domain (source) to resemble data in another domain (target) at the image level [14]
or image-and-feature level [15] for unsupervised domain-adaptation-based cardiac image
segmentation. Data augmentation [16] represents a very different approach to solving this
problem by artificially enlarging the training datasets through extensive transformations to
train a model that is robust to potential variations in new domains. Although commonly
used classical data augmentation techniques (e.g., geometrical transformation, noise, con-
trast and blurring perturbation, histogram equalization and matching) have been widely
used in various applications, other advanced and extensive augmentation techniques have
also demonstrated effectiveness in addressing the domain shift issue [17,18]. In particular,
recent studies using advanced data augmentation techniques demonstrated higher per-
formance than several adversarial learning-based domain-adaptation methods for several
medical image segmentation tasks [17,18].

Although the previous studies demonstrated some promise in tackling the domain
shift issue for medical image segmentation, these algorithms have limitations. For example,
domain adaptation using labeled data from a target domain requires a substantial amount
of time and expertise for manual annotation and is not compatible with efficient research
and clinical workflow. Adversarial learning that transforms a dataset from a source domain
to resemble a target domain typically requires a large dataset from the target domain and
a long time for re-training/fine-tuning. Data augmentation aims to learn non-domain
specific features by performing extensive transformations to change the appearance of
training datasets and often generates non-realistic datasets that do not resemble real world
cases, which may or may not adversely affect the performance. Another potential issue
associated with these techniques is the increased difficulty of algorithm interpretability
because of the “black box” nature of deep-learning methods. Here, we proposed a different
approach to tackling the domain shift issue. In particular, we employed a machine-learning
method to automatically segment a subset of an unseen dataset without manual anno-
tations to fine-tune a pre-trained deep-learning model to segment cardiac MRI datasets
from a different domain. The proposed approach required 12 min to segment a relatively
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small dataset of 10 subjects for fine-tuning and to update the pre-trained model without
affecting algorithm interpretability. Importantly, our approach yielded several commonly
used and clinically relevant LV function measurements that are in strong agreement with
expert manual analyses; this was not demonstrated in the previous studies. A preliminary
version of this work has been published in conference proceedings [19] and there are
substantial differences between the current work and the previous version [19]. In the
current version, we reviewed some commonly used techniques (e.g., domain adaptation
and data augmentation) that are developed to tackle the domain shift issue and discussed
the advantages/limitations of these techniques. We also provided some details regarding
the mathematical formulation and upper bound-based iterative optimization of the pro-
posed continuous kernel-cut method. In addition, we implemented several state-of-the-art
deep-learning segmentation models (DeepLabV3+ and an optimized style-intensity aug-
mentation method) and performed comprehensive comparison between these methods
and our approach. Furthermore, we discussed the study limitations and proposed some
future work directions. These elements were not included in our previous work [19] and
represents some of the major differences in the current work.

2. Methods

2.1. Cardiac MRI Datasets

We investigated two cine cardiac MR datasets from the Left Ventricle Segmentation
Challenge (LVSC) held in 2009 [20] and the 2017 Automated Cardiac Diagnosis Chal-
lenge (ACDC) [9]. The LVSC dataset (https://www.cardiacatlas.org/\studies/sunnybrook-
cardiac-data/, accessed 20 March 2021) consists of 45 subjects (mean age = 61 ± 15 years,
age range = [23, 88] years; 32 male) enrolled in clinical studies at Sunnybrook Health
Sciences Centre (Canada), including healthy volunteers (n = 9) and patients with hy-
pertrophy (n = 12), or with heart failure with (n = 12) and without (n = 12) infarction.
Two-dimensional short-axis cine images of the whole heart were obtained with as SSFP
sequence (voxel size = 1.25–1.56 mm2, slice thickness = 8–10 mm, inter-slice gap = 8 mm,
6–12 slices, 20 phases per cardiac cycle) on a 1.5T scanner (Signa, GE Healthcare, Milwaukee,
WI, USA). For each subject, both the myocardium (LVM) and blood cavity (LVC) of the left
ventricle in the cine images at the end-diastole were manually segmented by a cardiologist,
and only the LV cavity was manually segmented at the end-systolic phase. Therefore, only
the cine MRI datasets at the end-diastolic phase (n = 45 images) were used in this study.

The ACDC dataset (https://www.creatis.insa-lyon.fr/Challenge/acdc/, accessed 20
March 2021) comprises 100 participants (mean weight = 75± 17 kg; mean height = 171 ± 10 cm)
acquired in clinical routine at the University Hospital of Dijon (France). The dataset cov-
ers five categories of well-defined pathologies (n = 20 subjects in each category): heart
failure with myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopa-
thy, and abnormal right ventricle, as well as healthy subjects. Two-dimensional short-axis
cine images covering the entire LV were acquired on 1.5T or 3.0T scanners (Siemens Aera
and Siemens Trio, Siemens Medical Solutions, Germany) using an SSFP sequence (voxel
size = 1.34–1.68 mm2, slice thickness = 5–10 mm, inter-slice gap = 5 mm (sometimes),
6–18 slices, 28–40 phases per cardiac cycle). The dataset had substantial variability in im-
age quality, including noise, motion and banding artefacts, MR low-frequency intensity
fluctuation, and varying field-of-view. Manual segmentation of the LVM and LVC was
performed on the cine images at both end-diastolic and end-systolic phases, which were
double-checked by two independent experts to reach consensus.

We note that the manual segmentation of the LVSC dataset is not very consistent
between subjects and there is substantial “noise” in manual annotations. In addition, the
LVSC dataset contains cine images with LV cavity and myocardium segmentation only at
the end-diastolic phase. We used the LVSC dataset for CNN pre-training, which provides
additional opportunity to explore the tolerance to annotation noise and generalizability
from end-diastolic phase to end-systolic phase for a deep-learning segmentation algorithm.
The ACDC dataset was randomly divided into 10 and 90 subjects for CNN fine-tuning and
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testing, respectively. All data used in this study were anonymized and ethics approval for
using these public datasets was exempted.

2.2. Algorithm Workflow

We used a 2D U-net [21] that comprised a symmetric contracting and expanding path
with five levels. Each level consists of two blocks of 3 × 3 convolution and a rectified linear
unit, followed by max-pooling in the contracting path or up-sampling in the expanding
path; the number of feature maps was 16 in the top level and increased to 256 in the bottom
level. The network was pre-trained on 45 images from the LVSC dataset for 200 epochs by
minimizing the cross-entropy between model prediction and manual reference segmenta-
tion using an ADAM optimizer (learning rate = 10−4). Spatial data augmentation, including
translation (−50–50 pixels), random rotation (−50–50◦), voxel size and intensity scaling
(0.75–1.25 times), and elastic deformation, was performed in parallel. To further minimize
overfitting and improve CNN segmentation generalizability, Monte-Carlo dropout [22]
(MCD, dropout rate = 0.5) was applied to each block in the bottom three levels of the 2D
U-net. These settings were adopted for the following fine-tuning procedure.

Figure 1 provides the schematic of our proposed algorithm. Briefly, the trained U-
net was applied to the 10 ACDC fine-tuning subjects. For each subject, test-time MCD
was applied to generate 50 segmentation samples (s1(x), s2(x), . . . , s50(x), x ∈ Ω); the
mean of the associated probability maps were calculated to derive the “mean” segmen-
tation s̄(x). In addition, the standard deviation of the 50 segmentation samples was
calculated for each pixel and used as pixel-wise U-net segmentation uncertainty ω(x),
i.e., ω(x) ∝ 1

std({s1(x),s2(x)...,s50(x)}) , x ∈ Ω. The derived “mean" segmentation s̄(x) was
post-processed using a recently developed continuous kernel-cut (CKC) segmentation
method, which demonstrated effectiveness in post-processing cardiac MRI CNN segmen-
tation outputs [3,23,24]. The CKC segmentation algorithm employs normalized cut for
balanced pair-wise feature clustering and continuous regularization on image grids to gen-
erate spatially smooth contours. In addition, we proposed to use the derived CNN “mean”
segmentation as descent initialization of the CKC algorithm such that in regions with high
U-net segmentation uncertainty (i.e., ω(x) is relatively low), the final segmentation u(x)
can be more different from the “mean” segmentation s̄(x) and vice versa. To this end, we
derived the deep-learning uncertainty-guided CKC segmentation algorithm by minimizing
the following function:

∑
l∈L

−uT
l Xul

1Xul
+

∫
Ω

g(x)|∇ul(x)|dx +
∫

Ω
ω(x) · |ul(x)− s̄l(x)|dx , ul ∈ {0, 1}, (1)

subject to ∑l∈L ul(x) = 1 , ∀x ∈ Ω. In Equation (1), ul(x) ∈ {0, 1} is decomposed from the fi-
nal segmentation u(x) and indicates if voxel x is in region l ∈ L = {LVM, LVC, background},
X is a matrix where each element X(i, j) indicates if voxel j is within the K-nearest neighbor
of voxel i, 1 is an all-ones matrix, g(x) is a boundary weight function based on image
contrast edges, and ω(x) enforces the similarity of CNN initial segmentation s̄l(x) and
CKC final segmentation ul(x) for each region l. Of note, s̄l was decomposed from s̄l similar
to ul(x). The CKC algorithm in Equation (1) integrates the advantages of balanced portion-
ing of image features in high-dimensional space and spatially smooth segmentation that
mimics the behavior of manual delineation [3,24,25].

Direct optimization of the high-order and non-smooth function in Equation (1) is
particularly challenging. Following the previous work [3,23,26], we adopted an upper
bound optimization technique to simplify the optimization of Equation (1) by deriving
and optimizing a series of upper bound functions of Equation (1), assuming that the upper
bound function is easier to minimize than the original formulations. Briefly, for any given
segmentation ûl , l ∈ L, x ∈ Ω, previous studies [26] showed that the following is an upper
bound function of Equation (1):
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∑
l∈L

〈
X1ûT

l Xûl

(1Xûl)2 − 2Xûl
1Xûl

, ul

〉
+

∫
Ω

g(x)|∇ul(x)|dx +
∫

Ω
ω(x) · |ul(x)− s̄l(x)|dx , ul ∈ {0, 1}, (2)

where 〈, 〉 and T denote inner product and transpose, respectively; the first term in
Equation (2) is linear with respect to ul that we aim to solve. Through convex relaxation,
i.e., by relaxing ul ∈ {0, 1} to ul ∈ [0, 1], we can derive a convex relaxed formulation
of Equation (2), which can be efficiently and globally optimized using a continuous min-
cut/max-flow algorithm on a graphics card [27,28]. We refer readers to the previous stud-
ies [27,28] for the details of the continuous min-cut/max-flow algorithm. Please note that
Equation (1) was optimized iteratively; for each iteration, we derived an upper bound
using Equation (2) and minimized the upper bound to generate a solution ûl , which was
used to update the upper bound for the next iteration. In particular, for the first iteration
we used the derived CNN “mean” segmentation s̄ll as the given solution ûl . This process
was iterated several times until convergence (we observed convergence typically within
five iterations in this study) to derive the final solution to Equation (1). We refer readers
to previous studies [3,24] for the details of minimizing the CKC segmentation model in
Equation (1). Upon CKC algorithm convergence, the final segmentation of the fine-tuning
dataset (without manual labels) was saved and used to update the trained U-net model for
another 20 epochs in ∼10 min. This procedure was iterated until convergence and the final
U-net model was tested on the remaining 90 ACDC subjects for LV indices quantification.
We also implemented several commonly used methods for comparison, including:

1. A naive method (Naive): The trained U-net was used to segment the 90 ACDC test
subjects directly.

2. A combined method (Combined) that integrated MCD, spatial augmentation, and
style-intensity augmentation method. We explored the effects of MCD, spatial aug-
mentation, and advanced style-intensity augmentation for U-net training; the optimal
combination of the three components constitutes the combined method. A recent
study [17] proposed style-intensity augmentation during network training to tackle
the domain shift issue and demonstrated state-of-the-art performance in breast seg-
mentation in MRI datasets from a different domain. Style-intensity augmentation
comprises style transfer and intensity remapping, which produce non-realistic look-
ing MR scans while preserving the image shapes. The style transfer procedure uses
features extracted from style images to augment the training images, randomizing the
color, texture and contrast but preserving the geometry [29]. The intensity remapping
technique generates a random mapping function to map the original image signal in-
tensities to new values. This method is based on the assumption that by considerably
changing the appearance of training images, the network will focus on non-domain
specific features, e.g., the geometric shape of breast that is preserved in different
breast MR datasets [17]. The optimized combined method was applied to the ACDC
test dataset.

3. DeepLab: DeepLabV3+ [30], a top performing neural network in several medical
image segmentation challenges, was trained on the LVSC dataset and tested on the
ACDC test dataset.

Of note, the proposed algorithm and the naive method were implemented based on the
same settings, i.e., MCD+spatial augmentation, and the proposed algorithm incorporated
the fine-tuning procedure. The proposed algorithm, the naive and the combined methods
were implemented using TensorFlow 1.4.0; DeepLabV3+ was implemented with Keras
2.2.4. All were run on Python 2.7.14 platforms on a GPU (Tesla P100, NVIDIA Corp., Santa
Clara, CA, USA). The CKC segmentation algorithm was implemented using MATLAB
2013a (MathWorks, Natick, MA, USA) and CUDA (CUDA v8.0, NVIDIA Corp., Santa Clara,
CA, USA) on a Ubuntu 14.02 desktop with a GPU (GeForce, GTX TITAN X, Santa Clara,
CA, USA).
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Figure 1. Schematic of the proposed algorithm pipeline for cardiac MR image segmentation using pre-
trained CNNs. A trained CNN was applied to 10 previously unseen subjects; the initial segmentation
was post-processed and post-processed using a kernel-cut algorithm. The resulting segmentation
was used to update the trained CNN. This procedure was iterated till convergence to derive the final
CNN model, which was applied to the unseen test dataset for LV function evaluation. Please note
that no manual annotation of the unseen dataset was required in this procedure.

2.3. Evaluation Methods

Algorithm performance was evaluated for LV segmentation and function measure-
ments. LV segmentation accuracy was evaluated using Dice coefficient (DSC) and average
surface distance in a symmetric manner (ASSD) by comparing algorithm and manual
segmentation masks [24,31]. We denote Ra and Rm the algorithm and manual segmenta-
tion, respectively. DSC measures the overlap of Ra and Rm and is calculated as: 2|Ra∩Rm |

|Ra |+|Rm | ,
where |.| represents the size of a mask. ASSD evaluates the closeness between the algo-
rithm and manual segmentation boundaries and is given as: 1

2{ 1
|∂Ra | ∑p∈∂Ra d(p, ∂Rm) +

1
|∂Rm | ∑p∈∂Rm d(p, ∂Ra)}, where ∂Ra represents the algorithm segmentation boundary and
d(p, ∂Ra) is the shortest Euclidean distance from a vertex p (e.g., a vertex from the man-
ual segmentation boundary ∂Rm) to ∂Ra. ∂Rm and d(p, ∂Rm) are defined the same way.
Please note that traditional classification accuracy metrics, including true/false positives,
true/false negatives and their combinations, can also be used to evaluate image segmen-
tation accuracies [32] and DSC can be derived based on the four basic cardinalities when
evaluating Boolean data. In fact, DSC, ASSD, and volume errors are widely used overlap,
volume, and distance-based metrics for comprehensive evaluation of segmentation algo-
rithms [33], and here we adopted the same or similar metrics consistent with most image
segmentation studies.

In addition, the derived algorithm segmentation masks were used to determine LVMM,
LVEDV, LVESV, LVSV, and LVEF For LVMM calculation, a density of 1.05 g/mL for my-
ocardium [34] was used.

2.4. Statistical Analysis

Continuous variables were expressed as mean ± standard deviation (Mean ± SD). DSC
provided by the proposed approach was compared with the other comparative methods
using paired t-tests. Algorithm LV function measurement errors were compared using
paired t-tests. Relationships and agreement for algorithm vs. manual LV indices were
assessed using Pearson correlation coefficients (r, 95% confidence intervals [CI]) and Bland-
Altman analyses (with 95% limits of agreement [LOA]). Fisher’s z-transformation [35]
was used to compare the correlation coefficients provided by each algorithm vs. manual
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analyses. Shapiro–Wilk tests were used to assess if the data can be modeled by a normal
distribution and when data were not normally distributed, nonparametric tests were
performed. We used GraphPad Prism v7.00 (GraphPad Software Inc., San Diego, CA, USA)
for all the statistical analyses. Results were considered significant when the probability of
making a two-tailed type I error was less than 5% (p < 0.05).

3. Results

Figure 2 shows segmentation of different regions of the heart at end-diastole and end-
systole for three ACDC test subjects using the proposed algorithm (left) and the combined
method (right).
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Figure 2. Representative segmentation of different regions of the heart at end-systole and end-diastole
for three unseen ACDC test subjects (Subject1, Subject2, and Subject3) using the proposed (left) and
the combined (right) methods. Algorithm and manual segmentation are shown in purple and yellow,
respectively. ED: end-diastole; ES: end-systole.

We observed that direct application of the trained model to the 10 fine-tuning subjects
yielded DSC of 0.77, 0.90 and ASSD of 2.32 mm, 2.88 mm for LVM, LVC; these accuracies
were improved to 0.82, 0.92 for DSC and 1.97 mm, 1.91 mm for ASSD by the proposed CKC
algorithm (data not shown), which were used to fine-tune the pre-trained model. As shown
in Table 1, for the 90 test subjects the proposed algorithm yielded DSC of 0.81 ± 0.09 for LVM
and 0.90 ± 0.09 for LVC. Meanwhile, the combined method generated DSC of 0.78 ± 0.08
and 0.87 ± 0.12 for the two regions, higher than the naive method and DeepLabV3+.
Similarly, the proposed algorithm yielded substantially lower ASSD compared with the
naive method, which further outperformed the combined method and DeepLabV3+. Of
note, the DSC and ASSD provided by our approach were significantly different from
each of the other algorithms (p < 0.0001), and the naive method demonstrated higher
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overall segmentation accuracy than the combined method and DeepLabV3+. As shown in
Table A1 in Appendix A, MCD, spatial augmentation, and style-intensity augmentation
each improved the segmentation accuracy and the combination of the three components,
which constitutes the combined method, provided the highest segmentation accuracy
among all the possible combinations.

Table 1. LV myocardium and cavity segmentation accuracy (mean ± SD) for n = 180 images from 90
previously unseen ACDC test subjects.

DSC ([0, 1]) ASSD (mm)
Methods

LVM LVV LVM LVC

Proposed 0.81 ± 0.09 0.90 ± 0.09 2.04 ± 1.77 1.82 ± 2.18
Naive 0.74 ± 0.12 * 0.87 ± 0.12 * 2.43 ± 2.16 * 2.40 ± 2.58 *

Combined 0.78 ± 0.08 * 0.87 ± 0.12 * 2.71 ± 2.50 * 2.87 ± 2.61 *
DeepLab 0.26 ± 0.18 * 0.32 ± 0.27 * 18.60 ± 17.48 * 17.33 ± 12.37 *

DSC: Dice-similarity-coefficient, ASSD: average-symmetric-surfaced-distance; LVM: left ventricle myocardium,
LVC: left ventricle cavity; *: p < 0.0001 when compared with the proposed algorithm.

Table 2 summarizes the LV functional parameters generated by manual and algo-
rithm segmentation, illustrating that LV function measurements provided by the proposed
approach are closer to manual results compared with the other methods. For example,
paired t-tests showed that LV indices provided by the proposed approach were not signifi-
cantly different from manual measurements, whereas the measurements generated by the
naive and combined method were significantly different from manual LVMM (Proposed:
p = 0.1976; Naive: p < 0.0001; Combined: p = 0.0023), LVEDV (Proposed: p = 0.8015; Naive:
p < 0.0001; Combined: p < 0.0001), LVESV (Proposed: p = 0.8631; Naive: p < 0.0001; Com-
bined: p < 0.0001), LVSV (Proposed: p = 0.6617; Naive: p = 0.0734; Combined: p < 0.0001),
and LVEF (Proposed: p = 0.2495; Naive: p = 0.0059; Combined: p < 0.0001).

Table 2. Algorithm and manual LV function measurements (mean ± SD) for n = 180 images from 90
previously unseen ACDC test subjects.

Manual Proposed Naive Combined DeepLab

LVMM (g) � 138.1 ± 54.3 129.3 ± 49.80.1976 110.8 ± 48.2<0.0001 154.4 ± 83.60.0023 46.4 ± 34.7<0.0001
LVEDV (mL) 163.8 ± 75.2 162.9 ± 72.00.8015 174.6 ± 74.5<0.0001 175.8 ± 72.8<0.0001 71.8 ± 69.3<0.0001
LVESV (mL) 99.4 ± 80.4 99.2 ± 76.70.8631 108.2 ± 80.0<0.0001 118.4 ± 76.2<0.0001 58.3 ± 62.1<0.0001
LVSV (mL) 64.4 ± 24.6 63.7 ± 25.80.6617 66.5 ± 31.50.0734 57.4 ± 25.9<0.0001 13.5 ± 24.2<0.0001

LVEF (%) 46.2 ± 20.4 45.5 ± 20.50.2495 43.0 ± 23.60.0059 36.7 ± 18.4<0.0001
−4.4 ±

142.2<0.0001

LVMM: LV myocardium mass (g); LVEDV: LV end-diastolic volume (mL); LVESV: LV end-systolic volume (mL);
LVSV: LV stroke volume (mL); LVEF: LV ejection fraction (%); � : n = 180 images from 90 subject; p-values for
comparison of algorithm vs. manual LV indices are shown in subscripts.

Table 3 and Figure 3 show that there were strong and significant correlations between
the proposed algorithm and the naive method vs. manual analyses of LVMM (Proposed:
r = 0.86, p < 0.0001; Naive: r = 0.79, p < 0.0001), LVEDV (Proposed: r = 0.99, p < 0.0001; Naive:
r = 0.98, p < 0.0001), LVESV (Proposed: r = 0.99, p < 0.0001; Naive: r = 0.98, p < 0.0001), LVSV
(Proposed: r = 0.92, p < 0.0001; Naive: r =0.84, p < 0.0001), and LVEF (Proposed: r = 0.93,
p < 0.0001; Naive: r = 0.75, p < 0.0001). Please note that the correlations between the naive
and combined methods vs. manual measurements were very similar for all the LV indices
except for LVMM. Fisher’s z-transformations showed that the correlations for the proposed
algorithm and the naive method vs. manual measurements were significantly different for
LVMM (p = 0.0366), LVEDV (p = 0.0214), LVESV (p = 0.0214), LVSV (p = 0.0151), and LVEF
(p < 0.0001). Similar results were observed when comparing the correlations yielded by the
proposed algorithm and the combined method.
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Table 3. Relationships (Pearson r and []=95% CI) for algorithm vs. manual LV function measurements
for n = 180 images from 90 previously unseen ACDC test subjects.

Pearson (r, 95% CI) Proposed vs. Manual Naive vs. Manual
Combined. vs.

Manual
DeepLab vs. Manual

ine LVMM (g) � 0.86 ([0.80, 0.90]) 0.79 ([0.73, 0.84]) 0.41 ([0.28, 0.52]) 0.47 ([0.35, 0.58])
LVEDV (mL) 0.99 ([0.98, 0.99]) 0.98 ([0.97, 0.99]) 0.99 ([0.99, 0.99]) 0.57 ([0.41, 0.69])
LVESV (mL) 0.99 ([0.98, 0.99]) 0.98 ([0.97, 0.99]) 0.97 ([0.96, 0.98]) 0.65 ([0.51, 0.75])
LVSV (mL) 0.92 ([0.88, 0.95]) 0.84 ([0.76, 0.89]) 0.83 ([0.75, 0.89]) 0.13 ([−0.08, 0.33])
LVEF (%) 0.93 ([0.89, 0.95]) 0.75 ([0.65, 0.83]) 0.76 ([0.65, 0.83]) 0.08 ([−0.13, 0.28])

LVMM: LV myocardium mass (g); LVEDV: LV end-diastolic volume (mL); LVESV: LV end-systolic volume (mL);
LVSV: LV stroke volume (mL); LVEF: LV ejection fraction (%); � : n = 180 images from 90 subjects.
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Figure 3. Relationships and agreement between the proposed algorithm vs. manual measurements
of LVMM (A), LVEDV (B), LVESV (C), LVSV (D), and LVEF (E) (n = 180 images from 90 subjects).
Linear regression and Bland-Altman analyses of algorithm vs. manual LV indices are shown in the
top and bottom plots, respectively. Alg: algorithm results; Man: manual results. Solid lines (blue)
indicate the biases and dotted lines (red) represent the 95% limits of agreement.

Figure 3 also shows the quantitative agreement between the proposed algorithm and
manual LV indices. Bland-Altman analyses indicated that there was promising agree-
ment between the proposed algorithm and manual LVMM (bias = −8.8 ± 30.3 g, 95%
LOA = [−68.1, 50.5] g), LVEDV (bias = −0.9 ± 13.1 mL, 95% LOA = [−26.6, 24.8] mL),
LVESV (bias = −0.2 ± 13.8 mL, 95% LOA = [−27.3, 26.9] mL), LVSV (bias = −0.7 ± 10.0 mL,
95% LOA = [−20.2, 18.9] mL), and LVEF (bias = −0.6 ± 7.8%, 95% LOA = [−15.9%,
14.6%]). In contrast, the naive and combined methods yielded greater biases and wider
95% LOAs for LVMM (Naive: bias = −27.3 ± 33.3 g, 95% LOA = [−92.5, 37.9] g; Combined:
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bias =16.4 ± 79.0 g, 95% LOA = [−138.5, 171.3] g); LVEDV (Naive: bias=10.9 ± 14.5 mL,
95% LOA = [−17.5, 39.2] mL; Combined: bias = 12.0 ± 11.2 mL, 95% LOA = [−10.0,
34.0] mL), LVESV (Naive: bias = 8.8 ± 16.7 mL, 95% LOA = [−24.0, 41.5] mL; Combined:
bias = 19.0 ± 18.1 mL, 95% LOA = [−16.4, 54.4] mL), LVSV (Naive: bias = 2.1 ± 17.4 mL, 95%
LOA = [−31.9, 36.1] mL; Combined: bias = −7.0 ± 14.7 mL, 95% LOA = [−35.8, 21.8] mL),
and LVEF (Naive: bias = −3.1 ± 15.8%, 95% LOA = [−34.0%, 27.7%]; Combined:
bias = −9.5 ± 13.6%, 95% LOA = [−36.1%, 17.2%]).

For the proposed algorithm and the naive method, U-net training/pre-training was
completed in approximately 5 h. The fine-tuning procedure required an additional ∼12 min,
including 10 s to post-process each image using the CKC algorithm and 10 min to update
the U-net parameters. The combined method required ∼15 h for training and DeepLabV3+
required ∼5 h. For all the trained/fine-tuned models, inference of a new 2D cine image
stack required ∼1 s.

4. Discussion

Deep learning is emerging to potentially transform cardiac imaging workflow and
clinical patient care. Here, we developed an approach to employing a trained CNN for LV
segmentation and function evaluation in an independent cardiac cine MRI dataset. For a
dataset of 180 cine MR images from 90 subjects with various cardiac disease, we made the
following observations: (1) improved segmentation accuracy in the independent dataset;
(2) strong correlations between the proposed approach and manual analyses of LV indices;
and (3) rapid and fully automated fine-tuning procedure without needing manual labels for
the independent dataset.

Cine MRI has been routinely performed for evaluation of LV structure and function in
cardiovascular MR exams. Deep learning and machine leaning have demonstrated promise
in several aspects of the cardiac research and clinical workflow, including but not limited to
prediction of cardiac left ventricular kinematics and boundaries [36], classification of cardiac
arrhythmias from electrocardiogram [37], and detection of cardiac structure and structural
abnormalities [38]. However, direct application of a trained model to a previously unseen
dataset often yields suboptimal performance [3,8,39]. For example, direct application
of a CNN trained on a large cine MRI dataset of 4275 subjects [8] to 20 patients in a
previously unseen ACDC dataset yielded DSC of 0.65 for LVM and 0.74 for LVC. Previous
studies showed that DSC is usually sensitive to small differences when the segmented
object is relatively small and not very sensitive to errors when the object is relatively
large [40]. We note that the size of LVM is generally smaller than the LVC at end-diastole
although the differences between the two regions are smaller at end-systole. A recent
study [9] investigated the variabilities of intra and inter-observer manual segmentation.
The authors reported greater DSC of 0.956–0.967 for LVC and 0.870–0.900 for LVM at
end-diastole, and similarly, these were 0.898–0.941 and 0.891–0.917 at end-systole. The
robustness of manual segmentation and the substantially lower algorithm DSC [8] than
repeated manual analyses (0.65 vs. 0.870–917) suggest that manual segmentation errors
have a minimal effect in this case. In addition, the training and testing datasets used by
Bai et al. [8] differ substantially as the training dataset mainly consists of healthy volunteers
whereas the testing dataset comprise patients with diverse cardiac pathologies, which
affect the appearance of the myocardium in MR images. Based on the literature and our
experience, we think that the relatively low DSC for LVM than LVC (0.65 vs. 0.74) reported
by Bai et al. [8] is mainly caused by the combined effects of the large differences between
training and testing datasets, the relatively small size, hollow shape, and image signal
intensity inhomogeneity in the LVM compared with LVC. However, this warrants further
investigation. Nonetheless, the initial suboptimal accuracies [8] were later improved by
employing 80 manually segmented subjects in the ACDC dataset for fine-tuning. Previous
studies [4,41] and our efforts have shown that manual segmentation of a 3D cardiac MR
volume with 10–15 slices typically requires 20–30 min. This lengthy procedure requires
experience and expertise from examiners, introduces user variability, and is not compatible
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with efficient research and clinical workflow. Similarly, another study [3] applied a pre-
trained state-of-the-art CNN (1st place winner in the ACDC segmentation challenge) to
40 ACDC subjects and achieved DSC of 0.78 for LVM and 0.86 LVC. Compared with
these previous works, our approach yielded greater DSC of 0.81 for LVM and 0.90 for
LVC without requiring manual segmentation of the fine-tuning datasets. In our future
work, we will compare the results from this study with that by fine-tuning the proposed
algorithm framework using manually segmented unseen dataset in terms of segmentation
accuracy and time. In addition, the derived LV function measurements provided by
our approach were strongly correlated with expert manual analyses with no significant
differences between the techniques (p = 0.1976–0.8631, Table 2). This is important because
our approach implemented fully automated transfer learning to segment an independent
cardiac cine MR dataset acquired using a different MR system at a different location in
patients with different cardiac diseases without requiring manual segmentation of the target
dataset, potentially enabling efficient clinical workflow and facilitating broader use of deep
learning for a wide range of applications.

We also implemented a combined method that employed state-of-the-art style-intensity
augmentation techniques [17] to address the domain shift issue, which had performed
well for breast segmentation in different MRI datasets. Compared with our approach, the
optimized implementation of the combined method yielded lower DSC of 0.78 for LVM and
0.87 for LVC with substantially greater ASSD, as shown in Table 1. In another study [18],
the authors tackled a similar problem by developing a series of stacked transformations
that performed extensive data augmentation (sharpening, blurring, adding noise, changing
brightness/contrast, intensity perturbation, rotation, scaling, deformation) during network
training. For eight public MRI/ultrasound datasets, the authors achieved improved seg-
mentation accuracy with the use of the proposed data augmentation techniques. These
studies [17,18] showed that advanced and extensive data augmentation techniques yielded
higher segmentation performance than adversarial learning-based domain-adaptation
techniques. Surprisingly, the naive method generally outperformed the combined method
for segmentation accuracy measurements (except for DSC for LVM) but the correlations of
LV function measurements with manual results were comparable. This warrants further
investigation. Of note, the well-known DeepLabV3+ algorithm [30] performed poorly in
this work (see Figure A1), further highlighting the challenges of domain shift for medical
image segmentation. In fact, we previously trained the DeepLabV3+ model on 50 subjects
from the UK Biobank dataset and applied the model to segment 50 previously unseen
ACDC subjects. We achieved DSC of 0.437 for LVM and 0.568 for LVC. Similarly, we trained
the DeepLabV3+ model on 50 ACDC subjects and tested the model on 50 subjects from the
UK Biobank dataset. We obtained DSC of 0.745 for LVM AND 0.813 for LVC. Please note
that these results are excluded in the final version of our previous paper [3] as suggested by
the reviewers. In a recent study of lung MRI segmentation [23], we achieved DSC of 0.872
and 0.701 by training the DeepLabV3+ model on one dataset and testing the model on
another different dataset. Collectively, these and other studies suggest the inability of deep
learning, including DeepLabV3+ and other state-of-the-art models, to deal with the domain
shift issue for medical image segmentation. Our approach outperformed the naive method
and a combined method that used state-of-the-art data augmentation techniques [17] and
differs from the other methods [18,31] in that in addition to comprehensive data augmenta-
tion, we implemented Monte-Carlo dropout to mitigate overfitting and a CKC algorithm to
automatically update the “annotations" of the fine-tuning subjects. Previous studies [3,24]
demonstrated the effectiveness of using CKC to improve CNN initial segmentation and
here we substantially extended the previous work by demonstrating its utility in a new
application, whereby the CKC post-processing results were incorporated to effectively tune
the trained model to segment an independent cardiac cine MRI dataset. The proposed
framework is relatively independent from commonly used domain adaptation and data
augmentation techniques. Therefore, we think that our approach could be combined with
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these methods to address the domain shift issue, which represents an advantage of our
approach that will be further investigated in future work.

Although our approach was based on a U-net implemented with Monte-Carlo dropout
and a recently developed CKC algorithm, this work differs from other cardiac image seg-
mentation methods developed to tackle a similar issue with higher performance for LV
segmentation and biomarker quantification. In addition, the promise of our approach was
demonstrated in the context of a U-net, which has been widely used for numerous applica-
tions, suggesting the generalizability of our framework for a broad range of segmentation
tasks that involve a U-net. The improved segmentation generalizability may stem from the
combination of the advantages of deep-learning and machine-learning methods without
a deep architecture. As a result, both deep and shallow image features can be learned
or employed, and the power of data-driven and rule-based segmentation methods was
aggregated, potentially mitigating the limitations of the individual methods. However,
further investigation of this is warranted. Efforts that can further improve the performance
of our proposed approach including: (1) applying the CKC algorithm only to the fine-
tuning subjects with problematic segmentation; (2) automatically selecting the datasets
with acceptable CKC segmentation for CNNfine-tuning; and (3) adding a few more new
unlabeled datasets for each iteration. We think that these strategies may be optimized
and implemented in parallel to for potentially greater robustness. Regardless, the results
realized here suggest that our approach provides a way to improve deep-learning segmen-
tation generalizability without increasing the difficulties of algorithm interpretability, a
major concern facing the community [42], and may facilitate broader use and translation of
deep-learning techniques for research and clinical care.

We acknowledge several study limitations. First, the segmentation accuracy of our
approach is lower than CNNs trained and tested on the same datasets. However, here
we focus on adapting a trained CNN for segmentation of previously unseen cardiac MRI
datasets, which is particularly challenging and requires urgent solution. Importantly, we
achieved segmentation accuracies higher than two state-of-the-art segmentation methods
(a combined method that employed style-intensity augmentation and DeepLabV3+) and LV
function measurements that were strongly correlated with manual results. We note that the
basal and apical slices of the heart are difficult to segment due to poor image qualities and
the complexity of cardiac structures, which represent some of the major challenges facing
the community. In addition, the proposed algorithm was validated on a retrospective
dataset and the effectiveness of this approach warrants a prospective evaluation with
datasets from different centers, MR scanners, imaging protocols, and disease phenotypes.

5. Conclusions

In conclusion, we developed a way to employ a pre-trained neural network to segment
previously unseen cardiac MR datasets without requiring manual annotations of the unseen
datasets for fine-tuning. For a clinical dataset of patients with diverse cardiac disease, we
achieved LV segmentation and function evaluation accuracy and precision that may be
suitable for research and clinical use. As such, our approach may facilitate the translation
and use of deep learning in cardiac imaging workflow.

Appendix A

Table A1 shows that Monte-Carlo dropout, spatial augmentation, and style-intensity
augmentation together led to the optimal performance of the combined method [17].

64



Appl. Sci. 2022, 12, 2627

Table A1. Effects of Monte-Carlo dropout, spatial augmentation, and style-intensity augmentation on
U-net training using the LVSC dataset. The three components were combined during U-net training
(optimal implementation) and the trained U-net models were directly applied to the 90 ACDC test
subjects (n = 180 images) for DSC and ASSD (mean ± SD) calculation.

DSC ([0, 1]) ASSD (mm)
MCD Spa. Aug. Sty.-Int. Aug.

LVM LVC LVM LVC

ine � � � 0.33 ± 0.22 0.46 ± 0.30 16.85 ± 21.52 15.28 ± 18.02
� � � 0.49 ± 0.18 0.68 ± 0.22 8.38 ± 7.33 8.55 ± 8.69
� � � 0.73 ± 0.12 0.85 ± 0.14 2.92 ± 2.86 3.34 ± 3.48
� � � 0.77 ± 0.07 0.87 ± 0.11 2.39 ± 2.05 2.80 ± 2.49
� � � 0.34 ± 0.21 0.49 ± 0.29 11.30 ± 16.93 9.97 ± 15.36
� � � 0.55 ± 0.17 0.71 ± 0.21 7.47 ± 7.00 7.37 ± 8.22
� � � 0.75 ± 0.11 0.87 ± 0.12 2.30 ± 1.64 2.39 ± 1.85
� � � 0.78 ± 0.08 0.87 ± 0.12 2.71 ± 2.50 2.87 ± 2.61

�: a component is not used., �: a component is used. DSC: Dice-similarity-coefficient, ASSD: average-symmetric-
surfaced-distance; LVM: left ventricle myocardium; LVC: left ventricle cavity; MCD: Monte-Carlo dropout; Spa.
Aug.: spatial augmentation; Sty.-Int. Aug.: style-intensity augmentation.
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Figure A1. Representative segmentation of different regions of the heart at end-systole and end-
diastole for the same three subjects as that in Figure 2 using DeepLabV3+. Algorithm and manual
segmentation are shown in purple and yellow, respectively. ED: end-diastole; ES: end-systole.
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Abstract: The tremendous advancement of cardiac imaging methods, the substantial progress in pre-
dictive modelling, along with the amount of new investigative multimodalities, challenge the current
technologies in the cardiology field. Innovative, robust and multimodal tools need to be created in
order to fuse imaging data (e.g., MR, CT) with mapped electrical activity and to integrate those into
3D biophysical models. In the past years, several cross-platform toolkits have been developed to
provide image analysis tools to help build such software. The aim of this study is to introduce a
novel multimodality software platform dedicated to cardiovascular diagnosis and therapy guidance:
MUSIC. This platform was created to improve the image-guided cardiovascular interventional pro-
cedures and is a robust platform for AI/Deep Learning, image analysis and modelling in a newly
created consortium with international hospitals. It also helps our researchers develop new techniques
and have a better understanding of the cardiac tissue properties and physiological signals. Thus,
this extraction of quantitative information from medical data leads to more repeatable and reliable
medical diagnoses.

Keywords: cardiac imaging; multimodal; electrophysiology; deep learning; biophysical modelling;
inverse problems

1. Introduction

With the substantial progress in medical imaging and the boosting of multimodalities,
it becomes increasingly challenging to obtain a comprehensive and integrated 3D view of a
given heart. Unequivocally, most of these are consequences of larger size of acquired data
(often in multiple centres), complex fusion of the imaging modalities, and variability in
cardiac function.

MUSIC (Multimodality Platform for Specific Imaging in Cardiology) is a software
platform developed by the Multimodal Data Science team (https://www.ihu-liryc.fr/en/
technology-for-health-cluster/p/mds/, accessed on 1 June 2022) at Liryc IHU
(https://www.ihu-liryc.fr accessed on 1 June 2022) and the Epione (https://team.inria.
fr/epione/, accessed on 1 June 2022) and Carmen (https://team.inria.fr/carmen/, accessed
on 1 June 2022) Inria (http://www.inria.fr, accessed on 1 June 2022) teams that aims to
offer a large spectrum of functionalities and processing pipelines dedicated to cardiology
applications for both diagnosis and therapy guidance.

The MUSIC project is led by a multidisciplinary team including researchers, develop-
ers, clinicians and medical imaging operators.

MUSIC is composed of a desktop application, a web portal, and an academic con-
sortium. The desktop application is called MUSICardio and is built on the open-source
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software medInria (http://med.inria.fr, accessed on 1 June 2022), which comprises a large
set of versatile tools for medical image segmentation, visualisation, filtering, histogram anal-
ysis, data reformatting, registration and mesh processing, all of which are being provided
to the community with a user-friendly common framework for more efficiency. Further-
more, imaging data from various modalities, such as MDCT, MRI, PET and echography,
are easily handled by the application. In addition, the cardiac models generated can be
exported to clinical 3D electroanatomical mapping systems used by cardiologists during
interventional procedures to repair electrical disorders (e.g., catheter-based ablations). Our
research focuses on the following:

• Combined analysis of imaging (CT-scan, MRI, PET) and electrophysiology (inva-
sive, non-invasive mapping or image-based simulation) data to improve knowledge
regarding the structural substrate generating dangerous arrhythmia;

• The development of AI-based image processing tools for the automatic segmentation
of cardiac structures and quantification of robust markers associated with the risk
of arrhythmia;

• The development of customised image-based modelling methods to simulate electro-
physiological tests with computation times compatible with clinical practice;

• The development of cardiac models for the optimal navigation of instruments in the
virtual patient heart during interventional procedures;

• The clinical validation of these different tools for diagnosis, prognosis or real-time
guided therapy in patients with cardiac electrical disorders.

Treatment improvement: MUSIC offers image-based algorithms for diagnosis and
prognosis as well as pipelines dedicated to the guidance of either atrial or ventricular
interventions through imaging. For instance, this application has been used to guide
scar-related ventricular tachycardia (VT) ablation in over 500 consecutive procedures in
Bordeaux University Hospital.

A booster for research: MUSICardio is an application allowing the analysis, in
one environment, of multi-parametric data sets from different Liryc IHU teams (struc-
tural, mechanics, hemodynamics, electrical, etc.) and to interface with simulation plat-
forms such as SOFA (https://www.sofa-framework.org/, accessed on 1 June 2022), CEPS
(https://carmen.gitlabpages.inria.fr/ceps/, accessed on 1 June 2022), and CARP
(https://carp.medunigraz.at/, accessed on 1 June 2022), in order to develop patient-specific
modelling and simulation strategies. Our researchers can therefore use directly in MU-
SICardio our medical image analysis and processing algorithms to obtain quantitative
information to improve the diagnosis of heart disease.

A VT MUSIC consortium has been created including more than 30 international hospi-
tals with expertise in ventricular tachycardia from Europe, USA and Australia. Participating
centres anonymise and upload their data to our MUSIC web portal, then our expert opera-
tors process the data in the MUSICardio software to obtain customised models of the heart.
These new data are then sent back to the hospitals, which can immediately include them
during operations to visualise catheters in real time in patient-specific heart modelling.

Some imaging platforms similar on some points to MUSIC allow us to situate
ourselves: OsiriX (https://www.osirix-viewer.com, accessed on 1 June 2022) and
Horos (https://horosproject.org, accessed on 1 June 2022) (OsiriX fork) are imaging appli-
cations allowing the reading of DICOM from sources or PACS systems, data visualisation
in 2D/3D/4D, and have imaging tools and algorithms. They can be compared to our
MUSICardio application within the MUSIC platform. There are differences: MUSICardio is
dedicated to cardiology with dedicated tools, imports and exports several data types in
addition to DICOM, and has a pipeline system of Python scripts allowing to chain tools and
algorithms very easily for the users. OsiriX has two versions: one not free and FDA/CE
certified, and the other free and non-certified. Horos is free and suggests a donation. Both
applications are compatible only with macOS. MUSICardio is compatible with macOS, linux
(Ubuntu) and Windows. Another similar application is 3DSlicer (https://www.slicer.org,
accessed on 1 June 2022). It is a free and open-source medical imaging software. The
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common points with MUSICardio: 3DSlicer is compatible with macOS, linux and Windows;
it allows the display of different types of medical data such as DICOM or meshes, offers
algorithmic imaging treatments, AI-assisted segmentations and scripting in Python. For its
part, MUSICardio also has algorithms and tools dedicated to cardiology. These tools are
similar to our MUSICardio application, however they do not cover all the functionalities of
our MUSIC platform dedicated to cardiology: the MUSICardio application, the web portal,
as well as the dedicated consortium, in particular the expertise of our medical operators
and clinicians within the consortium.

2. Architecture

MUSIC is a software platform allowing in a unique environment the analysis of
multi-parametric data sets (e.g., structural, mechanic, hemodynamic, electrical, etc.) and to
interface such data with simulation platforms in order to develop patient-specific modelling
and simulation strategies. The MUSIC project is composed of the MUSICardio application
and a data web portal, along with the VT MUSIC consortium.

2.1. Consortium

The VT MUSIC consortium brings together international centres with expertise in
ventricular tachycardia and our institute. The data acquired in the hospitals are sent to us
through a web portal and processed rapidly by our expert operators in our MUSICardio
application. Thus, personalised models of the patient heart can be sent to the centres to
be included in cardiac operations. Figure 1 shows the process of the consortium for the
particular case of radiotherapy.

Figure 1. VT MUSIC consortium process (radiotherapy example).

VT centres interested in joining the consortium are invited to contact our team. Access
to the consortium is free.

2.2. Web Portal

A web portal has been developed in Java through the Play framework (https://www.
playframework.com, accessed on 1 June 2022). Users of the VT MUSIC consortium can
anonymise their images through an anonymisation tool that we developed. Then, the web
server allows users to upload these anonymised data and add relevant information for our
operators and clinicians. The data are downloaded by our operators who process them in
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our MUSICardio application. Finally, the generated cardiac models are uploaded to the web
portal and can be retrieved by hospital users for use during cardiac operations. In addition
to the web portal, a mesh viewer developed by our team is provided so that clinicians from
the VT MUSIC consortium hospitals can study the heart meshes before surgery.

2.3. MUSICardio

The MUSICardio application within the MUSIC project is based on the medInria
open-source software developed by Inria. Our team participates in the improvement of
medInria as the core of MUSICardio. We are part of the medInria consortium, created by
Inria, which leads the development of the software. The modularity of the plugin system
of the software allows easily adding new plugins dedicated to functionalities needed in the
cardiac field.

2.3.1. Usage

There are three current ways of using MUSICardio. The application can be directly
used by our researchers for instance to use algorithmic tools developed by our team.
Researchers, post-doctoral fellows, PhD students or other members of our laboratory can
also write Python scripts, with the help of our team, to create pipelines to process and
analyse their data in the application. Python is an understandable language for non-
developers, and it can be learnt quickly and easily. Pipelines allow complex suites of
algorithms and tools to be processed in simple graphical steps in MUSICardio, making it
easier for users, especially if they have to perform the tasks many times. Finally, our expert
operators (who are trained medical imagery staff, and formed to use our VT pipeline script
in MUSICardio) can process our pipeline in MUSICardio, using as input the data sent by
partner hospitals in the VT MUSIC consortium, and they can send back the output heart
models to these hospitals.

2.3.2. Libraries

The core of the application (i.e., medInria) is written in C++ and Qt, uses external
libraries and includes Python wrappers. The main external libraries used are shown in the
Table 1.

Table 1. External libraries used in medInria, core of MUSICardio.

Library Description Origin

DCMTK DICOM management OFFIS e.V

dtk Tools for modular software development Inria

ITK [1] Scientific imaging management Kitware

LCC LogDemons [2] LCC Log Demons algorithms Inria

QtDCM Qt widgets to handle DICOM images Inria

RPI Image registration algorithms Inria

TTK Tensor algorithms Inria

VTK Image processing, 3D graphics, volume
rendering and visualisation Kitware

Our application gives access to a wide range of data tools, workspaces or toolboxes
through a system of plugins that can be easily activated or deactivated, allowing a modular-
ity of the application binaries. We use some additional external libraries in the MUSICardio
application for our plugins (Table 2):
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Table 2. External libraries used in MUSICardio plugins.

Library Description Origin

Eigen [3] Linear algebra library Inria

FFmpeg Video tools FFmpeg project

Mmg [4] Remeshing tools Inria

QuaZip Qt zip/unzip tools S.A. Tachenov

Qwt Qt 2D plots library U. Rathmann, J. Wilgen

TetGen [5] Tetrahedral mesh generator, 3D Delaunay triangulator Weierstrass Institute

zlib Data compression library J.-L. Gailly, M. Adler

These external libraries API can be accessed in plugins, allowing developers to access
their functionalities and to develop more tools in the application.

2.3.3. Components

Figure 2 presents the architecture of the MUSICardio application through its medInria
core, its import/export formats and functionalities plugins, and its external libraries.

MUSICardioI/O

 Johnson & Johnson 
Carto data

Functionalities Pipelines SystemTools for image, mesh,
EP map analysis

medInria External libraries 

FunctionalitiesI/O 
DICOM, mha, vtk, etc 

Additional external
libraries

Fork

EnSite NavX export

Plugins

Plugins

Filtering, Reformat,
Registration, Meshing

Segmentation
workspaces

EP Map

Rhythmia HDx export

Toolboxes for image,
mesh and fiber

analysis

EAM AnalysisRadiotherapy planning

Simulation

GUI 

PluginsPlugins

Figure 2. MUSICardio modules.

2.3.4. Python

Python 3 is provided in the software. A Python console has been added, which al-
lows researchers to work on their data directly in Python in the application and further
perform parameter testing in the console. The interfacing between Python and the ap-
plication in C++/Qt is done with the Swig (https://www.swig.org, accessed on 1 June
2022) framework.
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2.3.5. Pipelines

Processing workflows can be executed through a pipeline system included in the
MUSICardio application. This allows us to script complex process sequences in order to
simplify the work of the operators, make the results more robust and obtain the output data
fast. The pipeline scripts were developed in Python, allowing researchers and operators to
create and adapt their own customised pipelines.

For instance, within the VT MUSIC consortium, clinicians and expert operators at
Liryc IHU use the pipeline system to segment CT and MR images, and to generate a 3D
structural model comprising a detailed anatomy of the whole heart, myocardial scar maps
from CT-derived wall thickness or late-enhancement MRI analysis, structures at risk during
SBRT (stereotactic body radiotherapy) procedures, or other structures such as coronaries,
left phrenic nerve, atrioventricular node, ICD (implantable cardioverter defibrillator) lead
tip, GI (gastrointestinal) tract, etc. The 3D models are used to treat refractory ventricular
tachycardia. EP maps (electrophysiology data) are registered in the same geometrical
coordinates to allow the user to perform the 3D rendering of combined structural and
EP data.

Pipeline scripts can handle automatic segmentation using Deep Learning-based algo-
rithms that have been developed by our team. This allows us to obtain accurate and quick
automatic segmentations of the anatomical heart structures for a more precise diagnosis
and treatment of cardiac diseases.

3. Data Management

3.1. Data Format

The data management system in the MUSIC project includes local databases per user
managing the data imported or generated by the MUSICardio application, access from the
application to several data sources including PACS systems, and our online web portal
that allows hospitals in the VT MUSIC consortium to send their data to our institute and to
receive output data from us.

Within the application, users can import and export data in various formats, including
VTK, ITK, DICOM, Nnrd, GIS, Nifti, Gipl, OBJ, STL, Medit, etc. MUSICardio can export
data to electrophysiology mapping systems such as BioSense Webster, Johnson & Johnson
(New Brunswick, NJ, USA) “CARTO”, Boston Scientific (Natick, MA, USA) “RHYTHMIA”,
and Saint-Jude Medical (Saint Paul, MN, USA) “EnSite NavX”. Within the VT MUSIC
consortium, these compatible data are sent to VT centres around the world where clinicians
can visualise their catheters in real time inside a virtual patient-specific heart created in the
application through their navigation systems.

The application also allows us to export cardiac structures in DICOM RT-Struct format.
These data are compatible with any radiation therapy (RT) planning software. Depending
on the strategy and RT technology available onsite, these cardiac targets and associated
segmentations may be registered onto a 4D planning CT and expanded to take into account
the cardiac/respiratory motion and margins of errors for misregistration. Dose simulations
are then performed to validate the final strategy, which is often the result of a trade-
off between safety and efficacy of radiation delivery. Once validated, the actual SBRT
(stereotactic body radiation therapy) treatment is delivered.

3.2. Data Sources

The MUSICardio application can connect to hospital PACS systems to access imaging
data. This allows clinicians and hospital operators to easily work on data through a secure
tool dedicated to hospitals. This avoids data import and export on physical media and
travel across hospitals, and it allows for accurate data tracking. It also allows hospital users
to filter data and easily find the information and data they need through metadata. Figure 3
shows the interface of the PACS access system.
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Figure 3. PACS data source.

4. Functionalities

4.1. Image and Mesh Workspaces

The MUSICardio application offers a wide range of tools and algorithms for segment-
ing, filtering, and reformatting, which are sorted into different workspaces to find them
more easily.

The main image and mesh tools and algorithms in the application are outlined in the
Table 3.

Figure 4 shows the interface of the thresholding process in the filtering workspace.

Figure 4. Example of the thresholding of CT data.
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Table 3. List of the main imaging and meshing tools in MUSICardio.

Worspace Description

Diffusion Processing of diffusion and tractography.

EAM Analysis Electroanatomical mapping analysis tools.

Filtering
Image binary operation (AND, OR, XOR, NOT), constant operation (addition, multiply, etc.), blurring,
normalisation, thresholding, edge filters, mask application, morphological filters (dilate, erode, close, open),
bias correction, etc.

Meshing
Convert mesh to and from mask, data array management, interpolation, projections, distance computations,
mesh deformation, morphological mesh filters, binary operations on meshes, fiber computations, decimation,
refine, etc.

Reformat
Crop data, extract 3D data from 4D ones, merge images and meshes, reslice (change orientation, pixel size,
image dimensions), super resolution (compute accurate data from orthogonal ones), move an image to a
new location.

Registration Register two images with diffeomorphic demons [6], LCC Log demons, Optimus registration algorithm
(gradient-free Mutual Information-based rigid registration), or manual registration.

Radiotherapy Radiotherapy ablation planning tools with DICOM-RT-STRUCT data.

Segmentation
Mapping of myocardial depth isthmuses, histogram analysis, level set segmentation, paint and polygon
segmentations, VOI (volume of interest) segmentation, variational segmentation through landmarks, as well
as vessel segmentation.

Simulation Simulation processing tools, forward problem, inverse problem, FEM and MFS simulation tools (see
Section 4.5).

4.2. Segmentation

The Segmentation workspace handles multiple segmentation tools, one of the most
important and used is the “Polygon ROI” toolbox. The “Polygon ROI” toolbox has been
developed jointly by our team and radiologists. This tool allows us to manually segment
images through polygon contours (ROI, region of interest), use a repulsor tool to refine
these contours, automatically interpolate these segmentations between slices, or annotate
them for AI. A focus in the development has been made on the production of contours
with standardised labels. For now, eight different structures with different colours and
names can be defined simultaneously. Figure 5 illustrates the ability to segment several
anatomical zones and define a label name for each structure.

Figure 5. Contours segmented in polygon ROI toolbox. This example shows an ongoing segmentation
of the left (green) and right (blue) ventricles of the heart.
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The results of segmentation can be saved as binary masks or internal contours struc-
tures. A contour structure is an internal format of MUSICardio and medInria. It allows us
to save the work in progress and start again later or reuse the result of a segmentation as
the model on another dataset. Other useful features are available:

• Correction tools: each node of the polygon contour can be manipulated separately, or
a repulsor tool is available allowing to push the segmentation boundary with a circle.
See Figure 6a.

• Multiple Views: segmentations can be done on different series simultaneously in
multiple views to keep the same label name for series, and we can use a cursor to mark
a position in series. The data have to be first reformatted. Figure 6b shows two MRIs
at different dates. A lesion, in green, is visible only on one series (the right one). The
evolution of another lesion is showed on the second series in blue. The green cursor
allows us to find the way through the images.

(a) (b)

Figure 6. Polygon ROI features. (a) Repulsor: the orange circle handled by the user allows to push
the boundary of a previously segmented region of interest (b) Multiple views: a segmentation is done
simultaneously in two views. The arrows show an ingoing segmentation of lesions in blue and green
in two reformatted brain images, where the user can easily follow the differences.

4.3. Mesh Enhancement

The VTK library allows us to generate surface meshes from segmented masks, but
these meshes are generally not of enough quality to be used for computer modelling and
simulation. We decided to include the Mmg (http://www.mmgtools.org, accessed on 1
June 2022) library in order to improve the quality of the generated meshes. This library
allows us to smooth, refine or decimate meshes without losing the original shape of the
geometry. Volumetric meshes are then generated using the TetGen (https://wias-berlin.de/
software/index.jsp?id=TetGen&lang=1, accessed on 1 June 2022) library, and if the quality
of the volumetric mesh is not satisfactory, Mmg can also be used to improve the mesh
quality. We developed some tools in MUSICardio to improve the mesh quality (Table 4).

4.4. Electroanatomical Map Analysis

ElectroAnatomical Mapping (EAM) systems are used to create a 3D model of the
heart and to record the cardiac electrical activity at the mapped points [7]. More than two
decades of device improvements and technological refinements have made the clinical
EAM systems routinely used during invasive radio-frequency (RF) ablation procedures for
treating dangerous cardiac arrhythmia [8].

An electroanatomical map (EAM) is a combination of a 3D heart geometry (i.e., a
mesh) and electrophysiological data in the form of 1D electrical signals (e.g., uni/bipolar
maps, local activation times, intracardiac electrograms). After the EP procedure, the study
containing the maps can be exported from navigation systems. Our application is capable
of importing EAMs from navigation systems used in the clinics: CARTO (Biosense Webster,
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Johnson & Johnson) and RHYTHMIA (Boston Scientific), respectively. Once imported,
these maps can be visualised and further processed using various toolboxes.

4.4.1. Review of Electrocardiograms

The recorded intracardiac waves and ECG signals can be reviewed. Users may create
annotations to highlight important events. These annotations are given: name, colour,
description. They can reference events that have a duration or just a specific time. Figure 7
illustrates the signal review and annotation window.

Table 4. List of tools dedicated to mesh enhancement.

Tool Description

Binary operations Intersection, union and difference between two meshes.

Convert mesh to mask Convert mesh into mask to work on it and convert back.

Mesh cleaning Filling holes in meshes, remove unused vertices, merge very close points.

Mesh interactors Selecting and deleting selected cells.

Mesh manipulation Apply transformation to mesh: translation, rotation, scaling.

Mesh registration Registration of a mesh to another mesh using landmarks or the iterative closest
point method. Registration of a mesh to an image using landmarks.

Merge volumes Concatenate meshes.

Projection mapping and interpolation Projection of data on meshes, scalar or vector field, linear and nonlinear
interpolation.

Remeshing Decimate, refine, smooth meshes.

Figure 7. Annotations of 1D electrophysiological signals.

4.4.2. Radiotherapy Planning

Stereotactic body radiotherapy (SBRT) has recently been applied to treat refractory
ventricular tachycardia [9,10]. MUSICardio provides an environment for an in-depth
analysis and SBRT session planning.

CT and MR images are segmented, creating a 3D structural model comprising a
detailed whole heart anatomy, myocardial scar maps generated from CT-derived wall thick-
ness or late-enhancement MRI analysis, and the structures at risk during the interventions.
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For patients who previously underwent catheter radio-frequency ablation,
electroanatomical maps can be imported and co-registered with the CT and MR segmented
meshes to allow the user to perform the 3D rendering of combined structural information
and EP data.

The ablation targets and organs at risk can be delineated, creating contours to be
exported in the DICOM RT-struct format. Figure 8 shows an example of such contours.

Figure 8. Automatic contouring of targets and organs at risk. The contours can be exported to the
standard DICOM Rt-Struct format. Each ablation target and organ at risk is segmented with a color
code: the list of contour names is displayed in a table in the right part of the application, as shown in
this screenshot.

4.5. Electrocardiographic Imaging

In the Simulation workspace of MUSICardio, we developed different tools in order to
enable the use of computational models for simulations along with their integration with
multimodality imaging data. Of particular concern are the tools developed to improve the
resolution of ElectroCardioGraphic Imaging (ECGI) inverse problems. Briefly, ECGI is a
non-invasive technique that allows clinicians to construct electrical information on the heart
surface or volume from electrical measurements on the body surface and patient-specific
heart and torso geometries. The ECGI tools that are developed in MUSICardio are based on
the formulation of Spach et al., who first related the epicardial and body surface electrical
potentials by means of a transfer matrix that depends on the geometry of the heart and
the torso of the patient [11]. Both surface and volume ECGI functionalities follow the
following pipeline:

• Load the 3D image data of the patient (i.e., CT image scan or MR images).
• Segment body surface and heart surface or volume geometry and construct their

corresponding masks. The user can also segment other organs such as lungs, bones
and the liver. Figure 9a shows a 2D axial cross-section view of a segmented geometry
showing the volume of the heart, lungs, liver and the body surface.

• Generate computational meshes of the segmented geometries. Figure 9b shows an
example of a generated 3D computational geometry.

• Identify the position of electrodes in the body surface mesh (semi-automatic).
• Construct a transfer matrix based on finite elements method (FEM) or on the method

of fundamental solutions (MFS) [12]. Details about both methods can be found in [13].
• Load the body surface electrical recordings.
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• Construct the electrical potential on the heart surface or the current density on the
heart volume by solving the ECGI inverse problem. Several approaches have been
implemented using different regularisation methods, see [13].

• Visualise the electrical information constructed on the surface or the volume of the
heart. Figure 10 illustrates an example of the electrical potential reconstruction using
MFS (b) and FEM (c) as well as the ground truth of the corresponding solution (a).

For the post processing of the computed electrical potential, our ECGI pipeline script
in Python allows one to compute activation maps.

(a) 2D view (b) 3D view

Figure 9. Examples of ECGI-oriented segmentations and mesh generation. (a): A 2D cross-section
view of a segmented geometry showing the heart (dark red), lungs (green), liver (yellow) and the
remaining tissue (red). (b): A 3D mesh of a torso volume.

Figure 10 shows an example of typical results that can be obtained using MUSICardio.

(a) Ground truth (b) MFS results (c) FEM results

Figure 10. Distribution of the electrical potential on the heart surface. Simulated ground truth
solution (a), MFS solution (b) and FEM solution (c).

4.6. Artificial Intelligence

Deep Learning-based algorithms developed by our team have been recently included
in Python script pipelines and further used in the MUSICardio application. These AI
algorithms included in the scripts can improve the accuracy of cardiac segmentation and
speed up the analysis and computations, resulting in a less invasive patient diagnostic, a
more precise treatment, as well as a better therapy outcome.

The Python support in MUSICardio pipeline allows us to access an unlimited number
of calculation libraries, including the AI libraries such as: TensorFlow, PyTorch, and scikit-
learn. The pipeline script also has several extended front-end controls of the MUSICardio
interface, which are able to facilitate the visualisation of processing steps undertaken during
the AI project. The ability to display different type of images and resulted computations
is crucial in building a coherent and easy-to-understand pipeline starting from the input
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image to the final Deep Learning (DL) model prediction. However, the majority of the
AI project steps are already built in Python, and these can be easily integrated into the
main pipeline.

One of the AI pipelines developed by our team automatically predicts the risk of
ventricular arrhythmia (VA) from 3D CT image-based models, as proposed in [14]. This
particular pipeline consists of several image processing steps including segmentation of
CT images, visualisation of short-axis view orientation, wall thickness calculation, and
2D bullseye map flattening. The bullseye thickness map is then used as input to a VA
classification network, after which the classification’s attention map is calculated from
the prediction score using a gradient back propagation algorithm. The automatic image
segmentation is performed using a pre-trained Dual-UNet segmentation network, while
the VA classifier network consists of a conditional variational autoencoder and a fully
connected classifier model. The two DL networks and all matrix calculations can be
integrated directly in the pipeline Python script. The complete image processing pipeline is
presented in Figure 11.

Gradient Backpropagation

SAX Orientation

2D Flattening

E.

B.

VA+ VA-

Reconstruction

Total Processing Time: < 3mn
Attention Map

Classifier

Coarse Segmentation

Crop

Refined Segmentation

Dual-Unet Segmentation

Encoder Decoder

Reconstruction

Decoder

Compressed Rep. (25 Variables)

Conditional Variational Autoencoder (CVAE)

Attention Map
VA Classification
TrainingD.

A.

Th
ic

kn
es

s
C

al
cu

la
tio

n

C.

VA classification & Attention map generation

Conv + Relu

Maxpooling

Upsampling

Model layer

Figure 11. Automatic pipeline for LV (left ventricular) wall thickness map extraction and VA predic-
tion. The arrows illustrate the background calculations and AI predictions. (A) Input 3D CT image,
(B) segmentation masks, (C) short-axis oriented masks, (D) 3D wall thickness map, (E) 2D bullseye
thickness map.

The pipeline ends with the VA classification from the 2D wall thickness map using
a conditional variational autoencoder and a fully connected classifier model. A so-called
“attention map” is also generated from the gradient back propagation of the classification
score. The thickness map, attention map and classification score can be displayed at the
end of the pipeline, as shown in Figure 12.

The pipeline that was implemented and designed to be used case by case was not
adapted for the processing of multiple inputs/outputs required for the development
stage of the AI models. Therefore, both AI models were built, trained and validated
outside of MUSICardio using the Python environment and packages, including TensorFlow
(Deep Learning algorithms) and SimpleITK, Numpy and VTK (image processing). The
segmentation network was built using two consecutive 3D UNet models. The first model
was used to coarsely segment the heart regions, which was used to crop the region of
interest to be used as input in the second segmentation model for refine segmentation. The
model achieved a Dice score of 0.90 for left ventricle wall segmentation on the validation
dataset. Similarly, the post-infarct VA prediction was trained using a retrospective dataset of
600 patients (27.5% VA). The validation on the test dataset showed the prediction accuracy
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of 79.2%, sensitivity of 73.2% and specificity of 81.5%. The architectures of the AI networks
used in the example pipeline are shown in Figure 11.

Figure 12. The output results at the end of the pipeline. The VA classification result is shown in the
bottom right corner at 98%. The two views show the mesh of the LV wall thickness and classification
attention map. The views could be linked together, showing that higher attention (red on left mesh)
was placed within the thinning region of the LV (yellow/green on right mesh). The interactive
side-by-side display of the thickness and attention map helps to explain the model prediction and
increases the user’s confidence in the AI tool.

Once a model such as this has been built, it can be implemented in MUSICardio
pipelines for direct use: the compatibility of the application to run and install Python
packages allows the direct integration of internal and external image processing tools, as
well as the pre-trained AI models, into a single MUSICardio pipeline. Thus, MUSICardio
proves to be a powerful tool to quickly prototype a fully functioning AI-based project.

4.7. MRI-Guided Radiofrequency Ablation of Cardiac Arrhythmias

Radiofrequency (RF) ablation procedures performed under MRI offer the advantage
of a non-ionising imaging, providing that appropriate MR-compatible instrumentation
(e.g., Vision-MR Ablation Catheter, Imricor Medical Systems, Burnsville, MN, USA) be
used. MRI can provide 3D anatomical images of the heart at the beginning of the therapeutic
session prior to real-time catheter navigation, online monitoring of therapy and immediate
assessment of lesion transmurality. Therefore, such an integrated workflow does not require
3D registration between data acquired prior to and during the therapeutic procedure.
Figure 13 shows an example of the use of MUSICardio in such a scenario on a preclinical
study. Three-dimensional (3D) images (balanced ssfp sequence) acquired at the beginning
of the session served as a road map and were loaded and processed in MUSICardio
application (Figure 13a) in less than 5 min to segment (using the polygon ROI feature) right
and left ventricle cavities. The resulting volumes were converted into meshes and then
loaded in the prototype Monte Carlo platform provided by the MRI manufacturer (Siemens
Healthcare, Erlangen, Germany). Real-time 3D catheter navigation was then performed
using a dedicated tip-tracking MRI sequence (measuring X, Y and Z positions of MRI
micro coils embedded into the catheter tip at an update rate of 40 ms) to precisely position
the catheter at a desired location within the cavity (Figure 13b). Catheter position was
displayed online in transparency over the original images and the previously computed
3D meshes. Then, RF energy was delivered under MRI thermometry ([15], data not shown)
to monitor treatment progression on the fly. After several RF shots performed at different
locations within the heart (positioned under 3D real-time tip tracking sequence), a 3D post-
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ablation T1-weighted MRI sequence (long TI without injection of contrast agent [16]) was
run to visualise the lesion core (irreversible thermal coagulation) and surrounding oedema.
Then, the wall thickness map of the left ventricle was computed from the epicardium and
endocardium masks using a similar pipeline presented in Section 4.6. The segmentation was
initially performed manually with MUSICardio, then a dual-UNet segmentation network
was trained on the TI-weighted images to accelerate and automate the segmentation during
the intervention (<1 min). An arbitrary threshold was applied on TI-weighted 3D images
on the LV wall to automatically extract the mask of the RF lesions. This mask was then
multiplied by the wall thickness map to create a measure of the lesion transmurality
(expressed in percentage), which is a major parameter to assess the therapeutic success of
RF ablation. The output result was finally displayed on the interface (Figure 13c), allowing
the user to visualise native T1-weighted images and transmurality map within a single
graphical interface.

Figure 13. Example of preclinical RF ablation procedure performed under MRI. Three-dimensional
(3D) balanced SSFP sequence acquired at the beginning of the session was processed within MUSI-
Cardio (a) to segment the cavities of the RV and LV. The resulting 3D meshes were then exported
to the Montecarlo platform (b), allowing real-time 3D catheter navigation and visualisation. After
completion of the procedure, 3D T1-weighted images were acquired and processed in MUSICardio
(c) to automatically compute the transmurality map for each location of RF delivery. Orange arrows
show RF lesions with a central thermal necrosis in the hyposignal surrounded by a hypersignal
corresponding to oedema.

5. Discussion

The MUSIC project brings together various partners in the cardiology world: hospitals,
research institutes, and therefore clinicians, researchers, developers, modelling engineers,
database specialists, etc. This mixture of professions and objectives requires communication,
adaptation and imagination in order to develop computer tools as well as interfaces that
correspond to the greatest number of people. In particular, the tools must be easy to
use and adapted to the needs of the medical world, which prefers stable and intuitive
tools. They must also be modular enough to be used by the researchers who are less
interested in stability than in rapid prototyping of the tools and algorithms, and who may
want to change the parameters and the tools employed more frequently. The plurality of
our users also requires cross-platform applications, including developing and testing on
macOS, Windows and Linux. Thus, a continuous integration process had to be created and
improved in order to obtain stable and efficient software tools.
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Our quality approach is necessary because of the plurality of our users but
also because we can promote our code through spin-off companies. The inHEART
(https://www.inheart.fr, accessed on 1 June 2022) spin-off was created jointly by Liryc
IHU and Inria, and it is based on a version of our software. It is thus required to have a
controlled development processes in order to help with the regulatory process needed for
any software as a medical device.

An important issue in the development of clinical and research applications is the
long-term funding of personnel and equipment not only for software development and
continuous improvement but also for database management, beta testing, management,
etc. This is not always present in classical academic funding.

For now, the web portal is accessible only by the members of the VT MUSIC consor-
tium. Our imaging application MUSICardio is accessible by members of our laboratory:
researchers and engineers for research purposes, and expert operators and clinicians for
the VT MUSIC consortium. The core of MUSICardio (medInria) is open-source and can
be tested by the public; however, a lot of the functionalities that we developed are private
for now.

Our tools must also manage more and more data, some of which are very heavy. This
impacts the technologies we can use but also the minimal hardware that users must have
to run our software: processors, graphics card, hard disk, etc. The balance is complicated to
find between the power needed to visualise and apply treatments on very large data and
the power of the computers that users can have, especially in hospitals or research centres.

6. Perspectives

The MUSIC project continues to be developed and improved. We are currently work-
ing on a future version of the MUSICardio 4 software in close collaboration with the Inria
team that handles medInria. This new version will include new algorithms, tools, and will
be based on medInria 4 on which we work also. New features will include an improvement
of the global GUI of the software, the data management system as well as the management
of plugins.

We have started an exploratory work of real-time simulation of catheters during a
cardiac intervention in MUSICardio. This could allow us to display in real time a catheter
in the application and to superimpose it with patient images or meshes to study their
relative positions.

We also want to develop augmented reality tools to display and manipulate meshes in
MUSICardio. This will allow us to study mesh in more detail as well as communicate about
our tools in scientific events, and it is a first step to study the use of augmented reality in
diagnostic or operative cardiology.

It would also be interesting to certify our binaries by Microsoft and Apple software
platforms to simplify their installation. This would allow an official installation in hospitals
where computer security is omnipresent: clinicians often do not have the computer rights
to install unofficial software, so it can take a long time or a complicated route to install new
software on these computers.

In addition, an online mesh viewer developed in Three.js (https://threejs.org, accessed
on 1 June 2022) has been developed. It is currently deployed on the network of our
laboratory for beta-testing, and it aims to replace the mesh viewer (desktop application)
provided by our team to hospitals inside the VT MUSIC consortium. The online mesh
viewer could eventually be included in the web portal for easier use by users. We also
planned to include in the web portal the anonymisation tool, which is also a desk application
for now. Concerning the web portal itself, we would like to improve it by updating or even
changing the technology used and adding features for the users: pause/restart uploads, etc.

We will continue to develop the VT MUSIC consortium to welcome new hospital
partners and to enable patients to receive the best possible cardiac treatments.
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Our collaboration in the medInria consortium will allow us to organise the improve-
ment of the core application used in MUSICardio and to be a driving force in the develop-
ment of these innovative tools.

Finally, MUSIC is ideally suited to develop novel approaches combining artificial
intelligence and biophysical modelling, being at the interface of these two scientific areas.

7. Conclusions

The exceptional improvement of the cardiac field in the past years has led to a critical
need of better multimodal technologies. The MUSIC platform is an emerging and robust
technology which allows the user to import, export and work on a large spectrum of
imaging data from various modalities and modelling approaches used in the cardiac
field, offering functionalities dedicated to cardiovascular diagnosis and therapy guidance.
The VT MUSIC consortium brings international hospitals together around an innovative
interface to perform patient-specific ablation procedures, helping doctors to improve the
lives of many patients every day.
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Featured Application: The simulator has applications in the training of electrophysiologists for

cardiac radio-frequency ablation therapy and the evaluation of novel cardiac ablation devices.

Abstract: Radiofrequency ablation (RFA) is a treatment used in the management of various arrhyth-
mias including atrial fibrillation. Enhanced training for electrophysiologists through the use of
physical simulators has a significant role in improving patient outcomes. The requirements for a
high-fidelity simulator for cardiac RFA are challenging and not fully met by any research or com-
mercial simulator at present. In this study, we have produced and evaluated a 3D-printed, bi-atrial
model contained in a custom-made enclosure for RFA simulation using a new soft tissue-mimicking
polymer, Layfomm-40, combined with thermochromic pigment and barium sulphate in an acrylic
paint carrier. We evaluated the conductive properties of Layfomm-40, its sensitivity to RFA, and
its visibility in X-ray imaging, and carried a full simulation of RFA in the cardiac catheterization
laboratory by an electrophysiologist. We demonstrated that a patient-specific 3D-printed Layfomm-40
bi-atrial model coated with a custom thermochromic/barium sulphate paint was compatible with the
CARTO3 electroanatomic mapping system and could be effectively imaged using X-ray fluoroscopy.
We demonstrated the effective delivery and visualization of radiofrequency ablation lesions in this
model. The simulator meets nearly all the requirements for high-fidelity physical simulation of RFA.
The use of such simulators is likely to have impact on the training of electrophysiologists and the
evaluation of novel RFA devices.

Keywords: electrophysiology; cardiac radiofrequency ablation; 3D-printing; Layfomm-40; physical
simulation; simulation training; thermochromic pigments

1. Introduction

Cardiac ablation therapy is a minimally invasive interventional procedure used in the
treatment of cardiac arrhythmias. The process involves the insertion of flexible catheters
through peripheral blood vessels, which are guided to the site of abnormal electrical
conduction in the myocardium. Here, the arrhythmia is terminated via destruction of the
pathological tissue, most commonly using radiofrequency ablation (RFA). The procedure is
performed in the cardiac catheterization laboratory under X-ray fluoroscopy guidance and
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often with the use of an electroanatomic mapping system (EAMS), which tracks the inserted
catheters and allows measurement of the patient’s cardiac anatomy and electrophysiology.
Hong et al. describe the current strategies and technologies for the ablation of the most
common arrhythmia, atrial fibrillation [1].

RFA procedures are complex and require considerable training, sometimes delivered
via computer or physical simulators. Computers and physical simulators have an eth-
ical and cost advantage but may lack fidelity. An example of a computer simulator is
the Mentice VIST (Mentice AB, Göteborg, Sweden), which has been shown to improve
electrophysiology-trainee performance [2]. The requirements for a high-fidelity physi-
cal simulator for cardiac RFA make it challenging to produce such a simulator. These
requirements include representation of the cardiac anatomy, soft material properties, re-
alistic appearance under imaging (particularly X-ray fluoroscopy), compatibility with
EAMSs, sensitivity to RFA, and generation of electrophysiological signals. We are not
aware of any physical simulator that meets all these criteria. However, several simula-
tors have been developed that meet a subset of the criteria. Rossi et al. [3] developed
a physical simulator using a 3D-printed whole heart model embedded into a custom
torso. The heart was printed using thermoplastic polyurethane and the simulator was
compatible with the CARTO3 EAMS (Biosense Webster, Irvine, CA, USA). The simula-
tor was evaluated by 10 electrophysiologists and used to compare novel to experienced
operators. Similar simulators are produced by Heartroid (JMC Corporation, Yokohama,
Japan, https://www.heartroid.com/itemlist/ablation/, accessed on 1 December 2021) and
Pangolin (Tel-Aviv, Israel, http://pangolin.co.il/en/gallery/simulators-endo-vascular/,
accessed on 1 December 2021). However, none of these physical simulators have sensitivity
to RFA, meaning that ablation lesions cannot be created in these simulators and as a result,
effects of intended therapies delivered by trainees cannot be quantified. Lesion formation
depends on the parameters of the RFA, such as power, duration, ablation temperature
and importantly, the contact force between the ablation catheter and the tissue [4]. There-
fore, a simulator that allows creation of lesions will add a valuable layer to assessing a
trainee’s progression.

Several attempts have been made to create a physical simulation medium that is
sensitive to RFA and therefore able to demonstrate lesions. Bu-Lin et al. [5] used a polyacry-
lamide gel with bovine albumin which produced a noticeable color change after RFA due to
coagulation between 50 and 60 ◦C. Negussie et al. [6] proposed the use of thermochromic
pigments to create RFA-sensitive models that produced a permanent color change above
60 ◦C. However, there have been no attempts to incorporate ablation-sensitivity into a
cardiac RFA simulator.

3D-printed models are widely used in the medical field for a variety of purposes. Cur-
rent applications include, but are not limited to, implant and prosthetic design, biomedical
device testing, and, notably, pre-operative/procedural planning and surgical/interventional
simulation training [7]. Furthermore, advances in the field of additive manufacturing have
facilitated the production of objects with complex geometries. Notably, the incorporation of
patient scans as the basis for model design enables the fabrication of patient-specific simula-
tion aids bearing greater anatomical accuracy. This is particularly relevant in the rehearsal
of complex surgical/interventional procedures, also allowing for anatomical variation be-
tween patients. In our previous work, we evaluated the use of 3D-printed thermoplastics for
creating patient-specific whole heart models that were multimodal-imaging-compatible [8].
We investigated a low-cost, soft-tissue-mimicking copolymer filament, known as Layfomm-
40 from the Poro-Lay series (CC-Products, Köln, Germany) [9,10]. Layfomm-40 filament is
rigid and consists of polyvinyl alcohol (PVA) and a thermoplastic elastomer (TPE) compos-
ite. This allows the material to be 3D printed using a fusion deposition modelling (FDM)
printer at low cost. Once the 3D print is soaked in water, the PVA dissolves and leaves a
spongey, microporous TPE composite which mimics soft tissue. In our work, we found
Layfomm-40 to be an excellent material for creating cardiac models in terms of soft material
properties and imaging properties [8].
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The aim of this work was to evaluate the use of Layfomm-40 for creating a physical
cardiac RFA simulator that could satisfy as many as possible of the requirements mentioned
previously. We investigated the electrical and thermal conductivities of Layfomm-40 to en-
sure compatibility with RFA and EAMSs, investigated the use of thermochromic pigments
for RFA-sensitivity, and investigated techniques for optimum visibility of Layfomm-40
under X-ray fluoroscopy. We integrated our findings to produce a bi-atrial, patient-specific
model that was housed in a custom enclosure, and we tested this simulator in the cardiac
catheterization laboratory environment to prove the overall concept.

2. Materials and Methods

2.1. Layfomm-40 Conductivity Analysis

For a 3D-printed Layfomm-40 model to be compatible with RFA and EAMSs, it must
be both electrically and thermally conductive. We 3D printed five 10 mm cubes of Layfomm-
40 and immersed these in saturated saline solution for 3 days. The concentration of the
saline solution affects conductivity and using a saturated solution gave the maximum
conductivity achievable. Electrical conductivity testing was completed using an AstroAI
multimeter (AstroAI, Garden Grove, CA, USA) using the method shown in Figure 1a. The
conductivity, σ, was calculated using Equation (1), where R denotes electrical resistance, A
denotes the cross-sectional area, and L denotes the current path length.

σ =
L

R × A
S · m−1 (1)

Figure 1. Illustration of (a) electrical conductivity measurement using a multimeter and (b) thermal
conductivity measurement using a thermal property analyzer.

The thermal conductivity measurement was conducted with a KD2 Pro Thermal
Analyzer (Decagon, Pullman, WA, USA) using the method shown in Figure 1b. The
prepared samples of Layfomm-40 were 100 mm long, 15 mm thick, and had a 2.4 mm
diameter lumen to insert the needle probe. Five samples were immersed in saturated saline
solution for 3 days. The thermal conductivity was calculated using Equation (2), where
q denotes the heat flow, κ denotes the thermal conductivity, T2 − T1 corresponds to the
temperature difference, and L represents the travel distance of heat flow.

q = κ · T2 − T1

L
(2)
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2.2. Thermochromic Paint Formulation and RFA-Sensitivity

Thermochromic pigments display a color-changing effect, which is induced by heating
or cooling [11,12]. In terms of whether the original color can be recovered, thermochromic
materials can be classified as reversible or irreversible. Reversible pigments are usually
composed of a color developer, a color former, and a co-solvent. On heating, the co-solvent
changes from solid to liquid and allows the former to separate from the developer, leading
to the color change. On cooling, the process is reversed (Figure 2a). Irreversible pigments
have a volatile dye that evaporates when heated to the phase transition temperature,
resulting in a permanent colorless state (Figure 2b).

Figure 2. Mechanisms of action of thermochromic microcapsules during heating and cooling.
(a) Reversible and (b) irreversible.

Since we want the color change to be permanent and occur at typical temperatures
required for RFA lesion formation, we selected an irreversible thermochromic pigment with
a transition temperature of 60 ◦C. This pigment was black below the transition temperature
and colorless above this temperature (Special FX Creative, Newhaven, UK, https://www.
sfxc.co.uk/products/sfxc-irreversible-thermochromic-pigment-60-c-black, accessed on
10 November 2021). The pigment was mixed with (white) unpigmented acrylic paint
(UAP) (10:1 UAP:pigment mass ratio) to form a grey thermochromic paint that could be
applied to the 3D-printed Layfomm-40.

Several discs (radius 20 mm and thickness 5 mm) of Layfomm-40 were printed and
painted with the thermochromic paint. These were soaked in 0.9 w/w saline solution
and then tested for RFA-sensitivity. The discs were immersed in a saline bath (~38 ◦C)
and radiofrequency was delivered through a Stockert 70 Cardiac Ablation RF Generator
(Biosense Webster, USA) and a non-irrigated ablation catheter. The catheter tip was kept
orthogonal to the disc plane. Ablations of 60 s duration were applied while varying the
power (30–90 W) and temperature (50–80 ◦C) settings. Only one ablation was applied for
each combination of power and temperature. Ablations were also applied to a piece of
chicken breast for comparison. The diameter of the lesions was measured for each setting
with a digital caliper. Once parameters for consistent size lesion creation were identified, the
experiment was repeated using a 50 × 50 × 2 mm3 sample of thermochromic-paint-coated
Layfomm-40 which was divided into nine subsections. Nine ablations were applied keeping
the power and temperature settings between 70–80 W and 70–80 ◦C, respectively. The lesion
sizes were measured, and the average size computed for these power/temperature settings.
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2.3. Inreasing X-ray Visibility

In our previous work [8], we found the X-ray attenuation of Layfomm-40 cardiac
models was only marginally different to that of water. Therefore, since the models need
to be immersed in a water tank as part of the simulation, these un-modified models are
not easily visualized in X-ray fluoroscopy. We investigated the use of barium sulphate
(BaSO4) to increase the model visibility. BaSO4 is a commonly used X-ray contrast agent
and is often incorporated into polymers that need to be X-ray visible. We doped UAP with
BaSO4 in a range of mass ratios from 5:2 (UAP:BaSO4) to 15:1. Hollow tubes of Layfomm-40
were prepared and coated with the different doped UAP formulations. These were soaked
in saline for 24 h. These were then immersed in a tank filled with 0.9% w/w saline and
imaged using our cardiac catheterization laboratory (Siemens Artis Q Biplane, Siemens
Healthineers, Erlangen, Germany) using our standard electrophysiology X-ray protocol. We
exported the captured image data and analyzed the maximum percentage image contrast
between the walls of the sample (Layfomm-40 with doped UAP) and the background
(saline) based on region-of-interest analysis. This analysis was performed with ImageJ
(https://imagej.nih.gov/ij/index.html, accessed on 17 November 2021). For reference, we
calculated the percentage contrast between the cardiac shadow and the surrounding lung
tissue in representative clinical X-ray fluoroscopy images taken from patients in the same
catheterization laboratory using the same protocol.

2.4. Atrial Model and Simulator Build-Up

Having verified the RFA-sensitivity and formulated the thermochromic and BaSO4-
doped paints, we proceeded to develop the complete simulator. To ensure reproducibility
and cost-effectiveness of the simulator, most parts were manufactured using FDM or
stereolithography (SLA) 3D-printing. The simulator comprises four main components: the
cardiac model, its base, a transparent tank and its lid (with patch holders).

The computer model of the atria and associated great vessels was designed via medical
image segmentation and processing. An adult male contrast-enhanced chest computer
tomography (CT) scan was segmented using the semi-automatic segmentation feature of
ITK-SNAP (University of Pennsylvania, Philadelphia, PA, USA). Following this initial step,
the segmentation was refined using the smoothing tool (Level 2) in Seg3D (University of
Utah, Salt Lake City, UT, USA). Subsequently, the dilation-erosion function was applied
to create an inner mold of this segmentation. The final hollow model was the differential
result between the segmentation and the inner mold, giving a wall thickness of 1 mm.
This model was exported to Fusion360 (Autodesk, San Rafael, CA, USA) and extruded
by 1.5 mm to give an overall wall thickness of 2.5 mm. The pulmonary veins were cut
to a length of 20 mm. The venae cavae were cut and lofted to a standard-diameter tube
fitting size (inner diameter: 16 mm, outer diameter: 23 mm). The model was divided into
two sections for 3D printing to allow for the use and easy removal of support material.
The exported meshes were sliced using Cura (Ultimaker, Utrecht, The Netherlands) and
manufactured using a Chiron FDM 3D-printer (Anycubic, Shenzhen, China). A transeptal
puncture was made in the atrial septum for right-to-left access. Paint was applied to the
inner surface of model in four layers with a 3 h drying time between each layer. Following
this, the two sections of the model were welded together using a digital soldering iron,
ensuring not to transfer heat to the inner coats of paint. Finally, the outside of the model
was coated with paint in a similar manner to the inside.

The simulator system was contained within a 48 × 39 × 31 cm transparent box (Really
Useful Plastic Box, Badford, UK) with catheter entry points connecting to each of the
venae cavae via silicone tubing. The entry point for the inferior vena cava was extended
outside the box using silicone tubing to simulate realistic pathlength from femoral venous
access sites. The box was filled to a depth of 25 cm with 38 ◦C 0.9% w/w saline solution
to simulate the human thorax and its conductive properties. The lid of the box was
designed to allow compatibility with the CARTO3 EAMS. Six tubes were integrated into
the lid to accommodate the six CARTO3 patches, with three patches above the heart
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model (simulating the patches on a patient’s anterior chest wall) and three at the bottom
(simulating the patches on the posterior chest wall). The tubes were constructed using
standard polyvinylchloride (PVC) pipes and gasketed screw-on end-cap fittings with
polytetrafluoroethene tape to ensure no leaks were present. The model base was designed
using Fusion360 to hold the model in place during the simulation and 3D printed using
a Photon SLA printer (Anycubic, China). The model rests on the base with a foam insert,
custom clamps hold the venae cavae, and a hook-and-loop strap goes around the body of
the model. This arrangement allows models with variable geometry to be firmly held in
the simulator and to be inserted and removed easily.

2.5. X-ray Imaging, Mapping, and Ablation

The simulator was taken to the cardiac catheterization laboratory, placed on the patient
table and connected to the CARTO3 system. X-ray fluoroscopy imaging was performed at
several standard view angles using the standard electrophysiology protocol on the system.
A cone beam CT scan was performed using the standard protocol.

An 8F ThermoCool SmartTouch SF (Biosense Webster, USA) ablation catheter was
inserted via an 11 cm 8F introducer sheath (Cordis, Santa Clara, CA, USA) into the inferior
vena cava. The ablation catheter was connected to the CARTO3 system, the irrigation
system, and the RF generator. The right side of the model was mapped to generate the
geometry of the right atrium and the venae cavae. The introducer sheath was replaced
with a 60 cm 8.5F 55◦ Heartspan Transseptal Fixed Sheath (Biotronik, Berlin, Germany).
This was manipulated under X-ray fluoroscopy guidance to pass the ablation catheter into
the left atrium through the transseptal puncture in the heart model. Mapping was then
performed of the left atrium.

Ablations were performed only in the right side of the heart model. A line of five abla-
tions was performed at the superior aspect of the posterior intercaval line with increasing
ablative power. From inferior to superior, the power settings for each ablation point were
as follows: 15.9 W; 16.0 W; 22.0 W; 23.0 W; and 30.6 W. The ablation duration was fixed
to 45 s. Subsequently, using a fixed power setting of 21.5 W and the same duration, a line
of five ablations was performed in the posterior wall of the right atrium. The heart model
was then removed from the simulator and cut open to examine and measure the lesions.

3. Results

3.1. Layfomm-40 Conductivity Analysis

The electrical conductivity of Layfomm-40 immersed in saturated saline solution was
determined to be from 1.3 × 10−7 to 3.0 × 10−6 S/m. The thermal conductivity was deter-
mined to be from 0.34 to 0.45 W/m/K. In comparison, literature values for myocardium
are 0.16 S/m [13] and 0.56 W/m/K [14], respectively. The electrical conductivity was much
lower than the physiological value, but the thermal conductivity was similar.

3.2. Thermochromic Paint Formulation and RFA-Sensitivity

The Layfomm-40 discs with thermochromic paint coating were confirmed to be RFA-
sensitive. Table 1 shows that lesions were formed on the discs with temperatures ≥60 ◦C
and power settings ≥40 W. The diameter of the lesions best matched those in the chicken
breast (Figure 3a) when the temperature and power were ≥70 ◦C and ≥70 W, respectively.
Settings below these either produced no lesions or inconsistently sized lesions. Using
temperatures and powers above 90 ◦C and 90 W could produce a maximal lesion diameter
of approximately 7 mm (Figure 3b). Consistent lesions were produced with temperatures of
70–80 ◦C and powers of 70–80 W (Figure 3c). The average lesion diameter for these settings
was measured to be 3.3 ± 0.3 mm (±1 SD, n = 9).
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Table 1. Ablation lesion sizes (mm) on thermochromic Layfomm-40 discs using different ablation
temperatures and power settings. The ablation duration was 60 s.

Ablation Temperature (◦C)/Power (Watts) 50 ◦C 60 70 80

30 W NA NA NA NA
40 NA NA 2.7 2.4
50 NA 2.3 1.3 1.6
60 NA 1.4 1.8 3.3
70 NA 2.4 3.2 3.3
80 NA 1.9 3.0 3.2
90 NA 2.5 3.2 3.5

Figure 3. (a) Ablation lesion in chicken breast at 70 W, 70 ◦C, 60 s with a lesion diameter of ~3 mm,
(b) Layfomm-40 disc with thermochromic paint coating showing the maximum size lesion that could
be created at >90 W, >80 ◦C, 60 s with a lesion diameter of ~7 mm, and (c) Layfomm-40 square with
thermochromic paint coating showing nine lesions at 70–80 W, 70–80 ◦C, 60 s with lesion diameters
of ~3 mm.

3.3. Increasing X-ray Visibility

Figure 4 shows the effect of increasing the concentration of BaSO4 in the acrylic paint
on X-ray image contrast. Table 2 show the calculated maximum percentage image contrast
for the different mass ratios with a value computed from clinical image data for comparison.
It was found that the 5:1 mass ratio gave a contrast that best matched what was seen in
clinical images.

 

Figure 4. X-ray imaging of Layfomm-40 cylinders coated with UAP mixed with increasing amounts
of BaSO4. (A) mass ratio15:1 UAP:BaSO4, (B) 15:2, (C) 5:1, (D) 15:2, (E) 3:1, (F) 5:2, and (G) clinical
image showing the left heart border (red oval).
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Table 2. The maximum percentage image contrast for BaSO4–UAP coated Layfomm-40 cylinders at
different UAP:BaSO4 mass ratios compared to myocardial contrast achieved in clinical images.

UAP:BaSO4 15:1 15:2 5:1 15:4 3:1 5:2 Myocardium

% Contrast 5.56 15.6 23.6 28.2 35.5 40.0 21.0

Combining the findings from 3.2 and 3.3, a strategy was formulated for the coating of
Layfomm-40 for the heart model. Figure 5 illustrates the architecture of the coating. There
are four layers of paint applied both externally and internally consisting of a sandwich of
UAP, UAP doped with BaSO4 and UAP doped with thermochromic pigment.

 

Figure 5. Architecture of custom paint coatings of the Layfomm-40 model.

3.4. Atrial Model and Simulator Build-Up

Figure 6 shows the solid and hollow computer model that was generated by image
segmentation and processing of the patient CT data. Figure 7 shows the steps to produce
the bi-atrial model from the computer model.

Figure 6. (a) Solid and (b) hollow bi-atrial computer model showing the segmentation in multiplanar
views and a 3D rendering.
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Figure 7. Bi-atrial model rendering from (a) anterior view and (b) posterior view. (c) Bi-atrial
model cut into two sections for ease of printing and coating. (d) Lower section printed in Layfomm-
40. (e) Lower section coated internally with paint layers and ready for plastic welding. (f) Fully
welded and external-paint-coated bi-atrial model soaked in saline solution. SVC—superior vena
cava, IVC—inferior vena cava, RA—right atrium, LA—left atrium, LAA—left atrial appendage,
LUPV—left upper pulmonary vein, LLPV—left lower pulmonary vein, RUPV—right upper pul-
monary vein, and RLPV—right lower pulmonary vein.

Figure 8 shows the features of the simulator base and enclosure. Arrangement of the
CARTO3 patches can be seen as well as the methods used to allow entry of devices into the
heart model.
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Figure 8. (A) Fusion360 model of simulator base (1) with inserted bi-atrial model (2). (B) Simulator
base inside the Really Useful Box (3) with connecting silicone tubing (4) leading to standard hose
connectors (5) with silicone plugs (6) to act as hemostatic valves. (C) Silicone tubing extension (7)
to IVC entry point showing insertion of a sheath (8) and ablation catheter (9). (D) lid assembly (10)
with PVC tubes (11) to accommodate the CARTO3 patches (12). (E) PVC tube end cap (13) with
CARTO3 patch connector (14). (F) Complete simulator assembly with wiring to CARTO3 system and
RF generator.

3.5. X-ray Imaging, Mapping, and Ablation

Figure 9 show examples of X-ray fluoroscopy images taken during the simulated
procedure. The bi-atrial model is clearly visible and there is good epicardial contrast
between the Layfomm-40 and the surrounding saline solution. The cone beam CT image
(512 × 512 × 400 matrix size, 0.46 mm3 voxel size) was used to verify the dimensions of
the heart model. The overall model size was 72 × 66 × 160 mm. The LA dimensions were
38–44 mm, which fall within the typical range [8]. The RA dimensions were 29–35 mm,
which also fall within the typical range [15]. Figure 10 shows the exported chamber
geometries and ablation points from CARTO3 and the corresponding lesions formed on
the heart model. During the first five ablations, the ablative power was increased gradually
from inferior to superior and there was a clear corresponding effect on the lesion size. For
the final five ablations, the ablative power was kept constant, and the mean lesion diameter
was measured to be 3.4 ± 0.6 mm (±1 SD, n = 5). The results showed that the RFA only
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affected the internal coatings of the heart model and had no effect transmurally or on the
outer coatings.

 

Figure 9. X-ray fluoroscopy imaging of the simulator. (a) With no catheters inserted, (b) ablation
catheter in the RA, (c) ablation catheter across the septum, and (d) ablation catheter with transseptal
sheath in the LA.

 

Figure 10. CARTO3 mapping and ablation. (A) Exported geometry and ablation points (numbered
1 to 10) from the CARTO3 system showing the RA and the venae cavae. (B) Cut-away of the heart
model immediately after the ablation experiment showing the lesions and their correspondence to
the ablation points. (C) Partial CARTO3 map of the LA. (D) Cut-away of the dry heart model. (E)
Ablation points clearly visible on the internal surface. (F) External surface is not affected by the RFA.
(G) Transmural cut that shows no effect inside the model wall.
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4. Discussion

The aim of this study was to produce a novel 3D-printed, irreversible thermochromic
bi-atrial model, meeting as many of the requirements for a high-fidelity physical simulator
for cardiac RFA as possible. We combined Layfomm-40, a new tissue-mimicking 3D-
printable polymer, with an irreversible thermochromic pigment and barium sulphate
using acrylic paint as a carrier. We measured the electrical and thermal conductivities of
Layfomm-40 soaked in saline solution. The thermal properties were found to be similar
to those of the myocardium. Although the electrical conductivity was substantially lower
it was sufficient to allow use of the material with RFA and EAM systems. We developed
an irreversible thermochromic paint and demonstrated that Layfomm-40 coated with this
paint was sensitive to RFA and produced visible lesions whose size was influenced by the
power and temperature settings of the ablation system. Lesions with diameters similar to
those produced in isolated muscle and in vivo could be generated. We overcame issues
with the X-ray visibility of Layfomm-40 by formulating a barium-sulphate-doped acrylic
paint that produced a similar tissue-to-background image contrast to that seen in clinical
cardiac X-ray fluoroscopy images. The thermochromic paint and the barium-doped paint
were combined into a four-layer coating for applying to Layfomm-40, both internally
and externally. A bi-atrial model was constructed using these strategies, starting with
a patient CT scan. A custom base and enclosure were designed and constructed that
allowed insertion of catheters, stabilized the model during catheter manipulation and
allowed compatibility with standard RF generators and the CARTO3 EAMS. Experimental
validation of the simulator by a cardiologist demonstrated the successful ability to perform
X-ray fluoroscopy and cone beam CT imaging, to insert and exchange interventional devices
without leaks, to manipulate devices within the bi-atrial model without causing damage,
to perform mapping using CARTO3, and to perform ablations. Inspection of the cut away
model after the experiment clearly showed the ablation lesions.

The striking novel feature of our simulator is the ability to visualize delivered radiofre-
quency ablation lesions. To the best of our knowledge a common limitation of all prior
physical simulators is the inability to visualize the delivered therapy. The state-of-the-art
simulators developed by Rossi et al. [3], Heartroid, and Pangolin are limited by not being
RFA-sensitive. Since the goal of electroanatomic mapping systems is to guide the delivery
of radiofrequency ablation therapy we argue that visualization of this therapy is an essential
requirement to support effective simulator-based training of electrophysiologists. In this
work we have developed a simple but effective methodology supporting this visualization
which can be easily applied to any 3D-printed cardiac chamber model which potentially
could be of value during training or device evaluation scenarios. As mentioned previously,
there are many factors that affect RFA lesion formation [4]. For lesions 1–5 shown in
Figure 10B, we see that increasing power increased the lesion diameter while keeping all
other parameters constant, which was as expected. One parameter which is difficult to
keep constant is the contact force and this ranged from an average (over the time of each
ablation) of 11.1 g to 21.7 g during these five ablations. Masnok and Watanabe conducted
experiments to investigate the effect of varying contact force on RFA lesion formation in
an in vitro set up [16]. They measured the surface lesion diameter, the intramural width,
and the intramural depth. Although they used different power and temperature settings
(30 W, 30 ◦C) for their irrigated ablation catheter compared to our experiments, the average
surface lesion diameters that they measured were 4.1 mm (for 2 g force) to 6.9 mm (40 g),
with our measurement being 3.4 mm (19.7 g average, 14.4–23.4 g range for lesions 6–10
(Figure 10B)). One limitation of our current model is that we cannot see lesion formation
intramurally. In fact, the inner layer of doped paint was unaffected by the RFA. It is de-
sirable to create a lesion that extends transmurally but one that does not lead to risk of
perforation of the myocardium [16]. Since the doped paint does not penetrate the wall of
our model, we cannot see the intramural effects. This is a limitation that could be addressed
in future work.

98



Appl. Sci. 2022, 12, 6553

Physical simulators, such as the one presented, are a way of implementing the 3Rs
principle—Replacement, Reduction, and Refinement. By performing more humane animal
experiments [17], this simulator falls into the Replacement category. Furthermore, although
we have not performed a detailed cost analysis, we estimate that the cost of parts to
construct our simulator is less than USD 1000 (including suitable SLA and FDM printers
and not including labor costs). This compares favorably with the simulator of Rossi et al.
which was estimated to have a parts cost of circa USD 7500 [3]. The cost of using animal
models or cadavers would also be several thousands of dollars per unit, not taking into
account the cost of the specialist facilities that are required to support this type of work.
Therefore, our proposed solution is not only cost-effective but also has an ethical advantage.

5. Conclusions

Our novel simulator meets many of the requirements for a fully functional physical
simulator for cardiac RFA. We believe that it is currently the most comprehensive example
of such a simulator. Anatomically accurate, 3D-printed tissue-mimicking thermochromic
models, as presented in this paper, may prove to be a reliable, inexpensive, and clinically
useful tool in simulating cardiac catheter ablation for either training of healthcare profes-
sionals or evaluation of novel RF ablation devices. These provide a valuable alternative to
computer simulations, animal models, or cadavers.

6. Future Work

In this work we focused on the technical aspects of the simulator and reached a proof-
of-concept stage. Future work will focus on evaluating the simulator using a cohort of
electrophysiologists and performing standard ablation strategies such as pulmonary vein
isolation or wide area circumferential ablation for atrial fibrillation. Several simulators
mentioned in the introduction have flow capability. We have not tested this feature in our
simulator but there is no reason to believe that the simulator would not be flow-compatible
and we aim to develop this feature. Electrophysiologists rely on electrophysiology signals
to guide their treatment strategies and currently our simulator is not capable of simulating
this. This feature could also be incorporated either via computer-based simulation or
physically and this is another area for future investigation.
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Abstract: Computational models of cardiac electrophysiology are promising tools for reducing the
rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing
electrode placement. The majority of computational models in the literature are mesh-based, pri-
marily using the finite element method (FEM). The generation of patient-specific cardiac meshes
has traditionally been a tedious task requiring manual intervention and hindering the modeling
of a large number of cases. Meshless models can be a valid alternative due to their mesh quality
independence. The organization of challenges such as the CRT-EPiggy19, providing unique ex-
perimental data as open access, enables benchmarking analysis of different cardiac computational
modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based
method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based
on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize
the most relevant parameters of the electrophysiological simulations and identify the optimal CRT
lead configuration. The simulation results obtained with the meshless model were equivalent to
FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization
strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT
lead distribution).

Keywords: electrophysiology; parameter optimisation; smoothed particle hydrodynamics; meshless
model; cardiac resynchronization therapy; CRT-EPiggy19 challenge

1. Introduction

Cardiovascular diseases (CVDs) are one among the leading causes of death world-
wide, accounting for 32% of all global deaths [1,2]. The high prevalence of CVD leads to
substantial health and economic expenses, as it is one of the most critical challenges in
healthcare. Heart failure (HF) is a cardiac pathology that causes CVDs; a non-negligible
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number of HF patients have left ventricle (LV) heart’s dyssynchrony [3] induced by a left
bundle branch block (LBBB) [4,5]. LBBB patients exhibit an abnormal His–Purkinje system,
which produces a delay of activation between the interventricular septum and LV-free
wall [6].

Cardiac resynchronization therapy (CRT) has demonstrated in randomized clinical
trials to be an effective treatment for patients having (i) symptomatic HF; (ii) depressed
left ventricular ejection fraction (EF < 35%); (iii) evidence of ventricular dyssynchrony
by a prolonged QRS complex (>120 ms). CRT enhances cardiac structure and function
through reverse remodeling [4,7,8]. The most consolidated methodology to deliver CRT,
biventricular pacing (BiV-CRT), creates an artificial pacemaker in both ventricles and right
atrium to resynchronize the electrical activation and, thus, the mechanical contraction
between the LV septal and lateral walls at every cardiac beat [9,10]. Nevertheless, more
than 30% of patients fulfilling the criteria for CRT implantation do not respond to the
therapy (non-responders, NR), although ratios differ according to the applied definition
and criteria [11,12]. One of the main reasons for the high rate of CRT non-responders is the
use of too simple indices for patient selection (e.g., EF, QRS, New York Heart Association
class). Beyond optimization of patient selection, the correct electrode placement is a key
factor to reduce the number of CRT-negative responses. Potential therapeutic alternatives to
traditional BiV-CRT are emerging based on optimization of lead placement and number [13]
or on new physiological stimulation modalities [14].

Computational electrophysiological models can be valuable tools for a better un-
derstanding of pacing-based therapies such as CRT, providing additional information to
physicians and device manufacturers to improve therapy efficacy. The interested reader is
referred to Niederer et al. [15] and Lee et al. [16] for comprehensive reviews on computa-
tional models in cardiology and specific to LBBB and CRT, respectively. More recently, some
studies have focused on CRT response optimization through electromechanical models
including coronary perfusion [17], or myocardial strains with a complete cardiovascular
system, adding both atria as well as systemic and pulmonary circulations [18]. Other stud-
ies particularly investigate lead placement. For instance, Albatat et al. [19] analyzed the
benefits of multi-site pacing in CRT patients with myocardial infarction. Carpio et al. [20]
explored RV lead optimization in a complete simulated torso, while Oomen et al. [21] used
fast electro-mechanical simulations to study the role of post-infarction ischemia in reverse
LV remodelling following CRT.

Patient-specific personalization plays an important role to make computational models
more realistic. However, detailed electrical and mechanical information of the heart is
needed, often only available from invasive techniques [16]. Due to the difficulties of
obtaining the required in vivo data in humans at different stages of the disease (e.g., from
healthy to LBBB and with a CRT device), the validation of CRT computational models
is challenging.

Cardiac computational modeling can be improved by translating pre-clinical data
into patient-specific models, linking animal and clinical research. For example, as a result
of the participation in the Cardiac Electrophysiological Simulation Challenge (CESC’10)
MICCAI-STACOM workshop (https://stacom.github.io (accessed on 26 April 2022)), sev-
eral research groups [22] developed a pipeline integrating different modeling approaches to
predict depolarization isochrones from optical mapping data of a perfused ex vivo porcine
heart with different pacing conditions [23], acquired at the Sunnybrook Health Sciences
Centre, Toronto, Canada. However, experimental data were available for two cases.

Some years later, Rigol et al. [24] developed a swine model of LBBB to study the
link between electrical and mechanical dyssynchrony, and their correction with CRT. The
authors generated a unique dataset with signal, multi-modal images and electro-anatomical
maps at different stages of the disease in tens of infarcted and non-infarcted animals. Soto
Iglesias et al. [25] proposed advanced visualization techniques and metrics to quantify the
differences in electrical activation patterns at baseline, LBBB and CRT stages. A subset of the
database was the foundation for the organization of the CRT-EPiggy19 challenge (https://
crt-epiggy19.surge.sh/ (accessed on 15 April 2022)) at the MICCAI-STACOM19 workshop,
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which is available open access in a public repository (https://zenodo.org/record/3249511
(accessed on 18 April 2022)). More recently, Ramirez et al. [26] also developed a swine
model of the heart that was coupled with electrophysiological models to study advanced
biomaterial injection therapies for ischemic heart failure.

Participants at the CRT-EPiggy19 challenge adopted different modeling approaches
to predict the electrical activation after CRT. Khamzin et al. [27] and Cedilnik and Ser-
mesant [28] developed personalization strategies based on genetic algorithms to estimate
regional conduction velocities with simple but fast phenomenological Eikonal-based mod-
els. Meanwhile, Gomez and Sebastian [29] used a more detailed Ten Tusscher–Panfilov [30]
for cellular electrophysiology, considering transmural heterogeneity and electrical prop-
agation by a monodomain model. After the challenge, other researchers have used the
provided data to better understand cardiac physiology and pacing-based therapies [31].

All the aforementioned approaches are based on solving the electrophysiological
model equations with the finite-element method (FEM) as a numerical technique based
on a mesh discretization of the biventricular heart geometry, as it is the common choice in
cardiac modeling [32]. In FEM, the computational domain is divided into discrete subsets
of interconnected nodes as elements. However, the explicit connectivity required in the
domain leads to great difficulty in generating the irregular patient-specific cardiac meshes,
which then becomes a tedious, manual, highly interactive, and time-consuming process.
Moreover, the reliability of the simulation results is highly dependent on the quality of
the built geometrical mesh [33]. Additionally, mesh distortion that can occur during large
cardiac deformations enforces the use of remeshing algorithms to restore mesh shape and
numerical accuracy, thereby increasing the computational cost and efforts [34]. Meshless
methods are an interesting alternative to avoid meshing difficulties, since the spatial domain
is composed of an unstructured particle cloud without connectivity. Therefore, the meshless
domain construction procedure can be used for any type of complex geometry. In addition,
large deformations or the linking of meshes with different spatial resolution, often necessary
in cardiac electromechanics, can be better handled with meshless methods than with FEM,
as FEM-based connectivity does not need to be satisfied. For instance, authors in [35] have
shown the potential of meshless methods for fluid–structure interaction (FSI) applications,
which are extremely time-consuming for mesh-based methods.

Meshless approaches have already been applied to cardiac modeling. For example,
Wong et al. [36] used an element-free Galerkin meshless method for modeling cardiac
mechanics. On the other hand, Lluch et al. [37] developed meshless methods based
on smoothed particle hydrodynamics (SPH) meshless technique for modeling cardiac
mechanics. The same authors later [38] employed genetic algorithms to calibrate a SPH-
based fully coupled electro-mechanical model of the heart with high-resolution imaging
and invasive in vivo measurements from a healthy canine heart. Recently, Mountris
and Pueyo [39] proposed a meshfree mixed collocation method with interpolating trial
functions to solve the monodomain equations for cardiac electrophysiology and the O’Hara
ventricular cell model [40], which was applied to one of the CRT-EPiggy19 challenge dataset
under healthy and LBBB conditions.

In this manuscript, we present a benchmark analysis of a meshless SPH method with
finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a
subset of the CRT-EPiggy19 dataset, including infarcted and non-infarcted cases. A data
assimilation strategy was designed to personalize the most relevant parameters of the
electrophysiological simulations and identify the optimal CRT lead configuration.

2. Materials and Methods

2.1. CRT-EPiggy19 Data and Experiments

The experiments to create the CRT-EPiggy19 data were performed at Hospital Clínic
de Barcelona, Spain, after animal handling approval of the Institutional Review Board and
Ethics Commitee of the hospital. In the animals, radiofrequency ablations were carried
out to induce LBBB, where half of them presented a myocardial infarction located at the
septal wall with different levels of transmurality. Then, a CRT device was implanted to
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later study the effects of the therapy. More details of the experimental protocol can be
found in Rigol et al. [24].

A subset of the CRT-EPiggy19 data was used in our study, including three cases for
training and testing, respectively (two non-infarcted and one infarcted dataset in each
group). In the dataset provided by the challenge organizers, image segmentation and biven-
tricular finite-element mesh reconstruction were performed using an in-house Siemens
algorithm applied on cine sequences of Magnetic Resonance Imaging (MRI), acquired
from the swines during the experimental studies. The scar was manually segmented and
quantified from delay-enhancement MR images. In terms of electrophysiological data,
anatomical point-based reconstructions from CARTO XP of epicardial and endocardial
layers were obtained at baseline, LBBB and CRT phases. The electro-anatomical map (EAM)
clouds of points were then interpolated onto the MRI biventricular FEM meshes through
a quasi-conformal mapping method [25]. Finally, a rule-based method [41] was used for
the generation of the cardiomyocyte orientation in each mesh. In addition, regional labels
(AHA regions, ventricle definition, endo- and epi-cardial wall distinction) and scarred
AHA segments were also included in the models. In the training set, each porcine model
was reported in two distinct pathologic stages: with a block in the left bundle branch of the
purkinje system and after CRT. For the testing dataset, only the LBBB stage was provided
to personalize the electrophysiological models and used them to predict CRT electrical
patterns. The RV endocardium was not acquired in the EAM data; therefore, the analysis
was centered on the endocardial LV layer and biventricular epicardial layer.

2.2. Meshless Model Based on Smoothed Particle Hydrodynamics

The total Lagrangian meshless method (TL-SPH) developed by Lluch et al. [38] was
used in our experiments. As a meshless model, SPH is easy to parallelize, and memory
efficient. Additionally, it is mathematically rigorous since it satisfies the Kronecker’s delta
property. Figure 1 illustrates the developed meshless SPH-based modeling pipeline to
predict CRT electrical patterns in the experimental data. The first step of the pipeline
consisted on discretizing the continuous domain provided by the biventricular meshes of
the porcine hearts with a cloud of particles without connectivity, where each particle had
the following individual properties: three-dimensional position, cardiomyocyte orientation,
tissue type, initial impulse, conduction velocity, area and volume.

Figure 1. Scheme of the developed meshless modeling pipeline to predict the electrical patterns in
experimental data after cardiac resynchronization therapy. LBBB: left bundle branch block. RMSE:
root mean square error. LAT: local activation time.

To determine the particle properties a Gaussian Kernel function was enforced, defining
the number of neighboring particles around each particle of interest that is then employed
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to estimate the area and volume indices. Parameters such as the kernel size (i.e., smoothness
length of the Gaussian kernel) and the geometry discretization according to the number
of particles were key factors to determine when setting up the simulation. To define the
optimal values of the Gaussian kernel function, sensitivity analyses of particle resolution
and kernel size were performed. Several simulations were carried out fixing the kernel
size and increasing the particle numbers; configurations with 15 ×103 (2 h simulation),
20 ×103, 80 ×103 and 100 ×103 (11 h simulation) particles were studied in one of the
analyzed geometries. The kernel size was inversely proportional to the number of particles
to avoid excessive computational cost; kernels from 3.5 to 9 mm were tested in intervals of
0.5 mm. A kernel size of 6.5–8.5 mm was finally defined, as a function of the swine model
morphology and required conduction velocities (i.e., larger kernels for higher conduc-
tion velocities and morphologies with higher curvature), in combination with geometries
of 15 ×103 particles. As shown in [42], configurations with higher number of particles
(e.g., 50 ×103) and smaller kernel sizes (e.g., 3 mm), computational costs exponentially
increases without a substantial accuracy gain, which will hamper the parameter optimiza-
tion process. Furthermore, we also analyzed the effect of the time-step, testing values of
10−3, 10−4, and 10−5 in one of the studied cases for LBBB simulations. The computational
cost associated with each time-step value was of >42 min, around 20 min and around
7 min, providing RMSE of 6.2 ms, 6.8 ms, and 7.9 ms, respectively. A time-step value of
10−4 was finally chosen as a trade-off between computational cost and result accuracy. The
total simulated time was of 0.15 s, based on the total activation times of the available EAM
dataset (i.e., most cases with TAT < 0.1 s).

2.3. Electrophysiological Model

The simplified reaction–diffusion Mitchell–Schaeffer (MS) electrophysiological
model [43], together with a diffusion term [42], was used at the cellular level. The MS
method allowed us to simulate the electrical activation sequence of the swine hearts with
an ionic model of the ventricular action potential duration (APD) composed of only two
currents: one inward and one outward. The computation of the voltage and depolarization
phase over time is performed with the following partial differential equations:

⎧⎪⎪⎪⎪⎪⎨
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∂v
∂t

= div(D∇v) +
wv(1 − v)

τin
− v

τout
+ Iapp

∂w
∂t

=

⎧⎪⎨
⎪⎩

1 − w
τopen

ifvs. < vgate

−w
τclose

ifvs. > vgate

,
(1)

where Ia pp ∈ R describes the initial stimulus of the transmembrane potential v ∈ R,
w ∈ R controls the depolarization phase, and vgate ∈ R determines where the APD starts.
Furthermore, τopen, τclose, τin, and τout ∈ R govern the duration of the four stages of the
APD (i.e., initiation, plateau, decay, and recovery). The diffusion term, div(D∇v), includes
cardiomyocyte orientation, with the diffusion tensor, D ∈ R

3×3, defined as in [44]:

D = ( f ⊗ f (1 − ar) + I · ar) · d (2)

There are three main parameters in Equation (2) to take into account: the cardiomy-
ocyte orientation vector, f ∈ R

3; the diffusion coefficient, d ∈ R, which controls the action
potential propagation speed; and the anisotropic ratio, ar ∈ R, which determines the rela-
tion between conduction velocities and cardiomyocyte orientation (e.g., ar = 1 will define
an isotropic behavior). We tested different values for ar (from 0.01 to 0.5), finally fixing to
0.01 (i.e., giving more weight to cardiomyocyte orientation) for all cases. The cardiomy-
ocyte orientation was provided in all studied biventricular meshes by the CRT-Epiggy19
organizers from the rule-based model proposed by Doste et al. [41], which is adapted to
replicate histological data of both left and right ventricles. Finally, I ∈ R

3×3 defines the
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identity matrix and ⊗ the tensor product. Overall, only six parameters are necessary in the
MS model, which is convenient for model personalization.

2.4. Left Bundle Branch Block Simulation with Personalized Parameters

An initial stimulus was set in the atrio-ventricular (AV) node, with an average of
60 particles, being identified from the earliest activated points in the EAM data of each case,
to initiate the simulated electrical pattern over the two ventricles. The Purkinje (PK) system,
which has fast conduction velocities, needs to be incorporated in the model for simulating
a LBBB and disrupt the normal electrical propagation in the LV branch. Therefore, particles
located in the lower (i.e., closer to the apex) half of the endocardial RV (around 500 particles)
and the lower third of the LV (around 300 particles), if no scar was present, were labeled
as Purkinje (see Figure 2), following the distribution of PK–myocardial junctions found in
PK-based simulation studies [45].

Figure 2. Biventricular geometries with particles labelled as regular myocardial tissue (in blue)
and Purkinje system (in red), used for the meshless solver. Top: point cloud representation. Bot-
tom: mesh-based triangulation from applying the Delaunay algorithm to the cloud of points, for
visualization purposes.

Including PK particles in the LV, could seem contradictory for simulating LBBB electri-
cal patterns. However, it was necessary to consider the LV retrograde activation due to the
transmurality of the PK system in pigs [46], leading to latest activation points being located
at the basal LV in several cases.

As other participants at the CRT-EPiggy19 challenge [28,29], we also added a second
impulse in the electrophysiological simulations to replicate an early activation of the
RV epicardium observed in the EAM data (see RVepi initial activation point in Figure 3).
Besides the expected activation induced by the AV node, the septomarginal trabecula may
have a role in the fast activation of the RV that needs to be incorporated to replicate the
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electrophysiological measurements. The dynamics of the electrical pattern in LBBB cases
are displayed in Figure 3, starting from the two stimulus (1 in the Figure 3), followed by
the propagation to the biventricular apex (2 in the Figure 3), and the propagation from the
LV apex to the base (3 in the Figure 3), with fast activation in the endocardium and slow in
the epicardium.

Figure 3. Electroanatomical maps of an infarcted and a non-infarcted training case in left bundle
branch block condition. In (a,b), both initial activation points (1) in the RV epicardial layer (red circle)
and LV endocardial one (yellow circle) are shown. At (c,d), the numbering sequences describe the
followed electrical pattern to fully activate the biventricular geometries: starting from the initial
stimulus (1), following to the biventricular apex (2), and propagating to the left ventricular base (3).
The colourscale represents the local activation times, from earliest to the latest activation points, in
blue and red, respectively. RVepi: right ventricle epicardium. LVendo: left ventricle endocardium.

The local conduction velocity (CV) values defined in each geometry, guiding the wave
propagation speed in the direction established by the modeled cardiomyocyte orientation,
was one of the main parameters affecting the simulated electrical pattern. However, it is
not simple to set up the number of heterogeneous conductivity regions: different values
at each voxel would both be impractical (too many parameters to optimise) and does not
make sense in relation with the sparsity of the available electroanatomical data; too few
regions would not consider the existing CV heterogeneity (e.g., faster CV in PK system,
complex electrical propagation in the septum due to discontinuities in cardiomyocyte
orientation [41], presence of scar, etc.). Consequently, we performed a sensitivity analysis
to determine the optimal number of different regions with local conductivities to optimize,
from only a single region considering the whole biventricular geometry, to 21 regions
including the 17 AHA segments. In total, the following seven regional CV configurations
were tested:

• 1 region (whole biventricular geometry).
• 2 regions (RV − LV).
• 3 regions (RV − Purkinje system − LV).
• 4 regions (RVepi − RVendo − LVepi − LVendo).
• 5 regions (RVepi − RVendo − Purkinje system − LVepi − LVendo).
• 6 regions (RVepi − RVendo − Purkinje system − Septum − LVepi − LVendo).
• 21 regions (RVepi − RVendo − Purkinje system − 17 LVAHAsegments − LVendo).

The optimization of the CV distribution in each analyzed case was performed with the
constrained non-linear Sequential Least Squares Programming algorithm. The cost function
was based on minimizing the root mean square error of each particle activation time
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between simulation results and the EAM-based electrical patterns. An iterative method
was used for parameter optimization, updating the five regional CVs until the best possible
fit was obtained. The choice of a constrained algorithm was made so that: (1) conductivity
values always were positive; (2) a purkinje system always being the fastest regional layer;
(3) the lowest conductivity value always was in the necrotic/scar zone for infarcted cases.
In the end, an average of 70 simulations were performed for each analyzed case, mainly for
the optimization of the CV configuration.

2.5. Simulation of Cardiac Resynchronization Therapy

Once model parameters were personalized with the SLSQP optimization algorithm to
better replicate the electrical pattern of the LBBB data, the next step was to simulate CRT
using the same personalized parameters (see Figure 1). Additional initial stimulus were
incorporated in the model, simulating the LV and RV leads of CRT. The position of the CRT
leads in the training cases was determined by identifying the earliest activated points in
the provided electroanatomical maps. In the testing cases, as EAM data were not available,
several lead configurations were evaluated to find the one furnishing better evaluation
metrics, as described below.

2.6. Evaluation Metrics and Experiments

As mentioned above, the root mean square error difference between the local activa-
tion time (e.g., time when each particle activates, with the initial stimulus as reference)
given by the simulations and the EAM measurements, integrated over each particle of the
biventricular geometries, was used in the parameter optimization in the training cases. As
for testing, global and regional metrics were used to evaluate the prediction accuracy of
different modeling strategies in each analyzed case.

First, the total activation time (TAT) required to activate the whole biventricular
geometry from the initial impulses, was employed as a general metric. Additionally,
as proposed by Soto Iglesias et al. [25], we computed some activation delays to better
characterize regional patterns, specifically, the inter-ventricular delay (IVD), which is time
difference between earliest activation points of both ventricles (LV and RV) in the epicardial
layer; and the left ventricular transmural delay (LV-TD), defined as time difference between
LV layers (epi- and endocardium) first activated points. Finally, we also estimated the
recovery as follows:

Recovery =
TATbaseline − TATLBBB

TATLBBB − TATCRT
∗ 100, (3)

which indicates the percentage of how close the TAT is to the baseline after applying
CRT. Finally, we created histograms of the percentage of activated tissue over time for the
right and left epicardial regions, which provides an intuitive visualization of the different
intra- and inter-ventricular delay differences between LBBB and CRT conditions (including
distinct lead configurations).

After the sensitivity analyses of different modeling choices of the SPH-based solution
(e.g., number of particles, kernel size, time step), as explained in Section 2.2, the initial
experiments in our study consisted on personalizing model parameters (e.g., regional
conduction velocities) with the EAM data in the three studied training cases in LBBB
condition. Subsequently, the resulting regional conduction velocity distribution was used
for modeling CRT, using the lead position provided by the challenge organizers in the
training dataset. The initial stimulus characteristics (e.g., location, depolarization times)
were maintained in all models).

The meshless simulation results were qualitatively and quantitatively compared with
the ones provided by an FEM-based method [29] presented in the CRT-EPiggy19 challenge,
since it was the only participant processing the three analyzed training cases. Additionally,
metric comparisons are already made with the mesh-based methodology presented by
another challenge participant [27], which reduced the biventricular geometry mesh res-
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olution to 12 ×103 elements to facilitate the exploration of a larger range of parameters
(>30 different conduction velocity regions) in an optimization process using the L-BFGS
optimization algorithm.

In the CRT-EPiggy19 challenge, EAM data of testing cases after CRT were not provided,
thus lead location was unknown. For this reason, we tested four different lead locations
(Figure 4) in each testing geometry to determine the one providing the best recovery: (1) RV
apex and LV basal region (RVapx − LVbas); (2) RV and LV Apex (RV − LVapx); (3) earliest and
latest point activation from the LBBB cases in the EAM (Early − LateL AT); (4) RV Outflow
track (RVOT) septal and LV basal region (RVOTsep − LVbas). If recovery was similar in
different lead configurations, TAT and delay values were analyzed to choose the final
lead configuration.

Figure 4. Different configuration of cardiac resynchronization leads analysed in the testing cases.
LV/RV: left and right ventricle, respectively. Earliest/Latest act: Earliest/Latest activation. RVOT:
right ventricular outflow tract.

For comparison purposes, colourmaps representing the electrical activation patterns of
the figures have been adjusted by setting the initial depolarization of the RV of each model
(local activation values) as the initial times and dividing them into several isochrones. For
visualization, the Open Source Paraview (ParaView, v.5.8) (https://www.paraview.org
(accessed on 1 April 2022)) software tool was used. Computational resources for the
meshless electrophysiological models consisted of a Nvidia RTX 2080 Ti GPU and an
i9-9900k CPU executed in Code::Blocks software (Code::Blocks IDE, v.16.01).

3. Results

3.1. Training Data

The sensitivity analysis to determine the best regional distribution of conduction
velocities in the LBBB condition resulted in best fittings of simulations with EAM data when
increasing the number of regions, with a RMSE of 6.4 ms and 5.3 ms in the non-ischemic
and ischemic models, respectively, for 21 regions (vs. 6.7 ms and 5.8 ms in the non-ischemic
and ischemic models, respectively, for 5 regions). However, when applied to CRT data,
electrophysiological simulations with 6 and 21 regions produced larger errors than with
5: 10.2 ms and 9.8 ms in the non-ischemic and ischemic cases, respectively, for 21 regions,
and 9.3 ms and 7.7 ms in the non-ischemic and ischemic cases, respectively, for 5 regions.
Therefore, five regions were finally chosen for the conduction velocity distribution in the
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remaining simulations. The optimization process took between 10 and 25 h to converge
(15–25 min per simulation), depending on the studied case.

3.1.1. Left Bundle Branch Block Simulations

Table 1 summarizes the accuracy obtained with the meshless SPH-based in the training
dataset, as quantified by the metrics detailed above. Equivalent results were obtained for
both LBBB and CRT conditions. Figure 5 shows the local activation time maps for a
non-infarcted and an infarcted case of the training database at LBBB and CRT conditions,
provided by the EAM, and from FEM- and SPH-based simulations.

Table 1. Metrics characterizing the electrical activation maps in training cases from measurements and
meshless simulations. EAM: electroanatomical maps. SPH-Sim: Simulation with smoothed particle
hydrodynamics meshless method. LBBB: left bundle branch block. CRT: cardiac resynchronization
therapy. TAT: total activation time. LAT-RMSE: local activation time root mean square error. IVD:
inter-ventricular delay. LV-TD: left ventricle transmural delay. (*) indicates an infarcted pig.

Pig 1 Pig 2 Pig 3 (*)
EAM SPH-Sim EAM SPH-Sim EAM SPH-Sim

LBBB CRT LBBB CRT LBBB CRT LBBB CRT LBBB CRT LBBB CRT

TAT (ms) 72.0 70.0 70.0 66.0 66.0 45.0 78.0 39.0 59.0 35.0 49.7 46.0

LAT RMSE (ms) 6.8 7.9 9.4 7.7 5.1 6.6

17 IVD (ms) 18.0 7.3 18.6 11.4 19.8 −3.3 14.3 0.0 17.7 −12.5 16.9 −4.8

LV-TD (ms) 7.2 0.0 9.0 2.0 9.9 −6.6 13.0 0.4 11.8 −5.2 18.4 0.6

Recovery (%) −2.6 −8.0 47.7 69.6 342.9 185.0

The initial impulses set for the non-ischemic case shown in Figure 5 (Pig 1) were estab-
lished with a difference of 12 ms between them. The first, located in the RV endocardium,
was set at 2 ms, and the second, the septal one, at 14 ms. Table A1 and Figure 5 revealed
similar activation patterns in the biventricular epicardium with an average regional LAT
RMSE of 5.7 ms compared to the EAM data. However, larger differences were observed in
the LV endocardial layer, increasing the regional error to 9.1 ms (Table A1). The remain-
ing metrics (e.g., TAT, IVD and LV-TD) were similar between meshless simulations and
measurements, with a difference <3 ms, while the overall error was 6.8 ms, as reported in
Table 1.

For the infarcted case shown in Figure 5 (Pig 3), the initial stimulus was placed as in
Pig 1, but at 2.5 ms in the RV endocardial layer, and in the septal area at 12 ms to better
match the EAM data. Figure A3 in the Appendix shows simulation results obtained with
only one stimulus. The scar in Pig 3, which had a transmurality of 86%, was located in the
septo-apical and antero-septal LV regions. In the scar region, a 75% conduction velocity
reduction with respect to the Purkinje system was established from the best simulation
result. Although the electrical activation pattern provided by the SPH simulations was very
close to the EAM measurements (5.1 ms average LAT error), differences in conductivity
were appreciated between both ventricles. The posterior basal region of the RV epicardial
layer had a slower activation than the ground-truth data, whereas LV layers (endo- and
epicardium) had a higher conductivity. The metrics in Table 1 show differences greater
than 6 ms for LV-TD, 9 ms for TAT, and less than 1 ms for IVD.
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Figure 5. Local activation time maps for a non-infarcted and an infarcted (top and bottom panels cor-
responding to Pig 1 and Pig 3, respectively) case of the training database in left bundle branch block
(LBBB) and cardiac resynchronization therapy (CRT) conditions, provided by the electroanatomical
measurements (EAM) and electrophysiological simulations performed with a finite-element method
(FEM) and a meshless (SPH) model. (a1,a2) and (b1,b2) correspond to anterior and posterior biven-
tricular epicardial visualizations. (c1,c2) show endocardial view of the left ventricle (LV) lateral wall.
RV: right ventricle.

Table 2 shows the conduction velocity values estimated by the SPH-based model in the
five selected regions for an ischemic and a non-ischemic cases of the LBBB training dataset.
Additionally, the corresponding parameters obtained with the FEM-based approach of
Gomez and Sebastian [29] on the same cases are also included for comparison purposes.
The reader can be referred to Figure A2 for a visual representation.
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Table 2. Conduction velocity values (m/s) estimated by the SPH- and FEM-based solvers [29] for an
ischemic and non-ischemic training cases at LBBB scenario. SPH: Smoothed particle hydrodynamics
meshless method. FEM: Finite element method. RV epi: Right ventricle epicardium. RV endo: Right
ventricle endocardium. LV: Left ventricle. PK: Purkinje system.

SPH-Based FEM-Based

RV endo RV epi LV endo LV epi Scar Average heart tissue PK Average heart tissue PK

Ischemic 1.53 1.40 1.36 1.62 0.49 1.30 1.69 1.78 1.30

Non-ischemic 0.83 0.65 0.63 0.51 - 0.65 2.40 0.50 2.60

3.1.2. Cardiac Resynchronization Therapy Simulations

The configuration of the CRT leads was initially positioned close to the apical regions
of both ventricles in the non-infarcted training case shown in Figure 5, following the
information provided by the organizers of the CRT-EPiggy19. In the EAM data, the mid-
apical lead location on the lateral wall of the RV endocardial layer resulted in fast epicardial
conduction, specifically in the posterior part. In contrast, LV lead apicality with weak access
to the PK system implied slower activation of its endocardial layer than of the epicardial one,
with the former presenting the last activation point. The SPH-based simulation produced
the largest differences (9.7 ms of LAT error in Table A1) in the RV. As for the LV, an 8.5 ms
LAT error was found, since it was not possible to fully capture the conduction velocity
change between the endocardium and epicardium. The metrics summarized in Table 1
present differences between simulations and observations of 2 ms for LV-TD, 4 ms in TAT,
and 4.1 ms in IVD with an error of 9.2 ms in the overall LAT.

For the infarcted testing case shown in Figure 5 (pig 3), non-physiological conduction
velocities above 2 m/s, specifically in the ischemic zone, were required to match the fast
electrical patterns observed in the EAM data (35 ms), with both CRT leads located in the
LV epicardial layer (anterior and posterior regions). The parameter optimization process
in SPH-based simulations did not capture these high conduction velocities due to the
physiological constrains, providing slower values and exhibiting large differences with
EAM in the apex, reflected in the 11 ms of TAT and in delay metrics over 6–7 ms. However,
the overall LAT error was not large (6.6 ms).

3.2. Testing Data
3.2.1. Left Bundle Branch Block Simulations

Table 3 summarizes the accuracy obtained with the meshless SPH-based in the testing
dataset. The initial impulses were fixed at 0 ms in the endocardial RV layer and at 9 ms in
the septal area for Pig 4, one of the non-infarcted testing cases. The SPH-based simulation
correctly replicated the conduction velocities of the LBBB EAM at different layers showing
a low error of 5.1 ms, and specifically the RV epicardium with a 4 ms regional error
(Table A2). Nevertheless, the anterior part of the LV endocardium showed a greater
number of variations, corroborated by a regional error above the mean (6.4 ms in Table A2).
The LV epicardial sequence was also similar (5.5 ms regional LAT RMSE in Table A2) in
measurements and simulations, with the same latest activation point.
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Table 3. Metrics characterizing the electrical activation maps in testing cases from measurements
and meshless simulations, including the best lead configuration in the cardiac resynchronization
therapy scenario. EAM: electroanatomical maps. SPH-Sim: Simulation with smoothed particle
hydrodynamics meshless method. LBBB: left bundle branch block. CRT: cardiac resynchronization
therapy. TAT: total activation time. LAT-RMSE: local activation time root mean square error. IVD:
inter-ventricular delay. LV-TD: left ventricle transmural delay. RVapx − LVbas: CRT leads in the right
ventricular apex and basal left ventricle. (*) indicates an infarcted pig.

Pig 4 Pig 5 Pig 6 (*)
EAM SPH-Sim EAM SPH-Sim EAM SPH-Sim

LBBB CRT LBBB CRT (RVapx − LVbas) LBBB CRT LBBB CRT (RVapx − LVbas) LBBB CRT LBBB CRT (RVapx − LVbas)

TAT (ms) 61 59 56 36.8 92 70 76 55 67 49 73.7 47

LAT RMSE (ms) 5.1 13.2 8.2 14.6 5.9 10.7

IVD (ms) 19.61 −9.04 14.7 0.5 25.58 7.83 21.5 1.2 12.75 2.63 18.3 0.8

LV-TD (ms) 16.55 −12.95 5.8 −0.7 32.68 −8.45 9.8 -0.3 14.22 −1.97 6.8 0.6

Recovery (%) 17.95 100.84 46.09 68.2 637 666

The EAM of the infarcted testing case (Pig 6) had an initial impulse at the RV endo-
cardium lateral wall, inducing a rapid RV activation, while the LV one was much more
gradual. The scar in Pig 6 was located in over the whole septum, with 57% of transmurality.
In the SPH-based simulations, the initial stimulus were placed at similar regions of the
non-infarcted case but at 2.6 ms and 14 ms for the RV endocardial layer and septal area,
respectively. To faithfully represent the ischemic region in the simulations, a reduction of
over 87% in the conduction velocity with respect to the PK system was determined by the
SLSQP optimization algorithm. The epicardial layer depicted the highest LAT regional
error (see Table A2), specifically in the posterior part for the RV and in the LV anterior part.
With a LAT-RMSE of 5.9 ms for Pig 6 (Table 3), the LV endocardial layer showed the best
fitting (5.7 ms regional LAT-RMSE) for a delayed basal activation of the LV (Table A2).

3.2.2. Cardiac Resynchronization Therapy Simulations

In the three analyzed testing cases, the optimal configuration consisted in leads located
in the RV apex and the basal LV (RVapx − LVbas configuration), providing the best recovery
metric values and overall cardiac resynchronization. The CRT leads were activated at
practically the same time in the three testing cases, with a time interval under 0.5 ms
between them. The RV was typically triggered prior to the LV (see histograms in Figure 6
for the infarcted testing case), where it was always located the last activation point.

Figure 6 shows the local activation time maps for a an infarcted case (Pig 6) of the
testing database in CRT condition, provided by the EAM, and for different simulated
lead configurations. Furthermore, histograms of the percentage of electrically activated
heart tissue for the right and left epicardial layers are displayed to better represent inter-
ventricular delays with different lead configurations. It can be easily appreciated the better
inter-ventricular synchronization provided by the RVapx − LVbas lead configuration when
analyzing the histograms, which was also confirmed by a low TAT and recovery discrepancy
between the SPH-based simulation and EAM data, as shown in Table 3. We can also see
in Figure 6 the impact of changing the LV lead from the basal (or latest activated point) to
the apex, increasing the inter-ventricular delay compared to the remaining configurations.
Additionally, placing the RV lead in the RVOT was better than in the earliest activated point
(i.e., lateral wall), as can be seen in Figure 6 (fourth and fifth row, respectively), the former
having less IVD.
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Figure 6. Local activation time maps ((a–c) showing anterior/posterior of biventricular epicardium
and LV lateral wall epicardium, respectively) after cardiac resynchronization therapy (CRT) from
the electro-anatomical (EAM) data and meshless simulations in the infarcted testing case, Pig 6.
Histograms of the percentage of electrically activated heart tissue for the right and left epicardial
layers are in the right column (d). From the second to the fifth row, different simulation results
obtained with different CRT lead locations are displayed. RVapx − LVbas: leads on right ventricle
(RV) apex and basal left ventricle (LV). RV − LVapx: both leads are located in the biventricular
apex. Early − LateL AT: leads located at the the earliest and latest EAM ventricular activated points,
respectively. RVOTsep − LVbas: leads in the septal RV outflow track and in the basal LV.

The non-infarcted cases of the testing database (Pig 4 and Pig 5) had an identical
overall behavior with respect to optimal lead configuration. However, they presented large
TAT errors between SPH-based simulations and EAM data (22.2 ms and 15 ms for Pig 4 and
Pig 5, respectively), with CRT simulations providing lower TAT values and, consequently,
larger recovery than EAM data (see Table 3). The difference between optimal SPH-based
simulations and EAM measurements was due to a different lead location. Figure 7 shows
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the histograms of the percentage of electrically activated heart tissue for both ventricles
under LBBB and CRT conditions for the three analyzed testing cases, showing the large
synchronization recovery achieved for all cases.

Figure 7. Percentage of electrically activated heart epicardium with a left bundle branch block
(LBBB) and with the best cardiac resynchronization (CRT) lead configuration in the three testing
cases. RVapx − LVbas: RV apex and LV basal stimulation regions. Epi: epicardium. act: Activation.
(*) indicates an infarcted pig.

4. Discussion

Computational models of the heart can provide useful insight on the pathophysio-
logical mechanisms and device options in CRT, contributing to reduce the high rate of
non-responders. However, computational models need to be personalized and validated
(after verification) with data coming from different sources, following standards such as
the V&V40, to build the required credibility to be part of the device design and regu-
latory evaluation pipelines in silico trials [47]. Regrettably, it is not straightforward to
acquire rich in vivo human data in clinical applications such as CRT. However, researchers
(e.g., Rigol et al. [24,26]) have developed realistic experimental models, generating animal
data that can be used to test and personalized the developed computational models of
the heart.

The CRT-EPiggy19 challenge provided as open access multi-modal data of swine
models under healthy, LBBB and CRT conditions, for model benchmark purposes. Three
research teams [27–29] participated in the challenge, running different FEM-based elec-
trophysiological models in patient-specific biventricular meshes that were provided by
the organizers. In practice, mesh generation from patient-specific data of complex organs
such as the heart often involves tedious manual interactions that hinder the application of
computational models to large patient databases. Meshless models are an interesting alter-
native that have already been applied in cardiac electromechanics [33,36,38,39], but they
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have not been benchmarked with FEM-based approaches in LBBB and CRT experimental
data. Meshless methods are obviously independent of the generation of patient-specific
cardiac meshes, thus solving one of the main bottleneck steps of mesh-based alternatives
for translating computational models into clinical environment.

In this manuscript we present a meshless modeling pipeline, based on the SPH-based
approach developed by Lluch et al. [38], where the most relevant parameters have been
optimized to fit a subset of the CRT-EPiggy19 dataset. Basically, training data of three
cases with LBBB were used to estimate the model parameters minimizing the differences
between local activation times provided by meshless simulation results and EAM mea-
surements, consequently predicting CRT electrical activation patterns with known lead
location. Several metrics, proposed by Soto Iglesias et al. [25], were used, beyond the
common global TAT parameter, to better quantify the local electrical heterogeneity in the
ventricles. Although computational times could be further reduced, the meshless method
could provide CRT predictions and lead configuration optimal strategies in around 20 min,
once the LBBB pattern has been assimilated. Timings which are compatible with the clinical
routine workflow. Moreover, meshless methods make the potential coupling with other
physical models very easy, compared with FEM alternatives, with electromechanical mod-
els allowing large deformations without the risk of convergence issues due to mesh element
quality degeneration.

The most relevant parameters related to the SPH-based model were the number of
particles and the kernel size, which were set up to different values (15 ×103 and 6.5–8.5 mm,
respectively) than the original SPH formulation in [42] (51 ×103 and 3 mm, respectively).
The main reason was to decrease the computational cost for each simulation, without
compromising result accuracy, so that the meshless method could be embedded into an
parameter optimization framework. On the other hand, Mountris and Pueyo [39] employed
a higher number of particles (240 ×103) and a fixed neighbourhood size (150 particles) in
their meshless model applied to CRT-EPiggy19 data, which would be prohibitive in our
application due to the exponential growth in computational cost of the SPH-based solution.

4.1. Benchmark Analysis of Meshless and Finite-Element Method Solutions on Training Data

Despite the complex pipeline to process EAM data and the variability of the analyzed
cases, the SPH-based model provided low LAT errors in LBBB (6.75 ± 1.59 ms) and CRT
(10.38 ± 3.80 ms) cases. The meshless simulation results were generally similar to FEM-
based ones from CRT-EPiggy19 participants (see Table 1 and Figure 5), when qualitatively
analyzing the electrical activation patterns, and with the quantitative metrics (e.g., TAT, LAT,
delays). However, some methodological differences were found that could explain small
variations in the obtained results. For instance, the approach by Gomez and Sebastian [29],
using a biophysical Ten Tusscher–Panfilov model, with a larger number of parameters and
a more personalized Purkinje system differentiating between RV and LV, will certainly be
more appropriate than simplified phenomenological Eikonal models in some cases. On
the other hand, the low computational cost of Eikonal-based solutions allow running a
lot of simulations and a larger exploration of the parameter space to match EAM data.
Computational times for both meshless and FEM-based methods depend on the domain
resolution (i.e., number of points/elements), the complexity of the electrophysiological
model, and the number of parameters to estimate in the optimization procedure. Moreover,
there is also a variety of IT resources involved. Independently of these factors, the main
advantage of the meshless methods is the time saved to prepare the simulation domain
compared to FEM alternative, which can be a matter of hours for complex geometries.

The key parameters related to the electrophysiological modeling for better fitting the
EAM data were (1) the initial stimuli (number and position) of the electrical activation,
(2) the modeling of the PK system, (3) and the regional conduction velocity distribution,
which was optimized for each analyzed case. For instance, most participants [27,29] and
ourselves adapted their modeling solutions to consider a possible retrograde activation
of the PK system, via an extra-stimulus, to replicate the rapid activation from the apex to
the LV base observed in the EAM data. Figure A3 in the Appendix shows how using only
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one stimulus provided simulation results farther from the EAM data (error of 15.3 ms vs.
5.1 ms for two stimuli), demonstrating the dependence of the simulated activation patterns
on the stimulation protocol. Potential causes for the PK retrograde activation might be
the more transmural PK system in pigs compared to humans, which lead to incomplete
LBBB such as in Pig 3 (anterior PK branch being functional while posterior branch being
damaged, affecting the epicardial propagation). Modeling solutions with dedicated PK
models such as in [29,39] could explain their better performance in these cases, justifying
the use of more detailed and personalized PK system estimation algorithms [46,48].

The most important parameter to optimize in all electrophysiological modeling so-
lutions to match EAM data were the regional distribution of conduction velocities, with
computational costs directly linked to the chosen number of regions. We performed a
sensitivity analysis that resulted in the use of 5 regions (RV/LV endocardium/epicardium,
PK system), which avoided overfitting of LBBB-estimated results when applied to CRT
cases (effect seen with a larger number of regions) and reasonable computational times
(e.g., around 20 min per simulation). The CV distribution provided by the SPH-based
model (see Table 2) are physiologically meaningful (e.g., PK being the fastest region, endo-
cardial regions faster than epicardial ones, the scar having the lowest CV values), due to
the imposed constraints in the optimization step. Cedilnik and Sermesant [28] used the
same regions without PK in the only case they processed (Pig 3), however obtaining similar
qualitative results in CRT simulations to Gomez and Sebastian [29] and ourselves. The
regional strategies selected by Khamzin et al. [27] and Gomez and Sebastian [29] were the
opposite, personalizing 30 and 34 (17 AHAsegments division in both ventricles) regional pa-
rameters of conduction velocities, respectively, which gave them a lot of flexibility to match
EAM data at the expense of risk of overfitting, as could be the reason of non-physiological
CV distribution in some cases, compared with the SPH-based results (see ischemic case in
Table 2, with conduction velocity slower in PK than in heart tissue).

Aiming at a perfect matching of simulation results to EAM data is not a simple task
due to the variability of electrical patterns and the data uncertainty coming from the
nature of EAM acquisitions and the post-processing (e.g., interpolation) required to create
the biventricular meshes with local activation time maps. For instance, the sequential
way (point-to-point) for acquiring the EAM data made the measurements dependent
on the heart’s anatomy and the number of EAM points, which was relatively low since
an old system (CARTO XP) was used. Unexpected electrical activation patterns in the
EAM of some cases could be explained by EAM interpolation effects. For instance, Pig
2 and Pig 4 non-infarcted cases had a significantly smaller amount of anatomical point-
based acquisitions from CARTO XP in the LV anterior epicardial layer, leading to a 20 ms
slower activation in the posterior vs. the anterior epicardial LV. We could not capture
such heterogeneity in the SPH-based modeling pipeline since a single conduction velocity
parameter was used for the entire LV epicardium, leading to the highest regional error in
this area (see Tables A1 and A2 in the Appendix A).

Additionally, data uncertainty can lead to unrealistic and non-physiological parame-
ters providing a better fitting between simulations and observations. For example, similar
to Gomez and Sebastian [29], we needed high conduction velocities in areas near the scar
in the infarcted cases (Pig 3 and Pig 6) to better fit EAM data with LBBB. Additionally,
some participants included a second stimulus in the RV to better replicate the available
electrophysiological measurements, which could correspond to the influence of the RV
septomarginal trabecula but it could also be an interpolation artefact due to the sparsity of
the EAM data. In the SPH-based modeling pipeline, we chose a constrained optimization al-
gorithm to impose certain physiological requirements, at the expense of having less degrees
of freedom, unlike approaches taken by other participants [27] that help them to achieve
better fitting with EAM data (3–4.5% of LAT error in both LBBB and CRT training cases).

Another source of uncertainty is the position of the CRT leads, which justifies some
differences between simulation results from all participants and EAM data. In Pig 1 and
Pig 3 of the training dataset, the sub-optimal lead configuration was remarkable. In Pig 1,
the apicality of the leads in both ventricles reduced the benefit of biventricular pacing, thus
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being a CRT non-responder (low recovery metric) both in the meshless simulation and in
real data. A different CRT configuration with the LV lead placed at the LBBB latest activation
point improved the recovery for both meshless and FEM-based simulations. In Pig 3, the
meshless and FEM-based simulations managed to improve the recovery percentage after a
reduction of the TAT due to the estimated high conduction velocities. However, the basal
configuration of the leads also both located in the epicardial layer of the LV for the high
extension in the apical zone and transmurality of the scar, determined the ineffectiveness of
biventricular resynchronisation therapy reflected in the delay metrics such as the IVD. An
analogous behavior was found by Cedilnik and Sermesant [28] with a practically identical
CRT prediction LAT error (6.5 ms and 6.6 ms for them and us, respectively) to SPH (6.6 ms).

The simulation protocol designed by CRT-EPiggy19 organizers asked to personalize
model parameters with the LBBB data and use them to predict CRT measurements. How-
ever, some participants [27,29] applied correction strategies to better fit EAM data after
CRT. Gomez and Sebastian [29] recalculated the conduction velocities for Pig 3, allowing
a better match in the LV apical part than with the SPH-based model without corrections.
Khamzin et al. [27] estimated a weight to adapt LBBB regional conduction velocities to
CRT using Montecarlo random sampling and simulating 1000 different electrical activation
patterns for each sample due to the low computational cost of their Eikonal-based model.
Additionally, we did not use warming-up cardiac cycles to establish robust initial boundary
conditions in the SPH-based model, while Gomez and Sebastian [29] had 10 cardiac cycles
for stabilization purposes (taking 36 h), following the pipeline they previously optimized
for arrhythmia simulation [49]. Although initial boundary conditions should not have a
large influence for predicting activation maps, a rigorous study should be performed to
confirm this assumption.

4.2. Validation of Meshless Method Results on Testing Data

Three testing cases of the CRT-EPiggy19 challenge were also processed with the SPH-
based modeling pipeline. Lamentably, FEM-based simulation results were not available for
benchmarking. As the CRT lead location was not provided in the testing cases, four differ-
ent lead configurations based on literature [11,50–52] were evaluated. In the three analyzed
testing cases, the optimal configuration was with a RV apical lead and the LV one placed
at the epicardial lateral wall (RVapx − LVbas in Figures 6, A4 and A5). The RVapx − LVbas
lead configuration not only provided better recovery percentages, but also had a smaller
LAT error with CRT EAM data (see Table A2 in the Appendix A). This is in agree-
ment with multiple clinical studies and guidelines [11,53], although different alternatives
(e.g., different RV location [20]) are still being proposed. For instance, some studies suggest
that RVOT pacing may be more beneficial than standard one, specifically in cases with
a decreased left ventricular ejection fraction [11,50]. In our study, RVOT pacing was the
second best lead configuration, but still with slightly worse overall efficiency compared to
RVapx − LVbas. The worst scenario was when both leads were in apical locations, as in the
case of Pig 1, where the benefits of bi-ventricular pacing are reduced to only one lead due
to an overlap of the electrical breakthrough waves.

4.3. Limitations and Future Work

The presented study has several limitations at different levels. First, the available data
from the CRT-EPiggy19 challenge ertr useful to identify and better understand key aspects
of different CRT models. However, several factors associated with EAM acquisition and
processing induced a non-negligible data uncertainty that can limit the conclusions from the
study. As well, hemodynamic descriptors, e.g., based on Doppler-derived measurements,
were not available from the experimental study in Rigol et al. [24], preventing the optimiza-
tion of important CRT parameters such as the AV delay, which has been found a potential
non-responder factor [54]. Moreover, even in the case of better animal experiments, models
should also be tested on in vivo human data to investigate its added value in the CRT
clinical pipeline. Furthermore, the processing and modeling of each case, including a large
number of simulations for parameter optimization, is very time consuming. The conse-
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quence is that only a few cases could be processed in our study and by the CRT-EPiggy19
participants, limiting the impact and generalizability of the benchmark analysis. A more
comprehensive comparison with other FEM-based and meshless models in common data
would be beneficial.

The proposed SPH-based modeling pipeline provided simulation results comparable
to the state-of-the-art alternatives, but several improvements could be incorporated. Firstly,
the inclusion of the anisotropic ratio and the myocardial layer for each ventricle in the
optimization pipeline could give more degrees of freedom to match EAM data. Additionally,
the parameter optimization schemes used by all participants of the CRT-Epiggy19 challenge
were not taking advantage of recent technological advances such as the use of deep learning
algorithms [55,56], variational approaches [57], reduced-order models [58,59] or GPU-
based architectures [60], which allows for the exploration of a larger space of parameter
solutions at reduced computational times. Moreover, cardiac multi-physical models should
provide more realistic simulations, allowing for the inclusion of hemodynamic factors
and improving the adjustment of CRT configuration through flow ratios [61], perfusion
models [17], lumped models of the whole cardiovascular circulation [18] or with a complete
torso [20].

5. Conclusions

A meshless modeling pipeline to simulate cardiac electrical patterns in CRT was com-
pared to FEM-based alternatives, providing equivalent results on fitting experimental data
available from the CRT-EPiggy19 challenge. The main advantage of the meshless model is
the independence from the usually arduous patient-specific meshing process, one of the
most important bottlenecks of translating computational models into a clinical environment.
However, the most relevant aspect for accurate CRT predictions was the chosen parame-
ter personalization strategy rather than the geometrical discretization. In particular, the
regional conduction velocity distribution was key, requiring at least five different regions
and ideally including a PK label. A larger number of regions was associated with better
data fitting but higher computational costs and more risk of overfitting. Additionally, the
optimal CRT configuration was found with apical RV and basal LV leads, as reported in
the literature. Despite the uniqueness of the CRT-EPiggy19 challenge dataset, data uncer-
tainty was high in some cases due to challenging EAM acquisition and processing, which
could lead to the estimation of non-physiological parameters and the requirement of prior
constraints in the optimization algorithm. Nevertheless, having several teams of modeling
researchers working on the same data have been beneficial for each challenge participant,
jointly improving the different modeling solutions.
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Appendix A

Figure A1. Local activation time maps for a non-infarcted case, Pig 2, of the training database in
left bundle branch block (LBBB) and cardiac resynchronization therapy (CRT) conditions, provided
by the electroanatomical measurements (EAM) and a meshless (SPH) model. (a,b) correspond to
anterior and posterior biventricular epicardial visualizations. (c,d) show epicardial and endocardial
view of the left ventricle (LV) lateral wall, respectively. RV: right ventricle.
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Figure A2. Conduction velocity map for one of the ischemic cases analyzed in our study.

Figure A3. Local activation time maps for the infarcted case, Pig 3, of the training database in left
bundle branch block (LBBB) and cardiac resynchronization therapy (CRT) conditions, provided by
the (a) electroanatomical measurements (EAM) and the (b,c) meshless (SPH) model. From top to
bottom in each condition, the anterior and posterior biventricular epicardial visualizations are shown,
respectively. The electrical activation patterns acquired by maintaining the strategy of two initial
stimuli (Right Ventricle (RV) and septal) are represented in (b) and disregarding only the initial RV
stimulus in (c). LV: left ventricle.
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Figure A4. Local activation time maps ((a–c) showing anterior/posterior of biventricular epicardium
and LV lateral wall epicardium, respectively) after cardiac resynchronization therapy (CRT) from
the electro-anatomical (EAM) data and meshless simulations in the non-infarcted testing case, Pig 4.
Histograms of the percentage of electrically activated heart tissue for the right and left epicardial
layers are in the right column (d). From the second to the fifth row, different simulation results
obtained with different CRT lead locations are displayed. RVapx − LVbas: leads on right ventricle
(RV) apex and basal left ventricle (LV). RV − LVapx: both leads are located in the biventricular
apex. Early − LateL AT: leads located at the the earliest and latest EAM ventricular activated points,
respectively. RVOTsep − LVbas: leads in the septal RV outflow track and in the basal LV.
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Figure A5. Local activation time maps ((a–c) showing anterior/posterior of biventricular epicardium
and LV lateral wall epicardium, respectively) after cardiac resynchronization therapy (CRT) from
the electro-anatomical (EAM) data and meshless simulations in the non-infarcted testing case, Pig 5.
Histograms of the percentage of electrically activated heart tissue for the right and left epicardial
layers are in the right column (d). From the second to the fifth row, different simulation results
obtained with different CRT lead locations are displayed. RVapx − LVbas: leads on right ventricle
(RV) apex and basal left ventricle (LV). RV − LVapx: both leads are located in the biventricular
apex. Early − LateL AT: leads located at the the earliest and latest EAM ventricular activated points,
respectively. RVOTsep − LVbas: leads in the septal RV outflow track and in the basal LV.
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Table A1. Quantitative measures characterising the regional local activation time error in the electrical
activation maps for the training cases from meshless simulations. LBBB: left bundle branch block.
CRT: cardiac resynchronization therapy. RMSE: root mean square error. LV: left ventricle. RV: right
ventricle. Epi: epicardium. Endo:endocardium. (*) indicates an infarcted pig.

RMSE (ms) Pig 1 Pig 2 Pig 3 (*)

LBBB CRT LBBB CRT LBBB CRT
RV Epi

5.6 8.73 7.95 7.04 5.6 4.3

LV Epi 5.9 7.37 10.17 8.53 4 6.2

LV Endo 9.1 7.45 9.76 7.48 6.4 9.7

Table A2. Quantitative measures characterising the regional local activation time error in the elec-
trical activation maps for the testing cases from meshless simulations. LBBB: left bundle branch
block. CRT: cardiac resynchronization therapy. RMSE: root mean square error. Epi: epicardium.
Endo:endocardium. RVapx − LVbas: right ventricle apex and basal region of the left ventricle.
RV − LVapx: RV apex and LV apex. Early − LateL AT: earliest and latest EAM activation points.
RVOTsep − LVbas: RV outflow track septal and LV basal region. (*) indicates an infarcted pig.

RMSE (ms) RV Epi LV Epi LV Endo

Pig 4

LBBB 3.9 5.47 6.42
CRT (RVapx − LVbas) 17.14 11.6 10.71
CRT (RV − LVapx) 17.23 14.56 13.16

CRT (Early − LateL AT) 20.67 13.4 11.86
CRT (RVOTsep − LVbas) 15.46 13.17 12.33

Pig 5

LBBB 4.92 7.68 13.4
CRT (RVapx − LVbas) 10.98 16.26 17.85
CRT (RV − LVapx) 10.98 14.74 19.27

CRT (Early − LateL AT) 20.87 10.82 14.73
CRT (RVOTsep − LVbas) 19.82 21.88 20.8

Pig 6 (*)

LBBB 5.97 6.11 5.7
CRT (RVapx − LVbas) 11.94 12.21 7.98
CRT (RV − LVapx) 12.03 18.95 14.01

CRT (Early − LateL AT) 5.91 14.48 12.7
CRT (RVOTsep − LVbas) 13.78 12.85 11.93
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Abstract: Background. The treatment of coronary stenosis is decided by performing high risk invasive
surgery to generate the fractional flow reserve diagnostics index, a ratio of distal to proximal pressures
in respect of coronary atherosclerotic plaques. Non-invasive methods are a need of the times that
necessitate the use of mathematical models of coronary hemodynamic physiology. This study
proposes an extensible mathematical description of the coronary vasculature that provides an estimate
of coronary fractional flow reserve. Methods. By adapting an existing computational model of human
coronary blood flow, the effects of large vessel stenosis and microvascular disease on fractional flow
reserve were quantified. Several simulations generated flow and pressure information, which was
used to compute fractional flow reserve under several conditions including focal stenosis, diffuse
stenosis, and microvascular disease. Sensitivity analysis was used to uncover the influence of model
parameters on fractional flow reserve. The model was simulated as coupled non-linear ordinary
differential equations and numerically solved using our implicit higher order method. Results. Large
vessel stenosis affected fractional flow reserve. The model predicts that the presence, rather than
severity, of microvascular disease affects coronary flow deleteriously. Conclusions. The model provides
a computationally inexpensive instrument for future in silico coronary blood flow investigations
as well as clinical-imaging decision making. A combination of focal and diffuse stenosis appears
to be essential to limit coronary flow. In addition to pressure measurements in the large epicardial
vessels, diagnosis of microvascular disease is essential. The independence of the index with respect to
heart rate suggests that computationally inexpensive steady state simulations may provide sufficient
information to reliably compute the index.

Keywords: coronary vasculature; lumped parameter model; fractional flow reserve; computa-
tional cardiology

1. Introduction

This manuscript is an extension of work originally presented in Functional Imaging
and Modelling of the Heart, 2021 [1].

Clinical relevance of and potential sources of uncertainty in fractional flow reserve estimation:
Coronary vessel severity of stenosis is clinically quantified using a quantity called fractional
flow reserve (FFR) [2,3]. Quantities such as FFR allow objective clinical decision mak-
ing, especially when computed tomography subjectively indicates intermediate coronary
stenosis. Several clinical trials have led to a partial clinical acceptance of FFR for objective

Appl. Sci. 2022, 12, 4281. https://doi.org/10.3390/app12094281 https://www.mdpi.com/journal/applsci129



Appl. Sci. 2022, 12, 4281

diagnostics [4–6]. FFR is clinically measured by determination of the ratio of blood flow
through a stenosed vessel to that in the same vessel in the absence of stenosis [7]. In recent
times, non-invasive computed tomography angiography combined with computational
fluid dynamics (CFD) have become increasingly prevalent in estimating FFR, and aim at
reducing the significant risks associated with invasive pressure wire measurements [8].
However, multiple complex physiological processes render uncertain FFR estimation [9].
In particular, the clinical literature suggests that micro-vascular dysfunction and stenosis
morphology play a significant role in the estimated FFR. In addition, surgical and phar-
macological sensitivity remains limited where adverse events often occur in critically ill
patients, such as those with renal failure [10], where diagnostics are sub-optimal. As such,
the use of FFR to determine clinical intervention depends on quantification of the vascular
structure and function.

A brief overview of FFR modelling: Computed tomography angiography-driven com-
putational estimation of FFR is now an advanced technology [11]. Combining imaging
with computational fluid dynamics assessment of FFR is known to increase the specificity
of diagnosing lesion-specific ischemia [12]. It is facilitated by ready availability of open
source advanced scientific platforms [13–16], including those developed in house (Vir-
tual Cardiac Physiology Laboratory) [17,18]. Typically, computation of FFR combines an
imaging-generated 3D coronary geometry coupled to models of coronary hemodynamic
physiology. Others have used the approach to study a spectrum of processes involving
FFR estimation refinement [19], interplay among multiple stenosis complexes [20], and
perioperative treatment assessment [21], among several other applications. Computer
modelling can be performed at a simple lumped parameter or detailed 3D spatial scales.
As a specialized high performance computing application, 3D modelling cannot be per-
formed onsite by the clinician. Due to the large variety of data collection resulting in the
need to explore parameter spaces [22,23], large scale computations remain unwarranted
in a clinical environment. Recent studies demonstrate the deployable nature of lumped
parameter (0D) modelling in a clinical environment. Our recent study, where the role of pe-
ripheral arterial disease in hypertension was addressed, illustrates a 0D model deployable
nature [24]. We also used 0D hemodynamic modelling of the whole human model to test
the effects of treatments such as hypothermia and exercise on systemic circulation [17]. The
debilitating effects of atrial fibrillation on cerebral circulation were illuminated recently by
Hunter et al. [25]. However, the availability of computationally efficient coronary blood
flow models remains limited [26]. It was therefore relevant to develop an open source and
extensible coronary model.

Study aims: In this work, an existing lumped parameter (0D) model of the coronary
vasculature [27] was further developed and used to demonstrate important factors that
regulate FFR. Specifically, the dependence of FFR on the nature of stenosis (focal or diffuse)
and on micro-vascular status was investigated. Further, a partial rank correlation coefficient
(PRCC)-based sensitivity analysis [1,28,29] was performed to determine the impact of model
parameters on FFR. For this purpose, a 0D modelling approach was found to be suitable as
the study’s goal was to understand coronary flow in the presence of pathological conditions.
It can be appreciated that model identification (personalization), although highly desirable,
was not essential in this theoretical study. As such, the presented model is theoretical in
nature, in which a better understanding of pathophysiological processes was prioritized
over model personalization.

2. Methods

Model development: A recent model of the coronary circulation [27] was adapted. It
consists of 16 epicardial coronary artery segments, including the left anterior descending
(LAD), left circumflex artery (LCX), right coronary artery (RCA), and several of their
clinically significant daughter segments. The closed loop connectivity of the structured tree
network is illustrated in Figure 1 and the names of all arteries are elaborated in Table 1.
Each artery segment is characterized by the Windkessel time-independent parameters
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that consist of a hydraulic resistance (Rn), the inertia to flow of blood represented by an
inductance (Ln), and the elastic capacity of the vessel, Cn [30]. The Windkessel parameters
are determined using vessel lengths, vessel wall thickness, diameters, elasticity, blood
viscosity, and blood density. In this study blood viscosity was taken to be 4 × 10−3 kg/(m-s)
and density to be 1.06 × 103 kg/m3, and Young’s modulus (inverse of elasticity) to be
2 × 105 Pa, in agreement with current knowledge [31–33]. Vessel wall thickness was
estimated as h = 0.08 D [30]. Each artery segment entering a capillary bed leading into
the venous circulation was further assumed to experience a microvasculature terminal
impedance (Zi) that was estimated using a structured tree model by Olufsen [34] as

Zi =
8μλ((2γ3)

−(N+1) − 1)
πr03(0.5γ−3 − 1)

, i = 1, . . . , 9. (1)

where γ = 2− 1
ε and ε represents the daughter vessel radius taper exponent, λ is the ratio of

microvascular length to its diameter, and r0 is the root vessel radius of the structured tree.
N represents the number of generations for each structured tree [27,30,34]. The lumped
coronary system was further developed by incorporating a detailed four chamber heart
description (Figure 1A) [35]. For simplicity, this model does not account for the phase
altering effects of cardiac contractility on microvascular coronary flow.

Figure 1. The modelled lumped parameter coronary vasculature tree network. (A) Closed loop
vascular structure including tree network and functional components. See Table 1 for vessel names.
Zi (i = 1 to 9) represent terminal vessel impedances. Vessels as well as impedances shown in red
were used in the simulation experiments. (B) Typical blood vessel represented by a resistance (Rn),
inductance (Ln), and a capacitance (Cn). Pn−1: vessel inlet pressure; Qn: flow through vessel; Pn:
pressure in vessel; Qo: outlet flow; Pn+1: outlet pressure, or pressure in distal vessel. (C) Symbols
used in panels (A, B), and elsewhere in this work.
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Table 1. Model parameter values. See Figure 1 for vessel connectivity. The rows are colour-coded to
suggest the major epicardial coronaries, either LAD, LCX, or RCA.

Vessel
R

(mmHg-s/mL)
C

(ml/mmHg × 10−3)
L

(mmHg-s2/mL)

LMCA 0.2299 2.9 0.00228
LAD 0.4662 1.6 0.0298

LAD1 0.5729 1.6 0.0342
LAD2 1.7077 3.4 0.0916
LAD3 3.7484 1.3 0.1115
LAD4 3.2930 0.4 0.0716
LCX 0.3929 1.2 0.0241

LCX1 0.4730 0.7 0.0231
LCX2 1.0264 0.7 0.0380
LCX3 3.2342 1.1 0.0944

MARG1 1.7351 1.2 0.0655
MARG2 2.9195 0.8 0.0787
MARG3 3.0683 1 0.0896

RCA 1.8302 6.3 0.1171
PLA 2.4412 1.1 0.0799
PDA 1.2571 1.8 0.0596

Using the parameters given in Tables 1 and 2, summarized from the parent model [27]
and microvascular impedances calculated using Equation (1), pressure at each node of the
model (Figure 1) was computed as

dPn

dt
=

Qn − Q0

Cn
(2)

and the flow through each vessel (resistance) was calculated as

dQn

dt
=

Pn−1 − Pn − RnQn

Ln
(3)

Table 2. Parameters used to compute microvascular impedances.

Z (Figure 1).
Root Vessel Radius,

r0 (mm).
N.

Control Z Values
(mmHg-s/mL).

Z1 PDA 0.108 19 134.100
Z2 PLA 0.130 20 083.710
Z3 LAD1 0.146 20 059.095
Z4 LAD3 0.103 19 154.592
Z5 LAD4 0.088 18 227.185
Z6 MARG1 0.116 19 108.224
Z7 MARG2 0.098 19 179.482
Z8 MARG3 0.102 19 159.184
Z9 LCX3 0.102 19 159.184

Legend. Z: terminal impedance; N: number of generations in microvasculature.

Further, the flow through each of the terminals was calculated as

Qz,n =
Pn−1 − Pn

Zn
(4)
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Simulation experiments: In all simulations, fractional flow reserve (FFR) was computed
as the average of the ratio of the time-dependent distal pressure, Pd (pressure downstream
from stenosis) to the time-dependent proximal (aortic) pressure, Pa:

FFRvessel =
1
M

n=M

∑
n=1

Pvessel,n

Paorta,n
(5)

where M represents the total number of fractions over a given time T, which consisted of
M time step recordings. T was taken to be 100 heart beats and the final 20 were analyzed.
Simulations were designed to explore the effects of stenosis severity in the largest epicardial
vessels (either LAD, LCX, or RCA; see Figure 1) or microvascular disease, or both. A
sensitivity analysis was performed as described below.

Stenosis in three large vessels, namely the left anterior descending artery (LAD),
the left circumflex artery (LCX), and the right coronary artery (RCA), was investigated.
Simulations were performed by imposing focal or diffuse stenosis in a given large vessel.

To simulate focal stenosis, the blood vessel was divided into two and its biophysical
parameters (Table 1) were revised using

Rs = Roα−2

Cs = Coα3/2

Ls = Loα−1
(6)

where the stenosis severity, α, is given by the parameter

α =
As

Ao
. (7)

which is always between 0 and 1 by definition. To simulate diffuse stenosis extended
through a certain length percentage xs (0 ≤ xs ≤ 1) of a vessel, the revised parameters
were calculated as

R = Rsxs + Ro(1 − xs)
L = Lsxs + Lo(1 − xs)
C = Csxs + Co(1 − xs)

(8)

and used in Equations (2)–(4). Microvascular disease was simulated by decreasing the
terminal vessel radius by a predefined amount in all terminals. In this model, radius
regulated microvascular impedance was increased by decreasing the ε in Equation (1)’s
γ parameter.

Sensitivity analysis: Sensitivity of multiple model parameters, including stenosis
lengths, focal stenosis severity, heart rate, terminal vessel impedances, microvascular
vessel taper parameter (ε), and number of downstream vasculature generations to FFR, was
computed. To do so, we used our implementation of partial ranked correlation coefficients
(PRCC) [17,36]. The coefficients were used to rank the parameters in descending order of
significance, and the most relevant results reported.

Numerical methods: The model is a system of 36 coupled stiff ordinary differential
equations. Pressures and flows were computed as state variables according to governing
ordinary differential equations, Equations (2)–(4), for each vessel. The system was solved
using our robust implicit solver available in our simulation software [18,24]. The method
used in the solver is based on implicit backward difference formulae that provides O(dt6)
accuracy. A maximum user time step of 0.005 s gave stable solutions which remained
unaffected when the maximum time step was halved and doubled. Each instance generated
500 s of simulated dynamics from which the final 10 s of activity were used to generate
results. Simulations were performed on local and national clusters. Each instance of
the model is a serial run that took 15 s. To construct results in the presented work, a
large number of model instances (106) for predefined values of physiologically relevant
parameters were executed within 4 h using 48 processors. The trivially parallel simulations
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were performed using GNU Utilities [37]. The simulation outputs were post-processed
using a combination of UNIX and MATLAB scripts.

3. Results

Model FFR during the cardiac cycle: Time-dependent FFR in the three major coronary
arteries (LAD, LCX, and RCA) under predefined large vessel stenosis and microvascular
disease is illustrated in Figure 2. The control simulation (Figure 2, top row) devoid of
stenosis or microvascular disease shows that FFR is high (more than 0.8) during the
complete cardiac cycle in all three vessels. Due to flow distribution from the aorta to the
smaller coronary network, the time dependent FFR was seen to reduce during systole.
The time dependent FFR when either LAD, LCX, or RCA were focally stenosed by 90%
(α = 0.9) is shown in Figure 2, middle row. When there was a full vessel length stenosis the
FFR values reduced to 0.56 for the LAD, 0.52 for the LCX, and 0.5 for the RCA. Whereas
the overall FFR was observed to reduce significantly in all three simulations, large vessel
stenosis led to minimal FFR during the cardiac cycle’s diastole. Simulated microvascular
disease, simulated by augmenting all terminal impedances by 50% (ε = 2.55, a reduction of ε
increases impedance, Z), led to amplifying the difference between the aortic and respective
distal pressures and gave a minimal FFR estimate during the systole (Figure 2, bottom row).
When microvascular disease was simulated, the maximum time dependent FFR value was
calculated to be 1 and minimum to be 0.7 in all three blood vessels.

Figure 2. Pressure profiles and FFR in the LAD (column A), LCX (column B), and RCA (column
C). In all columns, top row shows non-stenosed model behavior, second row shows the result of
focal stenosis (α = 90%), and third row shows the result of downstream microvascular disease in
the absence of focal stenosis (α = 100%; ε = 2.33). In all panels, black lines and axis represent aortic
pressure (proximal pressure) while red lines and axis represent the pressure of vessel of interest
(distal pressure). Time dependent FFR is shown as orange dashed lines.

The coronary flow in the control coronary model (Figure 3, top row) and its reduction
due to focal stenosis (Figure 3, middle row) and microvascular disease (Figure 3, bottom
row) was computed. Relative to the control case (Figure 3, top row), focal stenosis (Figure 3,
second row) restricted flow significantly in all three blood vessels. When microvascular
disease was implemented, the maximum flow and overall flow in the network decreased.
Further, the impact of individual artery resistances, inertances, and compliances were
blunted as reflected in the flow profiles (Figure 3, bottom row).
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Figure 3. Flow profiles in the LAD (column A), LCX (column B), and RCA (column C). In all columns,
top row shows non-stenosed (control) model flow, second row shows flow under focal stenosis
(α = 90%) and the third row shows the flow under microvascular disease in the absence of focal
stenosis (α = 100%; ε = 2.33).

Focal and diffuse stenosis interplay: The dependence of average flow (flow), maximum
flow, and FFR on simultaneous presence of reduced vessel diameters (focal stenosis) and dif-
fuse stenosis (reduction of diameters along a predefined length) were quantified (Figure 4).
In all vessels, the detrimental effects of stenosis on flow (Figure 4, top row) and maximum
flow (Figure 4, middle row) were impacted by the severity of focal stenosis (horizontal
axis) to a greater extent than the severity of diffuse stenosis (vertical axis). Progressive focal
stenosis alone was found to minimally impact the estimated FFR (Figure 4, bottom row)
due to the model formulation (see above). As such, a reduction of FFR was observed when
the stenosis was diffuse to a certain extent. Conversely, diffuse stenosis in the absence of
focal stenosis (vertical axis in Figure 4) also did not reduce FFR. Progressive focal stenosis
in the RCA caused the largest reduction in FFR (Figure 4, third row) as compared to focal
stenosis in the LAD and LCX in the presented model. In the presented model, the RCA
was more susceptible to FFR reduction due to stenosis in comparison to the LAD and LCX.
Simultaneous presence of focal and diffuse stenosis caused the most severe reduction of
FFR in the RCA, followed by the LAD and LCX.

Role of microvascular disease in the modelled FFR: The average flow (flow), maximum
flow, and FFR values of simultaneous focal stenosis and microvascular disease are shown
in Figure 5. Microvascular disease was simulated by varying the daughter vessel’s radius
taper exponent ε (Equation (1)) from 2.76 (0% microvascular disease, control) to 2.33
(100% microvascular disease) which represents turbulent flow [22]. At diameter reductions
below 70%, the flow in each blood vessel (Figure 5, top row) is significantly restricted by
up to half of the control flow with the increase in severity of microvascular disease. At
similar diameter reductions in the LAD and LCX however, the peak reduction in max
flow values (near 0.5 of the control values) occur at 50% microvascular disease and returns
to near control values at maximal microvascular disease. At diameter reductions above
80%, microvascular exacerbates the effect of the stenosis on FFR values. However, an
almost unique value of diameter reduction for each, LAD, LCX, and RCA, was observed
to characterize a clinically significant FFR transition to below 0.8 in the presence of an
arbitrarily severe microvascular disease. While the diameter reduction was 0.7 for LAD
and LCX, it was seen to be a much lower 0.55 in the case of RCA.
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Figure 4. Dependence of flow rate (top row), maximum flow (middle row), and mean FFR (bottom
row) on stenosis length (vertical axis, all panels) and vessel diameter (horizontal axis, all panels).
Columns (A–C) show LAD, LCX, and RCA results, respectively. The black line in the bottom row
demarcates the FFR = 0.8 threshold.

Figure 5. Dependence of flow rate (top row), maximum flow (middle row), and mean FFR (bottom
row) on microvascular resistance increase (microvascular disease, vertical axis in all panels) and
vessel diameter (horizontal axis, all panels). Columns (A–C) show LAD, LCX, and RCA results,
respectively. The black line in the bottom row demarcates the FFR = 0.8 threshold.

Sensitivity analysis to stratify FFR impacting parameters: The results of the sensitivity
analysis are shown in Figures 6 and 7. The histograms of FFR values obtained during the
PRCC calculation are shown in Figure 6. As can be seen, the model did not produce any
instances with FFR less than 0.3 due to the ranges of parameters considered. The model
appears to produce FFR values centered around 0.54. Further, in all three coronaries, the
FFR values appear to be distributed in a left-skewed Gaussian manner.
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Figure 6. Histograms of FFR obtained from PRCC simulations (see Figure 7). Panel (A) shows the
data for LAD, panel (B) for LCX, and panel (C) for RCA.

Figure 7. PRCC sensitivity of FFR to model control parameters. In all panels, the sensitivity of FFR to
the six most relevant parameters are shown. Panel (A) shows the PRCC for LAD, panel (B) for the
LCX, and panel (C) for the RCA. In all panels, HR: heart rate; fs: focal stenosis; ds: diffuse stenosis; r0:
root radius of microvascular bed; Zi: microvascular impedance; ε: microvasculature taper exponent;
and Esys,rv: systolic elastance of the right ventricle.
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The sensitivity analysis generated PRCC coefficients are shown in Figure 7. Heart rate
(HR) is the most impactful model parameter regulating the FFR. Consistently, focal stenosis
(fs) is also a significant regulator of PRCC. Both HR and fs negatively regulate FFR. Diffuse
stenosis (ds) and the right ventricular systolic elastance (Esys,rv) also negatively regulate
FFR. The microvascular parameters (microvascular root radius r0 and tapering factor ε)
also affect FFR according to our sensitivity analysis.

4. Limitations and Future Directions

Whereas blood is known to be a non-Newtonian liquid [38] whose rheology depends
on blood vessel size, especially at special scales, from coronary epicardial vessels to capillar-
ies, the extant literature appears to use standard blood viscosity and density values [31–33].
Inclusion of detailed blood rheology into the model is planned but is not expected to alter
presented results.

Further development of the presented model will lead to its clinical applicability. The
sensitivity of FFR to heart rate requires further investigation. Although the sensitivity
analysis presented heart rate as a primary regulator of FFR, the results of past work indicate
its significance is unsettled. Kwasiborski et al. [39] found a significant correlation between
FFR and heart rate in the LAD yet no correlation in the RCA in their porcine model.
However, an investigation by Kolli et al. [40] found no statistically significant effect on
mean FFR due to fluctuations in HR. Due to the increasing prominence of FFR regarding
revascularization procedure design, further investigation into the measurement of heart
rate as a potential FFR affecting factor is necessary. Patient specific model identification
will increase the applicability of the model and reduce its prediction uncertainty. The
inclusion of vessel-specific biomechanical properties and inclusion of a reactive vascular
tone module [41–43] is expected to allow simulation of clinical parameters such as pulse
wave velocities and residence times [44–49]. The inclusion of autoregulatory processes will
further assist making the model’s FFR estimates quantitatively reliable [50].

Although lumped parameter models for clinical bedside patient-specific hemodynamic
simulation have potential, a significant limitation is the identification of initial parameters
to ensure accuracy. The vessel parameters and microvascular impedances in this study
were summarized from the literature [27,30]. Estimating the resistances, compliances, and
inductances, for each three-element Windkessel model representing each blood vessel
requires measurements of blood vessel diameters and lengths. Patient-specific model iden-
tification will increase the applicability of the model and reduce its prediction uncertainty.
Time domain or frequency domain methods for parameter investigations from pressure
and flow profiles have been developed [51,52]. Recent work demonstrated the capability
of the unscented Kalman filter to personalize parameters for lumped parameter models
using iterative simulations between 0D and 3D [53]. However, this method extinguishes
the advantage of time and resource use by resorting to multi-scale simulations. Advance-
ments in image processing algorithms for the visualization and quantification of vessel
morphometry can be used to calculate the necessary parameters [13,54,55]. In addition, this
study demonstrates that further investigation into the influence of cardiac parameters is
permitted. Whereas a detailed heart model [56] was incorporated into the lumped parame-
ter description [27], the simulated aortic root inflow to the coronary vasculature remains
generic. Upon availability, patient-specific aortic root blood flow profiles will alleviate
the limitation. Furthermore, the parameters of the heart model, such as ventricular and
atrial elastances, require personalization. The development of high-resolution echocar-
diography and magnetic resonance imaging have demonstrated potential in estimating
heart chamber volume [57,58]. Patient-specific estimation of blood rheology parameters
such as blood viscosity will require clinical measurements [38]. By measurement of blood
pressure and heart rate, the blood flow into the coronaries can be personalized. Using
routine hematocrit blood tests, the viscosity can be personalized to a certain extent [20].
Also with potential, 4D flow MRI data can provide subject-specific temporal inlet flow
information. Using all the temporal signals and spatial imaging data, a large number of
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modelling parameters can be estimated [59] using sophisticated methods such as steep-
est gradient algorithms and particle swarm techniques [60]. Multi-electrode noninvasive
electrocardiogram may act as a confirmative test for existing ischemia, i.e., the presence of
downstream sub-perfused myocardium [61]. Autoregulatory processes can be personalized
using a combination of ultrasound, transcranial doppler and similar noninvasive routine
clinical measurements [62].

Although the model is theoretical in nature, the presented results will guide our future
work. As such, the findings of the study remain informative for deeper lumped parameter
modelling and will inform our spatially extended modelling.

5. Conclusions

Focal and diffuse coronary stenosis were both observed to modulate FFR (Figure 3).
However, our simulations indicate that FFR estimation must consider other conditions,
such as AF and microvascular disease, both of which are routinely diagnosed among
patients using non-invasive techniques. Furthermore, it appears that blood flow to the
right ventricle is more severely affected due to extra-coronary and RCA stenosis conditions
(Figures 4 and 5).

As seen in Figure 4, focal as well as diffuse stenosis reduces FFR relative to the control
case. However, it can also be seen that extra-coronary conditions such as microvascular
disease also affect FFR estimates. It is therefore clear that consideration of the effects of
co-morbidities is essential in FFR estimation. The result also indicates that our approach
is suitable for ranking the severity of co-morbidities. Figure 3, especially, indicates that
microvascular disease alone does affect FFR estimation (see definition of FFR). Furthermore,
the left and right heart’s coronary are affected differentially. Whereas imaging studies are
optimized to provide information regarding left coronaries, the model suggests that the
right coronaries should also be considered. Our model suggests that stenosis may not be an
exclusive focal or diffuse phenomenon. As Figure 4 shows, consideration of a combination
of the two natures of stenosis is essential, especially in our future higher dimensional
modelling (see Figure 8). In future studies, the 0D models in this detailed investigation
will be useful as boundary conditions to 3D model computational fluid dynamics [63]. In
addition to detailed geometry, Figure 5 indicates that a priori knowledge of microvascular
health status will permit 3D models to provide better FFR estimates. Within the confines of
the presented model, the sensitivity analysis (Figure 7) suggests that heart rate and severity
of the large vessel occlusion are prime regulators of FFR. In addition, systolic heart function
was found to be relevant.

Figure 8. Pressure (arbitrary units) distribution in two representative solid models (geometries) gen-
erated using our recent imaging data (unpublished). (A) Geometry 1 with the ‘*’ in panel (A) indicates
the stenosis location. (B) Geometry 2 where the location of the stenosis is being investigated.

139



Appl. Sci. 2022, 12, 4281

6. Discussion

We appreciate that model clinical testing routinely acquires immense amounts of
data specific to the subject/patient. This includes the special organ that is the heart. The
pulsatility provided by the heart is important in measurements such as FFR. However,
modelling is an essential complement of CTA-driven FFR. In addition, modelling is essential
due to existing heterogeneity among clinical providers.

The ready availability of high performance computing combined with high resolu-
tion clinical imaging modalities have augmented the application of computational fluid
dynamics for in silico modelling and simulation-based investigation of complex biological
processes [64]. However, due to the time and resource-intensive nature of large, multi-
scale hemodynamic simulations, the clinical uptake of 3D modelling remains limited as it
presently cannot be performed in real time. In contrast, the predictive capability of reduced
order surrogates such as 1D and lumped parameter models have shown promise in their
reliability relative to 3D models [17,56].

The wide use and reputation of FFR as the gold standard for coronary artery disease
diagnosis motivates an investigation into the factors affecting FFR. Bearing in mind the
utility and credibility of reduced order models for CFD simulation, a lumped parameter
model of the human coronary vasculature [27] was further developed in this study. The
model is capable of personalization based on clinical measurements of aortic pressure
waves, imaging based vascular geometry (lengths, radii, and morphometry), as well as
cardiac wall motion kinematics [65]. As such, the model permits imaging-clinical data
assessment as a computationally efficient instrument, prior to detailed 3D computational
fluid dynamics simulations. Novel imaging protocols that account for cardiac chamber to
chamber diastole will further fortify refinement of the diagnostic instrument. This theoreti-
cal study illuminates the relative relevance of focal and diffuse stenosis. It also suggests
that knowledge of co-morbidities will improve our clinical diagnostics. Furthermore, it
informs our upcoming 3D investigation regarding the clinical data that will permit both
validation as well as prediction.
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Abstract: Background: Atrial fibrillation is a prevalent cardiac arrhythmia and may reduce cerebral
blood perfusion augmenting the risk of dementia. We hypothesize that geometric variations in the
cerebral arterial structure called the Circle of Willis (CoW) play an important role in influencing
cerebral perfusion. The objective of this work was to develop a novel cardio-cerebral lumped
parameter hemodynamic model to investigate the role of CoW variants on cerebral blood flow
dynamics under atrial fibrillation conditions. Methods: A computational blood flow model was
developed by coupling whole-body and detailed cerebral circulation descriptions, modified to
represent six common variations of the CoW. Cerebral blood flow dynamics were simulated in
common CoW variants, under control and imposed atrial fibrillation conditions. Risk was assessed
based on the frequency of beat-wise hypoperfusion events, and sensitivity analysis was performed
with respect to this model output. Results: It was found that the geometry of the CoW influenced the
frequency of hypoperfusion events at different heart rates, with the variant missing a P1 segment
having the highest risk. Sensitivity analysis revealed that intrinsic heart rate is most associated with
the considered outcome. Conclusions: Our results suggest that CoW geometry plays an important
role in influencing cerebral hemodynamics during atrial fibrillation. The presented study may assist
in guiding our future clinical-imaging research.

Keywords: reduced order model; atrial fibrillation; Circle of Willis variants; cerebral blood flow;
sensitivity analysis

1. Introduction

This paper is an extension of work originally presented in Functional Imaging and
Modelling of the Heart 2021 [1]. Atrial fibrillation (AF) currently affects a large part of the
population. In addition to commonly known risks such as strokes and transient ischemic
attacks, AF has been associated with increased cognitive decline and early dementia [2].
AF is known to reduce cerebral perfusion [3], and silent cerebral ischemia is thought to be a
key mechanism in the increased cognitive risk [2,4]. Ongoing imaging research strongly
suggests that a disrupted cerebral blood flow promotes debilitating early dementia [5]. The
effects of AF on cerebral perfusion may be modulated by cerebral vascular geometry, and
specifically by common congenital Circle of Willis (CoW) variants [6,7]. The function of a
complete CoW is to ensure consistent distribution of blood flow to all regions of the brain.
In cases with missing segments in the CoW, regions of the brain may be more susceptible to
harmful altered hemodynamics. The aim of this work is to investigate whether structural
variants of the CoW behave differently with respect to cerebral perfusion in AF conditions.
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Multi-scale hemodynamic modelling has been used to study cerebral circulation and
gain insight into patient-specific hemodynamics [8]. 3D modelling is a useful tool, which
provides realistic and accurate patient-specific insight into patient hemodynamics. It has
increasingly been used as the gold standard in computational hemodynamic studies as
computational fluid dynamics platforms become more accessible [9]. We have recently
found a close relationship between cardiac arrhythmia and systemic perfusion (Kharche
et al., 2021; Frontiers in Medicine). However, current 3D methods remain computationally
resource intensive, require high-definition vascular imaging, and are therefore unsuitable
for applications studying large population hemodynamics.

In contrast to 3D hemodynamic models, lumped parameter (0D) models are known
to provide clinically relevant information using significantly less time and computational
resources [8]. 0D models are particularly useful in studies where there are poorly under-
stood outcomes of diseases with well understood mechanisms because of their ability to
assess the impact of a range of parameters or cases on a particular outcome. This lab has
previously used 0D models to gain insight into the causes of pediatric hypertension [10]
and investigate therapeutic hypothermia [11]. Anselmino et al. [4] have previously used
0D modelling to investigate the interplay between AF and cerebral hemodynamics. They
determined that AF does indeed expose the brain to the risk of ischemia via low blood
flow, or so-called hypoperfusion events. Saglietto et al. [12] have also used 0D modelling
to predict that the optimal goal for a heart rate control strategy should be around 60 bpm,
considered strict rate control.

The findings by Saglietto et al. [12] are in contrast to the common practice of lenient rate
control (<110 bpm), which is based on findings from the RACE II trial, a large, randomized
control trial [13]. The RACE II trial was a consequential study, which found that, compared
to lenient rate control (<110 bpm), strict rate control (<80 bpm) was not more effective
in reducing mortality in persistent AF patients. These findings have informed treatment
strategies for persistent AF patients; however, they do not consider the increased risk for
dementia, later confirmed by de Brujin et al. [2] in a longitudinal study. Modelling studies
following de Brujin et al. [2] have aimed at elucidating the mechanism behind the increased
risk and finding potential treatment strategies that mitigate it.

Previous modelling studies form the basis for the present work; however, the role
of cerebral vascular structural variants, i.e., CoW variants, in the AF-cerebral perfusion
relationship remains underexplored. As the CoW is known to play an important role
in the distribution of blood flow to the brain, common variants should be considered
while studying the interplay between AF and cerebral hemodynamics. In this study, a
composite 0D model of human circulation with detailed cerebral vasculature was developed
to discover the effects of AF on cerebral perfusion in cases with common CoW variants.
Model composition is described in Section 2.1. The model is used to assess cerebral
hemodynamics during AF in all six common CoW variants, the strategy for which is
described in Section 2.4. Finally, the model itself is also assessed using sensitivity analysis
as described in Section 2.5, which details the parameter values that are correlated to model
outcomes.

2. Methods

This study is a modelling study that examines the role of varying blood vessel ge-
ometries in AF-related cerebral hypoperfusion. A previously developed composite 0D
model [1] (Figure 1) was used to simulate cerebral hemodynamics under control and AF
conditions. Six common variants of CoW geometry were modelled as separate cases, and
the results for each were presented. Sensitivity analysis was also performed on the model
to assess model parameters that had the greatest impact on simulated outcomes.
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Figure 1. Caricature of the whole-body blood flow model. The cerebral model (black box, bold, top)
is expanded in Figure 2.

Figure 2. Cerebral arterial architecture consisting of all Circle of Willis arteries. RA: Right anterior
artery; LA: Left anterior artery; RM: Right middle artery; LM: Left middle artery; RP: Right posterior
artery; LP: Left posterior artery; ACA1: Pre-communicating anterior cerebral artery; PCoA: Posterior
communicating artery; and PCA1: Pre-communicating posterior cerebral artery.

2.1. Model Components

The 0D model is a composite model that consists of whole-body circulation, a blood-
pressure modulated baroreflex control mechanism, and detailed cerebral circulation with
an autoregulation function. All model parameters were inherited from the literature values,
unless otherwise stated.

The whole-body circulation model was adapted from the model published by Heldt [14].
It consists of a network of blood containing elastic Windkessel compartments, which rep-
resent individual, or networks of, blood vessels. The time-dependent change in pressure
within each compartment is a function of the change in volume (i.e., flow in or out) divided
by the compliance of the compartment shown by the equation:

dP
dt

=
qin − qout

C
, (1)
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where P denotes compartment pressure, t denotes time, q denotes flow, and C denotes
compliance. The flow between connected compartments is calculated using the following
equation:

q =
Pp − Pd

R
, (2)

where Pp and Pd denote proximal and distal pressure, respectively, and R denotes resistance.
The pumping heart is represented as four compartments with variable elastance

(inverse of compliance), representing the four chambers of the heart. The time-dependent
elastances of ventricles and atria were calculated using activation terms. The equation for
atrial activation is:

0 < tloc ≤ tasys : acta = 1 − cos
(

π tloc
tasys

)
,

tasys < tloc ≤ 1.5tasys : acta = 1 + cos
(

2π
tloc−tasys

tasys

)
otherwise : acta = 0

(3)

in which acta is the activation term, tloc is the time since the initiation of the cardiac cycle, and
tasys is a contraction timing parameter. Similarly, ventricular activation is calculated using:

tav < tloc ≤ tav + ts : actv = 1 − cos
(

π tloc−tav
ts

)
tav + ts < tloc ≤ tav + 1.5ts : actv = 1 + cos

(
2π tloc−tav−ts

ts

)
otherwise : actv = 0,

(4)

where tav is the atrioventricular time delay and ts is a contraction timing parameter. The
activation constants are applied to each heart compartment using the equation:

E = Edias + 0.5
(
Esys − Edias

)× act, (5)

where Esys and Edias are systolic and diastolic elastances, respectively.
Additionally, backflow is prevented in the heart and systemic veins by setting flow

between compartments equal to 0 if distal pressure is greater than proximal pressure. A sim-
plified caricature of the circulation model is presented in Figure 1, in which compartments
are represented by boxes, and connections are indicated by arrows. It should be noted that
the boxes labeled “cerebral” and “lower body” each represents multiple compartments.

The baroreflex is a feedback mechanism, which works to maintain hemodynamic
homeostasis. It modulates peripheral vascular resistance, heart rate, and heart contrac-
tility to maintain systemic blood pressure and flow at healthy levels. The baroreceptor
mechanism is implemented according to the model proposed by Lin et al. [15]. The model
dynamically calculates sympathetic nervous activity (SNA) and parasympathetic nervous
activity (PNA) based on the mean arterial pressure, as well as arterial PCO2, which is
assigned a constant value of 40 mmHg. Values for SNA and PNA are then used to dy-
namically modulate peripheral vascular resistance, the intrinsic heart rate, as well as heart
contractility via modulation terms [15].

The cerebral circulation model is comprised of a network of elastic compartments
with compliances and resistances similar to the systemic circulation. While pressure and
flow are governed by the same equations as the systemic model, the formulation is more
complicated and is beyond the scope of this article. Readers may refer to Ursino and
Gianessi [16] for further details. The model also implements cerebral autoregulation, which
is a physiological mechanism that alters vascular resistance and compliance in order to
maintain blood flow within healthy ranges in the case of widely varying cerebral perfusion
pressure. Each downstream region (Figure 2, RA, LA, RM, LM, RP, LP) is regulated by
its own autoregulation function comprised of two integrated signals: Blood flow rate
in the region, which is calculated dynamically, and arterial PCO2, which is assigned at
40 mmHg. These two signals are applied to a first-order filter with time constants of 20 s

148



Appl. Sci. 2022, 12, 1750

for autoregulation and 40 s for CO2 control, and the resulting values are used to modulate
compliance and resistance within the corresponding vascular region. Blood flow from
the whole-body model to the cerebral model was allowed by connecting the basilar and
internal carotid arteries to the aortic compartment, and by connecting the cerebral outlet
vein to the superior vena cava compartment. A caricature of the arterial segments of the
cerebral model is shown in Figure 2.

This work considers the six common variants of the Circle of Willis found in the
cerebral vasculature, represented in Figure 3 [7]. All variants, aside from the complete
variant, are characterized by one or multiple missing segments of the CoW. To model the
absence of the relevant cerebral vessel, its inlet and outlet flow was assigned a nil value.

Figure 3. Caricature representations of all the common CoW variants. Variant 1 has all CoW vessels.
Variant 2 has a missing posterior communicating artery (PCoA). Variant 3 has both missing PCoAs.
Variant 4 has a missing precommunicating anterior cerebral artery, ACA1, segment. Variant 5 has a
missing precommunicating posterior cerebral artery, PCA1, segment. Variant 6 has a missing PCoA
and contralateral PCA1 segment.

2.2. Atrial Fibrillation

Each instance was simulated under AF and control conditions. The control was
defined as having normal sinus rhythm (NSR) with stochastic RR intervals sampled from a
normally distributed pink noise generator [17]. AF was modelled by assigning stochastic
RR intervals sampled from an exponentially modified Gaussian distribution around a
mean heart rate, modifying ventricular elastances (contractility), and assigning nil atrial
contractility [4,17–19]. Pink noise and exponential samples were generated using in-house
MATLAB scripts.

2.3. Computational Methods

The model used in this study has 57 coupled stiff ordinary differential equations
(ODEs). An in-house ODE solver [20] was deployed to generate stable and accurate
numerical solutions. The maximum integration timestep in the adaptive and implicit solver
was 0.001 s, which was found to provide the same solution when the timestep was halved.
The solutions were obtained using a relative tolerance of 10−6, with an accuracy of O(dt6).
Each instance of the simulation could be processed by available computing resources
running Red Hat Linux within 60 s. Instances were trivially parallelized using GNU
Parallel [21] in order to run a large number of instances (104) on multi-core compute nodes.
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2.4. Hemodynamic Differences in CoW Variants

Blood flow was simulated in each variant at nine different intrinsic heart rates (50 to
130 bpm) in accordance with clinical practice [22]. The probability distribution functions
underlying the RR intervals and the representative RR interval time series are illustrated in
Figure 4. In each simulation, the number of hypoperfusion events was recorded to represent
cerebral perfusion deficit. Derived measurements were the number of hypoperfusion events
in each vascular bed over the 5000 beats of the simulation. A hypoperfusion event in any
vascular bed was defined as a heartbeat in which the mean blood flow through the vascular
bed fell below the 5th percentile of blood flow in the corresponding NSR experiment.

Figure 4. Stochastic RR interval assignment. Top row: Probability distribution functions for sampled
RR intervals in NSR (A) and AF (B) at shown heart rates. (C) Sampled RR intervals with mean of
70 bpm over the span of 5000 beats under NSR (blue line) and AF (red line) conditions.

2.5. Sensitivity Analysis

Sensitivity analysis is a tool that provides a comprehensive understanding of the
workings of a computational model with respect to its parameters and a specified modelling
outcome [23]. The model has 95 parameters, which include all resistances, compliances,
vessel geometry attributes, time constants, and scaling factors. Parameters’ descriptions
and acronyms, as well as their control values relevant to this work, are provided in Table 1.
Model behavior was defined as the total number of hypoperfusion events in the distal
cerebral circulation over a 5000-heartbeat simulation.

To permit sensitivity analysis, a control model population of 104 instances was con-
structed. To generate the population, 95 modelling parameters were each randomly sam-
pled simultaneously from uniform distributions using a non-repetitive Mersenne Twister
random number generator [24]. The sampling was constrained using Latin Hypercube
Sampling [25]. The lower and upper limits adopted for each parameter’s uniform distri-
bution were obtained by multiplying the literature value by 0.5. for the lower limit, and
by 2.0 for the upper limit. The adopted limits provided a large range sampling for each
parameter. The model parameters and model outputs were stored for further analysis.
Sensitivity analysis, which ranked parameters according to their impact on model behavior,
was performed using partial rank correlation coefficients (PRCC) [26].
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Table 1. Relevant model parameters.

Parameter Description Baseline Value

Whole-body circulation

HR0 Intrinsic heart rate 75 bpm
Ediasrv Right ventricular diastolic elastance. 0.07 (mmHg ml−1)
Esysrv Right ventricular systolic elastance. 1.3 (mmHg ml−1)
Esysra Right atrial systolic elastance. 0.74 (mmHg ml−1)
Ediasra Right atrial diastolic elastance. 0.3 (mmHg ml−1)
Ediaslv Left ventricular diastolic elastance. 0.13 (mmHg ml−1)

Rpv Pulmonary venous resistance. 0.01 (mmHg s ml−1)

Cerebral circulation

Gaut Autoregulation function gain. 0.9 (unitless)
tauaut Autoregulation function time constant. 20 (s)

Cd Distal cerebral arterial compliance. 200 (ml mmHg−1)
kR Distal cerebral resistance scaling term. 13,100 (mmHg−3 s ml−1)

To compute PRCC, the normally distributed parameters (xi), as well as the observed
outputs (yi), were rank transformed. Then, the linear effects of other additional variables
were accounted for by expressing each as a linear regression of the inputs:

x̂j = a0 +
N

∑
k = 1
k �= j

akxk, and ŷj = b0 +
N

∑
k = 1
k �= j

bkxk. (6)

Using residuals defined as rxi = xj − x̂j and ryi = yj − ŷj, PRCC is defined as the
correlation among these residuals normalized using their respective variances:

PRCC
(

xi, yj
)
=

Cov
(
rxi, ryj

)
Var(rxi)Var

(
ryj

) . (7)

As evident in Equation (6), PRCC assumes an underlying statistical model that is
linear (regression), and the assumption of monotonicity provides the strength of the linear
relationship between a given pair of a parameter and an output [26,27]. The PRCC indices
range from −1 to +1.

3. Results

Model output statistics are presented from a single simulation instance with CoW vari-
ant 1 (complete CoW) at 80 bpm in Table 2. The statistics from the AF case are shown to be
similar to those in the NSR case. Median systemic blood pressures of 117.44/77.81 mmHg
(systolic/diastolic) for NSR and 119.51/78.95 mmHg for AF are shown to be similar to
physiological levels. Additionally, total cerebral blood flow is 12.54 mL s−1 for the NSR
case and 12.31 mL s−1 for the AF case.

The model has demonstrated that large variations in blood pressure are propagated
through the large arterial circulation and have a high impact on small vessels in the distal
cerebral circulation, annotated as RA, LA, RM, LM, RP, and LP in Figure 2. This effect is
demonstrated in Figure 5 where a drop in aortic blood pressure due to a long RR interval is
associated with two consecutive hypoperfusion events. The example shows aortic blood
pressure and simultaneous blood flow into the LM in a control and AF case, colored in
blue and red, respectively. On panel A, the dip in blood pressure can be seen in the AF
case between seconds 1 and 3. Corresponding with this dip, two hypoperfusion events
are annotated with black in panel B, with horizontal lines indicating the mean blood flow
value during the heartbeat to show that it is indeed below the fifth percentile of normal
blood flow.
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Table 2. Model outputs under NSR conditions.

Output Name Output Values

NSR AF

Pa,sys (mmHg) 117.44 ± 21.35 119.51 ± 17.45
Pa,dias (mmHg) 77.81 ± 15.85 78.95 ± 16.64
QACA (ml s−1) 0.99 ± 0.37 0.95 ± 0.45
QMCA (ml s−1) 3.68 ± 1.21 3.64 ± 1.37
QPCA (ml s−1) 1.47 ± 0.52 1.44 ± 0.59
CBF (ml s−1) 12.54 ± 4.24 12.31 ± 4.78

Model output statistics for a simulation run with CoW variant 1 (complete CoW), at an HR of 80 BPM under AF and
NSR conditions. Systemic pressure and cerebral blood flow statistics are shown to be similar in both NSR and AF
cases. Values are shown as median ± standard deviation. Pa,sys: Arterial systolic pressure; Pa,dias: Arterial diastolic
pressure; QACA: Anterior cerebral artery flow rate; QMCA: Middle cerebral artery flow rate; QPCA: Posterior
cerebral artery flow rate; CBF: Cerebral blood flow.

Figure 5. Hemodynamic outputs of a simulation of AF (red) and NSR (blue) at 70 bpm in the
normal CoW. (A) Aortic blood pressures. (B) Blood flow through the left middle distal artery with
hypoperfusion events shown in black.

The heart rate and vascular geometry dependence of hypoperfusion events is illus-
trated in Figure 6. For each of the six common variants of the CoW, total hypoperfusion
event counts are shown for simulations at imposed heart rates ranging from 50 to 130 bpm.

All variants displayed similar behavior within the range of heart rates examined, with
some differences in the number of counts, as well as the point at which they have the
highest hypoperfusion count. Variant 1, with a complete CoW, is represented in Figure 6A.
This variant had a minimum count occurring at a heart rate of 50 bpm with 178 total events,
and a maximum count at 120 bpm with 2048 total events. Variant two, with a missing PCoA,
is represented in Figure 6B. This variant had a minimum count at 50 bpm with 264 events,
and a maximum count at 120 bpm with 2248 events. Variant number three, with both
PCoAs missing, is shown in Figure 6C. It had a minimum count at 50 bpm with 268 events,
and a maximum count at 130 bpm with 2120 events. Variant four, with a missing ACA1, is
represented in Figure 6D. This variant had a minimum count at 50 bpm with 675 events,
and a maximum count at 110 bpm with 2861 events. Variant five, with a missing PCA1, is
represented in Figure 6E. This variant had a minimum count at 50 bpm with 211 events,
and a maximum count at 120 bpm with 2458 events. Variant six, with a missing PCoA
and contralateral PCA1, is represented in Figure 6F. This variant had a minimum count at
50 bpm with 97 events, and a maximum count at 110 bpm with 2386 events. All variants
had minimum counts at a 50 bpm heart rate. Maximum points varied between different
variants, although all were within 110 to 130 bpm. Variant 3 is notable in that there is no
count drop off at 130 bpm as there is in all other variants. Overall, all variants exhibit
similar behavior, increasing count with bpm, up to a maximum around 120 bpm.
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Figure 6. Absolute frequencies of hypoperfusion events in the distal cerebral circulations at varying
heart rates under AF conditions. Count is the sum of all hypoperfusion events in each of the six distal
circulation regions over a 5000 heart-beat simulation. Each panel shows hypoperfusion counts for
heart rates from 50 bpm to 130 bpm for a particular CoW variant. (A) Complete CoW. (B) Missing
PCoA. (C) Missing both PCoAs. (D) Missing ACA. (E) Missing PCA. (F) Missing PCoA and PCA.

Figure 7 illustrates alterations in cerebral blood flow heterogeneity between the six
variants. Under AF conditions, the left middle, left anterior, and left posterior regions
experience a balanced outflow in variants 1 through 4 (Figure 7A–D), indicating virtually
uniform cerebral perfusion. Alternatively, variants 5 and 6 show flow patterns that are more
irregular. Both these variants also have either out-of-phase or negative-flow amplitude in
the LP region relative to the other two regions shown. Additionally, flow oscillations in
the LP region for these two variants have much larger amplitudes than flow to the other
regions and compared to all flow in the other variants.

As illustrated in Figure 8, the maximal PRCC values regarding hypoperfusion count
are the intrinsic heart rate (HR0), Ediasrv, Esysrv, Gaut, and Ediasra. Notably, HR0 ranked
the highest for each variant, with varying amplitudes across the variants. Additionally,
mechanical characteristics of the right ventricle and atria have high PRCC values, i.e.,
Ediasrv, Esysrv, Ediasra, and Esysra. Gaut and tauaut, which are both parameters that play a
role in the cerebral autoregulation mechanism, also have high PRCC values for all variants.
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Figure 7. Perfusion to distal regions of the brain, represented by outflow at three distinct vessel
terminals. Color coding for all panels is provided in (B). In all panels, red line represents flow at the
terminal of left middle artery, blue lines represent flow at the terminal of left posterior artery, and
black line represents flow at the terminal of left anterior artery. Each panel illustrates blood flow in a
particular CoW variant. (A) Complete CoW. (B) Missing PCoA. (C) Missing both PCoAs. (D) Missing
ACA. (E) Missing PCA. (F) Missing PCoA and PCA.

Figure 8. PRCCs for hypoperfusion count for each of the six considered CoW variants. The 10 PRCC
values with the greatest magnitude are shown for each case and are ordered from greatest to least
magnitude. Symbols are described in Table 1. Each panel illustrates PRCC analysis for a particular
CoW variant. (A) Complete CoW. (B) Missing PCoA. (C) Missing both PCoAs. (D) Missing ACA.
(E) Missing PCA. (F) Missing PCoA and PCA.
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4. Discussion

While current treatment methods for AF, such as heart rate control and atrial ablation,
are assessed based on treatment mortality, there is growing evidence that other factors,
such as the impact on cognitive function, should be considered [2]. As research continues in
this field, the results of the present study suggest that the cerebrovascular structure should
be considered in treatment planning to ensure better clinical outcomes.

The present model is a composite of previously published models. It is based on
established biophysical modelling techniques, i.e., lumped-parameter modelling using
windkessel compartments. The components have been used previously to model a variety
of disease cases, including AF. While direct model validation with in vivo data was not
within the scope of the study, model outputs were presented for comparison with published
values. Median arterial blood pressures (systolic/diastolic) were 117.44/77.81 mmHg and
119.51/78.95 mmHg for NSR and AF, respectively, which are considered to be within healthy
ranges. Additionally, blood flow in major cerebral arteries is presented for comparison
with measured values published by Zarrinkoob et al. [28]. Zarrinkoob reports blood flow
in the ACA, MCA, and PCA to be 12%, 21%, and 8% of total CBF, respectively. The model
shows corresponding values of 8%, 29%, and 12% for the NSR case, and 8%, 30%, and 12%
for the AF case. Therefore, the model reflects clinically measured blood flow distribution,
with predominant blood flow occurring in the MCA.

Variations from regular blood pressure in large arteries due to AF were shown to be
associated with large changes in blood flow in the distal circulation of the brain (Figure 5).
These changes lead to occurrences of critical hypoperfusion events in the brain, which may
lead to silent cerebral ischemia, damaging brain tissue over time. The present modelling
of this phenomenon is in agreement with previous works [1,4,12], and is the primary
motivation for further investigation into the impacts of AF with respect to the cerebral
circulation. Additionally, in Figure 5, it can be observed that the initial hypoperfusion seen
at 2–4 s is followed by hyperperfusion from 4–7 s. This is to be expected because of the
reflexive nature of the autoregulation mechanism. The autoregulatory function modulates
the resistance and compliance of the downstream cerebral vessels within which the blood
flow is being observed. The autoregulation function acts on a time scale of approximately
20 s, therefore there is a small delay between the drop in blood flow and the response
of decreased resistance and increased compliance. This small delay in autoregulation
function is thought to be the reason spontaneous drops in arterial pressure due to irregular
heartbeats can cause transient hypoperfusion in the brain.

The result illustrated in Figure 6 shows that all considered CoW variants follow largely
the same pattern with respect to the effect of heart rate on hypoperfusion frequency. All
variants had a minimum hypoperfusion count at 50 bpm (in the heart rates considered),
with the maximum occurring around 120 bpm. The most consequential result from this
section is the result from variant 4, shown in Figure 6D. Variant 4 has a minimum hypop-
erfusion count of 675 at 50 bpm, which is over 2.5 times higher than variant 3, which has
the next highest minimum. This demonstrates that although patients with CoW variant
4 may respond to a heart rate control strategy, it may not be sufficient to protect against
hypoperfusion in the distal circulation of the brain. Based on this result, it is recommended
that for patients with variant 4 of the CoW, alternative treatment methods be used in
addition to, or instead of, heart rate control, in order to avoid ischemic cerebral damage.

It should be noted that this finding, along with previous modelling results [12], con-
tradicts the recommendation made based on the RACE II trial [13]. The study found that
relative to strict rate control, lenient rate control was as effective in preventing mortal-
ity and other outcomes, and was easier to achieve. This finding has informed clinicians
on rate control strategies in relation to preventing mortality in recent years. However,
cognitive impairment/dementia was not considered to be outcomes of this study, and
heart rate had not yet been linked to hypoperfusion events associated with AF. Therefore,
there is now growing evidence supporting strict rate control for preventing deleterious
cognitive outcomes.
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It was shown that certain variants could lead to increased heterogeneity in cerebral
blood flow, with increased blood flow in some regions, and decreased in others (Figure 7).
In particular, both variants with a missing PCA1 segment (variants 5 and 6) displayed
heterogeneous flow patterns, as well as having larger amplitudes of the oscillatory flow
rate than the other variants. This indicates that the PCA1 segment plays a key role in the
distribution of blood flow with respect to homogeneity among the distal cerebral vessels.
Although the large oscillations in blood flow to the left posterior circulation present in these
variants are not considered harmful by the metric of hypoperfusion events, which is the
primary focus of this study, they may lead to detrimental outcomes via other mechanisms,
such as abnormal wall shear stress or acute hypertension. These phenomena will be further
investigated in future work.

Sensitivity analysis, as shown in Figure 8, shows the model parameters that have
the largest impact on modelling outcomes, namely the hypoperfusion event frequency. It
was shown that in all cases of variant CoWs, HR0 had the highest PRCC value, meaning
that it is the parameter that most influences the hypoperfusion event frequency. This was
expected, as heart rate control has been shown to be an effective method for decreasing
hypoperfusion events [12,22]. In all variants, elastance values for the right heart were
among the parameters with the largest PRCC values. This is an indication that the function
of the right heart is strongly related to cerebral hypoperfusion outcomes, and warrants
further study.

The present work is an investigation into the impact of AF on cerebral circulation
considering common cases of congenital variations to the CoW. The presented model
considers AF in the absence of other common cardiovascular conditions such as hyper-
tension or atherosclerosis and represents simple cases of missing arterial segments, for
the purposes of direct comparison. The model components have previously been used
to study such conditions as hypertension, atherosclerotic lesions, and arterial occlusions.
Additionally, small variations in cerebrovascular structure can be trivially modelled by
assigning modified resistances to blood vessels. Future work will focus on incorporating
these common conditions into our modelling, to further understand the impact of AF on
cerebral circulation. Previously used techniques for representing populations using 0D
models will be employed to elucidate the impacts of varied cerebrovascular structures [11].

In a clinical environment, it is critical for computational models to be applicable on a
patient-specific basis. Methods for the incorporation of imaging data into 0D blood flow
models are currently under development and will be used to further assess the impact
of variant vascular structures using patient-specific data [8,29]. Such methods will also
be effective in the clinic, opening up the possibility of patient-specific assessments for
persistent AF patients. The presented model is extensible and personalizable, which will
permit patient-specific risk stratification [30]. Further investigation will be conducted using
spatially resolved 1D modelling to investigate the impacts of these phenomena on the
blood vessels as well as the surrounding tissue in greater detail.
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Abstract: Inverse modeling approaches in cardiovascular medicine are a collection of methodologies
that can provide non-invasive patient-specific estimations of tissue properties, mechanical loads,
and other mechanics-based risk factors using medical imaging as inputs. Its incorporation into
clinical practice has the potential to improve diagnosis and treatment planning with low associated
risks and costs. These methods have become available for medical applications mainly due to
the continuing development of image-based kinematic techniques, the maturity of the associated
theories describing cardiovascular function, and recent progress in computer science, modeling,
and simulation engineering. Inverse method applications are multidisciplinary, requiring tailored
solutions to the available clinical data, pathology of interest, and available computational resources.
Herein, we review biomechanical modeling and simulation principles, methods of solving inverse
problems, and techniques for image-based kinematic analysis. In the final section, the major advances
in inverse modeling of human cardiovascular mechanics since its early development in the early
2000s are reviewed with emphasis on method-specific descriptions, results, and conclusions. We draw
selected studies on healthy and diseased hearts, aortas, and pulmonary arteries achieved through the
incorporation of tissue mechanics, hemodynamics, and fluid–structure interaction methods paired
with patient-specific data acquired with medical imaging in inverse modeling approaches.

Keywords: inverse models; data assimilation; cardiovascular imaging; image-based kinematics;
biomechanics; tissue mechanics; hemodynamics; patient-specific models

1. Introduction

The primary role of numerical modeling in cardiovascular biomechanics has been to
predict the performance of medical devices and to estimate physiological and mechanical
cues acting on tissues, such as pressure and flow-driven stresses. Given the vast experimen-
tal evidence of mechanical factors producing effects on cellular differentiation, signaling,
communication, and function [1–5], in silico experiments have explored the role of me-
chanical stimuli on normal and pathological tissue growth and remodeling [6]. From a
clinical research standpoint, the development of patient-specific biomechanical models
could provide more accurate and detailed data leading to a better understanding of the
onset and progression of cardiovascular disease [7]. In addition, computational modeling
has also been proposed as a supporting tool for medical practice on a patient-specific basis,
which could provide non-invasive assessments of tissue properties, structure, and mechan-
ical loads as physiologically meaningful risk stratification factors. Such patient-specific
analyses have the potential to bring immense benefits to clinical practice by supporting
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diagnosis, treatment planning, and predictions of the outcome of surgical procedures with
minimum associated costs and risk to the patients [8].

However, for biomechanical models to provide low-risk patient-specific solutions,
personalized non-invasive clinical studies must be readily available to quantify regional
cardiovascular function. Current medical imaging technology, namely echocardiography
and magnetic resonance imaging (MRI), offers not only anatomical information but also
high-resolution kinematics data of tissue motion and blood flow [9–12]. Kinematic-derived
quantities, such as peak and average strain on the myocardium and aortic walls, have
shown a good correlation with clinical risk markers [13]. Nevertheless, kinematic informa-
tion alone cannot provide insights about mechanical forces, stresses, and tissue material
properties, which are necessary for a full understanding of healthy and pathophysiological
phenomena [14].

The inverse method, or data assimilation method, is an approach that allows solving
classic mechanics problems “backwards”; that is, retrieving material properties and dy-
namic information (stress and forces) using measured kinematic information and loading
boundary conditions as input [15]. Several research groups have coupled computational-
mechanics tools with medical imaging technology to retrieve relevant biomechanical and
hemodynamic markers from normal and pathological human tissues and organs [16], in-
cluding diverse cardiovascular components [17]. Inverse modeling approaches have the
potential to become a valuable tool for the non-invasive assessment of patient-specific car-
diovascular health by providing quantitative physiological metrics that cannot be directly
measured in vivo but may be derived entirely from clinical evaluations and the application
of biomechanical principles.

The relevance of patient-specific modeling and its potential impact on the future of
personalized and predictive health care has been acknowledged by several funding agencies.
In 2003, the Interagency Modeling and Analysis Group was formed from the collaboration
of nine institutes of the National Institutes of Health (NIH) and three directorates of the
National Science Foundation (NSF). This group released its first funding opportunity in
2004 under the title “Interagency Opportunities in Multiscale Modeling in Biomedical,
Biological, and Behavioral Systems Solicitation”, which has been regularly reissued since
then, and led to the creation of the Multiscale Modeling Consortium which includes over
100 projects on multiscale modeling of biological systems. The European Union initiated the
“Structuring the Europhysiome” Consortium in 2006, which led to the Virtual Physiological
Human project, an ongoing initiative that aims to bring together policymakers, regulatory
agencies, funding bodies, industry, and research organizations towards the development of
integrated computer models of the mechanical, physical, and biochemical functions of the
living human body [7]. These initiatives have motivated the integration of multidisciplinary
teams of biologists, physicians, and engineers who are faced with the challenge of bringing
together field-specific nomenclatures, techniques, and analytical approaches.

Inverse modeling of biomechanical systems requires the confluence of state-of-the-
art techniques from several disciplines including clinical care, medical imaging, simula-
tion engineering, data analysis, and computer science (Figure 1). Inverse methods have
been developed on a highly specific basis and tailored to the available clinical data, tis-
sue/pathology of interest, and available resources; thus, inverse modeling developments
only share a general data processing pipeline, while differing on the clinical data source,
imaging technique, and modeling approach. Therefore, the task of designing an inverse
method pipeline requires a comprehensive understanding of the process at all stages, for
which familiarity with fundamental concepts and terminology is a prerequisite. The latter
can be challenging due to the multidisciplinary nature not only of the method itself but
also of the clinically relevant phenomena to model.

Inverse modeling analyses can also be applied to in vitro experimental setups. The
main advantage of this approach is that input data is not limited by the available clinical
tests, mechanical loads can be precisely controlled, and kinematics can be measured with
high-resolution instruments. Furthermore, the target of the inverse method can be defined
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not only in terms of kinematic information but also in terms of controlled mechanical loads
and stress measurements [18]. Moreover, the outputs of inverse modeling can be validated
with controlled experimental parameters. Inverse analyses of in vitro setups have been
applied to explanted animal and human tissue, and to engineered tissue constructs. Notably,
inverse modeling has been applied to resolve mechanics at a cellular level. The traction
force microscopy (TFM) technique was introduced by Butler et al., to estimate the force
that adherent cells exert on their surroundings by solving the traction field in a hydrogel of
known properties, cultured with cells, and with embedded beads as visual markers [19].
By tracking the bead displacements through microscopy, and setting known boundary
conditions, the traction field is resolved by an exact solution assuming a semi-infinite
medium. Further development was introduced by Tambe et al., with the monolayer stress
microscopy (MSM) technique, which allowed the inverse estimation of stress fields across
monolayer cellular constructs under static and dynamic conditions by inducing controlled
displacements of the boundary under a motorized microscope [20]. These, and other similar
techniques, have been used to explore the response of cardiovascular cells (endothelial
cells, cardiomyocytes, smooth muscle cells, etc.), cellular layers, and engineered tissue
to mechanical stimuli in terms of cell proliferation, migration, expression, and synthesis
of extracellular matrix components [21–23]. The detailed and accurate results that can
be retrieved from inverse analyses of in vitro experiments can provide valuable insights
into cardiovascular mechanobiology. These insights contribute to the understanding of
how macroscopic biomechanical factors affect the healthy or pathological growth and
remodeling of cardiovascular and engineered tissues. However, the replication of in vivo
physiological conditions in vitro is cumbersome, and the results of in vitro experimentation
can be challenging to extrapolate to patient-specific situations. As a result, the clinical
application of inverse analyses of in vitro experiments remains limited.

This article aims first to serve as a referential document for concepts and methods
from all involved disciplines on patient-specific in vivo inverse modeling; and secondly,
to highlight the potential clinical application of patient-specific inverse modeling in the
cardiovascular research field. Specifically, we review the fundamentals of cardiovascular
tissue and blood biomechanics, modeling and simulation, and medical imaging, as they
relate to the inverse modeling approach and its applications in cardiovascular medicine. In
Section 2, we review the application of the principles of classical continuum mechanics to
the study of blood and tissue motion, with special emphasis on the constitutive equations
that have been proposed to describe the mechanical behavior of cardiovascular tissue
and blood. Section 3 briefly summarizes the fundamentals and main features of the finite
element method (FEM) and finite volume method (FVM), as the most popular formulations
for the numerical solution of biomechanical models. Next, we review the general definition
of inverse problems and the available alternatives to solve inverse mechanics problems in
Section 4. In Section 5, we review the working principles and main features of ultrasound
(US), magnetic resonance imaging (MRI), and computational tomography (CT) imaging,
giving special attention to the available techniques for the resolution of tissue and blood
kinematics. Finally, in Section 6, we present a comprehensive review of the applications
of imaging-based inverse modeling approaches to patient-specific human cardiovascular
mechanics, including the resolution of the unloaded configuration and the estimation of
tissue properties and stresses. Reviewed applications include healthy and diseased heart
valves, cardiac and arterial walls, and hemodynamics of large arteries. To highlight the
potential application of the inverse-modeling approach in cardiovascular medicine, we
focus herein mostly on developments made in human studies, with a few mentions of
relevant and pioneering studies in animals.
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Figure 1. Timeline of microprocessor speed as a measure of computation capability, and relevant
landmarks on the fields of biomechanics theory, medical imaging and simulation that make possible
modern patient-specific image-based inverse modeling of the cardiovascular system. Acronyms: CT,
computerized tomography; DENSE, displacement encoding with stimulated echoes; FEM, finite ele-
ment method; FVM, finite volume method; IE, inverse elastostatics; FSI, fluid–structure interactions;
PC, phase contrast; MRI, magnetic resonance imaging.

2. Governing Principles of Biomechanics

Modern biomechanics consists of the formulation of governing equations describing
balances of mass, linear and angular momentum, and energy to biological systems and
physiological processes. The human body maintains a uniform and stable temperature
through homeostatic thermoregulation. Thus, contributions due to temperature change
in the internal energy of the material, heat fluxes, and heat supply are typically negligible
to the energy balance, which is in turn reduced to the balance between deformational
energy and stress power (thermodynamic work). In classical continuum mechanics of
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purely mechanical processes, the balance of angular momentum directly translates to the
symmetry of the stress tensor, and therefore, the relevant governing equations for most
cardiovascular mechanics applications consist only of the balances of linear momentum
and mass. However, most biological systems are open, and continuously interact with their
surroundings, and thus the conservation principles must be handled carefully, especially
with respect to tissue growth and atrophy within relevant timescales.

Given that the resolution of most in vivo medical imaging is on the scale of millime-
ters, only phenomena occurring at the tissue level can be directly associated with these
measurements. The assumption of material continuity is reasonable for the formulation
of the governing principles at this scale, leaving any additional considerations dealing
with the extracellular and intracellular micro-environments to be included ad hoc with
additional modeling formulations and constitutive equations.

To apply these principles, it is necessary to relate the stress tensor to kinematic mea-
sures, which is in essence the description of the mechanical behavior of the material under
study. This information is provided by a constitutive equation; these can be either phe-
nomenological equations “arbitrarily” formulated to reproduce experimental observations,
or analytical expressions inspired by theoretical interactions of the material constituents at
the micro or molecular scale. The selection of adequate models to describe the phenomena
of interest is key to the success of any engineering analysis. The selected model must be
complex enough to describe the most salient observable features at the scale of interest,
while ideally being simple enough to provide a rational interpretation of its parameters
and results and render a computationally tractable numerical problem. After fitting these
parametrized models to experimental data, the constitutive equation can provide an ad-
ditional understanding of the underlying mechanisms associated with the mechanical
response of the material. Models of increased complexity usually require a larger number
of parameters to be fitted, and overparametrized models can lead to solution multiplicity
which obscures its interpretation and validity. For the sake of generality, the constitutive
equation must also be independent of the frame of reference, comply with the second
principle of thermodynamics, and yield amenable mathematical treatment and systems of
equations that are solvable [24].

After formulating the constitutive relation as a function of specific unknowns (e.g.,
displacement or velocity fields), the resulting system of governing equations is then par-
ticularized into specific problems by the definition of temporal and spatial domains of
interest and the imposition of appropriate boundary and initial conditions. To obtain a
unique solution, it is necessary to constrain the problem by assigning a first-order boundary
condition on at least one of the boundaries (e.g., by prescribing a known displacement or
velocity). On the rest of the boundaries, higher-order boundary conditions can be applied to
impose distributed forces such as a known pressure. Once solved, the result of this forward
formulation is the transient spatial distribution of displacement or velocity throughout
the domain as a result of the specified loads and material properties. From this kinematic
information, strain and strain-rate distributions can be numerically derived, and the stress
distributions retrieved via the constitutive equation.

In the following subsections, we present a review of the main features of the mechanical
behavior and composition of cardiovascular tissues and blood, as well as the constitutive
equations that have been developed and applied to model such behaviors. Then, we review
the algorithms implemented to model fluid–structure interactions and their importance in
cardiovascular mechanics simulations. Finally, we briefly discuss the modeling of biological
tissue growth and remodeling by the application of the constrained mixture theory.

2.1. Structural Mechanics of Cardiovascular Tissue

The study of soft biological tissues under the framework of finite elasticity was initiated
by Y.C. Fung and others in the late 1960s, setting the basis of modern biomechanics [25,26].
As in classical solid mechanics, the mechanical analyses of cardiovascular tissues are
usually performed with a Lagrangian formulation of the governing principles (Figure 2).
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Applied forces are imposed as boundary conditions. For blood vessels, these are prescribed
as transmural pressure differences that often assume a traction-free condition on the
adventitial surface. More recently, however, growing attention to the role of perivascular
and pericardial support and tethering has promoted the inclusion of restrictions to the
displacement of the outer surface of the heart and vasculature [14,27,28]. In addition, more
complex formulations of cardiovascular tissue mechanics which departs from classical
elastic solids have been proposed to account for complex microstructural compositions,
the inclusion of pre-stress/strains, chemically activated muscular tone, and viscous energy
dissipation.

Figure 2. Representation of the modeling process of structural mechanics of cardiovascular tissue
and fluid mechanics of the blood flow with a continuum mechanics approach. Structural mechanics
of cardiovascular tissue are usually analyzed with a Lagrangian formulation that follows the defor-
mation of a given portion of the tissue. Blood flow mechanics is usually analyzed with an Eulerian
formulation, that is, analyzing the mass and energy balances on a fixed volume of interest through
which the fluid flows.

Cardiovascular tissues are comprised of multiple layers of cells and extracellular
matrix (ECM) components. The ECM is a network of macromolecules that is continuously
synthesized and degraded by active cells and functionally provides them with structural
and biochemical support. Typically, collagen, elastin, and fibrillin are regarded as the
main structural constituents responsible for the macroscopic mechanical behavior of car-
diovascular tissues [29]. Healthy cardiovascular tissue retains residual stress even when
unloaded (i.e., the tissue is pre-strained relative to a reference state of zero transmural pres-
sure). Circumferential and axial pre-stress/strain in vascular conduits have been widely
established by measuring how much these tissues recoil to an open configuration when
excised and cut transversely and longitudinally to relieve the residual stress [30,31]. It
has been hypothesized that pre-strain plays a relevant role in balancing higher stresses
on the luminal surface of blood vessels and promoting a homogenized transmural stress
distribution and homeostatic equilibrium of the vascular tissue [32]. Notably, residual
strain is heterogeneous and has been shown to vary with patient age and health, likely as a
consequence of heterogeneous growth and remodeling and/or damage.

Additionally, cardiovascular tissue is muscular in nature and actively contracts/
distends. Thus, its mechanical behavior is affected by the activation of actin-myosin sliding
filaments, which depends on ion-based chemical signaling and determines the muscular
tone. In the myocardium, striated muscle activation is responsible for cardiac contraction. In
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large arteries, contraction of smooth muscle cells regulates downstream vascular resistance,
blood flow, and propagation of the pressure-pulse wave along the vascular tree.

Of note, cardiovascular tissue also exhibits viscoelastic behavior, which has been
established with stress relaxation, creep, and strain-rate experiments. It has been argued
that viscous energy dissipation of healthy tissue, functioning at a regular physiological rate
(~1 Hz), is negligible compared to stored strain energy [33]. Nevertheless, viscoelasticity
may play a critical role under pathological conditions where the deformation rate is in-
creased, such as in atrial fibrillation, or when dealing with highly dissipative structures
such as lipid pools in atherosclerotic plaques [34,35]. Despite the relevance of viscoelastic
properties to pathological conditions, standardized testing protocols have yet to be devel-
oped for the exploration of its relation to disease onset and progression [36]. Notably, if
viscous dissipation and inertial effects are neglected, all temporal terms in the governing
equations are canceled, rendering the problem a quasi-static process (which is the most
common approach applied to vascular wall mechanics).

2.1.1. Constitutive Equations
Passive Properties

Linearized elasticity falls short in describing the complex behavior of biological tis-
sue, not only because the mechanical response is highly non-linear but also the material
undergoes finite motions and deformations. In the case of non-linear behavior, it is usu-
ally convenient to employ the formulation of hyperelasticity and express the constitutive
equations as the relation of a scalar stored energy density function to the deformation
gradient tensor or the strain tensor (while other definitions of stretch or strain tensors are
also possible and common). The scalar energy density function represents the amount of
deformational energy stored per unit volume and is defined in such a way that the stress
tensors can be obtained from their derivatives with respect to the strain or stretch tensor.

The passive behavior of cardiovascular tissue is characterized by an increasing re-
sistance to deformation with strain. This behavior is represented by an increasing slope
in the stress versus strain/stretch and strain energy versus strain/stretch curves, with
a close to zero slope at zero strain and rapidly increasing at physiological ranges. This
behavior has been attributed to the structural characteristics of the ECM components. It
has been suggested that the increasing resistance to deformation with strain is owed to
the progressive engagement of wavy bundles of elastin and collagen fibers to support the
mechanical loads (Figure 3).

Hyperelastic isotropic material models, such as the Neo–Hookean and the Mooney–
Rivlin constitutive equations, can accurately describe the behavior of amorphous bodies
such as lipid pools in atherosclerotic formations, and fit some portions of the pressure–
volume relation of blood vessels. The symmetry of these material models allows its repre-
sentation as to the linear combination of the deformation gradient invariants weighted by
the material properties. This formulation allows the determination of unique material prop-
erties for a given mechanical behavior. However, these models fail to reproduce the charac-
teristic highly nonlinear and anisotropic behavior of cardiovascular tissue (Figures 2 and 3).
This was originally addressed by the use of phenomenological equations, e.g., the Fung
orthotropic exponential model being one of the most commonly used. Its success relies
on its relative simplicity, widespread numerical implementation, and accuracy in the pre-
diction of stress-strain curves [24,26]. Guccione et al. proposed modifications to Fung’s
orthotropic model based on myofiber structure and orientation to tailor myocardial tissue
behavior [38]. These phenomenological equations usually consist of two terms contributing
to the strain energy function. First, the contribution of volume changes is written as a
function of the determinant (third invariant) of the deformation gradient tensor. The second
term is the deviatoric contribution to the strain energy function, defined to be proportional
to an exponential function of the components of the strain tensor. The proportional constant
sets the scale of the material stiffness, and the function of the strain tensor components
defines the material anisotropy. Part of the success of Fung-like equations in describing
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the stiffening of cardiovascular tissue with strain relies on the exponential functional form
to quantify the effect of strain increments on deformational energy. However, the fitted
constants of phenomenological equations lack physical interpretation which is desirable
for studies aiming to relate material properties with pathological conditions [39,40].

Figure 3. Representative biaxial stress-stretch behavior of healthy cardiovascular tissue. The stress
and slope increase with the stretch/strain in any direction. This suggests that the cardiovascular
tissue stiffens with stretch/strain which is hypothesized to be a consequence of the progressive
engagement of ECM components to resist further deformation. This behavior is modeled by expo-
nential functions of the deformation tensor components and/or invariants. Mark symbols in the
figures show experimental biaxial test data of the human thoracic aorta for (a,b) young patients (20 to
35 years of age), and for (c,d) older patients (57 to 71 years of age). Solid lines represent the best-fit
approximation with a four-fiber family constitutive equation. Reprinted/adapted with permission
from Ref. [37], 2014, Elsevier.

In the past decades, many microstructure-inspired constitutive models have been pro-
posed to specifically suit cardiovascular tissue behavior [39,41]. Fiber-family models have
been particularly successful in reproducing the anisotropic behavior of the vascular wall
while keeping physiological meaning to some of the fitting constants, the Holzapfel–Ogden
model and its many variants being the most popular for cardiovascular tissue. These mod-
els assume that families of 1D fibers, each with specific mechanical behavior, orientation
distribution, and volume fraction, are embedded within an isotropic continuum matrix.
The isotropic component of the strain energy function is usually defined as a function
proportional to the first invariant of the deformation gradient tensor. The contribution
of fiber families is a weighted sum of exponential functions, the weighting factors being
the fiber family material parameters. The exponential functions are defined depending on
deformation tensor invariants and the relative orientation of fibers to strain, such that the
contribution of a fiber family is maximized if the strain deformation occurs in the direction
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of the fibers [37]. Again, exponential functions are employed to mimic the stiffening effect
of strain on cardiovascular tissue (Figure 3), this time being directly attributed to the ECM
fiber components. Many improvements to these models have been proposed to account
for different coupling effects such as inextensibility of fibers or cross-linking of the fiber
ensembles [42–45].

Active Properties

Adequate modeling of active contraction is key for an accurate description of cardio-
vascular function in general, being particularly critical for modeling the heart. Conceptually,
there are two possible approaches, the active stress models are the most common and they
assume the stress tensor can be decomposed as the sum of a passive and active component,
while active strain models assume a product decomposition of the deformation gradient.

Most active contraction models used in the inverse analysis of ventricular mechanics
through continuum mechanics are simplifications of more complex bio-chemo-mechanical
models such as the work of Hunter et al. [46]. The latter proposes a four-state variable
model which includes the passive elasticity of myocardial tissue, the binding of calcium
ions (Ca2+) to troponin C and its release, tropomyosin movement kinetics, the myofiber
length, and the kinetics of cross-bridge tension build-up under perturbation of myofilament
length. In practice, the detailed information required for the evaluation of this model is
out of reach, so simplified models assume the active stress acts mostly lengthways the
direction of myofibers, with a magnitude that is proportional to the fiber length and the
activation status. The activation status is often expressed as a time-dependent spatially
heterogeneous function ranging from 0 to 1 [47]. Active strain function will impose the
relative shortening lengthways of myofiber directions as a function of location and time
along the cardiac cycle.

Typically, the activation state is assumed to be instantaneously homogeneous within
the region of study, however, it is known that cellular activation propagates as an elec-
trical wave and the excitation-contraction coupling poses a complex electromechanical
problem [48]. This propagation has been modeled macroscopically as a reaction-diffusion
problem of the electric potential through the intracellular and extracellular domains, thus
known as the bidomain model. The monodomain model is a simplification that assumes
the same propagation anisotropy for both domains. Some interesting research has been
developed to apply inverse modeling to fit the parameters of mono and bidomain equations
using patient-specific electrocardiography [49,50]. These, however, fall out of the scope of
this review, and the interested reader is encouraged to study the abundant literature on the
inverse problem of electrocardiography [51,52].

The application of active contraction models requires the specification of the local
myofiber orientations. Patient-specific myofibers orientation can be resolved via diffusion
tensor MR imaging (DT MRI) [53]. Being a relatively novel technique, these scans are rarely
available from medical records of cardiovascular-disease patients, although their relevance
in the biomedical field is a growing topic of discussion [54]. Therefore, myofiber orientation
is either assumed a priori with simplified models or obtained through diffeomorphic
transformations with the employment of precomputed cardiac atlases [55]. Bayer et al.
proposed a Laplace–Dirichlet rule-based algorithm for assigning myofiber orientation to
computational heart models that showed good agreement with DT MRI measurements.
This algorithm consists of the resolution of the Laplace equation on the simulation domain
with appropriate Dirichlet boundary conditions constrained by the following rules: the
longitudinal fiber direction is parallel to the endocardial and epicardial surfaces, the
longitudinal fibers rotate clockwise throughout the ventricular wall from a positive helical
angle at the endocardium to a negative helical angle at the epicardium (both imposed by
the user), fibers in the papillary muscles and trabeculae are assumed parallel to the long
axis of these structures, the transverse fiber direction is perpendicular to longitudinal fibers,
and fiber orientation in the septum is continuous with the ventricular walls [55]. Similarly,
Potse et al. proposed a rule-based algorithm to define myofiber orientations assuming that
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longitudinal fibers are orthogonal to the local vector pointing to the shortest path between
endocardium and pericardium, with a clockwise varying helical angle [56]. Rijcken et al.
derived an equation for longitudinal and transverse myofiber orientation by solving an
optimization problem, which maximized the ejection while maintaining fiber strain as
homogeneous as possible on idealized geometries [57].

2.2. Fluid Mechanics of Blood Flow

For the study of fluids, it is more practical to implement an Eulerian formulation of
the governing equations. This formulation is obtained by applying the Reynolds transport
theorem to the equations for mass and momentum balance. Thus, this formulation solves
the relation between flow driving forces, flow velocity, and deformation rates (Figure 2).
A simplifying assumption applicable to biological systems is the incompressibility of the
fluids, as most of them are either liquids or gases moving at subsonic velocities. Addition-
ally, it is convenient to decompose the stress tensor into a spherical tensor representing the
hydrostatic pressure and a deviatoric stress tensor. With this decomposition, constitutive
equations can be designed to specifically relate the deviatoric stress components to the
viscous dissipation of momentum.

Blood flow is generally assumed to be laminar throughout the circulatory system.
The main arguments for this assumption are the pulsatile nature of the flow, the reduced
dimensions of the vessels, and relatively low velocities, each contributing to the viscous
effects overcoming the inertial forces and preventing turbulent random motion. However,
it has been argued that transition to turbulent flows could be achieved locally in stenotic
arteries. The use of a laminar model to study those cases could lead to an underestimation
of wall shear stress, and stress oscillation [58,59]. Unlike most conventional engineering
flows, blood flow is pulsatile and contained by compliant conduits of complex geometry.
Since the 1950s, Womersley [60], McDonald [61], Taylor [62], Pedley [63], and others,
developed analytical and experimental studies of pulsatile flow in mammals, identifying
the most relevant parameters and features of this type of flow, thus setting the bases for
modern hemodynamics.

Besides the intricacies of pulsatile flow in distensible conduits, the blood itself is a
complex fluid. Blood consists of a suspension of cells in an aqueous solution of proteins
and minerals called plasma. Plasma occupies approximately 55% of the blood volume,
the rest being mainly occupied by red blood cells, white blood cells, and platelets. The
rheological behavior of blood depends on how its constituents interact with each other and
with the vessel walls, in consequence, this behavior is non-linear and highly dependent on
the volumetric composition of blood, the flow conditions, and vessel dimensions. Mod-
eling the complex interactions of blood constituents is a challenging statistical mechanics
problem [64]. Some researchers have shown that cell aggregation and disaggregation are
relevant to accurately describing blood rheology, especially in capillary flows where the cell
size is comparable to the vessel diameter. Multiscale approaches have been successful in
coupling the behavior of single cells as elastic entities with the transport equations of fluid
flow, which are relevant for the study of clotting, aggregation, and platelet activation [65,66].
These approaches are computationally expensive, making them impractical for the study
of large vessels.

Constitutive Equations

In the study of large and medium vessels (the ones that can be feasibly resolved with
standard medical imaging), blood is often assumed to be a single-phase continuum. This
approximation is reasonable given the relatively small size of cell aggregates compared to
the vessel dimensions (and thickness of the boundary layer), and the relative relevance
of inertia on flow motion [67]. For these cases, phenomenological constitutive equations
describing the macroscopic behavior of flow are often applied. The linear Newtonian
fluid is the simplest and most commonly employed model, providing reasonable results in
vessels with diameters down to 200 μm [67]. Constitutive equations, such as the Casson,
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Herschel–Bulkley, and Carreu–Yasuda, incorporate the shear-thinning effect on apparent
viscosity by introducing a yield shear stress term [68]. To account for the effect of the
volumetric share of cell suspension, recent works have included the hematocrit as an
independent variable for the estimation of the effective viscosity [69].

2.3. Fluid-Structure Interactions (FSI)

Mechanics of the vascular wall and hemodynamics have been mostly studied as iso-
lated problems; however, the function of the cardiovascular system is the result of complex
interactions between blood, the actively contractile cardiac tissue, and the compliant vascu-
lar walls. The interaction of fluids and solids can conceptually be achieved by coupling the
boundary conditions on the interface between the solid and the fluid, such that the field
of displacements, velocities, and stresses are continuous and derivable at all points in a
monolithic fully coupled approach. This, however, poses many implementation difficulties
for complex 3D domains that can only be solved numerically. In addition, the typically
large deformations of the cardiovascular walls cannot be handled by linearized methods
used in conventional engineering applications.

The immersed boundary method, introduced by Peskin, was originally developed
for the study of flow around heart valves and was rapidly adopted for many other ap-
plications [70]. In this approach, the Eulerian variables of fluid dynamics describing the
surrounding flow are defined on a fixed computational grid, while the Lagrangian vari-
ables, accounting for the deformation of the tissue structures, are defined in a curvilinear
computational grid that can be displaced with no conforming constraints in respect to the
Eulerian grid. The moving solid boundary interacts with the fixed fluid domain by means
of elastic body forces which are modulated by Dirac delta-like functions [71,72]. The ficti-
tious domain method is a generalization of the immersed boundary method, which solves
the coupling of the Lagrangian and Eulerian domains by the use of Lagrange multipliers
instead of the concept of body forces [73]. This method is computationally less demanding
as it does not require fitting the interface boundary at the cost of impaired accuracy near
the interface.

Similarly, Figueroa et al. proposed the coupled momentum method, consisting of
changing the non-slip condition on the fluid boundary to a traction condition, which is
strongly coupled to the degrees of freedom of modified thin-membrane elements. This
allows the formulation of the solid equations on the same Eulerian frame as in the fluid
equations. In consequence, the fluid–solid interface mesh remains fixed, while the bound-
ary nodes will have nonzero velocities [74]. Another well-established method for FSI
simulation is the arbitrary Lagrangian–Eulerian (ALE) algorithm, which allows the arbi-
trary convective motion of the computational nodes of the discretization grid with respect
to a fixed reference frame. Typically, the nodes on the fluid-solid interface are treated with
a Lagrangian formulation. To deal with large or heterogeneous deformations of the inter-
face, several implementations include the re-discretization of the computational domain
to avoid the influence of ill-shaped deformed elements. The drawbacks of this method
are the computational expense of re-meshing the domain, and the induced inaccuracies by
transferring solutions from the degenerated mesh to the new one [75,76].

2.4. Growth and Remodeling Models by the Constrained Mixture Theory

One of the most relevant characteristics of living tissue is its capability to adapt in
response to chemical and mechanical stimuli. This adaptation comes with microstructural
reconfigurations, which alter the mass composition and the resulting contributions and
properties of the tissue constituents. The understanding of the effect of mechanical stimula-
tion on normal and pathological growth and remodeling of soft tissues is an active field of
study that bridges biomechanics and mechanobiology.

In 1994, Rodriguez et al. proposed a general continuum formulation for the finite
volumetric growth modulated by mechanical stress [77]. The theory of adaptation of
living tissues was further developed by Humphrey and Rajagopal who proposed the
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constrained mixture theory, a mathematical framework to predict not only the growth
but also the remodeling of biological tissues under transient mechanical and chemical
stimulation [78,79]. The constrained mixture theory is based on the continuum theory
of mixtures; that is, each component complies with a modified version of the governing
principles of motion in the Eulerian formulation. The modification involves the addition
of mass source/sink terms that account for the rate of synthesis or degradation of the
constituent in its respective mass balance equation and the component-to-component
interaction forces in the momentum balance equation. These source/sink terms respond
to a series of constraints of physical and chemical nature and are dependent on the local
distribution of strains, stress, and current composition. Constitutive equations must be
defined for each constituent, and the overall properties of the construct can be calculated
as a combination of its constituents, where simplified linearized forms weighted by their
volume fraction are typically chosen [32,80].

2.5. Summary

In Table 1 we summarize the highlights of the governing principles of cardiovascular
biomechanics through a continuum mechanics approach.

Table 1. Summary of governing principles of biomechanics.

Section Highlights

2.

Inverse modeling of the cardiovascular system is usually grounded on classical continuum mechanics theory.
The fundamental principles of mass and energy conservation are complemented by constitutive equations that describe the
mechanical behavior of the material of interest.
Constitutive material models can be either based on empirical evidence (phenomenological) or analytical expressions inspired
by theory
Once the model is defined through the selection of governing principles and constitutive equations, the problem is particularized by
setting the domain of analysis and adequate boundary conditions.

2.1

Cardiovascular tissue is a complex multilayered structure that displays non-linear viscoelastic behavior, residual stress, and active
contraction and distention.
Structural mechanics of tissue is usually done with a Lagrangian formulation.
The theory of finite hyperelasticity is applied to address the non-linear behavior and relatively large deformations.
The adequate modeling of the passive behavior of cardiovascular tissue requires accounting for its structural anisotropy and the
typical stiffening effect of strain/stretch.
Active contraction and distention are the consequence of ion-based chemical signaling that triggers the contraction of actin-myosin
sliding filaments, which determines the muscular tone.
Active behavior is modeled by either adding an active stress or active strain components to the momentum balance.
The additional active stress/strain is assumed to occur along myofiber directions and to depend on the cellular activation status. The
geometrical distribution of the activation status can be determined by solving a reaction-diffusion problem.
The patient-specific orientation of myofibers can be assessed by diffusion tensor MRI. However, the most common approach is to
assume myofibers follow a standard orientation for which several models are available.

2.2

Blood is a suspension of cells in an aqueous solution of proteins and minerals that undergoes a pulsatile flow in vivo.
Blood flow mechanics is typically studied with an Eulerian formulation.
Assuming Newtonian fluid behavior and laminar flow are reasonable and typical approximations to model the blood flow in large
vessels. Transition to turbulence flows may be relevant in the study of stenotic arteries.
Phenomenological constitutive equations are available to model the shear-thinning effect on apparent viscosity.

2.3

The function of the cardiovascular system is the result of complex interactions between blood, the actively contractile cardiac tissue,
and the compliant vascular walls.
The interaction of blood flow and cardiovascular tissue requires specialized numerical formulations. There are several available
formulations with different levels of complexity, one of which is the arbitrary Lagrangian–Eulerian algorithm which is complex and
computationally expensive.

2.4

Living tissue has the capability to adapt in response to chemical and mechanical stimuli.
The constrained mixture theory has been proposed to model the growth and remodeling of living tissue by solving sets of balance
equations for each constituent of the tissue under study.
The balance equations must be adequately constrained to account for the component-to-component interactions.
The constrained mixture theory can introduce models to account for the reconfiguration of constituents under chemical/mechanical
stimuli (remodeling).

3. Numerical Methods

The above-described system of governing and constitutive equations can only be
solved analytically for a reduced group of oversimplified cases. Thus, mechanical analyses
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of complex biological systems require the application of numerical methods to obtain
approximate solutions. It has been claimed that the development of numerical methods
was key to the foundations of modern biomechanics [81,82]. Many of the early simulation
analyses of the cardiovascular system and components were developed with in-house
codes, but the popularization of commercial software boosted the production of computa-
tional research in biomechanics [82]. More recently, open-source specialized software for
numerical biomechanics, such as SimVascular and FEBio [83,84], have risen from the col-
laborative effort of academic groups aiming to incorporate relevant bio-chemo-mechanical
models of biological systems into simulation pipelines. Many different options exist for
the numerical solution of time-dependent 3D problems. Mesh-based methods are the most
popular approaches, particularly the finite volume and finite element methods which are
reviewed in the following pages.

3.1. Finite Volume Method

The finite volume method (FVM) is conceptually straightforward. The domain of study
is discretized in a series of non-overlapping finite volumes, and the governing equations,
usually expressed in Eulerian formulation, are converted into algebraic expressions by
integrating them over each discrete volume. The balance equations are applied on a node
located in the center of the finite volume, while the flux terms are calculated at its faces
(Figure 4a). This allows first and second-order approximations of derivatives. The surface
flow for a given shared face is set identical and in opposite direction for the adjacent discrete
volumes, and equal to a boundary condition at the edge of the domain. By doing so, the
balance equations are held at the whole domain and within each finite volume, which is one
of the most attractive features of the FVM. Additionally, since the calculation of properties
happens in the center of each volume, it is relatively easy to implement boundary conditions
of a higher order [85]. Numerical implementation of this method is also straightforward in
the case of structured meshes, becoming more complex for unstructured meshes due to the
bookkeeping necessary for the calculations of interface flux balances.

Figure 4. Diagram of finite volume (FVM) and finite element methods (FEM) approximation princi-
ples. (a) In FVM, the domain is discretized in finite volumes, and balance equations are solved at the
center of each volume. (b) In FEM, the domain is discretized in finite elements, and the variables
distribution is assumed to follow a prescribed shape function within each finite element.
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The use of FVM for the solution of convection-diffusion problems was first introduced
in the early 1960s by Tikhonov and Samarskii [86]. Since then, FVM has been particularly
successful in its application to computational fluid dynamics, as many of the current com-
mercial computational fluid dynamics (CFD) software suites are based on this method.
Biomechanical applications of this method mostly focus on hemodynamic and tracheo-
bronchial airway simulations. However, this method can be applied to other boundary
value problems such as electromagnetics and structural mechanics [87,88].

3.2. Finite Element Method (FEM)

The finite element method (FEM) consists of the discretization of the domain of study
on simple geometrical elements (or finite elements), where the unknown fields are dis-
cretized as linear combinations of shape functions of any order, linear and quadratic being
the most common. The shape functions are typically defined at each element depending
on local and normalized coordinates (Figure 4b). The local governing equations for each
element are then assembled and organized in a matricial system of algebraic equations.
Finally, the solution is approximated by minimizing the weighted error associated with
each element. Several weighting rules have been proposed, the Galerkin method and its
variations being the most widely used [89]. By converging to the solution through the
minimization of an error function and not through the exact solution of balance equations,
FEM is said to be formulated in a “weak” form. However, the weak form is equivalent
to the exact solution in the limit of refining the domain discretization. In fact, it has been
widely shown that mesh-independent FEM solutions do not show any practical difference
from the output of more conservative numerical methods such as FVM [90,91].

FEM was developed in the early 1950s to perform structural analysis for the aerospace
industry and was soon applied to study the biomechanics of musculoskeletal and cardio-
vascular tissue [81,82]. As early as 1968, FEM was used to study the non-linear viscoelastic
behavior of arteriole tissue [92]. This technique has been traditionally used for the solu-
tion of solid mechanics problems; however, it has also been used to solve the governing
equations of other physical phenomena, including fluid mechanics [81]. Regarding the
convenience of relying on a single solver engine, many multiphysics simulation software
suites have introduced FEM formulations for fluid mechanics, [93] which also facilitates
the implementation of FSI simulations [94].

3.3. Summary

In Table 2 we summarize the highlights of the principles and formulations of the
numerical methods typically applied on cardiovascular biomechanics research.

Table 2. Summary of numerical methods.

Section Highlights

3.

Mechanical analyses of complex biological systems require the application of
numerical methods to obtain approximate solutions.
There are several numerical methods available to solve the governing principles of
continuum mechanics, including popular mesh-based methods such as the finite
volume method (FVM) and finite element method (FEM).
Mesh-based methods discretize the domain of study on spaces of finite size and
iteratively solve the governing equations on each finite space simultaneously.
FVM is based on a “strong” formulation that solves exactly the balance equations on
the center of each finite volume.
FEM is based on a “weak” formulation that assumes the unknown variable to follow
a prescribed shape function within each finite element. The method converges to the
solution by minimizing the weighted error induced by the discretization and use of
the shape functions.
FVM and FEM offer equivalent solutions to a variety of Multiphysics problems.
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4. Inverse Problems

Modeling physical phenomena can be thought of as a mapping operation, where a set
of inputs (B) is transformed into a set of outputs (E) by applying the model operator (M)
such that M(B) = E. In the realm of physics, there must be a cause–effect relation between
the inputs and outputs, and forward modeling consists of designing and applying a map-
ping function capable of producing outputs that closely follow experimental measurements
(e), meaning that the difference E − e should be close to zero (Figure 5a) [95].

Figure 5. Data processing pipeline for patient-specific (a) forward problems and (b) direct inverse
problems. Symbols, B: forward problem inputs, E: forward problem outputs, e: experimental data.

Conceptually, solving an inverse problem consists of using the measured effects to
estimate the causes. That is, solving a problem of the type B = M−1(e), which could be
straightforward if M was a bijective function, with M and M−1 being continuous and
differentiable, and e was a continuous and smooth distribution (Figure 5b). The main
difficulties with inverse problems are the possible nonlinearity of the inverse mapping
function, the multiplicity of solutions, and the sparsity and noise of the measured effect
data [15,95].

The development of advanced measuring techniques along with advances in computer
science brought attention to the practical applications of inverse problems. A growing
body of research has been built to address the afore-mentioned difficulties and to apply the
inverse modeling methodologies to problems from many different engineering applications.
To attend to the necessity of opening wide discussion of concepts, methodologies, and
methods related to inverse formulations, specialized journals started circulating by the
late 80s, e.g., the Inverse Problems and Inverse Problems in Engineering Journals (today
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Inverse Problems in Science and Engineering) among many others [95]. In this section,
several solution methodologies for inverse problems in mechanics are reviewed, highlight-
ing their respective advantages and drawbacks when incorporated into cardiovascular
biomechanics analyses.

4.1. Direct Inverse Methods

The direct solution of inverse problems by the deduction of the inverse mapping
function

(
M−1) is only possible for oversimplified cases; however, specialized mathematics

has been developed for the direct solution of some specific problems. In the case of finite
elasticity, one relevant inverse problem is the retrieval of the mechanical properties of
the domain of interest from the applied loads and measured displacement field. Several
methods have been proposed to solve this problem directly, e.g., the reciprocity gap method
which has been used to retrieve the distribution of elastic properties and to resolve the
location of cracks in solid bodies from image-derived displacement fields. This method
linearizes the inverse problem by assuming that the same elasticity tensor can resolve
both the measured displacement field and a slightly perturbed version of it [15]. Another
alternative for inverse elasticity is the application of the virtual work principle. This
requires a complete description of the deformation field as a starting point, then the virtual
work identity is defined by arbitrarily selecting a virtual field function. These functions
can be tailored to specific constitutive equations to convert the virtual work identity into
a set of algebraic equations from which the components of the elasticity tensor can be
resolved [96,97].

Another relevant problem on inverse elasticity is the resolution of the unloaded geo-
metric reference configuration with the applied loads, material properties, and deformed
configuration as inputs. This problem has many applications in manufacturing engineering
and is key to the study of patient-specific biomechanics. Govindjee and Mihalic proposed a
finite element implementation for the direct solution to this problem [98,99]. The proposed
method exploits the duality of the equations of finite hyperelasticity when the role of the
reference and deformed coordinates are interchanged. In the absence of body forces and
assuming material homogeneity, the FEM implementation of the inverse problem can be
formulated similarly to the conventional FEM problem, requiring slight changes in the
definition of elements and shape functions. The authors highlight that the application of
the method to buckling problems can lead to multiple solutions for a given input and the
resulting method was highly sensitive to input variations.

Direct solutions to inverse problems are computationally efficient; however, solution
methods are not generalizable and need to be tailored for each specific inverse problem and
each constitutive equation, making its implementation on existing numerical solvers a non-
trivial process [100]. Another limitation of direct solutions is the requirement of a smooth
continuous function of the measured effects (e), which cannot be satisfied by discrete
empirical measurements affected by random error. The experimental variability and noise
of the input data could be incompatible with the assumed model, which could dampen the
convergence to a valid solution or any solution at all [95]. An option to deal with this issue
is through preprocessing of the input data with smoothening and interpolation operations.

4.2. Iterative Inverse Methods

An alternative method for the solution of inverse problems is the iterative approach.
This consists of optimization algorithms that iteratively solve the forward problem while
varying the input parameters (B) until an error function defined as the difference between
target experimental data (e) and the forward problem output (E) is minimized [101]. The
advantages of this method are its easy generalization to any kind of inverse problem, its
capability to operate on top of any existing solver for the forward problem, the existence of
methods to reduce solution multiplicity, and its inherent capacity to handle scattered and
noisy experimental data (Figure 6) [102]. All these advantages come with a detrimental
increase in computational resource requirements, given by the repetitive solution of the
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forward problem. To reduce computational expense, some formulations have proposed
the use of surrogate simpler models for the forward problem at the initial stages of the
optimization process [103,104]. Some statistical tools based on Bayesian data analysis and
inference have been implemented to improve the performance of iterative inverse methods
for cases where the error distribution of the measured target is known or can be safely
assumed [105].

Figure 6. Data processing pipeline for patient-specific iterative inverse methods. Symbols, B: forward
problem inputs, E: forward problem outputs, e: experimental data.

The core concept of iterative inverse methods is the solution of an optimization prob-
lem that drives the solution into reproducing the target data with the smallest possible error.
The definition of an optimization problem requires the selection of an appropriate target
function to minimize, an optimization algorithm suited for the particular characteristics of
the forward problem and optimization parameters, and the implementation of parameter
constraints to point and restrict the convergence of the algorithm into desirable outputs. In
this section, we briefly discuss the most common optimization target functions, algorithms,
and constraints used on inverse problems in biomechanics.

4.2.1. Target Function

Most inverse studies implement a single target function for optimization, although
optimization of multiple targets is feasible. The target function is often defined in terms of
an error between the forward problem output and experimental measurements. Since the
target function is defined as an error to be minimized but not exactly reduced to zero in a
point-wise fashion, the iterative inverse method can converge to reasonable solutions even
if the measured data are scattered and affected by random error.

The selection of an adequate target function must comply with at least two conditions.
First, the target function must be compatible with the solution space of the forward model;
otherwise, convergence may never be achieved, e.g., pulse wave velocity is incompatible
as a target with CFD models assuming rigid walls. Second, the target function must be
representative of all the aspects of the modeled phenomena, e.g., a target function based
solely on output flow estimation is not adequate for FSI models since the contribution of
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the elastic behavior of the wall can be miscalculated. In FSI studies, pulse wave velocity
or multiple target functions dealing with pressure and flow velocity are more reasonable
options [106].

Structural Tissue Mechanics

First attempts to assess patient-specific mechanical properties of blood vessels were
based on the knowledge of pressure vs. volume or pressure vs. area changes. Nevertheless,
this unidimensional information can only be used to fit simple models that assume material
homogeneity and isotropy, which departs from the known complexity of myocardium and
arterial tissue [107]. The least-squared error to a pressure-volume curve as an optimization
target increases the number of comparison points and allows the fitting of non-linear
material models [108]. However, pressure–volume curves can only be measured in practice
through invasive catheterization and are not generally available on a patient-specific
basis. Alternatively, such data could be obtained from other sources such as normalized
models with self-similarity or statistically obtained atlases. For example, Klotz et al. found
that normalized pressure–volume curves of the left ventricle (LV) have a consistent profile,
regardless of etiology across large mammal species [109]. This normalized pressure–volume
function has been extensively used for forward and inverse analyses of the LV when direct
pressure measurements are unavailable [110].

Some studies use the high-resolution information from MRI or computed tomography
(CT) to obtain accurate geometric models of arteries at diastole and systole. The diastolic
configuration is discretized into the mesh, which is then mapped into the systolic geometry
by incorporating kinematic assumptions such as negligible axial and torsional displace-
ments [111]. Then, the target optimization function can be set to minimize the simulated
to mapped displacement errors. Due to the non-uniform distributions of nodal displace-
ments, this technique allows the estimation of heterogeneous distribution of stiffness from
anisotropic material models [112]. To avoid the requirement of node-to-node correspon-
dence, and the related displacement assumptions while using geometric (non-kinematic)
information, some authors proposed the minimization of the least-square-error of the
distance between the loaded/deformed simulation mesh to the surface of the segmented
anatomy model at systole, or systolic shape matching [113,114].

The explicit displacement field distribution made available by ultrasound speckle
tracking, MRI tagging, or DENSE MRI, allows for defining a more direct target function
by minimizing the least-squared error of the nodal displacement between the simula-
tion results and the image-based measurement. The direct comparison of simulation-to-
measured displacements can be achieved by locating mesh nodes in the location of speck-
les/tags/voxels, or by interpolating the measured displacement field into the mesh [14].
To reduce the effect of noise, some authors prefer defining the target function in terms of
a region-wise averaged strain, instead of displacement distributions [115]. By averaging
the strain field over a region, the effect of the noise is dampened. However, this requires
an adequate discretization of the domain on regions of similar boundary conditions and
material properties, while keeping discretization regions small enough to produce a smooth
distribution of strain estimates. The use of region-wise averages of strain is widely used
in the analysis of heart mechanics, and there is even a standardized discretization of the
left ventricle. However, defining adequate regions for smaller and thin vessels is challeng-
ing [13]. Furthermore, defining the target function solely on strain measurements rules out
the effect of possible translational/rotational rigid body motions.

The use of stress fields as target data can potentially reduce solution multiplicity
on the fitting of material parameters, and yield results that more accurately describe the
mechanical behavior of the tissue under study. The definition of such targets, however,
requires a priori knowledge of the boundary loads, and resulting stress distribution within
the deformed domain of study. In practice, some controlled in vitro experiments have
successfully applied inverse models with stress-based targets by having accurate measure-
ments of forces and deformations in three orthogonal directions on samples of reduced
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size [18,116,117]. The definition of stress-based targets for patient-specific in vivo applica-
tions could be extremely beneficial to improve the accuracy and uniqueness of the solution.
However, it would require the implantation of load sensors on and within the tissue
of interest. Given that in vivo tissue samples are not isolated, as they are in controlled
in vitro experiments, further assumptions on material behavior and boundary conditions
are required.

Fluid Mechanics and FSI

Cardiovascular catheterization pressure measurement is considered the reference
standard on patient-specific hemodynamics, as it constitutes a direct assessment of pres-
sure and dimensions within the blood vessels or the cardiac cavities using high-accuracy
transducers. When available, most inverse models of computational fluid dynamics use a
least-square-error of the time-dependent pressure function as the optimization target, while
image-based flow data is used as boundary conditions [103,118,119]. Models incorporating
FSI can instead use the pulse wave velocity as an optimization target that accounts for both
the hemodynamics and elastic properties of the vessel [120]. The carotid-femoral pulse
wave velocity is considered the gold standard for systemic arterial stiffness assessment,
which is calculated as the patient-specific distance between the carotid and femoral artery
and the time delay between the pressure wave measured at those locations. Local esti-
mations of pulse wave velocity can also be obtained from invasive catheterization and by
flow-to-area ratios from doppler ultrasound or phase-contrast MRI [121]. However, CFD
cardiovascular modeling often relies on rigid wall simplification which significantly reduces
the computational cost of the forward problem. Furthermore, cardiac catheterization is an
invasive procedure and may not be available, so target pressure data is either non-available
or non-reproducible owing to model limitations. In these cases, either least-square-error
of nodal velocity between simulation results and 4D flow MRI assessment or branch flow
distributions have been used as target functions [122].

4.2.2. Optimization Algorithms

The development of algorithms for numerical optimization is a broad and active field
of research. It is not the aim of this article to carry out a comprehensive review of all the
available optimization techniques, but rather to list the methods most commonly used in
the field of biomechanics, providing a rationale for their selection with specific problems.
In the following sections, we loosely follow the classification proposed by Kochenderfer
and Wheeler based on the characteristics of the target function [123]. Given the nature and
complexity of inverse biomechanics problems, we only consider optimization algorithms
that deal with continuous variables and multiple optimization parameters.

Updating by Differentiation of Target Function

In those cases where the target function is continuous and derivable, derivative in-
formation can be used to estimate the descent path towards the minimum. First and
second-order algorithms refer to optimization methods that incorporate numerical eval-
uations of the local Jacobian and the Hessian matrix, respectively. To reduce the risk of
convergence to local minima, stochastic sampling of these derivatives is incorporated.

First-order algorithms can only deal with relatively simple problems and are not suited
for inverse biomechanics. However, they are used in other relevant applications, such
as the automation of image processing and segmentation for the generation of geometric
models [11]. Second-order algorithms have been used in the solution of inverse arterial and
myocardial mechanics for the estimation of anisotropic material constants. The most com-
monly used are the Levenberg–Marquardt [34,107], Broyden–Fletcher-Goldfarb–Shanno
(BFGS), limited BFGS (L-BFGS), and sequential quadratic programming [5].
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Updating with No Differentiation of Target Function

Some optimization algorithms do not require derivative information of the target
function to operate. These methods are not as fast as gradient-based counterparts when
applied to derivable functions. However, they are advantageous in cases where the func-
tions are not derivable, there are regions with invalid solutions or singularities, the function
response is noisy, or the target presents multiple local minima. Since the target functions
on simulation-based inverse problems are not analytical functions, but instead, are the
simulation outputs, it is prone to some numerical problems, e.g., non-valid solutions due to
forward problem divergence. In consequence, most recent inverse method developments
have incorporated gradient-free algorithms. The most common algorithms can be classified
into two groups direct methods and population methods.

Direct methods incorporate deterministic algorithms based on patterns or geometrical
constructs for sampling the domain and carry a direct comparison of the target function
value. This comparison is then used to define the location of the next sampling point.
Powell and Nelder–Mead algorithms have been particularly popular in biomechanics
applications and inverse analyses [124,125].

The main feature of population methods, in contrast to direct methods, is that the
initial seed is not a single point in the parameter hyperspace but a pool of candidate
optimum solutions. On each iteration, a new pool of candidate solutions is generated by
altering the input parameter values following different recombination rules from parent
candidates and stochastic variations. Then, each new candidate is evaluated and a new pool
is selected to build the next generation. These algorithms have proven to be particularly
useful when dealing with noisy target functions, and with multiple local minima. The
popular genetic algorithms and particle swarm methods stand out due to their multiple
applications, including the solution of inverse problems [117,126–128]. These methods
require intensive sampling, so they are contraindicated for the solution of inverse problems
when the forward problem is computationally expensive [15].

Statistics-Based Methods

Some statistical methods applied in the field of biomechanics rely on the use of
Bayesian inferences, also known as inverse probability. Unlike the methods described
previously, Bayesian inference-based methods provide not only an estimation of the pa-
rameters to be fitted but also a confidence interval for such values. The method requires a
set of measured data along with its probability distribution (which can be often assumed
normal due to random experimental error), a predictive model, and a prior probability dis-
tribution for the model parameters. The latter can be estimated from previous experiments
and published data or can be simply assumed as uniform within a given range. Then,
a selection of parameter combinations is used to run the prediction model and compare
it to the experimental data. Finally, the Bayes theorem is used to produce a map for the
probability of the model that reproduces the experimental data in a parameter hyperspace.
This map is used to update the prior parameter probability distribution to iteratively repeat
the process [129].

There are many different computational implementations, some of the methods used
on patient-specific inverse problems are the Gaussian process regression, Kalman filters
in its many variations, and linear-quadratic-Gaussian estimations. These methods differ
mostly on how the sampling is carried out, how the parameter probability distribution
is assumed or calculated on each step, and how the model predictions and experimental
measurements are weighted to determine the converged parameter solution [130–132].

4.2.3. Constraints

A series of constraints can be implemented on the optimization algorithms to restrict
solution spaces and parameter values. These constraints can be used to ensure the phys-
iological and physical meaning of the results and to funnel down solution multiplicity.
One of the most relevant constraints required for material parameter estimation on tissue

178



Appl. Sci. 2022, 12, 3954

mechanics is compliance with the second law of thermodynamics. One of the required
conditions for this compliance is that the strain energy function must be positive convex,
which restricts the relative value of material parameters [24,133].

The assumption of material incompressibility is another common constraint imposed
on cardiac and arterial wall mechanics. Full incompressibility introduces singularities to the
solution of numerical formulations; therefore, nearly incompressible behavior is enforced
by restraining the relative values of material properties. However, experimental and in
silico evidence have shown that cardiovascular tissues are compressible to some degree
and that myocardial volume varies throughout the cardiac cycle [134]. The most recent
in vivo measurements of myocardium compressibility in human and large-mammal animal
models agree on estimating peak compressibility between 1% and 20% [134–136] Moreover,
it has been shown that the accuracy of heart-mechanics models is significantly increased
if this compressibility effect is considered [137]. Thus, the incompressibility constraint
is a reasonable yet rough approximation that must be carefully considered in simulation
analyses [134,138,139].

Microstructure-based models allow the introduction of physiologically and structural
meaningful constraints to material parameters, e.g., maximum possible fiber stiffness, or
maximum cellular volume fraction. Inequality type constraints can restrain material param-
eters within expected physiological ranges. Inequality relations between model parameters
can also be introduced to address structural component differences, e.g., collagen fibers are
typically stiffer than elastin fibers. In the study of FSI inverse problems, pulse wave velocity
is constrained by the maximum possible speed of sound on the liquid media, and some
authors have introduced constraints on the maximum volume change of the fluid-solid
domain [140].

In addition, constraints can also be introduced to promote numerical stability of the
solution, or to smooth the solution when the parameters to be fit are temporal or spatial
distributions, e.g., the first-order Tikhonov regularization functional has been used in the
estimation of heterogeneous material parameter distributions [141].

4.3. Summary

In Table 3 we summarize the highlights of direct and iterative solution methods of
inverse problems.

Table 3. Summary of inverse methods.

Section Highlights

4.
Solving an inverse problem consists of using measured effects to estimate the causes.
The main difficulties with inverse problems are the possible nonlinearity of the inverse mapping function, the multiplicity of
solutions, and the sparsity and noise of the measured effect data.

4.1

The direct solution of inverse problems by the deduction of the inverse mapping function is only possible for simple cases.
There are specialized mathematical solutions for specific problems of finite elasticity. Some relevant problems of inverse elasticity
that have direct inverse solutions are (1) the solution of material properties from boundary loads and domain displacements. (2)
The solution of the unloaded configuration from the applied loads, material properties and deformed configuration.
Direct solutions of inverse problems are computationally efficient. However, direct solutions are not generalizable and require
continuous smooth functions of the measured input often not compatible with noise and scarce experimental data.

4.2

Inverse problems can also be solved through an iterative weak approach. This consist of iteratively solving a forward simulation
problem to minimize an error function between simulation outputs and target measurements while fitting the sets of unknowns.
The iterative solution methods of inverse problems are generalizable, can handle noisy and scarce experimental target data, and
can operate on top of existing simulation software. However, iterative methods are computationally expensive.
The selection of the target function to be minimize needs to be consistent with the nature of the problem and the characteristics of
the biomechanical model.
The inverse method can be implemented though a variety of optimization methods. For the solutions of biomechanical inverse
problems, optimization methods with no differentiation of the target function are preferred.
Population-based optimization algorithms can solve global minima of multiparametric functions with an increased toll of
computational expense.
Statistic-based optimization method can incorporate previously reported data which can reduce convergence time and provide
probability distributions of results rather than single deterministic values.
Convergence times can be improved and solution multiplicity narrowed by the implementation of solution constraints.
Constraints can be based on physical laws and limits or on previous experience.
Constraints can also be implemented to promote numerical stability and smoothness of the converged solution.
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5. Medical Imaging-Based Kinematics

Early attempts to use medical imaging to assess the stiffness of blood vessels relied on
the measurement of the luminal area change between diastolic and systolic configurations.
This area change is used in several clinical risk markers, such as the β-index, that have
shown a good correlation with the occurrence of certain cardiovascular pathologies such
as atherosclerotic damage, hypertension, diabetes, and Marfan syndrome, as well as to
tobacco exposure, obesity, aging, and other risk factors [142–144]. However, the predic-
tive capabilities of these factors are inconsistent among different arterial locations and
pathologies, most likely due to the oversimplification of the problem without any account
of vascular mechanics [142].

Multiple previous studies have considered inverse problems applied to in vitro marker-
tracking kinematics of surgical and cadaveric tissue samples [145,146]. In these works,
direct or fluid-driven mechanical loads are applied to the tissue sample to induce controlled
deformation through an in vitro experiment setup. Physical or digital markers are fixed to
the samples, and their displacement is captured by high-speed, high-resolution cameras.
These studies are less affected by resolution limitations and noise than in vivo studies and
can be applied to structures that are difficult to capture with medical imaging such as heart
valve leaflets [147]. Some notable drawbacks of in vitro testing of explanted tissue include
neglecting active contractility, loss of in vivo boundary conditions, potential tissue damage
during excision, experimental setup and marker placement, and degradation of the living
tissue after extraction.

In vivo medical imaging has evolved to provide not only anatomical geometric infor-
mation but also detailed kinematics measurements. The accuracy and availability of these
techniques are limited by image resolution, signal-to-noise ratio (SNR), the occurrence of
artifacts, and practical obstacles related to testing costs and health hazards [122,148–151]. In
the following subsections, we review the available techniques for assessing in vivo image-
based kinematics for tissue deformation (Table 4) and blood flow (Table 5), fundamental
principles, typical image resolution, and some specific applications.

Table 4. Image-based technique for assessment of tissue motion.

Technology Technique Principle Resolution Applications

US Speckle Tracking

Acoustic response to
the interaction of
ultrasound signals with
tissue fibers.

Spatial and displacement
resolution < 1 mm/pixel
Real-time temporal resolution.

Identification of: septal
defects, CHD, valve
structure. Assessment of
cardiac and aortic
function.

MRI

Tissue tagging

Local perturbation of
myocardium
magnetization with
selective
radiofrequency
saturation sequences

Spatial and displacement
resolution ~1 mm
Tag spacing ~4 mm
25 images per cardiac cycle.

Assessment of cardiac
function; motion and
deformation of
myocardium, skeletal
muscle, lung tissue and
tongue.

DENSE MRI

Applied magnetic field
gradients produce a
phase shift on proton
spins proportional to its
relative displacement.

Pixel size ~2.5 mm for myocardial
motion [149], ~1.3 mm for aortic
motion [150]
Displacement resolution < 0.1 mm.
30 images per cardiac cycle

Assessment of
myocardial and aortic
motion, deformation, and
function.

5.1. Ultrasound Technology (US)

Ultrasound (US) uses high frequency (2 to 15 MHz) acoustic waves to create real-time
2D in vivo images of tissues, organs, and blood pools using piezoelectric transducers. As
in any wave, higher frequencies are associated with smaller wavelengths, higher penetra-
tion power, and improved image resolution [152,153]. Volume rendering from ultrasound
images has led to three-dimensional, time-resolved ultrasound (4D US), and real-time imag-
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ing [154]. US is relatively inexpensive, portable, and safe, so it has become a customary
tool in many clinical applications such as anesthesia, critical care, prenatal care, and pain
management. Its application to cardiology, commonly known as echocardiography, was
introduced in the 1950s, and currently is the more ubiquitous diagnostic tool to assess car-
diovascular structure and function. With an approximate lateral resolution of 1 mm/pixel,
this technique allows the estimation of heart chamber size, valve structure, identification of
structural abnormalities such as seen in congenital heart defects (CHD), and determination
of systolic and diastolic function (Figure 7c) [155]. Nevertheless, echocardiography presents
some intrinsic limitations regarding accuracy and repeatability, particularly in patients
with complex flow patterns related to congenital heart disease, aortic regurgitation, or
dissection, in which case it is recommended to complement the study with other imaging
techniques [156]. Intravascular ultrasound technology (IVUS) was developed following
the principle that accuracy and resolution are improved as the transducer is closer to the
tissue of interest. This technology involves placing a miniature ultrasound probe at the end
of a catheter and then introducing the catheter into the vessel of interest in order to resolve
the surrounding structures with greater detail than allowed by standard external US. This
invasive technique is mostly used to study the conditions and progression of atherosclerosis
in patients with coronary and carotid artery disease [157]. US technology can also provide
blood flow and tissue kinematic information through the use of echo-Doppler and speckle
tracking techniques.

Table 5. Image-based technique for assessment of blood flow.

Technology Technique Principle Resolution Applications

US Echo and Vector
Doppler

Measurement of
frequency shift of the
reflected acoustic wave.

Spatial resolution
<1 mm/pixel

Identification of: septal defects,
CHD, valve structure. Assessment
of cardiac and arterial function.
Prenatal care.

MRI

2D PC Applied magnetic field
gradients produce a
phase shift on proton
spins proportional to
its relative velocity.

Pixel size ~1.5 mm
30 images per cardiac cycle

Assessment of cardiac, arterial,
and venous flow, cardiac output,
regurgitant flow, pulse
wave velocity.

4D flow Pixel size ~2.5 mm
25 images per cardiac cycle

Same as 2D PC plus
measurements of wall shear stress,
vorticity and pressure drop.

Figure 7. Resolution comparison of left ventricular myocardium at diastole and systole with clinical
grade (a) MRI, (b) CT (Reprinted/adapted with permission from Ref. [158], 2019, Korean Society of
Echocardiography, open access), and (c) 2D ultrasound.
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5.1.1. Echo and Vector Doppler

Echo Doppler estimates the velocity of blood and tissue through the use of the Doppler
equation. By measuring the frequency shift from the original ultrasound wave and the
reflected echo, the local velocity can be determined. The main shortcoming of this technique
is its dependence on the angle between the original ultrasound wave (position of the
transducer) and the displacement direction, which can introduce large intra- and inter-
observer variability. Dependency on the transducer angle was solved by the introduction
of vector Doppler techniques, which additionally provide in-plane velocity components.
This is achieved by the simultaneous measurement of two doppler signals, either from two
crossing beams from different transducers, or from a single transducer with two different
in-plane receivers [159]. This technique is of great use in clinical practice for the qualitative
assessment of blood flow and tissue displacement [160] and used in early studies of patient-
specific hemodynamics to impose inlet and outlet flow boundary conditions [161,162].

5.1.2. Speckle Tracking

Speckle tracking is a relatively novel technique developed during the early 2000s
for the measurement of tissue 3D displacement and deformation. Speckles are defined
as image features/spots generated by the acoustic response of tissue fibers to ultrasound
signals. Single speckles are analyzed in identifiable kernels that are followed along the
cardiac cycle. Postprocessing techniques allow the averaging of kernel displacements
over several cardiac cycles to reduce the effects of noise [163]. The spatial and temporal
resolution of speckle tracking is remarkable, providing hundreds of frames per second for
pixels of <1 mm size [164]. This resolution allows not only the study of the myocardium
but also the mechanics of arterial walls and aortic aneurysms [165,166]. Displacement
measurements are limited by kernel size (~1 mm) and show reproducibility issues common
to any US-based technology (Figure 8a) [167,168].

Figure 8. Cont.
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Figure 8. Examples of image-based kinematics of the left ventricular myocardium with (a) Speckle
tracking ultrasound (Reprinted/adapted with permission from Ref. [169]. 2020, Alessandra M.
Ferraro et al.; open access) (Left) Dots indicate speckle-kernel location and identification, (right)
green lines indicate trajectory through the cardiac cycle. (b) Tissue tagging (Reprinted/adapted
with permission from Ref. [170]. 2012, The Radiological Society of North America). Tissue tagging
estimates kinematics by tag-to-tag tracking from diastole to systole. Transversal (green lines) and
diagonal (red lines) tag-to-tag dimensions are measured at diastole (left column) and systole (middle
column), their difference can be used to measure displacement and deformation (red lines in right
column). (c) DENSE MRI (Reprinted/adapted with permission from Ref. [171]. 2015, Wehner et al.;
licensee BioMed Central, open access). DENSE MRI resolves pixel-wise displacements by processing
phase data for each direction. Red and green contours represent segmented luminal and adventitial
boundaries, yellow arrows represent the phase-encoded displacement.

5.2. Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) offers superior quantitative utility compared to
ultrasound as it offers high-resolution 2D and 3D visualization of the heart and major
arteries referenced to a fixed coordinate system, providing greater accuracy for anatomic
and volumetric assessment of heart chambers and wall thickness [160]. In addition, various
MRI sequences have been specially designed to assess other valuable data such as fiber
orientation, tissue displacement, and blood velocity [172,173].

The fundamental principle of this technology consists of the use of magnetic fields to
align hydrogen protons in the body. After the magnetic field is interrupted, the protons
return to a lower energy state by emitting radio signals that can be captured and utilized to
create imaging data. For clinical applications, base magnetic fields with strengths ranging
between 1.5 to 7 T are used to excite the protons to a base level. Then, a second time-
varying radiofrequency magnetic field is used to induce changes in tissue magnetization.
Tissues with different hydrogen-protons content will respond to the oscillating radiofre-
quency with different characteristic responses, which can be used to resolve various tissue
components [174].

The first reported human magnetic resonance image dates from 1977 and was a single
image that required 5 h to capture [175]. Nowadays, an MRI image can be captured in
a single breath-hold with a resolution under 1 mm/pixel and temporal resolutions of 25
frames per cardiac cycle (Figure 7a). This noninvasive technique generally poses minimal
risk to patients unless they have non-compatible ferromagnetic implanted devices or other
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internalized materials, or they have complications related to the contrast agents needed for
some of the MRI modalities. Due to the confined space within an MRI scanner, the test can
generate anxiety and discomfort for patients with claustrophobia. Given the expense of the
equipment, maintenance, and required staffing, it does not have as wide an availability as
US, particularly in smaller medical facilities.

There are several options for MRI-based assessment of kinematics of both cardio-
vascular soft tissues and blood flow. Four prominent examples will be discussed below,
including: MRI tagging and displacement encoding with stimulated echoes (DENSE) for
tissue displacement, and phase contrast and 4D flow MRI for blood flow quantification.

5.2.1. Tissue Tagging

This technique, first introduced by Zerhouni et al., in 1988, was specifically designed
to quantitatively assess the transmural motion of the myocardium [176]. Image markers, or
tags, are created by locally perturbing the magnetization of the tissue, either by selective
radiofrequency saturation sequences or through modulation of the magnetization vector by
gradient fields. Tags are created on a thin section orthogonal to the image plane at diastole,
then followed by regular time-resolved imaging. Electrocardiographic gating is used to
consistently apply the tagging radiofrequency at diastole. Early works reported decrement
of tag resolution at systole as the magnetic saturation exponentially decays over time;
nevertheless, this problem is palliated with the use of larger magnetization energy [177].
Ibrahim et al. showed that tag lines were still clearly identifiable at the end of the cardiac
cycle on human hearts with a 7 T MRI scan [178]. Special radio-frequency sequences, such
as spatial modulation of magnetization (SPAMM) and delays alternating with nutation
for transient excitation (DANTE) [179,180], allowed the creation of 2D orthogonal tagging
grids that facilitate the kinematic analysis. Tag sizes can be only as small as the pixel-size
resolution (>1 mm) with typical tag spacing of about 5 mm (Figure 8b). The technique
allows for 25 to 30 images per cardiac cycle, requiring about 20 s of scan time per tagging
sequence [170,181]. Multiple studies on phantoms have shown this technique to be superior
to US speckle-tracking in terms of accuracy and repeatability. Due to the spatial resolution
limitations of this technique, it has only been successfully applied to study the kinematics
of relatively thick tissues such as the myocardium, skeletal muscle, lung tissue, and the
tongue [182].

5.2.2. Phase-Contrast

Phase-contrast (PC) MRI utilizes the intrinsic phase of the magnetic signal to retrieve
kinematic information. When a magnetic field gradient is applied to a body, the spins of
the protons develop a phase shift that is proportional to its relative velocity. When two
consecutive and opposing gradients are applied, stationary protons will show no phase
shift. However, moving protons will show different degrees of phase shifting as they
change their position with respect to the gradient [183]. This information can then be used
to encode the velocity and displacement of protons.

Since the kinematic information is encoded in the phase information, and thus is
independent of image markers, this technique allows measurement at scales below pixel-
size resolution [12,149]. However, the technique is sensitive to Eddy currents, concomitant
gradients (Maxwell terms), and nonlinearities in the gradient field. These effects increase
the signal-to-noise ratio (SNR) and produce offset errors that are both spatial- and time-
dependent. SNR has been shown to increase with the magnetization energy and has been
estimated to range between 20 for 1.5 T scanners to around 60 for 7 T scanners. Offset error
correction requires the implementation of rectification algorithms in the postprocessing
stage [184,185].

2D CINE PC-MRI and 4D Flow MRI

The application of consecutive opposite magnetic field gradients is known as a bipolar
gradient. After a bipolar gradient is applied, the net phase shift of static protons is zero, so
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only the mobile protons will show a phase shift. From the latter, faster protons will experi-
ence a greater difference in applied gradients as they physically move longer distances than
slower protons, which in turn produces greater phase shifts. The end result is that the phase
shift is proportional to the proton velocity. However, because phase angles are limited
(from 0 to 2 π), only a certain range of velocities can be directly quantified [183]. That is, for
a given gradient, there is a maximal velocity that can be measured before aliasing occurs,
called the encoding velocity (VENC). Encoding velocity is inversely proportional to the
magnitude of the gradient; thus, by manipulating the strength of the gradient, it is possible
to manipulate the range of velocities that can be encoded. Setting the encoding velocity is a
tradeoff between the risk of aliasing and the minimum measurable velocity by the discrete
scale [186].

Standard 2D Cine PC MRI, typically applied to estimate through-plane velocity, has
become part of clinical practice in the treatment of cardiovascular disease, specifically,
for the calculation of flow in large arteries and their main branches, cardiac output, and
quantitative assessment of regurgitation and retrograde flows. This technique is also used
for the qualitative assessment of flow patterns in large arteries and heart chambers. PC
MRI data is usually recorded in DICOM format images with 8-bit or 16-bit pixels, that is
256 or 65,536 possible discrete levels, respectively. Phase data is typically encoded within
4095 values for the whole 0 to 2 π range, with pixel sizes around 1.5 mm [187].

However, standard 2D PC MRI can only provide the dimensional component of veloc-
ity perpendicular (through-plane) or parallel (in-plane) to the imaging plane, and thus is
inadequate to estimate relevant hemodynamic metrics requiring three-dimensional flow
information, such as vorticity and wall shear stress [188,189]. The logical evolution of this
technique led to 4D flow MRI, which allows the volumetric and temporal resolution of
three orthogonal components of velocity. This is achieved by applying consecutive bipolar
gradients to three orthogonal directions on stacked planes. This requires the collection
and processing of a significantly greater amount of data (three spatial dimensions and
three velocity directions over several timesteps through the cardiac cycle), thus requiring
special approaches to keep reasonable scanning times. Some hardware improvements
include multi-receiver channels, phased-array coils, and parallel imaging technology. Other
developments are related to improving the efficiency of data sampling, and averaging
over several cardiac samples, namely radial undersampling, kt-GRAPPA, kt-BLAST, and
kt-SENSE [190]. Additionally, the convex gradient optimization technique offers improved
resolution and accuracy while maintaining the essential characteristics of velocity encod-
ing [191]. For thoracic and abdominal applications, 4D flow scanning times range from
5 to 15 min, with voxel sizes of around 2.5 mm and temporal resolutions of 25 datasets
per cardiac cycle (Figure 9). This technique has proven its value through many different
in vivo patient-specific studies of normal and pathological hemodynamics in the heart [192],
aorta [58,193], pulmonary artery, and complex single ventricle circulation [194–196]. Other
applications include the evaluation of drug treatment effects [197] and surgical intervention
outcomes [198–201].

Displacement Encoding with Stimulated Echoes (DENSE)

DENSE MRI is a modified version of PC MRI that improves phase contrast to measure
slow velocity displacements while maintaining moderate gradient magnitudes, thus allow-
ing the kinematic measurement of slow-moving tissue. This is achieved by manipulating
the spin phase with stimulated echoes [149].

DENSE MRI was introduced in 1999 by Aletras et al., for the study of myocardial
mechanics [149]. Since then, multiple developments have been proposed to optimize its
assessment of human myocardial kinematics [202–204], minimize the effects of artifacts
and breathing [205,206], and automate the unwrapping of DENSE MRI phase data [207].
Some potential clinical applications of DENSE MRI include the identification of biomarkers
of early cardiac dysfunction [208,209], assessment of the response to cardiac resynchroniza-
tion therapy [210,211], and identification of infarct transmurally for early postmyocardial
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infarction [212]. This technique has also been applied to assess the heterogeneous dis-
placement, stretch, and circumferential strain around the aortic wall at different locations
along its length [10,13,213,214]. Notably, a recent in vitro validation study of aortic DENSE
MRI on wire-embedded polymer aortic phantoms revealed a final mean regional error
in the quantification of the circumferential strain of <1% strain [215]. The potential for
measuring in vivo shear and radial strains of the aortic wall has also been explored, though
its repeatability is significantly less than the quantification of circumferential strain due to
the thinness of the vascular wall [216]. Beyond the heart and aorta, other applications of
DENSE MRI include the dynamics of the human brain and the cerebrovasculature [217].

The image resolution of typical cardiac DENSE MRI applications is around 2.5 mm/
pixel; however, recent advances with the use of spiral k-space sampling DENSE MRI
allow resolutions down to 1.3 mm/pixel to assess the kinematics of arterial walls [10,13].
Since the displacement is encoded in the MRI phase data and thus does not depend on
tag-line parameters or tracking of image features, displacement is resolved at a scale
below pixel size, with reported displacement uncertainties of approximately 0.09 mm [150].
Comparative studies on controlled in vitro experiments with gelatin phantoms, and in vivo
strain measurements on human myocardium showed that DENSE MRI provides better
accuracy and reproducibility than tissue tagging (Figure 8c) [181,183].

Figure 9. Processing pipeline of 4D flow MRI scans. (Left) Velocity-sensitive phase images are
generated by 3D velocity-encoding subtracted from reference images. (Middle) Velocity estimations
are corrected for errors due to noise, aliasing, and eddy currents. A 3D segment is created to define
the region of interest. (Right) Velocity data are postprocessed to produce hemodynamic factors and
useful plots and visualization.

5.2.3. Other Relevant MRI-Based Scanning Modalities

Magnetic resonance imaging can also provide relevant information for inverse model-
ing other than anatomic and kinematic information. In this section, we briefly review MRI
sequences that allow the resolution of tissue structure. The image-based resolution of tissue
structure and compositional heterogeneity can be used to tailor constitutive models to the
volumetric share and orientation of fibrous structures. With regards to patient-specific
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modeling of cardiovascular disease, these techniques could help identify the location,
extension, and severity of lesions, and thus more accurately divide the patient-specific
anatomic models into unique regions with particular sets of mechanical properties. By
supplying such patient-specific material heterogeneity as a prescribed input, the accuracy,
convergence time, and solution multiplicity of inverse models of cardiovascular disease
could be significantly improved.

Spin-to-lattice, and spin-to-spin relaxation times, also known as T1 and T2, respectively,
are common MRI parameters typically used for highlighting the difference between fat
and water. By definition, T1 is a shorter relaxation time than T2, so T1-weighted images
highlight fat structures with large proton density, whereas T2 weighted images highlight
both fat and water-rich structures. These sequences are commonly used in clinical practice
to resolve scar tissue, blood pools, and edemas. Rapid T1 and T2 mapping combines both
measurements to resolve an estimation of the extracellular volume fraction that has shown
to be a robust marker for several cardiomyopathies, with a strong correlation to histological
measurements [218].

Diffusion tensor MRI (DT MRI) is an imaging sequence that uses similar principles
to PC MRI. With this technique, special magnetic gradients are designed to cancel out
the signal from static water molecules while preserving the magnitude and orientation of
moving molecules. Within tissues, water molecules diffuse by Brownian thermal motion,
and in fibrous structures, this diffusion occurs preferentially in the fiber orientation. This
technique has been mostly applied for the imaging of the white matter and axon orientation
in the brain, and more recently to resolve myofiber orientation in the heart [53].

Other MRI-based techniques, such as gadolinium-enhanced MRI and perfusion tests,
have been developed to specifically image cardiovascular scars, thereby allowing the
quantification of lesion severity. Gadolinium is a contrast agent used to increase the SNR
of MRI. The cellular membranes of healthy cardiomyocytes are almost impermeable to
gadolinium contrast agents. As a result, following intravascular injection, gadolinium
perfuses throughout the myocardium via the branches of the coronary arteries while being
excluded from the intracellular space of viable cardiomyocytes due to the impermeability
of cell membranes. For this reason, gadolinium can be used to measure the extracellular
volume fraction of healthy myocardia from T1 mapping sequences. When myocardial
cell membranes are ruptured, as is seen in infarction, a larger portion of gadolinium is
accumulated. The contrast can now occupy the no-longer enclosed intracellular space,
allowing the assessment of the location and severity of cell-rupturing injuries [219].

The MRI perfusion stress test can assess the severity of coronary artery insufficiency.
The quality of blood perfusion into the cardiac wall is resolved through the use of contrast
agents at rest and under stress conditions. Increased cardiac stress state can be induced by
either exercise or the use of pharmacological stressors. Pharmacologically induced stress
is preferred over exercise-induced stress as it renders more reproducible results and is
easier to implement in clinical practice [220]. Typical pharmacological stressors include
vasodilators (adenosine or regadenoson) or chronotropic inotropic agents (dobutamine).
This technique exposes the patient to hazards associated with the use of contrast agents and
pharmacological stressors and is generally reserved for patients with confirmed coronary
artery disease [221].

5.3. Computerized Tomography (CT)

CT consists of a mobile X-ray source that rotates around a focal point to produce
scans from different angles. The result is a high-resolution stack of 2D images that can
be time-resolved. The use of intravascular contrast agents is common for studies of the
vascular system to improve the visibility of the blood vessels. CT scans can provide better
resolution than all the other techniques described above with pixel sizes of about 0.5 mm
(Figure 7b). There is no special feature to assess kinematics from CT scans, although its
superior temporal and spatial resolution has been used to measure the dynamic change
in cross-sectional area and shape of blood vessels during the cardiac cycle, from which
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homogenized values of circumferential strain for a given cross-section can be estimated.
From there, kinematics can be inferred from tracking a given anatomical feature or making
reasonable assumptions about rigid body rotation and torsion [11,222].

The use of ionizing radiation makes this technique potentially hazardous; thus risk-
benefit of a CT study should be seriously considered. This limits its use in serial follow-up,
particularly in pediatric patients, to avoid repetitive exposure to radiation [223]. However, it
avoids the risk of unknown or contraindicated implanted metallic object/devices associated
with MRI and is typically capable of much shorter scan times than MRI, making it ideal for
trauma or other acute emergencies.

5.4. Summary

In Table 6, we summarize the highlights of medical imaging techniques that provide
kinematic data, and other useful information for inverse modeling.

Table 6. Summary of medical imaging-based kinematics.

Section Highlights

5.

Early assessments of in vivo stiffness of blood vessels relied on measurements of luminal area changes. However, the predictive
capabilities of these factors are inconsistent among different arterial locations and pathologies.
In vivo medical imaging has evolved to provide not only anatomical geometric information but also detailed kinematic
measurements. The accuracy and availability of these techniques are limited by image resolution, signal-to-noise ratio (SNR), the
occurrence of artifacts, and practical obstacles related to testing costs and health hazards.

5.1

Ultrasound (US) uses high-frequency (2 to 15 MHz) acoustic waves to create real-time in vivo images of tissues, organs, and blood
pools using piezoelectric transducers with lateral resolution of 1 mm/pixel.
US is relatively inexpensive, portable, and safe, so it has become a customary tool in many clinical applications. However, the
accuracy and reproducibility of US-derived measurements are limited in comparison to MRI-based measurements.
Blood flow velocity can be assessed with echo and vector doppler technology.
Tissue displacement can be measured using speckle tracking technology, which consists of image tracking the acoustic response of
tissue fibers to ultrasound signals.

5.2

Magnetic resonance imaging (MRI) offers superior quantitative utility compared to ultrasound as it can offer higher resolution and
accuracy of measurements of anatomical features.
MRI generally poses minimal hazard to patients unless they have implanted medical devices/objects or suffer from claustrophobia.
However, the technique requires specialized equipment and trained staff, which limits availability compared to US.
MRI-based techniques for assessment of tissue kinematics include tissue tagging and DENSE MRI.
Tissue tagging is based on image tracking of magnetically induced markers, while DENSE MRI encodes the tissue displacement on
the phase of the MR signal.
Tissue tagging and DENSE MRI have been used to assess the kinematics of the myocardium. However, the superior resolution and
accuracy of DENSE MRI allow the assessment of aortic kinematics.
Phase-contrast (PC) MRI is a technique that allows the time-resolved quantification of blood flow velocity in or through a 2D plane
by encoding the velocity in the phase of the MRI signal.
PC MRI has been generalized to 3D spaces at the expense of decreased spatial and temporal resolution. The resulting technique is
called 4D flow MRI.
PC MRI and 4D flow MRI have been applied to the study of healthy and pathological hemodynamics of the heart and large
arteries and are currently implemented in clinical practice for the assessment of aortic and pulmonary diseases.
MRI can provide other complementary information relevant for inverse modeling analyses of the cardiovascular system.
Diffusion-tensor MRI can resolve the orientation of tissue fibers based on the principle that the Brownian displacement of water
molecules occurs preferentially in the direction of fibers.
Gadolinium-enhanced (GE) MRI can be used to resolve the size and severity of cardiac lesions. Since healthy cell membranes are
impermeable to gadolinium, this contrast agent occupies a larger volume in injured tissue where cell membrane integrity is
compromised.
Perfusion stress tests use contrast agents and MRI imaging to assess the severity of coronary artery insufficiency. This is performed
by comparing the perfusion of contrast agents in the myocardium at rest and at a stress state (high heart rate).

5.3

Computerized tomography (CT) provides the best resolution among all the medical imaging techniques with pixel sizes around
0.5 mm.
The high-resolution CT images can be used to assess cardiovascular kinematics through image tracking of anatomical features.
However, this requires the introduction of assumptions of displacement modes.
CT scans are based on X-ray technology with inherent ionizing radiation hazards.

6. Applications to Cardiovascular Medicine

One of the most relevant outputs of modeling in cardiovascular mechanics is the
estimation of wall stress distributions, either in the vascular walls of major arteries or the
myocardium of the heart. Mechanical stresses and strains, and their spatial and temporal
evolutions, are measures of physiological significance because they may be potential
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indicators of myocardial and arterial function, may serve as risk stratification factors
for tissue failure and rupture, and provide specific measures of the mechanical stimuli
modulating biological adaptation. Applications of patient-specific models of cardiovascular
mechanics include supporting diagnosis and risk stratification, providing visualizations
and insights of deformation and loads on tissue structures, population-based analyses, and
supporting and/or challenging mechanistic hypotheses of normal and pathological growth
and remodeling.

For patient-specific forward problems in cardiovascular simulation, an anatomical
geometric model is typically retrieved from medical imaging and discretized into a compu-
tational mesh over a domain of interest. Pulse pressure of blood is typically used as a load
boundary condition acting on the luminal or endocardial surface, and any available image-
based kinematic information is either used to prescribe velocity boundary conditions (for
CFD analyses) or to validate the output of the simulations [224,225]. Forward simulations
require the assumption of many parameters that cannot be directly measured or were not
collected (e.g., myocardial and arterial wall composition and mechanical properties, blood
properties, or focalized blood pressure measurements [226]). Due to these limitations, it has
been argued that forward-simulation results should not be taken as absolute quantitative
results, but instead, interpreted qualitatively and comparatively in terms of patterns, distri-
butions, and trends of derived stresses and other relevant metrics [227,228]. This caution
should especially be emphasized in pathological cases, where the normal physiological
function is impaired and assumptions applicable to normal and healthy tissues do not
hold [229]. Conversely, patient-specific data can be input into inverse methods to solve for
the parameters that are unavailable or cannot be directly measured, potentially reducing
the number of required assumptions and improving the ability of the model to fit the
observed data. In the study of the cardiovascular system, inverse problems can provide
patient-specific estimations of tissue properties, composition, local pressure gradients and
stress distributions from image-derived wall deformation, and blood flow dynamics.

The development of patient-specific inverse analyses of cardiovascular mechanics
has advanced considerably recently thanks to continuous technological improvements in
imaging hardware and software, decreasing cost, increased imaging availability, improve-
ments in image-based kinematics acquisition, and postprocessing, simulation engineering,
and significant increases in computational power (Figure 1). Notably, the modern era
of computationally robust image-based cardiovascular inverse modeling began with the
study of animal models by the end of the 20th century. A pioneering work on in vivo
image-based inverse modeling of cardiovascular tissue was published in 1995 by Moulton
et al. This research on a canine animal model used a single slice MRI with radio-tagging
to retrieve the anatomy and displacement of the short axis plane of the heart [107]. A
non-linear error-gradient-based optimization algorithm minimized the least-square error
of FEM simulated and MRI-derived strains, by iterating over the constants of the Fung
material model considered without any muscular activation component. The boundary
conditions were the trans-ventricular pressure measured from catheterization and the re-
striction of two degrees of freedom of a single computational node. An improved approach
was proposed by Walker et al., who applied the inverse method to study the mechanics
and properties of infarcted sheep hearts [230] and the effect of surgical intervention [231].
Therein, the authors employed MRI-based 3D models of the left ventricle and MRI tissue
tagging to estimate the diastole-to-systole strain field. The latter was used as a target
for fitting the material parameters through an iterative inverse formulation. The active
contraction was simulated by a time-dependent homogeneous active stress model, and
catheter measurements of ventricular pressure were used as boundary conditions. These
studies found that fiber and cross-fiber stress are significantly larger at the infarct border
zone relative to non-infarct regions. Additionally, the inverse model was employed to
evaluate the benefits of diverse treatments and suggested that aneurysm plication decreases
the myofiber stretch without compromising stroke volume, which the authors highlighted
as one of the benefits delivered by such intervention.
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These early works present all the elements of more recent medical image-based inverse
analyses: an image-based kinematic target, an optimization algorithm, and a parametric
function to be optimized to estimate in vivo case-specific information that cannot be directly
assessed without an invasive procedure. These studies were limited by the available
computational power at the time. Walker et al. reported a total of 16 h for each iteration
of their forward cardiac model using a Silicon Graphics Octane II workstation with a
capacity of about 250 MHz, which was a cutting-edge multiprocessor workstation at the
time. Currently, the processing capacity of a desktop workstation is at least ten-fold greater
(i.e., 3 to 4 GHz). Furthermore, many parallelization and cloud-computing options are now
available to augment the speed of simulations. The technology is now mature enough for
the evaluation of patient-specific inverse analyses on complex biomechanical models of
clinical relevance.

Though there are many instances of image-based inverse analyses on animal mod-
els and explanted tissues [137], in this review we aim to highlight the potential clinical
applications of inverse methods. Thus, in this section, we present a detailed review of
in vivo patient-specific inverse problems applied to elements of the human cardiovascular
system along with a few pioneering and groundbreaking studies on animals. Figure 10
summarizes the anatomical references and location of focalized pathologies studied by the
inverse-modeling applications reviewed herein.

Figure 10. (a) Schematic representation of the human heart with anatomical references. (b) Location
of human pathologies studied with inverse models. Acronyms: CCA, common carotid artery;
IVC, inferior vena cava; LA, left atrium; LPA, left pulmonary artery; LV, left ventricle; MPA, main
pulmonary artery; SVC, superior vena cava; RA, right atrium; RPA, right pulmonary artery; RV,
right ventricle.

6.1. The Unloaded Reference Configuration in Cardiovascular Mechanics

Blood vessels, in particular those of the arterial tree, function under physiological
pressure load at all times and are axially pre-stretched; thus, none of the patient-specific
configurations resolved by in vivo imaging is truly a stress-free or zero-strain configura-
tion [232]. It is well established that image-based estimations of material properties and
stress distributions are sensitive to the selection of the reference configuration. Furthermore,
image-based in vivo estimations of material properties assuming the diastolic configuration
as a zero-strain stress-free reference lead to significant disagreements with experimental
measurements made on excised tissue [233]. That means an adequate selection of the refer-
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ence configuration is key for the accurate solution of inverse problems of cardiovascular
tissue mechanics.

The solution of an unloaded configuration from the deformed geometry, mechanical
loads, and material properties is a classical inverse problem with existing direct and
iterative solutions [234]. In patient-specific analyses, however, the material properties
are also unknown. Thus, the solution to this problem requires the specification of at
least two deformed and loaded states as input data [47]. In the case of myocardium, it
is often assumed that the transition from unloaded to diastolic configurations is purely
passive [235].

In this first subsection, we review previous contributions related to finding patient-
specific unloaded and stress-free configurations without the estimation of mechanical
properties. Since the methods described can be applied to any pressure vessel, we include
developments regardless of the specific tissue application. Research works that incorporate
the unloaded or stress-free configuration on the patient-specific estimation of tissue proper-
ties and loads are reviewed on the following sub-sections separated by the corresponding
tissue of interest.

The direct inverse FEM formulation by Govindjee and Mihalic (c.f. Section 4.1) for the
direct solution of the unloaded configuration was first applied to cardiovascular tissue by Lu
et al. [111]. The inverse elastostatic approach was used to find the unloaded configuration
of an abdominal aortic aneurysm (AAA), assumed to be loaded at a luminal pressure of
100 mmHg, and to behave as an isotropic hyperelastic material with population-averaged
material constants. The authors concluded that the selection of diastole as the zero-stress
reference leads to the overestimation of stress at systole. A similar approach was applied
by Peirlinck et al., who incorporated the inverse elastostatic formulation as a module for
the Abaqus FEM solver [100]. The method was applied to an iliac artery ideal model, an
image-based porcine biventricular model, a human AAA, and a patient-specific 4-chamber
heart model (Figure 11). The method was tested with hyperelastic and fiber-reinforced
anisotropic material models. Material constants and pressure loads were imposed based
on established reference values from the literature. The authors highlight the convenient
modular implementation, computational efficiency, and solution uniqueness as the main
advantages of their proposed method.

Several iterative methods have been specifically proposed to solve the zero-pressure
configuration for blood vessels. One of the first contributions was proposed by Raghavan
et al., who developed an optimization framework for an arbitrary parameter k such that the
coordinates of the unknown zero-pressure reference geometry (x0) can be approximated by
the difference of the in vivo deformed configuration (xi) minus k times the displacement
produced by the pressure load on that configuration (U), i.e., x0 = xi − kU. The main
conceptual limitation of this method is the assumption that the backward deformation field
is linearly related to the forward deformation field through the factor k. This method was
then applied to estimate the unloaded configuration of a patient-specific AAA [236].

The backward displacement method was introduced by Rajagopal et al., in 2007, for
breast biomechanics and by Bols et al., in 2013, for cardiovascular tissue [234,237]. This
method solves the unloaded configuration using the fixed-point interactions proposed by
Sellier et al. [100]. It consists in approaching the zero-pressure geometry by iteratively
updating the reference configuration, calculated by subtracting the nodal displacement
vector between the updated deformed configuration and the target in vivo configuration
until a required error tolerance is reached. Rivero et al. successfully applied a similar
pullback algorithm to 12 patient-patient specific models of AAA built from CT scans which
were assumed to be at uniform diastolic pressure on the image-based deformed geometry.
They tested isotropic and anisotropic material models, assuming material homogeneity
with reference material constants from the literature [238]. Rausch et al. proposed an
augmented Sellier’s method based on Aitken’s delta-squared process, by introducing an
augmentation parameter to accelerate the convergence rate and increase the chances of
convergence. The method was applied to find the unloaded geometries of a thrombus and
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heart valve leaflets from animal models with geometries and properties collected from
previous studies [239]. More recently, Das et al. proposed the shrink-and-fit algorithm, that
assumes the unloaded configuration is a shrink analogous to the loaded reference geometry.
On each iteration step, the coordinates of each node are mapped into a smaller geometry
affected by a circumferential and axial shrink factor, the new geometry is loaded by the
reference pressure until the least squared error of the nodal coordinates of the reference
and inflated model is minimized. The method was then applied to resolve the unloaded
configuration of an ideal and a patient-specific artery model assuming Mooney-Rivlin
hyperelastic behavior and employing the Nelder–Mead optimization algorithm [240].

Figure 11. Results and accuracy of the direct inverse elastostatic problem implemented on a FEM
solver and applied to a porcine biventricular model. (a) Reference loaded configuration reconstructed
from MRI scans. (b) Relative stress error of the in vivo loaded configuration and solution of the for-
ward inflation problem from the estimated unloaded configuration (roundtrip solution). (c) Relative
displacement error the in vivo loaded configuration and solution of the forward inflation problem
from the estimated unloaded configuration (roundtrip solution). (d) Colormap representation of
the maximum principal stress distribution of the loaded configuration on top of the estimated un-
loaded configuration in gray shade. (e) Colormap representation of the maximum principal strain
distribution on top of the estimated unloaded configuration in gray shade. (Reprinted/adapted with
permission from Ref. [100]. 2018, Elsevier).

A different iterative approach is to solve the strain and stress distribution that bal-
ances the applied loads acting on the image-derived anatomic configurations without the
resolution of the unloaded geometry [232]. Some methods that fit this category are the
backward incremental algorithm and the modified updated Lagrangian formulation. In
the backward incremental algorithm, small increments of the pressure load are applied
to the reference geometry, the resulting stress state is mapped to the reference geometry
as the initial condition for the next pressure increment until static equilibrium is reached.
This method was applied by de Putter et al., using patient-specific AAA geometries and
pressure loads to determine the stress distribution at diastole while assuming isotropic
Neo-Hookean material behavior with population-averaged constants [241]. Similarly, the
modified updated Lagrangian formulation applies consecutive small loads increments on
the image-based reference configuration to build up an incremental multiplicative update
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of an independent deformation gradient. This method was used by Gee et al., to study
the diastolic stress distribution of three patient-specific AAA geometries derived from CT
scans with population-averaged pressure loads and material constants for an isotropic
Neo–Hookean constitutive equation. In this work, the outcomes of the modified updated
Lagrangian formulation are compared to direct solutions with inverse FEM, concluding
that both methods yield similar diastolic stress distributions although the latter seemed
more prone to solution multiplicity and buckling [242,243]. However, iterative methods
may require suboptimal convergence times, and on some occasions, convergence could fail
altogether [100].

It is important to highlight that even at an unloaded configuration, cardiovascular
tissue is not truly stress-free. This fact has been widely proven by opening angle exper-
iments at different arteries and layers of the heart wall. The residual stress responsible
for this recoil effect exists without any distending pressure, being the possible result of
non-uniform growth and remodeling over the patient’s entire lifespan. The latter implies
that residual stress cannot be resolved solely from load-deformation data. Indeed, the most
common technique for the estimation of residual strain relies on the quantification of the
opening angle after a stress-relieving cut. Some specialized studies have collected opening
angle data from multiple locations of the cardiovascular system through experimental tests
on human cadaveric tissue. These experiments have shown that the opening angle, and
thus the preexisting residual stress, depends on specific tissue location and individual
factors such as age and health conditions. Consequently, generic or averaged opening-
angle derived residual stress can hardly be used for patient-specific analyses, especially,
in pathological cases. The constrained mixture theory provides a consistent framework
for the estimation of residual stress through the modeling of growth and remodeling and
could be the key, along with the image-based resolution of tissue composition, for a truly
patient-specific estimation of a stress-free reference configuration [32,244].

6.2. The Heart

The relatively large thickness of cardiac tissue allowed the resolution of image-based
kinematics even at the early stages of this technology. For this reason, along with the key
role of the heart as the driving element of circulation, the heart was the first physiological
system subject to patient-specific inverse analyses. Sermesant et al. and Aguado-Sierra
et al. proposed comprehensive patient-specific models for cardiac function including the
resolution of the unloaded configuration, bioelectrical activity, passive and active tissue
properties, and hemodynamics [245,246]. These authors evaluated the possibility of solving
such inverse problems with data acquired with medical imaging and electrocardiography
and concluded that such comprehensive models easily became overparametrized, and
computationally expensive to be solved by the available resources at the time. In conse-
quence, most inverse models focus on only one or a few of their constituents instead of the
whole heart. In the following subsections, we classify the research approaches based on the
variables chosen to be solved by the inverse method.

6.2.1. Properties of the Healthy and Infarcted Ventricular Wall

The ventricular wall is a complex multilayered composite responsible for delivering
the driving force to pump blood throughout the cardiovascular system. The myocardium
is the functional layer of the ventricular wall, containing the myofibers responsible for the
active contraction of the muscle and the structural collagen fibers that contribute to its
bulk mechanical properties. An accurate understanding of myocardial mechanics is key
for the diagnosis and treatment of diverse cardiac pathologies, and potentially, predicts
and stratifies the risk of heart failure after infarct. Therefore, many studies have focused on
the estimation of mechanical properties of healthy myocardium, and more interestingly,
estimating the effects of ischemia, and quantifying the properties of infarcted cardiac tissue
to yield a truly patient-specific risk assessment of cardiac failure. Most developments relied
on FEM for the solution of a forward problem (summarized in Table 7).
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Table 7. Literature review of iterative inverse models for the analysis of human heart tissue mechanics.

Study Clinical Data Forward Problem Inverse Problem

Population 12 H Reference End of diastole Least squared error to
Klotz P-VPathology None Passive model Hom. Guccione

Target
function

Data Cine MRI Active model 1 eq. active stress
Nelder Mead.

Rumindo
et al., 2020 [247]

Anatomy LV with RBFO by
Rijcken et al. Boundary ICP, TF epicardium

Constrained base

Opt.
algorithm

Population 1H 5D Reference Early diastole Volume change error and
segment-wise strain errorPathology FMR-CAD Passive model Het. Guccione

Target
function

Data

Cine MRI, TT, Stress
perfusion MRI, GE
MRI, 4D US, Hand
cuff pressure

Active model 2 eq. active stress
Non-specified

Zhang
et al., 2020 [17]

Anatomy
BV in 17 AHA
regions with RBFO
by Bayer et al.

Boundary ICP, TF epicardium,
Constrained base

Opt.
algorithm

Population 1D Reference End of diastole Deformation gradient
error.

Pathology LBBB and CI Passive model Het.
Holzapfel-Ogden

Target
function

Data 4D US, USST, GE
MRI, ICP Active model None Sequential quadratic

programming with a
first-order Tikhonov
functional constraint

Balaban
et al., 2018 [141]

Anatomy
LV in 17 AHA
regions with RBFO
by Bayer et al.

Boundary ICP, Constrained
apex, EF at base.

Opt.
algorithm

Population 5H 19D Reference Diastasis Least-squared error to P-V
curve.Pathology HFrEF, HFpEF Passive model Hom. Guccione

Target
function

Data Cine MRI, ICP Active model None
Non-specified

Wang
et al., 2018 [248]

Anatomy LV with RBFO by
Nielsen et al. Boundary * IPC

* Constrained base

Opt.
algorithm

Population 6H 12D Reference Unloaded Coordinate error for
passive properties. P-V
curve and strain error for
active properties.

Pathology PAH Passive model Hom.
Holzapfel-Ogden

Target
function

Data Cine MRI, ICP Active model 1 eq. active strain Sequential quadratic
programming algorithm

Finsberg
et al., 2019 [249]

Anatomy BV with RBFO by
Bayer et al. Boundary ICP, EF at base,

EF pericardium

Opt.
algorithm

Population 5H Reference Early Diastole Least squared error to
Klotz P-V

Pathology None Passive model Hom.
Holzapfel-Ogden

Target
function

Data Cine MRI Active model None
Genetic Algorithm

Palit
et al., 2018 [108]

Anatomy BV with RBFO by
Bayer et al. Boundary * Assumed ICP

* Constrained base

Opt.
algorithm

Population 7H 7D Reference Unloaded Coordinate error for
passive properties. P-V
curve and strain error for
active properties.

Pathology LBBB Passive model Hom.
Holzapfel-Ogden

Target
function

Data 4D US, USST, ICP Active model 1 eq. active stress, 1
eq. active strain Sequential quadratic

programming algorithm
Finsberg
et al., 2018 [235]

Anatomy LV with RBFO by
Bayer et al. Boundary ICP, EF at base,

EF pericardium

Opt.
algorithm

Population 3H 3P Reference End of diastole P-V curve and nodal
displacement error

Pathology Dilated
cardiomyopathy Passive model Hom.

Holzapfel-Ogden

Target
function

Data Cine MRI, TT, PC
MRI Active model 1 eq. active stress Shamanskii–Newton

Raphson algorithm
Asner et al.,
2015, 2017
[250,251]

Anatomy
LV with fiber
orientation from
canine histology

Boundary
Weak formulation
for volume and
displacement

Opt.
algorithm

Population 1H 7D Reference Lower ventricular
pressure Energy balance error and

displacement error
Pathology Arrythmia Passive model Hom. Guccione

Target
function

Data Cine MRI, ICP Active model None
Non-specified

Nasopoulou
et al., 2017 [252]

Anatomy
LV with fiber
orientation from
canine histology

Boundary
ICP, displacement
at apex and base,
TF epicardium

Opt.
algorithm
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Table 7. Cont.

Study Clinical Data Forward Problem Inverse Problem

Population 27H 11D Reference End of diastole Volume error and strain
error.

Pathology Acute myocardial
infraction Passive model Het.

Holzapfel-Ogden

Target
function

Data Cine MRI, GE MRI,
Hand-cuff pressure Active model 2eq. active stress Gaussian processes and

automatic relevance
determination algorithm

Gao et al., 2017
[253]

Anatomy
LV in 17 AHA
regions with RBFO
by Potse et al.

Boundary ICP, TF epicardium
Opt.
algorithm

Population 5H Reference Early diastole Least-squared-error to
normalized Klotz P-V
curve

Pathology None Passive model Hom. Guccione
Target
function

Data Cine MRI, TT Active model Hom. 1eq. active
stress Derivative-free quadratic

approximation algorithm
Genet et al.,
2014 [110]

Anatomy
LV with fiber
orientation from
canine histology

Boundary
Volume change, TF
epicardium,
Constrained base.

Opt.
algorithm

Population 8H 3D Reference End of diastole
Volume change error

Pathology HFrEF Passive model
Region
heterogeneous
Mooney-Rivlin

Target
function

Data Cine MRI, ICP,
Electrophysiology Active model 2 eq. active stress

Kalman filterMarchesseau
et al., 2013 [254]

Anatomy
BV divided in 17
regions with RBFO
by Bayer et al.

Boundary ICP, TF epicardium,
Constrained base

Opt.
algorithm

Population 1H 2D Reference Unloaded
Nodal coordinate error

Pathology HFrEF Passive model Hom. Guccione
Target
function

Data Cine MRI, TT, ICP Active model 1 eq. active stress
Parameter sweeping

Xi et al., 2013,
2011a, 2011b
[47,255,256]

Anatomy
LV with fiber
orientation from
canine histology

Boundary
ICP, TF epicardium,
Displacement at
apex and base.

Opt.
algorithm

Abbreviations and acronyms: Clinical data: AHA, American Heart Association; BV, biventricular; D, diseased; GE,
gadolinium enriched; H, healthy; ICP, intracardiac pressure; LV, left ventricle; MRI, magnetic resonance imaging;
TT, tissue tagging; RBFO, ruled-based fiber orientation; US, ultrasound; USST, ultrasound speckle tracking.
Pathologies: CI, cardiac infraction; FMR CAD: functional mitral regurgitation associated to coronary artery
disease; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction;
LBBB, left bundle branch block. Forward problem: EF, elastic foundation; eq., equation; Het., heterogeneous;
Hom., homogeneous; ICP, intracardiac pressure; TF, traction free.

Homogeneous Models

The assumption of material homogeneity is a common and convenient simplification
for forward and inverse models. It limits the number of parameters to be fit while still
reproducing the overall mechanics of the organ with reasonable accuracy. Even though
the myocardium is highly complex and spatially heterogeneous, homogeneous models
may be deemed to be adequate for the study of healthy hearts, or when the aim of the
analysis is not centered on the study of focalized lesions. In the study of tissues with steep
localized changes in structure and properties, as in infarcted myocardium, the material
homogeneous models cannot reproduce the localized strain and stiffness distributions on
the infarct itself and the infarct borderzone, providing only averaged estimations of local
deformation and material properties. However, these averaged properties can still be used
as a measure of lesion severity by comparative studies of healthy cases.

One of the first simplified inverse models of the left ventricle (LV) was introduced
by Hassabalah et al., to study the compressibility of the myocardium [257]. An ideal-
ized truncated ellipsoid matching MRI-derived averaged dimensions of a human LV was
used as a computational domain. Fiber orientations were assumed helical with the linear
transmural distribution established from DT-MRI data from Helm et al. [258]. The my-
ocardium was modeled as a homogeneous fiber-reinforced Ogden hyperelastic material.
The active tension of myofibers was assumed to be proportional to the pressure load, the
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latter being prescribed as a boundary condition at the endocardial surface. A uniform
elastic foundation was applied to the pericardium to simulate the interaction of the heart
with the surrounding organs, and all displacements were fixed on a lateral node. All
material parameters were fixed except for the bulk modulus, which was optimized to fit a
measured pressure-volume curve. The authors conceptually divided the cardiac cycle into
the following consecutive stages: atrial systole, isovolumetric contraction, rapid ejection,
isovolumetric relaxation, rapid filling, and reduced filling. This study suggested that the
volume of the myocardium changed slightly during the cardiac cycle. According to this,
myocardium behaves as an incompressible tissue only during rapid and reduced ejection
and isovolumetric relaxation stages, while showing some degree of compressibility in
the atrial systole, isovolumetric contraction, and filling stages. These observations are in
agreement with in vivo compressibility measurements in large mammals [134].

A more sophisticated inverse analysis was presented by Xi et al., in two consecutive
papers published in 2011, introducing patient-specific geometries [255,256]. MRI-based
models of the LV at end-diastole were assumed as the zero-strain reference and discretized
with Hermit-cubic finite elements. MRI tissue tagging was used to assess the diastole-
to-systole displacement distribution and then interpolated into the nodes of the FEM
mesh. The Fung–Guccione constitutive equation was selected to model the uniform passive
properties of the myocardium. Myofiber orientations were assigned with a rule-based
algorithm from Bayer et al. [55] based on canine serial histology from Usyk et al. [259].
Boundary conditions consisted of catheter measured ventricular pressure increments, zero
traction at the epicardium, and apical and base displacement from tissue tagging. The least
squared nodal displacement error was minimized using a reduced-order Kalman filter. The
method was applied to one healthy heart and two patients with diastolic heart failure with
impaired ejection fraction. The authors found a large difference in material parameters
between healthy and heart failure patients, although the authors recognized the results
were likely not unique for the given dataset. In addition, they found that passive behavior
alone could not fully describe the deformation state at early diastole. They addressed
this issue by introducing a time-dependent homogeneous active tension model and the
backward displacement method to estimate the unloaded configuration [47]. Two different
minimization problems are solved iteratively: first, the estimation of passive properties by
consecutive simulation of deflation from early diastole to unloaded configuration followed
by inflation to end-diastole; second the estimation of active properties by inflation from
late diastole to systole (Figure 12b).

The target minimization function for both iterative loops was defined as the error
in nodal coordinates between simulations and interpolated tissue-tagging measurements
for their corresponding end of process configuration. According to their results, the
residual activation state from early to end-diastole was larger for patients with heart failure,
which may indicate that diastolic relaxation is impaired after cardiac failure due to the
compensation mechanism to maintain cardiac function.

Genet et al. applied methods to define patient-specific anatomic models and define
active and passive behavior similar to Xi et al. [47], although with no available patient-
specific pressure data and the assumption of end-diastole as the stress-free reference [110].
Boundary conditions constrained all displacement on the basal plane of the ventricle
and the dynamic boundary condition was a prescribed volume change, instead of the
pressure increment. In the absence of pressure data, Genet et al. assumed a well-established
normalized LV pressure-volume curve of Klotz et al. [109] as the optimization target. MRI
tissue tagging measurements were used to validate the converged results, which showed
good agreement with image-derived circumferential and axial strain. Regarding fiber
stress distribution, the authors found that the end of diastole myofiber stress peaked
near the subendocardial wall. They also highlighted that the transmural variation of the
end-of-systole myofiber stress was nonmonotonic and was maximal at the mid-wall of
the ventricle.
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Figure 12. Inverse analysis of left ventricular mechanics. (Reprinted/adapted with permission
from Ref. [235]. 2018, Elsevier). (a) Preprocessing pipeline, from left to right: medical image-based
segmentation and kinematics, anatomic model generation, discretization, partition into 17 AHA
standard regions. (b) Optimization loops, between unloaded and diastolic configuration for passive
properties and between diastole and systole for active contraction parameters. (c) Resulting unloaded
configuration and strain distributions for a healthy volunteer and an LBBB patient, using active
stress and active strain approaches. (d) Comparison of activation parameters over time for a healthy
individual and an LBBB patient showing the effect of impaired bioelectrical function. Acronyms: mvo,
mitral valve opening; mvc, mitral valve closure; avo, aortic valve opening; avc, aortic valve closure.

Solution multiplicity has been one of the main concerns about inverse methods, which
motivated Nasopoulou et al. to explore how the definition of the optimization target
functions can be designed to improve material property identifiability and solution unique-
ness [252]. Sets of cine MRI and catheter pressure measurements were gathered from 7
cardiac resynchronization therapy (CRT) patients and one healthy volunteer. The config-
uration corresponding to the lower ventricular pressure was assumed to be stress-free.
Patient-specific LV models were built at the reference configuration and a warping al-
gorithm was used to estimate the displacement of the ventricular wall from cine MRI.
The myocardium was assumed homogeneous and purely passive with a Fung–Guccione
constitutive equation. Myofibers orientation was assumed to follow a linear transmural
distribution following the findings of Streeter et al., on canine left ventricles [260]. Uniform
pressure on the endocardium and image-derived displacements on the basal plane were
imposed as boundary conditions. Two target functions were defined, one based on the dis-
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placement error, and the other defined as a normalized error of the pressure-energy input
and stored strain energy. Two optimization processes were implemented consecutively
to minimize the two error functions, which constrained the number of possible solutions.
The authors concluded that a single purely geometric target function is unable to constrain
the parameter space, while the application of the energy-based target function isolates one
of the material parameters, that in conjunction with a geometry-based target provides a
unique estimation of parameter sets.

Most of the inverse modeling approaches dealing with the heart, either constrain or
prescribe measurement-derived magnitudes of displacements on the basal plane and/or the
apex. Asner et al. highlighted the necessity of imposing more physiologically meaningful
boundary conditions for the adequate assessment of cardiac mechanics. These authors
proposed a method to impose consistent boundary conditions for ventricular mechanics
based on non-invasive tests alone [250,251]. The proposed method was applied to synthetic
datasets for validation generated in silico with idealized geometries and known material
properties, motion, and loads. Then, the method was applied to patient-specific datasets
from three healthy volunteers and three moderately dilated cardiomyopathy patients. Cine
MRI, tissue tagging, and PC MRI were collected and used as imaging data either to set
up the forward problem or as target data for minimization. End of diastole configuration
was used to build anatomic models of the LV which were assumed to be at the zero-
strain reference. Tissue tagging-derived displacements were interpolated to the FEM
mesh to obtain a smooth displacement field and PC MRI was used to estimate the stroke
volume. The myocardium wall was assumed to follow a reduced-order Holzapfel-Ogden
constitutive equation with a time-dependent homogeneous active stress model. Myofiber
orientations were assumed to follow a linear transmural distribution based on the work
of Streeter et al., on canine ventricles [260]. Ventricular pressure–volume relation was
assumed to follow the normalized Klotz LV pressure-volume curve, and the PC MRI-
derived diastole-to-systole flow ratio was correlated to the pressure pulse amplitude. The
authors proposed a data-based method for imposing boundary conditions through the
use of Lagrange multipliers and the minimization of energy potentials. The endocardial
boundary condition was defined in terms of volume change, while the basal plane and the
epicardial node boundary conditions were defined in terms of a virtual force proportional
to their correspondent displacements. A Shamanskii–Newton Raphson procedure was
used to resolve the material properties and boundary condition multipliers. Parameter
fitting was solved in two steps: first, the passive material parameters were solved by
minimizing a displacement-based error function from tissue tagging data between early-
and end-of-diastole; second, the active components were fitted by minimizing an error
function defined as a weighted average of nodal displacement error and pressure-volume
curve error. The authors highlight the potential bias introduced by hard displacement
restrictions as boundary conditions, which prevents the reproduction of naturally occurring
torsional modes of deformation. They also highlight that the direct imposition of noise
MRI-derived displacement as a boundary condition can introduce computational issues
associated with continuity and solution smoothness, concluding that the proposed weak
formulation of boundary conditions is advantageous.

Palit et al. performed an inverse analysis of biventricular models with a microstruc-
tural material model [108]. Steady-state free precession (SSFP) cine MRI was used to build
anatomical models, and to calculate the diastole-to-systole volume change of both ventricles
from five healthy adult volunteers. A purely passive Holzapfel–Ogden material model was
imposed with fiber orientation following the Laplace–Dirichlet rule-based algorithm by
Bayer et al. [55]. Early diastole was assumed as the stress-free reference configuration. A
normalized Klotz pressure–volume curve was set as the optimization target for a genetic
algorithm. The authors introduced empiric constraints on the constitutive equation for the
maximum absolute and relative values of shear-related terms to reduce the sampling space.
In addition, they carried out a sensitivity analysis of the results on the assumed parameters.
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They concluded that variations within the normal ranges of interventricular pressure and
fiber orientation did not produce significant changes in material parameters estimations.

Wang et al. explored potential differences in LV stiffness among heart failure pa-
tients with preserved and reduced ejection fractions [248]. Cine MRI and catheter pressure
measurements were collected from 8, 11, and 5 individuals with reduced, preserved, and
normal ejection fractions, respectively. Anatomical models of the LV were customized
for all cine MRI images with an interactive guide-point modeling tool and volumes were
matched to pressure measurements. The diastasis state (immediately after rapid filling) was
assumed as the reference stress-free configuration. The Fung–Guccione model was used to
describe myocardium mechanical behavior neglecting the active component. Myocardium
fiber orientation was defined following the rule-based algorithm proposed by Nielsen et al.,
based on the fibrous structure of canine hearts [261]. Boundary conditions consisted of
uniform pressure at the endocardium and constraints to the displacement of the basal plane.
Image-based endocardial and pericardial surfaces were projected into finite element model
predictions for each time step and the mean-squared error was minimized by fitting the
passive material properties. Results showed no significant differences in ventricular stiff-
ness between groups, although patients with reduced ejection fraction presented elevated
diastolic stress levels.

Rumindo et al. explored the variability of in vivo estimations of passive and active
properties of the LV in healthy individuals through inverse methods [247]. This retro-
spective study gathered cardiac MRI datasets from 21 volunteers with normal cardiac
function. End systolic and diastolic volumes were calculated from MRI segmentation, and
end-systolic configurations were assumed the stress-free reference and used for geometric
modeling and meshing. The Fung–Guccione material equation and a time-dependent
homogeneous active stress model were used to describe mechanical behavior. Myofiber
orientation was assigned following the equations proposed by Rijcken et al., to optimize
cardiac ejection [57]. Models were uniformly pressurized in the endocardium while con-
straining all displacements on the basal plane and assuming the epicardium to be traction-
free. The Nelder–Mead algorithm was used to fit the material parameters by minimizing
the least-squared error of the pressure–volume relation to the normalized Klotz curve.
Population-based statistics were calculated showing that results were consistent within this
population of similar characteristics. The authors highlighted the variety of reported Fung–
Guccione material parameters from among different studies and discussed the relevance of
the selection of a reference configuration for the estimation of passive properties.

Heterogeneous Models

Modeling of material heterogeneity can provide better fits to kinematic data, resolve
property changes, and identify the location and severity of myocardial lesions. However,
this comes with an increased modeling effort and computational expense. By assuming
material heterogeneity on inverse methods, the number of parameters to be fitted increases,
posing a burden on the optimization algorithm and complicating the solution of the
forward problem. A common approach is to approximate spatial variations of myocardium
properties and microstructure with region-wise heterogeneities. The simulation domain
of the myocardium is divided into segments, each one with its own set of homogeneous
material properties. The American Heart Association (AHA) proposed the division of the
left ventricle into 17 standardized LV segments which have been adopted extensively in
the study of myocardium mechanics (Figure 12a) [262].

One of the earliest inverse analyses of biventricular models with region-wise material
heterogeneity was proposed by Marchesseau et al. [254]. The study gathered cine MRI
datasets from 8 healthy volunteers and 3 heart failure patients with impaired ejection
fractions. Cine MRI was used to estimate the volume change of both ventricles, to identify
the location of the epicardial surface on several time-steps over the cardiac cycle, and
to estimate displacements with a diffeomorphic free form deformation algorithm. End-
diastole was used as the reference configuration and to build a deformable FEM mesh.
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Electromechanical behavior was modeled with a Bestel–Clément–Sorine model, which
consists of a Mooney–Rivlin hyperelastic material matrix reinforced with fibers with passive
elastic and time-dependent active components. Fiber orientation was assumed to follow
the Laplace–Dirichlet rule-based algorithm by Bayer et al. [55]. The active component was
assumed to have a viscous dissipation component and was modeled by a two-differential
equation system solving for the time-dependent active stress and sarcomere stiffness as a
function of an activation state variable. Parameter fitting is carried out by applying Kalman
filters in two steps: first, a general fit is achieved with the overall pressure-volume curve,
followed by a parameter refinement for each sector using sector-specific displacements
and change of LV section volume. The model was able to locate the infarcted regions by
assigning them lower contractility, while healthy patients converged to more homogeneous
property distributions and normal active function.

In 2017, Gao et al. performed an inverse analysis on 27 healthy subjects and 11 patients
with acute myocardial infarction [253]. Gadolinium-enhanced and cine MRI were applied
to identify the location of infarcted regions and to calculate the volume change of the LV.
Anatomic models were built at end-diastole, which was assumed as the zero-strain refer-
ence. The LV systolic blood pressure was approximated by the sphygmomanometer systolic
measurements. The anatomic models were divided into the 17 standard AHA regions,
and circumferential strains were calculated for each region through a b-spline deformable
registration algorithm. Non-infarcted tissue was modeled as a Holzapfel–Ogden material
with a sophisticated differential-algebraic model for active stress. Myofiber orientation was
defined by the minimum-distance rule-based algorithm Potse et al. [56]. Infarcted tissue
was assumed 50-fold stiffer than regular tissue with no active contraction. A Bayesian
approach with Gaussian processes and automatic relevance determination algorithm was
used to fit material properties and active contraction parameters by minimizing a weighted
function of the volume error and region-wise circumferential strain error. Results showed
that active tension was larger in infarcted hearts, which agrees with the early observations
of Xi et al. and Marchensseau et al., for which the authors hypothesized the existence of a
compensation mechanism for infarcted hearts to preserve stroke volume.

In 2018, Finsberg et al. compared the LV contraction between healthy adult volunteers
and patients with blocked or delayed electrical activation impulses, a condition called
left bundle branch block (LBBB) [235]. The study was carried out on a population of
7 individuals per group. Four-dimensional (4D) echocardiography was used to build
patient-specific anatomic models and FEM meshes. Ventricular volume was measured at
10 different instances within the cardiac cycle. Ultrasound speckle tracking was used to
estimate the piece-wise strain field, consisting of circumferential, radial, and longitudinal
strain at each of the 17 standard regions. Direct pressure measurements were obtained
through catheterization for the LBBB patients. The myocardium was assumed to follow a
uniform Holzapfel–Ogden material model, while two models for active contraction (active
strain and active stress) were tested. Myofiber orientation was assigned following the
Laplace–Dirichlet rule-based algorithm by Bayer et al. [55]. Rigid-body translation and
rotation were constrained by an elastic foundation boundary condition on the basal plane
imposed as a collection of linear springs with uniform elastic constants. Two iterative
inverse models were solved consecutively in each case: first, the passive isotropic material
properties and unloaded configuration were estimated with a backward displacement
algorithm using the geometric and pressure information at early and late diastole. Second,
the active and anisotropic material properties were obtained by minimizing an error
function defined as a weighted average of ventricular volume and strain error (Figure 12b).
Minimizations were carried out with a sequential quadratic programming algorithm, and
maximum value constraints were imposed on active model parameters. Results suggested
that the myocardium wall was more compliant for the healthy group (Figure 12c) and
that active contraction was significantly lower for the LBBB, which is consistent with an
impaired propagation of the activation pulse (Figure 12d). Both the active stress and active
strain models showed equivalent results. A similar methodology was later applied to
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12 patients with pulmonary hypertension and 6 healthy human controls, using cine MRI
and hyperelastic warping to estimate regional strains [249]. This study found that larger
right ventricular contractility affected the right-to-left ventricle volume ratio, the latter
being a clinical risk factor for pulmonary hypertension. The authors suggest that this
mechanistic relation between ventricular contractility and interventricular volume ratio
could provide further insights into pulmonary artery hypertension risk stratification.

Zhang et al. studied the local effect of ischemia with the segment-wise heterogeneity
approach [17]. Five patients with functional mitral regurgitation associated with coro-
nary artery disease and treated with percutaneous revascularization were retrospectively
recruited. The population was complemented by one healthy volunteer. The treatment
protocol included cardiac MRI and transthoracic echocardiography before and 3 months
after revascularization. Gadolinium-enhanced MRI allowed the identification of infarcted
scar tissue and an MRI stress perfusion test was used to assess the location and severity of
ischemia. With this image-derived information, a normalized scale for infract and ischemia
severity was assigned to each region. MRI-derived patient-specific 3D biventricular models
at early diastole were used to define the geometrical model and assigned to be the zero-
stress reference. MRI tissue tagging was used to estimate average strains in all 17 standard
regions. Left and right ventricular pressure were estimated from sphygmomanometry
and concomitant transthoracic echocardiography, respectively. The Fung–Guccione mate-
rial model was used to describe passive behavior and a time-dependent heterogeneous-
by-region active stress model was implemented. Myofiber orientation was prescribed
following the Laplace–Dirichlet rule-based algorithm by Bayer et al. [55]. Measured left
ventricular pressure was applied to the endocardium of the stress-free early diastolic model
while constraining axial displacements on the basal plane. Boundary loads consisted of
right ventricular pressure at the septum and a traction-free condition at the epicardium.
Passive and active material parameters were defined in terms of a scale of the infarction
and ischemia severity. This ischemia effect factor modulated different responses with
regions identified with zero severity behaving like healthy tissue and becoming stiffer and
less actively contractile with larger lesion severity. Material parameters and the ischemia
effect factor were fitted for each one of the 17 regions by minimizing a weighted func-
tion of the mean square error of diastole-to-systole volume change and the region-wise
average strain. Results agree with previous studies on predicting the stiffening of regions
corresponding to infarcted tissue and border zone. Additionally, the model allowed the
estimation of the ischemia effect on tissue stiffening and the recovery of compliance after
revascularization treatment.

One of the main limitations of the above studies is the assumption of either spatial
material homogeneity or segment-wise heterogeneity, however, material properties are
likely to vary continuously throughout the myocardium. To address this, Balaban et al.
proposed an iterative inverse method to resolve the heterogeneous distribution of mechani-
cal properties on an LV model from a 64-year-old heart with systolic heart failure, LBBB,
coronary artery disease, and chronic infarction in the inferior section of the LV [141]. 4D
echocardiography was used to obtain the anatomic model and FEM mesh at early atrial
systole. Speckle tracking was used to estimate systolic strain averaged over the 17 standard
regions, and pressure was measured by catheterization. Gadolinium-enhanced MRI was
used to identify the location of infarcted fibrotic tissue. The Holzapfel-Ogden material
model was implemented allowing spatial variations of the scalar material parameters
with a piece-wise linear representation with fiber orientation following the rule-based
algorithm proposed by Bayer et al. [55]. Active tension was neglected, and end-diastole
configuration was assumed stress-free. Rigid body motion was constrained by impeding
axial displacement at the basal plane and apex, and by an in-plane elastic foundation at
the base plane imposed as a collection of linear springs with uniform elastic constant. A
sequential quadratic programming algorithm was applied to estimate the almost 3000
spatially distributed material parameters. To favor convergence to smooth distributions,
optimization was constrained by a first-order Tikhonov functional. Results show that
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estimated strains were lower, and the material stiffer, in regions corresponding to infarcted
tissue and its immediate surroundings identified by gadolinium-enhanced MRI.

6.3. Valves and Leaflets

Each one of the chambers of the heart is equipped with a discharge valve to ensure
unidirectional blood flow, acting mostly passively to changes in transvalvular pressures.
The atrioventricular valves are the mitral and tricuspid, for the left and right sides of the
heart respectively. These valves typically define the basal plane and separate the atria from
the ventricles (Figure 10a). They are structurally supported by the papillary muscles and
chordae tendineae to hold the valves closed during systole and avoid ventricle-to-atria
backward flow. The pulmonary and aortic valves regulate blood flow from the ventricles to
their homonym arteries and are not supported by any subvalvular apparatus. The main
element of heart valves are fibrous structures called leaflets or cusps, that flap to allow or
impede blood flow. In normal conditions, only the mitral valve has two leaflets while the
other valves have three [263].

Heart valve disease is mostly related to regurgitation, stenosis, and atresia. The former
consists of backflow due to deficient closing, stenosis is the hardening and thickening of
the leaflets, preventing the valve to open properly and result in increased load in the heart,
while the latter is a congenital disease where the heart valve is partially or completely
absent. Heart valve malfunction can lead to several complications such as heart failure,
blood clotting, stroke, and death. Heart valve disease is most common on the left side, as
the aortic and mitral valves are loaded with larger pressures, and in consequence, they have
received more attention from the medical and scientific community. However, attention to
right heart valves has significantly grown in the last two decades along with the awareness
of pulmonary artery diseases [264].

There is a considerable body of research on the forward modeling of heart valve
function accounting for structural and FSI mechanics, usually validated against in vitro
experiments [265]. However, leaflets are typically thin structures (<1.5 mm) showing com-
plex displacement patterns, which renders them extremely challenging to resolve through
in vivo imaging techniques. Owing to this, most inverse analyses of valve mechanics
are based on in vitro experiments on excised or synthetic valves, where the leaflet dis-
placement is resolved with the use of physical markers [266–273], or with high-resolution
cameras [147,274].

In vivo inverse modeling of ovine heart valves function has been achieved by the
use of fluoroscopic markers implanted on the surface of mitral valve leaflets [275,276], a
technique that cannot be pursued in human studies. More recently, Lee et al. applied
ultrasound technology to assess the anatomy and displacement of the mitral valve of ovine
animal models to explore the use of inverse modeling, and in vivo mechanical properties
and stress distribution were successfully estimated [271,277].

Aggarwal et al. estimated the residual strain on human aortic valves by combining
in vivo imaging with measurements on explanted tissues [278]. The authors collected
in vivo transesophageal 3D echocardiographic images of the aortic valve from five open-
heart transplant patients at three configurations: fully open, just-coapted, and fully loaded.
Each aortic valve leaflet was excised during surgery and then imaged in a flattened configu-
ration ex vivo. Strains were calculated between the ex vivo stress-free configuration and the
three in vivo configurations from echocardiography segmentation by the application of a
spline parametrization algorithm. Results suggest that leaflets are significantly pre-strained
with respect to the excised reference even at the just-coapted configuration where the
transvalvular pressure load is negligible. Results also showed that leaflet deformation is
larger in the radial direction if compared to the circumferential direction, the latter being
structurally stiffer due to the alignment of collagen fibers.

The work of Aly et al. stands out as one of the few in vivo works on human heart
valves for the generation of transient anatomical models [279]. In this work, 4D ultrasound
was collected from 28 patients, half with normal mitral valve anatomy and function, the
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other half with ischemic mitral valve regurgitation. An automatic inverse algorithm uses
the manual identification of five key landmarks on the leaflet anatomy as input. Then,
Kalman filter optimization is used to build anatomical models at different instants of the
cardiac cycle. According to the authors, this algorithm could be used as the base for more
comprehensive inverse modeling to assess leaflet material properties.

6.4. Arterial Wall

Changes in mechanical properties of arterial walls have been associated with the
onset of multiple cardiovascular pathologies (e.g., atherosclerosis, dissection, stenosis)
and remains an important predictor of cardiovascular morbidity and mortality in clinical
practice. This motivated the development of early techniques for the non-invasive assess-
ment of arterial stiffness through the evaluation of luminal area change and pulse wave
velocity. These techniques, although useful, can only provide a gross estimation of material
properties as they introduce many assumptions and simplifications related to homogeneity,
perivascular support, and linearized behavior.

The image-based resolution of vascular tissue kinematics is technically challenging;
the main reason being the relative thinness of vascular walls. For example, the ascending
aorta has a typical thickness of about 2.5 mm, which decreases to about 1.5 mm at the
abdominal aorta, and the pulmonary artery is only about 0.2 mm thick. These length
scales are comparable to the highest resolutions available on imaging techniques, for
which luminal area changes (either with or without contrast agents) remained the main
input for early inverse analyses of arteries. However, recent developments in ultrasound
speckle tracking and DENSE MRI techniques make available arterial wall displacement
measurements on a meaningful number of pixels. Most approaches rely on FEM for the
solution of the forward problem (summarized in Table 8).

Table 8. Literature review of iterative inverse models for the analysis of human arterial wall mechanics.

Study Clinical Data Forward Problem Inverse Problem

Population 27H Reference Diastole Least-squared
displacement error

Pathology None Passive model Hom. Fung
orthotropic

Target function

Data Cine and DENSE
MRI Active model None

Constrained Powell

Bracamonte
et al., 2022,
2021, 2020
[14,150,280] Anatomy IAA, DTA, DAA Boundary LP, Het. EF at

adventitia
Opt. algorithm

Population 2D Reference Diastole
P-V curve error

Pathology PAH and CHD Passive model Constrained 4-fiber
family

Target function

Data IVP, Cine MRI, PC
MRI Active model None

L-BFGS
Pourmodheji
et al., 2021 [5]

Anatomy Pulmonary Artery Boundary LP, TF adventitia
Opt. algorithm

Population 30D Reference Diastole
Systolic shape.

Pathology aATA, w BAV and
TAV Passive model Het. Linear elastic

Target function

Data CT scans Active model None
Direct solution

Giuseppe et al.,
2021 [281]
Farzaneh et al.,
2019 [112] Anatomy Thoracic aorta Boundary LP and shape

change
Opt. algorithm

Population 30H 65D, 40D Reference Unloaded
Displacement error

Pathology AAA Passive model Hom.
Neo-Hookean

Target function

Data 4D US, ST, CT scan,
Hand cuff pressure Active model None

Nelder-Mead

Disseldorp
et al., 2019, 2016
[282,283]

Anatomy IAA Boundary LP, AP
Opt. algorithm

Population 4D Reference Unloaded
Displacement error

Pathology Atherosclerosis Passive model Het. Neo-Hookean
Target function

Data IVUS Active model None
Kalman filter

Maso Talou
et al., 2018 [284]

Anatomy Carotid artery
bifurcation Boundary LP, EF at adventitia

Opt. algorithm
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Table 8. Cont.

Study Clinical Data Forward Problem Inverse Problem
Population 4D Reference Diastole Systolic shape error
Pathology aATA Passive model Hom.

Holzapfel-Ogden
Target function

Data CT scans Active model None multi-resolution
direct search
method

Liu et al., 2018
[113]

Anatomy Ascending Aorta Boundary LP, AP
Opt. algorithm

Population 5H 1D Reference Axially unloaded Displacement error
Pathology PAO Passive model Hom.

Holzapfel-Ogden
Target function

Data 4D US, ST, Hand
cuff pressure Active model None Nelder-Mead with

stochastic
Montecarlo
sampling

Wittek et al.,
2016 [125]

Anatomy IAA Boundary LP, AP
Opt. algorithm

Population 8D Reference Unloaded Area change error
Pathology Atherosclerosis Passive model Mooney-Rivlin

Target function

Data Cine MRI, MC MRI,
Hand cuff pressure Active model None

L-BFGS-B

Wang et al.,
2017 [285]
Liu et al.,
2012 [286] Anatomy Carotid artery

bifurcation Boundary LP, TF adventitia
Opt. algorithm

Population 4D Reference Unloaded Least-squared
strain errorPathology aATA Passive model Hom.

Holzapfel-Ogden
Target function

Data CT scan, DENSE
MRI Active model None Non-specified

Krishnan et al.,
2015 [225]

Anatomy Ascending Aorta Boundary LP, TF adventitia
Opt. algorithm

Population 6H 2D Reference Axially unloaded Displacement error
Pathology AAA Passive model Hom.

Holzapfel-Ogden
Target function

Data 4D US, ST, Hand
cuff pressure Active model None

Nelder-Mead
Karatolios et al.,
2013 [164]

Anatomy Abdominal aorta. Boundary LP, AP
Opt. algorithm

Population 5H Reference Axially unloaded Displacement error
Pathology None Passive model Hom.

Holzapfel-Ogden
Target function

Data 4D US, ST, Hand
cuff pressure Active model None

Nelder-Mead
Wittek et al.,
2013 [115]

Anatomy IAA Boundary LP, AP
Opt. algorithm

Population 2H Reference Diastole Systolic shape error
Pathology None Passive model Hom. Linear

isotropic
Target function

Data Cine MRI, AT
pressure Active model None Levenberg–

Marquardt

Franquet et al.,
2013 [114]

Anatomy CCA Boundary LP, EF at adventitia
Opt. algorithm

Population 2H Reference Cut-open stress-free Pressure waveform
errorPathology None Passive model Hom.

Holzapfel-Ogden
Target function

Data 2D US, AT pressure Active model 1 eq. active stress Levenberg–
Marquardt

Masson et al.,
2010 [287]

Anatomy CCA (idealized) Boundary
Area change,
Non-linear EF at
adventitia.

Opt. algorithm

Population 3H Reference Diastole Area change error
Pathology None Passive model Hom. Linear

isotropic
Target function

Data Cine MRI, AT
pressure Active model None Non-specified

Taviani et al.,
2008 [288]

Anatomy CCA Boundary LP, TF adventitia
Opt. algorithm

Abbreviations and acronyms: Clinical data: AT, applanation tonometry; CCA, common carotid artery; CT,
computerized tomography; D, diseased; DAA, distal aortic arch; DTA, descending thoracic artery; H, healthy;
IVUS, intravascular ultrasound; MC MRI, Multi-contrast magnetic resonance imaging; PAO, peripheral arterial
occlusion; US, ultrasound; USST, ultrasound speckle tracking. Pathologies: AAA, abdominal aortic aneurysm;
aATA, ascending aorta thoracic aneurysm; BAV, bicuspid aortic valve; CHD, congenital heart defect; TAV, tricuspid
aortic valve. Forward problem: AP, adventitial pressure; EF, elastic foundation; eq., equation; Het., heterogeneous;
Hom., homogeneous; LP, luminal pressure; TF, traction-free.

One of the earliest works on inverse arterial mechanics was introduced by Taviani et al.,
in 2008 [288]. Cine MRI was used to assess the cross-sectional geometry and distension
of the common carotid artery of three healthy volunteers, while applanation tonometry
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was utilized to gather pressure wave data. The wall was assumed to behave as a nearly
incompressible linear-elastic isotropic material with the diastolic configuration as the
unloaded stress-free reference. The luminal surface was loaded with the measured pressure
increment, while the adventitial surface was assumed traction-free. An optimization
algorithm iterated over the elastic modulus while minimizing the normalized distance
between the simulated and measured lumen. The method was successfully validated with a
silicon rubber phantom and provided consistent results among all healthy adult volunteers.
This inverse model of the common carotid artery was improved by Franquet et al., who
incorporated the effect of perivascular support by attaching the adventitial surface to a
homogeneous compressible-elastic boundary with fixed properties and a third embedded
body representing the superior vena cava [114]. A Levenberg–Marquardt optimization
algorithm was used to minimize a shape-based error function that accounted for pixel-wise
signal intensity to define the location of the lumen. Additionally, the authors studied the
effect of variability on the luminal area and wall thickness estimations used to define the
reference configuration. The method was again validated against a silicon rubber phantom
and applied to two adult healthy volunteers showing good agreement with estimations of
elastic moduli reported in classical literature.

To incorporate the effect of residual and pre-stresses on the loaded diastolic configura-
tion, and to fit a more complex material model, Masson et al., proposed a semi-analytical
approach [289]. Clinical data from two adult volunteers 33 and 64 years of age consisted of
2D ultrasound on the common carotid artery, which was used for the resolution of luminal
area change and the thickness of the intima-media layers. Additionally, planar tonometry
was used to estimate the pressure wave. The carotid artery was assumed to be a pre-stressed
bi-layered idealized straight cylinder. The passive material properties were assumed to
follow an incompressible four-fiber family elastic constitutive equation, and active tension
was assumed to act on the circumferential direction according to a single-equation active
stress model. Perivascular support was modeled as a uniform adventitial pressure that
exponentially increases with area increments. The forward problem was formulated as the
solution of the luminal pressure corresponding to area changes assuming purely radial
displacements. A Levenberg–Marquardt optimization algorithm was used to minimize the
least-squared error of the predicted and measured pressure waveform. The optimization
algorithm fitted 14 parameters including pre-stress parameters (opening angle and axial
pre-stretch), material parameters for the two material layers, and active tension constants.
The method successfully reproduced the pressure waveform while adjusting the material
parameters. The authors reported that prestretch and active stress constants were similar
among both patients, but passive material parameters reflected stiffer material for the
older subject.

One of the first uses of image-based kinematics to estimate the anisotropic mechanical
properties of a realistic large artery model was introduced by Wittek et al., in 2013 [115].
4D ultrasound records with speckle tracking of the abdominal aorta were retrospectively
collected from five healthy adult volunteers in segments proximal to the truncus coeliacus.
Diastolic and systolic pressures were measured at the brachial artery with a sphygmo-
manometer. Diastolic 3D models of about 50 mm in length were segmented from ultrasound
images assuming a fixed wall thickness of 1.6 mm. This configuration was assumed to be
axially pre-strained by a quantity estimated by an empirical correlation. The arterial wall
was assumed to behave as a modified Holzapfel–Ogden material. Perivascular support
was modeled as a uniform adventitial pressure of 20 mmHg. A Nelder–Mead optimization
algorithm was applied to iterate over the parameters of the material model to minimize the
error of Biot’s strain tensor between the benchmark measurement-derived model and the
simulation. Each iteration consisted of the solution of three sequential problems: first, the
inverse solution of the unloaded configuration for the given diastolic pressure and axial
prestrain through a backward displacement algorithm; second, the stretch from diastolic to
systolic configuration by the imposition of measurement-derived displacements to produce
the benchmark model; and finally, the inflation from diastolic to systolic geometry through
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incrementing luminal pressure for the simulation. The resulting material parameters were
used to produce stress–strain plots, which showed reasonable agreement with experimental
biaxial test data from excised tissue. This method was further refined in 2016 by improving
the error function and optimization algorithm. The error function was based solely on
image-based estimations of strain instead of the benchmark model output. The determinis-
tic Nelder–Mead algorithm was complemented with a stochastic Monte Carlo algorithm
for the iterative generation of parameters to avoid convergence to local minima [125]. The
improved method was applied to three clinical ultrasound datasets from a healthy adult
volunteer, a patient with peripheral arterial occlusion, and an AAA patient. Results pre-
dicted stiffer material behavior of the arterial wall for diseased individuals when compared
to results on healthy volunteers.

Pourmodheji et al. collected cine and PC MRI images, and intracardiac catheterization
pressures from a pediatric patient with pulmonary hypertension and a cardiac transplant
control subject. A 3D model of the main pulmonary artery with its proximal left and right
branches was created at the diastolic configuration. The material model was assumed as a
homogeneous constrained mixture of elastin fibers, four families of collagen fibers, and an
incompressible continuum of smooth muscle cells. The constrained mixture theory was
applied to prescribe pre-stretches to each constituent to balance the diastolic pressure load.
An L-BFGS optimization algorithm was applied to iterate over the material parameters to
minimize the cumulative error to the measured pressure–area curve at the main pulmonary
artery. The model suggests that pulmonary hypertension-induced remodeling led to the
stiffening of elastin fibers and wall thickening.

All of the above models assume that arteries are uniformly loaded at the luminal and
adventitial surfaces. In the lumen, arterial tissue is subjected to blood pressure; however,
loads and reactions on the adventitial surface are typically complex. Without appropriate
adventitial boundary conditions, the deformation of a pressurized blood vessel at systole
results in a homogeneously deformed configuration following the principle of minimal
strain energy [14,115]. However, different image-based in vivo analyses have shown that
large vessels may undergo heterogeneous deformations from diastole to systole, an effect
that is not reproduced on standard in vitro pressurization setups or in silico experiments
without appropriate adventitial boundary conditions [13,115,290].

These observations supported the hypothesis that the interaction of healthy blood
vessels with diverse perivascular structures may induce the in vivo deformational het-
erogeneity [14,166]. To address this, Bracamonte et al. proposed a heterogeneous elastic
foundation approach, consisting of the attachment of static linear springs of heterogeneous
stiffness to the adventitial surface of arterial models. The distribution of stiffness of the
elastic boundary was discretized to piece-wise constant regions and fitted through an
iterative inverse algorithm to reproduce the heterogeneous deformation of the vessel [14].
For this study, retrospective cine and 2D DENSE MRI data were collected at the infrarenal
abdominal aorta from nine healthy adult volunteers of diverse ages. DENSE MRI data
were processed to obtain the spatial distribution of the diastole-to-systole displacement
and then interpolated onto a FEM mesh built from the segmented diastolic configuration.
The material was assumed to follow the Fung material model at a plane-strain state with
the diastolic configuration as the unloaded stress-free reference. The Powell optimization
algorithm was employed to iterate over the material parameters and elastic boundary stiff-
ness distribution to minimize the least-squared error of the nodal displacement. Estimated
material parameters reproduced the stiffening effect of aging. The elastic boundary stiffness
distribution was independent of discretization and consistent among patients. Notably, it
showed good agreement with the location of known anatomical features of the perivascular
space, such that the vicinity to the vertebrae corresponded to the stiffest boundary, whereas
the region adjacent to the peritoneal cavity resulted in the most compliant boundary.

The authors found that this approach properly captured the mechanics of the in-
frarenal aorta but failed to reproduce displacement measurements of the descending
thoracic aorta, where the aortic wall shows both distention due to pressurization and bulk
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motion (Figure 13a,b). This bulk motion was hypothesized to be driven by the interactions
with the adjacent beating heart. These interactions were modeled by incorporating a mov-
ing elastic foundation boundary approach [280]. This was implemented by attaching linear
springs of homogeneous effective stiffness to the adventitial surface of the 2D aortic model,
which was then allowed to displace radially (either inwards or outwards) to best reproduce
the target bulk motion and heterogeneous wall deformation upon luminal pressurization
(Figure 13c). The method was applied to a collection of retrospective cine and 2D DENSE
MRI data at the infrarenal abdominal aorta, descending thoracic aorta, and descending
aortic arch from 27 healthy adult volunteers of diverse, ranging from 19 to 65 years of
age. A similar optimization algorithm was applied, although in this new model, the fitted
elastic boundary parameters were the material model constants and spring displacement
distribution, which translated directly to adventitial load distribution (Figure 13c). A
parametric study was performed to study the effect of the moving elastic boundary pa-
rameters on the resulting estimations of distributed adventitial loads, which revealed that
averaged adventitial load and adventitial load distributions were seemingly independent
of elastic boundary parameters within the range that yielded physiologically meaningful
results [280]. The proposed method converged to elastic regions that were located around
relevant anatomical features (Figure 13d), and peak loads were found at locations where the
heart pushes the aorta against the vertebrae (Figure 13e). Results suggest that adventitial
load increases with age (Figure 13f), and that the thoracic aorta carries a larger adventitial
surface load than the abdominal aorta, most likely due to the interactions with the beating
heart (Figure 13g) [150].

Figure 13. Inverse analysis of perivascular interactions at the descending thoracic aorta (DTA), based
on results from Bracamonte et al., 2021 [150]. (a) Surroundings of the DTA. (b) DENSE MRI-derived
displacement quiver representation and mapping into deformed (systolic) configuration. (c) Moving
elastic foundation implementation and equivalent adventitial load distribution. (d) Patient-specific
elastic boundary, and (e) adventitial load distribution. (f) Adventitial load increments with age.
(g) Average adventitial load at different aortic locations (* p-value < 0.05; ** p-value < 0.01). Symbols:
φ elastic boundary region angular delimiter, d moving elastic boundary displacement, pa adventitial
force per unit area, pl luminal pressure increment, LA left atrium, LV left ventricle, V vertebra, L lung,
IAA Infrarenal abdominal aorta, DTA descending thoracic aorta, DAA distal aortic arch. Red line (0◦)
is the angular reference selected as the closest location of the vertebra to the aortic wall.
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6.4.1. Aneurysms

Aneurysms are enlarged blood vessels caused by the remodeling of its wall. When
local wall stress exceeds wall strength, rupture occurs, which carries significant morbidity
and mortality. Brain and aortic aneurysms are the common manifestations of this disease.
Aortic aneurysms have an incidence of 5 to 10 cases per 100,000 and are responsible
for approximately 15,000 deaths per year just in the United States [291,292]. Maximum
aneurysm diameter and expansion rate are currently the main criteria for diagnostics and
risk assessment [293]. Notably, though rupture risk increases with a maximum diameter
on average for the entire population, diameter alone struggles to predict rupture for any
given individual. Thus, further research is ongoing to develop more reliable metrics for
predicting rupture based on biomechanics [13].

For example, Karatolios et al. applied the inverse modeling approach of Wittek
et al., (2013) to study the strain distribution in two abdominal aortic aneurysms (AAA) of
two adults and the abdominal aorta of six healthy controls [164]. Results suggested that
peak strains in AAAs are time-delayed (in late systole) with respect to their occurrence
in healthy aortas. This work was followed by an extensive retrospective study published
by van Disseldorp et al., in 2016, which gathered information from 40 AAAs patients
that underwent CT scans and 4D Ultrasound with speckle tracking [282]. Patient-specific
3D models of the abdominal aneurysm were generated from the CT scans with a fixed
wall thickness of 2 mm for all cases. The arterial wall was assumed to behave as a neo-
Hookean material. The shear modulus was estimated iteratively to minimize the diastole-
to-systole nodal displacement between forward FEM simulations and speckle-tracking
derived measurements (Figure 14a). The error function was designed ad hoc so that
regions with more precise and reliable measurements carried more weight when calculating
error. For each iteration, the pressurization from diastole-to-systole was preceded by the
estimation of the diastolic stress applying the backward increment algorithm. Systolic
pressure was assumed to be 140 mmHg for all cases and the reference geometry built from
CT scans was assumed to be at a mean arterial pressure of 105 mmHg. Interestingly, results
from the study suggested that aneurysms with larger diameters tend to be stiffer. An
extension of this work was published in 2019 by van Disseldorp et al., with a comparative
study of material properties from 30 healthy volunteers and 65 AAA patients using 4D
Ultrasound datasets [283]. Healthy cases were grouped by age, whereas AAA patients were
grouped by aneurysm diameter. Segmentation and parameter estimation followed the same
methodology as previously; however, patient-specific diastolic and systolic pressures were
measured from a sphygmomanometer and used as boundary conditions for the backward
increment method and forward simulations. The analysis showed a significant difference
in stiffness between age-matched healthy volunteers and AAA patients even at the early
stages of the disease (Figure 14b). The study suggests that most of the stiffening occurred
at the onset of the disease with slight further increases as the aneurysm grows (Figure 14c).
Additionally, a significant correlation between peak stress and aneurysm size was found,
which is consistent with the general correlation of aneurysm size with wall rupture.

Krishnan et al., performed inverse model analyses on ascending thoracic aorta
aneurysms (aTAA) [286]. These authors collected CT angiography and DENSE MRI se-
quences from four patients. Three-dimensional models of aortic aneurysms were built
from the CT scans at systolic configuration. The Ogden isotropic hyperelastic constitutive
equation was selected as the material model. They applied an iterative updating algorithm
to find the set of material parameters that minimized the least-square error of simulated
strains against DENSE MRI-derived estimations. The iterative algorithm consisted of three
steps: first, a deflation step to 0 mm Hg (assume to be the zero-stress reference), followed
by the inflation to the assumed 120 mm Hg at systole, and finally, the deflation to diastolic
pressure of 80 mm Hg. This study revealed that the estimated peak principal stress is
circumferential and about 25% greater than the average stress in aTAAs and located in the
inner and outer curvature of the arch towards the pulmonary artery.
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Figure 14. Inverse analysis of abdominal aneurysm mechanics (Reprinted/adapted with permission
from Ref. [283]. 2018, Oxford University Press). (a) Patient-specific data processing algorithm and
typical outputs. (b) Aortic stiffness versus maximum aortic diameter for healthy volunteers (gray
squares) and AAA patients (black circles). (c) Population-based statistics of aortic stiffness in a box
and whisker plot with dots representing outliers. Results suggest that most wall stiffening occurs at
early stages of the disease when the aneurysm diameter is still relatively small.

Liu et al. explored new methods to reduce the computational cost of inverse analyses
while studying the mechanical properties of aTAAs. First, they investigated a method based
on the computation of wall stress by solving a simplified statically determinate problem
to obtain an “almost true” stress field [104]. They collected retrospective CT angiography
from 4 patients with aTAA who went through surgical repair with tissue excision used for
ex vivo biaxial testing. The geometry was built at the systolic configuration and assumed to
be loaded at 120 mmHg. The material was modeled with a Holzapfel-Ogden constitutive
equation. The backward displacement algorithm was used on each iteration to calculate the
unloaded configuration assumed to be stress-free. An iterative inverse method was applied
to obtain an estimation of material parameters using a constrained gradient-free trust-region
optimization algorithm. Each iteration consisted of two steps: first, computing an almost
true stress field from the in vivo geometries and loading conditions by using the Laplace
law for statically determinate stiff thin-wall vessels; and second, calculating the stress
distribution with the updated material parameters. The target function for the optimization
algorithm was defined as the least-squared error of the simulated to almost true stress.
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Constraints consisted of upper and lower limits for material parameters extracted from
the literature. Estimated material properties showed good agreement with results from
patient-specific mechanical tests from excised tissue while decreasing the computational
cost relative to regular iterative inverse approaches. Subsequently, Liu et al. used the same
database and material model to explore the effectiveness of the multi-resolution direct
search method as the optimization algorithm [113]. This algorithm works by decomposing
the search for the optimal material parameters with a multi-scale representation of the
parameter hyperspace. The target function to be minimized was defined in terms of the
distance between surface nodes and the location of the segmented surface at systole. The
converged material properties successfully reproduced the strain energy curves from biaxial
testing while considerably reducing the computational cost of the inverse approach.

All these studies assumed material homogeneity of the aortic wall, which is a major
limitation for the study of aneurysms. In vitro mechanical tests and histology analyses
have been performed on aneurysms from human cadavers revealing both structural and
mechanical heterogeneity [294,295]. Farzaneh et al. studied material heterogeneity on three
aTAA patients from which CT scans were collected [112]. Medical images were used to
build 3D models of the aneurysms at diastole and systole, and these models were used to
estimate the local strain state. Each element on the wall surface was assumed to be part
of an ellipsoid sharing the center to the cross-section of the vessel and was assumed to
behave as a linearly elastic material. The stiffness was directly calculated element-wise
from local balance equations. Their results suggested that diseased tissue was stiffer in
the bulging part of the aneurysm and generally stiffer than the adjacent non-aneurystic
tissue. Giuseppe et al. further applied this methodology to a cohort of 30 aTAA patients,
12 with bicuspid aortic valves, and the remaining with normal tricuspid valves [281]. Wall
stiffness distribution was heterogeneous for each individual, however, regional differences
appeared to be marginal within the cohort due to interindividual variability. Notably, this
study found no significant differences in stiffness nor its distribution between the bicuspid
and tricuspid valve groups, suggesting that no distinction should be made in the surgical
management of aneurysms between these groups.

6.4.2. Atherosclerotic Plaques

Atherosclerosis is a chronic inflammatory disease that manifests as the hardening
and occlusion of arteries due to the build-up of plaque on the lumen of the arterial wall.
Atherosclerotic plaque is a mixture of fatty substances, cholesterol, calcium, and cellular
waste, usually enclosed in a fibrous cap. Atherosclerotic lesions are generated at specific
regions of the arterial tree, mostly in the vicinity of branch points, the outer wall of bifurca-
tions, and the inner wall of curves [157]. Among many possible associated complications,
plaque can break and detach, generating thrombosis, acute myocardial infarction, and
stroke. Thus, the in vivo evaluation of the mechanical properties of atherosclerotic plaques
and their mechanical environment could support the assessment of risk associated with
plaque rupture. One of the earliest inverse analyses of atherosclerotic plaques was proposed
by Liu et al., in 2012 [286]. This study was performed on 12 patients with carotid artery
atherosclerosis. For each patient, a set of cine MRI, 3D multi-contrast MRI, and sphyg-
momanometry were collected. Two-dimensional models of the diseased sections were
built from MRI images at diastole, including lipid pools resolved by multi-contrast MRI.
The arterial wall and plaque were assumed uniform and to behave as a Mooney–Rivlin
hyperelastic material, while the lipid pools were assumed to be isotropic linear elastic. An
L-BFGS-B optimization method was applied to fit the material properties of the wall plaque
until the error between the simulated and measured diastole-to-systole area change was
minimized. Each iteration included the estimation of the unloaded configuration by the
shrink-and-fit algorithm, and a forward FEM problem for the inflation from the unloaded
configuration to the systolic configuration applying uniform luminal pressurization. The
authors found the estimations of material stiffness show reasonable agreement with re-
ported data from experimental studies. An analysis of stress distribution indicated that, for
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all cases, peak stress was located at the thin cap covering the lipid core. This study was
further refined by Wang et al., in 2017 [285], with similar imaging and functional data ac-
quired for 8 patients with carotid atherosclerosis with follow-up tests after 18 months. The
material models, optimization algorithm, target function, and iteration steps were the same
as previously; however, a total of eight slices were analyzed from each carotid artery and
modeled as a 3D thin layer so that axial prestretch could be included in the estimation of
the unloaded configuration. Results revealed high patient-to-patient variability on plaque
stiffness, which was significantly larger in the hypertensive cases. The authors also found
that estimations of material properties of the plaque can significantly change over time,
with stiffness increments being the most common scenario. Huang et al. further explored
these results with FSI simulations based on patient-specific estimations of atherosclerotic
tissues with patient-specific measurements of pressure gradients by applanation tonom-
etry and confirmed that flow and pressure-induced stresses peak at the fibrous cap that
covers the lipid core, which could offer support to explain the main mechanisms of plaque
rupture [296].

The main limitation of previous studies is that the current resolution of non-invasive
imaging techniques is insufficient to resolve the displacement of atheroma plaques in small
vessels such as the carotid artery. To overcome this, Maso Talou et al. utilized intravascular
ultrasound technology [284]. This work analyzed data from 4 atherosclerotic lesions which
were modeled as 3D thin cross-sectional slices. Each model was single-layered and divided
into six circumferential sections, each portion being assumed materially homogeneous
and following the Neo–Hookean hyperelastic material model. Perivascular tethering was
modeled as a homogeneous elastic media of fixed stiffness. Kalman filters were used to
estimate material parameters for each section while minimizing the diastolic-to-systolic
displacements. Each iteration included the estimation of diastolic stress distribution by
a backward increment method assuming a pressure load of 80 mmHg and population
average-based axial stretch. From this preloaded state, a forward inflation problem to
systolic pressure was then solved. Parallelization techniques were employed to reduce
computer processing times achieving convergence between 12 h and three days. Sensitivity
of the results to numerical and model parameters was carried out, finding that perivascular
elastic properties have a significant effect on material parameter predictions. The estimated
material parameters agreed with the magnitudes reported from available experimental data.

6.5. Hemodynamics

In general, computational modeling of hemodynamics is more resource-consuming
than tissue mechanics, as simulations need to account for transient effects and deal with
the difficulties introduced by the non-linearities of convection and momentum dissipation.
This makes the application of inverse modeling to hemodynamics a challenging task.

The use of simplified 0D (lumped) and 1D models can significantly reduce the compu-
tational cost. These simplified models have been used on a patient-specific basis and imple-
mented onto inverse modeling approaches to provide useful systemic information about
flow distribution, vascular resistance, and the systemic effect of drug treatments [297,298].
However, these approaches cannot exploit the detailed features offered by modern image-
based kinematics as they only deal with 2D integrated or averaged metrics. Furthermore,
despite all assumptions and simplifications, inverse approaches to lumped and 1D models
are still prone to solution multiplicity [119]. With our focus on inverse modeling based on
image-based kinematics, these approaches employing 1D simplified models fall outside
the scope of this review.

To deal with the computational expense of the forward problem on inverse hemody-
namics, Lassila et al. proposed a method for parametrizing the Navier–Stokes equations
and patient-specific geometries to reduce the basis of the partial differential equations. The
parameterized model is iteratively solved until the algorithm is close to the final solution.
At this point, the inverse method then switches to the solution of the full-forward prob-
lem using FVM. This method was tested using deterministic and Bayesian optimization
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algorithms showing promising results on the solution of test cases involving rigid-wall
and FSI simulations [103]. Herein, we review some of the existing research on inverse
hemodynamics separating approaches that assume rigid-wall flow boundaries from those
using FSI approaches.

6.5.1. Rigid Wall Models

Romarowski et al. applied an iterative inverse method for the hemodynamic study of
three descending thoracic aortic aneurysms. CT scans were used to build the 3D models
that included the ascending and descending aorta [118]. PC MRI sequences were collected
at the ascending aorta (above the aortic bulb), the suprarenal abdominal aorta, and all
three branches of the aortic arch. Diastolic and systolic pressures were collected from
sphygmomanometry. The authors observed that balances with the inlet and outlet flow
rates measured with PC MRI did not comply with the conservation of mass principle. The
forward problem was defined by applying the PC MRI-derived velocity distribution in
the ascending aorta as an inlet boundary condition. At all four outlets, a surrogate three
element Windkessel model of unknown parameters was imposed as a boundary condition,
while blood was assumed to be an incompressible Newtonian fluid. The forward problem
was solved by a FEM solver. An optimization algorithm was applied to minimize the least-
squared error of the measured blood flow at the outlets to simulation estimates, by fitting
the surrogate model parameters. The authors highlight that this weak approach allows
distributing the error related to measurement noise while enforcing mass conservation.
Similarly, Gaidzik et al. used PC MRI data from a healthy volunteer to find the pressure
gradient distribution in the circle of Willis, an important cerebral arterial system [299].
In this work, Kalman filters are iterated over pressure boundary conditions to adjust the
simulated flows to PC MRI measurements with an FVM solver for the forward problem.
Noise-to-signal ratios were used to incorporate the measurement uncertainty into the data
analysis. The authors highlight that the outputs of the inverse methods yield smaller
uncertainties than CFD or 4D flow MRI data analysis alone.

Rispoli et al. proposed a modification to the implementation of FVM for fluid dynamics
problems, to introduce the minimization of simulated nodal velocity components to 4D
flow data measurements in the linearized SIMPLER algorithm [300]. The method required
the smoothing and interpolation of coarse 4D flow MRI data to the FVM mesh. 4D flow
MRI-derived velocities were directly used as inlet and outlet boundary conditions. The
minimization problem and FVM solution were solved simultaneously using a version of
the iterative Runge–Kutta algorithm. This method allowed the simultaneous solution of
the simulation and inverse problems, thus reducing the computational expense. As a proof
of concept, the method was applied to anatomy and 4D flow MRI scans of a healthy human
carotid artery. The method was incorporated into a custom-made solver that required
special discretization into a structured mesh in the Cartesian space. Töger et al. further
developed this approach by incorporating the nodal velocity error minimization approach
into a discontinuous Galerkin FEM formulation, allowing the solution of unstructured
meshes [122]. The method was validated to in vitro measurements with laser particle
imaging velocimetry in a pulsating flow loop with an abrupt change of cross-sectional
area to induce complex flow patterns. Then, the method was applied to a healthy-human
proximal cerebral artery. CT angiography was used to build the 3D anatomic model, 4D
flow data were collected at a resolution of 0.7 mm voxel size with a 7 T scan, and PC MRI
scans were collected at inlet and outlet planes with a resolution of 0.5 mm/px. Moreover,
4D flow data were spatially and temporally smoothed and interpolated into the FEM
mesh, while PC MRI data were integrated to enforce inlet and outlet transient plug flow
as boundary conditions. The method showed errors below 1% on velocity distribution
for in vitro validation tests, and the proof of concept on in vivo datasets demonstrated the
potential of the proposed methodology for future human studies.
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6.5.2. Fluid-Structure Interaction (FSI) Models

Fluid–structure interaction simulation is itself a complex, resource-consuming process,
and its incorporation with inverse models is challenging. Some of the early work by
Moireau, Chapelle, D’Elia, Perego, among others, set the bases for inverse modeling of FSI
by calibrating models to in vitro experiments and synthetic datasets [301–303].

In 2014, Bertoglio et al. proposed the use of Kalman Filters to estimate the material
properties of several regions of the aorta from inverse FSI [304]. Available clinical data
included SSFP MRI, intravascular pressure measurements at the ascending, thoracic, and
abdominal aorta, and PC MRI measurements at four planes along the aorta. The aorta was
divided into four sections each one assumed to follow the Mooney–Rivlin material model.
The arbitrary Lagrangian–Eulerian algorithm was implemented to couple fluid and wall
mechanics. Kalman filter optimization was used to minimize an error function based on all
available clinical measurements weighted by the associated uncertainty while fitting the
regional material parameters. Results reproduced the expected stiffness distribution, with
stiffer distal descending aorta.

Zambrano et al. proposed an iterative inverse method for the study of the pulmonary
artery [305]. Intravascular pressure measurements, PC MRI at the main branches of the
pulmonary artery, and cine MRI were collected from a pulmonary hypertensive adult
patient and a healthy volunteer with no reported cardiovascular disease. A 3D model from
the main pulmonary artery (MPA) down to the 4th branch generation was built from MRI
images at the end-diastole configuration, which was considered stress-free. MRI-derived
diameter changes were calculated at the main pulmonary artery and coupled to pressure
measurements.

The arterial wall was assumed homogeneous and isotropic linear elastic through-
out the entire domain. The fluid–structure interactions were modeled with the coupled
momentum method. Boundary conditions consisted of PC MRI-derived inlet flow and
three-parameter Windkessel models in the outlets. The elastic modulus of the wall and
Windkessel boundary parameters were calibrated by iterating in two nested loops. In
the inner loop, the Windkessel parameters were adjusted until the error to the measured
pressure waveform is minimized, while the outer loop adjusted the elastic modulus until
the error to the measured pressure-area curve is minimized (Figure 15a). On each iteration,
the forward problem was solved until solution periodicity was confirmed. The proposed
model was able to reproduce the expected increase in arterial stiffness and vascular flow
resistance in the hypertensive patient. In a follow-up study, the methodology was applied
to a cohort of six individuals with pulmonary artery hypertension and five healthy volun-
teers [306]. A statistical analysis of the results revealed that the hypertensive group showed
significantly larger wall stiffness, regurgitant flow, and distal vascular resistance, with
significantly smaller time-averaged wall shear stress (Figure 15b). Interestingly, a linear cor-
relation between the estimated wall elastic modulus and the magnitude of retrograde flow
volume was found, which further supports the hypothesized relation between irregular
flow patterns and the pathological remodeling of vascular tissue.

6.6. Summary

In Table 9 we summarize the highlights of inverse analyses for cardiovascular mechan-
ics applications and notable results.
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Figure 15. Iterative inverse method and results for the study of pulmonary artery hypertension.
(a) Double optimization loop for the inverse resolution of distal vasculature Winkesel model parame-
ters and wall elastic modulus from phase contrast MRI data. (Reprinted/adapted with permission
from Ref. [305]. 2018, Elsevier) (b) Biomechanical parameters of pulmonary artery from healthy
individuals and pulmonary artery hypertension patients. Models are organized from left to right
according to the wall elastic modulus (stiffness) scale, colormaps show the time-averaged wall shear
stress (TAWSS) distribution (Reprinted/adapted with permission from Ref. [306]. 2021, Zambrano
et al.; open access).
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Table 9. Summary of medical imaging-based kinematics.

Section Highlights

6.

The development of patient-specific inverse analyses of cardiovascular mechanics has advanced considerably recently thanks to
continuous technological improvements in imaging hardware and software, decreasing cost, increased imaging availability,
improvements in image-based kinematics acquisition and postprocessing, simulation engineering, and significant increases in
computational power.

6.1

Blood vessels, in particular those of the arterial tree, function under physiological pressure load at all times and are axially
pre-stretched; thus, none of the patient-specific configurations resolved by in vivo imaging is truly a stress-free or zero-strain
configuration.
The unloaded configuration of cardiovascular tissue is not truly stress-free. The residual stress is hypothesized to be the product of
heterogeneous growth and remodeling of tissue.
For patient-specific analyses, the material properties and zero-stress configuration are unknown. Thus, the solution to this problem
requires the specification of at least two deformed and loaded states as input data.
Direct methods for the solution of inverse elastostatic problems to determine the unloaded configuration of the heart and arteries
have been incorporated into FEM solvers for hyperelastic and fiber-family material models.
Several iterative methods for the solution of the unloaded configurations have been proposed. All these methods have in common
that a single point or a collection of points on the surface are fixed, while forward inflation problems from unloaded configuration
iterations to the known loaded configurations are solved until a convergence criterion is satisfied. Unloaded configuration iterations
are estimated either by shrinking the known loaded configuration or by taking “backward” inflation steps.
An alternative iterative approach is to solve the strain and stress distribution that balances the applied loads acting on the
image-derived anatomic configurations without the resolution of the unloaded geometry.

6.2

The inverse modeling of the heart as a whole is currently unfeasible due to the complexity of the system and computational
limitations.
An accurate understanding of myocardial mechanics is key for the diagnosis and treatment of diverse cardiac pathologies, and
potentially, to predict and stratify the risk of heart failure after infarct.
The assumption of material homogeneity is a common and convenient simplification for forward and inverse models. Homogeneous
models may be deemed to be adequate for the study of healthy hearts, or when the aim of the analysis is not centered on the study of
focalized lesions.
Homogeneous models can quantify the stiffening effect of infarct lesions and predict the natural compensation of the active
component of the heart to maintain cardiac function after infarction.
Modeling of material heterogeneity of the heart can provide better fits to kinematic data, can resolve property changes, and identify
the location and severity of myocardial lesions. This comes with an increment of model complexity and computational expense.
A common approach is to approximate spatial variations of myocardial properties and microstructure with region-wise
heterogeneities. AHA standard division of the left ventricle is often used to define region-wise heterogeneity.
Heterogenous models of the myocardium can identify the material properties of the infarcted zone, the border zone, and the
unaffected tissue.
Heterogeneous models can accurately predict how impaired activation of the myocardium affects the cardiac function in patients
with left bundle branch block (LBBB).
Inverse analyses with heterogeneous models have been used to predict the effect of ischemia on cardiac function, and its recovery
after revascularization treatment.

6.3
Heart valves and leaflets are thin structures with complex motion that are difficult to resolve through in vivo imaging techniques.
Owing to this, most studies on these structures are carried out in vitro.
Recent developments in US imaging of heart valves are the first steps toward the in vivo inverse modeling of these structures.

6.4

Changes in mechanical properties of arterial walls have been associated with the onset of multiple cardiovascular pathologies and
remain an important predictor of cardiovascular morbidity and mortality in clinical practice.
The image-based resolution of vascular tissue kinematics is technically challenging due to the relative thinness of vascular walls.
Inverse analyses of healthy arteries have been used to assess the stiffening effect of aging and to explore the effect of perivascular
interaction on aortic mechanics.
Aneurysms are a potentially fatal condition that consist of the enlargement of blood vessels caused by the remodeling of its wall.
Aneurysmal rupture risk increases with maximum diameter on average for the entire population, although diameter alone struggles
to predict rupture for any given individual.
Inverse modeling has been used to obtain heterogeneous maps of mechanical stress and strain in thoracic and abdominal aneurysms
and to assess the effect of disease progression on tissue stiffening.
Atherosclerosis is a chronic inflammatory disease that manifests as the hardening and occlusion of arteries due to the build-up of
plaque on the lumen of the arterial wall.
The in vivo evaluation of the mechanical properties of atherosclerotic plaques and their mechanical environment through inverse
modeling could support the assessment of risk associated with plaque rupture.

6.5

Computational modeling of hemodynamics is more resource consuming than tissue mechanics.
Statistical analyses have shown that outputs of the inverse methods yield smaller uncertainties than CFD or 4D flow MRI data
analysis alone.
Inverse modeling of the fluid–structure interaction of the blood flow in the pulmonary arteries has been used to identify relevant
markers of pulmonary artery hypertension. Among these markers are wall stiffness, wall shear stress and oscillation, pulse wave
velocity, and regurgitant flow.
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7. Closing Remarks

Inverse modeling is an analysis tool that can provide detailed information about
domain properties and loading conditions using kinematic measurements as inputs. When
applied to collected data from controlled in vitro experiments it can provide dynamic
information with high levels of accuracy and reliability. In biomedical research, inverse
modeling has been coupled with microscope-based imaging techniques to yield relevant
information on the response of cardiovascular and engineered tissue to mechanical stimuli
at the cellular level. These contributions hold relevant scientific value in the fields of
mechanobiology and tissue engineering, however, the extrapolation of these results to
patient-specific cases is limited.

There is great interest in the development of reliable patient-specific non-invasive
medical tools to assess the onset and progression of cardiovascular disease. This has led to
significant advances in non-invasive medical imaging, including improvements in resolu-
tion, scan time, operational costs, availability, and the ability to quantify detailed regional
kinematic information. Inverse biomechanical analyses can exploit this available clinical
data to provide patient-specific estimations of dynamic parameters that otherwise require
invasive (and potentially risky) procedures, such as vascular catheterization, or cannot
be measured at all. Inverse modeling fits dynamical unknowns to kinematic data, which
would be simply assumed with fixed values on classical forward modeling approaches.
However, inverse modeling cannot entirely substitute measurements of absolute pressure
(required to define the loading boundary conditions); instead, this technique can be used to
estimate other relevant biomarkers defined in terms of pressure or load differences, such as
vascular flow resistance. As highlighted in this review of the clinical applications of these
methodologies, inverse analyses can estimate stiffness for healthy and diseased cardiac and
vascular tissues, identify and delineate pathological lesions, resolve tissue composition, and
quantify mechanical loads and stresses during in vivo function. Inverse modeling can also
provide physiological rationales for empirically derived risk factors, such as aneurysmal
diameter and ventricular volume, as well as yield new sets of physiologically meaning-
ful risk markers. In addition, inverse modeling can deliver insights into how biological
tissues respond and adapt to pathology and/or therapies through comparative studies,
such as regional changes in active contraction within infarcted hearts or tissue growth and
remodeling in aneurysmal arteries.

Despite all these advantages, the incorporation of patient-specific inverse-modeling in
clinical practice still faces several challenges, including the presence of multiple solutions,
uncertainty regarding patient-specific stress-free reference configurations, computational
costs, and the lack of required clinical and imaging data. The multiplicity of solutions
is a common challenge to any inverse problem, and the solution set can be reduced by
constraining the optimization parameters within ranges of expected values, incorporating
regularization functionals, sampling stochastic parameters, designing special optimization
target functions, and, for the specific case of Bayesian approaches, providing probability
distributions of parameters from previous experiences.

A step towards resolving patient-specific stress-free references for tissue mechanics
is the inverse solution of unloaded configurations through direct and iterative methods.
However, it is generally accepted that unloaded blood vessels are not truly stress-free
due to the existence of residual stress/strains which are influenced by the heterogeneous
growth and continuous remodeling of the tissue, including the prestretch of key extracel-
lular matrix components such as collagen. This issue could potentially be addressed by
the implementation of a constrained mixture theory and the in vivo resolution of tissue
microstructure via medical imaging.

The computational cost of iterative inverse methods is often addressed by simplifica-
tions of the forward problem, the use of surrogate models for early optimization stages,
utilization of more efficient iterative optimization methods, and the use of parallel comput-
ing. Furthermore, the ongoing increase of computational power may allow the solution of
complex problems that escapes the reach of current technology.
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Similarly, it is reasonable to expect that medical imaging technology will continue to
evolve, making them more readily available in healthcare practice. The development of
data-driven techniques for the support of clinical decision making and treatment planning
could also motivate the implementation of image-based kinematics in routine health care.

Inverse modeling is just one of many patient-specific techniques that have been
proposed as a useful support for clinical practice. Machine learning has been increas-
ingly explored in the last two decades for incorporation into the new field of precision
medicine [307]. This technique consists of training decision-making algorithms with anno-
tated large datasets, which when combined with the application of statistical principles,
can return valuable evidence-based information from raw clinical data [308]. The main
advantage of machine learning techniques is that once the algorithm has been trained,
results can be obtained in short times with low associated computational cost. However,
the outcomes are highly dependent on the quality of the annotated dataset used for training,
as they are not the result of a physiology-based simulation but on statistical probabilities
calculated from collected evidence. Thus, this approach can potentially fail if unique or
unexpected conditions are presented.

An additional advantage of simulation-based techniques is their predictive capabilities.
Founded on physical and physiological principles, patient-specific inverse problems can
be coupled to mechanobiology-inspired growth and remodeling models to potentially
predict the progression of diseases and/or the effect of treatments [106]. In conclusion,
image-based inverse modeling is a promising quantitative tool to generate and analyze
clinically relevant physiological data through a non-invasive approach with the ultimate
goal of providing improved patient-specific diagnostic and prognostic assessments of
diverse cardiovascular diseases in order to improve outcomes, reduce costs, and increase
the quality of life.
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Abstract: In vivo cardiac diffusion tensor imaging (cDTI) data were acquired in swine subjects six
to ten weeks post-myocardial infarction (MI) to identify microstructural-based biomarkers of MI.
Diffusion tensor invariants, diffusion tensor eigenvalues, and radial diffusivity (RD) are evaluated in
the infarct, border, and remote myocardium, and compared with extracellular volume fraction (ECV)
and native T1 values. Additionally, to aid the interpretation of the experimental results, the diffusion
of water molecules was numerically simulated as a function of ECV. Finally, findings based on in
vivo measures were confirmed using higher-resolution and higher signal-to-noise data acquired ex
vivo in the same subjects. Mean diffusivity, diffusion tensor eigenvalues, and RD increased in the
infarct and border regions compared to remote myocardium, while fractional anisotropy decreased.
Secondary (e2) and tertiary (e3) eigenvalues increased more significantly than the primary eigenvalue
in the infarct and border regions. These findings were confirmed by the diffusion simulations.
Although ECV presented the largest increase in infarct and border regions, e2, e3, and RD increased
the most among non-contrast-based biomarkers. RD is of special interest as it summarizes the changes
occurring in the radial direction and may be more robust than e2 or e3 alone.

Keywords: diffusion tensor imaging; in vivo cDTI; chronic infarction; cardiac microstructure; radial
diffusivity; swine infarction model

1. Introduction

Cardiac function in health and disease depends on cardiac microstructure, which
governs the preferential directions of contraction/relaxation and the mechanical/electrical
properties [1,2] of the myocardium. Cardiac microstructure can be inferred from cardiac
diffusion tensor imaging (cDTI), a magnetic resonance imaging (MRI) technique that allows
the mapping of tissue microstructure in vivo without the use of contrast agents. Indeed,
cDTI measures the intracellular and extracellular anisotropic diffusion of water molecules,
from which the preferential orientation of cardiomyocytes and sheetlets is estimated [3,4].

As cDTI probes cardiac microstructure, it also provides information on microstructural
changes occurring as a result of remodeling due to cardiac diseases, for example due to
chronic myocardial infarction [5,6]. Remodeling due to scar formation post-myocardial
infarction may lead to increased wall stress, reduced ejection fraction, and wall thinning,
affecting the overall cardiac function [7]. Understanding the changes in cardiac microstruc-
ture due to myocardial infarction (MI) could provide valuable insight into the post-MI
remodeling process.

MRI sequences such as T1-mapping and late gadolinium enhancement (LGE) are
commonly used to identify the location and extent of the infarcted myocardium. These
imaging sequences require the use of gadolinium-based contrast agents, which can have
adverse effects on patients with pre-existing renal conditions [8].
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Diffusion tensor invariants, such as mean diffusivity (MD) and fractional anisotropy
(FA), can be used to detect and quantify the extent of MI with the additional benefit
of providing insight into cardiac microstructure. In chronic infarcted tissue, previous
studies [9–11] have reported an increase in MD and a decrease in FA, indicating overall
microstructural changes post-MI. However, these overall microstructural changes have
not carried over to specific changes in the preferential direction of the cardiomyocytes
and along the sheetlets/cross-myofiber directions. Information regarding changes in these
microstructural directions can be extracted from the diffusion tensor eigenvalues. Indeed,
the primary eigenvalue (e1) corresponds to the diffusivity along the preferential direction of
the cardiomyocytes [12], while the secondary (e2) and tertiary (e3) eigenvalues correspond
to the diffusivity along the sheetlet and cross-myofiber directions [13].

The main goal of this study is to refine the analysis of cardiac microstructural changes
by studying the individual diffusion tensor eigenvalues and by computing radial diffusivity,
a marker of both sheetlet and cross-myofiber diffusivity, using in vivo cDTI data (radial
diffusivity is defined as the average of the secondary and tertiary eigenvalues). These
quantities are then compared against diffusion tensor invariants (e.g., MD, FA), native-T1,
and extracellular volume fraction (ECV) to establish their sensitivity in identifying the
infarcted tissue and its microstructural changes.

In the infarcted region, the extracellular volume fraction increases due to the death
of cardiomyocytes. We hypothesize that this increased extracellular space will mainly
occur in the radial direction of the remaining cardiomyocytes and replacement fibrosis,
and will be reflected by a higher increase in e2, e3, and radial diffusivity compared to the
increase in e1 and MD. This hypothesis is also motivated by our previous work [14] based
on ex vivo, high-resolution, and high signal-to-noise ratio (SNR) data. Moreover, to further
understand the results computed from experimental data, we simulate numerically the
diffusion of water molecules. The computed diffusion quantities are then compared with
experimental results as a function of ECV. We conclude our study by discussing the most
effective diffusion quantities to detect and characterize the remote, border, and infarct
regions and their microstructural interpretation.

2. Methods

2.1. Animal Model and Infarct Induction

Animal care during infarct induction, imaging, and all experimental procedures
followed protocol #2015-124 approved by the Institutional Animal Care and Use Committee
of the University of California, Los Angeles.

These experiments were part of a larger study, whose scope is to characterize my-
ocardial structure and function [15], and to identify the material behavior of the passive
myocardium [16]. As part of this study, an infarct model was created using female York-
shire swine subjects. In vivo and/or ex vivo MRI data necessary for the current study
was successfully acquired in seven (N = 7) subjects. All subjects (N = 7) were included
in the ex vivo analysis. Two subjects were excluded from the in vivo analysis since:
(1) one subject died during MRI acquisition before in vivo cDTI data could be acquired;
and (2) one subject presented a right ventricle infarct that was not visible on in vivo cDTI
data due to the poor in vivo cDTI quality in the right ventricle. The remaining five (N = 5)
subjects were considered for in vivo analyses.

Before the beginning of the experimental procedures, the animal subjects had time to
acclimate for at least one week. At the time of the MRI exam, the subjects’ body weight
was 59.5 kg ± 6.6 kg (mean ± standard deviation). Myocardial infarction was induced
under general anesthesia using microspheres. Ketamine (12.5 mg/kg) and midazolam
(1 mg/kg) were injected intramuscularly to induce anesthesia. After induction, carprofen
(4 mg/kg) and buprenorphine (0.02 mg/kg) were administered intramuscularly to provide
pre-emptive analgesia. During MRI, anesthesia was maintained using isoflurane (1.5–2%)
and Lactated Ringer’s solution was administered (2–5 mL/kg/h).
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After accessing the femoral artery using a Seldinger technique, a balloon wedge
pressure catheter (7 French) was inserted and guided to the aortic sinus using a metal
guidewire under X-ray fluoroscopy. Subsequently, a micro guidewire (0.014 inches) was
used to select a branch of the left circumflex (LCx) or left anterior descending (LAD) artery
and a balloon catheter (1.5 mm diameter) was inserted and inflated prior of injecting a
volume of microspheres (90 μm Polystyrene microspheres) equal to 2.5–3.0 mL. After one
minute to avoid microsphere backflow, the balloon catheter was deflated and extracted.
In vivo imaging was conducted six to ten weeks after infarct induction to allow for the
formation of scar tissue. Additional details regarding the experimental procedure may be
found in [17].

A 3T MRI scanner (Prisma, Siemens Healthineers, Erlangen, Germany) was used for
in vivo and ex vivo imaging. In vivo imaging protocols included: late gadolinium en-
hancement (phase-sensitive inversion recovery sequence, TE/TR = 1.6 ms/876 ms; flip an-
gle = 20◦; spatial resolution = 1.33× 1.33× 8.0 mm3, Navg = 1), T1-mapping (modified look-
locker inversion recovery sequence with motion correction, TE/TR = 1.04 ms/280.69 ms;
flip angle = 30◦; spatial resolution = 1.77 × 1.77 × 8.0 mm3, Navg = 1), and cDTI (M1M2-
nulled motion-compensated waveform sequence [18], TE/TR = 59 ms/5000 ms; flip an-
gle = 90◦; spatial resolution = 2.0 × 2.0 × 8.0 mm3; b-values = 0 s/mm2 and 350 s/mm2;
Ndir = 12; Navg = 30).

At the end of the in vivo MRI exam and before euthanasia, subjects were injected with
a double dose of gadolinium-based contrast agent (0.6 mL/kg gadopentetate dimeglumine
and 10 mL of saline solution). Euthanasia solution (0.1 mL/lb, Euthasol®, Virbac, Carros,
France) was administered after 10 min to allow the circulation of the contrast agent. Hearts
were then extracted, rinsed, and prepared for ex vivo imaging. To preserve ventricular
geometry, the hearts were inserted into 3D-printed molds based on images acquired at
mid-diastasis [19]. Subsequently, the hearts and molds were submersed in Fomblin perflu-
oropolyether (PFPE), and ex vivo imaging was conducted with a knee coil. On an average,
ex vivo imaging began 2.5 h after euthanasia. A simplified flowchart summarizing the
experimental procedure is shown in Figure 1.

Ex vivo imaging protocols included: T1-weighted GRE (TE/TR = 3.15 ms/12 ms;
flip angle = 25◦; acquisition matrix = 160 × 160; spatial resolution = 1.0 × 1.0 × 1.0 mm3,
Navg = 6), T2-weighted SE (TE/TR = 89 ms/15,460 ms; flip angle = 180◦; acquisition ma-
trix = 192 × 190; spatial resolution = 1.0 × 1.0 × 1.0 mm3, Navg = 8), and cDTI (readout seg-
mented sequence [20] with a twice-refocused spin-echo encoding [21], TE/TR = 62 ms/15,560 ms;
acquisition matrix = 150× 150; spatial resolution = 1.0× 1.0× 1.0 mm3; b-values = 0 s/mm2

and 1000 s/mm2; Ndir = 30; Navg = 5).

Extraction and preparation 
with 3D printed molds

In vivo MRI exam 6-
10 weeks post-MI

Infarct induction: microspheres 
injected in LAD or LCx arteries Ex vivo imaging

before after LGE-PSIR T1 weighted

Figure 1. Experimental procedure: infarct induction and MR imaging

2.2. Regional Subdivision and Registration

To quantitatively compare diffusion tensor quantities, Native T1, and ECV, the my-
ocardium was subdivided into remote, border, and infarct regions. The regional subdivision
process was based on late gadolinium enhanced (LGE) MR images.

Following the regional subdivision technique described by Schelbert et al. [22], regions
of interest were drawn on the remote regions of each slice. Mean signal intensity (μremote)
and standard deviation (σremote) were computed for each subject using regions of interest
across all slices. Voxels with signal intensity (SI) less than the sum of mean signal intensity
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and two standard deviations were labeled as the remote zone (i.e., SI ≤ μremote + 2σremote).
To determine mean signal intensity (μinfarct) and standard deviation (σinfarct) of the infarct
zone, small regions of interest (ROIs) were outlined on the most hyper-enhanced region of
the remaining unlabeled myocardium of each slice. The mean signal intensities of remote
and infarct zones were averaged to compute an intermediate value. Voxels with signal
intensity higher than the sum of mean signal intensity and two standard deviations of the
remote zone, but below the computed intermediate value (i.e., μremote + 2σremote < SI <
1
2 (μremote + μinfarct)) were labeled as border zone. The remaining voxels (i.e., voxels with
SI ≥ 1

2 (μinfarct + μremote)) were labeled as infarct zone. Based on this approach, label maps
marking remote, border, and infarct regions were created for each slice.

LGE data were acquired during diastole while cDTI, due to its motion-compensated
approach, was acquired during systole. Moreover, the LGE and cDTI sequences had
different resolutions and fields of view. Hence, both rigid and non-rigid registrations were
necessary to superimpose the LGE-based remote, border, and infarct zones to the cDTI
data. For this purpose, quaternions [23] computed from LGE and cDTI images were used
to rigidly register LGE nodes (each node corresponded to a voxel in the image space) to the
cDTI nodes in the cDTI image space. This step was carried out to ensure that the LGE and
cDTI nodes were in the same image space (Figure 2a).

Longitudinal registration
LGE

cDTI

X

Z

Remote
Border

Infarct

Rigid registration

LGE label map cDTI mask

Weighted average to obtain 
cDTI geometry at LGE locations

Averaged cDTIX

Z

Non-rigid registration of 
aligned LGE and cDTI slices

LGE cDTI

LGE - acquired at diastole 
cDTI - acquired at systole

LGE cDTI

Interpolated label maps at 
original cDTI slices’ locations

Registered LGE to cDTI
Interpolated label map 

LGE cDTI

Averaged cDTI
Registered LGE to cDTIX

Z

X

Z

(a) (b) (c)

(d)(e)(f)

Labeled cDTI data

LGE cDTI

Figure 2. Diagram illustrating the registration process that was used to register LGE-based label
maps to cDTI slices. (a) Quaternions were used to rigidly register LGE-based label maps to cDTI
binary masks to ensure that both LGE and cDTI were in the same image space. (b) Since LGE was
acquired during diastole and cDTI was acquired during systole, the longitudinal spacing between
the LGE slices was reduced to reflect the contracted LV state during systole. This shortening was
achieved by matching the basal and apical LGE and cDTI slices. (c) Although the basal and apical
LGE and cDTI slices were aligned, the rest of the slices were not aligned. Hence, the cDTI slice
masks at the z-axis location of the LGE slices were obtained via weighted average. (d) To obtain label
maps at the cDTI location, aligned LGE-based label maps and weighted averaged cDTI slices were
non-rigidly registered. (e) The cDTI label maps obtained in step (d) were at the z-axis location of the
LGE slices. Hence, 3D interpolation was carried out to obtain label map values at the z-axis location
of the original cDTI slices. (f) Based on the 3D interpolation, label maps for the remote (blue), border
(yellow), and infarct (red) regions were obtained at the original cDTI slices’ locations.

To reflect the left ventricle (LV) longitudinal shortening during systole, spacing along
the z-axis between LGE-based label map slices was reduced uniformly on a subject-specific
basis. This was accomplished by matching the z coordinates of the most basal and apical
LGE slices with the corresponding most basal and apical cDTI slices (Figure 2b).
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At this stage, even though the basal and apical slices were at the same longitudinal
locations, the rest of the slices were not aligned along the z-axis. Hence, a weighted average
was carried out to obtain cDTI slices at the z-axis location of the LGE slices. First, for each
subject and for each cDTI slice, the endocardium and epicardium borders were detected
using the Canny edge detection method [24]. Then, at each LGE z-axis location, cDTI slices
were calculated by averaging the cDTI endocardium and epicardium immediately above
and below that z-axis location. The distances along the z-axis between the LGE-based label
map slice and the cDTI slices immediately above and below were used as weights for this
process (Figure 2c).

After obtaining all the cDTI slices at the LGE z-axis locations using the method de-
scribed above, the LGE-based label maps were non-rigidly registered [25] to the cDTI slices
at the LGE longitudinal locations. (Figure 2d).

Finally, the resultant LGE-based label maps were applied to the original cDTI slices
via 3D interpolation (Figure 2e).

At the end of this registration process, each voxel in the original cDTI slices was
labeled as either remote, border, or infarct as a function of the LGE-based maps (Figure 2f).
Diffusion tensor invariants, eigenvalues (e1, e2, and e3), and radial diffusivity (RD) were
associated with the remote, border, and infarct zones based on these maps.

2.3. Data Analysis

Diffusion tensor invariants and eigenvalues were computed after reconstructing the
diffusion tensors from the acquired cDTI data. Voxelwise diffusion tensors were calculated
using the freely available DiffusionRecon code [26] provided on GitHub and used in several
previous studies (e.g., [4]).

ECV values at each voxel in the LV myocardium were computed from the subject
Hematocrit, and from pre- and post-T1 mapping data according to [27].

To compare diffusion tensor invariants, eigenvalues, and ECV across remote, border,
and infarct zones, all voxels in the LV myocardium were subdivided according to the
registered LGE-based label maps. The ECV slices and cDTI slices were first rigidly and
then non-rigidly registered according to the process described in Section 2.2; in this case,
however, ECV slices were used instead of LGE label maps. On average, 2% (maximum
5.61%, minimum 0.61%) diffusion data were rejected due to having a mean diffusivity voxel
value above the free diffusion of water (3 × 10−3 mm2/s).

Data are visualized using diffusion tensor quantities, ECV, and native T1 maps overlaid
on five short-axis slices for one representative subject, and for all subjects using raincloud
plots [28] and box plots across the remote, border, and infarct regions.

Remote, border, and infarct data for all subjects were initially examined for normality
using the Anderson–Darling normality test. Since the data did not pass the normality test,
the pairwise non-parametric Kruskal–Wallis test with Bonferroni post hoc adjustment was
used to assess differences between remote, border, and infarct data across all subjects. The
same pairwise test was also run for subject-wise remote, border, and infarct data. p < 0.01
was considered to be significant.

2.4. Numerical Modeling

Numerical simulations were carried out to investigate the relationship between ECV
and diffusion tensor quantities. Tensor invariants and eigenvalues were computed from
the simulated diffusion of particles, and ECV was computed based on the generated syn-
thetic cell structures. Individual cardiomyocytes were represented by cylinders with 9
to 20 μm diameter and 100 μm length. Cells were then connected along the axial direc-
tion to form a cellular tree with branching added between trees. Cells were added in
a 0.5 × 0.5 × 0.5 mm3 voxel until a target ECV was reached. Therefore, different ECVs
corresponded to different cell densities and cell-to-cell distances. The displacements due to
the diffusion of 20,000 water molecules were simulated in each voxel using a random walk
approach [29] with a time step Δt of 10 μs for a total duration of 51 ms, which corresponds
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to the duration of the diffusion encoding in vivo [30]. The native diffusion coefficient D0 of
the water molecules was 3 × 10−3 mm2/s and 2.2 × 10−3 mm2/s in the extra- and intracel-
lular compartments, respectively [31]. The intracellular and extracellular compartments
were kept impermeable.

The diffusion of water molecules resulted in an intra-voxel displacement distribution
that was projected in 12 directions to mimic a diffusion tensor acquisition. Subsequently,
the diffusion tensor corresponding to the simulated signal was reconstructed and its mean
diffusivity, fractional anisotropy, eigenvalues, and radial diffusivity were calculated.

Five cell structures were generated per each target ECV. Nine target ECVs ranging
from 20% to 100% were simulated, resulting in 45 different cell structures. For a given
ECV and cell structure, each simulation was repeated five times, resulting in 225 diffusion
simulations across ECVs and cell structures. To best approximate the simulated diffusion
signal to the one acquired in the MRI experiment used in this work, only the extracellular
water displacements were considered.

The code to perform the diffusion simulations described above is freely available on
GitHub at [32].

3. Results

Figure 3 illustrates five short-axis representative slices of late gadolinium enhancement
PSIR (LGE-PSIR), native T1, and the corresponding ECV maps along with b = 0 s/mm2 and
b = 350 s/mm2 images of an infarcted swine heart.

Figure 3. LGE-PSIR, native T1, ECV maps, b = 0 s/mm2, and b = 350 s/mm2 images for five repre-
sentative short-axis slices of the same infarcted swine subject. LGE-PSIR is a contrast-based imaging
technique, and native T1 and diffusion images (NDWI and DWI) are non-contrast-based techniques.
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LGE-PSIR images, along with their corresponding cDTI label maps and diffusion
tensor quantities maps for the same five representative short-axis slices, are reported in
Figure 4. As described in the Method section, the label maps were used to subdivide the
corresponding FA, MD, e1, e2, e3, and RD maps in remote, border, and infarct regions.
The border and infarct zones are distinguishable from the remote myocardium due to
their markedly hyper-enhanced nature in the LGE-PSIR images. In the following tensor
invariants and eigenvalue maps, the infarct and border zones exhibit a higher MD, e1, e2,
e3, RD and a lower FA compared to the remote myocardium.

Figure 4. LGE-PSIR and corresponding label maps registered to cDTI along with fractional anisotropy
(FA), mean diffusivity (MD), primary eigenvalue (e1), secondary eigenvalue (e2), tertiary eigenvalue
(e3), and radial diffusivity (RD) maps for five representative short-axis slices in an infarcted subject.

237



Appl. Sci. 2022, 12, 3512

In Figure 5, raincloud and box plots illustrate the distributions and quantitative
differences of tensor invariants, eigenvalues, radial diffusivity, ECV, and native T1 across
infarct, border, and remote regions. The 1st quartile (25th percentile) and the 3rd quartile
(75th percentile) are marked by the lower and upper edges of the boxplot, respectively.
The bottom and top whiskers mark the smallest and largest values within 1.5 times the
interquartile range measured from the 25th and 75th percentiles, respectively. A summary
of the mean, median, 1st, and 3rd quartiles over all subjects for all measured quantities are
listed in Table 1.

Table 1. Overall mean, median, and Q1–Q3 computed across all subjects for native T1, ECV, FA, MD,
diffusion tensor eigenvalues, and RD in the infarct, border, and remote regions.

Native T1 (ms) ECV

Infarct Border Remote Infarct Border Remote

Mean 1546 1434 1344 0.49 0.39 0.32
Median 1554 1389 1282 0.47 0.38 0.31
Q1, Q3 1363, 1700 1274, 1553 1210, 1442 0.36, 0.62 0.31, 0.46 0.27, 0.37

FA MD (1 × 10−3 mm2/s)

Infarct Border Remote Infarct Border Remote

Mean 0.25 0.28 0.29 1.81 1.69 1.46
Median 0.23 0.27 0.29 1.84 1.68 1.46
Q1, Q3 0.18, 0.30 0.21, 0.33 0.23, 0.35 1.52, 2.12 1.45, 1.92 1.32, 1.60

e1 (1 × 10−3 mm2/s) e2 (1 × 10−3 mm2/s)

Infarct Border Remote Infarct Border Remote

Mean 2.27 2.17 1.91 1.80 1.65 1.40
Median 2.28 2.14 1.94 1.83 1.65 1.38
Q1, Q3 1.98, 2.55 1.90, 2.39 1.74, 2.10 1.48, 2.11 1.37, 1.92 1.22, 1.58

e3 (1 × 10−3 mm2/s) RD (1 × 10−3 mm2/s)

Infarct Border Remote Infarct Border Remote

Mean 1.38 1.25 1.06 1.59 1.45 1.23
Median 1.42 1.24 1.06 1.62 1.45 1.22
Q1, Q3 1.09, 1.71 1.01, 1.48 0.91, 1.23 1.29, 1.90 1.20, 1.69 1.08, 1.39

Among native T1, diffusion tensor invariants, eigenvalues, and RD, the largest percent
differences are observed for e2 (e2 increases by 19.2% and 31.9% from remote to border and
infarct zones, respectively), e3 (e3 increases by 16.1% and 33.4% from remote to border and
infarct zones, respectively), and RD (RD increases by 18% and 32.3% from remote to border
and infarct zones, respectively). Overall percentage changes in median values for native T1,
ECV, diffusion tensor invariants, eigenvalues, and RD between infarct, border, and remote
regions are detailed in Table 2.

The computed p values were less than 0.01 for the statistical analyses carried out by
grouping together the data across all subjects (Table 2), therefore showing that the observa-
tions in remote, border, and infarct regions did not originate from the same distribution.
However, when the same statistical analyses were performed subject-wise, the resultant
p values were greater than 0.01 in a few cases, especially in the native T1 distributions
between infarct and border regions. All p values resulting from the pairwise non-parametric
Kruskal–Wallis test for each subject are listed in Table 3.
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Figure 5. Raincloud plots [28] overlaid to the corresponding box plots for FA, MD, eigenvalues e1,
e2, and e3, radial diffusivity (RD), extracellular volume fraction (ECV), and native T1 in the infarct,
border, and remote myocardial regions.
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Table 2. Overall percentage change in median values and resulting p-values from non-parametric
pairwise Kruskal–Wallis test for native T1, ECV, FA, MD, diffusion tensor eigenvalues, and RD
between border–remote and infarct–remote regions across all subjects.

Native T1 ECV

Border–Remote Infarct–Remote Border–Remote Infarct–Remote
8.4%, p < 0.01 21.2%, p < 0.01 22.6%, p < 0.01 51.6%, p < 0.01

FA MD

Border–Remote Infarct–Remote Border–Remote Infarct–Remote
−7.6%, p < 0.01 −19.8%, p < 0.01 14.7%, p < 0.01 26.1%, p < 0.01

e1 e2

Border–Remote Infarct–Remote Border–Remote Infarct–Remote
10.4%, p < 0.01 17.5%, p < 0.01 19.2%, p < 0.01 31.9%, p < 0.01

e3 RD

Border–Remote Infarct–Remote Border–Remote Infarct–Remote
16.1%, p < 0.01 33.4%, p < 0.01 18.0%, p < 0.01 32.3%, p < 0.01

Table 3. Median value percentage change and p-values resulting from non-parametric pairwise
Kruskal–Wallis test between infarct–border, border–remote, and infarct–remote regions for each
subject separately and for all measured quantities. Values reported in red correspond to p-values
greater than or equal to 0.01 or isolated cases where percentage changes are opposite to the overall
observed trends.

Sub

FA MD

Infarct vs.
Border

Border vs.
Remote

Infarct vs.
Remote

Infarct vs.
Border

Border vs.
Remote

Infarct vs.
Remote

S1 −18.4%, p < 0.01 −24.0%, p < 0.01 −38.0%, p < 0.01 14.6%, p < 0.01 21.3%, p < 0.01 39.0%, p < 0.01
S2 −6.5%, p = 0.25 −2.7%, p < 0.01 −9.0%, p < 0.01 7.0%, p = 0.02 5.4%, p < 0.01 12.8%, p < 0.01
S3 −11.8%, p < 0.01 −11.1%, p < 0.01 −21.6%, p < 0.01 15.0%, p < 0.01 4.6%, p < 0.01 20.3%, p < 0.01
S4 −9.5%, p < 0.01 −5.7%, p = 0.1 −14.6%, p = 0.02 7.3%, p < 0.01 2.9%, p < 0.01 10.3%, p < 0.01
S5 −10.2%, p < 0.01 8.3%, p < 0.01 −2.7%, p < 0.01 7.1%, p < 0.01 6.0%, p < 0.01 13.5%, p < 0.01

Sub

e1 e2

Infarct vs.
Border

Border vs.
Remote

Infarct vs.
Remote

Infarct vs.
Border

Border vs.
Remote

Infarct vs.
Remote

S1 9.2%, p < 0.01 14.1%, p < 0.01 24.6%, p < 0.01 15.3%, p < 0.01 25.8%, p < 0.01 45.0%, p < 0.01
S2 3.7%, p = 0.22 3.2%, p < 0.01 7.0%, p < 0.01 13.7%, p < 0.01 6.9%, p < 0.01 21.5%, p < 0.01
S3 7.8%, p < 0.01 3.5%, p < 0.01 11.6%, p < 0.01 16.2%, p < 0.01 8.5%, p < 0.01 26.1%, p < 0.01
S4 7.1%, p < 0.01 −0.8%, p < 0.01 6.2%, p < 0.01 8.4%, p < 0.01 4.5%, p < 0.01 13.2%, p < 0.01
S5 4.1%, p < 0.01 7.8%, p < 0.01 12.2%, p < 0.01 6.7%, p < 0.01 6.7%, p < 0.01 13.8%, p < 0.01

Sub

e3 RD

Infarct vs.
Border

Border vs.
Remote

Infarct vs.
Remote

Infarct vs.
Border

Border vs.
Remote

Infarct vs.
Remote

S1 19.5%, p < 0.01 35.6%, p < 0.01 62.1%, p < 0.01 17.2%, p < 0.01 30.3%, p < 0.01 52.8%, p < 0.01
S2 5.1%, p = 0.19 8.3%, p < 0.01 13.8%, p < 0.01 10.0%, p = 0.01 8.7%, p < 0.01 19.6%, p < 0.01
S3 16.3%, p < 0.01 6.5%, p < 0.01 23.9%, p < 0.01 16.9%, p < 0.01 6.6%, p < 0.01 24.6%, p < 0.01
S4 10.4%, p < 0.01 5.2%, p < 0.01 16.2%, p < 0.01 7.7%, p < 0.01 4.2%, p < 0.01 12.2%, p < 0.01
S5 10.6%, p < 0.01 2.9%, p < 0.01 13.8%, p < 0.01 7.5%, p < 0.01 4.8%, p < 0.01 12.7%, p < 0.01

Sub

Native T1 ECV

Infarct vs.
Border

Border vs.
Remote

Infarct vs.
Remote

Infarct vs.
Border

Border vs.
Remote

Infarct vs.
Remote

S1 16.7%, p = 0.06 4.0%, p = 0.88 21.3%, p < 0.01 23.8%, p < 0.01 2.1%, p < 0.01 26.4%, p < 0.01
S2 18.7%, p = 0.66 14.1%, p < 0.01 35.4%, p < 0.01 61.7%, p < 0.01 29.2%, p < 0.01 108.9%, p < 0.01
S3 7.1%, p = 0.11 14.2%, p < 0.01 22.3%, p < 0.01 12.1%, p < 0.01 36.8%, p < 0.01 53.3%, p < 0.01
S4 2.0%, p = 0.3 4.5%, p < 0.01 6.6%, p = 0.018 10.1%, p < 0.01 11.3%, p < 0.01 22.6%, p < 0.01
S5 9.3%, p < 0.01 1.4%, p = 0.1 10.8%, p < 0.01 13.9%, p < 0.01 8.3%, p < 0.01 23.3%, p < 0.01

The results of the diffusion simulations with 20,000 water molecules and a timestep Δt
of 10 μs are illustrated in Figure 6. The change in MD, FA, primary eigenvalue (e1), and RD
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simulated as a function of ECV show that MD, e1, and RD increase with respect to ECV,
while FA decreases. Furthermore, as ECV increases, the simulated percentage increase in
RD is larger than the increase in e1.

Figure 6. MD, FA, e1, and RD as a function of simulated ECV for 45 cellular structures and
5 diffusion distributions (225 cases in total). These results are obtained from diffusion simulations
with 20,000 water molecules and a timestep Δt = 10 μs. Cellular structures with similar ECV (±0.05)
are clustered together and median values of each cluster are connected to better visualize the overall
trend of MD, FA, e1, and RD with increasing ECV.

Figure 7 compares in vivo and ex vivo FA, MD, e1, e2, e3, and RD values. Mappings
are reported for a representative slice and boxplots were used to quantitatively compare
the diffusion quantities computed using in vivo and ex vivo data across all subjects. The in
vivo versus ex vivo boxplot comparisons are based on the subject-wise median values for
FA, MD, e1, e2, e3, and RD.

Figure 7. FA, MD, e1, e2, e3, and RD mappings for a representative slice from data acquired ex vivo
(top) and in vivo (mid). Ex vivo and in vivo diffusion quantities across all subjects are compared
using boxplots (bottom). These boxplots are constructed based on the subject-wise medians of the
diffusion quantities.
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4. Discussion

In this work, MRI data acquired in vivo in swine subjects with chronic MI were used
to quantitatively analyze and compare ECV, native T1, diffusion tensor invariants, radial
diffusivity, and eigenvalues across the remote, border, and infarcted myocardium. Among
all analyzed quantities, RD, e2, e3, and ECV showed the highest percentage increase in the
border and infarct regions with respect to the remote myocardium.

ECV has been identified as a potential biomarker to characterize affected myocardial
tissue due to various cardiac diseases such as myocardial infarction [27] and hyperten-
sion [33]. After administration, Gadolinium-based contrast agents diffuse into the extra-
cellular space. This causes the T1-relaxation time of the myocardium to depend on local
gadolinium concentration [34]. The increased extracellular space in infarcted myocardium
allows retention of a higher amount of gadolinium-based contrast. Hence, myocardial
regions such as the border and infarct zones, where the extracellular space is higher due
to the presence of replacement fibrosis, are expected to exhibit higher ECV compared to
the remote myocardium [27]. The increased median ECV of the infarct (0.47) and border
(0.38) regions compared to the remote (0.31) region observed in this work agrees with this
mechanism.

Although widely used, ECV maps require the use of contrast agents, which are not
indicated for patients suffering from pre-existing renal conditions. Among the existing
non-contrast-based imaging techniques, native T1 has been considered to be an alternative
biomarker for myocardial infarction detection [35], as well as for detecting myocardial
edema and diffuse fibrosis [36–38]. In the current study, native T1 values in the infarct and
border regions were 21.2% and 8.4% higher than the remote myocardium, respectively.

As with the case for native T1, diffusion tensor invariants and eigenvalues can also be
computed without the use of contrast agents, and convey additional information regarding
microstructural changes (e.g., myocardium anisotropy and inter-cellular spacing) occurring
in the infarcted tissue. Among these quantities, FA decreased whereas MD, eigenvalues, and
RD increased in the border and infarct regions when compared to the remote myocardium.
Across all subjects, the percent increase or decrease of these parameters was higher in
the infarct region compared to the border region. These trends concur with previous
findings [9–11].

Chen et al. [39] validated histologically that after chronic myocardial infarction, the
infarct region is largely comprised of replacement fibrosis, and the border region is a
mixture of viable myocardium and replacement fibrosis. The presence of replacement
fibrosis is reflected by an increased ECV. Due to the increase in extracellular space [40], the
diffusion of water molecules increases. This is reflected by the increased MD values in the
infarct and border regions computed in this study from experimental in vivo cDTI data.
However, the observed increase in diffusion is not isotropic; instead, the increase in e2 and
e3 is more significant than the increase in e1. This unequal increase in diffusion agrees with
previous studies, suggesting that replacement fibrosis maintains the preferential direction
of the replaced cardiomyocytes [41], and larger extracellular space is now present [40]. This
corresponds to a larger diffusion increase in the e2 and e3 directions with respect to the
increase in the e1 direction. The larger increase in the e2 and e3 directions concurs with a
decrease in FA and agrees with histological findings [40].

As expected, due to a smaller amount of replacement fibrosis in the border zone, the
increase in e2, e3, MD, and ECV and decrease in FA are less significant in the border region
with respect to the infarct region.

To present diffusion values in the radial direction in a concise manner, radial diffusivity
(RD) was used. RD is the average of e2 and e3 and represents the changes occurring in
the radial direction due to the increase or decrease of ECV. In this study, we showed that
RD increases significantly from the remote to the border (18% increase) and infarct (32.3%
increase) regions.

The results computed from experimental data concur with the findings of particle
diffusion simulations. From the diffusion simulations, as ECV increases, e1, e2, e3, and
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MD increase, and FA decreases. These trends agree with previous studies [42] and remain
consistent regardless of the number of simulated water molecules (from four to thirty thou-
sand water molecules per representative volume), length of adopted time step (from 10−5 s
to 10−7 s), and cell structures (10 to 45 cell structures have been simulated). Additionally,
as ECV increases, simulated e2 and e3 values increase at a higher rate with respect to e1.

Among T1-mapping, ECV and diffusion quantities, ECV demonstrated the highest
change in the infarct (51.6% increase) and border (22.6% increase) regions compared to the
remote myocardium. However, among the non-contrast-based methods, e2, e3, and RD
exhibited the largest change. Moreover, the increases in e2 (31.9% and 19.2% increases from
remote to infarct and border regions, respectively), e3 (33.4% and 16.1% increases from
remote to infarct and border regions, respectively), and RD (32.3% and 18% increases from
remote to infarct and border regions, respectively) were higher than native T1 (21.2% and
8.4% increases from remote to infarct and border regions, respectively).

In our previous study [14], ex vivo cDTI swine data acquired six to ten weeks post-
infarction was used to compare diffusion tensor invariants, diffusion eigenvalues, and
radial diffusivity across the remote, border, and infarct regions. In terms of the increase or
decrease of tensor invariants, eigenvalues, and radial diffusivity in the infarct and border
regions, similar trends were observed as in the present study (cf. Figure 7). However, while
the diffusion eigenvalues and mean diffusivity computed using in vivo cDTI were observed
to be higher than the values obtained using ex vivo data across all regions, their percentage
changes were lower than the percentage changes computed using ex vivo data.

The median e1, e2, e3, and RD values computed using ex vivo data (values computed
using in vivo data in this study are in parenthesis) were, respectively: 1.16 (2.28) × 10−3 mm2/s
for e1, 0.88 (1.83) × 10−3 mm2/s for e2, 0.72 (1.42) × 10−3 mm2/s for e3, and 0.79
(1.62) × 10−3 mm2/s for RD, in the infarct region; 0.91 (2.14) × 10−3 mm2/s for e1, 0.55
(1.65) × 10−3 mm2/s for e2, 0.39 (1.24) × 10−3 mm2/s for e3, and 0.47 (1.45) × 10−3 mm2/s
for RD, in the border region; 0.70 (1.94) × 10−3 mm2/s for e1, 0.41 (1.38) × 10−3 mm2/s
for e2, 0.28 (1.06) × 10−3 mm2/s for e3, and 0.35 (1.22) × 10−3 mm2/s for RD, in the
remote region.

The observed discrepancy between results obtained using in vivo and ex vivo data
could be due to several factors, among which the in vivo motion artifact and perfusion.
Furthermore, the MRI sequence parameters were not identical in vivo and ex vivo. The ex
vivo data were acquired at a higher resolution of 1.0 × 1.0 × 1.0 mm3, higher SNR of ≈41
and higher b-value of 1000 s/mm2 while the in vivo data were acquired at a resolution of
2.0 × 2.0 × 2.0 mm3 with a SNR of ≈16 and b-value of 350 s/mm2. Higher resolution and
SNR allow for a more accurate segmentation and subdivision of myocardium into remote,
border, and infarct regions, therefore emphasizing the differences between regions.

Overall, the diffusion tensor invariants reported in this study are in good agreement
with values reported in previous studies. Das et al. [43] conducted a study on 30 pa-
tients with myocardial infarction. The mean MD and FA values computed in vivo by
Das et al. compared to the values computed in current study (reported in parenthesis),
were: 1.83 × 10−3 (1.81 × 10−3) mm2/s for MD and 0.22 (0.25) for FA in the infarct region;
1.53 × 10−3 (1.69 × 10−3) mm2/s for MD and 0.33 (0.28) for FA in the border zone, and
1.45 × 10−3 (1.46 × 10−3) mm2/s for MD and 0.35 (0.29) for FA in the remote myocardium.

The computed mean ECV in Das et al. [43] was 0.60, 0.29, and 0.29 in the infarct, border,
and remote regions, respectively, compared to 0.49, 0.39, and 0.32 in the current study. The
discrepancies in the reported ECV values could be due to the different methods used to
subdivide the myocardium into remote, border, and infarct regions. Moreover, Das et al.
used in vivo human data, whereas in vivo swine data were used in the current study. The
much larger cohort size (N = 30 vs. N = 5) compared to the current study could also be a
reason for the observed discrepancies.

Stoeck et al. [9] conducted a study on five swine subjects with myocardial infarc-
tion. At nine weeks post-MI, reported mean MD and FA values in the infarct and re-
mote zone were (values from the current study are reported in parenthesis): 1.66 × 10−3
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(1.81 × 10−3) mm2/s for MD and 0.28 (0.25) for FA in the infarct region; 1.34 × 10−3

(1.46 × 10−3) mm2/s for MD and 0.38 (0.29) for FA in the remote myocardium. Mean ECV
values reported by Stoeck et al. were 0.83 and 0.31 in the infarct and remote regions, and in
the current study, the mean ECV was 0.49 and 0.32, respectively. This discrepancy could
be due to the uncertainty associated with native T1 scans and the computed ECV [44].
Differences in imaging modalities and data processing could also play a role.

This study also presents several limitations. First, in vivo cDTI data for only five
subjects was considered. Although key results agree with other studies in the literature and
our own ex vivo study and simulations, a larger cohort size in future studies will allow a
strengthening of the current findings. As infarct size varied significantly across the imaged
subjects, a larger cohort with varying infarct size will allow a better understanding of the
dependence of diffusion tensor quantities on infarct size. Second, myocardial segmentation
to determine the ground truth infarct, border, and remote regions based on LGE-PSIR
data was carried out following the thresholding method described by Schelbert et al. [22].
Although previously adopted, uncertainties remain regarding the choice of the threshold
values, which could result in small variations of the determined myocardial regions. Histo-
logical validation of the segmented remote, border, and infarct regions was not possible
due to lack of histological data. Third, the difference in resolution, field of view (FOV),
and cardiac phase between in vivo cDTI and LGE required interpolation and a non-rigid
registration step. This might have led to the mislabeling of a small number of voxels in
the boundary of the adjacent myocardial regions. Further work is required to quantify the
uncertainty associated with non-rigid registration [45] along with the uncertainty due to
the noise in the MRI images and observer error. Finally, regarding the diffusion simulation,
a simplified geometric model was used to generate cellular structures, and simulations
were carried out without considering cell permeability and intracellular diffusion. Given
the higher sensitivity to extracellular diffusion of the adopted MRI sequence, we expect that
the computed trends will remain representative even if a more realistic model is adopted.
However, further work is needed to account for cell permeability, intracellular diffusion,
multi-compartment cellular structures, and more realistic cell structures.

5. Conclusions

In vivo cDTI data that were acquired in swine subjects six to ten weeks post-myocardial
infarction showed a decrease in fractional anisotropy and an increase in mean diffusivity
and diffusion tensor eigenvalues in the infarct and border regions with respect to the remote
myocardium. Across all subjects, the second (e2) and third (e3) diffusion tensor eigenvalues
together with radial diffusivity (RD) showed the largest increase in the infarct and border
regions compared to remote myocardium. As RD averages the changes in e2 and e3, it can
be a potential biomarker to identify infarct regions without the use of contrast agents, and
can provide additional information about microstructural changes occurring post-MI.
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Featured Application: The proposal to use intima-media thickness as a non-invasive and cost-

efficient biomarker of subclinical atherosclerosis in obese children.

Abstract: Given the growing obesity rates among children, a more complete evaluation of their
potential cardiometabolic risk is needed. Carotid intima-media thickness (CIMT), a marker of
endothelial distress and a predictor of atherosclerotic progression in adulthood, may complete the
day-to-day evaluation of children at risk. Multiple risk factors act as additional precipitant causes
of atherosclerosis. We analyzed 60 patients aged 6–17 years old by measuring their CIMT using
the Aixplorer MACH 30 echography machine automatic measurement software. All subjects were
clinically and anamnestically assessed to identify risk factors. CIMT values are significantly higher
in older children and boys. Over 20 kg weight gain during pregnancy and other at-risk disorders
(p = 0.047), family history of cardiovascular risk (p = 0.049), hypertension (p = 0.012), and smoking
(p = 0.015) are linked to increased CIMT. Our study also supports international data on artificial
postnatal nutrition, high/low birth weight, and sedentary lifestyle being linked to increased CIMT.
Significant correlations were detected between CIMT and the entire lipid panel. Weight excess and
abdominal adiposity in children is clearly linked to increased CIMT. Moreover, waist circumference
and TG/HDL-c are significant predictors of CIMT. Although each parameter of the lipid panel is
correlated to CIMT, fasting glucose is not.

Keywords: cardiometabolic risk; carotid intima-media thickness; childhood obesity; subclinical
atherosclerosis

1. Introduction

Weight excess has been one of the largest public health problems of modern society
for decades and, in the obesogenic context of the COVID-19 pandemic, obesity has been
affecting children at rates faster than we have ever encountered before [1]. In many
countries, not only are the lockdown conditions, which increased sedentary behavior,
to blame, but also the worsening of financial status, which has led to reduced access to
qualitative foods and more stress within families [2].
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The importance of a comprehensive evaluation of obesity in children is of paramount
importance for early detection of cardiovascular and metabolic complications. Atheroscle-
rosis and high blood pressure, frequent complications of obesity, are slow but steady
ongoing processes in obese children, manifesting in adolescence and early adulthood,
depending on the severity of the weight excess [3].

Increased carotid intima-media thickness (CIMT) is one of the first observable signs
of subclinical atherosclerosis, making this ultrasonographic technique probably the most
accurate non-invasive method of detecting early stages of atherosclerosis. For a long time,
in children, these early stages have been ordinarily estimated by monitoring the lipid and
glucose metabolism alterations (lipid profile, fasting glucose levels, oral glucose tolerance
tests, serum insulin, blood pressure values, etc.). Lately, cardiovascular risk has been
proven to be well and reliably assessed through imaging technologies in pediatric patients
as well [4]. Beauloye et al. showed that blood parameters that are classically assessed in
obese children are significantly correlated to CIMT [5]. Therefore, studies estimate that
the use of CIMT, a non-invasive, non-painful, non-radiating, cost-effective, and easily
reproducible method, can become one of the pillars of risk evaluation for pediatric patients
at risk.

Nevertheless, the value of CIMT in children as a predictor of risk is still a subject
of research. Although cut-off points for CIMT are still a subject of discussion, there is
significant evidence that its values reach higher points in children with obesity. According
to Farello et al., both in metabolically healthy and unhealthy obese children, CIMT reaches
higher values. The same study showed that early detection of high CIMT in children with
metabolic syndrome is a predictor of cardiovascular disease in young adults [6].

Hence, one of the goals of the present study, other than assessing CIMT in relation to
obesity, is to evaluate some of the other risks associated with higher CIMT in children, and
their effect on the vascular thickness when associated with obesity. Most of the risk factors
we have analyzed are already set in stone as aggravating factors of cardiometabolic disease
in adults and many are on the way to being settled for the pediatric population as well.

Advancing age, masculine sex, and high BMI are three factors known to have a direct
impact on CIMT values in both children and adults [7–9]. However, risks associated with
pregnancy, mother’s health, perinatal aspects regarding weight or nutrition, family history
of cardiometabolic disease, exposure to smoking, high values for blood pressure, and a
lack of physical activity on daily basis may also be risks that can impact vascular integrity
or worsen the atherosclerotic progression.

Previous studies place postnatal nutrition in a stronghold regarding breastfeeding’s
universal protective characteristics, on the condition that it not be too prolonged [10,11].
There is evidence that artificial milk is associated with obesity, higher CIMT values, arterial
hypertension, and insulin resistance [12–15].

Data on birth weight as a risk factor for increased CIMT show that low birth for
gestational age is the most prominent risk, and the more severe the weight deficit is, the
more powerful the risk [16]. On the other side of the spectrum, higher than normal birth
weight is also a risk factor for high CIMT in young adult life [17].

Another important risk factor is maternal health during pregnancy. It is a factor that
can affect CIMT values indirectly by inducing a pathology that places the newborn at
risk for high CIMT. For instance, obesity in children is correlated to motherhood obesity
and gestational diabetes [11,18]. High blood pressure in a pregnant woman tracks to
her child, especially in their adult life. In fact, a mother’s entire cardiovascular profile is
proven to be linked to her offspring’s [19]. In utero exposure to autoimmune Hashimoto
thyroiditis is associated with an increased risk of the offspring developing a thyroid
disorder, including Hashimoto thyroiditis, in childhood or adolescence [20]. With regard to
CIMT, Hashimoto thyroiditis in children, especially in adolescent girls, is an aggravating
factor of atherosclerosis, regardless of thyroid function, due to the maintenance of a status
of chronic inflammation that affects endothelial integrity [21]. Moreover, smoking during
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pregnancy causes low birth for gestational age and hence, high CIMT values in the child’s
young adulthood [16].

Family history obtained by targeted anamnesis and medical records is another impor-
tant part of a full evaluation. From genetic predispositions to behavioral components of
certain pathologies, they all echo the lifetime development of the offspring. A family his-
tory of premature cardiovascular disease reflects higher values of CIMT and the association
of other factors like oxidant status, insulin resistance, and dyslipidemia [22].

Smoking cigarettes increases the values of CIMT directly and indirectly, so much so
that the vascular age of a regular smoker is about 6–7 years older than of non-smokers.
Smoking aggravates the effects of metabolic syndrome and age on CIMT, despite the fact
that smokers are usually leaner and have a good glucose-insulin homeostasis [23]. There
are also differences between how smoking affects the genders: Men are more affected by
smoking in terms of arterial stiffness, probably due to the lack of estrogen-given protection;
however, a lower exposure to cigarette smoke increases arterial stiffness in women [24].
Moreover, there is irrepressible evidence that passive (second-hand) smoking in children
has the same dire adverse effects on vascular health by increasing the risk of atheroscle-
rosis [25,26]. Furthermore, we mention a significantly higher risk of becoming a smoker
among adolescents who have both parents as smokers [27].

Sedentary behavior is not just one of the main causes for weight gain, but is also
involved in glucose metabolism as a promoter of insulin resistance, and in lipid metabolism
as a maintainer of dyslipidemia. It also decreases the cardiovascular adaptability for
effort. Previous studies have shown that leading a sedentary lifestyle as children increases
cardiometabolic risk and carotid plaque development in young adulthood [28].

Alterations of glucose and lipid metabolisms are consequences of excess fat tissue,
unhealthy lifestyle, and genetic risk factors. High levels of LDL cholesterol, total cholesterol,
non-HDL cholesterol, triglycerides, low values of HDL cholesterol, and high ratios between
total cholesterol and HDL-c and triglycerides and HDL-c, respectively, all induce, either
separately or combined, defective lipid vascular clearance and excess lipoprotein storage
in the sub-endothelial space. Pathological values of any of the aforementioned parameters
can be associated with increased CIMT [29]. Insulin resistance, diagnosed by clinical and
laboratory findings, is positively correlated to CIMT values and is a pathological precursor
of type 2 diabetes in both children and adults [30].

Non-invasive evaluation of cardiovascular and metabolic risk in individuals with
pathologies that present vascular implications can be based on the assessment of arterial
stiffness and atherosclerosis progression and the evaluation of inflammatory markers [31].

Therefore, given the growing obesity rates among children and even among our
patients, we have designed an observational study for our overweight and obese patients,
with the scope of assessing the importance of CIMT in a more comprehensive clinical
evaluation and cardiometabolic risk assessment. To achieve this scope, we have identified
certain risk factors in our patients and analyzed their impact on CIMT values in obese and
overweight children as opposed to normal-weight ones. The particularity of our study
is that apart from analyzing CIMT in the context of weight excess in children, it shows
to what extent certain risk factors correlate to CIMT increase in children. We believe this
approach broadens our understanding of how easily identifiable risk factors influence
CIMT, a fact that can be useful to clinicians who rely on CIMT in their day-to-day activity.

2. Materials and Methods

The observational study was performed in our US endocrinology unit from January
2021 until May 2021 on 60 children. The study was approved by the Ethics Committee
of Scientific Research (CECS) of the University of Medicine and Pharmacy Victor Babes
Timisoara and respects the ethical guidelines of the Helsinki Declaration.

The study was centered on the impact of excess adipose tissue on carotid intima-
media thickness and how CIMT correlates to identifiable genetic and epigenetic risk factors.
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Three study groups were defined, depending on the severity of weight excess: obese and
overweight, and normal-weight patients as controls.

2.1. Inclusion Criteria

• Obese group—patients with a BMI score ≥ 95th percentile for age and sex, overweight
group—BMI ranging from the 85th percentile to 95th percentile, and the control
group—BMI ranging from the 5th percentile to the 85th.

• Both sexes were included, and ages ranged from 6 to 17.

2.2. Exclusion Criteria

• Secondary obesity causes: Cushing syndrome, thyroid disfunctions with hypothy-
roidism, insulin-dependent diabetes mellitus, polycystic ovarian syndrome, hypotha-
lamic injury/disorders, genetic syndromes like Prader–Willi syndrome [32], grelin–
leptin dysfunction [33], and use of medication that can induce weight gain (glucocorti-
costeroids, sulphonylureas, tricyclic antidepressants, antipsychotics) [34].

Prior to any examination, informed consent forms were administered to the patient’s
parent/legal guardian and a verbal agreement was given by the child, after exhaustive
explanations regarding the study and further examinations.

The main analysis consisted of the measurement of CIMT by carotid ultrasonography
and the comparison of the values found between groups, depending on certain risk factors.

In addition to the ultrasonography measurement, we performed a clinical exam-
ination (weight, height, waist circumference, and blood pressure measurements) and
a targeted anamnesis to detect the presence of certain risk factors: postnatal nutrition
(breastfed/formula-fed), birth weight (<2500 g/>3500 g/normal weight), pregnancy-
associated risk factors (no pathology/>20 kg surplus/gestational diabetes/gestational
hypertension/autoimmune thyroiditis/smoking during pregnancy), family history (no
pathologies/obesity/dyslipidemia/type 2 diabetes/coronary disease/stroke/autoimmune
thyroiditis), smoking during pregnancy (yes/no), smoking by the patient (yes/no), and
physical activity (normal/sedentary *). Moreover, the following blood parameters were
selected from each patient’s previous 6 months of medical history: fasting glucose (mg/dL),
HDL cholesterol (mg/dL), LDL cholesterol (mg/dL), total cholesterol (mg/dL), and triglyc-
erides (mg/dL).

* We considered sedentary a subject who performed no sport and/or less than 1 h of
physical activity/day.

2.3. Ultrasonography Technique

The Aixplorer MACH 30 echography machine (SuperSonic Imagine, Aix-en-Provence,
France) was utilized to perform the carotid ultrasonography. We used 2 ultrasound probes:
SuperLinear SL 10-2 (2–10 MHz) and SL 18-5 (5–18 MHz). CIMT values were determined
automatically by Aixplorer MACH 30 software (SuperSonic Imagine, Aix-en-Provence,
France). We performed 3 measurements on both the right and the left common carotid
artery and used the mean of all measurements in our analysis.

Examination starts by choosing the appropriate setting: vascular probe and carotid
evaluation (B-mode setting). The patient lies in a supine position with their neck tilted
backwards in an extended position. The exploration of the right and left carotids starts
by transversal scanning, starting from the clavicle and guiding the probe upwards to
locate the carotid bulb (bifurcation of the common carotid artery into the internal and
external carotid arteries). At this point, the probe is rotated 180◦, fixating the region of
interest to distinguish the carotid lumen and carotid walls clearly, with the carotid bulb
visible on the left of the screen and a clear intima-media in the 1–2 cm caudally from
the carotid bulb. After the image is frozen in the most accurate instance, the Aixplorer
MACH 30 software automatically measures the space between the intimal–luminal and the
medial–adventitial interfaces on the posterior (far) wall of the left and right carotids [35–37].
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Among other advantages, the novelty of this measurement is that it eliminates human-eye
mistakes [38,39].

Examples of CIMT measurements (Figure 1):

Figure 1. Examples of CIMT measurements. (a) an 11-year-old normal-weight boy. (b) a 12-year-old
overweight girl. (c) a 16-year-old obese boy.
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2.4. Statistical Analysis

Data were collected and statistically analyzed using Microsoft Excel and SPSS statis-
tical software version 17 (SPSS Inc., Chicago, IL, USA). We used statistical tests to assess
differences between study groups and the prevalence of risk factors, as well as their impact
on the objects of our research.

Normality of variable distribution was checked in SPSS prior to statistical analysis
(Shapiro–Wilk test). For normally distributed variables we used means, Student’s T test and
Pearson’s correlation, whereas for non-normally distributed variables we used medians,
the Mann–Whitney test, and Spearman’s correlation. Subjects were divided into three main
groups—obese, overweight, and normal weight (control)—and subgroups (by age, sex,
and risk factors). Categories were analyzed individually and/or in pairs, mainly focusing
on CIMT. Statistical significance was considered p = 0.05. For cases of multiple analysis
on the same data (2 by 2 tests on 3 groups), we performed ANOVA (single factor) tests
and post-hoc tests (Bonferroni corrected) in Microsoft Excel and adjusted the p-values
according to the Bonferroni corrected α in order to keep the significance threshold at 0.05.
Multivariable regression analysis was performed in SPSS with the stepwise method, with
CIMT as the dependent variable.

3. Results

The study included 60 children, aged 6 to 18, of both sexes. They were divided by BMI
scores into three groups: obese group (13 boys and 7 girls), overweight group (10 boys and
5 girls), and normal-weight group (12 boys and 13 girls). Extremely significant differences
were detected between the CIMT values of the three groups: obese vs. normal weight,
p << 0.001; obese vs. overweight, p = 0.037; and overweight vs. normal weight, p = 0.001
(Bonferroni-corrected p-values). That means that CIMT mean values grew as BMI and
weight excess severity grew. The overall CIMT values for the three groups combined were
normally distributed (Shapiro–Wilk test significance = 0.081). However, the obese and the
normal-weight groups presented non-normal distribution for CIMT values.

3.1. CIMT with Regard to Age

Children from each weight group were further subdivided into three age subgroups:
pre-pubertal (<12 years old), pubertal (12–15 years old), and post-pubertal (≥16 years old).
The p-values were Bonferroni corrected for all comparisons in Table 1, with a significance
threshold of 0.05.

We did not detect statistically significant differences between the age subgroups in
the case of obese children (Table 1), with all three groups having similar values for CIMT
(p-values for obese children are not presented in their Bonferroni-corrected form because
they were too high, corrected α = 0.016). In the overweight group (Table 1), we detected
higher values of CIMT in pubertal compared to pre-pubertal patients and even higher
values of CIMT for post-pubertal patients compared to pre-pubertal ones (p = 0.024).
However, only the latter comparison was statistically significant.

In the normal-weight controls, pre-pubertal and pubertal children scored significantly
lower CIMT averages, but children 16 years old and over had an CIMT average closer to
the obese and overweight lots (Table 1).

CIMT values in obese, overweight, and normal-weight post-pubescent children always
scored the highest values. For children under 12 years of age, we found significantly
higher values for CIMT in obese children compared to overweight children (p = 0.015)
and compared to the control group (p << 0.001) (Bonferroni-corrected p values). The same
finding was detected in overweight children under 12 compared to normal-weight children
under 12, but the p-value was not statistically significant.
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Table 1. CIMT differences with regard to age.

Obese Group Group Number % of Entire Group
Mean

CIMT (mm)

<12 years I 55% 0.48
12–15 years II 25% 0.49
≥16 years III 20% 0.50

Comparison I vs. II I vs. III II vs. III
p-value 0.71 0.59 0.88

Overweight Group Group Number % of Entire Group
Mean

CIMT (mm)

<12 years I 34% 0.43
12–15 years II 53% 0.48
≥16 years III 13% 0.54

Comparison I vs. II I vs. III II vs. III
p-value 0.11 0.024 0.21

Normal-Weight Group Group Number % of Entire Group
Mean

CIMT (mm)

<12 years I 48% 0.35
12–15 years II 40% 0.4
≥16 years III 12% 0.51

Comparison I vs. II I vs. III II vs. III
p-value 0.042 0.0006 0.012

3.2. CIMT with Regard to Gender

In the overweight and normal-weight lots, boys demonstrated higher CIMT averages
than girls; nevertheless, the variation was statistically significant only in the overweight
section, p = 0.043. In the group of obese children, the CIMT averages of boys and girls were
almost identical (Table 2).

Table 2. CIMT with regard to gender.

Group Sex % of Entire Group Mean CIMT (mm) p-Value

Obese
Girls 35% 0.5135

0.99Boys 65% 0.5134

Overweight Girls 33% 0.43
0.043Boys 67% 0.49

Normal
Girls 52% 0.38

0.55Boys 48% 0.4

3.3. Assessment of Risk Factors

We further present the comparison between CIMT values in the context of the presence
of certain risk factors within the analyzed groups: overweight vs. normal weight and obese
vs. normal weight. We acknowledge the fact that when divided into subgroups according
to certain risk factors, the lots become too small to reflect true statistical significance.
Nevertheless, our intention is to show the trend of the analyzed data and how it matches
with similar published data on the subject.

3.3.1. Obese Patients

Obese patients showed CIMT values close to 0.50 mm, with high percentages for
formula nutrition, abnormal birth weight, pregnancy-related risks, pathological family
history and sedentary lifestyle (Table 3).
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Table 3. Mean CIMT in the presence of different risk factors in obese children.

Risk Factor
% of Total

Obese Children
Mean

CIMT (mm)
p-Value

Postnatal food
Formula 65% 0.53

0.99Breastmilk 35% 0.53

Birth weight
<2500 g 25% 0.54

0.62>3500 g 25% 0.53
normal 50% 0.52

Biological mother’s
health

Risk factors present 70% 0.55
0.047No risk factors 30% 0.48

Family history Risk factors present 75% 0.54
0.11No risk factors 25% 0.48

Smoking Smoker 15% 0.61
0.015Non-smoker 85% 0.51

High blood pressure Yes 20% 0.58
0.1No 80% 0.51

Lifestyle Sedentary 65% 0.55
0.89Normal 35% 0.49

CIMT median for entire
obese group (mm) 0.50

Postnatal nutrition. 65% of our obese patients received formula nutrition as nurslings.
The CIMT mean of formula-fed children did not differ from the CIMT mean of the entire
obese group, and it was almost equal to the CIMT mean of the breastfed group. The
differences between the two subgroups were statistically insignificant (p = 0.989).

Birth weight. Half of our obese patients had abnormal birth weight (BW), either
higher (>3500 g) or lower (<2500 g) than normal. In children with low BW, CIMT mean
(X = 0.546 mm) was higher than the mean of the entire obese sample, whereas in children
with high BW, the CIMT mean was closer to the mean of the obese sample. No statistical
significance was detected when comparing subgroups (p = 0.62). Obese children with
normal BW had a slightly lower CIMT mean than those with abnormal BW.

Biological mother’s health during pregnancy. Up to 70% of the obese patients were
born to mothers who presented different pathologies during their pregnancy (Figure 2).
Obese children who were born to unhealthy mothers had statistically significantly higher
CIMT values than the entire obese sample and obese children who were born to healthy
mothers (p = 0.047). Over 20 kg weight gain during pregnancy was the most encountered
risk factor (30% of cases), followed closely by the presence of autoimmune thyroiditis (25%).
No mother admitted to smoking during pregnancy in this group.

Figure 2. Mother’s health during pregnancy, in obese children.

• Family history. Family history was an important context for the obese group: 75%
of obese children had at least one significant cardiometabolic risk factor within their
close family history (Figure 3). Obesity was present in 40% of the cases, followed by
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autoimmune thyroiditis and type 2 diabetes. CIMT reached statistically significant
higher values in children with positive family history than in those without (p = 0.049).

Figure 3. Family history of risk factors, in obese children.

• High blood pressure. High blood pressure was detected in 20% of the obese patients.
Although CIMT scored higher values in this group than in the one with healthy blood
pressure levels, the difference was not statistically significant (p = 0.102).

• Smoking. Smoking proved to be a significant risk factor. Only 15% of the adolescents
pertaining to the obese group declared that they were smokers. Their CIMT mean
was highest than any of the analyzed subgroups and the differences were statistically
significant (p = 0.015). Moreover, smoking was strongly and positively correlated with
higher values of CIMT (r = 0.53).

• Lifestyle. In the obese group, 65% of children declared a sedentary lifestyle (practicing
no sport and having less than an hour/day of physical activity). CIMT values were
higher than in children with healthy physical activity, but the differences were not
statistically significant.

3.3.2. Overweight Patients

Overall CIMT mean values were lower for overweight children than for obese children
(Table 4).

Table 4. Mean CIMT in the presence of different risk factors in overweight children.

Risk Factor
% of Total Over-
weight Children

Mean
CIMT (mm)

p-Value

Postnatal food
Formula 47% 0.5

0.023Breast milk 53% 0.44

Birth weight
<2500 g 20% 0.45

0.48>3500 g 33% 0.5
Normal 47% 0.46

Biological mother’s
health

Risk factors present 53% 0.49
0.042No risk factors 47% 0.44

Family history Risk factors present 60% 0.49
0.049No risk factors 40% 0.44

Smoking Smoker 13% 0.53
0.06Non-smoker 87% 0.46

High blood pressure Yes 13% 0.55
0.012No 87% 0.46

Lifestyle Sedentary 40% 0.49
0.32Normal 60% 0.46

CIMT X for entire
overweight group (mm)

0.47
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• Postnatal nutrition. In the overweight group, the nutrition factor was divided almost
equally between children, with 47% having received formula as nurslings. However,
the mean CIMT was significantly higher in children fed with formula (X = 0.5 mm)
than in breastfed children (X = 0.44 mm), p = 0.023.

• Birth weight. Exactly one third of the overweight patients were born with a birth
weight higher than 3500 g and scored higher CIMT values (X = 0.5 mm) than the
low BW and normal BW groups (X = 0.45 mm and X = 0.46 mm, respectively). No
statistical differences were detected between subgroups.

• Biological mother’s health during pregnancy. A total of 53% of overweight patients
were born to mothers who had problematic pregnancies. These children showed
higher CIMT values than those who were born to healthy mothers (Table 4) and
the differences between them were statistically significant (p = 0.042). The most
encountered risk factor was weight gain of over 20 kg during pregnancy (20% of cases),
followed by autoimmune thyroiditis and gestational diabetes in equal percentages
(13%). A total of 7% of mothers admitted to smoking during pregnancy in this group
(Figure 4).

Figure 4. Mother’s health during pregnancy, in overweight children.

• Family history. A total of 60% of overweight kids had an at-risk medical family history
(Figure 5). Statistically significantly higher CIMT values were detected in the group
with such risk factors within the immediate family, compared to children with negative
family history (p = 0.049).

Figure 5. Family history of risk factors, in overweight children.

• High blood pressure. Even fewer children presented high blood pressure in the
overweight group (13%, compared to 20% in the obese group). However, the CIMT
values were significantly higher in hypertensive children than in non-hypertensive
ones (p = 0.012).

• Smoking. CIMT mean was higher in smoking overweight children, but the differences
were not statistically significant due to the small case sample (p = 0.06). Even so,
smoking remains a solid risk factor for increased CIMT, in overweight children as well.
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• Lifestyle. A total of 40% of overweight children admitted to leading a sedentary
lifestyle, with less than 1 h of physical activity per day. However, the higher values of
CIMT in the risk group were not statistically significant (p = 0.324).

3.3.3. Normal-Weight Patients

CIMT overall mean values were lower in all subgroups compared to the ones in the
obese and overweight groups. Although we detected higher CIMT in all risk categories,
the differences were not statistically significant, due to small samples (Table 5).

Table 5. Mean CIMT in the presence of different risk factors in normal-weight children.

Risk Factor
% of Total Normal-
Weight Children

Mean
CIMT (mm)

p-Value

Postnatal food
Formula 36% 0.41

0.25Breastmilk 64% 0.38

Birth weight
<2500 g 8% 0.39

0.5>3500 g 40% 0.40
Normal 52% 0.38

Biological mother’s health Abnormal 32% 0.43
0.09Normal 68% 0.37

Family history Abnormal 28% 0.42
0.2Normal 72% 0.38

Smoking Smoker 4% 0.56
N/ANon-smoker 96% 0.38

Hypertension Yes 4% 0.47
N/ANo 96% 0.39

Lifestyle Sedentary 32% 0.42
0.24Normal 68% 0.38

CIMT median for entire
normal-weight group (mm) 0.37

• Postnatal nutrition. Only 36% of normal-weight children received formula as nurslings,
and their CIMT mean values scored higher than in the breastfed group (X = 0.41 mm
vs. X = 0.37 mm).

• Birthweight. Birth weight had no influence on the outcome of CIMT; 52% of children
had normal BW and a X = 0.38 mm CIMT, whereas 48% had abnormal BW (8% <2500 g
and X = 0.39 mm CIMT, and 40% >3500 g and X = 0.4 mm CIMT, respectively).

• Biological mother’s health during pregnancy. Unhealthy pregnancy seemed to be a
valid risk factor for higher CIMT (X = 0.43 mm vs. X = 0.37 mm) even in normal-weight
children; however, only 32% of normal-weight children were born from unhealthy
pregnancies, compared to 70% in the case of obese children and 53% in the case of
overweight children, respectively. A total of 12% of unhealthy pregnancies were due
to >20 kg weight gain and 8% due to autoimmune thyroiditis, whereas gestational
diabetes, gestational hypertension, and smoking during pregnancy added up to 4%
each. A total of 68% of pregnancies that resulted in normal-weight children were
declared completely physiological.

• Family history. Up to 72% of normal-weight children had no family history of car-
diometabolic diseases. CIMT mean values scored higher in children with at-risk
family history, but the differences were not statistically significant (X = 0.42 mm vs.
X = 0.3 mm, p = 0.2). Out of the 28% of children with a history of cardiometabolic
diseases in their immediate family, 16% declared obesity, whereas autoimmune thy-
roiditis, high blood pressure, and type 2 diabetes each added up 4%.

• High blood pressure. Out of the 25 overall subjects with high blood pressure, only
one patient belonged to the normal-weight group.
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• Smoking. The same situation was detected for the risk factor of smoking: One patient
out of the 25 smoking patients belonged to the normal-weight group.

• Lifestyle. Up to 68% of normal-weight controls led healthy lifestyles with regard to
physical activity (>1 h of exercise/day and/or practicing an organized sport). Those
patients presented lower values for CIMT than children with sedentary lifestyles, but
the differences were not statistically significant (p = 0.24).

3.4. Assessment of Waist Circumference and CIMT
3.4.1. Waist Circumference in Obese Children

Mean waist circumference was X = 100.5 cm, with no difference between girls and
boys (p = 0.96).

We detected a strong positive correlation between values of children’s waist circum-
ference and their CIMT values (Spearman’s correlation coefficient ρ = 0.69, p = 0.0006). See
Figure 3.

In addition, the higher the values of their waist circumference, the higher their blood
pressure (r = 0.61, p = 0.004); see Table 6.

Table 6. Correlations between waist circumference and other parameters in obese children.

CIMT Median
(mm)

BMI
(kg/m2)

LDL-c
(mg/dL)

Total
Cholesterol

(mg/dL)

Triglycerides
(mg/dL)

Blood
Pressure
(mmHg)

Spearman’s ρ 0.69 ** Pearson’s r 0.88 * 0.43 0.34 0.42 0.61 *

p-value 0.0006 p-value <0.001 0.06 0.14 0.06 0.004

* Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 level (two-tailed).

3.4.2. Waist Circumference in Overweight Children

Mean waist circumference was X = 87.3 cm, with no difference between girls and boys
(p = 0.6).

A strong positive correlation was found between waist circumference and CIMT
(Pearson’s r = 0.64) in overweight children, but we did not detect any other correlations for
other parameters.

3.4.3. Waist Circumference in Normal-Weight Children

• Mean waist circumference was X = 63.9 cm, with no difference between girls and boys
(p = 0.96).

• We detected a strong positive correlation between values of children’s waist circum-
ference and their CIMT values (Spearman’s ρ = 0.77); see Table 7 and Figure 5.

Table 7. Correlations between waist circumference and other parameters in normal-weight children.

CIMT Median
(mm)

BMI (kg/m2)
Triglycerides

(mg/dL)
LDL-c

(mg/dL)

Total
Cholesterol

(mg/dL)

Blood
Pressure
(mmHg)

Spearman’s ρ 0.77 ** 0.88 ** 0.23 Pearson’s r 0.375 0.38 0.405 *

p-value <0.001 <0.001 0.26 p-value 0.065 0.06 0.044

* Correlation is significant at the 0.05 level (two-tailed). ** correlation is significant at the 0.01 level (two-tailed).

Waist circumference, an acknowledged marker of visceral obesity and insulin resis-
tance [40], is positively correlated to CIMT values (Figure 6) and to other complications of
obesity, especially to higher blood pressure values.
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Figure 6. The correlation between waist circumference and CIMT values.

3.5. Assessment of Blood Parameters and CIMT

The focus of this part was the correlation analysis between CIMT values and the
below-mentioned blood parameters.

3.5.1. HDL Cholesterol and CIMT

Obese children showed a moderate negative correlation between values of CIMT and
HDL cholesterol (HDL-c), ρ = −0.53 (Figure 7), but there was a weaker negative correlation
in normal-weight children. Mean values of HDL-c were slightly above 40 mg/dL, and a
surprising result is that the lowest mean values were detected in the normal-weight group
(X = 42.3 mg/dL).

Figure 7. Correlation between CIMT and HDL-c in obese children.

3.5.2. LDL-Cholesterol and CIMT

We detected a positive correlation between CIMT and the values of LDL cholesterol
(LDL-c) in the obese group, ρ = 0.31 (Figure 8). Neither the controls nor the overweight
group showed such a correlation (ρ = 0.04 and r = 0.07, respectively); see Table 8. Mean
LDL-c values were similar, with no statistical differences between groups. CIMT mean
values were highest for obese (X = 0.53 mm) and overweight (X = 0.5 mm) children, and
only X = 0.4 mm in the normal-weight group.
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Table 8. Correlations between CIMT and blood parameters (Spearman’s correlation for the obese
and normal-weight group and Pearson correlation for the overweight group).

Obese Group Overweight Group
Normal-Weight

Group

HDL-c—CIMT −0.53 −0.031 −0.25
LDL-c—CIMT 0.31 0.04 0.07

Total Cholesterol—CIMT 0.23 0.151 0.07
Triglycerides—CIMT 0.45 0.6 0.08
Non-HDL-c—CIMT 0.14 0.19 0.34

TC:HDL-c ratio—CIMT 0.29 0.27 0.54
TG:HDL-c ratio—CIMT 0.16 0.54 0.56
Fasting glucose—CIMT −0.3 0.21 −0.1

Figure 8. Correlation between CIMT and LDL-c in obese children.

3.5.3. Total Cholesterol and CIMT

We detected weak positive correlations between the values of total cholesterol (TC)
and CIMT in the weight-excess groups of study (ρ = 0.23 in obese children, r = 0.15 in
overweight children, and ρ = 0.07 in normal weight ones). No statistical significance
was detected. We observed that the more severe the weight excess was, the stronger the
correlation between the TC and CIMT (Figure 9).

Figure 9. Correlation between CIMT and total cholesterol in all children.

3.5.4. Triglycerides and CIMT

Moderate and strong correlations between CIMT values and the levels of triglycerides
(TG) were detected in the obese (Figure 10a) and overweight groups (ρ = 0.45 and r = 0.6,
respectively, Figure 10b), whereas no correlation was detected in the normal-weight group
(ρ = 0.08); see Table 8. Mean levels of TG were significantly higher in the overweight group,
as was the strength of the correlation. TG levels are correlated to BMI values (r = 0.2) and
mean values of TG in sedentary children are higher, but our findings were not statistically
relevant (p = 0.47).
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Figure 10. (a). Correlation between CIMT and TG in obese children. (b) Correlation between CIMT and TG in over-
weight children.

3.5.5. Non-HDL Cholesterol, Total Cholesterol/HDL-c Ratio, Triglyceride/HDL-c Ratio,
and CIMT

Mean values for non-HDL-c, TC/HDL-c ratio, and TG/HDL-c ratio were less ideal as
weight severity increased (Table 9). Correlation strengths between CIMT values and the
mentioned parameters grew in tandem with weight excess, as well (Table 8, Figure 11).
We did not detect any statistically significant difference between CIMT values of different
range categories when comparing these parameters.

Table 9. Means of non-HDL-c, TC/HDL-c ratio and TG/HDL-c ratio across the three groups.

Normal Weight Overweight Obese

X Values

Non-HDL-c (mg/dL) 119 134 122.7
TC/HDL-c ratio 4 3.8 3.8
TG/HDL-c ratio 2 2.5 2.2

Up to 40% of obese and overweight patients presented at risk values of non-HDL-
c (≥145 mg/dL). Half the patients with normal weights presented healthy values for
non-HDL-c (<120 mg/dL) and only 20% presented values higher than 145 mg/dL [41].

Up to 60% of all three groups presented borderline TC/HDL-c ratio values (3.5–5) and
19% of obese children presented TC/HDL-c ratio values ≥5 [41].

Over 70% of patients in all three groups presented TG/HDL ratios ≥1.12, which,
according to de Georgis et al. and Iwani et al. are values indicating higher risk [42–44]. We
mention that cut-off values for TG/HDL-c in children are not fully established and differ
among ethnicities [44].

3.5.6. Fasting Glucose and CIMT

The results concerning the relationship between fasting glucose (FG) and CIMT were
somewhat contradictory in the sense that we detected negative correlations between FG
and CIMT in the control and obese group (r = −0.1 and ρ = −0.3, respectively), and a
positive correlation in the overweight group (r = 0.21); see Table 8. These results are either
due to small group sampling, or to the fact that fasting glucose in children with ongoing
pathologies like insulin resistance have fluctuations in their fasting glucose levels [45].
Mean values of FG were similar in all groups (X = 82 mg/dL).

3.6. Multivariate Regression Linear Model

We applied a multivariate linear regression model to identify independent predic-
tors for CIMT. Independent variables included waist circumference, LDL-c, HDL-c, TC,
TG, non-HDL-c, TC/HDL-c ratio, and TG/HDL-c ratio. CIMT was considered a depen-
dent variable. Our analysis showed that waist circumference and TG/HDL-c ratio are
statistically significant predictors of the dependent variable, CIMT (Tables 10 and 11).
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Figure 11. Correlations between CIMT and (a) TG:HDL-c ratio in overweight children, (b) TG:HDL-c
ratio in obese children, and (c) TC:HDL-c ratio in obese children.

Table 10. WC and TG/HDL-c as significant predictors of CIMT.

Model R R-Square
Adjusted
R-Square

Std. Error of
the Estimate

Change Statistics

R-Square Change F-Change df1 df2 Sig. F-Change

1 0.855 0.732 0.727 0.04679 0.732 158.266 1 58 0.000

2 0.284 0.081 0.065 0.08663 0.081 5.097 1 58 0.028

Predictors: (constant), waist circumference. Dependent variable: CIMT.

Table 11. Independent variables excluded as predictors of CIMT.

Beta In t Sig.
Partial

Correlation

Collinearity Statistics

Tolerance VIF
Minimum
Tolerance

LDL-c 0.005 0.069 0.945 0.009 0.981 1.020 0.981

HDL-c −0.078 −1.151 0.255 −0.151 1.000 1.000 1.000

TG 0.068 0.964 0.339 0.127 0.941 1.063 0.941

TC 0.010 0.148 0.883 0.020 0.957 1.045 0.957

Non-HDL-c 0.081 0.537 0.594 0.071 0.701 1.427 0.701

TC/HDL-c ratio 0.059 0.312 0.756 0.041 0.447 2.235 0.447

Predictors: (constant), TG/HDL-c ratio. Dependent variable: CIMT.
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4. Discussion

The main purpose of this study was to show to what degree CIMT can be considered
a reliable evaluation parameter along with the usual ones in obese children. To achieve
this goal, we analyzed whether the presence of certain genetic and epigenetic factors
influence the values of CIMT and observed how CIMT correlated to certain usual clinical
and blood parameters.

We chose ultrasonography-measured CIMT as the focus of our analysis, which, al-
though not the most accurate way of analyzing arterial walls, is the most appropriate for
children as a screening tool. Studies have proven that MRI wall-thickness measurements
may have better clinical utility because they have better prognostic value for cardiovascular
risk than ultrasonography. In addition to intima-media measurement, MRI also images
adventicia thickening and its vasa vasorum proliferation, the entire carotid artery, and
the carotid bulb, where plaque forms early. However, its limitations make it more of
a research tool than a day-to-day clinical one. It is over 10 times more expensive than
ultrasonography, less accessible due to construction costs, requires longer scan times, and,
because it is so sensible to motion, its common use in children is unrealistic [46,47]. CT
angiography may detect vasa vasorum neovascularization and thus be a good predictor of
vascular accidents, but its limitations with regard to radiation and poor contrast between
lipid and fibrotic structures makes it unfit for a screening tool, especially in children [47].
Fluorodeoxyglucose-PET can be useful in assessing plaque vulnerability, because it targets
areas of inflammation that are prone to rupture. When coupled with CT or MRI, its value
increases. However, it is a method that is highly unlikely to be useful in screening children
at risk [48]. That said, it is obvious that for our everyday clinical risk assessment in mi-
nor patients, CIMT ultrasonography is the only imagistic tool that is useful in assessing
subclinical atherosclerosis.

Our patients were divided into three study groups—obese, overweight, and normal-
weight—and subgroups depending on the object of study. CIMT values were correlated to
BMI levels and there were significant differences between the three groups with regard to
CIMT. In our study, excess adipose tissue was estimated by BMI and waist circumference
measurements, but we acknowledge that the utility of peripheral adipose tissue ultra-
sound measurement and bioelectrical impedance analysis as a more accurate detection of
subcutaneous fat tissue, which has been shown to have important roles in cytokine and
growth-factor production and thus, in cardiometabolic risk [49].

Atherosclerosis is a process that starts in early childhood and has a lifelong progression,
its pathological speed depending on genetic predisposition and environmental factors [7].
As a consequence, CIMT is a parameter that increases over time. In order to analyze how
obesity affects children of different ages, we divided each study group into age categories:
pre-pubertal (<12 years old), pubertal (12–15 years old), and post-pubertal (≥16 years
old). In the overweight group, significant differences concerning CIMT values were
detected between pre-pubertal and post-pubertal patients (p = 0.024, Bonferroni corrected);
see Table 1. Extremely significant differences were detected in the normal-weight group
(Table 1), where CIMT values increased very clearly with age, so much so that post-pubertal
normal-weight children had CIMT mean values very similar to children of the same age
with weight excess. Moreover, when analyzing the <12-years-old category, we detected
extremely significant differences between CIMT mean values in the obese and overweight
groups (p = 0.015), and the obese and normal-weight groups (p << 0.001). Therefore, in the
presence of considerable excess weight, age has a smaller impact on the endothelial wall
than the pathological processes caused by excess adipose tissue. Inflammation and an early
onset of subclinical atherosclerosis makes the arterial walls of pre-pubertal obese children
have similar characteristics to the arterial walls of normal-weight or slightly overweight
post-pubertal children and even young adults.

In adults, CIMT reaches higher values in men [8]; however, in children, differences
on behalf of sex are insignificant. In our analysis, in the obese group, the mean values
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for CIMT in boys and girls were identical, whereas in the overweight group, boys scored
higher values for CIMT (p = 0.043); see Table 2.

An essential part of our study was the analysis of potential factors that increase
risk for higher CIMT from an early age. Most of these factors overlap their influence on
CIMT with that of weight excess predisposition. We analyzed each risk factor within the
respective group.

Although discussions on postnatal nutrition’s role in cardiometabolic risk is still being
researched, most studies are in agreement that breastfeeding has a protective cardiovas-
cular role only when it is not prolonged, being inversely associated with mortality by
coronary disease [10]. A 65-year longitudinal study showed that breastfeeding reduces
the progression of atherosclerosis, which translates into a lower CIMT [13]. On the other
hand, artificial feeding is known to be associated not only with obesity [12], but also with
high blood pressure [14] and insulin resistance [15]. Our analysis showed that although in
all three groups, children who were bottle-fed presented higher CIMT values, the results
were not statistically significant, except for the overweight group (p = 0.023). Although
the results concerning CIMT were inconclusive, the proportions of formula-fed/breast-fed
children in each group clearly suggest that artificial nutrition represents a risk factor for
weight excess in childhood: 65% of the obese group, 47% of the overweight group, and
only 37% of the normal-weight group were bottle-fed.

Data on birth weight and its influence on cardiometabolic risk over time are more
conclusive. Children born large for gestational age have a predisposition for obesity and
an increased CIMT in young adulthood, although they seem to have an otherwise healthy
cardiovascular risk [17]. Children with low birth weight have increased CIMT values in
young adulthood only if they have experienced severe intrauterine growth retardation
followed by exaggerated postnatal growth [50]. A recent meta-analysis showed that in
children born small for gestational age, CIMT has increased values in infants rather than
in older children, which may prove that fetal growth restriction is an important factor
that may increase the child’s risk trajectory [51]. Our findings are in accord with previous
studies, although our sample cases were smaller. In all three study groups, approximately
half of the children had normal birth weights (2500–3500 g) and the other half had either
low birth weight (<2500 g) or high birth weight (>3500 g) (Tables 3–5). Although we did
not detect significant differences, CIMT had higher values for children with high birth
weight in both overweight children and controls. However, in the obese group, the mean
values for low birth weight were higher than for high birth weight (Table 3). Low birth
weight might have more of impact on endothelial suffering, as it is associated with in utero
cardiac remodeling and reduced arterial compliance [52]. Previous studies have shown
that the more severe fetal growth impairment is, the more significant the data [51].

Because a mother’s health and health-related habits during pregnancy are directly
connected to the intrauterine development of the child [53], we analyzed how some
maternal risk factors for child obesity and cardiovascular risk influence our subjects.

A total of 70% of our obese patients were born to unhealthy mothers. A total of 30%
of them had mothers who gained >20 kg during their pregnancy, 25% had mothers with
autoimmune thyroiditis, 10% had mothers with gestational diabetes mellitus, and 5% had
mothers with gestational hypertension (Figure 2). These patients presented significantly
increased values in CIMT compared to obese children born to healthy mothers (p = 0.047,
Table 3). In overweight children, the proportion of cases that came from abnormal preg-
nancies dropped to 53%, and we also detected increased CIMT mean values compared
to the overweight children with healthy mothers (p = 0.049, Table 4). For normal-weight
children, the proportion of unhealthy pregnancies was even smaller, at 32% (Table 5).
Overall, the most predominant risk factor was by far maternal obesity (>20 kg weight gain).
The mechanism behind its effects on the fetus is based on placental insufficiency, which
promotes intrauterine growth restriction [54]. This can lead to structural and functional
alterations on the fetus’ cardiovascular system that may persist throughout childhood [55]
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and can remain permanent risks or predispositions for high blood pressure, increased
CIMT, and arterial stiffness [56].

Family medical history should play an important role in shaping an individual’s
cardiometabolic risk profile. Family history alone is not enough to place blame, but it
surely helps to evaluate the genetic risk of the individual in order to estimate prognostics
on the onset and severity of the disease’s evolution [57]. In our study, 75% of obese children
had a family history positive for risk, 40% had obese first-grade relatives, followed by a
long distance by autoimmune thyroiditis, type 2 diabetes mellitus, and cardiovascular
diseases (Figure 3). Although CIMT values were higher for children with a family history
of risk in all three groups of study, significance was found only in the overweight group
(p = 0.049).

Smoking is a well-known risk factor for vascular dysfunction, affecting the integrity
of endothelial cells and promoting lipid and monocyte invasion of endothelial walls [58],
and thus accelerating the stiffness of the arterial wall. We addressed the problem of
adolescent smoking, but cannot rely on our findings due to the small amount of smoking
teenagers in our group. Obese smokers had the most increased CIMT mean: X = 0.61 mm,
p = 0.015 (Table 3). We note the only case of a 16-year-old male normal-weight smoker,
who presented neither of the evaluated risk factors and who had a CIMT value of 0.56,
higher than anyone in his group (group CIMT X = 0.39 mm); see Table 5. Because both age
and the presence of metabolic syndrome are closely linked to inflammation and oxidative
stress, and ultimately the damage of the vasculature structure, which is easily detectable
starting in young adulthood [59], in young adults with such conditions, smoking will
strengthen the adverse effects of age and all the other risk factors by directly damaging
endothelial integrity.

High blood pressure in obese children and young adults is a consequence of the
mixture of insulin resistance, sympathetic nervous system overactivity, and damage to
the endothelial wall [60]. With regard to CIMT values, once installed, hypertension is
an aggravating factor [61]. Moreover, hypertensive children present increased CIMT
values, regardless of their BMI [62]. Our study confirmed the higher CIMT values among
hypertensive children compared to normotensive ones (p = 0.012) with similar BMIs.
Hypertensive subjects in the obese group reached 20%.

Our approach to lifestyle as a risk was focused on the level of sedentary behavior of
each subject. We considered a subject sedentary when they practiced no sport and/or had
less than 1 h of physical activity/day. Lack of physical activity is the factor that completes
the big picture of obesity [63]. Although we did not find statistically meaningful differences,
our study showed a tendency toward higher CIMT based on sedentary habits in all weight
categories. However, this factor is a rather indirect one with concern to CIMT, because it
affects vascular integrity by increasing the subject’s susceptibility to obesity.

Abdominal visceral excess adipose tissue, clinically estimated by measurement of
waist circumference, is considered a marker of insulin resistance [64] and a key component
of metabolic syndrome when it reaches values >90th percentile for age and sex in chil-
dren [65,66]. In the general population, CIMT values are significantly higher in men and
women with a waist circumference ≥79 cm compared to values <79 cm [67]. Our study
also showed a high correlation between the values of waist circumference and CIMT. In
the obese group, significant correlations were detected between waist circumference and
parameters like BMI, blood pressure, total cholesterol, LDL cholesterol, and triglycerides,
as well (Table 6). In all three groups, the higher the mean values of waist circumference
were, the stronger the correlations to CIMT and other evaluation parameters.

As for blood parameters, we analyzed the correlations between CIMT values and
parameters usually used for evaluating weight excess in children: lipid panel and fasting
glucose levels.

HDL cholesterol is considered the protective component of the lipid panel, with
cytoprotective, anti-inflammatory, antithrombotic, and antioxidant functions and playing
a large role in clearing away excess cholesterol from vessels and transporting it back to
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the liver [68]. Recent studies show that HDL-c’s functionality is more important than its
circulating quantity per se, and factors that affect its functionality should be avoided as
much as possible: oxidative environment (acute phase response), metabolic syndrome,
obesity, and consumption of saturated fats [69]. HDL-c in children is primarily affected
by lack of physical activity [70]. Dietary habits that include enough polyunsaturated fats,
in detriment to saturated fats, improve the anti-inflammatory function of HDL-c [71].
Children with increased CIMT and sedentary behavior are the ones with the lowest HDL-c,
highest triglycerides levels, and highest risk of developing metabolic syndrome [67]. In our
study, HDL cholesterol was significantly and negatively correlated to CIMT mean values
(Table 8). It was also one of the most prevalent abnormal parameters detected, with 40% of
the obese and normal-weight children and 7% of the overweight children presenting an
HDL level of ≤40 mg/dL.

LDL cholesterol plays a major role in atherosclerotic plaque progression due to its
migration under the sub-endothelial space, along with excess chylomicrons, where they are
ingurgitated by macrophages and monocytes [72]. High LDL-c is usually associated with
low HDL-c, depending on individual physical fitness. The diagnostic of dyslipidemia in
an obese child should be taken into consideration as an aggravating factor for arterial long-
term health [73]. Adolescents with high lipid levels present a greater risk of developing
high CIMT as adults, and, should they have weight excess, the risk increases substantially
compared to adults who did not have either risk during their childhood [74]. In obese
children, LDL-c correlated to CIMT values (Table 8), a finding that supports international
data. Furthermore, all three analysis groups showed correlations between CIMT and total
cholesterol values (Figure 9), although mean values of total cholesterol were not suggestive
for dyslipidemia. This may be because overall LDL-c values were not extremely high, and
HDL-c levels were low (47% of cases presented <40 mg/dL values). We did note, however,
that as weight excess severity increased, the lipid panel showed pathological, at-risk
values. Individuals with familial hypercholesterolemia present high values for lipoproteins
even in the context of less extreme weight excess, and affected children present higher
CIMT than their unaffected siblings. This is further proof that once installed, dyslipidemia
increases the progress of atherosclerosis, which can be detected early enough to evaluate the
cardiovascular risk and aid the medical effort to avoid cardiovascular complications [74].

Triglyceride levels are influenced primarily by dietary habits and in part by physical
activity [75]. As obese children have problems with both aspects, it is not a surprise that
obese children present higher levels of TG [76]. Fasting triglycerides levels >150 mg/dL
are known to represent a biomarker for cardiovascular risk [77]. Nevertheless, specific
roles of TG are still controversial because there is significant personal variability involved
in serum levels of TG compared to other more stable parameters like HDL-c [77]. Many
studies have shown that TG levels are not directly involved in the increase of CIMT [78,79].
However, other studies suggest that serum TG’s importance in estimating atherosclerotic
risk is undervalued and that the lack of consistency in showing a connection could be
derived from the fact that TG levels have great variability from one day to another [80].
Some studies have shown discreet correlations of TG levels to CIMT, and, even more
specifically, through remnant triglyceride-rich lipoproteins associated with fatty meals [81].
As essential as fats are for human health, the modern diet of both children and adults
disregards the ideal proportions of polyunsaturated fatty acids (PUFAs). This imbalance
is an aggravating factor for vascular damage. Moreover, genetic variations in children
with obesity may influence the metabolism of PUFAs, and the intake requirements for
a healthy cardiovascular profile may therefore vary [82,83]. Our findings support these
data: We detected significant correlations between TG levels and CIMT in both obese and
overweight children (Table 8, Figure 10a,b). Although mean values were not surprisingly
high, we did detect an association of higher TG with higher BMI and sedentary behavior.
More data should be assessed in larger groups of obese children and a comparison between
fasting TG and postprandial TG levels would be highly recommended.
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Moreover, non-HDL cholesterol has proven to be an important tool in assessing
atherosclerotic risk, as well [84]. Furthermore, a recent longitudinal study has shown that
pathological levels of non-HDL-c in youths over 15 years old correlate to high CIMT in
adulthood. Its predictive value for high adult CIMT was similar to LDL-c’s. It has also
been shown that through preventive actions, the effects of youth dyslipidemia can be
attenuated if serum lipids are normalized by adulthood [85]. Total cholesterol/HDL-c
ratio is one of the better predictors of ischemic coronary events. Its ability to do so is
given by the cluster of metabolic disturbances present in individuals with abdominal
obesity, insulin resistance, and dyslipidemia; therefore, its prediction value is even more
powerful in individuals who have them all [86]. Triglyceride/HDL-c ratio could be a
better predictor for cardiometabolic risk and insulin resistance in children than metabolic
syndrome status [42,44,87]. Our findings showed correlations between CIMT values and
non-HDL-c, TC/HDL-C ratio, and TG/HDL-C ratio, and their correlation strengths grew
as weight severity based on BMI grew (Table 8, Figure 11). The mean values for these three
parameters were influenced by weight excess (Table 9). Over half of the subjects in all three
groups presented values higher than ideal for all three parameters, especially in the case of
TG/HDL-c ratio (Table 9).

Childhood obesity disturbs glucose–insulin metabolism as well, and one of the ear-
liest signs is the impairment of fasting glucose, which highly predicts type 2 diabetes
mellitus [88,89]. However, the problem with impaired fasting glucose (IGF) as a factor
for risk evaluation is that it varies substantially between different regions and ethnicities.
For instance, IGF in Swedish and American obese children is considerably higher than in
central European obese children [90]. Both IGF and impaired glucose tolerance increase
CIMT by affecting arterial vessels [40]. As weight excess becomes more severe, insulin
resistance and high glucose levels support the pathological processes of endothelial thick-
ening. However, in this pre-diabetic situation, glucose variability is possible, with highs
and lows all throughout the day [45]. This may be a reason why studies on IFG should
be conducted on larger sample sizes to increase statistical significance. On this note, our
research found a contradicting negative correlation between CIMT and fasting glucose
levels in our obese group. However, in the overweight group, we detected a positive
correlation, which suggests that the need for larger samples is indeed pertinent.

The multivariate linear regression analysis of CIMT as a dependent variable and
waist circumference, LDL-c, HDL-c, TC, TG, non-HDL-c, TC/HDL-c ratio, and TG/HDL-c
ratio as independent variables showed that waist circumference and TG/HDL-c ratio are
statistically significant predictors of CIMT (Tables 10 and 11). This is an important finding,
with concrete clinical use.

The main limitation of this study was the small sample size, but even so, our analysis
was statistically significant and in line with further publications. A further longitudinal
analysis would be interesting regarding CIMT and other correlated parameters, once the
same subjects start to lose weight and change their lifestyle.

5. Conclusions

Weight excess in children is associated with increased values of CIMT, and the severity
of the excess increases the expected values of CIMT. Abdominal adiposity of obese children,
a clinical marker of metabolic distress, is very reliably positively correlated to CIMT values.
Waist circumference and TG/HDL-c are significant predictors of CIMT.

Risk factors like weight gain of over 20 kg during pregnancy and overall metabolic
disturbances of the mother, family history of cardiovascular risk, high blood pressure, and
smoking are linked to increased CIMT. Our study supports international data on artificial
postnatal nutrition, high/low birth weight, smoking, and sedentary lifestyle being linked
to increased CIMT, but our analysis’s statistical significance was not definitive.

All evaluated blood parameters showed correlations to CIMT, except for fasting glucose.
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Abstract: A critical chemotherapeutic complication is cardiotoxicity, often leading, in time, to heart
failure. In this work, we developed a novel animal protocol using magnetic resonance (MR) imag-
ing and electrophysiology (EP) tests, designed to detect subtle structural and functional changes
associated with myocardial damage in sub-chronic phases post-chemotherapy. A weekly dose of
doxorubicin (DOX) was injected in four juvenile swine throughout a four-week plan, using an intra-
venous approach that mimics the treatment in cancer patients. We performed cardiac MR imaging as
follows: in all four pigs pre-DOX; at 1 and 5 weeks post-DOX in a group of two pigs; and, at 1 and
9 weeks post-DOX in the other two pigs, using Cine imaging to assess ejection fraction (EF) and late
gadolinium enhancement to quantify collagen density in the left ventricle. Additionally, X-ray-guided
voltage mapping and arrhythmia tests were conducted in the group at 9 weeks post-DOX and in
a healthy pig. Tissue samples were collected for histology. The results showed that EF decreased
from ~46% pre-DOX to ~34% within the first 9 weeks post-DOX. This decline in LV function was
explained by a gradual increase in collagen density, especially noticeable at week 9 post-DOX as
derived from MRI analysis. Furthermore, ventricular fibrillation was induced via rapid pacing at
9 weeks post-DOX, most likely caused by fibrotic patches identified in voltage maps, as confirmed
by MRI and collagen-sensitive histological stains. Overall, our novel preclinical protocol was able
to reveal key signs of potentially-irreversible tissue changes, along with electrical remodeling and
arrhythmia risk in the early months following DOX therapy. Future work will include more datasets
to statistically power the study, and will use the protocol to test cardioprotective strategies.

Keywords: cardiotoxicity; MRI; fibrosis; chemotherapy; doxorubicin; voltage mapping; arrhythmia

1. Introduction

Clinical motivation: Cardio-oncology is an emerging multi-disciplinary field that in-
vestigates the onset and progression of myocardial injury induced in cancer patients by
chemo-therapeutic or molecular agents, as well as radiation therapy [1]. Among the FDA-
approved anthracyclines, doxorubicin (DOX) hydrochloride is one of the most effective
chemotherapeutic drugs prescribed in the treatment of breast cancer [2]. DOX has been also
used in the treatment of bladder cancer, lymphoma (Hodgkin and non-Hodgkin), Kaposi’s
sarcoma, and acute lymphocytic leukemia, as well as metastatic cases (e.g., gastric cancer,
ovarian cancer, neuroblastoma). However, despite the therapeutic benefit offered by DOX,
preclinical and clinical studies have increasingly reported progressive heart dysfunction
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as a critical adverse consequence of DOX-based treatments [3,4]. Furthermore, pharmaco-
logical studies showed that while DOX therapy induces cell death and cancer regression,
it also triggers a problematic mechanism associated with cardiotoxicity based on a cas-
cade of events that includes reactive oxidative stress [5] and modulation of mitochondrial
function [6].

While the mechanism of cardiotoxicity remains somewhat controversial, it has been
demonstrated that the cardiotoxic effects in myocytes and endothelial cells are primarily
dose-dependent, leading to long-term irreversible damage of remodeled tissue, abnormal
excitation–contraction coupling, and inefficient blood pumping. These major ventricular
function impairments have been attributed to a gradual deposition of reactive collage-
nous fibrosis, causing cardiovascular complications such as cardiomyopathy or congestive
heart failure and leading to collateral mortality in cancer survivors [1,2]. For decades,
clinical studies have documented such cardiotoxic effects induced by anthracyclines only
in late chronic stages, that is, after cardiomyopathy, heart failure and lethal events had
occurred. Some recent investigations have focused on studying biological and physiologi-
cal consequences in acute and subacute phases following chemotherapy, suggesting that
both apoptosis and edema (i.e., fluid accumulation) occur within a time window of days
and weeks post-DOX. In contrast, the irreversible myocardial damage, which is primarily
represented by a gradual deposition of reactive fibrosis due to increased deposition of
extracellular matrix (ECM), is believed to occur in sub-chronic and later phases following
chemotherapy [1–4]. Moreover, only a limited number of clinical studies have related
arrhythmia to cardiotoxicity in cancer survivors as a suspected causation of abnormal heart
rhythms post-chemotherapy, despite the fact that these aberrant rhythms can degenerate
into potentially lethal events such ventricular fibrillation [7].

1.1. Image-Based Methods to Evaluate Chemotherapy-Induced Cardiotoxic Effects

Clinical protocols and diagnostic methods routinely use echocardiographic imag-
ing and have reasonable sensitivity and specificity in comprehensively monitoring and
detecting DOX-mediated functional changes [8], while biopsy sampling is invasive and
sparse, often missing structurally damaged tissue. Thus, the irreversible injury evolves
undetected, worsening in time and leading, within months and years, to cardiomyopathy,
and eventually to heart failure. Therefore, there has been a critical need to develop more
accurate methods to detect earlier the cardiotoxic effects in sub-chronic phases following
DOX-based therapies. With this respect, MR imaging offers excellent tissue contrast. For
example, one group recently utilized MRI to assess cardiotoxicity in breast cancer sur-
vivors, showing that most patients had significantly different values of ejection fraction and
global strain post-DOX compared to the baseline, and some presented evidence of diffuse
fibrosis [9]. While 2D Cine and Late Gadolinium Enhancement methods are able to charac-
terize post-DOX functional and structural changes [9], these scans typically use protocols
with large slice thickness (~8–10 mm), similarly to those in acute or chronic infarct scars [10].
Current T1 and T2 mapping methods can differentiate, overall, the injured myocardium
post-chemotherapy [11]; however, these low-resolution images (voxel size 2 × 2 × 10 mm3)
might miss subtle structural alterations. Thus, advanced methods using high-resolution 3D
imaging should be adapted for imaging protocols of post-DOX evaluation.

1.2. Role of Pre-Clinical Animal Models of Cardiotoxicity

Animal models of cardiotoxicity represent a reasonable alternative to clinical investiga-
tions, allowing us to perform detailed and controlled studies that can address unanswered
clinical questions. For example, image-based longitudinal studies in animals can reveal
new biomarkers of adverse myocardial remodeling at different time points following DOX
therapy, improving our mechanistic understanding regarding reversible vs. irreversible
effects. Such models can be used to test more effective cardioprotective strategies prior
to implementation in clinical trials. Furthermore, compared to sparse in vivo biopsy sam-
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pling, animal models hold the great advantage of allowing us to study the entire heart after
explantation for the purpose of histopathological assessment.

With respect to this, a large body of literature has reported the development of pre-
clinical models of chemotherapy-induced cardiotoxicity. Many chronic models using small
animals (e.g., mice [12], rabbits [13], mini-pigs [14]), have clearly demonstrated that the
severity of structural myocardial remodeling is dependent on the cumulative dose of the
chemotherapeutic drug, leading to mechanical dysfunction with poor ejection fraction
and progressive heart failure. Unfortunately, small animal models are less relevant to the
clinical translation of diagnostic imaging methods. Thus, more recently, one research group
developed a swine model of cardiotoxicity and used MR imaging to demonstrate that the
prolongation of T2 parameter (indicating edema) is reversible in early stages post-DOX,
and that the LV function declines gradually within the first few months post-DOX [15].
However, in this study, DOX was administered intracoronary through a catheter, an inva-
sive procedure which does not mimic the chemotherapeutic plan in patients. Therefore,
alternative delivery methods, such as the intravenous injection of doxorubicin (as done in
patients), might be more realistic to study cardiotoxicity in large animal models.

The specific aims of our work here are: (1) to develop a translational swine model
to study DOX-induced cardiotoxicity, precisely mimicking the intravenous delivery of
doxorubicin in cancer patients; and (2) to establish subtle quantitative MR imaging features
and electrophysiological characteristics of DOX-induced cardiotoxic effects in the sub-
chronic phases post-DOX (i.e., weeks and a couple of months after the DOX treatment was
ceased). Specifically, in this preclinical work, we propose an MR imaging protocol that
allows us to monitor, post-DOX, the temporal evolution of the left ventricular function
(i.e., via Cinematic methods) and of the structural alterations (i.e., using high-resolution 3D
contrast-enhanced MR to detect deposition of collagenous fibrosis), along with histological
validation. In addition, our novel experimental protocol includes a complex X-ray-guided
electrophysiological study to evaluate endocardial bipolar voltage maps and arrhythmia
inducibility following the completion of DOX treatment.

2. Methods

All preclinical animal experiments were approved by the research ethics board of
the Animal Care Committee at our Sunnybrook Research Institute (Toronto), and the
DOX-related procedures were performed while ensuring all biohazard safety requirements.

The design of the experimental animal study to evaluate DOX-induced cardiotoxi-
city included the following: DOX treatment delivered weekly via intravenous injection;
functional and structural MRI imaging (pre-DOX and post-DOX delivery) and associated
image analysis; X-ray guided electrophysiology studies (voltage mapping and arrhythmia
inducibility); and, lastly, histological staining of select myocardial tissue samples. The
associated pipeline of our research protocol is illustrated in Figure 1, where each component
is described in more detail below.

2.1. Development of a Preclinical Large Animal Model to Study DOX-Induced Cardiotoxicity

In this work, we used n = 4 juvenile healthy Yorkshire swine, weighing 20–25 kg
prior to the commencement of DOX injections. Note that an additional healthy swine was
used as control for the electrophysiology studies and histological validation. The dosage
of doxorubicin (i.e., 1 mg/kg) was given based on the pig’s weight, as per the typical
chemotherapeutic doses. For each delivery, DOX was diluted into a 100 mL bag of saline
and administered intravenously (i.v.) either into the ear or using a vascular access port
(VAP) designed for large animals. The DOX solution was slowly injected over a 20–30 min
period. The four pigs receiving DOX treatment were split into 2 groups: (i) Group 1 (pig #1
and pig #2, respectively), sacrificed at 5 weeks post-DOX; and (ii) Group 2 (pig #3 and
pig #4, respectively), sacrificed at 9 weeks post-DOX. This grouping was carried out to
enable the validation of longitudinal observations at two time points vs. histology.
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Figure 1. Pipeline of the experimental study to evaluate DOX cardiotoxicity pre- and post-treatment,
as indicated by the arrows (the arrowheads point to the end of longitudinal studies).

2.2. In Vivo MR Imaging Protocol and Associated Analysis

MR imaging studies were conducted on a 3T whole body scanner (MR 750, General
Electric Healthcare, Waukesha, WI, USA). Prior to imaging (Figure 2a), each animal was
sedated using an anesthetic mixture of atropine (0.05 mg/kg) and ketamine (30 mg/kg),
and was supported through mechanical ventilation. Anesthesia was maintained with
isoflurane/O2 (1–5%). For image acquisition, an 8-channel cardiac anterior array coil was
placed on each pig. The heart rate and associated physiological signals were continuously
monitored. The proposed MR imaging protocol presented in this paper included: a short-
axis 2D CINE sequence for heart function evaluation, as well as a high-resolution 3D
late gadolinium enhancement (LGE) for the identification and quantification of fibrosis.
Amiodarone was injected in order to avoid arrhythmic events during the MR imaging
study, which kept the heart rate stable and below 100 bpm. The heart rate stabilization
improved image acquisition process and, consequently, the quality of reconstructed images.

Figure 2. Example of a preclinical MR imaging study: (a) experimental set-up with the pig on the
table of the 3T MR scanner (prior to placing the animal inside the bore); and (b) long-axis image
serving for the prescription of the short-axis Cine images.

As per the diagram previously presented in Figure 1, the MR images were acquired at
the following time points: (a) at baseline healthy state (pre-DOX injections) in both groups;
(b) at one week after the completion of DOX injections in all four animals; (c) at five weeks
post-DOX injections in Group 1 (i.e., in pig #1 and pig #2, respectively), and (d) at nine
weeks post-DOX injections in Group 2 (i.e., in pig #3 and pig #4, respectively).

For the assessment of cardiac function, we utilized a steady-state free precession
(SSFP) sequence in Cine mode, with the following MR parameters: 16–20 short-axis slices
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to cover the entirety of the heart (prescribed on longitudinal-axis images, as in Figure 2b),
8 views/segment, 20 cardiac phases/slice, repetition time TR= 4.2 ms, echo time TE = 1.8 ms,
flip angle = 45◦, matrix size = 224 × 160, in-plane resolution of 1 mm × 1 mm, and slice
thickness = 5 mm (with no gap between slices). All Cinematic images were acquired using
ECG- gating and breath holds.

Contrast-enhanced imaging was performed by employing a free-breathing 3D late
gadolinium enhancement (LGE) method, approximately 5–6 min after injecting a bolus of
gadolinium-based contrast agent Gd-DTPA (0.2 mmol/kg, Magnevist, Bayer Healthcare
Pharmaceuticals, Berlin, Germany). The 3D LGE method with isotropic voxels size was
based on a 3D inversion recovery fast gradient echo (IR-FGRE) sequence with fat suppres-
sion and respiratory navigation (initial inversion time TI = 300 ms, repetition and echo
times TR/TE = 3.5/1.5 ms, bandwidth BW = 100 kHz, flip angle = 15◦, and an isotropic
spatial resolution of 1.4 mm × 1.4 mm × 1.4 mm), similarly to the method we previously
used in preclinical MR imaging studies to evaluate chronic infarct scars [16].

2.3. MR Image Analysis

First, the Cine images were analyzed with the CVI42 software (Circle Cardiovascular
Imaging, Calgary) [17], to assess left ventricular function. The endocardial and epicardial
contours were semi-automatically delineated, and then corrected by a clinical expert
(cardiologist I.R.). Using these contours, we derived the end-systolic and end-diastolic
volumes (ESV and EDV, respectively). The ejection fraction (EF) functional parameter was
then calculated with the well-known formula: EF(%) = (EDV − ESV)/EDV, for each dataset
(i.e., each time-point), allowing us to observe the longitudinal changes over the weeks
following the completion post-DOX delivery.

Second, the LGE images were analyzed using in-house custom scripts written in Mat-
lab (Mathworks, Torrance, CA, USA), according to the image analysis pipeline illustrated
in Figure 3. Briefly, for each raw MR image, we first performed manual endocardial and
epicardial contouring of the LV. A region of interest (ROI) was selected from the remote my-
ocardium on the posterior side. Subsequently, pixel-wise maps of signal intensity within the
segmented LV were used as input to an algorithm able to differentiate healthy myocardium
vs. fibrotic pixels based on a simple signal intensity thresholding method.

Figure 3. Diagrammatic illustration of the analysis pipeline used to generate pixel-wise fibrosis maps
from high resolution LGE images (see text for more details). Note: fibrosis pixels are represented in
green and healthy myocardium pixels in magenta.

Specifically, in order to cluster the pixels into the two distinct regions (i.e., fibrosis and
healthy tissue), we used a 5 standard deviation (SD) threshold for signal intensity, which is
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clinically accepted for fibrosis assessment [18]. Moreover, the LV binary masks were used
to calculate the LV volume for each heart. At each time-point, for each heart, the density of
fibrosis (%) was calculated as the ratio between the fibrosis volume (derived from the total
number of segmented fibrosis voxels in each LV) and the LV volume.

2.4. Electrophysiology Studies (Mapping and Arrhythmia Test)

The day following the imaging studies at 9 weeks post-DOX, catheter-based electro-
anatomic mapping (EAM) and an arrhythmia inducibility test were performed in pigs #3
and #4, respectively. An additional EAM study and arrhythmia test was performed in
a healthy (control) pig. All animals were intubated and sedated, and anesthesia was
maintained throughout these EAM procedures using the same combination of medications
as those administered prior to the MR imaging scans. However, amiodarone was not
administered, since one objectives of the EP study was to evaluate arrhythmia inducibility.

All three interventional electrophysiology EP studies were carried out under X-ray
guidance, using a C-arm Toshiba INFINIX VF-I/SP-S (Figure 4a). Catheter-based EAM of
the left ventricular (LV) endocardial surface was performed in these animals by employing
a conventional CARTO3 electrophysiology system (Biosense Webster Inc, Diamond Bar, CA,
USA). For the endocardial mapping procedures, we used a PentaRay® catheter (Biosense
Webster Inc., Irvine, CA, USA) inserted into the LV cavity, via femoral access.

Figure 4. (a) Experimental set-up of the EP study (electro-anatomic mapping and arrhythmia study)
shown during the intervention in pig #3, at week 9 following the completion of DOX injections; and
(b) X-ray image of the mapping and pacing catheters inside the heart during the EP study.

The EAMs were primarily acquired for the purpose of constructing detailed bipolar
voltage maps (i.e., more than one thousand points per map, in sinus rhythm and under pacing
conditions). The bipolar voltages characterized by low amplitude values (0.1–1.5 mV) were
attributed to patches of fibrotic tissue, whereas the areas with an amplitude voltage > 1.5 mV
were considered normal, in accordance with the clinical threshold typically used to define
scarred tissue [19]. The low bipolar voltage areas were qualitatively compared to those de-
fined by LGE using ADAS 3D software, version 2.11.1-beta.2 (www.adas3D.com, accessed
on 31 October 2022). Several representative points that had low voltage values (denoting
fibrosis) were selected for a qualitative evaluation of the QRS and QRS-T intervals.

For the arrhythmia inducibility test, we inserted an SF Thermocool catheter (Biosense
Webster Inc., Irvine, CA, USA) into the right ventricle (RV) and performed rapid pacing of
the heart. Figure 4b shows an exemplary X-ray image of the heart during the EP study (in
pig #3), with the pacing catheter inside the RV and the mapping catheter (with 5 prongs
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and multiple sensors on each prong) inside the LV. The external ECGs placed onto the
animal torso for reference, are also visible.

2.5. Histology

Except for pigs #3 and #4 (in which death was caused by VF), the other three animals
were euthanized as per the approved protocol. All five hearts were carefully explanted,
then fixed and preserved in formaldehyde solution for at least 1 week in order to ensure a
uniform preservation of tissue. Tissue samples were collected from each heart and select
cross-sections (i.e., slices cut at 4 mm thickness) corresponding to short-axis MR images
(as guided by anatomical landmarks) were cut at 4 μm thickness. These were mounted on
large glass slides and stained with collagen-specific Mason Trichrome stain to visualize the
deposition of collagenous/reactive fibrosis. Following staining, the slides were digitally
scanned using a special TissueScope (Huron Technologies, St. Jacobs, ON, Canada) that
accommodates large pathology slides. These digital images were visualized using Aperio
ImageScope [20], an open-source software specifically designed for pathological evaluation
of digital images.

2.6. Statistical Analysis

Since this is a methodological protocol paper with the animal model being tested only
in a small pilot study, the study was not powered statistically. Therefore, we focused on
qualitative analyses and highlighting the longitudinal evolution of individual parameters
(EF and fibrosis density) per animal.

3. Results

3.1. Longitudinal Assessment of LV Function from Cine Images

Figure 5a shows examples of LV contours at end diastole (ED) and end systolic (ED)
phases in a short-axis cine slice, at different time-points (i.e., pre-DOX, week 1 post-DOX,
and week 9 post DOX), taken from pig #3. For qualitative comparison, the slices were
selected to be at the approximate same level using anatomical markers (e.g., papillary
muscle as well as geometrical shape/features of the left ventricular endocardial wall), taken
into consideration that the hearts of these juvenile swine had slightly grown in size between
the time points of MRI scans (starting from the first pre-DOX scan and onward).

Figure 5. Characterization of the LV function through analysis of Cine MR images: (a) example
of short-axis slice at mid-heart level, representing the end-systole and end-diastole phases during
the cardiac cycle at different time points pre-DOX and post-DOX in pig #3 (ED = end-diastole,
ES = end-systole); and (b) temporal evolution of the individual EF (%) parameter for each animal.

All animals had normal cardiac function prior to DOX injections, with EF values
ranging from 41% to 48%. Overall, the EF values gradually decreased over time in each pig
post-DOX. We observed that initially, all EF values clearly decreased by week 1 post-DOX.
At week 5 post-DOX, the EF values for both pig #1 and pig #2 decreased, but not below
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40%, whereas at week 9 post-DOX, the EF values decreased to less than 35% for both pig #3
and pig #4. The temporal evolution of the functional EF parameter in each animal is plotted
in Figure 5b, where the steady DOX-induced decline in cardiac function is obvious on an
individual heart basis.

3.2. Longitudinal Assessment of MRI-Defined Fibrosis Density

Figure 6 illustrates exemplary results from the segmentation of LGE images in pig #1
and pig #3 using the 5SD threshold to detect fibrosis, at different post-DOX time-points.

 
Figure 6. Representative results obtained by segmenting LGE images to distinguish fibrotic pixels
(in green) from normal myocardium pixels (in magenta). For the green masks segmented in the MR
slices presented, for pig #1, there are 11 fibrosis pixels out of 1003 total pixels of the LV at 1 week
post-DOX, and 43 pixels out of 1092 pixels of LV at 5 weeks post-DOX. For pig #3, there are 11 pixels
out of 905 LV pixels at 1-week post-DOX, and 65 pixels out of 939 LV pixels at week 9 post-DOX.
White scalebar is 2 cm.

The LGE-defined pixels of fibrosis are depicted in green, whereas the healthy my-
ocardium is depicted in magenta. The overall higher values of signal intensity in LV (as
observed in the histograms) suggest an overall increase in fibrosis. We also observed that
most pixels classified as ‘fibrosis’ (based on a higher signal intensity compared to the rest
of myocardium in the LV), were scattered within the anterior territory and had a typical
appearance of diffuse fibrosis in contrast-enhanced MR images.

The results from the estimation of fibrosis density from segmented LGE images are
presented in Figure 7, along with representative histological images of collagen-sensitive
Masson Trichrome stain. The qualitative increase in the deposition of reactive fibrosis post-
DOX observed in the histopathological images was found to be in good agreement with
the gradual increase in LGE-defined fibrosis. Figure 7a includes the temporal evolution of
LGE-defined fibrosis density (%) post-DOX treatment, plotted individually for each animal.
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Figure 7b demonstrates a gradual deposition of reactive interstitial fibrosis (caused by an
increased extracellular matrix deposition) using samples selected from the healthy (control)
animal, pig #1, and from pig #3. Typically, collagenous tissue stains blue-green, whereas
healthy tissue stains dark red. The nuclei stain black, appearing pycnotic (i.e., smaller and
condensed) or completely disappearing in the cells within more extensive fibrotic patches.
In addition, we also noticed that by week 5 and week 9 post-DOX, respectively, there were
no visible areas with edematous tissue or accumulated fluid.

 
Figure 7. Results from the LGE-based evaluation of fibrosis density (calculated relative to the LV
volume) for each animal, along with selected histopathological images denoting increased collagen
deposition: (a) temporal evolution of LGE-defined fibrosis density from LGE images for each pig;
(b) examples of Masson Trichrome stained samples from the control animal as well as from samples
collected at 5 weeks and 9 weeks post-DOX, showing an increasing deposition of interstitial collagen
and reactive fibrosis (in agreement with results obtained from MRI). The yellow scale-bar is 200 μm.

3.3. EP Studies (EAM Mapping and Arrhythmia Inducibility Tests)

Figure 8a–c illustrates examples of endocardial bipolar voltage maps, along with
representative intracardiac electrograms (iEGMs), recorded following a retrograde aor-
tic approach: (a) in the healthy control pig; (b) in pig #3; and (c) in pig #4, respec-
tively. The healthy tissue (depicted in magenta) was defined by bipolar voltages with
amplitude >1.5 mV, whereas small patches of fibrosis (depicted in dark red and green) had
bipolar voltages <1.5 mV, as is typical for the clinical threshold that defines unexcitable
fibrotic scars.

Figure 8d,e illustrates the 3D segmented LGE images for pig #3 and pig #4 after
registration with endocardial bipolar voltage maps from CARTO3. The LGE-CARTO3
registration was performed in ADAS 3D, using a rigid landmark-based approach with
8 fiducial markers and the endocardial surface (i.e., taking a 5% layer closest to the surface)
of the myocardium defined from the 3D LGE images.

Overall, both methods (LGE and CARTO3) revealed small patches of fibrosis scattered
on the endocardial surface, especially on the anterior side of these two hearts. However, a
precise geometrical correspondence between the locations of patches in the LGE shell vs.
those in bipolar voltages cannot be found. This is due to the different spatial resolutions
used, with the voxels in LGE images being of small size (1.4 mm × 1.4 mm × 1.4 mm) with
the recorded bipolar voltage points several mm apart. The resulting slightly larger fibrotic
patches defined by CARTO3 (compared to those seen in the LGE endocardial shells), were
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likely due to the surface interpolation of the recording points. Furthermore, it is possible
that there were a few very small fibrotic points that were missed by the contact catheter,
but these likely appeared in the LGE-defined endocardial shell.

 
Figure 8. Examples of endocardial bipolar voltage maps, along with representative iEGM waves are
presented for the healthy pig (a), pig #3 (b) and pig #4 (c). The location of low bipolar voltages in
(b,c) agreed well with the with the corresponding location of LGE-defined fibrosis using the ADAS
3D software, as illustrated for pig #3 (d) and pig #4 (e). In both endocardial maps (i.e., from CARTO3
and segmented LGE shells), the fibrotic areas are indicated by red-green, while the healthy tissue is
in magenta.

Examples of wave analysis for QRS and QRS-T intervals for a few selected fibrosis
points are included in Table 1. Note that the recorded iEGM waves were evaluated for
reproducible morphological appearance within three consecutive QRS heart beats prior to
the acquisition window, using the 12-lead ECGs as reference. The QRS-T intervals were
clearly prolonged for the points of low voltage compared to those in the heathy pig. In
addition, the QRS intervals for these points were slightly longer in pig #4, but fluctuated in
pig #3.
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Table 1. QRS and QRS-T intervals and exemplary iEGM waves for points of low bipolar
voltage (<0.5 mV) selected from pig #3 and pig #4, along with reference intervals from healthy pigs.

Animal ID Intracardiac EGM Waves
Bipolar Voltage

(mV)
QRS Interval (ms)

Q-T Interval
(ms)

Healthy Ref. 3.00 56 290

Pig 4 0.29 65 338

Pig 4 0.48 59 338

Pig 4 0.33 63 351

Pig 4

 

0.37 61 357

Pig 3 0.5 47 293

Pig 3 0.34 47 306

Pig 3

 

0.48 56 307

Note that CARTO typically saves 2.5 s of recording prior to the moment a bipolar
voltage is acquired to be projected on the anatomical shell. In Table 1, we presented
the signal captured during the acquisition window, which was set before the QRS and
T waves, within the time window of 400 ms during sinus rhythm. In evaluating iEGMs
for reproducible morphological appearance in the regions of low voltage identified from
registered segmented LGE and bipolar maps, we identified consistent morphological
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appearance of low voltage intracardiac recordings at the fibrotic regions within 3 QRS beats
of the projected bipolar voltage signal, suggesting acceptable reproducibility.

Figure 9 shows examples of recorded iEGMs and reference 12-lead ECGs in pig #3,
during: sinus rhythm (650 ms R-R interval), pacing at 500 ms and induced ventricular
fibrillation, VF. In both animals in Group 2 (i.e., pig #3 and pig #4) VF was induced via rapid
pacing (<300 ms); however, it could not be induced in the healthy control animal, regardless
of the pacing rate. These observations, corroborated by the recorded bipolar voltage maps
and the MRI-derived fibrosis maps suggested that the small patches of diffuse fibrosis
identified in histopathology images acted as small anatomical obstacles and perturbed the
normal propagation of electrical waves through the heart. These scattered patches likely
broke the propagating waves into smaller spiraling waves, and in conjunction with their
corresponding prolonged QRS-T intervals, favored a chaotic electrical propagation specific
to fast and lethal VF. Note that these two pigs were not defibrillated, as such a maneuver
was out of the scope of this study.

Figure 9. Examples of iEGMs and reference ECG waves in pig #3 at 9 weeks post-DOX, during:
(a) sinus rhythm; (b) pacing from RV at 2 Hz resulting in a cardiac cycle length of 500 ms; and
(c) induced ventricular fibrillation (VF) that resulted in a fast cycle length of 210 ms.

4. Discussion

Accurate identification of characteristics specific to reversible and irreversible myocar-
dial remodeling post-chemotherapy could help clinicians to assess the long-term effects
of DOX therapy and to predict the risk of sudden cardiac death associated with heart
failure [21]. A major role in the identification of early cardiotoxic signs (weeks and months
post-DOX) can be played by cardiac imaging. Among the various imaging methods nowa-
days available to characterize cardiac function [22] and structure [9,11], MR imaging may
soon be the preferred technique for evaluating myocardial injury post-chemotherapy [23],
owing to its robust imaging sequences and excellent tissue contrast.

In this work, we demonstrated the feasibility of a large animal (swine) model to
explore functional and subtle structural cardiotoxic changes induced by DOX. As a first
novel aspect of our protocol, in distinction to the catheter-based intracoronary delivery
employed by other researchers in pig models [14,15], in our pilot study, we successfully used
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non-invasive intravenous (i.v.) injections of DOX, similarly to the clinical chemotherapeutic
approaches. Our histologically validated results clearly demonstrated that reactive fibrosis
occurred as a side-effect of the DOX treatment within the first couple of months, following
the completion of one 4-week cycle of treatment. The deposition of fibrosis appeared to
lead to an irreversible ventricular mechanical dysfunction, although we acknowledge that
a monitoring period longer than 9 weeks could better support this observation. With this
respect, we suggest that future studies could replace the Yorkshire swine with Yucatan pigs,
since the latter animals do not gain weight (in time) and therefore they could better fit in
the relatively narrow bore of 3T MR scanners.

A second novel aspect is related to the identification of scattered pixels of fibrosis in
the high-resolution 3D LGE images. Compared to clinical 2D MR scans that typically use
8–10 mm slice thickness, our 3D LGE method is superior in overcoming issues associated
with partial volume effects, which are problematic particularly in the setting of diffuse fibrosis.
Furthermore, our Cine and LGE MR imaging methods are both superior, in terms of spatial
resolution, to those used in other preclinical DOX studies. For example, for functional imaging,
our voxel size was 1 mm × 1 mm × 5 mm= 5 mm3 (which is four times smaller than the
voxel size of 1.8 mm × 1.8 mm × 6 mm = 19.6 mm3 used by Galán-Arriola et al. in [15]). For
the LGE method, we used a voxel size of 1.4 mm × 1.4 mm × 1.4 mm = 2.74 mm3, which is
smaller compared to the ~3.75 mm3 voxels used in [15]. The higher the spatial resolution is,
the less significant the partial volume effects are; thus, we suggest that our MR imaging
methods may provide more accurate functional parameters and structural information.
Moreover, the authors of ref. [15] only presented raw LGE images, without specifically
identifying the fibrotic pixels using clinically accepted algorithms as in our study.

Our free-breathing, high resolution 3D LGE method appears more adequate for pixel-
wise quantitative analysis of collagen density than the 2D T1 mapping images acquired
at 5 mm slice thickness [24]. However, LGE imaging is known to be sensitive to contrast
injections, and the image analysis based on 5SD threshold is user-dependent (i.e., with
respect to the selected ROIs), while T1 mapping techniques are more robust [25]. Given
the important role of diffuse fibrosis in post-chemotherapy [26], our future work will
focus on implementing a high-resolution 3D T1* mapping method. This method has the
capability to distinguish dense collagenous fibrotic patches, as demonstrated in a previous
study performed ex vivo in chronically infarcted porcine hearts [27], and has already
been translated to preclinical in vivo free-breathing 3D imaging of infarct scars, using a
1.4 mm isotropic resolution [16]. Furthermore, in the imaging protocol, we plan to include
T2-based methods to evaluate edema resorption, a reversible side-effect of DOX which
we recently observed in [24] (in three animals). Lastly, with respect to cardiac functional
assessment, the gradual decline in ejection fraction observed in the current work within
the first 9 weeks post-DOX indicated an early sub-acute and sub-chronic occurrence of
biomechanical dysfunction, in agreement with the swine study of cardiotoxicity that used
intracoronary DOX injections [15]. We suggest that the collagen deposition has substantially
contributed to the overall EF decline, and will likely have a critical role in the further
evolvement towards heart failure.

Regarding the third novel aspect, to the best of our knowledge, this is the first pre-
clinical study to report X-ray guided electro-anatomical mapping of endocardial bipolar
voltages in a large animal model post-chemotherapy, as most studies have focused only
on longitudinal assessment of cardiac mechanical function. The recorded intracardiac
iEGM signals, acquired with a catheter-based clinical systems, revealed small patches of
fibrotic tissue with reduced bipolar voltage amplitude, which is typically seen clinically
in scarred myocardium post-infarction. Our findings also suggest that early electrical
remodeling takes place within the first couple of months post-DOX, with prolonged QRS-T
intervals accompanying the low voltages in fibrotic areas. The small patches of dense col-
lagenous fibrosis located within areas of abnormal iEGM waves’ morphology likely created
unexcitable obstacles in the electrical wave pathway, generating reentrant waves, spiral
wave break, and chaotic electrical propagation. This eventually led to lethal ventricular
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fibrillation during the rapid pacing procedure, similarly to the scar-related ventricular
arrhythmias induced in post-infarction. Future work will include the monitoring of sponta-
neous arrhythmia episodes via MR-compatible implantable cardioverter defibrillators, in
order to study the risk of lethal arrhythmia development post-chemotherapy.

We acknowledge that one study limitation is the small number of animals. However,
in this work, we aimed to describe in detail the experimental protocol and qualitative
results, using a minimum number of animals for tests and respecting the ‘3Rs principle’
in animal research (i.e., replacement, reduction, and refinement). Nonetheless, we plan to
expand the cohort in the future by including more animals, which will enable us to give
statistical power to the study.

We envision that preclinical large animal models of cardiotoxicity will substantially
help researchers better understand the mechanistic effects of cardiotoxicity. Such models
can also provide a robust translational platform for testing new individual cardio-protective
strategies or a synergistic combination of those [28,29]. These could slow the irreversible
myocardial injury and associated dysfunction post-chemotherapy, and restrict further
progression towards the heart failure stage. Our future work will also focus on testing
3D virtual models in order to predict the electro-mechanical function post-cardiotoxicity,
integrating MRI-defined fibrosis areas and electrical remodeling information. Such in
silico computer models can be exploited to virtually predict risk of arrhythmia and im-
paired mechanical contraction (including the EF index) [30] either for screening of drugs’
cardiotoxicity [31] or to design more efficient therapeutic strategies, in conjunction with
information provided by early imaging biomarkers and knowledge gained from animal
models of cardiotoxicity [32].

5. Conclusions

Overall, this feasibility pilot study suggests that swine models of cardiotoxicity (based
on i.v. DOX delivery) can be used for revealing key signs of functional and structural
changes via non-invasive MRI, along with the risk of lethal arrhythmia in the sub-chronic
phases following DOX injections. Our protocol can be further employed to test various
cardioprotective strategies in order to minimize the myocardial injury post-DOX. Notably,
MR imaging biomarkers may be able to help predict late cardiotoxic effects of therapy
from the early reversible and irreversible alterations (i.e., fibrosis) of myocardial tissue.
Thus, such image-based translational large animal models and protocols could play an
important role in finding effective solutions to improve the delivery of cancer therapies
(e.g., synergistic combinations of anti-cancer drugs with statins, mitigating their optimal
combined dose and therapeutic plan), while considerably reducing the progression to heart
failure, as well as the mortality and morbidity associated with it.
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Abstract: Three-dimensional ultrasound mosaicing can increase image quality and expand the field
of view. However, limited work has been done applying these compounded approaches for cardiac
procedures focused on the mitral valve. For procedures targeting the mitral valve, transesophageal
echocardiography (TEE) is the primary imaging modality used as it provides clear 3D images of
the valve and surrounding tissues. However, TEE suffers from image artefacts and signal dropout,
particularly for structures lying below the valve, including chordae tendineae, making it necessary
to acquire alternative echo views to visualize these structures. Due to the limited field of view
obtainable, the entire ventricle cannot be directly visualized in sufficient detail from a single image
acquisition in 3D. We propose applying an image compounding technique to TEE volumes acquired
from a mid-esophageal position and several transgastric positions in order to reconstruct a high-detail
volume of the mitral valve and sub-valvular structures. This compounding technique utilizes both
fully and semi-simultaneous group-wise registration to align the multiple 3D volumes, followed by a
weighted intensity compounding step based on the monogenic signal. This compounding technique
is validated using images acquired from two excised porcine mitral valve units and three patient data
sets. We demonstrate that this compounding technique accurately captures the physical structures
present, including the mitral valve, chordae tendineae and papillary muscles. The chordae length
measurement error between the compounded ultrasound and ground-truth CT for two porcine valves
is reported as 0.7 ± 0.6 mm and 0.6 ± 0.6 mm.

Keywords: compounded echocardiography; volume stitching; 3D registration; mosaicing; 3D TEE;
mitral valve; monogenic signal

1. Introduction

Three-dimensional (3D) ultrasound imaging is used extensively as a diagnostic and
guidance tool for cardiac procedures. Three-dimensional echocardiography allows for
the acquisition of volumetric data of the heart, which can be analysed in any plane. The
current standard of care for mitral valve procedures includes diagnostic imaging with a 3D
transesophageal echocardiography (TEE) probe [1,2]. This method of imaging provides a
clear view of the mitral valve, and including color Doppler allows the cardiologist/cardiac
surgeon to identify the mitral valve pathology. While echocardiography is a powerful
imaging technique, it nevertheless has some major limitations. The field of view is limited
when using 3D transducers, which can limit the range of anatomy that can be easily viewed,
and structures further away from the image probe may suffer from poor spatial resolution,
while thin structures parallel to the ultrasound beam suffer from signal dropout artefacts.
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Ultrasound compounding, or mosaicing, has been proposed by several groups to
address limitations of 3D ultrasound and improve imaging capability. By registering and
blending together adjacent acquisitions from different poses, we can expand the field
of view and address the issue of signal dropout, producing higher quality images with
greater information for the clinician. Several image compounding techniques have been
proposed to register a set of ultrasound volumes, all of which demonstrate improved image
quality [3] and provide an avenue for combining common cardiac ultrasound views into
a single volume with reduced noise, reduced speckle, and fewer signal dropout artefacts.
Researchers have demonstrated 3D ultrasound compounding techniques with applications
in cardiac, fetal and breast imaging [4–6]. Common across all compounding methods are
two critical steps: global registration of all volumes and blending the overlapping regions
of the registered volumes to generate the resulting image [3]. Evaluation of registration
frameworks has identified three main approaches, consisting of sequential alignment,
semi-simultaneous and fully simultaneous registration [7]. Using a sequential alignment
approach, each acquisition is registered to the next; however, this technique suffers from
drift and error accumulation. The semi-simultaneous approach uses each volume as the
moving volume in turn and every other volume as fixed for multiple cycles until conver-
gence is met. This approach balances computational complexity, as only the parameters
of a single transform need to be considered in optimization; furthermore, it has global
alignment because every volume is considered at every step. The final approach, fully
simultaneous group-wise registration, optimizes the transformation parameters of all vol-
umes simultaneously, applying a loss function as the sum of pairwise losses. This approach
is optimal for registration quality; however, it is limited by computational complexity due
to the number of parameters that need to be optimized.

For mitral valve imaging using standard en-face views, the limitations of 3D ultra-
sound result in the structures beyond the valve, including the chordae tendineae, papillary
muscles, and left-ventricular outflow tract being difficult to identify. While imaging from
a different position (e.g., transgastric view) can capture these structures, the field of view
limits the utility of these images as at these positions the entire mitral valve apparatus
cannot be captured in a single volume. Currently, choosing the treatment plan that provides
the greatest benefit to the patient is one of the biggest clinical challenges for cardiologists
and cardiac surgeons [8]. Determining optimal neochord length is one of the main issues
that cardiac surgeons must address in MV repair procedures [9], and it is particularly
challenging to define this length due to a general lack of accurate anatomical information
from standard diagnostic imaging, which includes only the en-face view of the mitral valve.
Chordae tendineae length measurements are required for mitral valve procedures involving
the implantation of artificial chordae [10]. It is nevertheless challenging to determine their
optimal length because direct observation is limited to physical measurements made inside
the flaccid heart during surgery, along with 2D transgastric long-axis images which require
that the image plane be aligned with the entire chord to achieve accurate results [11]. While
3D transgastric TEE ultrasound is safe and easily acquired during routine TEE imaging
(adding approximately 3–5 min to the procedure), it is rarely employed due to the limited
visibility of the leaflets and field-of-view limitations preventing the entire length of the
chordae from being captured. Without the ability to see the entire subvalvular apparatus
in the same image data as the standard en-face view of the leaflets, transgastric image
information is of very limited clinical value.

In our prior work on volume compounding using TEE volumes, we explored a work-
flow using only the semi-simultaneous registration strategy and a distance-based weighted
average blending [12]. Our prior approach was able to successfully produce compounded
volumes; however, the registration component of the workflow was not robust, could fail
depending on the order in which the volumes were processed, and the blending approach
induced imaging artefacts. In this study, we propose an improved method to register and
compound transgastric and en-face volumes utilizing a combination of semi and fully
simultaneous registration with a novel weighting function for blending overlapping re-
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gions to reduce compounding artefacts. This provides an avenue for combining common
cardiac ultrasound views into a single volume with reduced noise and fewer dropout
artefacts. Many image compounding techniques involve the use of a tracked probe and
were targeted at combining multiple transthoracic views [6]. Our method differs from
these previous methods as it does not require any external tracking of the ultrasound
probe, and it has been tailored for use with TEE probes to combine 3D mid-esophageal
and transgastric volumes that can be acquired as part of a standard diagnostic imaging
session. In the en-face volumes, the mitral valve is clearly visible, and in the transgastric
views, the chordae are very clear, as these views are nearly perpendicular to each other. By
combining both the en-face and transgastric views, we can maintain optimal imaging for
both structures in a single compounded volume. Integrated leaflet and chordae geometry
in a single volume will greatly improve the cardiac surgeons’ ability to accurately measure
the length of individual chordae (a crucial factor in neochordae repair techniques [9]) and
plan their repair strategy.

2. Materials and Methods

2.1. Image Registration

Following local REB approval, we adapted standard diagnostic TEE acquisition pro-
tocols to include multiple transgastric views in addition to the standard mid-esophageal
view. Volumes were acquired using ECG gating to match the cardiac phase. Our imaging
protocol requires a minimum of one mid-esophageal acquisition and four transgastric
acquisitions with approximately 80% spatial overlap or more between adjacent volumes for
successful registration of the acquisitions, an example of which can be seen in Figure 1. The
transgastric acquisitions should begin at the mitral valve and proceed along the ventricle to
the papillary muscles. Compounding is then accomplished by aligning over-sampled data
through automated image registration, re-sampling the aligned volumes into a consistent
output space, and generating the output image through the voxel-wise blending of the
overlapping volumes. The compounding workflow is shown in Figure 2.

Figure 1. Compounded TEE volume of mitral valve with individual acquisitions outlined.

Acquire 3D 
ultrasound volumes

Group registration of all 
volumes
• Rigid registration step at single 

time point
• Deformable registration for each 

time point

Resampling to 
common output 

space

Spatial compounding
• Compute weighting of 

input volumes
• Weighted average of all 

overlapping volumes for 
each voxel

Figure 2. Workflow of TEE compounding for the mitral valve.
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Performing image registration of multiple volumes can be achieved using pairwise,
fully simultaneous, or semi-simultaneous approaches [13]. We implemented both the
semi-simultaneous and fully simultaneous approaches described by Wachinger et al. [13].
This is done as an extension of our initial work on this method, in which only the semi-
simultaneous approach was used [12]. We first perform rigid registration at the end-systole
between all volumes using fully simultaneous group-wise registration with the sum of
pairwise normalized cross-correlations as the loss function. This gives us a rough global
alignment of the volumes and is not dependent on input order. Then, two cycles of
semi-simultaneous registration are performed, which we found achieved better agreement
between volumes than the fully simultaneous registration alone. Finally, we utilize non-
rigid registration in the semi-simultaneous framework at each frame in the acquisitions to
account for the slight deviations at different points of the cardiac cycle due to imperfect
synchronization. For both semi-simultaneous steps, the loss function used was the sum of
normalized cross-correlation between the moving volume and each fixed volume. At each
step, optimization was performed using adaptive stochastic gradient descent in a multi-
resolution registration framework with four resolution levels, each smoothing the image
by a factor of 2 over the previous one. We implemented this approach using the Elastix
toolkit (http://elastix.isi.uu.nl/, accessed on10 October 2021) on the 3D Slicer platform
(https://www.slicer.org/, accessed on 10 October 2021). This open-source implementation
of our work is available at https://github.com/pcarnah/CardiacVolumeStitching, accessed
on 10 October 2021.

2.2. Image Blending

After the volumes are registered, re-sampling and compounding are performed at
each cardiac phase to construct a 3D + time compounded volume with a wide field of
view. Before compounding, the volumes are re-sampled to a common grid using cubic
b-spline interpolation to ensure that there is complete voxel overlap between volumes
so that the blending step (a weighted average of all overlapping volumes at each voxel
location) can be performed. The output grid is determined by the extent of all overlapping
input images, using isotropic spacing equal to the minimum spacing in any dimension in
any input image.

We evaluated multiple weighting strategies including the voxel-wise maximum, aver-
age and weighted average using two different weighting schemes. The voxel weighting
methods we compared were the scaled distance from the image probe and a combination
of distance from the probe and a feature detector based on the monogenic signal [14]. The
local phase measure from the monogenic signal was previously demonstrated as part of an
application-specific loss function for ultrasound compounding [15]. For our purposes, we
used the oriented symmetry measure, which returns values from −1 to +1, with positive
values being associated with features of interest and negative values being associated
with background noise, as visualized in Figure 3. We implemented the 3D extension of
the monogenic signal in Python. The distance function assigns higher weights to voxels
closer to the image probe, with values ranging from 25 near the probe down to 0 with an
inverse-square law dropoff, which we used to approximate the reduction in resolution
further away from a phased-array ultrasound probe. For a single voxel position p in a
source volume i, the expression for the distance from the image probe weighting di is

di(p) = 25

⎛
⎝10 − 10×‖p−oi‖

max
q∈Vi

(‖q − oi‖)

⎞
⎠

2

102 , (1)
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where oi is the position of the probe origin in volume i. The oriented symmetry weighting
Si is given as

Si(p) =

{
10 × si(p) if si(p) < 0
25 × si(p) if si(p) ≥ 0

, (2)

where si is the value of the oriented symmetry measure from the monogenic signal at
position p in volume i. The combined weighting function Wi of distance and oriented
symmetry is

Wi(p) = max(0.5, Si(p) + di(p)) , (3)

giving the sum of the two weights with a minimum value of 0.5. Both the distance weight
di and symmetry weight Si have a maximum value of 25, contributing equally to the overall
voxel weighting. Finally, the expression for the final weighted average output intensity
F(p) is

F(p) =

∑
Vi |Vi(p)>0

(
Vi(p)× wi(p)

)
∑

Vi |Vi(p)>0

(
wi(p)

) , (4)

where Vi(p) is the intensity value in volume i at position p, and wi is either the distance
weighting alone or the combined distance and oriented symmetry weighting. A visual
comparison of the results of applying the different blending approaches can be seen in
Figure 4. The voxel-wise maximum approach produces a volume with very sharp features
but passes through any imaging artefacts and highlights registration errors. Simple averag-
ing produces a smoother image but lacks the definition of smaller features and boundary
edges appear blurred. Distance weighted averaging further improves image quality, taking
advantage of the increased line density nearer to the probe and the corresponding increase
in spatial resolution, but small features and edge boundaries are still blurred and lack
contrast to the background. The incorporation of the monogenic signal-based feature
detector into the weighting function helps to reduce this blurring and makes the structures
of interest more distinct without amplifying imaging and registration artefacts.

1

0

1

Figure 3. Original image (top), with oriented symmetry measure from monogenic signal (bottom).
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(a) (b) (c) (d)

Figure 4. Results of blending functions max (a), average (b), distance weighted (c), and oriented
symmetry plus distance weighted (d).

2.3. Data Acquisition

Three patients were imaged using our acquisition protocol under REB approval, using
the Philips Epiq TEE system. These image sets were then registered and combined with
each of the four blending approaches. Visual inspection of the resulting volumes was
performed by an echo-cardiography specialist, to verify apparent anatomical correctness,
image quality and clinical value. We validated the geometrical accuracy of this volume
compounding approach on two excised porcine mitral valve units, shown in Figure 5.
These valves were imaged using a Philips Epiq system with an X8-2T TEE probe, with
volumes being captured sequentially from a mid-esophageal point, along a 3D printed
path simulating the esophagus to a transgastric position. The valve was also stained with
iodine and imaged with a cone-beam CT scanner (Medtronic O-Arm, Medtronic Canada,
Brampton, ON, Canada) to provide ground truth data. As shown in Figure 6, the ultrasound
volumes were compounded using our described registration approach with the monogenic
signal-based blending method. Linear measurements were then made of the visible chordae
structures in both volumes.

Figure 5. Excised porcine valve stained in iodine. Pictured on right is the valve being imaged using
a TEE probe from a transgastric position.

(a) (b)

(c) (d)

Figure 6. Original volumes simulating transgastric (a,b) and mid-esophageal (c) views of porcine
valve unit. Resulting volume from compounding (d).
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3. Results

3.1. Porcine Model

The compounded volumes visually replicated the anatomical structures visible in the
ground truth CT scan. As shown in Figure 7, the mitral valve leaflets, papillary muscles
and individual chordae are clearly visible in the compounded volume. The compounded
volume and CT are compared in Table 1 for each valve. For both volumes, four chordae
that were easily visible in the compounded echo and CT were measured from the papillary
muscle tip to the leaflet insertion point, and the average absolute difference between US
and CT length measurements was computed. The measured chordae lengths ranged from
22.0 mm to 36.0 mm.

Figure 7. Side-by-side volume rendered comparisons from multiple view points of the CT data (top)
and compounded echo (bottom).

Table 1. Volume comparison metrics between compounded echo and CT.

Excised Valve Chordae Measurement Absolute Difference (mm)

Valve 1 0.7 ± 0.6
Valve 2 0.6 ± 0.6

3.2. Patient Images

We processed image volumes acquired from two patients to create compounded
volumes that were visually inspected by a cardiac anaesthesiologist specializing in echocar-
diography. The general consensus was that both volumes maintain acceptable clinical
quality for the mitral valve leaflets and that the chordae tendineae were very clearly vis-
ible in the volumes for both patients. The compounding process enabled the contrast
between background noise and tissue to be more evident. Overall, compounded volumes
exhibit an improvement in image quality and include a wider field of view with little
signal dropout, shown in Figure 8. The overall conclusion was that these volumes rep-
resented an improvement over existing techniques, both in image quality and range of
structures visible.

Figure 8. Visualizations of compounded TEE data from five different TEE volumes. (Left), a volume
rendered view. (Middle), a commissure-commissure slice. (Right), an AP slice.

4. Discussion

Spatial compounding has been demonstrated for many applications to improve field
of view and image quality. Incorporating image information into the weighting function
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shows clear improvement over prior blending approaches. The combined distance and ori-
ented symmetry weighting improves image quality and helps eliminate blending artefacts
where the separate image acquisitions did not entirely agree. Compared to our previous
results for this application, the registration strategy incorporating simultaneous group reg-
istration as the initial step improved robustness and eliminated the effect of initialization
order, helping to prevent registration failure where the volumes do not reach alignment.

For the application of mitral valve procedure planning, we show that spatially com-
pounded 3D echocardiography volumes are able to capture the complex structures in the
left ventricle. Utilizing spatial compounding reduces image noise and provides a single
volume containing the mitral valve, chordae tendineae, and papillary muscles, enabling
clinicians to work from a single volume, instead of reconciling multiple separate volumes
together. We demonstrate on porcine models that our spatial compounding method using
a 3D TEE probe can reproduce the structures captured by a CT scan with high geometrical
accuracy. Although the chordae appear thicker in the compounded volume, the separate
individual chordae can still be identified from leaflet to papillary muscle. We found that
the length of the chordae can be accurately measured from the compounded volume, as
the thickening artefact does not affect the measurement of the length of the chordae.

The workflow described here can be integrated into the clinical standard of care,
requiring only 4–5 acquisitions with approximately 80% overlap. Standard practice cur-
rently includes diagnostic 3D TEE for patients undergoing mitral valve procedures and
transgastric images are already acquired as part of this process in the form of 2D long-axis
views in an attempt to capture the chordae in their entirety. This compounding technique
enables the transgastric images to be acquired as a series of 3D volumes instead of the
traditional 2D views, while still maintaining visibility of the entire chordae structures.
Our workflow makes it possible for clinicians to map almost the entire chordal structure
in 3D from the leaflet to the anchoring point in the left ventricle, greatly improving the
surgeon’s ability to optimize lengths for the introduced neochordae. Another instance
where detailed, compounded 3D echocardiography has potential is the early diagnosis of
endocarditis, where individual 3D image volume analysis can often remain ambiguous [16].
The volumes produced by applying 3D spatial compounding to TEE imaging capture the
entire valve complex. Currently, many procedures require additional imaging in the form
of cardiac CT/MRI to accurately perform diagnoses or plan for procedures [17]. Spatially
compounded multi-view echo has the potential to add to the clinical imaging workflow by
providing similar levels of information to cardiac CT at high frame rates, low cost and no
radiation exposure to patients. Further validation of the clinical utility of this method will
aim to demonstrate the effectiveness of the compounded echo, in particular related to cases
in which cardiac CT is currently necessary.

Future work on this compounding method may include further improvements to
registration speed and accuracy, as well as further exploration of blending approaches. Cur-
rently, the compounding process is performed offline due to computational requirements,
with the process taking roughly 1 h for a five volume data set of two beat acquisitions.
However, further optimizations may enable a real-time compounding approach where the
final volume is created as the volumes are acquired, which may also allow for guidance
to be provided to the operator to ensure the volumes are collected with sufficient overlap.
Incorporating image-based real-time tracking algorithms and incorporating GPU accelera-
tion may allow for active guidance of the volume acquisition relative to the initial position.
Currently, this is a major drawback of the approach using offline processing, as in cases
where the acquisitions have insufficient clarity or overlap, compounding will fail and the
imaging session will have already concluded. With improvements to the compounding
process, extensions to the tricuspid valve could also be possible, extending the range of
clinical applications for this work. Additional validation of the compounding approach for
mitral chordae on a larger cohort of patients will be performed to evaluate how accurately
neochord sizes can be predicted from these extended volumes. Further work needs to be
done to evaluate the effects of multi-view compounding on image quality using patient
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image data. Quantitative evaluation of image quality on a larger image set will be carried
out by looking at the improvements in the contrast to noise ratio and image sharpness, as
described in prior volume compounding work [5,6].

5. Conclusions

We describe a workflow for capturing a series of volumes using a TEE probe dur-
ing standard diagnostic imaging that can then be registered and compounded together.
Furthermore, we demonstrate improvements to the compounding process in registration
robustness and final image quality. These compounded volumes capture the sub-valvular
structures of interest for cardiac procedure planning. Capturing the necessary additional
volumes can be performed while only adding an additional ten minutes to the time for
the current standard-of-care diagnostic imaging protocol. We validate the geometrical
accuracy of the compounding approach on two excised porcine valves, finding the mea-
surement error between compounded ultrasound and ground-truth CT to be 0.7 ± 0.6 mm
and 0.6 ± 0.6 mm, respectively. This method is able to provide clinicians with a single
volume that captures the mitral valve and the sub-valvular structures, which will enhance
the procedure planning process.
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